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Abstract 

 

The increasing occurrence of antibiotic resistance, and frequently multi-drug resistance, in 

a wide range of bacterial pathogens has led to an urgent need for new antibiotics.  

Lantibiotics are ribosomally synthesised, post-translationally-modified peptide antibiotics 

with clinical potential. They are characterised by lanthionine and methyl lanthionine 

bridges between cysteine and dehydrated serine and threonine residues, respectively, 

giving lantibiotics their characteristic conformations and stability. The actinomycete 

Microbispora corallina produces a potent lantibiotic, microbisporicin. Microbisporicin 

shows a high degree of modification including chlorinated tryptophan, dihydroxyproline 

and aminovinyl-cysteine residues. The gene cluster responsible for the production of 

microbisporicin was identified by genome scanning and isolated from a M. corallina 

cosmid library. The microbisporicin gene cluster was initially investigated using 

bioinformatic methods which revealed a number of intriguing and novel features. 

Heterologous expression in Nonomuraea sp. ATCC 39727 confirmed that all of the genes 

required for microbisporicin biosynthesis were present in the cluster. Methods were 

developed for the genetic manipulation of M. corallina. Deletion analysis revealed novel 

insights into the biosynthesis of this unusual and potentially clinically useful lantibiotic, 

shedding new light on mechanisms of regulation and self-resistance. In particular, this 

study describes the first example of the involvement of a tryptophan halogenase in the 

modification of a ribosomally-synthesised peptide and the pathway-specific regulation of 

an antibiotic biosynthetic gene cluster by an ECF σ factor:anti-σ factor complex.  
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General Abbreviations 

 

A Adenine 

Abu Aminobutyrate 

AviCys S-[(Z)-2-aminovinyl]-D-cysteine 

Apra Apramycin 

ATP Adenosine-triphosphate 

ADP Adenosine-diphosphate 

BLAST Basic local alignment search tool 

C Cytosine 

cAMP Cyclic adenosine monophosphate 

Carb Carbenicillin 

cDNA Complementary DNA 

C-terminal Carboxy-terminal 

Dha 2,3-didehydroalanine 

Dhb ((Z)-2,3-didehydrobutyrine 

DMSO Dimethylsulfoxide 

DNA Deoxyribonucleic acid 

DNA Difco Nutrient Agar 

DNAse Deoxyribonuclease 

dNTP Deoxynucleoside triphosphate 

EF Elongation Factor 

FAD Flavin adenine dinucleotide 

FMN Flavin mononucleotide 

G Guanine 

gDNA Genomic DNA 

HPLC High Pressure Liquid Chromatography 

Hyg Hygromycin 

Kan Kanamycin 
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kDa Kilodalton 

lacZ  β-galactosidase 

Lan Lanthionine 

lux Luciferase 

MALDI-ToF Matrix-assisted laser desorption ionisation time-of-flight 

MCS Multiple-cloning site 

MeLan Methyl-lanthionine 

MS Mass spectrometry 

Mw Molecular Weight 

Nal Nalidixic acid 

NAD Nicotinamide adenine dinucleotide 

N-terminal Amino-terminal 

OD Optical Density 

PCR Polymerase Chain Reaction 

qRT-PCR Quantitative Reverse transcriptase Polymerase Chain Reaction 

RNA Ribonucleic acid 

mRNA Messenger RNA 

rRNA Ribosomal RNA 

RNAse Ribonuclease 

RT-PCR Reverse transcriptase Polymerase Chain Reaction 

T Thymine 

UV Ultraviolet 
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Chapter 1 – Introduction 

1.1 Actinobacteria and Antibiotics 

1.1.1 Actinobacteria and secondary metabolites 

 

The Actinobacteria are a major phylum of Gram-positive bacteria (Figure 1.1) with 

genomes of high GC-content (65-75 mol% GC) (Miao et al. 2010). They are commonly 

found in the soil and the rhizosphere but have also been isolated from sea water and fresh 

water. Certain sub-groups of Actinobacteria have been extremely important in human 

health and medicine. Most notably the genus Streptomyces has been widely exploited for 

its production of antibacterial, antifungal, immunomodulatory and anti-cancer compounds 

(Table 1.1). Other groups are important human pathogens, in particular the Mycobacteria, 

including the causative agents of tuberculosis and leprosy (Miao et al. 2010).  

Many of the classes of Actinobacteria exhibit multicellular mycelial growth and complex 

developmental processes including the formation of spores. This has been well studied in 

the model actinomycete family Streptomycetaceae and in particular in the model organism 

Streptomyces coelicolor A3(2) (Elliot et al. 2008). S. coelicolor grows as a vegetative 

mycelium likely on the surface of soil particles. Under growth-limiting conditions a cascade 

of developmental changes is initiated involving the formation of aerial mycelium and 

culminating in the production of chains of spores. Spores are highly tolerant of adverse 

environmental conditions and allow Streptomyces to disperse to growth-favourable areas 

where they germinate to establish a new mycelial colony (Elliot et al. 2008). This 

developmental transition in S. coelicolor coincides with the production of at least four 

secondary metabolites; actinorhodin, undecylprodigosin, methylenomycin and the 

calcium-dependent antibiotic (CDA) (Wright et al. 1976b; Wright et al. 1976a; Rudd et al. 

1980; Lakey et al. 1983; Elliot et al. 2008). Secondary metabolites are small molecule 

products that are not essential for basic cell growth and primary metabolism. The  genus 

Streptomyces is responsible for the production of a vast array of such secondary 

metabolites many of which have been exploited for their medicinal properties (Table 1.1) 

(Miao et al. 2010).  
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Figure 1.1 Phylogenetic tree of Actinobacteria based on 1,500 nucleotides of 16S rRNA. 

Families containing members subjected to complete genome sequencing at the time of 

writing are depicted in bold. Orders are indicated.  Figure and legend reproduced from 

Miao and Davies 2010. 
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Table 1.1 Examples of secondary metabolites produced by the Streptomyces genus and 

their uses. Table adapted from Miao and Davies, 2010. 

Producing organism Compound Application 

Streptomyces aureofaciens  Tetracycline Antibacterial 

Streptomyces griseus  Streptomycin Antibacterial 

Streptomyces kanamyceticus  Kanamycin Antibacterial 

Streptomyces lactamdurans  Cefoxitin Antibacterial 

Streptomyces mediterranei  Rifamycin Antibacterial 

Streptomyces pristinaspiraelis  Pristinamycin Antibacterial 

Streptomyces roseosporus  Daptomycin Antibacterial 

Streptomyces spheroides  Novobiocin Antibacterial 

Streptomyces venezuelae  Chloramphenicol Antibacterial 

Streptomyces avermitilis  Ivermectin Antihelminthic 

Streptomyces clavuligerus  Clavulanic acid ß-Lactamase inhibitor 

Streptomyces hygroscopicus  Bialophos Herbicide 

Streptomyces hygroscopicus  Rapamycin Immunosuppressive 

Streptomyces noursei  Nystatin Antifungal 

Streptomyces verticillus  Bleomycin Anticancer 

 

A number of hypotheses have been put forward to explain why some bacteria produce 

secondary metabolites and what functions these compounds may have in their natural 

habitats. A widely held view is that the soil, as a complex microbial habitat, is an extremely 

competitive ecosystem that requires the production of antimicrobial compounds by 

different species to protect particular niches or resources (Yim et al. 2006; Hibbing et al. 

2010). It thus follows that secondary metabolites are produced at the transition to the 

development of spores in most Streptomyces sp. since this will occur when resources and 
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nutrients become limiting and therefore competition is utmost. However, many secondary 

metabolites do not exhibit high levels of antimicrobial activity, and for those that do under 

laboratory conditions it is unknown whether a sufficient concentration would be produced 

in the soil to successfully act as a growth-inhibitor (Yim et al. 2006). Although some 

secondary metabolites might function in this role it is clear that many do not. A likely role 

for many secondary metabolites is in signalling and communication (Yim et al. 2006; Mlot 

2009). Such signalling may occur within the same bacterial species (intraspecies) and 

result in developmental changes, for example A-factor; a small hormone molecule 

responsible for inducing development and the production of secondary metabolites in 

Streptomyces griseus (Ohnishi et al. 2005). Secondary metabolites may also mediate 

signals between bacterial species (interspecies) as a mechanism of competition or to 

promote a mutually beneficial outcome, such as the formation of multispecies biofilms 

(Linares et al. 2006; Straight et al. 2009). A final role for secondary metabolites is their 

contribution to mutualistic or pathogenic interactions with plants and animals. For example 

compounds produced by actinomycetes carried on insects, including ants and beetles, are 

used as antifungals by these animals (Scott et al. 2008; Oh et al. 2009). Another example 

is the secondary metabolite thaxtomin which is utilised by the plant pathogen 

Streptomyces scabies as a toxin (Loria et al. 2008). 

 

1.1.2 Antibiotics 

 

Secondary metabolites are defined as antibiotics if they exhibit appreciable growth 

inhibition or killing of target bacteria under laboratory conditions. The anti-bacterial activity 

of compounds produced by microbes was first appreciated in 1928 when Alexander 

Fleming identified penicillin (Newman et al. 2000). Subsequently during the Golden Age of 

antibiotic discovery in the 1940‟s and „50‟s, many such compounds were isolated and 

identified as drugs suitable for the treatment of a broad spectrum of bacterial infections 

(Newman et al. 2000). A large number of these compounds were isolated from 

Streptomyces sp., starting with streptomycin, identified by Selman Waksman in 1943 from 

Streptomyces griseus (Newman et al. 2000). Hundreds of antibiotics are now known and 

have revolutionised modern medicine (Newman et al. 2000). 

The secondary metabolites produced by actinomycetes that possess antibiotic activity fall 

into several chemical classes. These molecules are typically synthesised by dedicated 

production lines of enzymes encoded by individual gene clusters. For example the 
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polyketide antibiotics typified by the macrolide erythromycin, produced by 

Saccharopolyspora erythrea, is biosynthesised by three large, multidomain proteins or 

polyketide synthases (PKS) (Cortes et al. 1990). Each of the modules on these proteins is 

responsible for the incorporation of a fatty acid unit into the final compound and they 

function in a processive manner (Donadio et al. 1991). Another important class of 

secondary metabolic enzymes are the non-ribosomal peptide synthetases (NRPS). 

Peptide-based natural products constitute a large and important class of antibiotics that 

include medically useful compounds such as the glycopeptide vancomycin and the 

lipopeptide daptomycin.  NRPSs are large multidomain proteins which also function in a 

modular, processive way to generate the initial peptide chain. Unlike ribosomal peptides, 

NRPS-generated molecules can incorporate a range of non-proteinogenic amino acids 

giving them a vast array of chemical properties and structures (Lautru et al. 2004). 

Tailoring enzymes can further modify the structures of these compounds, adding for 

example sugar residues, methyl or hydroxyl groups (Walsh et al. 2001). Some secondary 

metabolites are synthesised by hybrid PKS and NRPS systems, for example the anti-

tumour drug bleomycin from Streptomyces verticillus (Du et al. 2000). In addition, there 

are ribosomally-synthesised peptides, such as the unmodified bacteriocins, largely 

produced by other phyla of bacteria (Nes et al. 2000), and the highly-modified lantibiotics, 

produced by a range of Gram-positive bacteria including the actinomycetes (Guder et al. 

2000; Widdick et al. 2003; Boakes et al. 2009).   

The marked recent rise in the development of multi-antibiotic resistant bacterial pathogens 

has led to an urgent requirement for new classes of molecules with bactericidal activities. 

Gram-positive pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, 

Enterrococcus faecalis and Clostridium difficile have rapidly increased in prevalence in 

recent years as hospital-acquired (nosocomial) infections. In 2006, 95% of clinical S. 

aureus isolates in the USA were resistant to penicillin (and other antibiotics of the β-

lactam family excluding methicillin) and around 50% were also resistant to methicillin 

(MRSA) (Appelbaum 2006a). The number of deaths attributed to MRSA in the UK rose 

steadily until 2006 but has subsequently declined due to the introduction of new hygiene 

standards in hospitals1. The problem is compounded by the increase in vancomycin 

intermediate (VISA) and resistant strains (VRSA, 5 cases were reported up to 2006 in the 

USA) since vancomycin was previously the drug of “last-resort” against MRSA 

(Appelbaum 2006b). Previously, cases of MRSA were found predominantly in a hospital-

                                                
1
 Office for National Statistics (2010) MRSA deaths decrease for second year running 

http://www.statistics.gov.uk/cci/nugget.asp?id=1067 

http://www.statistics.gov.uk/cci/nugget.asp?id=1067
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based setting, particularly amongst older people or those with long-term health problems, 

such as diabetes. However, increasingly MRSA is being found as a community-based 

problem with nasal colonisation by MRSA as high as 7% of the population (Appelbaum 

2006b; Appelbaum 2006a).  

Other Gram-positive pathogens of concern are Enterococci and Clostridium difficile. 

Enterococcus faecium and Enterococcus faecalis are widely associated with multidrug 

resistant infections in hospital-settings, exhibiting resistance to most clinically used 

antibiotics (Woodford et al. 2009). Of particular importance is the increase in the 

resistance of Enterococci to aminoglycosides and glycopeptides, including vancomycin 

and teicoplanin. Furthermore, non-susceptibility of Enterococci to many of the newly 

introduced antibiotics has already been reported, for example to linezolid and tigecycline 

(Woodford et al. 2009).  

Additional challenges are posed by Gram-negative pathogens, particularly Escherichia 

coli, Klebsiella spp., Pseudomonas aeruginosa, Acinetobacter baumannii and Neisseria 

gonorrhoeae (Livermore 2009). The presence of the Gram-negative outer membrane 

provides an additional barrier to the penetration of antimicrobials and limits the number of 

compounds that can be used in the treatment of such infections. Furthermore there is a  

wide-spread accumulation of resistance determinants against the current treatment 

options including extended-spectrum β-lactamases and carbapenemases (Livermore 

2009). Of particular concern is that very few new antibiotic compounds are available, or 

are likely to become available in the near future, for the treatment of resistant Gram 

negative infections (Livermore 2009). 

1.2. Lantibiotics 

 

Lantibiotics are ribosomally synthesised, post-translationally-modified peptide antibiotics. 

They are characterised by lanthionine and methyl lanthionine bridges between cysteine 

and dehydrated serine (2,3-didehydroalanine) and threonine ((Z)-2,3-didehydrobutyrine) 

residues, respectively, giving lantibiotics their characteristic conformations and stability 

(Figure 1.2A). Lantibiotics appear to be produced exclusively by Gram-positive bacteria 

(Chatterjee et al. 2005).  

The first lantibiotic, nisin, was described over 40 years ago. It is produced by Lactococcus 

lactis and has been used extensively in the food industry (Chatterjee et al. 2005). A large 

number of lantibiotics (more than 50) have been described, mostly made by low GC 
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Gram-positive bacterial genera, such as Lactococci, Bacilli and Staphylococci. The gene 

clusters responsible for the production of nisin and many other lantibiotics have been 

determined (section 1.2.1). A number of lantibiotics have also been isolated from 

actinomycetes, including cinnamycin and the related duramycins (Widdick et al. 2003), 

actagardine (Boakes et al. 2009), planosporicin (Castiglione et al. 2007) and 

microbisporicin (Castiglione et al. 2008) (section 1.2.2). 

 

 

Figure 1.2 a) Installation of lanthionine (Lan) or methyllanthionine (MeLan) residues into 

lantibiotic prepropeptides. A serine or threonine residue (Red) is dehydrated to yield 

didehydroalanine (Dha) or didehydrobutyrine (Dhb) respectively. A Lan or MeLan bridge 

results from the cyclisation of these residues with the side chain of cysteine (blue). b) The 

posttranslational maturation process of nisin as described in the text. For Lan and MeLan 

structures, the segments derived from Ser/Thr are in red and those derived from Cys are 

in blue. Figures reproduced from Willey and van der Donk 2007.  
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Lantibiotics are encoded by a structural gene (lanA) whose product is post-translationally 

modified by enzymes that include dehydratases, cyclases and leader peptidases (Figure 

1.2B). Additional proteins are required for export of the lantibiotic and for host resistance 

(section 1.2.3). The genes encoding these proteins are found in clusters, and are co-

expressed.  

Lantibiotics typically have anti-bacterial activity against Gram-positive bacteria and are 

often ineffective against Gram-negatives. The lantibiotics described to date exhibit a range 

of mechanisms of anti-microbial and other activities (section 1.2.4). Unlike PKS and NRPS 

synthesised antibiotics, lantibiotics are highly amenable to genetic manipulation. Since the 

precursor peptide of the final product is genetically encoded, in principle each amino acid 

can be replaced with the other 19 natural amino acids and the resulting variants tested for 

improved pharmacokinetic properties (Appleyard et al. 2009; Boakes et al. 2009). 

 

1.2.1 Lantibiotics from low GC Gram-positive Bacteria 

 

Several schemes have been proposed to classify the lantibiotics that have been 

characterised to date, mainly on the basis of their structural features but more recently on 

the enzymes utilised for peptide maturation (Willey et al. 2007). The most widely used 

naming scheme, used in this work, is based on three classes; types AI, AII and B 

(Chatterjee et al. 2005). The type A lantibiotics typically exhibit a more elongated structure 

whereas type B are more globular (Figure 1.3) (Chatterjee et al. 2005). The type AI 

lantibiotics, typified by nisin, are modified by two enzymes that separately dehydrate 

serine and threonine residues in the peptide (LanB) and subsequently catalyse the 

nucleophilic attack of a cysteine on one of these dehydrated residues (LanC) to generate 

a lanthionine bridge (Figure 1.2B). By contrast both types AII and B utilise a bi-functional 

enzyme (LanM) which is capable of catalysing both these reactions (Chatterjee et al. 

2005). The type AII lantibiotics are exemplified by lacticin 481 and the type B by 

mersacidin (Figure 1.3). 

As is the case for the majority of secondary metabolites characterised to date, the genes 

involved in lantibiotic biosynthesis are found clustered together on the chromosome (e.g. 

subtilin) or on plasmids, phages and transposons (e.g. nisin) (Chatterjee et al. 2005). The 

reason why secondary metabolite genes are clustered is not clear but it might allow 

closely coordinated gene expression. It may also be a consequence of horizontal transfer 

of useful groups of genes between species. The gene clusters encoding several 
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lantibiotics from low GC Gram-positive bacteria have been characterised (Figure 1.4). 

They typically consist of the precursor peptide (prepropeptide) encoding gene, generically 

named lanA, the genes encoding the lanthionine bridge introducing enzymes lanBC or 

lanM, a dedicated export protein lanT, and often a dedicated leader peptidase lanP. The 

genes involved in regulation of biosynthesis typically encode a two-component histidine 

sensor kinase-response regulator system named lanRK. Self-resistance is often mediated 

by one or two systems, an ABC transporter encoded by lanFEG and/or a lipoprotein 

encoded by lanI (Chatterjee et al. 2005).  

Thus far, nisin is the only lantibiotic to be used commercially. Nisin has been used as an 

additive to prevent the growth of pathogenic microbes in food products (Willey et al. 

2007). Clinical applications have been suggested for other low GC lantibiotics, in 

particular mersacidin for the treatment of MRSA (Appleyard et al. 2009) and mutacin 1140 

for the treatment of dental caries (Hillman 2002).  
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Figure 1.3 A selection of lantibiotic structures, representing the three classes of 

lantibiotics described in the text. Type AI; nisin, subtilin, epidermin and Pep5, Type AII; 

lacticin 481and lactocin S, Type B; mersacidin and cinnamycin. Also shown is the two-

component lantibiotic lacticin 3147. Dha, 2,3-didehydroalanine; Dhb, (Z)-2,3-

didehydrobutyrine and Abu, aminobutyrate. Image reproduced from Chatterjee et al. 2005.  
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Figure 1.4 A selection of known lantibiotic gene clusters. Genes in blue are represented 

in all the displayed gene clusters. Red lines indicate the positions of known promoter 

sites. Gene functions are described in the text. Image reproduced from Chatterjee et al. 

2005.  
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1.2.2 Lantibiotics from Actinomycetes 

Unlike the large number of compounds isolated from low GC Gram-positive bacteria, only 

a handful of compounds have been isolated to date from actinomycetes and subsequently 

shown to be lanthionine-containing peptides. SapB was identified from S. coelicolor and 

shown to be involved in the formation of aerial mycelium during Streptomyces 

development (Kodani et al. 2004; Kodani et al. 2005). SapB, like the lantibiotics, is 

generated from a prepropeptide via the introduction of lanthionine bridges and the gene 

cluster involved in its production has been identified (Kodani et al. 2004). SapB does not 

however possess significant antibacterial activity and has been proposed to form a 

separate class of lanthionine-containing peptides (Willey et al. 2007). 

Cinnamycin, a type B lantibiotic, was isolated from Streptomyces cinnamoneus and the 

gene cluster has been identified (Widdick et al. 2003). The related duramycin compounds 

are structurally very similar to cinnamycin and also produced by actinomycetes. 

Cinnamycin has a globular structure and contains two unusual lantibiotic modifications; a 

lysinoalanine bridge and hydroxylated aspartate (Figure 1.5). Cinnamycin biosynthesis is 

encoded by one of the largest lantibiotic gene clusters described to date, consisting of 17 

ORFs (Figure 1.6) (Widdick et al. 2003). Several genes of unknown function were 

identified in the gene cluster (Widdick et al. 2003) and a novel lantibiotic modifying 

enzyme was identified, likely involved in aspartate hydroxylation (O‟Rourke and Bibb, 

unpublished). Furthermore, unusual mechanisms of producer self-resistance and 

regulation were identified (O‟Rourke and Bibb, unpublished). 

Actagardine, deoxyactagardine B (DAB) and michiganin A are related type B lantibiotics 

isolated from the actinomycetes Actinoplanes garbadenensis, Actinoplanes liguriae and 

Clavibacter michiganensis, respectively (Figure 1.5). The structures of all three molecules 

are highly similar and resemble mersacidin (Holtsmark et al. 2006; Boakes et al. 2009; 

Boakes et al. 2010). The gene clusters for actagardine and DAB are very similar, (the 

DAB cluster contains one additional ORF) (Figure 1.6) (Boakes et al. 2009; Boakes et al. 

2010), and share features with that of cinnamycin, such as garTH, ligTH and cinTH, each 

encoding two-component ABC transporters likely to have a role in lantibiotic export 

(Widdick et al. 2003; Boakes et al. 2009; Boakes et al. 2010). None of the three type B 

actinomycete lantibiotic gene clusters encodes a dedicated leader peptidase (LanP) 

(Widdick et al. 2003; Boakes et al. 2009; Boakes et al. 2010). Actagardine and DAB show 

anti-bacterial activity against a range of Gram-positive bacteria and actagardine has been 

the subject of optimisation via variant generation (Boakes et al. 2009; Boakes et al. 2010). 
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 Cypemycin was isolated from Streptomyces sp. OH-4156 and contains dehydrated 

threonine residues ((Z)-2,3-didehydrobutyrine) also found in lantibiotics (Komiyama et al. 

1993). Cypemycin does not contain any lanthionine bridges but does contain several 

unusual modifications; N-dimethylalanine, allo-isoleucine and [(Z)-2-aminovinyl]cysteine 

(Figure 1.5) (Minami et al. 1994). Subsequent elucidation of the biosynthetic gene cluster 

of cypemycin revealed that it belongs to a novel family of peptide antibiotics (Claesen et 

al.). The gene cluster for cypemycin biosynthesis thus shows no similarity to that of other 

actinomycete lantibiotics characterised to date (Claesen et al.).  

A final member of the actinomycete lantibiotic group was isolated from Planomonospora 

sp., a member of the rare actinomycete family the Streptosporangiaceae. Planosporicin 

was initially thought to be similar in structure to the type B lantibiotics mersacidin and 

actagardine (Castiglione et al. 2007), but a recent revision led to its reassignment as a 

type AI lantibiotic (Figure 1.5) (Maffioli et al. 2009). Planosporicin shows bacteriocidal 

activity against a wide range of Gram-positive pathogens (Castiglione et al. 2007), and 

blocks cell wall formation in target bacteria by inhibiting peptidoglycan  biosynthesis 

(Castiglione et al. 2007).  

The rapid increase in the availability of genome sequence data has allowed the 

identification of a number of potential lantibiotic gene clusters from actinomycetes, 

including S. coelicolor (M. Bibb, personal communication), for which the mature products 

have not yet been identified. A gene cluster from Streptomyces venezuelae was shown to 

encode a lantibiotic-like peptide and an unusual modification enzyme (lyase) involved in 

lanthionine bridge formation that was named VenL (Goto et al. 2010). Homologs were 

identified in other gene clusters with the potential to produce lanthionine-containing 

peptides (Goto et al. 2010). The product of the gene cluster, venezuelin, was produced in 

vitro and possessed a globular structure similar to type B lantibiotics; however no 

antibiotic activity could be detected from the small amount of available compound (Goto et 

al. 2010). 
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Figure 1.5 The structures of known actinomycete lantibiotics as described in the text. The 

number of amino acids in the mature peptide is given. Unmodified residues are in blue, 

residues participating in lanthionine bridges or AviCys residues are in purple, Dha and 

Dhb are in green and specially modified residues are in pink. Deoxyactagardine B (DAB; 

residues 14-19 shown below actagardine) differs from actagardine only at positions 15 

and 16, which are Leu and Val, respectively, and in having a lanthionine bridge in place of 

the oxidised lanthionine bridge of actagardine.  



Chapter 1  Introduction 

 

35 
 

 

 

 

Figure 1.6 The known lantibiotic biosynthetic gene clusters from actinomycetes.  Shown 

are genes encoding the prepropeptide (black), modification enzymes (red), two-

component ABC export systems (green), putative regulators (purple), genes of unknown 

function (grey) and flanking genes (white) (Widdick et al. 2003, Boakes et al. 2009; 

Boakes et al. 2010).  
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1.2.3 Lantibiotic Biosynthesis 

The pathways for lantibiotic biosynthesis are unique to each molecule and producing 

species, and regulation and self-resistance mechanisms, in particular, vary widely. Trends 

and similarities will be reviewed in this section. The most well-studied lantibiotic to date is 

nisin but certain aspects of nisin biosynthesis (summarised in Figure 1.7) differ from that 

of other type AI lantibiotics and will be noted with reference to other characterised gene 

clusters. The main focus will be on the type AI lantibiotics, but differences with other 

lantibiotic types will be highlighted.  

 

 

 

Figure 1.7 A summary of the regulation, biosynthesis and self-immunity mechanisms 

responsible for nisin production. Extracellular nisin at low concentration induces the NisRK 

two-component regulatory system which initiates transcription of the biosynthetic genes 

and subsequent nisin production with modification by NisB and NisC. Pre-nisin is exported 

by NisT and the leader peptide removed by NisP. Host immunity is conveyed by NisI and 

NisFEG. Adapted from Patton and van der Donk (2005). 
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1.2.3.1 Prepropeptide and leader peptide 

The lanA gene encodes a precursor peptide (prepropeptide) that includes the future 

mature peptide sequence (propeptide) at its C-terminus and an N-terminal leader peptide. 

Conserved sequences within the leader peptides of characterised lantibiotics define two 

classes (Chatterjee et al. 2005). Lantibiotics modified by LanBC enzymes (type AI) 

typically have a conserved FNLD motif in the leader peptide (e.g. nisin, Figure 1.8). 

Mutation of the FNLD motif of the nisin prepropeptide prevented secretion or intracellular 

accumulation of mature nisin or its precursors, suggesting a fundamental role for this motif 

in nisin maturation and secretion (van der Meer et al. 1993). This was not the case for 

Pep5, where the lantibiotic was correctly processed after mutation of Phe19 (to Ser) or 

Glu16 (to Lys) in the FNLEI  motif, although the yield of final compound decreased by 2-fold 

compared to the wild type control (Neis et al. 1997). Lantibiotics modified by LanM (types 

AII and B) typically have a “GG” or “GA” cleavage site and contain multiple Asp and Glu 

residues in the leader peptide (Figure 1.8) (Chatterjee et al. 2005). Replacement of the 

double Gly motif in mutacin II resulted in complete loss of lantibiotic activity (Chen et al. 

2001). In contrast, cinnamycin has an AXA motif preceding the site of signal peptidase 

cleavage reminiscent of that used by the sec secretory pathway (Figure 1.8) (Widdick et 

al. 2003).  

 

Figure 1.8 Alignments of the prepropeptide sequences of representative lantibiotics 

displaying the conserved leader peptide motifs, in red, as described in the text. Conserved 

serine/threonine and cysteine residues in the propeptide that are involved in lanthionine 

bridge formation are shown in yellow and blue, respectively. Leader peptide cleavage 

sites are marked with a black arrow. Image reproduced from Chatterjee et al. 2005.  
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The leader peptide appears to specify transport of the substrate by the NisT transporter 

since a number of non-lantibiotic peptides fused to the nisA leader sequence could be 

secreted from L. lactis and secretion was dependent upon the co-expression of NisT 

(Kuipers et al. 2004). Thus the leader peptide appears to define correct secretion of 

mature lantibiotics. A second function of the leader peptide is likely to be as a protective 

mechanism for the host cell, such that lantibiotics are kept in an inactive state until 

secreted. Lantibiotics with the leader sequence attached show little or no anti-bacterial 

activity (van der Meer et al. 1994; Li et al. 2006a). Initial studies with nisin chimeras with 

subtilin leader sequences suggested that the leader sequence may specify further 

processing by the LanBC or LanM enzymes (Chakicherla et al. 1995). However, studies 

with other chimeras suggest that this may not be the case for all lantibiotics (Kuipers et al. 

1993b; Levengood et al. 2007). In particular EpiD, which forms the amino-vinyl cysteine 

modification in epidermin (section 1.2.3.2), does not require the leader peptide for activity 

(Kupke et al. 1995).  The leader peptide has also been suggested to contribute to the 

directionality of lanthionine bridge-formation (Levengood et al. 2007; Lee et al. 2009; 

Oman et al. 2010). 

The leader peptide cleavage sites of type AI lantibiotics show particular conservation at 

positions -1, -2 and -4, which are commonly arginine/glutamine, proline and 

alanine/isoleucine, respectively (Figure 1.8) (Chatterjee et al. 2005). Site-directed 

mutation of the -2 position of the nisin leader indicated only a minor role for this residue in 

nisin leader processing (van der Meer et al. 1994). By contrast, leader peptide removal 

from pre-nisin was strongly dependent on the presence of arginine at -1 and alanine at -4 

(van der Meer et al. 1994). This was likely a specific property of the NisP leader peptidase 

since in vitro cleavage of the modified leader resulted in active nisin, suggesting that these 

residues do not influence nisin propeptide maturation (van der Meer et al. 1994). 
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1.2.3.2 Post-translational Modifications 

LanB Dehydratase 

Studies of LanB activity have been severely hindered by the inability to reconstitute 

enzyme activity in vitro (Xie et al. 2002; Chatterjee et al. 2005). In addition there are no 

known homologs of LanB proteins that might shed light on their mechanism of action. 

LanB orthologs on average share only around 30% amino acid sequence identity, which is 

thought to reflect the large differences in substrate sequence and structure between 

different lantibiotics (Chatterjee et al. 2005). In a nisC mutant, but not a nisBC double 

mutant, a dehydrated pre-peptide could be recovered, providing evidence that NisB is 

responsible for this activity (Koponen et al. 2002). Successful synthesis of nisin using an 

in vitro transcription/translation system required the presence of the nisB transcript  

(Cheng et al. 2007). nisB is essential for high level accumulation of pre-nisin in L. lactis 

cells, suggesting instability of the prepropeptide in its absence (van den Berg van 

Saparoea et al. 2008). NisB does not contain any predicted transmembrane regions but 

localises at the cell membrane, along with NisC and NisT, suggesting the formation of a 

multimeric functional complex (Siegers et al. 1996). Models for LanB enzymatic activity 

have been largely extrapolated from data on LanM bifunctional enzymes (see below). 

NisB exhibits relatively low substrate specificity and was shown to dehydrate non-

lantibiotic peptides expressed in L. lactis when the NisA leader peptide was fused to them 

(Kluskens et al. 2005; Rink et al. 2005). 

LanC Cyclase 

A great deal more information is available about LanC than LanB enzymes, since in vitro 

reconstitution of LanC function was demonstrated (Li et al. 2006a). A particularly well-

studied example is NisC, which carries out the cyclisation reaction of nisin. In vitro, NisC 

was able to cyclise a dehydrated pre-nisin substrate isolated from L. lactis ΔnisC. This 

activity was not seen when the leader peptide was first cleaved from the substrate, 

suggesting a requirement of the nisin leader peptide for NisC activity (Li et al. 2006a). The 

crystal structure of NisC was solved to 2.5Å resolution allowing a thorough investigation of 

its mechanism of action. Conserved histidine and cysteine residues at the active site 

coordinate a zinc ion, activating the attacking thiolate group for nucleophilic attack on the 

dehydrated Dha or Dhb substrate (Figure 1.9). The structure also suggests a possible 

binding site for the leader sequence of prenisin (Li et al. 2006a). The importance of the 

active site residues and coordination of zinc was further demonstrated by site directed 

mutagenesis. However, Arg280, which had previously been postulated as important for 

cyclisation, was shown not to be essential for cyclisation, which correlates with the 
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absence of this residue in the LanM enzymes, while Trp283 was postulated to be important 

for protein stability since the mutant protein was prone to precipitation (Li et al. 2007).  

The substrate specificity of LanC enzymes is quite low. EpiC, encoded by the epidermin 

biosynthetic gene cluster, could complement a SpaC (subtilin) deletion mutant (Helfrich et 

al. 2007). Furthermore, alanine replacement mutagenesis in SpaC has identified residues 

essential for enzyme activity. This indicated conservation of catalytic residues between 

NisC and SpaC, with the most important being those involved in zinc coordination 

(Helfrich et al. 2007). NisC is predicted to form a complex with NisB and NisT at the 

membrane (Siegers et al. 1996). Recent evidence from in vitro synthesis of nisin 

suggests, however, that membrane association is not essential for nisin biosynthesis 

(Cheng et al. 2007). 

 

 

Figure 1.9 The proposed mechanism for the formation of a lanthionine bridge in nisin by 

NisC. A zinc atom is coordinated by two cysteine residues, a histidine residue and water 

at the active site of NisC. Upon substrate binding the water molecule is displaced by the 

sulphur atom of a cysteine in the nisin prepropeptide. The sulphur atom is deprotonated 

via the interaction with zinc which lowers its pKa. This allows a nucleophilic attack upon the 

carbon-carbon double bond of Dhb (or Dha) in the prepropeptide to yield an enolate 

intermediate which is subsequently protonated. Image reproduced from Li et al. 2006.  
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LanM Bi-functional dehydratase/cyclase 

LanM enzymes are bi-functional, carrying out both the dehydration and cyclisation 

reactions for type AII and type B lantibiotics. The C-termini of LanM enzymes share 

around 20-27% identity with LanC proteins, but there is conversely no homology between 

LanM and LanB proteins. This suggests that lanM genes did not result from a fusion of 

lanB and lanC (Chatterjee, 2005). A well-studied example is LctM, which dehydrates and 

cyclises the appropriate residues during the biosynthesis of lacticin 481 by Lactococcus 

lactis. The in vitro biosynthesis of lacticin 481 confirmed the dual activity of LctM in the 

presence of ATP and Mg2+. EDTA abolished activity suggesting that zinc is important for 

catalysis, as in the case of NisC (Xie et al. 2004). Consistent with this, mutations that 

remove the putative zinc coordinating ligands of LctM prevent cyclisation but not 

dehydration (Paul et al. 2007). This also indicates that the cyclisation and dehydration 

activities of LanM enzymes can be uncoupled. Only residues 10-24 of the leader peptide 

were necessary for LctM activity (Xie et al. 2004). Attempts at crystallisation of LctM have 

so far been unsuccessful but a recent report has shed some light on the catalytic 

mechanism of dehydration through the use of site-directed mutagenesis (You et al. 2007). 

LctM was shown to have low substrate specificity and could dehydrate non-lantibiotic 

peptides attached to the LctA leader peptide (You et al. 2009).  Mutant forms of LctM 

could function as general serine/threonine kinases, potentially shedding light on the 

evolution of LanM enzymes from this widely distributed class of proteins (You et al. 2009).  

LanL Bi-functional dehydratase/cyclase 

A third class of lanthionine bridge-forming enzymes was recently described (Goto et al. 

2010). These enzymes, typified by the initially identified member, VenL, from S. 

venezualae consist of three domains; a phosphoserine/threonine lyase domain, a kinase 

domain and a LanC-like cyclase domain. The N-terminal Ser/Thr kinase and lyase 

domains were involved in dehydratase activity of the protein. This class of enzymes 

appears to be widespread in sequenced genomes from the current database (Goto et al. 

2010). 

LanD Decarboxylase 

LanD enzymes are involved in the conversion of C-terminal cysteine to an S-[(Z)-2-

aminovinyl]-D-cysteine (AviCys) modification. Specifically LanD enzymes are flavoproteins 

which decarboxylate the C-terminal cysteine of the peptide chain to yield an enethiol 

intermediate which subsequently forms an AviCys bridge via cyclisation with a 

didehydroalanine or didehydrobutyrine in the chain, possibly catalysed by LanC (Figure 
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1.10) (Chatterjee et al. 2005).  EpiD involved in epidermin biosynthesis is a well-studied 

example for which the crystal structure is also available (Blaesse et al. 2000; Chatterjee et 

al. 2005). EpiD and MrsD (mersacidin) are members of the homooligomeric flavin-

containing cysteine decarboxylase (HFCD) superfamily (Blaesse et al. 2003). EpiD 

function does not require a leader peptide. The substrate specificity of EpiD was 

investigated using peptide libraries. EpiD displays relatively low substrate specificity with 

only the C-terminal cysteine being an absolute requirement although the nature of all 

three residues at the C-terminus could affect enzyme activity and not all substrate 

changes were tolerated. Furthermore the three C-terminal residues alone were not 

sufficient for enzyme activity which required a minimum of a tetrapeptide substrate (for 

weak activity). Based on these findings a consensus amino acid sequence for the C-

terminus of an EpiD substrate was suggested; (V/I/L/(M)/F/Y/W)-(A/S/V/T/C/(I/L))-C 

(Kupke et al. 1995). Structural studies of EpiD and MrsD provided insights into the 

catalytic mechanism of the enzymes, which require FMN or FAD (MrsD only) for 

functionality (Blaesse et al. 2000; Blaesse et al. 2003).  

The exact function of this C-terminal modification in the lantibiotics which possess it, 

epidermin, mersacidin and mutacin III, is not clear. EpiD is essential for epidermin 

bioactivity in Staphlococcus epidermis but it is not known whether the presence of the 

modification contributes to bioactivity directly or to the stability/production efficiency of the 

molecule (Augustin et al. 1992). Although the essentiality of mrsD for mersacidin 

biosynthesis has not been directly addressed, during experiments to generate mersacidin 

variants, alterations at Ile19 (next to the decarboxylated cysteine residues) were, unlike 

those at many other sites, not well-tolerated (the respective molecules being absent or 

produced at very low yields), suggesting that cysteine decarboxylation may be essential 

for mersacidin biosynthesis (Appleyard et al. 2009). 
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Figure 1.10 The proposed mechanism for 

the formation of S-[(Z)-2-aminovinyl]-D-

cysteine (AviCys) in the epidermin 

prepropeptide EpiA, catalysed by EpiD 

and EpiC. EpiD decarboxylates the C-

terminal cysteine at position 22 of the 

prepropeptide, in a flavin-dependent 

manner, to yield an enethiol intermediate. 

The enethiol intermediate subsequently 

forms an AviCys bridge via cyclisation 

with Dha at position 19, most likely in a 

reaction catalysed by EpiC. Image 

reproduced from Chatterjee et al. 2005.  
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Other Post-Translational Modifications 

Several other post-translational modifications of lantibiotics, in addition to the introduction 

of lanthionine bridges and AviCys residues, have been reported. These tailoring 

modifications likely influence the specific properties of the final compound, as is the case 

for polyketide and non-ribosomal peptide antibiotics (Walsh et al. 2001).  N-terminal 

modifications have been described, presumably providing protection from aminopeptidase 

activity, and are proposed to be introduced subsequent to leader peptide removal 

(Chatterjee et al. 2005). This suggests either that the leader peptide is removed 

intracellularly (as was shown for Pep5 (de Vos et al. 1995)) or the tailoring enzymes work 

outside the cell membrane, perhaps in concert with leader peptide removal. Examples 

include the 2-oxobutyryl and 2-oxopropionyl groups in Pep5 and epilancin K7 (Chatterjee 

et al. 2005). Formation of a lysinoalanine bridge in cinnamycin also likely protects the N-

terminus of the molecule and creates a highly globular structure. Lysinoalanine is unique 

to cinnamycin, as is the introduction of hydroxyaspartate (Widdick et al. 2003). Both 

lactocin S and lacticin 3147 have a D-alanine in place of the genetically encoded L-serine, 

which is thought to result from a stereospecific hydrogenation of dehydroalanine 

(Chatterjee et al. 2005). Finally, the modified peptide antibiotic cypemycin possesses 

dimethylalanine at the N-terminus and also contains two allo-isoleucines (Minami et al. 

1994). 

1.2.3.3 Export and Leader-peptide removal 

Following biosynthesis the lantibiotic is exported from the cell. This may be concomittant 

with or prior to leader peptide removal. In some cases the leader peptide is removed 

intracellularly (de Vos et al. 1995). Lantibiotic export is mediated by the ABC-transporter 

family of proteins which can be roughly divided into three classes.  

The LanT proteins are members of the single-component ABC-family of ATP-dependent 

transporters in which the membrane domain is fused to the ATP-binding domain (Young 

et al. 1999).  LanT proteins encoded by type AI lantibiotic gene clusters from low GC 

Gram-positive bacteria, typified by the export protein for nisin, NisT, consist of a large 

hydrophobic region, which forms six membrane-spanning helices, and a cytoplasmic ATP-

binding domain (Figure 1.11) (Chatterjee et al. 2005; Lubelski et al. 2008). It is likely that 

two NisT monomers come together to form the complete ABC transporter. NisT interacts, 

at the cytoplasmic side of the cell membrane, with NisC and is likely to be involved in a 

complex for nisin modification and transport, also involving NisB ((Siegers et al. 1996; van 

den Berg van Saparoea et al. 2008). However, NisT is not essential for nisin biosynthesis 

in vitro (Cheng et al. 2007). In the absence of NisT, pre-nisin accumulates in the 
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cytoplasm (Qiao et al. 1996; van den Berg van Saparoea et al. 2008). Substrates do not 

need to be modified by the biosynthetic enzymes to be secreted by NisT (van den Berg 

van Saparoea et al. 2008). NisT shows broad specificity range and could transport non-

lantibiotic protein substrates which were fused to the pre-nisin leader peptide (Kuipers et 

al. 2004). Pre-nisin leader peptide cleavage is not coupled to export (van den Berg van 

Saparoea et al. 2008). The LanT proteins GdmT (gallidermin), PepT (Pep5), NisT and 

SpaT (subtilin) show very little N-terminal similarity, though their hydrophobicity profiles 

are similar, but the C-terminal ATP-binding domains share identities of 20-31%. GdmT 

(and EpiT) requires GdmH (or EpiH), a predicted hydrophobic protein lacking sequence 

similarity to other proteins in the database, for full transport capability (Peschel et al. 1997; 

Hille et al. 2001).  

The type AII and B lantibiotics from low GC Gram-positive bacteria use a related LanT 

transporter which similarly consists of a fused membrane-spanning domain and ATP-

binding domain; however they are extended at the N-terminus by the inclusion of a 

protease domain (Chatterjee et al. 2005; Furgerson Ihnken et al. 2008). Both the ATP-

binding and protease domains are predicted to be located in the cytoplasm, based on 

findings for the related transporter LcnC of the bacteriocin lactococcin A (Figure 1.11) 

(Franke et al. 1999).   This protease fulfils the role of the separate LanP proteases of type 

AI lantibiotic gene clusters and in the case of LctT was identified to be a member of the 

cysteine protease family (Furgerson Ihnken et al. 2008). These proteases typically 

recognise the double glycine cleavage motif conserved in the leader peptides of type AII 

and B lantibiotics (Furgerson Ihnken et al. 2008).  

The actinomycete lantibiotics characterised to date appear to use an alternative export 

system which instead consists of a two-component ABC transporter with separate 

membrane-spanning permease and ATP-binding domain proteins (Figure 1.11). These 

transporters are reminiscent of the multidrug export protein family (Young et al. 1999). 

CinTH of the cinnamycin biosynthetic gene cluster, postulated to export cinnamycin, have 

sequence homology with the daunorubicin resistance proteins DrrA and DrrB found in 

many actinomycetes (Kaur 1997; Widdick et al. 2003). The actagardine and 

deoxyactagardine B gene clusters both encode two-component ABC transporters 

postulated to have a role in lantibiotic export (Boakes et al. 2009; Boakes et al. 2010). 

Although these proteins have little sequence homology to CinTH, they share the same 

two-component arrangement. Interestingly GarH and LigH (permease component) are 

significantly extended at the N-terminus compared to CinH suggesting the possible 

presence of an integral protease domain; however, no such domain could be detected 

through sequence comparisons (Boakes et al. 2009; Boakes et al. 2010).  
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As discussed the LanT proteins exporting type AII and B lantibiotics have an N-terminal 

protease which cleaves the leader peptide (Altena et al. 2000; Chatterjee et al. 2005; 

Furgerson Ihnken et al. 2008). In the type AI lantibiotics from low GC Gram positive 

bacteria this activity is supplied by a separate protease, LanP. NisP belongs to the 

subtilisin family of proteases and is likely exported from the cell due to the presence of a 

Sec-signal at its N-terminus (van der Meer et al. 1993). Pre-nisin is made in the absence 

of NisP, which is not required for its biosynthesis or transport from the cell (Qiao et al. 

1996; Kuipers et al. 2004; van den Berg van Saparoea et al. 2008). NisP displays 

sequence specificity for leader peptide cleavage and was not able to cleave a subtilin 

leader-nisin chimera peptide in vivo (Kuipers et al. 1993b). In epidermin biosynthesis, the 

protease EpiP is a point of post-translational control of epidermin production. Regulated 

via the quorum sensing agr system in an undefined way, EpiP activity altered with cell-

density, such that active mature epidermin should only be produced at high cell density 

(Kies et al. 2003). 

Figure 1.11 A summary 

of the three types of 

lantibiotic export ABC-

transporters as 

described in the text. P 

indicates the presence of 

a protease domain. N 

and C indicate the N and 

C-termini of the proteins, 

respectively. ATP-

binding domains are 

represented as ovals 

and permease domains 

by their transmembrane 

spanning helices.  
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Several lantibiotic gene clusters do not encode a dedicated LanP protease but appear to 

rely on non-specific proteases for leader peptide cleavage (Chatterjee et al. 2005). 

Subtilin was processed by at least three extracellular proteases of B. subtilis in vivo 

(Corvey et al. 2003). Haloduracin, a two-component lantibiotic produced by Bacillus 

halodurans, was similarly processed by extracellular proteases in the culture supernatant 

of the natural producer, however it is not clear whether HalT may also play a role in leader 

peptide processing (McClerren et al. 2006; Lawton et al. 2007). Finally the actinomycete 

lantibiotics do not have clear candidate protease enzymes encoded within their 

biosynthetic gene clusters and are also likely processed by extracellular proteases 

(Widdick et al. 2003; Gartemann et al. 2008; Boakes et al. 2009; Boakes et al. 2010). 

Cinnamycin and actagardine were successfully expressed in the heterologous host S. 

lividans suggesting that the general protease involved in their maturation is also likely to 

be present in this species (Widdick et al. 2003; Boakes et al. 2009). 

 

1.2.3.4 Producer Self-Resistance 

Lantibiotic producing host strains require mechanisms of self-protection. In the nisin 

biosynthetic gene cluster this is provided by the lanI and lanFEG genes (Siegers et al. 

1995). The LanI protein, NisI, is a lipoprotein, anchored to the cell membrane, which acts 

to block nisin activity by interacting with the lantibiotic before it can bind to its target 

substrate lipid II or interact with the membrane to form pores (see also section 1.2.4) 

(Figure 1.7) (Qiao et al. 1995; Stein et al. 2003). NisI specifically binds to nisin and did not 

bind to or give immunity against subtilin (Stein et al. 2003). The immunity function of the 

nisin cluster was initially thought to be regulated along with the biosynthetic genes, via 

nisin autoregulation (see below). Recently a NisI specific promoter has been identified 

internal to the nisABTCIP operon which allows NisI expression prior to nisin biosynthesis 

(Li et al. 2006b). NisI truncation experiments have revealed the C-terminal region to be of 

particular importance for NisI activity and in conferring specificity of a hybrid SpaI-NisI 

protein towards nisin (Takala et al. 2006).  

A number of lantibiotic clusters have only LanI genes as an immunity mechanism and do 

not have LanFEG homologs (described below). Examples include Pep5, cytolysin, 

epicidin and lactocin S (Chatterjee et al. 2005). These LanI proteins are integral 

membrane proteins rather than lipoproteins and do not share sequence homology with 

NisI and SpaI. PepI localises to the cell wall-membrane interface, with the N-terminus of 

the protein regulating its own export and the C-terminus conferring immunity (Hoffmann et 

al. 2004).  
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A further example in which a small protein confers increased resistance to a lantibiotic is 

the Nukacin ISK-1 NukH protein (Aso et al. 2004; Aso et al. 2005). This small protein is 

predicted to have three transmembrane domains and two external loops (Okuda et al. 

2005). It localises to the cell membrane when expressed heterologously in Lactococcus 

lactis and interacts with Nukacin ISK-1 via its C-terminus. It is thought that NukH binds 

Nukacin ISK-1 at the membrane and directs it to the ABC-complex of NukFEG (Okuda et 

al. 2008). 

In the case of nisin, full protection for producer cells seems to be conferred only when 

both LanFEG (NisFEG) and LanI (NisI) are present. The effect appears to be additive 

since each system alone only confers 5-20% of the full immunity level (Ra et al. 1999). 

The nisFEG genes lie downstream of the nisin biosynthetic cluster and form a separate 

operon, transcribed from a promoter upstream of nisF (Siegers et al. 1995). The NisFEG 

proteins constitute an ABC-transporter; NisF is an ATP-binding domain protein and NisE 

and NisG are the membrane-spanning proteins of the transporter (Figure 1.7). It is likely 

that two NisF proteins interact with a heterodimer of NisEG, on the basis of structural 

similarity to the maltose and histidine transport systems  (Chatterjee et al. 2005). 

Heterologous expression of NisFEG in B. subtilis decreased the levels of cell associated 

nisin suggesting that the function of the transporter is to export nisin away from the 

producer cell surface and prevent nisin interaction with its target lipid II (Stein et al. 2003). 

The ATP-binding domain LanF proteins involved in lantibiotic resistance differ from other 

ATP-binding domain proteins in the conserved Q-loop, which is replaced by an E-loop 

(Okuda et al. 2010). This may have functional significance for the exported substrates and 

define these proteins as a separate class (Okuda et al. 2010).   

The epidermin gene cluster does not have a nisI homolog but does have lanFEG genes, 

which appear to constitute the complete immunity system for epidermin (Peschel et al. 

1996). EpiFEG constitute an ABC transporter that has been shown to export gallidermin in 

an ATP-dependent manner (Otto et al. 1998). The epiFEG genes form an operon, the 

expression of which is regulated along with the biosynthetic and transport genes, by EpiQ. 

The presence of epiFEG is required for wild type levels of epidermin biosynthesis in a 

heterologous host (Peschel et al. 1996). EpiH and its close relative GmdH are also 

involved in the immunity mechanisms for epidermin and gallidermin, respectively. GmdH 

and EpiH do not have homologs in other lantibiotic clusters but do have similarity to other 

proteins of unknown function in a range of bacteria (Peschel et al. 1997; Hille et al. 2001). 

Like epidermin, a number of lantibiotic clusters encode lanFEG homologs but do not 

possess lanI genes; examples include mersacidin, lacticin 481 and macedocin (Rince et 

al. 1997; Altena et al. 2000; Papadelli et al. 2007).  
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1.2.3.5 Regulation 

The regulatory mechanisms employed by different lantibiotic gene clusters appear to vary 

widely. This likely reflects the wide range of input signals which induce lantibiotic 

biosynthesis in different producing organisms. Many lantibiotics regulate their own 

expression in a cell-density dependent manner but often this is integrated with other 

external signals, such as developmental cues, pH and cell stress responses (Stein et al. 

2002; Kies et al. 2003; Hindre et al. 2004). The regulation of lantibiotic biosynthetic genes 

occurs most commonly via a two-component system (Figure 1.7) (Chatterjee et al. 2005).  

The nisin regulatory system has been extensively studied and is similar to that of subtilin 

(Stein et al. 2002). Induction of expression of the nisin biosynthetic gene cluster in a nisA 

mutant is dependent on the presence of exogenously added nisin in a dose-dependent 

manner (Kuipers et al. 1995). The first 11 residues of nisin, including the A and B rings, 

were sufficient for the induction of nis gene transcription (Kuipers et al. 1995). Additionally, 

an in-frame deletion of the nisin biosynthetic gene nisB prevented self-induction 

suggesting that the structure of the molecule, introduced by the lanthionine bridges, is 

important for induction (Kuipers et al. 1995). Induction of nis gene expression in response 

to nisin is dependent on the presence of nisRK (Engelke et al. 1994; Kuipers et al. 1995). 

The membrane embedded NisK histidine kinase likely “senses” the presence of nisin at 

the membrane, either directly or indirectly (Kuipers et al. 1995). This induces histidine 

kinase autophosphorylation. Phosphotransfer to the response regulator NisR likely 

induces the ability to interact with operator sequences preceding nisA and nisF in the 

gene cluster (de Ruyter et al. 1996). Over-expression of NisR alone is capable of 

stimulating nis gene transcription (van der Meer et al. 1993). This activates transcription of 

nisABTCIP and nisFEG (de Ruyter et al. 1996). nisR and nisK are by contrast 

constitutively expressed from a separate nisR promoter (de Ruyter et al. 1996). This 

raises the question of how host cells protect themselves if immunity mechanisms are 

initiated only at the same time as biosynthesis. Recently a separate nisI promoter was 

identified internal to the operon that can activate nisI expression without nisA activation (Li 

et al. 2006b), and which presumably serves this protective role. This promoter exhibits 

weak constitutive activity, possibly induced by DNA curvature effects (Li et al. 2006b). 

The SpaRK system in B. subtilis operates in a similar way to NisRK and both NisK and 

SpaK can phosphorylate NisR. Moreover, NisK-SpaK chimeras are functional, with the N-

terminus providing specificity for the inducer (Kleerebezem et al. 1997; Kleerebezem et al. 

2001). Subtilin production by B. subitilis is also positively influenced by the developmental 

sigma factor SigH, which is regulated in a density dependent manner, and negatively by 
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AbrB, a transition state regulator of late-growth gene transcription, which may act via SigH 

(Stein et al. 2002).  

A number of lantibiotic gene clusters deviate from this mode of regulation and do not use 

classical two-component systems. Epidermin production is linked to the quorum sensing 

(agr) system, however a direct transcriptional effect was ruled out. agr regulates, by an 

unknown mechanism, the activity of the EpiP protease, preventing it from removing the 

leader peptide of the epidermin prepeptide and thus keeping it in an inactive state until cell 

density reaches an appropriate level (Kies et al. 2003). A single regulatory protein EpiQ is 

encoded with the epidermin cluster and is essential for epidermin biosynthesis. EpiQ is a 

response regulator but no cognate histidine kinase is encoded within the cluster. EpiQ 

activates transcription of the other epidermin biosynthetic genes, however there is no 

knowledge of how EpiQ itself is regulated and epidermin biosynthesis appears to be 

independent of the external epidermin concentration (Peschel et al. 1993; Kies et al. 

2003). 

The mersacidin biosynthetic gene cluster encodes a histidine kinase and two response 

regulators (Altena et al. 2000). The orphan response regulator encoded by mrsR1 was 

required for mersacidin production and thus likely regulates transcription of mrsA and the 

biosynthetic genes, although its cognate histidine kinase is unknown (Guder et al. 2002; 

Schmitz et al. 2006). MrsK2/R2 act as a two-component regulatory system for the 

immunity genes mrsFEG (Guder et al. 2002). Like nisin and subtilin, mersacidin acts as its 

own autoinducer (although mersacidin is required at higher concentrations) (Schmitz et al. 

2006). When induced by mersacidin, a ΔmrsK2/R2 mutant fails to transcribe the mrsA 

prepropeptide gene. This initially seems at odds with the earlier findings but might be 

explained by a fail-safe mechanism that prevents mersacidin production in the absence of 

immunity gene transcription and if the role of MrsK2/MrsR2 is to coordinate biosynthesis 

and resistance (Schmitz et al. 2006). Unlike subtilin biosynthesis, sigma factor SigH does 

not influence mersacidin biosynthesis in Bacillus sp. (Schmitz et al. 2006). The possibility 

that MrsR1 is not part of a conventional two-component system is supported by the finding 

of several other orphan regulators encoded by lantibiotic gene clusters, such as EpiQ, 

MutR, LasX and ltnR (described below). 

The mutacin II gene cluster encodes the regulator MutR which is required for mutacin II 

biosynthesis and appears to regulate the mutA and mutR promoters. MutR is a member of 

the Rgg family of transcriptional regulators (Qi et al. 1999a). Lacticin 3147 biosynthesis 

has similarly been found not to involve a two-component system. The negative regulator 

LtnR, one of a few found in lantibiotic gene clusters, regulates its own transcription, and 
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that of the immunity genes, in a negative feedback loop. The biosynthetic gene operon 

appears to be constitutive in this case, with a transcriptional attenuator downstream of 

ltnA maintaining the appropriate stoichiometric ratio of the prepropeptide with the 

biosynthetic enzymes (McAuliffe et al. 2001). The LasX protein expressed from the 

lactocin S cluster acts as both a positive and negative regulator. LasX up-regulates 

transcription of the biosynthetic genes whilst down-regulating its own transcription in order 

to maintain a steady state. LasX, like MutR, belongs to the Rgg family and its binding site 

has been identified but the signal regulating LasX is unknown (Rawlinson et al. 2002; 

Rawlinson et al. 2005). 

 

1.2.4 Modes of Lantibiotic Action 

Many lantibiotics function by binding to Lipid II, the precursor for peptidoglycan 

biosynthesis. The peptidoglycan layer is a cross-linked network of amino sugars and 

tetrapeptides that provides structural integrity to the cell, preventing the lysis that might 

otherwise result from high internal osmotic pressure. The formation of peptidoglycan 

during bacterial cell wall biosynthesis is a cyclical process that alternates between the 

inner and outer leaflet of the cell membrane and involves a polyisoprenoid carrier 

molecule (Figure 1.12). The undecaprenylphosphate carrier on the inner leaflet of the 

membrane is attached, via a UDP intermediate, to N-acetylmuramic acid (MurNAc)-

pentapeptide (most commonly L-Ala-D–γ-Glu-L-Lys-D-Ala-D-Ala) by MraY. This is 

followed by the addition of N-acetylglucosamine (GlcNAc) from UDP-N-acetylglucosamine 

by MurG to form Lipid II. Lipid II is transported from the inner leaflet to the outer leaflet by 

an unknown process, likely a specialised protein translocator. Penicillin-binding proteins in 

the outer leaflet of the membrane catalyse the transfer of the pentapeptidyldisaccharide 

from the carrier molecule to the growing peptidoglycan chain by transglycosylation. 

Subsequently transpeptidase activity induces peptide chain cross-linking to provide 

structural rigidity to the resulting peptidoglycan.  
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Figure 1.12 Summary of the events of the peptidoglycan biosynthetic cycle in the cell 

membrane of a Gram-positive bacterium as described in the text. Antibiotics which act at 

specific points in the cycle are indicated.  11-pp, undecaprenylphosphate carrier; the 

pentapeptide is represented by five spheres; M, N-acetylmuramic acid (MurNAc); G, N-

acetylglucosamine (GlcNAc).  Image reproduced from de Kruijff et al. 2008.  

 

The universal nature of peptidoglycan biosynthesis in bacteria, and the importance of the 

cell wall for bacterial viability, renders cell wall biosynthesis a particularly suitable target 

for antibiotic activity. For example, vancomycin targets the C-terminal two residues of the 

pentapeptide of Lipid II and penicillin interacts with the penicillin-binding proteins to 

prevent transglycosylation (Figure 1.12) (de Kruijff et al. 2008). Several lantibiotics also 

target Lipid II, inhibiting peptidoglycan biosynthesis, weakening the cell wall and inducing 

cell lysis. 

Nisin exhibits two mechanisms of cell killing, the formation of membrane pores which 

leads to osmotic shock and cell lysis, and the inhibition of cell wall biosynthesis preventing 

cell division and increasing the risk of cell lysis due to internal osmotic pressures (Bauer et 

al. 2005; Breukink et al. 2006). These mechanisms are both mediated by  the ability of 

nisin to bind to Lipid II (Breukink et al. 2006). The complex of nisin with Lipid II has been 

extensively studied; rings A and B of nisin form a cage for the pyrophosphate moiety of 

Lipid II. The cage is formed by the backbone of the nisin peptide chain rather than being 

mediated by specific side chains (Figure 1.13) (Hsu et al. 2004). The backbone amides 

form five hydrogen bonds to the pyrophosphate (Hsu et al. 2004). Binding to lipid II is a 

crucial step in membrane pore formation, recruiting nisin monomers to the membrane and 
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allowing them to oligomerise to form pores (Hasper et al. 2004). Lipid II plays a key role in 

pore formation with four molecules per pore complex along with eight of nisin. The pores 

are extremely stable and not disrupted by mild detergents (Hasper et al. 2004). The hinge 

region between rings C/D of nisin is critical for pore formation, allowing insertion of nisin 

molecules across the bilayer membrane where they are stabilised by interaction with lipid 

II (Hasper et al. 2004). 

 

Figure 1.13 The N-terminal part of nisin (residues 1−12 shown in van der Waals surface 

with backbone and side chain atoms in yellow and green, respectively) encages the 

pyrophosphate moiety of 3LII (a variant of Lipid II with a shortened prenyl tail of three 

isoprene units instead of 11 in the full-length structure). The side chains (green) of nisin 

are labeled. Carbon, nitrogen, oxygen and phosphorus atoms of 3LII are white, blue, red 

and cyan, respectively. Image and legend reproduced from Hsu et al. 2004.  

Mutational analysis of nisin revealed that alterations in the hinge region prevent the 

formation of membrane pores but do not affect the bacteriocidal activity of nisin (Hasper et 

al. 2004). Furthermore, several type AI lantibiotics with the conserved A and B rings 

required for interaction with Lipid II do not form membrane pores and are bacteriocidal 

(Bonelli et al. 2006; Hasper et al. 2006). This indicated the involvement of a second Lipid 

II-mediated activity. In Bacillus sp. nisin altered the normal distribution of Lipid II in the cell 

membrane, mobilising it away from sites where Lipid II accumulates in the absence of 

nisin, such as at the cell division septum (Hasper et al. 2006). This was also the case in 

susceptible L. lactis. This indicates that nisin is capable of sequestering Lipid II away from 

sites of cell wall synthesis and thus prevents peptidoglycan biosynthesis and weakens the 

cell wall (Hasper et al. 2006). This mechanism of action is likely common to type AI 
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lantibiotics, many of which may also lack the cell permeabilising activity of nisin (Hasper et 

al. 2006).  

Epidermin and gallidermin share a high degree of homology with the A and B rings of nisin 

but do not share C-terminal homology and are much shorter (30 Å in length compared to 

50 Å for nisin). Both lantibiotics can bind Lipid II but are too short to form pores except for 

in the thinnest membranes in vitro (Bonelli et al. 2006). Although able to form pores in a 

few target species (e.g. Micrococcus flavus), in others (e.g. Lactococcus sp.) pore 

formation appeared to contribute very little to the activity of gallidermin, contrasting with 

that of nisin (Bonelli et al. 2006). Gallidermin and epidermin have 10-20 times the 

bacteriocidal activity of nisin against L. lactis despite the absence of detectable pore 

formation suggesting that they may have a more efficient mechanism of inhibiting cell wall 

biosynthesis, possibly through increased Lipid II affinity. Lys4 was suggested to be 

important for this since it would increase the positive charge and promote the 

pyrophosphate interaction (Bonelli et al. 2006; Rink et al. 2007).  

Mersacidin, a type B lantibiotic without structural similarity to nisin, similarly does not 

create membrane pores but does inhibit cell wall biosynthesis. It has a highly flexible 

Ala12Abu13
 region and flexible glycine rich region which appear to be important for its 

mechanism of action (Hsu et al. 2003). Glu17
 might be involved in the Lipid II interaction 

and its removal inactivates mersacidin (Hsu et al. 2003). Plantaricin C has a structure 

intermediate between nisin and mersacidin, and it too does not form pores, except in the 

most susceptible species, but is a potent inhibitor of cell wall synthesis (Wiedemann et al. 

2006). Mutacin III and mutacin 1140 share considerable similarity to nisin particularly at 

the N-termini. Mutacin 1140 however did not appear to form transmembrane pores in a 

susceptible Streptococcus sp. but did interact with Lipid II (Smith et al. 2008).  

Nisin and subtilin, in addition to cell killing activity, also inhibit spore outgrowth in B. 

subtilis. Replacement of the conserved dehydroalanine residue at position 5 with alanine 

prevented this activity in both molecules (Liu et al. 1992; Chan et al. 1996). However 

substitution with phenylalanine at this position in nisin enhanced activity (Rink et al. 2007). 

Finally, other modes of lantibiotic action have also been described. An example is the type 

B lantibiotic cinnamycin which binds to phosphatidylethanolamine in the membrane and 

thus disrupts membrane morphology and stability (Makino et al. 2003).  
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1.3 Microbisporicin 

1.3.1 Background 

The Streptosporangiaceae family are a relatively under-studied group of the 

actinomycetes. These bacteria are rarely isolated in the environment and are often slow 

growing (Lazzarini et al. 2000). However literature surveys suggest that this group could 

be a rich source of antimicrobials (Lazzarini et al. 2000). This family includes the genera 

Microbispora, Nonomuraea, Planomonospora, Planobispora and Streptosporangium, all of 

which have been described to produce interesting secondary metabolites (Lazzarini et al. 

2000; Sosio et al. 2003; Beltrametti et al. 2007; Castiglione et al. 2007; Castiglione et al. 

2008). 

Members of the genus Microbispora (Nonomura et al. 1957) were named for the observed 

production of pairs of spores on aerial mycelia. A number of Microbispora species (with 

the most prevalent species being M. rosea) have been described to date and several 

reported to produce secondary metabolites (Ivanova et al. 2007; Okujo et al. 2007). 

Additionally, a thermophilic strain of M. rosea was reported to degrade synthetic polymers, 

such as the biodegradable plastics polyethylene succinate (PES) and polyhydroxybutyrate 

(PHB), and could be utilised for bioremediation (Hoang et al. 2007).  

A new species of Microbispora was isolated in Thailand in 1999 and was named 

Microbispora corallina (Nakajima et al. 1999). These bacteria were found to grow as 

mycelium and to produce pairs of spores under certain growth conditions (Nakajima et al. 

1999). The type strain for this species DSM 44682 (DF-32 or JCM10267) and a second 

isolate DSM 44681  (DF28 or JCM 10266) were characterised as members of the 

Microbispora genus on the basis of 16s rDNA similarity and chemotaxonomic properties 

(Figure 1.14) (Nakajima et al. 1999).  
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A novel strain of M. corallina, NRRL 30420, was reported in a patent from the 

pharmaceutical company Essential Therapeutics in 2003 to produce two potent 

bactericidal lantibiotic compounds (Lee 2003). This strain of M. corallina was isolated from 

the soil around the roots of a Peanut plant (Arachis hipogea) in West Java, Indonesia and 

was found to share 16s rDNA sequence similarity with DSM 44682 (Lee 2003). It was not 

reported whether this strain produced pairs of spores under the culture conditions used 

(Lee 2003). The physical properties and molecular weights of the two isolated 

compounds, MF-BA-1768α1 and MF-BA-1768β1, were determined but structural 

information was not reported (Lee 2003). The two compounds had potent activity against 

a wide range of Gram-positive pathogens including MRSA and VRE. Furthermore, the two 

compounds showed MICs comparable to the clinically-useful antibiotic vancomycin 

against MRSA (Lee 2003). 

In 2005 a second pharmaceutical company, Vicuron Pharmaceuticals, reported the 

production of two lantibiotic compounds from a new strain of Microbispora ATCC PTA-

5024 (Lazzarini et al. 2005). There are no details of the isolation of this strain but on the 

basis of 16s rDNA sequence similarity it was determined to be a member of the M. 

corallina species, sharing over 97.5% (the cut-off for strains belonging to the same 

species) nucleotide sequence identity with DSM 44682 and NRRL 30420 (Lazzarini et al. 

2005). However, the authors note that NRRL 30420 and ATCC PTA-5024 are certainly  

different strains of the same species (Lazzarini et al. 2005). The two compounds 

described, 107891 factor A1 and factor A2, had different physical properties and 

molecular weights from MF-BA-1768α1 and MF-BA-1768β1 (Table 1.2). The structures of 

the two compounds were reported and were found to be identical except for the addition 

of either one (A2) or two (A1) hydroxyl groups onto a proline residue in the peptide and 

are thus likely derived from the same prepropeptide (Lazzarini et al. 2005). The complex 

of the two compounds was renamed microbisporicin to reflect this (Castiglione et al. 

2008). Microbisporicin was reported to contain three lanthionine and one methyl-lanthione 

bridges and thus belongs to the lantibiotic class of antibiotics (Lazzarini et al. 2005; 

Castiglione et al. 2008). Microbisporicin additionally has an S-[(Z)-2-aminovinyl]-D-

cysteine at the C-terminal end and two novel modifications are found in its structure; a 5-

chlorotryptophan at position 4 and a 3,4-dihydroxyproline (A1) or 4-hydroxyproline (A2) at 

position 14 (Figure 1.15) (Lazzarini et al. 2005; Castiglione et al. 2008). 
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Figure 1.15 The chemical structures of the unusual modifications found in microbisporicin; 

5-chlorotryptophan, 3,4-dihydroxyproline (107891 A1) and 4-hydroxyproline (107891 A2).  

 

 

 

 

 

 



Chapter 1  Introduction 

 

59 
 

T
a
b

le
 1

.2
 A

 c
o

m
p

a
ri
s
o

n
 o

f 
th

e
 f

o
u
r 

re
p
o
rt

e
d
 l

a
n
ti
b

io
ti
c
 c

o
m

p
o

u
n
d

s
 p

ro
d
u

c
e
d

 b
y
 M

ic
ro

b
is

p
o
ra

 c
o

ra
lli

n
a

. 
T

h
e

 m
o

le
c
u
la

r 
w

e
ig

h
ts

 (
M

w
) 

re
p
o

rt
e

d
 f

o
r 

e
a
c
h

 c
o

m
p

o
u

n
d

 a
re

 g
iv

e
n
 (

L
e

e
 2

0
0

3
, 

L
a
z
z
a
ri
n

i 
e

t 
a

l.
 2

0
0

5
).

 T
h
e

 m
in

im
u

m
 i

n
h
ib

it
o

ry
 c

o
n
c
e

n
tr

a
ti
o

n
 f

o
r 

e
a
c
h

 c
o

m
p

o
u

n
d

 (
in

 

μ
g

/m
l)
 a

g
a

in
s
t 
th

e
 i
n

d
ic

a
te

d
 t

e
s
t 

o
rg

a
n

is
m

 i
s
 g

iv
e

n
 a

s
 d

e
te

rm
in

e
d

 a
n

d
 r

e
p
o
rt

e
d
 b

y
 L

a
z
z
a

ri
n
i 
e

t 
a

l.
 2

0
0
5

. 
 

 



Chapter 1  Introduction 

 

60 
 

1.3.2 Activity of Microbisporicin as an Antibiotic 

Microbisporicin showed a similar activity profile to MF-BA-1768α1 and MF-BA-1768β1, 

displaying anti-bacterial activity against a range of bacterial pathogens including both 

Gram-positive and some Gram-negative species (Table 1.3) (Lazzarini et al. 2005; 

Castiglione et al. 2008). Of particular interest is its efficacy with regard to methicillin-

resistant and vancomycin-intermediate resistant strains of Staphylococcus aureus. The 

efficacy and toxicity of microbisporicin was also determined by injection into mice infected 

with clinical isolates of MRSA (Lazzarini et al. 2005; Castiglione et al. 2008). 

Microbisporicin was found to selectively inhibit peptidoglycan synthesis in Staphylococcus 

aureus and Bacillus megaterium (Castiglione et al. 2008).  

Comparison of the biological activity of the four identified lantibiotic compounds from M. 

corallina suggested slight differences in the efficacy of each against certain bacterial 

species but that on the whole they displayed a similar efficacy profile (Table 1.2) 

(Lazzarini et al. 2005). Microbisporicin activity was also compared to that of the known 

lantibiotics planosporicin, actagardine (from actinomycetes), mersacidin and nisin (Table 

1.3) (Castiglione et al. 2008). Microbisporcin displayed higher potency against all target 

bacteria tested except L-form Staphylococcus aureus (which do not have a cell wall and 

are thus largely unaffected by Lipid II interacting lantibiotics) and against E. coli and 

Candida albicans, against which lantibiotics are generally ineffective.  
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Table 1.3 Minimum inhibitory concentrations (in μg/ml) for microbisporicin (107891 

complex), planosporicin, actagardine, mersacidin and nisin against a range of target 

pathogens as indicated. ATCC, American Type Culture Collection; met-r, methicillin-

resistant; MRSA, methicillin-resistant Staphylococcus aureus; n.d., not determined; VanA, 

vancomycin-resistant; VISA, vancomycin-intermediate-resistant Staphylococcus aureus. 

Reproduced from Castiglione et al. 2008. 

MIC (μg/ml) Microbisporicin Planosporicin Actagardine Mersacidin Nisin 

L100 
Staphylococcus 

aureus ATCC6538P 
≤0.13 2 32 4 0.5 

L3751 
Staphylococcus 
aureus L form 

>128 >128 >128 64 16 

L819 
Staphylococcus 
aureus Smith 

ATCC19636 

≤0.13 16 32 4 2 

L1400 
Staphylococcus 
aureus MRSA 

≤0.13 16 16 8 2 

L613 
Staphylococcus 
aureus MRSA 

≤0.13 32 16 64 8 

L3798 
Staphylococcus 

aureus VISA 
2 128 128 128 32 

L3797 
Staphylococcus 

aureus VISA met-r 
2 >128 >128 128 8 

L3798 
Staphylococcus 

epidermidis 

ATCC12228 

≤0.13 32 128 16 2 

L1729 
Staphylococcus 

haemolyticus met-r 
8 >128 >128 8 4 
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MIC (μg/ml) Microbisporicin Planosporicin Actagardine Mersacidin Nisin 

L49 Streptococcus 
pyogenes 

≤0.13 0.5 2 n.d. n.d. 

L44 Streptococcus 
pneumoniae 

≤0.13 4 32 4 0.25 

L559 Enterococcus 
faecalis 

1 16 32 32 4 

L560 Enterococcus 
faecalis Van A 

0.5 64 128 64 4 

LA533 
Enterococcus 
faecalis Van A 

1 128 16 32 4 

L568 Enterococcus 
faecium 

2 64 64 64 2 

L569 Enterococcus 
faecium Van A 

1 128 128 64 2 

LB518 
Enterococcus 
faecium Van A 

2 >128 >128 128 1 

L884 Lactobacillus 
garviae 

≤0.13 4 4 16 n.d. 

L148 Lactobacillus 
delbrueckii 

ATCC04797 
4 16 >128 >128 >128 

L3607 Clostridium 
perfringens 
ATCC13124 

≤0.125 ≤0.25 4 8 ≤0.13 

L4018 Clostridium 
difficile 

≤0.125 1 4 8 ≤0.13 

L4043 Clostridium 
butyricum 

≤0.125 n.d. n.d. n.d. n.d. 

Propionibacterium 
granulosum 
ATCC25564 

0.03 n.d. n.d. n.d. n.d. 
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MIC (μg/ml) Microbisporicin Planosporicin Actagardine Mersacidin Nisin 

L1329 
Propionibacterium 

acnes 
0.5 n.d. n.d. n.d. n.d. 

Propionibacterium 
limphophylum 
ATCC27250 

0.015 n.d. n.d. n.d. n.d. 

L970 Haemophilus 
influenzae 

ATCC19418 
32 >128 >128 >128 >128 

L76 Moraxella 
catarrhalis 
ATCC8176 

0.25 1 32 2 1 

L1613 Neisseria 
meningitidis 
ATCC13090 

0.5 >128 >128 >128 8 

L997 Neisseria 
gonorrhoeae 

0.25 >128 >128 >128 4 

L47 Escherichia coli >128 >128 >128 n.d. >128 

L145 Candida 
albicans 

>128 >128 >128 n.d. >128 

 

 

The heightened effectiveness of microbisporicin against some Gram-negative species, 

including Haemophilus influenzae, Neisseria sp. and Moraxella catharrhalis, compared to 

the other tested lantibiotics suggests that it could have a novel mechanism of action 

(Table 1.3) (Castiglione et al. 2008). These organisms are known opportunistic human 

pathogens and include the causative agents of meningococcal septicaemia and 

gonorrhoea. Furthermore, there has been an increased prevalence of antibiotic resistance 

in these bacteria in recent years (Livermore 2009). A report by the Health Protection 

Agency in 2008 reported a 28% incidence of ciprofloxacin resistance in cases of N. 

gonorhaea in England and Wales, and warned of likely future treatment difficulties with 

third-generation cephlosporins (the currently approved oral treatment); “the future 

emergence of gonococcal strains resistant to all current treatment options is therefore a 

real possibility, which would have major public health implications”2.  

                                                
2 Health Protection Agency, June 2009, GRASP 2008 Report: Trends in Antimicrobial 
Resistant Gonorrhoea 
http://www.hpa.org.uk/web/HPAweb&HPAwebStandard/HPAweb_C/1245914959952 

http://www.hpa.org.uk/web/HPAweb&HPAwebStandard/HPAweb_C/1245914959952
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Microbisporicin, under the commercial name NAI-107, is currently in late preclinical-phase 

trials3 and has demonstrated superior efficacy in animal models of multi-drug resistant 

infections compared to the drugs-of-last resort, linezolid and vancomycin (Jabes et al. 

2009b). Interestingly, no microbisporicin resistant mutants were observed during these 

studies (Jabes et al. 2009a). 

 

1.3.3 Structure of Microbisporicin 

The N-terminal 11 residues of microbisporicin are identical to those of nisin except for 

valine at position 1 and chlorinated tryptophan at position 4, which are both isoleucine in 

nisin. These 11 residues form the A and B loops of nisin involved in binding Lipid II (Hsu 

et al. 2004) and are partially conserved in a number of other lantibiotics, including subtilin, 

epidermin and mutacin-III (Figure 1.16) (Qi et al. 1999b; Willey et al. 2007). Interestingly, 

mutacin-III and mutacin 1140 have tryptophan at position 4 (Qi et al. 1999b; Smith et al. 

2000). 

In addition to sharing N-terminal homology, epidermin and microbisporicin also have C-

terminal similarity (Figure 1.16). Both have amino-vinyl-cysteine modifications and large 

aromatic amino acids between the residues forming this modification; phenylalanine in 

microbisporicin and tyrosine in epidermin. Microbisporicin also shares similarity with the 

recently revised structure of planosporicin from Planomonospora sp. (Figure 1.6) 

(Castiglione et al. 2007; Maffioli et al. 2009). This is the only known actinomycete-derived 

lantibiotic to which microbisporicin seems to have any similarity. The evidence suggests 

that microbisporicin falls within the type AI lantibiotic group.  

A moderate similarity is also found with the type B lantibiotic mersacidin. Mersacidin has a 

highly flexible Ala12Abu13
 region and flexible glycine rich region which appear to be 

important for its mechanism of action (Hsu et al. 2003). The run of glycine residues that 

form the B ring of mersacidin are partially conserved in the C ring of microbisporicin, 

where the hydroxy-proline residue is also found (Figure 1.16).  

  

                                                
3
 http://www.naicons.com/ 

http://www.naicons.com/
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Figure 1.16 A comparison of several known lantibiotic structures with that of 

microbisporicin (107891) as described in the text. Dha; 2,3-didehydroalanine, Dhb; (Z)-

2,3-didehydrobutyrine, Abu; aminobutyrate, ClTrp; 5-chlorotryptophan and HPro; 3,4-

dihydroxyproline. Images reproduced from Willey and van der Donk, 2007.  
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The incorporation of chlorine at the carbon-5 position of the indole ring of tryptophan-4 in 

microbisporicin is a novel modification among lantibiotics (Figure 1.15). However, the 

incorporation of halides into biological molecules is common with nearly 4000 so far 

reported, including the production of organohalides by over 50 Streptomyces species 

(Gribble 2003). The organohalide group occurs in several antibacterial compounds, 

including vancomycin, where incorporation of chlorine enhances anti-bacterial activity and 

substrate binding (Harris et al. 1985; Ohi et al. 1987; Malabarba et al. 1989).  

The dihydroxyproline modification at position 14 of microbisporicin (Figure 1.15) is 

similarly unique amongst characterised lantibiotics as well as being rare in other bacterial 

peptides. Proline hydroxylation of ribosomally synthesised peptides in bacteria is a rare 

occurrence and has only been described for the formation of bacterial collagen in Bacillus 

anthracis (Culpepper et al. 2010). This reaction was catalysed by a prolyl-4-hydroxylase 

enzyme that is related to those found in vertebrates and for which the structure has been 

solved (Culpepper et al. 2010). A wide variety of naturally occurring hydroxyproline 

analogs are known, many of which are found in actinomycetes and particularly in small-

molecule anti-bacterial and anti-cancer drugs, for example in telomycin (Streptomyces 

sp.) and AO 341B (S. candidus) (Mauger 1996). Hydroxyproline is also integral to 

vertebrate collagen function, in which it stabilises the triple helix structure through 

extensive interstrand hydrogen bonding (Berg 2002), and is found in several proteins in 

plant cell walls. Dihydroxyproline specifically however has not, as yet, been found in 

actinomycetes (Mauger 1996). 2,3-cis-3,4-trans-dihydroxy-L-proline was first identified in 

the cell walls of diatoms (Nakajima et al. 1969) and other diastereomers are found in 

Mefp1, an adhesive protein of the mussel Mytilus edulis and in virotoxins from Amanita 

virosa (Mauger 1996). The exact function of dihydroxyproline in these compounds is yet to 

be determined.  

The masses for the four reported lantibiotic-like compounds produced by M. corallina 

strains are 2180.81 Da (MF-BA-1768β1), 2214.880 Da (MF-BA-1768α1) (Lee 2003), 

2230.71 Da (107891 A2) and 2246.71 Da (107891 A1) (Lazzarini et al. 2005; Castiglione 

et al. 2008). The known structures of 107891 A1 and A2 (Lazzarini et al. 2005; Castiglione 

et al. 2008) and the mass differences between these compounds and MF-BA-1768α1 and 

MF-BA-1768β1 suggest that they are closely related. This is also suggested by the similar 

activity profiles of the four compounds. MF-BA-1768α1 is 16 Da lighter than 107891 A2, 

which suggests the loss of one oxygen atom. This could result from the loss of the 

remaining hydroxyl group on Pro14 which would then be replaced by a proton (Figure 

1.17). MF-BA-1768β1 is 34 Da lighter than MF-BA-1768α1. This could result from the loss 

of the chlorine atom on Trp4 which would then be replaced by a proton (Figure 1.17).  
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Figure 1.17 A comparison of the known structures of 107891 A1 and A2 (Lazzarini et al. 

2005; Castiglione et al. 2008) and the predicted structures for MF-BA-1768α1 and MF-BA-

1768β1 (Lee 2003) as described in the text. For each compound the theoretical molecular 

formulae and mass (in Daltons) is given. The expected mass difference resulting from the 

loss of each modification is shown.   
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1.4 Aims  

The aim of this work is to characterise the genetic basis for the biosynthesis of 

microbisporicin by M. corallina. The identification and characterisation of the genes 

responsible for microbisporicin biosynthesis, and the development of methods for the 

genetic manipulation of the pathway, could allow knowledge-based increases in strain 

productivity and the generation of variants with potentially improved pharmacological 

properties.  This has already been demonstrated for a number of lantibiotics including 

nisin, mersacidin and actagardine (Rink et al. 2007; Appleyard et al. 2009; Boakes et al. 

2009). 

Few examples of actinomycete lantibiotic gene clusters exist. Those that do (cinnamycin 

and actagardine) belong to type B lantibiotics (Widdick et al. 2003; Boakes et al. 2009). 

Microbisporicin is a member of the type AI lantibiotics and thus it will be interesting to 

determine whether any similarities exist within the microbisporicin gene cluster to the 

other actinomycete lantibiotics or to the characterised type AI gene clusters from low GC 

Gram-positive bacteria.  

The novel modifications of 5-chlorotryptophan and 3,4-dihydroxyproline are likely to 

require unusual enzyme activities that are probably encoded within the microbisporicin 

biosynthetic gene cluster. All the known examples of hydroxyproline and chlorinated 

tryptophan have been described for small molecule antibiotics (Mauger 1996; Gribble 

2003). It will be interesting to see how these enzymatic modifications are applied to the 

alteration of a ribosomally-synthesised peptide molecule and how site-specificity is 

mediated. It will also be interesting to investigate the necessity of these modifications for 

lantibiotic activity.  

Finally it is likely that unique mechanisms of regulation and producer immunity will exist in 

M. corallina. Understanding these processes will allow improvements in strain productivity 

and help to overcome a significant hurdle in the commercial production of microbisporicin, 

which is the low natural yield from M. corallina (Castiglione et al. 2008). Elucidation of the 

function of each of the genes of the microbisporicin gene cluster and the minimal gene set 

required for the biosynthesis of microbisporicin could be most easily assessed through the 

use of a heterologous host. Streptomyces sp. have been used routinely as heterologous 

hosts for secondary metabolite gene clusters and for the lantibiotics cinnamycin and 

actagardine (Widdick et al. 2003; Boakes et al. 2009). Successful heterologous production 

in a more amenable/tractable host organism may provide a convenient route for the 

commercial production of microbisporicin and novel variants.  
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1.5 Summary of Main Objectives 

 

 To identify the gene cluster encoding the novel lantibiotic microbisporicin produced 

by Microbispora corallina by genome scanning (using sequence information from 

the rapid sequencing power of Solexa (Illumina) and 454 (Roche)) or via other 

methods e.g. hybridisation screening, heterologous expression and bioassay, 

and/or cloning for linked resistance genes. 

 To make gene knockouts (including in-frame deletions) within the gene cluster to 

define the minimal gene set and establish individual gene functions. 

 Determine similarities/differences to other lantibiotic gene clusters. 

 To characterise the functions of the biosynthetic enzymes involved in novel 

peptide modifications (i.e. formation of 5-chlorotryptophan, 3,4-dihydroxyproline 

and S-[(Z)-2-amino-vinyl]-D-cysteine). 

 To define the mechanisms regulating expression of the gene cluster. 

 To define host immunity mechanisms. 
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Chapter 2 - Materials and Methods 

2.1 Bacterial strains and plasmids 

Table 2.1 E. coli strains used and constructed in this study.  

Strain Genotype Antibiotic resistance Reference 

DH5α recA1 endA1 gyrA96 
thi-1 hsdR17 supE44 
relA1 lac 

None (Sambrook et al. 
2001) 

ET12567 dam13::Tn9 dcm6  
hsdM  hsdR recF143  
zjj201::Tn10  galK  
galT22 ara14  lacY1  
xyl5  leuB6  thil  
tonA31  rpL136  hisG4  
tsx78 mtli glnV44  F- 

Chl, Tet (MacNeil et al. 1992) 

 

BW25113  (araD-araB)567 

lacZ4787(::rrnB-4)  

lacIp-4000(lacIQ) -  

rpoS369(Am) rph-1 

(rhaD-rhaB)568  
hsdR514 

None (Datsenko et al. 
2000) 

 

DH5α/BT340 As DH5α with pCP20 
(FLP+, λ ci857+, λ PR 
Repts, ApR, CmR) 

Chl (Cherepanov et al. 
1995; Datsenko et 
al. 2000) 

S17-1 recA1 pro thi hsdR  

RP4-2-Tc::Mu-
Km::Tn7 

Thio, Str, Sp 

 

(Simon et al. 1983) 

BTH101 F- cya-99 araD139 
galE15 galK16 rpsL1 
(Strr) hsdR2 mcrA1 
mcrB1 

Str (Ladant et al. 1999) 

XL1-Blue recA1, endA1, gyrA96, 
thi-1, hsdR17(rK-, 
mK+), supE44, relA1, 
lac,  [ F', proAB, 
lacIqZΔM15::Tn10(tetr)] 

Nal (Sambrook et al. 
2001) 
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Table 2.2 Streptomyces strains used in this study: 

 

  

Species Strain Genotype Source/ 
Reference 

Streptomyces 
coelicolor  

M145 SCP1- SCP2- (Redenbach 
et al. 1996) 

Streptomyces 
coelicolor  

M1146 M145 ∆act ∆red ∆cpk ∆cda (Gomez-
Escribano et 
al. 2010) 

Streptomyces 
coelicolor  

M1155 M1146  rpsL (A262G C271T) selected 
as exconjugants resistant to 5 ug/ml 
streptomycin  (clone 7) 

(Gomez-
Escribano et 
al. 2010) 

Streptomyces 
coelicolor  

M1156 M1146  rpsL (A262G) selected as 
exconjugants resistant to 5 ug/ml 
streptomycin  (clone 8) 

(Gomez-
Escribano et 
al. 2010) 

Streptomyces 
lividans 

TK24 Str-6 SLP2- SLP3- (Kieser et al. 
2000) 

Streptomyces 
venezualae 

ATCC10712  Prof. Mervyn 
Bibb, The 
John Innes 
Centre 

Streptomyces 
fungicidicus 

  Prof. Greg 
Challis, Uni. 
Of Warwick 

Streptomyces 
albus 

  Prof. Greg 
Challis, Uni. 
Of Warwick 
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Table 2.3 Other Actinomycetes used in this study 

 

Table 2.4 Microbispora corallina strains constructed in this study 

Species Strain Genotype Source/ Reference 

Microbispora corallina NRRL 30420  (Lee 2003)/NRRL 
culture collection 

Microbispora corallina DSM 44681  (Nakajima et al. 
1999)/DSMZ culture 
collection 

Microbispora corallina DSM 44682  (Nakajima et al. 
1999)/DSMZ culture 
collection 

Nonomuraea sp. ATCC39727  Prof. Flavia Marinelli, 
University of Insubria, 
Italy 

Micrococcus luteus ATCC4698  Novacta Biosciences 

Background Strain Strain No. Genotype 

NRRL30420 M1126 
attB::pSET152 

NRRL30420 M1127 
ΔmibA::aac(3)IV 

NRRL30420 M1128 
ΔmibD:: aac(3)IV 

NRRL30420 M1129 
ΔmibTU:: aac(3)IV 

NRRL30420 M1130 
ΔmibV:: aac(3)IV 

NRRL30420 M1131 
ΔmibEF:: aac(3)IV 

NRRL30420 M1132 ΔmibH:: aac(3)IV 

NRRL30420 M1133 
ΔmibN:: aac(3)IV 

NRRL30420 M1134 
Δdownstream:: aac(3)IV 

NRRL30420 M1135 ΔmibX:: aac(3)IV 

NRRL30420 M1136 ΔmibZ-mibR:: aac(3)IV 

NRRL30420 M1138 attB:pIJ10706 

DSM 44682 M1139 attB::pSET152 



 

 
 

7
3
 

Table 2.5 Plasmids and cosmids used and constructed in this study 

Plasmid Name Description 
Selection 
Markers 

Reference/Origin 

pSuperCos1 Cosmid library vector – pUCori cos Carb Kan Stratagene 

pIJ10702 attP int (ΦC31) oriT pUCori (pMJCOS1) Carb Apra Yanai ,et al. 2006 

pSET152 attP int (ΦC31) oriT pUCori Apra Bierman, et al. 1992 

pIJ10706 pSET152-Hyg Hyg O‟Rourke, S, unpublished 

pRT802 attP int (ΦBT1) oriT pUCori Kan Gregory, et al. 2003 

pGEM©-T easy Commercial TA cloning vector Carb Promega 

pIJ773 PCR targeting cassette vector: P1-FRT-aac3(IV)-oriT-FRT-

P2 
Apra Gust, et al. 2003 

pIJ778 PCR targeting cassette vector: P1-FRT-aadA-oriT-FRT-P2 Sp Str Gust, et al. 2003 

pIJ12121 SuperCos1 1H11 Carb Kan This study 

pIJ12122 SuperCos1 3E5 Carb Kan This study 

pIJ12123 SuperCos1 3K13 Carb Kan This study 

pIJ12124 SuperCos1 4G2 Carb Kan This study 

pIJ12125 SuperCos1 5A7 Carb Kan This study 

pIJ12126 SuperCos1 7C22 Carb Kan This study 

pIJ12127 pIJ10702 1H11 Carb Apra This study 

pIJ12128 pIJ10702 3E5 Carb Apra This study 
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Plasmid Name Description 
Selection 
Markers 

Reference/Origin 

pIJ12129 pIJ10702 3K13 Carb Apra This study 

pIJ12130 pIJ10702 4G2 Carb Apra This study 

pIJ12131 pIJ10702 5A7 Carb Apra This study 

pIJ12132 pIJ10702 7C22 Carb Apra This study 

pIJ10705 pGEMT-easy-Tc
R
-ermE*-RBS(EF-Tu) Carb Tet O‟Rourke, S, unpublished 

pIJ12363 pIJ12131 Tc
R
-ermE*-RBS(EF-Tu)-mibA Carb Apra Tet This study 

pIJ12364 pIJ12131 Tc
R
-ermE*-RBS(EF-Tu)-mibE Carb Apra Tet This study 

pIJ12365 pIJ12131 Tc
R
-ermE*-RBS(EF-Tu)-mibX Carb Apra Tet This study 

pIJ12363::scar pIJ12131 ermE*-RBS(EF-Tu)-mibA ΔTc
R
 Carb Apra This study 

pIJ12366 pIJ12131 ermE*-mibA ΔTc
R
  ermE*-mibE::Tc

R
 Carb Apra Tet This study 

pIJ12131 ΔmibA::aadA pIJ12131 ΔmibA ::aadA (pIJ778) Carb Apra Sp Str This study 

pIJ12131 ΔmibA::scar pIJ12131 ΔmibA::scar Carb Apra This study 

pIJ12131 ΔmibX::aadA pIJ12131 ΔmibX::aadA Carb Apra Sp Str This study 

pIJ12131 ΔmibX::scar pIJ12131 ΔmibX::scar Carb Apra This study 

pIJ12131 ΔmibW::aadA pIJ12131 ΔmibW::aadA Carb Apra Sp Str This study 

pIJ12131 ΔmibW::scar pIJ12131 ΔmibW::scar Carb Apra This study 

pIJ12131 ΔmibXW::aadA pIJ12131 ΔmibXW::aadA Carb Apra Sp Str This study 

pIJ12131 ΔmibXW::scar pIJ12131 ΔmibXW::scar Carb Apra This study 
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Plasmid Name Description 
Selection 
Markers 

Reference/Origin 

pIJ12131 ΔmibD::aadA pIJ12131 ΔmibD::aadA Carb Apra Sp Str This study 

pIJ12131 ΔmibD::scar pIJ12131 ΔmibD::scar Carb Apra This study 

pIJ12131 ΔmibTU::aadA pIJ12131 ΔmibTU::aadA Carb Apra Sp Str This study 

pIJ12131 ΔmibTU::scar pIJ12131 ΔmibTU::scar Carb Apra This study 

pIJ12131 ΔmibV::aadA pIJ12131 ΔmibV::aadA Carb Apra Sp Str This study 

pIJ12131 ΔmibV::scar pIJ12131 ΔmibV::scar Carb Apra This study 

pIJ12131 ΔmibEF::aadA pIJ12131 ΔmibEF::aadA Carb Apra Sp Str This study 

pIJ12131 ΔmibEF::scar pIJ12131 ΔmibEF::scar Carb Apra This study 

pIJ12131 ΔmibH::aadA pIJ12131 ΔmibH::aadA Carb Apra Sp Str This study 

pIJ12131 ΔmibH::scar pIJ12131 ΔmibH::scar Carb Apra This study 

pIJ12131 ΔmibN::aadA pIJ12131 ΔmibN::aadA Carb Apra Sp Str This study 

pIJ12131 ΔmibN::scar pIJ12131 ΔmibN::scar Carb Apra This study 

pIJ12131 ΔmibZ-mibR::aadA pIJ12131 ΔmibZ-mibR::aadA Carb Apra Sp Str This study 

pIJ12131 ΔmibZ-mibR::scar pIJ12131 ΔmibZ-mibR::scar Carb Apra This study 

pIJ12125 Δdownstream 7kb:: 

scar 
pIJ12125 Δdownstream 7kb scar Carb Kan This study 

pIJ12131 Δdownstream 

7kb::scar 
pIJ12131 Δdownstream 7kb scar Carb Apra This study 

pIJ12125 ΔmibA::aac(3)IV pIJ12125 ΔmibA::aac(3)IV (pIJ773) Carb Apra Kan This study 
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Plasmid Name Description 
Selection 
Markers 

Reference/Origin 

pIJ12125 ΔmibD::aac(3)IV pIJ12125 ΔmibD::aac(3)IV (pIJ773) Carb Apra Kan This study 

pIJ12125 ΔmibTU::aac(3)IV pIJ12125 ΔmibTU::aac(3)IV (pIJ773) Carb Apra Kan This study 

pIJ12125 ΔmibV::aac(3)IV pIJ12125 ΔmibV::aac(3)IV (pIJ773) Carb Apra Kan This study 

pIJ12125 ΔmibEF::aac(3)IV pIJ12125 ΔmibEF::aac(3)IV (pIJ773) Carb Apra Kan This study 

pIJ12125 ΔmibH::aac(3)IV pIJ12125 ΔmibH::aac(3)IV (pIJ773) Carb Apra Kan This study 

pIJ12125 ΔmibN::aac(3)IV pIJ12125 ΔmibN::aac(3)IV (pIJ773) Carb Apra Kan This study 

pIJ12125 Δdownstream 
7kb::aac(3)IV 

pIJ12125 Δdownstream::aac(3)IV (pIJ773) Carb Apra Kan This study 

pIJ12125 ΔmibZ-mibR::aac(3)IV pIJ12125 ΔmibZ-mibR::aac(3)IV (pIJ773) Carb Apra Kan This study 

pIJ12125 ΔmibX::aac(3)IV pIJ12125  ΔmibX::aac(3)IV (pIJ773) Carb Apra Kan This study 

pIJ12125 ΔmibW::aac(3)IV pIJ12125 ΔmibW::aac(3)IV (pIJ773) Carb Apra Kan This study 

pIJ12125 Δds::scar 
ΔmibTU::aac(3)IV 

pIJ12125 Δds::scar ΔmibTU::aac(3)IV (pIJ773) Carb Apra Kan This study 

pIJ12125 Δds::scar 
ΔmibW::aac(3)IV 

pIJ12125 Δds::scar ΔmibW::aac(3)IV (pIJ773) Carb Apra Kan This study 

pIJ12126 ΔmibZ-mibR::aac(3)IV pIJ12126 ΔmibZ-mibR::aac(3)IV (pIJ773) Carb Apra Kan This study 

pIJ12138 pIJ10706-PmibA-mibA Hyg This study 

pIJ12139 pIJ10706-PmibA-NdeI-XbaI Hyg This study 

pIJ12140 pIJ10706-PmibE-NdeI-XbaI Hyg This study 
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Plasmid Name Description 
Selection 
Markers 

Reference/Origin 

pIJ12139-mibD pIJ12139-PmibA-NdeI-RBS-mibD-XbaI Hyg This study 

pIJ12139-mibV pIJ12139-PmibA-NdeI-RBS-mibV-XbaI Hyg This study 

pIJ12140-mibEF pIJ12140-PmibE-NdeI-RBS-mibEF-XbaI Hyg This study 

pIJ12140-mibE pIJ12140-PmibE-NdeI-RBS-mibE-XbaI Hyg This study 

pIJ12140-mibF pIJ12140-PmibE-NdeI-RBS-mibF-XbaI Hyg This study 

pIJ12140-mibH pIJ12140-PmibE-NdeI-RBS-mibH-XbaI Hyg This study 

pIJ12140-mibS pIJ12140-PmibE-NdeI-RBS-mibS-XbaI Hyg This study 

pIJ12140-mibHS pIJ12140-PmibE-NdeI-RBS-mibHS-XbaI Hyg This study 

pIJ5972 pSET152 -TTA free luxAB (Reporter plasmid) Apra 
Aigle, et al. 2000, M. Paget pers. 

comm.. 

pIJ12341 pIJ5972-EcoRI-mibX-PmibA-BamHI Apra This study 

pIJ12342 pIJ5972-EcoRI-PmibA-BamHI Apra This study 

pIJ12343 pIJ5972-EcoRI-PmibX-mibX-BamHI Apra This study 

pIJ12344 pIJ5972-EcoRI-PmibX-BamHI Apra This study 

XP458 (pT25) cyaA‟ MCS (BamHI KpnI) ori p15A Chl Karimova, et al. 1998 

XP461 pT25-zip (leucine zipper in KpnI site) Chl Karimova, et al. 1998 

pUT18 MCS cyaA‟ T18 Carb Euromedex 

pUT18-zip pUT18-zip (leucine zipper from XP461 in KpnI site) Carb This study 
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Plasmid Name Description 
Selection 
Markers 

Reference/Origin 

pUT18C cyaA‟ T18 MCS Carb Euromedex 

pUT18C-zip pUT18C-zip (leucine zipper from XP461 in KpnI site) Carb This study 

pIJ12367 pUT18-mibX Carb This study 

pIJ12368 pUT18C-mibX Carb This study 

pIJ12369 XP458 (pT25)-mibW (full-length) Chl This study 

pIJ12370 XP458 (pT25)-mibW (N-terminus) Chl This study 

pIJ12371 XP458 (pT25)-mibW (C-terminus) Chl This study 

pIJ12349 pIJ10706-PmibX-mibX Hyg This study 

pIJ12350 pIJ10706-PmibX-mibXW Hyg This study 

pIJ12362 pIJ10706-PmibA-mibABCD Hyg This study 
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2.2 Oligonucleotides used in this study 

Table 2.6 General Primers 

Primer Name Sequence (5‟-3‟) Application/Target 

LF001F CTCACCGAGCCGATCACAG mibC_12864_3259 contig 

LF001R GTCGTCGGTCATCGTCCAG mibC_12864_3259 contig 

LF002F CTGGACGATGACCGACGAC mibC_12864_3259 contig 

LF002R CAGCAGCGCGGTGAC mibC_12864_3259 contig 

LF003F GTTACCACGAGGCGTTCC mibB_9864 contig 

LF003R TGTCGTCGAGGAGTTCGAG mibB_9864 contig 

LF004F GCACGACCAGGGAAAGG mibD_9897 contig 

LF004R CCACATCACCGGGTTCATC mibD_9897 contig 

LF005F ATTCTGGTGAGCCTGCTTCC mibH_4619 contig 

LF005R GTCGTGTACGGCTTGAGATGG mibH _4619 contig 

LF006F CGAGTCCGCCGACATCC mibH _ 5675 contig 

LF006R GGTAGGCGAAGGGCAGG mibH _ 5675 contig 

LF007F GGACACGCCGTTCTGG mibH _4619 contig 

LF007R GGTGGTGAACAGGCTGC mibH _4619 contig 

LF008F AGGACGGCTGTCAGGTC mibB_1562 contig 

LF008R GCACGCTTCGCTCTCG mibB_1562 contig 

LF009F CAACCTGGAACGTCTCTGC mibB 

LF009R TCGTACTCGGGGTCGTACTG mibB 

LF010F ACCTGGCATGACCACAGTC mibB  

LF011F CTGACATCCTGGAGACC mibA 
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Primer Name Sequence (5‟-3‟) Application/Target 

LF012R AGCAACTCCGTGGATACCAG mibE 

LF013F GCAATGCCCGCTGACATCC  mibA 

LF013R GTGAGGCCAGCTCCACG mibA-mibB intergenic sequence 

LF014R GGTCGTTGAGAGCGTAGGTC Lipoprotein (5A7 and 4G2) 

LF015F CCTACTGGCTTGGCCTGAG Cytochrome P450 (5A7) 

LF016F GATCAGCCAGGGATGACGTAG TetR regulator (4G2) 

End_F ACATTTCCCCGAAAAGTGC Cosmid End-sequencing 

End_R GCCTCGTGATACGCCTAT Cosmid End-sequencing 

pSET152F TCGCCATTCAGGCTGC Flanking pSET152 MCS 

pSET152R CTCATTAGGCACCCCAGG Flanking pSET152 MCS  

LF041F2 TGGGATGAAGCGTGTGTAAGG pIJ12126 insert end-sequencing 

LF041F3 CCTGCTCACACAGAAGGTCG pIJ12126 insert end-sequencing 

LF041F4 ATCAGCGACGACGAGGT pIJ12126 insert end-sequencing 

LF041R CAGTCGGCGTAGAAGTCCTC pIJ12126 insert end-sequencing 

LF041R2 GCATGAGTGAGAACGACGAG pIJ12126 insert end-sequencing 

LF044F CGAAGATCCCGTCGATGATGT Putative ΦC31 attachment site in M. corallina 

LF044R CGTTCATCCACATGGACCAGA Putative ΦC31 attachment site in M. corallina 

LF045F GAAGCGGTTTTCGGGAGTAGT ΦC31 attachment site in pSET152 

LF045R CACAACCCCTTGTGTCATGTC ΦC31 attachment site in pSET152 

LF046F GCTAACTAGTAGTTCCTTCGTCACC Flanking pRT802 MCS 

LF046R CCGGCTCGTATGTTGTGTG Flanking pRT802 MCS 

LF081F TGATGATGGCGAGGATCTTGT Genes downstream from mibN internal 

LF081R TACGTGCGGAGCACTCTT Genes downstream from mibN internal 

Dbv5_F GTGACCCTGACCTTGTCACC dbv5 
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Primer Name Sequence (5‟-3‟) Application/Target 

Dbv5_R CTCACTGCTGGTCGGTATCA dbv5 

 

Table 2.7 Cloning Primers 

Primer Name Sequence (5‟-3‟) Application/Target 

LF035_3 TATTAGGATCCTCAGCAGCAGAAGCTGCAG BamHI-mibA 

LF078F TATTAGGATCCTTCGTACAGCATGCGAAGCG BamHI-PmibA 

LF078R AAATCTAGACATATGCTCGCTCCTTTCCG  XbaI-NdeI-PmibA  

LF082F TTTGATATCCGCACGCGTCGTGCCG EcoRV-PmibE 

LF082R AAATCTAGACATATGCGAGGGGGAGTCGGTC XbaI-NdeI-PmibE 

LF083F GGATATCATATGAGGAGAGCCAGACCAT     NdeI-mibD 

LF083R2 AATCTAGATCATGCCAAGGCCTCC XbaI-mibD 

LF084F ATATAACATATGGGGAGGTGACCGGC NdeI-mibV 

LF084R AATCTAGAAACGGGTCACGCATCGG XbaI-mibV 

LF085F ATTATACATATGCGGATCCGGAGCGG NdeI-pspV 

LF085R AATCTAGAACCGCATCCGGTGCG XbaI-pspV 

LF086F GGATATCATATGGAGGTCTGACATGGCC NdeI-mibF 

LF086R GGATCTAGACAGGTCATCTCACTGCGG XbaI-mibF 

LF087F ATATATCATATGGCGGCCCTGGTAT NdeI-mibE 

LF087R GGTCTAGATGTCAGACCTCCTTCCG XbaI-mibE 

LF088F ATATATCATATGTAAGGACGATCGGGAACATGG NdeI-mibH 

LF088R AATCTAGATCGTCATCTCAGGCCGG  XbaI-mibH 

LF105F ATATATCATATGTAAGGCCGGCCTGAGATGAC NdeI-mibS  
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Primer Name Sequence (5‟-3‟) Application/Target 

LF105R AATCTAGAAGCTGCTCGGCGTTCAC XbaI-mibS 

LF089F TGTGGAATTGTGAGCGGATAAC complementation constructs verification 

LF089R GTTTTCCCAGTCACGACGTT complementation constructs verification 

LF089F2 AATCTTGTCCGAACGAACACC verification of pIJ12139 constructs 

LF089F3 ATGCAGATGAACGACCATGAC verification of pIJ12140 constructs 

LF096F TTTTGAATTCTCATCTATCACCAGTCCGCCC EcoRI-mibX-PmibA 

LF096F2 TATAGAATTCCATGAGGACGGCATCCTCG EcoRI-PmibA 

LF096R CCCGGATCCTGCTCGCTCCTTTCCGGT BamHI-PmibA 

LF097F TTTTGAATTCTGCTCGCTCCTTTCCGGT  EcoRI-Pmibx-mibX 

LF097R TTTTTTGGATCCTCATCTATCACCAGTCCGCCC BamHII-mibX 

LF097R2 TTTTTGGATCCGGCATCCTCGGACACCTC BamHII-PmibX 

LF098F AACTGCTGCACACGTTCGTA PmibXA internal 

LF098R GGTTCGATGAATGGCAGGAATG PmibXA internal 

LF101F TTTTTGGATCCCATGAGACGCGTGGCCGAC BamHI-mibX (BACTH) 

LF101R AATATAGGTACCCGTCTATCACCAGTCCGCCCC KpnI-(no stop)-mibX (BACTH) 

LF101R2 ATATATGGTACCTCATCTATCACCAGTCCGCCC KpnI-(stop)-mibX (BACTH) 

LF102F TTTTTTTGGATCCCGTGATAGATGACGAGGATCAGGACGC BamHI-mibW (BACTH) 

LF102R TTTTTGGTACCTCAGCCGTCCGACCCGG KpnI-mibW (BACTH) 

LF103F TTATATAGGATCCCATGCCGCGGTCGCTCG BamHI-mibW-C (BACTH) 

LF103R AATATAGGTACCTCACCGCGGCATCAGCC KpnI-mibW-N (BACTH) 

LF104F CGCCGGATGTACTGGAAAC Flanking pUT18C MCS 

LF104R AGCAGACAAGCCCGTCA Flanking pUT18C MCS 
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Table 2.8 Mutant Primers 

Primer 
Name 

Sequence (5‟-3‟) Application/Target 

LF017F CCGGAATCTTGTCCGAACGAACACCGGAAAGGAGCGAGCAATTTAAATCGCCGGCTTCCATT mibA-ermE* 

LF017R CGGTCTCGGAAGTCCGGGTCTCCAGGATGTCAGCGGGCATATGGGGCCTCCTGTTCTA mibA-ermE* 

LF018F GGCGCCCGGCGGGACCGCCGGCCCGACCGACTCCCCCTCGATTTAAATCGCCGGCTTCCATT mibE-ermE* 

LF018R AACGCAGTCTGAGCAACTCCGTGGATACCAGGGCCGCCATATGGGGCCTCCTGTTCTA mibE-ermE* 

LF019F ACCGGAGCTCTCCGCGGAGGTGTCCGAGGATGCCGTCCTCATTTAAATCGCCGGCTTCCATT mibX-ermE* 

LF019F GCGAAGCGCCACCTCCTCGCCGTCGGCCACGCGTCTCATATGGGGCCTCCTGTTCTA mibX-ermE* 

LF020F ACGAAAGGGCCTCGTGATAC Tc
R
 internal primer 

LF021R GTTCGTACAGCATGCGAAGC mibX internal primer 

LF022F AATCTTGTCCGAACGAACACCGGAAAGGAGCGAGCAATGATTCCGGGGATCCGTCGACC ΔmibA 

LF022R  CCGGGCTGGTTACAGCCCCTGTTGTCTGCGGTTATGTCATGTAGGCTGGAGCTGCTTC ΔmibA 

LF023F TCCGTCCTCGTTTCTGTCATTC ΔmibA verification 

LF023R2 CTCCCCTTCGCCAAAGC 

 

ΔmibA verification 

LF031F GAGCTCTCCGCGGAGGTGTCCGAGGATGCCGTCCTCATGATTCCGGGGATCCGTCGACC ΔmibX 

LF037R GCCGTCAGGGCGTCCTGATCCTCGTCATCTATCACCAGTTGTAGGCTGGAGCTGCTTC 

 

ΔmibX 

LF032F GTCCTCGGTCTCGGAAGTC   ΔmibX verification 

LF032R GAGCAGCAGCACCACC ΔmibX verification 

LF038F CAAATCCGAAAGGGGGGCGGACTGGTGATAGATGACGAGATTCCGGGGATCCGTCGACC ΔmibW 

LF038R CGCGTAGCAGGCCCCAGAACCCGCCCCCCGCTCCCGTCATGTAGGCTGGAGCTGCTTC ΔmibW 

LF039F CGCGAGGTGCTCGTG ΔmibW verification 

LF039R GGATGGTGACGTGGTTTCG ΔmibW verification 

LF049F TGTGTTGACGCCCCGACCCATCAGGAGAGCCAGACCATGATTCCGGGGATCCGTCGACC ΔmibD  
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Primer 
Name 

Sequence (5‟-3‟) Application/Target 

LF049R TGAGCTCGAACGCCGGGACCGTCATGCCAAGGCCTCCGCTGTAGGCTGGAGCTGCTTC ΔmibD  

LF050F CGTGGAGGCCGTGGAGGCCGCGGAGGCCTTGGCATGACGATTCCGGGGATCCGTCGACC ΔmibTU (mibT) 

LF051R CCGGTCGTCGTCGCGGTGGTCACCGGCCGGTCACCTCCCTGTAGGCTGGAGCTGCTTC ΔmibTU (mibU) 

LF052F CGGCGCTGCGACTGCGGGTGGGGAGGTGACCGGCCGGTGATTCCGGGGATCCGTCGACC ΔmibV 

LF052R GGCACGACGCGTGCGAGGGCCCCGGTCAGCAACGGGTCATGTAGGCTGGAGCTGCTTC ΔmibV 

LF053F CCCGGCGGGACCGCCGGCCCGACCGACTCCCCCTCGATGATTCCGGGGATCCGTCGACC ΔmibEF (mibE) 

LF054R CCATGTTCCCGATCGTCCTTCCGTTCGTGGTTCAGGTCATGTAGGCTGGAGCTGCTTC ΔmibEF (mibF) 

LF055F ATGACCTGAACCACGAACGGAAGGACGATCGGGAACATGATTCCGGGGATCCGTCGACC ΔmibH 

LF055R GTTCGACGGCATGGGCGACCGTGGTGCCGGTCGTCATCTTGTAGGCTGGAGCTGCTTC ΔmibH 

LF057F GTGAACGCCGAGCAGCTCACCGGTGTGGTCATCGCCGATATTCCGGGGATCCGTCGACC ΔmibN 

LF057R TCGACGGCGGGACCGCCTGACGACCGCGCGCTCCTGTCATGTAGGCTGGAGCTGCTTC ΔmibN 

LF058F CCAGCGACACCGGGAGGGACATCGGGCACACCGCGGGTGATTCCGGGGATCCGTCGACC ΔmibR 

LF058R ATGTCACACCGGCCGCGTCATCGAACCGCGTAGCCCTCATGTAGGCTGGAGCTGCTTC ΔmibR 

LF061F GGCCGTGGCTCGGATCTGGACGGAGCGTTACCGGTGAACATTCCGGGGATCCGTCGACC 

 

ΔmibZ 

LF065F AGTCGCGCAGGGCGTCCCGGTCGAGGGCGCCCAGGTTCTATTCCGGGGATCCGTCGACC Δ7kb region downsteam from mibN 

LF065R CCGGCAGGGCCGCGCACAGCGTGACGACGCCGGCCGCGGTGTAGGCTGGAGCTGCTTC Δ7kb region downsteam from mibN 

LF068F CCCGACCCATCAGGAGAG    ΔmibD verification 

LF068R ACCGTCAGGTCGCTGAG       ΔmibD verification 

LF069F CGATCGTCGAGGGTCTGG         ΔmibTU verification 

LF070R CGGCAGATGATGAGGAGTTC     ΔmibTU verification 

LF071F GCTCAATCCGATGATGTACGC     ΔmibV verification 

LF071R CTCGCCTTCCAGCTTCTC     ΔmibV verification 

LF072F GATGCAGATGAACGACCATGAC   ΔmibEF verification 
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Primer 
Name 

Sequence (5‟-3‟) Application/Target 

LF073R GCCAGGGTGTTGCTCTC        ΔmibEF verification 

LF074F GACCTCGAACAGGGCTTTTTC   ΔmibH verification 

LF074R GTGACACTGCAGACCGAAC   ΔmibH verification 

LF075F GTGGTCTTCGGCCAAGTG   ΔmibN verification 

LF075R GGTGTAGGCAAGACGACGA   ΔmibN verification 

LF076F CGATACCCACGGTGTCCTAC   ΔmibZ-R verification  

LF076R GAAACCACGTCACCATCCATG    ΔmibZ-R verification 

LF077F GAGCTGATCGTGCTCAATGTG     Δds verification 

LF077R GTCCCACTTCATCTCGTTGC    Δds verification 

 

Table 2.9 RT-PCR primers 

Primer Name Sequence (5‟-3‟) Application/Target 

LF024F TCCTCGTGGAGTTGGAGAAG mibX 

LF024R CCAAGTATTACGGCCACCTG mibX 

LF025F CGCTGACATCCTGGAGAC mibA 

LF025R GCACAGCGACCAGCTC mibA 

LF026F  GAGCACGACCAGGGAAAG mibD 

LF026R GAACGTGATCGGGCAGTC mibD 

LF027F ATCCACGGAGTTGCTCAGAC mibE 

LF027R GCTGAAGGTCTCCCAGAGG mibE 

LF028F ACCATCTCGGCTACGTGTT mibH 

LF028R GAAGCAGGCTCACCAGAATC mibH 



 

 
 

8
6
 

Primer Name Sequence (5‟-3‟) Application/Target 

LF029F  GGAACGCTTCGGGCTG mibT 

LF029R GAGGTCGTCCCATACGGTC mibT 

LF030F GCTCGTCGTGGCCCAC mibU 

LF030R CGCCGAACTCGCGGTC mibU 

LF042F GTCGTGCAGTTGTTCAGCTC mibW 

LF042R GAGAGCGCGAGGTCGATT mibW 

LF043F GTTGTCGAACGCTCTGGTG mibO 

LF043R CGCCCAATATCTCAGGACCTC mibO 

LF080F GGTGCCCTGGATGCTGG mibN 

LF080R GCCGAACACCGGATGCAG mibN 

LF106F ACTTCTGGACCTCGATGACCTTC hrdB (NRRL30420) 

LF106R GGTCGAGGTGATCAACAAGCTG hrdB (NRRL30420) 

LF107F TCGCCCAGCGGGTCATCGAC mibV 

LF107R AGAGCCGTACGACCGGCCAG mibV  

LF108F CCGACGTTGTACGGGATACTC orf1 

LF108R CAGTTGTCCCGGTAGGTCAG orf1 

LF109F CGATACCCACGGTGTCCTAC mibY 

LF109R CCAGCACGACGAGTATGTTCA mibY 

LF110F GAGCAGCAAGCAGGACATC mibQ 

LF110R GGTCGTTGAGAGCGTAGGTC mibQ 

LF111F ACGCGATCTGTACCGAAGTTACG mibR 

LF111R GAGAAGGTGGGTCGACAGC  mibR 
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2.3 Culture media and antibiotics 

2.3.1 Antibiotics  

Table 2.10 Concentration of antibiotics used in this study 

Antibiotic Concentration in media (μg/ml) 

Carbenicillin (Carb) 

Kanamycin (Kan) 

Chloramphenicol (Chl) 

Apramycin (Apra) 

Hygromycin (Hyg) 

Nalidixic acid (Nal) 

Spectinomycin (Sp) 

Streptomycin (Str) 

Tetracycline (Tet) 

100 

50 

25 

50 

40 

20 

50 (E. coli)  200 (Streptomyces sp.) 

50 (E. coli)  10 (Streptomyces sp.) 

10 

 

2.3.2 Solid Media 

Unless stated otherwise, the media used for the culturing of Streptomyces coelicolor and 

E. coli were prepared as previously described (Kieser et al. 2000; Sambrook et al. 2001). 

Table 2.11 Solid media used in this study 

Medium Composition  Instructions for 
preparation 

L-Agar  

 

Agar 

Difco Bacto tryptone 

NaCl 

Glucose 

Distilled water 

10 g 

10 g 

5 g 

1 g 

Up to 
1000 ml 

The ingredients, 
except agar, were 
dissolved, in the 
distilled water and 
200 ml aliquots 
were dispensed 
into 250 ml 
Erlenmeyer flasks 
containing 2 g 
agar. The flasks 
were closed and 
autoclaved. 
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Medium Composition  Instructions for 
preparation 

LB-Agar Agar 

Difco Bacto tryptone  

Yeast extract                 

NaCl 

Distilled Water 

15g 

10g 

 5g 

10g 

Up to 
1000 ml 

The ingredients, 
except agar, were 
dissolved, in the 
distilled water and 
pH altered to 7.5 
with NaOH 200 ml 
aliquots were 
dispensed into 250 
ml Erlenmeyer 
flasks containing 2 
g agar. The flasks 
were closed and 
autoclaved. 

Difco nutrient agar 
(DNA) 

 

Difco Nutrient Agar 

Distilled water 

4.6 g 

200 ml 

Difco Nutrient Agar 
was placed in each 
250 ml Erlenmeyer 
flask and distilled 
water was added. 
The flasks were 
closed and 
autoclaved. 

Soft Nutrient Agar 
(SNA) 

Difco Nutrient Broth Powder 

Difco Bacto Agar 

Distilled water 

8 g 

5g 

Up to 
1000 ml 

The ingredients, 
except agar, were 
dissolved, in the 
distilled water and 
200 ml aliquots 
were dispensed 
into 250 ml 
Erlenmeyer flasks 
containing 2 g 
agar. The flasks 
were closed and 
autoclaved. 

MacConkey/Maltose 
Medium 

MacConkey Agar (Difco) 

Distilled water 

40g 

Up to 
1000 ml 

MacConkey Agar 
was placed in each 
250 ml Erlenmeyer 
flask and distilled 
water was added. 
The flasks were 
closed and 
autoclaved. After 
autoclaving 
maltose solution 
(20% in water) was 
added to 1% w/v. 
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Medium Composition  Instructions for 
preparation 

Mannitol soya flour 
medium (SFM or 
MS) 

 

Agar   

Mannitol  

Soya Flour  

Tap water    

20 g 

20 g 

20 g 

Up to 
1000 ml 

The mannitol was 
dissolved in the 
water and 200 ml 
aliquots poured 
into 250 ml 
Erlenmeyer flasks 
each containing 2 
g agar and 2 g 
soya flour. The 
flasks were closed 
and autoclaved 
twice (115 

C/15min), with 
gentle shaking 
between the two 
runs.  

Minimal medium for 
Streptomyces (MM)  

 

L-asparagine   0.5 g 
K2HPO4    0.5 g 

MgSO4.7H2O    0.2 g 

FeSO4.7H2O    0.01 g 

Lab M Agar     10 g 

De-ionised water   1000 ml 

10 % Mannitol 

0.5 g 

0.5 g 

0.2 g 

0.01 g 

10 g 

Up to 
1000 ml 

20 ml 

The ingredients 
except agar were 
dissolved and the 
pH adjusted to 7.0 
-7.2. 200 ml 
aliquots were 
dispensed into 250 
ml Erlenmeyer 
flasks containing 2 
g Lab M agar. The 
flasks were closed 
and autoclaved. 
Before use the 
medium was re-
melted and 20 ml 
10 % mannitol (or 
another carbon 
source) added. 

Oatbran Medium 
(OBM) 

Porridge Oats  

Lab M Agar     

Tap Water   

 

40g 

20g 

To 1000ml 

The ingredients 
were mixed and 
dispensed into 250 
ml Erlenmeyer 
flasks. The flasks 
were closed and 
autoclaved twice 

(115 C/15min), 
with gentle shaking 
between the two 
runs. 
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Medium Composition  Instructions for 
preparation 

V0.1 

(Marcone et al. 
2010b) 

Agar (SIGMA)  

Soluble starch (DIFCO)  

Dextrose   

Meat extract   

Yeast extract  

Triptose  

dH2O 

15 

2.4 

0.1 

0.3 

0.5 

0.5 

To 1000ml 

The ingredients 
were dissolved, in 
the distilled water 
and the pH 
adjusted to pH7.2. 
200 ml aliquots 
were dispensed 
into 250 ml 
Erlenmeyer flasks. 
The flasks were 
closed and 
autoclaved. 

M3 

(Marcone et al. 
2010b) 

The base for M3 is identical to V0.1. After autoclaving the following 
is added to molten V0.1 80g/L sucrose, 3.5g/L proline, 50mM 
CaCl2 and 10mM MgCl2. The molten medium is filter sterilized 
using a Vacuum Filter/Storage Bottle System, 0.22µm Pore 
19.6cm² PES Membrane (Corning). 

VM0.1 

(Marcone et al. 
2010b) 

Low Melting Point Agar (SIGMA)  

Soluble starch (DIFCO)  

Dextrose   

Meat extract   

Yeast extract  

Triptose  

dH2O 

4 

2.4 

0.1 

0.3 

0.5 

0.5 

To 1000ml 

The ingredients 
were dissolved, in 
the distilled water 
and the pH 
adjusted to pH7.2. 
200 ml aliquots 
were dispensed 
into 250 ml 
Erlenmeyer flasks. 
The flasks were 
closed and 
autoclaved. 

VMS0.1 

(Marcone et al. 
2010b) 

The base for VMS0.1 is identical to VM0.1. After autoclaving the 
following is added to molten V0.1 103g/L sucrose and 3.5g/L 
proline. The molten medium is filter sterilized using a Vacuum 
Filter/Storage Bottle System, 0.22µm Pore 19.6cm² PES 
Membrane (Corning). 
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2.3.3 Liquid Media 

Unless stated otherwise, the media used for the culturing of Streptomyces coelicolor and 

E. coli were prepared as previously described (Kieser et al. 2000; Sambrook et al. 2001). 

Table 2.12 Liquid media used in this study 

Medium Composition  Instructions for preparation 
 

L (Lennox)-Broth  
 

Difco Bacto tryptone 
Difco yeast extract 
NaCl 
Glucose 
Distilled water 

10 g 
5 g 
5 g 
1 g 
Up to 
1000 
ml 

The ingredients were dissolved, in 
the distilled water and aliquots 
were dispensed into universals or 
250ml flasks and autoclaved. 

LB (Luria-Bertani)-
broth 

Difco Bacto tryptone 
Difco yeast extract 
NaCl 
Distilled water 

10g 
5g 
10g 
Up to 
1000 
ml 

The ingredients were dissolved, in 
the distilled water and pH 
adjusted to 7. Aliquots were 
dispensed into universals or 
250ml flasks and autoclaved. 

SOB 
(minus Mg) 

Tryptone 
Yeast extract 
NaCl 
Distilled water 

20 g 
5 g 
0.5 g 
Up to 
950 ml 

After dissolving the solutes in 
water, 10 ml 250 mM KCl was 
added and the pH was adjusted 
to pH 7 with 5 N NaOH. The 
volume was then made up to 
1000 ml with deionised water and 
autoclaved. 

SOC   SOC medium is identical to SOB 
medium except that after 
autoclaving, 20 ml of sterile 1 M 
solution of glucose and 5 ml of 
sterile 2 M MgCl2 were added. 

2 X YT medium Difco Bacto tryptone 
Difco yeast extract 
NaCl 
Distilled water 

16 g 
10 g 
5 g 
Up to 
1000 
ml 

The ingredients were dissolved, in 
the distilled water and 10 ml 
aliquots were dispensed into 
universals and autoclaved. 

V 
(Marcone et al. 
2010b) 

Soluble starch (DIFCO)  
Dextrose   
Meat extract   
Yeast extract  
Triptose  
dH2O 

24 
1 
3 
5 
5 
To 
1000ml 

The ingredients were dissolved in 
the distilled water and the pH 
adjusted to pH7.2. 200 ml aliquots 
were dispensed into 250 ml 
Erlenmeyer flasks. The flasks 
were closed and autoclaved. 

VSP 
(Marcone et al. 
2010b) 

  VSP is identical to V except for 
the addition of sucrose to a final 
concentration of 50g/L and of L-
proline to 0.5g/L after autoclaving. 
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Medium Composition  Instructions for preparation 
 

VSPA Agar  
Soluble starch (DIFCO)  
Dextrose   
Meat extract   
Yeast extract  
Triptose  
dH2O 

1 
24 
1 
3 
5 
5 
To 
1000ml 

The ingredients were dissolved in 
the distilled water and the pH 
adjusted to pH7.2. 200 ml aliquots 
were dispensed into 250 ml 
Erlenmeyer flasks. The flasks 
were closed and autoclaved. After 
autoclaving sucrose was added to 
a final concentration of 50g/L and 
L-proline to 0.5g/L  

VM 
(Marcone et al. 
2010b) 

  VM is identical to V except for the 
addition of sucrose to a final 
concentration of 103g/L and of L-
proline to 3.5g/L after autoclaving. 

Streptosporangium 
Medium (SM) 

Soluble starch (DIFCO)  
Glycerol   
Tryptone 
Bacteriological Peptone 
Yeast extract  
NaCl 
CaCO3 
Tap Water 

10 
10 
2.5 
5 
2 
1 
3 
To 
1000ml 

The ingredients were dissolved in 
the distilled water and the pH 
adjusted to pH7.3. 200 ml aliquots 
were dispensed into 250 ml 
Erlenmeyer flasks. The flasks 
were closed and autoclaved. 

 

2.4 Solutions and buffers 

Table 2.13 Solutions and buffers used in this study 

Solution/buffer 

 

Compostion and instructions for preparation 

Cosmid isolation solution I Glucose 

Tris-HCl (pH 8) 

EDTA 

 

50 mM 

25 mM 

10 mM 

Cosmid isolation solution 
II 

NaOH 

SDS 

0.2 M 

1 % 

Cosmid isolation solution 
III 

Sodium acetate (pH 5.5) 

Acetic acid 

3 M 
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Solution/buffer 

 

Compostion and instructions for preparation 

Cosmid Library Probing 
Hybridisation Buffer  

SSC 

Denhardt‟s Solution 

SDS 

Denatured calf thymus DNA 

6x 

1x 

0.5% 

50μg/ml 

Cosmid Library Probing 
Wash Buffer  

SSC 

SDS 

0.1x 

1% 

DNA loading buffer Bromophenol blue 

Xylene- cyanol blue 

Glycerol 

SDS 

0.125 % (w/v) 

0.125 % (w/v) 

62.5 % (v/v) 

0.625 % (w/v) 

Elution Buffer Tris-Cl 10 mM 

 pH 8.5 

Lysis Buffer for β-
galactosidase assay 

Z-Buffer 

β-mercaptoethanol 

10% SDS 

100ml 

270μl 

50μl 

P (protoplast) Buffer Sucrose 

K2S04 

MgCl2.6H20 

Trace Element Solution 

KH2PO4 

CaCl2.2H2O 

TES buffer (pH7.2) 

128.75g/L 

0.313g/L 

2.53 g/L 

0.25% (v/v) 

0.005% 

0.368% 

0.573% 

SET buffer NaCl 

Tris-HCl (pH 8) 

EDTA (pH 8) 

75mM 

20 mM 

25 mM 

Southern blotting 
denaturation solution 

NaOH 

NaCl 

 

500 mM 

1.5 M 
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Solution/buffer 

 

Compostion and instructions for preparation 

Southern blotting 
neutralisation solution 

NaCl 

Tris-HCl (pH 7.5) 

3 M 

500 mM 

Southern blotting blocking 
reagent stock solution 

Blocking reagent was dissolved in maleic acid buffer to 
a final concentration of 10% (w/v) with shaking and 
heating. 

Southern blotting maleic 
acid buffer 

Maleic acid 

NaCl 

Adjust to pH 7.5 with 
concentrated NaOH 

0.1 M 

0.15 M 

Southern blotting 
detection buffer 

Tris-HCl (pH 9.5) 

NaCl 

100 mM 

100 mM 

Southern hybridisation 
buffer 

SSC 

N-lauroylsarcosine 

SDS 

Blocking reagent 

5 x 

0.1 % 

0.2 % 

1 % 

20xSSC Sodium Citrate 

NaCl 

300mM 

3M 

TBE buffer Tris base 

Boric Acid 

EDTA (pH8.0) 

89mM 

89mM 

2mM 

TAE buffer Tris 

Acetic acid 

EDTA 

40 mM 

1.142 % 

1 mM 

TES Buffer Tris-HCl (pH 8) 

EDTA 

NaCl 

10 mM 

1 mM 

1 M 
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Solution/buffer 

 

Compostion and instructions for preparation 

Trace Elements for P 
Buffer 

ZnCl2  

FeCl3.6H2O  

CuCl2.2H2O 

MnCl2.4H2O  

Na2B4O7.10H2O  

(NH4)6Mo7O24.4H2O. 

40 mg/L 

200 mg/L 

10 mg/L 

10 mg/L 

10 mg/L 

10 mg/L 

Z-Buffer  Na2HPO4   

NaH2PO4-2H20  

KCl    

MgSO4-7H20   

0.06M 

0.04M 

0.01M 

0.001M 
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2.5 General Molecular Biology Methods 

2.5.1 Plasmid Isolation 

Qiagen miniprep kits were used according to the manufacturer‟s instructions. Briefly, 5 ml 

of an overnight LB culture harbouring the plasmid of interest were centrifuged at 3000 x g 

for 10 min. The cell pellet was then resuspended and underwent alkaline lysis. The lysate 

was then neutralised and centrifuged in a microcentrifuge at 16000 x g to remove cell 

debris and precipitated protein. The supernatant was then applied to a silica membrane 

mounted in a microcentrifuge tube where it was washed under high salt and ethanolic 

buffer conditions during which time the DNA remains bound to the column. DNA was 

eluted from the column in ultrapure water or elution buffer. Plasmid DNA was routinely 

stored at -20°C. 

2.5.2 Cosmid Isolation 

Cosmid isolation from E. coli was carried out by alkaline lysis as described by Sambrook 

et al. (2001).  The cell pellet from 1.5 ml of culture was resuspended by vortexing in 100 µl 

solution I.  200 µl solution II were added and the tubes inverted ten times. A volume of 150 

µl solution III was then added and mixed in by inverting the tube five times. The tube was 

then centrifuged at 16000 x g in a microcentrifuge for 5 min at room temperature. The 

supernatant was mixed with 400 µl phenol/chloroform, vortexed briefly to mix and then 

centrifuged at 16000 x g in a micro centrifuge for 5 min. The upper phase was then 

transferred to a 1.5 ml tube, 600 µl of ice cold isopropanol were added and DNA 

precipitation was achieved by placing the tube on ice for 10 min followed by centrifuging at 

16000 x g in a micro centrifuge for 5 min. The pellet was washed with 1 ml 70% ethanol 

and centrifuged at 1600 0 x g in a microcentrifuge. The pellet was dried by leaving the 

tube open for 5 min at room temperature prior to resuspension in 30 l elution buffer. 

2.5.3 Agarose gel electrophoresis 

1% agarose gels were prepared with TBE buffer with 0.5 µg/ml ethidium bromide. 

Agarose gel electrophoresis was carried out in 1% TBE buffer at 100 V until completion. 

Hyperladder I (Bioline), 1 kb ladder (NEB) or 100 bp ladder (NEB) were used to provide 

size markers as indicated in figure legends.  

2.5.4 Pulsed-Field Gel Electrophoresis 

Pulsed-field gel electrophoresis (PFGE) was carried out using CHEF DR II pulse field gel 

apparatus with cooling module (Bio-Rad) to maintain the buffer at a constant temperature. 
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The apparatus was used as per manufacturer‟s instructions. 0.5% TBE buffer was 

circulated through the electrophoresis tank (at 0.75 L/min) and pre-cooled to 14 °C. A 1% 

TBE gel was cast in the standard casting frame supplied (14 x 13 cm). Approximately 1-2 

mm of MidRange PFG Marker I embedded in 1% agarose (NEB) was introduced into the 

first well of the cast gel and the well sealed with molten agarose. The gel was immersed in 

the buffer in the electrophoresis tank and the samples loaded into the appropriate wells (in 

a volume of 20 µl in 1x loading dye). Electrophoresis was carried out for 14 h at 14°C, 6 

V/cm with an initial switch time of 1 s and a final switch time of 25 s. 

2.5.5 DNA extraction from an agarose gel 

DNA fragments separated in agarose gels were excised from the gel using a clean scalpel 

and purified using the Qiaquick™ gel extraction kit (Qiagen), following the manufacturer‟s 

instructions. Briefly, the agarose gel slice containing the DNA fragment of interest was 

dissolved in a neutral pH, high salt buffer provided with the kit and applied to a silica gel 

membrane mounted in a microcentrifuge tube. The column was washed and the DNA 

fragment was eluted in elution buffer. 

2.5.6 DNA digestion with restriction enzymes 

Restriction enzyme digestion of cosmids, plasmids or genomic DNA was carried out 

according to the enzyme manufacturer‟s instructions. In the case of double digests, an 

appropriate buffer was selected after consulting the manufacturer‟s literature (Roche or 

NEB). The reaction volume was usually 20 µl for analytical digests and 50-100 µl for 

preparative digests. Digests were typically carried out for 1 h at 37°C. 

2.5.7 Ligation 

Ligation of DNA fragments was carried out using LigaFast T4 DNA ligase and buffer 

(Promega) following manufacturer‟s instructions. Typically 50-100 ng of restriction-

digested, gel-purified vector were used in a 1:3 molar ratio with the restriction-digested, 

gel-purifed insert fragment. For blunt-end ligations, vector ends were typically treated with 

Fast Alkaline Phosphatase (Fermentas) at 37°C for 20 min. Ligations were typically 

carried out at room temperature for 15 min for cohesive ends and 1 h for blunt ends. 

Typically, chemically competent E. coli DH5α were transformed with 3 µl of a ligation 

reaction. 



Chapter 2  Materials and Methods 
 

98 
 

2.5.8 Preparation and transformation of electro-competent E. coli 

The desired E. coli strain was grown overnight at 37 or 30°C in 5 ml L broth (Luria-Bertani 

medium; Sambrook et al., 1998) containing the appropriate antibiotic for selection. 1% of 

this overnight culture was used to inoculate an appropriate growth medium (typically L 

broth or SOB) and grown at 37 or 30°C with shaking at 250 rpm to an OD600 of ~ 0.4. The 

cells were recovered by centrifugation at 3000 x g for 5 min at 4°C in a Sorvall GS3 rotor. 

The medium was decanted and the pellet resuspended by gentle mixing in 10 ml ice-cold 

10 % glycerol. Centrifugation was repeated as above and the pellet resuspended in 5 ml 

ice-cold 10 % glycerol. Centrifugation was repeated as above and the pellet resuspended 

in ~ 100 μl ice-cold 10 % glycerol. 50 μl of this cell suspension were typically mixed with ~ 

100 ng of cosmid DNA. Electroporation was carried out in a 0.2 cm ice-cold 

electroporation cuvette using a BioRad GenePulser II set to: 200 Ω, 25 μF and 2.5 kV. 

The time constant was typically 4.5 – 4.9 ms. 1 ml ice cold SOC medium was immediately 

added to the shocked cells. The cells were incubated with shaking at 250 rpm for 1 h at 37 

or 30°C. Typically 100 μl and 900 μl of the transformation were spread onto L agar 

containing the appropriate selection (or DNA agar in the case of hygromycin selection). 

Plates were incubated overnight at 37 or 30°C. 

2.5.9 Transformation of chemically-competent E. coli 

Chemically-competent E. coli DH5α (Invitrogen) were transformed with DNA according to 

manufacturer‟s instructions. Briefly, cells were thawed on ice for 15 min. A 50 µl aliquot of 

cells was used for each transformation. Cells were mixed gently with a maximum of 100 

ng DNA. Cells were incubated on ice for 30 min before heat shocking at 42°C for 20-40 s 

before resting on ice for 2 min.  

2.5.10 Southern blot hybridization 

4 μg of genomic DNA were digested with the appropriate restriction enzyme in a volume 

of 50 µl at 37°C overnight. Digestion was confirmed by separating 400 ng of the digested 

DNA fragments on a 1% TBE agarose gel by electrophoresis. The remaining digested 

DNA was loaded into one lane of a 1% TAE agarose gel (20 cm by 20 cm).  Gel 

electrophoresis was carried out in 1% TAE buffer at 30 V for 16-18 h.  The inclusion of 5 

ng of 1 kb DNA ladder (Invitrogen) was used to determine the size of the bands on the 

developed Southern blot. The gel was stained with ethidium bromide both prior to 

Southern blotting and after capillary transfer to confirm good separation of DNA fragments 

and efficient transfer to the membrane. The gel was rinsed in distilled water and soaked 

twice, with shaking, for 15 min in denaturation buffer at room temperature. The gel was 
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washed in distilled water and soaked twice, with shaking, for 15 min in neutralisation 

buffer at room temperature. DNA was transferred to a nylon membrane (Amersham 

Pharmacia Hybond™-N) using capillary transfer.  20 x SSC was poured into a plastic tray 

and a glass plate was placed across it.  A sheet of Whatman 3MM paper was soaked in 

20 x SSC and placed on the plate so that the ends of the paper were in contact with the 

buffer in the tray. The treated and neutralised agarose gel was placed on the paper pad. A 

piece of nylon membrane cut to the size of the gel was placed on top of the gel, followed 

by three pieces of Whatman 3MM paper of the same size, stacks of paper towels, a glass 

plate and finally a weight.  The DNA was allowed to transfer overnight at room 

temperature by capillary action.  After transfer, the filter was removed and the transferred 

DNA was permanently fixed to the membrane by UV crosslinking in a Stratagene UV 

Stratalinker™ 2400.  The membranes were used immediately for detection with DIG 

labelled DNA probes as outlines below. 

For generation of the DIG labelled DNA probes DNA was labelled with Digoxigenin-11-

dUTP using the random primed DNA labelling method. 2.5 µg of cosmid DNA were 

partially digested with Sau3AI (Roche) for 15 min at 37 C. The partially digested cosmid 

was purified using a Qiagen PCR purification kit according to the manufacturer‟s 

instructions and was eluted from the column in 12 µl of elution buffer. 1 µg of cosmid DNA 

template (or 1 kb ladder (Invitrogen) for the ladder probe) was used in a labelling reaction. 

1 µg DNA template was diluted in H2O for a total volume of 16 µl.  The DNA template was 

heat-denatured in a boiling water bath for 10 min, and quickly chilled on ice. 2 µl of 

Hexanucleotide mixture (10x) and 2 µl dNTP labelling mixture (10x) were added to the 

tube (on ice). 1 µl Klenow enzyme was added for a final concentration of 100 U/ml and 

mixed. The reaction mixture was incubated at 37 C for 16 hours. The probe was purified 

using a Qiagen PCR purification kit according to the manufacturer‟s instructions to remove 

unincorporated label and enzyme. The probe was eluted from the column in 30 µl of 

water. 

 For hybridisation of the DNA probes with membrane-bound DNA the membrane was 

placed in a hybridisation tube containing 20 ml prehybridization solution per 100 cm2 of 

membrane surface area. Prehybridization was carried out at 67oC for at least 2 h.  The 

DIG-labelled probe DNA was denatured by heating in a boiling water bath for 10 min and 

chilling directly on ice. After discarding the prehybridization solution, the hybridisation 

solution containing the DIG-labelled cosmid and ladder probes (25 ng/ml and 10 ng/ml 

respectively) was added. Hybridisation was carried out overnight at 67 C.  The 

hybridisation solution was discarded and the membrane was washed twice, 15 min per 
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wash, in 50 ml of (preheated) 0.5 x SSC, 0.1% SDS at 67oC. This was followed by three 

washes, 20 min per wash with 50 ml of (preheated) 0.1 x SSC, 0.1% SDS at 67 C. 

For detection of the membrane-bound DIG-labelled probe, the membrane was transferred 

to a freshly washed dish and equilibrated in washing buffer for 1 min (at room 

temperature).  The membrane was blocked by gently agitating in 30 ml of blocking 

solution for 60 min at room temperature. The blocking solution was discarded and 

replaced with 30 ml of blocking solution containing the anti-digoxigenin antibody-conjugate 

diluted 1:10,000.  The membrane was incubated for 30 min at room temperature with 

gentle agitation. The antibody solution was discarded and the membrane was washed 

twice, 15 min per wash in washing buffer and then equilibrated for 2 min in 30 ml of 

detection buffer.  The membrane was placed between two sheets of plastic and 0.5-1 ml 

of CPD-star chemiluminescent substrate was added to the membrane (per 100 cm2 of 

surface area) ensuring the chemiluminescent substrate was dispersed evenly across the 

surface of the membrane.  The membrane was incubated for 5 min at room temperature. 

The membrane was then sealed in cling film. For detection of the chemiluminescent 

signal, the membrane was exposed to X-ray film for 5 min, adjusting the exposure time to 

allow for optimisation of the signal. 
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2.6 General PCR and Sanger sequencing 

Polymerase chain reaction was typically carried out using a BioRad DNA Engine Thermal 

Cycler. The conditions typically used for different applications are listed below. In general 

primers were designed to have an annealing temperature between 55 and 60°C such that 

the annealing temperature used for most applications was 56°C. The use of 5% DMSO in 

PCR reactions facilitates the amplification of high G+C content templates at these 

temperatures. PCR tubes were a strip of 8 thin-walled 0.2 ml tubes with domed-caps 

(Thermo Scientific). 

 

2.6.1 General Analytical PCR 

Component Amount/Concentration Volume (μl) Final Concentration 

Template DNA 1-10 ng x  

Forward Primer 10 µM 1 0.4 µM 

Reverse Primer 10 µM 1 0.4 µM 

dNTPs 40 mM (10 mM each) 0.25 400 µM (100 µM each) 

Taq Buffer 
(Roche) 

10x 2.5 1x 

DMSO 100% 1.25 5% 

Taq (Roche) 5 U/µl 0.25 1.25 U 

dH2O  to 25  

 

95°C 1 min 

95°C 45 s 

56-60°C 30 s 

72°C 0.5-3 min 

72 °C 10 min 

x 25 cycles 
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2.6.2 High-Fidelity Amplification for Cloning Applications 

The following reactions were scaled up to 50 or 100 µl to increase product yield as 

necessary for the application: 

Component Amount/Concentration Volume (μl) Final Concentration 

Template DNA 100 ng/µl 0.25 1 ng/μl 

Forward Primer 100 µM 0.25 1 µM 

Reverse Primer 100 µM 0.25 1 µM 

dNTPs 40 mM (10 mM each) 0.5 
800 µM (100 µM 

each) 

Expand HiFi Buffer 2 
(Roche) 

10x 2.5 1x 

DMSO 100% 1.25 5% 

Expand HiFi Taq 
(Roche) 

3.5 U/µl 0.5 1.75 U 

dH2O  to 25  

 

94°C 2 min 

94°C 45 s 

56-60°C 45 s 

72°C 0.5-3 min 

72 °C 10 min 

  

x 25 cycles 
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2.6.3 Colony PCR in E. coli 

The PCR reaction mix was as in 2.6.1. Colonies of E. coli were picked from agar plates 

using a sterile yellow Gilson pipette tip (Starlabs) and streaked on to a fresh L agar plate 

containing the appropriate antibiotic for selection before introducing directly into a PCR 

tube containing the appropriate PCR mix. Samples were mixed with a Gilson pipette set at 

20 µl four times to remove cell debris from the tip before placing the reaction tubes into 

the thermal cycler. Cycling conditions were: 

 

95°C 10 min 

95°C 45 s 

56-60°C 30 s 

72°C 0.5-3 min 

72°C 10 min 

 

  

x 30 cycles 



Chapter 2  Materials and Methods 
 

104 
 

2.6.4 Colony PCR in Streptomyces sp. 

Streptomyces single colonies were patched on to DNA media containing 1% glucose. 

Plates were incubated at 30ºC overnight (20-24 h). Streptomyces mycelium was scraped 

from the plates using a sterile toothpick and introduced into 50 µl 100% DMSO in a 1.5 ml 

Eppendorf tube. The tube was shaken vigorously for 30-45 min and then briefly 

centrifuged to pellet cell debris. 2.5 µl of the supernatant were used as the template in the 

reaction as shown below. Control DNA samples were diluted 1 µl into 1.5 µl DMSO and 

were used in the same way. 

Component Volume (μl) 

Forward Primer (10µM) 2 

Reverse Primer (10µM) 2 

dNTPs (40mM) 0.5 

10x Taq Buffer (Roche) 5 

DMSO (100%) + template 2.5 

Taq Polymerase (Roche) 0.5 

H2O to 50 

 

95°C 10min 

94°C 45s 

56-60°C 30s 

72°C 1min 

72°C 10min 

 

  

x 30 cycles 
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2.6.5 Colony PCR in M. corallina and Nonomuraea 

Single colonies were patched on to MV0.1 media. Plates were incubated at 30ºC for 5-7 

days. Mycelium was scraped from the plates using a sterile toothpick and introduced into 

50 µl 100% DMSO in a 1.5 ml Eppendorf tube containing 2 glass beads. The tube was 

shaken vigorously for 2 hours and then briefly centrifuged to pellet cell debris and beads. 

2.5 µl of the supernatant were used as the template as described in 2.6.4. 

2.6.6 Purification of PCR products 

The QIAquick™ PCR purification kit (Qiagen) was used to remove unincorporated 

primers, dNTPs and enzymes from completed PCR reactions following manufacturer‟s 

instructions. One tenth of the PCR reaction mixture was submitted to agarose gel 

electrophoresis. The remaining PCR mixture was diluted 5 times in the manufacturer‟s 

high salt buffer and applied to a silica gel membrane mounted in a microcentrifuge tube. 

The PCR products were washed free of primers, dNTPs and enzymes and the DNA 

fragment was eluted in elution buffer. 

2.6.7 Sanger sequencing using Big Dye v3.1 

Typically purified PCR products or vectors purified by mini-prep (Qiagen) were labeled 

with ABI BigDye® 3.1 dye-terminator reaction mix (Applied Biosystems) according to 

manufacturer‟s instructions. The manufacturer‟s instructions were consulted for the 

appropriate amount of DNA to use for the particular template in question, based on the 

nature of the product and its length. Big Dye labeling was carried out as detailed below. 

Reactions were subsequently submitted to the John Innes Genome Centre Sequencing 

Service for ABI Sanger Sequencing. The resulting sequence chromatogram files were 

analysed using VectorNTI ContigExpress software. 

 

Component Volume (μl) 

Template x 

Primer (3.2 µM) 1 

ABI BigDye® 3.1 dye-terminator reaction 
mix 

1 

5x BigDye® 3.1  Reaction Buffer 1.5 

H20 to 10 
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96°C 1 min 

96°C 10 s 

50°C 5 s 

60°C 4 min 

 

2.7 Growth conditions 

2.7.1 Growth and storage of E. coli 

E. coli strains were typically grown on L agar with antibiotic selection as appropriate or in 

L broth with shaking at 250 rpm at 30 or 37°C. For long-term storage strains were grown 

over-night in L medium and cells resuspended in 20% glycerol and stored at -20°C or -

80°C. 

2.7.2 Growth and Storage of Micrococcus luteus 

Micrococcus luteus ATCC4698 was typically grown in L broth with shaking at 250 rpm or 

on L agar at 30 or 37°C. For long-term storage, strains were grown over-night in L 

medium and cells resuspended in 20% glycerol and stored at -20°C or -80°C. 

2.7.3 Growth and storage of Streptomyces 

Streptomyces strains were grown and manipulated as described in (Kieser et al. 2000). 

Growth media were as stated in the text. For manipulation of Streptomyces (e.g. ex-

conjugants), SFM agar medium was used with the appropriate antibiotic selection. For the 

preparation of spore stocks for long-term storage, Streptomyces was grown on SFM or 

OBM (with selection as appropriate; OBM was used for S. lividans strains that sporulated 

poorly on SFM) at 30°C for up to 7 days until grey (S. lividans and S. coelicolor) or green 

(S. venezualae). Spores were collected in approximately 2 ml 20% glycerol using a sterile 

cotton pad through which spores were filtered by collecting with a 2 ml syringe and 

transferring to a 2 ml cryotube. Spore stocks were stored at -20°C. Spore stocks were 

titred by making serial dilutions in water and plating on SFM. Resulting colonies were 

counted from at least three dilutions and averaged. 

x 25 cycles 
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2.7.4 Growth and storage of M. corallina 

M. corallina NRRL 30420 was obtained from the NRRL culture collection and M. corallina 

DSM 44681 and DSM 44682 were obtained from the DSMZ culture collection. M. corallina 

strains were grown on V0.1 agar medium at 30°C. For liquid culture, M. corallina was 

typically inoculated 1 in 10 into VSPA medium in a 25-100 ml flask containing 3-6 glass 

beads (2 mm diameter) and incubated with shaking at 230 rpm at 30°C. The inclusion of 

0.1% agar in VSPA aids dispersed growth (Kieser et al. 2000). The inclusion of 0.05% 

Antifoam 289 (Sigma) in M. corallina liquid cultures prevented foaming. For long-term 

storage, culture broth containing mycelium was dispensed into 2 ml cryotubes and stored 

at -20°C (medium-term storage/working cell bank) or -80°C (long-term storage/master cell 

bank).  

2.7.5 Growth and storage of Nonomuraea ATCC39727 

Nonomuraea ATCC39727 was a kind gift from Flavia Marinelli (Università dell‟Insubria). 

Nonomuraea ATCC39727 was grown on V0.1 agar medium at 30°C. For liquid culture 

Nonomuraea ATCC39727 was typically inoculated 1 in 10 into VSP medium in a 25-100 

ml flask containing 3-6 glass beads (2 mm diameter) and incubated with shaking at 230 

rpm at 30°C. The inclusion of 0.05% Antifoam 289 (Sigma) in Nonomuraea liquid cultures 

prevented foaming. For long-term storage, culture broth containing mycelium was 

dispensed into 2 ml cryotubes and stored at -20°C (medium-term storage/working cell 

bank) or -80°C (long-term storage/master cell bank).  

2.7.6 M. corallina growth curve 

The growth rate of M. corallina was assessed in VSPA by measuring optical density at 

OD450, with VSPA as a blank. 1 ml of M. corallina mycelium from a working stock stored at 

-20°C was used to inoculate 10 ml VSPA in a 25 ml flask containing three glass beads. 

The culture was grown for 24-48 h at 30°C with shaking at 230 rpm. 100 µl of the resulting 

mycelium was diluted in 1 ml VSPA and the optical density at OD450 assessed. Three 100 

ml flasks containing 25 ml VSPA and 10 glass beads were inoculated to a starting OD450 

of 0.1-0.2. The flasks were incubated at 30°C with shaking at 230 rpm. Samples were 

removed at appropriate time intervals to measure the OD450 (using a 1 in 10 dilution when 

OD450>1.5).  
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2.8 Isolation of genomic DNA 

2.8.1 M. corallina 

2.8.1.1 High-Molecular Weight genomic DNA 

Microbispora corallina NRRL 30420 mycelium was harvested by centrifugation after 48 h 

growth in liquid culture and washed with 10 ml 10.3% sucrose to remove traces of 

medium. The pellet was resuspended in 20 ml SET buffer followed by dispersion in a 

hand-held glass-homogeniser. The pH of the solution was adjusted to pH8 with 1 N 

NaOH. Lysozyme (Sigma) was added to a final concentration of 20 mg/ml and the tube 

incubated at 37°C for 30 h, adding fresh lysozyme at intervals (approximately 50 mg every 

8-12 h). After 24 h incubation, 100 μg ribonuclease A was added and the incubation 

continued at 37°C. After 28 h, 12 mg proteinase K was added and the incubation 

continued at 37°C. After 30 h incubation, SDS was added to a final concentration of 1% 

and the solution mixed by inversion, followed by an overnight incubation at 55°C. 8 ml 5M 

NaCl was added and the DNA extracted with 8 ml phenol-chloroform-isoamylalcohol pH8 

using gentle hand mixing. The phenol and aqueous phases were separated by 

centrifugation at 3000 x g for 10 min. The aqueous phase was removed to a fresh 15 ml 

tube. The DNA was precipitated with ice-cold isopropanol. DNA was spooled from tubes 

using a sealed glass Pasteur pipette and washed in 70% ethanol. The DNA was air-dried 

and resuspended in elution buffer. gDNA was stored at 4°C. 

2.8.1.2 Small-scale genomic DNA extraction 

Microbispora corallina NRRL 30420 mycelium was harvested from 5 ml culture by 

centrifugation after 48 h growth in liquid culture and washed with 10 ml 10.3% sucrose to 

remove traces of medium. The pellet was resuspended in 5 ml SET buffer followed by 

dispersion in a hand-held glass-homogeniser if the mycelium was not well-dispersed. The 

pH of the solution was adjusted to pH8 with 1 N NaOH. Lysozyme (Sigma) was added to 

a final concentration of 20 mg/ml and the tube incubated at 37°C for 30 h, adding fresh 

lysozyme at intervals (approximately 50 mg every 8-12 h). After 24 h incubation, 25 μg 

ribonuclease A was added and the incubation continued at 37°C. After 28 h, 3 mg 

proteinase K was added and the incubation continued at 37°C. After 30 h incubation, SDS 

was added to a final concentration of 1% and the solution mixed by inversion followed by 

an overnight incubation at 55°C. 2 ml 5 M NaCl were added. The DNA was extracted with 

4 ml phenol-chloroform-isoamylalcohol pH8 with vortexing to mix thoroughly and 

centrifugation at 3000 x g for 10 min. The aqueous phase was removed to a fresh 15 ml 
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tube and 4 ml chloroform added. The tube was vortexed to mix thoroughly and centrifuged 

at 3000 x g for 10 min. The aqueous phase was removed to a fresh 15ml tube. The DNA 

was precipitated with 0.6 volumes of ice-cold isopropanol. DNA was spooled from tubes 

using a sealed glass Pasteur pipette and washed in 70% ethanol. The DNA was air-dried 

and resuspended in elution buffer. gDNA was stored at 4°C (concentrated samples) and 

at a concentration of 10 ng/µl at -20°C. 

 

2.8.2 Nonomuraea 

Nonomuraea mycelium was harvested from 5 ml of culture by centrifugation after 48 h 

growth in liquid culture and washed with 10 ml 10.3% sucrose to remove traces of 

medium. The pellet was resuspended in 5 ml SET buffer. The pH of the solution was 

adjusted to pH8 with 1 N NaOH. Lysozyme (Sigma) was added to a final concentration of 

10 mg/ml and the tube incubated at 37°C for 24 h, adding fresh lysozyme at intervals 

(approximately 50 mg every 8-12 h). After 16 h incubation 25 μg ribonuclease A was 

added and the incubation continued at 37°C. After 20 h, 3 mg proteinase K was added 

and the incubation continued at 37°C. After 24 h incubation, SDS was added to a final 

concentration of 1% and the solution mixed by inversion followed by an overnight 

incubation at 55°C. 2 ml 5 M NaCl were added and mixed well. The DNA was extracted 

with 4 ml phenol-chloroform-isoamylalcohol pH8 with vortexing to mix thoroughly and 

centrifugation at 3000 x g for 10 min. The aqueous phase was removed to a fresh 15 ml 

tube and 4 ml chloroform added. The tube was vortexed to mix thoroughly and centrifuged 

at 3000 x g for 10 min. The aqueous phase was removed to a fresh 15 ml tube. The DNA 

was precipitated with 0.6 volumes ice-cold isopropanol. DNA was spooled from tubes 

using a sealed glass Pasteur pipette and washed in 70% ethanol. The DNA was air-dried 

and resuspended in elution buffer. gDNA was stored at 4°C (concentrated samples) and 

at a concentration of 10 ng/µl at -20°C. 

 

2.8.3 Streptomyces 

Approximately 10 µl spores were inoculated into 10 ml SOC in a glass Universal 

containing a spring for mixing. The culture was incubated at 30°C for 24-36 h. The 

mycelium was harvested and resuspended in 2.5 ml of SET containing 10 mg/ml 

lysozyme and 25 µg Rnase A. The mycelium was incubated at 37°C for 2 h. 30 µl of 

proteinase K (20 mg/ml) were added and incubation continued for a further 30 min. SDS 
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was added to a final concentration of 1% and mixed by inversion before incubating at 

55°C for 15 min. The DNA was extracted with 1 ml phenol-chloroform-isoamylalcohol pH8 

with vortexing to mix thoroughly and centrifugation at 3000 x g for 10 min. The aqueous 

phase was removed to a fresh tube. The DNA was precipitated with 0.3 M sodium acetate 

and 1 volume ice-cold isopropanol. DNA was pelleted by centrifugation for 3 min at 16000 

x g and washed in 70% ethanol. The DNA was air-dried and resuspended in elution 

buffer. gDNA was stored at 4°C (concentrated samples) and at a concentration of 10 ng/µl 

at -20°C. 

 

2.9 Solexa and 454 sequencing and analysis 

Genomic DNA isolated from M. corallina NRRL 30420 was sequenced using Solexa 

sequencing technology (Illumina) by Dr. Eric Kemen and Dr. David Studholme (The 

Sainsbury Laboratory). The method used was as described in (Farrer et al. 2009). In total, 

7 lanes of data were collected totaling 881 Mb of sequence. Sequence reads were 

assembled using Velvet 0.6 (Zerbino et al. 2008). Three separate data assemblies were 

made in total. Summary statistics for one of the data assemblies were: 

Number of contigs = 14395 

Mean length of contig= 204 nt  

Median length of contig = 163 nt 

Total sum of contig lengths = 2.93 Mb 

Longest contig = 4436 nt 

 

Genomic DNA isolated from M. corallina NRRL 30420 was sequenced using 454 

sequencing technology (Cogenics). One lane of 454 sequencing yielded 28Mb of 

sequence data. Sequence reads were assembled using Newbler assembly software. 

Summary statistics for the data assembly were: 

Large Contig Metrics 

  Number of Contigs   = 3027 

  Number of Bases     = 3383376 
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  Average Contig Size = 1117 nt 

  N50 Contig Size     = 1219 nt 

  Largest Contig Size = 8913 nt 

   

  Q40PlusBases      = 2984663, 88.22% 

  Q39MinusBases     = 398713, 11.78% 

 

All Contig Metrics 

  Number of Contigs = 7580 

  Number of Bases   = 4642930 

  

The assembled contig sequences from each method were used to construct a database 

searchable by BLAST by Dr. Govind Chandra using the formatdb from the BLAST suite of 

programs version 2.2.18 (NCBI; (Altschul et al. 1990)).  

2.10 Cosmid Library Preparation 

2.10.1 Hydroshearing gDNA 

20 μg of high molecular weight M. corallina gDNA in a volume of 140 μl was heated to 

60ºC for 1 min. The DNA was loaded into a HydroShear® machine (GeneMachines) and 

sheared at speed code 40 for 5 cycles following manufacturer‟s instructions. 1 μg of the 

hydrosheared DNA was retained for analysis by pulsed-field gel electrophoresis. The 

remaining DNA was end-repaired. 

2.10.2 End-Repair of Hydrosheared gDNA 

Hydrosheared DNA (10 μg) x μl 

5 xT4 DNA polymerase buffer (Invitrogen) 40 μl 

40 mM total dNTP mix (10mM each) 5 μl 

10 mM ATP 20 μl 

T4 DNA polymerase (Invitrogen; 5 U/μl) 8 μl 

T4 polynucleotide kinase (USB; 3 U/μl) 4 μl 

H2O to 200 μl 
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The reaction was incubated at room temperature for 45 min. The volume was adjusted to 

700 µl final with elution buffer. DNA was extracted with 700 µl phenol-chloroform-

isoamylalcohol (pH8) with mixing by inversion for 5 min and centrifugation at 16000 x g for 

5 min. The aqueous phase was removed to a fresh tube and the extraction repeated with 

400 µl chloroform. The DNA was precipitated with 0.3 M sodium acetate and two volumes 

of 100% ethanol at -20°C for 30 min. The DNA was pelleted by centrifugation and washed 

in 70% ethanol. The pellet was air-dried before resuspending overnight in 10 μl of elution 

buffer at 4°C. The DNA was checked by PFGE. 

2.10.3 Preparation of pSupercos1 vector and ligation with insert DNA 

10 μg SuperCosI vector (Stratagene) was linearised with 9 U/μg XbaI (Roche) in a total 

volume of 100 µl with 1 x buffer H at 37ºC for 1 h. The digestion was checked by 

separating 1 μl (100 ng) DNA on a 0.8% TBE agarose gel by electrophoresis. Complete 

digestion was indicated by a linear SuperCosI band at 7.9 kb. The vector DNA was 

purified from the remaining reaction with the Qiagen PCR purification kit. The DNA was 

eluted twice in 25 µl elution buffer and 25 µl dH2O (warmed to 60 ºC) at 60 ºC for 5 min. 

The purified XbaI-digested DNA was treated with 30 U calf intestinal alkaline phosphatase 

(Cambio), in 100 ul total reaction volume with 1xCIAP buffer for 1 h at 37 ºC. The DNA 

was purified with the Qiagen PCR kit and eluted twice in 25 µl elution buffer and 25 µl 

dH2O (warmed to 60ºC) at 60ºC for 5 min. The DNA was digested with 10 U/μg ZraI 

(NEB) in 100 µl total volume with 1 x buffer 1 at 37ºC for 1 h. The DNA was purified with 

the Qiagen PCR kit and eluted with 10 µl elution buffer and 10 µl dH2O (warmed to 60ºC). 

The generation of fragments of the expected sizes of 1245 and 6695bp was checked by 

separating 2 μl of the treated DNA and 200 ng of uncut control DNA on a 0.8% TBE 

agarose gel by electrophoresis. 

Ligation was carried out as follows: 

Component Sample Negative Control 

Insert DNA end-repaired 2.5 μg 2.5 μg 

pSuperCosI blunt ended 1 µg 1 µg 

10 x T4 ligase buffer (Promega) 2 μl 2 μl 

T4 DNA ligase 3U/µl (Promega) 1 μl - 

H2O to 20 μl to 20 μl 

 

Reactions were incubated at 4ºC overnight. 



Chapter 2  Materials and Methods 
 

113 
 

2.10.4 Phage packaging 

4 μl of each ligation reaction were packaged into λ-phage using the Stratagene GigaPack 

III Gold Packaging Extract and following the manufacturer‟s instructions. Briefly, 

packaging extracts were removed from -80°C storage to dry ice. Extracts were rapidly 

thawed and 4 μl of each ligation reaction added. The extract was gently mixed and 

incubated at room temperature for 2 h. 500 µl SM buffer were added followed by 20 µl 

chloroform.  Packaged phage were stored at 4°C and used within 1 month. 

2.10.5 Phage titration 

Escherichia coli XL-I Blue (Stratagene) was streaked from a glycerol stock at -20°C on to 

LB agar and was grown at 37ºC overnight. A single colony from this plate was used to 

inoculate 10 ml LB broth which was grown at 37ºC overnight. 1 ml of this culture was used 

to inoculate 50 ml LB broth containing 10 mM MgSO4 and 0.2% maltose. This culture was 

grown at 37ºC for 2.5 h. Cells were recovered by centrifugation and diluted to an OD600 of 

0.5 in 10 mM MgSO4. Packaged phage were diluted in SM buffer. Transfections of E. coli 

cells with 1 μl of undiluted, 1/10, 1/50 and 1/100 (made up to a total volume of 25 µl with 

SM buffer) dilutions of phage were carried out by mixing 25 µl cells with 25 µl each dilution 

and incubating cells at room temperature for 30 min. 200 µl LB broth were added to each 

tube and incubated at 37°C for 1 h with shaking gently every 15 min. The entire 

transfection reaction was plated out on LB agar containing 100 μg/ml carbenicillin and 

incubated overnight at 37°C. The resulting colonies were counted to give the phage titre 

per µl of phage extract used. The resulting clones were picked into 5 ml LB broth and 

grown at 37ºC overnight. 1.5 ml of each culture were used for the preparation of cosmid 

DNA which was then verified by restriction digest. Since the packaged extract initially 

gave only 4 colonies per μl of undiluted extract, the packaging reaction was repeated with 

a further 4 μl of the ligation. The two extracts were pooled before transfection to construct 

the final cosmid library. 

2.10.6 Phage Transfection of E. coli to construct cosmid library 

This was carried out as described for phage titration except that transfection was scaled to 

use 1 ml E. coli cells (at OD600 0.5) in 10 mM MgSO4 with 1 ml of the pooled packaged 

phage extracts (made up with SM buffer). 8 ml LB broth was added and 1.4 ml of the 

transfection mix plated out on each of 7 Vented QTrays (240 x 240 x 20 mm) containing 

200 ml LB agar with 100 µg/ml carbenicillin to give an estimated plating density of 500-

800 colonies per plate. Plates were incubated inverted overnight at 37°C. 
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2.10.7 Library Picking and Transfer to Membrane 

3072 colonies were picked using Q-Bot (Genetix) into 8x384 well archive plates containing 

freezing broth (LB and glycerol) and 100 μg/ml carbenicillin. Two copies of the archive 

plates were replicated. All copies of the library were stored at -80ºC. The entire library was 

spotted two-fold onto nylon membrane in a double off-set pattern. The clones on the 

membrane were grown on LB agar overnight and baked on to the membrane at 80ºC. The 

membrane was stored at -20ºC. 

2.10.8 Probe preparation and library hybridization 

The probe was amplified from M. corallina gDNA by PCR using the primers LF001F and 

LF004R. The 1250 bp PCR product was separated by electrophoresis on a 1% TBE 

agarose gel and was purified by gel extraction. 25 ng of the purified DNA fragment was 

diluted to a final volume of 50 μl in TE. The DNA was denatured at 95-100ºC for 5 min and 

snap-cooled on ice for 5 min before centrifuging briefly. The DNA was added to a tube 

containing Rediprime II random prime labelling reaction mix (Amersham), to which was 

then added 5 μl 32P-αdCTP. The reaction was incubated at 37ºC for 1 h and the reaction 

stopped by adding 5 μl 0.2 M EDTA.  

The membrane containing the cosmid library clones was prepared by soaking for 2-3 h at 

42oC in 5 x SSC, 0.5% SDS, 1 mM EDTA pH8. All bacterial debris was scraped off using 

a paper towel and the membrane rinsed twice in 2 x SSC. 

The membrane was placed into a large hybridization tube containing 50 ml of 

hybridization buffer warmed to 60ºC and was pre-hybridised for 2-4 h at 65ºC in a Techne 

oven. The pre-hybridization solution was replaced with 20 ml of fresh hybridization buffer 

to which was added 30 μl of the labelled probe. The filter was hybridized at 65oC in a 

Techne oven overnight. The hybridization solution was removed and the filter washed 

three times in 50 ml of pre-warmed wash buffer at 65ºC. The filter was wrapped in 

Clingfilm and exposed to a phosphorimager plate for 5 h. The plate was visualised using a 

phosphoimager (Fuji). Alignment of the membrane with the grid pattern of the 386 well 

plates along with the double off-set pattern of the spots allowed the location of the positive 

clones to be identified. Positive clones were selected from the library and grown on LB 

agar containing 100 μg/ml carbenicillin. 
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2.11 Cosmid sequencing and sequence analysis 

Cosmids 5A7 and 4G2 were sequenced using Sanger sequencing by the Cambridge 

University DNA Sequencing Service. Cosmid end-sequencing was carried out as 

described in 2.6.7 using the primers End_F and End_R (approximately 600 base pairs of 

sequence per end). The complete cosmid sequences were annotated with the putative 

open-reading frames which were characterised by searches for homology using NCBI 

Blast. The sequence annotation was carried out using Artemis (Sanger Centre, 

Cambridge). Open-reading frames were called on the basis of the GC content and start 

sites (ATG or GTG) were further adjusted taking into account the presence of ribosome 

binding sites approximately 6-10 nucleotides upstream of the start site and based around 

the sequence GGAGG ((Kieser et al. 2000)).  

2.12 PCR targeting of cosmids 

In general, the strategy is carried out with minor modifications to that described in 

REDIRECT© technology: PCR-targeting system in Streptomyces coelicolor by Gust et al., 

(2002). 

2.12.1 Construction of integrative cosmids 

E. coli BW25113/pIJ790 containing the SuperCos1 cosmid to be targeted was grown in 10 

ml L broth containing 50 μg/ml carbenicillin, 50 μg/ml kanamycin and 25 μg/ml 

chloramphenicol overnight at 30 C with shaking at 250 rpm. 10 ml SOB (minus Mg) 

containing carbenicillin, kanamycin, chloramphenicol and 10 mM L-arabinose was 

inoculated 1 in 20 with this overnight culture which was incubated with shaking at 30 C for 

90 min. An additional 100 μl 1 M L-arabinose were added and incubation continued at 

30 C for an additional 60 min (until OD600 0.6). Electrocompetent cells were generated 

from the induced culture as described in 2.5.8. 50 μl of the cell suspension were mixed 

with 100 ng gel purified 5247 bp SspI fragment derived from pIJ10702 (pMJCOS1). 

Electroporation was carried out as 2.5.8. Typically 500 μl aliquots of the transformation 

mix were plated onto two plates of L agar containing 50 μg/ml apramycin and 100 μg/ml 

carbenicillin and incubated overnight at 37 C.  

After overnight incubation, colonies were scraped from one transformation plate in 1 ml 

H2O and the cosmid DNA purified using a variation of the standard cosmid preparation 

protocol (2.5.2). Briefly, cells were pelleted by centrifugation and resuspended by 

vortexing in 200 µl solution I. 400 µl solution II were added and the tubes inverted ten 
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times. A volume of 300 µl solution III was then added and mixed in by inverting the tube 

five times. The tube was then centrifuged at 16000 x g in a microcentrifuge for 10 min at 

room temperature. The supernatant was transferred to a 2 ml tube, 1 ml of ice cold 

isopropanol was added and DNA precipitation was achieved by placing the tube on ice for 

10 min followed by centrifuging at 16000 x g in a micro centrifuge for 5 min. The pellet 

was washed with 1 ml 70 % ethanol and centrifuged at 16000 x g in a microcentrifuge. 

The pellet was dried by leaving the tube open for 5-10 min at room temperature prior to 

resuspension in 100 l elution buffer. 1 μl of the resulting cosmid DNA was used to 

transform 50 µl chemically competent E. coli DH5α (as 2.5.9). Typically 100 μl and 900 μl 

of the transformation were plated on to L agar containing 50 ug/ml apramycin and 100 

μg/ml carbenicillin and incubated overnight at 37 C.  Resulting transformants were picked 

into 5 ml L broth containing 50 μg/ml apramycin and 100 μg/ml carbenicillin and grown 

overnight at 37 C. Cosmid DNA was prepared from these overnight cultures following the 

standard cosmid preparation protocol (2.5.2). Cosmid DNA that had been successfully 

targeted with the pIJ10702 SspI fragment was confirmed by a NotI restriction digest, 

which yields a diagnostic band-shift of 6807bp  8682bp. Digest with BamHI was used to 

confirm the identity of the cosmid. 
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2.12.2 Construction of mutant cosmids by gene replacement 

The mutation of a specific cosmid by gene replacement was carried out in E. coli 

BW25113/pIJ790 containing the cosmid to be targeted essentially as described in 2.12.1. 

The gene replacement cassette was amplified by high-fidelity PCR from the appropriate 

vector (e.g. pIJ773 or pIJ778) using primers designed to anneal to the universal primer 

binding sites (of 19 and 20 bp) which flank these cassettes and having 39 nt extensions 

homologous to the sequence flanking the gene to be replaced. Primer sequences were 

designed such that gene replacement would not affect the expression of downstream 

open-reading frames by ensuring that all start codons and ribosome-binding sites were left 

intact. For all primer sequences used for gene replacement see Table 2.8. PCR was 

carried out as follows: 

Component Amount/Concentration Volume (μl) Final Concentration 

Template DNA 100 ng/µl 0.5  

Forward Primer 100 µM 0.5 1 µM 

Reverse Primer 100 µM 0.5 1 µM 

dNTPs 40 mM (10mM each) 1 
800 µM (100 µM 

each) 

Expand HiFi Buffer 

2 (Roche) 
10x 5 1x 

DMSO 100% 2.5 5% 

Expand HiFi Taq 

(Roche) 
2.5 U/µl 1 2.5 U 

dH2O  to 50  
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94°C 2min 

94°C 45s 

50°C 45s 

72°C 90s 

94°C 45s 

55°C 45s 

72°C 90s 

72 °C 5 min 

 

The PCR reaction was treated with 1 µl DpnI (NEB; 20U/µl) for 1 h at 37°C (to remove 

template DNA). The PCR-amplified template was purified using the Qiagen PCR 

purification kit and eluted in 12 µl elution buffer (heated to 55-60°C). 1 µl of the purified 

cassette was analysed on a 1% TBE agarose gel by electrophoresis to check the size and 

quality of the cassette DNA. 1 µl (approximately 100 ng) of the purified cassette DNA was 

used to transform E. coli BW25113/pIJ790 containing the cosmid, and prepared as 

described in 2.12.1. Transformants were selected on L agar containing the antibiotic for 

which resistance is conferred by the introduced cassette. Manipulated cosmids were 

transferred to E. coli DH5α as described in 2.12.1 and the correct targeting of the cosmid 

confirmed by PCR, using primers flanking the cassette insertion (see Table 2.8). The 

resulting confirmation PCR products were purified by gel extraction or by using a PCR 

purification kit and the integrity of the cassette and the correct replacement of the gene in 

question confirmed by sequencing as per 2.6.7. To confirm that no other gross 

rearrangements had occurred in the targeted cosmids, targeted and wild type cosmids 

were subjected to restriction digest analysis (usually with NotI) and fragments compared 

by separating on a 1% TBE agarose gel by electrophoresis. The restriction digest patterns 

were compared to those from in silico digests of the respective wild type and mutant 

cosmids (using VectorNTI; Invitrogen). 

 

  

x 10 cycles 

x 15 cycles 
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2.12.3 Insertion of the ermE* constitutive promoter 

This was carried out as described for the generation of gene replacement mutant cosmids 

except that PCR primers for cassette amplification were designed to anneal to the region 

flanking the TcR-ermE*- EF-Tu ribosome binding site (Streptomyces ramocissimus tuf1) 

cassette in pIJ10705 with 5‟ 39 nt extensions homologous to the sequence flanking the 

region where the cassette would be inserted (Bibb et al. 1994; van Wezel et al. 2000; 

O'Rourke unpublished). Each ermE* cassette was designed to be introduced adjacent to 

the start codon of the gene to be over-expressed, primer F having the sequence upstream 

of the start codon of that gene and primer R having the sequence downstream (and 

inclusive of) the start codon. The sequences of the primers used for the construction of 

these constructs are listed in Table 2.8. 10 µg/ml tetracycline was used for the selection of 

transformants carrying the targeted cosmid. Targeted cosmids were confirmed as 

described in 2.12.2. 

 

2.12.4 FLP-mediated recombination to generate scar mutants 

E. coli DH5α/BT340 was grown in 10 ml L broth containing 25 μg/ml chloramphenicol 

overnight at 30 C with shaking at 250 rpm. 10 ml L broth containing chloramphenicol were 

inoculated 1 in 20 with this overnight culture and incubated with shaking at 30 C for 3-4 h 

until OD600 0.6. Electrocompetent cells were generated from the induced culture as 

described in 2.5.8. 50 μl of the cell suspension were mixed with 100 ng cosmid 

containing the FRT-flanked cassette to be removed. Electroporation was carried out as 

2.5.8. Typically 100 μl and 900 μl aliquots of the transformation mix were plated onto L 

agar containing 25 ug/ml chloramphenicol and the selection encoded by the cassette in 

the cosmid and incubated for 2 days at 30 C. Approximately eight single colonies were 

picked and streaked on to L agar without antibiotics and incubated at 42 C overnight to 

promote FLP-recombination. Single colonies from these plates were picked and streaked 

first on to L agar containing the antibiotic selection for the cassette used for the 

mutagenesis (apramycin or spectinomycin/streptomycin) and then on to L agar containing 

selection for the backbone of the cosmid (carbenicillin and kanamycin for Supercos or 

carbenicillin and apramycin for pIJ10702). The plates were incubated at 37 C overnight 

and compared to identify clones sensitive to the selection for the cassette used for 

mutagenesis but resistant to the selection for the cosmid backbone. Four to eight such 

clones were selected and the removal of the cassette confirmed by PCR using flanking 

primers and the PCR products checked by Sanger sequencing. 
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2.13 Bioassay methods 

2.13.1 Solid bioassay 

The indicator organism was Micrococcus luteus ATCC4698. 50 μl of a glycerol stock were 

streaked onto L agar plates and incubated for 2 days at 30ºC. A single colony was used to 

inoculate L broth which was grown overnight at 30ºC with shaking. This culture was 

diluted 1 in 25 into 50 ml L broth and grown at 30ºC with shaking until an OD of 0.4-0.6 

was reached. This culture was diluted 1 in 10 into molten soft nutrient agar at 50ºC and 

approximately 10 ml used to overlay each 25 ml plate containing the growing producer 

organism. The plates were incubated at 30ºC until halos were visible, usually overnight. 

2.13.2 Liquid bioassay 

The indicator organism was Micrococcus luteus ATCC4698. 50 μl of a glycerol stock was 

streaked onto L agar plates and incubated for 2 days at 30ºC. A single colony was used to 

inoculate L broth which was grown overnight at 30ºC with shaking. This culture was 

diluted 1 in 25 into 50 ml L broth and grown at 30ºC with shaking until an OD of 0.4-0.6 

was reached. This culture was diluted 1 in 10 into molten L agar at 50ºC and 

approximately 20 ml poured into 90 mm standard Petri dishes or approximately 40 ml into 

100 mm square Petri dishes. 40 μl samples of spent culture supernatant and controls 

were applied to sterile antibiotic assay discs and allowed to dry. These were then placed 

onto plates containing the target organism and the plates incubated at 30ºC until halos 

were visible, usually overnight. 

2.13.3 M. corallina microbisporicin resistance assay 

For co-culture experiments, M. corallina was grown in a patch across one side of a V0.1 

agar plate for 11 d at 30°C. The test organism was then streaked perpendicular to each of 

the patches and its growth monitored for several days. For well diffusion assays, square 

petri dishes (10x10 cm) with 25 compartments (Sterilin) were prepared with 2 ml V0.1 per 

compartment. The test organism was applied to the agar at the appropriate time point and 

spread to allow confluent growth. The plates were incubated at 30°C for the required time 

period. At the zero time point, 200 μl yellow pipette tips (StarLabs) were used to generate 

wells of fixed diameter in the agar. The tip was inverted using sterile forceps and stamped 

into the centre of the agar well. The narrow end of the tip was covered with a gloved finger 

to generate a seal such that removal of the tip from the agar also removed the agar plug, 

which was discarded. 40-50 μl of test supernatant was added to each well. Liquid was 
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allowed to diffuse into the agar for several hours before the plates were inverted. Plates 

were further incubated at 30°C and the growth of mycelium monitored daily. 

2.14 Matrix-Assisted Laser-Desorption Ionisation Time of Flight 

Mass Spectrometry (MALDI-ToF) 

Culture supernatants were diluted 1 in 5 with 5% formic acid. The diluted sample (ca. 0.8 

µl) was spotted onto a PAC plate (Prespotted AnchorChipTM MALDI target plate, Bruker 

Daltonics, Bremen, Germany) and the spots washed briefly with 8 µl 5% formic acid 

according to the manufacturer. After drying, the samples were analysed by MALDI-TOF 

on a Bruker Ultraflex TOF/TOF. The instrument was calibrated using the prespotted 

standards (ca. 200 laser shots). Samples were analysed using a laser power of approx. 

25% and spectra were summed from ca. 20 x 20 laser shots. The accuracy of MALDI-ToF 

MS was 20-50 ppm. Analysis of mass spectrometry data and figure preparation was 

carried out using FlexAnalysis software (Bruker Daltonics, Bremen, Germany). 

2.15 Extraction Methods for microbisporicin 

2.15.1 Concentration with Diaion HP20 bead matrix 

Diaion HP20 polystyrene resin (Mitsubishi Chemical Co.) was prepared by washing in 

100% methanol for 5 min followed by water for 5 min and added to the supernatant from 

which microbisporicin was to be recovered at 2.3% v/v. Tubes containing supernatant and 

resin were incubated overnight at room temperature on a vertical rotating mixer. Samples 

were subjected to centrifugation at 3000 x g for 10 min to pellet the matrix. The bulk of the 

supernatant was carefully removed with a pipette without disrupting the resin and was 

stored for later analysis. The resin was washed once in methanol:distilled water (2:3) and 

the wash fraction stored for later analysis. The resin was eluted once in 1 ml 

methanol:water-saturated butanol:water (9:1:1) for 30 min at room temperature on a 

vertical rotating mixer. The eluant was stored for later analysis. The elution was repeated 

for 2 h at room temperature on a vertical rotating mixer. 40 µl samples were tested for 

bioactivity by applying to antibiotic assay discs. Some eluant samples were concentrated 

by drying under vacuum and samples resuspended in 5% formic acid for MALDI-ToF 

mass spectrometry. 

 



Chapter 2  Materials and Methods 
 

122 
 

2.15.2 Analytical High-Pressure Liquid Chromatography 

Analytical HPLC for microbisporicin compounds was carried out as recommended by 

Professor Flavia Marinelli (Universita del‟Insubria; personal communication). 50 ml of 

culture was separated into supernatant and mycelial pellet by centrifugation at 3000 x g 

for 10 min. The supernatant was prepared by acidifing to pH3 with 50% formic acid and 

methanol added to 1:1 before analyzing by HPLC. The mycelium was prepared by 

extracting the mycelial pellets with 2.5 ml 100% methanol on a vertical rotating wheel for 

20 min. The mycelium was subsequently removed by centrifugation and discarded. The 

supernatant was analysed by HPLC.  

HPLC was carried out on a C18 4.6x250 mm column (Waters) maintained at 50°C. Phase 

A was 90% ammonium formate (2% v/v) and 10% HPLC-grade acetonitrile. Phase B was 

30% ammonium formate (2% v/v) and 70% HPLC-grade acetonitrile. The HPLC column 

was equilibrated over-night to 65% phase A and 35% phase B. A 40 µl injection of 

supernatant or methanol-extracted mycelium was loaded on to the column. The elution 

gradient was phase B from 35% to 90% in 30 min with a flow rate of 1 ml/min. UV 

spectroscopy data were collected at 268 nm. HPLC fractions were collected from 100 µl 

injections using an auto-collector set to collect fractions with a UV 268 nm absorbance 

above 3 mAu in a maximum volume of 800 µl per vial.  

2.16 Microscopy 

2.16.1 Phase-contrast microscopy 

Samples were placed on 76x26 mm glass slides (VWR international) and covered with a 

glass cover slip (18x18 mm; VWR international). Slides were typically observed at 400 

times magnification with a Photomicroscope II in phase-contrast mode (Zeiss). 

2.16.2 Cryo-Scanning Electron Microscopy 

High-resolution SEM was carried out by Kim Findlay at the John Innes Centre using a 

Zeiss Supra 55 VP FEG SEM with a Gatan Alto 2500 cryo system at an accelerating 

voltage of 3 kV. 
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2.17 Shotgun Library 

2.17.1 Cloning strategy 

High molecular weight genomic DNA was isolated from M. corallina NRRL 30420 and 5 

µg were digested with BamHI (10 U) at 37°C in a volume 50 µl. 10 µl samples were 

removed at 0, 1, 5, and 20 min after enzyme addition and added to 15 µl 0.5 M EDTA and 

immediately frozen in liquid nitrogen. The digested DNA in each sample was separated on 

a 1% TBE agarose gel by electrophoresis. The DNA was digested to below the required 

size range (5-10 kb) so the process was repeated, taking samples at 0, 1, 2, 3, 4 and 5 

min. A digestion time of 2-3 min was identified as appropriate for the required size range 

of DNA. The preparative digest was carried out using 5 µg of DNA which was digested 

with 10 U BamHI in a volume of 50 µl for 2.5 min at 37°C. 75 µl of 0.5M EDTA were added 

to stop the reaction and the sample frozen in liquid nitrogen. The digested fragments were 

separated on a 0.8% TBE agarose gel. The lanes containing the ladder DNA on either 

side of the gel were removed, stained in TBE containing 0.5 µg/ml ethidium bromide and 

visualized with UV. The size region from 5-10 kb of genomic DNA was marked with a 

scalpel. The gel slices were rearranged and the marked ladder sections used as a guide 

to remove the gel segment containing fragmented NRRL 30420 DNA of that size range 

(without having to directly expose this DNA to ethidium bromide and UV light which could 

damage the DNA). The DNA from this gel slice was purified using a Qiagen gel extraction 

kit and eluted in 100 µl elution buffer giving a final concentration of 19 ng/µl. 

Approximately 100 ng was analysed by gel electrophoresis and the DNA had a size range 

of 3-8 kb with an estimated mean size of 5-6 kb.  

pRT802 (Gregory et al. 2003) integrates specifically at the Streptomyces ΦBT1 

attachment site and carries the kanamycin resistance marker. 5 µg pRT802 were digested 

with 50 U BamHI at 37°C for 2 h. The digested vector was purified using a Qiagen gel 

extraction kit and eluted in 50 µl elution buffer. The vector was treated with 60 U calf 

intestinal alkaline phosphatase for 1 h at 37°C and purified using a Qiagen PCR 

purification kit. The cut vector was checked by gel electrophoresis on a 0.8% TBE 

agarose gel and had the expected linear size of 5700 bp. The partially digested NRRL 

30420 genomic DNA was ligated in a 3 to 1 ratio with 100 ng of the prepared pRT802 

vector. A vector-only control ligation indicated that approximately 1 in 60 transformants in 

the library would carry the vector alone. Library efficient E. coli DH5α cells were 

transformed with the ligation reaction to yield approximately 2500 kanamycin-resistant 

clones. With an average insert size of 6 kb and with an estimated 1/60 clones carrying the 
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vector alone, this library give an approximate 2.5-3 fold genome coverage (assuming a 

genome size of 5 Mb). The E. coli clones were pooled and plasmid DNA purified by 

alkaline lysis (see cosmid isolation section 2.5.2). The isolated DNA was checked by PCR 

using primers corresponding to mib genes.  

E. coli S17-1 (Simon et al. 1983) was transformed with 100 ng of the isolated library DNA 

in four independent transformation reactions. Approximately 3600 kanamycin resistant 

clones were scraped from the plates in 1 ml L broth and inoculated into 110 ml L broth 

containing 50 µg/ml kanamycin. The culture was grown for 3 h until at an OD600 of 0.6. 

Cells from 100 ml of this culture were stored in 20% glycerol at -20°C. Cells from 10 ml of 

culture were washed twice in L broth by centrifugation at 3000 x g for 10 min. Cells were 

resuspended in 500 µl L broth. S. lividans TK24 pIJ12131 spores were prepared for 

conjugation as section 2.18.1 and were mixed with the S17-1 library cells. Ex-conjugants 

were selected with 50 µg/ml kanamycin, 10 µg/ml apramycin (to ensure pIJ12131 is 

maintained) and 25 µg/ml nalidixic acid (to kill the S17-1 E. coli donor). Three independent 

conjugations (from separate cultures of S17-1) were carried out to generate the final 

Streptomyces library.  

2.17.2 Library construction and screening 

In total, approximately 3000 ex-conjugants were picked and patched on SFM containing 

50 µg/ml kanamycin, 10 µg/ml apramycin and 25 µg/ml nalidixic acid with 30 patches per 

plate. All plates were grown at 30°C for 4 d until spore pigment was visible. All plates were 

replicated on to V0.1 agar using velvet squares (Kieser et al. 2000). SFM library plates 

were stored at 4°C. V0.1 agar plates were incubated at 30°C for 4 days and were overlaid 

with M. luteus in soft nutrient agar (see section 2.13.1). Plates were incubated overnight at 

30°C. Clones identified producing zones of inhibition in the lawn of M. luteus growth were 

identified from the SFM library plates and re-tested by bioassay on V0.1 agar medium.  

2.18 Conjugation methods 

2.18.1 Streptomyces 

E. coli ET12567/pUZ8002 containing the oriT-containing plasmid to be transferred was 

grown overnight in 5 ml L broth with plasmid selection and 50 μg/ml kanamycin and 25 

μg/ml chloramphenicol at 37 C with shaking at 250 rpm. 100 μl of this overnight culture 

were inoculated into 10 ml L broth with antibiotic selection and grown at 37 C with shaking 

at 250 rpm until the culture reached an OD600 of 0.4. The cells were washed twice with 10 
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ml of L broth, with centrifugation at 3000 x g for 10 min, to remove antibiotics and finally 

resuspended in 1 ml of L broth. For each conjugation, 10 μl (approximately 108) 

Streptomyces spores were added to 500 μl 2 × YT broth. Spores were heat shocked at 

50°C for 10 min and allowed to cool (except S. venezualae). 0.5 ml of the E. coli cell 

suspension was mixed with the spores. 100 μl, 10 μl and 1 μl of the mixture were plated 

out on to SFM agar medium containing 10 mM MgCl2. The plates were incubated at 30°C 

for 16-20 h. Each plate was overlaid with 1 ml water containing 0.5 mg nalidixic acid (to kill 

E. coli donor cells) and antibiotic selection for the plasmid as appropriate (as detailed in 

(Kieser et al. 2000)). Incubation was continued at 30°C. Single ex-conjugants were picked 

after 3-5 days growth and streaked on to SFM containing naladixic acid (25 μg/ml) and the 

plasmid selection.  

2.18.2 M. corallina 

M. corallina mycelium was harvested from 48 h old cultures by centrifugation at 3000 x g 

for 10 min and washed twice in ice cold 20% glycerol. The mycelial pellet was 

resuspended in approximately half the original volume ice-cold 20% glycerol. Mycelial 

samples were used immediately or were stored at -80°C and thawed on ice prior to 

conjugation. E. coli ET12567 pUZ8002 carrying the oriT-containing plasmid to be 

transferred were prepared for conjugation as described in 2.17.1 (Kieser et al. 2000). 0.5 

ml of mycelium was mixed with 0.5 ml of E. coli for each conjugation. 100 μl of the mixture 

were plated on to V0.1 agar medium containing 10 mM MgCl2. The plates were incubated 

at 30°C for 16-20 h. Each plate was overlaid with 1 ml water containing 0.5 mg nalidixic 

acid and the appropriate selection for the plasmid (typically 1.25 mg apramycin or 

hygromycin). One plate from each conjugation was overlaid with 1 ml water containing 0.5 

mg nalidixic acid only as a control. Incubation was continued at 30°C. Single ex-

conjugants were picked after 14 days (small integrative constructs) or 3-5 weeks 

(homologous recombination with cosmids) growth.  

2.18.3 Nonomuraea 

Nonomuraea mycelium was harvested from 24 h old cultures by centrifugation at 3000 x g 

for 10 min and washed twice in ice cold 20% glycerol. The mycelial pellet was 

resuspended in approximately half the original volume ice-cold 20% glycerol. Mycelial 

samples were used immediately or stored at -80°C and thawed on ice prior to conjugation. 

Conjugation with E. coli ET12567 pUZ8002 was carried out as described in 2.17.2. 
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2.19 M. corallina Protoplasts 

M. corallina protoplasts were produced and regenerated according to (Marcone et al. 

2010b). Protoplast transformation was carried out as (Marcone et al. 2010c). Protoplast 

generation and transformation were carried out with the assistance of Dr. G.L. Marcone 

(Universita del‟Insubria) and Dr. F. Beltrametti (Actygea, Gerenzano, Italy). 

2.19.1 Protoplast production 

M. corallina was grown for 48 h in VM medium. Mycelium was harvested by centrifugation 

at 3000 x g for 10 min and washed once in P buffer and resuspended in an equal volume 

of P buffer. Lysozyme and mutanolysin (Sigma) were dissolved in P buffer at final 

concentrations of 5 mg/ml and 0.018 mg/ml, respectively. Cell wall digestion was carried 

out at 30°C with gentle shaking at 150 rpm for 24 h. Protoplasts were removed from 

residual mycelium clumps by thoroughly pipetting up and down. Protoplasts were 

separated from residual hyphal fragments by filtration through glass wool. Protoplasts 

were pelleted by centrifugation at 16000 x g at 4°C, washed once in P buffer and were 

finally re-suspended in 1 ml P buffer. Formation of protoplasts was followed by 

microscopic observation and protoplasts were counted by using a Petroff-Hausser 

counting chamber and a Zeiss phase-contrast microscope at 400x. 

2.19.2 Protoplast regeneration 

Protoplasts were diluted in P buffer (undiluted, 10-2, 10-4 and 10-6) and protoplasts present 

in each dilution counted using a Petroff-Hausser counting chamber (counted in five 

different squares and averaged) and a Zeiss phase-contrast microscope at 400x. 100 μl of 

each dilution were placed on to M3 agar medium and 4 ml molten VMS0.1 at 37°C added 

and mixed with the protoplasts to spread them evenly over the plate surface. Plates were 

allowed to dry on a level surface. To check for hyphal contamination, this was repeated on 

a plate of V0.1 medium, which does not support the growth of protoplasts (hypotonic 

medium). V0.1 plates were overlaid with VM0.1 at 37°C.  

2.19.3 Protoplast transformation 

Plasmid or cosmid DNA was isolated from E. coli DH5α or ET12567/pUZ8002 (see 

chapter 7) and resuspended at a concentration of 1 μg/μl. 1 μg of DNA was resuspended 

in 20 μl of distilled water for each transformation and 20 μl LipofectamineTM 2000 

(Invitrogen) added. Protoplasts were pelleted by centrifugation at 16000 x g for 2 min and 

gently resuspended in 100 μl P buffer. The DNA and lipofectamine mixture was added to 

the protoplasts and gently mixed. Tubes were incubated at room temperature for 2 min. 
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Protoplasts were pelleted by centrifugation at 16000 x g for 2 min and gently resuspended 

in 500 μl P buffer. Protoplasts were allowed to regenerate as described in 2.19.2 for 48 h. 

Plates were further overlaid with 8 ml VMS0.1 containing 800 mg/L apramycin (a final 

concentration of 50 μg/ml) and allowed to dry on a level surface. Incubation was continued 

at 30°C for several weeks before colonies were visible. Putative transformants were 

picked and streaked on V0.1 containing apramycin. 

2.20 Generation of mutants by homologous recombination in M. 

corallina 

The region of cosmid pIJ12125 encoding the gene to be deleted was replaced with the 

apramycinR-oriT cassette amplified by high-fidelity PCR from pIJ773 using the appropriate 

primer pair (Table 2.8) as described in 2.12.2. The successful mutation of the cosmid to 

pIJ12125 ΔORF::ApraR-oriT was confirmed by PCR using the appropriate verification 

primer pair (Table 2.8) along with restriction digest to confirm the integrity of the rest of the 

cosmid. The mutant cosmid was transferred to E. coli ET12567 pUZ8002 and the resulting 

strain used to transfer the cosmid to M. corallina NRRL 30420 mycelium by conjugation. 

Ex-conjugants were selected on V0.1 containing 50 μg/ml apramycin. These were 

typically sub-cultured in VSPA containing 25 μg/ml apramycin for 6 days at 30°C to 

promote double-crossover recombination events. Mycelium from this culture was cultured 

to obtained single colonies on V0.1 containing 50 μg/ml apramycin. Single colonies were 

assayed for growth on V0.1 containing 50 μg/ml kanamycin. Clones sensitive to 

kanamycin (indicating a double-crossover recombination event) were selected and sub-

cultured in VSPA containing 50 μg/ml apramycin for 6 days at 30°C from which mycelium 

was stored as a master cell bank at -80°C. A further sub-culture in VSPA containing 25 

μg/ml apramycin was grown at 30°C for 48 h for preparation of genomic DNA which was 

analyzed by PCR using the appropriate verification primer pair. The absence of the wild 

type gene was also confirmed using gene internal primers. The genotype of the clones 

was further confirmed by Southern hybridisation analysis.  

2.21 Complementation of Mutant Phenotypes 

Complementation of mutant phenotypes was carried out via the introduction of the deleted 

open-reading frame in trans with expression from the native promoter of the open-reading 

frame in question. The vector was pIJ10706, a variant of pSET152, which contains the 

hygromycin resistance marker and integrates at the ΦC31 integration site in M. corallina. 



Chapter 2  Materials and Methods 
 

128 
 

To complement the deletion of mibA, the region between mibX and mibA (PmibA) and the 

open-reading frame of mibA were amplified by high-fidelity PCR using primers LF078F 

and LF035_3. The resulting fragment was cloned into the BamHI site of pIJ10706 to 

create pIJ12138. The genes mibABCD were removed from the construct pIJ12125 

ΔmibTU::aac(3)IV by digestion with SpeI and XbaI yielding a 6155 bp product which was 

gel purified. This fragment was cloned into pIJ1239 (see below) cut with SpeI and XbaI to 

generate pIJ12362, in which PmibA is upstream of mibABCD as in the native gene cluster 

(due to cloning in the unique SpeI site in PmibA). 

To complement the other deletion mutants two vectors, pIJ12139 and pIJ12140, were 

generated based on pIJ10706, which was modified to contain either the intergenic region 

between mibX and mibA (PmibA; pIJ12139) or between mibV and mibE (PmibE; pIJ12140). 

These regions were amplified by high-fidelity PCR using primers LF078F and LF078R, 

and LF082F and LF082R, respectively. These primers were designed to allow introduction 

of the fragment into pIJ10706 using BamHI/XbaI or EcoRV/XbaI, respectively, as well as 

introducing a unique NdeI site. The respective open-reading frame and its cognate 

putative ribosome-binding site (GGAGG lying 9-12 bp upstream from the start codon 

(Kieser et al. 2000)) were amplified from pIJ12125 by high-fidelity PCR using the 

appropriate primer pair (Table 2.7). Primers were designed to allow the ORF to be cloned 

into the unique NdeI and XbaI sites in pIJ12139 and pIJ12140 such that they lay 

downstream of the respective promoter region. The inclusion of a stop codon in the region 

directly downstream of the ATG sequence of the NdeI site in each forward primer 

prevented the formation of spurious read-through proteins from this introduced start site. 

To complement the deletion of the mibX (which is in the opposite orientation compared to 

the rest of the gene cluster apart from mibW) two PCR products were amplified by high-

fidelity PCR using primers LF097F and LF097R or LF97F and LF102R. These fragments 

contain, respectively, the intergenic region between mibX and mibA (in the inverse 

orientation PmibX) followed by mibX alone or mibXW. The fragments were blunt-end cloned 

into the EcoRV site of pIJ10706 to generate pIJ12349 and pIJ12350, respectively.  

All constructs were confirmed by Sanger sequencing. The resulting constructs, along with 

the empty vector controls (promoter only), were mobilised into the respective mutant strain 

via conjugation from E. coli ET12567 pUZ8002 as described in section 2.17.2.  
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2.22 RNA methods 

2.22.1 Isolation of RNA from S. lividans 

S. lividans spores (109) were inoculated into 10 ml V medium in universal tubes containing 

baffles, with lids taped loosely for aeration, and were grown for 26 h at 30°C with shaking 

at 250 rpm. 1 ml culture was harvested, mixed with 2 ml  RNAprotect solution (Qiagen), 

vortexed for 5 s and allowed to stand for 5 min at room temperature.  Mycelium was 

collected by centrifugation at 3000 x g for 10 min and the supernatant removed. Mycelial 

pellets were stored at -80°C for up to 2 weeks before the extraction of RNA. 

Mycelial pellets were resuspended in 200 μl TE buffer containing 15 mg/ml lysozyme. 

Tubes were incubated at room temperature for 1 h. 700 µl of pre-cooled RLT buffer 

(containing 10 µl per ml β-mercaptoethanol; Qiagen) were added. Mycelium was 

sonicated on ice for 3 cycles of 5 s on and 5 s off at an amplitude of 5 microns. The 

resulting lysate was cleared by phenol chloroform-isoamylalcohol pH8 extraction. The 

aqueous phase was removed to a 2 ml tube and 700 μl chloroform added. The tube was 

vortexed to mix thoroughly and centrifuged at 16000 x g for 5 min. The aqueous phase 

was removed to an RNase-free 2 ml tube and 440 μl 100% ethanol added.  The solution 

was mixed well and was applied to an RNeasy mini column (Qiagen). The RNA was 

purified following the manufacturer‟s instructions and by performing an on-column DNaseI 

digestion. RNA was eluted from the column twice with 30 μl of RNase-free distilled water. 

RNA was stored at -80°C. 

2.22.2 Isolation of RNA from M. corallina 

M. corallina strains were grown in VSPA medium as pre-cultures for 48-72 h. Mycelial 

density was estimated by optical density at 450 nm and cultures were inoculated to a 

starting OD450 of 0.1-0.2. 2.5-5 ml culture were harvested at the appropriate time points 

and stored using RNAprotect solution (Qiagen) following the manufacturer‟s instructions.  

Mycelial pellets were resuspended in 10 mM Tris-HCl pH8.0. 250 µl of resuspended 

mycelium were added to 700 µl of pre-cooled RLT buffer (containing 10 µl per ml β- 

mercaptoethanol; Qiagen) in 2 ml tubes containing approximately 300 mg 0.1 mm 

diameter silica beads (Biospec Products Inc.). Mycelium was lysed in a FastPrep machine 

(Thermo Scientific) at speed 6.5 for 30 s. The resulting lysate was cleared by successive 

phenol chloroform-isoamylalcohol pH8 extractions. The cleared lysate was applied to an 

RNeasy mini column (Qiagen) and RNA purified following the manufacturer‟s instructions 
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and by performing an on-column DNaseI digestion. RNA was eluted from the column 

twice with 30 μl of RNase-free distilled water. RNA was stored at -80°C. 

2.22.3 DNase1 treatment of RNA 

To ensure RNA samples were free from genomic DNA contamination prior to RT-PCR 

approximately 10 µg purifed RNA were further treated with 20 U RNase-free DNaseI 

(Promega) in a volume of 100 μl at 37°C for 1 h. The RNA was re-purified using the 

RNeasy mini kit (Qiagen) and following manufacturer‟s instructions for RNA clean-up. To 

confirm the absence of DNA in RNA samples, standard PCR was carried out using 1 μl 

RNA as a template with Taq polymerase, the primers LF027F and LF027R, with 30 

cycles. 10 ng NRRL 30420 gDNA were used as a positive control. 

2.22.4 Confirming RNA quality 

2.22.4.1 Checking for DNA contamination 

To confirm the absence of DNA in RNA samples, standard PCR was carried out using 

150-300 ng RNA as a template with Taq polymerase, the primers LF027F and LF027R, 

with 30 cycles. 10 ng NRRL 30420gDNA were used as a positive control. 

2.22.4.2 Checking concentration and quality using Nanodrop 

The quantity and quality of RNA was initially determined using Nanodrop (Thermo 

scientific). For pure RNA a 260/280 ratio between 1.9 and 2.3 was expected and a 

260/230 ratio preferably greater than 1.8 (ideally greater than 260/280). 

2.22.4.3 Checking concentration and quality using agarose gel electrophoresis 

RNA was checked using a 1% TBE agarose gel prepared RNase-free and containing 2 

g/L sodium iodoacetate and 0.5 μg/ml ethidium bromide. Approximately 750 ng RNA were 

separated on the gel by electrophoresis. Typically 23S and 16S bands were visible and 

often 5S and aggregates. 

2.22.4.4 Checking concentration and quality using Bioanalyser 

The quantity and quality of RNA was determined using the Experion Bioanalyser (Bio-

Rad) following manufacturer‟s instructions. 
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2.22.5 One-step reverse transcriptase PCR 

One-step reverse transcriptase PCR was carried out using the One-step RT-PCR kit 

(Qiagen) following manufacturer‟s instructions and using primers as listed in Table 2.9. 

RNA samples were thawed on ice and 0.5 μg RNA was made up to 5 μl with RNase-free 

water. The following master mix was set-up: 

 

Component Volume (μl) 

5x one step RT-PCR buffer (Qiagen) 10 

Rnase-free dNTP mix (40 mM ; Qiagen) 2 

5xQ-solution (Qiagen) 10 

Primer A  (10 μM) 3 

Primer B  (10 μM) 3 

One-step RT-PCR Enzyme Mix (Qiagen) 2 

Rnase free H20 to 45 

 

45 μl master mix were aliquoted into each PCR tube (0.5 ml individual tubes; RNase-free; 

Thermo Scientific). 5 μl RNA template were added to the respective tubes. Each 50 μl 

reaction mixture was split into 2x25 μl in 0.5 ml tubes. Samples for reverse transcriptase 

treatment (RT samples) were placed into a PCR machine and incubated at 50ºC for 30 

min. Samples acting as controls for the presence of gDNA (No RT samples) were kept on 

ice until the PCR machine reached 95ºC (see below). 

 

50ºC      30 min  (Reverse Transcriptase) 

95ºC      15 min (Inactivation of RT enzyme and hot-start for polymerase) 

94ºC      1 min       

56ºC      1 min       

72ºC      1 min 

72ºC      10 min 

2.22.6 Two-step reverse transcriptase PCR 

1 μg RNA was converted to cDNA using Superscript III 1st strand synthesis Supermix 

(Invitrogen) following manufacturer‟s instructions. Reactions were carried out as follows: 

35 cycles 
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Component Volume (μl) 

2x Reaction Mix (Invitrogen) 10 

Superscript III 1st strand RT enzyme mix (Invitrogen) 2 

Template RNA (1 μg) x 

Rnase-free dH2O to 20 

 

25°C  10 min 

42°C  120 min 

50°C  30 min 

55°C  30 min 

85°C  5 min 

1 μl RNase H (Invitrogen) was added to each reaction with incubation at 37°C for 20 min. 

cDNA from the reverse transcriptase reaction was diluted 1 in 10 in H2O and was 

determined by nanodrop to contain approximately 60-70 ng cDNA per reaction. PCRs 

were carried out using the primers in Table 2.9 and following the protocol for standard 

PCR with Taq polymerase (section 2.6.1) using 30 cycles of amplification and annealing 

temperatures of 56°C or 58°C depending on the primer pair. The PCR products were 

checked by analysing 12.5 μl of the PCR on a 2% TBE agarose gel by electrophoresis. As 

an internal control, a homolog (91% nucleotide identity) of S. coelicolor hrdB was 

identified from the 454 contig database and used to design primers LF106F and LF106R 

(Table 2.9). 

 

2.23 Bacterial-2-hybrid analysis in E. coli  

2.23.1 Cloning strategy 

XP458 (pT25) contains a multiple-cloning site (MCS) preceded by a fragment of the gene 

cya encoding half of the catalytic domain (T25) of CyaA from Bordetella pertussis 

(Karimova et al. 1998). XP461 is XP458 containing the leucine zipper fragment. These 

vectors were obtained from Marij Frederix (John Innes Centre). The other half of the 

protein (T18) is encoded in pUT18 and is preceded by a MCS. pUT18C is similar to 
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pUT18 except that the MCS follows the cya gene allowing the formation of C-terminal 

rather than N-terminal fusion. These vectors were obtained from Richard Little (John 

Innes Centre). The leucine zipper fragment from XP461 was removed by KpnI digestion 

and was cloned into the KpnI site present in both pUT18 and pUT18C to generate positive 

control plasmids pUT18-zip and pUT18C-zip. 

mibX was amplified by high-fidelity PCR from pIJ12125 using the primers (Table 2.7) 

LF101F and LF101R (no stop codon included) and LF101F and LF101R2 (stop codon 

included), which introduce BamHI and KpnI sites into the resulting PCR products. The 

PCR products were gel purified and digested with BamHI and KpnI. The resulting inserts 

were ligated into pUT18 and pUT18C cut with BamHI and KpnI, respectively, to generate 

pIJ12367 and pIJ12368. mibW was amplified by high-fidelity PCR from pIJ12125 using 

three primer sets; LF102F and LF102R (full-length mibW), LF102F and LF103R (5‟ 219 nt 

of mibW) and LF103F and LF102R (3‟ 549 nt of mibW), which introduce BamHI and KpnI 

sites into the resulting PCR products. The PCR products were gel purified and digested 

with BamHI and KpnI. The resulting inserts were ligated into XP458 (pT25) cut with 

BamHI and KpnI to generate pIJ12369, pIJ12370 and pIJ12371 respectively. All 

constructs were confirmed by Sanger sequencing. 

2.23.2 Visualisation of phenotypes on MacConkey/Maltose agar 

E. coli BTH101 was streaked from a glycerol stock on LB agar containing 100 μg/ml 

streptomycin, 0.1 mM IPTG and 40 μg/ml X-gal and incubated overnight at 37°C. A white 

colony was selected and inoculated into 5 ml LB and grown overnight at 37°C. This 

culture was used to inoculate LB 1 in 50 and was grown for 3 h at 37°C until at an OD600 

of 0.4-0.6. Electrocompetent cells were made from this culture as described in 2.5.8. 50 μl 

aliquots of electrocompetent cells were transformed with 25 ng DNA of each of a pair of 

constructs for which an interaction was to be measured. In most cases the control 

interactions used were a positive control (leucine zipper containing plasmids) and 

negative controls (empty vector plasmids with each test plasmid and with each other). 100 

μl and 900 μl of each transformation reaction were plated out on MacConkey/Maltose 

medium containing 0.5 mM IPTG, 25 μg/ml chloramphenicol and 100 μg/ml carbenicillin. 

Plates were incubated at 30°C for several days until the colour of colonies had developed 

fully. 

2.23.3 Quantification of interactions using β-galactosidase assay 

The quantification of β-galactosidase activity was carried out as described in (Slavny et al. 

2010). Two clones from each interaction plate were selected and inoculated into 5 ml LB 
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containing 25 μg/ml chloramphenicol and 100 μg/ml carbenicillin and were grown at 30°C 

for 9 h. 100 μl of these cultures were inoculated into 7 ml LB containing 0.5 mM IPTG, 1% 

glucose, 25 μg/ml chloramphenicol and 100 μg/ml carbenicillin in plastic Universals (7 ml 

total volume). These were grown for 16 h at 30°C and then placed on ice. To each 

reaction test tube was added 970 μl lysis buffer followed by 30 μl of the appropriate 

overnight culture. 20 μl chloroform were added to each tube and the tubes vortexed for 10 

s to mix. Tubes were incubated at 30°C for 10 min until the solution was clear. The OD600 

of the overnight cultures was measured by transferring 300 μl of each culture to each well 

of a 96-well microtiter plate with 300 μl LB as a blank. The OD600 measurement was 

carried out using a PowerWave 340 plate reader (BioTek). The test tubes were kept at 

30°C and 200 μl 4 mg/ml O-Nitrophenyl β–D-Galactopuyranoside added to the first tube 

and the time was recorded. When a yellow colour appeared 500 μl of 1 M Na2CO3 was 

added and the time recorded. The tube was placed on ice and the total reaction time 

calculated. This was repeated for all samples. 300 μl of each sample were transferred to 

each well of a 96-well microtiter plate and the OD420 and OD550 measured for each using 

200 μl lysis buffer and 100 μl Na2CO3 as a blank. The measurements were carried out 

using a PowerWave 340 plate reader (BioTek). 

 The β-galactosidase activity (in Miller Units) of each sample was calculated as: 

 

=      1000 x f                                     where  f = OD420- (1.75 x OD550) 

      t x V x OD600                                                           t = total reaction time (min) 

                                                                     v = the volume of culture added (0.03 ml) 

 

The average activity was calculated from the two clones of each strain and the value for 

each clone used to generate error bars. 

2.24 Luciferase assays 

The intergenic region between mibX and mibA, with and without the mibX open-reading 

frame, was amplified by PCR using upstream primers carrying an EcoRI site and 

downstream primers carrying a BamHI site in two orientations (see Figure 7.37) The 

primers used were LF096F and LF096R (pIJ12341), LF096F2 and LF096R (pIJ12342), 

LF097F and LF097R (pIJ12343) and LF097F and LF097R2 (pIJ12344) (Table 2.7). The 
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resulting PCR fragments were cloned into EcoRI-BamHI-cut pIJ5972, an integrative, 

Streptomyces promoter-probe plasmid based on TTA codon-free derivatives of the luxAB 

reporter genes (Le et al. 2009). The resulting constructs along with pIJ5972 were 

transferred by conjugation into S. coelicolor M1146 (Gomez-Escribano et al. 2010). 

Plasmid-containing strains were grown on Difco Nutrient Agar in single wells of a 25-well 

plate (10 cmx10 cm; Sterilin) for 2 days. Each well was inoculated with approximately 

5 × 106 spores. Plates were exposed to filter paper impregnated with n-decanal for 5 min 

and luciferase activities were observed using a NightOwl camera (Berthold) equipped with 

WinLight software (Berthold) using a 1 min exposure time.  
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Chapter 3 - Identification and 
Sequence Determination of the 

Microbisporicin Biosynthetic Gene 
Cluster 

3.1 Introduction 

 

The initial aim of the project was the identification and characterisation of the 

microbisporicin gene cluster from the producer strain Microbispora corallina NRRL 30420. 

As a prelude to the identification of the gene cluster for microbisporicin production, this 

chapter will also describe our attempts to characterise the available strains of M. corallina.  

As mentioned in chapter 1 the species Microbispora corallina (Nakajima et al. 1999) is 

currently represented by four strains: DSM 44681 (DF-28; JCM 10266), DSM 44682 (DF-

32T; JCM 10267) (Nakajima et al. 1999), NRRL 30420 (Lee 2003) and ATCC PTA 5024 

(Lazzarini et al. 2005). Strains DSM 44681 (DF-28) and DSM 44682 (DF-32T) were the 

first described members of this unusual species and were isolated from a deciduous 

dipterocarp forest in Thailand (Nakajima et al. 1999). To date no anti-bacterial activities or 

lantibiotic-like compounds have been described for these two strains. NRRL 30420 was 

isolated from the soil roots of Arachis hipogea (Peanut plant) in Indonesia and reported to 

make the compounds MF-BA-1768α1 and MF-BA-1768β1  (Lee 2003). The location of the 

isolation of ATCC PTA 5024 is not clear but it was reported to make compounds 107891 

A1 and A2 (Lazzarini et al. 2005). These compounds were asserted to be of different 

molecular origin to MF-BA-1768α1 and MF-BA-1768β1  based on physico-chemical 

properties (Lazzarini et al. 2005). One aim for the initial characterisation of NRRL 30420 

was to determine whether this assertion was correct and whether two different lantibiotics 

(resulting from two separate biosynthetic gene clusters) are produced by the two M. 

corallina strains.  

NRRL 30420 and ATCC PTA 5024 were identified as M. corallina species on the basis of 

16s DNA sequence similarity to DSM 44681 (DF-28) and DSM 44682 (DF-32T). The 

strains NRRL 30420, DSM 44681 and DSM 44682 were acquired from the respective 

culture collections. ATCC PTA 5024 was unavailable for this work and thus any 
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comparisons made with this strain are based on the details provided by (Lazzarini et al. 

2005). 

A number of methods have been conventionally applied to the identification of biosynthetic 

gene clusters in actinomycetes, however they can often be time-consuming or carry other 

disadvantages. For example, a mutant of a producer strain blocked in the production of 

the compound, with the assumption that the mutation lies within the biosynthetic gene 

cluster of interest, can be used to screen for complementing fragments of the wild type 

genome allowing the identification of biosynthetic genes within the cluster (Rhodes et al. 

1981). However, this approach relies on the availability of such a mutant and requires that 

methods have been established for genetically manipulating the strain of interest. This 

was not the case for M. corallina in which no such mutant was available and for which 

there were no methods for genetic manipulation of the strain. Other approaches, such as 

cloning linked resistance genes or directly cloning the biosynthetic gene cluster, require a 

suitable heterologous expression host and assume that the genes will be appropriately 

expressed in this host. They require large-scale screening and an appropriate screen for 

resistance or bioactivity, respectively. Furthermore, this method assumes that the 

resistance genes will be closely linked to the biosynthetic genes, which is not always the 

case (Birmingham et al. 1986). Another approach is to generate a cosmid or BAC library 

which is then screened using a degenerate probe (Zhao et al. 2006). This relies on having 

sufficient information about the gene cluster as well as about the codon usage of the 

organism. Since M. corallina is a rare actinomycete which has not previously been studied 

in any molecular detail, and microbisporicin is the first example of a type AI lantibiotic from 

an actinomycete, it would not be easy to design such degenerate probes with any degree 

of confidence. Furthermore, degenerate probes can often give non-specific or negative 

results, as was the case in the detection of the cypemycin lantibiotic gene cluster (Jan 

Claesen, personal communication). These conventional methods, although useful under 

certain circumstances, were not well-suited to identifying the microbisporicin gene cluster 

from M. corallina and so a novel method of genome scanning was applied which will be 

described in this chapter. Briefly, this involves using new rapid genome sequencing 

technologies such as Solexa (Illumina) and 454 (Roche) to identify genes likely to be part 

of the biosynthetic gene cluster. This information can then be used to design specific 

probes to identify cosmids containing the gene cluster from a cosmid library. Both Solexa 

and 454 sequencing technologies were available at the John Innes Centre (JIC) at the 

outset of this study and consequently both methods were used for the identification of the 

microbisporicin gene cluster to compare the usefulness of the two sequencing 

technologies for genome scanning in actinomycetes. 
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3.2 M. corallina 

3.2.1 Description of growth 

Microbispora corallina NRRL 30420 was found to grow as bald mycelium with a 

red/orange/brown colouring on the standard agar growth medium selected for this work; 

medium V0.1 (Marcone et al. 2010b) (Figure 3.1B). The production of white/pink aerial 

mycelium was occasionally observed after very long periods of incubation (10-14 days) on 

V0.1 but was often observed when NRRL 30420 was grown on oatbran agar medium 

(Figure 3.1A). Microbispora corallina DSM 44681 and DSM 44682 were also found to 

grow as mainly bald mycelium on V0.1 but aerial mycelium formation was more routinely 

observed. As described in 3.2.2, these strains were found to produce pairs of spores on 

aerial mycelium when grown on oatbran agar medium. All of the M. corallina strains grew 

slowly on agar media, taking 7-14 days to produce workable colonies (1-3mm diameter).  

 

 

 

Figure 3.1 Growth of M. corallina NRRL 30420 on different media. A; oatbran agar 

medium, B; V0.1 agar medium, C;  VSPA liquid medium with four glass beads and 

shaking at 230rpm.  All cultures were grown at 30oC. 
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An analysis of the growth rate of M. corallina NRRL 30420 in liquid culture was carried out 

by measuring the optical density of the culture at 450nm. In the standard VSPA liquid 

medium used for this study, M. corallina NRRL 30420 grew in a dispersed manner when 

cultured in the presence of glass beads (Figure 3.1C). M. corallina NRRL 30420 entered 

exponential growth phase after approximately 8-12 hours. Exponential growth continued 

for up to about 72 hours post-inoculation (about 60 hours in total) (Figure 3.2). 

Microbisporicin production was assayed at each time point by bioassay of culture 

supernatant against Micrococcus luteus. Under the conditions used, production of 

microbisporicin was first detected 46-48 hours post-inoculation and appeared to peak at 

the entrance to stationary phase at 72 hours post-inoculation (Figure 3.2). Bioactivity was 

still detectable 14 days post-inoculation (the latest time point sampled) suggesting that 

microbisporicin is stable in the culture supernatant after a prolonged period in stationary 

phase. 

 

 

Figure 3.2 Analysis of growth rate and microbisporicin production in M. corallina NRRL 

30420 grown in VSPA with four glass beads. The growth curve shows the average optical 

density measured at 450nm of three independent cultures for each time point shown. 

Error bars indicate the variability between cultures. Inlaid are typical images of bioassays 

against M. luteus using supernatants collected at the respective time points. 
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3.2.2 Scanning Electron Microscopy 

Scanning electron microscopy was carried out (by Kim Findlay, JIC) to investigate the 

colony structure and sporulation state of each strain. In the case of NRRL 30420, aerial 

hyphae were found and in a few instances potential immature spores were identified (on 

oatbran medium); however mature spores were not found for this strain under the 

conditions used (Figure 3.3 C&D). Pairs of spores attached to aerial hyphae were found 

for DSM 44681 and DSM 44682 grown on oatbran medium (Figure 3.3 A&B).  

 

 

 

Figure 3.3 Example images from scanning electron microscopic analysis of M. corallina 

strains grown on oatbran medium. Scale is given in the bottom left corner of each image. 

A; DSM 44682 colony at 6K x magnification showing spores and aerial hyphae; B; DSM 

44682 colony at 1.43K x magnification showing spores and aerial hyphae; C; NRRL 

30420 colony at 4.4K x magnification showing aerial hyphae; D; NRRL 30420 colony at 

5.3K x magnification with a possible immature spore at the centre of the image. Scanning 

electron microscopy carried out by Kim Findlay (JIC). 
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3.2.3 Production conditions for microbisporicin and description of 

MALDI-ToF mass spectrometry results 

 

Production of a bioactive compound by M. corallina NRRL 30420 could be detected when 

the strain was grown on solid or in liquid media. M. corallina NRRL 30420 grown on V0.1 

for 5 days was overlaid with the target organism M. luteus in soft nutrient agar and the 

plates incubated at 30°C over-night. Large zones of inhibition of growth of M. luteus were 

clearly observed around the growing producer organism (Figure 3.4). When the producing 

organism was grown for 6 days or more, growth of the target organism was completely 

absent from bioassay plates indicating the potency of this compound for Gram-positive 

organisms (data not shown). By contrast, neither M. corallina DSM 44681 or DSM 44682 

were capable of producing a bioactive compound that could inhibit the growth of M. luteus 

under the same conditions and even when strains were grown for up to 14 days before 

applying the target organism (Figure 3.5).  

 

 Figure 3.4 M. corallina NRRL 30420 was tested 

for production of antibacterial compounds in a plate 

bioassay against the target organism M. luteus. M. 

corallina was grown for 5 days on V0.1 medium, 

followed by overlay with M. luteus in soft nutrent 

agar. The plate was incubated overnight at 30°C. 

 

 

 

 

 

Production of a bioactive compound by NRRL 30420 was also assayed in the liquid 

growth medium VSPA by sampling the supernatant after 7 days fermentation and applying 

it to an antibiotic assay disc placed on a lawn of M. luteus (Figure 3.6 inset). The 

supernatant was subjected to MALDI-ToF mass spectrometry in the range of 0-4000 Da to 

identify compounds that could be responsible for the bioactivity (MALDI-TOF carried out 

by Dr. Gerhard Saalbach and Dr. Mike Naldrett (JIC proteomics)) (Figure 3.6). 
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Figure 3.5 DSM 44681 (A 

& B) and DSM 44682 (C & 

D) were tested for 

production of antibacterial 

compounds in a plate 

bioassay against the target 

organism M. luteus. The 

M. corallina strains were 

grown for 11 (A&C) or 14 

(B&D) days on V0.1 

medium, followed by an 

overlay with M. luteus in 

soft nutrent agar. The 

plates were incubated 

overnight at 30°C. 

 

The reported masses for the four reported lantibiotic-like compounds produced by M. 

corallina strains (hereafter collectively called microbisporicin) are 2180.81 Da (MF-BA-

1768β1), 2214.880 Da (MF-BA-1768α1) (Lee 2003), 2230.71 Da (107891 A2) and 2246.71 

Da (107891 A1) (Lazzarini et al. 2005; Castiglione et al. 2008) (Table 3.1). As discussed 

in Chapter 1 the known structures of 107891 A1 and A2 (Lazzarini et al. 2005; Castiglione 

et al. 2008) and the mass differences between these compounds and MF-BA-1768α1 and 

MF-BA-1768β1 led us to the hypothesis that MF-BA-1768α1 represents a non-hydroxylated 

form of microbisporicin while MF-BA-1768β1 represents a non-hydroxylated and non-

chlorinated form (Figure 1.17). Since all four masses have been described previously as 

being produced by closely related (over 97% 16s rDNA identity) M. corallina strains (Lee 

2003; Lazzarini et al. 2005), we hypothesise that microbisporicin results from a single 

prepropeptide produced by a single biosynthetic gene cluster (which is highly similar in 

both M. corallina producer strains) and that the composition of the microbisporicin 

complex varies with the culture conditions used. This is contrary to the previous assertion 

that NRRL 30420 and ATCC-PTA-5024 are responsible for producing two separate 

lantibiotics (Lazzarini et al. 2005).  

A number of compounds with masses in the region of 2215 to 2300 were detected in the 

supernatant of NRRL 30420 grown for 7 days in VSPA liquid medium that were not 

identified in a medium only control (Figure 3.6). Samples for MALDI-ToF mass 
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spectrometry were acidified prior to application on the matrix-containing plate such that in 

all cases the ions identified represent the protonated form of the compound (i.e. [M+H+]). 

However it is also common to see the sodium or potassium adducts of the compound, 

which are 23 and 39 Da heavier than the expected molecular weight of the compound, 

respectively. The observed spectrum consists of multiple peaks, the m/z ions of which can 

be attributed to the protonated and sodium/potassium adducts of MF-BA-17681α1, 107891 

A1 and A2 (Table 3.1 and Figure 3.6). However, several larger ions were also detected 

with incremental mass increases of 16 Da that are likely caused by oxidation of the 

lanthionine bridges in microbisporicin (Wilson-Stanford et al. 2009). This has previously 

been observed for MALDI-ToF spectra of the lantibiotic actagardine (Robert Bell, personal 

communication). The mass change associated with hydroxylation of proline to convert 

MF-BA-17681α1 into 107891 A2 and then A1 is the same as that due to the oxidation of 

the lanthionine bridges and thus it is not possible to be sure, using this technique, that 

107891 A2 and A1 are actually produced under these fermentation conditions. The only 

one of the four previously reported variants that was not detected at all under these 

conditions was MF-BA-1768β1 (Figure 3.6). MF-BA-1768β1 is expected to be the non-

chlorinated form of microbisporicin, suggesting that only the fully chlorinated form of the 

compound is produced under the culture conditions used in these experiments. 
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3.3 Solexa Sequence data 

 

In total seven lanes of Solexa sequence data were acquired from gDNA prepared from M. 

corallina NRRL 30420. The generation of the Solexa sequence data used in this study 

(1G Genome Analyser, Illumina) was based on read lengths of 36 nucleotides which were 

assembled using Velvet (Zerbino et al. 2008). The sequence was assembled by Dr. David 

Studholme (The Sainsbury Laboratory) as three separate batches of contigs (3/9/07, 

6/9/07 and 2/11/07) using different amounts of data and parameters, which altered the 

length of the contigs and the quality of the sequence (Figure 3.7). The contigs generated 

for M. corallina gDNA were on average quite small (204 nucleotides) which suggests that 

the bioinformatic software may have had difficulties in assembling high GC content 

sequence. This is also reflected in the overall GC content of the assembled data, which is 

only 67.82 mol%GC, significantly less than the overall GC content of individual reads (72 

mol%GC). Despite the small contig sizes in this data set it was possible to use the data to 

search for the microbisporicin biosynthetic gene cluster. 

 

Figure 3.7 Summary of 6/9/07 Solexa data assembly. The left panel shows a histogram of 

the GC content for the assembled contigs giving a mean GC content of 67.82%. The right 

panel gives summary statistics for the data assembly including the total number of 

assembled contigs and information about contig lengths. 

 

  

•14395 contigs 

•mean length 204nt

•median length 163nt.

•longest single contig is 4436nt

•The G+C content ~67.82%

• Sum of contig lengths 2.93Mb

G+C content
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3.3.1 Solexa Sequence BLAST Results 

 

The assembled contigs for the three separate data sets were used to construct a 

database that could be interrogated for homologs of known lantibiotic biosynthetic genes 

using an NCBI-type BLAST algorithm (Altschul et al. 1990) with either a nucleotide 

(BlastN) or amino acid (tBlastN) input (databases constructed by Dr. Govind Chandra 

(JIC)). Targets for BLAST searches were selected from lantibiotic biosynthetic genes from 

known clusters in other bacteria, such as homologs in Streptomyces coelicolor (SCO6929; 

uncharacterised lanC homolog) or genes from well-studied clusters such as the subtilin 

biosynthetic gene cluster from Bacillus subtilis. Based on structural similarities, 

microbisporicin was predicted to fall into the type A(I) lantibiotic family (Lee 2003; 

Lazzarini et al. 2005; Castiglione et al. 2008) that possess LanB and LanC enzymes for 

lanthionine bridge formation (Chatterjee et al. 2005). LanB and LanC enzymes are 

reasonably well conserved between type A(I) clusters (typically around 30% amino acid 

sequence identity) (Chatterjee et al. 2005) making them appropriate search inputs for 

identifying lantibiotic gene clusters. Furthermore, microbisporicin contains the S-[(Z)-2-

aminovinyl]-D-cysteine modification known in other lantibiotics to be catalysed by a 

flavoprotein LanD enzyme (Kupke et al. 1992; Majer et al. 2002). These enzymes are 

well-conserved in the epidermin and mersacidin gene clusters in which they have been 

characterised (Chatterjee et al. 2005). Finally, the incorporation of chlorine at tryptophan-4 

in microbisporicin suggests the involvement of a member of the FAD-dependent 

tryptophan halogenase class of enzymes typified by PrnA (Pseudomonas fluorescens) 

(Keller et al. 2000) and PyrH (Streptomyces rugosporus) (Zehner et al. 2005). Due to the 

infrequent occurrence of such enzymes in bacterial genomes (all identified members of 

this class are associated with secondary metabolite synthesis (van Pee et al. 2006)), they 

are also good targets for BLAST searches. Other components of characterised lantibiotic 

gene clusters, such as ABC transporters and regulatory proteins, are not optimal for 

BLAST searches since they show high levels of homology to other members of these 

families that are not associated with lantibiotic gene clusters and that are abundant in 

bacterial genomes. 

Through analysis of the three data sets, a number of contigs were identified containing 

homologs of the target genes and proteins discussed above. Two contigs showed 

overlapping sequence and were manually assembled. The identified genes were 

homologs of lanC ((contig_12864 3/9/07) and (contig_3259 6/9/07)), lanB (contig_9864 

6/9/07) and lanD (contig_9897 6/9/07) genes (Figure 3.9). Two contigs were identified 
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with homology to the tryptophan halogenase PyrH ((contig_4619 6/9/07) and (contig_5675 

6/6/07)). Using the expected unmodified sequence for the precursor peptide of 

microbisporicin (VTSWSLCTPGCTSPGGGSNCSFCC; inferred from the final modified 

structure (Lazzarini et al. 2005; Castiglione et al. 2008) as a BLAST search input did not 

yield any contigs potentially containing the prepropeptide encoding gene mibA. 

 

3.3.2 Southern Blot Linkage Analysis 

 

Due to the small size of the identified contigs it was not possible with this information 

alone to confidently conclude that the identified open-reading frames were genetically-

linked and therefore likely to be part of a gene cluster. To determine whether this might be 

the case, Southern blot hybrisation analysis was carried out. NRRL 30420 gDNA was 

digested with the restriction enzymes BamHI, PstI and BglII, and subjected to Southern 

blot hybridisation using probes LF001 (contig_12864 3/9/07), LF002 (contig_3259 6/9/07), 

LF004 (contig_9897 6/9/07) and LF006 (contig_5675 6/6/07) generated by PCR 

amplification from an M. corallina gDNA template (using the primer pairs of the same 

numbers; see Figures 3.9 and 3.12 for primer binding sites and Chapter 2 for 

oligonucleotide sequences). Linkage with the homolog of lanB (contig_9864 6/9/0) was 

not examined as the available contig sequence was too short to amplify a specific probe. 

Primers LF005F and LF005R designed from the sequence of one contig ((contig_4619 

6/9/07) containing a gene putatively encoding a tryptophan halogenase homolog failed to 

amplify a product by PCR using NRRL 30420 gDNA as a template; this was later found to 

be due to contig misassembly (see 3.4.1).  

The Southern blot hybridisation analysis indicated a close genetic linkage between the 

two lanC contigs and the lanD contig but not with the tryptophan halogenase homolog 

(Figure 3.8). The two lanC probes (LF001 and LF002) and the lanD probe (LF004) all 

hybridised to BamHI fragments of apparently the same size, suggesting that the genes 

were genetically linked and thus likely to be part of a lantibiotic gene cluster. Similarly, the 

3‟ lanC probe (LF002) and the lanD probe (LF004) both hybridised to PstI fragments of 

similar size, again suggesting that that may be physically linked.  However the 5‟ part of 

lanC appears on a different PstI fragment (explained by a PstI site within contig_12864, 3‟ 

of the binding site for probe LF001).  
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Figure 3.8 Southern blot hybridisation to identify linkage between Solexa contigs. NRRL 

30420 gDNA was separately digested with the restriction enzymes BamHI, PstI and BglII 

as indicated on the top row and the resulting fragments separated on a 1% agarose gel. 

DNA was transferred to a nylon membrane by Southern transfer and each blot was 

probed with a different DIG-labelled PCR product probe, as indicated at the bottom of 

each blot; LF001 and LF002 are probes from each of the two lanC contigs, LF004 is from 

the lanD contig and LF006 from the tryptophan halogenase contig. The molecular weights 

of the size markers (Invitrogen 1kb ladder) are given on the far left. Bands believed to be 

shared between probes are indicated by a white line.  
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3.3.3 Details inferred from linking PCRs 

 

Since a genetic linkage between lanC and lanD was suggested by Southern blot 

hybridisation, a PCR linkage strategy was attempted in which pairs of primers 

complementary to the ends of each identified contig were designed and used to “link” the 

contigs by PCR. Where PCR products were detected, these products were extracted, 

purified and submitted for Sanger sequencing (JIC Genome Centre Sequencing Service) 

to confirm their origin and determine any intermediate sequence. This method not only 

yielded useful information about gene orientation and linkage, it also unexpectedly yielded 

a new gene homolog downstream of lanD due to non-specific binding of one primer 

(LF001R). This new (but incomplete) open reading frame had homology to lanT genes in 

other clusters, particularly cinT from the cinnamycin gene cluster. LanT proteins are 

usually involved in lantibiotic transport across the cell membrane of the producing 

organism. The identification of further lanB sequence was aided by an additional contig 

found to lie within this gene (contig_1562 2/11/07; 220bp) (Figure 3.9). The two contigs 

were linked to the rest of the cluster by PCR (Figure 3.9) although the lanB open-reading 

frame remained incomplete at the N-terminus.  The complete assembly spanned 

approximately 4.9kb (Figure 3.9). 
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Figure 3.9 The lantibiotic gene cluster as determined from Solexa data by a combination 

of BLAST searches, manual assembly and linking PCR. Purple arrows indicate potential 

open-reading frames for genes in the cluster. Solexa contigs with homology to known 

lantibiotic genes are shown as green lines with their sizes indicated. Bridging PCR 

products are shown in red with sizes. The positions of the primers (LF00xX) used for the 

linking PCR reactions are given above the assembly. The 1000bp product was created by 

the fortuitous non-specific binding of one primer (LF001R) within lanT.  
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3.4 454 sequencing 

 

M. corallina NRRL 30420 gDNA was also subjected to one quarter of a run of 454 

sequencing (Cogenics/Roche) (Figure 3.10). This allowed a comparison to be made 

between the two rapid sequencing methods with respect to an actinomycete genome. 454 

sequencing utilises longer read lengths (200-400bp) than Solexa, making the process of 

contig assembly more reliable. In particular it was noted that 454 sequencing gave larger 

contigs overall (average 1117bp) compared to Solexa (Figure 3.10). This yielded some 

very important findings about the microbisporicin cluster as described below.   

 

 

 

 

 

 

Figure 3.10 Summary of data assembly from one quarter run of 454 sequencing with M. 

corallina NRRL 30420 gDNA (large contigs  (>500 bp) only). 

 

3.4.1 454 Sequence BLAST Results 

 

As with the  Solexa data sets, the assembled 454 contigs were used to construct a 

database that could be interrogated for homologs of known lantibiotic biosynthetic genes 

using an NCBI-type BLAST algorithm (Altschul et al. 1990) with either a nucleotide 

(BlastN) or amino acid (tBlastN) input (databases constructed by Dr. Govind Chandra 

(JIC)). Initially the 454 sequence data were used to confirm what had already been 

deduced about the microbisporicin cluster. The 454 data was however also able to extend 

the known data, for example the known sequence for lanT was extended by ~200bp. A 

number of new open reading frames were identified with homology to lantibiotic genes 

including lanA, lanE and lanF.  

The inferred prepeptide sequence of MibA (VTSWSLCTPGCTSPGGGSNCSFCC; 

inferred from the final modified structure (Lazzarini et al. 2005; Castiglione et al. 2008) 

Number of Contigs   = 3027 

Number of Bases     = 3383376 

Average Contig Size = 1117 bp  

Largest Contig Size = 8913 bp  

Average mol% GC = 70 % 
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was used as a tBLASTN input, identifying a contig (contig01839) that contained an 

identical sequence when translated in silico. The complete mibA open-reading frame was 

determined from this contig sequence. The start of a possible open reading frame was 

found downstream of lanA but insufficient sequence was available to determine its identity 

with confidence although lanB was a likely candidate. PCR was carried out to show that a 

primer designed within the lanA gene (LF011F) could be linked to a primer lying within the 

previously identified lanB gene (from Solexa data) (LF003R), giving a product of 

approximately 1500bp (Figure 3.11).  

Upstream of mibA, an ECF sigma factor encoding gene was found in the opposite 

orientation, which may or may not be part of the biosynthetic cluster (Figure 3.11). 

However it was interesting to note that a conserved ECF sigma factor gene was found 

upstream of and in the same orientation as lanA in the putative Planomonospora 

lantibiotic biosynthetic gene cluster (Andrew Hesketh, personal communication) and so 

could have significance. Additionally sigma factor H is a known regulator of subtilin 

biosynthesis in B. subtilis (Stein et al. 2002).  

 

 

Figure 3.11 The genetic context of mibA revealed by the sequence of contig_01839. A 

gene encoding an ECF sigma factor family member (ECF σ) lies upstream and in an 

inverted orientation. lanB (mibB) was thought to lie downstream of mibA and the two 

sequences were linked by PCR amplification using the primers shown, giving a 1500 bp 

product.  

 

Contigs were found in the 454 data that extended the tryptophan halogenase gene 

sequence identified in the Solexa data. The data provided the complete open reading 

frame for this gene and also indicated that the earlier identified second contig (4619 

6/9/07), which could not be amplified by PCR, was caused by an assembly error in the 

Solexa data. The contig (contig00667) containing the 5‟ part of the tryptophan halogenase 

gene (lanH) contained other open reading frames, the sequences of which were homologs 

of lanE and lanF type genes in other lantibiotic clusters (Figure 3.12). The entire open 

reading frames of these genes appear to be present. LanE and LanF proteins are involved 
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in producer self-immunity to the lantibiotic in other systems by acting as membrane 

transport complexes, usually with a LanG component, although this was not found in this 

data. lanE (LF012R) was linked by PCR to lanD (LF004F), identified in the Solexa data, 

generating a PCR product of approximately 3500-4000bp and suggesting that the two 

potential cluster sequences might be genetically linked in the genome, however the 

identity of this product was not confirmed by sequencing (Figure 3.12).  

 

A further open reading frame was identified in contig_07347 that appears to contain the 3‟ 

end of lanH and downstream sequence including an incomplete open-reading frame to 

which the halogenase gene appears to be translationally coupled (Figure 3.12). The 

product of this gene (lanS) shares homology with flavin reductase proteins. 

 

 

Figure 3.12 A; Organisation of lanE, lanF, lanH and lanS in the putative microbisporicin 

gene cluster and primers used for linking PCR reactions (arrows). The Solexa 

contig_5675 with homology to tryptophan halogenase genes is shown as a green line with 

its size indicated. 454 contigs (contig_00667 (1718bp) and contig_07347 (1116bp)) are 

shown in blue with their sizes. B; Frameplot (Bibb et al., 1984; Ishikawa and Hotta, 1999) 

of the assembled contig sequences, showing the presence of the open reading frames 

illustrated above.                     
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3.5 Cosmid Library Preparation  

A cosmid library was generated using genomic DNA from M. corallina NRRL 30420. As 

described in chapter 2, an unconventional approach was taken in the construction of the 

cosmid library. Problems in purification of high molecular weight genomic DNA from M. 

corallina, likely due to the lengthy cell wall digestion steps found to be required for lysis of 

M. corallina, resulted in partial Sau3AI digests yielding fragments that were too small for 

cosmid library construction. Therefore an alternative mechanism for preparing gDNA 

fragments of the correct size was designed as described in detail in the following sections. 

 

3.5.1 gDNA preparation to yield approximately 40kb fragments 

gDNA was purified from M. corallina NRRL 30420 as described in chapter 2 and sized by 

pulsed field gel electrophoresis; the maximum size was estimated to be about 120kb 

(Figure 3.13a). To create a cosmid library using the SuperCosI vector (Stratagene), 

Sau3AI digests of this DNA were carried out. However, even at enzyme concentrations of 

0.005U/μg gDNA, the DNA was digested to sizes smaller than the required 32-50kb 

optimal for phage packaging (data not shown). Instead, an alternative approach was 

initiated. This involved the use of Hydroshear (Genomic Solutions) to fragment the gDNA 

via mechanical shearing. Optimisation of shearing speed and number of shearing cycles 

resulted in DNA within the size range useful for cosmid library generation (Figure 3.13b).  

Mechanical shearing of DNA can result in staggered broken ends and the removal of 5‟ 

phosphate groups. To improve the efficiency of subsequent blunt-end ligation, the DNA 

ends were filled-in using T4 polymerase and 5‟ phosphates reintroduced with T4 

polynucleotide kinase (Figure 3.14).  
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Figure 3.13 NRRL 30420 gDNA sized by pulsed-field gel electrophoresis A; 200, 500 and 

1000 ng of NRRL 30420 gDNA run on a 1% agarose gel at 6 V with initial switch 1s and 

final switch 25 s for 18 h at 14ºC. B; 1 μg gDNA digested at each of the different 

hydroshear settings is shown. 5 cycles at a speed code of 40 appears to give DNA 

fragments within the correct size range (30-60 kb). The PFGE mid-range marker (NEB; in 

kb) was used to size the gDNA on both gels.  
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3.5.2 Cosmid library generation  

The cosmid library was generated as described in Chapter 2. The Supercos1 vector was 

prepared for blunt-end ligation by first linearising with XbaI (a requirement for phage 

packaging) and the ends dephosphorylated (to prevent non-productive ligation of the two 

subsequent vector fragments and recircularisation of the vector); finally the vector was 

digested with the blunt-end cutter ZraI to yield two fragments (Figure 3.14). These 

fragments were ligated to the blunt-ended M. corallina gDNA. The resulting product was 

packaged into phage lambda heads and introduced into E. coli XL1 Blue by transfection. 

The final library consisted of 3072 clones of E. coli each carrying a cosmid with an insert 

size of 35-50 kb giving an estimated genome coverage of 20-30 fold (assuming a genome 

size of 5 Mb, estimated from the total unique sequence from Solexa and 454 sequence 

reads). The cosmid library was transferred to a nylon membrane with each cosmid spotted 

twice in a characteristic duplex pattern. 
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Figure 13.14 Strategy for cosmid library generation. A; The method designed to prepare 

the SuperCosI vector for blunt-ended cloning. The vector was first linearised with XbaI 

and the cleaved ends dephosphorylated with calf intestinal alkaline phosphatase (CIAP). 

The linear vector was treated with the blunt-end cutter ZraI to yield fragments of 6695bp 

and 1245bp with a phage cos1 site in each fragment (green boxes). 

B; 20μg of NRRL 30420 genomic DNA was hydrosheared at a speed code of 40 for 5 

cycles to yield mechanically sheared DNA. 10 μg was treated with T4 polymerase and T4 

polynucleotide kinase (PNK). 2.5 μg was ligated to 1 μg of the SuperCosI vector prepared 

as described in A. 4 μl of each ligation was packaged into λ-phage heads using the 

Gigapack III Gold packaging extract (Stratagene). To titre the cosmid library, 1 μl of phage 

was introduced into E. coli XL1 Blue MR cells by transfection with selection on 

carbenicillin (100 μg/ml). The number of resulting colonies and the estimated total number 

of packaged phage in the extract (assuming 100% transfection efficiency) is given.  
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3.5.3 Probe preparation and cosmid library probing 

 

Using one of the larger contigs identified by genome scanning and verified in both the 

Solexa and 454 data sets, the primers LF001F and LF004R were designed to amplify an 

approximately 1250bp probe from the lanC-lanD region using M. corallina gDNA as a 

template. The resulting PCR product was randomly labelled with 32P-αdCTP. This probe 

was hybridised to the M. corallina cosmid library and hybridisation visualised as described 

in Chapter 2. This resulted in the observation of six clear double-spots (Figure 3.15). 

Double-spot hybridisation (i.e. probe bound to the same cosmid in both copies of the 

library) was indicative of specific hybridisation, rather than a membrane or hybridisation 

artefact.  

 

 

 

 

 

Figure 3.15 M. corallina NRRL 30420 double-spotted cosmid library hybridised to 32P-

labelled probe generated by PCR from M. corallina gDNA using primers LF001F and 

LF004R. Probe hybridisation positions were visualised by exposing the membrane to a 

phosphoimager plate for 5h before detection with a phosphoimager (Fuji).   
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3.6 Cosmids isolated from the library 

3.6.1 PCR and digest confirmation 

 

The six identified clones were identified and sampled from the library (1H11, 3E5, 3K13, 

4G2, 5A7 and 7C22). The cosmids were purified and five were confirmed by PCR to 

contain parts of the microbisporicin gene cluster identified by genome scanning (lanA, 

lanB, lanC, lanD and the tryptophan halogenase gene). One cosmid (3K13) lacked the 

tryptophan halogenase gene and was not characterised further. Restriction digest 

mapping of the five remaining cosmids using BamHI and PstI indicated conserved bands 

presumably resulting from the shared gene cluster (Figure 3.16).  

 

Figure 3.16 Digests of the six cosmids identified as containing parts of the microbisporicin 

gene cluster by cosmid library hybridisation. Each cosmid was purified from E. coli and 

500ng-1µg digested with either BamHI (left panel) or PstI (right panel). The resulting 

fragments from each digested cosmid were separated on a 1% TBE agarose gel by 

electrophoresis.  The name of each cosmid is given above the appropriate lane. The 

marker is the 1kb ladder (NEB).  
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3.6.2 Two cosmids completely sequenced  

Cosmids 5A7 and 4G2 were chosen to be completely sequenced (because they showed 

the largest number of differences in the restriction digests in 3.6.1) using Sanger 

sequencing at the DNA sequencing facility at Cambridge University. The complete 

sequences of 4G2 and 5A7 revealed inconsistencies in the sequence upstream of the 

putative microbisporicin cluster (Figure 3.17). An ORF possibly encoding a member of the 

lipoprotein family was common to both sequences as was all the downstream sequence. 

However in the region upstream of this ORF, there was a putative cytochrome P450 in 

5A7 but a TetR-like regulator in 4G2.  

Figure 3.17 An alignment (constructed using ClustalW) to show the region of divergence 

between the sequences of cosmids 4G2 and 5A7.  

 

To determine which cosmid encoded the true microbisporicin gene cluster sequence, PCR 

analysis was carried out. A PCR primer was designed within the shared sequence 

between the two cosmids (LF014R) and one primer was designed in each of the divergent 

parts of the sequences (LF015F in 5A7 and LF016F in 4G2). DNA of the two cosmids and 

M. corallina genomic DNA were used as templates for PCR analysis. Only LF015F and 

LF014R gave the expected PCR product from both the cosmid (5A7) and gDNA 

templates, although a weak non-specific product of incorrect size was derived from 4G2 

with these primers (Figure 3.18). With LF014R and LF016F, the only band amplified was 

from the 4G2 template indicating that these two regions are not closely linked in the NRRL 

30420 genome (Figure 3.18). Overall this analysis indicates that cosmid 5A7 has the 

correct sequence whereas 4G2 was likely formed by the joining of two non-contiguous 

segments of DNA (Figure 3.18). 
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Figure 3.18 PCR analysis to determine whether 4G2 or 5A7 has the correct sequence. 

PCR analysis was carried out with primers designed within the shared sequence between 

the two cosmids (LF014R) and one in each of the divergent parts of the sequences 

(LF015F in 5A7 (expected to give a product of 998bp) and LF016F in 4G2 (expected to 

give a product of 1145bp) ). The two cosmids and M. corallina genomic DNA (gDNA) were 

used as templates for the PCR analysis. The primers LF013F and LF013R, designed 

within the mibA-mibB region of the gene cluster serve as a positive control. Only LF015F 

and LF014R gave a PCR product of the expected size from both the cosmid (5A7) and 

from gDNA indicating that this cosmid had the correct sequence. The marker (M) is 

hyperladder (Bioline) and the sizes are shown in bp on both sides of the gel. 
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3.6.3 End-sequencing  

All five cosmids were end-sequenced using the primers End_F and End_R (Table 2.6; 

approximately 600 base pairs of sequence per end). The resulting end-sequences along 

with the digest patterns (described in 3.6.1) and the complete sequence of cosmid 5A7 

(described in 3.6.2) were used to generate an approximate map of each cosmid with 

respect to the known sequence of the gene cluster (Figure 3.19). The end-sequences of 

the cosmids 1H11, 3E5 and 7C22 indicated that all three had one end which matched the 

sequence in 5A7 downstream of the putative microbisporicin gene cluster. The other end 

of these cosmids did not map within the known sequence of 5A7 although restriction 

digest analysis of these cosmids suggests that they may have more upstream sequence 

than 5A7 (Figure 3.19). 

 

3.6.4 Cosmid 5A7 annotation 

The annotation of the complete 5A7 cosmid sequence was carried out using Artemis 

software (Sanger Centre, Cambridge (Rutherford et al. 2000)) and the GC-frame plot tool 

(with a typical window size of 50-120bp). Due to the high GC content of actinomycete 

genomes there is a marked difference in the GC content of the three nucleotide positions 

within codons which results, on average, in intermediate:low:high GC content at the first, 

second and third codon positions, respectively (Bibb et al. 1984). The GC-frameplot tool 

allows the user to follow the GC content at each of three positions within a moving window 

of nucleotide triplets. It is then possible to determine where open-reading frames are 

situated by identifying regions with such a GC distribution (Figure 3.20). This information 

can also be used to determine the direction of the open-reading frame. Open-reading 

frames in cosmid 5A7 were called on this basis and start sites (ATG or GTG) were further 

adjusted by taking into account the presence of putative ribosome binding sites (based 

around the sequence GGAGG) approximately 9-12 nucleotides upstream of the 

translation start codon (Kieser et al. 2000). A number of open-reading frames overlapped, 

indicative of translational coupling. This is often associated with proteins which function 

co-ordinately or in a 1:1 stoichometry, and is common in gene clusters.  Putative open-

reading frames were submitted to NCBI protein-protein BLAST analysis (blastP) to identify 

homologous proteins in the protein database (Altschul et al. 1990). The putative functions 

of the encoded proteins were determined on the basis of the BLAST output. 
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3.7 Discussion 

3.7.1 Discussion 

The initial characterisation of the available M. corallina strains has revealed a number of 

interesting features and in particular striking differences. Production of a bioactive 

compound was found for strain NRRL 30420 and culture supernatant revealed ions 

associated with the known variants described for microbisporicin (Lee 2003; Lazzarini et 

al. 2005). This provided strong evidence that this strain of M. corallina was capable of 

producing the compound of interest under the culture conditions selected for this study. By 

comparison strains DSM 44681 and DSM 44682 were not found to produce any bioactive 

compounds, suggesting that these strains may not have the genetic capacity to 

biosynthesise microbisporicin. This will be discussed in further detail in chapter 4.  

The ability of NRRL 30420  to generate spores was not described in detail in previous 

studies (Lee 2003). Under the conditions used in this study, significant levels of 

sporulation by NRRL 30420 were not observed, the strain growing as vegetative mycelium 

on agar culture media. Interestingly, spore formation could be observed with DSM 44681 

and DSM 44682.  The generation of such spores was described previously for these two 

strains and provided the name for the genus -  Microbispora (Nakajima et al. 1999). 

Despite the reported high level of similarity in 16s rRNA gene sequences between NRRL 

30420 and these “type” strains (Lee 2003), there appear to be fundamental differences 

both in terms of development and microbisporicin production.  

Analysis of bioactive supernatant from NRRL 30420 by MALDI-ToF mass spectrometry 

revealed a spectrum of peaks that could be attributed to microbisporicins. However, due 

to the formation of oxidised variants (likely caused by lanthionine bridge oxidations) it has 

not been possible to deduce whether this strain (previously only described to produce MF-

BA-1768β1 and MF-BA-1768α1 (Lee 2003)) is also capable of producing the molecules 

107891 A1 and A2 (Lazzarini et al. 2005). However, our interpretation of the mass 

differences between the four compounds and our further analysis of the microbisporicin 

gene cluster (as described in chapter 4) leads us to the conclusion that the previously 

described masses for lantibiotics produced by M. corallina strains result from the 

differential modification of one prepropeptide product and can thus be collectively referred 

to as microbisporicin, despite earlier assertions that these were in fact different products 

(Lazzarini et al. 2005).  

This chapter describes how the novel method of genome scanning has been successfully 

applied to the identification of the microbisporicin gene cluster from M. corallina. Other 
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more conventional methods might have been employed, but are likely to have been more 

time-consuming and possibly unsuccessful (particularly those involving heterologous 

expression, as discussed in chapter 5). The genome scanning approach has furthermore 

provided information about other features of the M. corallina genome, such as the 

presence of other secondary metabolite gene clusters, which could be explored in future, 

and of integration sites, such as the ΦC31 integration site, observed in many 

actinomycetes (Combes et al. 2002), which might be used for later genetic manipulation of 

this species.  

For this initial attempt at using genome scanning to identify an actinomycete biosynthetic 

gene cluster, both the rapid genome sequencing technologies of Solexa and 454 were 

utilised. This has allowed a rough comparison of these two methods in relation to their 

utility for genome scanning. On average, Solexa sequencing yielded shorter contigs and 

several inaccuracies were found in contig assembly when later compared to 454 

sequence data. In relation to the microbisporicin gene cluster, the 454 data provided more 

information about the cluster and much more confidence that the correct gene cluster had 

been identified without the need to employ other techniques, such as Southern blot 

hybridisation analysis and PCR linkage, as was the case with Solexa sequencing. A 

retrospective analysis of the two datasets, using 4943bp of the microbisporicin gene 

cluster including lanB, lanC and lanD (initially indentified as the best targets for BLAST 

searches), indicates that 17 Solexa contigs (all of approximately 200bp in length) map to 

this region with a total coverage of 55%, from an assembly of 2.6Mb from a total of 881Mb 

of sequence data. By contrast seven 454 contigs provide 70% overall coverage of this 

region, from 4.6Mb of assembled sequence resulting from only 28Mb of total sequence. 

On the whole, although more economical, Solexa sequencing was found to be less useful 

than 454 sequencing for genome scanning in this particular case. 

The M. corallina cosmid library had an estimated genome coverage of about 25-30 fold 

(i.e. 3072 clones x (40 kb – 50 kb insert) / 5 Mb). Based on the estimated 5Mb genome 

size of M. corallina and an expected minimal cosmid insert size of 40 kb, the probability 

(to 99% probability) of identifying cosmids within the library containing the 1250bp 

sequence used to probe for the microbisporicin gene cluster (=LN(1-0.99)/LN(1-(40000-

1250)/5E6)) is 1 in 592 cosmids. In a cosmid library of 3072 clones, this equates to 5-6 

clones, which is exactly the number identified by library hybridisation. This can be 

extended to estimate the probability of finding a cosmid containing the entire 

microbisporicin gene cluster (by estimating the gene cluster size as 20kb; =LN(1-

0.99)/LN(1-(40000-20000)/5E6), which is 1 in 1149 or 2-3 clones in the total library. This 

matches well with the results presented here since 5A7, 1H11, 3E5 and 7C22 are 
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expected to contain the complete gene cluster (although it is only possible to be confident 

about 5A7; Figure 3.19). The microbisporicin gene cluster was successfully identified in 

the cosmid 5A7 and will be described in detail in Chapter 4. 

 

3.7.2 Summary Points 

 

 Growth of M. corallina strains NRRL 30420, DSM 44681 and DSM 44682 was 

characterised on agar media. NRRL 30420 grew without appreciable sporulation, 

whereas DSM 44681 and DSM 44682 produced pairs of spores on aerial 

mycelium. 

 On V0.1 agar medium, M. corallina NRRL 30420 produced a compound that 

inhibited the growth of M. luteus. By contrast, DSM 44681 and DSM 44682 did not.  

 M. corallina NRRL 30420 grew in a dispersed manner in liquid medium VSPA with 

defined growth and antibiotic production phases. 

 M. corallina NRRL 30420 grown in VSPA produced compounds with masses 

corresponding to the microbisporicin complex, including three of the four 

previously described compounds. 

 A genome scanning approach was used to identify the microbisporicin gene 

cluster from an M. corallina NRRL 30420 cosmid library.  

 Comparison of the Solexa and 454 rapid sequencing technologies indicated that 

454 sequencing was of greater use when identifying the microbisporicin gene 

cluster. 

 Cosmid 5A7 was completely sequenced and annotated with open-reading frames, 

many of which are part of the microbisporicin gene cluster and will be described in 

Chapter 4. 
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Chapter 4 – The Microbisporicin 
Gene Cluster 

4.1 Introduction 

 

To provide a better understanding of microbisporicin biosynthesis, bioinformatic analysis 

of the microbisporicin (mib) gene cluster was carried out. This chapter describes the 

characteristics of the DNA fragment cloned in cosmid 5A7 (hereafter referred to as 

pIJ12125; GenBank accession HM536998) and in particular of those genes thought to be 

part of the mib gene cluster.  

Annotation of the cloned insert of pIJ12125 (which contained 33 complete open-reading 

frames) was carried out as described in Chapter 3 and provided useful insights into the 

likely extent of the gene cluster within the 36668bp insert (Figure 4.1). mibA, encoding the 

microbisporicin prepropeptide (identified in Chapter 3), is located approximately 8.5 kb 

from one end of the cosmid insert (Figure 4.1). The region upstream of mibA contains the 

first open-reading frame (ORF) in the cosmid insert, orf1, as well as genes putatively 

assigned to the mib gene cluster (mibJ to mibX). The region downstream of mibA extends 

for approximately 15kb to the final ORF putatively assigned to the mib gene cluster, mibN, 

and is then followed by a further 12 ORFs that appear to be associated with primary 

metabolic functions and which were consequently not assigned to the mib gene cluster 

(Table 4.1). 

In Chapter 3, M. corallina strains DSM 44681 and DSM 44682 failed to produce 

microbisporicin under the culture conditions used. The possibility that these strains do not 

contain a microbisporicin gene cluster is assessed in section 4.7. 
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Table 4.1 The open-reading frames identified in pIJ12125. Open-reading frames are 

numbered as shown in Figure 4.1. The nearest homolog and percentage identity with that 

sequence was determined by a NCBI Blast search (Altschul et al. 1990) against the non-

redundant protein database (as of 21st February 2010) using the predicted amino acid 

sequence in each case. 

Open-

reading 

frame 

Number 

Proposed function Length (aa) Nearest Homolog 

% Identity 

(across x 

amino 

acids) 

1 

XRE-family 

transcriptional 

regulator 

254 
ZP_05000646.1  DNA-binding protein 

[Streptomyces sp. Mg1] 
51% (227) 

2 MibJ (Unknown) 210 

YP_001508288.1 hypothetical protein 

Franean1_3993 [Frankia sp. 

EAN1pec] 

33% (183) 

3 
MibY (ABC 

permease) 
258 

YP_001508289.1 hypothetical protein 

Franean1_3994 [Frankia sp. 

EAN1pec] 

31% (215) 

4 

MibZ (ABC 

transporter ATP-

binding sub-unit) 

300 
YP_003181816.1 ABC transporter 

related [Eggerthella lenta DSM 2243] 
59% (266) 

5 
MibO (Cytochrome 

P450) 
414 

ZP_06235262.1  cytochrome P450 

[Frankia sp. EuI1c] 
40% (415) 

6 
MibQ (Putative 

lipoprotein) 
129 

YP_002322870.1 hypothetical protein 

Blon_1406 [Bifidobacterium longum 

subsp. infantis ATCC 15697] 

37% (138) 

7 
MibR (Transcriptional 

regulator) 
260 

ZP_06397847.1  response regulator 

receiver protein [Micromonospora sp. 

L5] 

29% (161) 

8 
MibW (putative anti-

sigma factor) 
255 

YP_003336912.1 hypothetical protein 

Sros_1171 [Streptosporangium 

roseum DSM 43021] 

29% (174) 

9 
MibX (ECF sigma 

factor) 
181 

YP_003336913.1 RNA polymerase, 

sigma-24 subunit, ECF subfamily 

[Streptosporangium roseum DSM 

43021] 

49% (164) 

10 
MibA (microbisporicin 

prepropeptide) 
57 

gb|ACW83043.1  structural protein 

97518 preproprotein 

[Planomonospora sp. DSM14920] 

67% (46) 
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Open-

reading 

frame 

Number 

Proposed function Length (aa) Nearest Homolog 

% Identity 

(across x 

amino 

acids) 

11 MibB (dehydratase) 1115 
YP_177053.1 lantibiotic biosynthesis 

protein [Bacillus clausii KSM-K16] 
28% (1056) 

12 MibC (cyclase) 485 

ZP_06162154.1  conserved 

hypothetical protein [Actinomyces sp. 

oral taxon 848 str. F0332] 

41% (474) 

13 MibD (flavoprotein) 227 

ZP_06162155.1  

phosphopantothenoylcysteine 

decarboxylase/phosphopantothenate-

-cysteine ligase [Actinomyces sp. oral 

taxon 848 str. F0332] 

44% (168) 

14 

MibT (ABC 

transporter ATP-

binding sub-unit) 

316 

ZP_04485817.1  daunorubicin 

resistance ABC transporter ATP-

binding subunit [Stackebrandtia 

nassauensis DSM 44728] 

43% (309) 

15 
MibU (ABC 

permease) 
290 

YP_003320386.1 ABC-2 type 

transporter [Sphaerobacter 

thermophilus DSM 20745] 

37% (222) 

16 MibV (unknown) 334 

ZP_04334065.1  hypothetical protein 

NdasDRAFT_3165 [Nocardiopsis 

dassonvillei subsp. dassonvillei DSM 

43111] 

36% (320) 

17 
MibE (ABC 

permease) 
249 

ZP_03293380.1  hypothetical protein 

CLOHIR_01328 [Clostridium 

hiranonis DSM 13275] 

23% (256) 

18 

MibF (ABC 

transporter ATP-

binding sub-unit) 

236 

ZP_05336621.1 ABC transporter 

related protein 

[Thermoanaerobacterium 

thermosaccharolyticum DSM 571] 

47% (225) 

19 

MibH (FAD-

dependent 

tryptophan 

halogenase) 

568 
NP_968288.1 tryptophan halogenase 

[Bdellovibrio bacteriovorus HD100] 
39% (519) 

20 
MibS (flavin 

reductase) 
178 

gb|ABV56599.1  KtzS [Kutzneria sp. 

744] 
55% (154) 

21 
MibN (Na

+
/H

+
 

antiporter) 
434 

gb|AAK81829.1  integral membrane 

ion antiporter [Streptomyces 

lavendulae] 

61% (416) 
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Open-

reading 

frame 

Number 

Proposed function Length (aa) Nearest Homolog 

% Identity 

(across x 

amino 

acids) 

22 Unknown 118 

YP_001793177.1 hypothetical protein 

Lcho_4161 [Leptothrix cholodnii SP-

6] 

32% (114) 

23 Pyramidine reductase 184 

YP_003324478.1 bifunctional 

deaminase-reductase domain protein 

[Thermobaculum terrenum ATCC 

BAA-798] 

50% (183) 

24 Unknown 236 

YP_001108055.1 hypothetical protein 

SACE_5947 [Saccharopolyspora 

erythraea NRRL 2338] 

45% (232) 

25 
Oxidoreductase 

domain protein 
362 

YP_001363208.1 oxidoreductase 

domain protein [Kineococcus 

radiotolerans SRS30216] 

63% (353) 

26 

Glyoxalase/bleomycin 

resistance 

protein/dioxygenase 

151 

YP_824593.1 glyoxalase/bleomycin 

resistance protein/dioxygenase 

[Solibacter usitatus Ellin6076] 

33% (122) 

27 
Esterase, PHB 

depolymerase family 
460 

ZP_06397018.1  esterase, PHB 

depolymerase family 

[Micromonospora sp. L5] 

60% (433) 

28 Xylanase 368 
ZP_04606278.1  xylanase 

[Micromonospora sp. ATCC 39149] 
79% (223) 

29 Beta-1,4-xylanase 495 

YP_003115119.1 glycoside 

hydrolase family 10 [Catenulispora 

acidiphila DSM 44928] 

60% (479) 

30 MarR-type regulator 148 

YP_003342264.1 hypothetical protein 

Sros_6813 [Streptosporangium 

roseum DSM 43021] 

60% (143) 

31 Unknown 150 

ZP_03168892.1  hypothetical protein 

RUMLAC_02595 [Ruminococcus 

lactaris ATCC 29176] 

25% (133) 

32 
Secreted endo-1,4-

beta-xylanase 
480 

ZP_05528201.1  secreted endo-1,4-

beta-xylanase [Streptomyces lividans 

TK24] 

59% (438) 

33 
Prephenate 

dehydratase 
280 

YP_003380192.1 Prephenate 

dehydratase [Kribbella flavida DSM 

17836] 

65% (274) 
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4.2 MibA 

MibA is the 57-amino acid prepropeptide of microbisporicin, with a leader sequence 

extending from residues 1 to 33. Alignment of the putative leader peptide with those of 

other type A(I) lantibiotics, such as nisin, subtilin and epidermin, revealed a possibly 

conserved “FNLD” motif (LDLD in microbisporicin, Figure 4.2) potentially involved in 

lantibiotic processing (van der Meer et al. 1994).  The MibA cleavage site also resembles 

those of other type AI lantibiotics (Figure 4.2), with proline at the -2 position and alanine at 

-4 (van der Meer et al. 1994). Mutation of Pro-2 in pre-nisin had a minimal affect on leader 

peptide processing whereas the Ala-4 to Asp variant of pre-nisin was not cleaved by the 

leader peptidase NisP in vivo but could be cleaved by trypsin in vitro (van der Meer et al. 

1994). Mutation of the -1 arginine residue of nisin to glutamine resulted in decreased 

leader peptide processing (van der Meer et al. 1994). This residue is not conserved in 

microbisporicin, where it is alanine. This may suggest that the protease involved in 

cleaving microbisporicin is significantly different from that involved in leader peptide 

removal in the other type A (I) lantibiotics. The leader peptide of MibA is longer than those 

of nisin, subtilin and epidermin and shows only low levels of overall conservation (e.g. 

20% amino acid identity with EpiA).  

 

Figure 4.2 An alignment (constructed using ClustalW (Chenna et al. 2003)) of the MibA 

leader peptide with those of example type A(I) lantibiotics (NisA (nisin), SpaS (subtilin), 

EpiA (epidermin)). The partially conserved FNLD motif is shown in light blue. A putative 

conserved cleavage site is shown in green.  

The propeptide sequence of MibA agrees with the published NMR structure of 

microbisporicin (Figure 4.3) (Lazzarini et al. 2005; Castiglione et al. 2008). All serine 

residues and all but one threonine residue of the propeptide are dehydrated by a LanB 

enzyme to yield dehydroalanine and dehydrobutyrine, respectively. Each dehydrated 

residue is then subject to nucleophilic attack by the thiol group of a cysteine residue in the 

peptide chain, catalysed by LanC, resulting in the formation of lanthionine bridges. Only 

two dehydrated residues, a dehydroalanine and dehydrobutyrine, are not incorporated into 

lanthionine bridges. The C-terminal cysteine residue of the propeptide is decarboxylated 
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by a LanD enzyme to yield another free thiol group which forms a bridge with a 

dehydroalanine, yielding S-[(Z)-2-aminovinyl]-D-cysteine. The tryptophan residue at 

position 4 of the propeptide is chlorinated and the proline at position 14 is hydroxlated. 

mibA appears to lie at the start of an operon that contains modification and export genes. 

A 247bp gap lies between the 5‟ end of mibA and the preceding oppositely transcribed 

gene mibX, and presumably contains the mibA promoter, while 117bp of non-coding 

sequence between mibA and mibB might reflect the presence of a transcriptional 

attenuator. Indeed, an RNA secondary structure (ΔG= -123 kJ mol-1) was predicted for 

region 8820-8854bp using Clone Manager 4 (Figure 4.1).  Such structures occur in other 

lantibiotic gene clusters and are thought to maintain an appropriate stoichiometry between 

the prepropeptide and the modification enzymes (McAuliffe et al. 2001).  

 

Figure 4.3 The relationship between the MibA prepropeptide and modified 

microbisporicin. The structure of microbisporicin as determined by NMR (Lazzarini et al. 

2005) colour-coded to show the introduced modifications; unmodified residues (blue) 

dehydrated residues (green) dehydrated and cyclised residues (purple), chlorinated 

tryptophan (pink), hydroxylated proline (grey) and the S-[(Z)-2-aminovinyl]-D-cysteine 

formed from decarboxylated cysteine (orange). Below is the MibA prepropeptide 

sequence with the leader peptide in black and propeptide colour-coded (as above) with 

the positions of the modifications to occur. The underlined bold LDLD motif is the 

conserved “FNLD” motif of the type A(I) lantibiotics. An arrow represents the putative 

cleavage site of the prepropeptide. 
                                                
4
 Clone manager, Scientific & Educational Software. (2001). 
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4.3 Biosynthetic and Modification Enzymes 

 

4.3.1 MibB 

MibB is a homolog of lantibiotic dehydratases (LanBs). Closest relatives are LanB-like 

proteins from currently uncharacterised lantibiotic gene clusters from Bacillus clausii (28% 

amino acid identity) and from actinomycetes such as Actinomyces oral taxon 848 str. 

F0332 (31% amino acid identity), Streptomyces noursei and Streptomyces griseus (both 

with 34% amino acid identity). This relatively low level of identity to other MibB proteins is 

characteristic of this enzyme family, members of which typically share amino acid 

identities of less than 30% (Chatterjee et al. 2005). MibB also has homologs amongst the 

well-studied type A(I) lantibiotic biosynthetic gene clusters including SpaB (subtilin; 24% 

amino acid sequence identity), EpiB (epidermin) and MutB (mutacin III). By comparison to 

the LanB enzymes in other lantibiotic gene clusters (Koponen et al. 2002),  MibB is likely 

to dehydrate serine and threonine residues in the prepropeptide to yield didehydroalanine 

and didehydrobutyrine, respectively. 

 

4.3.2 MibC 

MibC shows homology to lantibiotic cyclases (LanCs). Closest relatives are LanC-like 

proteins from currently uncharacterised lantibiotic gene clusters from Bacillus clausii (32% 

amino acid identity) and from actinomycetes such as Actinomyces oral taxon 848 (41% 

amino acid identity) and Streptomyces coelicolor (SCO0270; 33% amino acid identity). 

Other close homologs include SpaC (subtilin; 33% amino acid identity), NisC (nisin) and 

MutC (mutacin III). LanC enzymes involved in the biosynthesis of lantibiotics such as 

subtilin and nisin are responsible for forming (methyl-)lanthionine bridges (Koponen et al. 

2002; Li et al. 2006a; Cheng et al. 2007; Helfrich et al. 2007). Conserved histidine and 

cysteine residues within the active site of NisC coordinate a zinc ion involved in catalysis 

(Li et al. 2007). These residues are conserved in MibC (Figure 4.4) suggesting that this is 

a LanC-type cyclase involved in the introduction of lanthionine bridges into 

microbisporicin. 
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Figure 4.4 An alignment (constructed using ClustalW (Chenna et al. 2003)) of MibC with 

other members of the LanC class of enzymes (NisC (nisin) and SpaC (subtilin)). 

Conserved residues are highlighted; zinc-coordinating residues from NisC (light blue; Li et 

al. 2006), essential catalytic residues in NisC and SpaC (yellow, Li et al. 2006; Helfrich et 

al. 2007), other conserved active site residues (green, Li et al. 2006) and prepropeptide 

binding residues in NisC (pink, Li et al. 2006). 
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4.3.3 MibD 

MibD is homologous to flavoproteins, specifically those involved in S-[(Z)-2-aminovinyl]-D-

cysteine formation, such as MrsD (mersacidin; 37% amino acid identity) and MutD 

(mutacin III; 32% amino acid identity). It also has homologs in uncharacterised lantibiotic 

gene clusters, including one in Bacillus clausii (34% amino acid identity) and one in 

Actinomyces oral taxon 848 (44% amino acid identity). LanD enzymes from the epidermin 

(EpiD) and mersacidin (MrsD) clusters have been studied extensively in vitro (Kupke et al. 

1992; Kupke et al. 1994; Majer et al. 2002). These enzymes decarboxylate the C-terminal 

cysteine of the peptide chain to yield a free thiol group that subsequently forms a 

lanthionine bridge via cyclisation with a dehydrated serine or threonine residue located 

towards the C-terminus of the propeptide, a reaction likely catalysed by LanC (Kupke et 

al. 1994; Kupke et al. 1995; Majer et al. 2002).  

Many of the motifs and residues identified to have importance in the catalysis of EpiD and 

MrsD are conserved in MibD (Figure 4.5) (Blaesse et al. 2000; Blaesse et al. 2003). The 

substrate specificity of MibD may be similar to that of EpiD. EpiD favours a large 

hydrophobic amino acid three residues from the end of the peptide (Schmid et al. 2002); 

in EpiA this is a tyrosine, while in MibA it is a phenylalanine. Phenylalanine at this position 

is tolerated by EpiD (Kupke et al. 1995). While EpiD utilises FMN as a flavin-cofactor, 

MrsD uses FAD. Despite the availability of structures for both enzymes, it is not clear 

which residues determine the  choice of cofactor (Blaesse et al. 2003) and thus it is not 

possible, on the basis of sequence alone, to determine whether MibD utilises FAD or 

FMN.   

MibD is presumably involved in formation of the S-[(Z)-2-aminovinyl]-D-cysteine moiety at 

the C-terminus of microbisporicin (Lazzarini et al. 2005; Castiglione et al. 2008). The exact 

function of this modification in lantibiotics that contain it has been largely unexplored. An 

epiD mutant of Staphlococcus epidermis failed to produce a biologically active compound, 

however it was not clear whether this was due to the complete absence of epidermin 

biosynthesis or due to the production of an inactive molecule (Augustin et al. 1992). Thus 

it is unclear whether this C-terminal modification contributes to lantibiotic mode of action 

or stability. 
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Figure 4.5 An alignment (constructed using ClustalW (Chenna et al. 2003)) of MibD with 

other characterised members of the LanD class of enzymes (MrsD (mersacidin) and EpiD 

(epidermin)). Conserved residues are highlighted; the His67 active site base in EpiD (red), 

the PASANT motif and other FMN-binding residues of EpiD (yellow), the PXMNXXMW 

motif of EpiD also involved in FMN-binding (green) (Blaesse et al. 2000). 
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4.3.4 MibHS 

Chlorination of tryptophan in microbisporicin is a unique lantibiotic modification. Based on 

the involvement of FAD-dependent tryptophan halogenases in the biosynthesis of many 

other classes of antibiotics, this enzyme family appeared to be a good candidate to fulfil 

this role in microbisporicin. As described in Chapter 3, a gene, mibH, encoding a member 

of this family of proteins was found towards the end of the mib gene cluster along with a 

downstream and translationally-coupled gene mibS (Figure 4.1). 

MibH shares homology with members of the FAD-dependent tryptophan halogenase 

family typified by PrnA from Pseudomonas fluorescens (31% amino acid identity), which 

converts free tryptophan to 7-chlorotryptophan during pyrrolnitrin biosynthesis (Keller et al. 

2000). Other MibH homologs include an uncharacterised tryptophan halogenase from 

Bdellovibrio bacteriovorus HD100 (39% amino acid identity), a tryptophan 5-halogenase 

(PyrH) involved in pyrroindomycin B biosynthesis in S. rugosporus (36% amino acid 

identity (Zehner et al. 2005)) and KtzR involved in kutznerides biosynthesis in Kutzneria 

sp. 744 (34% amino acid identity (Fujimori et al. 2007; Heemstra et al. 2008)).  

Members of the flavin-dependent tryptophan halogenase family have been identified in 

gene clusters associated with biosynthesis of a wide variety of secondary metabolites, 

many from actinomycetes, including; Streptomyces rugosporus, Streptomyces venezuelae 

(chloroamphenicol), Streptomyces roseochromogenes (chlorobiocin) and Streptomyces 

viridochromogenes (avilamycin) (Murphy 2006). PyrH from S. rugosporus was the first 

member of this class found to incorporate chlorine at carbon-5 in tryptophan (Zehner et al. 

2005). This is the same regioselective reaction that would be expected to occur in 

microbisporicin biosynthesis (Lazzarini et al. 2005).  

Chlorination of secondary metabolites has been reported to improve anti-bacterial activity 

(Harris et al. 1985; Ohi et al. 1987; Malabarba et al. 1989). Flavin-dependent halogenases 

could therefore be used in an attempt to produce novel compounds with enhanced 

antibiotic activity. This has already been partially addressed in a proof of principle 

experiment in which halogenated indolocarbazole derivatives were created through the 

introduction of pyrH into the indolocarbazole gene cluster followed by expression in a 

heterologous host, although compounds with higher anti-tumor activities were not 

produced through this approach (Sanchez et al. 2005). 

The crystal structure of PrnA was solved to 1.95Å and, through the use of crystals 

containing FAD, tryptophan or chlorotryptophan, shed light on the catalytic mechanism of 

the enzyme (Dong et al. 2005). The enzyme behaves as a dimer with each monomer 
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consisting of a FAD-binding domain and substrate binding domain (Dong et al. 2005). 

FADH2 reacts with molecular oxygen to create a peroxide moiety linked to the FAD ring 

(Dong et al. 2005). Chlorine, held in the protein by interaction with Thr348 and Gly349, 

attacks the peroxide to yield HOCl (Dong et al. 2005). Since this site is some 10Å away 

from the site of the bound substrate, the authors postulate that the HOCl is conducted 

down a tunnel to the substrate which is held, by the enzyme, in an orientation that 

promotes the regioselective addition of chlorine to carbon-7 of the substrate. Lys79
 and 

Glu346 are predicted to activate the chlorine and promote its electrophilicity in this reaction, 

whilst Glu346 also stabilises the resulting Wheland intermediate (Dong et al. 2005; Flecks 

et al. 2008). 

MibH contains several amino acid sequence motifs that are conserved in the flavin-

dependent tryptophan halogenase family and that are important for the catalytic 

mechanism of PrnA (Dong et al. 2005; Flecks et al. 2008). This includes the GxGxxG 

motif located near the N-terminus involved in binding the flavin co-substrate in PrnA (Dong 

et al. 2005) and WxWxIP thought to be involved in preventing mono-oxygenase activity in 

that enzyme (Dong et al. 2005) (Figure 4.6). In addition, a number of residues involved in 

the catalytic mechanism of PrnA and found to be essential for enzyme functionality (Dong 

et al. 2005; Flecks et al. 2008), are conserved in MibH (Figure 4.6). These conserved 

features clearly suggest that MibH is a true member of the flavin-dependent halogenase 

family. However, MibH shares relatively low amino acid sequence identity across the 

whole protein sequence with other flavin-dependent halogenases, e.g. 24% and 31% with 

PrnA and PyrH, respectively, while the two enzymes share 41% identity with each other 

(determined from full length protein sequences aligned using ClustalW (Chenna et al. 

2003) rather than by NCBI BLAST (Altschul et al. 1990) used for earlier stated identities). 

This might reflect differences in the type of substrate; while PrnA and PyrH act on free 

tryptophan (Dong et al. 2005; Zehner et al. 2005), MibH presumably acts post-

translationally on a potentially structured peptide. This could require significant adaptation 

within the substrate binding pocket of the enzyme.  

For many of the flavin-dependent halogenases that have been identified, the substrates 

are unknown and most are unlikely to use free tryptophan due to the structurally different 

nature of the compounds involved (van Pee et al. 2006). These enzymes are more likely 

to act upon the coenzyme A derivative of the substrate or on substrates bound to peptidyl 

carrier proteins (van Pee et al. 2006). For example, ChlA, a flavin-dependent halogenase 

isolated from the amoeba Dictyostelium, was reported to directly catalyse the in vitro 

chlorination of the core polyketide substrate (2,4,6-trihydroxyphenyl)-1-hexan-1-one 

(THPH) (Neumann et al. 2010). PltA, involved in biosynthesis of the hybrid polyketide/non-
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ribosomal peptide molecule pyoluteorin in P. fluorescens, chlorinates a pyrrole ring in the 

molecule only when the substrate is bound via a thioester link to the PltL carrier protein in 

vitro (Dorrestein et al. 2005). The CndH enzyme in the chondrochloren biosynthetic 

pathway of the myxobacterium Chondromyces crocatus acts on a tyrosine substrate 

bound to a peptidyl carrier protein (Buedenbender et al. 2008). Perhaps not surprisingly, 

this results in structural differences between CndH and PrnA, with the former possessing 

a more extensive solvent exposed substrate binding surface (Buedenbender et al. 2008). 

Although some amino acid motifs are conserved, the active site base Glu346 is not 

conserved in CndH and this function is proposed to be supplied by the peptidyl carrier 

protein (Buedenbender et al. 2008). A similarly large substrate binding surface might be 

expected for MibH although it shares very little sequence similarity with CndH. 

In the case of PrnA, FADH2 is provided to the enzyme by a partner flavin reductase that 

uses NADH for the reduction of FAD (Keller et al. 2000). However, PrnA could also accept 

FADH2 from a non-specific flavin reductase from E. coli (Hammer et al. 1997), and even 

chemically-reduced FAD could be utilised by the enzyme (Unversucht et al. 2005). Some 

flavin-dependent halogenases, such as RebH (Sanchez et al. 2002), and many mono-

oxygenases are encoded by genes that lie near or next to a gene encoding a partner 

flavin reductase, suggesting co-regulation and the requirement for a 1:1 stoichometry 

between the enzyme products (Louie et al. 2003). RebH was found to interact quite tightly 

with its cognate flavin reductase RebF (Yeh et al. 2005). 

mibS lies downstream of mibH and the two genes are likely to be translationally coupled. 

MibS shows a high degree of homology with members of the flavin reductase family of 

proteins. The closest homolog of MibS is KtzS from the kutznerides biosynthetic gene 

cluster of the actinomycete Kutzneria sp. 744 (55% amino acid identity). Kutznerides are 

hexadepsipeptides with antimicrobial activity manufactured by an NRPS system (Fujimori 

et al. 2007). MibH is also a homolog of KtzR from the same biosynthetic gene cluster 

(Fujimori et al. 2007; Heemstra et al. 2008). An in vitro analysis of KtsR activity as a 

tryptophan-6-halogenase indicated that KtzS could function to provide FADH2 for the 

reaction (Heemstra et al. 2008).  MibS therefore likely functions to provide FADH2 to MibH 

to facilitate the chlorination of microbisporicin. It is not clear whether the two proteins 

physically interact but translational coupling indicates that they are likely to be required in 

a 1:1 stoichometry. 
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Figure 4.6 A section of an alignment (constructed using ClustalW (Chenna et al. 2003)) of 

MibH with other characterised members of the flavin-dependent class of tryptophan 

halogenase enzymes (PrnA (pyrollnitrin) and PyrH (pyrroindomycin B)). Conserved 

residues are highlighted; the GxGxxG motif involved in flavin co-factor binding in PrnA 

(blue), the WxWxIP motif of PrnA (green), residues involved in binding Cl- (yellow), Lys79 

and Glu346 involved in the interaction with the reaction intermediate HOCl (red) and 

residues involved in binding the tryptophan substrate of PrnA (orange) (Dong, et al. 2005; 

Flecks, et al. 2008). 
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4.3.5 MibO 

Hydroxylation of proline-14 of microbisporicin is another unique lantibiotic modification. As 

discussed in Chapter 1, proline hydroxylation of ribosomally synthesised peptides in 

bacteria has only been described to date in the formation of bacterial collagen in Bacillus 

anthracis , catalysed by a  prolyl-4-hydroxylase enzyme (Culpepper et al. 2010). This type 

of enzyme was therefore initially thought to be a candidate for the enzyme catalysing 

proline hydroxylation in microbisporicin, which would also be expected to occur on a 

ribosomally-synthesised peptide. However, no such candidate gene was identified in 

pIJ12125.  However, a cytochrome P450 was identified and named MibO. 

MibO is a 414 amino acid protein, the closest homologs of which are uncharacterised 

cytochrome P450 family members from Frankia Eul1C (FraEuI1cDRAFT_1316; 40% 

amino acid identity over 415 amino acids) and Frankia EAN1pec (Franean1_4324; 39% 

amino acid identity over 425 amino acids). MibO also shares a high degree of homology 

with other cytochrome P450 proteins from other actinomycetes, including CYP130 from 

Mycobacterium tuberculosis H37Rv (34% end-to-end amino acid sequence identity; 

(Ouellet et al. 2008)) and StaP involved in staurosporine biosynthesis in Streptomyces sp. 

TP-AO274 (30% end-to-end amino acid sequence identity; (Makino et al. 2007)). 

Alignment of the amino acid sequence of MibO with those of these structurally 

characterised members of the cytochrome P450 family indicates that MibO contains a 

number of conserved motifs including FGHGxHxCLG known to be involved in heme 

binding (van Wageningen et al. 1998) (Figure 4.7).  

Cytochrome P450 enzymes typically function as mono-oxygenases, binding dioxygen at a 

haem iron centre and introducing a single oxygen atom into an organic substrate with 

production of a molecule of water (McLean et al. 2005). Electrons are supplied by 

NAD(P)H via a redox partner, such as flavodoxin or ferredoxin (McLean et al. 2005). 

Streptomyces cytochrome P450 enzymes are often involved in polyketide (e.g. 

erythromycin) (Chun et al. 2006) or non-ribosomal-peptide biosynthesis (e.g. β-

hydroxylation in novobiocin biosynthesis) (Walsh et al. 2001). There are currently no 

reports of a bacterial cytochrome P450 enzyme utilising a ribosomally-synthesised peptide 

as a substrate. Given the position of mibO within the microbisporicin gene cluster, it 

seems likely that MibO is responsible for the unique di-hydroxylation of proline-14 of 

microbisporicin. However the mechanism by which this occurs and the substrate 

selectivity involved will be of interest for future study. It is also of interest to note that this 

enzyme would apparently be capable of hydroxylating two carbon centres within the same 

amino acid. This is highly unusual in bacterial cytochrome P450s described to date (Prof. 
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D. Lamb, personal communication). Some plant cytochrome P450 enzymes involved in 

isoprenoid and sesquiterpene (artemisinin) biosynthesis have been shown to act on 

multiple carbon centres within one substrate and thus there is precedent for this kind of 

catalytic mechanism (Ro et al. 2005; Covello et al. 2007). There are examples of bacterial 

cytochrome P450s which can produce multiple products from a single substrate through 

substrate hydroxylatation and release from the active site followed by the binding of 

another substrate molecule which is then hydroxylated in a different position, producing an 

array of products (Furuya et al. 2010). Furthermore an enzyme has been described which 

doubly hydroxylates the same carbon centre to produce a keto group during 

albaflavenone biosynthesis in S. coelicolor (Zhao et al. 2008). 
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Figure 4.7 A section of an alignment (constructed using ClustalW (Chenna et al. 2003)) of 

MibO with other characterised members of the cytochrome P450 class of enzymes from 

actinomycetes i.e. CYP130 (Mycobacterium tuberculosis H37Rv) and StaP (Streptomyces 

sp. TP-AO274). Highlighted are the conserved negatively charged catalytic residue of 

CYP130 (blue) (Ouellet et al. 2008) and the heme binding motif FGHGxHxCLG (yellow) 

(van Wageningen et al. 1998). 
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4.4 Export and Resistance 

 

The mib gene cluster (Figure 4.1) contains genes encoding three putative two-component 

ABC transporters (MibTU, MibEF and MibYZ) and a putative sodium/proton antiporter, 

MibN. Transport proteins in other lantibiotic and antibiotic gene clusters have been 

variously attributed to roles that include compound export, producer organism self-

resistance and regulation. The possible functions of the transporters encoded by the mib 

gene cluster are discussed in the following sections. 

 

4.4.1 MibTU 

mibT encodes a 316 amino acid protein with homology to members of the ATP-binding 

cassette family of proteins. mibU encodes a 290 amino acid protein with homology to 

members of the ABC-transporter permease family of proteins. mibT and mibU  appear to 

be translationally-coupled suggesting that the encoded proteins function together with a 

1:1 stoichometry. Based on other two-component ABC transport systems, it seems likely 

that the proteins would work as a T2U2 unit (Young et al. 1999). MibTU share similarity 

with CinTH of the cinnamycin biosynthetic gene cluster (Widdick et al. 2003). Both MibT 

and CinT have motifs conserved in ATP-binding cassette proteins (such as Walker A, 

Walker B, Signature (also known as LSGGQ motif) and H-loop amino acid motifs; Figure 

4.8). The lower level of similarity between the permease proteins, MibU and CinH, 

compared to the ATP-binding domains (30% between MibU and CinH, 46% between MibT 

and CinT) may reflect differences between the two predicted substrates; whereas 

cinnamycin is a globular type B lantibiotic, microbisporicin is a more elongated type A(I) 

lantibiotic. No putative peptidase domain was identified in MibU. 

As discussed in Chapter 1 the CinTH/MibTU class of lantibiotic transporters differs from 

those for export of type A(I), A(II) and B lantibiotics in low-GC organisms. This class of 

putative lantibiotic export ABC-transporters may be specific to actinomycete lantibiotic 

gene clusters. Both MibTU and CinTH show significant homology to the daunorubicin-

resistance ABC transport proteins DrrA (43% amino acid sequence identity with MibT) and 

DrrB (26% amino acid sequence identity with MibU) of Streptomyces peucetius, the 

producer of daunorubicin (Kaur 1997). This suggests a general function for these ABC-

transporters in the export of secondary metabolites. MibTU are likely to function in the 

export of microbisporicin from M. corallina. 
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Figure 4.8 Lantibiotic ATP-binding domain proteins. A section of an alignment 

(constructed using ClustalW (Chenna et al. 2003)) of MibF, MibT and MibZ amino acid 

sequences with those of ATP-binding domain proteins of other lantibiotic LanF proteins 

(SpaF, subtilin, EpiF, epidermin, NisF, nisin, NukF, nukacin-ISK-1), CinT (cinnamycin) and 

the daunorubicin export ATP-binding protein DrrA from Streptomyces peuciticus. 

Highlighted are the Walker A motif (blue), E/Q loop (yellow; see text), Signature motif 

(pink), Walker B motif (green) and H-loop (orange) (Okuda et al., 2010). 
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 4.4.2 MibEF 

mibE encodes a 249 amino acid protein with homology to members of the ABC-

transporter permease family of proteins. mibF encodes a 236 amino acid protein with 

homology to members of the ATP-binding cassette family of proteins. Based on homology 

to the LanE and LanF proteins encoded by other type A (I) lantibiotic gene clusters, such 

as subtilin (SpaEF), epidermin (EpiEF) and mutacin (MutEF), it is likely that MibE and 

MibF function co-ordinately, with MibF acting as an ATP-binding cassette and MibE as a 

membrane embedded permease unit. LanE and LanF, usually also in concert with LanG, 

are involved in conferring resistance to the lantibiotic made by many producing strains 

(Klein et al. 1994; Peschel et al. 1996).  LanF proteins are the ATP-binding component of 

the these transporters with a LanE and LanG heterodimer forming the permease structure 

in the membrane (Draper et al. 2008).  In some cases, such as mersacidin, LanFEG 

appear to be the only requirement for self-resistance (Guder et al. 2002).  

A gene encoding a homolog of the LanG proteins was not identified in the microbisporicin 

gene cluster suggesting that MibEF alone may be capable of forming the transporter. This 

would likely be through the formation of a MibE homodimeric permease. This is not 

without precedent as the absence of a LanG component has also been reported for the 

lacticin 3147 gene cluster where, although a lanI gene is present (secondary system of 

immunity), the lanEF genes are required for full immunity (Draper et al. 2009). Similarly 

the bovicin HJ50 biosynthetic gene cluster does not appear to encode a LanG component 

(Liu et al. 2009). Furthermore it was reported that although inactivation of NisE or NisF 

renders a nisin-producing strain of Lactococcus lactis more sensitive to exogenously 

applied nisin, this was not the case when NisG was inactivated when there was a much 

more subtle enhancement in sensitivity (Siegers et al. 1995). This suggests that NisEF 

alone are capable of providing nearly wildtype levels of resistance to nisin. This was not 

however the case for subtilin where SpaG was found to be essential for resistance in 

Bacillus subtilis (Klein et al. 1994). Taken together the evidence suggests that LanG might 

be dispensible for the formation of an ABC-transporter capable of providing resistance 

against some lantibiotics.  

ABC-transporters typically have a transmembrane-spanning permease component that 

consists of a total of 12 α-helices, with 6 α-helices per monomer (Young et al. 1999). MibE 

is predicted to have 6 transmembrane helices consistent with the formation of a dimeric 

permease unit that traverses the membrane. MibF has motifs characteristic of an ATP-

binding cassette protein (including Walker A, Walker B, Signature and H-loop amino acid 

motifs; Figure 4.8) and shares homology with LanF proteins. LanF proteins possess a 
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conserved E-loop in place of the Q-loop found in the ATP-binding proteins of other 

classes of ABC transporters (Okuda et al. 2010). E85 in the E-loop of NukF is essential for 

resistance to nukacin_ISK-1 in Staphylococcus warneri ISK-1 but is not required for 

ATPase activity (Okuda et al. 2010). When E85 in NukF was replaced with Q as in other 

ATP-binding proteins and Q88 in DrrA (daunorubicin transporter) was replaced with E as 

in the LanF proteins, both proteins retained transport activity although not to wildtype 

levels (Rao et al. 2008; Okuda et al. 2010). This suggests a functional difference between 

the two groups of ABC transporters (Okuda et al. 2010).  Interestingly, by aligning the 

sequences of MibF and MibT with proteins of both classes of ABC-transporter (Figure 4.8 

and 4.9) it is possible to deduce that MibF falls clearly into the LanF group with a 

conserved E-loop whereas MibT is more similar to DrrA with a Q-loop. Based on models 

of LanFEG proteins, it is assumed that MibEF would function to provide producer 

immunity by actively transporting the antibiotic compound away from its lipid II target 

within the membrane (Otto et al. 1998; Stein et al. 2003).  

 

Figure 4.9 A section of an alignment 

(constructed using ClustalW (Chenna et 

al. 2003)) of MibF and MibT ATP-binding 

domain proteins with other lantibiotic LanF 

proteins (SpaF, subtilin, EpiF, epidermin, 

NisF, nisin, NukF, nukacin-ISK-1) and the 

daunorubicin export ATP-binding protein 

DrrA from Streptomyces peuciticus. The 

alignment shows the region of LanF proteins reported to contain the E-loop in lantibiotic 

immunity systems (green box) rather than the canonical Q-loop of other ABC systems 

(yellow box) (Okuda et al., 2010). A proline residue also conserved in the LanF proteins is 

highlighted in pink although the significance of this residue is not known (Okuda et al., 

2010). The alignment was constructed based on a larger alignment from Okuda et al., 

2010. 
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4.4.3 MibYZ 

 

mibY encodes a 258 amino acid protein with homology to members of the ABC-

transporter permease family of proteins. mibZ encodes a 300 amino acid protein with 

homology to members of the ATP-binding cassette family of proteins and has motifs that 

are conserved within this protein family (Figure 4.8). Like MibT, MibZ falls into the Q-loop 

sub-class of this group of proteins (Okuda et al. 2010) suggesting that this ABC 

transporter, unlike MibF, is not involved in lantibiotic immunity.  

Close homologs of these two proteins are encoded by pairs of genes in other 

actinomycete genomes including Frankia EAN1pec (Franean1_3994 with 31% amino acid 

identity to MibY and Franean1_3995 with 54% amino acid identity to MibZ), 

Streptosporangium roseum (Sros_1169 with 28% amino acid identity to MibY and 

Sros_1168 with 55% amino acid identity to MibZ) and Actinomyces oral taxon 848 

(ZP_06162160.1 with 29% amino acid identity to MibY and ZP_06162161.1 with 56% 

amino acid identity to MibZ). Interestingly, mibJ, mibW and mibX are also conserved in an 

operon with the mibYZ homologs of these strains (Figure 4.10). Furthermore, although 

these genes are not located near a lantibiotic gene cluster in Frankia EAN1pec and 

Streptosporangium roseum, those in Actinomyces oral taxon 848 are located with a group 

of genes with very high levels of homology to mibA, mibB, mibC and mibD (see also 

section 4.3; Figure 4.10). This actinomycete likely produces a very similar lantibiotic to 

microbisporicin (discussed in detail in section 4.8). This also suggests that mibXWYZJ 

may be important for lantibiotic biosynthesis in M. corallina.  
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Figure 4.10 A schematic showing the syntenous arrangement of the homologs of mibX, 

mibW, mibJ, mibY and mibZ in the actinomycetes listed. Also shown are the homologs of 

mibA, mibB, mibC, mibD and mibQ in Actinomyces oral taxon 848. Genes are colour 

coded and labelled with the names of the respective genes from the mib cluster. In each 

case, the locus tags or gene names are given below. 
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4.4.4 MibN 

MibN encodes a 434 amino acid protein with homology to members of the sodium/proton 

antiporter family, particularly those associated with non-ribosomal-peptide synthetase 

(NRPS) and glycopeptide biosynthetic gene clusters, such as ComF (complestatin; 

Streptomyces lavendulae; 61% amino acid identity), ForY (fortimicin; Micromonospora 

olivasterospora; 47% amino acid identity), NapR2 (napyradiomycin; Streptomyces 

aculeolatus; 44% amino acid identity) and StaN (A47934; Streptomyces toyocaensis; 43% 

amino acid identity). The function of these proteins has not been investigated in detail but 

roles have been postulated in compound export and producer self-resistance (Dairi et al. 

1992; Chiu et al. 2001; Pootoolal et al. 2002; Winter et al. 2007).  

A feature common to all of the above apart from the fortimicin gene cluster is the presence 

of a gene encoding a flavin-dependent halogenase. Unlike MibH, these enzymes, 

although belonging to the flavin-dependent group, do not use tryptophan as a substrate 

(Chiu et al. 2001; Pootoolal et al. 2002; Winter et al. 2007). These proteins are quite 

similar to each other but have very low similarity (<20%) with MibH. However, in all of 

these proteins the GxGxxG motif is conserved, consistent with binding a flavin molecule 

(Dong et al. 2005).  Several other NRPS/glycopeptide gene clusters also contain genes 

encoding a halogenase and a sodium/proton antiporter, including the dalbavancin/A40926 

(Nonomuraea sp.) gene cluster (Sosio et al. 2003). The pyrrolnitrin gene cluster of 

Pseudomonas fluorescens consists of four genes (prnA,B,C and D, with prnA encoding a 

flavin dependent tryptophan halogenase) that were sufficient for pyrrolnitrin production in 

a heterologous host (Hammer et al. 1997). However, it is interesting to note that in the 

genome sequence of Pseudomonas fluorescens Pf-5 the genes adjacent to this cluster 

include a sodium/proton antiporter (PFL_3608; with 29% similarity to MibN) and a flavin 

reductase (PFL_3609; with 27% similarity to MibS). One possible conclusion from the co-

occurrence of the halogenase and antiporter genes within the same gene clusters (though 

not usually translationally coupled) is that they function together, however there are 

currently no reports of a requirement for ion transport as part of the halogenase 

mechanism. Alternatively, since the halogenase MibH does not appear to show high 

levels of similarity to the halogenases in these other gene clusters, MibH and MibN may 

not have co-evolved. The two genes may have been acquired by M. corallina via 

horizontal transfer from an NRPS gene cluster, after which only the halogenase has 

adapted to use a different substrate (the MibA prepropeptide) while MibN has no role in 

microbisporicin production.  
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MibN is predicted to contain 11 transmembrane helices (TMHs), consistent with a 

membrane embedded transport protein. Although classified as a sodium (or 

potassium)/proton antiporter by sequence homology, it is possible that the transporter is 

able to export other substrates and it may have a resistance function. Interestingly, in 

Bacillus subtilis a sodium/proton antiporter, TetA(L), with 14 predicted TMHs, exports 

tetracycline in exchange for proton influx as part of a tetracycline resistance mechanism, 

as well as acting as a sodium/proton exchanger (Cheng et al. 1996a; Cheng et al. 1996b; 

Cheng et al. 1996c). TetA(L) may play a major role in ion homeostasis as well as having a 

protective role against tetracycline (Cheng et al. 1996a; Cheng et al. 1996b; Cheng et al. 

1996c), and it is possible that many bacterial antiporter proteins play dual roles in both 

cellular physiology and drug efflux (Krulwich et al. 2005). However, it should be noted that 

there is no sequence similarity between TetA(L) and MibN.  

A third possible role for this protein is in regulation. Recently a system was described in B. 

subtilis in which the movement (in this case leakage out of the cell) of potassium ions is 

sensed by a histidine kinase protein leading to the induction of a signalling cascade that 

results in biofilm formation (Lopez et al. 2008). This raises the possibility that many ion 

fluxes across membranes could have a hitherto unrecognised regulatory function. An ion 

antiporter could play a role in altering ion concentrations that would subsequently induce a 

regulatory response. Interestingly, the recent heterologous over-expression of a 

sodium/proton antiporter (SCO7832) from S. coelicolor in Streptomyces lividans increased 

actinorhodin biosynthesis and in Streptomyces sp. CK4412 induced tautomycetin 

biosynthesis (Park et al. 2009). Increased levels of tautomycin biosynthesis were shown 

to coincide with increases in expression of the biosynthetic gene cluster and not to 

increased export of the compound  from the mycelium (Park et al. 2009). 

4.5 Regulation 

4.5.1 MibXW 

MibX belongs to the extracytoplasmic function (ECF) family of σ factors, sharing 49% and 

43% amino acid identity with putative ECF σ factors from Streptosporangium roseum 

DSM43021 (Sros_1172) and Frankia sp. EAN1pec (Franean1_3991), respectively. MibX 

also shares 27% identity with CnrH, an experimentally-verified ECF sigma factor 

regulating cobalt and nickel resistance in Cupriavidus metallidurans CH34 (previously 

Ralstonia metallidurans CH34) (Tibazarwa et al. 2000). A recent report grouped ECF 

sigma factors by sequence comparison into 40 distinct groups (Staron et al. 2009). 

Although MibX was not part of this analysis, close homologs of MibX from Bradyrhizobium 
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BTAi1 (BBta_3011; 37% amino acid sequence identity), Mesorhizobium loti MAFF303099 

(mll5118; 34% identity) and Rhodopseudomonas palustris TIE-1 (Rpal_2022; 35% 

identity) were grouped into class 33 (Staron et al. 2009). No members of this group have 

been investigated experimentally and so far appear restricted to the Proteobacteria 

(Staron et al. 2009). 

The ECF sigma factors are a sub-group of RNA polymerase sigma factors that respond to 

extracellular signals (e.g. membrane stress) by influencing transcription initiation through 

recruitment of RNA polymerase core enzyme at relevant promoter sequences (Paget et 

al. 2002). These sigma factors fall into the wider group of the σ70 family. The ECF sigma 

factors were originally described in S. coelicolor (σE) (Lonetto et al. 1994) but have 

subsequently been identified in a wide variety of Gram-positive and Gram-negative 

bacteria (Paget et al. 2002). In several bacteria, especially those undergoing complex 

development, the ECF sigma factors represent the largest group of sigma factors, for 

example 51 of a total of 65 sigma factors in S. coelicolor (Paget et al. 2002). In general 

ECF sigma factors are involved in responses to stress (such as cell envelope or oxidative 

stress), iron or other metal uptake, development and virulence regulation (Staron et al. 

2009). ECF sigma factors often have pleiotropic effects with large regulons (Paget et al. 

2002).  

ECF sigma factors differ from other σ70 proteins in having only the σ2 and σ4 regions 

conserved for DNA binding and interaction with RNA polymerase (Lonetto et al. 1994), 

respectively. Furthermore, an alternative consensus motif is found at many ECF-

dependent promoters compared to that of the σ70 proteins, characterised by an “AAC” 

motif at the -35 region and “CGT” nucleotides clustered at the -10 region (Helmann 2002; 

Lane et al. 2006). Many ECF sigma factors auto-regulate their own expression (Staron et 

al. 2009). 

ECF sigma factor activity is regulated by a number of mechanisms including at the level of 

transcription (e.g. S. coelicolor σE) or by the protoeolytic processing of a pro-σ-factor (e.g. 

S. coelicolor BldN) (Paget et al. 2002). However, in the majority of characterised ECF 

sigma factors a second protein, usually coexpressed, is involved in regulating ECF sigma 

factor activity. The anti-σ-factor is able to sequester the σ-factor away from its promoter 

binding sites thus preventing transcription initiation until the receipt of a specific signal 

(Staron et al. 2009). This signal would likely be sensed by the anti-σ-factor, or a protein 

regulating it in some way, leading to the release of the σ-factor and subsequent 

expression of the regulated genes. This release can be mediated via a conformational 
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change (for example in S. coelicolor σR regulation by RsrA (Paget et al. 2002) or via 

proteolytic degradation (Heinrich et al. 2009a).  

Proteolytic degradation of an anti-sigma factor as a mechanism for ECF sigma factor 

release has been well studied for RsiW, the anti-sigma factor regulating σW in B. subtilis. 

Here the signal for ECF sigma factor release is cell envelope stress (CES) induced by 

antibiotics such as vancomycin or by alkaline shock (Cao et al. 2002b). The membrane 

embedded RsiW binds to σW  in the absence of such signals but upon CES RsiW 

undergoes a two-step regulated intramembrane proteolysis (RIP) that releases the 

cytoplasmic domain of RsiW along with the bound σ-factor (Schobel et al. 2004). It is 

thought that the protease carrying out the first cleavage of RsiW, PrsW, is the point of 

regulation and likely responds to the membrane signals (Ellermeier et al. 2006). Critical 

residues in the extracytoplasmic loops of this protein, which may have a role in this 

mechanism, have been identified (Ellermeier et al. 2006). More recently an ABC 

transporter EcsAB was found to play a role in regulating the activity of the second 

protease, RasP (Schobel et al. 2004), although the mechanism of this is unknown 

(Heinrich et al. 2008). EcsAB has interestingly been grouped with antibiotic resistance 

efflux transporters (Heinrich et al. 2008) and contains an E-loop rather than the standard 

Q-loop of other ABC transporters (discussed in section 4.4.2). The soluble N-terminal 

fragment of RsiW is subsequently degraded by a cytoplasmic ClpP proteolytic complex 

releasing the active σ-factor (Zellmeier et al. 2006). Sequence similarity between anti-σ-

factor genes is often very low, however some features are conserved, such as the location 

of the gene near (if not downstream of and translationally coupled to) the cognate ECF σ-

factor gene. The anti-sigma factor domain (ASD) is also conserved in an estimated 33% 

of anti-sigma factors and includes the highly conserved HxxxCxxC motif in the ZAS family 

of anti-σ-factors (38% of ASD-containing anti-sigma factors (Campbell et al. 2007; Jordan 

et al. 2008)). The ASD was identified through structure-based studies of Rhodobacter 

sphaerorides ChrR and E. coli RseA, which share homology in the N-terminal 1-81 and 1-

90 amino acids, respectively (Campbell et al. 2007). Many of these residues were found to 

be involved in contacting the cognate ECF sigma factor (Campbell et al. 2007). In 

contrast, the C-terminal domains of these proteins share very little homology (Campbell et 

al. 2007). 

mibW, downstream of and apparently translationally coupled to mibX, encodes a protein 

with low levels of similarity to genes lying downstream of homologs of mibX; MibW 

homologs occur in S. roseum DSM43021 (Sros_1171), Actinomyces oral taxon 848 

(ZP_06162158) and Frankia sp. EAN1pec (Franean1_3992), sharing 20%, 21% and 18% 

identity with MibW, respectively (Figure 4.10). More convincingly, the proteins from 
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Actinomyces and Frankia share with MibW a predicted structure of six transmembrane 

helices with a cytoplasmic N-terminal region  (73 amino acids long in MibW) (TMHMM v.2 

(Kall et al. 2007); Figure 4.11 and 4.12). Sros_1171 by contrast is predicted to form five 

transmembrane helices with a large cytoplasmic loop between helices 1 and 2, and a N-

terminal extension outside the cell (TMHMM v.2 (Kall et al. 2007); Figure 4.11). The class 

of ECF sigma factors (class 33) into which close homologs of MibX group (discussed 

above) was noted to contain characteristic membrane-anchored anti-σ factors (Staron et 

al. 2009). An alignment of the amino acid sequences of MibW with the Actinomyces and 

Frankia proteins indicates some conserved residues, particularly arginines in the N-

terminal region and residues predicted to project from the internal loops at the ends of the 

transmembrane helices (Figure 4.12). These residues might be involved in interacting with 

the ECF sigma factors. There was no obvious homology with the ASD consensus of some 

other anti-sigma factors (Campbell et al. 2007). A number of conserved proline residues 

are also present that are likely to introduce kinks into the transmembrane helices (Figure 

4.12).  
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Figure 4.11 A schematic showing the predicted arrangements of the transmembrane 

helices of MibW and its homologs ZP_06162158 (Actinomyces oral taxon 848), 

Franean_3992 (Frankia EAN1pec) and Sros_1171 (Streptosporangium roseum). 

Predictions were made using the full length protein sequences submitted to TMHMM v.2 

(Kall et al. 2007). Transmembrane helices are shown in red, inside loops in blue and 

outside loops in pink.  
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Figure 4.12 A schematic showing an alignment (constructed using ClustalW (Chenna et 

al. 2003)) of the amino acid sequence of MibW with its homologs ZP_06162158 

(Actinomyces oral taxon 848) and Franean_3992 (Frankia EAN1pec). The arrangement of 

helices and loops in MibW is modelled above the alignment. Predictions were made using 

the full length protein sequences submitted to TMHMMv.2 (Kall et al. 2007). 

Transmembrane helices are shown in red, inside loops in blue and outside loops in pink. 

Conserved charged and polar residues, prolines and tryptophan are highlighted in yellow. 

  



Chapter 4 The Microbisporicin Gene Cluster 
 

200 
 

The proximity of these mibW homologs to the mibX homologs suggests that they may 

function as anti-σ factors to suppress cognate ECF sigma factor activity. The predicted 

structure of these proteins suggests that this is likely to be mediated by sequestration of 

the ECF sigma factor at the cell membrane. Release of the ECF sigma factor is likely to 

be mediated by regulated intramembrane proteolysis or by the receipt of a specific signal 

at the cell membrane inducing a conformational change in the anti-sigma factor. By 

analogy to RsiW in B. subtilis, a proteolytic mechanism would involve at least one 

protease acting within the cell membrane and possibly an ABC-transporter like EcsAB 

(Heinrich et al. 2008). These functions could be provided by mibJ (section 4.6.1), mibY 

and mibZ (section 4.4.3), homologs of which are genetically linked to mibXW homologs in 

other species suggesting a functional linkage (Figure 4.10). 

The position of mibXW within the microbisporicin gene cluster, and also of their homologs 

in Actinomyces oral taxon 848 within a gene cluster likely to encode a similar lantibiotic 

(Figure 4.10 and section 4.8), suggests that the encoded proteins play a role in regulating 

lantibiotic production. This may not be surprising given the roles ECF sigma factors play in 

regulating the expression of genes associated with cell envelope stress (which would be 

expected to be induced by the action of microbisporicin inhibiting cell wall biosynthesis) 

and antibiotic-induced stress. For example, the σW regulon in B. subtilis, which includes 

genes involved in antimicrobial resistance, was induced by antibiotics that inhibit cell wall 

biosynthesis (Cao et al. 2002b; Butcher et al. 2006). However, due to the wide range of 

compounds that induced σW activity, the authors concluded that this response is more 

likely to be mediated by general cell envelope stress than by the interaction of a specific 

antibiotic with the anti-sigma factor RsiW (or one of the proteins regulating its proteolysis) 

(Cao et al. 2002b). The σX regulon of B. subtilis was similarly found to include genes 

involved in providing protection against antimicrobial peptides such as nisin by affecting 

cell envelope properties (Cao et al. 2004). Furthermore, the bacitracin resistance gene 

bcrC was reported to be regulated by both σX and σM (Cao et al. 2002a) but this is again 

most likely mediated through sensing cell envelope stress (Rietkotter et al. 2008). Finally, 

biosynthesis of sublancin, a type A(II) lantibiotic produced by B. subtilis strains that are 

lysogenic for the SPβ bacteriophage, was reported to be dependent on both σX  and, to a 

lesser extent, σM. However this effect is mediated in an indirect manner though the up-

regulation of the transition state regulator Abh which induces the sublancin biosynthetic 

operon (Luo et al. 2009).  

Given their location within the mib cluster, MibXW would be predicted to be pathway-

specific regulators of microbisporicin biosynthesis. ECF sigma factors are typically 

pleiotropic regulators with large unlinked regulons, however some examples exist of 
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pathway-specific regulation. One of the early examples of an ECF sigma factor was CarQ 

from Myxococcus xanthus, which is involved in the regulation of light-induced 

carotenogenesis (Browning et al. 2003). However the full regulon of CarQ has not been 

explored and could include other genes and operons. Nickel and cobalt resistance in 

Cupriavidus metallidurans CH34 is mediated by a single operon cnrYHXCBAT that 

encodes the efflux pump CnrCBA (Grass et al. 2000; Grass et al. 2005). cnrH encodes an 

ECF-sigma factor (which shares homology with MibX as described above), while cnrX and 

cnrY encode its cognate anti-sigma factor complex (CnrX senses nickel at the cell surface 

and CnrY, a transmembrane protein, interacts with CnrH in the cytoplasm) (Grass et al. 

2000). These proteins are responsible for regulating expression of the cnr operon in 

response to nickel (Grass et al. 2000). There are also examples where sigma factor genes 

are linked to antibiotic gene clusters. For example, a new class of sigma-70 factor (group 

5), which is related to ECF sigma factors but with distinct features, was identified in 

Clostridium species where members often regulate the expression of linked toxin genes 

and in one case the expression of a bacteriocin (Dupuy et al. 2006). A recent report has 

described the presence of an ECF sigma factor gene dhpO, within the dehydrophos 

biosynthetic gene cluster of Streptomyces luridus, the product of which shares 25% amino 

acid sequence identity with MibX (Circello et al. 2010). However, there is no indication of 

the presence of an anti-sigma factor gene in the dhp cluster and no phenotype was 

reported for the inactivation of dhpO when the mutant cluster is expressed in a 

heterologous host, suggesting that it is not essential for dehydrophos biosynthesis 

(Circello et al. 2010).  

MibX encodes an ECF sigma factor likely involved in regulating the expression of genes in 

the mib cluster and its activity is likely to be controlled by the putative anti-sigma factor 

MibW. MibW would sequester MibX at the cell membrane, away from its promoter targets 

until receipt of a specific signal. This as-yet-unknown signal would induce the release of 

the ECF sigma factor allowing it to interact with promoters in the mib gene cluster. 

 

4.5.2 MibR 

mibR encodes a hypothetical protein of 260 amino acids that has very little end-to-end 

homology with any proteins in the current NCBI database. MibR possesses a helix-turn-

helix domain found in the LuxR family of regulatory proteins between amino acids 173 to 

214 (Pfam; (Finn et al. 2008)). The closest homolog of MibR is a response regulator 

receiver domain protein from Micromonospora sp. L5 (29% amino acid identity across a 

161 amino acid alignment). Other protein homologs mainly show similarity only within the 
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putative helix-turn-helix domain of the protein. A homolog in S. coelicolor (SCO5455; 35% 

identity across 125 amino acids) is encoded by a gene located in an operon with a 

putative sensor kinase, an integral membrane protein and ATP-binding domain protein 

(StrepDB). MibR is a candidate transcriptional regulator of the microbisporicin gene 

cluster. 

4.6 Genes of unknown function 

4.6.1 MibJ 

mibJ encodes a 210 amino acid protein with very few homologs in the current NCBI 

database. Homologs of MibJ are proteins of Frankia EAN 1pec (Franean1_3993; 33% 

amino acid identity over 183 amino acids) and Streptosporangium roseum (Sros_1170; 

37% identity over 94 amino acids) that are clustered with homologs of mibYZWX, as 

described previously (Figure 4.10). Through low homology to MibJ, it was also possible to 

identify further homologs of this group of genes in the Gordonibacter pamelaeae 7-10-1-

bT draft genome sequence (GPA_30300 to GPA_30370). This organism is also an 

actinomycete (within the Coriobacteridae sub-class). The conservation of mibX, mibW, 

mibY, mibZ and mibJ in such an array of actinomycete genomes (Frankia EAN1pec, 

Streptosporangium roseum, Actinomyces oral taxon 848 (ZP_06162159 shows very low 

overall sequence similarity to MibJ but contains conserved elements as described below), 

Eggertella lenta DSM 2243 (Coriobacteridae; Elen_1454–Elen_1458), and 

Bifidobacterium longum subsp. infantis ATCC 15697 (Actinobacteridae; Blon_1401-

Blon_1405)) strongly suggests a functional linkage between these proteins. MibJ is likely 

to be involved in the mechanism of ECF sigma factor regulation but the exact function of 

this protein is unknown.  

MibJ is predicted to contain four transmembrane helices suggesting a membrane-

embedded location in the cell. Franean1_3993 and Sros_1170 (which share higher 

sequence similarity to each other than to MibJ) are both predicted to form five 

transmembrane helices (TMHMM v2 (Kall et al. 2007); Figure 4.13). An internally 

projected loop is predicted in all three proteins between residues 66-90 (MibJ numbering) 

and includes a number of conserved charged and polar residues including 

aspartates/glutamates, glutamine, threonine and arginines (Figure 4.13). Despite low 

overall (<20%) amino acid sequence homology between MibJ and ZP_06162159 

(Actinomyces oral taxon 848), this protein is predicted by TMHMM v2 (Kall et al. 2007) to 

contain six TMHs with the same conserved cytoplasmic loop (between amino acids 68-

86). Alignment of MibJ with all of the possible MibJ homologs from actinomycetes 
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containing the mibXWYZJ genes indicates that many of the residues described above are 

conserved within this putative loop region (Figure 4.14). These residues are likely to be 

functionally important and given the high number of charged and polar residues they could 

play a catalytic role or be involved in a protein-protein interaction. 
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Figure 4.13 A schematic showing an alignment (constructed using ClustalW (Chenna et 

al. 2003)) of the amino acid sequences of MibJ and its homologs Franean_3993 (Frankia 

EAN1pec) and Sros_1170 (Streptosporangium roseum). Below are shown the predicted 

arrangements of the transmembrane helices of the same proteins. Predictions were made 

using the full length protein sequences submitted to TMHMM v.2 (Kall et al. 2007). 

Transmembrane helices are shown in red, inside loops in blue and outside loops in pink. 

Above the alignment a blue line indicates the position of a conserved internally positioned 

loop predicted in all three proteins (MibJ; amino acids 66-90, Sros_1170; amino acids  38-

95, Franean_3993 amino acids 68-93). Conserved proline, charged and polar residues in 

this loop are highlighted in yellow. 
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Figure 4.14 A section from an alignment (constructed using ClustalW (Chenna et al. 

2003)) of the amino acid sequences of MibJ and its close homologs Franean_3993 

(Frankia EAN1pec) and Sros_1170 (Streptosporangium roseum) along with proteins from 

other actinomycetes which are weak homologs of MibJ;  ZP_06162159 (Actinomyces oral 

taxon 848), Elen_1456 (Eggertella lenta DSM 2243), Blon_1403 (Bifidobacterium longum 

subsp. infantis ATCC 15697) and GPA_30330 (Gordonibacter pamelaeae). The region 

shown is predicted to contain a cytoplasmic loop in MibJ (and several of its homologs; see 

text) indicated by the blue line above the alignment. Residues that are conserved or 

partially conserved between the sequences are highlighted with yellow boxes. 
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4.6.2 MibQ 

mibQ encodes a hypothetical protein of 129 amino acids. MibQ shows homology to 

proteins from Actinomyces oral taxon 848 (ZP_06162162; 38% identity over 91 amino 

acids) and from Bifidobacterium longum subsp. infantis ATCC 15697 (Blon_1406; 37% 

amino acid sequence identity end-to-end), the genes for which are located with the 

mibXWYZJ homologs of these organisms (sections 4.4.3, 4.5.1 and 4.6.1) (Figure 4.10). 

Alignment of these three protein sequences suggested that the Actinomyces homolog 

might be missing amino acids at the N-terminus. The open-reading frame encoding 

ZP_06162162 as indentified in the draft genome sequence by Glimmer2 was reannotated 

to include a further 43 amino acids at the N-terminus which placed the start codon very 

close to a putative ribosome-binding site (Kieser et al. 2000). The alignment of the 

resulting protein sequence (ZP_06162162*) with those of MibQ and Blon_1406 indicates 

a number of conserved residues (Figure 4.15a). 

MibQ has a predicted signal peptide sequence with a predicted cleavage site at amino 

acids 30-31(SignalP 3.0; (Emanuelsson et al. 2007)) and contains a conserved lipobox 

motif LAGC (Sutcliffe et al. 2002; Hutchings et al. 2009). This motif is also predicted by 

the tool lipoP (Juncker et al. 2003). The lipobox motif (L-3-[A/S/T]-2-[G/A]-1-C+1) in the 

signal peptide of lipoproteins allows them to be anchored in the cell membrane by 

covalent N-terminal lipidation (Sutcliffe et al. 2002; Hutchings et al. 2009). Alignment of 

the predicted signal peptide regions of the three proteins described above (MibQ, 

ZP_06162162 and Blon1406) revealed conservation of this motif (Figure 4.15b). Analysis 

of the amino acid sequence of MibQ using Pfam (Finn et al. 2008) indicates that it may 

share motifs with other lipoproteins, such as the sporulation lipoprotein YhcN/YlaJ from B. 

subtilis. Lipoproteins in Gram-positive bacteria are involved in a range of functions 

including sensing, substrate recognition and cell envelope homeostasis (Hutchings et al. 

2009).  

 

CseA is a lipoprotein involved in negatively regulating the ECF sigma factor σE in S. 

coelicolor (Hutchings et al. 2006). The lipobox motif of MibQ and its homologs is 

conserved with that of CseA, although CseA shares only 19% amino acid sequence 

identity with MibQ (Figure 4.15b). The exact mechanism by which CseA functions is not 

clear but the implication of a lipoprotein regulating activation of an ECF sigma factor 

suggests that this could be the role of MibQ. This is supported by the conservation of 

mibQ homologs near the homologs of mibXW in at least three actinomycetes. 
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Figure 4.15 A; An alignment (constructed using ClustalW (Chenna et al. 2003)) of the 

amino acid sequences of MibQ and its homologs ZP_06162162 (Actinomyces oral taxon 

848; the start codon was adjusted compared to the reported amino acid sequence from 

the NCBI database as indicated by a *, see text for details) and Blon_1406 

(Bifidobacterium longum subsp. infantis ATCC 15697).  B; A section from an alignment of 

the predicted signal peptide regions of the same proteins with that from CseA (S. 

coelicolor) showing the conserved lipobox motif L-3-[A/S/T]-2-[G/A]-1-C+1 (Sutcliffe and 

Harrington 2002) highlighted in yellow.  
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A number of lantibiotic clusters, including those of the type A(I) group, contain genes 

encoding LanI proteins. NisI is a lipoprotein (containing a signal peptide and lipobox motif 

LSGC). Post-translational removal of the first 19 amino acids of NisI allows the addition of 

palmitic acid at the conserved cysteine of the lipobox motif, anchoring the protein to the 

cell membrane where it acts to block nisin activity by binding the lantibiotic before it can 

bind to the cellular target lipid II (Qiao et al. 1995; Stein et al. 2003). There is very little 

sequence similarity between LanI proteins presumably reflecting differences in the bound 

lantibiotic target (Draper et al. 2008). There is no indication of any sequence similarity 

between MibQ and either NisI or SpaI except for the lipobox motif which is present in the 

N-terminal region of all three proteins. An alternative function of MibQ could therefore be 

as an auxiliary self-resistance mechanism for M. corallina through the interaction with 

microbisporicin at the cell envelope to prevent interaction with the presumed cellular target 

Lipid II. 

 

4.6.3 MibV 

 

mibV encodes a 334 amino acid hypothetical protein with very few homologs in the 

current non-redundant protein database. MibV shows low similarity (<30% amino acid 

sequence identity) to hypothetical proteins in a number of Streptomyces species, including 

S. coelicolor, S. griseus, S. venezuelae and S. ambofaciens, as well as to Bacillus 

amyloliquefaciens, Burkholderia ubonensis and Saccharopolyspora erythraea.  The 

closest homolog (NdasDRAFT_3165; 36% amino acid identity) of MibV is found in a 

recently completed genome sequence of the actinomycete Nocardiopsis dassonvillei. In 

this organism the homolog of mibV is located next to genes that appear to belong to an 

uncharacterised lantibiotic gene cluster.  The lanA gene from this cluster was predicted to 

encode a prepropeptide falling within the type A(I) class (it has the “FNLD” motif) but with 

otherwise only low similarity to MibA. Homologs of MibV do not indicate any potential 

function but association with a lantibiotic gene cluster in another organism suggests that 

this protein might have a novel role in lantibiotic biosynthesis. 
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4.7 Microbisporicin-like lantibiotics from other bacteria 

 

The identification of genes homologous to those of the mib cluster in other bacteria 

suggests that microbisporicin may belong to a larger family of lantibiotics. The biosynthetic 

enzymes encoded by mibB, mibC and mibD have homologs in both Bacillus clausii KSM-

K16 and Actinomyces oral taxon 848 (section 4.3). This observation prompted a more 

detailed examination of the genome sequences of these organisms in the neighbouring 

regions of these genes. 

 In the B. clausii genome a possible lanA gene had not been identified by the genome 

annotation software. However by analysing this region (B. clausii KSM-K16 369440-

3707200)  in Artemis (Rutherford et al. 2000) it was possible to identify a putative lanA 

gene from 3706154-3706766. The lanA gene encodes a putative prepropeptide with 

significant homology to MibA (34% end-to-end amino acid sequence identity; Figure 4.16) 

and using the known structure of microbisporicin as a guide it was possible to predict the 

structure of the mature putative lantibiotic, which was named clausin (Figure 4.17). This 

molecule was also isolated from another strain of B. clausii and the predicted structure 

confirmed (Bouhss et al. 2009; Bressollier et al. 2009). This strain of B. clausii was 

isolated from a probiotic solution of multi-antibioitic resistant Bacillus spores used in the 

treatment of intestinal disorders, marketed as Enterogermina© by Sanofi-Aventis 

(Bressollier et al. 2009). Clausin has recently been reported to interact with lipid 

precursors Lipid I and Lipid II of cell wall biosynthesis through binding to the 

pyrophosphate moiety within the membrane (Bouhss et al. 2009). Apart from the 

homology to mibA, B, C and D, there is no other similarity between the two gene clusters 

and the B. clausii cluster otherwise shares more similarity with those of the low GC Gram-

positive type A (I) clusters, as would be expected for a Bacillus species e.g. a LanT-like 

export protein and a two-component histidine kinase-response regulator pair presumably 

involved in regulation. Although not possessing the chlorinated tryptophan of 

microbisporicin at position 4 (where valine is incorporated) or the dihydroxylated proline at 

position 14 (where there is a threonine), clausin appears to have a similar C-terminal 

structure and a highly conserved MibD homolog suggests that an S-[(Z)-2-aminovinyl]-D-

cysteine will be present in the mature compound (Figure 4.17). Clausin is likely to have 

largely the same lanthionine bridge structure as microbisporicin, although it is shorter by 

two amino acids (Figure 4.17). A very similar compound and gene cluster was also 

identified through a homolog of mibB in the genome sequence of Bacillus mycoides DSM 

2048.  



Chapter 4 The Microbisporicin Gene Cluster 
 

210 
 

 

 

Figure 4.16 An alignment (constructed using ClustalW (Chenna et al. 2003)) of the MibA 

prepropeptide with those of planosporicin (PspA), actoracin (ActA) and clausin (ClsA). The 

partially conserved FNLD motif is shown in light blue. A putative conserved cleavage site 

is shown in green. Residues that appear to vary highly in this group of lantibiotics are 

highlighted in yellow.  

 

A lantibiotic gene cluster with a great deal of similarity to the mib cluster was identified in  

nucleotide region 154000-170000 of the Actinomyces oral taxon 848 draft genome 

sequence (Figure 4.10). In this cluster, not only were the biosynthetic genes mibB, mibC 

and mibD highly conserved (section 4.3) but also mibXWJYZ (sections 4.4, 4.5 and 4.6) 

(Figure 4.10). The Actinomyces prepropeptide (LanA) shares 49% amino acid similarity 

(end-to-end) with MibA (Figure 4.16) and modelling this peptide using the microbisporicin 

structure suggests that it is likely to possess even greater similarity to microbisporicin than 

clausin (Figure 4.17). This putative lantibiotic was named actoracin. As with clausin, 

although the residues for chlorination and hydroxylation are not present (tryptophan and 

proline are replaced by valine and glutamine, respectively), actoracin is likely to have the 

C-terminal S-[(Z)-2-aminovinyl]-D-cysteine modification (Figure 4.17). The genome of 

Actinomyces oral taxon 848 strain F0332 was sequenced as part of the human 

microbiome project (http://nihroadmap.nih.gov/hmp/) after isolation from the human oral 

cavity. Many actinomycetes of the Actinomyces genera are commensals and some are 

also pathogens, for example Actinomyces israelii. Due to the large number of bacteria co-

habiting in the human mouth it is conceivable that actoracin could be an anti-microbial 

used by Actinomyces for competition. However it is curious that within the actoracin gene 

cluster there is no homolog of the mibTU export genes, or genes that could be involved in 

self-resistance, although it is possible that the homologs of MibYZ could have this role or 

these functions could be provided by other genes in the genome. The absence of self-

resistance genes might however imply that this compound has a signalling function rather 

than acting as an anti-microbial. 

  

http://nihroadmap.nih.gov/hmp/
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Figure 4.17 A comparison of microbisporicin-like lantibiotic structures. The microbisporicin 

and planosporicin structures are as reported (Castiglione et al. 2008; Maffioli et al. 2009). 

The structures of actoracin (Actinomyces), kineosporiacin (Kineosporia sp.) and clausin 

(B. clausii) were modelled on microbisporicin as described in the text. Residues are; 

unmodified (blue), dehydrated (green) dehydrated and cyclised residues (purple), 

chlorinated tryptophan (pink) and (putative) hydroxylated proline (grey). 
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Another potential member of the microbisporicin-like lantibiotic family was identified from 

Kineosporia sp. and a patent (in Japanese) was filed for this compound (Shimizu et al. 

2004). Kineosporia is an actinomycete of the Kineosporiaceae family. These authors 

report that Edman sequencing was blocked after the first residue, probably due to the 

incorporation of lanthionine bridges in the molecule (Shimizu et al. 2004). Instead they 

used a chemical-derivitisation method which makes the peptide accessible to Edman 

sequenicing (Meyer et al. 1994). However this method does not allow the discrimination of 

cysteine, serine and threonine incorporated into lanthionine bridges and dehydrated 

serine and threonine residues and therefore only the partial amino acid sequence of the 

mature compound was reported (Shimizu et al. 2004). Since the genome sequence for 

this species of Kineosporia (or any Kineosporia sp.) is not available, it is not possible to 

look for sequence similarities with the mib gene cluster. The structure of the mature 

molecule, termed here kineosporiacin, was predicted from the partial sequence available 

(Shimizu et al. 2004) and the structure of microbisporicin (Figure 4.17). The proline 

residue at position 14 in microbisporicin is conserved in kineosporiacin, suggesting that it 

too could be hydroxylated. A phenylalanine at the C-terminus of this molecule suggests 

that a S-[(Z)-2-aminovinyl]-D-cysteine modification similar to that of microbisporicin might 

be present in the mature molecule and could not be detected by the methods used by 

these authors. 

The final lantibiotic with reported similarity to microbisporicin is planosporicin from 

Planomonospora sp., an actinomycete in the same family as M. corallina (Castiglione et 

al. 2007; Maffioli et al. 2009). Planosporicin shares a number of similarities with 

microbisporicin, although interestingly, like clausin and actoracin, it is not modified by 

chlorination or hydroxylation and does not contain a S-[(Z)-2-aminovinyl]-D-cysteine at the 

C-terminus (Figure 4.17). Instead, planosporicin has a lanthionine bridge at the C-

terminus, the reason for which is not clear. The planosporicin prepropeptide was identified 

as part of the structural revision of this molecule (structural protein 97518 preproprotein 

from Planomonospora sp. DSM 14920; (Maffioli et al. 2009)) (Figure 4.16). 

This analysis indicates that microbisporicin appears to be a member of a larger group of 

lantibiotics (many of which are produced by rare actinomycetes) which share structural 

and sequence features that presumably contribute to a specific mode of action. It is 

interesting to speculate on how these gene clusters have evolved in such diverse species 

(in actinomycetes and Bacillus sp.) and whether the arrival at this final structure is due to 

convergent evolution selecting a particularly effective anti-microbial action. The 

conservation of the biosynthetic enzymes in the clausin, actoracin and microbisporicin 

gene clusters may be a product of horizontal transfer or of convergent evolution.  
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4.8 The absence of the microbisporicin gene cluster in M. 

corallina DSM 44681 and DSM 44682 

 

The lack of microbisporicin production by M. corallina strains DSM 44681 and DSM 44682 

was described in Chapter 3. To investigate whether this reflected the absence of the 

microbisporicin gene cluster from these strains or the presence of a silent gene cluster, 

PCR-based and Southern blot hybridisation strategies were employed using genes from 

the mib gene cluster as probes.  

PCR primers (LFnnnR/F) were designed for the following regions of the mib cluster: mibA 

(mibA plus downstream intergenic sequence - LF013F and LF013R yielding a 592bp 

product), mibC 5‟ (LF001F and LF001R yielding a 249bp product), mibC 3‟ (LF002F and 

LF002R yielding a 202 bp product), mibD (LF004F and LF004R yielding a 184 bp product) 

and mibH (LF006F and LF006R yielding a 344 bp product). These primers were used to 

amplify these regions from control NRRL 30420 gDNA and from DSM 44681 and DSM 

44682 gDNA samples (Figure 4.18). In each case a band of the correct size was amplified 

from the NRRL 30402 gDNA control. Although with some primer pairs (namely those for 

mibA and mibH) non-specific bands were amplified from the DSM 44681 and DSM 44862 

template gDNA, no bands of the expected sizes were obtained (Figure 4.18). One of the 

putative mibA amplicons from the DSM 44682 gDNA sample (about 470 bp in size 

compared to the expected 592 bp) was excised, purified by gel extraction and the 

resulting PCR fragment sequenced. The sequence bore no similarity to mibA and 

appeared to have originated by fortuitous amplification of part of a histidine kinase gene.  
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Figure 4.18 Absence of the microbisporicin gene cluster in 

M. corallina DSM 44681 and DSM 44682 investigated by 

PCR. PCR was carried out with; genomic DNA from NRRL 

30420, from DSM 44681, from DSM 44682 or H2O as a 

template. Primers specific to regions of the microbisporicin 

cluster (see text) were used to amplify these regions from 

each template. The PCR products were separated on a 1% 

TBE agarose gel by electrophoresis. The size of each band 

is indicated by molecular weight markers labelled on the 

sides of the gels in base pairs (bp).  
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These results were supported by Southern blot hybridisation using digoxigenin-labelled  

probes designed to bind to mibA (mibA plus the downstream region between mibA and 

mibB; generated by PCR amplification using primers LF013F and LF013R) and mibD 

(generated by PCR amplification using primers LF004F and LF004R). Genomic DNA 

extracted from NRRL 30420, DSM 44681, DSM 44682 and from Streptomyces lividans 

TK24 (as a negative control) was digested with BamHI and subjected to Southern blot 

hybridisation with each of the two probes. Both probes bound with very high signal 

strength to the digested NRRL 30420 gDNA but both also bound non-specifically (at very 

high molecular weight) within gDNA from S. lividans (Figure 4.19). Only the mibA probe 

bound with low signal strength to gDNA from DSM 44681 and DSM 44682 (same 

fragment size in both samples, and slightly larger than that from NRRL 30420), although 

this might be expected given the PCR results. This probe also hybridised to other genomic 

fragments in the NRRL 30420, DSM 44681 and DSM 44682 genomic DNA samples 

suggesting that it is not a good marker for the mib gene cluster. In contrast, the mibD 

probe gave just one hybridising band with NRRL 30420 gDNA and did not hybridise at all 

with DSM 44681 or DSM 44682 gDNA (Figure 4.19).  

 

The combined evidence from the PCR and Southern blot analyses suggests that the non-

microbisporicin producing strains of M. corallina do not possess a gene cluster with high 

levels of similarity to the microbisporicin cluster from NRRL 30420. 
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Figure 4.19 Southern blot hybridisation to determine whether the mibA and mibD regions 

of the mib gene cluster are present in DSM 44681 and DSM 44682. M. corallina NRRL 

30420, DSM 44681, DSM 44682 and Streptomyces lividans TK24 gDNA was digested 

with the restriction enzyme BamHI and the resulting fragments separated on a 1% 

agarose gel. DNA was transferred to a nylon membrane by Southern transfer and each 

blot was probed with a different DIG-labelled PCR product probe, as indicated at the top 

of each blot; mibA-mibB (mibA plus downstream region between mibA and mibB; 

generated by PCR amplification using the primers LF013F and LF013R) and mibD 

(generated by PCR amplification using the primers LF004F and LF004R). The molecular 

weights of each marker band (M; Invitrogen 1 kb ladder) are given on the sides of each 

blot (in kb).  
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4.9 Discussion and Summary Points 

4.9.1 Discussion 

Bioinformatic analysis of the microbisporicin gene cluster revealed a number of interesting 

features. The biosynthetic enzymes of the cluster, MibB, MibC and MibD, although largely 

unremarkable as classic members of their protein families, which have been well 

characterised in other lantibiotic gene clusters, revealed a family of microbisporicin-like 

lantibiotics with predicted shared sequence and structural features. These 

uncharacterised lantibiotics could have potential uses as anti-microbials and could be of 

interest for further study. 

The chlorination of tryptophan and the hydroxylation of proline are post-translational 

modifications unique to microbisporicin. Interestingly both modifications appear to be 

carried out by enzymes belonging to families involved in the tailoring reactions of other 

secondary metabolites, including non-ribosomally synthesised peptides and polyketides. 

Deletion of these genes from the microbisporicin gene cluster will reveal whether these 

enzymes really are responsible for the attributed modifications and will indicate the 

contribution of each modification towards anti-microbial activity and microbisporicin‟s 

mechanism of action. Future structural studies of both of these enzymes will shed light on 

the mechanisms of these reactions and how substrate specificity is achieved. 

The microbisporicin gene cluster is unique in containing four putative transport systems. 

Although the putative functions of MibTU and MibEF, in export and resistance, 

respectively, could be predicted based on sequence homology, these predictions require 

confirmation by mutational analysis. Similarly, the functions (if any) of MibYZ and MibN in 

microbisporicin biosynthesis require experimental analysis.  

The mechanism by which the expression of the genes of the microbisporicin gene cluster 

is regulated is an intriguing question. Typical regulators associated with lantibiotic gene 

clusters are two-component systems such as NisRK (Chatterjee et al. 2005). Low levels of 

nisin (produced through low level expression of the prepropeptide and biosynthetic genes) 

induce this system likely through an interaction with NisK at the cell membrane leading to 

NisR activation by phosphorylation. Phosphorylated NisR then activates high level 

expression of the nisin gene cluster to generate high level production (see also Chapter 1; 

(Kuipers et al. 1995; de Ruyter et al. 1996)). This system appears to be largely shared by 

other low GC Gram-positive type A(I) lantibiotic gene clusters (Stein et al. 2002; Schmitz 

et al. 2006). This suggests that in many cases low level production of the compound itself 

induces expression of the gene cluster. In the microbisporicin gene cluster there is no two-
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component system but instead an ECF sigma factor:anti-sigma factor pair, MibXW. These 

proteins could function in an analogous way to the NisRK system. Low levels of 

microbisporicin would induce cell envelope stress which would be sensed by MibW or 

alternatively MibW could bind directly to microbisporicin. This would somehow cause the 

release of bound MibX; possibilities such as a conformational change or intramembrane 

proteolysis were discussed in this chapter. MibX would then act as an activator of gene 

expression in the mib cluster. How other proteins encoded in this part of the gene cluster, 

including the transcriptional regulator MibR, would fit into this scheme remains to be 

determined. A number of strategies to test this model can be postulated. Initially a 

deletional analysis of this part of the gene cluster will yield information on whether any of 

these proteins are important for microbisporicin production and mib gene expression. The 

predicted interaction between MibX and MibW could also be investigated, as could 

possible interactions between MibW and MibJ.  

A number of characterised lantibiotic gene clusters encode a dedicated extracellular 

protease (LanP) which removes the cognate leader peptide (Altena et al. 2000; Chatterjee 

et al. 2005). An enzyme responsible for leader peptide cleavage to generate mature 

microbisporicin has not been identified although it is possible that one of the genes of 

unknown function (mibJ, mibQ and mibV) could have this role. The subtilin, actagardine 

and cinnamycin gene clusters similarly do not appear to contain genes encoding a 

dedicated LanP-type enzyme but instead appear to rely on non-specific proteases for 

leader peptide cleavage (Widdick et al. 2003; Chatterjee et al. 2005; Boakes et al. 2009). 

When expressed in the heterologous host S. lividans mature cinnamycin is produced 

suggesting that a general protease in Streptomyces is able to fulfil this role (Widdick et al. 

2003). This was found to be the case for full maturation of haloduracin (Cooper et al. 

2008).  
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4.9.2 Summary Points 

 

 MibA is the prepropeptide of microbisporicin. 

 MibB is likely to dehydrate serine and threonine residues in the prepropeptide to 

yield didehydroalanine and didehydrobutyrine, respectively. 

 MibC is likely to be involved in forming the (methyl-)lanthionine bridges of 

microbisporicin. 

 MibD is presumably involved in formation of the S-[(Z)-2-aminovinyl]-D-cysteine 

moiety at the C-terminus of microbisporicin. 

 MibH and MibS are a flavin-dependent tryptophan halogenase and flavin 

reductase, respectively, that likely act co-ordinately to chlorinate tryptophan at 

position 4 of microbisporicin. 

 MibO is a cytochrome P450 that may be responsible for hydroxylation of proline-14 

of microbisporicin. 

 MibTU are a two-component ABC transporter likely involved in microbisporicin 

secretion. 

 MibEF are a two-component ABC transporter likely involved in resistance of M. 

corallina to microbisporicin. 

 MibYZ are a two-component ABC transporter of unknown function. 

 mibY and mibZ appear to be translationally coupled, and encode proteins with 

most homology to the products of gene clusters in other actinomycetes that include 

homologs of mibX, mibW and mibJ. 

 MibN is a putative sodium/proton antiporter of unknown function. 

 MibX is an ECF σ-factor homolog and MibW likely acts as an anti-σ factor to 

suppress MibX activity. 

 MibR possesses a helix-turn-helix domain found in the LuxR family of regulatory 

proteins. 

 MibJ is a hypothetical protein with predicted transmembrane helices. 
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 mibJ, appears to encode a protein with most homology to the products of gene 

clusters in other actinomycetes that include homologs of mibX,mibW, mibY and 

mibZ. 

 MibQ shows similarity to lipoproteins, with a predicted signal peptide sequence 

containing a conserved lipobox motif LAGC. 

 MibV is a hypothetical protein with the closest homolog in the actinomycete 

Nocardiopsis dassonvillei and apparently part of an uncharacterised lantibiotic 

gene cluster. 

 Microbisporicin is a member of a previously unrecognised group of lantibiotics with 

similar sequence and structural features. 

 The microbisporicin gene cluster does not appear to be present in M. corallina 

strains DSM 44681 and DSM 44682. 
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Chapter 5 - Heterologous expression 
of the microbisporicin gene cluster in 

Streptomyces 

5.1 Introduction 

 

In chapter 4 the bioinformatic analysis of the microbisporicin gene cluster was described, 

highlighting a number of intriguing features. In order to explore these in more detail it 

would be prudent to undertake a deletional analysis by inactivating genes within the 

cluster and exploring the effect on compound production and strain self-resistance. By 

expanding the understanding of microbisporicin biosynthesis it is also possible that 

avenues for improving compound yield might be identified. Ideally such an analysis would 

be undertaken in the producing organism, however this is not an option if the strain in 

question is genetically intractable. As described in previous chapters, M. corallina is a 

slow growing actinomycete which does not sporulate efficiently under laboratory 

conditions. Furthermore, there are no examples available in the literature where any 

species of Microbispora has been genetically manipulated. In fact there are few reports of 

transformation methods for members of the Streptosporangiaceae family (Stinchi et al. 

2003; Beltrametti et al. 2007). Thus the use of a genetically tractable heterologous host for 

the further analysis of the microbisporicin gene cluster was an attractive possibility.  

 

Streptomyces sp. have been used as heterologous hosts for secondary metabolite gene 

clusters for a wide range of compounds including polyketides, non-ribosomal peptides and 

terpenoids (Zhang et al. 2008). Streptomyces sp. often grow more vigorously than the 

natural hosts of these clusters and many tools have been developed for their genetic 

manipulation (Kieser et al. 2000). In particular transformation is rapidly accomplished 

through the use of conjugation with E. coli (Kieser et al. 2000). Streptomyces lividans, 

Streptomyces coelicolor and Streptomyces venezuelae have been used routinely as 

heterologous hosts (Zhang et al. 2008).  

 

Several lantibiotic gene clusters from the low GC Gram-positive bacteria have been 

expressed successfully in heterologous hosts. For example, the nukacin-ISK1 biosynthetic 

gene cluster from Staphlococcus warneri ISK1 was expressed in Lactococcus lactis by 

utilising the nisin-inducible regulatory system (NICE) (Aso et al. 2004). The gene cluster 
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for Epicidin 280 from Staphylococcus epidermidis BN 280 was expressed in 

Staphylococcus carnosus TM 300 (Heidrich et al. 1998), and that for Bovicin HJ50 was 

expressed in Lactococcus lactis (Liu et al. 2009). The transposon containing the nisin 

gene cluster was transferred into Enterococcus sp. but produced low levels of the 

lantibiotic when gene expression was induced with exogenously applied nisin (nisin is an 

inducer of its own synthesis) (Li et al. 2002). However other attempts have not been 

successful, particularly between genera.  For example, mobilisation of the complete nisin 

gene cluster into Bacillus subtilis 168 failed to result in the production of the active 

lantibiotic even after induction with exogenous nisin. Transcription of the nisin genes was 

apparent and a possible pre-nisin was detected by Western blot analysis, leading the 

authors to speculate that the precursor peptide was not correctly processed in B. subtilis 

(Yuksel et al. 2007). 

 

Heterologous expression has also been achieved for two actinomycete lantibiotics.  

Cinnamycin from Streptomyces cinnamoneus was produced in S. lividans 1326 through 

the mobilisation of the entire gene cluster into the ΦC31 phage integration site (Widdick et 

al. 2003). Actagardine produced by Actinoplanes garbadinensis, despite being from a 

genus not closely related to Streptomyces, was also produced in S. lividans 1326 using 

the same approach (Boakes et al. 2009). Actagardine has also been produced in S. 

lividans TK24 and S. coelicolor M1146 (Bell, R et al. unpublished). Based admittedly on a 

limited amount of data, these precedents suggested that Streptomyces species are 

suitable hosts for the heterologous expression of actinomycete lantibiotic gene clusters. 

 

This chapter will describe the mobilisation of the microbisporicin gene cluster into the 

heterologous host S. lividans TK24 and characterisation of the resulting strains. The aim 

was to express the microbisporicin gene cluster in this host and then to carry out a 

deletion analysis of the functions of individual genes. As described in this chapter, initial 

attempts to produce microbisporicin in S. lividans were unsuccessful and so a number of 

approaches were taken to promote synthesis of the compound. These are described 

briefly below. Finally, an analysis of the expression of the genes of the microbisporicin 

gene cluster in S. lividans was undertaken and the results are also discussed. 
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5.2 Heterologous Expression of the mib gene cluster in S. 

lividans 

5.2.1. Mobilisation of cosmids containing the mib gene cluster into S. 

lividans 

 

As described in chapter 4 the complete mib gene cluster appears to be present within the 

DNA insert of cosmid pIJ12125. As described in chapter 3, cosmids pIJ12121 (1H11), 

pIJ12122 (3E5) and pIJ12126 (7C22) are also highly likely to contain the complete mib 

cluster. To maximise the chances of observing heterologous expression of microbisporicin 

and to avoid the possibility that one cosmid might contain a mutation that could prevent 

production, all four cosmids were mobilised into S. lividans. To achieve this, the Supercos 

backbone of the cosmids had to be altered to allow; firstly, integration of the cosmids at 

the ΦC31 attachment site in the S. lividans chromosome (Bierman et al. 1992), secondly, 

the transfer of the cosmids from E. coli to S. lividans by conjugation, and finally selection 

of the integration event in S. lividans. These features are all present in the vector 

pIJ10702 (also called pMJCOS1 (Yanai et al. 2006)) which contains the ΦC31 attP 

attachment site and integrase (Bierman et al. 1992), an E. coli origin of transfer (oriT; 

(Kieser et al. 2000)) and the aac(3)IV gene encoding apramycin resistance (Kieser et al. 

2000). This vector shares sequence identity with Supercos in the regions flanking these 

features (Figure 5.1). This allows the replacement of the kanamycin resistance marker of 

Supercos cosmids with these elements by homologous recombination in a strain of E. coli 

(BW25113/pIJ790) that contains the arabinose-inducible λ RED recombination system, as 

described in detail in chapter 2 (Gust et al. 2003). Cosmids pIJ12121, pIJ12122, pIJ12125 

and pIJ12126 were converted in this manner into their respective pIJ10702 variants, 

pIJ12127, pIJ12128, pIJ12131 and pIJ12132, respectively. These constructs were 

analysed by restriction digests to confirm that no gross rearrangements had taken place. 

The cosmids were mobilised into S. lividans TK24 by conjugation from the E. coli donor 

strain ET12567/pUZ8002 and ex-conjugants selected with 50 µg/ml apramycin (Kieser et 

al. 2000). Introduction of pIJ12131 into four independent clones of S. lividans was 

confirmed by PCR amplification of representative genes from the mib cluster (Figure 5.2). 

 

  



Chapter 5 Heterologous Expression in Streptomyces 
 

224 
 

 
 

Figure 5.1 Vector maps of Supercos1 (Stratagene) and pIJ10702 (pMJCOS1; Yanai, et 

al. 2006). The region between the SspI sites of pIJ10702 contains a region of conserved 

sequence with Supercos1, flanking the ΦC31 integrase (Int) and attachment (attP) sites, 

the origin of transfer (oriT) and apramycin resistance marker (aac(3)IV). This region is 

used to replace the region between SspI sites in Supercos1 cosmids that contains the 

kanamycin resistance marker (aph). Also shown are the cos sites utilised for phage 

packaging during cosmid library construction, the origin of plasmid replication in E. coli 

(pUC ori) and the carbenicillin resistance marker (bla). Cosmid inserts would typically be 

cloned into the BamHI site but for the M. corallina cosmid library are in an adjacent ZraI 

site (not shown; see chapter 3). The size of each vector (before the cos site re-ligation 

that occurs during cosmid library construction, leaving just one cos site in the final 

cosmids) is given in base pairs. 
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Figure 5.2 Confirmation of the presence of pIJ12131 in S. lividans by PCR amplification of 

mibA (LF013F and LF013R; 592 bp) and mibCD (LF001F and LF004R; 1250 bp) from the 

mib gene cluster. Colony PCR was carried out using mycelium from S. lividans TK24 wild 

type and four clones into which the pIJ12131 cosmid was mobilised and which were 

resistant to apramycin. pIJ12131 DNA was used as a positive control. PCR amplified 

fragments were separated on a 1% agarose gel by electrophoresis. The marker (M) is 

hyperladder (Bioline) and sizes are given at the side of each gel in base pairs.  
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5.2.2. Attempts to detect heterologous production in S. lividans 

The production of microbisporicin in S. lividans was assessed through culture on both 

agar media and under liquid fermentation conditions. S. lividans clones containing each of 

the four cosmids and containing the vector pIJ10702 alone were grown on V0.1 agar 

medium for 7 days before overlaying with the target organism Micrococcus luteus. No 

zones of inhibition were observed around any of the clones containing the vector alone or 

the four cosmids, although an antibiotic disc loaded with supernatant from a 7d culture of 

M. corallina NRRL 340420 grown in VSPA produced a clear zone of inhibition (Figure 

5.3). This suggests that S. lividans containing the mib gene cluster is unable to produce a 

bioactive compound on V0.1 agar. 

 

 

 

Figure 5.3 Bioassay to assess whether S. lividans containing the mib gene cluster can 

produce microbisporicin. S. lividans containing the vector pIJ10702 alone and one 

representative clone containing each of the four cosmids thought to contain the mib 

cluster were grown for 7 days on V0.1 agar before being overlaid with M. luteus in SNA. A 

plate of V0.1 overlaid with M. luteus in SNA was used as a positive control by placing an 

antibiotic assay disc containing 40 μl of M. corallina NRRL 30420 supernatant (S/N; from 

a culture grown for 7 days in VSPA) on to it. Plates were incubated at 30°C overnight 

before observing zones of inhibition. 

S. lividans pIJ10702 and the clones containing the four cosmids were grown for three 

days in medium V (note that medium VSPA differs from medium V only by the addition of 

5% sucrose, 0.5% proline and 0.1% agar, dispersive agents for the growth of M. corallina 

that are not required for the growth of S. lividans; microbisporicin is produced at similar 

levels when M. corallina is grown in medium V or VSPA) and supernatants assessed for 
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bioactive compounds by applying to antibiotic assay discs placed on a lawn of M. luteus. 

No zones of inhibition were observed around any of the discs containing supernatants 

from S. lividans containing the vector alone or any of the four cosmids, although an 

antibiotic disc loaded with supernatant from a 7 d culture of M. corallina NRRL 30420 

grown in VSPA produced a clear zone of inhibition (Figure 5.4). This suggests that S. 

lividans containing the mib gene cluster is unable to produce a bioactive compound in 

medium V. To confirm that microbisporicin was not being produced at levels too low to 

have demonstrable bioactivity against M. luteus, the supernatants were subjected to 

MALDI-ToF mass spectrometry. This analysis did not reveal any compounds yielding m/z 

peaks associated with microbisporicin (data not shown).  

 

Figure 5.4 Bioassay to assess whether S. lividans containing the mib gene cluster can 

produce microbisporicin in liquid culture. S. lividans containing the vector pIJ10702 alone 

and one representative clone containing each of the four cosmids thought to contain the 

mib cluster were grown for 3 days in medium V. Supernatants were separated by 

centrifugation. Supernatant from a culture of M. corallina NRRL 30420 grown for 7 days in 

VSPA was used as a control. Antibiotic assay discs were each loaded with 40 μl 

supernatant, allowed to dry and were placed on to a plate of L agar containing M. luteus. 

Plates were incubated at 30°C overnight before observing zones of inhibition. All discs 

were applied to the same “lawn” of M. luteus; these images were cropped from a larger 

image of that plate. 

To concentrate any microbisporicin potentially present in the supernatants, those derived 

from S. lividans pIJ10702 and S. lividans pIJ12131 (using the M. corallina supernatant as 

a control) were extracted with a polystyrene hydrophobic resin (Diaion HP20, see chapter 

2 for details) and any bound compounds eluted with methanol:butanol:water (9:1:1) 

(Lazzarini et al. 2005; Castiglione et al. 2008). These eluted fractions were concentrated 
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by drying, resuspended in 5% formic acid and subjected to MALDI-ToF mass 

spectrometry. Although this method was found to highly concentrate and partially purify 

microbisporicin from the M. corallina NRRL 30420 supernatant, there was no indication of 

any m/zs associated with microbisporicin from either S. lividans supernatant sample (data 

not shown). 

S. lividans pIJ10702 and pIJ12131 were grown for 24 h and 48 h in medium V and M. 

corallina NRRL 30420 was grown for 7 days in VSPA. The mycelial pellets were 

separated from the supernatant fractions. Pellets of mycelium were extracted with 100% 

methanol. Supernatants were adjusted to pH 3 with 50% formic acid and methanol added 

to 50% final v/v. HPLC analysis of these extracts was carried out on a C18 waters column 

as described in chapter 2. In a methanol extract of M. corallina NRRL 30420 pellet and in 

supernatant from the same culture it was possible to see two peaks eluting with retention 

times of 10.6 minutes and 11.6 minutes. These fractions were collected and were found to 

have bioactivity against M. luteus, and when investigated by MALDI-ToF mass 

spectrometry contained m/z peaks associated with variants of microbisporicin. Separate 

HPLC peaks might be expected for the different variants of microbisporicin due to their 

different chemical properties. It was previously observed that MF-BA-1768α1, MF-BA-

1768β1, 107891 A1 and 107891 A2 have different retention times under certain HPLC 

conditions (Lazzarini et al. 2005). However under the conditions used here the three 

observed microbisporicin variants (giving m/z peaks of 2215.7 (MF-BA-1768α1), 2231.7 

(107891 A2) and 2247.7 (107891 A1) by MALDI-ToF) were identified in both HPLC peaks 

that were collected. The ratios of the three variants were seen to differ between the two 

peaks but all three were identified in both samples (Figure 5.5). This indicates that this 

HPLC method is not optimal for the separation of the variants of microbisporicin. These 

peaks were not observed in methanol-extracted mycelial pellets or supernatants from S. 

lividans pIJ10702 or S. lividans pIJ12131 grown for 24 or 48 h. 
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Figure 5.5 HPLC analysis of methanol-extracted M. corallina NRRL 30420 mycelium. The 

expected retention time for microbisporcin under these conditions is approximately 10-17 

minutes (Flavia Marinelli, pers. comm.). The peaks at approximately 2-6 minutes and 18 

minutes were observed in a medium only control HPLC run (data not shown). Two peaks 

at 10.6 and 11.6 minutes (top and middle panels) were collected and analysed by MALDI-

ToF mass spectrometry (lower panels). Intensity is given on the y-axis in arbitrary units 

(au) and the mass/charge ratio (m/z) on the x-axis. [M+H+] ions are labelled.  
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5.2.3 Attempts to stimulate microbisporicin production in S. lividans 

The initial conditions tested for heterologous production failed to yield bioactivity or ions 

associated with the production of microbisporicin. This could be due to the culture 

conditions used, which were based on those used for production of the compound in M. 

corallina and which may not be suitable for production in S. lividans. Furthermore, a 

number of treatments have been reported that stimulate the production of secondary 

metabolites in Streptomyces, for example, the addition of N-acetylglucosamine or ATP (Li 

et al. 2008; Rigali et al. 2008). Finally, since the production of some lantibiotics is auto-

inducible (Kuipers et al. 1995; Stein et al. 2002), this could also be the case for 

microbisporicin. If insufficient compound is produced to trigger the auto-induction 

mechanism, then high level compound production would not be observed; this was the 

case when nisin was expressed in Enterrococcus (Li et al. 2002).  Consequently, attempts 

were made to stimulate microbisporicin production in S. lividans by altering the culture 

conditions.  For these experiments, only S. lividans containing the sequenced cosmid 

pIJ12131 was used. 

S. lividans pIJ12131 was grown on a wide range of actinomycete agar media including 

GYM, RARE-3, ISP4, AF/MS, D/Seed Veg, M8, Medium A, Medium B, Medium C, V6 and 

INA-5 for 7 days. The plates were overlaid with M. luteus in SNA. Zones of inhibition were 

observed on GYM, RARE-3 and V6. However when the control strain S. lividans pIJ10702 

was grown on these media, similar zones of inhibition were visible, indicating the 

production of an antibiotic compound by S. lividans itself. 

Production of actinorhodins and prodiginines by S. coelicolor and S. lividans is enhanced 

by the inclusion of 10 µM ATP in a complex medium (Li et al. 2008). S. lividans pIJ10702, 

S. lividans pIJ12131 and M. corallina NRRL 30420 were grown on V0.1 supplemented 

with 10 µM ATP for 7 days. Plates were overlaid with M. luteus in SNA. M. corallina NRRL 

30420 gave a large, very clearly defined zone of inhibition whereas both S. lividans strains 

showed only faint poorly defined halos that were likely caused by actinorhodins or 

prodiginines. Similarly, 50 mM N-acetylglucosamine stimulates antibiotic production in S. 

coelicolor when used in a minimal medium, probably by triggering a starvation response 

(Rigali et al. 2008). S. lividans pIJ10702 and S. lividans pIJ12131 were grown on minimal 

media supplemented with 25 mM mannitol with and without 50 mM N-acetylglucosamine 

for 4 days before overlaying with M. luteus. Neither condition was found to stimulate the 

production of bioactive compounds from these strains. 

Finally as discussed microbisporicin might be an inducer for the expression of the genes 

within the gene cluster in an auto-regulatory manner. Therefore exogenously supplied 
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microbisporicin might be able to induce the production of microbisporicin in a heterologous 

host. Purified microbisporicin compound was not available for this study and so 

supernatant from a 7 d culture of M. corallina NRRL 30420 grown in VSPA, and found to 

give bioactivity against M. luteus and to contain ions associated with microbisporicin by 

MALDI-ToF, was used. Since the concentration of microbisporicin in this supernatant was 

not known, an assay was set-up in which the S. lividans strain or M. corallina control strain 

was grown in a line away from a well in the agar plate for 24 hours. The NRRL 30420 

supernatant or media only (as a control) was introduced into the wells such that by 

diffusion a concentration gradient of the compound away from the well would be 

established and the plates further incubated for 6 days. The plates were overlaid with M. 

luteus in SNA and the formation of zones of inhibition observed. Although zones of 

inhibition were observed as normal with NRRL 30420 grown on the plates, plates 

containing S. lividans strains did not give zones of inhibition when grown in the presence 

of the NRRL 30420 supernatant, suggesting that lack of auto-induction was not limiting 

the detection of microbisporicin production in the heterologous host.  

 

5.2.4 Promoter Region Manipulation in pIJ12131 

The methods used in an attempt to induce heterologous expression of the microbisporicin 

gene cluster in S. lividans TK24 had been unsuccessful. To obviate the possible necessity 

for induction of mib gene expression in S. lividans, pIJ12131 was modified to include the 

constitutive ermE* promoter upstream of the putative operons of the mib cluster (Bibb et 

al. 1994). The ermE* promoter was separately introduced upstream of the operons 

beginning with mibA (biosynthetic and export genes; pIJ12363), mibE (resistance genes; 

pIJ12364) and mibX (possible regulation mechanism; pIJ12365) as well as before both 

mibA and mibE operons in one cosmid (pIJ12366) (Figure 5.6). The resulting constructs 

were mobilised into S. lividans TK24 by conjugation from E. coli ET12567/pUZ8002 and 

the exconjugants assayed for the production of bioactive compounds on V0.1 agar and by 

culturing in medium V. Furthermore, supernatants from liquid grown cultures were 

submitted for MALDI-ToF analysis. These studies did not reveal the production of a 

bioactive compound or ions associated with the microbisporicin complex. 
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Figure 5.6 Insertion of the constitutive ermE* promoter in the mib gene cluster of 

pIJ12131. The ermE* cassette consists of a tetracycline resistance marker (TcR), the 

ermE* promoter (Bibb, et al. 1994) and the EF-Tu ribosome-binding site (RBS) from S. 

coelicolor (van Wezel, et al. 2000). The cassette was introduced upstream of operons of 

the mib gene cluster in pIJ12131 as indicated by λ-RED mediated recombination in E. coli 

BW25113/pIJ790 (Gust et al., 2003). To generate pIJ12366, the tetracycline resistance 

cassette in pIJ12363 was removed by FLP-recombinase, using the flanking FRT sites, in 

E. coli DH5α/BT340 (Gust et al., 2003). The ermE* cassette was then introduced 

upstream of mibE as shown. 
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5.2.5 Inactivation of mib cluster genes 

The mechanism of regulation of the mib gene cluster was thought to be via the ECF sigma 

factor:anti-sigma factor pair mibXW, but the exact mechanism by which this occurred was 

not clear. However, it seemed reasonable to assume that if regulation of the ECF sigma 

factor MibX by its anti-sigma factor MibW could be relieved, then expression of the mib 

gene cluster might be activated. mibX and mibW were individually inactivated as well as 

both genes together and mibA as a control. The open-reading frames were replaced with 

the pIJ778 cassette that contains the aadA gene (providing resistance to spectinomycin 

and streptomycin) flanked by FRT sites (Figure 5.7). The open-reading frames were 

replaced in such a way as to leave intact any downstream open-reading frames in order to 

prevent polar effects. After gene replacement the aadA cassette was removed by FLP-

mediated recombination in E. coli DH5α/BT340 to leave an 81-base pair scar (Gust et al. 

2003). The resulting cosmids were mobilised into S. lividans TK24 by conjugation from E. 

coli ET12567/pUZ8002. Four clones of each strain were analysed for the production of 

bioactive compounds on V0.1 agar medium but no zones of inhibition were observed in a 

lawn of M. luteus.  Similarly no bioactive compound was detected in culture supernatants 

of S. lividans strains grown for four days in medium V (Figure 5.8). 

 

 

 

Figure 5.7 The pIJ778 cassette used to inactivate the mibX, mibW and mibA genes of the 

mib cluster in pIJ12131. P1 and P2 represent the conserved primer sites used in all PCR 

targetting cassettes, FRT sites are for site-specific FLP-mediated recombination, oriT is 

the origin of transfer and aadA encodes the adenyltransferase involved in 

streptomycin/spectinomycin resistance (Gust, et al. 2003).  
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Figure 5.8 A representative bioassay of supernatants from S. lividans TK24 carrying 

pIJ12131 with various mib genes inactivated. Two clones of each strain were grown for 

four days in medium V and 40 μl supernatant applied to antibiotic assay discs on a lawn of 

the indicator strain M. luteus. 40 μl supernatant from a 7 day culture in VSPA of NRRL 

30420 was used as a positive control. The plate was incubated overnight at 30°C before 

zones of inhibition were recorded. 
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5.2.6 Other Streptomycete hosts 

S. lividans TK24 could be unique among streptomycetes in its inability to synthesise 

microbisporicin from the mib cluster of pIJ12131. Other streptomycetes have been used 

successfully as heterologous hosts in the past, for example S. coelicolor (Tang et al. 

2000), S. venezuelae (Mervyn Bibb, personal communication), S. fungicidicus (Lautru et 

al. 2005) and S. albus (Wendt-Pienkowski et al. 2005). Furthermore, a superhost strain of 

S. coelicolor M145 (M1146) has recently been created with the four main secondary 

metabolite gene clusters inactivated, thus removing carbon sinks to promote the 

production of metabolites from heterologous clusters (Gomez-Escribano et al., 

unpublished). A variant of this strain contains either a single (M1156) or double (M1155) 

site mutation in the rpsL gene of S. coelicolor. These mutations are selected by resistance 

to streptomycin and have been reported to increase the production of secondary 

metabolites (Hu et al. 2001). The vector pIJ10702 and the cosmid pIJ12131 (containing 

the mib gene cluster) were introduced into each of the above Streptomyces hosts by 

conjugation from E. coli ET12567/pUZ8002. The resulting strains were assayed for the 

production of bioactive compounds on V0.1 agar medium and in medium V. Several 

strains gave faint zones of inhibition when grown on agar medium and overlaid with M. 

luteus in SNA but these were always seen in both the vector only control strain and that 

containing the mib cluster, suggesting that these activities were due to the production of 

other compounds under these conditions or to the production of extracellular enzymes. 

When the strains were grown in medium V and supernatants applied to antibiotic assay 

discs on a lawn of M. luteus, only supernatant from S. fungicidicus gave appreciable 

zones of inhibition but this was seen for both the control strain and that carrying the mib 

cluster (Figure 5.9). These supernatants were investigated by MALDI-ToF mass 

spectrometry but were not found to produce any ions associated with the production of 

microbisporicin. This analysis indicates that all of the Streptomyces heterologous hosts 

used were incapable of producing microbisporicin from the genes of the cosmid pIJ12131. 
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Figure 5.9 Representative bioassays of supernatants from different Streptomyces sp. 

carrying either pIJ10702 or pIJ12131. Strains were grown for three days in medium V and 

40 μl supernatant applied to antibiotic assay discs on a lawn of the indicator strain M. 

luteus. 40 μl supernatant from a 7 day culture of NRRL 30420 was used as a positive 

control. The plates were incubated overnight at 30°C before zones of inhibition were 

recorded. The images of the bioassay of S. venezuelae supernatants were cropped from 

a larger image of a single plate of M. luteus. 
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5.3. Analysis of gene expression in S. lividans containing the mib 

cluster 

The production of mature, active microbisporicin was not detected in any of the 

Streptomyces hosts containing pIJ12131. It had also not been possible to induce 

production of the compound in S. lividans TK24 using various approaches, including 

attempts to manipulate the regulatory mechanisms of the mib cluster. To assess at what 

level the block to microbisporicin production was occurring, transcription of several of the 

mib genes was assessed in the heterologous host S. lividans using Reverse-

Transcriptase PCR (RT-PCR). 

RNA was extracted from S. lividans pIJ10702 and pIJ12131 after 24 h growth in medium 

V and from M. corallina NRRL 30420 after 7 days growth in medium V. RT-PCR was 

carried out with the One-Step RT-PCR kit (Qiagen) using primers corresponding to 

internal regions of the selected mib genes (for primer sequences see chapter 2). 

Transcripts were amplified for all genes tested in RNA samples from both M. corallina and 

S. lividans pIJ12131, but not from S. lividans pIJ10702 (Figure 5.10 shows the data 

obtained for mibA; Table 5.1).  

This analysis was also carried out with RNA extracted from strains constitutively 

expressing operons of the mib cluster after insertion of the ermE* promoter in pIJ12131 

(section 5.2.4; Figure 5.10, top panel) and S. lividans carrying pIJ12131 in which mib 

genes had been inactivated (section 5.2.5; Figure 5.10, bottom panel). All the transcripts 

amplified from the wild type cosmid were also amplified when the ermE* promoter was 

introduced into the mib cluster but since RT-PCR is not quantitative it was not possible to 

deduce whether the introduction of these promoters had led to elevated levels of mib gene 

expression (Figure 5.10, top panel; Table 5.1). When gene expression was interrogated in 

the gene inactivation strains, the results confirmed that these genes had been 

successfully inactivated (no transcript for the inactivated gene) without polar effects on the 

downstream genes (for example, the mibW transcript was still apparent in the ΔmibX 

strain) (Figure 5.10, bottom panel; Table 5.1). However, inactivation of these genes had 

no effect on expression of transcripts from other genes in the mib cluster, suggesting that 

the ECF sigma factor MibX and the anti-sigma factor MibW may not be functional in S. 

lividans.  
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Figure 5.10 Analysis of transcription of genes of the mib gene cluster in S. lividans by RT-

PCR. RNA was extracted from the strains shown after 24 h (S. lividans)  or 7 days (M. 

corallina) growth in medium V. RNA was subjected to one-step RT-PCR (Qiagen) using 

primers specific to genes of the mib cluster (data shown here is for mibA amplified with 

LF025F and LF025R). The amplified mibA transcript is indicated with a blue arrow. The 

top panel shows the result using RNA extracted from pIJ12131 with the ermE* constitutive 

promoter introduced. The lower panel shows the result using RNA extracted from deletion 

mutants in pIJ12131. Each reaction was carried out in the absence (no RT) or presence 

(RT) of reverse transcriptase as a control for the contamination of RNA with genomic 

DNA. PCR products were separated on a 1% TBE agarose gel by electrophoresis. The 

marker is the 100 bp ladder (NEB) and sizes are given in base pairs on the side of each 

gel image. 
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One caveat with these results is that because the number of cycles used for RT-PCR was 

high (35), amplification is likely to have reached saturation levels such that even basal 

levels of transcription might be detectable. It is therefore possible that the level of 

expression of the mib gene cluster in S. lividans is simply too low for detectable 

production of microbisporicin.  For similar reasons, it is not possible to conclude whether 

deletion of mibA, mibX and mibW had any quantitative effect on mib gene expression in 

the heterologous host. For this reason it would be desirable to repeat these experiments 

with quantitative RT-PCR. Due to time constraints this was not carried out in this study. 

5.4 Shotgun library 

The lack of production of microbisporicin in heterologous streptomycete hosts might be 

due to the absence of factors essential for biosynthesis that are encoded within the M. 

corallina genome and that are not present within the four cosmids. To test whether the 

lack of heterologous production might be complemented by genes from the natural 

producer, a shotgun library was generated. M. corallina genomic DNA was partially 

digested with BamHI to a size range of 3-8 kb. These fragments were cloned into pRT802 

(Gregory et al. 2003) to generate a greater than two-fold coverage shotgun library in E. 

coli. The clones were then introduced into S. lividans pIJ12131 by conjugation from 

ET12567/pUZ8002 where pRT802 integrates in a second phage attachment site of 

Streptomyces (ΦBT1 (Gregory et al. 2003)). Approximately 3000 ex-conjugants were 

selected with 50µg/ml kanamycin and patched on V0.1 agar medium. Plates were overlaid 

with M. luteus after at least 4 days of growth and monitored for the presence of zones of 

growth inhibition around the patches. Any putative producer clones were re-patched from 

library plates and checked again by bioassay. Only 6 clones were identified as giving clear 

reproducible zones of clearing in M. luteus growth and all 6 were visually identified to be 

over-producers of the actinorhodin and/or undecylprodigiosin antibiotics of S. lividans, 

giving strong blue/purple pigmentation compared to the wild type (Figure 5.11). B3, B7 

and B21 were grown in V medium for four days. The supernatants were tested by 

bioassay and MALDI-TOF. None of the clones produced bioactive compounds that could 

give zones of inhibition in a lawn of M.luteus and no compounds of ions associated with 

the production of microbisporicin could be detected by MALDI-ToF mass spectrometry.  

 

 

The clones identified by this analysis that have higher than wild type levels of bioactivity 

against M. luteus have likely resulted from the introduction of a DNA fragment from the 
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genome of M. corallina encoding a protein capable of enhancing secondary metabolism in 

S. lividans. However, none of the cloned fragments appear to be capable of activating 

microbisporicin biosynthesis. However, this does not rule out the necessity for other 

factors in microbisporicin biosynthesis since the required protein(s) may not have been 

represented in the library or may be encoded by multiple loci at different locations in the 

M. corallina genome.  

 

 

 

Figure 5.11 The clones identified from the shotgun cloning library as producing a 

bioactive compound capable of generating zones of clearing in an overlay of M. luteus. All 

patches were grown for 4 days before overlay with M. luteus in SNA. M. corallina NRRL 

30420 was grown as a positive control (giving only a small zone of inhibition after just 4 

days growth). Negative controls are S. lividans TK24 pIJ10702 pRT802 and S. lividans 

TK24 pIJ12131 pRT802. S. coelicolor M145 pIJ10702 was grown as a control for the 

production of actinorhodins and prodiginines. The clones A30A, B3A, B7A, B21A, were 

isolated from the shotgun library as producing bioactive compounds. Plates were 

incubated overnight at 30°C before visualising zones of inhibition.  
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5.6 Discussion and Summary Points 

5.6.1 Discussion 

Heterologous expression of the mib gene cluster, thought to be contained within the 

inserts of the cosmids pIJ12127, pIJ12128, pIJ12131 and pIJ12132, does not result in the 

production of microbisporicin in Streptomyces sp. As described in this chapter, a number 

of approaches were taken to promote heterologous expression and to understand the 

basis for the lack of production in Streptomyces. Due to time constraints not all possible 

approaches could be carried out to the fullest extent and the results that were acquired 

are unable to explain why heterologous expression in Streptomyces failed. As described 

in section 5.1, Streptomyces species have been used successfully as heterologous hosts 

for a wide range of secondary metabolite gene clusters, including two lantibiotic gene 

clusters. However, it is quite likely that when heterologous expression has failed, the 

result is not reported.  

Many hypotheses explaining the lack of production in Streptomyces can be postulated. 

The biosynthesis of lantibiotics is quite complex, involving multiple proteins potentially in 

different cellular locations. A problem with just one of these components could completely 

prevent the biosynthesis of the active compound. For example, the lack of production of 

nisin in B. subtilis was attributed to the inability of NisP to correctly remove the leader 

peptide of pre-nisin (Yuksel et al. 2007) and low levels of production in Enterococcus to 

inefficient signal transduction through NisRK in the heterologous host (Li et al. 2002). A 

number of genes in the mib cluster encode proteins so far found to be unique to 

microbisporicin biosynthesis and it is possible that these proteins cannot function 

appropriately in a heterologous host.  

The regulation of mib gene expression is likely to be complex and different from those 

lantibiotics studied to date. Regulation is likely to be very finely balanced with many inputs 

affecting gene expression. Thus although transcription could be detected from mib genes 

in S. lividans the relative levels of each transcript or the timing of induction could be 

extremely important for microbisporicin biosynthesis. The transcripts amplified from S. 

lividans by RT-PCR may represent a low basal level of transcription involved in an auto-

induction mechanism (Kuipers et al. 1995; Stein et al. 2002; Schmitz et al. 2006). If the 

auto-induction fails at a subsequent step, then high level biosynthesis would not be seen. 

Low levels of microbisporicin outside the cells may not be appropriately perceived in S. 

lividans; for example proteins may not fold correctly within the cell membrane or 

microbisporicin may not be able to reach the cell membrane.  



Chapter 5 Heterologous Expression in Streptomyces 
 

243 
 

Even if auto-induction is not involved in the production of microbisporicin, induction of 

biosynthesis is likely to be closely tied to development and physiological stimuli. This was 

also found to be the case for many other lantibiotics. For example, although the genes of 

the subtilin gene cluster require a signal through the pathway-specific two-component 

system, SpaRK, for transcription, induction is also regulated with the development of cells 

by the transition state regulator AbrB via sigma factor H (Stein et al. 2002). Epidermin 

biosynthesis is regulated at least in part by global regulators of cell stress responses and 

of biofilm formation through the agr quorum sensing system (Kies et al. 2003) and 

extracellular pH regulates lacticin 481 production in Lactococcus lactis (Hindre et al. 

2004). Introduction of the ermE* constitutive promoter of Streptomyces might have been 

able to bypass some of these physiological or developmental inputs, but this was not 

found to be the case. Possibly the operons up-regulated by this approach were not the 

only ones needed for expression. Furthermore, if a fine-balance of transcripts/proteins is 

required for microbisporicin biosynthesis, introducing constitutive promoters may have had 

a detrimental rather than positive effect.  

One characterised physiological difference between Streptomyces and other 

actinomycetes, including M. corallina, is cell wall composition. The composition of 

peptidoglycan in Gram-positive bacteria is found to vary widely, particularly in the amino 

acids of the pentapeptide linkage. Streptomyces sp. are quite unique in utilising the LL-

form of 2,6-diaminopimelic acid (Dpm) at position 3 of the peptide linkage whereas M. 

corallina and many other rare actinomycetes utilise the meso-form of this amino acid 

(Lechevalier et al. 1970). Furthermore, Streptomyces sp. make the cross-linkage via a 

glycine residue whereas M. corallina appears to use a direct linkage from alanine to 

meso-Dpm (Schleifer et al. 1972). The exact effect of these differences on cell wall 

properties is not clear (Vollmer et al. 2008) but physiological differences such as this could 

prevent the appropriate perception of signals inducing microbisporicin production. 

Although some level of transcription of the mib genes was observed in S. lividans, 

microbisporicin production could also be subject to post-transcriptional regulation. This 

was reported for epidermin biosynthesis, where peptide maturation via EpiP-mediated 

leader peptide removal provides a second level of regulation of production (Kies et al. 

2003). Disparities between the time of biosynthetic-gene induction and the onset of 

production of mutacin II was also postulated to be due to post-transcriptional regulation 

(Qi et al. 1999a). Failure of such a mechanism to operate in Streptomyces species could 

also explain the observed lack of heterologous production.   
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Alternatively, S. lividans may not be able to utilise the native mechanism of self-resistance 

encoded by the mib gene cluster. As discussed in chapter 4 this is likely to be mediated 

via MibEF, an ABC transporter. These proteins may not be able to fold correctly within the 

cell membrane of their heterologous host or their expression may not be induced at 

appropriate levels to confer resistance. In the absence of resistance it is highly likely that, 

to prevent cell suicide, a mechanism of feedback regulation would be in place to prevent 

microbisporicin biosynthesis, processing or export. 

The reason(s) why Streptomyces species are unable to produce microbisporicin cannot 

be resolved from the results presented in this chapter. As more details of the biosynthetic, 

regulatory and resistance mechanisms involved in microbisporicin production are 

revealed, it will hopefully be possible to determine why this is the case and perhaps to find 

a successful solution. 

 

5.6.2 Summary Points 

 Cosmids containing the mib gene cluster were mobilised into S. lividans TK24 but 

microbisporicin production was not detected. 

 Microbisporicin production in S. lividans could not be induced by changing growth 

conditions or by the addition of external inducers. 

 ermE* driven expression of mibX, mibA and mibE in a modified version of 

pIJ12131 did not activate microbisporicin production in S. lividans. 

 Inactivation of mibX, mibW and mibXW did not induce production of 

microbisporicin in S. lividans. 

 Microbisporicin was not produced when the mib cluster was introduced into other 

Streptomycete heterologous hosts. 

 Transcription of genes of the mib cluster was detected in S. lividans. 

 A shotgun library of M. corallina DNA was constructed but did not complement the 

lack of microbisporicin production in S. lividans. 

 Streptomyces is not suitable a heterologous genus for the genetic analysis of the 

mib gene cluster. 
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Chapter 6 - Heterologous Expression 
of the mib gene cluster in 

Nonomuraea 

6.1 Introduction 

 

As discussed in chapter 5, heterologous expression of the mib gene cluster in 

Streptomyces sp. was not successful. The considerable taxonomic distance between 

Streptomyces and M. corallina may result in physiological differences that prevented 

heterologous production of microbisporicin. Attempting to express the mib cluster in a 

more closely related genus might overcome this barrier. The Streptosporangiaceae family 

to which M. corallina belongs is a little studied group of actinomycetes (often referred to as 

rare actinomycetes). Members of this group include the genera Herbidospora, 

Microtetraspora, Nonomuraea, Planomonospora, Planobispora, Planotetraspora and 

Streptosporangium. Although a number of interesting secondary metabolites are made by 

this family, only two members have been genetically-manipulated. Planobispora rosea, 

the producer of the thiazoylpeptide antibiotic GE2270, was manipulated by protoplast 

fusion (Beltrametti et al. 2007). Nonomuraea ATCC39727, the producer of the 

glycopeptide antibiotic A40926, was genetically manipulated by conjugation from E. coli to 

generate an insertion mutation in the A40926 gene cluster (Sosio et al. 2003; Stinchi et al. 

2003). Although the introduction of large DNA molecules, such as cosmids, into this strain 

had not been reported, Nonomuraea sp. appeared to be a potentially suitable strain to use 

when attempting to heterologously express the mib gene cluster. Furthermore, 

collaboration with the group of Professor Flavia Marinelli at the University of Insubria, Italy 

provided accessibility to the strain and protocols for its growth and manipulation. In 

collaboration with a visiting student from Professor Marinelli‟s group, Dr. Georgia Letizia 

Marcone, we set out to develop a method for transferring cosmids into Nonomuraea 

ATCC39727 with the ultimate aim of generating mutations within the A40926 gene cluster 

(as reported in (Marcone et al. 2010a)) and utilising Nonomuraea as a heterologous host 

for the mib gene cluster. Cosmid transfer was achieved using a modified version of 

conjugation protocols previously reported for actinomycete mycelium (Kieser et al. 2000; 

Sosio et al. 2003; Stinchi et al. 2003; Marcone et al. 2010c). 
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6.2. Heterologous Expression of the mib gene cluster in 

Nonomuraea ATCC39727 

 

The integrative cosmid pIJ12131 containing the mib gene cluster (see chapter 5) and the 

vector control pIJ10702 were transferred into Nonomuraea sp. ATCC39727 mycelium by 

conjugation from E. coli ET12567/pUZ8002 (Marcone et al. 2010c). These constructs 

were expected to integrate into the Nonomuraea chromosome at the ΦC31 attB site  

(Stinchi et al. 2003). Ex-conjugants were selected on V0.1 containing 50 µg/ml apramycin 

and 25 µg/ml nalidixic acid. Transfer of pIJ10702 (a vector of approximately 10 kb) was 

efficient, yielding approximately 4x10-4 ex-conjugants per Nonomuraea sp. ATCC39727 

CFU (based on typically using 5x106 CFU Nonomuraea per conjugation as per (Marcone 

et al. 2010c)). In contrast, transfer of pIJ12131 (greater than 43 kb) was about 100 fold 

less efficient, yielding approximately 4x10-6 ex-conjugants per Nonomuraea sp. 

ATCC39727 CFU. This presumably reflects a decrease in the efficiency of conjugal 

transfer as the size of the plasmid increases (Flett et al. 1997).  

Since conjugation was carried out using mycelial fragments it was important to ensure that 

the resulting recipient strains were homogeneous. Introduction of the construct carrying 

the resistance marker into a multi-nucleoid mycelial compartment could allow genomes 

not carrying the resistance gene to survive and propagate even in the presence of 

selection. Early characterisation of strains carrying pIJ12131 suggested that some clones 

were mixed mycelial populations that segregated in the absence of selection. Growing 

strains for several rounds of re-streaking under selective conditions should eventually lead 

to pure cultures. Thus, clones resulting from each conjugation were subjected to three 

rounds of growth as single colonies on V0.1 containing 50 µg/ml apramycin before 

analysis. 

Nonomuraea sp. ATCC39727 derivatives containing pIJ10702 or pIJ12131 were grown in 

VSP and genomic DNA was purified. This was used to confirm the presence of the mib 

cluster in four independent clones of Nonomuraea pIJ12131 by PCR amplifying the mibA, 

mibD and mibH genes (Figure 6.1). These strains were confirmed as Nonomuraea sp. 

ATCC39727 derivatives by amplifying a gene, dbv5, from the A40926 gene cluster (using 

primers Dbv5F and Dbv5R). Contamination with M. corallina was ruled out by failing to 

amplify the M. corallina ΦC31 attB site (using primers LF044F and LF044R; see chapter 

7) (Figure 6.1).  
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Figure 6.1 PCR confirmation of the integration of the mib cluster in Nonomuraea 

pIJ12131 by PCR amplification of mibA (LF023F and LF023R2; 545 bp), mibD (LF004F 

and LF004R; 189 bp) and mibH (LF006F and LF006R; 344 bp) genes from the mib gene 

cluster and of the ΦC31 attB site from M. corallina (LF044F and LF044R; 120 bp) and 

dbv5 from the A40926 gene cluster of Nonomuraea (Dbv5F and Dbv5R; 375 bp). 

Template DNA was 10 ng genomic DNA extracted from the respective strain or water as a 

control. PCR amplified fragments were separated on a 1% agarose gel by 

electrophoresis. The marker (M) is Hyperladder (Bioline) and sizes are given at the side of 

each gel in base pairs.  
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These strains were grown in parallel with Nonomuraea ATCC39727 and M. corallina 

NRRL 30420 in VSP medium for 3, 5 and 7 days. Supernatants from these cultures were 

tested for bioactivity against M.luteus. Both Nonomuraea wild type and pIJ10702 

supernatants produced small faint zones of inhibition in a lawn of M. luteus (Figure 6.2). 

This is probably due to the production of A40926 or some uncharacterised secondary 

metabolite of Nonomuraea. However, two clones of Nonomuraea pIJ12131 (clones 2 and 

5) produced a compound that gave large sharp zones of inhibition with much more clearly 

defined edges (Figure 6.2). These zones of inhibition were similar to those seen with the 

M. corallina NRRL 30420 supernatant. The two remaining clones of Nonomuraea 

pIJ12131 (clones 3 and 4) gave faint zones of inhibition, particularly noticeable after 5 and 

7 days of cultivation, that were more similar to those produced by the vector only and wild 

type Nonomuraea controls. 

 

 

 

Figure 6.2 Heterologous expression of the microbisporicin gene cluster in Nonomuraea 

sp. ATCC39727. Nonomuraea wild type (WT), pIJ10702 and pIJ12131 clones 2-5 were 

grown in VSP medium. Supernatant samples were taken at 3, 5 and 7 days of 

fermentation and tested for bioactivity by applying 40 µl supernatant to antibiotic assay 

discs which were then applied to a lawn of M. luteus. Control discs contain supernatant 

from M. corallina NRRL 30420 grown for 7 days in VSP or VSP medium only. The plate 

was incubated overnight at 30°C before zones of inhibition were visualised.  
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The collected supernatants were analysed by for MALDI-ToF mass spectrometry. The 

Nonomuraea wild type and pIJ10702 supernatants did not produce any ions associated 

with described microbisporicin variants (Figure 6.3). All four Nonomuraea pIJ12131 clones 

and M. corallina NRRL 30420 supernatants produced ions associated with variants of 

microbisporicin (Figure 6.3, see also Table 3.1). As well as the appearance of ions for the 

three described microbisporicin variants (and their sodium/potassium adducts and 

oxidation products; see chapter 3) a small amount of non-chlorinated microbisporicin was 

also observed (peaks at m/z 2203.8 and 2219.8; Figure 6.3). This suggests that 

halogenation does not occur as efficiently in Nonomuraea as in M. corallina. Additionally, 

ions with m/zs larger than those previously described were noted in Nonomuraea 

pIJ12131 supernatants compared to the vector control (Figure 6.4). These ions were also 

found in supernatants of M. corallina NRRL 30420 grown under these conditions but had 

not previously been associated with microbisporicin (Figure 6.4). These ions are 225 Da 

larger than the spectrum of peaks associated with the microbisporicin variants (Figure 

6.5). 225 Da is the mass difference expected if the three C-terminal residues of the leader 

peptide (GPA) are left intact (Tables 6.1 and 6.2). These compounds are likely to be 

microbisporicin variants since they have the same characteristic isotope pattern 

associated with the incorporation of chlorine in microbisporicin (see chapter 7). This 

suggests that under some conditions there might be two leader peptide cleavage sites for 

the MibA leader peptide. Whether these “GPA” variants of microbisporicin are active is not 

known. The fact that these appear in Nonomuraea suggests that the proteases associated 

with the two different cleavage positions are conserved in Nonomuraea. 
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Figure 6.3 Heterologous production of microbisporicin in Nonomuraea ATCC39727. 

Nonomuraea wild type (WT), pIJ10702 and pIJ12131 clones 2-5 were grown in VSP 

medium. Supernatant samples were taken at 7 days of fermentation and investigated by 

MALDI-ToF mass spectrometry. A control spectrum from supernatant of M. corallina 

NRRL 30420 grown for 7 days is shown.  
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Figure 6.4 Heterologous production of microbisporicin in Nonomuraea ATCC39727. 

Nonomuraea wild type (WT), pIJ10702 and pIJ12131 clones 2-5 were grown in VSP 

medium. Supernatant samples were taken at 7 days of fermentation and investigated by 

MALDI-ToF mass spectrometry. A control spectrum from supernatant of M. corallina 

NRRL 30420 grown for 7 days is shown. Peaks at m/z 2471.8 and 2487.8 are media 

components and act as internal standards.  
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The data demonstrated that microbisporicin could be biosynthesised by Nonomuraea 

carrying the mib gene cluster in pIJ12131. This confirms that pIJ12131 contains all of the 

genes required for microbisporicin biosynthesis in a heterologous host. However, the 

phenotypes of the four clones thought to contain the mib cluster (by selection on 

apramycin and PCR amplification of mib genes) were quantitatively different. The 

production of ions associated with microbisporcin could be detected by MALDI-ToF mass 

spectrometry from all four clones; however only two showed reproducibly high levels of 

bioactivity against M. luteus (clones 2 and 5; Figure 6.6). This could have reflected a 

mixed population of genomes in strains 3 and 4 (with some genomes carrying the 

construct and others not). Further purification of these strains through rounds of single 

colony growth in the presence of selection failed to produce phenotypes similar to those of 

clones 2 and 5. Alternatively, the cosmids in these strains may have acquired a mutation 

that suppressed microbisporicin production, or strains 2 and 5 may have acquired a 

mutation in the genome or in the mib gene cluster that increased microbisporicin 

production. The copy number of the introduced cosmid could also be an important factor; 

pIJ12131 may have integrated multiple times into the genome of strains 2 and 5, thus 

increasing expression levels. The introduction of tandem copies of some integrating 

vectors has been described previously (Combes et al. 2002). Subsequent non-selective 

growth of the strains would be expected to resolve the tandem insertions but the 

phenotypes of strains 2 and 5 appeared to be stable. Finally, it is possible that the 

epigenetic context of the integrated cosmid could play a role. Expression from the mib 

gene cluster could be suppressed in strains 3 and 4 by incorporation into higher-order 

chromatin structure (McArthur et al. 2006).  
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Figure 6.6 Heterologous production of microbisporicin in Nonomuraea ATCC39727. 

Nonomuraea wild type (WT), pIJ10702 (V) and pIJ12131 clones 2-5 were grown in 

medium V. Supernatant samples were taken at 7 days of fermentation and tested for 

bioactivity by applying 40 µl supernatant to antibiotic assay discs which were then applied 

to a lawn of M. luteus. Control discs contain supernatant from M. corallina NRRL 30420 

wild type (MC) or ΔmibA mutant (ΔA; see chapter 7) grown for 7 days in VSPA and VSP 

medium only (-). The plate was incubated overnight at 30°C before zones of inhibition 

were visualised. For unknown reasons background activity from A40926 production was 

largely suppressed in this analysis.  
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6.3 Deletional analysis of the mib gene cluster in Nonomuraea 

ATCC39727 

A series of in-frame gene deletions were generated in pIJ12131. Using the pIJ778 

cassette employed to knock-out mibA, mibX, mibW and mibXW (chapter 5) the following 

additional genes were replaced; mibZ-mibR, mibD, mibTU, mibV, mibEF, mibH and mibN. 

The cassette was subsequently removed by FLP-mediated recombination to leave an 

81bp scar. The 11 mutant cosmids described above were transferred into Nonomuraea 

ATCC39727 by conjugation from E.coli ET12567/pUZ8002. As with the wild type cosmid, 

transfer of the mutant cosmids was very inefficient. Often conjugations had to be repeated 

three or four times to obtain at least one clone of each mutant. As described for the wild 

type cosmid, the resulting ex-conjugants were cultured as single colonies for three 

successive rounds of growth on V0.1 containing 50 µg/ml apramycin. All strains were 

confirmed to contain representative genes of the mib cluster and the specific deletion in 

that cosmid by PCR analysis using genomic DNA extracted from the clones. 

All strains were grown for 7 days in VSP media and supernatants tested for bioactivity 

against M. luteus (Figure 6.7). Supernatants were also investigated for the production of 

ions associated with microbisporicin by MALDI-ToF mass spectrometry. The results of this 

analysis were not very clear, due at least in part to the production of other bioactive 

compounds by Nonomuraea, as discussed in section 6.2. The only clones giving clear, 

defined zones of inhibition similar to those seen for NRRL 30420 or Nonomuraea 

pIJ12131_2 supernatants were ΔmibXW_1 (but not clone 2), ΔmibTU_1 (but not clone 2), 

ΔmibV_1 (but not clone 2) and ΔmibN_2 (but not clone 3). The lack of reproducibility 

between clones of strains carrying the same mutant cosmid (confirmed by PCR analysis) 

suggests a similar effect is occurring as that described in section 6.2 for different clones of 

the wild type cosmid. Upon MALDI-ToF mass spectrometry, the only supernatants 

revealing ions associated with microbisporicin were ΔmibV_1 and ΔmibN_2 despite the 

detection of bioactivity from two other clones (ΔmibXW_1 and ΔmibTU_1). In the 

supernatant of Nonomuraea pIJ12131 ΔmibV_1, only m/z peaks larger than those 

typically associated with microbisporicin were observed (the so-called “GPA” variants) 

(Figure 6.8). These masses were different from those seen in NRRL 30420 or 

Nonomuraea pIJ12131_2 supernatants:  only GPA variants corresponding to the non-

chlorinated form of microbisporicin were observed (the non-chlorinated form is 34 Da 

lighter than chlorinated microbisporicin due to the loss of chlorine-35 and the gain of one 

proton in its place; Tables 6.1 and 6.2). This suggests that mibV might be involved in the 

chlorination of microbisporicin. It is not clear why only the GPA variants were detected in 

this sample.  Perhaps they were present in a higher concentration in this sample (an effect 
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of an acquired mutation on correct leader peptide processing?) or ionised more readily in 

the MALDI-ToF analysis. In the supernatant of Nonomuraea pIJ12131 ΔmibN_2, m/z 

peaks for both wild type microbisporicin and wild type GPA variants were detected (again 

the GPA variants were observed with higher intensity; Figure 6.8). Thus inactivation of 

mibN had no effect on microbisporicin biosynthesis in the heterologous host. 

 
 

Figure 6.7 Heterologous production of microbisporicin from gene inactivation mutants of 

pIJ12131 in Nonomuraea ATCC39727. Nonomuraea strains were grown in VSP. 

Supernatant samples were taken at 7 days of fermentation and tested for bioactivity by 

applying 40 µl supernatant to antibiotic assay discs which were then applied to a lawn of 

M. luteus. Control discs contain supernatant from M. corallina NRRL 30420 wild type 

grown for 7 days in VSPA. The plate was incubated overnight at 30°C before zones of 

inhibition were visualised.  
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Figure 6.8 Heterologous production of microbisporicin from gene inactivation mutants of 

pIJ12131 in Nonomuraea ATCC39727. MALDI-ToF mass spectra for Nonomuraea  

pIJ12131_2, pIJ12131_5, pIJ12131 ΔmibV_1 and pIJ12131 ΔmibN_2.  
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Results for the other mutant cosmids in Nonomuraea were largely unclear. As described 

above, there were discrepancies between the bioassay and MALDI-ToF results, as well as 

between clones of the same mutants. This suggests that heterologous expression in 

Nonomuraea can produce both false-positive and false-negative results. The reasons for 

this may be similar to those proposed to explain the differences in phenotypes between 

clones containing the wild type cosmid (section 6.2). To try to find conditions where results 

would be more consistent, a different growth medium for Nonomuraea was used. Parallel 

studies of the planosporicin biosynthetic gene cluster in Nonomuraea by Emma Sherwood 

had revealed that a growth medium termed Streptosporangium Medium (SM; (Roes et al. 

2008)) could be used reproducibly for the production of secondary metabolites in this 

strain. A number of the generated mutant strains were grown in this medium for 3-5 days 

and supernatant removed to test for bioactivity and for the presence of microbisporicin by 

MALDI-ToF mass spectrometry. This medium enhanced A40926 (and/or other bioactive 

compound) production, making the bioassay results difficult to interpret. However, MALDI-

ToF analysis of the supernatants proved more reliable. Nonomuraea pIJ10702 

supernatant, although giving bioactivity against M. luteus, was not found to produce ions 

associated with the production of microbisporicin. As when cultured in VSP, Nonomuraea 

pIJ12131 grown in SM produced both chlorinated and non-chlorinated forms of 

microbisporicin (figure 6.9). Larger “GPA” variants were found in this medium than in V or 

VSP, possibly suggesting that different proteases are active under different culture 

conditions in Nonomuraea (Figure 6.10). The exact molecular nature of these new 

variants could not be predicted on the basis of mass difference. These observations 

indicate that culture conditions can play an important role in the form of the final 

compound produced, although how this is mediated is not clear. Alternatively these m/z 

peaks may represent an unrelated secondary metabolite from Nonomuraea, the 

expression of which is induced by the production of microbisporicin. As described 

previously, Nonomuraea pIJ12131 ΔmibV_1 was found to make only the non-chlorinated 

form of microbisporicin and Nonomuraea pIJ12131 ΔmibN_2 was found to also make wild 

type microbisporicin (Figure 6.9). Nonomuraea pIJ12131 ΔmibTU_1 and 2 clones both 

produced wild type microbisporicin (Figure 6.11). Despite giving faint zones of inhibition in 

a lawn of M. luteus, supernatants from Nonomuraea pIJ12131 with deletions in mibA, 

mibX, mibW, mibXW and mibZ-mibR did not produce ions attributable to microbisporicin.  
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Figure 6.9 Heterologous production of microbisporicin from gene inactivation mutants of 

pIJ12131 in Nonomuraea sp. ATCC39727. Nonomuraea strains were grown in SM. 

Supernatant samples were taken at 5 days of fermentation and investigated with MALDI-

ToF mass spectrometry. 
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Figure 6.10 Heterologous production of microbisporicin in Nonomuraea sp. ATCC39727 

pIJ12131 and NRRL 30420 under different growth conditions. Strains were grown in SM 

or VSP. Supernatant samples were investigated with MALDI-ToF mass spectrometry.  
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Figure 6.11 Heterologous production of microbisporicin from gene inactivation mutants 

(ΔmibTU) of pIJ12131 in Nonomuraea sp. ATCC39727. Nonomuraea strains were grown 

in SM. Supernatant samples were taken at 5 days of fermentation and investigated with 

MALDI-ToF mass spectrometry.  

 

  



Chapter 6  Heterologous Expression in Nonomuraea 

 

264 
 

6.4 Discussion and Summary Points 

6.4.1 Discussion 

Nonomuraea sp. ATCC39727 is capable of generating and exporting mature, active 

microbisporicin from the mib gene cluster in pIJ12131, and could presumably be used to 

express antibiotic gene clusters from other members of the Streptosporangiaceae family. 

Heterologous expression indicated that the genes encoded within the insert of pIJ12131 

include the minimal gene set required for the production of microbisporicin.  

Inactivation of mib genes in Nonomuraea failed to yield convincing and reproducible 

evidence for their function in microbisporicin biosynthesis. However, inactivation of mib 

genes in M. corallina NRRL 30420 (described in chapter 7) supports the phenotypes that 

were observed for some of the Nonomuraea pIJ12131 mutant cosmids; MibV is involved 

in chlorination of microbisporicin, and MibN and MibTU are not essential for 

microbisporicin biosynthesis. In a heterologous host there is always some doubt 

surrounding mutant phenotypes. In the light of clearer results for mutants of the natural 

host, experiments with the mutant cosmids in Nonomuraea were discontinued. In 

Nonomuraea, a particular problem with heterologous expression is that compound 

production varied even between clones containing the same construct. This can make it 

difficult to be confident of the phenotypes observed, particularly those in which the 

compound is not produced at all since these may represent false negative results. Also, 

as a producer of at least one bioactive secondary metabolite, Nonomuraea is not an ideal 

host for activity screening. Although culture supernatants can be screened by MALDI-ToF 

mass spectrometry, this could become expensive when multiple clones of each mutant 

are assessed using a variety of culture conditions.  

As discussed in section 6.2 there are numerous reasons why the phenotypes of 

Nonomuraea carrying the mib gene cluster could vary between clones. The most likely 

explanation is probably one of copy-number, either through a mixed genome population or 

through tandem insertion of the construct. This appears to be a particular problem when 

using mycelium, instead of spores, for the movement of vectors by conjugation from E. 

coli. Spore germination usually results in only one or two mycelial compartments that are 

available for conjugation with E. coli and this presumably helps to ensure a homogeneous 

population since all or almost all of the genomes within the mycelium will carry the 

construct. This is not an option with Nonomuraea ATCC39727, which does not sporulate 

under laboratory conditions (G. L. Marcone, personal communication).  
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6.4.2 Summary Points 

 

 pIJ12131 was mobilised into Nonomuraea ATCC39727. 

 Microbisporicin was produced in an active, exported form in Nonomuraea 

ATCC39727 pIJ12131. 

 Gene inactivation studies were carried out on genes of the mib cluster in 

Nonomuraea.  

 MibV appears to be involved in chlorination of tryptophan in microbisporicin 

biosynthesis in Nonomuraea. 

 MibN and MibTU are not essential for microbisporicin biosynthesis in 

Nonomuraea. 

 Nonomuraea is not an optimal host for gene inactivation studies of heterologous 

gene clusters: it can produce false-positive and false-negative results, it produces 

another bioactive molecule, and the transfer of cosmids by conjugation from E. coli 

is inefficient 
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Chapter 7 – Microbisporicin Gene 
Cluster Analysis in M. corallina. 

7.1 Introduction  

 

The problems encountered in the heterologous production of microbisporicin in both 

Streptomyces and Nonomuraea (Chapter 5 and 6) prompted a re-examination of the 

feasibility of carrying out gene cluster analysis in the natural host M. corallina. In the 

analysis of the cinnamycin and actagardine gene clusters in the heterologous host 

Streptomyces lividans some genes were found not to be essential for biosynthesis and 

thus further analysis was carried out to determine whether this was also the case in the 

natural producer (O‟Rourke, S, unpublished; Bell, R, unpublished). Finally, developing 

tools for the direct genetic manipulation of M. corallina presents an opportunity for future 

improvement of this strain. As discussed in chapter 6 very few members of the 

Streptosporangiaceae family have been genetically manipulated and some of the 

developed tools could be transferrable to other species within this group, many of which 

produce interesting and potentially useful secondary metabolites. 

M. corallina poses a number of difficulties when contemplating genetic manipulation. 

NRRL 30420 was found to produce very few spores under laboratory conditions and was 

much more effectively cultured and stored as mycelium. This can present problems for the 

generation of clonal populations for example when constructing mutants. This issue was 

also encountered with Nonomuraea as described in chapter 6. M. corallina also grows 

quite slowly compared to other actinomycetes used in the laboratory, particularly on solid 

growth media (7-14 days) and when transferred from solid to liquid culture (requiring at 

least 6 days incubation to establish sufficient mycelial biomass). Finally, as mentioned 

above, there were no previous reports of the genetic manipulation of M. corallina or many 

representatives from the family to which it belongs. Although methods for protoplast 

formation and regeneration have been developed recently (Marcone et al. 2010b) 

protoplast transformation had not been achieved. 

The aim of this chapter was to develop methods and tools for the genetic manipulation of 

M. corallina. Initially the aim was to mobilise a small vector developed for use in 

Streptomyces into M. corallina as a proof-of-principle and to optimise the procedure. 

Following this a method for the mobilisation of larger DNA constructs such as cosmids 
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would be developed to allow the formation of gene inactivation mutants via homologous 

recombination. Success at this stage would rely on the intrinsic homologous 

recombination efficiency of the strain (since the PCR targeting approach was developed 

based on the recombination efficiency of Streptomyces) and the ability to isolate double-

crossover recombination events in M. corallina to yield clonal populations. The ultimate 

aim was to generate a succession of mutants inactivated in different genes from the mib 

cluster and to analyse the phenotypes of these mutants. 

7.2. Methods to manipulate M. corallina 

7.2.1 Selectable Markers 

A number of selectable markers will be required for the genetic manipulation of M. 

corallina. Obvious choices would be those routinely used in Streptomyces sp. such as 

apramycin, kanamycin, spectinomycin/streptomycin and hygromycin resistance. To 

determine whether M. corallina was naturally resistant to these antibiotics (as is the case 

for Nonomuraea, which is naturally highly resistant to hygromycin, G.L. Marcone personal 

communication) and the minimum inhibitory concentration for each, NRRL 30420 was 

grown on V0.1 agar medium containing a range of concentrations of these compounds. 

Concentrations selected typically ranged from 0 to double the concentration used to select 

for resistance in Streptomyces on SFM. Concentration ranges were then narrowed in a 

second experiment (for an example, see Figure 7.1). M. corallina NRRL 30420 was 

sensitive to apramycin, hygromycin and kanamycin at concentrations of 3 μg/ml, 5 μg/ml 

and 1 μg/ml, respectively. M. corallina NRRL 30420 was sensitive to 25 μg/ml 

spectinomycin with 100 μg/ml streptomycin. These antibiotics were thus deemed to be 

suitable for selection of DNA introduced into M. corallina. DSM 44681 and DSM 44682 

were similarly found to be sensitive to apramycin and hygromycin using the same method 

(other antibiotics not tested). M. corallina strains grew in the presence of 50 μg/ml nalidixic 

acid (an antibiotic to which actinomycetes are normally resistant but which kills other 

bacteria such as E. coli).  
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Figure 7.1 The determination of the minimum concentration of apramycin for inhibition of 

the growth of M. corallina NRRL30420. Plates were prepared containing 10 ml V0.1 and 

the indicated concentration of apramycin (in µg/ml). NRRL 30420 was streaked from a 

mycelial stock on to each plate. Plates were incubated for 12 d at 30°C. 

  



Chapter 7  Microbisporicin Gene Cluster Analysis 

 

269 
 

7.2.3 Analysis of the ΦC31 attachment site in M. corallina 

The ΦC31 phage attachment site identified in a wide variety of Streptomyces sp. and 

other actinomycetes has been extremely useful for the stable chromosomal incorporation 

of plasmids and phages (Kieser et al. 2000). The integration of vectors carrying the attP 

site into the attB site of streptomycete genomes has been well-studied (Combes et al. 

2002). The attB site of S. coelicolor is 34 bp in length and although there is variation in the 

sequence of this site in other Streptomyces sp., a central TT pair surrounded by GC 

nucleotides is conserved (Combes et al. 2002). The attB site of S. coelicolor lies within an 

open-reading frame SCO3798 (StrepDB – Streptomyces annotation server (Bentley et al. 

2002)). The M. corallina 454 contig database was searched using the nucleotide 

sequence of this open-reading frame as a BLASTN input. This analysis identified 

contig00075 (88% identity across 314 nucleotides). Within the aligned sequences a highly 

conserved region was noted which contained the consensus attB site of S. coelicolor 

(91% identity across 47 nucleotides; Figure 7.2A). PCR primers LF044F and LF044R 

were designed flanking the putative attB site in M. corallina and used to amplify a product 

of the expected 120 bp from M. corallina gDNA, indicating that this sequence is present in 

the genome and is not an artefact caused by the mis-assembly of the contigs in the 454 

database (Figure 7.2B).  

 

Figure 7.2 A An alignment of the phiC31 phage attachment 

site (attB) from S. coelicolor (S. coel.) (Combes, 2002) with the 

putative attB site from M. corallina NRRL 30420 (M. cora), 

identified through a homology search of the 454 contig 

database. The site of phage insertion (TT) is highlighted in 

bold. B A PCR carried out using the primers LF044F and 

LF044R with NRRL 30420 gDNA as a template. These primers 

were expected to amplify a 120 bp product across the putative 

ΦC31 attB site in the M. corallina genome.  The PCR product 

was subjected to gel electrophoresis on a  2% TBE agarose 

gel. The marker (M) is the low Mw marker (NEB) and sizes are 

shown on the left of the gel image in bp. 
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7.2.3 Generation and Transformation of M. corallina protoplasts 

The groups of Flavia Marinelli (Università dell‟Insubria, Varese, Italy) and Fabrizio 

Beltrametti (Actygea, Gerenzano, Italy) had shown that protoplasts can be made and 

regenerated from a number of rare actinomycetes, including members of the 

Streptosporangiaceae family, such as M. corallina NRRL 30420, although transformation 

had not been attempted (Marcone et al. 2010b). In collaboration with these groups, 

protoplasts were generated from the three available strains of M. corallina and 

transformation attempted with pSET152 isolated from either a strain of methylating E. coli 

(DH5α) or a non-methylating strain (ET12567 pUZ8002); attempted transformation in the 

absence of DNA was used to assess the efficacy of selection and as a control for 

spontaneous resistant mutants. Plates were overlaid with a soft agar medium containing 

apramycin at a final concentration of 50 μg/ml. After 3 weeks growth at 30°C colonies 

were visible on plates of DSM 44682 and NRRL 30420 transformed with non-methylated 

pSET152 (Figure 7.3A). There were no colonies on plates transformed with methylated 

DNA or with the no DNA control, suggesting that the colonies were not spontaneous 

resistant mutants and that M. corallina likely possesses a methylation-specific restriction 

system, as is the case for many actinomycete species (MacNeil 1988; Kieser et al. 2000).  

Putative transformants were streaked onto agar containing 50 μg/ml apramycin and 

transformation with pSET152 confirmed by colony PCR using primers amplifying a 319 bp 

region from the multiple cloning region of pSET152.  A product of the expected size was 

observed in most of the transformant clones but not from wild type genomic DNA samples 

of the parent strains (Figure 7.3B). The identity of transformants of each strain was 

confirmed by colony PCR using primers which amplified a region of the mibA open-

reading frame from genomic DNA of NRRL 30420 transformants, but not from that of DSM 

44682 transformants; the latter strain is not thought to contain the microbisporicin gene 

cluster (chapter 3). Clones of the microbisporicin producer strain NRRL 30420 containing 

pSET152 retained bioactivity and microbisporicin was detected by MALDI-ToF analysis. 
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Figure 7.3  

A Images of M. corallina DSM 44682 and NRRL 30420 clones originating from 

regenerated protoplasts transformed with pSET152 DNA. 

B A colony PCR carried out using the primers pSET152F and pSET152R with clones of 

DSM 44682 pSET152 and NRRL 30420 pSET152. NRRL 30420 and DSM 44682 gDNA 

and pSET152 plasmid DNA were used as controls. These primers were expected to 

amplify a 319 bp product across the MCS in pSET152  The PCR product was separated 

by gel electrophoresis on a  1% TBE agarose gel. The marker (M) is hyperladder (Bioline) 

and sizes are shown on the left of the gel image in bp. 
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Since pSET152 could be introduced into these strains by transformation, and is an 

integrating and not freely replicating plasmid, M. corallina must contain a functional ΦC31 

attB attachment site. To determine whether this is the same site as that identified in the 

454 sequencing data, primers were designed to allow amplification across the boundaries 

of integration between the assumed ΦC31 attB site in the M. corallina genome and the 

attP site in pSET152 (Figure 7.4A). Primers LF045F and LF045R flank the attP site in 

pSET152, and primers LF044F and LF044R flank the putative M. corallina attB site. 

Integration of pSET152 into the putative M. corallina attB site would allow amplification of 

PCR products of 118 bp and 94 bp size using primer pairs LF044F and LF045R, and 

LF045F and LF044R, respectively (Figure 7.4A). Such amplification products were 

observed when gDNA from NRRL 30420 pSET152 was used as template, but not when 

wild type gDNA was used (Figure 7.4B). Thus the identified attB site is at least one site at 

which pSET152 can integrate in M. corallina (although there could be additional sites not 

detectable with this method). This indicates that vectors integrating at the ΦC31 

attachment site are suitable for use in M. corallina. 

Although the initial protoplast transformations with pSET152 were successful, further 

attempts at protoplast generation and transformation with other vectors, including cosmid 

transformation mediated by homologous recombination, were unsuccessful. Furthermore, 

protoplast generation and transformation had been extremely slow and inefficient (only 

two clones from NRRL 30420) suggesting that transformation with constructs significantly 

larger than pSET152 (approximately 7 kb) would be difficult (Kieser et al. 2000). For these 

reasons, an alternative method for introducing DNA into M. corallina was investigated. 
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Figure 7.4 A A schematic showing the proposed mechanism of insertion of the integrating 

plasmid pSET152 (hatched blue line) in the putative attB site of M. corallina NRRL 30420 

(red line). The approximate binding sites of primers LF044F (44F) and LF044R (44R), 

which were designed to flank the putative attB site from M. corallina NRRL 30420, and of 

LF045F (45F) and LF045R (45R), which were designed to flank the putative attB site from 

pSET152, are shown as labelled black arrows. The white arrow represents the integration 

event with the lower figure indicating the proposed resulting integration in the M. corallina 

NRRL 30420 genome. Sizes (in bp) given represent the expected PCR products from 

these primer pairs. B A PCR analysis of genomic DNA from a clone of M. corallina NRRL 

30420 after integration of pSET152 compared to M. corallina NRRL 30420 wild type 

genomic DNA, pSET152 plasmid DNA and H2O. The primer pairs used in each case are 

shown above. The marker (M) was the 100 bp ladder (NEB). Sizes are shown on the left 

of each gel. 
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7.2.4 Conjugation from E. coli ET12567/pUZ8002 

 

Conjugation of vectors from E. coli ET12567/pUZ8002 is now the routine method used to 

introduce DNA into Streptomyces (Flett et al. 1997; Kieser et al. 2000). E. coli 

ET12567/pUZ8002 is a Dam-methylase deficient host that allows the transfer of 

unmethylated DNA into Streptomyces (Flett et al. 1997). Methylated DNA could not be 

used to transform M. corallina protoplasts (7.2.3) suggesting that, like Streptomyces, M. 

corallina possesses a methylation-selective restriction system (MacNeil 1988). E. coli 

ET12567/pUZ8002 is therefore an appropriate strain to use for conjugation with M. 

corallina. For E. coli-Streptomyces conjugations, freshly germinating spores are routinely 

used as a recipient host. This ensures that the conjugation event occurs when only one or 

a few  mycelial compartments are present in the recipient and helps to promote clonally 

pure ex-conjugants (as discussed in chapter 6). For non-sporulating mutants of 

Streptomyces (such as the bald mutants), a method of conjugation from E. coli into 

mycelium was developed (Kieser et al. 2000). This method of conjugation was adapted for 

use in M. corallina and Nonomuraea (as discussed in chapter 6), two actinomycetes that 

sporulate inefficiently, if at all, under laboratory conditions.  

M. corallina DSM 44682 grows well in liquid culture, giving more vigorous and dispersed 

growth than NRRL 30420. For this reason this strain was used to develop a method of 

conjugation between E. coli and Microbispora mycelium. Initially mycelial fragments were 

collected at mid to late exponential phase (after 48 h of growth) and washed in glycerol 

before being mixed with E. coli ET12567/pUZ8002 carrying pSET152 (Kieser et al. 2000). 

The appropriate growth medium for ex-conjugants of Microbispora was not known, but the 

addition of 10 mM MgCl2 into growth media was known to promote conjugation between 

Streptomyces and E. coli (Kieser et al. 2000). SFM is used routinely for the growth of 

Streptomyces ex-conjugants but may not have been a suitable growth medium for M. 

corallina. Consequently, initially both SFM and V0.1 agar media containing 10 mM MgCl2 

were tested. Conjugation mixtures were plated out on these media and incubated for 20 h 

at 30°C. Plates were then overlaid with 1 ml water containing antibiotics to give a final 

concentration of either 25 µg/ml nalidixic acid alone (to kill the E. coli donor) or 25 µg/ml 

nalidixic acid and 50 µg/ml apramycin (to select for transconjugants). Single colonies were 

visible on V0.1 plus 10 mM MgCl2 after approximately 10-14 days growth at 30°C in the 

presence of 50 μg/ml apramycin and 25 μg/ml nalidixic acid (Figure 7.5). Plates overlaid 

with nalidixic acid only gave lawns of M. corallina (Figure 7.5). No colonies were visible on 

SFM containing MgCl2 in the presence of apramycin suggesting that this is not a suitable 
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medium for selection of M. corallina ex-conjugants (Figure 7.5). These results were found 

to be reproducible in a further experiment; furthermore, when E. coli ET12567/pUZ8002 

lacking a conjugative plasmid was used in the mating, no apramycin resistant colonies 

were observed after 21 days of incubation (Figure 7.5). This suggests that the colonies 

identified from conjugation with E. coli carrying pSET152 were due to transfer of the 

plasmid (carrying the apramycin resistance marker) and not due to the spontaneous 

occurrence of apramycin resistant mutants. The DSM 44682 colonies obtained from the 

conjugation with E. coli ET12567/ pUZ8002 pSET152 were subsequently shown to 

contain pSET152. PCR using genomic DNA isolated from four of these clones was carried 

out and a band was amplified from the multiple cloning site of pSET152 (Figure 7.6). 

These initial experiments indicated that it was possible to transfer a small, integrating 

plasmid from the donor E. coli strain ET12567/pUZ8002 into M. corallina DSM 44682. 

Furthermore this method was more efficient and reliable than protoplast transformation, 

and was much more straightforward and rapid. 
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Figure 7.5 The outcome of conjugations between E. coli ET12567/pUZ8002 strains and 

M. corallina DSM 44682. The indicated E. coli strain was mixed with mycelial fragments of 

DSM 44682 and 100 μl plated on the solid growth medium shown. Plates were incubated 

for 20 h at 30°C. Plates were then overlaid with 1 ml water containing antibiotics to give a 

final concentration of either 25 µg/ml nalidixic acid alone (top row) or 25 µg/ml nalidixic 

acid and 50 µg/ml apramycin (bottom row). Plates were incubated at 30°C for 21 days 

before these images were taken.  
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Figure 7.6 Agarose gel electrophoresis analysis of PCR carried out using the primers 

pSET152F and pSET152R. Templates were genomic DNA isolated from four putative 

clones of DSM 44682 pSET152 derived from conjugation with E. coli ET12567/pUZ8002 

pSET152, DSM 44682 wild type and pSET152 plasmid DNA. The expected size of the 

band amplified across the MCS of pSET152 by these primers is 319 bp. The marker (M) 

was hyperladder (Bioline). Sizes are shown on the left of the gel. 

 
 

Conjugation from E. coli was next assessed for NRRL 30420. By isolating mycelial 

fragments from a well-dispersed culture at mid-exponential growth, pSET152 could be 

successfully transferred from E. coli ET12567/pUZ8002 into NRRL 30420 yielding 

apramycin resistant clones. However in order to manipulate M. corallina it would be 

necessary to transfer larger vectors such as cosmids and to determine whether 

homologous recombination would occur at a high enough efficiency to allow gene 

replacement. To test this, pIJ12125 was manipulated in E. coli to replace the mibA gene 

with the apramycin resistance cassette from pIJ773 by λ RED recombination. This 

construct was mobilised into NRRL 30420 mycelial fragments by transfer from E. coli 

ET12567/pUZ8002. Plates were then overlaid with water containing antibiotics to give a 

final concentration of either 25 µg/ml nalidixic acid alone or 25 µg/ml nalidixic acid and 50 

µg/ml apramycin. After approximately 3 weeks growth at 30°C, the plates overlaid with 

nalidixic acid only had a lawn of M. corallina but those also overlaid with apramycin had 

some single colonies. Seven of these colonies grew when streaked on V0.1 agar medium 

containing 50 µg/ml apramycin. Mycelium from the seven putative ex-conjugants was 

assessed by colony PCR using primers LF023F and LF023R2 that flank mibA in the 

NRRL 30420 genome. If the wild type gene had been replaced by the apramycin cassette 

a band shift would be expected for the amplified product from 545 bp to 1776 bp. This was 
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observed in four out of seven clones with two of the remaining clones amplifying both 

bands, suggesting that in the latter two only a single-crossover recombination event had 

occurred or that a mixed mycelial population was present (Figure 7.7A). These genotypes 

were further confirmed by testing the growth of the seven clones in the presence of 

50µg/ml kanamycin. The kanamycin resistance marker lies on the backbone of pIJ12125 

and will be present in the genome if pIJ12125 has been incorporated by single-crossover 

recombination. However if a double-crossover event has taken place (completely 

removing the wild type copy of mibA) the kanamycin resistance marker would be lost. 

Clones 1, 2 and 4 were susceptible to 50 µg/ml kanamycin suggesting that these clones 

had resulted from a double-crossover recombination event, correlating with the PCR 

results (Figure 7.7B). The remaining clones showed some growth on kanamycin, 

generally corresponding to the PCR results e.g. clone 3 did not amplify a wild type band 

but showed some growth on kanamycin, whereas clones 5, 6 and 7 clearly amplified wild 

type bands and grew well on kanamycin (Figure 7.7B). Growth of the remaining clones on 

kanamycin indicated that they had resulted from homologous recombination of pIJ12125 

into the chromosome by a single-crossover and not from spontaneous mutation to 

apramycin resistance. Finally all seven clones were tested for their ability to produce 

microbisporicin by growing on V0.1 agar medium for 11 days and overlaying plates with 

M. luteus in SNA. Like the wild type control, clones 3, 5 and 7 (the plate on which clone 6 

grew was contaminated) produced a bioactive compound that inhibited the growth of M. 

luteus (the wild type in fact clearing the entire plate). The levels of bioactivity from these 

clones reflected the results of the PCR and kanamycin resistance studies. Clones 1, 2 and 

4 by contrast produced no bioactive compounds (Figure 7.7C). The replacement of mibA 

with the apramycin resistance cassette in these clones abolished bioactivity.  
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Figure 7.7 NRRL 30420 ΔmibA::aac(3)IV generated by the transfer of pIJ12125 

ΔmibA::aac(3)IV from E. coli ET12567/pUZ8002. A Colony PCR using primers LF023F 

and LF023R2 that flank mibA in the NRRL 30420 genome. Mycelium from the seven 

clones of NRRL 30420 ΔmibA::aac(3)IV was used as a source of DNA template and 

pIJ12125, pIJ12125 ΔmibA::aac(3)IV and NRRL 30420 wild type gDNA were used as 

controls. The marker (M) was hyperladder (Bioline). Sizes are shown on the side of the 

gel. The PCR products amplified from wild type mibA (WT) and from ΔmibA::aac(3)IV 

(ΔmibA) should be 545 bp and 1776 bp, respectively (indicated by arrows on the right of 

the gel image). B The growth of NRRL 30420 ΔmibA::aac(3)IV clones on V0.1 containing 

50 μg/ml kanamycin or 50 μg/ml apramycin. C Bioactivity from wild type NRRL 30420 

(WT) and NRRL 30420 ΔmibA::aac(3)IV clones against M. luteus. M. corallina was grown 

for 11 d at 30°C on V0.1 and overlaid with M. luteus in SNA. Plates were incubated 

overnight at 30°C. 
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7.3 Gene Inactivation Mutants in M. corallina. 

7.3.1 mibA 

The three NRRL 30420 ΔmibA::aac(3)IV clones were analysed further by Southern blot 

hybridisation analysis using the wild type cosmid as a probe. Each of the three clones 

exhibited the band shift expected for deletion of mibA and no additional deletions or 

rearrangements were observed (Figure 7.8).  

The NRRL 30420 ΔmibA::aac(3)IV clones along with the wild type strain were grown in 

VSPA liquid medium for 7 days. Supernatants were then tested for bioactivity against M. 

luteus (Figure 7.9). Unlike supernatant from wild type NRRL 30420, supernatants from the 

clones in which mibA had been inactivated showed no inhibitory activity against M. luteus. 

Supernatants were further investigated by MALDI-ToF mass spectrometry (Figure 7.10). 

In the wild type sample, ions were identified corresponding to the known variants of 

microbisporicin and the GPA-variants but no such ions were apparent in the spectra of 

supernatants from the three ΔmibA clones (Table 7.1). Along with heterologous 

expression in Nonomuraea, this provides further evidence that the mib cluster is 

responsible for the formation of compounds with these masses. It also confirms that the 

observed GPA-variants are likely to be an alternative form of microbisporicin. The mibA 

gene is essential for the production of bioactive compound and ions associated with 

microbisporicin variants. In combination with the amino acid sequence encoded by mibA, 

this indicates that MibA is extremely likely to be the prepropeptide for microbisporicin. 
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Figure 7.8 Southern blot hybridisation analysis of NRRL 30420 ΔmibA::aac(3)IV clones 1, 

2 and 4 compared to the wild type using DIG-labelled pIJ12125 as a probe. Genomic DNA 

isolated from the wild type and the three clones was digested with ApaLI and the resulting 

fragments separated on a 1% agarose gel by electrophoresis. DNA was transferred to a 

nylon membrane by Southern transfer and the blot probed with DIG-labelled pIJ12125. 

The molecular weights of the size markers (Invitrogen 1 kb ladder) are given on the right 

in kb. The expected ApaLI restriction fragments from the known sequence of the insert of 

pIJ12125 are given to the right for the wild type and ΔmibA strains. Replacement of mibA 

with the aac(3)IV cassette results in the loss of bands at 2940 bp and 1675 bp, and the 

appearance of a band at 5828 bp (highlighted in purple), as predicted from the sequence.  
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Figure 7.9 Bioassay of supernatants from NRRL 30420 wild type (WT) and 

ΔmibA::aac(3)IV mutants. Strains were grown in VSPA at 30°C and supernatant samples 

taken after 2, 3, 4, 6 and 7 days of fermentation. 40 μl supernatant was applied to each 

disc and discs placed on a lawn of M. luteus. The plate was incubated overnight at 30°C 

before zones of inhibition were visualised.  
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Figure 7.10 MALDI-ToF mass spectrum of supernatants from NRRL 30420 wild type 

(WT) and ΔmibA::aac(3)IV mutants. Strains were grown in VSPA at 30°C and a 

supernatant sample removed after 7 days of fermentation. The supernatants were 

subjected to MALDI-ToF analysis. m/z peaks at 2309.8, 2325.7, 2471.8 and 2487.8 

correspond to medium components and serve as internal controls.  
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Interestingly, NRRL 30420 ΔmibA::aac(3)IV grown on V0.1 agar medium appeared 

visually different than the wild type strain, often with a more “fluffy” surface suggesting the 

formation of more aerial mycelium. The two strains were then grown on OBM agar 

medium, which had previously promoted the formation of aerial mycelium and a few 

associated spores by the NRRL 30420 wild type strain (chapter 3). After 5 days growth at 

30°C a glass cover slip was carefully placed on to the lawn of each strain, removed and 

visualised by phase contrast microscopy. While only mycelial fragments were observed 

with the wild type strain, inspection of the ΔmibA mutant revealed, in addition, small 

spheres, often in pairs, either free or sometimes associated with the mycelium (Figure 

7.11A). Using a cotton pad, free material on the surface of the two plates was collected in 

20% glycerol and transferred to cryotubes. The material collected from the ΔmibA mutant 

was much more viscous and a very deep pink colour compared to that from the wild type 

(Figure 7.11A). 5 µl of the collected material was observed by phase contrast microscopy. 

Only a few refractive spherical objects were seen in the sample from the wild type strain, 

whereas in that from the ΔmibA mutant, these objects completely filled the microscopic 

field. These objects are likely to be spores. 

 

To confirm that the ΔmibA mutant produced spores much more efficiently than the wild 

type strain, both were grown on OBM agar for 21 d (to promote spore formation by the 

wild type strain) and single colonies and confluent areas of growth were observed by cryo-

scanning electron microscopy (performed by Kim Findlay, JIC). On the wild type plate, 

some poorly formed spores were observed attached to aerial mycelium in confluent areas 

of growth but none could be identified on single colonies. Many of the spores appeared 

deflated or mis-shapen (Figure 7.11B). On the ΔmibA mutant plate, while some spores 

could be observed on single colonies, many were present in confluent areas where they 

were attached to aerial mycelium, most often in pairs. The spores appeared to be well-

formed and were reminiscent of those observed for DSM 44681 and DSM 44682 (chapter 

3). The long incubation time resulted in the germination of some of the ΔmibA spores on 

top of the aerial mycelium; this was not seen in the wild type strain. This indicates that the 

ΔmibA spores, at least, are viable. Thus the ΔmibA mutant of NRRL 30420 appears to 

sporulate more efficiently than the wild type strain, both in terms of spore number and 

quality. 
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Figure 7.11 NRRL 30420 wild type and NRRL 30420 ΔmibA exhibit different sporulation 

phenotypes. A  NRRL 30420 wild type and ΔmibA  (clone 1) were grown on OBM for 5 d 

and loose surface material collected and visualised on a glass cover slip (top panel). 

Loose material from the plates was collected in cryotubes (middle image) and 5 µl 

observed by phase contrast microscopy (lower panel). B  NRRL 30420 wild type (left-hand 

images) and ΔmibA  (clone 1; right-hand images) were grown on OBM for 21 d and 

confluent areas of growth visualised by cryo-SEM.  
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7.3.2 Inactivation of other mib genes 

Following the protocol described for the deletion of mibA from M. corallina, further deletion 

mutants were made in NRRL 30420. Due to the large number of open-reading frames in 

the mib gene cluster and the difficulties associated with working with M. corallina, only 10 

further mutants were constructed. Furthermore due to the location of the mib cluster near 

one end of the pIJ12125 insert and the resulting lack of sufficient flanking sequence for 

efficient homologous recombination, (approximately 2-3 kb is required in Streptomyces 

(Kieser et al. 2000)) some genes could not be replaced using this cosmid. For this reason 

mibJ and mibY were not deleted. Genes encoding proteins for which functions could be 

quite confidently assigned, such as mibB and mibC, were not deleted. Unless stated, at 

least two independent clones for each mutant were studied for phenotypic changes. 

Mutants were confirmed initially by PCR analysis using primers that flanked the cassette 

insertion and primers lying internal to the deleted gene (to confirm that no wild type copies 

remained). Mutations were further confirmed in most cases by Southern blot analysis. 

mibZ-mibR 

MibZ, MibO, MibQ and MibR possess very low levels of similarity to proteins of known 

function and no homologs have been shown to be associated with lantibiotic biosynthesis.  

Consequently, it was necessary to delete mibZOQR to determine whether these genes 

were essential for microbisporicin production. This would also help to define the minimum 

gene set required for microbisporicin biosynthesis and to more clearly define the 

boundaries of the mib cluster. mibZ to mibR (about 3.6 kb) were replaced in pIJ12125 by 

the apramycin cassette leaving the stop codon of mibY intact. This left approximately 3 kb 

of flanking homologous sequence at the left hand end of the cosmid insert for double-

crossover recombination. This construct was mobilised into NRRL 30420 by conjugation 

from E. coli ET12567/pUZ8002 yielding three independent apramycin resistant clones. 

Despite numerous attempts to identify double-crossover recombinants, no kanamycin 

sensitive colonies were obtained. This suggests that, unlike Streptomyces, 3 kb of flanking 

homologous sequence is not sufficient for gene replacement in M. corallina.  

pIJ12126 (originally cosmid 7C22) was not fully sequenced but through end-sequencing 

and restriction digest mapping was thought to possess at least 4-5 kb more sequence 

upstream of orf1 than pIJ12125. The end-sequence of the insert was extended using 

primer LF041F2, the sequence from which matched a large contig from the 454 database. 

This was used to extend the end-sequence by approximately 1500 nucleotides. This 

sequence was found to encode part of a xylosidase/arabinosidase homolog sharing 50-

60% amino acid sequence identity with a protein from Mycobacterium smegmatis. This 
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extended end-sequence from the insert of pIJ12126 was used to design a primer that 

could be linked by long-range PCR to a primer in the 5‟ end of the insert of pIJ12125, 

generating an approximately 5 kb product from both pIJ12126 DNA and NRRL 30420 

gDNA (Figure 7.12). The product amplified from gDNA was end-sequenced to confirm that 

it did indeed link these two sequences and was not a non-specific PCR product. These 

sequences are therefore contiguous in the genome of M. corallina.  pIJ12126 therefore 

provided a much larger region of homology for the second recombination event than 

pIJ12125. The end-sequence of the insert of pIJ12126 (up to the 5‟ end of the pIJ12125 

insert) was largely determined (using primers LF041F3, LF041F4, LF041R and LF041R2) 

through repeated PCR and sequence reactions, although due to the presence of 

sequence gaps it was not fully assembled. 

pIJ12126 with the apramycin cassette replacing mibZ-mibR was mobilised into NRRL 

30420 by conjugation. This transfer appeared to be somewhat less efficient than that of 

pIJ12125 and several conjugation attempts were made before nine putative mutant clones 

were identified. After three rounds of growth as single colonies on 50 μg/ml apramycin, 11 

colonies of each mutant were tested for growth on 50 μg/ml kanamycin. Two clones were 

identified (10 and 12) that gave rise to single colonies (two from each clone were taken 

forward) that were sensitive to kanamycin. These clones were confirmed by PCR as 

double-crossover recombinants in which mibZ-mibR had been replaced by the apramycin 

cassette. The two clones (two single colonies from each) were grown in VSPA for 7 days 

along with the wild type strain. Unlike the wild type control, supernatants from the mutant 

strains did not generate a zone of inhibition in a lawn of M. luteus (Figure 7.13). One or 

more of mibZ-mibR thus appear to be essential for microbisporicin biosynthesis. 
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Figure 7.12 Further analysis of the insert of pIJ12126 (7C22). The cosmids pIJ12125 and 

pIJ12126 are represented along with the likely arrangement of the corresponding region of 

the M. corallina genome. The red boxes represent the defined mib gene cluster and blue 

boxes other flanking sequences. Green boxes represent the flanking Supercos1 vector 

sequences common to pIJ12125 and pIJ12126. A purple arrow represents a 

xylosidase/arabinosidase homolog (sharing 50-60% amino acid sequence identity with a 

protein from Mycobacterium smegmatis) identified by end-sequencing of the insert of 

pIJ12126. End-sequence from pIJ12126 and the complete insert sequence of pIJ12125 

were used to design primers LF041F3 and LF041R, respectively. These primers could be 

linked by PCR when the template was pIJ12126 DNA or M. corallina NRRL 30420 gDNA, 

generating an approximately 5 kb product. This product was confirmed by end-sequencing 

to have originated from this region and was not a non-specific amplification product.  
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Figure 7.13 Bioassay of supernatants from NRRL 30420 wild type (WT) and ΔmibZ-

mibR::aac(3)IV mutants (ΔZR; two clones). Strains were grown in VSPA at 30°C and 

supernatant samples taken after 7 days of fermentation. 40 μl supernatant was applied to 

each disc and discs placed on a lawn of M. luteus. The plate was incubated overnight at 

30°C before zones of inhibition were visualised.  

 

 

mibX 

Deletion of mibX, encoding the ECF sigma factor, by double-crossover recombination was 

only identified in one clone and abolished activity against M. luteus (Figure 7.14). When 

analysed by mass spectrometry, the supernatant from a 7 day fermentation did not 

contain any peaks associated with microbisporicin (Figure 7.15). The putative ECF sigma 

factor appears to be essential for production of microbisporicin in M. corallina. 

mibD 

Deletion of mibD also abolished activity against M. luteus (Figure 7.14). When analysed 

by mass spectrometry, the supernatant from a 7 day fermentation again failed to show 

peaks corresponding to microbisporicin (Figure 7.15). mibD also appears to be essential 

for microbisporicin production. 

mibTU 

Deletion of mibTU had no significant effect on bioactivity (Figure 7.14), and when 

analysed by mass spectrometry the supernatant of a 7 day fermentation contained peaks 

associated with microbisporicin identical to those of the wild type strain (Figure 7.16). Only 

one clone of this particular mutant was isolated and characterised. 
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 mibV 

Deletion of mibV appeared to result in an increase in bioactivity against M. luteus 

compared to the wild type strain (Figure 7.14). When analysed by mass spectrometry, the 

supernatant from a 7 day culture of the mibV mutant contained peaks different from those 

in the wild type sample after the same length of fermentation (Figure 7.17). The ions 

detected in the supernatant of the mibV mutant were highly similar to those observed for 

the mibH mutant (described below). Unlike in the wild type strain, where variants appear 

to be based only on the chlorinated form of microbisporicin (see chapter 3), the mibV 

mutant appeared to produce only deschloromicrobisporicin. None of the ions associated 

with microbisporicin in the wild type strain were observed in the supernatant of the mibV 

mutant. Interestingly, the supernatant of the mibV mutant, but not the mibH mutant or the 

wild type strain, contained a number of compounds yielding m/z values lower than that of 

MF-BA-1768β1 ([M+H+]=2181.8 Da; peaks large enough to be annotated were 2122.8, 

2138.8, 2129.8 and 2154/5/6.8 Da). Although seen at only low levels compared to the 

other peaks in the spectrum, these ions were observed reproducibly in supernatants from 

three independent clones of the mibV mutant. These m/z values could not be attributed to 

any specific species but since they are likely to be of lower mass than MF-BA-1768β1 (the 

variant with the lowest mass described previously) they may represent degradation 

products of MF-BA-1768β1.  

Since mibV lies downstream from mibTU, a polar effect of the deletion of mibTU on mibV 

expression might have been expected. However, as described above, deletion of mibTU 

had no effect on bioactivity or on the MALDI-ToF spectra, suggesting lack of polarity. 

 

mibEF 

Deletion of mibEF resulted in an interesting phenotype. While supernatant from a 3-5 day 

culture failed to inhibit M. luteus, that from a 7 day fermentation gave a very small zone of 

inhibition (Figure 7.14). When analysed by mass spectrometry, the latter supernatant 

contained a few very small peaks associated with some microbisporicin variants (Figure 

7.15). mibEF appear to be essential for wild type levels of microbisporicin biosynthesis, 

with deletion resulting in delayed and much reduced production. 
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mibH 

Deletion of mibH, like mibV, appeared to result in an increase in bioactivity against M. 

luteus compared to the wild type strain (Figure 7.14). When analysed by mass 

spectrometry, supernatant from a 7 day culture of the mibH mutant contained peaks that 

were different from those in the wild type sample after the same length of fermentation 

(Figure 7.17). The spectrum of ions seen typically in supernatants from the wild type strain 

were described in chapter 3, and are believed to correspond to the chlorinated forms of 

microbisporicin. These ions were not observed in the supernatant from the mibH mutant. 

Instead a different spectrum of peaks was seen that can be attributed to compound BA-

1768β1
 ([M+H+] = 2181.88 Da) (Lee 2003) and its associated sodium/potassium adducts, 

oxidation products and GPA variants. These ions were never observed in wild type 

supernatant samples under the fermentation conditions used. BA-1768β1 differs from BA-

1768α1 by 34/36 Da, which can be attributed to the lack of chlorination of tryptophan at 

position 4 (removal of a chlorine atom (35/37 Da) and addition of a proton (1 Da)). Thus 

only deschloromicrobisporicin and its derivatives were  produced by the mibH mutant.  

In addition to the mass difference of 34/36 Da, further evidence that the observed species 

are non-chlorinated forms of microbisporicin was obtained from the isotope distribution for 

peaks in the wild type sample and that of the mibH mutant. Due to the relative natural 

abundance of its two common isotopes, 35Cl (75.77%) and 37Cl (24.23%), chlorine 

provides a unique isotopic signature in mass spectrometry (Goodlett et al. 2000). Since 

chlorine is not normally found in proteins and peptides, this signature can be recognised in 

mass spectrometry and chlorine has been used as a molecular tag for protein 

identification (Goodlett et al. 2000). Using the theoretical molecular formulae for the 

microbisporicin compounds containing chlorine (such as MF-BA-1768α1) the relative 

abundance of the first three isotopomers was predicted to be third>second>first (using 

Chemputer (University of Sheffield; http://winter.group.shef.ac.uk/chemputer/)). This was 

the observed isotope distribution of ions attributed to microbisporicin in wild type 

supernatants (Figure 7.18). When the isotope distribution was calculated for the predicted 

molecular formulae of MF-BA-1768β1, which is not expected to contain chlorine 

(deschloromicrobisporicin), the isotope pattern shifted such that the relative abundance of 

the first three isotopomers was second>first>third. This predicted pattern was exactly that 

observed for the ions identified in the ΔmibH and ΔmibV mutants (Figure 7.18). This 

provides further evidence for the lack of incorporation of chlorine into compounds 

produced by the ΔmibH and ΔmibV mutants. 

http://winter.group.shef.ac.uk/chemputer/)
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mibH is essential for production of the wild type spectrum of peaks attributed to 

microbisporicin, and is required for tryptophan chlorination. The compounds produced by 

the mibH mutant appear to be efficiently exported from the cell and show anti-bacterial 

activity against M. luteus. mibH and mibV mutants reproducibly exhibited higher than wild 

type levels of activity against M. luteus (Figure 7.14), suggesting that the non-chlorinated 

form of microbisporicin might be more active.  

 

mibN 

Deletion of mibN had no effect on bioactivity against M. luteus (Figure 7.14), and mass 

spectrometry of 7 day supernatants revealed a spectrum of peaks very similar to that of 

the wild type strain (Figure 7.16). The only notable difference was in the occurrence of 

sodium adducts. In the wild type supernatant, the majority of observed peaks were solely 

of microbisporicin in complex with sodium ions (2237.88, 2253.88, 2269.88, 2285.88, 

2301.88) rather than the protonated species (2215.88, 2231.88, 2247.88, 2263.88, 

2279.88). In contrast, in both clones of the mibN mutant, as well as sodium adduct peaks, 

a number of prominent peaks attributed to the protonated species were observed. mibN is 

not essential for production and export of microbisporicin in M. corallina, but for some 

reason its deletion alters the ratio of sodium:proton adducts in the supernatant. 

 

Deletion of 7 kb downstream of the putative gene cluster 

To confirm that the genes downstream from the defined mib cluster were not essential for 

microbisporicin biosynthesis, 7 kb of cosmid pIJ12125 lying downstream from mibN were 

replaced with the apramycin cassette. Deletion of this region had no effect on bioactivity 

against M. luteus (Figure 7.14), and mass spectrometry of the supernatant from a 7 day 

culture revealed a spectrum of peaks associated with microbisporicin that was identical to 

that found in the wild type strain (Figure 7.16). This segment of the genome does not 

appear to be involved in the production of microbisporicin. 
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Figure 7.14 Analysis of bioactivity from deletion mutants of M. corallina NRRL30420. M. 

corallina NRRL 30420wild type (WT), ΔmibA::aac(3)IV (ΔA), ΔmibX::aac(3)IV (ΔX) 

ΔmibD::aac(3)IV (ΔD), ΔmibTU::aac(3)IV (ΔTU), ΔmibV::aac(3)IV (ΔV), ΔmibEF::aac(3)IV 

(ΔEF), ΔmibH::aac(3)IV (ΔH), ΔmibN::aac(3)IV (ΔN) and Δdownstream::aac(3)IV (Δds) 

were grown for 7 d in VSPA and culture supernatants assayed for bioactivity as in Figure 

7.13.  
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Figure 7.15 MALDI-ToF mass spectrometry of supernatants from NRRL 30420 wild type 

(WT) and representative clones of ΔmibA::aac(3)IV, ΔmibX::aac(3)IV, ΔmibD::aac(3)IV 

and ΔmibEF::aac(3)IV mutants. Strains were grown in VSPA at 30°C and a supernatant 

sample removed after 7 days of fermentation. The supernatants were subjected to 

MALDI-ToF analysis. Ions with m/z 2309.7 and 2325.7 correspond to medium 

components and serve as internal controls.  
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Figure 7.16 MALDI-ToF mass spectrometry of supernatants from NRRL 30420 wild type 

(WT) and representative clones of ΔmibTU::aac(3)IV, ΔmibN::aac(3)IV and 

Δdownstream::aac(3)IV mutants. Strains were grown in VSPA at 30°C and a supernatant 

sample removed after 7 days of fermentation. The supernatants were subjected to 

MALDI-ToF analysis. Ions with m/z 2309.7 and 2325.7 correspond to medium 

components and serve as internal controls.  
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7.4 Complementation of Mutant Phenotypes 

 

Complementation of mutant phenotypes was carried out by introducing the deleted coding 

sequence in trans with expression from the native gene promoter. The vector used was 

pIJ10706, a variant of pSET152 that contains the selectable hygromycin resistance gene 

and integrates at the ΦC31 integration site in M. corallina. pSET152 had already been 

shown to transfer efficiently into M. corallina by conjugation from E. coli (section 7.2.4).  

mibA 

To complement the deletion of mibA, the region between mibX and mibA (defined as the 

mibA promoter; PmibA) and the open-reading frame of mibA were cloned into pIJ10706 to 

generate pIJ12138. This construct was mobilised by conjugal transfer into one clone 

chosen as the representative NRRL 30420 ΔmibA::aac(3)IV mutant. Ex-conjugants were 

selected with 40 μg/ml hygromycin and were efficiently acquired. Four clones were 

chosen and confirmed to contain pIJ12138 by PCR. The clones were tested for production 

of bioactive compound along with the control strains NRRL 30420 ΔmibA::aac(3)IV 

pIJ10706 and NRRL 30420 pIJ10706. Four representative clones of each strain were 

grown for 8 days in VSPA liquid medium and 40 μl of supernatant applied to antibiotic 

assay discs that were placed on a lawn of M. luteus. Introduction of the vector pIJ10706 

into NRRL 30420 wild type by conjugal transfer from E. coli had no effect on the 

production of bioactive compound (Figure 7.19A). However, neither the vector only control 

of the mibA mutant nor the mutant carrying the complementation construct pIJ12138 

restored bioactivity (Figure 7.19A). The most likely explanation for the lack of 

complementation is a polar effect of mibA substitution on the expression of downstream 

genes.  mibABCDTUV are likely to constitute one operon, with expression driven from the 

mibA promoter.  Thus, replacement of mibA with the apramycin cassette likely interferes 

with expression of mibBCDTUV. Earlier deletional analysis (section 7.3.2) revealed that 

mibD is essential for microbisporicin biosynthesis and since the proteins encoded by 

mibBC are likely to be involved in lanthionine bridge formation, they are very likely to be 

essential. However, as described previously, mibTU and mibV were found not to be 

essential for microbisporicin production and so the phenotype of the mibA mutant would 

not be expected to be influenced by a polar effect on the expression of these genes 

(although if microbisporicin had been produced in the complemented mibA mutant, the 

spectrum of ions observed in MALDI-ToF analysis would have been influenced by a polar 

effect on mibV expression (see above)).  
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To determine whether the deletion of mibA caused a polar effect on the expression of 

essential downstream genes, the mibA mutation was complemented with mibABCD. This 

fragment, of about 5 kb, is too large to confidently amplify by PCR without the 

incorporation of mutations and would be difficult and resource-consuming to verify by 

sequencing. An XbaI site conveniently positioned within the FRT site of the apramycin 

cassette used to replace mibTU in pIJ12125 ΔmibTU::aac(3)IV could be used to liberate 

the 3‟ end of the required fragment. Similarly, a unique SpeI site within the mibX-mibA 

intergenic region could be used to liberate the 5‟ end. As described below, pIJ12139 was 

constructed (for the in trans expression of other mib genes) and consists of pIJ10706 with 

the mibX-mibA intergenic region cloned into the multiple-cloning site between BamHI and 

XbaI sites. Since this region includes the unique SpeI site, the excised mibABCD fragment 

could be cloned into this vector, cut with SpeI and XbaI, to reform the mibA promoter 

region followed by the mibABCD genes, generating pIJ12362 (Figure 7.20). This large 

construct was confirmed by restriction digest analysis and was transferred into NRRL 

30420 ΔmibA::aac(3)IV by conjugation from E. coli ET12567/pUZ8002. Four ex-

conjugants, selected with 40 μg/ml hygromycin, were grown on V0.1 agar medium and 

overlaid with M. luteus in SNA. None of the clones was able to produce a zone of clearing 

in the lawn of M. luteus. The clones were further tested by growing in VSPA for 7 days 

along with the control strains NRRL 30420 wild type and NRRL 30420 ΔmibA::aac(3)IV 

pIJ10706. Supernatant from the mibABCD clones was unable to inhibit the growth of M. 

luteus, unlike the wild type control (Figure 7.19B), and MALDI-ToF mass spectrometry 

failed to reveal ions associated with the production of microbisporicin. The representative 

clones were confirmed to contain pIJ12362 by PCR. 
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Figure 7.19 Analysis of bioactivity from the mibA deletion mutant of M. corallina NRRL 30420 with 

in trans provision of mibA and mibABCD.  

A Four clones (1-4) of NRRL 30420 ΔmibA::aac(3)IV pIJ12138, NRRL 30420 ΔmibA::aac(3)IV 

pIJ10706 and NRRL 30420 pIJ10706 were grown for 8 d in VSPA. 40 μl of supernatant was 

applied to antibiotic assay discs that were placed on a lawn of M. luteus. The plate was incubated 

overnight at 30°C before zones of inhibition were recorded. 

B Three clones (1-3) of NRRL 30420 ΔmibA::aac(3)IV pIJ12362, one clone of NRRL 30420 

ΔmibA::aac(3)IV pIJ10706 and NRRL 30420 wild type were grown for 7 d in VSPA. 40 μl of 

supernatant was applied to antibiotic assay discs that were placed on a lawn of M. luteus. The 

plate was incubated overnight at 30°C before zones of inhibition were recorded.  
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Figure 7.20 Schematic illustrating the cloning strategy used to generate a 

complementation construct pIJ12362 containing mibABCD. The top panel illustrates a 

section of pIJ12125 ΔmibTU::aac(3)IV. The genes of the mib cluster are shown in red. 

The intergenic region between mibX and mibA, thought to include the mibA promoter 

(P
mibA

), is shown in light blue. The apramycin cassette from pIJ773 used to replace 

ΔmibTU is shown in grey (Gust, et al. 2003). A unique SpeI site in P
mibA 

and an XbaI site in 

the FRT sequence of the apramycin cassette were used to remove this mibABCD 

fragment and introduce it into pIJ12139 (see also figure 7.23). Ligation into the SpeI site in 

this vector restores the mibA promoter upstream of mibABCD. The vector pIJ12139 

contains the hygromycin resistance marker (Hyg), the origin of transfer (oriT) and ΦC31 

attachment site and integrase (ΦC31) (Kieser et al. 2000).  
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mibX 

Deletion of mibX may have had a polar effect on expression of mibW, which lies 

downstream of mibX and is likely translationally coupled to it (although the start codon of 

mibW was left intact by the deletion). To determine whether the observed phenotype was 

caused by the absence of MibX or MibXW, both mibX and mibXW were expressed in 

trans from their own promoter region in the mibX mutant.  The intergenic region between 

mibA-mibX along with mibX or mibXW was introduced into pIJ10706 to generate pIJ12349 

and pIJ12350, respectively. The intergenic region mibA-mibX is present in pIJ12139 (see 

below) and this construct was used to generate a negative control strain. The three 

constructs were transferred into NRRL 30420 ΔmibX::aac(3)IV by conjugation from E. coli 

ET12567/pUZ8002. Three representative clones of each resulting strain were confirmed 

to contain the appropriate construct by PCR.  

When grown on V0.1 agar medium, the strain carrying pIJ12139 did not produce 

compounds with bioactivity against M. luteus (Figure 7.21A). In contrast, strains carrying 

pIJ12349 produced large zones of clearing in an overlay of M. luteus, and strains carrying 

pIJ12350 gave small zones of clearing. The wild type strain was also grown in this assay 

but was patched at a very low starting density such that the production of microbisporicin 

would be limited and would not clear a large region of the plate in the overlay assay (as is 

common with the wild type strain) thus obscuring the other results. For this reason it is not 

possible to determine whether the level of bioactivity from the ΔmibX mutant 

complemented with mibX was higher than that of the wild type strain. Nevertheless, the in 

trans expression of mibX alone was sufficient to restore bioactivity to the mutant strain. 

MibW is proposed to negatively regulate MibX, which is presumed to be a positive 

regulator of microbisporicin production.  Thus the absence or reduced levels of MibW 

would likely cause over-production of microbisporicin. This could explain the large halos 

produced by the ΔmibX mutant when complemented with mibX alone, assuming a polar 

effect on mibW expression of replacement of the chromosomal copy of mibX with the 

apramycin cassette. When both mibX and mibW were present in the complementing 

plasmid (pIJ12350), the halos were much smaller, suggesting either that regulation of 

MibX is restored to wild type levels (if the mutation was polar on mibW) or that two 

functional copies of mibW decrease MibX activity below wild type levels and thus 

decrease microbisporicin production.   

To further investigate the complementation of the mibX mutant, the strains were grown in 

VSPA liquid medium for 7 d along with the wild type strain. Under these conditions 

supernatant from the wild type strain generated a large zone of inhibition in a lawn of M. 
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luteus. The ΔmibX mutant carrying pIJ12139 and pIJ12350 failed to produce any bioactive 

compound. Strains harbouring pIJ12349, which gave large zones of bioactivity on agar 

medium, produced only small zones of inhibition in this assay (Figure 7.21B). Thus 

complementation of the mibX deletion with mibX does not appear to be as efficient in 

liquid culture as it is on agar medium. The presence of microbisporicin in these samples 

was investigated by MALDI-ToF mass spectrometry. Ions associated with microbisporicin 

could not be detected in any of the supernatants despite bioactivity from ΔmibX pIJ12349. 

Since the level of bioactivity was very low, it is possible that the microbisporicin ions were 

obscured by other signals. To resolve this potential problem, microbisporicin was 

extracted from 5 ml supernatant samples from ΔmibX pIJ12139, ΔmibX pIJ12349 (three 

independent clones) and NRRL 30420 wild type using Diaion HP20 polystyrene resin (as 

described in chapter 2.15.1). The extracted compounds were eluted with 

methanol:butanol:water (9:1:1) and the solvents evaporated to concentrate the samples, 

which were analysed by MALDI-ToF mass spectrometry and by bioassay against M. 

luteus. This method extracted bioactive compounds from the wild type and ΔmibX 

pIJ12349 supernatants but not from the vector-only control supernatant (Figure 7.22). 

Furthermore, ions attributable to microbisporicin variants could be detected from both the 

wild type and ΔmibX pIJ12349 extracts (Figure 7.22). Interestingly the GPA variants of 

microbisporicin were present in a higher ratio compared to the non-GPA variants in the 

ΔmibX pIJ12349 extracts than in the wild type supernatant (Figure 7.22). This might 

explain the difference in the levels of bioactivity between the complemented and wild type 

strains, for example if the GPA variants are not as active as the non-GPA variants 

(although this has not been explored experimentally). The reason why these would 

accumulate at greater levels than the non-GPA form in this strain is not clear.  
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Figure 7.21 Analysis of bioactivity from the mibX deletion mutant of M. corallina NRRL 

30420 with in trans expression of mibX and mibXW. A Three clones (1-3) of NRRL 30420 

ΔmibX::aac(3)IV pIJ12349 (mibX) and NRRL 30420 ΔmibX::aac(3)IV pIJ12350 (mibXW), 

NRRL 30420 ΔmibX::aac(3)IV pIJ12139 and NRRL 30420 wild type were grown for 5 d on 

V0.1. The plates were overlaid with M. luteus in SNA. The plates were incubated 

overnight at 30°C before zones of inhibition were recorded. B Three clones (1-3) of NRRL 

30420 ΔmibX::aac(3)IV pIJ12349 (mibX) and NRRL 30420 ΔmibX::aac(3)IV pIJ12350 

(mibX), NRRL 30420 ΔmibX::aac(3)IV pIJ12139 and NRRL 30420 wild type were grown 

for 7 d in VSPA. 40 μl of supernatant was applied to antibiotic assay discs that were 

placed on a lawn of M. luteus. The plate was incubated overnight at 30°C before zones of 

inhibition were recorded.  
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Figure 7.22 Analysis of Diaion HP20 resin extracts from supernatants from the mibX 

deletion mutant of M. corallina NRRL 30420 with in trans expression of mibX. 

Microbisporicin was extracted from 5 ml supernatant samples from ΔmibX pIJ12139, 

pIJ12349 (three independent clones) and NRRL 30420 wild type using Diaion HP20 

polystyrene resin (as described in chapter 2.15.1). The extracted compounds were eluted 

with methanol:butanol:water (9:1:1) and the solvents evaporated to concentrate samples. 

These samples were investigated by MALDI-ToF mass spectrometry and by bioassay 

against M. luteus (Images shown on the right of the respective spectrum).  
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Complementation vectors pIJ12139 and pIJ12140 

The other genes of the mib gene cluster for which complementation experiments were to 

be carried out are largely separated from their putative promoter regions. To express 

these genes from their native promoters (and since no constitutive promoters have been 

explored as tools in M. corallina) a set of complementation vectors was constructed. 

pIJ12139 was designed to allow expression of genes of the mibA operon from the mibA 

promoter likely located within the mibX-mibA intergenic region (Figure 7.23). pIJ12140 

was designed to allow expression of genes of the mibE operon from the mibE promoter 

likely located within the mibV-mibE intergenic region (Figure 7.23). The two vectors were 

based on pIJ10706 and were constructed to allow the introduction of the gene of interest 

downstream of the appropriate promoter (Figure 7.23). Each gene was cloned with its own 

ribosome-binding site to promote wild type levels of translation initiation at the in trans 

location.  

mibD 

The phenotype of the mibD mutant was complemented to wild type by the in trans 

expression of the mibD ORF from the mibA promoter (likely its native promoter) (Figure 

7.24). The bioactivity of this strain was restored to approximately wild type levels 

(estimated by bioassay) and the spectrum of ions visible by MALDI-ToF mass 

spectrometry was as seen in wild type NRRL 30420 supernatants. This indicated that 

there were no detrimental polar effects caused by replacement of mibD with the 

apramycin cassette and that the loss of mibD was solely responsible for the lack of 

microbisporicin production in the mibD mutant.  
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Figure 7.23 Schematic illustrating the cloning strategy used to generate the 

complementation constructs pIJ12139 and pIJ12140. The top panel illustrates the mib 

gene cluster. The intergenic region between mibX and mibA, thought to include the mibA 

promoter (P
mibA

), is shown in light blue and was amplified by PCR using primers which 

introduce a BamHI (B) site at the 5‟ end and NdeI (N) and XbaI (X) sites at the 3‟ end. The 

intergenic region between mibV and mibE, thought to include the mibE promoter (P
mibE

), is 

shown in light purple and was amplified by PCR using primers which introduce an EcoRV 

(E) site at the 5‟ end and NdeI (N) and XbaI (X) sites at the 3‟ end. These fragments were 

cloned into pIJ10706 in the BamHI/XbaI and EcoRV/XbaI sites respectively. The vector 

pIJ10706 is based on pSET152 and contains the hygromycin resistance maker (Hyg),  the 

origin of transfer (OriT) and ΦC31 attachment site and integrase (ΦC31) (Kieser et al. 

2000). Genes to be expressed from these promoters were introduced between the NdeI 

and XbaI sites such that they lie immediately downstream of the respective promoter (see 

also chapter 2.24).  
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Figure 7.24 Analysis of bioactivity from deletion mutants of M. corallina NRRL 30420 with 

in trans expression of different mib genes from their cognate promoters.  The mutant 

under study in each case is listed on the left. In each assay NRRL 30420 wild type was 

grown as a positive control (“Wild Type” in column 1). The mutant strain carrying the 

empty complementation vector (either pIJ12139 (mibD, mibV and mibX) or pIJ12140 

(mibEF, mibH) were grown as negative controls (one representative clone selected; 

“Vector Only” in column 2). The mib genes expressed in trans in each mutant are given 

above each image in columns 3-4. All strains were grown for 7 d in VSPA and 40 μl 

supernatant tested for bioactivity against M. luteus. Zones of inhibition are shown for one 

representative clone for each strain (at least 2 clones were assayed in each case). Note 

that the ΔmibV mutant control strain grew poorly on this occasion and thus shows a 

reduced zone of inhibition than that seen previously.      
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mibV 

mibV lies at the end of the likely mibA operon and thus replacement of mibV with the 

apramycin cassette would not be expected to have a polar effect on downstream genes. 

To determine whether the phenotype of the ∆mibV mutant was solely due to the loss of 

mibV, the gene was expressed in trans from the mibA promoter (likely its native 

promoter). The mibV mutant retains bioactivity but was also consistently found to give 

higher levels of bioactivity. When mibV was expressed in the ∆mibV::aac(3)IV mutant, the 

strain retained this higher level of bioactivity (Figure 7.24). The supernatant from 

∆mibV::aac(3)IV pIJ12139-mibV was further investigated by MALDI-ToF mass 

spectrometry and compared to the profile of ions from the mutant strain carrying only 

pIJ12139. The in trans provision of mibV did not restore the ∆mibV mutant to a wild type 

phenotype since only ions corresponding to deschloromicrobisporicin production were 

observed in both strains (Figure 7.25). Additionally, the unidentified smaller ions identified 

in the ∆mibV mutant were also present in the supernatants from three ∆mibV::aac(3)IV 

pIJ12139-mibV clones (although they were not as obvious in the control strain in this 

particular experiment; this strain grew poorly on this occasion and also gave a reduced 

zone of inhibition by bioassay; Figures 7.24 and 7.25).  
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Figure 7.25 Analysis of supernatants from the mibV deletion mutant of M. corallina NRRL 

30420 with in trans provision of mibV. NRRL 30420 ∆mibV::aac(3)IV  pIJ12139, NRRL 

30420 ∆mibV::aac(3)IV  pIJ12139-mibV (3 independent clones) and NRRL 30420 wild 

type (WT) were grown in VSPA for 7 days at 30°C. Supernatant samples were 

investigated by MALDI-ToF mass spectrometry.  
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mibEF 

The very marked reduction in bioactivity and microbisporicin production in the ΔmibEF 

mutant is likely due to the loss of both proteins since they are predicted to function as a 

two-component ABC transporter. To test whether this was the case, mibE, mibF and 

mibEF were to be expressed in trans to determine whether the phenotype could be 

restored. Deletion of the downstream genes mibH and mibN had no detrimental effect on 

bioactivity and so the phenotype of the mibEF mutant is unlikely to result from a polar 

effect on their expression, but this could also be assessed in the complementation 

experiment. mibE, mibF and mibEF were cloned in pIJ12140 such that expression was 

driven by the native mibE promoter. The construct carrying mibF alone was detrimental to 

the growth of E. coli DH5α (used in cloning) and was lethal in E. coli ET12567/pUZ8002. 

The reason for this is not clear, but it is possible that the protein is expressed (perhaps 

due to read-through expression from the lacZ promoter in pIJ12140) and that the ATPase 

activity of mibF is not well-tolerated by E. coli. For this reason, only mibE- and mibEF-

containing constructs were transferred into NRRL 30420 ΔmibEF::aac(3)IV by conjugation 

from E. coli. Four independent clones of each resulting strain were grown along with a 

pIJ12140 only control strain on V0.1 agar medium at 30°C for 7 d before being overlaid 

with M. luteus. Under these conditions, ΔmibEF pIJ12140 and pIJ12140-mibE failed to 

generate zones of inhibition in a lawn of M. luteus (Figure 7.26). By contrast clones of 

ΔmibEF pIJ12140-mibEF produced large zones of inhibition, indicating that the in trans 

provision of mibEF was sufficient to complement the loss of mibEF from the mib gene 

cluster (Figure 7.26). The strains were further analysed by growing for 7 d in VSPA liquid 

medium and supernatant samples applied to antibiotic assay discs on a lawn of M. luteus. 

Unlike the pIJ12140 and pIJ12140-mibE strains, which failed to generate large zones of 

inhibition under these conditions, pIJ12140-mibEF supernatant generated a clear zone of 

inhibition (Figure 7.24). These supernatants were also analysed by MALDI-ToF mass 

spectrometry and found to contain wild type microbisporicin. This indicates that there is no 

severe polar effect on mibH expression in the ΔmibEF mutant. Thus, mibF is essential for 

microbisporicin biosynthesis in M. corallina and it is very likely that mibE is also required 

with MibEF functioning as a two-component ABC-transporter. 
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Figure 7.26  Clones of ΔmibEF pIJ12140, ΔmibEF pIJ12140-mibE and ΔmibEF pIJ12140-

mibEF were grown on V0.1 agar at 30°C for 7 d before being overlaid with M. luteus in 

SNA. Plates were incubated overnight at 30°C before zones of inhibition were recorded. 

The result from two representative clones for each stain is shown.  
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mibH 
 
mibH is translationally-coupled to the downstream gene mibS, which likely encodes the 

flavin reductase required for tryptophan halogenase (MibH) activity. Replacement of mibH 

with the apramycin cassette is therefore likely to have a polar effect on mibS expression. 

For this reason, mibH, mibS and mibHS were all assessed for their ability to complement 

the ΔmibH mutant. The genes were cloned in pIJ12140 such that expression was driven 

by the mibE promoter (likely the native promoter). The resulting constructs, along with 

pIJ12140, were transferred into the mibH mutant by conjugation from E. coli. The resulting 

strains were grown for 7 days in VSPA liquid medium and bioactivity against M. luteus 

assessed (Figure 7.24). Since the ΔmibH mutant retains bioactivity, this assay was unable 

to definitively show whether these genes could complement the mutation. However the 

mibH mutant was found to reproducibly generate larger zones of inhibition in a lawn of M. 

luteus compared to the wild type. These larger zones were apparent around discs of 

supernatant from the vector-only control, pIJ12140-mibH and pIJ12140-mibS strains, 

however the zone of clearing around a disc of supernatant from pIJ12140-mibHS was 

smaller in diameter and similar to that produced by the wild type strain (Figure 7.24). The 

supernatants were further analysed by MALDI-ToF mass spectrometry (Figures 7.27 and 

7.28). Supernatants from the vector-only control, pIJ12140-mibH and pIJ12140-mibS 

strains gave ions corresponding only to the deschloro-form of microbisporicin, as 

described for the ΔmibH mutant (Figure 7.27). In contrast, expression of mibHS in the 

ΔmibH mutant resulted in ions relating to both the deschloro- and chloro- forms of 

microbisporicin (Figure 7.27). When compared to a wild type spectrum of ions, it is 

apparent that the spectral phenotype of ΔmibH expressing mibHS is intermediate between 

that of the mutant and the wild type strain (Figure 7.28).  It was also possible to discern a 

shift in the ratios of isotopomers in this strain back to that typically seen in wild type 

supernatants. This suggests the incorporation of chlorine into the compounds. Thus both 

mibH and mibS are required for the chlorination of microbisporicin. This suggests that 

reduced flavin provided by MibS is essential for the chlorinating activity of MibH in vivo 

and its absence is not complemented by the presence of another flavin reductase in M. 

corallina. 
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Figure 7.27 Analysis of supernatants from the mibH deletion mutant of M. corallina NRRL 

30420 with in trans provision of mibH, mibS or mibHS. Two independent clones of NRRL 

30420 ∆mibH::aac(3)IV  pIJ12140, NRRL 30420 ∆mibH::aac(3)IV  pIJ12140-mibH, NRRL 

30420 ∆mibH::aac(3)IV  pIJ12140-mibS, NRRL 30420 ∆mibH::aac(3)IV  pIJ12140-mibHS 

and NRRL 30420 wild type (WT) were grown in VSPA for 7 days at 30°C. Supernatant 

samples were investigated by MALDI-ToF mass spectrometry.  
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7.5 Microbisporicin Resistance 

 

Microorganisms that produce bioactive compounds often require a mechanism of self-

resistance to prevent growth inhibition and potentially suicide. In the microbisporicin 

biosynthetic gene cluster, self-resistance is proposed to be conferred by MibEF, an ABC-

transporter with homology to resistance proteins from other lantibiotic gene clusters. 

Furthermore, deletion of mibEF resulted in very low and much delayed levels of 

microbisporicin biosynthesis, potentially a consequence of negative feedback on 

production resulting from the lack of an effective self-resistance mechanism. To determine 

whether mibEF contribute to the resistance of M. corallina to microbisporicin, the following 

experiments were carried out. 

During initial characterisation of the M. corallina strains and their ability to produce 

microbisporicin (see chapter 3) attempts were made to determine the sensitivity of the 

strains to microbisporicin. In the absence of purified compound, this was carried out using 

co-culture. The non-producer strain DSM 44681 and the producer strain NRRL 30420 

were grown in a patch across one side of V0.1 agar plates for 11 d at 30°C. NRRL 30420 

mycelium was then streaked perpendicular to each of the patches and its growth 

monitored for several days. After 5 d it was clear that NRRL 30420 was able to grow right 

up to the patch of DSM 44681 but would not grow near the NRRL 30420 patch (Figure 

7.29A). This suggests that NRRL 30420 may not be resistant to its own compound at the 

stage of mycelial outgrowth. However, this was not too surprising since the genes for 

microbisporicin resistance may only be induced at the onset of production, which in liquid 

culture occurs during mid-late exponential phase. DSM 44681 and DSM 44682 showed 

similar responses to growth in the vicinity of NRRL 30420 (data not shown).  

This assay was further extended by analysing the resistance of NRRL 30420 to 

microbisporicin produced in the supernatant of the same strain grown in liquid culture for 

six days. To determine the time point at which the wild type strain became resistant to its 

own compound, either through intrinsic resistance (e.g. mycelial out-growth has ceased) 

or through induction of a specific resistance mechanism (e.g. MibEF), the resistance of 

the strain was assessed at multiple stages of growth. The wild type strain was grown for 0, 

24, 48, 72 and 96 hours on V0.1 agar medium before adding supernatant from NRRL 

30420 into wells made in each of the lawns (Figure 7.29B). After 72 hours or more of 

growth, the wild type strain appeared to be completely resistant to microbisporicin. 

However, after 48 hours of growth, a small zone of inhibition was observed around the 

edge of the well into which the supernatant had been added.  When added immediately 
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after inoculation (zero time point), the supernatant generated a sizable zone of inhibition. 

This is consistent with the results of the earlier experiment that suggested that early 

mycelial growth is inhibited by a compound or compounds produced by NRRL 30420. The 

ΔmibA mutant of NRRL 30420 was also grown and treated in exactly the same way as the 

wild type strain (Figure 7.29B). The ΔmibA mutant showed a more severe response to the 

presence of NRRL 30420 wild type supernatant, with growth inhibition up to 72h of 

growth. By 96h however, the strain showed the same level of resistance as the wild type. 

The zones of inhibition seen at earlier time points were much larger in the ΔmibA mutant. 

This phenotype might reflect differences in the starting inoculum or in the growth rates of 

the two strains, although in regions of the lawns not subjected to growth inhibiton, growth 

density of the two strains appeared to be similar. Additionally, it is not possible in this 

experiment to be confident that this is a response to microbisporicin and not another 

compound present in the supernatant of NRRL 30420. However, it would appear that the 

ΔmibA mutant is significantly less resistant to a compound produced by the wild type, and 

it is interesting to speculate that expression of mibEF, and hence microbisporicin 

resistance, is triggered by microbisporicin itself.  
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Figure 7.29 Analysis of the resistance of M. corallina to microbisporicin. A The non-

producer strain DSM 44681 and the producer strain NRRL 30420 were grown in a patch 

across one side of V0.1 agar plates for 11 d at 30°C. NRRL 30420 was then streaked 

perpendicular to each of the patches and its growth monitored for several days. These 

images were recorded after 5 d. B NRRL 30420 wild type (WT) and  ΔmibA strains were 

applied to V0.1 agar in wells of a square petri dish at the time points indicated above each 

well and were incubated at 30°C. At the zero time point wells were created in each agar 

plug using an inverted 200 µl Gilson pipette tip (Starlab). 40 µl of supernatant from NRRL 

30420 wild type grown for 6 d in VSPA was added to each well. The plate was incubated 

at 30°C for several days and this image recorded after 5 d.  
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To narrow this effect to microbisporicin and not some other component of M. corallina 

supernatant, the above experiment was repeated but using duplicate wells of growth of 

each strain and applying to one wild type supernatant and to the other supernatant from 

the ΔmibA mutant grown under the same conditions. In this experiment, the wild type 

strain showed lower levels of sensitivity to supernatant from the wild type and did not give 

the clear zones of inhibition previously observed (Figure 7.30). The reason for this is not 

clear, but could relate to the starting inoculum used or the concentration of microbisporicin 

in the wild type supernatant (which was different to one used in the previous experiment, 

since it was prepared in parallel with the ΔmibA supernatant), especially as production 

levels have been observed to vary. There was no difference in the response of wild type 

growth to the wild type or ΔmibA supernatants (Figure 7.30). In contrast, while the mibA 

mutant was not prevented from growing at all by the ΔmibA supernatant, clear zones of 

inhibition were observed at 0 and 24 hours growth in response to the wild type 

supernatant (Figure 7.30). The reduced response in this experiment compared to the 

previous one is probably for the same reasons outlined above for the wild type strain. 

However, the clear difference in response to wild type and ΔmibA supernatant suggests 

that inhibition is due to the presence of microbisporicin (assuming that deletion of mibA 

doesn‟t affect the production of other compounds that are active against M. corallina and 

not M. luteus). This reinforces the notion that mibA influences the level of resistance of the 

strain. 

To investigate the involvement of mibEF in resistance, the ΔmibEF mutant and the strain 

complemented by the in trans expression of mibEF (section 7.4) were also assessed for 

resistance in exactly the same manner. These two strains did not grow as well as the wild 

type and ΔmibA strains, making a direct comparison difficult. However, the two strains 

grew at similar densities to each other and the difference in the response to wild type and 

mibA supernatants could be compared (Figure 7.30). The ΔmibEF strain was able to grow 

at all time points in the vicinity of wells containing the ΔmibA supernatant but at early time 

points (0-48h) showed a severe growth inhibition when exposed to wild type supernatant. 

This suggests that, like mibA, mibEF play a role in conferring resistance to 

microbisporicin. The complemented strain, restored to almost wild type levels of 

production by the in trans expression of mibEF, similarly showed no growth response to 

ΔmibA supernatant but showed a much less severe response to the wild type supernatant 

than either the mibEF mutant (similar growth density) or the mibA mutant (higher growth 

density), and was only slightly inhibited in growth in the vicinity of the well at the earliest 

time point (0h). This suggests that as well as restoring microbisporicin production to the 

strain, mibEF are also capable of complementing the resistance phenotype of the mibEF 
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mutant. This analysis strongly suggests the involvement of mibEF in providing self-

resistance to microbisporicin.  

 

 

 

Figure 7.30 NRRL 30420 wild type (WT), ΔmibEF, ΔmibEF pIJ12140-mibEF and  ΔmibA 

strains (as indicated on the left of the image) were applied in duplicate to V0.1 agar in 

wells of square petri dishes at the time points indicated above each well and were 

incubated at 30°C. At the zero time point wells were created in each agar plug using an 

inverted 200 µl Gilson pipette tip (Starlab). 50 µl of supernatant from NRRL 30420 wild 

type or ΔmibA  grown for 7 d in VSPA was added to each well, as indicated on the right of 

the image. The plate was incubated at 30°C for several days and this image recorded 

after 4 d.  
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7.6 Regulation of mib gene cluster expression 

 

The ECF sigma factor encoded by mibX was proposed as a potential regulator of mib 

gene expression in chapter 4 and furthermore microbisporicin was proposed to regulate 

its own production. Moreover, lack of microbisporicin production in the mibX mutant 

demonstrated an essential role for MibX in microbisporicin biosynthesis (section 7.3.2). To 

investigate the involvement of MibX in regulating expression of the mib gene cluster, the 

following experiments were carried out. 

 

7.6.1 Analysis of mib gene expression in M. corallina 

Transcription from the microbisporicin gene cluster was investigated through a reverse-

transcriptase PCR approach. Wild type NRRL 30420 was previously found to grow with a 

lag phase of approximately 8-12 h followed by exponential growth until approximately 72 h 

(chapter 3). Microbisporicin production was first observed at around 46-50 h, equating to 

mid-exponential growth phase (chapter 3). Time points of 48 h (mid-exponential growth 

phase and onset of production) and 72 h (transition to stationary phase and maximum 

microbisporicin detection) were thus selected as appropriate time points at which to 

sample the mycelium for the preparation of RNA. 

mib gene expression in the wild type strain was compared to that of the mibA and mibX 

mutants. The mibA deletion strain grew at approximately the same rate as the wild type 

strain (when compared across several growth analyses), whereas the mibX deletion 

mutant reproducibly grew at a slower rate and showed a tendency to reach a lower final 

optical density (at stationary phase) than the wild type and mibA mutant strains (Figure 

7.31). Nevertheless, the same time points of 48 h and 72 h were selected for the 

comparison of gene expression and microbisporicin production in all three strains.  
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Figure 7.31 Analysis of the growth rates of M. corallina NRRL 30420 strains used for the 

collection of RNA for RT-PCR experiments at 48 h and 72 h. Optical density at 450 nm 

was measured for two independent cultures of each strain at each time point; M. corallina 

NRRL 30420 wild type (closed diamond ♦ and triangle ▲), ΔmibA::aac(3)IV (open square 

□ and cross ×) and ΔmibX::aac(3)IV (closed square ■ and open circle ○). While the mibA 

mutant grew at approximately the same rate as the wild type strain, the mibX mutant grew 

at a slower rate and reached a lower final optical density at stationary phase.  
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To provide an internal control for the amount of starting cDNA and RNA/cDNA quality, a 

homolog of hrdB from S. coelicolor was identified in the 454 sequence data from M. 

corallina (91% nucleotide identity across 509 nucleotides of available sequence at the 3‟ 

end of the gene). hrdB is commonly used as a control in RT-PCR and quantitative RT-

PCR (qRT-PCR) experiments in Streptomyces sp. since it encodes the vegetative sigma 

factor σ70 (Hesketh et al. 2009). Primers LF106F and LF106R (chapter 2) were designed 

to amplify a 131 bp fragment from the transcript of M. corallina hrdB. This gene was 

expressed at roughly equal levels in all three strains (two replicates for each strain at both 

time points) at both 48 h and 72 h (Figure 7.32). Expression was somewhat higher at 48 h 

although this might have been expected since transcription levels would generally be 

expected to decrease during stationary growth (72 h). The hrdB homolog thus provides a 

useful control for RT-PCR experiments in M. corallina. 

 

Expression of mib genes and of genes elsewhere on the sequenced cosmid pIJ12125 

was analysed by RT-PCR using primers designed to lie internal to ORFs and by 

amplifying products typically less than 200 bp to ensure efficient amplification (Table 2.9). 

Of all the ORFs analysed, only one was expressed at approximately equivalent levels in 

all three strains at both time points (matching the result for hrdB expression); this was orf1 

which appears to belong to a separate transcriptional unit at one end of the insert present 

in pIJ12125 (Figure 7.32). For every other gene analysed (from mibJ to mibN), transcript 

levels were reduced in both the ΔmibA and ΔmibX mutants compared to the wild type 

strain at both 48 h and 72 h (Figure 7.32). As expected, the mibA transcript could not be 

detected in the mibA deletion strain, and was markedly reduced in amount in the mibX 

mutant when compared to the wild type strain. Similarly the mibX transcript was absent 

from the mibX mutant, as expected, and markedly reduced in the mibA mutant. Thus both 

mibA and mibX are required for wild type mib gene expression. Additionally, the similar 

expression patterns observed for mibJ-mibR suggests that these genes are co-regulated 

with the rest of the mib gene cluster and further indicates, along with the mutational 

studies, their involvement in microbisporicin biosynthesis. 
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Figure 7.32 Reverse-transcriptase PCR analysis of mib gene expression during mid-

exponential growth (48 h) and transition growth phase (72 h) in M. corallina NRRL 30420 

wild type (WT), ΔmibA::aac(3)IV (ΔmibA) and ΔmibX::aac(3)IV (ΔmibX). Two samples of 

RNA were isolated from each strain (1&2) and converted into cDNA for use as the 

template in each reaction. Primers were designed lying internal to the open-reading 

frames shown on the left (primer pairs are listed in Table 2.9). Primers internal to hrdB 

from the M. corallina genome were used as a control (lowest panel). The marker (M) was 

100 bp ladder (NEB).  
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7.6.2 A possible MibX consensus binding sequence 

 

The apparent coordinate regulation of all of the analysed mib genes (from mibJ to mibN) 

suggested that it might be possible to identify a putative MibX binding motif in the 

intergenic regions present in the mib gene cluster. All possible intergenic sequences 

(mibJ-mibY, mibO-mibQ, mibQ-mibR, mibX-mibA and mibV-mibE) were thus submitted for 

analysis using MEME (Bailey et al. 1994), revealing a consensus motif of GAACC-N15-

GCTAC for all five submitted sequences and present in the expected orientation in each 

case (Table 7.2 and Figure 7.33). Only for the transcriptional unit starting with mibA was 

this consensus not clearly identified (By manual searching a possible motif was identified 

89 nucleotides upstream of mibA that shows homology to the consensus sequence in the 

-35 region but less so in the -10 region (Figure 7.33C). This motif was not identified at any 

other locations in the sequence of pIJ12125). The consensus sequence bears the 

hallmark of those identified for well-characterised ECF sigma factors in other systems (the 

AAC motif in the -35 region and the clustering of CGT nucleotides in the -10 region) 

(Staron et al. 2009). Taken together, these results suggest that these transcriptional units 

are co-regulated by the ECF sigma factor MibX.  

 

 

Table 7.2 Table of MEME output data. Intergenic regions used for the input of the analysis 

were orf1-mibJ, mibO-mibQ, mibQ-mibR, mibX-mibA and mibV-mibE. “Start” indicates the 

position (in nucleotides) of the first nucleotide in the given consensus sequence (purple) 

before the annotated start codon of the open-reading frame. The consensus sequence is 

given in purple and the flanking sequences in green. 
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Figure 7.33 A MEME output graphic for the analysis of the intergenic regions of the 

microbisporicin gene cluster showing the consensus sequence. B Positions of predicted 

consensus sequences (arrows) in the microbisporicin gene cluster. See also Table 7.2. 

C An alignment of the consensus sequences identified upstream of the listed open-

reading frames. A potential consensus motif was manually identified 89 nucleotides 

upstream of mibA but only shares close homology at the -35 consensus region (yellow) 

and not the -10 (blue).  
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7.6.3 Analysis of the interaction between MibW and MibX 

MibW was proposed in chapter 4 as an anti-sigma factor that regulated the activity of 

MibX. In this model MibW would bind to MibX, possibly through its predicted N-terminal 

cytoplasmic extension, and thus tether it to the membrane where MibW would be 

embedded via its predicted transmembrane helices. To determine if an interaction 

occurred between MibW and MibX, a bacterial-two-hybrid (BACTH) experiment was 

carried out.  

The bacterial-two-hybrid system involves the use of two fragments of the adenylate 

cyclase enzyme from Bordetella pertussis which, when brought into close proximity, can 

reform a functional enzyme, the activity of which can be monitored through a variety of 

assays (Karimova et al. 1998). The adenylate cyclase fragments (T18 and T25) are 

attached separately to the two potentially interacting proteins, the two fusion proteins 

expressed in E. coli and adenylate cyclase activity monitored. The BACTH is particularly 

useful since it functions even when protein partners are tethered at the membrane (as is 

predicted to be the case for MibW) and, unlike other methods, does not depend upon 

reconstitution of transcription factors at their DNA binding sites. 

mibX was fused to the gene encoding the T18 fragment of adenylate cyclase in two 

vectors; pUT18 in which MibX would be at the  N-terminus of the fusion protein (pIJ12367) 

and pUT18C in which MibX would be at the C-terminus of the fusion protein (pIJ12368) 

(Figure 7.34). Thus each terminal region of MibX would be free to interact with MibW in 

one or other of the two fusion proteins. mibW was used to produce three different fusion 

constructs, all based on pT25 (also called XP458). The transmembrane helix prediction 

for MibW (TMHMM; see chapter 4; Figure 4.12) indicated that the N-terminus would 

extend into the cytoplasm and create a possible binding site for the ECF sigma factor. By 

contrast the C-terminus of MibW was predicted not to extend into the cytoplasm and 

would be very close to the membrane. Attaching the T25 fragment at the C-terminus might 

prevent possible interactions due to steric hindrance with the membrane and 

transmembrane fold of the protein.  In all cases, MibW was therefore located at the C-

terminus of the fusion protein (Figure 7.34). pIJ12369 contains the full-length mibW ORF, 

pIJ12370 encodes only the N-terminal portion of the protein that is expected to project into 

the cytoplasm (amino acids 1-73) and pIJ12371 encodes only the C-terminal 

transmembrane portion of MibW (amino acids 74-255). This was to determine whether 

only one segment of the protein could elicit an interaction or whether the overall structure 

of the protein was important. As a positive control for the interaction, pT25, pUT18 and 

pUT18C containing the leucine zipper fragment (zip) from GCN4 (yeast protein) were 
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used. This domain has been shown to interact strongly with itself and to provide a reliable 

positive control for bacterial-two hybrid studies (Karimova et al. 1998). Negative controls 

were the empty vectors. 

The constructs were introduced by transformation into E. coli BTH101, a strain specifically 

developed for BACTH experiments in which the adenylate cyclase gene, cya, has been 

inactivated. The plasmids were transferred in pairs (Table 7.3). In the initial experiment, 

designed to determine whether an interaction could be detected and whether the 

attachment of the T18 fragment at the N- or C-terminus of MibX was important, positive 

control and test strains were plated on MacConkey-Maltose indicator agar and plates 

were incubated at 30°C for 4 d. MacConkey agar contains a pH indicator that turns 

red/purple under acidic conditions. In BTH101, the absence of adenylate cyclase activity 

means that cyclic AMP cannot be synthesised and therefore the catabolite activator 

protein CAP is unable to activate expression of maltose catabolic enzymes (Karimova et 

al. 1998). BTH101 is thus unable to utilise the maltose in this medium. If adenylate 

cyclase activity is restored by a protein-protein interaction, maltose can be utilised as a 

substrate. The fermentation of maltose acidifies the medium, allowing the interaction to be 

observed as a colour-change from white/pale pink to deep red/purple. After 4 days, a clear 

interaction could be seen on the positive control plate using T25-zip and T18-zip, but not 

with T18C-zip (Figure 7.35). The reason for this is unknown but the T18C-zip construct 

might be defective. A clear interaction was also apparent between T25-full length MibW 

and either T18-MibX or T18C-MibX (Figure 7.35). This suggests that MibX and MibW 

interact strongly in E. coli and that the position of the T18 fragment does not affect the 

ability of MibX to interact. In contrast there was no indication of a clear interaction from 

either the N-terminus or C-terminus of MibW alone, although the N-terminal constructs 

gave slightly more colouration than the C-terminal, suggesting that the N-terminus of 

MibW might be involved in the interaction (Figure 7.35). 
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Figure 7.34 A The constructs used for bacterial-two hybrid analysis of the interaction 

between MibX and MibW. Construct names are shown on the right. The map of each 

vector is displayed (taken from Euromedex BACTH kit manual (pUT18 and pUT18C) and 

Karimova et al. 1998 (pT25)). Transmembrane helices of MibW are shown as red lines. B 

A model for the interaction between MibW and MibX in the bacterial-two hybrid 

experiment. MibW is embedded in the membrane by six transmembrane helices (red). 

MibW was attached to T25 at the N-terminus. MibX was attached to the T18 fragment at 

both the N- and C-terminus (not shown). Interaction between the T25 and T18 fragments 

of adenylate cyclase results in the synthesis of cyclic AMP (cAMP) from ATP (Karimova, 

et al. 1998). 
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Figure 7.35 A bacterial-two hybrid experiment to investigate the interaction between 

MibW and MibX. The listed pairs of constructs (see also Table 7.3) were transferred into 

the BACTH reporter strain of E. coli BTH101 by transformation. The resulting 

transformants were selected on MacConkey/Maltose agar containing 100 µg/ml 

carbenicillin and 25 µg/ml chloramphenicol and incubated at 30°C for several days before 

phenotypes were recorded. 

  



Chapter 7  Microbisporicin Gene Cluster Analysis 

 

333 
 

To further characterise the interaction, the experiment was repeated. Only the pUT18-

mibX construct, and not the pUT18C-mibX construct, was used since the positive control 

plasmid pUT18C-zip gave a poor result and the location of MibX in the fusion protein 

appeared not to matter for the interaction. The negative controls listed in Table 7.3 were 

also carried out. The same result was obtained, and the negative controls confirmed that 

the interaction was specific to the presence of both MibW and MibX. To quantify the 

extent of the interaction, two clones from each interaction plate were sampled and 

assayed for β-galactosidase activity as described in chapter 2. β-galactosidase activity 

was plotted as the average value from the two independent clones and error bars were 

generated for each clone (Figure 7.36). This analysis revealed an extremely strong 

interaction between MibW and MibX, with β-galactosidase activity above that of the 

leucine-zipper control fragments. It furthermore reinforced the earlier conclusion that 

neither the N-terminus or C-terminus of MibW alone are capable of interacting strongly 

with MibX, the latter yielding no more than background levels of β-galactosidase activity. 

Consistent with the plate assays, the N-terminal segment of MibW gave slightly higher 

activity than the C-terminal segment, but this is unlikely to be significantly above 

background levels and may not have biological relevance. 
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7.6.4 Reporter assays to investigate MibX activity 

Analysis of mib gene expression by RT-PCR indicated a dependence of mib gene 

expression on mibX, but did not indicate whether this reflected direct interaction of MibX 

with the promoter regions of the mib genes. Furthermore, the lack of a clear consensus 

motif upstream of mibA suggested that MibX might not be responsible for direct activation 

of expression of the mibA operon. Finally many ECF sigma factors auto-regulate their own 

high level expression (Staron et al. 2009). An indication that this might be the case is clear 

from RT-PCR results for mibW (in the same operon as mibX), the expression of which 

appears to be decreased in the absence of mibX (Figure 7.32). To investigate these 

features of MibX activity, a reporter system based on the production of light by luxAB 

genes was employed. 

Reporter plasmids pIJ12341, pIJ12342, pIJ12343 and pIJ12344 were constructed based 

on pIJ5972, which integrates into the ΦC31 attachment site and contains a promoterless 

luxAB cassette which encodes the enzyme luciferase (Figure 7.37). Luciferase expression 

is detectable by the application of the substrate N-decanal, the degradation of which 

results in light production, observable with a NightOwl camera. pIJ12341 contains the 

intergenic region between mibX-mibA (with the putative mibA promoter upstream of 

luxAB) as well as the mibX open-reading frame (with expression driven from its own 

promoter), whereas pIJ12342 contains only the intergenic region. pIJ12343 contains the 

intergenic region between mibX-mibA (with the putative promoter of mibX upstream of 

luxAB) and the mibX gene itself whereas pIJ12344 contains only the putative promoter 

(Figure 7.37). These constructs, along with pIJ5972, were introduced into the 

heterologous host S. coelicolor M1146. Three independent clones were selected for each 

strain and grown in duplicate for 2 d on Difco Nutrient Agar (where S. coelicolor does not 

sporulate, since spore formation can interfere with the assay; Figure 7.37)). Light 

production was assessed by exposing the mycelium to N-decanal on filter discs for 5 

minutes before detecting light production using a NightOwl Camera. No light production 

was detected from the vector only control strain or from strains containing pIJ12341 or 

pIJ12342. Very low level light production was observed from strains containing pIJ12344, 

suggesting that the mibX promoter region possesses a low level of constitutive activity, at 

least in S. coelicolor. In contrast, high levels of light production were observed from clones 

containing pIJ12343, suggesting that the presence of the ECF sigma factor increases 

expression from the mibX promoter. This suggests that mibX can positively auto-regulate 

its own expression.  
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Figure 7.37 Luciferase-reporter analysis of MibX activity in S. coelicolor M1146. The 

vector pIJ5972 (bottom panel) contains promoterless luxAB. pIJ12341 contains the 

assumed promoter of mibA (PmibA) and the mibX open-reading frame as shown. pIJ12342 

contains only the assumed promoter of mibA (PmibA). pIJ12343 contains the assumed 

promoter of mibX (PmibX) and the mibX open-reading frame as shown. pIJ12344 contains 

only the assumed promoter of mibX (PmibX). Three independent clones of S. coelicolor 

M1146 (shown side by side) containing these constructs were grown in duplicate 

(indicated by numbers on the left of the images) for 2 d on Difco nutrient agar and light 

production visualised using a NightOwl Camera (Berthold) after applying the substrate N-

decanal on filter paper discs for 5 minutes. The images shown are representatives chosen 

from three independent experiments. 
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7.7 Discussion and Summary Points 

7.7.1 Discussion 

The development of a method for the transfer of DNA (of up to 50 kb) into M. corallina 

represents a milestone for the Streptosporangiceae family, members of which had proved 

largely refractory to genetic manipulation. Using a similar method, developed in 

conjunction with this work, Nonomuraea, another member of this family and the producer 

of the glycopeptide antibiotic A40926, has also been genetically manipulated (Marcone et 

al. 2010a). Interspecies conjugation thus presents a useful tool for the manipulation of 

these rare actinomycetes, many of which are important secondary metabolite producers. 

The use of ΦC31 integrating vectors such as pSET152 in M. corallina provides a useful 

tool for the introduction of DNA into these organisms. Other vectors, commonly used in 

Streptomyces genetics, might be adapted for use in these strains, for example the ΦBT1 

integrating vectors (Gregory et al. 2003) and those carrying constitutive promoters such 

as ermE* (Bibb et al. 1994).  Unfortunately such tools may need to be developed 

individually for different genera. For example, a study of a number of promoters, 

commonly used in Streptomyces, in Actinoplanes friuliensis indicated that promoters 

which showed high level expression in Streptomyces, such as ermE*, had poor 

expression levels in A. friuliensis and vice versa (Wagner et al. 2009). In fact, in A. 

friuliensis, the aac3(IV) promoter, which drives the expression of the apramycin resistance 

gene, gave the highest expression levels (Wagner et al. 2009). However, the availability of 

genome sequence data for M. corallina should facilitate this process by allowing the 

identification of promoter sequences for M. corallina genes likely to show high or 

constitutive activity, such as that of the ribosomal proteins or elongation factors (Kieser et 

al. 2000). 

The transfer of DNA into M. corallina by conjugation from E. coli could be further 

optimised. The method utilised in this study could be improved particularly in efficiency of 

transfer and in the time for ex-conjugants to appear. There was a high failure rate for 

conjugations, mostly when transferring large cosmids for homologous recombination, but 

also for some other vectors, and in some cases certain constructs could not be transferred 

at all. For example, several attempts were made to transfer pIJ12131, the integrative 

vector carrying the mib gene cluster for heterologous expression, into the non-producer 

strain DSM 44682, but this never resulted in the growth of ex-conjugants. When 

constructing gene inactivation mutants by homologous recombination, very often multiple 

attempts at cosmid transfer were carried out before mutant clones could be obtained and 

in some cases only one or two clones were isolated, for example ΔmibTU. This might be 
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improved by decreasing the size of the delivery vector to improve transfer efficiency whilst 

retaining sufficient homologous sequence for recombination (Flett et al. 1997). This was 

attempted for the ΔmibTU deletion construct where 7 kb of sequence downstream of mibN 

was also deleted from the cosmid. When making the Δdownstream deletion mutant, this 

improved conjugation efficiency compared to the full length cosmid, but this was not found 

to be the case for the mibTU mutant. The reason for this is not clear, but there are clearly 

aspects of the conjugation process between M. corallina and E. coli that should be 

explored further in order to improve the method. 

There was also a significant difference in the amount of time required for the growth of 

clones resulting from the transfer of a small integrating vector, like pSET152 (about 10-14 

days), and a cosmid by homologous recombination (from 3-8 weeks). This is likely to be a 

product of the efficiency of transfer into mycelial fragments. In the case of pSET152, a 

small vector, transfer efficiency would be expected to be high, and in addition integration 

at the ΦC31 attachment site should also be highly efficient (Flett et al. 1997). This means 

that a large proportion of compartments in each recipient mycelial fragment may have the 

resistance marker and thus the starting inoculum for growth in the presence of selection 

will be high. In the case of transferring a cosmid, the size of the DNA fragment will 

decrease the transfer rate but also the efficiency of integration into the genome will be 

lower since it relies on homologous recombination (Flett et al. 1997). This means that 

many fewer mycelial compartments will carry the resistance marker and so the starting 

inoculum for growth in the presence of selection will be much lower. The intrinsically slow 

rate of growth of M. corallina means that these differences in inoculum size will have a 

significant effect on the rate of appearance of clones. The length of time required to 

acquire clones for the acquisition of mutants made gene inactivation very time consuming. 

Furthermore, even when clones had been identified, their selection through several 

rounds of growth (requiring at least 7-14 days for each round of growth) and the slow 

growth of M. corallina upon transfer to liquid culture (about 6 days) meant that 

construction of each mutant took on average 3-4 months. With further optimisation of the 

method this might be improved. Further exploration of the metabolism and nutritional 

requirements of M. corallina may help to improve growth rates under laboratory 

conditions. 

The replacement of mibA with the apramycin resistance cassette by homologous 

recombination in M. corallina NRRL 30420 provided further evidence that the mib gene 

cluster is responsible for the production of microbisporicin but also acted as a proof-of-

principle for the deletion of other genes from the mib gene cluster. The translated amino 

acid sequence of mibA provides very good evidence that this gene encodes the 
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prepropeptide of microbisporicin since its primary sequence exactly matches that 

predicted from the structure of microbisporicin (see chapter 4). Deletion of mibA thus gave 

the expected phenotype, i.e. lack of microbisporicin biosynthesis.  

In addition to abolishing microbisporicin biosynthesis, deletion of mibA also led to more 

efficient production of spores compared to the wild type. To date there are no reports of a 

negative effect of a lantibiotic upon sporulation by a producing species. Nisin and subtilin 

have been well-documented to prevent spore outgrowth in strains of Bacillus sp. but have 

not been described to inhibit the formation of spores (Liu et al. 1992; Chan et al. 1996). 

SapB, a lanthionine-containing peptide produced as a surfactant by S. coelicolor, is 

involved in promoting the formation of aerial mycelium and therefore sporulation (Kodani 

et al. 2004). A non-lantibiotic surfactant produced by Bacillus subtilis, surfactin, can 

however inhibit aerial mycelium formation in S. coelicolor (Straight et al. 2006). It is 

possible that, like SapB, microbisporicin can function as a surfactant, but like surfactin, 

has a negative rather than positive effect upon sporulation. The formation of aerial 

mycelium was not obviously different in the wild type and mibA mutant strains and so 

unlike these other compounds the effect of microbisporicin appears to be only on spore 

formation. However, there does appear to be a link between the production of 

microbisporicin and the inability of NRRL 30420 to produce spores efficiently under 

laboratory conditions. Interestingly, other strains of M. corallina, such as DSM 44681 and 

DSM 44682, appear not to produce microbisporicin but do sporulate under laboratory 

conditions (chapter 3). 

The inability of mibA, provided in trans and expressed from its assumed native promoter, 

to complement the mibA deletion is interesting. Lack of complementation by mibABCD 

suggests that this was not due to a polar effect on mibBCD expression. However it is 

possible that a mutation was introduced during construction of the mibABCD plasmid that 

prevented complementation. Since the mibA promoter allowed expression of mibD in 

pIJ12139-mibD, it is clearly capable of driving in trans gene expression, apparently ruling 

out any positional effect on its functionality. Alternatively, deletion of mibA may have 

resulted in a second site mutation that was not detectable by Southern blot or PCR 

analysis. This could be determined by transferring the complementation constructs into 

the two other clones of the mibA mutant. Another possibility is that mibA, mibB, mibC and 

mibD need to be expressed in a specific ratio with other genes in the mib gene cluster and 

that this is disrupted by in trans expression. Alternatively the placement of the construct 

within the genomic context of the ΦC31 attachment site might affect expression levels of 

some genes. These hypotheses might be tested by restoring the wild type mibA gene at 

its own locus by homologous recombination. However this method could mask the 
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involvement of a second site mutation which, if present near to the mibA gene, would also 

be replaced by the recombination event. The ability to complement the deletion of mibA in 

trans would provide a useful system for the production of microbisporicin variants (Boakes 

et al. 2009).  

Attempts to delete mibZ-mibR highlighted the need for more than 3 kb of homologous 

flanking sequence for efficient recombination in M. corallina. It also demonstrated the 

utility of pIJ12126 as an alternative cosmid for the construction of mutations in the left 

hand end of the mib gene cluster. Deletion of mibZ-mibR, a 3.6 kb region containing 

several genes of unknown function, resulted in a non-producing strain of M. corallina. This 

deletion is unlikely to have had a polar effect on downstream genes since mibXW are 

transcribed in the opposite orientation. At least one of mibZ, mibO, mibQ or mibR are 

therefore essential for microbisporicin biosynthesis. This might be further investigated by 

the in trans provision of each of these genes, individually and in combinations. This could 

be less time-consuming than making each mutant individually but assumes that these 

genes can be complemented in trans. These results give weight to the inclusion of these 

genes of unknown function within the mib gene cluster.  

Deletion of mibX abolished detectable production of microbisporicin and suggested a role 

for the ECF sigma factor in the regulation of mib gene expression. The phenotype of the 

mutant was complemented by the in trans expression of mibX from its own promoter. 

Interestingly, complementation was more pronounced on agar medium than in liquid 

fermentation (discussed further below). As with several of the other mib genes, in trans 

expression of mibX did not restore the mutant to wild type levels of production, at least in 

liquid culture. This might reflect an altered level of gene expression at the ΦC31 

integration site. Furthermore, in the case of an ECF sigma factor, which is normally 

expressed at a defined ratio with its cognate anti-sigma factor, separating the sigma factor 

and anti-sigma factor genes might have uncoupled the regulatory machinery with an 

adverse effect on production levels.  

mibD was predicted to be a flavin-dependent decarboxylase involved in the formation of 

the S-[(Z)-2-aminovinyl]-D-cysteine at the C-terminus of microbisporicin. The function of 

this modification in the lantibiotics that possess it is not known. Deletion of mibD from the 

microbisporicin gene cluster abolished bioactivity, as did mutation of epiD involved in 

epidermin production in S. epidermis, suggesting similar roles for the two genes in 

lantibiotic maturation (Augustin et al. 1992). Moreover no microbisporicin variants, even 

those with the mass predicted for the unmodified compound, were detected in the 

supernatant of the ΔmibD strain. The absence of mibD may result in the production of a 
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compound that is either not able to exit the cell or that is rapidly degraded in the 

extracellular environment. Interestingly, many lantibiotics possess (methyl-)lanthionine 

bridges or  S-[(Z)-2-aminovinyl]-D-cysteines at their C-termini (Chatterjee et al. 2005) that 

might serve to prevent carboxypeptidase degradation in the external environment. 

mibTU appear to encode a two-component ABC-transporter which, on the basis of 

similarity to CinTH, are predicted to be involved in the export of microbisporicin. Deletion 

of cinTH in S. cinnamoneus resulted in a strain that did not show antimicrobial activity 

suggesting that cinTH are essential (S. O‟Rourke, personal communication). Deletion of 

mibTU by contrast did not result in a non-producing strain of M. corallina. Since only one 

clone of this mutant was obtained it is possible that a second site mutation in this strain 

overcomes the block caused by the mutation. However, pIJ12131 ΔmibTU in two 

independent clones of Nonomuraea was also found to produce microbisporicin (chapter 

6). This suggests that mibTU are not essential for microbisporicin biosynthesis. spaT, 

encoding a transport protein in the subtilin biosynthetic gene cluster, was also found to be 

non-essential for subtilin production although other phenotypic changes were noted that 

may have reflected accumulation of the compound inside the cells (Klein et al. 1992). This 

suggests that other host-encoded transporters can partially complement the absence of 

the specific lantibiotic transport system. This was also true for PepT, the transporter for 

Pep5 (Meyer et al. 1995), and in the epicidin 280 gene cluster that does not encode a 

LanT homolog (Heidrich et al. 1998). Finally like the cinnamycin gene cluster, the 

actagardine gene cluster also encodes a two-component ABC transporter thought to be 

involved in lantibiotic export (garTH) (Boakes et al. 2009). These genes were not essential 

for heterologous production of actagardine in S. lividans (Robert Bell, personal 

communication). It is possible that one of the other transporters encoded by the mib gene 

cluster (MibYZ, MibEF and/or MibN) can compensate for deletion of mibTU. Double and 

triple mutants of the transporters in the mib gene cluster would be required to determine 

this although due to the absence of production in a mibEF mutant it would be difficult to 

determine whether mibEF can complement a mibTU deletion in this way. It is also 

possible that microbisporicin could be exported by host transport systems. 

The function of MibV could not be predicted on the basis of sequence similarity and thus 

deletion of mibV was crucial to the assessment of its role in microbisporicin biosynthesis. 

Interestingly ΔmibV exhibits a very similar phenotype to ΔmibH; the production of only 

deschloromicrbisporicin, suggesting a role for MibV in tryptophan chlorination. It is very 

unlikely that the deletion of mibV has a polar effect on the expression of mibH since 

inactivation of the intervening mibEF genes prevents high level microbisporicin production 

and this is not seen in the mibV mutant. Furthermore, the mibV and mibEFH genes 
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appear to lie within separate operons. It is possible that MibV acts as a transcriptional 

activator of mibH expression and thus in its absence prevents mibH transcription. 

However, MibV is not predicted to be a DNA-binding protein and RT-PCR 

experiments/motif searches suggest that the putative mibEFHSN operon is regulated by 

MibX. MibV could also function post-translationally to positively regulate MibH activity. 

This has not been previously documented for tryptophan halogenase enzymes and it is 

not clear why such regulation would be necessary.  

MibV could play a direct role in tryptophan chlorination. This would not be entirely novel 

for tryptophan halogenase activity since many halogenases act on substrates bound to 

carrier proteins, some of which contribute to the specificity of the reaction (van Pee et al. 

2006). Such proteins may be required for the correct presentation of the substrate to the 

enzyme, as apparently occurs in the chlorination of non-ribosomally synthesised peptides 

(Dorrestein et al. 2005; Rachid et al. 2009).  This could be particularly important for a 

large substrate such as a peptide. However the homolog of MibV encoded by 

Nocardiopsis dassonvillei is in a lantibiotic gene cluster that does not include a tryptophan 

halogenase. This suggests a broader role for MibV beyond halogenation.  

The identification of ions in the MALDI-ToF spectra of ΔmibV mutant clones with m/z 

values lower than those typically seen for deschloromicrobisporicin might suggest a 

stabilising or protective role for MibV. Should MibV function as a chaperone for MibA 

modification it might protect the prepropeptide from degradation (perhaps the cause of 

these lower molecular weight compounds) and present the MibA substrate to the 

tryptophan halogenase. This is not without precedent since cinorf7 from the cinnamycin 

biosynthetic gene cluster has also been postulated to act as a chaperone, although it is 

essential for cinnamycin biosynthesis (S. O‟Rourke personal communication). The inability 

of mibV, expressed in trans, to complement deletion of mibV might indicate that a specific 

ratio of MibV to MibA is important for the function of MibV.  

MibEF were predicted to confer microbisporicin resistance in M. corallina based on 

homology to the LanFEG systems of other lantibiotics. Deletion of mibEF resulted in 

markedly reduced and delayed production of microbisporicin. In other well-characterised 

lantibiotic gene clusters it is not clear whether a link exists between resistance and 

compound production. In B. subtilis, where spaEFG confer resistance to subtilin, deletion 

of these genes does not render the strain incapable of subtilin biosynthesis, although 

susceptibility was slightly increased (Klein et al. 1994). However, this likely reflects the 

presence of a second contributing immunity system, SpaI. The effect of disrupting both 

systems on subtilin biosynthesis has not been reported. Similarly, deletion of nisF, nisE 
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and nisG in L. lactis 6F3, although affecting sensitivity to nisin, did not affect nisin 

production (Siegers et al. 1995). However, deletion of nisI decreased production to 20-

40% of wild type levels (Ra et al. 1999). The epidermin biosynthetic gene cluster of S. 

epidermis encodes only one resistance mechanism, EpiFEG, although it has not been 

reported whether mutation of these genes affects biosynthesis. In a heterologous host, co-

expression of epiFEG along with the biosynthetic genes did increase levels of production 

(Peschel et al. 1996). Finally, in the cinnamycin biosynthetic gene cluster of S. 

cinnamoneus, deletion of the resistance gene cinL resulted in the complete absence of 

bioactivity (S. O‟Rourke personal communication). Deletion of mibEF gave a phenotype 

similar to that of ΔcinL. At early time points there was no indication of bioactivity 

suggesting a complete block in biosynthesis or compound export. At later time points very 

low levels of bioactivity were detected that might be explained by release of the compound 

through cell lysis. This suggests that mibEF, although not absolutely required for the 

biosynthesis of the compound, may in some way regulate its export from the cell or indeed 

its biosynthesis. MibEF may provide a mechanism of self-resistance and in the latter‟s 

absence the organism may respond by blocking microbisporcin export or production, 

suggesting the presence of a mechanism for sensing resistance levels. Alternatively, 

MibEF might themselves provide the only mechanism for export of microbisporicin.  

MibH was predicted to be a tryptophan halogenase responsible for chlorination of the 

tryptophan at position 4 of microbisporicin, likely in collaboration with the flavin reductase 

MibS. The mibH mutant produced only the non-chlorinated form of the compound, 

corroborating this hypothesis. The mutant strain retains the ability to inhibit the growth of 

M. luteus, suggesting that chlorination is not essential for bioactivity of microbisporicin. In 

fact, in most cases both the ΔmibH and ΔmibV mutants exhibited higher than wild type 

levels of bioactivity, suggesting that deschloromicrobisporicin might be more active 

against M. luteus. Alternatively the absence of chlorine on this molecule could influence 

the diffusion rate of the antibiotic. Further analysis of these non-chlorinated variants may 

reveal differences in properties such as solubility, or differences in activity against other 

bacterial species. Results of previously reported MIC measurements suggest that the non-

chlorinated MF-BA-1768β1 exhibited higher MICs than the chlorinated MF-BA-1768α1 

against certain species of Staphylococcus and Enterrococcus  (Lazzarini et al. 2005). 

Another study reported MICs for MF-BA-1768β1 that were lower than MF-BA-1768α1 for 

some species and higher for others (Lee 2003). Microbisporicin exhibits increased activity 

against Gram-negative pathogens when compared with many other lantibiotics (Lazzarini 

et al. 2005; Castiglione et al. 2008). It is possible that by increasing the polarity of the 

molecule, chlorination may increase the ability of the compound to permeate the Gram-
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negative outer membrane. This could be assessed by comparing the activities of the 

chlorinated and non-chlorinated forms against Gram-negative bacteria.  

Both mibH and mibS were required to complement the deletion of mibH in trans. This may 

be due to an uncoupling of mibHS expression or due to a polar effect on mibS expression 

in the mibH mutant. MibH and MibS are very likely to be working together to chlorinate 

microbisporicin in vivo. In trans expression of mibHS was unable to complement the 

phenotype of the mutant fully back to wild type, despite being expressed from what is 

likely to be their native promoter, suggesting that removing the genes from their natural 

location in the mib cluster may impact the efficiency with which microbisporicin is 

processed and modified. Additionally, the transcript is likely to differ from that of the 

natural locus which would also likely include mibEF and possibly mibN. This could 

influence the stability of the transcript and affect the expression level of mibHS. 

MibN has homology to members of the sodium/proton antiporter family, particularly those 

associated with NRPS and glycopeptide biosynthetic gene clusters. To determine whether 

mibN plays a role in the biosynthesis of microbisporicin it was deleted from the gene 

cluster. The resulting strain has an essentially wild type phenotype suggesting that MibN 

is not involved in microbisporicin biosynthesis and could be a remnant of the horizontal 

transfer of mibHS into the mib gene cluster (as discussed in chapter 4). The phenotype of 

the mibN mutant could however be masked by redundancy with other transporters in the 

mib gene cluster or other sodium/proton antiporters encoded within the M. corallina 

genome. One possible clue to a role for MibN in microbisporicin biosynthesis was seen in 

MALDI-ToF mass spectra from both clones of the ΔmibN mutant which showed higher 

ratios of the non-sodium adduct variants to sodium adduct variants compared to the wild 

type strain. This might suggest that MibN influences the balance of intra- and extra-

cellular sodium. Whether this is associated with the production of microbisporicin is not 

clear. The genes in the 7 kb segment of the genome which follows mibN are unlikely to be 

part of the mib gene cluster since their deletion had no effect on microbisporicin 

production and resulted in a spectrum of compounds identical to that of the wild type 

strain. 

Complementation of deletions in mib genes was largely accomplished through the in trans 

expression of the respective gene or genes from their predicted native promoters at the 

ΦC31 integration site. The construction of pIJ12139 and pIJ12140 provides expression 

vectors for use in M. corallina although it is likely that these promoters are highly regulated 

and they are not likely to be suitable for constitutive expression. Nevertheless, the 

successful use of pIJ12139 and pIJ12140 for in trans complementation indicates that 
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promoter regions do indeed lie within the intergenic regions mibX-mibA and mibV-mibE. 

These promoter sequences could be further characterised by S1 nuclease protection 

studies. 

Some deletions in the mib gene cluster could not be complemented in trans, namely 

ΔmibA and ΔmibV. As discussed this is unlikely to reflect polarity and does not appear to 

be due to lack of activity of the mibA promoter region, which was able to drive mibD 

expression. However transcription at a different site in the genome could be inhibited or 

impaired for other reasons, such as local genome structure. Many of the other constructs 

were unable to fully complement the mutant phenotypes suggesting that this may be a 

general issue when attempting to complement mutations in trans. Interestingly, deletion of 

pepI from the Pep5 gene cluster of S. epidermis could similarly not be complemented in 

trans by provision of pepI alone but only when pepA was also present (Pag et al. 1999). 

This was shown to be due to the presence of RNA secondary structure between the pepI 

and pepA open-reading frames which was required to stabilise the pepI transcript (Pag et 

al. 1999). Although this is unlikely to be the case for mibA, where both the up- and 

downstream regions were supplied in the complementation experiments, it indicates that 

other factors can impede in trans complementation. The inability to fully complement 

these deletions in trans might be an indication of interesting regulatory features of the mib 

gene cluster. Alternatively, differential mRNA stability of the in trans transcripts compared 

to the wild type transcripts might be playing a role. 

Wild type M. corallina exhibited some sensitivity to microbisporicin during early stages of 

vegetative growth, and mibA was shown to be essential for wild type levels of resistance 

to microbisporicin in NRRL 30420. This has commonly been seen in other lantibiotic-

producer species in which the lantibiotic auto-regulates the expression of the gene cluster 

(Draper et al. 2008). For example, disruption of nisA was found to increase nisin 

sensitivity in L. lactis (Ra et al. 1999). Furthermore, near wild type levels of resistance 

could be conferred on non-producer strains of L. lactis by nisI but only when nisA and the 

genes essential for nisin biosynthesis were also provided (Kuipers et al. 1993a). This was 

later found to be due to a requirement for mature nisin for the expression of the nisI and 

nisFEG resistance genes (Ra et al. 1999). However the involvement of the prepropeptide 

gene in resistance is not always due to auto-regulation, as described for Pep5 above  

In an auto-regulatory model for microbisporicin production, in the wild type strain sub-

inhibitory concentrations of microbisporicin would be expected to induce expression of 

other genes of the mib gene cluster, including the resistance genes, before the organism 

is exposed to inhibitory levels. Therefore, at very early time points even the wild type is 
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likely to be somewhat affected by the exogenous addition of microbisporicin. In the mibA 

mutant, the absence of low-level microbisporicin biosynthesis would prevent expression of 

the resistance genes resulting in microbisporicin sensitivity. Non-susceptibility would only 

occur once mycelial growth had already occurred or ceased.   

mibEF were also required for wild type levels of resistance and the mutant phenotype was 

complemented by the in trans expression of mibEF. Since deletion of mibA also reduced 

the level of microbisporicin resistance, mibEF may mediate their effect by influencing 

microbisporicin biosynthesis. Further analysis will be required to determine whether there 

is a specific role of mibEF in resistance.  

It would be interesting to look at the resistance phenotypes of other mib mutants as well. 

The assay design could also be improved by inoculating strains at a similar density by first 

determining the colony forming units of each inoculum. A further test of the role of mibEF 

in resistance would be through constitutive expression in a heterologous host. These 

experiments would be further improved by the acquisition of purified microbisporicin, 

allowing resistance levels to be quantified. 

The pattern of gene expression observed in the mibA and mibX deletion mutants when 

compared to the wild type strain indicates a strong reliance on the products of both genes 

for efficient transcription from promoters in the gene cluster. A consensus binding motif, 

with similarity to those identified at other ECF sigma factor-controlled promoters, in 

several operons of the mib gene cluster adds further weight to the predicted role of MibX. 

MibW, a putative anti-sigma factor, interacted very strongly with MibX in E. coli providing 

experimental evidence for its predicted role in inhibiting MibX activity. Luciferase reporter 

experiments in S. coelicolor indicated that MibX likely auto-regulates its own expression 

but it does not appear to directly induce expression from the putative mibA promoter. The 

sensitivity of the luciferase reporter assay in Streptomyces is not known and it is possible 

that expression from the mibA promoter is too low to be detected by this method. This 

could be determined by quantitative RT-PCR. Since a heterologous host was used for 

these experiments it will be interesting to use similar constructs in wild type NRRL 30420 

strain and some of the deletion mutants to see whether similar results are obtained in the 

natural producer. 

Taken together the results presented in this chapter suggest a model in which MibX is 

required for high level expression of the microbisporicin gene cluster (including its own 

gene) and in which its activity depends on low levels of production of microbisporicin. In 

such a model, low levels of microbisporicin (potentially produced by expression from a 

starvation-induced promoter) or cell envelope stress (induced by the likely interaction of 
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microbisporicin with Lipid II) prevents MibW from interacting with MibX, thus releasing the 

ECF σ factor and resulting in high-level expression of the entire microbisporicin gene 

cluster.   

The proposed mechanism by which MibXW function to regulate mib gene expression 

might also explain the difference between the level of bioactivity of the ΔmibX mutant 

complemented with mibX on agar medium, where bioactivity was high, with that observed 

in liquid fermentation, where only very low levels of bioactivity were detected. A higher 

local concentration of microbisporicin is likely to build up around mycelium grown on agar 

medium than in liquid culture. If the regulatory mechanism is already uncoupled through in 

trans expression of mibX at a separate locus from mibW, the lower level of microbisporicin 

in liquid culture may not be sufficient to induce high level expression of the biosynthetic 

genes. 

Interestingly, the operon beginning with mibA does not have the identified ECF sigma 

factor consensus binding motif, suggesting that regulation by MibX may be mediated 

through a gene in one of the other MibX-regulated operons.  A likely candidate for this is 

mibR, which encodes a protein with a helix-turn-helix DNA binding domain. Such a 

scenario would also explain the absence of expression from the mibA promoter in the 

luciferase reporter assay since even in the presence of MibX another component would 

be required for high level expression. Other mib genes of unknown function could also 

play a role in the proposed regulatory model. As discussed in chapter 4 it is possible that 

the release of MibX by MibW is mediated via regulated-intramembrane proteolysis. If this 

is the case, other components would be required and proteins such as MibJ, MibY and 

MibZ might fulfil these roles. It will be interesting to explore this mechanism of regulation 

in more detail in future. 
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7.7.2 Summary Points 

 

 A method for the genetic manipulation of M. corallina was developed. 

 Several mib genes were inactivated in M. corallina and the resulting phenotypes 

were assessed. 

 mibA was essential for microbisporicin biosynthesis and its deletion increased the 

sensitivity of M. corallina to microbisporicin. 

 mibZ-mibR, mibX and mibD  were essential for microbisporicin biosynthesis. 

 Deletion of mibV and mibH resulted in the production of deschloromicrobisporicin. 

 mibTU, mibN and genes downstream of the mib gene cluster were not essential 

for microbisporicin biosynthesis. 

 Deletion of mibEF resulted in a severe decrease in microbisporicin production and 

increased the sensitivity of M. corallina to microbisporicin. 

 MibHS were essential for chlorination of microbisporicin. 

 Wild type expression of the mib gene cluster was dependent on both mibA and 

mibX. 

 An ECF sigma factor consensus binding motif was identified in all mib operons 

except that starting with mibA. 

 MibW and MibX interact strongly in E. coli. 

 MibX increased expression from the mibX promoter in S. coelicolor. 

 MibX did not increase expression from the mibA promoter in S. coelicolor. 
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Chapter 8 – Discussion 

8.1 A Model for Microbisporicin Biosynthesis 

The results presented in this work, including both the bioinformatic and genetic analyses 

of the microbisporicin gene cluster, suggest a model for the biosynthesis of biosynthesis 

of microbisporicin and its regulation in M. corallina. This model provides a framework for 

the development of future research goals and will be presented in this section.  

Microbisporicin likely auto-regulates its own biosynthesis. This is a common regulatory 

strategy for lantibiotic biosynthesis. As described in Chapter 7, deletion of mibA resulted in 

a decrease in the level of transcription of mib genes. In a quorum-sensing model low-level 

constitutive transcription of the mib genes would be expected to occur throughout growth, 

allowing the slow accumulation of microbisporicin, at sub-inhibitory levels, in the 

extracellular environment. Alternatively, low level production of microbisporicin might be 

induced, for example in response to starvation. For example, in S. coelicolor antibiotic 

biosynthesis in response to nutrient limitation was shown to be regulated by the stringent 

factor ppGpp (Hesketh et al. 2001; Hesketh et al. 2007). Through either mechanism, at a 

certain threshold concentration, microbisporicin would trigger an induction of mib gene 

expression leading to high level production. The extracellular level of microbisporicin must 

be sensed at the cell surface and relayed to result in a change in gene expression. An 

ECF sigma factor-anti-sigma factor pair, encoded by the mib gene cluster, were 

suggested to fulfil this function. 

The ECF sigma factor MibX was essential for microbisporicin biosynthesis and 

transcription of the mib genes was dependent on the presence of MibX. This suggests 

that MibX is a positive regulator of mib gene expression either through a direct or indirect 

mechanism. The identification of ECF sigma factor consensus binding sequences within 

five intergenic regions in the mib gene cluster implies that MibX directly regulates the 

expression of these operons through interaction with RNA polymerase. The operons 

proposed to be regulated by MibX are mibJYZO, mibQ, mibR, mibXW and mibEFHSN. 

MibX was capable of inducing its own transcription, as shown by lux reporter assays. The 

mibA operon does not possess the ECF sigma factor consensus binding motif, and 

expression from the mibA intergenic region was not induced in the presence of MibX in a 

reporter assay, suggesting that MibX does not directly regulate mibA transcription.  
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MibW was predicted on a bioinformatic basis to be a putative anti-sigma factor for MibX. 

The location of mibW downstream of mibX is reminiscent of the transcriptional coupling of 

other ECF sigma factor-anti-sigma factor pairs (Staron et al. 2009). This gene 

arrangement is conserved in a range of actinomycetes that encode homologs of MibX and 

MibW (Chapter 4). The predicted transmembrane profile of MibW suggests a membrane-

embedded location with an N-terminal cytoplasmic tail. Bacterial-two-hybrid analysis 

revealed a strong interaction between MibW and MibX in E. coli reinforcing the model of 

MibW as an anti-sigma factor for MibX. By comparison to other such systems, MibW 

would anchor MibX at the cell membrane in the absence of an activating signal. In the 

presence of the signal, MibX would be released allowing it to interact with RNA 

polymerase at target promoters (Figure 8.1).  

This model for the regulation of mib gene expression by MibXW is reminiscent of the two-

component regulatory systems employed by other lantibiotic gene clusters. For example, 

the presence of extracellular nisin is thought to activate NisK, a membrane embedded 

histidine kinase, which subsequently phosphorylates the response regulator, NisR, 

conferring the ability to interact with promoter binding sites in the nisin gene cluster. The 

exact signal detected by the histidine kinases involved in lantibiotic auto-regulation have 

not been deduced but is possibly through the direct interaction of the lantibiotic with the 

extracellular face of the kinase or through an indirect effect of the lantibiotic action on the 

cell envelope through Lipid II binding (i.e. cell envelope stress). A similar situation could 

be postulated for microbisporicin. In the simplest model, microbisporicin outside the cell 

membrane either interacts directly with MibW or induces a structural change in MibW 

through the induction of cell envelope stress, possibly through an interaction with Lipid II. 

A structural change in MibW would disrupt the binding interaction with MibX, releasing it to 

the cytoplasm (Figure 8.1). 

A more complex regulatory model for the release of MibX can also be hypothesised. This 

model must be considered for two reasons. Firstly, it is common for ECF sigma factors to 

be released from membrane embedded anti-sigma factors through regulated 

intramembrane proteolysis (RIP); such is the case for RsiW (see Chapter 4) (Heinrich et 

al. 2009b). Secondly, the conservation of mibJ, mibY and mibZ homologs with the 

homologs of mibXW in all the actinomycete genomes in which they have been identified 

so far (see Chapter 4) strongly suggests a functional linkage. The conservation of these 

five genes together in the absence of lantibiotic biosynthetic genes in some bacterial 

genomes (Streptosporangium roseum and Frankia sp.) suggests that their function 

concerns MibXW and not lantibiotic biosynthesis per se. In the well-studied RsiW model, 

sigma factor release is brought about by the action of two proteases (PrsW and RasP) 
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that cleave RsiW, and an ABC-transporter, EcsAB, although the exact function of the 

transporter is not known. Both the site-1 and site-2 proteases are membrane-embedded 

proteins, the site-1 protease PrsW cleaving RsiW outside the membrane and the site-2 

protease RasP within the membrane. MibJ is a transmembrane protein that could fulfil the 

role of a protease for the intramembrane cleavage of MibW. However, a two-step 

cleavage is normally observed for RIP in other systems and there is no clear candidate for 

a second protease, although it could possibly be encoded elsewhere in the genome 

(Heinrich et al. 2009b). This might provide an explaination for the lack of heterologous 

expression in Streptomyces sp. MibYZ are predicted on the basis of amino acid similarity 

to be a two-component ABC transporter.  

A model can be envisaged in which one or both of these components (MibJ and/or MibYZ) 

is involved in “sensing” the presence of microbisporicin at the cell surface and 

subsequently relaying this signal, resulting in the cleavage of MibW and release of MibX. 

Possibly the ABC-transporter MibYZ is required to transport microbisporicin inside cells in 

order for it to be detected. For RsiW, it has been suggested that in the absence of EcsAB 

the protease RasP is inactive and that EcsAB might be responsible for removing a 

compound that inactivates RasP, and lantibiotics were suggested as a possibility (Heinrich 

et al. 2008). The function of MibYZ may therefore be to remove microbisporicin from the 

cell membrane (where it likely binds Lipid II and would somehow interfere with MibJ 

activity) and in so doing releases the protease activity of MibJ. With the available 

experimental evidence it is not possible to conclude whether MibJYZ are essential for 

microbisporicin biosynthesis but there is some indication that they could function in the 

regulation of the release of MibX from MibW (Figure 8.1). 

The release of MibX from MibW by either model would increase the level of transcription 

from each of the mib operons. This would create a feed-forward mechanism for mibXW 

expression. In addition, mibJYZ would also be transcribed at a higher level and, if involved 

in regulation, would also contribute to this feed-forward mechanism. Additionally several 

other genes would be expressed. mibQ expression is likely MibX-dependent and the ECF 

sigma factor consensus sequence was found upstream of mibQ. Although conserved in 

gene clusters from other organisms that have mibXWJYZ genes, mibQ homologs mainly 

appear to be present when lantibiotic genes are also encoded nearby (see Figure 4.10). 

This might argue that MibQ is not part of the MibX regulatory pathway. MibQ is predicted 

to be a lipoprotein (Chapter 4). Since many lantibiotic gene clusters encode lipoproteins 

involved in resistance (lanI) this could be a possible function for MibQ. The involvement of 

MibQ in resistance might explain why NRRL 30420 ΔmibEF shows some residual level of 

microbisporicin production. It would thus follow that MibQ would be expressed, in a MibX 
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dependent manner, to prepare the cell for the production of high levels of microbisporicin. 

The same is likely true of MibEF, which are also encoded within an operon with an 

upstream ECF sigma factor consensus motif and are predicted to provide resistance to 

microbisporicin (Figure 8.1).  

mibR expression is also predicted to be directly MibX-dependent. MibR is predicted to be 

a DNA-binding protein which might function as a transcriptional regulator. The absence of 

a clear ECF sigma factor consensus motif upstream of mibA might be explained by the 

presence of MibR. The indirect activation of high level mibA transcription by MibX through 

the induction of mibR would introduce a slight delay in high level biosynthesis of 

microbisporicin. This would allow the establishment of resistance before the accumulation 

of toxic levels of the compound (Figure 8.1). This delay may be enhanced by the 

requirement of an activation step for MibR binding to its DNA target site. For example a 

signal may be involved which communicates the resistant status of the cell prior to high 

level biosynthesis.  
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Figure 8.1 A model for the mechanism of regulation of the biosynthesis of microbisporicin 

by M. corallina as described in the text. The upper panel represents the status of the cell 

at early time points before the high level induction of microbisporicin biosynthesis. The 

lower panel represents the status of the cell at mid-late exponential phase at the transition 

to high level microbisporicin production. 
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The above proposed model for regulation is supported by a recently sequenced genome 

from Thermobispora bispora. This organism is a thermophilic actinomycete isolated from 

manure, the genome sequence of which was recently released to the public database. 

Amino acid sequence similarity searches revealed the presence of a group of genes in 

this organism encoding proteins with extremely high level amino acid sequence similarity 

(between 69-88% identity) to the proteins encoded by mibXWJYZ (the proposed 

“regulatory module”) and to mibQ and mibEF (Figure 8.2). However, no lantibiotic genes 

homologous to any of the mib biosynthetic genes could be identified either near this gene 

cluster or in the rest of the genome of this organism. This suggests that Thermobispora 

may have acquired, likely by horizontal transfer, the genes required for resistance to a 

microbisporicin-like compound (mibQ and mibEF), as well as the genes required to 

express them in response to the presence of that compound (mibXWJYZ). Furthermore 

the same ECF sigma factor consensus motif could be identified upstream of the 

respective operons encoding these homologs in T. bispora using MEME (Figure 8.2). 

 

The induction of high level expression of the mibA operon would result in the production of 

active microbisporicin. The MibA prepropeptide would be modified by MibB, MibC and 

MibD to introduce the lanthionine, methyl-lanthionine and AviCys bridges (Figure 8.3). It is 

likely that the prepropeptide will be supported by the action of the chaperone MibV. MibV 

is likely involved in directing the chlorination of tryptophan through the concerted action of 

MibH and MibS, and may also direct proline hydroxylation by MibO (Figure 8.3). MibV 

may also prevent degradation of the prepropeptide during maturation and export. MibTU 

likely constitute the major, but not exclusive, route of export of microbisporicin from the 

cell (Figure 8.1). 
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Figure 8.3 (legend over page) 
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Figure 8.3 A model for the mechanism of biosynthesis of microbisporicin by M. corallina. 

The exact order of modification of the prepropeptide is not known. The translated MibA 

prepropeptide shown in the top panel (leader peptide modelled by a green line) would be 

dehydrated by MibB. MibD would decarboxylate the C-terminal cysteine residue. 

Didehydroalanine (Dha) and didehydrobutyrine (Dhb) undergo nucleophilic attack from the 

thiol groups of cysteine residues, catalysed by MibC, to yield lanthionine, methyl-

lanthionine and S-[(Z)-2-aminovinyl]-cysteine] bridges. MibS supplies reduced FAD to 

MibH to promote the chlorination of tryptophan to yield 5-chlorotryptophan. MibV might 

function as a chaperone in this process and may protect the peptide from degradation 

(modelled as a blue sphere). The cytochrome P450 MibO might be responsible for the 

dihydroxylation of proline to yield 3,4-dihydroxyproline. 

  



Chapter 8  Discussion 

 

358 
 

8.2. Future Work 

8.2.1 Short Term Aims 

In the short term it will be important to refine the regulatory model presented for 

microbisporicin biosynthesis. The experimental evidence collected to date provides only 

indications of how regulation is mediated. The first aim would thus be to confirm the 

postulated model for the function of the two regulators MibX and MibR. Mapping the 

transcriptional start sites for each operon in the mib gene cluster would indicate whether 

the identified ECF sigma factor consensus sequences are likely to be important for 

transcription of those operons. In vitro run-off transcription assays could be carried out 

using purified MibX in conjunction with E. coli RNA polymerase to determine whether 

MibX interacts directly with these sites to recruit RNAP. A similar approach could be used 

to ascertain whether either MibX or purified MibR interacts with the mibA promoter region. 

This in vitro analysis could be complemented by an in-frame deletion of mibR to assess 

the importance of MibR for biosynthesis. The lux-reporter experiments described in 

Chapter 7 could be extended to provide further in vivo evidence.  

The mechanism by which MibX activity is constrained by MibW should be investigated. In 

particular the signal to which MibW responds and how this signal is relayed to MibW to 

initiate the release of MibX should be resolved. Bacterial-two-hybrid experiments could 

indicate an interaction between MibW and MibJ/MibYZ which would provide further 

evidence for the involvement of these proteins. In-frame knock-out mutants of mibJ and 

mibYZ would indicate whether the corresponding proteins are essential for microbisporicin 

biosynthesis. The adaptation of the vectors used for lux-reporter analysis in S. coelicolor 

for use in M. corallina might allow the auto-regulatory model for microbisporicin 

biosynthesis to be further investigated. For example the effect of providing extracellular 

microbisporicin on lux reporter expression in the ΔmibA mutant could be assessed. 

 

8.2.2 Long Term Aims 

In the long term there are a number of areas of microbisporicin biosynthesis to address. 

Furthering the understanding of these areas is likely to provide tools for the improvement 

of microbisporicin yields and potency for use in a clinical context. The microbisporicin 

gene cluster also possesses a number of unusual and novel features, the investigation of 

which could provide interesting biological insights.  
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It will be interesting to look for other lantibiotic and antibiotic gene clusters which use ECF 

sigma factors as a mechanism of regulation and to determine whether they are more 

commonly used as pathway-specific regulators of antibiotic production in actinomycetes 

and other bacteria. The particular class of ECF sigma factors to which MibX appears to 

belong have not been studied in any detail to date but appear to be widespread in bacteria 

(see Chapter 4). The mechanism by which MibX activity is regulated might form a 

paradigm for this class. It will be interesting to determine the role of the homologs of MibX 

that do not appear to be linked to lantibiotic biosynthetic genes and how these are 

evolutionarily linked to MibX.  

The function of the enzymes involved in the unique modifications of microbisporicin should 

be investigated. The tryptophan halogenase MibH was found to be involved in the 

chlorination of microbisporicin. The activity of this enzyme could be studied in vitro. Of 

particular interest is the substrate selectivity of this enzyme and whether MibH might be 

used to chlorinate other lantibiotics. The high degree of potency of microbisporicin 

suggests that chlorination might contribute to its mechanism of action. This should be 

confirmed by comparing the activity of the chloro- and deschloro- forms of the compound. 

Structural studies of MibH would provide information about the interaction of the enzyme 

with the prepropeptide substrate. The function of MibV should be investigated. The 

provision of MibV appears to influence chlorination and could be important for the transfer 

of chlorine to other lantibiotics. 

The cytochrome P450 MibO was predicted to be involved in hydroxylating microbisporicin. 

This might be confirmed through the in-frame deletion of mibO. To assess the phenotype 

of such a mutant would require the use of methods to distinguish between proline 

hydroxylation and oxidation of lanthionine bridges. This might be achieved by the 

chemical removal of the lanthionine bridges (Martin et al. 2004). The in vitro activity and 

substrate specificity of MibO could be assessed. The importance of proline hydroxylation 

for microbisporicin activity could be explored. 

A variant-generation system for microbisporicin could be established (Boakes et al. 2009). 

This would provide a method for the improvement of the pharmacokinetic properties of 

microbisporicin for use in the treatment of bacterial infections in humans. Variant-

generation would likely be achieved in M. corallina since the heterologous production of 

microbisporicin was problematic. To achieve this aim however the inability of mibA to 

complement a mibA deletion in trans must first be addressed. A greater understanding of 

the mechanisms regulating gene expression in the mib gene cluster may contribute to 

this. 
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The self-resistance mechanism of M. corallina should be investigated in further detail. 

Over-expression of resistance determinants could provide a method for increased 

compound yields which are naturally very low for microbisporicin. The heterologous 

expression of mibEF and mibQ in hosts susceptible to microbisporicin would enable the 

determination of the contribution of each to resistance. Understanding the mode of 

regulation and timing of the expression of resistance genes may enable improvements to 

be made in the natural self-immunity of M. corallina. Further investigation of the mode of 

action of microbisporicin would enable a greater understanding of how these proteins 

provide resistance to the host. Furthermore, it may indicate possible routes for the 

development of resistance in target organisms and allow modifications in the structure of 

microbisporicin to avoid them in future. 

Microbisporicin is a highly potent antibiotic which has activity against both Gram-positive 

and Gram-negative pathogens. If the basis of these qualities can be elucidated they might 

be transferred to other lantibiotics suggested for clinical use, such as mersacidin and 

actagardine. For example, generation of mersacidin variants revealed enhanced activity 

for the variant F3W (Appleyard et al. 2009). If this tryptophan residue could be chlorinated 

using MibH, the resulting variant might be improved even further. Several other lantibiotics 

(e.g. actagardine, DAB, michiganin A and the mutacins) have tryptophan near the N-

terminus and might also be subject to such modification. Additionally, in the course of this 

study a number of microbisporicin-like compounds and gene clusters were identified. 

These compounds could be of similar potency to microbisporicin or, if not, could help to 

indicate what elements of microbisporicin make it so potent. Hybrid molecules could be 

constructed with improved properties.  

8.3 Concluding Remarks 

Microbisporicin is a highly promising candidate antibiotic for clinical development and as a 

gene-encoded peptide has significant potential for rational design. The identification and 

characterisation of the genes responsible for microbisporicin biosynthesis, and the 

development of methods for the genetic manipulation of the producing organism, provide 

the foundation for knowledge-based increases in strain productivity and the generation of 

variants with potentially improved pharmacological properties. Consequently, the work 

described here may represent a key milestone in the future clinical use of this novel and 

potent antibiotic. 
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