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Abstract 

Basal resistance utilises receptors which detect non-race specific elicitors known as 

pathogen associated molecular patterns (PAMPs).  While not commonly resulting in a 

hypersensitive response, it shares some downstream signalling and effector 

components with R gene-mediated resistance.  To better understand the genetic basis 

of basal resistance, a virulent Pseudomonas strain tagged with a constitutively 

expressed LuxCDABE operon was utilised to create a high throughput quantitative 

bacterial growth assay.  Measuring bacterial photon emission from leaf tissue in a 

selection of ecotypes showed a wide range of bacterial growth, implying substantial 

natural genetic variation in basal resistance.   

 Several independent RIL populations were trialled and combined with other 

data for QTL analysis to define the chromosomal locations responsible for resistance 

variation.  Within markers flanking each significant QTL peak, there are numerous 

candidate genes.  Cross-referencing candidates against annotation information 

indicating involvement in biotic stress, respiratory burst or induction by flg22 

treatment, creates a significantly refined list.  A LysM receptor-like kinase family 

appears in the majority of QTL locations across independent populations at a 

statistically higher rate and is therefore implicated in pathogen recognition.  

Replication using other Pseudomonas bacterial strains produces similar LysM gene 

associations, implicating broad perception mechanisms. 

 Transcriptional, phylogenetic and functional characterisation found LysM 

genes consistent with characteristics of known disease resistance components. A  

LysM gene sequence comparison between genotypes with substantial variation of 

basal resistance found significant polymorphisms, however, a direct relationship 

between these differences and trait data could not be conclusively shown.  

Pseudomonas AvrPtoB kinase suppression can increase susceptibility in different 

genotypes but does not directly correlate with QTLs, LysM gene placement and 

suppression pattern.  

 Several T-DNA knockout lines showed a moderate increase (40-60%) in 

susceptibility for lines targeting specific LysM genes compared with Col-0 controls.  

Not all lines show this pattern but most tested lines show effects on basal resistance 

after gene knockout, directly implicating several LysM genes as components in basal 

resistance.   
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Chapter 1: General introduction  

1.1 Plants and their environment 

Plants exist in environments surrounded by potentially pathogenic organisms, 

pressuring the evolution of plant defence responses that prevent successful infection 

for the majority of pathogens.  In competitive environments, plants and pathogens 

have entered into an evolutionary arms race which has forced plant production of a 

diverse array of pathogen receptors and multiple defence mechanisms (Hammond-

Kosack and Jones, 1997).  Consequently, pathogens have evolved complex 

pathogenesis effectors to overcome plant defences (Shan et al., 2007).  The result of 

this competition between the plant and the pathogen is a highly specialised 

environment in which usually only species specific interactions can occur and 

successful plant infection is relatively rare.  Some non-host interactions do still occur 

however infection tends to be opportunistic and relies on wounding or insect vector 

transfer (Hammond-Kosack and Jones, 1997).     

 Modern civilisation and agriculture rely on growing crops at high densities on 

relatively small areas of farm land, using intensive farming methods to increase yields 

and final product output (Labanna and Banga, 1993).  Advances have been made in 

breeding crop cultivars that are high-yielding, hardy and require minimal refinement 

to create a final product (Labanna and Banga, 1993; McDonald and Linde, 2002).  

Despite these innovations and the advent of a wide variety of chemical herbicides, 

pesticides, fungicides and anti-bacterial treatments, much crop yield is lost as a result 

of plant disease.  Demand for effective disease control led to the development of crop 

varieties that contained single major resistance genes (R genes) that block infection 

from certain races of pathogens (McDonald and Linde, 2002).  R gene-mediated 

defence displays strikingly resistant phenotypes, which have previously been well-

characterised and introduced commercially; although initially very successful, they 

proved ineffective in field environments over time (McDonald and Linde, 2002).  

Breeders and farmers require new sources of effective, wide-ranging and durable 

forms of disease resistance to maintain and increase yield outputs.  

 Basal disease resistance plays an important role in the plant defence network 

and offers a non-race-specific response of varying degrees of intensity to invading 

pathogens.  While basal resistance is significantly weaker than the single major R 
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gene defence, in that it does not typically activate programmed cell death, it can 

however slow and reduce pathogen progression and remain durable over generations 

(Katagiri et al., 2002).  Basal resistance signalling pathways and pathogen recognition 

mechanisms are not well understood and are under-represented in current literature, 

with only a few well-defined examples (Zipfel et al., 2006; Chinchilla et al., 2007).  

The range of variation in resistance due to basal mechanisms has not been well-

characterised however, existing data does suggest a polygenic system with multiple 

receptors and pathways.  Location and characterisation of critical components in basal 

pathways are important prerequisites before these mechanisms can be enhanced to 

confer resistance in commercially-grown varieties. These topics will be addressed in 

this thesis.   

 

1.2 Plant defence 

 

Plant defence involves a network of complex, tightly-regulated pathways that often 

overlap and influence each other, and are completely integrated into plants’ 

developmental and lifecycle strategy (Katagiri et al., 2002).  Defence begins at the 

surface of a plant.  Physical adaptations limit the access of potential pathogens and 

deter herbivore and insect feeding, which are common entry points for pathogens 

(Thaler et al., 2002). 

 Pathogens must then contend with a variety of metabolic defences and 

detection mechanisms that can differentially activate defence compounds and 

proteins, depending on the invading pathogen (Pieterse and van Loon, 1999).  There 

are several overlapping metabolic defences described in the literature, typically with 

distinctive characteristics at some point along their pathways to distinguish their 

pathway or mode of action.  However, distinctions between pathways are hampered 

by conflicting experimental evidence (Dangl and Jones, 2001).  Therefore, this thesis 

will firstly examine the whole sphere of plant defence in order to define and place 

basal disease resistance into context within other plant defence networks.   
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1.2.1 Physical and preformed defences 

Physical plant defences such as tree bark, spines and trichomes provide general 

defence against herbivores and herbivorous insects by deterring or slowing feeding 

(Taiz and Zeiger, 2002).  Preformed toxic compounds such as terpenes, alkaloids and 

glycosides act as deterrents to herbivorous feeding and can reduce physical damage in 

addition to reducing a plant’s contact with potential pathogenic vectors.  Defensive 

preformed barriers, such as a leaf’s thick waxy acyl lipid cuticle, stomatal 

morphology and the cellulose-rich cell wall, also reduce pathogen contact with viable 

host cells (Taiz and Zeiger, 2002).  Physical and physiological adaptations can 

substantially influence pathogenic susceptibility in a natural environment 

(Glazebrook, 2001).   

 Preformed secondary metabolite compounds with antimicrobial or inhibitory 

properties such as phytoalexins, phytoanticipins, saponins and glucosinolates form a 

preliminary line of plant defence.  Defensive compounds are not evenly dispersed as 

distribution and composition are often tissue specific e.g. relatively higher storage 

concentration in tricomes or epidermal layers (Osbourn, 1996, 1999).  Treatment with 

bacterial flagellin has been associated with an accumulation of glucosinolates 

products around the infection site and in Arabidopsis, the secondary metabolite 

camalexin has been shown to contribute to disease resistance through disruption of 

bacterial membranes (Bednarek and Osbourn, 2009).  These antimicrobial secondary 

metabolites are often present in all tissues at background levels.  However in response 

to microbial attack, can be locally synthesized to limit disease development through 

non-specific inhibition of protein synthesis or other mechanisms (Bednarek and 

Osbourn, 2009).  Pathogenic adaptation can overcome preformed defence when, for 

example, saponin-detoxifying enzyme hydrolises saponin and mediates defence 

suppression (Bouarab et al., 2002). 
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1.2.2 R gene mediated resistance 

Successful pathogen colonisation of plant tissue is referred to as a compatible 

interaction with a virulent pathogen.  An incompatible interaction indicates that the 

pathogen is avirulent and perception of its presence has stimulated a defence reaction 

in the host plant (Katagiri et al., 2002).  Determination of a compatible plant / 

pathogen interaction follows the Mendelian “gene-for-gene” model, in which 

resistance occurs only when a dominant monogenic host resistance gene (R gene) 

interacts with a corresponding pathogen avirulence gene (Avr gene) (Flor, 1955; 

Nimchuk et al., 2001).  In a compatible interaction, pathogenic Avr genes facilitate 

growth and development within the host tissue and are often essential for successful 

infection, therefore, Avr genes are often highly conserved in the pathogen population 

(Veronese et al., 2003).  Plants have evolved membrane-bound and cytosolic 

receptors which recognise the conserved protein regions or ligands, known as 

elicitors, in a variety of fungi, bacteria and viruses (Dangl and Jones, 2001).    

 Gene-for-gene interactions typically involve a peripheral membrane protein 

receptor that spans or resides on the cytoplasmic face of the plasma membrane e.g. 

RPM1, RPS2, RPP1 (Boyes et al., 1998).  Such receptors predominantly consist of a 

Leucine rich repeat (LLR) sequence, a nucleotide binding site (NBS) and either a 

coiled coil (CC) pattern or a motif conserved with Toll-like receptors (TLR) (Meyers 

et al., 1999; Ellis et al., 2000; Belkhadir et al., 2004).  These receptors are encoded by 

families of R genes, such as the resistance against Peronospora parasitica (RPP), 

resistance to Erysiphe cichoraceum (RPW) or resistance against Pseudomonas 

syringae (RPS) groups, which often share conserved characteristics (Aarts et al., 

1998; Meyers et al., 1999).  These characteristics include the specific recognition 

interaction of the corresponding Avr-gene-related ligands, signalling cascade 

activation, and the capacity for rapid evolution of specificity (Chelkowski and 

Koczyk, 2003).  Host-specific R genes encoding NBS-LRR proteins recognise race-

specific pathogenic Avr gene products, either directly or through intermediates, and 

confer the most effective defence reaction to prevent pathogen growth through a 

signal transduction cascade (Nimchuk et al., 2001; Katagiri et al., 2002).  A direct 

physical interaction has been shown between: RRS1-R, a protein conferring resistance 

to bacterial wilt; PopP2, a type III effector and between the Pi-ta gene product, 

conferring resistance to strains of the rice blast fungus and the corresponding Avr-Pi-
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ta gene product (Jia et al., 2000; Deslandes et al., 2003).  A defence induced 

signalling cascade activates expression of defence proteins through one of three 

pathways: an EDS1, PAD4-dependent pathway, a NDR1, PBS2-dependent pathway or 

through a third pathway that is independent of the two downstream constraints 

previously mentioned (Feys et al., 2001; Tornero et al., 2002).  R gene-mediated 

resistance is typically associated with a hyper-sensitive response (HR), whereby the 

host-coordinated cell death around the site of infection creates a lesion which prevents 

further pathogen proliferation through deprivation of resources (Heath, 2000). 

 

 

  

  

 

 

Table 1.1 Mendelian gene-for-gene interaction table displaying corresponding Avr and 

R gene components for successful recognition and resistance response. 

 

1.2.3 Defence responses to infection  

Plants lack a centralised adaptive immune system or specialised cells for disease 

resistance, as is common in vertebrates, therefore each plant cell must be capable of 

producing or inducing a defence reaction (Veronese et al., 2003).  Many defence 

compounds are damaging to plant tissue and consequently need to be tightly regulated 

in order to avoid interfering with plant development (Dangl and Jones, 2001).  As 

pathogen populations are constantly evolving to overcome and adapt to plant 

defences, a multilayered network of inducible defence has formed to counteract this 

attack (Chisholm et al., 2006).  Consequently, wide varieties of compounds with 

differing modes of action are readily expressed upon detection of an elicitor, however 

there are differences and similarities in the components, composition and strength of 

response, depending on which inducible defence network instigated the reaction. 

 There are substantial similarities between components of R gene dependent 

and basal resistance responses, however basal defence is typically of a less vigorous 

nature (Zipfel, 2008).  Conserved components of both pathways include ionic flux 

 Plant host 

R/R or R/r 

 

r/r 

Pathogen Avr Resistant Susceptible 

avr Susceptible Susceptible 
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within the cell following pathogen perception, which is primarily a result of calcium 

fluctuation, and acts to coordinate initial signalling (Abramovitch et al., 2006a).  

Downstream of the initial defence compound release, a set of mitogen-activated 

protein (MAP) kinase genes are expressed, as is the localised synthesis of ethylene, 

which is involved in defence signalling and co-ordination (Xiao et al., 2005).  

Phytoalexins and phenolic molecules are released in close proximity to the plant cell 

wall to limit the action of pathogenic digestive enzymes around the infection site and 

in vitro studies have showed their antimicrobial properties on various bacterial species 

(Osbourn, 1999; Bednarek and Osbourn, 2009).  Following infection, callose 

deposition occurs and lignification of the cell wall is stimulated, which fortifies the 

wall from digestive enzyme exudates secreted by the pathogen in both R gene and 

basal mediated resistance (Tang et al., 1999). 

 In addition to the previously described components common to both R gene-

mediated resistance and basal defence (e.g. phenolics), an oxidative burst at the site of 

infection results in the accumulation of reactive oxygen species (ROS).  These small, 

highly reactive molecules include the superoxide anion O2
–
, H202, OH

-
 and 

1
O2

-
 

(Lamb and Dixon, 1997; Rentel et al., 2004).  ROS accumulation can cause damage to 

the pathogen through non-specific oxidation of lipid membranes and accessible 

protein side chains, in addition to enzyme disruption and DNA mutation (Lamb and 

Dixon, 1997; Thordal-Christensen et al., 1997; Torres et al., 2002).  Reactive nitrogen 

species (RNS) react and function similarly (VanderVliet et al., 1997).  In addition to 

direct defensive action, these compounds also function as a substrate for oxidative 

cross-linking of structural proteins within the cell wall.  This toughens this barrier to 

protect from pathogenic chemical degradation (Brisson et al., 1994).   

 The collective term pathogenesis-related (PR) protein describes a wide array 

of defensive enzymes and other proteins that are specifically induced during contact 

with a pathogen.  Proteins synthesised are classified, based on function, into 17 

categories which include glucanases and chitinases, proteinase-inhibitors and 

peroxidases, in addition to oxidases and antifungal compounds (Stintzi et al., 1993).  

This pathogen-induced group of proteins represents the largest change in protein 

composition after a pathogen is recognised.  PR proteins work additively to produce a 

combined defence effect that attacks the pathogen cell wall, both actively, in the case 

of chitinases, and passively by slowing pathogen reactions, for example through 

inhibition of proteinase (Stintzi et al., 1993).   
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 A significant difference between basal and R gene reactions is the 

hypersensitive response (HR).  A HR encompasses the infection site and restricts 

nutrients to the developing pathogen which leaves a characteristically isolated area of 

necrosis surrounded by uninfected healthy tissue (Bittel and Robatzek, 2007).  

However in a compatible interaction, HR may still be induced, albeit too slowly to 

contain the pathogen spread.  A slowly increasing HR lesion develops, tracking the 

disease progression (Morel and Dangl, 1997; Heath, 2000). 

 Assay systems designed to compare differences between basal and R gene 

resistance must take these similarities into account and tightly define the ranges of 

response for each defence mechanism.  Comparative assays should also be 

quantitative and unambiguous so that differences in assay results are clearly 

attributable to defensive mechanistic action.  Such constraints and solutions are 

discussed in more depth in subsequent assay system sections. 

 

1.2.4 Hormonal influence on pathogen defence 

Plant defences are tightly coordinated via gene expression, transcription factors and 

many other influential components which act to induce and optimise the defence 

response to a specific pathogen (Feys and Parker, 2000).  Microarray expression-

profiling and proteomic studies show that cooperative hormonal fluctuations and 

cross-talk between salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) have a 

substantial influence on defence related gene expression and can modify the 

composition of a defence reaction in response to wounding, fungi, viruses or bacteria 

(Koornneef and Pieterse, 2008).  For example, an interaction between PAMP and SA 

signalling is evident as both inoculation with Pst DC3000 and benzothiadiazole (a 

functional analogue of SA) result in the induction of FRK1, a flagellin-induced 

receptor kinase (Flors et al., 2008; Tsuda et al., 2008).  Comparative microarray  

analysis of transcriptional changes in npr1 mutant plants overexpressing an NPR1-GR 

(glucocorticoid receptor) fusion protein indicated that several WRKY genes are direct 

transcriptional targets of NPR1 (Eulgem, 2006; Wang et al., 2006).  The introduction 

of SA and dexamethasone, a synthetic functional homologue, activated the NPR1 

pathway and triggered translocation of NPR1-GR to the nuclei however, by inhibiting 

protein biosynthesis with cycloheximide transcription of indirect NPR1 targets.  T-
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DNA knockout mutants of the candidate WRKY components were then used to 

confirm their roles in NPR1 signalling (Eulgem, 2006; Wang et al., 2006).  

Microarray analysis of changes in transcription of 2,375 defence associated genes 

following inoculation with Alternaria brassicicola revealed that 50% of the genes 

induced by ET are also induced by JA, 55 genes were co-induced by SA and JA and 

126 genes were induced when exposed to either SA, JA or ET which suggests 

overlapping hormonal influence (Schenk et al., 2000).  The antagonistic relationship 

between hormones is demonstrated by 8 genes, including a chalcone synthase and a 

lipid-transfer gene, which were significantly induced by SA treatment but 

significantly repressed by a JA orthologue (Schenk et al., 2000).   

SA is locally induced in an incompatible response to pathogen infection 

primarily by SID2 gene which encodes an isochorismate synthase (Wildermuth et al., 

2001).  The resulting SA accumulation around the site of an infection acts to regulate 

expression of defence compounds, typically via TGA and WRKY transcription 

factors (Tsuda et al., 2008).  High relative SA concentrations around the infection site 

prevent senescence through inhibition of ET biosynthesis and also act antagonistically 

to initially block wound responses, presumably to prevent synthesis of wound 

response proteins when pathogen-related protein synthesis is required (Van Wees et 

al., 2000; Huang et al., 2005; Tsuda et al., 2008).  SA levels fall rapidly post-

infection, which releases an inhibition of ET and JA-mediated wound responses (Van 

Wees et al., 2000).  SA has also been implicated in the systemic acquired resistance 

(SAR) pathway that signals distal plant tissues to prepare defences for potential 

pathogenic attack (Ryals et al., 1996).    

 JA and methyl jasmonate (MeJA) are plant hormones derived from lipid 

biosynthesis and are noted to induce senescence at high concentrations, as well as 

influencing the development of flowers and fruit (Penninckx et al., 1998; Devoto and 

Turner, 2003).  At low concentrations, for example, JA can alter protein and mRNA 

production of chalcone synthase, sugar storage enzymes and a proline rich cell wall 

structural repair protein (Creelman et al., 1992).  JA has been determined as a critical 

component in many stress response pathways, particularly those associated with the 

mediation of plant wounding responses (Creelman et al., 1992).  During wounding, 

JA levels rise significantly however, JA expression during pathogen attack is variable 

and possibly race-specific (Devoto and Turner, 2003).  JA is capable of inhibiting SA 

signalling at high concentrations therefore cross-talk involving SA and JA is likely to 
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finely regulate and differentially activate plant defences (Penninckx et al., 1998; 

Devoto and Turner, 2003). 

 ET is biologically synthesised from methionine and is involved in fruit 

ripening, senescence of leaves and induction of root hair development.  ET also acts 

as a plant hormone involved in plant defence and is recognised by cells by means of 

five homologous membrane-bound receptors that negatively regulate signal binding 

(Penninckx et al., 1998).  In the presence of ET, a mitogen-activated protein (MAP) 

kinase is inactivated which initiates a signal transduction pathway involving various 

components such as MPK6 and EIN3, as well as transcription factors such as ERF1.  

The resulting signal stimulates chitinase and PR expression (Ton et al., 2001).  ET 

action is consistently linked with JA.  Although the interaction does not necessarily 

involve an up-regulation of JA, it is thought that slight increases of ET in the tissue 

increase cellular sensitivity to JA.  This may explain JA and ET’s mutual dependence 

in addition to the observation that JA and ET levels may only vary slightly during a 

defence reaction (Penninckx et al., 1998).  JA and ET are commonly associated with 

regulation of wound response expression and can, at high concentrations during a 

large wounding response, suppress SA accumulation therefore prioritising wound 

response over pathogen defence (Creelman et al., 1992). 

JA and ET act in unison during a wound response and have been known to 

stimulate SA production with corresponding up-regulation of PR gene defence, 

suggesting that after a wound defence is appropriately instigated, plants prepare the 

wound site for possible pathogen attacks (Feys and Parker, 2000).  The majority of 

pathogens rely on opportunistic breaches in a plant’s defence to infect and therefore, 

preparation of a wound site for pathogenic attack is a valid strategy. 

 Systemic defence responses also act antagonistically: in tobacco, JA-mediated 

wound responses are blocked through elevated SA concentrations (Dangl and Jones, 

2001).  This strategy has also been noted by Moran and Thompson (2001) in 

cucumber displaying fungal-induced systemic acquired resistance (SAR).  In this 

instance, induced SAR is associated with enhanced susceptibility to herbivory by both 

beetles and aphids.  Conversely, tobacco plants with reduced SA accumulation, 

caused by gene silencing, show reduced SAR and consequently herbivore, resistance 

increases.  This evidence implies that a plant that has suffered a primary pathogen 

infection typically prioritises SAR above small wound responses (Moran and 

Thompson, 2001). 
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 A resistance response can be activated via two distinct signalling pathways 

that are commonly differentiated by their utilisation of salicylic acid (SA).  The SA-

dependent pathway has been studied using a NahG transgenic line, which is unable to 

accumulate SA.  Wild-type plants typically activate a resistance response via the 

implicated regulators of SA-dependent defences; PAD4 and EDS1 (Hammond-

Kosack and Jones, 1997; Zhou et al., 1998).  The SA accumulation mutants are more 

susceptible to a test screen of pathogens and fail to produce a local pathogenic 

response or systemic signal to other cells.  PR defence compound production is not 

always associated with SA production, and defence reactions are not always 

consistent with the reactions induced by SA (Fouts et al., 2003; Huang et al., 2005).  

Up-regulation of one or more of the PR genes (PR-1, PR-2, or PR-5) is used as a 

marker for defence activation of the SA-dependent pathway, however in NahG plants, 

unable to accumulate SA, induction of PR genes indicated that a parallel pathway 

exists which can induce defence reactions without SA. 

The JA-insensitive mutant jar1 and ET-insensitive mutants etrl-1 

demonstrated that SA-independent systemic resistance can be induced upon pathogen 

infection, is dependent on JA and ET and leads to the expression of the defence 

gene PDF1.2 (Clarke et al., 2000).  Resistance can be induced in Arabidopsis 

to Alternaria brassicicola
 
and Botrytis cinerea with prior exposure to MeJA, whereas 

in contrast, jar1/ein2 mutants exhibit increased susceptibility the same pathogens 

(Clarke et al., 2000).  Both the SA-dependent pathway and JA-dependent pathways 

are capable of differentially activating a variety of defence compounds in order to 

optimise the defence reaction (Pieterse and van Loon, 1999).  The full complexity of 

the genes involved, signal pathways and the interplay between them is not clearly 

understood.  However, its major components appear to be active in both R gene and 

basal-induced immunity (Tsuda et al., 2008).   

 

1.3 Basal resistance definition 

Basal resistance is a collective term to describe a series of early plant recognition and 

defence response pathways following pathogen exposure.  R gene interactions, 

typically characterised by a HR response, are not associated with a basal defence 

response (Zipfel et al., 2006).  However, a genotypically variable physiological 

reaction is induced and acts to reduce pathogen proliferation.  Basal resistance also is 
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referred to as including, but not wholly defined by, pathogen-associated molecular 

patterns (PAMP)-triggered immunity (PTI) as well as effector triggered immunity 

(ETI) (Jones and Dangl, 2006).  There are significant gaps in our understanding of 

plants’ multiple and continuous defensive layers when exposed to pathogens (Jones 

and Dangl, 2006).  This makes precise definitions and physiological limits difficult to 

establish, however it is important to clarify some boundaries within the confines of 

this thesis.  Basal disease resistance can be defined as a non-race-specific reaction to 

both virulent and avirulent pathogens that act to limit pathogen growth using a variety 

of broad-ranging defence products, but not typically the hypersensitive response 

(Zipfel et al., 2004).  It may not prevent infection by a virulent pathogen, but it may 

limit disease development enough to allow the plant to complete its life cycle 

(Katagiri et al., 2002).  Even with a gene-for-gene interaction, the absence of basal 

resistance can allow even an avirulent pathogen to create disease symptoms therefore, 

basal mechanisms are involved in the majority of pathogen interactions (Katagiri et 

al., 2002).  Basal resistance offers a general and broad defence reaction that is not 

always associated with cell death, chlorosis or other visible physiological symptoms 

(Zipfel, 2009).  A detectable molecular change in a wide range of defence compounds 

can be induced by this reaction to limit the current infection and aid prevention of 

subsequent infection, with the most prevalent being the induction of PR genes and 

proteins (Varga and Szegedi, 2007).  Several papers have used physiological assays to 

characterise basal responses, such as a reduction in vascular flow rate, callose 

deposition and an oxidative burst (Rentel et al., 2004; Oh and Collmer, 2005; 

Asselbergh and Hofte, 2007).  However, the biological roles of these responses in 

basal resistance are still not clear, therefore, unambiguous assays of pathogen growth 

are preferable. 

 Basal resistance is initiated following detection of the small, conserved 

molecules derived from pathogens.  These molecules which are often fundamental to 

pathogenesis, contain invariable epitopes conserved across microbial species and taxa, 

such compounds are often referred to as pathogen-associated molecular patterns 

(PAMPs) (Chisholm et al., 2006; Bittel and Robatzek, 2007).  Host plants are thought 

to recognise PAMPs, such as the gram-positive elicitor lipoteichoic acid and bacterial 

lipopolysaccharides, using membrane-bound receptors recognized by receptor-like 

kinases (RLKs), Toll-like receptors (TLRs) and other pattern recognition receptors 

(PRRs) (Espinosa and Alfano, 2004; Zipfel and Felix, 2005).  For example, the 
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flagellin peptide elicitor flg22 is perceived by the leucine-rich repeat (LLR) kinase 

FLS2 and triggers basal defence reactions that show a strong similarity to R gene-

mediated responses (Zipfel et al., 2004).  Arabidopsis FLS2 gene transfer and over 

expression in tomato was shown to provide flagellin perception in wild-type naive 

tomato plants where FLS2 and flg22 compounds were shown to co-precipitate in vitro 

which suggests a physical association (Bittel and Robatzek, 2007).  FLS2 is typically 

localised to the external face of the plasma membrane and following flg22 exposure 

and receptor phosphorylation the FLS2 internalises in an endocytic process to 

predominantly the internal face of the membrane where further WRKY associated 

signalling occurs (Bittel and Robatzek, 2007).  Other non-specific elicitors are 

implicated in activating basal defence such as host cell wall fragments, osmotic stress, 

alkalisation of the cytoplasm, chitin, fungal ergosterol, peptidoglycan and components 

of the type III secretary pathway (Kim et al., 2005b; Oh and Collmer, 2005).  

Compounds commonly found in viruses, such as double-stranded RNA, are also 

associated with basal defence induction, which suggests that basal defence can 

recognise and defend against a broad range of pathogens without specific R gene-

mediated interaction (Kim et al., 2005b; Oh and Collmer, 2005).  Rapidity of defence 

activation is a useful distinction between mechanisms: basal defences have been noted 

to activate in less than 10 minutes after initial contact.  Experimental introduction of 

flagellin, lipopolysaccharide or EF-Tu PAMPs to cell suspensions show increased 

extracellular pH as a result of ion flux, increased ROS and NOS, in addition to 

MAPKs activation and FRK1, WRKY29 expression increases (Abramovitch et al., 

2006a).  In contrast R gene mediated response is typically a later but stronger 

reaction, induced in 2-3 hours following cyctoplasmic detection of Avr gene products 

introduced via the type III secretary system (Abramovitch et al., 2006a).  This has 

been shown experimentally, primarily through inoculation of R-gene-expressing 

leaves with bacteria that express a corresponding effector Avr gene.  This results in a 

similar composition of defence compound induction as basal resistance with the 

notable addition of HR (Abramovitch et al., 2006).       

 Virulent and avirulent pathogen-/-host interactions may not necessarily be 

qualitatively different from the specific R gene-mediated resistance; therefore aspects 

of the basal mechanism may not be distinctly different from the incompatible 

interactions (Navarro et al., 2004).  R gene receptors typically share common 

mechanistic action and molecular variation within an R gene class, therefore, a host 
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may have a similar R gene with low affinity for the Avr gene products (Meyers et al., 

1999).  Consequently, a weak interaction occurs between pathogen elicitors and host 

receptors which induces a weaker defence response that slows a compatible 

interaction, but does not prevent pathogen development through a HR (Heath, 2000).  

Specific categorisation and separation of defence pathways is not always possible 

given our current level of understanding, it is clear that many mechanisms and 

components of recognition and reaction are yet to be elucidated. 

 

        

Figure 1.1 Simplified interpretation of plant, pathogen and PAMP interaction in basal 

resistance pathways and the subsequent defence reactions (similar to those of R gene) 

elicited by successful recognition and signalling.  Diagram shows commonly 

described PAMPs, such as flg22 attaching to pathogen recognition receptors such as 

FLS2 leading through unknown signalling pathways to defence responses.  Common 

PAMP-induced defences are shown, including oxidative burst, phenolics and callose 

deposition.  Although these defences are similar to R gene defence components, the 

ranges and extents may differ in basal-induced resistance. 
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1.3.1 Similarity between resistance pathways 

The genes involved in basal resistance are only beginning to emerge in the literature 

and pathways have yet to become clearly distinct.  There are many downstream areas 

of similarity between layers of defence as basal resistance has also been shown to 

utilise components from SA-dependent pathways.  Mutations in PAD4, EDS1, EDS5, 

NPR1 and SID2 have all shown a consequential reduction, or loss, of basal disease 

resistance when confronted with a pathogen (Feys et al., 2001).  Basal resistance is 

also impaired when the COI1 and PDF1.2 genes’ function is disrupted (Penninckx et 

al., 1998; Moran and Thompson, 2001).  This suggests that basal resistance may be 

able to activate both SA-dependent and JA/ET-dependent pathways downstream of a 

possibly unique upstream recognition and signalling component which would 

differentiate basal resistance from other mechanisms (Penninckx et al., 1998; Moran 

and Thompson, 2001).   

  Following pathogen exposure, both R gene (e.g. RPW8) and basal resistance 

receptors, including FLS2, EFR and CERK1, appear to converge to exploit mitogen-

activated protein kinases (MAPKs) and WRKY transcription factors in a signal 

cascade that coordinates, amongst other things, PR and PRR gene up-regulation 

(Fig.1.2) (Abramovitch et al., 2006a; Kwon, 2010).  Both FLS2 and RPW8 perception 

of pathogens require the induction of critical components required for general 

resistance against bacterial pathogens such as NHO1 and FRK1 genes or the Flavin-

dependent monooxygenase FMO1 gene, which is an essential component of induced 

Systemic Acquired Resistance (Lu et al., 2001; Abramovitch et al., 2006a; Mishina 

and Zeier, 2006).  Potential for substantial cross-talk between mechanisms is 

demonstrated with the example of the RPW8 dominant R gene, which is commonly 

associated with mildew perception function and induction of HR (Xiao et al., 2001).  

This gene reportedly recruits components of basal defence in its induction of mildew 

defence, such as EDR1 gene, which encodes a MAPKK kinase and appears to 

negatively regulate HR through suppression of RPW8 transcription in early response 

to the pathogen  (Fig.1.2) (Xiao et al., 2005). 

 It is likely that basal resistance is dependent on a wider array of receptors to 

detect a greater multitude of PAMP molecules than R gene pathways alone.  R gene / 

Avr gene product interactions are highly specific so a large selection pressure has led 

to their evolution and maintains their presence in the plant population (Ellis et al., 
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2000; Bittel and Robatzek, 2007).  Basal resistance mechanisms require broad 

perception or a large range of receptors to perceive conserved but diverse pathogen 

elicitors.  Such individual pathogen receptors do not have the selection pressure 

potential R genes have on pathogen populations, which would result in pathogens 

quickly overcoming their action.  Adaptation over time has in likelihood led to high 

diversity of basal resistance molecular recognition components which benefit the host 

plant. However individually, high diversity has a relatively low impact on overall 

resistance when compared to R gene products (de Meaux and Mitchell-Olds, 2003).   

 The components of the basal resistance recognition of pathogens and 

associated defence reaction is only recently emerging in the literature, however, EF-

Tu interaction with EFR is a particularly well known example in this area.  EF-Tu is 

an abundant elongation factor found in all bacterial cells and acts as a PAMP which 

can be perceived by LRR-RLK EFR receptor in Arabidopsis (Fig. 1.2) (Kunze et al., 

2004).  The bacterial EF-Tu PAMP gene and elf18 peptide products contains a highly 

conserved 18 amino-acid sequence region from the N-terminus, which is critical to 

EFR perception, and can itself initiate a basal defence reaction (Chinchilla et al., 

2007).  Arabidopsis efr mutants display increased bacterial susceptibility as 

Agrobacterium transformation rates were significantly increased.  Following detection 

of the elf18 peptide the EFR receptor activation leads to a signalling cascade via 

MAPK and WRKY genes which activate basal defence responses.  (Kunze et al., 

2004; Zipfel et al., 2006).  EFR detection of EF-Tu via MAP kinase activation, 

initiates downstream defence gene induction, oxidative burst, callose deposition in 

addition to local SA synthesis and the inhibition of seeding growth (Nekrasov et al., 

2009).  EFR is associated with the plasma membrane but requires the stromal-derived 

factor-2 (SDF2) which associates with the endoplasmic reticulum to function in a 

protein complex to prevent the degradation of EFR (Nekrasov et al., 2009).  A dde2, 

ein2, pad4 and sid2 quadruple mutant shows the flg22 or elf18 induced ETI signalling 

pathway is 80% dependent on theses four genes (Tsuda et al., 2009).  AvrRpt2 

induced ETI also shows an approximate 80% dependency on these four genes, 

essential for JA and SA biosynthesis and the majority of ET responses which suggests 

a critical convergence point for both R-gene and PTI signal transduction to defence 

activation (Tsuda et al., 2009).   

 The CERK1 gene found in Arabidopsis contains 3 LysM domains, RLK 

function and is predicted to be bound to the plasma membrane where it is involved 
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with the perception of a critical component of the fungal cell wall, chitin (Miya et al., 

2007).  Knockout mutants of CERK1 gene show a complete loss of the ability to 

perceive the chitin PAMP and elicit a defence reaction, such as an oxidative burst or 

MAPK activation (Miya et al., 2007).  CERK1 may also be involved in the perception 

of a critical component in the bacterial cell wall, peptidoglycan (Buist et al., 2008).  

Supporting the evidence that the CERK1 protein product is also involved in bacterial 

perception is that the type III effector protein AvrPtoB ubiquitinates the CERK1 

kinase domain and so disrupts protein structure and function (Gimenez-Ibanez et al., 

2009).  

 A similar gene found in Rice, encoding the chitin elicitor-binding protein 

(CEBiP), also contains LysM domains and is bound to the plasma membrane and may 

be involved in similar PAMP perception (Miya et al., 2007).  This suggests that the 

perception of chitin or related PAMPs through LysM gene products may be widely 

distributed amongst plant species (Kaku et al., 2006).  However, the predicted 

structure of CEBiP lacks intracellular domains which may indicate that additional 

components are needed to convey a signal to the cytoplasm through the plasma 

membrane (Miya et al., 2007).  Co-operative function between LysM genes would not 

be unprecedented, as the NFR1 and NFR5 genes have been shown to act together in 

Lotus japonicus to recognize Rhizobium bacteria (Radutoiu et al., 2003). 
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Figure 1.2 A simplified model depiction of basal resistance activation following 

perception of PAMPs by PRRs.  Model shows similarities between R gene and basal 

mechanisms such as the MAPK signalling and WRKY signal cascade.  Figure also 

describes notable genes implicated to suppress basal defence through introduction of 

compounds through the Type III secretary system.  Figure published by (Abramovitch 

et al., 2006a) with permission of Nature Publishing Group. 

 

1.3.2 PAMP interactions with PRRs 

The most widely-reported example of basal resistance involves perception of flg22 

peptide, a highly-conserved bacterial peptide derived from flagellin, which activates 

basal disease reactions through a FLS2 receptor (Zipfel et al., 2004).  FLS2 receptors 

instigate a signal cascade that is dependent on MAPKs and WRKY transcription 

factors to coordinate defence reactions including PR gene up-regulation 

(Schwessinger and Zipfel, 2008).  The flg22 is detected directly by the extracellular 

LRR domain of the transmembrane receptor-like kinase FLS2.  It has been 

demonstrated that flg22 is an effective elicitor when sprayed onto the surface of a leaf 

and presumably acts at an early stage of bacterial perception (Zipfel et al., 2004; 
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Zipfel and Felix, 2005).  The FLS2 response has been associated with stomatal 

closures however Pst was shown to produce a polyketide toxin, coronatine, to initiate 

the re-opening of closed stomata in order to access plant tissues (Kwon, 2010).  

Bacterial exudates, which were refined to increase flg22 concentration, were sprayed 

on leaf tissue and also instigated basal defence reactions.  flg22 has been shown to be 

the elicitor however it is likely to be one of many possible PAMPs capable of eliciting  

basal resistance through detection by LRR-RLKs (Zipfel et al., 2004).  Binding is 

facilitated through formation of a complex with BAK1 that positively regulates the 

flg22 induced responses, and may have a signalling component through 

phosphorylation of another LRR-RLK, BRI1 (Chinchilla et al., 2007).  BAK1 has 

recently been shown not to directly bind to flg22, it is therefore likely to be a signal 

transducer and general regulator of the interaction in which it may act in conjunction 

with FLS2 to confer specificity while adding to HR suppression (Schwessinger and 

Zipfel, 2008).         

 

 
Figure 1.3 A simplified summary of the interactions between FLS2, BAK1 and other 

components in PAMP recognition.  Figure shows the formation of a complex between 

FLS2 and BAK1 that result in signal transduction and basal defence.  BAK1 and 

BKK1 have also been implicated as a regulatory facilitator in EFR PAMP perception 

and regulation of HR response which is typically suppressed during a basal response.    

Figure published by (Zipfel, 2008) with permission of Elsevier publishing. 
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1.3.3 Hormonal signalling in basal resistance 

Some mutations affecting gene-for-gene incompatible interactions also affect basal 

mechanisms and vice-versa, which suggests strong mechanistic and regulatory 

conservation between the two defences.  Transgenic plants, containing the bacterial 

salicylate hydoxlyase gene NahG, effectively blocks SA tissue accumulation and 

compromises RPS2-mediated resistance.  In addition, EDS16 and SID2-disrupted 

genes prevent biosynthesis and create SA-deficient mutants (Fouts et al., 2003; Huang 

et al., 2005).  These plants show enhanced disease susceptibility in both compatible 

and incompatible interactions, which indicates that basal disease resistance is 

mediated by SA accumulation (Fouts et al., 2003; Huang et al., 2005). 

 The JA-insensitive mutant jar1 signifies JA as a component mediating basal 

responses as jar1 shows enhanced susceptibility to the compatible Pst bacteria 

(Devoto and Turner, 2003; Nandi et al., 2003).  Other mutants, such as coi1 which 

disrupts the JA synthesis pathway, show similar increases in susceptibility to 

necrotrophic fungi Alternaria brassicicola (Thomma et al., 1998).  In addition, the 

fad3 mutant deficient in JA and the JA precursor linolenic acid acquire susceptibility 

to non-pathogenic species in wild-type plants such as Pythium (Staswick et al., 1998).  

This suggests that JA signalling is required for basal resistance and that basal 

resistance is likely to be involved in non-pathogenic innate immunity responses to 

non-host pathogens (Pieterse et al., 2001).        

 ET has been implicated in the regulation of basal responses as insensitive 

mutants exhibit enhanced susceptibility to compatible pathogens, such as Pst, and 

fungal pathogens including Septoria (Pieterse and van Loon, 1999).  Mutants with 

reduced ET sensitivity show proportionally more severe symptoms when confronted 

with fungal pathogens, which suggests that ET is directly involved in basal response 

signalling.  Basal resistance appears to utilise both SA-dependent and JA/ethylene-

dependent pathways to produce an appropriate combination of responses to particular 

pathogenic threats (Pieterse et al., 2001; Nandi et al., 2003).   

 Hormonal signalling components typically associated with R gene-mediated 

responses, are widely shown to influence basal resistance activation to comparable 

extents (Glazebrook et al., 2006).  This is consistent with the common hypothesis that 

much of the downstream mechanisms and regulatory pathways are conserved or 

utilised by R-gene mediated and basal defensive layers (Hammond-Kosack and Jones, 
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1997; Glazebrook et al., 2006; Jones and Dangl, 2006).  Pathogen perception 

mechanisms and upstream signalling are likely to calibrate the extent to which 

downstream defences are mobilised and therefore define a resistance reaction.  The 

components and function of these pathways require further investigation. 

 

1.3.4 Basal resistance suppression  

Two bacterial elicitors, AvrRpm1 and AvrRpt2, have been shown to have an inhibitory 

effect on PAMP-induced signalling and therefore effectively suppress basal responses 

(Mackey et al., 2003; Kim et al., 2005a).  The elicitors target the host RIN4 gene 

product, which appears to be involved in basal PAMP signalling, and suppress its 

action (Kim et al., 2005b; Kover et al., 2005).  Specific R genes including RPS2 and 

RPM1 appear to detect RIN4 suppression when they are present and elicit an HR 

defence response, protecting the PAMP signalling pathway and illustrating the 

interplay between resistance pathways (Mackey et al., 2003; Espinosa and Alfano, 

2004; Kim et al., 2005b).  Other examples of Type III effectors that suppress basal 

defence are emerging in the literature including AvrE1, AvrPto, AvrPtoB, HopAF1, 

HopAl2, HopC1, HopF2 etc. however the extent of their effect, especially on different 

genotypes, has yet to be fully defined (Espinosa and Alfano, 2004; Abramovitch et 

al., 2006a; He et al., 2007; Lewis et al., 2009).  Plant PAMP-induced immunity is a 

target for pathogenic suppression and it is likely that many more components in such 

reactions are yet to be discovered and characterised (He et al., 2007). 

 

1.3.5 Zigzag model  

Specific examples of the complexity of the similarities and distinctions between 

pathways have been described above however, these interactions have been recently 

simplified into a “zigzag” model, which aims to illustrate and clarify our current 

understanding of the plant immune system (Jones and Dangl, 2006).  This model 

shows the initial perception of pathogen-associated molecular patterns (PAMPs) by 

pattern recognition receptors (PRRs), resulting in a PAMP-triggered immunity (PTI) 

response which slows progression.  The second stage describes effector-triggered 

susceptibility (ETS) in which the pathogen secretion of elicitors may interfere with 
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some aspect of PTI and increase virulence.  Effector-triggered immunity (ETI) is 

described in the third stage where specific recognition occurs, either directly or 

through an intermediate, to bind to pathogen effectors and instigate an ETI (Jones and 

Dangl, 2006).  This stage is commonly referred to as R gene-mediated resistance and 

is typically accompanied by localised, programmed cell death hypersensitive response 

(HR) if a resistance threshold is exceeded.  The high selection pressure on pathogen 

population results in reduction of the targeted effectors within the population and so 

avoids ETI induction in stage 4 of the model.  This stage predicts gain or modification 

to result in new effectors, which may be perceived by broad perception mechanisms, 

widely referred to as basal recognition (Jones and Dangl, 2006).                   

 

 

Figure 1.4 Model of plant immune system and its interaction with pathogens shows 

pathogen-associated molecular patterns (PAMPs) resulting in PAMP-triggered 

immunity (PTI).  Effector-triggered susceptibility (ETS) is a result of suppression of 

components involved in PTI.  However this can be overcome by specific recognition 

in effector-triggered immunity (ETI).  Following these stages the model depicts 

pathogen loss of targeted effectors to increase virulence and plant evolution of 

receptors to counter this, as an example of defence component arms race.  Figure 

produced by (Jones and Dangl, 2006) published with permission of Nature Publishing 

Group. 
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1.4 Natural variation 

Gene function definition typically utilises phenotypic assessment of genetic variation 

within the population (Alonso-Blanco and Koornneef, 2000).  Genomic studies 

assessing variation for a trait can provide a link between evolutionary analysis, natural 

genetic variation and molecular investigation (Mitchell-Olds and Schmitt, 2006).  

Variation in a complex multi-genetic trait, such as disease resistance, will alter 

throughout the population due to a wide range of influences including: gene sequence 

variation, expression variation, post translational modification, hormonal regulatory 

influence etc.  However with use of genetic resources available in Arabidopsis 

(sequenced genome, genetic maps, genotyped accessions and QTL analysis), it is 

possible to take a system-wide approach to the trait to determine the predominantly 

influential factors.  A typical example of such a study would be the assessment of 

natural variation in the Arabidopsis response to the Avr gene hopPsyA and its effect 

on the HR response.  This investigation revealed two Arabidopsis loci significantly 

influencing control over the trait, with the highest LOD scoring loci mapped to a 22 

cM region however, identification of the specific gene responsible is still to be 

established (Gassmann, 2005).  Other studies detail the variation in light sensitivity or 

disease resistance compared with a variety of fitness scores in an attempt to correlate 

disease resistance to a distinct phenotype which, especially if combined with QTL 

data, can be easily Mendelised (Maloof et al., 2001; Kover and Schaal, 2002).  

Molecular isolation and characterisation of loci responsible for the naturally occurring 

variation has been achieved predominantly by using chromosome walking approaches 

and high-precision focused regional mapping (Alonso-Blanco and Koornneef, 2000).  

The addition of PCR based markers around the target loci aid fine mapping by 

reducing the search area however, such techniques require a strong QTL peak with a 

distinct phenotype so lines possessing the loci can be differentiated (Mitchell-Olds 

and Schmitt, 2006).  An alternative approach, which uses transposon tagging within 

the QTL region to disrupt the functional effect, aims to isolate a specific responsible 

gene from candidates.  This technique has been used successfully in maize to identify 

the teosinte branched 1 (tb1) gene, amongst others (Alonso-Blanco and Koornneef, 

2000).  When a specific gene has been identified it can be sequenced in various 

accessions to link molecular polymorphisms to known phenotypes as was successful 

for the RPS2 gene (Caicedo et al., 1999).  Natural variation screens are proving to be 
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an efficient alternative to mutant based approaches, which are often time intensive 

and have unpredictable success rates, especially in traits with weak alleles, pathway 

redundancy maintaining trait phenotypes or mutant lethality (Alonso-Blanco and 

Koornneef, 2000).  

 

1.5 Economic importance of basal resistance 

Pathogen infection is almost always characterised by a reduction in yield, although 

the method and severity of reduction is dependent on the disease strain.  Yield 

reductions and crop losses are worth millions of pounds to the global agricultural 

industry and efforts to reduce disease using chemical treatments invariably increase 

production costs (Labanna and Banga, 1993).  Consequently there is a high demand 

for disease-resistant crop varieties capable of producing high yields and offering 

broad protection against the majority of pathogens (Labanna and Banga, 1993).  Most 

commercial variety breeding is still based around a conventional pedigree approach 

where morphological traits are ranked and assessed, with the highest scoring 

individuals being used to parent the next generation (Labanna and Banga, 1993).  

Once a commercially-appealing genotype has been developed, it is backcrossed 

several times until the plant is practically homozygous and the traits are stable across 

generations.   

For much of the 19
th

 century, traditional disease resistance breeding strategies 

had been focused on the inclusion of single R genes into commercial varieties from 

land races or other genetic sources.  An R gene is race-specific and is very effective 

against certain strains but has little effect on others (Hammond-Kosack and Jones, 

1997).  Introduction of the R gene resistant species into a farm environment, grown at 

high densities and often in monoculture, will result in a large pathogenic selection 

pressure to overcome the plant resistance (Sprague et al., 2006).   

There are numerous examples of new R gene-dependent disease-resistant 

varieties being introduced and their resistance being overcome within a few seasons 

(Sprague et al., 2006).  Many breeders now focus on gaining resistance through 

polygenic partial resistance genes, which offer a less effective defence however are 

often broad-ranging and more durable in the agricultural environment.  Partial or 

minor resistance genes are difficult to breed for and although their action is often not 
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fully understood, it is likely that their limited effect is a consequence of partial Avr 

gene recognition, resulting in a weak activation of defences (Hammond-Kosack and 

Jones, 1997).  This is assumed because partially-resistant varieties are not effective 

against all pathogens, suggesting a broad-ranging but still pathogen-specific response, 

however the durability of effectiveness for such mechanisms will be dependent on the 

selection pressure they exert on the pathogen population (Hammond-Kosack and 

Jones, 1997). 

 Breeding for enhanced basal disease resistance may become a more 

widespread strategy as mechanisms are implied to be polygenic, which may improve 

resistance stability in a field environment if genetic markers can be reliably 

established.  Basal resistance involves recognition of most viral, fungal, oomycete and 

bacterial races through detection of non-specific elicitors which are so fundamental to 

the infection process, they cannot be easily lost from an effective pathogen (Chisholm 

et al., 2006).  Basal resistance may not be able to completely prevent pathogen 

proliferation however it typically slows pathogen development and progression, 

which would reduce widespread infection by slowing the pathogen lifecycle.  The 

presence of high levels of basal resistance should elongate the pathogen lifecycle and 

so reduce overall pathogen population and pathogen colonisation rate in a field 

environment.  Crop species with a high basal resistance are theoretically likely to be 

more resistant to epidemics as extending the pathogen lifecycle should reduce the 

period of optimal environmental infection conditions on which epidemics are reliant 

(Labanna and Banga, 1993).  Breeding for effective basal resistance would mark a 

shift from traditional breeding strategies, which concentrate on making individual 

plants better at fighting disease, towards breeding for a population-wide control of 

disease (Hammond-Kosack and Jones, 1997).  A strategy of enhancing basal 

resistance would concentrate on reducing total pathogen populations by slowing 

pathogen progression and extending pathogen lifecycles while accepting a reduced 

level of plant damage and loss to disease.  Additionally, breeding for basal resistance 

may also prove effective in situations where R genes have not been discovered, have 

been overcome or do not exist.  In an agricultural environment, a high level of basal 

resistance may prove an effective long-term and durable strategy for the reduction of 

disease and yield losses in crops. 

 PAMP recognition receptors, such as FLS2 and EFR have been shown to 

enhance pathogen resistance however transfer of such receptors to commercially 



 35

ready crop varieties has not yet been successful.  However, successful transfer of the 

EFR PRR from Arabidopsis to Nicotiana benthamiana and  Solanum lycopersicum 

has been shown to significantly increase resistance to a range of phytopathogenic  

bacteria (Lacombe et al., 2010).  This example shows that heterologous PAMP 

component transfer between species is possible and may enhance the durable and 

sustainability of pathogen resistance in the field (Lacombe et al., 2010). 

 

1.6 Experimental system 

1.6.1 Arabidopsis thaliana 

Arabidopsis thaliana is a member of the Brassicaceae family.  This small (10-40cm) 

annual flowering species is found throughout temperate regions such as North 

America, East Africa, Europe and Asia and is commonly found on open, sandy soils 

which drain rapidly (Katagiri et al., 2002).  The plant is used as a model organism 

despite having no commercial agronomic applications.  However, synteny between 

plant species genomes allows research findings in Arabidopsis to be widely applied to 

economically important species (Gale and Devos, 1998).   

 Arabidopsis offers many advantages for research such as a small (114.5 Mb-

125 Mb) diploid (2n=10) genome, which has been fully sequenced and has extensive 

genetic and physical maps associated with all five chromosomes (Glazebrook et al., 

1997).  There are relatively low levels of repetitive DNA, transposons, or other “junk 

DNA” between the 25,498 encoded functional genes which simplifies the genetics 

and increases the accuracy of predictions (Glazebrook et al., 1997).  Most genotypes 

are highly productive self-pollinators (in excess of 10,000 seeds per plant) which 

allow recessive mutations to quickly become inbred and homozygous.  Genetic 

mapping and mutation stacking can be easily achieved through cross-pollination 

(TAIR website).  Its small size and rapid 5-6 week life cycle combined with its large 

mutant populations and efficient Agrobacterium tumefaciens mediated transformation 

protocols, have made Arabidopsis a very useful model organism for this project and 

other biological research (Katagiri et al., 2002). 
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1.6.2 Pseudomonas syringae 

Pseudomonas syringae is a rod-shaped, Gram-negative bacterium which exists 

throughout temperate regions primarily following a saprophytic life cycle until it can 

successfully infect a variety of plant species, causing bacterial canker (Katagiri et al., 

2002).  The bacterium usually grows epiphytically using surface secretions as a 

carbon source in its early life cycle stages before initiating pathogenesis.  

Evolutionary pressure from plant defences have forced strains of the bacteria to 

become species-specific with complex methods of avoiding or neutralising 

antibacterial host products (Shan et al., 2007).  If the plant is resistant to the 

P.syringae, then the infection is detected through race-specific elicitor binding to a 

plant receptor, usually bound to the plasma membrane (Glazebrook et al., 1997).  This 

triggers defence reactions involving PR-protein production, reactive oxygen species 

(ROS), H2O2 induced lignification or cross-linking of the cell wall and the HR, which 

ultimately kills the invading pathogen (Dangl and Jones, 2001; Park et al., 2005). 

In a compatible interaction with a host, the pathogenic P.syringae, which is 

spread by physical leaf contact or in rain splashes between infected plants, infects 

through wounded tissue or stomatal openings (Katagiri et al., 2002).  The bacteria 

possess polar flagella that allow motility in the intercellular spaces where it 

proliferates and results in symptomatic chlorosis and water-soaked patches around the 

site of infection, followed by necrotic lesions and cellular collapse (Katagiri et al., 

2002).    

 Several strains of P. syringae were found to infect A. thaliana, and such host-

pathogen interactions have been used as a model pathosystem to investigate the 

molecular basis underlying plant disease resistance.  Two virulent strains commonly 

used for research are P. syringae pathovar tomato DC3000 (Pst) and the P. syringae 

pv. maculicola ES4326 (Psm), which will readily infect A. thaliana when infiltrated 

into the intercellular space or applied to the leaf surface (Katagiri et al., 2002).  This 

pathosystem has been extensively used to characterise plant defence reactions as 

symptoms develop quickly (1-3 days).  In addition, the bacterial genome has been 

sequenced and also has an extensive array of genetic and physical maps associated 

with it.  Through homologous recombination, the bacterium can be easily manipulated 

to include a wide array of reporter genes.  This wide collection of advantageous 

properties makes Pseudomonas an ideal pathogen for use in this study.     
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Figure 1.5 Electron microscopy images of bacteria infection process.  Images 

produced at U.C. Berkeley and published with permission of the creator Gwyn 

Beattie. 

 

1.6.3 Luciferase gene cassette  

The interaction between plants and pathogens has been a powerful tool in determining 

the mechanisms behind R-gene mediated resistance (Mauricio et al., 2003; Jones and 

Dangl, 2006).  Measurement of the bacterial growth in planta is routinely quantified 

by counting colonies of dilution plates from infected plant tissue.  These procedures 

are time-consuming, arduous and difficult to scale for high-throughput assays.  A 

newly developed assay utilises bioluminescent tagging of genes to bacteria, creating a 

quantifiable, definitive assay to provide pathogenesis data independent of symptom 

progression (Fan et al., 2008).  The constitutively expressed LuxCDABE operon 

provides cellular components for generation of bioluminescence.  Oxidation of 

luciferin emits a blueish-green light (wavelength ~560 nanometres) which can be 

quantitatively detected with a photon counter (Winson et al., 1998).  The luciferase 

reaction is ATP-dependent and is maintained in the cytoplasm, which allows high-

throughput in vivo assessment of cell viability and gene expression, through 

measurement of the light emission (Winson et al., 1998).  Luminescence of the 

LuxCDABE operon has been surveyed in both P.syringae pv. tomato DC3000 and 

P.syringae pv. maculicola ES4326, concluding that the assay could detect small (1.3- 

fold) statistically significant differences in bacterial growth, which is comparable to 

plate assay precision (Fan et al., 2008).  
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1.6.4 Recombinant inbred lines 

Recombinant inbred lines (RILs) are created through the repeated selfing of an F1 

hybrid to create near homozygosity at all loci in the RIL (Koornneef et al., 2004).  

Selfing increases homozygosity by 50% with each generation therefore, a segregating 

F1 hybrid can be selfed to a practically homozygous genotype in eight generations 

(Young, 1996).  RI lines have a theoretically non-segregating genome and so are 

effectively clones, which facilitate repeated phenotypic analysis on the same 

genotype.  As the genome is effectively stable across generations, a marker map can 

be created using highly conserved domains and complementary markers to indicate 

the location of loci on the chromosomes (Glazebrook et al., 1997).  Genotype 

information which assesses the parental origins of the recombinant genome sequence 

only has to be determined once for a RIL.  RILs can be propagated eternally and are 

extensively used as tools for genetic mapping and assessing trait complexes (Young, 

1996).      

 

 
 

Figure 1.6 Flow diagram of RIL line construction and the reduction in heterozygosity 

between generations which results in practically homozygous stable lines. 
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1.7 Aims and objectives 

Improving basal resistance in commercial lines will be facilitated by detailed 

understanding of the underlying mechanisms.  Currently, this knowledge is only 

beginning to emerge in the literature and still requires extensive study before all 

components are known and characterised.  It is the aim of this project to further this 

knowledge through assessment of the range of basal resistance variation naturally 

occurring within the Arabidopsis population.  The project then aims to identify and 

characterise the genetic components responsible for variation in the basal resistance 

trait.  

 Preliminary results from other members of the group suggest that basal 

resistance may vary by up to 50-fold between ecotypes.  The genetic and 

physiological basis for such resistance has not been extensively studied and has only 

implicated some possible downstream homology to SA-dependent genetic and 

signalling pathways (Veronese et al., 2003).  Implications of upstream basal signalling 

and recognition of non-race-specific elicitor components are only beginning to 

emerge in the literature.  Extensive identification and characterisation of the genetic, 

molecular and physiological components of basal resistance is an important 

prerequisite for any utilisation of this mechanism to improve crop plants. 

 This project will utilise and validate a recently developed, high-throughput 

luciferase-based assay, capable of quantifying pathogen concentration in excised leaf 

discs.  The assay system has not been previously used to generate highly accurate and 

reproducible results.  As a result, the interaction and procedures used initially need to 

be well characterised and then modified to refine the procedure to reduce replicate 

variation.  Refinement experiments will examine the mean, and variation around the 

mean, from the alteration of a wide range of procedural components such as: bacterial 

concentrations, host and bacterial age at infiltration, a variety of environmental 

conditions, infiltration method, wound effect etc.  Using this refined system, a wide 

screen of different genotypes and inbred populations will establish the range of 

variation in basal resistance.   

 Quantitative trait data, combined with the genetic maps and genotypic 

information available in specific Arabidopsis lines, allow for trait loci analysis which 

aims to indicate portions of the plant chromosome responsible for influencing a 

particular trait.  Major QTLs identified in the first screen of a RIL population will be 
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compared against multiple other RIL lines to determine if major QTL locations are 

repeatedly high-lighted across independent populations.  From this analysis, the genes 

contained in a chromosomal area that are statistically likely to influence the trait can 

be assessed for their properties, and a list of candidate genes responsible can be 

created.  This is initially a similar approach that was used with great success by 

Caroline Dean’s group and others in their investigation of the components involved in 

flowering time (Kowalski et al., 1994; Clarke et al., 1995; Laurie, 1997; Gazzani et 

al., 2003).  An additional component would test a small range of different virulent 

pathogens on RIL populations to indicate the relative strength of basal defence in 

comparison with other ecotypes.  Comparison between quantitative trait loci (QTL) 

profiles generated from different pathogens would help to indicate the likelihood of 

whether the responses are broad or pathogen-specific. 

 QTL analysis should define the number and location of major QTLs across the 

Arabidopsis population which substantially influence basal resistance.  From the QTL 

locations, a list of candidate genes should be produced that have potential for 

involvement or previous implication in disease recognition and prevention pathways.  

Molecular characterisation and transcriptional analysis would prove useful in 

characterising the potential extent of the candidate genes’ action and possible 

mechanistic role in basal resistance.  Direct proof of a candidate’s involvement then 

needs to be established to complete the project aims of identifying the genetic 

components involved in basal resistance. 
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Chapter 2:  Materials and methods 

2.1 Arabidopsis materials and methods 

2.1.1 Arabidopsis thaliana genotypes 

Seeds for a set of 92 inbred parental genotypes of recombinant inbred lines (RILs) 

were obtained from a collection held by Claire Lister (John Innes Centre, Norwich, 

UK).  Using trial data collected from these genotypes, a set of 5 RILs were selected 

from crosses between Sorbo x Gy-0, Nok-3 x Ga-0, Cvi-0 x Ag-0, Col-0 x Ler and 

Wt-5 x Ct-1.  For each of these crosses, 94 RILs seeds were obtained from the 

collection generated by Ian Bancroft’s group (John Innes Centre, Norwich, UK) and 

29 SALK T-DNA insertion lines were ordered from Nottingham Arabidopsis Stock 

Centre (NASC). 

 

2.1.2 Plant growth 

Prior to growth, seeds were stored in dry microfuge tubes at room temperature in the 

Laboratory.  Seeds were stratified by immersion in 0.1% agarose solution in 

microfuge tubes for 3 days at 4 ºC.  Seeds were distributed with a glass pipette into 

pots containing “Arabidopsis mix” (a 12:1 mixture of Scott’s M2 plus Intercept to 

grit).  Plant pots intended for disease trialling were placed in a short day growth room 

for 4-5 weeks at 9 hrs day: 15 hrs night, at ~23 °C, ~70% relative humidity and light 

level at between 100 to 125 µmol m
-2

 s
-1

 (shelf level).  Trays were covered with a 

clear polystyrene lid after sowing for 4 days to promote germination and watered 

regularly from underneath to avoid seed disturbance.   

 Plant intended for seed bulking or crossing were grown in glasshouse / long 

day growth room conditions for 6-8 weeks at 22 °C, 65% relative humidity, 

photoperiod 15 hours with natural glasshouse light levels supplemented 

with Osram 4Y 400w Vialox Nav-T super bulbs to maintain day length.   

Seeds for media plate growth were sterilized by washing with 70% ethanol for 

5 minutes followed by 20 ml 5% v/v bleach (Vortex) + 0.1% SDS for 20 minutes.  

The bleach was aspirated off in a flow hood and the seeds were washed with two 

changes of sterile distilled water and placed on MS + 0.6% agarose plates. 
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2.1.3 Media composition 

KB (Kings B Medium)  
Formula per 1 litre de-ionised water  

Proteose Peptone 20g/l  

Glycerol 1.6g/l  

pH to 7.2 with NaOH  

For solid 15g Lab M agar  

 

LB (Luria-Bertani) – G broth and LB – G agar  

Formula per 1 litre of de-ionised water  

Tryptone 10.0g  

Yeast Extract 5.0g  

NaCl 10.0g  

Adjust to pH 7.0 with 1M NaOH  

For solid medium add per litre  

Lab M No.1 agar 10.0g  

 

2.2 Pathogen materials and methods 

2.2.1 Pseudomonas syringae storage and growth 

Luciferase reporter gene-tagged Pseudomonas syringae pv. tomato DC3000 and 

Pseudomonas syringae pv. maculicola ES4326 strains were provided by J. Fan (JIC, 

UK).  Pseudomonas syringae pv. tomato DC3000 AvrPtoB deletion mutant was 

provided by C.Zipfel (Sainsbury Laboratory, UK).  Long term pathogen stocks were 

held in 50% glycerol at -80 °C before transfer to agar stock plates on KB medium 

supplemented with 50 µg/ml each of rifampicin and kanamycin, stored for up to 20 

days at 4 °C.  Bacteria grown for disease trials were spread onto a Petri-dish of KB 

media with appropriate antibiotics and incubated at 28 ºC overnight (12-16 hours) to 

obtain a confluent lawn.  To ensure reproducible results for each of the parental 

ecotypes and RIL lines, four replicate plants were grown and three infected leaf discs 

were taken from each of the host plants (minimum 12 data points per RIL).   

 

2.2.2 Pseudomonas infection 

The bacterial inoculum was prepared by taking an aliquot from a fresh lawn of 

bacteria (12-16 hrs) and suspending it in 10mM MgCl2.  The bacterial density was 

measured using an Eppendorf Bio-photometer and adjusted to OD600 0.002 
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(equivalent to ~10
6
 cfu/ml) with 10mM MgCl2.  Pressure infiltrations were made using 

1 ml needleless syringe on the abaxial side of the leaves so as much of the leaf as 

possible was filled with inoculum (so that the leaf appeared water-soaked).  Dipping, 

vacuum and spray infiltrations were facilitated by the addition of surfactant (0.02% 

Silwet) to the suspension before direct application or aerosol spraying of the 

suspension onto all leaf surfaces.  Plants inoculated using methods other than 

infiltration were covered with plastic lids to raise humidity and aid infection.  

Following infection, plants were returned to the short day growth room, for 

approximately 48 hours.  Bioluminescence of 8mm leaf discs was measured using a 

Berthold FB12 luminometer with single photon counter (Fan et al., 2008).  Data is 

recorded as photon counts per second (cps) per disc.  To assess bacterial content in 

non-Lux tagged strains or in comparative trials, dilution plating and colony counting 

was used by macerating infected tissue in KB medium.  Serial dilutions of between 

10
0 

to 10
-6

 were spread onto KB plates and incubated for 2 days at 28°C for colony 

counts.  In certain experiments, infected leaves were also given a visual score of 

disease severity (1=low, 5=high) before quantitative assessment. 

  

2.2.3 Infiltration controls and standardisation calculations 

To improve reproducibility from initial trials, luminescence values from leaf discs 

were compared against internal controls.  Three data points per plant were averaged 

when collected and replicate genotype data from other trays was also included into a 

single average value.  A percentage comparison against a set of 4 Col-0 controls in 

every tray as well as 4 controls of a parental line, was used to reduce tray-to-tray 

variation.   

 

2.2.4 Refinement of technique experiments 

The Lux-tagged Pseudomonas high throughput assay is a newly-developed system 

and not yet fully optimised and so preliminary data was highly variable.  A series of 

experiments was conducted to characterise the infection process and optimise the 

assay so that reproducible data could be collected, which is an important prerequisite 

for accurate QTL analysis.  Moderate alterations were made to various aspects of the 
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system and their effect on the trait and variation from the mean were observed and 

used to refine the assay.  Alterations included: time course of infection, density of 

bacterial inoculum and bacterial population age at time of infiltration e.g. 6, 12, 18 

hrs.  In addition, plant age and time of day of the inoculation were assessed.  

Furthermore, different methods of inoculation were assessed for reproducible 

infection and alterations to various environmental factors were tested. Modifications 

to the original procedure that reduced variation and improved reproducibility were 

introduced as standard for subsequent trials.  Statistical analysis to verify the effect of 

a treatment typically utilised the ‘Genstat’ 10
th
 addition statistical software from VSN 

International.  For treatment effect analysis the majority of this project utilised one-

way analysis of variance (ANOVA) e.g. section 3.4.3 however, regression analysis 

was used to test for a proportional relationship between variable e.g. section 3.2.1.  

The F-test, or variance ratio test, was used to compare standard deviations between 

groups and test the null hypothesis that two populations have the same variance, 

producing a P value showing significance of the variance ratio e.g. section 3.4.3.  

 

2.2.5 Parental RIL line screening and selection of appropriate RIL lines 

Following refinement of the assay technique, a range of 92 genotypes, which had 

been used as parents of the associated RIL line populations, were selected and 

screened for their natural variation in the basal resistance trait.  A continuous range of 

variation in the basal resistance was observed with an approximate 50-fold difference 

in bacterial growth between the most and least susceptible accessions.  Examination 

of bacterial growth in the parents of the RILs allowed the selection of 5 populations 

which showed different levels of variation so that as many significant QTLs as 

possible could be found responsible for altering the trait.  Gy-0 x Sorbo, Ga-0 x Nok-

3, Wt-5 x Ct-1, Ag-0 x Cvi-0, Ler x Col-0 lines were selected, each comprising at 

least 94 RILs, were then surveyed to provide the quantitative trait data for subsequent 

QTL analysis.  Subsequent comparison of QTL locations could then be used to 

determine if the variation at high susceptibility was influenced by the same QTLs as 

variation at relatively low susceptibility.  From these choices of RIL populations, an 

understanding of how many QTLs are involved in basal resistance may be elucidated. 
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2.2.6 Visualising photon emission from Lux tagged bacteria using NightOWL 

luminescence camera 

P.syringae transformed with the Lux gene cassette emits photons at ~560nm which 

act as a reporter of viable bacteria within plant tissue.  Berthold Technologies have 

produced the “NightOwl” system, which can detect this photon wavelength and 

density using a slow-scan CCD camera in a light-proof chamber.  Newly-infected 

plants were placed in the cabinet and over a 5-day infection period, a series of single 

frame images were taken.  Col-0 and Ler genotypes were used and both Pst and Psm 

were used for comparative infiltrations.  Images used a 15-minute exposure time, 

taking 24 pictures per day to create 120 sequential images in total.  Photoshop CS3 

software was used to standardise image size and ensure correct alignment and 

orientation.  No alteration was made to the contrast, colour, image quality, etc.  

‘ImageJ’ software was used to stack image sets of sequential JPEG files and compile 

them into movie MPEG files similar in composition to the time-lapse animation 

technique.  The movie files run for 30 seconds at 4 frames per second. 

 

2.3 QTL analysis 

 

QTL analysis can be used to explore the genetic components underlying the natural 

variation of basal disease resistance.  The analysis enables tracking of the 

chromosomal regions that influence a trait.  A variety of statistical tests are run to 

ensure consistency in the analysis and reduce the possibility of statistical artefacts 

which are uncommon, but possible (Van Ooijen and Maliepaard, 1996; Young, 1996).   

 Computational statistical analysis assesses the effect of marked genomic 

regions on the phenotypic trait and generates a probability of association between 

DNA marker and trait (Liu, 1998).  Repeated nonparametric analysis is used to assess 

the data as it makes no assumptions about the data being of normal distribution.  QTL 

mapping software rank all the marker and genotype data with reference to the trait 

information based on the variance from the null-hypothesis (Falconer and Mackay, 

1996; Liu, 1998).  A marker linkage group with a segregating QTL will show a 

statistical gradient towards the locus with the greatest influence on the trait (Van 

Ooijen and Maliepaard, 1996).  The software interpretation of this gradient is a set of 

line graphs covering the length of each chromosome examined.  The line measures the 
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probability of a locus on influencing the trait and often calculated as logarithm of 

odds (LOD) score.  An ideal QTL peak has a high LOD score over a tightly-defined 

chromosomal area. 

 

2.3.1 QTL analysis information 

Marker and genotype information for the RI lines associated with Col-0 x Ler cross 

were obtained from C. Lister (JIC, UK) (Dean et al., 1991).  These Restriction 

Fragment Length Polymorphism (RFLP) maps were combined with publicly-available 

data e.g. NASC (http://arabidopsis.info/) TAIR (http://www.arabidopsis.org/), 

consisting of PCR markers such as: Simple Sequence Repeats (SSR), Random 

Amplified Polymorphic DNA (RAPD), Amplified Fragment Length Polymorphism 

(AFLP) and Single Nucleotide Polymorphism (SNP).  As a result, a high-density 

marker map was created with an excess of 1300 DNA markers, at an average interval 

of 0.6 cM (centimorgan), which has been genotyped in 100 RILs to determine 

parental origin at the marker location.  Similar information, but at a lower marker 

density, was donated by I. Bancroft’s group for the remaining 4 sets of 94 RILs 

(http://www.jic.ac.uk/staff/ian-bancroft/research_page5.htm).  Quantitative basal trait 

data was compiled from at least 12 data points per RIL into a single value describing 

relative disease susceptibility of the line.   

 

2.3.2 Linkage mapping methods 

QTL analysis was performed using ‘MAPQTL5’ software (Van Ooijen and 

Maliepaard, 1996) where Kruskal-Wallis, interval mapping, restricted multiple QTL 

mapping (MQM) and non-restricted MQM analysis were calculated.  Automatic 

cofactor selection (ACS) was used to highlight cofactors to the QTL and permutation 

tests (PT) were performed to calculate the 95% max log-likelihood (LOD) score for 

both chromosome-specific and genome-wide statistical significance.  The majority of 

QTL results shown are derived from MQM analysis as it is the most robust method.  

However other tests offer a useful comparison and increase confidence in the 

validation of the final result. 
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2.3.3 QTL analysis software and files 

‘MapQTL 5’ QTL analysis software from the ‘Kyazma’ company was used which 

requires 3 file types containing the relevant information presented in a specific 

format.  A master .mqd file is initially generated which will include the analysis but 

this must be accompanied by a .loc file which contains the genotype data.  Markers 

and their chromosomal locations are described in a .map file and the quantitative trait 

data is described in a .qua file.  The data used for the .map and .loc files is available 

on the Nottingham Arabidopsis Resource Centre (NASC) website 

(http://arabidopsis.info/new_ri_map.html) or from the Bancroft group (JIC, UK) 

website (http://www.jic.ac.uk/staff/ian-bancroft).  

 

2.3.4 Kruskal-Wallis QTL analysis 

To give a basic analysis comparison, the analysis methods were firstly run without co-

factor selection.  Once the data is loaded into the MapQTL programme, a Kruskal-

Wallis test (Lehmann, 1975) is used to rank all individual RIL genotypes according to 

their trait value and parental origin genotype information.  The Kruskal-Wallis 

analysis gives a basic comparison of genotypes and trait scores between the RIL lines 

without any specific loci being screened for co-factor selection.  QTLs of large effect 

will be highlighted by big differences in average rank of the marker genotype classes.  

The QTL test statistics rank the genotype classes and gives a chi-square style 

distribution.  A distinct change in the test statistic compared to background values 

indicates the locus with the closest linkage to a QTL, confirmed by the significance 

level.  However the Kruskal-Wallis test is limited as individuals with either marker 

location, genotype data or a quantitative trait score missing will be removed from the 

analysis, which reduces the power of the test. 
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2.3.5 Interval mapping QTL analysis  

Interval Mapping (IM) was used to test whether QTLs at different positions have a 

genetic effect.  This creates a likelihood ratio, transformed to Log
10

 to give the log of 

odds (LOD) score, which indicates the potential sites of QTLs.  A high LOD score 

suggests the presence of a QTL but to find the threshold above which the LOD value 

becomes significant, a permutation test is required(Churchill and Doerge, 1994).    

 

2.3.6 Permutation tests in QTL analysis 

This test looks at the frequency distribution of the maximum LOD score for each 

linkage group and over the whole genome.  After 1000 permutations, an estimate of 

the distribution of the LOD deviance under the null-hypothesis that there are no QTLs 

is given.  By looking at the genome-wide scores, it is possible to find which LOD 

score represents the 95% confidence interval (typically above LOD = 2) which is then 

used in subsequent analysis to locate QTLs. 

 

2.3.7 Restricted MQM mapping and MQM mapping QTL analysis 

Multiple QTL Modelling (MQM) is then used where, unlike IM, the QTLs are 

identified due to having a LOD score on or above the threshold.  This is determined by 

the permutation test where co-factors can be included in to the model, to lower any 

residual variance (Arends et al., 2010).  MQM mapping firstly augments and models 

multiple genotypes to estimate their comparative probability of trait influence then 

important markers are selected by multiple regression analysis and backwards 

elimination of lower probability markers.  The QTL is then aligned to the chromosome 

with reference to genotype information and co-factors of influence.  MQM mapping 

has advantages over IM as it is a more stringent test, compensating for the residual 

variance from reference to the full analysis model to produce more accurate peaks and 

is less likely to produce statistical ghosts (Arends et al., 2010).  After the first MQM, 

the original IM QTLs are more defined and any new ones become visible or 

significant.  MQM mapping is an important and stringent test so these results are 

observed most carefully.   
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2.3.8 Automatic Co-factor Selection in QTL analysis 

After an initial run of MQM analyses to get a benchmark QTL profile, Automatic Co-

factor Selection (ACS) is used to assess large numbers of potential co-factors to 

represent each linkage group.  Assessment of multiple-QTL models is more powerful 

than single-QTL model predictions however computational complexity increases 

dramatically.  Marker regions with a smaller proportion (typically non-significant) of 

influence on trait variation are defined as co-factors to the larger (typically 

significant) chromosomal areas of influence on the trait.  Co-factors function as a 

genetic background control and statistically reduce fluctuation of the residual variance 

from nearby QTLs (Van Ooijen, 1999).  The resulting accuracy of QTL analysis is 

enhanced and the resolution of significant QTL peaks is greater while low scale 

genetic flux influence over the trait is minimised (Van Ooijen, 1999).  A process of 

backwards elimination is then used to define marker regions that contribute the 

highest amounts of variation explained by the model, thereby narrowing the regions 

containing QTLs and resolving QTL peaks to show significance.  Following the 

selection of appropriate co-factors Kruskal-Wallis, interval mapping, restricted MQM, 

MQM mapping and the permutation tests are re-run to a more accurate standard.  The 

final QTL graph outputs are produced with similar profiles to the previously 

generated analysis but with a higher resolution.  

 

2.4 Candidate gene identification and refinement 

Markers located on the peripheral edges of QTL peaks were selected and the genomic 

DNA sequence region was isolated using the Sequence Viewer tool on the TAIR 

website (http://www.arabidopsis.org/servlets/sv).  Genes contained within those 

regions were listed and compared against a list of known disease-related or PAMP-

associated genes, derived from ‘MapMan 2.0’ microarray analysis software and flg22 

treatment microarray data (Zipfel et al., 2004).  The cross-referencing of these lists of 

genes and further comparison between the independent QTL analyses of separate 

Arabidopsis populations allows for an approximate 95% reduction in the total number 

of candidate genes.  Detailed examination and characterisation of the genes and gene 

groups within this remaining candidate list was used to determine if any candidates 

had the potential to be involved in the basal disease resistance pathway.   
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2.4.1 Candidate and disease related gene lists 

Chromosomal markers either side of significant QTL peaks were selected to 

determine physical genetic locations for QTL peaks, calculated in centimorgans.  

Using the web-based TAIR Sequence viewer 

(http://www.arabidopsis.org/servlets/sv), the genetic markers can be entered to isolate 

the chromosomal region within markers.  The software can then generate a list of all 

genes within the region which then forms the basis for the candidate gene lists for 

each significant QTL peak.  All the genes within the regions are listed, without 

assigning probabilities, according to location and peak height.  

 Microarray software ‘MapMan2’ from ‘Soxoft’ contains a hierarchical 

organisation and categorisation of genes with reported function.  From this software, a 

list of 421 genes was compiled, reportedly involved in biotic stress based on the gene 

ontology from currently published annotation information available.  The biotic stress 

list was combined with a list of 269 genes reportedly involved in PAMP recognition 

based on a microarray transcriptional analysis when Arabidopsis is exposed to a 

flagellin flg22 protein exudate (Zipfel et al., 2004).  The combination of these 2 gene 

lists creates a record of currently identified disease /PAMP related genes.         

 

2.4.2 Refinement of candidate lists and categorisation of genes  

QTL-derived candidate gene lists can be cross-referenced against the disease related 

gene lists using a multiple interrogation query in ‘MS Access’ software.  Refined 

candidate gene lists, containing only genes reportedly involved in disease resistance 

and located within each of the total QTL regions detected, can then be generated by 

appropriately removing candidate genes.  Genes contained within the refined 

candidate gene lists can be categorised based on their annotation information into 

gene families of related properties for further analysis.   

 

2.4.3 Candidate gene distribution within QTL regions 

Cross comparison of the categories of candidate genes contained within QTL regions, 

combined with statistical analysis, can determine if the frequency of a particular gene 

type/ family is significant compared to the background distribution.  Chi squared 

matrices compile information including the total gene number, number of genes in the 
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category of interest, total number of genes found within the QTL regions and number 

of genes of interest within the QTL regions.  From this information and using ‘R-2.6’ 

statistical programming language to compute the Chi squared matrices, it is possible 

to compare the effective hit ratios against the background distribution and prove that 

the gene of interest is occurring at a significantly higher frequency within the QTL 

region. 

 

2.5 LysM gene characterisation 

2.5.1 Annotation information 

Sequence and annotation information of the Arabidopsis LysM genes were obtained 

from the TAIR website (http://www.arabidopsis.org/) which lists currently known or 

implied function and properties from the latest published research literature and 

community data submissions. 

 

2.5.2 Phylogenetic analysis 

The nucleotide and amino acid sequences of the LysM members were used to 

generate phylogenetic trees to visualise the coding similarity and evolutionary 

relationship.  Diagrams are generated using sequential combination of outputs from: 

‘Muscle’, ‘Genedoc’, ‘ClustalW’, ‘Phylip 3.67’, ‘Protdist’, ‘Neighbour’, ‘Consense’ 

and ‘Drawgram’.  This software, available on the JIC intranet servers, utilises 

bootstrap analysis and distance matrix methods to produce evolutionarily robust 

phylogenetic trees (Baldauf, 2003; Harrison and Langdale, 2006).  The ‘Align X’ 

software tools from the Invitrogen ‘Vector NTI’ package was also used to produce 

tree diagrams with combined sequence identity, absolute complexity data and gene 

matrices showing the gene similarity percentage (Baldauf, 2003).  

 

2.5.3 Expression profiles of LysM genes  

Amalgamated Affymetrix microarray data from a large variety of biological contexts 

has been combined in an internet based software tool; ‘Genevestigator V3’ 
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(https://www.genevestigator.com).  This powerful meta-analysis algorithm provides 

tools to explore specific gene expression from a developmental, stimulus response, 

mutation or anatomical perspective (Hruz et al., 2008).  Modes of expression can be 

visualised through creation of heat maps illustrating gene responses to stimuli and 

profiles indicating spatial and temporal gene expression.  With reference to individual 

expression databases, a model of the gene role within the context of metabolic and 

regulatory networks can be hypothesised (Hruz et al., 2008).  Expression profiling 

involves use of meta-profile analysis, biomarker search, pathway projector and 

clustering analysis for compiled candidate gene lists within the software and 

facilitates output of expression graphs and ranges.  While ‘Genevestigator’ is a useful 

tool to formulate hypotheses and characterise gene expression it must be considered 

that the database is compiled from amalgamated data therefore without specific 

reference to experimental data, the trends observed may be open to other 

interpretation.  ‘Genevestigator’ however, does allow access to the source 

experimental components of the amalgamated data so it is possible to access specific 

experiments which may be more relevant within the basal resistance biological 

context.  

  

2.5.4 Sequencing  

DNA sequencing was done in collaboration with V.Lipka’s group (SL, UK) to assess 

the extent and effect of polymorphisms in candidate genes for selected genotypes.  

Following PCR amplification of a candidate gene sequence, the DNA from different 

genotypes was submitted for automated preparation and analysis at the JIC Genome 

Laboratory using ‘AbiPrism 3730XL’ capillary sequencers and ‘ABI’ software to 

provide comparative nucleotide sequence data.  An existing protein sequence data set 

containing sequences for the majority of candidate genes in an array of genotypes was 

obtained from D.Weigel’s group (Max Planck, GER).  Nucleotide sequence for the 

fully sequenced Col-0 was obtained from the TAIR website and Ler genotype 

sequence data was provided by Monsanto.  Sequence alignments and comparisons 

were analyzed using Align X and other tools from the Invitrogen ‘Vector NTI‘ 

package. 
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2.6 T-DNA knockout line identification  

2.6.1 T-DNA insertion lines 

T-DNA insertion lines were ordered from the NASC 

(http://arabidopsis.info/home.html) and they were predominantly chosen to have 

originated from a Col-0 background.  Lines selected preferentially contained an 

insertion sequence within the exons of the LysM genes.  However where such lines 

were not available, lines with insertions within 300 bp upstream of the start codon, 

downstream of the stop codon or within the intron region were selected.  Small 

numbers of plants of each T-DNA insert lines (minimum 16) were grown and 

analysed for disease resistance, as in the QTL trials, with 8 controls per p24 tray for 

comparison, as with previous experiments.  Where possible, homozygous lines were 

selected however, for many of the lines, the insertion T-DNA is still segregating so 

the homozygosity of the T-DNA must be checked by PCR.  Following bacterial 

growth trait scoring, a sample of leaf tissue was taken from each plant and its DNA 

extracted and purified.  Specifically designed primers for each of the knockout lines 

were used to set up two paired reactions using three primers (LP, RP LB insertion).  

From the electrophoresis gels run, differences in amplified DNA fragment length 

pattern between paired reactions indicated insertion genotype as described in Figure 

5.7.  Repeat PCR runs were conducted wherever possible and the results cross-

compared to increase reliability until a comprehensive list of plant insertion genotypes 

could be produced, accompanied with trait data for each plant of the knockout lines. 

 Bacterial growth tests were conducted with the infiltration of Pst, following 

the procedures described in Section 3.3.1 and 3.3.2.  A minimum of 16 plants were 

tested for each insertion line however, following PCR testing to verify insertion type, 

the sample number is variable as most lines are still segregating for the insertion and 

so typically tested as a mixture of heterozygous, homozygous or wild type.     

 

2.6.2 DNA extraction 

Arabidopsis young leaves frozen in liquid N2 were ground and DNA was extracted 

with an extraction buffer (250mM NaCl, 200mM Tris-Cl, 25 mM EDTA, 0.5% (w/v) 

SDS) and centrifuged to separate cell components.  DNA samples were washed with 

isopropanol (100%) and ethanol (70%) sequentially with centrifuge cycles at 13,000 g 
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for 5 mins intervals.  The DNA was then resuspended in 100 µl of 1x TE for the stock 

and a 100 fold dilution was used for PCR reactions.  Stocks were kept in a -20°C 

freezer. 

 DNA quantity and quality was assessed using an Eppendorf Bio-photometer 

UV setting to measure absorbance at 260 and 280 nm.  Comparative absorbance ratios 

between A260/A280 were calculated with a ratio of 1.6 to 1.8 being considered an 

acceptable level of DNA purity.  OD260= 1 is equivalent to 50 µg/ml of double 

stranded DNA. 

 

2.6.3 Oligonucleotide primers 

Primer sequences were designed according to standard specifications using Invitrogen 

‘Vector NTI Version 10‘ or with the web-based SALK T-DNA primer designer 

(http://signal.salk.edu/tdnaprimers.2.html).  All primers were checked to ensure 

accurate genomic placement.  All synthetic oligonucleotides were produced by 

Sigma-Genosys/Aldrich (http://www.sigmaaldrich.com/life-science/custom-oligos/ 

custom-dna.html).  Dried oligonucleotides were resuspended in 1 x TE (10mM Tris, 

pH 8.0, 1 mM EDTA) to produce stock concentration of 100 µM.  Working solutions 

for PCR reactions were diluted 10 fold in sterile water to give a concentration of 10 

µM and all primers were stored at -20 °C.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 55

2.6.4 Polymerase Chain Reaction  

Polymerase chain reaction (PCR) cycling conditions were optimised for each primer 

pair using technical data calculated by Sigma-Genosys.  PCR reactions were 

performed in a PTC-200 Peltier thermal cycler from MJ Research with an extension 

time of 1 min / 1 kb length of PCR product.  Components of a 10 µl reaction are listed 

as following: 

 

• DNA template                                                                                         1 µL                     

• 10x Buffer 500mM KCl, 100mM Tris-HCl (pH 9.0),                            1 µL                     

      1% Triton
 

X-100, 15mM MgCl2 

• dNTPs (25mM each dNTP base– Invitrogen)                                         1 µL                     

• Forward Primer 10µM                                                                             1 µL                     

• Reverse Primer 10µM                                                                              1 µL        

• Taq (Amplitaq gold 5u/µL – Applied Biosystems)                                 0.25 µL                                                                                                                                                           

• dH
2
O                                                                                                        4.75 µL       

 

Some reaction components were adjusted for refinement purposes. 

  

Thermal cycling programmes were set up as follows: 

 

1 x Cycle         Initial denaturation          5 min                        94°C    

30 x Cycle       Denaturation                    1 min                        94°C    

30 x Cycle       Annealing                        1 min                        58 °C  

30 x Cycle       Extension                         1 min/ kb           e.g. 72°C (Primer Tm)                                                                         

1 x Cycle         Final extension                10 min                      72°C  

1 x Cycle         Hold                                 Overnight                 8°C 

 

Some reaction components were adjusted for refinement purposes.  

 

2.6.5 Agarose gel electrophoresis 

PCR products were separated by electrophoresis in a submerged 1% (w/v) agarose gel 

prepared with 1 x TBE buffer (90 mM Tris-borate, 2 mM EDTA) (pH approx 8.0), 

0.1 µg/ml ethidium bromide.  Loading buffer (10 mM Tris-HCl, 1mM EDTA, pH 8.0, 

50% (v/v) glycerol, 0.05g/ml Bromophenol blue) was mixed with the PCR products 

and the marker ladder was loaded into an adjacent lane.  The gels were run at 10-20 

V/cm for 45 mins and the DNA was visualised with UV light (302nm). 
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Chapter 3:  Refinement and characterisation of the luminescence-based 
Pseudomonas growth assay using Arabidopsis ecotypes 

3.1 Introduction 

For centuries, plant breeders have exploited the range of natural variation in 

phenotypic traits to select properties which are advantageous to cultivation in a 

simplistic but effective strategy of breed best with best.  Modern methods of crop 

improvement aim to understand the genetic basis of the trait and causes for its 

variation across the population so that targeted, and sometimes indirect, cross-

breeding results in agronomically superior varieties (Asins, 2002).  Assessment of 

natural genetic variation between Arabidopsis accessions and Pseudomonas isolates 

has proven a successful approach in the identification of RPS2 and RPM1, members 

of the NBS-LRR class of R genes (Aarts et al., 1998).  Substantial natural genetic 

variation was also found when the RPS2 gene was sequenced in 27 Arabidopsis 

accessions, which results in protein product variants that correlate with alterations in 

resistance efficacy to Pst (Mauricio et al., 2003).  A major component affecting 

natural variation in resistance to Peronospora parasitica across the Arabidopsis 

population was traced to the RPP5 gene.  The encoded protein is a member of the 

TIR-NBS-LRR class and diversity in its structure between Arabidopsis ecotypes such 

as LRR length has been linked to alterations in host specificity for several bacteria 

(Parker et al., 1997).  Natural variation of R gene structure has been demonstrated to 

significantly affect resistance and has led to detailed mechanistic characterisation and 

understanding of R gene function, therefore, similar characterisation of natural 

variation may be successful in determining the genetic basis for basal resistance.      

 Basal resistance is often exemplified by the ability of a plant to limit the 

pathogenesis of virulent pathogens in the absence of R-avr gene interaction.  

Therefore, Pseudomonas syringae pv. tomato DC3000, that has been shown to be 

universally virulent to Arabidopsis accessions, was chosen for this study (Fan et al., 

2008).  Preliminary use of the high-throughput quantitative Lux-tagged Pseudomonas 

assay, to measure bacterial content in planta, showed a wide range (~50 fold) of 

variation in basal resistance across a selection of Arabidopsis ecotypes (Jun Fan, pers. 

comm.).  The Lux-tagged assay measures bacterial number as a direct correlate to 

photon emission, which produces an unambiguous gauge of basal resistance with 

which to test ecotypes of the population.  The assay was newly-developed and largely 
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uncharacterised, and therefore a set of experiments were designed to optimise the 

procedure, reducing replicate variation to facilitate QTL analysis.  Alterations were 

made to various aspects of the pathosystem, as described in Table 3.1, and their effect 

on bacterial growth and the experimental reproducibility among replicates was 

observed and used to refine the assay.  Lux-tagged Pst photon emission was used to 

visualise the infection progression and qualitatively characterise bacterial proliferation 

rate and extent within the tissue.  

 

 

3.2 Results 

3.2.1 Relationship between Lux emission and bacterial number 

For the newly developed Lux tagged bacteria assay to be useful as a reporter of viable 

bacteria in plant tissue, it is necessary to determine the relationship between light 

emission and bacterial number in planta.  Different lines from the Sorbo x Gy-0 RIL 

population were initially infiltrated with the same concentration of Lux-tagged Pst 

(OD600 0.02).  Data points were derived from the average of 3 counts per second 

(CPS)/disc values and 3 dilution plate count values per accession, which showed a 

range of variation in bacterial content and luciferase readings.  Regression analysis 

compared the luciferase luminescence measured in CPS with bacterial number 

measured in colony forming units (CFU) determined by the plate assay.  The results 

show a significant positive correlation (P= <0.05) between luminescence and bacterial 

number, which confirms that the Lux assay generates an accurate representation of 

pathogen content in the plant tissue.  The R
2
 value of 0.897 shows a percentage 

explanation of the data based on the line of best fit, and so almost 90% of the 

variation observed is explained by a linear equation. 
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Figure 3.1 Directly proportional relationship between bacterial count data from 

different genotypes of the Sorbo x Gy-0 RIL population and luciferase photon 

emission.  Each data point is the mean value derived from the average of 3 luciferase 

luminescence values per plant measured in counts per second (CPS) /disc values and 

3 dilution plate count values measured in colony forming units per plant (CFU) 

making 9 values per data point.     

 

 

3.3 Visualising the infection process  

The emission of light from the Lux-tagged Pst offered the opportunity to visualise the 

infection post uniform inoculation to establish if any proliferation pattern could be 

discerned.  Photon-counting cameras and standard camera images demonstrate the 

bacterial load difference and therefore, basal resistance difference between two 

selected genotypes and their respective Lux values two days post inoculation (Fig. 

3.2).  These images show a typical correlation between increased chlorotic symptoms 

and increased bacterial density, however this phenotype is not always observed in all 

genotypes and therefore cannot be relied on to indicate basal resistance level. 
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Figure 3.2 Comparative standard images and photon emission pictures taken 48 hrs 

after infiltration (OD600 0.002) (exposure time 10 mins) for two genotypes and 

associated average basal resistance trait values.  The red tabs indicate which leaves 

were infiltrated. 

 

The photon emission images (Fig. 3.3) show a comparison between Arabidopsis 

genotypes which demonstrates the genotypic effect basal resistance can have on the 

proliferation of pathogenic bacteria.  The images show similar patterns of high 

densities at the periphery of the leaves.  The images also show that proliferation of Pst 

is limited to the infiltrated area for each of the shown ecotypes with significantly 

different basal resistance levels.  The images show that even at high bacterial density, 

there is no Pseudomonas growth past the infiltrated area (Fig. 3.3, 3.4).   

 

Photon emission image 
image 

Standard camera image  

Sp-0 
~30,000 
CPS/disc 

Mrk-0 
~100,000 
CPS/disc 
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Figure 3.3 Light emissions from the infected leaf tissue over a ten minute exposure 

period 48 hrs post infiltration (OD600 0.002) (exposure time 10 mins).  Photon density 

is indicated by progressive heat map colour shading; blue= low photon density, Red= 

high photon density.     

 

A selection of single frame images from the hourly photon emission (heat map) and 

luminescence (white) images were converted into a time lapse movie as displayed 

below (Figure 3.4).  Sample images are at 24 hour intervals and show bacterial 

proliferation over the infection period which allows characterisation of proliferation.  

Typical proliferation is from leaf periphery spreading inwards to vascular tissue.  

There is no spread beyond the infiltrated area or utilisation of the vascular system to 

proliferate further than the infiltrated leaf.  Comparison between images using plants 

subject to different infection methods indicate infiltrated leaves show a slightly more 

even distribution and faster growth than sprayed leaves.  Proliferation rate may 

increase slightly during the first night cycle after infection, but after this there is no 

apparent circadian influence.  However it should be noted that the plants are kept in a 

light-proof container throughout the time-lapse image recording, which may have an 

influence because sugar cycling and production will be adversely affected. 
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Figure 3.4 Photon emission images for Nok-3, Col-0 and Ler following infiltration 

with Pst and Psm (OD600 0.002) (exposure time 10 mins).  Sample images are shown 

at 24 hr intervals with two individual plants per image.    

 

3.4 Parental RIL line testing 

Using the same assay system, the bacterial growth in 92 Arabidopsis accessions was 

investigated and the results are shown in Figure 3.5.  The efficacy of basal resistance 

is shown within the variation of this measured population, as some ecotypes have 

reduced Pst growth to very close to zero (measurable with this assay).  In contrast, 

some ecotypes show high bacterial densities within their tissue following similar Pst 

infiltration and this observed variation highlights natural differences in basal 

resistance amongst this selected population.  ANOVA analysis proved trait similarity 

within a genotype (P = >0.05) from the minimum of 12 Lux bacteria data points per 

genotype and trait distinctiveness between RIL genotypes (P= <0.05).  This trend was 

found consistently in RIL population testing (Fig. 4.2-4.6) which enhances confidence 

that the assay system can produce reproducibly similar data points from a RIL 

genotype and the assay is sensitive enough to distinguish between genotypes with 

varying basal resistance.  As part of the ANOVA analysis F-test statistics are 

generated which defines the variation ratio around the mean when compared against 
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other variation from similar data sets.  The F-test data suggests that the variance ratio 

between genotypes is significantly different (F pr. <0.05) as some genotype data sets 

show small deviation from the mean (e.g. less than 10%) and others show a large 

variation around the mean (e.g. over 60%).  For accurate QTL analysis and for 

enhanced confidence in the assay system the variation ratios for RIL genotypes should 

be similar, therefore refinement of the assay system is required prior to QTL analysis.  

Natural genetic variation of basal resistance within the collection of ecotypes 

representative of the population is capable of reducing bacterial proliferation over 50 

fold to almost no measurable bacterial growth (Fig. 3.5).  Dissecting the components 

and mechanisms contributing to the observed variation is the aim of this study and 

requires a robust and reproducible assay system which will be refined in section 3.4.1.   
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Figure 3.5 Range of basal disease resistance measured using the Lux assay produced 

a bacterial number value read in counts per second (CPS) /disc for 92 Parental RIL 

genotypes with four replicates per value (error bars indicate standard deviation). 

0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5
0
.0

6
0
.0

7
0
.0

8
0
.0

9
0
.0

1
0
0
.0

1
1
0
.0

1
2
0
.0

1
3
0
.0

1
4
0
.0

1
5
0
.0

1
6
0
.0

1
7
0
.0

C
24M
z-0Est-1G
y-0An-1N
o-0

D
ijon-GG

u-0G
a-0G
e-0Ta-0G
re-3Se-0M
s-0Bay-0Te-0St-0Ts-5Es-0Ler-0Ei-2Uk-1Bch-1Sf-2Ita-0Pa-1Ak-1W

ei-0

Enkheim
-TTsu-0

R
a-0 (R

an)Ts-1Fei-0D
b-1Blh-1Edi-0Ag-0Uk-3Van-0C
o-4R
ld-2D
a(1)Pro-0Sav-0W
t-5Est-0Jm
-0Tsu-1Ll-0Pa-3M
t-0Bla-1

R
ubezhnoeLu-1Yo-0

LerG
r-3SorboO
y-0Lz-0N
d-1C

an-0Sp-0M
h-0C
t-1Kas-1

KondaraM
h-1Stw
-0Pi-0Kn-0Alc-0Bur-0Bl-1W

s-2W
a-1Abd-0M
r-0Br-0W
s-0Ri-0C
ol-0N
ok-3Lip-0Sap-0
W

sKin-0N
ok-0
C
viM

rk-0Nok-1

G
en

o
ty

p
es 

Bacterial growth bioluminescence x 1000 (CPS/disc) 



 64

3.4.1 Technique refinement 

To establish a reproducible protocol for luminescence-based disease assay, which is 

suitable for further QTL analysis, a number of potential disease-related factors were 

investigated as summarized in Table 3.1.  In addition, when RILs were analysed, 

internal controls were included into every plant tray to normalize calculations in order 

to reduce variation caused by any external or environmental factors.  Significant 

differences were observed in the means and the variance of the Lux assay measure of 

bacterial growth when aspects of the experiments were modified, details of which are 

described in sections 3.4.2-.3.4.8.  ANOVA tests were used to test the differences 

between means exposed to different treatments (P value) and  F-test statistic (F pr.) 

were used to test if two or more population variances are equal by comparing the ratio 

of two variances away from the means, a value below 0.05 indicates significant 

variance.   

 

 
Table 3.1 The experiments used to refine the luminescence-based disease assay 

method. 

 

 

 

 

 

 

 

 

 

Refinement experiment Aspect of experiment modified to determine effect   

Time-course of  bacterial 

infection 

Infiltration of plants and assessment of change in bacterial load 

over time e.g. 6,12,18 hrs after infiltration 

Bacterial inoculum 

concentration 

Bacterial infiltration concentration differences e.g. OD600 

0.002, 0.003, 0.004   

Age of bacterial inoculum Infiltration of plants with bacteria of different ages e.g. 6,12,18 

hrs grown in KB medium 

Plant age  Age of plant when infected e.g. 20,25,30 days  

Time of day of 

inoculation 

Infiltration of plants at different times of the day e.g. early, 

mid, late 

Vacuum infiltration Infiltration using vacuum infiltration instead of hand-

infiltration 

Other environmental 

factors 

Tray position, growth room position, watering scheme etc. 
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3.4.2 Bacterial time-course of infection  

Three genotypes representing low, medium and high level of basal resistance were 

assessed over time for bacterial growth.  The data shows that for genotypes Col-0 and 

Nok3, there was a clear increase in bacterial number over time, reaching a peak 

between 42 and 54 hrs, followed by a sharp decrease as plant tissue became damaged 

and desiccated.  Gy-0 showed relatively little change over time as high basal 

resistance of this line reduced the bacterial content to relatively low levels throughout 

the screened period (Fig. 3.6).  Following this experiment, the measurements were 

taken 48hrs post inoculation. 

 

 
Figure 3.6 Time course of bacterial growth in planta in 3 genotypes.  Plants were 

inoculated with Pst at OD600 0.002 and samples of 3 leaf discs per plant from 4 

replicates were collected at 6 hr intervals to measure luminescence.  The error bars 

represent standard deviation (SD). 

 

3.4.3 Bacterial inoculum concentration  

Col-0 plants were infiltrated (3 infiltrated leaves per plant and 4 replicate plants per 

treatment) with a range of bacterial densities and luminescence of inoculated leaves 

and were measured after 48 hrs.  The results showed a relatively low Lux value for 

the highest density (OD600 0.004) of bacterial inoculum with the largest degree of 
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variation around the mean.  Observations showed that at the tested time point a 

predominant surface area of this leaf tissue was severely damaged and desiccated for 

this infiltration concentration.  The remaining three concentrations trialled showed the 

anticipated general trend of decreasing bacterial content as initial inoculum density is 

decreased.  Mean bacterial growth is lowest at OD600 0.002 and ANOVA tests show 

its mean is statistically similar (P= >0.05) to the mean of OD600 0.003.  Conversely, 

the mean of OD600 0.001 is significantly reduced (P= <0.05) in bacterial density due 

to the lower initial inoculum density compared to the OD600 0.002 and OD600 0.003 

treatments (Fig.3.7).  Variation around the mean is similar (F pr. >0.05) between 

OD600 0.001, OD600 0.002 and OD600 0.003.  Variation around OD600 0.004 is higher 

than the other 3 treatments but variation is not significantly different (F pr. >0.05).  

Proportionally the OD600 0.002 has the lowest variability so when combined with its 

high mean value at the measurement point, the inoculum concentration was 

standardised to OD600 0.002.   

 

 
Figure 3.7 Effect of altering initial Pst inoculum density around the densities 

routinely used to assess bacterial growth.  Col-0 ecotype tested 48 hrs after infiltration 

in planta from leaf discs.  Three leaves from each of 4 plants were tested for each of 

the 4 selected inoculum densities.  The error bars represent standard deviation (SD).  

ANOVA tests showed the means of OD600 0.004, 0.003 and 0.002 are statistically 

similar to each other however OD600 0.001 is significantly different (P <0.05) from 

OD600 0.002 and 0.003.    
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3.4.4 Age of bacterial inoculum 

The bacterial incubation time prior to infiltration was varied to test bacterial growth 

differences.  Col-0 plants were infiltrated with Pst (OD600 0.002) and luminescence 

was measured 48 hours later.  ANOVA tests indicate the means from each of the 

incubation periods were not statistically different from one another (P= >0.05) 

however variation around the mean is of particular importance in improving assay 

accuracy.  When comparing bacterial incubation at 12hrs and 36hrs, the variance ratio 

between these values is significantly different (F pr. <0.05) however all other time 

points show no significant difference in variance.  The earliest time point at 6 hrs 

shows the lowest bacterial proliferation 48 hrs post infection and a high but not 

significantly different degree of variability around the mean.  The lowest variability 

around the mean was between 12-18 hrs of incubation time prior to infiltration with 

increasing variation from 24-36 hrs (Fig.3.8), suggesting that 12-18 hrs is the best age 

of inoculum to use. 

 

 
Figure 3.8 Effect on bacterial growth in planta of altering the age of the Pst 

inoculum. Bacterial inocula (OD600 0.002) were prepared from plates incubated for up 

to 36 hrs prior to infiltration into Col-0 leaf tissue.  Bacterial growth was measured for 

3 leaf discs per plant on 8 replicates plants per treatment.  The error bars represent 

standard deviation (SD) no significant differences between bacterial incubation time 

means (P= >0.05).  
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3.4.5 Plant age  

Six genotypes were chosen to represent the full range of basal disease resistance and 

infiltrated with OD600 0.002 of Pst.  Starting at 20 days after seeds were sown, 4 

plants of each genotype were infiltrated at 5 day intervals.  The results show that for 

the majority of genotypes (Col-0, UK-3, Sorbo, Es-0), there was a slight increase in 

susceptibility with increasing plant age, typically around 35-45 days (Fig3.9).  This 

coincided with many individual plants beginning to bolt however, two genotypes 

showed very little change around this period (Nok3 and Gy-0).  This may suggest the 

potential for genotype dependent reallocation of resources at flowering time which 

may affect basal resistance.  A study on the Vertifolia effect, a term describing the 

loss of agronomically costly partial resistance in a cultivar after several generations of 

selective breeding.  During which, a major gene confers resistance to the dominant 

pathovar of the pathogen, has also shown a trade off between vegetative / 

reproductive growth and susceptibility of plants to pathogens (Van der Plank, 1963; 

J.Rant, pers. comm.).  For each of the ecotypes both the means and associated 

variation were the most consistent compared with the variation observed across the 

time course at 30 days, this was selected as the measurement time point.             

 
Figure 3.9 Impact of plant age on Pst growth. Six Arabidopsis genotypes inoculated 

with Pst at 5 day intervals. Three leaf discs in 4 replicate plants were scored for 

bacterial growth 48 hrs post infiltration (OD600 0.002).  The error bars represent 

standard deviation (SD).  
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3.4.6 Time of day influence on bacterial growth 

Bacteria were inoculated into Col-0 plants at different times of day to assess its 

impact on bacterial growth.  Plants were infiltrated at 3 time points representing the 

start, middle and end of the light period and 3 leaf discs from each of 12 plants were 

assessed 48 hrs post inoculation.  ANOVA test results show no significant difference 

(P= >0.05) between the means for each of these treatments.  Variance ratio was 

statistically similar (F pr. >0.05) at its lowest level during the 1 pm time period, but 

not by a substantial difference (Fig. 3.10).  From these results, it appears that there 

was no significant effect of time of day of inoculation on basal resistance.  However, 

infiltration time was standardised into the same time period (10am-2pm) in case 

effects were subtle or varied in different ecotypes. 

 

 

Figure 3.10 Effect on bacterial growth of inoculating Col-0 plants at different times 

during the light period.  The light period was 09.00-18.00.  Measurements were made 

48 hrs after inoculation (OD600 0.002).  Twelve replicate plants were tested, taking 3 

leaf discs per plant.  The error bars represent standard deviation (SD).  ANOVA tests 

showed no significant difference between Lux bacteria means of the different time 

periods (P= >0.05). 
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3.4.7 Infiltration method 

There are several widely reported methods for introducing a bacterial pathogen into 

plant tissue however, to assess basal resistance in Arabidopsis, a uniform inoculation 

across an area of leaf tissue was required.  A screen was conducted of 8 plants with 3 

leaf discs taken per plant after exposure to an OD600 0.002 via 4 commonly used 

infection methods to determine which would be more effective.  ANOVA test results 

show that vacuum infiltration is significantly (P= <0.05) less effective than dipping, 

spraying and pressure infiltration.  Dipping is significantly (P= <0.05) less effective at 

the tested time point (48 hrs post inoculation) when it is not accompanied by a 

surfactant to lower water tension.  At the tested time point, there is no significant 

difference (P= >0.05) in bacterial growth between plants infected using dip with 

surfactant, spraying and pressure infiltration.  Variation around the mean as defined 

by the SD bars indicates that spraying and pressure infiltration shows decrease in 

variance ratio when compared to bacterial dipping and spray but this is not 

statistically significant (F pr. >0.05).  Pressure infiltration over all shows the highest 

degree of reproducibility compared to the other methods and therefore will be used 

throughout the trials of basal resistance effect on Arabidopsis.          

 

 
Figure 3.11 Effect of altering Pst infiltration method to compare dip, spray, vacuum 

and pressure infiltration to infect Col-0 plants.  8 plants per treatment were infected 

with an OD600 0.002 and three leaf discs per plant were assessed in the luminometer 

48 hrs post inoculation.  The error bars represent standard deviation (SD).  
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3.4.8 Environmental factors   

To discount the possibility of position within the growth room having an effect on 

basal resistance due to, for example, differences in light intensity or temperature, a 

screen basal resistance values were measured for plants in different locations (Fig. 

3.12).  Three leaf discs were taken from 8 plants per treatment and infiltrated with an 

OD600 0.002: subsequent measurements were taken 48 hrs post inoculation.  The 

ANOVA test results showed no significant (P= >0.05) differences in basal resistance 

response between trays grown in different areas of the growth room.  The results 

show no discernable alteration to the variation around the mean (F pr. >0.05) for 

different positions within the growth room which allows for further large scale trials 

to occupy all areas of the growth room without influence on basal resistance.     

 

 
 

Figure 3.12 Effect on Pst growth after altering relative shelf positions for Col-0 trays 

positioned in the growth room.  8 plants were infiltrated with an OD600 0.002 and 

measurements were taken for 3 leaf discs per plant 48 hrs post inoculation.  The error 

bars represent standard deviation (SD).  ANOVA test results showed no significant 

difference between Lux bacteria number and growth room condition (P= >0.05).  
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The effect of a watering regime on basal resistance was assessed on a sample of 8 

plants per treatment, where 3 leaf discs were taken per plant.  A fixed volume of water 

(300ml) was supplied to each tray at different frequencies e.g. 2 days, 3 days etc.  The 

effect of this was that trays supplied with the water on a daily basis had damp soil 

throughout their growth whereas trays provided with water only every five days had 

soil which was dry to the touch.  The ANOVA test results showed that there was no 

significant difference (P= >0.05) between the watering treatments.  Variation ratio 

around the mean was statistically similar (F pr. >0.05) for each of the treatments, 

however, variation did increase for those treatments at either end of the watering 

treatment range.  Daily watering of a tray and the 5 day gap between watering 

treatment showed a higher variance ratio from around the mean (e.g. ~18% 5 day, 

~13% 2 day) than treatments such as at 2 days where soil was moderately moist.  

These results indicate that watering regime should be standardised at 2 days to reduce 

variability (Fig. 3.13). 

 

 

 
Figure 3.13 Effect on Pst growth of altering watering pattern for the Col-0 plants.  

Alterations increase sequentially the drought stress by increasing the time between 

watering the trays with a fixed water volume of 300ml.  Plants infected with an OD600 

0.002 and measurements taken 48 hrs post inoculation.  The error bars represent 

standard deviation (SD).  ANOVA test results showed no significant difference in the 

means for watering treatments (P= >0.05). 
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3.5 Discussion 

3.5.1 Natural variation in basal resistance of an Arabidopsis population 

The results of Fig. 3.5 show a substantial range of natural variation of basal resistance 

across the Arabidopsis population, which was statistically distinct between ecotypes 

(P= <0.05).  This assay shows that basal resistance alters the extent of Pst growth by 

more than 50-fold from practically zero bacteria to well over 100 CPS/disc, which 

equates to high bacterial densities within plant tissue.  Pst was selected to be a 

universally virulent so basal mechanisms and action were highlighted and R gene 

action was not a contributing factor influencing resistance (Fan et al., 2008).  A 

similar assay suggested that this variation in basal resistance affecting bacterial 

growth was in excess of 100-fold (Fan et al., 2008).  The range of bacterial growth is 

continuous with no sharp steps in bacteria growth between genotypes which suggest 

that differences in basal resistance for closely scoring lines may be subtle genetic 

differences influencing, possibly influencing transcription rate or relative defence 

compound concentration.  Mechanistic basal resistance differences between lines 

scoring widely apart (50-fold) may be more heavily influenced by substantial genetic 

sequence differences which impact on subsequent defence compound induction.  The 

mechanisms and components underlying this range of variation which are capable of 

reducing bacterial growth to very close to zero are not clearly understood and are the 

objective for this project.   

 

3.5.2 Refinement of technique  

This study represents the first attempt at using the newly developed Lux assay on a 

wide array of genotypes and to generate trait data for detailed QTL analysis.  

Preliminary trials were conducted using the original protocols which were based on 

dilution plating procedures (Katagiri et al., 2002).  A significantly high degree of 

variability (F pr. <0.05) was observed using these protocols to measure variation 

between RIL genotypes which would have greatly decreased the accuracy of any 

subsequent QTL analysis.  Therefore, a series of refinement experiments were 

conducted to characterise the interaction and reduce variation.    

 Comparison between Lux values and bacterial number determined through 

plate assay showed a directly proportional relationship with an R
2
 value of 0.897 
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(Fig.3.1).  A significant positive correlation (P= <0.05) between Lux data and 

bacterial number confirms that Lux values accurately represent viable pathogen 

content within infiltrated leaf tissue.  The fundamental principle of the assay is 

therefore sound, however, reproducibility must be increased for accurate QTL 

analysis (Fan et al., 2008).  It should be noted red-spectrum photons are released from 

plant tissue as a result of the de-excitation of electrons within plant chlorophyll 

returning to ground state (Baker, 2008).  A background reading was taken from 

uninfected tissue for each genotype and consistently found to be <500 RLUs.  More 

sensitive photon monitors have used this florescence as a probe to study 

photosynthesis rates (Baker, 2008).  In this study the contrast between bacterial 

luminosity shows background chlorophyll florescence to be an insignificant 

proportion (typically <1% of total Lux reading) of the majority of readings therefore 

can be discounted.  

 A time-course study of bacterial growth compared three genotypes over a 78-

hour period (Fig. 3.6).  All plants were infiltrated at the beginning of the experiment 

and selections of 4 plants per genotype were assessed for bacterial number at 6 hour 

intervals.  This trial characterised the proliferation profile for each of the tested 

genotypes to show at what point after infiltration the bacterial population reached its 

maximum density and at which point variation was at its minimum.  The trial 

demonstrated that in Nok3 and Col-0 the bacterial number peaked between 42 and 54 

hrs after infiltration.  Gy-0 showed only minimal differences between time points over 

the majority of the time-course as this line was selected to represent a high basal 

resistance variety.  Peak bacterial density for Col-0 and Nok3 between 42 and 54 hrs 

showed a relatively stable period of trait variation therefore a time of 48 hrs post 

inoculation was selected as optimal time for trait scoring using the Lux assay.  This 

conclusion was supported by the visualisation of infection time-course images as 

described by Fig. 3.4.   

 A variety of other experiments examined the variation produced when altering 

infiltration concentration (Fig.3.7), bacterial culture age (Fig.3.8), plant age (Fig.3.9) 

and time of day of infiltration (Fig.3.10).  All of these experiments show some degree 

of variation of the means produced by altering the parameters, the majority of the trait 

results are not significantly different from each other, as only one aspect of the 

protocol has been modified.  This was the predicted outcome from these experiments 

because these alterations aimed to characterise the interaction to determine which 
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factors were most influential.  Modifications were made in and around the ranges of 

previously successful studies, as described in a variety of related literature, and 

therefore means were typically not drastically modified by the alterations.  

Examination of the variance ratios and standard deviation values was most relevant 

for these experiments because the aim of refinement was the reduction of variability 

and an increase in reproducibility between Lux values within and between plants and 

trays.  For example, high bacterial concentration of OD600 0.004 produced a 

significantly higher variance ratio than the other infiltrated concentrations (F pr. 

<0.05).  In other instances such as the number of days between watering the variance 

ratios were not significantly different however there was still a trend which suggested 

that trays watered every 2 days produced a lower variance around the mean than 5 

days (~13% variance from the mean ~26% respectively).  The protocol was 

subsequently revised with the majority of variables showing the least variability and 

most defined Lux values being selected.  

In addition, bacterial growth was measured using different methods of 

inoculation e.g. spray and vacuum infiltration to assess the Lux means and variation 

around those means to select the most reproducible infection procedure for the assay.  

The comparison shows vacuum infiltration to produce Lux means significantly lower 

(P= <0.05) than both dip with surfactant, spray and pressure infiltration which were 

all statistically similar (P= >0.05).  The variance ratios are similar (F pr. >0.05) 

between dip with surfactant, spray and pressure infiltration however pressure 

infiltration shows the highest mean and lowest variance ratio (~7%).  Spray 

infiltration also has the complicating factor of genotypic variation in number of 

stomata, stomatal aperture, cuticle composition etc. which may affect bacterial 

colonisation of plant apoplast.  Spray infection method treatment with flg22 was 

shown to produce a different expression pattern of defence-related genes compared 

with pressure infiltration of the same extract (Zipfel et al., 2004).  Therefore pressure 

infiltration was selected to ensure a uniform infiltration of a consistent OD600 0.002 

throughout the plant leaf for the assay system.     

The factors most influential to the improvement of reproducibility included the 

reduction of the age of bacterial culture used to infiltrate (Fig.3.7), ensuring virulent 

bacteria had not been limited in growth through exhaustion of resources.  OD600 0.001 

produced significantly lower (P= <0.05) bacterial Lux measurement than OD600 0.002 

and OD600 0.003.  OD600 0.002 and OD600 0.003 treatments produced similar means 
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(P= >0.05) and variance ratios (F Pr. >0.05) however OD600 0.002 showed the 

smallest deviation from the mean.  Standardising the infiltration concentration at 

OD600 0.002 produces a steady rise in bacterial concentration within the leaf without 

rapid desiccation of tissue, as observed in the OD600 0.004 infiltration, which showed 

a significantly higher variance ratio (F pr. <0.05) compared with OD600 0.002.  

Bacterial proliferation rates and profiles were monitored for a selection of ecotypes 

(Fig. 3.6) and substantial variation in the mean Lux scores was observed.  However, 

proliferation peaks for Col-0, Nok-3 and Gy-0 were significantly different from one 

another (P= <0.05) at 42 hrs to 54 hrs post inoculation yet within a genotype the 

means remained relatively stable for this time period, so measurements were taken at 

48 hrs.  This time may not be optimum for every genotype screened, but 

standardisation of measurement recording into this relatively consistent growth period 

should ensure a pragmatic compromise so the majority of genotypes are at the same 

disease stage at leaf disc collection.      

 In addition to protocol refinements, a review of the controls highlighted the 

advantages of the introduction of 4 Col-0 and 4 Ler controls spread throughout every 

p24 tray for more reliable QTL analysis.  RIL plants and controls were randomised 

with the condition of at least one control on every column and row of a p24 tray 

which allows for a direct comparison with the controls for every RIL line.  By 

comparing with internal controls, tray to tray variation and plant to plant variation was 

reduced by a minimum of approximately 50%.  Protocol refinements aided reduction 

in the standard deviation around the mean so variance between genotypes is now of a 

similar ratio (F pr. >0.05).  This continued to prove that the refined assay showed 

similarity within a genotype (P= >0.05) and accurately differentiated between RIL 

lines (P= <0.05).  With accurate trait data combined with marker and genotype 

information, QTL analysis can be used to accurately define the chromosomal location 

influencing the trait. 

 

3.5.3 Visualisation of infection 

Following refinement of the Lux assay scoring technique, using sampled leaf discs 

from infiltrated tissue, a characterisation using qualitative observations of the 

proliferation pattern was conducted using the NightOwl photon emission camera.  



 77

After initial infiltration, a set of time-lapse photo images were generated that typically 

showed bacterial growth from leaf periphery spreading inwards to vascular tissue.  

There is little published data on proliferation patterns and there is no evidence of 

significantly different rates of resistance at the periphery or near the vasculature due 

to nutrient content or water content (Zwieniecki et al., 2003).  This study proposes the 

hypothesis that this proliferation pattern is a result of gradually smaller intercellular 

space towards the leaf periphery.  In a uniform inoculation of bacterial density over 

the leaf surface there will be a higher ratio of bacterial cells to plant cells at the leaf 

periphery.  Therefore at the periphery, overall plant defence compound concentrations 

should be lower, as is the case with defensive alkaloids in Tobacco decreasing 

towards the leaf tip (Burton et al., 1992).  The proliferation pattern is mirrored by the 

visual desiccation and chlorosis observed in other Pseudomonas interactions (Katagiri 

et al., 2002).  Proliferation was limited to the infiltrated area, with no additional tissue 

spread or colonisation of the vasculature.  Arabidopsis is not typically a host for Pst 

and therefore natural infection probably occurs on an opportunistic basis through 

wound sites.  When introduced through infiltration, the pathogen is compatible 

enough to reproduce within initially infected areas, but not sufficiently adapted to 

overcome internal proliferation barriers (Katagiri et al., 2002).      

 Infection methods such as spray and pressure infiltration were compared, the 

result of which indicated that infiltrated leaves show slightly more even distribution 

and faster growth than sprayed leaves.  This pattern was also observed in the 

comparison of infiltration techniques using the leaf disc Lux assay and is probably a 

result of the additional stomatal barrier that must be overcome.  The sprayed bacteria 

are very reliant on the added surfactant to reduce surface tension around infection 

sites and are more sensitive to humidity variations than infiltrated leaves (Katagiri et 

al., 2002).      

 During the first night cycle after infection there appeared to be a slight 

increase in proliferation rate based on observation of the image sets, but after this 

there was no apparent circadian influence.  However it should be noted that the plants 

used to take these measurements were kept in a light proof container for the duration 

of the 120 hrs over which the images were taken.  Consequently it is likely that 

circadian rhythm, photosynthesis and respiration that are involved in sugar production 

would all have been adversely affected during this extended dark period.  This may in 

turn influence bacterial proliferation rates and patterns compared with a plant in 
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typical 9/16 hrs daylight conditions.  Refinement experiments taking readings at 

different points of the day did note some modest differences in the means at different 

point of the day, however these were not shown to be significantly different from one 

another.  It may be worth repeating the experiment with several night time scoring 

points to assess any circadian influence.  The images suggest that any difference 

would be subtle therefore this would need to be continued comprehensively in a 

further study focused on linking disease and metabolic pathway responses.   

 It was observed from the image sets generated that infiltrated leaves failed to 

search for a light source as other leaves did during this time, which could be evidence 

of a reduction / inhibition of phototropism.  It is not clear from the images whether the 

age of the infected leaves caused the lack of phototrophic movement (as fully 

expanded leaves may stop tracking light sources) or whether a pathogenic inhibitory 

agent could be responsible.  Further time-lapse studies could more effectively 

elucidate this possibility. 

 The use of photon emission cameras to characterise Lux tagged bacteria 

proliferation is a novel method which has not been previously used (as far as is 

currently documented).  However, the results are only qualitative.  A non-destructive 

quantitative assay could in future be created through the automated collection of 

software measurements of photon density within a given area (similar software 

already exists for automated cell counting from dilution plates, e.g. Invitrogen’s 

Countless program).  If images and readings could accurately track trait scores over 

the infection process to determine rate of change, then multiple QTL analysis could be 

conducted for the same RIL lines at different time periods.  This could potentially 

determine if genes involved at the start of infection are same as those at later time 

points by monitoring any shifts in the QTL peaks between time intervals.   
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Chapter 4:  QTL analysis of basal resistance with Arabidopsis recombinant 

inbred lines  

4.1 Introduction 

 

Quantitative trait analysis links a continuously-varying phenotypic trait with areas on 

a chromosome responsible for influencing that trait (Kearsey and Pooni, 1996).  

Quantitative trait loci (QTL) are chromosomal regions containing genes that 

contribute to a quantitative trait (Liu, 1998).  Such quantitative traits may be encoded 

by several genes that are either involved in the same biochemical pathway or genes 

that may work in conjunction to produce an additive effect when all the responsible 

genes are expressed.  To perform QTL analysis, a population of inbred lines which 

contain alleles that differentially affect trait expression is required, in addition to a set 

of genetic markers that characterise parental contribution to the inbred lines (Young, 

1996; Koornneef et al., 1998).  Quantitatively-measured trait data that varies 

continuously across the inbred population is another prerequisite for QTL analysis 

(Kearsey and Pooni, 1996). 

 An early successful application of QTL analysis came in Arabidopsis crosses 

(Landsberg x H51), used to dissect the underlying genetic components controlling 

flowering time, and identified 5 influential loci (Clarke et al., 1995).  A QTL loci was 

coincident with FRI, a major late flowering gene, which in many early flowering 

accessions suffers loss of function.  Another peak implicated the RLN5 gene which 

was subsequently associated with affecting flowering time in short day length 

conditions (Clarke et al., 1995).  From these initial associations, a family of RLN(1-5) 

genes was identified to be underlying the QTL loci, which conveyed significant 

influence over flowering time.  It was subsequently shown that combinations of these 

early and late flowering alleles accounted for much of the wide variation range 

observed in the F2 segregating population (Clarke et al., 1995).  

 Following the identification of a QTL, characterisation of the genetic basis is 

achieved by assessing a set of individual candidate genes within the implicated region 

for their possible involvement (Weigel and Nordborg, 2005).  Individual genes 

typically have a small phenotypic effect because of the complexity of interactions 

within the overall system.  This makes it difficult to find definitive evidence for the 

identification of a QTL without supportive data (Asins, 2002).  A number of 
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techniques have previously produced supportive evidence such as DNA 

polymorphisms that result in phenotypic effects and transgenic complementation.  

The knockout of a gene produces an effect on the trait due to its absence or significant 

differences in protein product functionality may also affect the trait (Weigel and 

Nordborg, 2005).  Also, an allele implicated by QTL analysis may be re-introduced 

into a deficient plant line.  This is realised through selective cross-breeding which 

screens the resulting progeny for restored function and so demonstrates a mechanistic 

link between the candidate gene and the trait (Weigel and Nordborg, 2005).    

 QTL analysis will aid in defining the number and location of the major 

components that contribute to basal resistance.  From a survey of bacterial growth 

among 92 ecotypes previously used to generate the RILs, a subset of 5 RIL 

populations (comprised of at least 94 lines each) was selected to be further tested to 

produce quantitative trait data to act as a component in QTL analysis.  Lux-tagged Pst 

assays of RIL lines consistently show a large (>50-fold) continuous range of variation 

of basal disease resistance that extends above and below the parental means across 

populations.  QTL analysis produces a statistical indication of chromosomal location 

that underlies a trait.  A reasonable range of error must be accounted for when 

selecting genetic markers to encompass a QTL peak, so potential candidate genes are 

not unnecessarily discounted.  By cross referencing the genes within the QTL regions 

against these disease-related-gene lists, the candidate genes can be refined.  The 

remaining candidate genes can be categorised based on their annotation information 

and compared with their alignment to QTL locations to determine if any correlation 

can be observed.  From this analysis, a reduced and manageable set of candidate 

genes can be more closely examined and tested for their potential involvement in 

basal resistance and PAMP recognition.  
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4.2 Results  

4.2.1 Selection of RIL lines 

The graph below (Fig. 4.1) shows the same Arabidopsis genotype variation as 

described in Figure 3.5 with the addition of labels that illustrate the relative locations 

of the parents of the RIL populations chosen for subsequent QTL analysis.  RILs were 

chosen that would be expected to occupy different ranges of variation primarily 

between the two parental values. 

 

 

Figure 4.1 Selection of RIL populations for QTL analysis.  Pst growth in 92 

Arabidopsis accessions was determined previously and the parental accessions of RIL 

population were chosen as indicated to cover different ranges of variation of basal 

resistance.  The error bars represent standard deviation (SD). 

 

4.3.2 Basal resistance variation in recombinant inbred lines 

The five sets of RILs derived from different parental crosses were specifically 

selected as they contained high marker density and had been extensively and 

accurately genotyped.  Bacterial growth was tested to examine the range of variation 

over RIL populations for Sorbo x Gy-0, Nok-3 x Ga0, Cvi-0 x Ag-0, Col-0 x Ler and 

Wt-5 x Ct-1 (Fig. 4.2-4.6).  RIL lines were selected to cover different ranges of basal 

resistance within the total population variation based on the preliminary ecotype 

screen and parental basal resistance values (Fig. 4.1).  The subsequent segregating 
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RIL populations would primarily vary within those parental basal resistance 

boundaries.  QTL analysis could help indicate whether variation at the highest 

susceptibility could be linked to the mechanisms resulting in variation at the lowest 

susceptibility by comparing analyses.   

 A consistent trend across the RIL populations shows a continuous range of 

variation which extends above and below the parental means.  The ranges of the 

bacterial growth data across RIL genotypes do vary between RIL populations.  RIL 

populations such as Nok-3 x Ga0 have a substantially larger range of bacterial growth 

than the RIL genotypes of the Col-0 x Ler population.  Following assay refinement 

the genotypic variation of bacteria growth data around the mean for Sorbo x Gy-0 

remains relatively low (F pr. >0.05) and variance ratio remains statistically similar for 

the other surveyed genotypes (Fig. 4.2-4.6).  Basal resistance effect on bacterial 

growth is genetically distinct as statistical analyses have shown significant 

consistency within a genotype (P= >0.05) and distinctiveness between genotypes (P= 

<0.05).    

4.3.3 Trait data from Sorbo x Gy-0 RIL population  
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Figure 4.2 Bacterial growth trials for Pst infected leaf tissue showing basal resistance 

trait variation across the Sorbo x Gy-0 RIL population.  An OD600 of 0.002 was 

pressure infiltrated into 3 leaves per plants with at least 4 replicate plants per RIL.  

Bacterial growth was measured 48 hrs post inoculation.  The error bars represent 

standard deviation (SD).  
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4.3.4 Trait data from Nok3 x Ga0 RIL population  
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Figure 4.3 Bacterial growth trials for Pst infected leaf tissue showing basal resistance 

trait variation across the Nok3 x Ga0 RIL population.  An OD600 of 0.002 was 

pressure infiltrated into 3 leaves per plants with at least 4 replicate plants per RIL.  

Bacterial growth was measured 48 hrs post inoculation.  The error bars represent 

standard deviation (SD).  
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4.3.5 Trait data from Cvi0 x Ag0 RIL population  
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Figure 4.4 Bacterial growth trials for Pst infected leaf tissue showing basal resistance 

trait variation across the Cvi0 x Ag0 RIL population.  An OD600 of 0.002 was pressure 

infiltrated into 3 leaves per plants with at least 4 replicate plants per RIL.  Bacterial 

growth was measured 48 hrs post inoculation.  The error bars represent standard 

deviation (SD).  
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4.3.6 Trait data from Col-0 x Ler RIL population  
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Figure 4.5 Bacterial growth trials for Pst infected leaf tissue showing basal resistance 

trait variation across the Col-0 x Ler RIL population.  An OD600 of 0.002 was pressure 

infiltrated into 3 leaves per plants with at least 4 replicate plants per RIL.  Bacterial 

growth was measured 48 hrs post inoculation.  The error bars represent standard 

deviation (SD).  
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4.3.7 Trait data from Wt-5 x Ct-1 RIL population  
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Figure 4.6 Bacterial growth trials for Pst infected leaf tissue showing basal resistance 

trait variation across the Wt-5 x Ct-1 RIL population.  An OD600 of 0.002 was 

pressure infiltrated into 3 leaves per plants with at least 4 replicate plants per RIL.  

Bacterial growth was measured 48 hrs post inoculation.  The error bars represent 

standard deviation (SD).  
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4.4 QTL analysis 

Independent QTL MQM graphs and analyses for each of the 5 RIL populations: 

Sorbo x Gy-0, Nok-3 x Ga0, Cvi-0 x Ag-0, Col-0 x Ler and Wt-5 x Ct-1 that were 

infiltrated with Pst are shown (Fig.4.7-4.11).  Below, each graph has a table to 

compare LOD values with significant thresholds for the different chromosomes which 

may have multiple significant peaks for each chromosome.  The table also shows the 

percentage of the variance explained by a peak in addition to additive effect scores.  A 

positive additive effect indicates that the allele increasing disease was derived from 

the most susceptible parental line and a negative effect would show that the allele 

increasing disease was derived from the more resistant parent.  Other analyses such as 

interval mapping and Kruskal-Wallis were conducted for each of these RIL 

populations.  All analyses showed similar results and indicated the presence of QTLs 

in the locations described therefore the graphs below display the MQM mapping 

format, as this is the most rigorous and accurate analysis.  A summary of relevant 

Kruskal-Wallis analysis is described below in the Table (4.1) to illustrate the 

correlation between analysis methods.   

 

RIL line Chromo- 

some 

Position 

(cM) 

Marker K* Signif. 

Sorbo x Gy0 1 66.00 *nga128 7.675 ** 

Sorbo x Gy0 3 13.00 *msd212 2.744 ** 

Sorbo x Gy0 5 44.00 *jc5136 11.409 ***** 

Nok3 x Ga0 1 13.00 *f16j7 4.817 ** 

Nok3 x Ga0 2 45.00 *nga112 4.963 ** 

Nok3 x Ga0 3 36.00 *k11j15 3.128 ** 

Nok3 x Ga0 4 6.00 *t19j18 22.481 ***** 

Cvi0 x Ag0 3 1.200 *nga162 3.133 ** 

Col-0 x Ler 3 4.12 *SGCSNP379 5.959 ** 

Col-0 x Ler 5 122.69 *agp11e 5.164 ** 

Wt5 x Ct1 2 53.00 *t32f646516 19.025 ***** 

Wt5 x Ct1 5 8.00 *nga150 3.463 ** 

Table 4.1 First analysis stage: summary of the of Kruskal-Wallis analysis data for 

significant QTL peaks.  Significance value < *0.1 **0.05 ***0.01 ****0.005 

*****0.001. 
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The ‘MapQTL’ software interpretation of the gradient towards the locus of greatest 

trait influence is a set of line graphs covering the length of each chromosome 

examined.  The line measures the probability of a locus on influencing the trait, 

shown as a logarithm of odds (LOD) score.  An ideal QTL peak has a high LOD score 

over a tightly-defined chromosomal area. 

 

4.4.1 Sorbo x Gy-0 

 
 

 

Figure 4.7 QTL linkage group analysis associated with RIL population from Sorbo x 

Gy-0 cross.  MQM analysis using ‘MapQTL’ software displays peaks at chromosomal 

locations where trait variance is explained.  Significant peaks on groups 1, 3 and 5 

highlighted by arrowheads. 

 

Chromosome LOD 

score 

LOD 95% 

sig. 

threshold 

% variance 

explained 

Sig.QTL Additive 

effect 

Group 1 2.31 2.2 31.7 Yes + 220.0 

Group 2 1.39 2.3 7.8 No N/A 

Group 3 3.73 2.3 15.6 Yes + 33.2 

Group 4 1.25 2.2 9.8 No N/A 

Group 5 5.71 2.2 32.3 Yes + 32.6 

 

Table 4.2 Summary of MQM analysis showing Logarithm of odds (LOD) scores and 

confidence interval with % explanation of variance by QTL location.  A positive 

additive effect indicates that the allele increasing disease was derived from Sorbo and 

a negative effect would show that the allele increasing disease was derived from Gy-

0.  Significant QTLs above 95% statistical confidence level.  Significant peaks on 

groups 1, 3 and 5. 
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4.4.2 Nok3 x Ga0 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 QTL linkage group analysis associated with RIL population from Nok3 x 

Ga0 cross.  MQM analysis using ‘MapQTL’ software displays peaks at chromosomal 

locations where trait variance is explained.  Significant peaks on groups 1, 2, 3 and 4 

highlighted by arrowheads. 

 

Chromosome LOD 

score 

LOD 95% 

sig. 

threshold 

% variance 

explained 
Sig. QTL 

Additive 

effect 

Group 1 3.51 1.9 6.6 Yes -21.0 

Group 2 3.52 1.7 6.6 Yes +51.2 

Group 3 3.64 1.6 12.4 Yes +24.4 

Group 4 5.94 1.7 14.6 Yes +27.1 

Group 5 0.89 1.7 4.6 No N/A 

 

Table 4.3 Summary of MQM analysis showing LOD scores and confidence interval 

with % explanation of variance by QTL location.  A positive additive effect indicates 

that the allele increasing disease was derived from Nok-3 and a negative effect shows 

that the allele increasing disease was derived from Ga0.  Significant QTLs above 95% 

statistical confidence level.  Significant peaks on groups 1, 2, 3 and 4. 
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4.4.3 Cvi0 x Ag0 

 

 

 

 

 

 

 

 
 

Figure 4.9 QTL linkage group analysis associated with RIL population from Cvi0 x 

Ag0 cross.  MQM analysis using ‘MapQTL’ software displays peaks at chromosomal 

locations where trait variance is explained.  Significant peak on group 3 highlighted 

by arrowhead. 

 

Chromosome LOD 

score 

LOD 95% 

sig. 

threshold 

% variance 

explained 

Sig.QTL Additive 

effect 

Group 1 3.17 4.5 14.0 No N/A 

Group 2 0.69 1.6 2.9 No N/A 

Group 3 4.23 1.7 19.9 Yes +26.3 

Group 4 0.71 1.7 2.9 No N/A 

Group 5 0.99 2.0 3.9 No N/A 

 

Table 4.4 Summary of MQM analysis showing LOD scores and confidence interval 

with % explanation of variance by QTL location.  A positive additive effect indicates 

that the allele increasing disease was derived from Cvi-0 and a negative effect would 

show that the allele increasing disease was derived from Ag0.  Significant QTLs 

above 95% statistical confidence level.  Significant peak on group 3.  
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4.4.4 Wt-5 x Ct-1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 QTL linkage group analysis associated with RIL population from Wt-5 x 

Ct-1 cross.  MQM analysis using ‘MapQTL’ software displays peaks at chromosomal 

locations where trait variance is explained.  Significant peak on groups 2 and 5 

highlighted by arrowheads. 

 

Chromosome LOD 

score 

LOD 95% 

sig. 

threshold 

% variance 

explained 

Sig.QTL Additve 

effect 

Group 1 1.36 1.8 3.9 No N/A 

Group 2 4.43 1.7 16.7 Yes +42.9 

Group 3 0.51 1.6 1.6 No N/A 

Group 4 0.37 1.6 1.0 No N/A 

Group 5 5.74 1.7 1.1 Yes +136.0 

 

Table 4.5 Wt-5 x Ct-1 Summary of MQM analysis showing LOD scores and 

confidence interval with % explanation of variance by QTL location.  A positive 

additive effect indicates that the allele increasing disease was derived from Ct-1 and a 

negative effect would show that the allele increasing disease was derived from Wt-5.  

Significant QTLs above 95% statistical confidence level.   
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4.4.5 Col-0 x Ler 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.11 QTL linkage group analysis associated with RIL population from Col-0 x 

Ler cross.  MQM analysis using ‘MapQTL’ software displays peaks at chromosomal 

locations where trait variance is explained.  Significant peak on groups 3 and 5 

highlighted by arrowheads. 

 

 

Chromosome LOD 

score 

LOD 95% 

sig. 

threshold 

% variance 

explained 

Sig.QTL Additive 

effect 

Group 1 1.17 2.3 1.8 No N/A 

Group 2 1.25 2.1 2.7 No N/A 

Group 3 7.61 2.1 43.6 Yes +242.2 

Group 4 1.07 2.1 2.0 No N/A 

Group 5 6.73 2.2 16.8 Yes +27.2 

 

Table 4.6 Col-0 x Ler Summary of MQM analysis showing LOD scores and 

confidence interval with % explanation of variance by QTL location.  A positive 

additive effect indicates that the allele increasing disease was derived from Col-0 and 

a negative effect would show that the allele increasing disease was derived from Ler.  

Significant QTLs above 95% statistical confidence level.   
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4.4.6 Compiled QTL graphs  

The QTL graphs have been compiled to show similarities across the independent 

populations and analyses. 

 

 
 

 

Figure 4.12 QTL linkage group analysis associated with all 5 RIL populations.  MQM 

analysis using ‘MapQTL’ software displays peaks at chromosomal location where 

trait variance is explained.  QTL graphs have been compiled to show similarities 

across the independent populations.  Red arrows represent statistically significant 

peaks (P= <0.05). 

 

4.5 Selected components define QTL regions  

QTL analysis is reliant on marker density, genotypic information and quality /quantity 

of trait data and is used to generate statistical peak heights above an area of the 

chromosome which is likely to contribute to the control of the trait.  The generated 

peak is a statistical likelihood of gene location and not an actual location as it lacks 

the resolution to isolate a specific gene.  QTLs and the candidate genes within those 

areas can be narrowed further by a number of approaches such as the introduction of 
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more markers and genotype information into the region of interest.  The recent 

improvements in marker density for some RIL populations, in addition to a full 

sequenced genome for Col-0, allows a different approach which has the potential to 

narrow candidates down at a faster rate.   

 All of the genes within the marked QTL regions were included in the initial 

candidate gene lists.  To reduce the possibility of discarding candidate genes, markers 

with known physical positions were selected to cover the full width of the peak.  The 

initial candidate gene lists are unfeasibly large to investigate and therefore must be 

refined.  Initially, refinement was based on annotation information of reported gene 

function, protein structure or involvement in disease interaction.  A list, based on gene 

annotation information, of all genes reportedly involved in disease resistance or 

perception was compiled.  The list includes genes obtained from the hierarchical 

organisation and categorisation of reported gene function from the microarray, 

‘MapMan’ (section 2.4.1).  From this software, 421 genes reported to be involved in 

biotic stress or respiratory burst were obtained.  Combined with this list, was a list of 

genes reportedly involved in PAMP recognition from transcriptional analysis when 

exposed to bacterial flagellin peptide flg22 (Zipfel et al., 2004).  An additional 269 

genes were added to the disease resistance gene list from this transcriptional analysis, 

including families of genes such as the LRR-RLKs (Leucine Rich Repeat-Receptor-

Like Kinase) that act as PRRs (Pathogen Recognition Receptors).   

 Using a multiple interrogation query in Microsoft Access, it was possible to 

cross-reference this disease-related gene list with QTL derived candidate gene lists.  

Genes not reportedly involved in biotic stress/ respiratory burst or flg22 stimulated 

PAMP recognition were eliminated to generate lists with more manageable numbers 

of genes.  For example, Table 4.7 shows the Sorbo x Gy-0 cross has a QTL on 

chromosome 1 spanning 2227 genes, however after the refinement this is reduced by 

over 95% to 64 gene candidates that had already been linked to disease resistance, and 

also located within markers flanking the QTL region detected using the Lux bacteria 

growth data. 

 At multiple locations on chromosomes 2 and 3, significant QTL peaks 

generated from independent analyses have been identified which overlap in their 

chromosomal area between 5 independent populations.  Cross referencing these areas 

further refined the candidate genes within these marker regions (Fig. 4.12).   
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RIL 

populat

ion 

Chro

moso

me 

QTL 

region 

(bp) 

Closest gene 

spanning 

QTL region 

Markers 

spanning 

QTL region 

No. 

genes 

within 

region 

No. genes 

after 

refinement 

Sorbo x 

Gy-0 

1 15926702-

23696200 

AT1G42470-

AT1G63840 

F14052-t7p18 2227 64 

Sorbo x 

Gy-0 

3 7573001-

9796400 

AT3G21490-

AT3G26650 

Mil23i-athgap 643 7 

Sorbo x 

Gy-0 

5 7800000-

15022000 

AT5G23180-

AT5G37790 

Jconnc-aths01 1650 11 

Nok-3 

x Ga0 

1 8642-

3224500 

AT1G01020-

AT1G09910 

Nga590-F16j7 1134 9 

Nok-3 

x Ga0 

2 9934438-

16298918 

AT2G23340-

AT2G39030 

Pls888-

nga168 

1986 52 

Nok-3 

x Ga0 

3 4608284-

9697400 

AT3G13960-

AT3G26483 

Nga162-

athgap1 

1573 18 

Nok-3 

x Ga0 

4 89505-

5628809 

AT4G00220-

AT4G08830 

Jv30131-

nga888 

1354 20 

Cvi-0 x 

Ag-0 

3 4608284-

7672400 

AT3G13960-

AT3G21760 

Nga163-

msd2129380 

994 12 

Wt-5 x 

Ct-1 

2 8228713-

19548527 

AT2G18969-

AT2G47680 

Pls1-

t32f646516 

3830 109 

Wt-5 x 

Ct-1 

5 55123-

1572240 

AT5G01160-

AT5G05310 

Mhf15ind52-

nga151 

1111 8 

Col-0 x 

Ler 

3 46403-

333029 

AT1G01080-

AT1G01960 

SGCSNP105-

SGCSNP379 

130 1 

Col-0 x 

Ler 

5 24911698-

25566425 

AT5G62000-

AT5G63890 

SGCSNP269-

SGCSNP29 

232 3 

Table 4.7 For each of the RIL populations the table describes the base pair locations of 

significant QTL peaks, the closest gene to the beginning and end of that region as well 

as the markers defining the region.  The total number of candidate genes within the 

region is listed in addition to the number of refined candidate genes. 

 

4.6 Categorisation of refined candidate genes within the QTL regions  

Refined lists of candidate genes found within QTL regions highlighted by all of the 

different RIL populations were categorised based on annotation information available 

on TAIR databases (section 2.5.1).  Genes were categorised to establish if any single 

group, family or subcategory of genes or genetic characteristics were prevalent.  

Groups of candidate genes were assessed separately and as a collective as in Fig. 4.13, 

which contains genes from all of the QTL areas highlighted in independent 

populations.  Groups of genes with similar characteristics were assessed for the 

frequency in which they occurred within the QTLs.  For the genes which occurred 
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frequently, a chi squared statistical test determined if they were occurring at 

significantly higher rates than their background distribution as described in section 

4.11.  Of the several gene families that occurred frequently within the QTL regions, 

only the Lysine motif receptor-like kinase gene family was shown to occur at high 

frequencies in the QTL regions across populations and at significantly high rates 

compared to background distribution (Table 4.8).  The LysM family proteins, 

predicted to be involved in protein phosphorylation, are located on the plasma 

membrane and are significantly up-regulated in the presence of a refined protein 

extract, containing predominantly the flg22 flagellin peptide.  These are properties 

typical in currently known basal resistance gene products (e.g. FLS2, EFR) however, 

further evidence is required to implicate direct involvement in a basal resistance 

pathway. 

 

 
Figure 4.13 Categorisation of refined candidate genes found within QTL regions based 

on annotation property information across all the RIL populations. 
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4.7 Correlation between QTL peaks and LysM gene location 

Members of the LysM gene family are suggested to be involved in the basal resistance 

trait from the cross-comparison between QTL peaks and LysM gene location.  Figure 

4.14 below shows that 9 out of 12 QTL peaks have one or more LysM genes 

associated with them. 

 

 
 

 

Figure 4.14 Comparison between the QTL peaks and LysM gene locations for 5 

independent RIL populations.  Red arrows represent statistically significant peaks.  

Other arrows below the X-axis represent LysM genes with differing colours to 

categorise their properties.  

 

cM distance 
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Figure 4.15 A simplified comparison between the QTL peaks and LysM gene 

locations for 5 independent RIL populations.  Of the 9 out of 12 significant QTLs 

have LysM genes in close proximity to them.  Red arrows represent statistically 

significant peaks.  Other arrows represent LysM genes with differing colours to 

categorise their properties.  

 

4.8 LysM genes distribution statistics 

Statistical analysis was used to determine whether the concentration of a particular 

gene type/ family is significantly over-represented in the QTL intervals.  Chi squared 

matrices compile information including the total gene number, number of genes in the 

group type of interest, total number of genes found within the QTL regions and 

number of genes of interest within the QTL regions (Table 4.8).  From this 

information and using Chi squared matrices constructed in the R-2.6 statistical 

programming language, it is possible to compare the effective hit ratios against the 

background distribution and prove that the gene of interest is occurring at a 

significantly higher frequency within the QTL region.  The results show that for Col-0 

x Ler, LysM genes occur at statistically higher rates in the identified QTL regions 

compared to the background distribution.  The same is true for the majority of the 

QTL regions associated with the Nok-3 x Ga0 RIL population.  The remaining QTL 

regions do not show significantly higher LysM gene occurrence within QTL regions 

cM distance 
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compared to background, however, it should be noted that these QTL peaks were less 

tightly defined to a centimorgan region.  

 

Populat

ion 

Chromo

-some 

Chi 

Matix 

LysM 

Chi 

Matri

x gene 

No. 

Sig. Populat

ion 

Chromo

-some 

Chi 

Matix 

LysM 

Chi 

Matrix 

gene 

No. 

Sig. 

Sorbo x 

Gy-0 

Total 3 4520 0.18 Cvi-0 x 

Ag-0 

Total 1 994 0.42 

Sorbo x 

Gy-0 

Total 12 20978 0.18 Cvi-0 x 

Ag-0 

Total 14 24504 0.42 

Sorbo x 

Gy-0 

1 1 2227 0.25 Cvi-0 x 

Ag-0 

3 1 994 0.24 

Sorbo x 

Gy-0 

1 3 4621 0.25 Cvi-0 x 

Ag-0 

3 3 4226 0.24 

Sorbo x 

Gy-0 

3 1 643 0.56 Col-0 x 

Ler 

Total 2 362 0.01*** 

Sorbo x 

Gy-0 

3 3 4577 0.56 Col-0 x 

Ler 

Total 13 25136 0.01*** 

Sorbo x 

Gy-0 

5 1 1650 0.16 Col-0 x 

Ler 

3 1 130 0.02*** 

Sorbo x 

Gy-0 

5 2 4224 0.16 Col-0 x 

Ler 

3 3 5090 0.02*** 

Nok-3 x 

Ga0 

Total 4 6047 0.06* Col-0 x 

Ler 

5 1 232 0.03*** 

Nok-3 x 

Ga0 

Total 11 19451 0.06* Col-0 x 

Ler 

5 2 5642 0.03*** 

Nok-3 x 

Ga0 

1 1 1134 0.10* Wt-5 x 

Ct-1 

Total 3 3830 0.42 

Nok-3 x 

Ga0 

1 2 4913 0.10* Wt-5 x 

Ct-1 

Total 12 21668 0.42 

Nok-3 x 

Ga0 

2 1 1986 0.42 Wt-5 x 

Ct-1 

2 3 3830 0.31 

Nok-3 x 

Ga0 

2 2 4061 0.42 Wt-5 x 

Ct-1 

2 0 207 0.31 

Nok-3 x 

Ga0 

3 1 1573 0.18      

Nok-3 x 

Ga0 

3 2 3647 0.18      

Nok-3 x 

Ga0 

4 1 1354 0.07*      

Nok-3 x 

Ga0 

4 2 4693 0.07*      

Table 4.8 Information used in the Chi-squared matrices to assess LysM gene 

distribution.  Figures marked with an asterisk have a significant difference of <0.05 

indicating LysM distribution occurring at a significantly higher frequency within QTL 

region compared to the background. Significance threshold value – *0.1 **0.05 

***0.01 ****0.005 *****0.001. 
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4.9 Properties of the LysM gene family 

Cross comparison of candidate gene lists from QTL peaks implicated a LysM gene 

family member, which occurs frequently in QTL highlighted regions across 

populations (Fig.4.15).  FLS2 is a known PAMP receptor which is associated with the 

detection of bacterial flg22 and has very similar properties to LysM.  Property 

similarities include membrane associated Serine/ Threonine and Tyrosine protein 

kinase domains for the phosphorylation of the target protein substrate.  These 

properties are conserved across the LysM gene family, with the notable property 

difference between LysM gene products and FLS2 being the absence of LRR 

domains.  Therefore, LysM share many attributes of known PAMP receptors and 

appear mechanistically capable of acting as PAMP receptors with domains that 

interact with chitin and peptidoglycan (Zhang et al., 2007; Buist et al., 2008; 

Gimenez-Ibanez et al., 2009).  Apart from a small number of specific examples, the 

mechanisms of action for PAMP receptors in basal resistance are not known.  The 

product of the LysM RLK gene CERK1 has been shown to bind with fungal chitin 

and instigate a basal defensive signal cascade, however, there is also evidence that 

CERK1 may also bind to peptidoglycan, which is a critical component in bacterial 

cell walls (Zhang et al., 2007; Buist et al., 2008; Gimenez-Ibanez et al., 2009).  

Property similarities are only an indication of possible mechanistic overlap however, 

direct proof of LysM genes involvement in bacterial perception for basal resistance is 

needed.  

 

4.10 Reanalysis of QTLs following Psm infiltration 

The QTLs and/ or the LysM genes implicated to be involved in basal resistance have 

been derived from a specific interaction between Pst and Arabidopsis.  Retesting 2 

RIL populations with Pseudomonas syringae pv. maculicola (Psm) will determine 

whether the same QTLs determine basal resistance to different Pseudomonas 

pathovars.  The growth conditions, experimental design, scoring etc. were all kept the 

same as those used in the Arabidopsis / Pst trials, with the exceptions that the 

bacterial growth was measured 6 hours earlier than in Pst trials to compensate for the 

increased tissue damage of Psm ES4326 strain over Pst DC3000 at the typically 

measured time point (48hrs) (Davis et al., 1991).  Figures 4.16 and 4.17 show Psm 
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QTL graphs and the relative positions of LysM genes for comparison with Pst QTL 

graphs.  In this QTL analysis, only the trait source data is different (Pst and Psm).  

The genotype information and marker density are the same therefore QTL resolutions 

are comparable. 

 

4.11.1 Col-0 x Ler Psm 

a) Col-0 x Ler Psm 

 

b) Col-0 x Ler Pst 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.16 MQM analysis using ‘MapQTL’ software displays peaks at chromosomal 

location where trait variance is explained. (a) QTL linkage group analysis associated 

with RIL population from Col-0 x Ler infiltrated with OD600 0.002 Psm.  (b) 

Equivalent data for  Col-0 x Ler infiltrated with OD600 0.002 Pst.  For both (a) and (b) 

red arrows represent statistically significant peaks and black arrow show reported 

LysM gene locations (P <0.05).  
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Chromosome LOD score LOD 95% 

sig. 

threshold 

% variance 

explained 

Sig. QTL Additive 

effect 

Group 1 4.11 2.3 15.1 Yes +54.3 

Group 2 3.75 2.2 15.4 Yes +35.1 

Group 3 5.89 2.2 25.9 Yes +53.8 

Group 3 4.1 2.2 15.0 Yes +50.7 

Group 4 2.06 2.1 9.7 X N/A 

Group 5 2.86 2.2 13.2 Yes -12.6 

 

Table 4.9 Col-0 x Ler Summary of MQM analysis of Col-0 x Ler showing LOD 

scores and confidence interval with % explanation of variance by QTL location.  A 

positive additive effect indicates that the allele increasing disease was derived from 

Col-0 and a negative effect would show that the allele increasing disease was derived 

from Ler.  Significant QTLs above 95% statistical confidence level were detected on 

groups 1, 2, 3 and 5.  
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4.11.2 Nok-3 x Ga-0 Psm 

a) Nok-3 x Ga-0 Psm 

 
b) Nok-3 x Ga-0 Pst 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 QTL linkage group analysis associated with RIL population from Nok-3 

x Ga-0 infiltrated with OD600 0.002  Psm.  MQM analysis using ‘MapQTL’ software 

displays peaks at chromosomal locations where trait variance is explained.  

Significant peaks on groups 1, 2, 3 and 4.  Red arrows represent statistically 

significant peaks and black arrows show reported LysM gene locations.  Graph (b) 

reproduces the equivalent data for Nok-3 x Ga-0 infiltrated with OD600 0.002 Pst (Fig. 

4.8) for direct comparison.     
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Chromosome Location 

(cM) 

LOD 

score 

Lod 95% 

sig. 

threshold 

% 

variance 

explained 

Sig. QTL Additive 

Effect 

1 15 4.82 2.7 9.4 Yes -34.5 

1 27 3.38 2.7 12.1 Yes +101.6 

1 90 3.39 2.7 6.9 Yes -29.8 

2 64 6.26 1.8 13.6 Yes -25.8 

2 55 2.37 1.8 5.4 Yes +37.8 

2 18 2.04 1.8 3.9 Yes -58.2 

3 30 6.08 1.8 15.3 Yes +73.4 

3 51 3.62 1.8 8.7 Yes +51.5 

3 61 3.31 1.8 8.4 Yes +48.4 

4 1 6.84 1.8 15.7 Yes +46.8 

4 73 5.04 1.8 10.5 Yes +48.6 

5 83 1.46 1.7 3.3 No N/A 

 

Table 4.10 Nok-3 x Ga-0 Summary of MQM analysis showing LOD scores and 

confidence interval with % explanation of variance by QTL location.  A positive 

additive effect indicates that the allele increasing disease was derived from Nok-3 and 

a negative effect shows that the allele increasing disease was derived from Ga0.    

Significant QTLs above 95% statistical confidence level detected on groups 1, 2, 3 

and 4.  

 

4.12 AvrPtoB 

The AvrPtoB is a type III effector protein expressed by the wild-type Pst DC3000 

bacterial strain which exhibits E3 Ub ligase activity (Abramovitch et al., 2006b; 

Janjusevic et al., 2006).  This bacterial effector enhances pathogenicity as it acts to 

ubiquitinate the Ser/Thr kinase receptor domain of host R-gene-encoded Pto proteins 

and, by the same mechanism, suppresses the kinase function of FLS2 in Col-0 

Arabidopsis by proteasomal degradation (Abramovitch et al., 2003; Craig et al., 

2009).  Based on their annotated sequence information, six of the LysM genes contain 

a Ser/Thr receptor-like kinase domain similar to that found in the known PAMP 

receptor FLS2 (see section 4.8).  Preliminary data using tomato orthologues show that 

AvrPtoB secreted by Pst may suppress PAMP triggered immunity and that CERK1 is 

the possible host target.  The AvrPtoB effector appears to have broad ranging Ser/Thr 

kinase domain suppressive function (Lin and Martin, 2005).  The experiment 

described below aimed to assess the extent of any potential AvrPtoB suppression 

effect shown in R-genes and FLS2 PAMP receptors for a variety of RIL ecotypes and 

to determine if a correlation could be shown between QTLs, LysM gene location and 
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possible suppression of kinase function, resulting in a difference in bacterial 

proliferation.  Infiltration of wild-type Pst already containing AvrPtoB or the deletion 

mutant Pst ∆AvrPtoB into a selection of ecotypes was measured using a dilution 

plating assay as the mutant strain has not been Lux tagged (Lin and Martin, 2005).  

The results (Fig.4.18) show a non-significant trend for slightly increased bacterial 

growth for the majority of genotypes when infiltrated with wild-type Pst DC3000, 

compared with the deletion mutant of Pst ∆AvrPtoB.  With the exception of Nok-3 T-

test which shows a significantly higher (P= <0.05) bacterial count in the Pst 

containing AvrPtoB compared to the deletion mutant, the other ecotypes are not 

significantly different.  Some genotypes, such as Ct-1, display very little difference 

between infiltration strains and others show, such as Ga-0, the reverse to the general 

trend significantly (P= <0.05).  F-Tests compared Pst to the AvrPtoB mutant within a 

ecotype and showed no significant differences in the variance for any of the ecotypes 

(F pr >0.05).  The results do not show a clear pattern between QTLs, LysM gene 

location and suppression of kinase function however, the observations suggest 

AvrPtoB may have a role in suppression of basal resistance for some genotypes, but 

that conflicting influence factors may also be involved.  

 
 

Figure 4.18 Comparison of growth of wild-type Pst DC3000 (containing AvrPtoB) and 

the Pst deletion mutant of AvrPtoB (Pst-∆AvrPtoB) in 9 parental RIL genotypes 

measured using dilution plating and colony counting.  The error bars represent 

standard deviation (SD). 
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4.13 Discussion 

4.13.1 QTL Analysis  

Five distinct RIL populations were chosen from the parental line trial which differed 

in their basal resistance.  Bacterial growth of Pst was measured in 94 RILs derived 

from original crosses of: Sorbo x Gy-0, Nok-3 x Ga0, Cvi-0 x Ag-0, Col-0 x Ler and 

Wt-5 x Ct-1 (Fig.4.2-4.6).  Lux trait data trials showed statistically significant 

differences between RILs and no significant variation between replicate plants of a 

RIL line.  Replicate trays were compared and showed no significant differences 

between them, as anticipated for the newly refined assay procedures.  The trait data 

from these independent RIL lines all follow a very similar pattern with a continuous 

range of variation suggesting a multigenic control over basal resistance.  The variation 

range within a RIL population extended in excess of 50-fold for lines such as Col-0 x 

Ler and to over 200-fold for the Nok-3 x Ga0 line, with the other populations falling 

amid these points.  These ranges are primarily due to the differential efficacy of basal 

mechanism to control Pst proliferation as there is no R gene action (Fan et al., 2008).  

Reductions in the standard deviation around the mean for Lux trait data from 

improvements to the procedure increased confidence that the assay could accurately 

differentiate between RIL lines.  Therefore, QTL analysis could more accurately 

define the chromosomal location influencing the trait. 

QTL analysis aims to define the number and location of the component 

differences in basal mechanisms between RIL lines and ecotypes which act to alter 

the trait.  Significant peaks indicate areas on the chromosome which contain gene(s) 

which alter the trait and 12 were found at multiple locations from across the RIL 

populations.  Nok-3 x Ga0 population showed the largest range of trait scores and had 

the highest number of significant peaks, 4 on 4 different chromosomes.  This is in 

contrast with Col-0 x Ler which had only 2 QTL peaks on 2 chromosomes and the 

lowest variation in trait.  Other RIL populations’ trait variation and numbers of 

significant QTLs fell roughly between these extremes.  The trend then suggests that 

an increase in the number of significant QTLs correlates with an increase in the range 

of a RIL populations’ trait variation. 

 Individually, the graphs indicate the chromosomal regions associated with 

basal resistance.  The Sorbo x Gy-0 RIL population revealed significant QTLs at loci 
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around 60cM, 20cM and 40cM on chromosomes 1, 3 and 5 respectively, which 

explain around 80% of the variation.  Subsequent analysis on the Ga-0 x Nok-3 RILs 

revealed significant QTL peaks on chromosomes 1, 2, 3 and 4.  A significant QTL 

was located on chromosome 3 in the Cvi-0 x Ag-0 RILs and two tightly defined QTL 

peaks were found on chromosomes 3 and 5 in the Col-0 x Ler RILs.  In addition, 

significant QTL peaks were found on chromosomes 2 and 5 for the Wt-5 x Ct-1 RIL 

population.  The additive effect shows, as expected, that the variation at the QTL 

locations is mainly derived from the most susceptible parental line for each of the RIL 

populations.  Compilation of the graphs from independent RIL populations showed 

significant QTL peaks overlapping in similar genetic locations which implicate these 

chromosomal regions in the underlying control of basal resistance.  There are three 

overlapping QTL regions between Sorbo x Ga-0 and Nok-3 x Ga0, Cvi-0 x Ag-0 and 

Col-0 x Ler, Nok-3 x Ga0 and Wt-5 x Ct-1 as shown in Figure 4.15.  This suggests 

that genes contained within the QTL regions are likely to be conserved across the 

Arabidopsis population.  QTL analysis normally does not have the resolution to 

isolate specific genes however, it is a useful early stage of analysis that can be used to 

generate an initial candidate gene list based on the chromosomal areas implicated.  

 

4.13.2 Candidate gene refinement 

In studies using a similar QTL approach for a single highly significant QTL, it has 

been common to introduce further markers and genotypic information into this region 

to improve QTL resolution and refine candidate gene numbers (Clarke et al., 1995).  

Typically, this approach can narrow down the identified chromosomal area however, 

it is time intensive and can usually only reduce candidates to, at best, approximately 

50 genes before maximum QTL resolution is reached (Clarke et al., 1995).  There has 

recently been a dramatic increase in the available marker and genotype information 

available for the Col-0 x Ler lines as both have now been fully sequenced.  As a 

result, marker density in these lines is high (~1300 across the genome) and 

corresponding QTL resolution is approaching its peak and so additionally added 

markers would only produce modest refinement of candidate genes.  The other RIL 

lines have lower marker densities however the constraints of this project made the 

time-intensive introduction of more markers into the regions an inefficient use of time 
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with only marginal gains expected in QTL resolution.  A more direct approach was 

taken of selecting markers either side of each of the significant QTL peaks and listing 

the genes contained within those areas as initial potential candidates.  Using 

annotation information and classifications based on the physiological or pathway 

association from the ‘MapMan’ software, the initial candidate gene lists were refined 

and reduced by approximately 95%.  For example, the 2227 genes within the markers 

of Sorbo x Ga-0 chromosome 1 QTL were reduced to 64 candidates and the 643 

genes in the QTL on chromosome 3 for the same cross were reduced to 7 candidates 

(Table 4.7).  The initial lists were too large to be effectively screened therefore 

candidate genes were refined however the risk of discarding genes unnecessarily 

needed to be minimised.  Candidate genes that had no published association to plant 

disease or biotic stress were discarded and the remaining candidates were categorised 

based on properties (Fig.4.13).  This would establish if any particular gene family or 

characteristic is prevalent within QTL regions based on annotation information (e.g. 

Lectin-RLKs, Protease inhibitors or Nucleotide Binding Site).  As long as at least one 

member of a family has been implicated then it was considered a potential candidate.  

It should be acknowledged there remains a small risk of discarding genes 

unnecessarily which have no previously identified link to plant disease and other gene 

groups with similar ontologies that do not occur in significant high rates in the 

identified QTL regions.  However, the combination of these two refinements 

minimises this small remaining possibility.    

 A cross-comparison of refined candidate lists from each of the independent 

populations found multiple regions implicating similar genes in more than one 

population.  From this approach, two LysM genes found within the region implicated 

by QTL analysis were initially noted as prominent candidates.  Members of the LysM 

gene family were mapped relative to the locations of the QTLs and a striking 

correlation was observed.  Nine out of 12 QTLs line up directly with LysM genes and 

9 out of 15 LysM genes fall within QTL regions.  This correlation was sufficiently 

compelling to form the hypothesis that the LysM gene family had an active role in 

basal resistance functional pathways.  To test this correlation, multiple chi squared 

matrices were constructed to compare the effective hit ratios in the QTL regions with 

the chromosomal background distribution.  Other genes / families were tested such as 

Serine protease inhibitors, CC-NBS-LRRs and TIR-NBS-LRRs but only LysM genes 

showed some significant results.  Two LysM genes implicated in separate regions of 
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the Col-0 x Ler population showed >95% statistically significant differences (Table 

4.8).  LysM genes associated with the Nok-3 x Ga0 cross as a total shows a P-value of 

0.1 association with QTL peaks, which approaches the standard 95% significance 

threshold.  This evidence suggests that the LysM gene family does have a significant 

association with QTLs implicating areas controlling basal defence and therefore could 

be active components.  The marker density in the Col-0 x Ler population is 

substantially higher than other populations therefore, the markers could refine the 

peaks to a narrower chromosomal area so background variation was reduced.  If the 

other populations had such high marker densities, it is likely that they would also 

show significant results as many were already approaching significance (Table 4.8).  

During marker selection either side of the QTL peaks, a strategy of wide marker 

positioning to avoid discarding potentially important genes works against the 

statistical tests because it includes more background into the QTL region.  Despite the 

limited success rate for the statistics, there remains sufficient evidence for the LysM 

gene family involvement to warrant further examination.    

 

4.13.3 Specificity of the basal resistance conferred by the QTLs  

The initial survey of RIL populations derived from independent genotypes was 

conducted using Pst however, this may limit findings if similar trends cannot be 

observed in other bacterial strains and species.  Retesting 2 RIL populations with Psm 

aimed to determine whether the QTLs, and potentially the gene function, are 

conserved across bacterial species as part of a broader perception of pathogens or 

whether the QTLs are race specific.  Figures 4.16 and 4.17 show the relative positions 

of LysM genes for comparison between Pst and Psm QTL graphs.  In the Nok-3 x Ga-

0 RIL populations both Pst and Psm infiltration and subsequent QTL analysis both 

show significant peaks at ~10cM on chrom1, ~60cM on chrom2, ~30cM on chrom3 

and ~5cM on chrom4.  The peak profiles between Pst and Psm are very similar 

however the Psm infiltrated QTL analysis shows additional areas of significance at 

around 90cM on chrom1, ~20cM on chrom2, ~60cM on chrom3 and ~70cM on 

chrom4 where the Pst peaks only approach significance at those locations.  The 

increased virulence of Psm ES4326 strain over Pst DC3000 at the typically measured 

time point (48hrs) creates a greater contrast between susceptible and resistant RIL line 
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bacterial measurements.  This aids the QTL analysis software to distinguish additional 

areas of significance in the Psm infiltrated compared to Pst (Davis et al., 1991).  

Comparison of Nok-3 x Ga-0 RIL populations QTL graphs show substantial 

similarity between the QTL peak profiles.  This suggests the same chromosomal 

regions are involved in basal perception of both Pseudomonas bacterial pathogens and 

a broadly similar basal target/ receptor interaction between Pst and Psm.  In contrast, 

cross-comparison between Pst and Psm infiltrated lines for the Col-0 x Ler 

populations shows a different pattern where there is very little similarity between the 

two sets of QTL peak profiles.  This result may imply different perception 

mechanisms conferring resistance to Pst and Psm.  However, there is still a close 

association with LysM genes for both of the Pst and Psm interactions which still 

implicates LysM genes as being involved in perception of a broad bacterial pathogen 

range.  The PAMP signal from Pst and Psm is likely to be the same as molecular 

components and are typically highly conserved within a class of microbes, therefore, 

the current hypothesis implies that LysM gene receptor combinations confer 

recognition specificity, however further experimentation would be needed to test this 

hypothesis (Nicaise et al., 2009).  

 

4.13.4 Role of LysM gene family in basal disease resistance 

Comparison of LysM genes with known PAMP receptors such as FLS2, shown to be 

involved in the perception of bacterial flg22, was conducted (Navarro et al., 2004; 

Zipfel et al., 2004).  Annotation information described several similar properties 

between LysM genes and the known PAMP receptors for example, they share 

predicted serine/ threonine kinase domains and are predicted to act as transmembrane 

receptors.  Major functional differences between LysM genes and the known PAMP 

receptor FLS2 included the absence of Leucine rich repeat domains.  LRR domains 

are typically important in offering a structural link between binding sites so that 

binding sites are orientated correctly to bind with their substrate and thus it can be 

critical to gene function (Kobe and Kajava, 2001).   

 LysM genes found in Arabidopsis share strong homology to the NFR1 gene 

which acts as a receptor involved in rhizobial Nod factor perception in Lotus 

japonicus.  It has been shown that a combination of NFR-type genes can confer 
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specificity to perceive Rhizobium and initiate legume nodulation formation (Radutoiu 

et al., 2003).  Strong homology between the genes (LysM family and NFR1 and 

NFR5) introduces the possibility of similarity between mechanisms in Nod factor and 

basal perception pathways.  These properties are consistent with the hypothesis of 

LysM involvement in known mechanisms of PAMP and so are worth pursuing. 

 Recently the LysM RLK gene CERK1 has been implicated to be involved in 

the perception of chitin, a major component of the fungal cell wall (Kaku et al., 2006).  

Mutations in this gene render the host plant completely susceptible to fungal infection 

and are necessary for the basal signalling and defence activation via the WRKY and 

MAPK mediated pathway (Miya et al., 2007).  A homologues CERK1 gene found in 

rice, CEBiP, is also involved in binding to chitin and knockdown transformants show 

increase susceptibility and decrease defence activation when exposed to fungal 

pathogens (Kaku et al., 2006).  The QTL analysis implicating LysM genes when 

exposed to bacterial pathogens suggests that LysM genes may not be specific to fungal 

compound recognition (Gimenez-Ibanez et al., 2009).  This hypothesis is supported 

by evidence showing that LysM domains are able to bind to peptidoglycan, which is a 

primary component of bacterial cell walls (Buist et al., 2008).     

 

4.13.5 Effect of AvrPtoB on bacterial growth  

AvrPtoB is a highly conserved bacterial effector which has been previously 

implicated in plant defence through inhibition of programmed cell death by 

suppression of intermediates such as Pto and Cf9 (Abramovitch et al., 2003).  

Preliminary research using the tomato LysM orthologue of the CERK1 gene, 

implicated AvrPtoB as a potential inhibitor which increased bacterial virulence by 

suppression of basal defence.  This hypothesis was expanded and shown to be 

applicable to Arabidopsis by demonstrating that AvrPtoB targets the CERK1 LysM 

receptor kinase to increase host susceptibility (Abramovitch et al., 2006a; Gimenez-

Ibanez et al., 2009).  However, the specificity of a CERK1-AvrPtoB interaction is 

complicated by the observation that the PAMP receptor FLS2 is also directed for 

degradation by AvrPtoB (Goehre et al., 2008).  AvrPtoB associates with FLS2 and 

contributes to virulence, probably through degradation by the attachment of ubiquitin 
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molecules to the Ser/Thr kinase domain of FLS2, which may suggest broad ranging 

suppression of receptor-like kinase components (Goehre et al., 2008). 

 The experiment aimed to determine any effect AvrPtoB contained within the 

Pst DC3000 wild-type has on bacterial growth compared an AvrPtoB deletion mutant.  

AvrPtoB reportedly targets CERK1 via suppression of kinase function, so if this 

interaction is specific, then it is possible that a correlation could be observed between 

genotypes with QTLs implicating CERK1 region and bacterial growth alteration 

(Zipfel and Rathjen, 2008).  A specific kinase suppression hypothesis would suggest 

that RIL lines with significant QTLs involving the CERK1 gene would show a 

significant difference when comparing bacterial growth of Pst with or without 

AvrPtoB.  Consequently, little difference in bacterial growth would be observed in 

other genotypes which implicated different LysM genes.  Bacterial growth data for 

multiple genotypes previously used to generate QTLs, which implicate the CERK1 

region, were tested (in addition to those which do not) to establish any correlation 

linking CERK1 QTLs and suppression pattern.   

 The plate assays showed a trend towards increased bacterial growth when 

AvrPtoB was present for 7 out of 9 genotypes (typical increase of ~5-20%).  For the 

majority of ecotypes, this was not a significant difference (P= >0.05), however Nok-3 

did show significantly higher bacterial growth in the Pst line with AvrPtoB.  For some 

ecotypes, AvrPtoB may be a factor involved in the suppression of basal defence as the 

only difference between the AvrPtoB mutant and the wild-type Pst was a deletion of 

2,007-bp sequence, encompassing most of AvrPtoB and a small region downstream 

(Lin and Martin, 2005).  The bacterial growth assays showed no clear correlations 

between QTLs and AvrPtoB suppression pattern, and this may suggest any AvrPtoB 

suppression is not limited to CERK1 and may have suppressive kinase function which 

affects multiple LysM genes.  Previously reported AvrPtoB suppression of FLS2 and 

the R-gene Pto would support this hypothesis and suggest broad kinase suppression, 

which would explain the increased susceptibility trend for the majority of genotypes 

tested (Lin and Martin, 2005).  However this trend is not universally applicable as 2 

lines (Ga-0 and Ler) showed the reverse trend and some lines only showed mild 

differences which suggests confounding factors.  AvrPtoB is delivered into 

Arabidopsis genotypes through type III secretion, however this system is open to 

genotypic interference as different plant lines have variation in susceptibility to type 

III secretary mechanisms, consequently influencing the results (Collmer et al., 2000; 
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Fouts et al., 2003).  AvrPtoB in the wild-type Pst does significantly affect basal 

resistance in comparison with the deletion mutant in the Nok-3 ecotype, however 

other ecotypes showed a ~5-20% which was a not statistically significant increase in 

susceptibility.  Comparison between wild-type DC3000 and the AvrPtoB deletion 

mutant were published for the Col-0 and Ws-4 ecotypes and showed small increases 

in virulence for the DC3000 with a weak significance(P= <0.01) for Col-0 but a 

stronger ecotype increase difference using Ws-4 (P= <0.05) (Abramovitch et al., 

2006a; Gimenez-Ibanez et al., 2009).  Consistently significant differences of P= <0.05 

required the double mutant deletion of AvrPto and AvrPtoB (Janjusevic et al., 2006; 

Craig et al., 2009).  This is probably due to broad kinase suppression and therefore it 

is likely that at some point in the basal resistance pathway, a kinase gene is involved.  

Whether kinase suppression targets one or multiple LysM genes and whether they are 

even involved directly in basal resistance requires further evidence.     
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Chapter 5:  LysM gene family characterisation 

5.1 Introduction 

The distribution of the LysM gene family in relation to the identified QTLs in the RIL 

populations suggested members of this family play a role in basal resistance.  A 

working hypothesis was formulated from advances in the literature, combined with 

experimental evidence to predict a possible mode of action or role for members of the 

LysM gene family within basal disease resistance.  Transcriptional, sequence, 

phylogenetic and knockout experiments were utilised, aiming to test this hypothesis.  

 The LysM gene family consists of 15 membrane-bound genes with similar 

properties which are spread evenly over the 5 Arabidopsis chromosomes, however, a 

smaller subset of 6 genes are predicted to have RLK function (Fig. 5.2).  The LysM 

domain consists of a βααβ secondary structure with two α-helices flanked by two-

stranded anti-parallel β-sheets (Buist et al., 2008).  In the LysM gene family, only the 

CERK1 (with RLK function) has currently been implicated in pathogen defence 

through its role in fungal chitin oligosaccharides perception (Wan et al., 2008).  This 

induces a cascade which results in enhanced expression levels, compared to wild type, 

of WRKY transcription factors and MAPKs signalling that are established 

components of R gene / basal response (Zhang et al., 2007; Wan et al., 2008).  

Mutants of the CERK1, gene possessing a dominant mis-sense mutation in the LysM 

domain, show fully compromised non-host resistance to fungal infection, therefore, 

strongly associating CERK1 with fungal perception and defence (Lipka et al., 2007).  

Further evidence of LysM association with fungal perception is shown in an   

orthologue to CERK1, the chitin elicitor-binding protein (CEBiP) from rice.  RNAi 

silencing of this plasma membrane bound glycoprotein with LysM motifs shows 

reduces chitin binding and increased susceptibility (Miya et al., 2007; Zipfel, 2009).   

 In contrast to fungal perception association, preliminary data shows that 

AvrPtoB kinase inhibitor secreted by Pseudomonas bacteria may suppress PAMP 

triggered immunity in tomato orthologues and that host CERK1 is a possible target 

for defence suppression (Miya et al., 2007; Gimenez-Ibanez et al., 2009).  CERK1 

displays similar expression patterns during exposure to both chitin and peptidoglycan.  

Combined with the evidence that the LysM domain may actively bind to 

peptidoglycan, a major component of bacterial cell walls, this suggests a broader 
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perception mechanism (Buist et al., 2008).  A LysM receptor based mechanism may 

target a conserved structural component found in both fungal and bacterial cell walls 

such as a monosaccaride or a small polysaccharide chain (Buist et al., 2008).  

 NFR1 and NFR5 from Lotus japonicus both contain LysM-type serine/ 

threonine receptors and work in conjunction to detect extracellular lipo-chito-

oligosaccharides bacterial Nod factor signals in the roots (Fig.5.1) (Madsen et al., 

2003). Knockout mutants of NFR1 and NFR5 are both  required for successful signal 

transduction which indicates a likely receptor complex or alternatively, a close 

association where the two independent signal-transduction pathways converge after 

Nod factor perception (Lohmann et al., 2010).  Transfer of the L. japonicus NFR1 and 

NFR5 into Medicago truncatula extended host range to include modified strains of 

Mesorhizobium loti and Rhizobium leguminosarum which specifically target L. 

japonicus (Lohmann et al., 2010).  This evidence demonstrates the combination of 

NFR receptors confers host specificity and gene modification experiments show the 

second LysM motif of NFR5 is a major determinant in Nod factor recognition 

(Lohmann et al., 2010).  NFR1 shows strong sequence homology to the Arabidopsis 

CERK1 gene (as described in section 5.3.2) which suggests that functional similarity 

and a possible
 
evolutionary relationship may exist between Nod factor and basal 

resistance mechanisms (Fig.5.1) (Wan et al., 2008).  The evolution and regulatory 

relationships of the LysM receptor gene family have been mapped for Lotus japonicus 

using a combination of phylogenetic analysis and gene structure comparison 

(Lohmann et al., 2010).  This analysis revealed a common phylogenetic source and 

the family is likely to have expanded by a combination of tandem and segmental 

duplication events as a result of positive selection pressure to optimise ligand 

interaction with the predicted Nod-factor binding domain (Lohmann et al., 2010).  

Microarray expression analysis showed some Lotus japonicus LysM genes up-

regulated during both the symbiotic association with Mesorhizobium loti and in 

response to chitin treatment (Lohmann et al., 2010).  The diversification of the LysM 

family and their interaction to confer specificity in legumes is hypothesised to be a 

result of the pressure imposed by an increasing diverse array of chitin-derived 

molecules, produced by an extended range of interacting organisms with differing 

life-cycle objectives.  The pressure on legumes to accurately differentiate between 

potentially symbiotic and pathogenic bacteria forced the evolution and specificity of 

the current NFR1, NFR5 and other Lotus LysM genes (Lohmann et al., 2010).  LysM 
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gene encoded receptors may operate in a similar model to NFR1 and NFR5.  

Therefore be working in conjunction to target compounds which have structurally 

similar domains to NOD factor such as lipopolysaccharides, lipo-chito-

oligosaccharide, peptidoglycan, β-glucans and chitin oligosaccharides, and which are 

found in both fungi and bacteria (Buist et al., 2008).  The hypothesised mechanistic 

model predicts that Arabidopsis LysM genes and NFR-type genes have a mechanistic 

similarity in their perception of bacterial exudates and it is differentiation in the 

downstream signalling cascade which leads to basal defence reaction or nodulation 

formation respectively.   

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Model of the mechanisms of Nod factor function which may share some 

functional similarity and evolutionary origin with a LysM mediated basal resistance 

response.  Published with permission of Nature publishing group, from the papers of 

(Radutoiu et al., 2003). 
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5.2 Assessing LysM gene function in basal resistance 

The substantial natural variation observed in basal resistance across the Arabidopsis 

population probably originates from a variety of sources, for example, transcriptional 

differences between ecotypes (Weigel and Nordborg, 2005).  Variation in the LysM 

gene sequence may exist between multiple ecotypes so if this trend continues, the 

variation may affect efficiency of pathogen perception as it did for the RPS2 gene 

(Caicedo et al., 1999).  In addition, the combination of LysM genes working in 

conjunction in a particular ecotype may differ in their signal perception efficiencies.  

This chapter aims to characterise the LysM gene family and find evidence for their 

involvement and influence in basal resistance.  In addition to determining sources of 

variation within this family, this may explain some of the substantial natural variation 

in basal resistance efficacy. 

 Three genetic approaches have the potential to reveal the biological role of 

LysM genes in basal disease resistance: T-DNA insertion, RNAi and 35S over-

expression.  The over-expression strategy, however, was unlikely to have a significant 

effect on the trait if LysM genes are acting upstream in the signalling pathway or 

directly involved in pathogen perception (Zipfel, 2008).  Preliminary work assessing 

the potential for a multiple RNAi approach was set aside due to problems of poor 

sequence homology between LysM receptor-like Kinases (Schwab et al., 2006; 

Ossowski et al., 2008).  Knock-down efficiency was also anticipated to be a 

confounding factor as predicted rates within the literature estimated an average 80% 

reduction in gene expression (Schwab et al., 2006; Zhu et al., 2007).  However this 

level of reduction in receptor gene expression may be compensated by resistance 

signalling amplification resulting in no noticeable reduction of defence response or 

trait variation (Schwab et al., 2006).   

 The T-DNA knockout approach was therefore chosen as it may provide a 

potential for clear results while considering the hypothetical mode of action and 

function of LysM genes.  The selected strategy involved screening a large variety of 

T-DNA knockout lines of individual LysM genes with a focus on the RLK sub-set 

(Young et al., 2001; Ulker et al., 2008).  The resulting true knockout lines were used 

to study the effect of individual LysM RLK knockouts on the basal resistance.   
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5.3 Results  

5.3.1 Summary of LysM genes and annotation information  

Below is a figure summarising the locations of LysM genes in addition to the well 

known PAMP genes FLS2 and EFR (Fig. 5.2).  The description of the characteristics 

of the 15 LysM genes is based on the TAIR website annotation information.  Each of 

the LysM genes reportedly exhibit cell wall catabolism and all but two are currently 

predicted to be membrane bound.  For 2 of the LysM domain-containing genes 

(AT5G08200, AT5G23130) the location is not currently predicted however, this is not 

unusual as annotation information is not compete for all Arabidopsis genes.  Six of 

the 15 LysM genes reportedly have receptor-like kinase function and are marked on 

Fig 5.2 by an asterisk.  For the remaining LysM genes, function is currently unknown 

although all LysM domains have now been associated with peptidoglycan binding.  

 The EFR and FLS2 products are both involved in: ATP binding, receptor-like 

kinase activity, membrane bound, LRR domains and serine/threonine kinase activity.  

These genes share some of their characteristics with members of the LysM family, in 

particular the subset of 6 membrane bound LysM RLK genes which also show ATP 

binding in the case of AT3G01840 and AT3G57120.  CERK1, in addition to 

AT3G01840, AT3G57120 and AT1G51940, shares further similarity with EFR as 

they all show tyrosine kinase function which may be involved in signal transduction 

(Espinosa and Alfano, 2004).  Two LysM RLKs, AT2G33580 and AT2G23770, show 

further similarity with FLS2 as they are predicted to contain serine/threonine domains 

which have be previously shown to specifically phosphorylate MAP kinases which, in 

the case of FLS2, results in signal cascade transduction and activation of basal 

defensive compounds (Madsen et al., 2003; Qiu et al., 2008).         

    



 119

Figure 5.2 Arabidopsis chromosome map displaying all 15 LysM genes in addition to 

EFR and FLS2 PAMP genes.  Genetic distance, measured in cM, is annotated next to 

each of the genes and RLK function is denoted by an asterisk. 

 

 

 

5.3.2 BLAST searches of LysM genes 

BLAST searches between LysM genes and genes of closest nucleotide sequence 

homology show CERK1 has a 71 % identity sequence match (E-value=6e115) to 

NFR1 from Lotus japonicus (blastn comparative analysis- 

http://blast.ncbi.nlm.nih.gov/Blast.cgi).  Several other LysM genes have relatively 

close homology to NFR1, as described in section 5.3.1.  High LysM gene homology 

to NFR1 is correlated with predicted kinase function and close association with QTL 

peak genetic location.  However, this is not a universal trend as some LysM genes 

show strong affinity with QTL location and are relatively poorly related with NFR1. 

 DNA sequence comparison using BLAST shows strong sequence homology 

between LysM genes from Arabidopsis and those of other species.  For example, 
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AT1G21880, AT1G77630 and AT2G17120 have strong homology (>70%) with a 

Ricinus communis LysM gene (GeneID:8274109) which reportedly encodes a general 

peptidoglycan-binding module (Bateman and Bycroft, 2000).  AT5G23130 shows a 

73% nucleotide homology to a LysM gene from Zea mays (GeneID:100283704), 

which as yet has no reported function.  DNA sequence identity exists between the 

Arabidopsis LysM gene AT2G23770 (84% identity) and AT2G33580 (64% identity) 

with Sesbania rostrata LysM-RLK SrLyr3 gene which is significantly expressed 

during nodulation formation.  In addition, SrLyr3 shows 85% similarity to the DNA 

sequence of MtLyr3 from M. truncatula, which is involved in nodulation formation 

(Capoen et al., 2007). 

 

5.3.3 LysM gene phylogenetic trees 

A phylogenetic tree was generated showing relative homology of nucleotide 

sequences within the LysM gene family (Figure 5.3).  The tree image also highlights 

the 6 LysM genes (marked with asterisk) with receptor-like kinase function and their 

increased number in proximity to QTL peaks compared to other LysM genes.  The 

numbers at each branching point of the image represents the bootstrap analysis 

confidence level based on Felsenstein’s bootstrap method that: if the tree were 

generated a 100 times, that the same configuration of tree would be produced; the 

closer to 100 the number, the more confident the prediction (Efron et al., 1996).  The 

accompanying annotation of the phylogenetic tree describes the bacterial strains and 

RIL populations, where QTLs coinciding with LysM genes have been found.  The 

results show a subset of RLK LysM genes that are associated with more of the 

generated QTLs than the remaining LysM genes without RLK function. 
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Figure 5.3 Phylogenetic tree of the nucleotide sequence of the LysM genes. The tree 

illustrates the relative homology of LysM genes and their correlation to QTLs 

identified by bacterial growth assays on different RIL lines following infiltration with 

Pseudomonas strains.  Numbers at each branching point of the image represent the 

bootstrap analysis confidence level based on Felsenstein’s bootstrap method, 100 

bootstrap replications. 

 

5.4 Expression profiles of LysM gene family  

5.4.1 Developmental and anatomical profiling 

The heat map output of normalized signal intensity values images (Fig. 5.4 and 5.5) 

represents the absolute expression value as a colour scaled in relation to the 

expression potential of each gene.  Therefore, the darkest colour equates to the highest 

expression value of an expression vector (gene expressed in given parameter).  

Bioinformatic analysis has verified the output from Genvestigator in comparison with 

the raw ATH1 (developed by Affymetrix) full genome array data and provides 

interpretation information (for example see (Zimmermann et al., 2004).  

Developmental meta-profiling shows constant low expression rates across 
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developmental stages for all LysM family genes, which is consistent with the profile 

expected from a receptor family (Fig.5.4).  The developmental expression pattern 

shows no definitive pattern across the LysM genes, which would be indicated on the 

profile by an expression trend which runs horizontally across a particular growth 

stage.  This is consistent with the known information for currently identified disease 

receptors which are generally expressed consistently at a low level throughout the 

lifecycle of a plant.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.4 Genevestigator developmental expression profile for the LysM gene family 

and the number of arrays which make up the pooled data.  The darker the heat map 

colour the greater the expression potential of a particular expression vector.  White 

indicates no change between conditions.  The green graph below shows the number of 

arrays data is pooled from.  LysM genes listed from left to right: AT2G17120, 

AT5G62150, AT3G57120, AT3G01840, AT1G21880, AT1G77630, AT5G08200, 

AT2G33580, AT5G23130, AT2G23770, AT1G51940, AT1G55000, AT3G21630.     

 

Figure 5.5 illustrates the anatomical expression profile for the LysM family and 

shows broad similarity between the LysM gene expression with low to moderate 

levels of expression across all anatomical categories.  Comparisons of LysM gene 

anatomical expression category separation shows no discernable pattern between 

categories (e.g. high expression in roots and little expression in leaves) or between 

LysM genes for any of the tested genes.  This shows a general similarity for LysM 

genes to produce a relatively low expression across plant developmental and 

Arrays 
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+ 
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anatomical categories.  This is consistent with other pathogen receptors such as FLS2, 

although it should be noted there are some areas of relatively high expression 

compared against their own internal expression ratios (Zipfel et al., 2004).  For 

example, relatively high expression values were observed for both AT5G08200 

(250571_at) and AT5G23130 (249872_at) in pollen or AT2G33580 (255844_at) and 

AT2G33580 (259004_at) in the lateral root cap when compared against a gene’s own 

average expression values.  LysM genes are differentially expressed at the defined 

anatomical categories and there is no discernable expression relationship found or 

explained by phylogenetic sequence similarity between LysM genes.     

 
 

Figure 5.5 Genevestigator anatomical expression profile for the LysM gene family and 

the number of arrays which make up the pooled data.  The darker the heat map colour 

the greater the expression potential of a particular expression vector.  White indicates 

no change between conditions.  The green graph below shows the number of arrays 

data is pooled from.  LysM genes listed from left to right: AT5G08200, AT5G23130, 

AT5G62150, AT1G55000, AT1G51940, AT2G23770, AT2G33580, AT1G77630, 

AT1G21880, AT3G01840, AT3G57120, AT2G17120 and AT3G21630. 

 

 

+ 
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5.4.2 Stimuli induced expression profiling 

Figure 5.6 shows heat map interpretations of various biological, chemical and 

environmental stimuli and its effect on LysM gene expression.  Several points of 

interest have been highlighted with red arrows including the similarity of increased 

expression for AT3G21630 (CERK1) LysM gene following chitin and P.syringae 

treatments.  The heat map indicates a down regulation of LysM when exposed to heat 

and osmotic stress, suggesting a possible antagonistic relationship similar to those 

observed for other defence related genes.  However, the profile indicates possible 

down-regulation of multiple LysM genes in response to abscisic acid (ABA), which is 

typically associated with abscission mediation, stomatal closure and suppression of 

plant defence responses (Fan et al., 2009).  Treatment with SA, which is typically 

associated with the SAR response, shows 4 LysM genes up-regulated after treatment.  

Treatment with bacterial EF-Tu gene product, which is a known PAMP typically 

involved with binding to the Arabidopsis EFR receptor, induces substantial up 

regulation of several LysM genes, including CERK1.  Expression profiling data is 

limited as the results are pooled from many hundreds of microarray experiments with 

different test parameters.  Genevestigator heat maps are an aggregate of experiments 

that may not have been specifically conducted to test a particular stimulus; as a result, 

only inferences can be made without qPCR (or equivalent) validation.  In Fig. 5.6 

LysM genes listed from left to right: AT3G21630, AT1G55000, AT1G51940, 

AT2G23770, AT5G23130, AT2G33580, AT5G08200, AT1G77630, AT1G21880, 

AT3G01840, AT3G57120, AT5G62150, AT2G17120. 
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Figure 5.6 Genevestigator stimuli heat map displays the results for the LysM family 

of genes, with colour coding representing relative expression values.  Columns 

represent probe sets, and rows represent stimuli.  All gene expression profiles were 

normalized for colour from red through black to green. Red and green indicate 

relatively higher and lower expression levels, respectively, upon stimulation. Black 

indicates no change between conditions.  The red arrows indicate stress stimuli 

inducing LysM gene expression of notable interest as described above (section 5.4.2).   

 

 

CERK1 



 126

5.4.3 Transcriptional changes in response to flg22 extract  

 

Using microarray data, the transcriptional changes for LysM genes were monitored 

before and after exposure to flg22 peptide (Zipfel et al., 2004).  The results show the 

LysM gene AT2G33580 up-regulated by 13.3 fold, AT2G23770 by 6.7 fold and a 2.4 

fold increase for the CERK1 gene.  The expression of these three LysM genes is 

significantly increased but are comparable to other PAMP receptors (e.g. FLS2 -3.5 

fold, EFR -10.0 fold), presumably as transcription increases to enhance plant 

sensitivity to pathogens after initial exposure (Zipfel et al., 2004).  However, receptors 

must already be in place to detect initial pathogen exposure therefore, large 

fluctuation in transcription level after initial contact would be unusual for both PAMP 

and R gene defence receptors (e.g. RPS2 -4.3 fold, RPM1 -3.7 fold) (Zipfel et al., 

2004).  Expression changes for other LysM RLKs were not statistically significant at 

the time points examined in this study. 

 

5.5 LysM gene sequencing 

Deduced protein sequence data for the CERK1 LysM gene was obtained for various 

Arabidopsis genotypes of interest from the D.Weigel group (Max Planck, Germany).  

Several polymorphisms were detected within the protein sequence.  However, when 

compared to basal resistance trait data, no direct correlation could be distinguished 

between basal resistance and protein polymorphisms.  

 Nucleotide sequences and the deduced protein data were obtained for CERK1 

from different parental accessions in collaboration with V. Lipka group (JIC, UK).  

Significant polymorphisms were detected between genotypes which may alter the 

tertiary structure of the proteins.  A change in tertiary structure could lead to a 

difference in protein function, but no direct correlation between trait data and 

sequence polymorphism could be accurately defined. 

 Nucleotide sequence for each of the 15 LysM genes was obtained for the Col-

0 and Ler genotypes from TAIR and Monsanto.  Sequence comparison showed a 

small number of polymorphisms in 4/15 LysM genes and no direct correlation 

between trait data and polymorphisms.  
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5.6 T-DNA insertion knockouts   

Assessment of basal disease resistance in Arabidopsis lines carrying T-DNA insertion 

within the LysM gene family aimed to determine whether these genes are required for 

basal disease resistance.  Twenty-eight T-DNA lines were selected which targeted all 

of the 6 LysM-RLKs as well as several other LysM members without the kinase 

domain.  The experiment was set up as a double-blind design where plants of each 

line were tested for bacterial growth before the homozygosity of T-DNA insertion 

was determined.  Control plants of both Col-0 (the background of the T-DNA 

insertions) and Ler were included in every experiment and positioned for comparative 

reference during the analysis.  Statistical analysis was used to establish any significant 

difference in resistance/ susceptibility between wild type plants and LysM knockout 

lines.   

 

5.6.1 Trait assessment of T-DNA lines 

Sixteen plants from each of the segregating T-DNA insertion lines were inoculated 

with an OD600 0.002 and luminescence of 3 leaf discs per plant was measured 48 hrs 

post infiltration.  Four plants of Col-0 and Ler were placed in each tray as controls.  

Data of bacterial growth was pooled and incorporated into a comprehensive graph 

(Figure 6.6) where bacterial growth in plants carrying heterozygous or homozygous 

T-DNA insertions were compared with wild type controls.     

 

5.6.2 PCR assessment of T-DNA insertion type 

Gene specific primers, LP and RP, were used with T-DNA left border primers 

(LBb1.3) to assess each of the T-DNA lines.  Products of LP to RP (no insertions- 

wild type) were designed to generate products of around 900-1100 bp.  Insertion in 

both chromosomes (homozygous) will result in a product from RP to insertion site 

300 + N bases, plus the 110 bases from the insertion LBb1.3 to the left border of the 

vector (http://signal.salk.edu/tdnaprimers.2.html).  Heterozygous plants generate 

bands of both sizes.   
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Figure 5.7 Illustration of T-DNA insertion site within a gene relative to primer target 

location (left).  Example shows two paired reactions to differentiate between insertion 

types (right).  Images based on Salk institute images 

(http://signal.salk.edu/tdnaprimers.2.html).  

 

PCR products were resolved with multiple gels and only a sample annotated image is 

presented below.  The image was selected to show the variety of T-DNA insert 

genotypes found in the lines, however similar patterns are seen across all lines.  

 

 
Figure 5.8 Agarose gel image of the PCR product from T-DNA lines and controls for 

genotype assessment of the T-DNA insertion.  Salk_102100 line knockout in the 

AT3G57120 gene. 
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5.6.3 Combined trait data and PCR insertion assessment  

A selection of 28 T-DNA insertion lines were surveyed for their basal resistance and 

then tested to establish the T-DNA genotype of the lines.  From this data, 14 lines 

were discounted because the segregation data showed only wild type plants or 

genotype assessment was inconclusive.  The results from the rest of the 14 lines are 

shown below, and separated to show individual comparison with Col-0 controls and 

heterozygous T-DNA inserts where present.  Assessment of the majority of 

homozygous T-DNA insertion lines show significant differences in bacterial growth 

compared to Col-0 control, where single LysM genes are knocked out.  There are 

some notable exceptions to this trend.  It should also be noted where these T-DNA 

insertions are located in relation to the LysM gene of interest, as this may affect the 

likelihood of effective gene transcription reduction.       

 To cross-compare between T-DNA insertion lines, Fig. 5.9 displays Pst assay 

bacterial growth data as a calculated percentage of heterozygous or homozygous T-

DNA insertion lines, compared against internal Col-0 controls within each 

experimental line.  Comparison against internal controls provides a more comparable 

standard to assess relative differences between lines and between homozygous and 

heterozygous insertions.  Data shows significant differences in bacterial growth 

between lines targeting the same and different LysM genes as well as significant 

differences between homozygous and heterozygous insertions (additional data Table 

5.1).   
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Figure 5.9 Bacterial growth data is displayed as Lux light emission from the tagged 

Pst line for heterozygous and homozygous T-DNA insertion plants compared against 

internal Col-0 controls within each experiment.  The error bars represent standard 

deviation (SD).  Below the graph the knockout lines are grouped according to which 

LysM genes are targeted.  Homozygous and heterozygous insertion lines with 

significant difference (P= <0.05) in bacterial growth compared to wild type controls 

are described in the additional statistical analysis data in Table 5.1.   

 

 

‘Genstat’ software was used to analyse the Lux infiltration trait data from knockout 

lines and, as expected, found statistical differences between knockout lines and 

between insertion genotypes when compared as a whole.  ANOVA analysis was used 

to individually compare the trait data from heterozygous and homozygous insertion 

knockout genotypes against the internal Col-0 control.  Several significant differences 

were found, showing differences in bacterial growth scores when a LysM gene is 

knocked out compared against internal Col-0 controls; the probability results are 

summarised (Table 5.1). 
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LysM 

gene 

target 

Knock

out 

line 

Heterozygous 

insertion 

genotype vs. 

Col-0 control   

P value 

Sample 

No. 

plants 

Homozygous 

insertion 

genotype vs. 

Col-0 control  

P value 

Sample 

No. 

plants 

Insertion 

site 

AT1G51

940 

SALK_

026814 

(BE) 

0.174 9 0.028 ** 2 Intron 

AT1G51

940 

SALK_

079730 
(AS) 

0.484 2 0.001 ***** 7 Intron 

AT1G51

940 

SALK_

140374

C 

N/A 0 0.001 ***** 15 Exon 

AT2G23

770 

SALK_

025399 

(BE) 

0.003 **** 12 N/A 0 300 UTR5 

AT2G33

580 

SALK_

131911

C 

0.001 ***** 3 0.001 ***** 5 Exon 

AT3G01

840 

SALK_

012441 

(A) 

0.001 ***** 14 N/A 0 Exon 

AT3G21

630 

SALK_

007193 

(D) 

N/A 0 0.010 ** 4 300 UTR5 

AT3G21
630 

SALK_
086834

C 

0.007 **** 4 0.001 ****** 2 1000-
Promotor 

AT3G57

120 

SALK_

038435 

(AE) 

0.970 4 0.911 6 300 UTR3 

AT3G57

120 

SALK_

102100 

(BO) 

0.781 2 0.272 10 Exon 

AT3G57

120 

SALK_

137350 

(BY) 

0.941 2 0.065* 2 Exon 

AT1G21

880 

SALK_

094404

C 

N/A 0 0.011 ** 16 1000-

Promotor 

AT5G08

200 

SALK_

059473
C 

N/A 0 Insufficient 

data points 

1 Intron 

AT1G77

630 

SALK_

132566

C 

N/A 0 0.032 ** 15 Exon 

 

Table 5.1 Table summarising analysis of variance statistics comparing the trait data 

from heterozygous and homozygous insertion genotypes against the Col-0 controls.  

Insertion site for the T-DNA and the LysM knockout target data is also included for 

comparison.  Sample number is included for insertion lines, however this number is 

variable as most lines are still segregating for the insertion and so tested as 

heterozygous, homozygous or wild type.  Significance value – *0.1 **0.05 ***0.01 

****0.005 *****0.001       
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5.7 Discussion 

5.7.1 Phylogenetic analysis and LysM gene properties 

Well known PRRs involved in basal resistance such FLS2 and EFR are predicted to 

share some common structural properties which aid in their ability to act as pathogen 

receptors such as; ATP binding, being membrane bound, transmembrane 

serine/threonine receptor kinase activity and LRRs.  These properties are predicted in 

other PAMP receptors, such as CERK1, a fungal PAMP receptor, which also displays 

transmembrane serine/threonine receptor kinase activity with an ATP binding site, 

however it lacks LRR but has predicted peptidoglycan binding function (section 

5.3.1).  The prediction is that the majority of LysM genes are membrane bound, are 

involved in amino acid phosphorylation and involved in cell wall catabolism, 

serine/threonine kinase activity.  However, not all LysM genes have the same 

annotation characteristics and there is notable variation amongst this gene family in 

predicted receptor-like kinase function.  Recent evidence and updates to the 

annotation information have linked the family of genes containing a LysM domain to 

peptidoglycan binding.  The duality of the CERK1 chitin binding and peptidoglycan 

binding may be resolved by a conserved structural component, common between the 

two cell wall structures such as N-acetylglucosamine (GlcNAc) (Miya et al., 2007).  

 Phylogenetic comparison of the nucleotide and protein coding sequences 

between each of the LysM family shows that genes with receptor-like kinase 

functional domains are more closely related, essentially forming a small subset (Fig. 

5.3).  BLAST searches and phylogenetic comparisons show significant similarity 

between LysM genes such as CERK1 and the NFR1 gene from Lotus japonicus.  Root 

nodulation in leguminous plants for symbiotic nitrogen fixation has been linked to the 

NFR1 protein, which has been postulated to act as a Nod factor receptor itself or 

involved in the earliest generation of the Nod factor signalling cascade (Radutoiu et 

al., 2003; Arrighi et al., 2006).  Nucleotide based phylogenetic tree analysis indicates 

homology to NFR1 is correlated with kinase function and this in turn correlates with 

significant QTLs however, some LysM genes show strong affinity with QTL location 

but show relatively weak homology with NFR1.  The phylogenetic trees show LysM 

genes with RLK functional domains grouping into a subset based on code similarity.  

This subset has a higher association with QTL peaks that correspond to LysM gene 
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locations compared with other LysM genes in the family.  Therefore attention should 

be focused on this small subset of LysM RLK genes in order to determine a 

conclusive link to basal disease resistance.  

 

5.7.2 Transcriptional analysis 

Transcriptional analysis of the LysM genes following exposure to an array of biotic 

and abiotic stimuli shows that, out of 15 lysM genes, only two fail to show strong 

gene expression changes when exposed to P.syringae.  The LysM gene CERK1, 

which reportedly perceives chitin oligosaccharides from fungi, shows increased 

expression rates when exposed to chitin (Wan et al., 2008).  However, expression 

rates are similarly increased when exposed to P.syringae, possibly suggesting that it 

may not be exclusively a fungal elicitor interaction with CERK1, and bacterial 

exudates may also be involved (Miya et al., 2007). 

 Several LysM genes are up-regulated following treatment with the EF-Tu gene 

product (elf18), a known PAMP and bacterial elongation factor, which is typically 

associated with binding to the Arabidopsis EFR receptor and so instigating a basal 

resistance defence reaction (Nurnberger and Kemmerling, 2006).  This up-regulation 

observation may suggest possible interaction or a general up-regulation of PAMP 

genes (including LysM genes) following elf18 exposure to heighten pathogen 

sensitivity as occurs with a SAR response (Glazebrook et al., 2006). 

 When exposed to heat stress and possibly osmotic stress, the majority of LysM 

genes are significantly down-regulated which, if LysM were proven to be involved in 

the disease resistance pathway, would demonstrate a redirection of metabolic 

resources away from disease related genes when a plant is under stress.  Redirection 

of finite metabolic resources away from disease or wounding related genes in 

response to abiotic stresses, such as heat shock, has previously been shown (Cheong 

et al., 2002).  Therefore, as LysM genes are strongly down regulated following abiotic 

stress exposure, and are up-regulated by elicitor exposure, this is consistent with the 

hypothesis that LysM genes are involved in disease resistance. 

 Genevestigator’s expression map shows several LysM genes are up-regulated 

in their transcription rates after exposure to salicylic acid (SA), which has been 

consistently linked as a signal for systemic acquired resistance (SAR) (Ryals et al., 
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1996).  LysM genes could be stimulated in preparation to defend from secondary 

infection as an enhancement of existing defences commonly associated with SAR 

(Glazebrook et al., 2006).   

 It is possible to examine specific microarray data, derived from gene chips 

which indicate transcription level, selecting experiments which closely matched the 

criteria applied to this study in an experiment monitoring gene transcription after 

exposure to flg22 peptide (Zipfel et al., 2004).  Three LysM genes (AT2G33580, 

AT2G23770, AT3G21630) show changes which are significant (13.3, 6.7, 2.4 fold 

increases respectively), but are consistent with the transcription increases to enhance 

plant sensitivity after initial exposure as other pathogen receptors such as FLS2, EFR 

and RPS2 (section 5.4.3) (Chen and Chen, 2002; Xu et al., 2006).  Typically, 

pathogen recognition receptors would be expected to be expressed prior to disease 

exposure.  Following initial detection of the invading pathogens, the transcription of 

genes involved in signal amplification and disease responses are enhanced.  Initial 

perception receptors would typically not be up-regulated, except perhaps to prime 

plant tissue resulting in improved sensitivity for additional pathogenic challenge.  

Expression changes for other LysM RLKs were not statistically significant at the time 

points examined in this study.   

 Transcription level is an indication of trait modification but not conclusive as 

many other factors are influential, such as post-translational modification and the 

regulatory influence of rate-limiting enzymes or the affect metabolic intermediates 

have on the final gene action (Fell and Thomas, 1995).  For example, post 

translational redox state regulates
 
the conformation of the NPR1 gene, involved in 

SA–dependent defence gene expression (Despres et al., 2003).  NPR1 links pathogen-

triggered
 
redox changes in plant tissue with defence gene regulation as it acts as a co-

factor, dependent on the oxidation state of cystine residues in its structure to mediate 

the interaction with TGA transcription factors (Tada et al., 2008; Spoel et al., 2009).   

 

5.7.3 Sequencing analysis 

For the protein sequence data and the nucleotide sequence, multiple substantial 

polymorphisms where detected between genotypes.  These variations in sequence 

have the potential to alter the tertiary structure and so may alter the effectiveness or 
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the binding ability of LysM genes, which may account for some of the large trait 

variation observed in the Arabidopsis population (Schmid et al., 2003a).  

Unfortunately, a direct correlation between any specific polymorphism and alterations 

in trait data could not be established.  There is a possible trend which suggests 

increasing numbers of polymorphisms are associated with increased disease 

susceptibility, however the genotype sample size is not large enough to define this.  

There are only small variations found between LysM genes when complete coding 

sequence of Col-0 and Ler are compared, however the disease trait scores are fairly 

similar so significant sequence differences were not expected.  Overall, there are 

multiple synonymous and non-synonymous polymorphisms found in the LysM genes 

which would suggest that the family is still in evolutionary flux (Ellis et al., 2000).  

This is consistent with other disease related genes which are typically located within 

an evolutionarily adaptive chromosomal area to match plant specificity with 

pathogenic alterations (Mauricio et al., 2003; Jones and Dangl, 2006).  The variation 

observed in the sequence of LysM genes is unlikely to be a critical factor affecting 

basal disease resistance in the majority of cases.  However, polymorphism may be a 

contributing factor that could be defined further if direct proof of LysM gene family 

involvement can be established. 

 

5.7.4 T-DNA knockout lines 

Previous phylogenetic analysis and cross comparison with QTL peak locations 

indicated that 6 LysM genes with RLK functionality were most likely to be influential 

in basal resistance therefore knockout experiments were focused on these.  Other 

LysM gene knockouts were tested but only where they appeared in the exon as it is 

difficult to predict whether insertion in the promoter or intron region would affect 

expression.  Twenty-eight knockout lines derived from Col-0 lines were chosen 

covering 9 separate LysM genes, with 10 of the lines reportedly homozygous for the 

T-DNA insertion.  Eighteen knockout lines were still segregating at various ratios.  

Where possible, inserts were located within exons (17 out of 28).  Insertions were 

located in the promoter in 7 lines, and 4 out of the 28 had insertions within an intron.  

 The knockout line testing was designed as a double-blind experiment where 

the bacterial Lux count trait data for each plant was unknown as well as their insertion 
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genotype (wild-type, heterozygous, homozygous).  Bacterial trait data was collected 

first from the 28 knockout lines obtained by infiltration with Lux tagged Pst.  PCR 

genotyping was then conducted to establish the type of insertion an individual plant 

has e.g. wild-type, heterozygous or homozygous T-DNA insertion (section 5.6.2).  

Fig. 5.9 shows the bacterial trait data for 14 lines of plants, that the PCR genotyping 

showed to be suitable for this experiment, separated into insertion types (homozygous 

and heterozygous) and compared against Col-0 controls.  

 The majority of knockout Arabidopsis lines show increased susceptibility in 

comparison with Col-0 controls after knockout of LysM genes, although some lines 

show an increase in resistance so this is not a definitive trend across all LysM 

knockouts.  Significant differences in Lux trait data were observed in 10 of the 

knockout insertion lines tested, 8 significant differences were found in homozygous 

T-DNA insertion genotypes and 4 in heterozygous insertion genotypes (Table 5.1).  A 

line with low homozygous plant replication (Salk_137350) had a probability 

approaching 95% significance (P=0.065).  Another line (Salk_059473) produced a 

single homozygous plant, which prevented ANOVA analysis but T-test showed to 

also approach significance (P= <0.1), which may show significant deviation from the 

controls with further replication.  Compared with controls, knockout lines typically 

showed differences of approximately 40-60%, which is modest, but does indicate 

direct evidence of LysM gene involvement in basal disease resistance trait.  The 

differences observed are not limited to LysM RLK genes which may suggest broad 

LysM gene family involvement, however the mechanisms of this can only be 

hypothesised.   

When comparable pathogen receptors are knocked out, some insertion line 

experiments have shown higher effects on trait.  Experiments such as the T-DNA 

knockout of MEKK1, a mitogen-activated protein kinase involved in the activation of 

the map kinases signalling cascade, completely prevents plants from activating MPK4 

in response to flg22 treatment, resulting in an approximate 1 log increase 

susceptibility (Suarez-Rodriguez et al., 2007).  The loss-of-function mutation of the 

FLS2 receptor, fls2-17, showed increases in bacterial susceptibility of ~0.7 log 

compared to wild-type Col-0 when sprayed with an already virulent pathogen, Pst 

DC3000 (Zipfel et al., 2004).  Double T-DNA insertions in the PUB17 line has 

produced knockouts of the R-genes RPM1 and RPS4 and subsequently compromises 

their resistance against Pst containing the corresponding Avr genes and increase 
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susceptibility by approximately 10 fold (Yang et al., 2006).  When critical 

components of nodule formation in Lotus japonicas, LjNFR1 and LjNFR5, are both 

knocked out, this eliminates almost all downstream Nod factor-inducible responses 

and blocks infection thread formation (Smit et al., 2007).  In comparison with other 

published T-DNA knockout data these examples show a greater increase in 

susceptibility than the increase shown following knockout of single LysM genes 

however, it is hypothesised that LysM receptors may work in conjunction therefore, 

multiple knockouts maybe required to observe similar (e.g. 10-fold) susceptibility 

changes.  M. truncatula hcl-1 mutant line contains a single knockout of the LYK3 

gene, an ortholog of the Nod factor receptor NFR1 found in Lotus japonicas, results 

the induction of ~50% less Nod factor signalling genes typically associated with this 

pathogen interaction (Li et al., 2010).  This single gene LysM ortholog knockout 

would be more closely comparable to the results observed in the single Arabidopsis 

LysM knockout experiments.  

 Whether knockout lines show an increase or decrease in susceptibility, the 

homozygous knockout insertion lines have predominantly more trait difference than 

heterozygous lines.  Where both heterozygous and homozygous insertions are 

represented in the lines, such as SALK_026814 and SALK_086834, they 

predominantly show altered bacterial growth values, falling between controls and the 

homozygous values.  This would add weight to a hypothesis that for those LysM 

genes, a moderate gene dose effect may be influential as transcription rate may be as 

reduced in heterozygous lines.  Such gene dose effects have been observed in 

comparisons between heterozygous and homozygous knockout insertions within 

Lysine synthesis genes.  These comparisons showed a greater trait effect in the 

homozygous insertion but the heterozygous insertion was still significantly altered in 

comparison with the wild-type (Zhu and Galili, 2003).  In the line SALK_13191C, 

heterozygous and homozygous insertions in the LysM gene produce similar results 

that are both significantly different from the control.  This would indicate that the 

targeted gene is having a significant effect on the bacterial growth trait and that only a 

partial knockout is enough to disrupt its role in basal resistance.  The potential 

hypothesis for this observation is described as haplo-insufficiency, where a single 

gene copy is not sufficient to maintain a trait.  Similar results have been observed 

where homozygous and heterozygous knockout mutants in VAMP 721/722 result in 

haplo-insufficient non-host and basal resistance in response to the powdery mildew 
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Erysiphe pisi (Lipka et al., 2010).  Analysis of the RNA transcription level of the 

genes would be required to further elucidate the effect gene dose has on the trait for 

both of the observations of SALK_026814 and SALK_13191C.  These lines could be 

tested with qPCR however there was insufficient time to verify this hypothesis in this 

project.  Other factors such as post translational modification, redox induction of gene 

product activity or many other regulatory mechanisms may be at work and require 

further investigation.  Many lines were still segregating at a greater than reported ratio 

which has reduced the number of replicates within the tested sample to lower than 

expected levels, as described in Table 5.2.  Further trials should take the lower than 

publicised segregation ratios into account and include more replicates to confirm 

findings or test other knockout lines targeting different LysM genes. 

 

5.7.5 LysM gene effect 

With each of the knockout lines it is important to note the site of insertion as exon 

insertions typically have a higher probability of transcription disruption. In contrast, 

intron and promoter region inserts may have more unpredictable and potentially 

variable results as transcription disruption is dependent on disrupting promoter 

regions upstream of the gene of interest (Krysan et al., 1999; Ulker et al., 2008).  

Description of insertion type is listed in Table 5.1 and there is a trend towards exon 

insert lines showing higher susceptibility and greater differences from the controls.  

Similar trends can be seen when both the SALK _102100 and SALK_137350 lines 

target the AT3G57120 gene in the exon region.  In this example both homozygous 

insertion lines produce a substantial, but not quite significant, increase in bacterial 

growth compared to controls.  However, this is far from conclusive with some clear 

exceptions.  Insertion sites appear to be an important influential factor for altering 

basal resistance.  There is an example in the knockout of the AT1G51940 gene where 

two insertions (SALK_026814 and SALK_079730), both in intron regions within the 

gene, create a significant difference in bacterial growth between homozygous lines (P 

<0.05).  When a T-DNA insertion is not in an exon, the effect on expression levels 

and gene function is unpredictable (Krysan et al., 1999; Ulker et al., 2008).      

 The observed differences in basal resistance are moderate (approx 40-60%) in 

comparison with 10-fold susceptibility reductions observed in some R gene-mediated 
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responses (Aarts et al., 1998).  This may be the extent of basal resistance however, 

this would contrast with the 50-fold differences observed in the RIL line trials.  The 

working hypothesis of the mechanism of action suggests collaborative function, 

therefore cumulative knockouts of LysM genes may produce greater alterations of 

basal disease resistance. 

 

5.7.6 Hypothesis of LysM gene family involvement in basal resistance 

Knockout of the CERK1 gene affects susceptibility by 40-60% in Col-0 which equates 

to ~20,000 CPS/disc or a difference of over 10% if compared against the range of 

variation observed across the selected ecotypes.  Single gene knockouts of other 

LysM genes show similar results and suggest that various members of LysM gene 

family may have a role in basal resistance.  Verification of expression rates is required 

for a definitive conclusion.  However, there is sufficient evidence to propose a role for 

LysM gene involvement in basal resistance.  LysM genes and most specifically LysM 

RLK genes, are postulated to be directly involved in PAMP perception.  The current 

hypothesis is similar to the working hypothesis described previously (section 5.1), 

that is, suspected strong functional and mechanistic affinity with the Lotus NFR1 and 

NFR5 LysM gene binding to a lipo-chito-oligosaccharide derived bacterial signal 

(Madsen et al., 2003).  Arabidopsis LysM genes show strong homology to NFR1 and 

NFR5 and have also been shown to bind to peptidoglycans (Buist et al., 2008). 

 The LysM CERK1 gene product has been shown to bind to fungal chitin 

oligosacharides and to instigate a signal cascade via the WRKYs and MAPKs 

pathway, leading to defence response elicitation (Zhang et al., 2007).  CERK1 gene 

appears to be a critical component in chitin perception as a dominant mis-sense 

mutation in the gene and leads to compromised non-host resistance to fungal hyphae 

(Lipka et al., 2007).  CERK1 has been implicated to be involved in the perception of 

bacterial PAMPs due to evidence of binding to peptidoglycan, which is a critical 

component in bacterial cell walls (Zhang et al., 2007; Buist et al., 2008; Gimenez-

Ibanez et al., 2009).  As a consequence of this apparent dual binding function, it 

appears likely that LysM gene receptors target a conserved saccharide structural 

domain such as GlcNAc that is present across the structurally similar PAMP 

candidates: lipopolysaccharides, lipochitin-oligosaccharide, peptidoglycan, β-glucans 
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and chitin oligosaccharides (Buist et al., 2008).  These compounds are commonly 

found in fungi, bacteria and even viruses, and are therefore an ideal target for a PAMP 

receptor.  As with nodule formation, the apparent broad binding range of LysM gene 

receptors may work in conjunction with other LysM gene products to confer pathogen 

binding specificity to the interaction with PAMPs to elicit an appropriate defence 

response.     

 This basal perception mechanism may have been sufficiently successful that it 

led to the evolution of pathogenic basal suppression, as bacterial AvrPtoB appears to 

target the CERK1 receptor kinase and promote bacterial virulence (Zipfel and 

Rathjen, 2008; Gimenez-Ibanez et al., 2009).  Lux bacterial growth data in knockouts 

of other LysM genes (e.g. AT1G51940 and AT1G21880) (Fig. 5.9) shows similar 

increases in susceptibility after knockout of CERK1.  Other suppression pathways 

targeting LysM genes may exist but have not yet been identified, however pathogenic 

selection pressure to evolve such suppression may be similar if they are as effective in 

conferring resistance as CERK1.  Expansion on this hypothesised model of interaction 

is described in section 6.2.  
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Chapter 6:  Discussion  

6.1 Research summary 

Basal resistance occurs in genetically compatible, as well as incompatible, plant-

microbe interactions and acts to slow disease progression, potentially allowing 

completion of the host life cycle (Glazebrook et al., 2006).  Basal resistance utilises 

receptors which detect non-race specific pathogen elicitors, known as PAMPs, and 

while not commonly resulting in a HR, it may share some downstream signalling and 

effector components with R gene-mediated resistance (Zipfel et al., 2004).  Basal 

resistance mechanisms are likely polygenic and may offer more effective, durable 

resistance (Zipfel et al., 2004).  Relatively little is known about basal disease 

resistance pathways and mechanisms of plant-pathogen perception which would be an 

important intermediate step to targeted crop improvement. 

The assay using photon emission by the Lux-tagged Pseudomonas was shown 

to be directly proportional to the number of viable bacteria in planta.  To assess the 

natural variation in basal disease resistance, a survey of bacterial growth of a 

universally virulent strain (Pseudomonas syringae pv. tomato DC3000) across 92 

Arabidopsis thaliana ecotypes showed a substantial range of differences (~50-fold), 

indicating substantial natural genetic variation in basal resistance.  To further 

investigate the genetic basis of this variation, the luminescence based protocol for 

high throughput quantitative assay of bacterial growth in planta was refined.  A series 

of characterisation experiments, in which components of the procedure were modified 

around established parameters, aimed to refine the protocol and reduce data 

variability.  When combined, these refinements and additional control comparisons 

reduced Lux assay measurement variation around the mean so that the variance ratios 

between genotypes were similar (F pr. >0.05).  In addition, similarity of data points 

within a genotype were shown (P= >0.05) and distinctiveness between RIL genotypes 

was proved (P= <0.05) for the refined assay.  The refined procedure was then used to 

test several populations of RILs to produce tightly defined bacterial growth data for 

accurate QTL analysis. 

 The original trait screen of parental ecotypes was used to select 5 RIL lines 

which represented a proportion of the range of observed variation (Fig.3.5).  Pst 

infiltration assay screens of these lines showed a similar continuous range of variation 
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with no distinct data steps and variation above and below the parental means, which 

indicated a polygenic trait (Fig. 4.2-4.6).  Initially, the Sorbo x Gy-0 RIL population 

was analysed for QTLs and revealed that loci around 60cM, 20cM and 40cM on 

chromosomes 1, 3 and 5 respectively, have major effects on the variation of basal 

disease resistance (Fig. 4.7).  Collectively, they explain around 80% of the variation.  

Subsequent analysis on the Nok-3 x Ga-0 RILs revealed significant QTL peaks on 

chromosomes 1, 2, 3 and 4 (Fig. 4.8).  A significant QTL was located on chromosome 

3 in the Cvi-0 x Ag-0 RILs and two tightly defined QTL peaks were found on 

chromosomes 3 and 5 in the Col-0 x Ler RILs (Fig. 4.9, 4.11).  In addition, significant 

QTL peaks were found on chromosomes 2 and 5 for the Wt-5 x Ct-1 RIL population 

(Fig.4.10)  

 The independent QTL analyses of the Sorbo x Gy-0, Nok-3 x Ga0, Cvi-0 x 

Ag-0 and Col-0 x Ler RIL populations showed 12 significant QTLs.  Three QTL 

regions containing 6 significant peaks showed substantial overlap that persisted across 

populations on chromosomes 2 and 3 (Fig. 4.12).  The RIL populations Nok-3 x Ga0 

and Wt5 x Ct-1 showed similar QTL locations on chromosome 2, between 40-50 cM.  

Cvi-0 x Ag-0 and Col-0 x Ler and implicated the same region on chromosome 3 at 0 

cM to 10 cM.  Sorbo x Gy-0 and Nok-3 x Ga-0 both had significant peaks at around 

20cM on chromosome 3 (Fig. 4.12). 

The chromosomal regions determining the variation of basal disease resistance 

were delineated by markers from either side of these significant QTL peaks.  Lists of 

the genes within these areas were then compiled and cross referenced against a list 

generated of all known disease and PAMP related genes based on sequence 

annotation and literature reports.  These refined candidate gene lists significantly 

reduced the number of initial candidates in the region by approximately 95% (Table 

4.7).   

Candidate genes from these regions were categorised and cross-referenced 

against each of the others to determine overlap and were also assessed for their 

implication in biotic stresses (Fig. 4.13).  The distribution frequency of individual 

candidates and gene families in QTL regions was assessed to determine if it was 

significantly higher than the background (Table 4.8).  Statistical tests revealed that 

members from a family of 15 genes encoding receptor-like proteins with a conserved 

lysine motif (LysM) occurred at significantly higher rates in the QTL regions.  Nine 

of the 12 significant QTLs discovered in the five RIL populations are closely 
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associated with members of the LysM family and some of them are significantly up-

regulated in response to treatment with flg22 peptide (Fig. 4.15).  This is consistent 

with the hypothesis that LysM gene products are involved in PAMP perception, 

leading to basal disease resistance. 

QTL analysis for two populations was also repeated with a different bacterial 

strain (Psm) to indicate the specificity of the interaction.  QTL graph profiles for the 

Nok-3 x Ga-0 RIL population show substantial similarity between Pst and Psm 

infections which may indicate shared perception mechanisms (Fig. 4.17).  However, 

the Psm QTL profile for the Col-0 x Ler population is different to the graphs 

associated with the Pst interaction and yet, a strong correlation between LysM gene 

locations and QTL peaks is maintained which may indicate that combination of LysM 

genes may be important in conferring specificity (Fig. 4.16). 

The nucleotide sequences of all the Col-0 Arabidopsis LysM genes were 

obtained from the TAIR database and used for BLAST searches to find homologous 

genes in other organisms as a possible indication of function.  The sequences were 

then compiled to make phylogenetic trees to visually explain and quantify the genetic 

similarity between genes and close homologues (Fig. 5.3).  Sequence comparison 

indicated a smaller subset of LysM genes with RLK function and close homology to 

NFR1 and were correlated with proximity to QTL peaks.  However, this is not a 

conclusive trend as some LysM genes that show strong affinity with QTL location are 

relatively poorly related with NFR1. 

In a collaborative effort with the Volker Lab (Sainsbury Lab, UK), the LysM 

gene CERK1 was sequenced from multiple genotypes to determine if any specific 

polymorphism was associated with differences between genotype trait data.  The 

sequencing showed some major polymorphisms in the deduced amino acid sequence 

between genotypes which may change the conformational structure and possibly 

influence protein function.  While a direct correlation between any amino acid 

exchanges and trait data could not be found there are multiple QTLs acting within 

each population which may mask a mutation’s effect.  Sequence data was also 

obtained for each of the LysM genes from both Col-0 and Ler and this variation was 

compared with basal trait differences, however a clear relationship between a 

polymorphism and trait variation could not be conclusively shown.   

Use of Genevestigator meta-profiles, that combine multiple Affymetrix 

GeneChip Arabidopsis ATH1 signals arrays to give an average expression value, 
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showed no clear anatomical or developmental pattern to expression of these genes 

(Fig. 5.4, 5.5).  This result was expected as receptor genes are, in general, expressed at 

low levels consistently throughout the plant and over its life cycle.  When exposed to 

different biotic and abiotic stimuli, LysM expression levels showed a number of 

substantial alterations, such as similar expression rates of LysM genes when exposed 

to strains of P.syringae and chitin (previously indicated as a LysM binding factor) and 

down-regulation during certain abiotic stress treatments (Ball et al., 2004) (Fig. 5.6).  

These results are consistent with the hypothesis of LysM involvement as an upstream 

receptor or signalling component, although such data is not conclusive. 

A Pseudomonas strain carrying AvrPtoB has been described as having a 

kinase suppression function influencing a tomato orthologue of the CERK1 LysM 

gene (Miya et al., 2007).  It is important to determine if a correlation could be shown 

between QTLs, LysM gene location and suppression of basal resistance.  AvrPtoB 

deletion mutant strain was shown to have moderately (not significantly (P= >0.05) for 

most lines) decreased growth rates compared with wild-type Pst (Fig. 4.18).  

Examination using different ecotypes and analysis of QTL locations indicated that 

AvrPtoB kinase suppression had some influence on basal resistance.  This may affect 

several LysM genes and may not be limited to the CERK1 gene as previously reported 

(Gimenez-Ibanez et al., 2009). 

 A double-blind experiment utilising Pst infiltration bacterial growth tests on 

T-DNA knockout lines with insertions in individual LysM RLKs aimed to establish a 

direct effect on the basal resistance.  Two paired PCR amplification reactions were 

performed to confirm the insertion genotype (WT, heterozygous, homozygous) as 

some of the lines were still segregating (Fig. 5.8).  Homozygous knockout lines show 

a moderate increase in susceptibility (40-60%) for lines targeting specific LysM 

genes, compared with Col-0 controls (Fig. 5.9).  Not all lines show an increased 

susceptibility pattern but most tested lines show a significant effect on basal trait after 

gene knockout.  LysM genes are therefore directly implicated in basal resistance.  

Further assessment to confirm a reduction in LysM gene transcription levels would be 

needed to draw a definitive conclusion.    
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6.2 LysM gene family and PAMP recognition 

The search for PRR and their associated PAMP molecules has intensified in recent 

literature and the CERK1 LysM RLK gene has been recently implicated in perception 

of pathogenic fungi (Miya et al., 2007).  Chitin oligosaccharides derived from fungal 

hyphae reportedly interact with CERK1, resulting in a signalling cascade via the 

WRKYs and MAPKs pathway (Wan et al., 2008).  A dominant mis-sense mutation of 

the CERK1 gene shows fully compromised non-host resistance to fungal hyphae and 

is independent of BAK1 and BKK1, which distinguishes this pathway from the FLS2 

upstream mechanism (Wan et al., 2008; Gimenez-Ibanez et al., 2009).  Downstream 

utilisation of similar signalling with the FLS2 and R gene-mediated responses is likely 

to be due to conservation MAPK mediated transduction (Kaku et al., 2006). 

 Prior to literature associated with chitin perception, Arabidopsis LysM genes 

had no described function and were commonly mentioned in association with being 

orthologous with Nod factor recognition genes NFR1 and NFR5 from Lotus japonicus 

(Radutoiu et al., 2003).  Nod factors are extra-cellular lipo-chito-oligosaccharides 

(LCOs) induced following exposure to plant flavanoids in the rhizosphere and consist 

of a chitin oligomeric backbone, which typically comprises of 3 to 5 N-

acetylglucosamine (GlcNAc) molecules (D'Haeze and Holsters, 2002).  Functional 

group substitutions can occur at terminal or non-terminal residues with an N-acylated 

group attached to the non-reducing terminal saccharide residue (D'Haeze and 

Holsters, 2002).  NFR1 and NFR5 LysM genes are essential to host-symbiont 

specificity and are involved with recognition of specific Nod factor chemical structure 

to detect bacterial presence and appropriately initiate nodulation if suitable 

rhizobacteria are perceived (Gough, 2003; Radutoiu et al., 2003).  Like the 

Arabidopsis LysM genes, NFR1 and NFR5 are also membrane-bound, have receptor-

like kinase function and contain serine/ theonine receptors that work in conjunction to 

determine Nod factor specificity in roots (Gough, 2003; Madsen et al., 2003).  NFR1 

and NFR5 specifically recognise rhizobial bacteria using multiple LysM domains with 

the LysM2 domain from NFR5, largely responsible for specificity (Radutoiu et al., 

2007).  A single amino-acid substitution in the LysM2 domain results in drastically 

altered nodulation efficiencies (Radutoiu et al., 2007).  Modelling predicts a cleft for 

Nod-factor binding at this domain with the L/K118 amino acid, shown in vivo to aid 

recognition of Nod-factor structure, positioned in close proximity to the groove 
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(Radutoiu et al., 2007).  Similar reductions are observed during transcriptional 

imbalance between NFR1 and NFR5 which adds to the hypothesis that these gene 

products are part of the same receptor complex (Radutoiu et al., 2007).  The working 

hypothesis of this project predicts a similar evolutionary relationship between these 

pathways in PAMP perception specificity at the cell surface.  Downstream signal 

alterations, which in the legume symbiosis results in nodule formation, would be 

modified to activate defence reactions for basal resistance.  

  Via knockout analysis of the Rice LysM gene CEBiP, it was shown that an 

othologue to CERK1 LysM Arabidopis gene is an important component in the 

activation of elicitor induced oxidative burst as well as perception and transduction of 

chitin oligosaccharide (Kaku et al., 2006).  CEBiP is thought to function as a cell 

surface receptor for chitin elicitor and RNAi silencing of this gene shows a reduction 

in chitin binding (Zipfel, 2009).  This similarity suggests that defence pathways based 

on perception of chitin through LysM genes are widely conserved amongst plant 

species (Kaku et al., 2006).  The LysM perception component therefore represents a 

conserved link between symbiosis and defence pathways.  If this similarity is further 

conserved then, as hypothesised, the LysM genes may act in conjunction with other 

LysM genes to confer specificity (as with NFR1 and NFR5 LysM genes) to the PAMP 

target that LysM gene based receptors may interact with (Knogge and Scheel, 2006).  

The details of any interactions are not yet known, although yeast-two-hybrid 

experiments suggest formation of a hetero-dimer between the two gene products 

(Kaku et al., 2006).  This is mechanistically feasible as transmembrane CEBiP protein 

lacks intracellular signalling domains, so may require an interaction with CERK1 

othologues or other LysM genes to transduce the chitin signal (Schwessinger and 

Zipfel, 2008).  Earlier QTL analysis peak locations may be a useful indication of 

which LysM genes are working in conjunction in Arabidopsis genotypes for a specific 

pathogen.   

 Following perception of Nod-factor molecules in wild-type root nodulation 

formation, root hair curling and deformation is easily observable within 24hrs of 

inoculation.  Double mutants of LysM-type serine/threonine receptor kinase genes in 

Lotus, nfr1 and nfr5, show no cellular alterations when exposed to M.loti bacteria or 

purified lipochitin-oligosaccharide which suggests NFR1 and NFR5 genes are 

involved early in the Nod-factor perception interaction (Radutoiu et al., 2007).  The 

double and single nfr1 and nfr5 mutant cross-comparison shows that both the NFR1 
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and NFR5 genes are essential for mounting the earliest responses to Nod-factor via 

the SYMRK kinase complex (Radutoiu et al., 2003).  Double mutant analysis of 

LysM genes in Arabidopsis could be constructed by crossing two mutants 

homozygous for different mutations to test the hypothesis that LysM genes maybe 

working in conjunction in a similar mechanistic way to NFR1 and NFR5.  As 

described in section 6.5, this was attempted but was unsuccessful in producing 

progeny with double LysM gene knockout. 

The exact function of LysM domains is not clear however they frequently 

occur in bacteriophage proteins, peptidoglycan hydrolases, peptidases and chitinases 

which are all compounds which require specific differentiation between pathogen and 

host (Zhang et al., 2007).  Currently, proteins containing one or more LysM domains 

have been found in 4000 eukaryotes and prokaryotes however none have been 

observed in archaebacteria, which presumably deviated from the main prokaryote 

phyla prior to the evolution of LysM domains (Zhang et al., 2007).  Therefore,  LysM 

domains are highly conserved sequences separated by flexible lengths of spacing 

sequences of relatively low homology usually containing serine, theorine, aspartic 

acid and proline, which presumably act to position the LysM binding domains to the 

target substrate (Buist et al., 2008).     

 Peptioglycan, derived from bacteria, constitutes a PAMP which initiates an 

immune response in Arabidopsis resulting in: elevation of reactive oxygen and 

nitrogen species, increases in cytoplasmic calcium, increased camalexin and induction 

of MAPK activities (Gust et al., 2007).  The minimal chemical constituent of 

peptioglycan structure found to trigger a PAMP response in animals is muramyl 

dipeptide (MDP) (Gust et al., 2007).  Transmembrane LRR-RLK proteins are a 

common cellular component and share striking structural similarity in both plant and 

animal perception mechanisms which may suggest a common evolutionary past and 

possible similarity in current pathogen perception mechanisms.  For example, FLS2 

resembles the extracytoplasmic domain of human TLR5 reportedly capable of 

bacterial flagellin recognition and Arabidopsis EFR has mammalian peptidoglycan 

receptor homologues; NOD1 and NOD2 (Hayashi et al., 2001; Inohara and Nunez, 

2003).  In addition to the evidence linking LysM genes to fungal chitin recognition, 

recent data from binding assays show Gram-positive bacteria implicated in LysM 

non-covalent binding to peptidoglycan molecules and structurally similar viral 

glycoprotein (Buist et al., 2008). 



 148

 Evidence from a tomato othologue of CERK1 also links LysM genes with 

bacterial perception as the gene product appears to be a potential target for 

suppression by the AvrPtoB protein secreted by Pseudomonas and this was 

conclusively shown in a recent paper (Gimenez-Ibanez et al., 2009).  CERK1 is shown 

to be a determinant of bacterial immunity, however bacterial AvrPtoB ubiquitinates 

the kinase domain in vitro and is shown to initiate degradation in vivo which blocks a 

defence response via this receptor (Gimenez-Ibanez et al., 2009).  This project aimed 

to extend these experiments by measuring susceptibility with Lux trials which 

included different Arabidopsis ecotypes.  In comparison with Pst ∆AvrPtoB, these 

trials show significant increases in susceptibility for the Nok-3 ecotype exposed to Pst 

DC3000 but a small (P= >0.05) increase in bacteria for Col-0 and other ecotypes (Fig. 

4.18).  Ecotype variations in AvrPtoB effect were also observed between Col-0 and 

Ws-4 by (Gimenez-Ibanez et al., 2009).  The results also suggest that in comparison 

with QTL peak locations, suppression across ecotypes is wide spread but may not be 

limited to CERK1, and AvrPtoB may suppress kinase function in multiple LysM 

genes.  

 To explain the duality of recognition between fungal and bacterial sources 

involving LysM genes, it was previously hypothesised that the PAMP recognition 

target for LysM genes may be one of several structurally similar compounds: 

lipopolysaccharides (LPS), lipochitin-oligosaccharide, peptidoglycan, β-glucans and 

chitin oligosaccharides (Buist et al., 2008).  These LysM PAMP binding candidates 

are all extracellular polymeric substances (EPS) which are components of the 

protective bacterial biofilm layer or components of the cell wall (Plude et al., 1991).  

LysM gene products have also been shown to have some binding interaction with 

viral glycoprotein which would also add support to the hypothesis that LysM genes 

are acting as a broad ranging receptor for PAMPs (Buist et al., 2008).    

 LysM genes have been shown to interact with cellular components from a 

diverse array of species.  Preliminary structural comparison suggests it is possible that 

LysM genes may be targeting a conserved structural domain or amino acid sequence 

that links at least two of these candidates (Buist et al., 2008).  A potential conserved 

domain would be the amide, N-acetylglucosamine (GlcNAc), which is a monomeric 

unit which can link to form chitin polymer chains or can cross-link with alternating 

units of N-acetylmuramic acid to create a lattice structure called peptidoglycan 

(Hedrick et al., 1988).  If the GlcNAc or similar conserved sub-units of bacterial cell 
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wall structures were the binding target of LysM genes, then this would effectively link 

and explain the diverse binding and species target evidence emerging (Miya et al., 

2007; Buist et al., 2008).   

 

 
Figure 6.1 A simplified summary of the interactions between FLS2, BAK1 and other 

components in PAMP recognition.  Figure shows the formation of a complex between 

FLS2 and BAK1 that result in signal transduction and basal defence.  BAK1 and BKK1 

have also been implicated as a regulatory facilitator in EFR PAMP perception and 

regulation of HR response which is typically suppressed during a basal response.    

Figure published by (Zipfel, 2008) with permission of Elsevier publishing. 

 

 

6.3 Progression of the project and subject area 

Due to the highly dynamic nature and rapid expansion of scientific knowledge, it is 

useful to place this project into context within which it was conducted.  At the start of 

this project in October 2005, basal resistance had been identified as an 

underdeveloped area of interest with the potential to offer durable disease resistance, 

with two PAMP systems having been clearly identified; EF-Tu-/-EFR and flg22-/-

FLS2.  The LRR-RLK EFR PAMP receptor in Arabidopsis perceives the abundant 

bacterial elongation factor EF-Tu epitope elf18, leading to a signalling cascade via 

MAPK and WRKY genes which activates basal defence responses (section 1.3.1) 

(Kunze et al., 2004).  FLS2 is a membrane bound LRR-RLK gene involved in the 

perception of the flagellin peptide flg22 (Zipfel et al., 2004).  The FLS2 receptor 

forms a complex with BAK1 to initiate basal plant defence response via the MAP 
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kinase pathway (section 1.3.2)  (Chinchilla et al., 2007).  The distinction between 

resistance mechanisms is still unclear, although it was considered highly likely that 

even with these recent PAMP system examples, many components of this basal 

defence were still unknown. 

 The LysM gene family was identified as an area of possible interest for this 

study in 2006 using preliminary QTL data, however, at that time there were no 

publications which described a function for LysM genes in basal resistance.  At this 

point, literature search engines only produced references to LysM gene homology to 

NFR1 in Lotus japonicus, and TAIR website annotation information listed all LysM 

genes as having unknown function.  During 2006 and 2007, the Lux assay was refined 

to improve accuracy and multiple RIL line crosses were tested and independent QTL 

graphs generated which coincide with the locations of LysM genes.  During 2008 and 

2009, the LysM family was being assessed in this project for its potential to be 

involved in bacterial PAMP perception using sequence and phylogenetic analysis, 

microarray based expression profiling and T-DNA knockouts of LysM genes to 

determine effect on bacterial growth in planta.  The project officially ended in 

September 2009.  The publication record has changed considerably during this project 

with the implication of the LysM gene CERK1 being involved in the perception of 

fungal chitin (Kaku et al., 2006; Wan et al., 2008).  More recently, LysM domains 

were linked with peptidoglycan binding, a major component of bacterial cell walls 

(Buist et al., 2008).   Current literature frequently describe the CERK1 gene and its 

fungal chitin interactions, however, this project presents evidence for the hypothesis 

that many members in the family, including CERK1, also have a role in bacterial 

PAMP perception.  To place the project’s findings into context, and to update the 

current hypothesis of action, recent findings relating to the LysM gene family are 

summarised below.    

 

6.4 Application of the findings and commercialisation potential 

Current understanding of the mechanistic and genetic components involved in 

controlling basal resistance is not sufficient to selectively improve resistance for 

commercial application.  Such understanding is a critical prerequisite to the 

enhancement of basal resistance and its application to commercial varieties.  This 
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project aimed to improve the understanding of the genetic basis of basal resistance 

and, through QTL analysis and knockout lines, has implicated the LysM gene family 

to be involved.  This study is at an early stage of development and further validation 

is required to unequivocally link LysM genes as influential players in the PAMP/ PTI 

perception.  The CASE sponsor of this study, Plant Bioscience Limited (PBL), does 

have a current patent relating to the CERK1 gene.  It may be prudent for them to 

consider expanding the patent to a wider range of LysM genes in the future after 

further study to define their mechanistic function.  The original patent linked CERK1 

specifically to fungal perception and so would be limited to this application whereas 

current literature and knockout experiments in this project suggest a broader 

perception mechanism extending to Pseudomonas bacteria.  The implication of LysM 

gene family involvement in basal resistance was derived independently, prior to the 

knowledge of the PBL CERK1 patent.   

 

6.5 Future work 

Our appreciation and understanding of this area of science has recently expanded 

rapidly.  However, there is still a huge amount that is unclear or completely unknown.  

Continuation of this project does have a high probability of yielding interesting results 

and advancing our knowledge, as there are several areas which need to be examined 

more conclusively.  This project and some published evidence suggest that LysM 

genes, particularly those with RLK function, may have a role in basal resistance.  

Future work needs to provide evidence to unequivocally validated LysM genes as a 

player in PAMP mediated resistance and this will require evidence from multiple 

experiments.  Such evidence may be obtained using a variety and combination of 

experimental approaches, some of which are described below, to elucidate the 

mechanisms and role of LysM genes in the PTI pathway.   

 RT-qPCR has a potentially wide range of applications and has previously been 

used to assess gene transcript levels and to validate microarray experiment readings, 

in addition to assessing whether transcript levels had been significantly disrupted in 

knockout lines (Ginzinger, 2002).  Quantitative PCR was used in the elucidation of 

the DELLA proteins, such as RGL1, RGL2, and RGL3, typically associated with seed 

germination and flower development (Tyler et al., 2004).  Knockout lines containing 
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T-DNA inserts were extensively used to characterise the effect an individual gene has 

on final trait function and RT-qPCR was used to demonstrate that transcript levels 

were reduced in the majority of T-DNA lines (Tyler et al., 2004).  However, although  

RT-qPCR is a sensitive technique, if used to examine transcript levels of LysM genes, 

the procedures would need multiple calibration controls as the differences are 

expected to be low based on the transcriptional profiles described in section 5.4.  The 

quantitative assessment of transcript level may also be used for pathway dissection as 

was used following the observation that SEN1, a gene typically up-regulated prior to 

senescence, became constitutively expressed in a WRKY6 knockout mutant.  That 

would suggest that in the wild-type plant, the WRKY6 protein might act as a negative 

regulator of SEN1 (Hanaoka et al., 2002; Schenk et al., 2005).  Assessment of LysM 

gene transcription rates in knockout lines may help to order the hierarchy of events in 

the perception pathway or influential factors regulating expression or effect.       

  The technique of using single T-DNA knockouts to disrupt gene transcription 

can be continued to assess multi-gene traits through multiple knockout mutations 

(Krysan et al., 1999).  Additional crossing of homozygous knockout lines to pyramid 

the LysM RLK knockouts can be confirmed with PCR and followed by Pst 

infiltration assay to establish any additional effect on the trait.  A similar approach in 

Arabidopsis has been used to assess the function of amylase-like proteins AtAMY1, 

AtAMY2, and AtAMY3, suspected to be involved in starch breakdown.  A triple T-

DNA knock-out line was generated and shown to contain degraded starch in the leaf 

comparable to wild-type, therefore these amylase-like proteins were concluded to be 

unnecessary for transitory starch breakdown (Yu et al., 2005).  An attempt was made 

to cross homozygous T-DNA knockout lines to ‘pyramid’ the LysM RLK knockouts 

and test the effect following Pst infiltration.  Parental knockout lines showed 

significant differences between insertion line bacterial growth and controls were 

selected from different insertions in LysM RLKs.  Seeds were generated by crossing 

the homozygous Arabidopsis T-DNA insertion lines.  The resulting progeny were 

assessed for double insertion, using two sets of the paired reactions used previously, 

to separately assess both T-DNA insertions within each of the target genes.  Initial 

seed production from the crosses was poor, as were the germination rates of the 

harvested seed.  However, the generated seeds and resulting plants were Lux Pst 

infiltrated to test basal resistance.  Unfortunately, none of the plants or lines contained 

a double knockout and time constraints prevented additional attempts.  T-DNA 
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mutagenesis and particularly multiple T-DNA insertion has previously produced some 

potentially detrimental side effects such as minor base substitutions, additions and 

deletions or rare chromosomal translocations (Tax and Vernon, 2001).  Despite the 

initial difficulties with producing a successful double knockout mutant in this project, 

the technique of crossing homozygous single knockout mutants has proved successful 

in establishing function by disrupting multiple GID1 receptor genes with the result of 

completely shutting down the gibberellin signal in Arabidopsis (Iuchi et al., 2007). 

An additional use of T-DNA insertions would be LysM gene candidate 

complementation experiments, which attempt to enhance or restore function in 

susceptible lines through the introduction and over-expression of specific candidate 

genes.  This technique was used to test the function of the WRKY18 gene (Chen and 

Chen, 2002).  Using moderate transcription promoters, the plants exhibited an 

increase in PR gene expression and enhanced resistance to Pseudomonas syringae 

compared to wild-type.  In association with NPR1/ NIM1, the WRKY18 gene product 

was shown to positively modulate defence-related gene expression and disease 

resistance (Chen and Chen, 2002).  Increase of the transcription rates may not 

necessarily correlate with enhancement of the trait and when constitutively over-

expressed with the 35S promoter, it may result in deleterious physiological effects 

such as stunted growth, as occurred in this example (Chen and Chen, 2002).  

Therefore, over-expression may give a useful indication of gene function but if 

expression rates are not within the range of gene expression rates typically observed 

within the population, then any effect is difficult to attribute to gene action. 

 Compelling evidence could be obtained for LysM gene family involvement if 

the study went back to the QTL data and RIL lines in an effort to Mendelise the trait.  

This approach would make the assumption that resistance mediated by a LysM gene 

follows simple Mendelian segregation and the addition of a single LysM gene locus 

can confer enhanced resistance.  In RIL populations, which indicate only 1 QTL, 

crosses could be conducted to reintroduce the implicated chromosomal section to 

establish if this restored trait phenotype scores.  To generate crosses accounting for 

multiple QTL peaks would be unfeasibly time consuming for this project.  Also, 

PAMP resistance is likely controlled by multiple loci which may undermine the stark 

phenotypic differences needed for Mendelising a trait through crosses.  A similar 

approach has been used for R-gene defence traits, such as resistance to Barley stripe 

rust, where QTL pyramiding has provided a link between trait function and specific 
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gene control of the trait as pyramiding of major QTLs into susceptible lines restores 

some, or all, of the resistance (Castro et al., 2003b; Castro et al., 2003a).  Marker 

mapping of Arabidopsis lines can facilitate the crossing of significant LysM QTL 

peak regions into RI lines which do not indicate those regions to establish if this has 

an effect on the trait.  This evidence could be supported by the cloning and transfer 

LysM genes into susceptible / resistance genotypes to confer enhanced resistance and 

further link QTL peaks with individual genes’ effects on trait variation.   

 Genetic dissection of trait pathways has previously been achieved using 

microarray analysis of global expression to identify and characterise the function 

components of floral induction such as SPL and LFY genes (Schmid et al., 2003b).  

Microarray analysis has helped elucidate that the salicylate and jasmonate pathways, 

previously thought to act antagonistically, are involved in a more complex network of 

regulatory interactions and coordination between different defence signalling 

pathways (Schenk et al., 2000).  The expression of over two thousand genes was 

examined following exposure to an incompatible fungal pathogen, Alternaria 

brassicicola, or exposure to plant hormones SA, MeJA and ET.  Significant changes 

in regulation were found in 106 genes with no previously described function or 

homology to known defence genes which could then be assessed for direct pathway 

involvement (Schenk et al., 2000).  Additional components of the basal resistance 

pathway, which may have been overlooked or discounted by the refinement methods 

used in this project, could be indentified using microarrays (Ossowski et al., 2008).  

Comparison between mock vs. infiltrated tissue at different time points may identify 

gene candidates which are highly transcriptionally activated in their response to 

bacterial infection.  LysM genes do not typically show high transcriptional response 

following exposure to flg22 however, other components in any LysM mediated basal 

resistance pathway may show greater levels of transcriptional activation, and so 

would indicate potential components in the pathway (Zipfel et al., 2004).    

The CERK1 LysM gene reportedly binds to fungal chitin however, it is likely 

that bacterial AvrPtoB protein targets this gene for suppression and other evidence 

suggests that LysM binds to bacterial peptidoglycan (Miya et al., 2007; Buist et al., 

2008; Gimenez-Ibanez et al., 2009).  There remains a discrepancy between likely 

PAMP perception targets, as evidence from this project and others also suggests 

CERK1 is involved in bacterial perception as well as from fungal chitin.  A conserved 

structural motif may exist between potential candidate PAMPs which are structurally 
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similar, such as: lipopolysaccharides, lipochitin-oligosaccharide, peptidoglycan, B-

glucans and chitin oligosaccharides (Buist et al., 2008).  Previous studies in animals 

have performed similar binding assays by purifying peptidoglycan and showing 

affinity to the PGRP protein using the cascade of prophenoloxidase as an assay 

(Yoshida et al., 1996).  An alternative approach used paralogue LysM domain N-

acetylglucosaminidase (AcmA) fusion protein, which binds specifically to the C-

terminal LysM domain, combined with L. lactis cells to identify purified 

peptidoglycan as the component to which the LysM domain of AcmA binds (Buist et 

al., 2008).   Binding assays may be helpful in determining whether peptidoglycan, 

chitin or any of the previously suggested substrates also bind to the other LysM genes 

which have been implicated by this project to be involved in basal resistance.  
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