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ABSTRACT 

 

Thiol:disulphide oxidoreductases (TDORs) are essential in many organisms for 

the correct insertion and/or removal of disulphide bonds into and from peptides 

and proteins. One process for which TDORs have been shown to be integral is 

cytochrome c maturation (CCM).  In the Gram positive soil bacterium Bacillus 

subtilis the membrane bound TDOR ResA is involved in the removal of a 

disulphide bond from the CXXCH haem binding motif of apo-cytochromes c in 

order to allow correct haem insertion by ResBC.  The majority of TDORs 

contain a CXXC active site in which the sulphur residues of the cysteine side 

chain shuffle between the oxidised (disulphide) and reduced (thiol) forms.  It is 

demonstrated here that both cysteines of the ResA CXXC active site are essential 

for protein function and that other residues, Pro141, Glu80 and Glu75, are 

important for stability, recognition and maintaining the reducing power of the 

active site, respectively.  Studies of the membrane anchor domain of ResA reveal 

that it is important but not essential for CCM.  Further to this, a homologue of B. 

subtilis ResA found in Streptomyces coelicolor was shown to play a similar role 

in vivo with regard to CCM; and in vitro studies of a purified soluble form of the 

protein revealed that although it has a similar low reduction potential to B. 

subtilis ResA it also has some interesting differences.  Finally, in vivo studies of 

an oxidising TDOR, BdbD, from B. subtilis have provided some insight to the 

delicate balance of the redox state of proteins on the outside of the cytoplasmic 

membrane as well as future perspective on how to study this protein in vivo.  
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