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ABSTRACT

Thiol:disulphide oxidoreductases (TDORS) are esakintmany organisms for
the correct insertion and/or removal of disulphad&ds into and from peptides
and proteins. One process for which TDORs have bkeewn to be integral is
cytochromec maturation (CCM). In the Gram positive soil baicten Bacillus
subtilis the membrane bound TDOR ResA is involved in tineoreal of a
disulphide bond from the CXXCH haem binding mofiapo-cytochromes in
order to allow correct haem insertion by ResBCe ajority of TDORs

contain a CXXC active site in which the sulphuridass of the cysteine side
chain shuffle between the oxidised (disulphide) sedticed (thiol) forms. Itis
demonstrated here that both cysteines of the Re€&active site are essential
for protein function and that other residues, PigX3lu80 and Glu75, are
important for stability, recognition and maintaigithe reducing power of the
active site, respectively. Studies of the membeara@or domain of ResA reveal
that it is important but not essential for CCM. rtRer to this, a homologue 8t
subtilis ResA found irStreptomyces coelicolor was shown to play a similar role
in vivo with regard to CCM; anth vitro studies of a purified soluble form of the
protein revealed that although it has a similar teduction potential t8.

subtilis ResA it also has some interesting differencesalbj, in vivo studies of
an oxidising TDOR, BdbD, frorB. subtilis have provided some insight to the
delicate balance of the redox state of proteintheroutside of the cytoplasmic

membrane as well as future perspective on howutyghis proteirin vivo.
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