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Abstract

The motion of a rigid particle and a flexible fluid-filled capesin a pressure-driven
flow through a channel with a side branch is investigated. flthe velocity profiles are
assumed to adopt those of unidirectional Poiseuille flowufasstream and downstream
in the main channel, and downstream in the side branch. Therfltes are prescribed,
leaving the instantaneous pressure drop between the eataad exits to be calculated as
part of the solution. The rigid particle is assumed to be lotbe-free and torque-free.
The membrane of the flexible capsule is treated as a thin tmestsional elastic sheet
which develops elastic tensions and bending moments aogotd simple constitutive
laws. The problem is solved numerically using the boundéwnent method for Stokes
flow. The computational novelty of the formulation is thelursion of a notional boundary
at the entrance to the side branch which avoids the needlarate the channel ends.

An elastic capsule which is released in a straight channel diaickly deforms from
its resting configuration into a parachute-like shape dftarelling a few capsule radii,
but takes a much greater distance to attain a steady shapeasimg the viscosity of the
fluid inside the capsule increases the time taken to reaclarshidentical steady-state
shape. However, when the stiffness of the membrane is isededhe capsule deforms
less and the steady-state shape is attained in a shorter time

A capsule in a branching channel flow is drawn out of the masnaoel when the
flow rate in the side branch is sufficiently strong. The defation suffered by an elastic
capsule depends on its size, its initial location and thewagd angle of the branch chan-
nel. When the branch angle is acute or a right-angle, theutepsay become trapped on
the downstream branch corner and experience relativedge larembrane tensions, thus
presenting the possibility of bursting. Obtuse-angledibinings decrease the possibility
of a capsule becoming trapped on the corner, although tiderese time in the vicinity
of the corner increases significantly. A capsule may suffesitlerable distortion as it ne-
gotiates the branching region, but the membrane tensieniess than those experienced
by a trapped capsule. When a capsule is on a path which tallesét to the downstream
corner of the branch entrance, the path taken depends orojherpies of the elastic mem-
brane. A capsule with a stiffer membrane is more likely toagmn the main channel.
Although the results are for a two-dimensional branchihgytare nonetheless consistent
with experimental observations of plasma skimming.






Acknowledgements

First | would like to thank my supervisor Mark Blyth for semg the funding which
enabled me to undertake this work, and for his unflaggingpeé, help and encourage-
ment throughout the course of my studies.

I would like to thank my wife Emma for her support which enablee to return to
university and pursue a research degree. | would like al$loaiok my children, William
and Tom, for their ‘helpful’ comments and patience while bterthis thesis.

Finally | would like to thank EPSRC who supported this reskamder grant EP/E028241/1.

Vi






Contents

Abstract \Y

Acknowledgements Vii

1

Introduction 1
1.1 Physical background . . .. .. .. ... .. .. .. ...
1.2 Literature review . . . . . . . .
1.3 Mathematical background . . . . .. ... ... ... ... .......
1.3.1 Stokesequation . . . . . . . . ... ...
1.3.2 Poiseuilleflow . . . ... ...
1.3.3 Two-dimensional boundary integral equations fok&dlow . . 11

A conveyor belt, a straight channel and the boundary integal method 17
2.1 Problemstatement . .. .. ... ... ... ...
2.2 Numericalmethod . .. ... ... ... ... ... .. .. .. ...,
2.3 Validation . . . . ... e
24 Results. . .. . . . e
25 DIisCusSiON . . . . . .. e e

The motion of a rigid particle in a straight channel 41
3.1 Problemstatement . .. .. ... ... .. ... .. .. ..
3.2 Numericalmethod . .. .. .. .. ... .. ... ... .. .. . ...,
3.3 Validation . . . . ... ... e
3.4 Results. . .. .. . e
3.5 Discussion . . . . . ... e e

The motion of a fluid drop or a flexible capsule in a straight clannel 69
4.1 Problemstatement . . ... ... ... . ...
4.2 Constitutive equations for fluid drops and elastic chgssu . . . . . . . . 76
4.3 Numericalmethod . . ... ... . ... ... .. ... .
4.4 Modelvalidationandresults . . . ... ... ... ... ... ... .. 86
44,1 Afluddrop—results . . . . ... ...

4.4.2 Anelasticcapsule—results . . . ... ... ... ........ 8 9

45 DIiSCUSSION . . . . o o o o



5 Stokes flow through a bifurcation
5.1 Problemstatement . ... ... ... ... ... .. .. .. ...
5.2 Numericalmethod . . . ... ... .. ... ... ... .. ...
5.3 Validation . . . . .. ...
5.4 Results for a fluid-filled branching channel . . . . . . .. .. .. ...
5.5 Thedividingstreamline . . . . . . ... ... ... ... . ....
5.6 DIiSCUSSION . . . . . . . . .

6 The motion of a rigid particle through a bifurcation
6.1 Problemstatement . .. .. ... ... .. ... .. .. .. .. ...
6.2 Numericalmethod . .. ... ... .. ... .. ...........
6.3 Validation . . ... ... . ... ..
6.4 Deformation of the notional boundary . . . .. ... ... ... ...
6.5 Results. . . . ... . .
6.6 DisCUSSION . . . . . . ...

7 The motion of a flexible capsule through a bifurcation
7.1 Problemstatement . .. ... ... ... ...
7.2 Numericalmethod . .. .. .. .. ... ... ... .........
7.3 Flowparameters. . . .. . . . . . . . . . e
7.4 Validation . . .. ...
75 Results. . . . ...
7.6 Deformation of the notional boundary . . . . . ... ... ... ...
7.7 DISCUSSION . . . . . . . . e
7.8 Furtherwork . . .. .. . .. ..

8 Conclusions

Appendices



List of tables

5.1 Pressure drops between the entrance and exits of a brarattannel for
a range of branch widths, branch anglesy, and flux ratios. . . . . . 150

6.1 Particle velocity and exit pressures for different agunfations ofA4 in a
branching channel containing a particle wijth= 0.2 positioned at three

different locations.
E.1 Values of the stream-function parametgrfor various branch angles.

Xi






List of figures

1.3.1 Two-dimensional Poiseuille flow in a straight chanfidle parabolic ve-
locity profile is shownontheleft.. . . . ... ... ... .. ...... 10
2.1 Channel with a localised disturbance on the lowerwall ..... . . ... 18
2.2 Disturbance tractions for a variety of configurationstia upper and
lowerwallsforL =2dandU =1 ... ... ... ... ......... 30
2.3 Disturbance tractions on the upper and lower wallgffer 2 andU =1 . 31
2.4 Velocity and streamlines fgf = 2 andU = 1 when the Poiseuille flow

isabsent . . . ... 32
2.5 \elocities and streamlineswhéh=1landg=2. .. .. .. .. .. .. 34
2.6 Velocities and streamlines whéh=6andg =2. . ... ... ... .. 35
2.7 The normalised top-wall shear stressfoe 1, 2.21 and6 andg =2. . . 35
2.8 Velocities and streamlines whéh= —1andg=2. . ... ... .. .. 36
2.9 Disturbance tractions, velocity profiles and streaedifor ¥ = 6 and

B=4 e 37
2.10 Velocity profiles and streamlines fBf=6andg=1 . ... ... . .. 38
2.11 Velocity profiles and streamlines fbr= 12andg =05 . . . . . . . .. 39
3.1 A straight-walled channel containing a rigid neutrddlyoyant particle. . 42
3.2 Decay of the disturbance to thecomponent of velocity along the cen-

treline forp = 0.5 ando = 0. The particle boundary is at/d = 5.5. . . 59
3.3 Upper wall disturbance tractions, particle tractiastseamlines and path-

linesforp=0.5andoc =0. ... ... .. ... ... . ... .. .... 61

3.4 Tractions on the channel walls and the particleofer 0.5 ando = 0.25. 63
3.5 Pathlines in a section of the channel foe 0.5 ando = 0.25. The par-

ticle rotates anti-clockwise and the fluid in the eddiestestalockwise.

The frame of reference is moving with the particle. The agdmdicate

the flow direction relative to the particle. . . . . . .. .. ... .. .. 64
3.6 Pathlines in a section of the channel foe 0.7 ando = 0.25. The par-

ticle rotates anti-clockwise and the fluid in the eddiestestalockwise.

The frame of reference is moving with the particle. The agdmdicate

the flow direction relative to the particle. . . . . . . ... ... .. .. 65
3.7 Disturbance pressure ysfor offsetse = 0 (—), 0.25 (--) and0.5 (---). . 65
3.8 Disturbance pressure vsfor two particles withp = 0.25 (—) and0.5 (). 66
3.9 \Variation of the patrticle’s translational velocity witespect tp ando. . 66

Xiii



3.10 Variation of the dimensionless particle angular vigjowith respect top

ando. . . ... e 67
4.1 A straight-walled channel containing a neutrally-baratycapsule which
encapsulates a fluid of viscosity:. . . . . .. ... 70

4.2 Elastic capsule with unit normal, unit tangent, in-plane tension- and
transverse shear tensignThe arc-length is and its direction is indicated

bythearrow. . ... .. ... .. ... 78
4.3 Disturbance tractions on the top wall and the centreliglecity for a
steady dropwith =1, p=0.5,c =0andC, =1. .. ... ... ... 89

4.4 Steady shape, disturbance pressure, boundary vetoaitid interfacial

traction jump for a steady fluid drop with=1, p=0.5,0 =0,C, =1. 90
4.5 Streamlines and pathlines for a steady fluid dxep 1, p = 0.5, 0 = 0,

Co =10 o oo 92
4.6 Top wall disturbance tractions, steady shape, dishadgressure and

drop boundary velocities for a steady fluid drop with= 1, p = 0.75,

c=0,Co=1. . . . 93
4.7 Pathlines for a steady fluid drop= 1, p = 0.75, c = 0 and(C, = 1.

The frame of reference is moving with the drop centroid. . ...... . . 93
4.8 Steady drop shape, disturbance pressure and pathtinesfluid drop

withA=1,p=05,0=0andC, =0.5. . . . .. ... .. ... .... 94
4.9 Steady drop shape, disturbance pressure and pathtinesfluid drop

WithA=1,p=05,0=0andC, =2. . . . . .. ... ......... 95
4.10 Evolution of the drop centroid, disturbance pressung the boundary

velocity for a fluid drop with\ =1, p=0.5,0 =0.25 andC, =1. . .. 96

4.11 Pathlines around the fluid drop with= 1, p = 0.5, 0 = 0.25 andC, = 1
att = 11.14d/Uy. The centroid is displayed as a do{10.125) and the
frame of reference is moving axially with the drop centrdidc-length is

measured anti-clockwise from zero at the rightmost poirthefdrop. . . 96
4.12 Disturbance pressure for drops with= 0.5, c = 0 andC, = 1. The

viscosity ratiosard =1 (=), A=2(-)and\=5(--). . . . . .. ... 97
4.13 Centroid paths for fluid drops witk = 10, p = 0.25, C, = 1 and

o =-0.05,-0.35 -0.5and—0.65. . . . .. .. ... .. .. .. ..., 98

4.14 Evolution of the drop shape for = 10, p = 0.25, ¢ = —0.65 and

C, = 1. The drops from left to right are farU,/d = 0, 4, 8, 12, 17,

21, 25 and 28.8. The abscissa label is intentionally omitiedvever the

marks indicate the-coordinate of the drop centroid. . . . . . ... ... 98
4.15 Deformation of an elastic capsule with = 0 in a shear flow foK) =

0.0125, 0.125 and1.2. For comparison against Figure 2 in Breyiannis and

Pozrikidis (2000). . . . . . ... 100
4.16 Capsule shape, disturbance pressure, wall distuglieantion, centreline

velocity and interfacial tractions for an elastic capsulthws = 1, p =

05,0 =0,W=1andM =0. ... ... ... ... .... 101

Xiv



4.17 Capsule shape, disturbance pressure, wall distuglieaation and centre-
line velocity for an elastic capsule with=1,p =0.5,0 =0, W =1
andM =0.001. . . . . . ...

4.18 The membrane tensions and the bending momemt versiength, for
the steady-state capsule shown in figure 4.17 (a). ArcHeisgiheasured
anti-clockwise from zero at the front of the capsule. Thdit@tips are
ats = 1.55d ands = 3.08d respectively. . . . . .. ... ... ... ...

4.19 Capsule shape, disturbance pressure, wall distughieaation and centre-
line velocity for an elastic capsule with=1,p=05,0 =0, W =5
andM =0.001. . . . . . ...

4.20 Capsule shape, disturbance pressure, wall distugligaation and centre-
line velocity for an elastic capsule with= 5, p = 0.5,0 =0, W =1
andM =0.001. . . . . . ...

4.21 Centroid trajectories and capsule shapesferl, p = 0.5, W =1 and
M=1073. . .

4.22 Wall disturbance traction, centreline velocity and thathlines at =
2.08d/Uy for an elastic capsule with = 1, p = 0.5,0 = 0.3, W =1
andM =0.001. . . . . . . ..

4.23 Capsule shape, disturbance pressure, wall distughieaation and centre-
line velocity for an elastic capsule with=1, p =0.75,0 =0, W =1
andM =0.001. . . . . . ...

4.24 Capsule shape, disturbance pressure, wall distuglieaation and centre-
line velocity for an elastic capsule with=1, p = 1.1,0 =0, W =1,
M = 0.001 and an elliptical initial shape. . . . . ... ... ... ...

5.1 A straight-walled channel with a branch which contaiffisiia of viscos-

5.2 Streamlines, wall tractions and centreline velociies branching chan-
nelwithd =1,a=7n/2and@ =0.5. . . . . ... ... ... .. ....
5.3 Streamlines, wall tractions and centreline velociies branching chan-
nelwithd =1,a=7n/2and@ =0.1. . . . . .. ... ... ... ....
5.4 Streamlines, wall tractions and centreline velociies branching chan-
nelwithd =1,a=7n/2and@ =0.9. . . . . .. ... ... ... ....
5.5 Streamlines, wall tractions and centreline velociies branching chan-
nelwithd =1,a=n/4and@ =0.5. . . . . ... ... ... ... ...
5.6 Streamlines, wall tractions and centreline velociies branching chan-
nelwithd =1, a=n/4and@ =0.1. . . . . .. ... ... ... ....
5.7 Streamlines, wall tractions and centreline velociiiesx branching chan-
nelwithd =1,a =n/4and@Q =0.9. . . . . .. ... ... ... ....
5.8 Streamlines, wall tractions and centreline velociiiesx branching chan-
nelwithd =1, =3r/4and@Q =0.5. . . . .. ... ... ... ....
5.9 Streamlines, wall tractions and centreline velociilesx branching chan-
nelwitho =1, =3r/4and@Q =0.1. . . ... ... ... ... ....

XV

135

137

138

140

141

142



5.10 Streamlines, wall tractions and centreline velcgitie a branching chan-

nelwithd =1,« =3r/4and@ =0.9. . . ... .. ... ... .. ... 145
5.11 Streamlines, wall tractions and centreline velcgitie a branching chan-

nelwithy =0.5,a =n/2and@Q =0.5. . . . . . .. .. ... ... ... 146
5.12 Streamlines, wall tractions and centreline velcgitie a branching chan-

nelwithd =2, a=7/2and@Q =0.5. . . . . .. ... .. ... ..... 147
5.13 Distance of point where = 0 from the right-hand corner of the branch

ENITANCE. . . . . . o o e e e e e e e e 149
6.1 A straight-walled channel with a branch which contaiffisiid of viscos-

Y £ o o e e 154
6.2 \elocity profiles in a channel with = d, « = 7/2and@Q = 0.5. . . .. 170
6.3 Section of the flow domain showing the notional boundanyfigurations

6.4

6.5

6.6

6.7

6.8

6.9

7.1

7.2

7.3

7.4

7.5

for a particle of radiug = 0.2 and centroid ak./d = (6.65, —0.795). . . 173
Section of the flow domain showing the notional boundanfigurations

for a particle of radiug = 0.2 and centroid ak./d = (6.65,—1). . . . . 174
Section of the flow domain showing the notional boundanfigurations

for a particle of radiug = 0.2 and centroid ak./d = (6.65, —1.205). . . 174
Dividing boundary configurations during particle miipa into the branch
channel. . . . . . . . . 175
A portion of the flow domain showing the centroid trajeigts for a rigid

particle withp = 0.5, « = 7/2 initially located atx./d = (2,0) for

Q=0.1,05and0.9. . . . . ... 177
Normalised pressures for a rigid particle with= 0.5, « = 7/2 initially
located atx./d = (2,0) for @ =0.1,0.5and0.9. . . . . . ... ... .. 179

Magnitude of the translational velocity and the rotadiovelocity for a
particle withp = 0.5, o = 7/2 and initially located ak./d = (2,0) for

Q=0.1,05and0.9. . . . . ... 180
A straight-walled branching channel which contains ia it viscosity i

and a deformable capsule containing a fluid of viscosjty . . . . . . . 184
Capsule journeys when=1, p = 0.5, W =1, « = 7/2 and@ = 0.9.

At t = 0 the capsule centroid is at./d = (2,0). . ... .. ....... 205

Capsule journeys, membrane tensions and bending membabh\ = 1,
p=05W=1a=mn/2and@ = 0.1. At ¢t = 0 the capsule centroid

is atx./d = (2,0). In (c) and (d) arc-length is measured anti-clockwise

from zero at the lowermost point on the capsule as it appedisifinal
shapeinfigure 7.3 (b). . . . . . . . . . . . ... 206
The membrane tensions and the bending moment versuesngtb; for

the steady-state shape of a capsule in a straight chanreAwit 1, p =

0.5, W =1andM = 0.001. The capsule shape is shown in figure 4.17 (a).207
Evolution of the final capsule shape from figure 7.3 (b)mhe 13.06 d*/Q;.
Capsule shapes shown (i), (b), (c) and(d) at (Q1/d?*)t = 0, 3.7, 9.0

and37.1 respectively. The final shape is the steady-state shape....... 207

XVi



7.6 Normalised pressuregs (-) andps (--) against time forA = 1, p = 0.5,

W =1, M =103, a = n/2 andQ = 0.1. The capsule journey is

showninfigure 7.3 (). . . . . . . . . ... .. .. .. .. 208
7.7 Capsule journeys and membrane tensions whenl, p = 0.5, W =1,

a =m/2and@ = 0.5. At t = 0 the capsule centroid is at./d = (2,0). . 209
7.8 Capsule journeys for=1, p = 0.5, W =5, M = 0.001 anda = 7/2.

At ¢t = 0 the capsule centroid isat./d = (2,0). . . ... ........ 210
7.9 Capsule journeys for=5,a=0.5d, W =1landM =1073.. . . . . . 210
7.10 Capsule journeys when = 1, p = 0.75, W = 1, M = 10~3 and

a =7/2. Att = 0 the capsule centroid is &t /d = (2,0). . . . . . . .. 211
7.11 Capsule journeys when= 1, M = 1073, a = 7/2 and@Q = 0.1. At

t = 0 the capsule centroid isat./d = (2,0). . . . . . ... ... ..., 211

7.12 Centroid paths for capsules with= 1, p = 0.5, W = 1, M = 0.001
anda = 7/2. In both figures trajectories terminating in a dot correspon
to capsules which become trapped atthe corner. . . . . . .. .. .. 212
7.13 Capsule journey when=1,p =05, W =1landM =1073. . . . . .. 214
7.14 Centroid paths for capsules with= 1, p = 0.5, W = 1, M = 0.001
and@ = 0.5. Capsule centroid at = 0 is x. = (2d,y.) wherey./d
varies from—0.4 to 0.4 in steps of0.1. Trajectories terminating in a dot

correspond to capsules which become trapped at the corner.... . . . 215
7.15 Capsule journeys when= 1, p = 0.5, M = 0.001, & = 37 /4 and
@ = 0.5. The capsule centroid is initially located@ 0.13)d. . . . . . . 215

7.16 Membrane tensions and bending moment for the final tagsown in
7.15 (a) att = 25.88 d?/Q;. Arc-lengths at the trailing and leading tips
ares/d = 0.80 ands/d = 3.23 respectively, and is measured in an anti-

clockwise direction. . . . . . ... ... L 216
7.17 Capsule journeys when=1, p = 0.5, M = 0.001, « = 37/4,6 = 1/2

and@ = 2/3. The capsule centroid is initially located @ 0)d. . . . . . 218
7.18 Configurations of the deformed notional boundary. . ...... . . . .. 220
D.1 Two-dimensional fluid-filled branching channel. Theoars indicate the

prevailing flow direction and the walls are numbeied. . . . . . . . .. 247
D.2 Streamlines fof) = 0.5 in a section of the branching channel computed

by the finite difference method. . . . . . . . .. ... ... ... .... 502
E.1 Local geometry at the right-hand corner of the branchaene of the

branching channel, with plane polar coordinatesdf. . . . .. .. .. 252

E.2 Streamlines close to a corner for= 0.577 and~ = 2. The stress on
the walls is well-defined in this case. When the constaig positive in
equation (E.16) the streamlines enter from the top-left. ..... . . . . . 256
E.3 Streamlines close to a corner for= 37/4 andy = 1.67358343. The
stressis singular atthecorner. . . . . . ... ... ... ... 256
E.4 Streamlines close to a corner with= 7 /2 for the two values ofy. The
stress is singular at the corner inbothcases. . . . . ... ... ... 257

XVii



E.5 Streamlines close to a corner with= 7 /4 for the two values ofy. The
stress is singular at the corner inbothcases. . . .. ... ... ...

XViii



Chapter 1

Introduction

In this introductory chapter we will motivate our researghpoviding the physical and
mathematical background to the motion of a particle in a nokAwhich we will investi-
gate in subsequent chapters.

1.1 Physical background

There are many examples of small particles moving withinid fidnich is also in motion.

If we limit our attention to the motion of particles in pipeben one of the most well
known examples is the circulation of blood around the camboular system. During
the journey of oxygenated blood through the systemic cittarh, blood travels from the
heart into the aorta and on into the arteries, then into emadlssels called arterioles and
then into the capillaries which are the smallest blood uess@xygen-depleted blood is
returned from the capillaries via venules and the veins éohibart where it is pumped
to the lungs in order to release carbon dioxide and receiygax Blood consists of
platelets, white blood cells and red blood cells which afes@pended in plasma. In a
healthy cubic millimetre of human blood there will be approately 5 million red blood
cells, 7500 white blood cells and.5 million platelets. While the red blood cells account
for around45% of blood volume the combined volume of white blood cells atadglets
is around1%. Further detail on the constituents of blood and blood flowy & found
in Caro et al. (1978). Therefore the mechanical propertiégdomd are dominated by the
behaviour of the red blood cells due to their high conceiatnatIn vessels such as the
aorta and large arteries, blood flow may be treated homogshebecause the cells are
much smaller than the vessel through which they travel. Wewa the smaller blood
vessels, such as capillaries, the size of the red blood isethé the same order as the
vessel and so blood must be treated heterogeneously anarti@ifate nature must be
taken into account. To put this into perspective, a typiaahhn red blood cell whose
undeformed shape is a biconcave disk, has a thicknedgmfand a maximum diameter
of 8um which is larger than the minimum diameter of a capillaryjclihcan be as low
asb5um. To pass through capillaries of this size red blood celldevgo considerable
deformation, and either adopt a shape which is similar toraghaite or they fold along a
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diameter of the cell. The red blood cells are therefore exttg flexible. There are several
different types of white blood cells and they are all rougkpherical, with the diameter

of the largest type arourl xm in humans. Platelets are smaller than red blood cells and
are irregularly shaped with a volume which is abo/it0 ¢/ that of a red blood cell.

The properties of blood flow have been widely studied in masgiglines, including
medicine, physiology and mathematics. The first publistestilts which quantitatively
described the flow of blood were by Jean Louis Marie PoiseinllLl840 where he exper-
imentally derived his law in a circular pipe. The law relates the volumetric flow rate,
Q, along the pipe to the applied pressure differentg, the diameterD, and the vessel
length . and was originally stated as

Ap D*
L

Q=K (1.1.1)
where K was an experimentally derived constant which depended erietmperature
and the liquid. Later it was found thdt’ = /128 wherey is the fluid’s viscosity.
A history of Poiseuille’s law is given in Sutera and SkalaR93). We can see that the
flux is proportional to the pressure drop and to the fourth growf the pipe diameter.
Consequently to maintain a specific flow rate along a pipe pipdied pressure difference
must be quadrupled if the cross-sectional area is halveel HEgen-Poiseuille law may be
applied successfully to the flow of blood through the smaléssels, and more generally
to any non-turbulent fluid flow along a pipe of constant ciacwdross-section.

There are numerous other examples of particles moving atbagnels in nature as
well as technology. For example the flow of particles into déivepathways of the lungs
is of particular interest in the design of medicines. Flsédiion chambers are used in the
petrochemical industry as well as other industries (Dandst al. 1985). An example
is the fluid catalytic cracking process which is used to bragadet the heavier petroleum
compounds to extract petroleum spirit. The resulting flualyrthen be easily extracted
along pipes. The flow of immiscible fluids through a porous iaéslof interest to many
disciplines, including petroleum engineers and geoplsisi¢e.g. Gunstensen and Roth-
man 1993). The coating of paper and the manufacture of irkdveg the flow of emul-
sions or colloids through pipes (e.g. Jensen et al. 2006)inAtepth knowledge of the
fluid mechanics are required in the design and constructioniarofluidic devices (e.qg.
Roberts and Olbricht 2006) which could for example be usesbtocells, or some other
chemical investigation.

To determine the governing forces in a specific flow a meastiehais of interest to
engineers and mathematicians is the Reynolds number, wigghbe thought of as the
ratio of inertial forces to viscous forces. A high Reynoldsber indicates that inertia
dominates the fluid motion, and a low Reynolds number meats/thcosity dominates.
If U is the typical fluid velocity and. is the typical length (e.g. the tube diameter) then

1Called the Hagen-Poiseuille law to recognise its independiscovery by Gotthilf Hagen.
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the Reynolds numbeRe, is defined by

Re= UL (1.1.2)

0
where 1 is the fluid’s viscosity ang is its density. In the cardiovascular system the
Reynolds number is greater in the larger blood vesselst isshigh in the aorta, and low
in the capillaries Re = 0.0003 (Popel and Johnson 2005)). It must also be said that the
viscosity of whole blood varies from vessel to vessel in taelovascular system. This
variation is called the Fahraeus-Lindgvist effect and sesbed in vessels with a diameter
of less than about 1 mm. There are several factors which ¢hasgecrease in viscosity
but the main physical reason for the effect is due to the reddtells migrating towards
the vessel centreline. A cell-free layer near the wall iatgd which then reduces the
flow resistance and therefore the apparent viscosity. Foller fdesciption of the effect
see chapter 4 in Pozrikidis (2003) and the references thefidiroughout this work we
are interested in regimes where the Reynolds number is smettl that viscous forces
dominate the mechanics of the fluid and particle motion. Hewrhore we are interested
in cells which may contain a fluid of generally different \asity to the surrounding fluid.
For example a red blood cell contains haemoglobin which-istimes as viscous as the
surrounding plasma (Caro et al. 1978, p. 161).

In this work we will use the term particle to refer to a rigidlagf constant shape,
the term drop to refer to an immiscible liquid suspended iambient fluid and the term
capsule to refer to a thin, flexible walled cell which consa@rsecondary fluid. We will use
the term cell as a collective term for a rigid particle of dams shape, a fluid drop and an
elastic capsule. Although there is a small difference betwtbe density of blood plasma
and blood cells (e.g. Benson 1999), the effect will be ndglgin the microcirculation
due to the small size of the cells and vessels. For the cefisidered herein we will
therefore assume that the ambient fluid and the encapstilaigtiave the same constant
density and that the cell is inertia-free thus renderingciieneutrally buoyant.

1.2 Literature review

The motion of fluid drops, particles and elastic capules igl and intensively stud-
ied area of hydrodynamics. The behaviour of each type oftaalbeen investigated in
unbounded flows as well as above plane walls and in channdisuaes. While some
studies concentrate on a single cell, others investigaté¢haviour of aggregates or sus-
pensions of many cells. The field has been studied experaifheaind theoretically with
both disciplines employing a wide variety of investigatteels. Here we will provide a
brief review of the literature regarding the motion of celidugh channels and tubes.
The placement of a cell in an unbounded flow allows the arsklgsconcentrate on
the dynamics of the cell and its motion. Investigations itite nature of the deforma-
tion could lead to predictions on the conditions which woc#dise the cell to break up.
Barthés-Biesel (1980) used asymptotic expansions tesiigage the small deformations
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of a spherical capsule in a shear flow. She found that inergatie viscosity of the

encapsulated fluid increased the capsule’s inclinatiomeoiricident streamlines of the
background shear flow. The assumption of a small deformatsrelaxed by Zahalak
et al. (1987) in their two-dimensional work on an inextetesitapsule in an unbounded
shear flow using a series solution and conformal transfeomst They found that the
capsule reaches an equilibrium state in which the normajpoo@nt of the membrane’s
velocity is zero while the tangential component is non-zardhat the cell boundary ex-
hibits a tank-treading motion. Furthermore, they showed tiee shear rate of the back-
ground flow and the fluid viscosities affect the velocity figltembrane deformation and
tension. In a later work, Rao et al. (1994) studied an elastjusule in an unbounded
two-dimensional shear flow and concentrated on how the siscatio affected the ap-

parent viscosity of the whole fluid. They found that the appawviscosity was inversely
proportional to the encapsulated fluid’s viscosity. Zhod Bozrikidis (1995) considered
a cell with an incompressible membrane with a variety of @mheed shapes in a two-
dimensional shear flow, and a spheroidal cell in a three-d@ioaal shear flow. They
found that the deformed steady cell shape depended on thefannebd shape and that
there were qualitative and quantitative similarities bedw the deformation of the two
and three-dimensional cells. Ramanujan and Pozrikidi9&)L8tudied the deformation
of a cell with an elastic membrane in a three-dimensionadusfiew. They found that the

viscosity ratio did not profoundly affect the equilibriurhape of the cell.

In the above cited works, the cell membrane does not resigtibbg. The inclusion
of a bending stiffness was made in Pozrikidis (2001) in otdestudy its effect on the
cell’s deformation in a three-dimensional shear flow andaforarbitrary viscosity ratio.
He found that the bending resistance restricted the cedferchation and prevented the
cell from developing regions of relatively high curvatutdowever the time-integration
method was shown to be sensitive to the size of the time-stith,a smaller time-step
required when bending resistance was taken into account.

The fluid was unbounded in the previous studies. However inyna@plications of
practical interest the cell travels along a channel or piRégid particles in an elastic
tube were studied by Lighthill (1968) who used lubricatibedry to show the existence
of a thin lubricating layer {.2um) in the case of tightly fitting pellets. Later, Tdzeren
and Skalak (1978) presented a significantly more accuratiead®f calculating the pres-
sure drop across a tightly fitting pellet which was duly esédr by Lighthill. Bren-
ner (1970) derived analytic expressions for the additiqggraksure drop due to a rigid
neutrally-buoyant particle moving in a tube where the baokgd flow was Poiseuille.
He considered a sphere in a circular pipe as well as nontairpipes and ellipsoidal par-
ticles. The motion of fluid drops and bubbles of constantasgrtension was investigated
in Brenner (1971) where expressions for the pressure drop darived. Sugihara-Seki
(1993) studied the motion of an inertia-free ellipticalioger in a channel with a back-
ground Poiseuille flow. The finite-element method was usedatoulate the velocity
of the particle and the fluid. He calculated the particleettyries for a range of parti-
cle sizes and displacements from the centreline. In SugiSaki (1996) the numerical
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model was updated to model the motion of an ellipsoid in autarctube. Prolate and
oblate spheroids were shown to exhibit differing behavidepending on several factors
including the particle-tube size ratio and centreline etffs

Quéguiner and Barthes-Biesel (1997) developed a nuaienkisymmetric model for
an elastic cell which encapsulated a fluid of the same vigcasithe ambient fluid. The
cell travelled from a hyperbolic entrance area into a cacalibe where it was allowed
to reach an equilibrium state. The deformation was then stisdied as the cell moved
out of the tube into a hyperbolic exit area. They showed tteady-state deformed shape
was similar to that seen in experiments (e.g. Secomb et 8I7)20The length of the
tube required to reach the steady shape displayed a strgregndience on the cell size
and membrane behaviour. Mortazavi and Tryggvason (200@)ext the motion of an
immiscible fluid drop of a generally different viscosity adensity in a two-dimensional
channel using the finite-difference method for Reynolds Ioens 0f0.25 and above. They
showed that the drops migrate across streamlines with thiemdirected towards an
equilibrium position at the centreline or at a point closethte wall which for a specific
Reynolds number depended on the viscosity ratio and dersity

Staben et al. (2003) used the boundary integral method &siigate the motion of a
rigid spherical particle in a Poiseuille flow between twon@awvalls, and where the par-
ticle was close to one or both of the walls. The formulatidovaéd the authors to avoid
meshing the channel walls which facilitated the accuratepdation of the particle mo-
tion even when the particle-wall separation was less ilarf the particle radius. They
showed that larger particles translated slower along therdl. They also calculated the
rotational velocity and showed how it increased as the@antias moved away from the
centreline. However at a point close to the wall the rotatiamelocity began to decrease
due to the proximity of the walls. Pozrikidis (2005b) congulithe motion of a rigid
spherical particle and the induced additional pressurp @ir@a tube using the boundary
integral method, and where the background flow was assumied Roiseuille. The re-
sults were found to be consistent with previous asymptatict®ns. The rigid particle
was replaced by an elastic cell in Pozrikidis (2005c). THedid not resist bending and
contained a fluid with viscosity equal to that of the ambienidfl The concentrically
positioned cell was found to develop a shape resembling apate. An eccentrically
positioned cell was found to migrate towards the centrelhéde developing a shape re-
sembling a slipper. Both shapes are observed in experiroarite flow of red blood cells
in capillaries (e.g. Secomb et al. 2007).

Pipes and channels with a branch or even multiple branctiags been studied both
experimentally and theoretically. Pries et al. (1986) stddhe flow of blood cells in a
section of the rat mesentery experimentally. They found tthemore peripheral vessels
received a lower proportion of the red blood cells. Yan ef{#991) studied the three-
dimensional motion of a rigid spheres moving from a largeetiriio a smaller circular
side pore. However comparisons with the fluid-skimming jimeenon (e.g. Krogh 1922)
observed in capillaries revealed differences which wer@ated to the rigid nature of the
particles in the study. Kiani and Cokelet (1994) calculatesl additional pressure drop
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at a single bifurcation using a large-scale experimentphegius consisting of circular
tubes containing glycerol and flexible disks to model thebdlplasma and red blood cells
respectively. They found that the pressure drop was signifii¢ higher across the bifur-
cation when the disks were introduced into the system. Ardéimal study by El-Kareh
and Secomb (2000) considered the motion of rigid spheriapt én the flow between
parallel plates with a cylinder joining the plates to sintela bifurcation. They concluded
that red blood cells will only follow fluid streamlines if theells approach the bifurcation
with random orientations with respect to the streamlinethefbackground flow. Manga
(2006) studied the effect of a symmetric branching on the @ibane or more fluid drops
in two dimensions using the boundary integral method. Haddbat the drops were more
likely to enter the branch with the higher flow rate when trecwebity ratio decreases, the
capillary number increases or the drop size increases.

Roberts and Olbricht (2006) studied experimentally theiomatf rigid disks in branch-
ing channels of square and rectangular cross-section. Tinégd their study to two
specific bifurcation geometries. They found that underaterfiow conditions the par-
ticles could be segregated from the suspending fluid. Seainab (2007) studied the
motion of red blood cells through a single bifurcation in a&ravessel of a rat's mesen-
tery. They then went on to perform a numerical study of thbgesved results by loading
a two-dimensional rendering of the blood vessel into a fialeanent software package
together with a visco-elastic model capsule. The mechhpicgerties of the capsule
were set from experimental calculations. They found thairthumerical model accu-
rately predicted their observed results regarding capshidge and lateral migration in
the channel. In their treatment only a specific channel gégmeas considered and the
additional pressure drop across the particle was not cadpdthe work of Barber et al.
(2008) followed on from Secomb et al. (2007). Barber et @008 computed the parti-
tioning and deformation at a rounded capillary bifurcatiging a visco-elastic capsule
and the finite-element method. They found that the numepiadictions of their two-
dimensional model were consistent with the experimengallte. However the evolution
of the additional pressure drop due to the capsule was nlodied in their analysis.

In the majority of the above works the cell is treated in ifsola The motion and
behaviour of multiple cells in a suspension has been stugjeshany authors, with ap-
plications including various industrial and natural preges, as previously mentioned.
Batchelor (1970) derived an analytic formula for the buliess of a suspension in an
unbounded flow by averaging over the system. Zhou and Pdmiki993, 1994) studied
the motion of a suspension of fluid drops in a two-dimensiatennel flow using the
boundary integral method. A single file of drops was consideén Zhou and Pozrikidis
(1993) where the motion was driven by a shear flow and shéaritly of the suspen-
sion was evident in all simulations. A Poiseuille flow wasdif® the background flow in
Zhou and Pozrikidis (1994) where the drops were found to aégtowards the centreline,
forming either a single row or multiple rows. Numerical siations were carried out by
Loewenberg and Hinch (1996) who studied the motion of a tdieensional periodic
array of up to twelve drops in an unbounded shear flow. Theirlte revealed a complex
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rheology in the suspension with the emphasis on drops whichpsulated a fluid with
viscosity equal to that of the ambient fluid, although soneady-state comparisons are
made for drops with viscosity ratios in the range zero to fi@ecomb and Hsu (1996)
studied the axisymmetric motion of elastic fluid-filled cales in a tube where lubrica-
tion theory was employed to describe the motion of the smaimg plasma. They showed
that the resistance to cell motion was higher in a tube ofimgrgross-section than in a
tube of uniform cross-section, thereby demonstrating ttieatdeformation suffered by a
red blood cell may contribute significantly to the flow resiste in capillaries.

Coulliette and Pozrikidis (1998) conducted a three-dirmara analysis of an array
of fluid drops in a circular pipe with a background Poiseilbsv, and where the ambient
and encapsulated fluids’ viscosities were assumed to bd.edheay found that drops
migrated towards the centreline. They calculated the ampaiscosity of the suspension
by averaging over the system and found that the apparertsiigavas higher for a non-
axisymmetric file of drops than for an axisymmetric one. Baawgis and Pozrikidis (2000)
investigated the motion of up &) elastic cells in a periodic domain in a two-dimensional
shear flow where the viscosity of the encapsulated fluid wasnasd to be equal to that of
the ambient fluid. They found that a solitary test cell redche equilibrium state for all
values of the imposed shear rate of the background flow anthgheheological properties
of the suspension was somewhere between that of a suspefigiaid drops and rigid
particles, due to cell deformability and the tank-treadatlity of the cell membrane.
Secomb et al. (2001) studied numerically the effect of arotiradial surface layer (ESL)
on the motion of red blood cells in a capillary. Their elastidl also included resistance
to bending and the parameter values of the cell were taken fnaman red blood cells.
They showed that the ESL causes the red cell shape and itsityelo more closely
match experimental results. Pozrikidis (2005a) examimedaxisymmetric motion of
a file of elastic cells in a Poiseuille flow in a tube using theimary integral method.
The cell resisted bending and the viscosity ratio was sehity.uT he results showed the
significance of capillary size and cell spacing on the disphdaematocrit and apparent
viscosity of the whole fluid.

We can therefore see that theoretical studies have tendmshtentrate on the motion
of elastic capsules in unbounded domains, straight chauamel tubes, whereas motion of
capsules at bifurcations has received less attention.ne spplications bifurcations may
closely follow each other. In capillary networks, for exdmphe blood vessels undergo
numerous branchings (Popel and Johnson 2005), and thibulistn of cells throughout
the network is known to be non-uniform, with cells at flow jtinns tending to favour the
branch with the higher flow rate (Fung 1973). Indeed Pozskid009) performed sim-
ulations in a tree-like capillary capillary network wherg@mbability function was used
to decide on the direction of the cell at a branching. In nflaidic channels, branchings
may be engineered to selectively control the distributibecadls (Roberts and Olbricht
2006). In order to more fully understand the mechanicalofactvhich affect capsule
motion at a junction we require a numerical model which ndy ¢akes into account the
properties of the membrane but also the flow conditions amfténch geometry. Our aim
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therefore is to construct a numerical model which accuyadlects the complex interac-
tion between the fluid flow, the deforming capsule boundan/tae channel geometry at
a bifurcation.

1.3 Mathematical background

In this section we provide the details of the mathematioalstavhich we will use to study
the motion of a particle or capule in a straight and a brargcleimannel flow. We will
describe the equations of Poiseuille flow for the unidi@i flow of fluid in a straight
channel and the boundary integral method which we will latgr to derive the governing
equations in the regimes of interest. We will start by ddsieg the Stokes equations
which govern the flow of fluids in the limit of vanishing Reydslnumber.

1.3.1 Stokes equation

Throughout this thesis we are concerned with the flow of Neisto fluids of constant
density which have a small Reynolds number. A Newtonian fisiidne in which the
relationship between the fluid stregs, and the rate of strain is linear and is described
mathematically by

oij = —p 0ij + 1 <8xj + 6wi> ; (1.3.1)

wherep is the pressurej;; is the Kronecker delta which equalswheni = j and0
otherwise,u is the velocity, and,j = x,y in two-dimensions. For example, in the
cardiovascular system both the haemoglobin encapsulatedrbd blood cell and the
plasma may be treated as Newtonian fluids (Halpern and Se206®). When the density
is constant the conservation of mass gives

V-u=0 (1.3.2)

which is called the incompressibility condition, or the tionity equation. The corner-
stone of fluid mechanics is the Navier-Stokes equation,

0
p <6_115L +(u-V) u) = —Vp+ uViu, (1.3.3)
which relates the velocity and its derivatives to the spalégivative of the pressure. By
an appropriate scaling of the pressure, velocity and letigghNavier-Stokes equation
becomes the Stokes equation (e.g. Pozrikidis 1992),

—Vp+uViu=0 (1.3.4)

in the limit Re — 0, and where we assume the flow to be steady (i.e. to be independe
of time) and unaffected by a body force. Care must be exateigeen assuming the flow
to be steady, especially in regimes like the cardiovas@ylsiem where the flow of blood
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is pulsatile and therefore unsteady. In the larger bloodeleghe pulsatile nature cannot
be omitted, however in the capillaries the pulse has a ribigigffect (p.291 Fung 1997)
and so the flow there may be treated as steady.

Since we have assumed that all considered fluids have the sanstant density
there will be no buoyancy effect. If we were to include a bodycé such as gravity
we could modify the pressure accordingly since gravity ieaservative field. However
we consider very small length scales and so we neglect gr&¥ite may restate equation
(1.3.4) as

V-e=0 (1.3.5)

using equations (1.3.1) and (1.3.2). With reference to trenal vectorn, the traction,
f=0-n, (1.3.6)

may be used to calculate the force on an element of fluid freamtrmal component of
the stress tensor. In index notation we have

ou;  Ou;
fi =0yn;=—pn;+p (835; + a%i) n;. (1.3.7)
When the velocity vanishes on a surface due to the no-slimaraenetration conditions,
the pressure on that surface may be obtained from the tndayitaking the scalar product
with the normal to get

p=—Ff-n. (1.3.8)

When we examine the motion of a particle or a capule in a cHdlovewe will treat the
flow as being composed of a background and a disturbance floez.n@tural choice for
the background flow in a channel is the Poiseuille flow whidiisBas both the Stokes
equation and the Navier-Stokes equations exactly. Theenwdtical details of which
are described in the next section. If we represent the Pilesestress byo” and the
disturbance stress lay” then the total stress is given by

o=o0+0o", (2.3.9)

which also satisfies the Stokes equation (1.3.5) providedr” = 0. We will use this
idea to separate the background flow from the disturbancetfimughout this thesis.

1.3.2 Poiseuille flow

Let us consider a two-dimensional channel of widd,which contains an incompressible
viscous fluid. When a constant pressure gradient is apptiezss two end-points of the
channel the resultant fluid motion is called Poiseuille flafter the aforementioned Jean
Louis Marie Poiseuille. The velocity is observed to be syeadidirectional and oriented
in the axial direction. The geometry is illustrated in figr8.1. Writing the velocity as,

uf =uf(z,y)1 (1.3.10)
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y=d
Y
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x y=0
Flow direction
y=—d

Figure 1.3.1 : Two-dimensional Poiseuille flow in a straight channel. Theabolic velocity
profile is shown on the left.

where1 is the unit vector in the axial (ar) direction. We can show that the continuity
equation (1.3.2) is satisfied only when the velocity is pueefunction ofy. Therefore
the left-hand side of the Navier-Stokes equation (1.3.3)ei® and so Poiseuille flow
automatically satisfies the Stokes equation (1.3.4). Edipgrequation (1.3.4) shows that
the pressure is purely a function of Let us set the pressure gradient,

P
" _ 4 (1.3.11)
dx

whered is a positive constant. The Poiseuille pressure is given by
pP(z) = -Gu (1.3.12)

where we have chosen the pressure to be zermo at 0. We impose the no-slip and
no-penetration condition,
u’ =0 (1.3.13)

on the walls, and solve equation (1.3.4) for the velocity litam

2
. Yy .
u? =uP(y)i=Uy (1 — ﬁ> i (1.3.14)
where )
0= 9T (1.3.15)
2p

is the centreline velocity. The parabolic profile is showntloa left-hand side in figure
1.3.1. The streamwise flux rat€), may be found by integrating the velocity between
y = —d andy = d to get

= = —dU,. (1.3.16)
"

By subsituting the Poiseuille pressure and velocity inteedipn (1.3.1) we find the Poiseuille
stress tensor is given by

P ol
Oz O —p" B T -y
o =" T =1 Lp _alg =G| , (1.3.17)
Oyz  Oyy H "5y p y
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and the Poiseuille traction is given by

ftF=oln; =G

r Yy
i iJ

] : [”x] , (1.3.18)
Yy T Ny

wheren = (ng,n,).

1.3.3 Two-dimensional boundary integral equations for Stkes flow

To derive the two-dimensional boundary integral equatimnsStokes flow we bring to-
gether the Green’s functions for Stokes flow and the recaroalation of Lorentz. See
Kuiken (1996) for an accessible review of the work of Lorefdtz start our discussion we
will outline the derivation of the reciprocal relation.

Let us define two incompressible flows so that the viscosigypaity and stress is
(11,uq1,071) in flow 1 and(ue, uz, o2) in flow 2. To proceed, let us construgt uy -
o9 — o ug - o1 and take its divergence to obtain

0 009 ;4 001 44
oz, <,U1 UL 0245 — M2 U2 Ul,ij) = [ U1 ( a;j”) — [l2 U2 ( 8;;]> (1.3.19)

in index notation, and where the additional terms from penfog the differentiation
disappear either due to incompressibility or cancellatitinboth flows also satisfy the
Stokes equation (1.3.5) over some regidthen the right-hand side of equation (1.3.19)
will be zero and we have

V-(uruy-o2 —pouz-01) =0 (1.3.20)

in vector notation. Next we integrate equation (1.3.20)rdvand apply the divergence
theorem to get
[ g2 ds) = [ aua- f1 dso, (1.3.21)
ar ar
where ol is the piecewise continuous boundary of the donfainf, = o1 - n is the
traction of flow 1, fo = o2 - n is the traction in flow 2n is the unit normal vector
pointing out ofl" ands is the arc-length alongI". When the viscosities are equal we have
11 = e and equations (1.3.20) and (1.3.21) become

v-(ul'dz—U2'0'1):O, (1322)
in vector notation, and
/ ur - f dsf) = / us - f1 ds) (1.3.23)
or or

respectively. Equations (1.3.21) and (1.3.23) are knowthekorentz reciprocal relations
for Stokes flow. The reciprocal relations give us the abilitgompute information about
a particular flow by using another flow, e.g. one could compléeforce on a particle
by eliminating the disturbance velocity caused by the plartin favour of the known
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background flow.
The Green’s functions for Stokes flow are solutions to thgudarly forced Stokes
equation,
—Vp +uVi/ =V .o’ = b §(x — xq), (1.3.24)

whereb' is the strength of a point force locatedsatandd(x —xg ) is the two-dimensional
Dirac delta function which is zero everywhere exceptwvhere its value tends to infinity
and whose integral over all space equal$f we introduce the Green’s functio® (x, xq )
then the velocity, pressure and stress fields which satigipteon (1.3.24) are given by

, 1

j = —Gy(X, bj, 1.3.25

u; (%) drp G](X X0) j ( )
1

P (x) = - Pi(x%0) by, (1.3.26)
1

oip(x) = ETijk(vao) bj, (2.3.27)

whereP (x, x¢) andT'(x, x() are the pressure vector and the stress tensor associated wit
the Green’s function. We catl, the pole or the singular point. The stress tensor is defined
in relation to the pressure vector and the Green'’s function a

i(Gz’j(& x0)) + i(ij(X,xo)), (1.3.28)

Tijk(x,%x0) = =i, Pj(x,%0) + R oz,

from which we can see that the stress tensor is symmetrid;i;€x, xo) = Tj;i(x, X0).
The simplest Green’s function is the free-space Green'stim although the choice of
Green’s function may be dependent on the geometry undeidewmation and the boundary
conditions. Throughout this thesis we will elect to use the-tlimensional free-space
Green’s function which is defined by

B2

Gij(x,%0) = —6; In|x — x¢| + X g (1.3.29)
wherez; = z; — x4, and its associated stress tensor is
_ T; Ty xp,
Tijr(x,%0) = — m- (1.3.30)

A derivation of equations (1.3.29) and (1.3.30) may be fomrozrikidis (1992). Using
equations (1.3.24)—(1.3.28) and the properties of thecDiedta function we may prove
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the following integral identities for Stokes flow,

47
/ Tiji(x,%0) ni(x) ds) = |27 | djk (1.3.31)
or |0 |
o
6ilm/ﬂﬁl Tonjr (X, %0) ng(x) dskk), = |27 | € 2oy, (1.3.32)
or 0

where thedr value is taken whery lies insidel’, the 27 value is taken wher lies on
oT" and the identity equals zero wheg lies outsidel’, and wheren is the unit normal
vector directed intd’ ande;;,,, is the alternating tensor defined by

1 when %lm’ form a cyclic permutation, e.glL23,
eim = 4 —1 when ilm’ form a anti-cyclic permutation, e.@21, (2.3.33)
0 when any ofi, [ orm are equal.

We obtain one final identity by substituting equation (153.iadto the continuity equation
(1.3.2), integrating overr and applying the divergence theorem to get

/Gij (X, Xo) nz(x) dsfx) = 0, (1.3.34)
or

for x¢ insideT’, outsidel” or on the boundargI'. Equation (1.3.34) is the integral ana-
logue of the continuity equation. We are now in a position tovjgle a sketch of the
derivation of the boundary integral equations for Stokew.flé full derivation may be
found in chapter 2 of Pozrikidis (1992). In equation (1.3.22 set flow 1 to be the
solution to the singularly forced Stokes equation and flow Be a solution to Stokes
equation. We substitute equations (1.3.25) and (1.3.2@)gquation (1.3.22) and adopt
index notation to get
0

oy (Gijoir — pw Tiji) = 4mp uj 6(x — Xo), (1.3.35)
where we have cancelled the common fadigrand dropped the 2 subscript from flow 2.
Whenxq lies outsidd the left-hand side of equation (1.3.35) is regular throudhoand
so we can integrate ové&rand apply the divergence theorem to get

[ -G+ T . ds) = o (13.36)
or

where we have defined to point intoI". This is the boundary integral equation which is
valid whenx, lies outside of the flow domain.

Whenxg lies insideI" the left-hand side of equation (1.3.35) is singulaxatand
so we define a small circle aroung with domainI'y and boundan®l'y. Integrating
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equation (1.3.35) over the reduced afea I'y and applying the divergence theorem we
obtain

(=Gij oir + pu; Tiji) ny dsfk) = 0, (1.3.37)

or',0Tg

sincex lies outside the reduced area. Calculation of the integrat @I' as the radius
of I'y tends to zero yields the result,

/(_Gij oir + pu; Tijr) g dskk) = 4mp uj(xo), (1.3.38)
ar

for x¢ insideI’. Finally whenxg lies on the boundary df we find

PV

~ [ Goun dsto+ i [ uiTijm, ds) =2 uixe), (1:3:39)
or or

wherePV indicates a principal value integral. The requirementke the principal value

of the integral comes from the discontinuous behaviour efittiegral over the stress
tensor which jumps in value b¥rp v asx, crosses the domain boundary. Equations
(1.3.36)—(1.3.39) may be summarised as

Xu] XO 47TM /fz zg X XO) dS(X)

‘o / wi(%) Ty (x,%0) i (x) ds6),  (1.3.40)

wherey = 0 whenx lies outsidel’, x = 1/2 whenx lies ondI" andxy = 1 whenxg
lies insidel’, and remembering to take the principal value of the secomgjial whenx
lies ondI'. In the literature the first integral is called the singledaypotential and the
second is called the double layer potential.

To compute the velocity field in a Stokes flow using the boupdategral method
we start by applying equation (1.3.40) to the flow and plageon the boundaries of
the flow domain. We use the boundary element method (PoikiaD2a) to discretise
the boundaries into small elements and the equations ieio discrete analogues. By
assigning unknown tractions and velocities to the boundégnents we can construct a
system of algebraic equations from which thpriori unknown boundary values may be
computed. The velocity field throughout the flow domain isthe computed from the
discrete version of equation (1.3.40) using the calculatdaes of the unknown boundary
tractions and velocities. We will explain this processyfiahd carefully in each chapter.

Our investigation begins in the next chapter with an exatiuneaof the motion of a
fluid in a straight two-dimensional channel with rigid wallidich is subject to a distur-
bance caused by the motion of a small ‘conveyor’ belt on ontb@fthannel walls. This
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example provides an introduction to the boundary integndl lroundary element meth-
ods and their application to a simple flow in a channel. In tdap and all subsequent
chapters we will assume that the flow in the channel is presdtiven with a prescribed
flow rate and is governed by the equations of Stokes flow.

In chapter 3 we introduce a rigid particle into the straididrmnel before replacing the
rigid particle with a fluid-filled elastic capsule in chapterWe will assume that the fluid
inside the capsule is also governed by the Stokes equatiatthat the capsule membrane
obeys simple constitutive laws which describe the in-pkame transverse membrane ten-
sions. We calculate the limiting or steady shape of the dapsichapter 4 together with
the additional pressure drop due to the capsule.

We remove the capsule and add a daughter channel to thenschannel in chapter 5
and examine its effect upon the fluid flow while maintainingesgribed flow rates which
we vary to increase or decrease the proportion of fluid whidkrs the branch channel.
In chapter 6 we study the motion of a rigid particle in a brangtchannel flow.

In chapter 7 we replace the rigid particle with a fluid-fillddsic capsule and inves-
tigate its motion through a bifurcation. Our aim in chaptes % compute the trajectory
of a capsule started from an arbitrary position upstrearhebtanch, and to calculate the
pressure drop across the branch both in the presence arelabsbnce of the capsule. Of
particular interest is the deformation experienced by #psale in the neighbourhood of
the branch entrance, and the conditions under which theitsajgsdrawn into the branch.
We also examine the effect of the channel geometry, the telp®iastic properties, the
ratio of the encapsulated fluid to the ambient fluid, the clpsize and the flow condi-
tions. Also of interest is the magnitude of the stress erpedd by the capsule under
deformation, particularly in the case when the capsule mesdarapped at the sharp cor-
ners at the branch entrance. In this case, the portion of émbrane closest to the sharp
corner is placed under a high level of stress, which may aliéhy cause the capsule to
burst. We will show that as we add a branch channel and a fiegégbsule the increas-
ingly diverse parameter space will be easily incorporatedtive boundary integral and
boundary element formulation. Our results are discussetapter 8.






Chapter 2

A conveyor belt, a straight channel
and the boundary integral method

In this chapter we demonstrate the application of the bayndgegral method to a simple
channel flow containing a disturbance caused by a conveybohe portion of one of
the walls. This problem provides an insight into the effda disturbance to the channel
flow which will be of benefit in subsequent chapters. In chafteve will change the
source of the disturbance from a conveyor belt to a rigidigdartmoving with the flow.
Much of the analysis contained in this chapter is directlgligable to the mathematical
model of a channel containing a particle. A free-boundargubstituted for the rigid
particle in chapter 4, where we examine the motion of a fluabdind an elastic capsule
in a straight channel. In chapters 5 onwards we extend thgsasdy adding a branch
channel to the main channel and examining the disturbaneeeday the branch entrance
and the capsule.

Although we use an isolated conveyor belt here to demoestinat application of the
boundary integral and element methods, a parallel may bendbetween the problem
studied in this chapter and the mechanism by which larget glelfs induce cytoplas-
mic streaming (e.g. Verchot-Lubicz and Goldstein 2009).lage tubular plant cells,
streaming is induced by molecular motors arranged alonigahalytoskeletal filaments.
Therefore the cell walls in a plant cell could be viewed as @tinoaous conveyor belt
which moves with a suitable velocity distribution.

2.1 Problem statement

Let us consider the motion of a fluid with viscosjyin an infinite straight-walled chan-
nel of width 2d. The flow is disturbed by a portion of one of the walls which dnats
like a conveyor belt. The flow geometry which is sketched imrg2.1, comprises the
channelC, and the conveyor beli4, which is centred on the lower wall of the channel.
The unit vectors in the andy directions are andj respectively. We introduce the dis-
turbance by setting the velocity to e= U ¢ on A whereU is a constant. Far upstream
and downstream of the disturbance, the flow in the channeadssribed by the classical
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Figure 2.1 : Channel with a localised disturbance on the lower wall
unidirectional Poiseuille solution with flugQ and velocityu”, defined by
P y2

whereUj is the centreline speed of the Poiseuille flow and is relatete flux,Q, by
4
Q= 3 dUyp. (2.2)

Our aim is to compute the velocity field throughout the flow ém We assume that the
Reynolds number of the flow is very small, and that the main ffoithe channel may be
described using the linear equations of Stokes flow (1.3.4).

In preparation for the numerical method, we truncate thencblhand designate the
channel entry, located at= 0, as&;, and the exit, located at = [, as&;. We note that
&1 and &, are the entrance and exit to the computational domain andairthe inflow
and outflow of the channel, where end effects would be eneoedit The unit normal
vectors,n, on all boundaries point into the fluid as shown in figure 2He TegionA has
length L and lies betweem = /2 — L/2 andx = [/2 + L/2. The motion ofA disturbs
the oncoming Poiseuille flow, but at the cafpsand&,, we assume that the disturbance
has decayed and the flow has settled to Poiseuille flow.

We decompose the velocity field, the stress fieldg, and the traction fieldf, into
background Poiseuille and disturbance components, itatiday the superscript® and
D respectively, so that

u=u"+u", (2.3)
oc=0c"+o", (2.4)
f=rr+r" (2.5)

and where the tractiorf, = o - n. OnC we have

u=u=uP =0 (2.6)
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due to the no-slip and no-penetration conditions, and
u=uP=Ui, u’=0 (2.7)

on the disturbance region.

Previous studies on two-dimensional channel flow by Gaver kte (1998) and
Cortez (2002) show that the disturbance velocity decayseg®s and downstream from
the disturbance. Gaver and Kute (1998) studied a straighied channel with a semi-
circular protrusion on one wall. The flow is driven by a consfaressure drop across the
entrance and exit. When the protuberance is small the Hestee decays rapidly with
distance from the centre of the bump. In section 4.3 of Cd2682) the same geometry
is examined, albeit with a slightly longer channel. The pues drop is again prescribed
and the disturbance velocity due to the obstruction is asdutm have decayed so that
the velocity profile at the entrance and exit is Poiseuillbe Tesults from this example
in Cortez (2002) are nearly identical to the pertinent cagéaver and Kute (1998). We
will therefore assume that the disturbance velocity field thuthe conveyor belt decays
rapidly as we move away from it and that the velocity at thearte and exit is Poiseuille.
We will however make sure the numerical solution satisfiessabksumption in section 2.3.
We therefore set

uP =0 (2.8)

at&; andé&,. As a consequence of the rapid decay of the disturbanceityeboad hence
its derivatives, we may write the disturbance traction,

D_ D, 3 J .
Jio=-p " ni+u <8xj + 8%) Mg, (2.9)

as
P~ =pPn; (2.10)

to leading order, wherg” (x) is the disturbance pressure and the inélex 1, 2. Substi-
tuting the stress tensor definition (1.3.1) into the Stolasagon,V - o = 0, we find
that they-component gives

8pD 82“311) 8pD

oy T ax? = dy

0=— (2.11)

as we move away from the source of the disturbance due to fi@ dacay of the dis-
turbance velocity. Therefore at the caps the disturbanesspre will be constant. By
setting the disturbance pressuregaandé&, to m; andry, respectively, we may write the
disturbance traction d; as

fP = —mn, (2.12)
and
fP=—mn (2.13)
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at&,. Since we are interested in the additional pressure dropdest; and&; we set
7 = 0 without loss of generality. The disturbance pressure digg;, betweens; and
&, is given by

ApP =pP (&) = pP (&) = —m2. (2.14)

The Poiseuille pressurg!’ (), is a known function defined by
pP(x) =Gl —x) (2.15)

whereG = 2uly/d? is a positive constant, andG is the imposed constant pressure
gradient between the entrance and exit. We have defifiesb that it is zero af,. The
total pressures at the caps are

P(51)
P(52)

(&) =Gl, (2.16)

pF(&1) +pP(&1) = p”
" pP (&) = m, (2.17)

(&) +p" (&)

and so the total pressure&tis given by the Poiseuille pressure and the total pressure at
&> equals the disturbance pressure. The total pressure diwpdrethe entrance and exit,
Ap, is given by

Ap =p(&1) —p(&2) = Gl —m. (2.18)
We may now derive an equation feg by applying Lorentz’s reciprocal relation (1.3.22)
to the Poiseuille and disturbance flows in the channel, te giv

V(P ol —u” oP)=0. (2.19)

Let us integrate (2.19) around the flow domain to get

/ u? . ff dsk) = / ul - fP dsk), (2.20)

or or

wheres is the boundary arc-lengtl)l’ = & U C U A U & is the piecewise-continuous
closed boundary of the flow domain, and the divergence theorem has been used to
convert the area integrals into line integrals. Expansibthe integral on the left-hand
side of (2.20) gives

[uP s dsty = [ ug" dsto+ [uP £ dsto

or &1,E2,C A

=U [i-f¥ dsk) (2.21)
/

since the disturbance velocity at the caps and on the watksris The integrand may be
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simplified using the definition of the traction and the stressor to get

our

= (2.22)

. P P P P
’L'f :fm:Umjnj:ny:M

sincen = j on A and whereu” is thez-component of the Poiseuille velocity which is
defined in equation (2.1). Hence we have

2/,LUO _QMUQ

. eP
i f =ty = (2.23)
sincey = —d on A. Substitution into (2.21) yields
/uD - fP ds) = L‘ZUO / dst) = LLJJ L (2.24)
ar A

We now substitute (2.24) back into (2.20) and expand thejiaten the right-hand side
to obtain

2ublUb _ / uf - §P ds(x)+/uP-fD dst)
AC.E Ea
= —m [ uf - n dsk) (2.25)
/

since the Poiseuille velocity is zero ghandC and the disturbance pressure is zer§;at
The integral on the right-hand side is the fldx, which is defined by

Q= /n cub ds) = — /n ~uP ds), (2.26)
51 52
and so we can rearrange (2.25) to get
2u LU (U 3uLU
= — | = 2.27
™2 d <Q> 2d2 ) ( )

where equation (2.2) has been used to elimibgt&). Equation (2.27) provides us with a
simple formula for calculating the disturbance pressui® a&nd hence the total pressure
drop,

1%

We can derive an alternative expression for the disturbgmessure by integrating the
Stokes equation for the disturbance str&sg” = 0, over the flow domain. Application
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of the divergence theorem and the boundary conditions gesvihe equations,

- —% / i P dst) and (2.29)
AC
. /j.fD ds). (2.30)
AC

Equation (2.27) is favoured over (2.29) becawsemay be calculated exactly using

U, nandd. We can only evaluate equation (2.29) exactly if we know tistudbance
tractions at every point opl andC. However, as we will see in the next section, the
method of solution will only provide discrete values of thistdrbance tractions and so
equation (2.29) would only provide an approximation.

It is interesting to note from (2.27) that the sign of depends solely on the sign
of U. WhenU is in the positiver direction, 75 is positive and the total pressure drop
in equation (2.18) is reduced. The disturbance flow causethéymotion of A could
therefore be interpreted as helping the flow because a lovgsspre drop is required to
maintain the flow. Whei/ is negative, the disturbance could be seen to impede the flow
because a larger pressure difference is needed to maihtagame flow rate.

Now that we have a formula for the disturbance pressure de@pmove onto our
next goal of deriving an integral equation which governsdtsturbance velocity in the
channel. We apply the boundary integral equation (1.3.d@pé disturbance flow with
the pole xg, in the fluid to get

47T,uu /f Gi; dsk) —|—,u/u Tijk g dsx), (2.31)

or

whereG;; andT;;;, are the free-space Green’s function and its associatessseasor
defined in equations (1.3.29) and (1.3.30). Knowledge ofdikturbance tractions and
velocities on the boundaries coupled with equation (2.3ald allow the disturbance
velocity to be calculated at any point in the flow domain. Teadbthe boundary values
of fP andu® we start by writing down the boundary integral equation fgron the
domain boundary,

PV

27wu /f Gij ds(x)—l—u/u Tijk g dsx), (2.32)

or

using (1.3.40) and wherBV indicates a principal value integral. We simplify (2.32) by
applying the boundary conditions given in equations (2(B)7), (2.8), (2.13) together
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with the zero disturbance pressure&no get

PV
2l (x0) =~ [ 1P Giy dst) 42 [ Gy 06 + U [ Tugime 05,
AC Ea A

(2.33)

where the principal value of the double-layer potentiagégnal in (2.33) need only be
evaluated when the pole is located.dn The only unknown quantities in equation (2.33)
are the disturbance tractions ohandC. The formula for the disturbance pressure at
& means that we do not need to find the tractions there, moreweato not need to
evaluate (2.33) with the pole on eith&r or &. Pozrikidis (2005c¢) notes that evaluation
of the boundary integral equation for flow in a pipe suffe@rirnumerical sensitivities
when the pole is located on the entrance or exit. This issumagly side-stepped by
adapting the derivation of the disturbance pressure amjugiiven in Pozrikidis (2005b)
to our geometry.

It is worth noting that we could choose a Green’s functionalihivould be zero on the
channel walls, thereby removing the single-layer potémttagral overC in (2.33). How-
ever, the Green'’s function for a straight channel is contpmrially intensive to calculate
relative to the Stokeslet. In future models, we will add anbtato the channel which
would invalidate the use of the straight channel Green'stfon. Modifications could
theoretically be made to the Green’s function, but we woeledto exercise care in order
to avoid singularities occurring within the flow domain. Attexpense of computing the
integral ovelC, the two-dimensional Stokeslet is used.

It is enlightening to non-dimensionalise equation (2.38pgU, d anduU/d as the
velocity, length and traction scales to get

PV

2 U?(XO) = — / fZ-D Gij ds(x) —i—m/ni Gij ds(x) + /ijk ny dsk) (2.34)
Ac A

)

where all quantities are dimensionless. From this equat®pan see that the dimension-
less disturbance tractions are invariant to the belt spaeddpend on the size of the belt
via the integrals overd. Therefore it is only necessary to find the dimensionlestidis
bance tractions, for a giveh, and scale them according to the belt spdédHowever,
we will calculate the total velocity by adding the Poiseuillelocity to the disturbance
velocity and so our problem contains two velocity scalésandU. We will choose to
usel, as our scale and so we will continue with the dimensional gou#2.33).

To obtain the solution we employ the boundary element me{Radrikidis 2002a)
and discretise the boundary into straight elements. The&racg of our numerical scheme
is therefore equal to the level of discretisation, i.e. iflealement is of length then the
solution isO(h) accurate. On each element.dfandC we set the disturbance traction to
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a constant 2-vector. Whex is placed onA, equation (2.33) becomes

PV
21u U by = — / fP Gy dskx) + mo / n; Gy dst) + pU / Ty.jx i dsfx) (2.35)
AC ) A

and whenxg is onC we have

0= — / P Gyj ds) —{—7?2/71@- Gij dsk) +,uU/ijknk ds). (2.36)
AC A

&

Now let us focus our attention on the integrand of the doldjer potential integral in
equation (2.35). The stress tensor is singular wkes x, but asx — x( along A
we have

TTj Ty
rd

ijk ne =0 (2.37)

ijknk =—4 ne = —4

sincet;, andny, are orthogonal. Therefore the double-layer potential i85pis zero and
so the equation reduces to

2T U(SJJ; = — / fZD Gij dS@() + o /ni Gij dS@() (238)
AC &

when x lies on.4. We can simplify (2.36) wherx, lies on the lower wall because
7 =y — yo = 0 and so the stress tensor is zero. Equation (2.36) becomes

0=— / fP Gy ds) + 2 / n; Gy; dstx) (2.39)

AC &

whenxg is positioned on the lower wall @f.

Evaluation of (2.38) withx, at the mid-point of each boundary elementbprovides
a sufficient number of equations for the unknown tractions4onWe have the same
sufficiency orC by equation (2.36). Therefore the number of unknowns edbhalsumber
of equations and so our system is complete. Once the soistlorown we may calculate
the velocity at any point in the flow domain using

1
uj(XO) = uf(xo) + m — / fZD Gij dsx)
AC

+772/ni Gij dS@()—FMU/ijy dS(X) (240)

& A

which we obtained from equation (2.31) by applying the bamaonditions and adding
the Poiseuille velocityu” .
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2.2 Numerical method

Our aim is to write the governing boundary integral equationthe form of the linear
system,
A-x=0b, (2.41)

whereA is a square matrix of ‘influence’ coefficients,is the column vector of unknown
tractions on4d andC, andb is a column vector of known values. Let us begin by separating
the unknown tractions from the known values in equation§Pt8 get

/ fZ-D Gij dS@() = T9 /ni Gij dS@() — 27 U(ij (242)
AC &

for xg on A, and in equation (2.36) to get

/ fZ-D Gij dS@() = T2 /ni Gij dS@() + IU,UH(X())/ijy dS@() (243)

AC & A

whenxg is onC, and where (xg) = 0 whenxg is on the lower wall of andH (xg) = 1
when it is on the top wall. The right-hand sides of (2.42) ahd3) are known functions
of xo. We may calculatd, g, i Gij ds(x) analytically forxgy away fromé&s, to get

/ n; Gip dsf) = — / Goo ds) = % (d In(r ) + yo In (%) . 4d> (2.44)
Ea

)

/ n; Gy dsfx) = — / Gy dsfx) = gln (’”—2> (2.45)
Ea

]
2

sincen = —i on&,, and wheret = [ —zq, 71 = 22+ (d—yo)? andry = 22 + (d+o)°.
The integral off,;, over A is

/Tmy dsx) = 2 (arctan(d) — arctan(b) — _f + b - ) , (2.46)

A

1 1
/Txyy ds(x)_2<1+62—1+&2>, (2.47)
A

wherea = (1/2 — L/2 — 20)/4,b = (1/2 4+ L/2 — x0) /4 andg = —(d + yo). We now
have formulae for the right-hand sides of equations (2.42)(2.43).
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Let us define

I5,(x0) = / fP Gy ds), (2.48)
A
IE (x0) = /sz Gij dsk), (2.49)
c
kZA7j(X0) = T2 /nz Gij dsfx) — 2T U(ij, and (2.50)
&
kZCJ(Xo) = 7T2/’rli Gij dSé() +MUH(X0)/ijy dS(X) (251)
Ea A

where theS superscript is shorthand for single-layer potential, améngk 4 ;(xo) and
ke j(x0) are the right-hand sides of equations (2.42) and (2.43patisely. The govern-
ing equations (2.42) and (2.43) may be concisely written as

Ifl,j(xo) + I(,S,j(xo) = ka,j(x0), (2.52)
and
5,5 (x0) + I8 ;(x0) = ke ;(%0)- (2.53)

To apply the boundary element method we discretissto N 4 equally-sized straight
elements and into N¢ equally-sized straight elements. On tié boundary element,
E,, we label the disturbance tractigff’ and discretise®; and I2 so that the integral
over the boundary is approximated by a sum of integrals tnebbundary elements. The
discretised equations are

N4
I3,(x0) = /fz‘D Gyj dsk) ~ ng« Gijr (2.54)
A r=1
where
Gijr(x0) = / Gij(x,%0) dsf), (2.55)
E,
and
N¢ ~
I¢ j(x0) = /sz Gij ds&) = > fD Gij.r. (2.56)
C r=1

When x, lies on thert? element, G;;(x,x0) will have a logarithmic singularity but

Gij.r(x0) remains integrable. Details of the numerical integraticimesne may be found
in Appendix A and Pozrikidis (1998). For the numerical intg@n, we typically use@0
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base-points in the numerical scheme. Expanding (2.545give

I.i,j(xo) = (émj,l f$D’1 + éij Zfl +...+ C31‘7',]\7.,4 faENA + éyijA foNA)

T
= .. ol e A D D D D
- [Gml Gyj,l GJ»’LNA GyijA] [fx,l fy,l x,N 4 y,NA}

= I (x0) - Fx, (2.57)

where thel’ superscript means transpose, and we have definetd thgN 4 ‘influence’
row-vectorI§ ;(xo) to be,

Iﬁ7j(X0) == [éxj,l éyj,l éxj,NA éyj,NA] 5 (258)

and the column-vectaF4 to be,

T
FA:[fgl Do Py ;?NA} , (2.59)

which represents the disturbance tractions on the eleménts Expanding (2.56) gives

S _ [~ D ~ D ~ D ~ D
Ic,j(XO) = <G:cj,1 f:c,l + Gyj,l fy,l +.o.+ Grj,Nc f:c,Nc + GyJ}Nc fy,Nc)
T
— |~ e ~ e D D D D
= [%,1 Gyja - Gajne Gyj,Nc] [fx,l g1 Jong y,NJ

= I¢ ;(x0) - Fe, (2.60)

wherel( ; is thel x 2N ‘influence’ row-vector,

Igj(X()) == [éxj,l éij ij,NC éyj,Nc} 5 (261)

and the column-vectoify, is

T
Fc:{fé?l i fine yl,)Nc] ’ (2.62)

which represents the disturbance tractionsConWe may therefore write the andy
components of the discretised version of (2.52) more cothpas

[Imo) Ic%(xw] [FA] _ lwxwl @269

IS ,(x0) IE,(x0)| |Fe ka,y(x0)

which is forx, on A. The discretised version of (2.53) is

[Iﬁ,x@co) I&@«wi [FA] _ [kw(xo)] . (2.64)

IG,(x0) I¢,(x0)| | Fe ke,y(xo)

wherexg is onC. As we movex, over. A4 we re-evaluate (2.63) and generafg pairs of
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equations which may be expressed as the myateigtor product,

F
Au A [ ch‘] — K, (2.65)
where
(15, (x") ] [ 15, (x5") ] [ a7 ]
15, (x8") 1§, (=) Fay(x)”)

A= : s Ac = : , Ky = : ,  (2.66)

15, (x5™) 1§, (x™) Fae (x5)

IS, (x6™) ] LIE, (x5™) | kg (x5) |

andxél) e x(()NC) are the boundary element mid-points.4f The matrix.A4 has size

2N 4 x 2N 4 and represents the influence.éfon itself. A¢ represents the effect of on
C and has siz8N 4 x 2N¢. K4 is a column vector containingV 4 elements. We follow
the same procedure for equation (2.64), and mqyever theN¢ elements of to get

F
[c 4 cc} [Fﬂ — K, (2.67)
where
L] [ el
15, (5" 1§, (x") ey (x5)

Cu= : ,Cc= : , Ke = : ; (2.68)

15 . (x™) 1g, (x")) ke (x5)

16, (x) | IE, (x5 | ke (x0))

which have dimension3Ne x 2N 4, 2N¢e x 2Ne and2Ne x 1 respectively. The points
xél) . .xéNC) are the boundary element mid-pointsofC 4 represents the effect 6fon
A andC. describes the effect @f on itself. We can combine equations (2.65) and (2.67)

to get
[ . AC] [FA] B [ A] (269
Ci Ccl||Fe K

which matches the form of our linear system in (2.41) and h@a®uision2 N4 + 2 N¢.
The solution of (2.69) provides the disturbance tractiomsdicandC. In our simulations
we took N 4 = 200 and N¢ = 800.

We are now able to construct our linear system and solve nigusistandard numer-
ical method. We found it practical to use Gaussian elimamato find the disturbance
tractions. The values of the disturbance tractions may lteemsed in (2.31) to obtain the
disturbance velocity at any point in the flow. To calculate streamlines of the flow, we
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start at a specified point and integrate the equation

j_); = u(x), (2.70)
wherex is the position vector of the point,is the arc-length along the streamline, and the
velocity on the right-hand side of (2.70) is computed frond(®@. We used the adaptive
stepping Runga-Kutta-Fehlberg method of orders 2 and 34¢&kimson 1978) to integrate
equation (2.70).

2.3 \Validation

When checking the numerical solution we set the conveydrleebth, L = 2d, and
truncated the channel so thiat 12 d, which was found to be sufficient for the disturbance
to decay. The geometry discretisation was verified usingliberetised analogues of the
integral identities for Stokes flow,

S](-l)(XO) = /nz Gij dsk) =0, (2.71)
or
) 0 whenxg is outsidel’
5@ (x0) = — [ Tijpng dsik) =< 16;; whenxg lies onor’ (2.72)
1] 471',[1, J 271)
or di; whenxg lies insidel’

with x4 at the mid-point of each boundary element, and at severatgiviside and outside
the flow domain. Both of the integral identities were satsfach thatS](-l)(xo)| <107°
and|SZ.(]2) —1/2k é&;;] < 1072 for all tested values af,, and wheret = 0, 1,2 whenxg
lies outside, on and inside the boundary.

In our formulation of the governing equations, we assumedl tte disturbance ve-
locity decayed rapidly to zero as we approached the capshdckahis assumption we
removed the Poiseuille flow and set the belt spééds 1, and the belt lengti. /d = 2.
The maximum values of the andy components of the disturbance velocity at the caps
were0.02% of the belt speed. The error was the same when we introduedediseuille
flow and set/y = U.

To validate the accuracy of the computed disturbance tnastive compared the trac-
tion distributions over the top and bottom walls when the bamof boundary elements
and the channel length were increased. The tractions grkagésl for the simulations in
figure 2.2. The channel in each simulation has been centréwhs6, lies atz = —1/2
and &, lies atl/2. Our reference configuration has a channel length ef 12 d with
200 boundary elements ad and800 elements orC. To test the effect of adding more
boundary elements we doubled the number of elements suchithas discretised into
400 elements and into 1600 elements. The only observable difference can be seen in
figure 2.2 (c) where the spike in the value of the traction hasgnitude which is double
that seen in the reference case. Sincertlitemponent of the traction represents the wall
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Figure 2.2 : Disturbance tractions for a variety of configurations on dipper and lower walls
plotted against a rebasedcoordinate forL = 2d andU = 1. Reference configuration (-) is
for! = 12d and N = 1000, () is for! = 12d andN = 2000 and (--) is for! = 24d and
N = 1800. The conveyor belt lies betweerfd = —1 and1.

shear stress, we expect the traction to be singular at tin¢ wbiere the lower wall meets
the conveyor belt because the velocity on the wall jumps feeno toU. Increasing the
number of boundary elements leads to an increased resohttithe singularity. To test
the effect of the channel length, we doubled the length sl tha24 d and preserved the
element length on the channel walls with respect to theeafar configuration and main-
tained the length ofd. The total number of elements in this configuratiorvis= 1800.
The traction profiles, as depicted in figure 2.2, demonstteeexcellent agreement be-
tween the solutions. The absolute value in the differende/den the solutions is less
than0.001 pU/d.

Finally, as a check on the disturbance tractions, we cdkuildhe approximate value
of the disturbance pressure using equation (2.29). The errthe approximate value
was0.02%. When the number of boundary elements was doubled the eashalved,
showing that the error is due to the discretisation. Tf@mponent of the disturbance
tractions was checked using equation (2.30). The equatamsatisfied to within a nu-
merical tolerance of 010,
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Figure 2.3 : Disturbance tractions on the upper and lower walls plottgirest ther coordinate
for 5 = 2 andU = 1. The conveyor belt lies betweernfd = 5 and?7.

2.4 Results

All of the results to be presented in this section were corgbwutith the channel length,
[ = 12d. In the first case we discuss the effect of the belt in isatatiod define the
dimensionless belt sizg, to be
L
== 2.73
/B d? ( )

which we will set to2 initially. We remove the Poiseuille flow and set the belt shee
U = 1, and look at the effect of the belt. For these parametersitterdance pressure,
my = 3uU/d and the pressure drop between the entrance and exitis Figure 2.3
shows the variation in the disturbance tractions over tHisaad the belt. We expect the
y-component of the disturbance traction to decay to zeroeagtitirance because we have
set the disturbance pressure to zero there. We can see froradi¢pb) and (d) that this
decay condition is satisfied. Towards the entrance theidragalues decay to ho more
than0.002,.U/d. Both components of the traction reach their steady valeedistance
of approximately a quarter of the channel length from thenaleacentre. As we approach
the exit we expect the normal component of the disturbarazion to tend to the distur-
bance pressure which takes the vabud//d. Figures (b) and (d) show that the normal
component of the disturbance traction tends to this valuéhertop and bottom walls,
where the sign change is due to the direction of the normadbwedhe discontinuity in
the xz-component of the traction in figure 2.3 (c) at the points ehéandC meet is to be
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(c) Streamlines for starting points’d = 6 andy/d = —0.3...0.9. The eddy moves in an anti-clockwise
direction.

Figure 2.4 : Velocities and streamlines fgf = 2 andU = 1 when the Poiseuille flow is absent.
The conveyor belt lies betweern/'d = 5 and7.

expected, since the velocity is also discontinuous at thesds. The numerical method
performs no special treatment of the traction discontjnaitthese points. This concludes
the discussion on the disturbance tractions since we aeetalbbtain the disturbance
tractions for other belt speeds by scalinglbyas noted earlier. A change in the belt size
would require the disturbance tractions to be recomputed.

In figure 2.4 we show the velocity and streamlines for the @astediscussed, where
£ = 2andU = 1. The velocity profile along the centreline is shown in figuré @).
The velocity decays rapidly as we move away from the belt aadhes its steady values
at aroundz/d = 2 andz/d = 10. At the caps, thec andy components of velocity
are no more than.02% of U. If the conveyor belt were absent the velocities would be
u = 0. In figure 2.4 (b) we can see how the velocity varies on the blamid-point line,
x/d = 6. They-component is zero for all values 9f which shows that all movement is
in the z-direction. Thexz-component of velocity has both positive and negative megjio
indicating that the fluid close tgl is moving in the positiver-direction and the fluid
abovey/d ~ —0.37 is moving in the opposite direction. The sign change in tHeoity
suggests that a region of circulating region of fluid is pnéseth its centre closer to the
bottom wall. The magnitude of velocity is greatest.drand the fluid close tod flows
faster than fluid elsewhere on the mid-point line. The fluid/favith greater speed when
—1 < y/d < —0.615 than in any other region on the mid-point line. In figure 2.Y\(e
plot the streamlines for the flow using/d = 6 andy/d = —0.3...0.9 as the starting
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points, wherey/d is incremented in steps 6f2. The fluid in the eddy moves in an anti-
clockwise direction. When we change the direction of thevegar belt the fluid inside
the eddy moves in the opposite direction. It is interestimgnate that even though the
pressure drop between the entrance and exit is non-zerre, ithao induced transfer of
fluid. Since there is no flux between the entrance and exietherst be zero flux across
every cross-section of the channel. Thus on every crog&seghich intersects the eddy
we would expect the fluid flux moving in the positivedirection to exactly balance the
flux moving in the negative-direction. This is particularly interesting in light ofaHact
that the pressure drop between the entrance and exit egualsvhich is non-zero. In
a channel with a quiescent fluid, this pressure drop wouldhatly induce a Poiseuille
flow in the negativer-direction. However, the presence of the eddy exactly luasithe
pressure drop thus ensuring zero flux at the caps.

When the Poiseuille flow is present, the dynamics are goddngehe prescribed flux
and the speed and size of the conveyor belt. Dimensionaysiaakveals the importance
of the previously mentioned dimensionless belt size anddlagive importance of the belt
speed to the centreline speed of the Poiseuille flow,

U

F=—.
Uo

(2.74)

In the following results we maintain the size of the belt andnF'. Later we will change
the size of the belt and examine the effect upon the flow.

In the next set of results we set the centreline speed of tlse#ibbe flow equal to the
speed of the conveyor belt and maintain the size of the lethat /' = 1 and = 2. The
centreline velocity is shown in figure 2.5 (a) where we cantbaethe velocity profiles
are equivalent to those in figure 2.4 (a), albeit with a shifthie z-component due to the
non-zero Poiseuille velocity. We can see that theomponent decays to its Poiseuille
value at a distance of arourd! from the caps. Thg-component does not decay quite
so rapidly, but has decayed to zero a further distaht®vard either cap. The channel
mid-point line velocity is plotted in figure 2.5 (b). Thecomponent is zero showing that
the movement is solely in the-direction and ther-component smoothly falls from its
conveyor belt speed df on A to its no-slip value of zero on the top wall as we move
from the lower wall to the upper one. The streamlines are shiaviigure 2.5 (c) for the
starting positionsg/d = 0 andy/d = —0.9...0.9 wherey/d was increased in steps of
0.2. We can see that all of the streamlines are drawn towardsotiesgor belt with the
greatest deflection being experienced by those which dteeicto the lower wall. When
a streamline starts close to the lower wall it turns very glyatlose to the meeting points
of A andC. Although all the streamlines startat= 0 they do not terminate at the same
value ofz. The last point of each streamline in the figure is the lastdv@oint recorded
by the adaptive time-stepping Runge-Kutta-Fehlberg neetho

The next set of results are for the same sized belt and #ith 6 and3 = 2. The
centreline and mid-point line velocity profiles togetheithwihe streamlines are shown
in figure 2.6. The profiles of the velocity along the centrelare equivalent to those in
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(c) Streamlines for starting points/d = 0, y/d = —0.9...0.9.

Figure 2.5 : Velocity and streamlines whefi = 1 and = 2. The conveyor belt lies between
x/d =5and7.

figure 2.4 with the disturbance velocity scaledByIn figure 2.6 (b) thec-component of
velocity is negative whery/d > —0.165 which means that the fluid above this value
moves in the negative-direction while the fluid below moves in the opposite direc-
tion. The streamlines are shown in figure 2.6 (c) for the istarpointsz/d = 0 and
y/d = —0.9...0.9, wherey/d has been incremented in steps0df. The figure shows
the eddy streamlines which move in an anti-clockwise dioacand were started from
x/d =6 withy/d = —0.1...0.9, wherey/d value was incremented in steps®?. The
streamlines which move from entrance to exit become vehtltiggrouped in the region
close toA. We found stagnation points on the top wall close:fd = 4.7 and7.3. The
x-component of velocity to the left and right of these poirnts @f opposite sign.

We have seen that as the conveyor belt speed is increasee thigdvoiseuille centre-
line speed a symmetric eddy is created ahdvé\lthough the eddy centre in the previous
case is closer to the lower wall, we found that when an eddydppears it is closer to
the top wall. Therefore there is a critical value ©f for a fixed 3, which identifies the
transition point between a flow without an eddy and one witlkeddy. We investigated
the behaviour of the:-component of the disturbance traction on the top wall assa po
sible explanation for eddy formation. There are two readonshis; the eddy andf”
are both symmetrical about/d = 6, and f” is a component of the shear stress on the
wall, which we would expect to change sign when there is asudidw reversal. The
shear wall stress;, on the top wall is given by = of + ol = —fF — fP, where
P =2puUy/d. We normaliser by dividing by the wall stress due to the Poiseuille flow,
as if the disturbance were not present, togyet —7/fF = 1+ P /fF. The normalised
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streamlines move in an anti-clockwise direction.

Figure 2.6 : Velocities and streamlines when whén= 6 and3 = 2. The conveyor belt lies
between:/d = 5 and7.

6
z/d

Figure 2.7 : The normalised top-wall shear stregsfor F' = 1, 2.21 and6 andg = 2. The solid
line is F' = 1, the dashed line i$" = 2.21 and the dotted line i$" = 6. The conveyor belt lies
between:/d = 5 and7.

top-wall shear stress for three valuesfois shown in figure 2.7. We have seen that an
eddy does not occur far = 1 and figure 2.7 shows us that the shear wall stress does not
change sign along the top wall. We found the critical valué'dfy substituting the mini-
mum value off” (= —0.904 . U/d) into the expression for and setting it equal to zero,
which givesF’ = 2.21. IncreasingF’ to the critical value makes the shear wall stress zero
atz/d = 6 and the eddy forms faF' > 2.21. SettingF/" = 6 makesr zero atr/d = 4.72
and7.28. We can see from figure 2.6 (c¢) that this region is where theasitines, which
start from from the entrance and close to the top wall, meeetdy streamlines. These
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Figure 2.8 : Velocities and streamlines whén= —1 andj = 2. The conveyor belt lies between
x/d =5and7.

points also correspond to the locations of the stagnatiamsaooted earlier. To create a
small eddy we sef’ = 2.24. The centre of the eddy is locatedgtd ~ 0.97 and it has
height0.028 d and width0.153 d, where height and width are measured in thandy
directions respectively. Ag'is increased beyongl21 the eddy increases in size and its
centre moves towards the lower wall.

So far we have had the conveyor belt moving in the positivdirection. For the
next set of results we reverse the direction of the belt shahK = —1. The velocity
profiles and the streamlines are shown in figure 2.8. The psafilong the centreline are
again equivalent to those in 2.5 with the disturbance vglowgated due to the velocity
scaling. The mid-point line profiles indicate the preserf@nceddy which is shown in the
streamline figure 2.8 (c). The streamlines were started frgih= 0, y/d = —0.9...0.9
incremented in steps @2, andz/d = 6, y/d = —0.7 and—0.9. An eddy is created
close toA for all negativeF'.

In this set of results we increase the size of the belt sgikatd and setF’ = 6. Since
we have changed the size of the belt, we checked the decag dfigturbance velocity
and the disturbance pressure. We found the maximum errbeidisturbance velocity at
the caps to b6.03% of Uj,. The approximate value of the disturbance pressure cédclila
from equation (2.29) differed from the exact value 0b903%. In figure 2.9 we show
the disturbance tractions on the top wall, the velocity pesfalong the centreline and
mid-line, and the streamlines. The disturbance tractionshe top wall are shown in
figures 2.9 (a) and 2.9 (b). We can see that the profile is bdufttethe z-component
and the turning points are moved towards the caps fogtb@emponent. The disturbance
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(e) Streamlines for starting poinisd = 0, y/d = —0.9...0.9 andz/d = 6, y/d = —0.1...0.9.

Figure 2.9 : Disturbance tractions, velocity profiles and streamliresif = 6 and3 = 4. The
conveyor belt lies betweeryd = 4 and8.

tractions on the lower wall are not materially differentrfrehose shown in figure 2.3. An
interesting feature of the centreline velocity profile,whan figure 2.9 (c), is the plateau
region in thex-component above the belt. The mid-line plot in figure 2.95tws that
the z-component of velocity changes sign and so an eddy will begmte From the
velocity profiles we expect the eddy to be wider, measurelddn:idirection, because the
x-component of velocity reaches a steady value above the®@ettfirmation is shown in
figure 2.9 (e) which shows the flow streamlines, plotted fartstg positionsz/d = 0,
y/d=—-09...09andz/d =6,y = —0.1...0.9, wherey/d is incremented in steps of
0.2 in both cases.

In the penultimate set of results we reduce the size of theeymm belt so that = 1
and F = 6. Since we have again changed the size of the belt, we chebkedetay
of the disturbance velocity and the disturbance pressure.fothd the maximum error
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(c) Streamlines for starting points/d = 0, y/d = —0.9...0.9 andz/d = 6, y/d = —0.1...0.9. The
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Figure 2.10 : Velocity profiles and streamlines fdf = 6 and3 = 1. The conveyor belt lies
between:/d = 5.5 and6.5.

in the disturbance velocity at the caps to(&% of Uy. The approximate value of the
disturbance pressure calculated from equation (2.29%rdif from the exact value by
0.05%. In figure 2.10 we show the centreline velocity profiles, thiel-tme velocity
profiles and the streamlines. The disturbance tractione wetr materially different from
those shown in figure 2.3 and so are not plotted. From the elar@rvelocity profile,
shown in figure 2.10 (a), we can see that the velocity is almarst at(6, 0). The mid-line
plot in figure 2.10 (b) shows that an eddy is present becaese-tomponent of velocity
changes sign ag/d = —0.12. The streamlines are shown in figure 2.10 (c) and were
started frome/d = 0, y/d = —0.9...0.9 andz/d = 6,y = 0.1...0.9, wherey/d is
incremented in steps @f2 in both cases. The eddy shape is noticeably more triangular
than in the previous results.

Finally, we reduce the belt length such ti#at= 0.5 and setF” = 12. For this value
of 3 we checked the disturbance velocity decay and the distaebpressure. We found
the maximum error in the disturbance velocity at the capstd.49% of U,. Once again
we use equation (2.29) to calculate the approximate valubeoflisturbance pressure.
The approximate value differed from the exact valued8%. In figure 2.11 we show
the centreline velocity profiles, the mid-line velocity files and the streamlines. The
disturbance tractions were not materially different frdmge shown in figure 2.3 and
so are not plotted. The results are similar to the previotdosel” = 6 and3 = 1.
However whens = 1/2 an eddy is not present fdr = 6 and so we increasef to 12.
The velocity profile on the mid-line, shown in figure 2.11 (&hpws that the fluid moves
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Figure 2.11 : Velocity profiles and streamlines f@af = 12 and3 = 0.5. The conveyor belt lies
between:/d = 5.75 and6.25.

relatively slowly above the eddy centre. The streamlineBguare 2.11 (c) again show
an eddy with a ‘rounded’ triangular shape. The streamlinesevstarted fronx/d = 0,
y/d=—-09...09andz/d =6,y = —0.1...0.9, wherey/d is incremented in steps of
0.2 in both cases.

2.5 Discussion

We derived boundary integral equations which govern thecisl field inside a channel
containing a disturbance caused by a conveyor belt on onkeoivalls. An exact ex-
pression for the disturbance pressure at the channel esitderdved using the Lorentz
reciprocal relation, wherein the disturbance flow was egldb the Poiseuille flow. We
discretised the geometry and equations using the boundamyeat method. We con-
structed a linear system from the discretised equationscamdl its solution by a standard
numerical method.

If the Poiseuille flow was absent then the conveyor belt egtan eddy in the fluid.
When the Poiseuille flow was present and the conveyor bedtdsp@s in the same direc-
tion and sufficiently small then the fluid experienced a plldrds the conveyor belt. The
pull towards the conveyor belt increased when the conveglhispeed was increased. At
a critical value of the conveyor belt speed an eddy formedecto the top wall. As the
conveyor belt speed was increased past this critical valeieddy increased in size and
its centre moved further towards the lower wall. When thevegar belt speed was in
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the same direction as the Poiseuille flow the pressure drvpeka the entrance and exit
decreased. However even when the pressure drop is zerorethenpe of the conveyor
belt and the induced eddy maintain the flux rate at the exit.

Changing the size of the belt affects the shape and size efithe When the belt size
is increased the eddy becomes wider and the fluid closest teelhmoves almost parallel
to it. A smaller belt induces an eddy which does not exhilig firoperty. Instead the
eddy adopts a ‘rounded’ triangular shape. When the convagibmoved in the opposite
direction to the Poiseuille flow, an eddy was immediatelyated close to the conveyor
belt. The fluid which was not caught in the eddy was divertedyafkom the conveyor
belt. Interesting further work on this problem could invela parameter study whereby
the speed and size of the conveyor belt could be related tedthe size.

This concludes the chapter on the conveyor belt problemhdmext chapter we will
consider a straight channel containing a disturbance dawséhe presence of a capsule.



Chapter 3

The motion of a rigid particle in a
straight channel

In the previous chapter we studied the disturbance flow duleetanotion of a conveyor
belt on one of the walls in a two-dimensional channel flow. His tthapter we remove
the conveyor belt and introduce a rigid neutrally-buoyaantiple to the flow. The particle
is free to move with the flow and we assume that the flow exertforoe or torque on
the particle. We model the disturbance caused by the padsihg the boundary integral
method and derive the equations which govern the motioneflthid and the particle.
We derive the discrete analogues of the governing equatising) the boundary element
method and write the equations in the form of a linear matrstem. We solve the linear
system by a standard numerical method, and compare thésaiotknown results where
applicable. The mathematical treatment of this problenh pridvide a guide to the next
chapter, where we will substitute the particle’s rigid bdary with a flexible one, and
allow it to contain a secondary fluid.

3.1 Problem statement

Let us consider the motion of a fluid with viscosjiyin an infinite straight-walled channel
of width 2d. A disturbance to the pressure-driven flow is caused by tbsamce of a rigid

particle of a prescribed shape. We assume that the pauicledtrally-buoyant and that
the flow exerts zero force and torque on the particle so tlepéiticle has zero inertia
and moves freely with the flow. The geometry is shown in figudeahd comprises the

channel wallsC, and the particleP. Far upstream and downstream of the disturbance

caused by the particle, the flow in the channel is describedldmsical unidirectional
Poiseuille flow, which is characterised by the prescribex, it The Poiseuille velocity,
u”, is defined by

P 92 P
u :UO<1—¥>i:u 1 3.1
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C

Figure 3.1 : A straight-walled channel containing a rigid neutrallyslyant particle.

wherel is the speed on the centreline and = Uy (1 — y?/d?) is thez-component of
the Poiseuille velocity. The flux and the centreline speedelated by

Q= 4dUj. (3.2)

Our aim is to compute the velocity field throughout the flow émthe translational and
rotational velocities of the particle and the additionagsure drop between the entrance
and exit due to the presence of the particle. We assume thaRélgnolds number of
the flow is very small so that the flow in the channel may be desdrusing the linear
equations of Stokes flow given in equation (1.3.4).

In preparation for the numerical method, we truncate thencbband label the en-
trance, located at = 0, as&; and the exit, located at = [, as&. We note thatt;
andé&, are the entrance and exit to the computational domain andatréhe inflow and
outflow of the channel, where end effects would be encouditarke unit normal vectors,
n, on all boundaries point into the fluid as shown in figure 3.te Particle disturbs the
Poiseuille flow, but af; and&,, we assume that the disturbance has decayed and the flow
has settled to Poiseuille flow.

We decompose the velocity field, the stress fieldg, and the traction fieldf, into
background Poiseuille and disturbance components, whidhaicate by the superscripts
P and D respectively, so that

u=u"+u", (3.3)
o=ol+0o"P, (3.4)
F=f0 ot fP (3.5)

and where the tractiorf, = o - n. OnC we have
u=u"=u" =0 (3.6)
due to the no-slip and no-penetration conditions, an@®ame have
u=V 4+ QA (x—x) (3.7)

whereV = (V,, V) is the translational velocity is the rotational velocityx is a point
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on the particle boundary andg. is the particle’s centroid, calculated by

1
X = gp/x ds(x), (3.8)

where Sp is the length of the particle perimeter. When the particlates in thexy-
plane, the rotational velocity is given I§y = Qk, where() is the angular velocity ank
is the unit vector which points out of the paper towards tlelee. Wher? is positive the
particle rotates in an anti-clockwise direction.

In the previous chapter we assumed that the disturbanceityetiecayed rapidly as
we moved away from the source of the disturbance. We justifisdassumption on the
basis of studies of Gaver and Kute (1998) and Cortez (20@@rding the effects of a
small obstruction in a channel. We calculated the disturbamlocity at the entrance and
exit to the computational domain and found an excellentegent between the numerical
results and our assumptions. Now that the source of ourrdatge is allowed to flow
with the fluid we must examine our assumption. Naturally weeex the disturbance flow
caused by the particle to decay as we move away from the lgartilowever we require
the decay to be sulfficiently rapid so that our assumption ¢feidle flow at&; and&s is
justified. Sugihara-Seki (1993) studied the motion of adrigliipse in a two-dimensional
channel flow. The velocity decay was assumed, and compuatbe, sufficiently rapid for
a shorter computational domain than the one consideredsrchiapter. Therefore from
our results in the previous chapter, the results of Gavekare (1998), Cortez (2002) on
the decay of a disturbance in a channel and the results oh&uagBeki (1993) regarding
the decay of an ellipse in a channel flow, we assume that therllisice velocity decays
sufficiently rapidly as we approach the ends. In summarydistirbance velocity and
disturbance traction satisfy

uP =0, (3.9)
fP=—pPn (3.10)

at&; and&,; wherep? is the disturbance pressure due to the particle. We &k be
constant at the ends and gét = 0 at&; without loss of generality. Af, we have

fP=—mn (3.11)

wherem, = p” (&) is the disturbance pressure at the exit. The disturbanesyme drop
between the entrance and exit due to the particle is thergfioen by

ApP =pP (&) - pP (&) = —m. (3.12)
The Poiseuille pressure in the channel is given by

P =G(l—2) (3.13)
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whereG = 2 uUy/d? is a positive constant, andG is the imposed constant pressure
gradient between the entrance and the exit. The Poiseudkspre varies linearly along
thez-axis of the channel and is zero&twherexz = [. Therefore the total pressure drop,
Ap, between the entrance and exit is

Ap =p(&1) — p(&) = p(&) +pP (&) — (P (&) + PP (&2))
=Gl —m. (3.14)

We may now derive an equation fap by applying Lorentz’s reciprocal relation (1.3.22)
to the Poiseuille and disturbance flows in the channel, te giv

V- @l ol —uf - oP)=0. (3.15)

Integration of (3.15) over the flow domaih, gives

/ uP - P dsk) = / uf - P ds), (3.16)

or or

wheres is the boundary arc-lengtl)l’ = & U C U P U &; is the piecewise-continuous
closed boundary of’, and the divergence theorem has been used to convert the area
integrals into line integrals. Expansion of the integraltbe left-hand side of equation
(3.16) gives

/uD-fP dsx) — / ul . fF dS(X)+/uD-fP ds)
or £1,E2,C P

_ / u . £ dsk) (3.17)

P

since the disturbance velocity &, £&; and on the walls is zero. The right-hand side of
(3.16) simplifies to

/uP-fD dsx) — /uP-fD dsx) + / u? - £7 dst)
or &1,C &2, P

_ / u - FP dsk) (3.18)

&, P
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because the velocity is zero on the walls gHd = 0 at&;. Substitution into (3.16) gives

[us" dst = [ u”-f7 ds

P &P
=-—m [ u” -ndsk)+ [ u” - P dsk)
[ormens]
=7 Q +/uP - P dsk) (3.19)
P
since the flux af, is defined by
Q= [ uf ds) = — [ u' - n dsk). (3.20)
[ o]
Rearranging (3.19) gives
. % / (WP fF —uP . §) ds). (3.21)

P

where the unknown guantities are the disturbance tractosvelocities orP. How-
ever, equation (3.7) provides a boundary condition for thal tvelocity,, on the parti-
cle’s boundary and so we eliminate the disturbance quesititsing the decompositions
in equations (3.3) and (3.5). Equation (3.21) becomes

o = 22 / (w—uP)- F7 —uP - (f — 7)) dsto)
P
_ % / — P f) ds@). (3.22)
P

We may simplify this equation further by writing the totalleeity in the integrand’s first
term in terms of the particle’s translational and rotatioredocities, to get

/"-fp ds@«)z/(VmA(x—xc))-fP ds)

P P

=V [ ffds&k)+ Q- [ (x—x)A fF dsk), (3.23)
[irewza]

whereV andQ may be brought in front of the integral sign because they rstanta-
neously constant on the particle’s perimeter, and whertitiie product QA (x—x,.)-
has been rewritten using the identity A b) - ¢ = a - (b A ¢). Now let us define the
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Poiseuille force and torque vectors,

P— | f¥ dsk), (3.24)
/

TF = / (x —x.) A P ds), (3.25)
P

whereF'” corresponds to the force exerted on the particle by the Biteséow, andT”
corresponds to the torque. More specificdily andT'" are the force and torque exerted
on a contour in the flow which is identical to the particle’sihdary because they depend
solely on the background Poiseuille flow. We may write equea(B.23) as

/u-fP dsk) =V -FF +Q.1F, (3.26)
P
Application of the divergence theorem i gives
FP = /O'P-n dsx) :f V.ot dA(x) =0 (3.27)
b P

sincec? satisfies the Stokes equatiovi,- o = 0. Similarly for the Poiseuille torque,
in index notation, we have

TF = / e (2] — 20) ofmy dste), (3.28)
P

wheree; ;. is the alternating tensor defined in equation (1.3.33). Véethe divergence
theorem to transform (3.28) from a line integral to

jf o (ijk (x — ) ok) dAR)
= Cijk fj oty + (2 = T ) 7 (o) dA(x)

- ewkﬂ — 207) 5% (of) dA®X) (3.29)

where A is the area bounded b and Wheregl-jka}; = 0 due to the anti-symmetry of
the alternating tensok,;;, = —e;;;, and the symmetry of the stress tensgy, = oj;.
Reverting to vector notation we have

_ j (x —x) A (V-al) dARx) = 0, (3.30)
P

sinceV - o = 0, and so both the Poiseuille force and traction on the partichtour are
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zero. Substituting (3.27) and (3.30) into (3.26) gives

/u-fP dsx) =0 (3.31)

P

which simplifies equation (3.22) to

Ty = Ll f ds), (3.32)
@ P

which is our equation for the disturbance pressure. Thezdtwe disturbance pressure
at&, is expressed in terms of the prescribed fl@x,the known Poiseuille velocityy”,
and the unknown tractions on the perimeter of the partidiés interesting to note that
the disturbance pressure may only be calculated from emu#8.32) when we know
the tractions on the particle’s boundary, which is in costtta the explicit disturbance
pressure formula given in equation (2.27) of the previousptdr. Since the Poiseuille
velocity is unidirectional only the-components off will affect 5. We may also define
the force,F', and the torqueT’, on the particle due to the total flow which are both zero
because we have assumed the particle is force and torqud freesfore,

F = /f ds) = 0, (3.33)
P
T = /(x —xc) A f dsk) =0, (3.34)
P
and the force and torque on the particle due to the distugbfiow are given by
FP = /fD dsx) = 0, (3.35)
P
TP = / (x —x.) A fP dsk) = 0, (3.36)
P

which are both zero becauge= F* + FP andT = T + TP.

In the previous chapter we derived an alternative expradsiothe disturbance pres-
sure by integrating the Stokes equation for the disturbatress. Integrating - o = 0
over the flow domain and applying the Divergence theoremsgive

T = —% / £P dsk)
C.P

:_i (/fD ds(x)+FD)
C

_ 1 (D
-5 / P dst), (3.37)
C
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which in component form gives
1 (. .p
my=—— [ i f7 ds), (3.38)
2d
c

0= /j - fP ds). (3.39)

C

Equation (3.38) expresses in terms of the disturbance tractions over the channel walls
as opposed to equation (3.32), which expresseis terms of the total traction over the
particle. We choose to calculate using (3.32) and use equation (3.38) as a means of
checking the disturbance pressure. We use equation (®8detk the,-components of
the disturbance tractions.

Now that we have a formula for the disturbance pressure, wesrmito our next goal
of deriving an integral equation which governs the distadeavelocity in the channel.
We apply the boundary integral equation (1.3.40) to theudisince flow with the pole,
X, located in the fluid to get

tmpa(x0) = = [ 1P Gy dsg) + i [uP Ty s, (3.40)
or or

whereGj; is the free-space Green’s function afig. is its associated stress tensor. The
velocity can be calculated at any point in the flow given th&tutbance tractions and
velocities on the boundaries. We simplify (3.40) by appiythe boundary conditions
given in equations (3.6), (3.9), (3.11) together with theozdisturbance pressure énto
get

47T,uu§)(xo) :772/7%- Gij dS@()— / le Gij dS@()—i—,U,/uZD Tijk Nk dS@() (3.41)

& C,P P

Once again we would like to eliminaie” from the equation in favour of the total velocity
because the boundary condition Bnis written in terms ofu. By considering only the
boundary of the particle and the Poiseuille flow, we can write

0= _/fiP Gi; dst) +M/u§’ Ty i, ds), (3.42)
P P

for xg in the fluid and where the left-hand side is zero becagdees outside ofP. Since
Xg lies in the fluid in both equations (3.41) and (3.42) we may thédn to get

47T/LujD(X0) = ﬂg/ni Gz‘j dS(X) - /fZD Gij dS@()
c

&

- / £ Gy ds) + u / i Ty dste), (3.43)
P

P
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where we have fulfilled our aim of eliminating the disturbanelocity on the particle
boundary in favour of the total velocity. Re-expressingdbable-layer potential in terms
of the translational and rotational velocities gives

/ s Ty, dsie) = / (Vi + €m 4 (e — o)) Togp e dS6)

P P
= (Vi — cim o) / Ty, dst)
P
+ €itm Y / T, Tiji e dSE), (3.44)
P

which may be evaluated using the stress tensor identitezriidis 1992, p59)

/Tijk Nk dS(X) =0, (3.45)
P
i / 2o Ty, dst) = 0, (3.46)
P

which are valid wheix lies outside the domain @, and so

/ui Tijk Nk dS@() =0. (3.47)
P

The boundary integral equation (3.43) therefore reduces to

uP (x0) = ﬁ . / ni Gy dst) — / PGy dst) — / Gy ds) | . (3.48)
c P

)

The total velocity;u, is found by adding the Poiseuille velocity. The unknownrgiiees
in (3.48) are the disturbance tractions on the channel wilistractions on the particle
and the disturbance pressure at the exit. The particle Mielware unknown but only enter
the problem via the boundary condition $h The equation for the disturbance pressure
means that we do not have to evaluate (3.48) at a poighdn order to obtain an extra
equation forme. Pozrikidis (2005b) notes the presence of numerical gdeitisis in the
boundary integral equation whemn lies on&; or &. We have side-stepped this issue by
proceeding in line with Brenner (1971) and Pozrikidis (2008nd derived an equation
for the disturbance pressure using the Lorentz recipradation.

There is a problem in equation (3.48) regarding the unigs®é the solution. The
equation does not permit a unique solution because anasbitnultiple of the normal
vector may be added to the particle’s traction. Lettypdpe an arbitrary constant and
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mappingf — f + xn in the integral ovef® gives
/fi Gij dsfx) — /(fi+Xni)Gij ds(x)
P P

— /fi Gij dS(}()+X/ni Gij dsk)
P

P

:/ﬁGU%®, (3.49)
P

since [, n; Gi; dsf) = 0 is one of the integral identities of Stokes flow. To render
the solution unique and thus regularise equation (3.48) ddeaa'deflation’ term to the
equation. The deflation term is a functionsqf, the particle shape and its tractions, and
is defined to be

Dj(xo) = nj(XO)/ni fi ds), (3.50)

P

which is not invariant under the mapping given above. We ¢awsthat the deflation
term is zero. Thus addition dD to equation (3.48) preserves the solution and ensures
its unigueness. Details on the deflation term can be foundpipeAdix B and Pozrikidis
(1992).

In order to use (3.48) we need to find the disturbance pressurdéhe disturbance
tractions onC and the tractions off. To calculate the disturbance tractions we require
a boundary integral equation which is valid on the boundaniethe flow domain. Since
the double-layer potential is absent from (3.48) the equas continuous as the pole ap-
proaches the boundary of the flow domain. This would not be#ise if the double-layer
potential were present. Therefore equation (3.48) is wahénx lies on the boundary
and is

0=m [ Gy ds) — [ 1P Gy dst) — [ Gy ds) (35
C P

)

whenxg lies on the channel walls sine¢” = 0 onC, and

tmpf(x0) = 72 [ niGyy dst) — [ PGy a6~ [ £iGy dsk)  (352)
& P

&

whenx lies on the particle perimeter. To bring the unknown tratiesteal and angular
velocities into equation (3.52) we substitui® = u — u” into the equation and write
the total velocity in terms oV andf.

Before moving on we will confirm the validity of equations §3) and (3.52) by de-
riving them directly from the form of the general boundartegral equation applicable
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whenxg lies on the domain boundary. Wheg lies onC, equation (1.3.40) gives

. / ns Gy dst) — / PGy dsed) + / uP Ty, dse) = 2P (x0)
& c.p P
—0 (3.53)

after applying the boundary conditions. Application of atijon (1.3.40) to the Poiseuille
flow and the particle gives

0= [ £/ Gy dsg) + 1 [ ul Tyjemy, dsto) (3.54)
[rasmose

P

where the left-hand side is zero becaugdies outside ofP. Addition of equations (3.53)
and (3.54) and elimination of the double-layer potentiaklgyation (3.47) gives

0= [ Gy dst)— [ 12 Gy dst)— [ fiGiy dsk) (359)
c P

)

which is identical to (3.51). Therefore we have verified thaiation (3.51) is valid when
Xg lies on the channel walls. Wheg lies onP we obtain

PV

2P (x0) = / ns Gy ds) — / FP Gy dst) / P Ty, dske), (3.56)
P

Ea c,P
by considering the disturbance flow in the whole flow domairg a

PV

2l (o) =~ [ 57 Gy dst) 4 [ Wl Ty dsk) (357)
P P

for the Poiseuille flow over the particle’s domain, and whigre minus sign on the left-
hand side appears because the normal vector is directed BuMdhen we add equations
(3.56) and (3.57) we cannot eliminate the double-layermi@kbecause it takes its prin-
cipal value, and so we get

2T (UJD(X()) - uf(xo)) = 7T2/7”LZ‘ Gz‘j dS(X) — /fl-D Gij dS@()
& c
PV

- [5Gy ds@ [T dst. (358)
P

P
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We can evaluate the double-layer potential by using thesafentioned stress tensor iden-
tities which take the values

/Tijk Nk dS@() = —27T(5ij, (359)
P
i / 2o Ty ASG) = — 277 €y To.ms (3.60)
P

whenxg lies on the boundary and where the signs on the right-harelasiel due to the
direction of the normal vector oR. Therefore the double-layer potential is

PV 3%
[ wsTig dste) = (Vi = cum Uzen) [ T ds)
P P
3%
+ €itm U / T Tiji g dSx)
P
= =27 (Vj = €jim U ZTean + €jim UTom)
= —27u;(xo) (3.61)

which upon substitution into (3.58) gives

tmaf (x0) = 72 [ niGiy dst) — [ 2 Gy ds6) - [ £iGyy dsk)  (@:62)
c P

)

which is identical to equation (3.52). We have now verifieat thquation (3.52) is valid
whenxg lies on the particle perimeter.

We use the boundary element method (Pozrikidis 2002a) tairolat linear system
which represents the governing equations. The boundamediscretised into elements
upon which we evaluate the pertinent boundary integral emua Evaluation of (3.51)
with xg on each ofC’s boundary elements will provide a sufficient number of eiqunes
for the unknown disturbance tractions on the walls. We hheesame sufficiency oR
by equation (3.52), and equation (3.32) providessfgr However we require three more
eqguations to complement the unknown translational andlangelocities of the particle.
Inclusion of the force equation (3.33) provides two equetiand the:-component of the
torque equation (3.34) provides the final equation. Theeetoe number of unknowns
equals the number of equations and so our system is comptee the disturbance
pressure and the unknown tractions are known we may cadctilatvelocity at any point
in the flow domain using

uj(x0) = uf (x0) + ﬁ 7T2/ni Gij dS(X)—/fZD Gij dS(X)_/fi Gij dsE) | ,
& C P
(3.63)
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where we have added the Poiseuille velocity to get the tathdcity on the left-hand
side. To ascertain the important parameters in equatio88)(and (3.63) we render them
dimensionless by scaling distancesdyyelocities bylUy, and tractions and pressures by
uUp/d, to get

g = —Z /aP - fds (3.64)
P

for the disturbance pressure, where a circumflex indicatBsiansionless quantity, and

1 A .
@ (xo) :af’(xo)+H ﬁQ/niGij dg—/ff e d§—/fiGZ—j ds| (3.65)
& C P

for the boundary integral equation. Therefore it is cleat the flow is solely dependent
on the shape, size and location of the particle via the iategsverP. We have now
fulfilled our aim of deriving the boundary integral equatifor a channel containing a
rigid particle.

3.2 Numerical method

As in the previous chapter we will discretise the boundatggral equations using the
boundary element method and form the equations into tharlimatrix system,

A-z=b, (3.66)

where A is the square ‘influence’ matrix; is the vector of unknown tractions, the dis-
turbance pressure and the particle velocities ang the vector of known values. To
apply the boundary element method we discretise the charallslinto Ve equally-sized
straight elements. We may discretiBeinto straight lines, circular arcs or cubic splines
(e.g. Pozrikidis 2002a). Here, for simplicity, we choosese straight boundary elements
for the particle and discretise the perimeter inip equally-sized straight elements. The
numerical scheme is therefoé¥ k) accurate wheré is the element length. On each of
the elements we set the unknown traction to a congtaeictor. We label the disturbance
traction on the*" element oC as f2 and the traction of the* element ofP asf,. The
vector of unknowns is .

z=|FY Fp m V 9 (3.67)

whereFé) is a vector containing th2/No components of the disturbance tractiongCof
Fp is a vector which holds th&N» components of the tractions &f, V' is the2-vector
representing the particle’s translational velocity anel siperscripfl” means transpose.
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The vectorsF'?, Fp andV are defined to be

FE= 2 15 o P Pa (3.68)
Fp=[fo1 fyr o fonp Tyl (3.69)
V:[Vgﬁ Vy}' (3.70)

We will now derive the discretised analogues of the govermiquations. The equation
for the disturbance pressure (3.32) is approximated by

O:Qﬂng/uP-f ds(x)

P

Np
~Qm+ Z up(mm,r) f:v,r by, (3-71)

r=1

whereu” is thez-component of the Poiseuille veloCity¥y, » = (T, Ym,r) IS the mid-
point of thert" element and, is the element length. By defining,

Wp = [up(mm,l)ll 0 - uf(@mnp) vy 0] ; (3.72)
we may write (3.71) as the product of two vectors,
[0 Wp Q 0 o] =0 (3.73)

The discretisation of the force equation (3.33) is

Np Np
F=Y [ fods0) = firls =0 (3.74)
r:lEr r=1
which by defining
Ii 0 l 0
Lp=|" Ne (3.75)
0 ll 0 le
may be written as
[o Lp 0 0 o] x=0. (3.76)

Similarly for the z-component of the torque equation (3.34) we have

- / () — wes) o dste) = 0 (3.77)

P

which we can represent as

[o Tr 0 0 0 -2=0 (3.78)
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where the row vector,

Tp= |:_(ym,1 - yc)ll (xm,l — wc)ll to _(ym,Np - yc)le (wm,Np — wc)le] s

(3.79)
and where the particle centre, = (x.,y.). To complete the construction of the linear
system we will discretise the boundary integral equatiagisgithe procedure detailed in
section 2.2 of the previous chapter. First we will place thke kg, on the channel walls
and write equation (3.51) as

/fz'D Gij dS(X)+/fz‘ Gij dsk) + nj(XO)/ni fi dsx)
C P P

— 7T2/ni Gij dS@() =0, (380)

)

where we have also included the deflation term (3.50). Tatkiegequation term by term,
we discretise the integral ovérto get

Ne
[ 126Gy a0 = > 15 oo = 1 x0) - (O (3.81)
C r=1

where@m contains the integrated Green'’s function and is defined lnatian (2.55),
andlgj(xo) is defined by (2.61), which is

IG j(%0) = |Gajy Gyjn - Gujne Gyjne| - (3.82)

The calculation off?ijw was carried out by numerically integrating the Green’s fiamc
using Gauss-Legendre quadrature, details of which may bedfin Appendix A and
Pozrikidis (1998). We typically use2h base-points in the quadrature. For the integrals
overP we have

Np Np
/fi G;j ds) + nj(XO)/ni fi dsfx) ~ Zfi,r Gijr +1j(%0) Zni,r firly
P P r=1 r=1

= I§ ;(x0) - [Fp]” (3.83)

where we have included the deflation term defined in equaBd0}, and[%vj(xo) is
defined to be

I8 ,(x0) = |Gaja Gua - Gugnw G| +
n;(Xo) |:nm,1l1 nyili ... NaNplNg ny,N'ple] ; (3.84)
and wheren, = (n,,n, ) is the unit normal vector on theé” element ofP.

The integral ove€, can be calculated exactly using the formulae given in egoati
(2.44) and (2.45) of the previous chapter. Putting equat{@8B1) and (3.83) together and
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defining,
If ;= /n Gyj ds), (3.85)
&

we can represent the boundary integral equation (3.80) as
I8 ,(x0) T5;(x0) ~IE ;(x0) O 0] - @=0. (3.86)

Re-evaluation of this equation withy equal to the mid-point of each of the channel walls’
boundary elements creatds pairs of equations which are assembled into the matrix,

[CC Cp Cg, O O}-x:O, (3.87)

where each o€, C» andCe, consist of theVe pairs ofI§ ;(xo), I ;(xo) and—I¢, ;(xo)
respectively. The matrix labels are in the forg in order to clearly identifyA as the
boundary on which the pole lies, aritlas the boundary over which we are integrating.
So for example, the matri@p has the pole o and it corresponds to the integral over

The boundary integral equation fey on the particle boundary is

/sz Gij dS(><)+/fz‘ Gij dsfx) —7T2/nz‘ Gij ds) + 4mp uj(xo) = 4mp uf (o).
c P &
(3.88)

We have already discussed the discretisation of the integrahis equation. It remains
to discretise the total velocity on the left-hand side anilerdown the components of the
Poiseuille velocity on the right-hand side. By writing tlatal velocity in terms of the

unknown translational and angular velocities, and using 2 k, we get

u;(x0) = Vj + €3 Qe (o1 — Teyp) = Vi + €215 (w0 — 2cy), (3.89)

which we can write in matrix form as

T
wi(x0) = [0 0y ey (wor— )| - Ve Vy 0] (3.90)
By defining,
I,;=4mp [c% 6jy] ) (3.91)
Iﬂ,j(xo) =Amp ey (5'30,l — 1), (3.92)

we we can write the discretised version of equation (3.88) as

ICG,j(XO) Ig,j(xo) —Ing,j(Xo) I, IQ,j(Xo)] cx=4mp uf(xo) (3.93)

Re-evaluation of this equation withy at the mid-point of each of the particle’s boundary
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elements create¥» pairs of equations which we assemble into the matrix,
'Pc P’P 'Pg2 'Pu PQ] s = b'p, (394)

where each oP¢, Pp, Pe,, P. andPg, consist of theNp pairs of I¢ ;(xo), I ;(x0),
—I g (x0), Iu,; andIg j(xo) respectively, andp is the vector containing th&/» pairs
of components of the Poiseuille velocity for the differeatues ofxy on the particle’s
boundary elements.

We have now completed the discretisation of the boundalgimt equations, the
disturbance pressure equation and the force and torqué@tgiaNe assemble the master

linear system from equations (3.73), (3.76), (3.78), (B&B¥ (3.94) to get

[Cc Cp Cey O O] (0]

Pc Pp Ps Pu Pa bp
0 Wp Q@ 0 0| -z=10 (3.95)
0 Lpr 0O 0 O

|0 Tp 0 0 0| | 0 |

which is in our desired form. The rows and columns of the ‘iaflce’ matrix in (3.95)
may contain one or more rows and columns. For exan(ds a matrix with dimen-
sions2N¢e x 2N¢, where the rows correspond to thendy components of the pertinent
boundary integral equation witky placed on an element 6f The size of the ‘influence’
matrix is(2N¢ + 2Np + 4) x (2N¢ + 2Np + 4). In our simulations we tookvVe = 800
and Np = 316. We increasedVy for larger particles to maintain the element length,
and decreased/» for smaller particles. Our formulation caters for an adrigrshaped
particle but in the simulations we restrict our attentiom taircular particle of radius.

One of the features of Stokes flow is its reversibility, ite Stokes equation is invari-
ant to a transformation whereby the pressure and velocitysfi@e negated. Therefore
fluid particles in a Stokes flow will eventually regain theniginal position if the flow
is reversed. More details may be found in Acheson (1990). usetonsider a circular
particle translating along the channel and suppose thiglgagt also moving towards one
of the channel walls. Now reverse the flow by negating thesomesand velocity fields.
Due to reversibility the particle will start to return to ibsiginal position. Therefore the
particle will start to move away from the wall it was travatli towards and back to its
original location. However the velocity shear from the dumt flow across the particle
before and after the flow reversal are equal but oppositelyingpthat in one case the
particle moves towards a region of higher shear and in theratase towards a region
of lower shear. We have a contradication and so the partisiea move towards either
channel wall. Therefore the particle must remain at itsahéxial location and/, = 0.
For a geometrical argument see Cox and Mason (1971). Fortmer by symmetry a
circular particle will have constanf, and().

Now we can build the linear system and solve it using a stahoethod. We found
it practical to use Gaussian elimination to find the tracjafisturbance pressure and the
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particle velocities. The solution was then used in equaf863) to find the velocity at
any point in the flow domain.
We calculated the flow streamlines by integrating the equati

% = u(x) (3.96)
along the streamline, wheseis the position vector of a point on the streamlinanea-
sures the arc-length along the streamline and the velooithe right-hand side is com-
puted from equation (3.63). We also calculated the streswmlrelative to a frame of
reference fixed on the particle, which we will call pathlinesdistinguish them from the
streamlines. To calculate the pathlines, we integratediti@mmatic equation,

d /
d—’; = w(x) — Vii, (3.97)
wherex’ is the position vector of a point moving with the frame of refece,u is again
calculated from equation (3.63), ah@ is thex-component of the particle’s translational
velocity. We used the adaptive time-stepping Runga-Kk&hterg method (e.g. Atkin-

son 1978) to integrate (3.97).

3.3 Validation

For all validation checks and results we truncated the ablssmthat = 12 d. We found
this truncation length sufficient for the disturbance flowdecay as per our initial as-
sumptions. For this channel length, the Poiseuille presdtop is24 Uy /d between the
entrance and the exit. Dimensional analysis shows the itapoe of the dimensionless
particle radiug, and the centreline offset, which are defined to be

p=12, (3.98)

e

B

(3.99)

g =

We placed the particle at the mid-point of the channgly = 6, and varied the offset
from the centrelineg, and its dimensionless radiys,

As a check on the numerical implementation, we confirmedtti@tliscretised form
of the integral identities (1.3.34) and (1.3.31) were §atikto within an acceptable toler-
ance. We checked the validity of both identities by settiggo the mid-point of every
boundary element and to several points inside and outsitleedfow domain. Equation
(1.3.34) was satisfied to within a numerical toleranceé®f’d and (1.3.31) was satisfied
to within 10~°. We also checked that the discretised value of the integrtiid deflation
term was effectively zero for a range pfindo.

For each simulation, we checked that theomponents of the disturbance tractions on
the walls decayed to zero as we approached the entranceeagithThexz-components
of the disturbance tractions on the elements closg tnd&, were typically 10~ pU /d.
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We expect the-component of the disturbance pressure to tend to zero arttnance
whereas we found thaﬂyD ~ 107° uly/d. At the exit, they-component of the distur-
bance traction should tend to the disturbance pressure oWvelfthe difference between
mo and fyD at this point to be no more thanh001%. For all of the simulations the dis-
turbance velocity decayed as we appro&gland &, with the disturbance velocity com-
ponents no more thar0—% U, at the entrance or exit. Figure 3.2 shows the decay of the
z-component of the velocity along the channel centrelinevbenh&; and the particle,
which lies on the centreline with = 0.5 and its centre a(6d,0). At z/d = 5.5 the
velocity equals the particle’s translational velocity, = 0.888. We can see that the ve-
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Figure 3.2 : Decay of the disturbance to thecomponent of velocity along the centreline for
p = 0.5 ando = 0. The particle boundary is at/d = 5.5.

locity rapidly attains its Poiseuille centreline speed &move away from the particle,
where the disturbance is at its maximum. As we move away flamparticle along the
centreline the disturbance velocity decay$.f% of its peak value at/d = 4 and0.02%
atz/d = 3.5, which represent 3 and 4 radii from the particle boundarpeetvely. We
performed the same check for a range of valueg ahd o with very similar results for
the disturbance velocity decay.

To validate the numerical solution we used the configuratiescribed above as our
reference configuration. Firstly we computed the solutimnaf longer channel with =
24 d while preserving the element length, with respect to theregfce configuration. To
test the effect of the number of boundary elements we tookdference configuration
and doubled the number of elements on each of the bounddriesl cases we found
that the tractions in the solution vector differed by lesmit002 Uy /d from the values
obtained for the reference configuration.

As a final check on the equations which are used to constradirtbar system, we
calculated the force and torque using (3.74) and (3.77)h Boantities were effectively
zero as the force is approximatel§—'* ;.U, and the torque is approximatel)—'4 ;. Uyd.

To verify the disturbance tractions éhwe calculated the disturbance pressure from
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equation (3.38) which uses the disturbance tractions omwtie For a range of radii,
the difference between the two independently calculatdaegaofr, was no more than
0.0001%. They-components of the disturbance tractions were verified bpgon (3.39),
which was satisfied to within a numerical tolerance @f 1° .Uy /d.

The only remaining quantities in the solution vector whielquire checking are the
particle velocities. We expect the particle to ‘slip’ in tfieid relative to the Poiseuille
velocity calculated at the particle’s centre. For a range ahdo we foundV, was less
than the Poiseuille velocity calculatediat= y.. Due to the reversibility of Stokes flow
we expectl/, = 0 and we find that this condition is met to a very fine degree ofiaxy
in our numerical solution. When we reduce the particle mdiuzero the particle tends
to a fluid element and thus it will not cause a disturbance flalerefore we expect
the translational velocity of the particle to equal the Boille velocity calculated at the
particle centre in the limit of vanishing particle radiusurthermore the angular velocity
may be checked against the local vorticity since we expecatigular velocity to equal
half the vorticity of the Poiseuille flow. Therefore we expec

Q~ LV ALl = (3.100)

1
2

2 Uy Uy
= VK =EY

We setp = 0.01 and computed” and(2 for o between) and0.9. Fory./d < 0.7 the
error inV,, with respect to the computed Poiseuille velocity was leas th04%, and the
error inQ2 was less tha.05%, with respect to equation (3.100). For largethe error
increased. For example, the errofis% wheno = 0.9 for bothV, and).

We have checked the geometry and the numerical solutioretdificretised boundary
integral equations and found that the computed values skoellent agreement with the
theoretical predictions.

3.4 Results

In all results we truncate the channel length so that 12d. In the first set of results
we setp = 0.5 and place the particle on the centreline so that 0. The disturbance
tractions on the upper wall and the patrticle tractions aoevshin figure 3.3. The lower
wall disturbance tractions are not shown becauserthemponent is identical to that on
the upper wall and thg-component is equal to the negated disturbance tractioheong-
per wall, due to the opposite direction of the normal vecttre decay of the disturbance
traction to a steady value is evident as we move away fromahéfe. Ther-component
decays to zero at the entrance and exit. J¥mmponent decays to zero at the entrance
but tends to the negated value of the disturbance pressuhe &ixit due to the direc-
tion of the normal vector on the upper wall. For these parameiluesV, = 0.888 U
andmy = —0.319 uUp/d. The values ofl, and2 are effectively zero. Therefore the
particle’s presence increases the pressure drop bylosfi. The normal and tangential
components of the particle tractions are shown in figure 8).3The normal component
of the particle tractionf - n, is symmetric abou# = = which impliesf - n is equal for
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(d) Pathlines in a section of the upper half-channel. Theéaf reference is moving with the particle. The
arrows indicate the flow direction relative to the particle.

Figure 3.3 : Upper wall disturbance tractions, particle tractionseatnlines and pathlines for
p=0.5ando = 0.

equal values of:/d. We expect this behaviour due to the symmetry of the flow gégme
in this case. The particle’s tangent vector is directed imuatitrclockwise direction. The
tangential componentf - ¢, on the upper half-perimeter is symmetric ab6ut 7 /2
and symmetric on the lower half-perimeter abéut= 37 /2. It is interesting to note
that there are six points on the particle perimeter wheraahgential components of the
traction change sign. As we saw in the previous chapter, eetangential component
of the traction changed sign there was a stagnation poinaawtiden flow reversal on
either side of the point. These points lie at approximatekt n 7/4 wheren = 0, 1,
3, 4,5 and 7. Figure 3.3 (c) shows the instantaneous stneasniln a truncated portion
of the upper half-channel. Only the upper half is shown bgedhe flow is symmetrical
abouty/d = 0. The streamlines only deviate from lines parallel to thaxis close to
the particle. The pathlines shown in figure 3.3 (d), for thmas&hannel region, show the
flow behaviour relative to the particle. The frame of refe@moves with the particle’s
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constant translational velocity. The arrows in the figuididate the direction of the flow
relative to the particle. There are stagnation point$ at 0 andfd = =. The streamline
which starts ay/d = 0 on &; terminates at a stagnation point on the particle boundary,
corresponding t@ = . The fluid close to the centreline moves towards the particle
whenz/d < 5.5 in the region indicated by the bottom-left arrow. When ttreatline
approaches the particle it moves away from the centrelimkigto a region of slower
moving fluid, where it travels back towards the entrancetiad to the particle. The fluid
close to the exit may be divided into three regions; the fagian is close to the wall and

is not significantly affected by the particle’s presence,4dcond, which at the exit lies in
the rangd.33 < |y/d| < 0.57, moves closer to the particle where the fluid moves towards
the centreline and into the third region, which moves fastan the particle. The loca-
tion of the stagnation points on the particle’s upper halfipeter can be inferred from
figure 3.3 (d). For example, for the pathlines starting atetkie and withy /d between
0.57 and0.6, there will be a pathline which stagnates on the particleisndary because
the pathlines diverge, with one passing over the top of thiecgmand the other moving
towards the centreline before travelling to the exit. TFee stagnation points occur at
all the points where the tangential component of the partielction are zero. Increasing
the size of the particle while keeping = 0 does not materially change the behaviour
of the flow. For example, whep = 0.9 the disturbance pressure; = —7.778 ulUy /d,
andV, = 0.712U,. The disturbance pressure represen$.4% rise in the Poiseuille
pressure drop.

In the next set of results we spt= 0.5 ando = 0.25. For these parameters the
particle translates witf,, = 0.816 U, and rotates witff2 = 0.210 U, /d which is anti-
clockwise. The translational velocity is smaller than wtiiea particle was positioned
on the centreline. The disturbance pressure drap983 n.Uy/d, which represents an
increase to the Poiseuille pressure droptafs, and is higher than for the same sized
particle located on the centreline. At first sight this magreeounter-intuitive because an
off-centre particle induces a greater disturbance presstmwever we will see that when
we break the flow symmetry, by placing the particle away framdentreline, we cause a
significant increase in the maximum value of the boundatitas. Since the disturbance
pressure is calculated from the boundary tractions thentiahce pressure increases. In
figures 3.4 (a) and 3.4 (b) we show the distribution of theudiEince tractions on both
walls, where we have used the same scale on the tractioroadésrtonstrate the difference
in magnitude. All components at the entrance are zero ang-twmponent tends to
the disturbance pressure; = —0.993 uUp/d, at the exit. The opposite sign gff on
the lower wall is due to the normal vector which is orientedhia opposite direction.
Comparison of the disturbance tractions on the upper wafliatied in figures 3.3 (a) and
3.4 (a), shows that the profiles are very similar but the latsmonstrates a significant
amplification. Ther component of the disturbance traction on the lower wall doss
change significantly while thge-component increases in the right-hand half of the channel
and does not exhibit the peaked profile of the top wall. Theimam values of the:
andy components off” on the top wall are approximately 6 and 8 times larger when
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Figure 3.4 : Tractions on the channel walls and the particledet 0.5 ando = 0.25.

o = 0.25 than wheno = 0. From equation (3.37) we can see tifat directly affects
the disturbance pressure, andsowill increase. The particle tractions are shown in
figure 3.4 (c) where we can see that the normal component'snggm about) = 7 has
disappeared. The tangential component of the particlédrabas preserved its symmetry,
whereby f - t is symmetric abouf = 7 /2 on the upper half-perimeter, and symmetric
aboutd = 37 /2 on the lower half-perimeter. The normal and tangential comepts
of the tractions are approximately 2—3 times greater tharihfe centred particle. The
tangential component of the particle traction is zero fevsiues ofd with two on the top
half-perimeter and four on the lower. Previously we saw stegnation points occurred at
these points. However the particle is now rotating and sgnsiiéon points will not occur
on its boundary. The pathlines for the flow are plotted in #g8r5 where the arrows
show the direction of the fluid relative to the particle. Traflin the upper half-channel
is similar in behaviour to that in the previous set of reswitseerec = 0. The lower
half-channel now exhibits two interesting features. Thst fis the presence of eddies
which lie upstream and downstream of the particle and bet@xchannel’s centreline. In
both eddies the fluid rotates in a clockwise direction. Theosd feature relates to the
behaviour of the velocity on the segment of the mid-lingd = 6, below the particle,
particularly aroundy/d = —0.479. Fluid below this value is moving slower in the
direction than the particle and so will move towards thearte, relative to the particle.
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2’ /d

Figure 3.5 : Pathlines in a section of the channel foe= 0.5 ando = 0.25. The particle rotates
anti-clockwise and the fluid in the eddies rotates clockwigee frame of reference is moving with
the particle. The arrows indicate the flow direction relatio the particle.

Fluid above this critical point will continue to the exit ihg same way as the streamline
which skirts the underside of the particle in the figure. Bitley-component of velocity
is zero on the mid-line, the poiri6, —0.479) d is a saddle-like critical point in the flow.
Eddies similar to the ones seen here were studied and phaptoggst by Hasimoto and
Sano (1980), who also examined the flow around two statiotydiyders.

Although it is not evident from figure 3.5, there is a smallioegclose to the particle
in which pathlines orbit the particle in an anti-clockwiskedtion. Jeffrey and Onishi
(1981) show a circulating region of fluid around their ratgticylinder above a plane
wall. In figure 3.5, pathlines started froffid, ¢d) where—0.284 < ¢/d < —0.25 move
anti-clockwise around the particle demonstrating the gares of a ‘captured’ layer of
thickness.034 d. The key differences between this set of results and thequewne is
the presence of eddies, the increased disturbance presiseiiacreased boundary trac-
tions and the presence of pathlines circulating around dncfe. We conclude that the
increased disturbance pressure drop is due to the offecttation of the particle which
causes a significant increase to the boundary tractioneciedly in the region of the wall
closest to the particle.

For the next set of results we maintain= 0.25 and increase the particle size/e=
0.7 so that the gap between the top of the particle and the toprediices t®.05d. The
disturbance pressure, = —7.454 U, /d, which represents 31% rise to the Poiseuille
pressure drop. The particle’s velocities &= 0.706 Uy and$2 = 0.167 Uy/d. When
a particle of this size is located on the centreling,= —1.506 uUy/d. The pathlines
for the flow are shown in figure 3.6 where again we can see tlii¢®dre present in the
flow, and are about the same size as in figure 3.5. The partida tiayer of fluid which
circulates around its perimeter, although the thicknesbefcaptured’ layer has reduced
t00.011d.

So far we have discussed the flow for specific valueg ahdo. Now we look at
how the pressure and particle velocities vary witando. In figure 3.7 we show how
the disturbance pressure varies wijttior a centred particle and for two particles with
o = 0.25 and0.5. In figure 3.7 (a) we can see that the behaviour is qualitgtisienilar
for all three values ot. For smallp the disturbance pressure increases at a very low
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Figure 3.6 : Pathlines in a section of the channel foe= 0.7 ando = 0.25. The particle rotates
anti-clockwise and the fluid in the eddies rotates clockwigee frame of reference is moving with
the particle. The arrows indicate the flow direction relativ the particle.
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Figure 3.7 : Disturbance pressure vgfor offsetso = 0 (—), 0.25 (--) and0.5 (- - -).

rate. For largep the disturbance pressure increases rapidly. We can seetlfi@iplot
of log || againstp in figure 3.7 (b) that the pressure increases almost expiatigrior
larger values op since the curves have become nearly straight. It is iniagesb note
that for a givenp, the disturbance pressure increases with the offset frencehtreline.
The kinks for smalp in figure 3.7 (b) are due to the constant increment sizeused in
the calculation of the pressure. A smaller increment wountdide a smoother curve. For
example, wherp = 0.41 the disturbance pressures ar6.138 uUy/d, —0.469 uUy/d
and—2.357 uUy /d for the particles witho = 0, 0.25 and0.5 respectively. Therefore we
can see that as increases, and the gap between the top of the particle athdedaktes,
the disturbance pressure increases significantly.

In figure 3.8 we plot the disturbance pressure agairfstr a particle withp = 0.25
and a particle withp = 0.5. Figure 3.8 (a) shows how, varies with respect ta. The
larger particle induces a greater disturbance pressutbd@ame value af. In figure 3.8
(b) we plot the logarithm of the disturbance pressure agaiffisr the two particles. Since
both curves are approximately straight lines, we conclidge the disturbance pressure
depends almost exponentially en

Next we examine the effect gfando on the particle’s velocity. In figure 3.9 (a) we
plot the translational velocityy,. /Uy, againstp. Whenp is small, the particle’s velocity
is approximately equal to the Poiseuille velocity caloethat the particle centre. As
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Figure 3.8 : Disturbance pressure vs.for two particles withp = 0.25 (—) and0.5 ().
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Figure 3.9 : Variation of the particle’s translational velocity withsggect top ando.

increases the particle’s velocity decreases almost linedth p and the particle ‘slips’
relative to the Poiseuille velocity calculated at particémtre. The results for the = 0
case show an excellent agreement with the equivalent sesufigure 3 of Sugihara-
Seki (1993), which were calculated using the finite elemeethod. The particle with
o = 0.25 initially translates at the Poiseuille velocity. The palgis velocity decreases as
the particle size increases but does not strongly exhibiteat dependence gn When

o isincreased t0.5 the particle’s velocity starts at the Poiseuille velochg p increases
the particle’s velocity decreases at an increasing rat daes not display a linear rela-
tionship betweerl/, and the particle size. In summary, the difference betwégmand
the particle’s velocity is significantly greater whgris large or when the particle is close
to the channel wall. This effect is due to the stress exentethe particle by the fluid in
the narrow gap between the particle boundary and the waleasbeéd by Staben et al.
(2003) who used the boundary integral method to analyse thteomof a sphere in a
Poiseuille flow between two plane walls. Figure 3.9 (b) shdvesrelationship between
the particle’s translational velocity amdfor two particles withp = 0.25 and0.5. A por-
tion of the Poiseuille velocity profile is also shown to aidwgmarison. For smaly, both
particles show similar behaviour to the Poiseuille velpgitofile. As the distance from
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Figure 3.10 : Variation of the dimensionless particle angular velocitthwespect tg ando.

the centreline increases the particle velocity decreasadamter rate than the Poiseuille
velocity.

Finally we look at the angular velocit{2 and its dependence gnando. Figure
3.10 (a) shows2d/U, plotted againsp for two particles withoc = 0.25 and0.5. For
small p the angular velocity is approximately equal to that prestidby the vorticity of
the Poiseuille velocity. As the particle increases in siemeangular velocity decreases at
an increasing rate. We also note that a centred particle?has0 for all p. In figure
3.10 (b) we plotd/U, againsto for two particles withp = 0.25 and0.5. The straight
line is the angular velocity calculated from the vorticitl/tbe Poiseuille velocity. The
smaller particle deviates slightly from the straight linetilo ~ 0.5. After which it
attains a maximum of? = 0.518 Uy /d ato = 0.62 before decreasing rapidly as the gap
between the particle and the wall reduces in size. The gafhwsd.13 d for o = 0.62
andp = 0.25. If 2 were dependent on the difference between the Poiseuilteitiel at
the top and bottom of the particle then we would expect theimam value of(2 to occur
at arounds = 0.75 for a particle withp = 0.25. However, we can see that the proximity
of the upper wall and the flow in the gap start to play a significale wheno > 0.62.
The particle’s angular speed starts to decrease rapidlg. péiticle withp = 0.5 shows
behaviour similar in nature to the smaller particle. A maximangular speed is attained
at arounds = 0.41, corresponding to a gap width 6f09 d. As the gap width becomes
even smaller the angular speed reduces. A comparison camdbe Inetween the results
presented in figure 3.10 (b) and those shown in figure 5 of &tabal. (2003), who study
the motion of a solid sphere in a Poiseuille flow in an infinik@enel between two plane
parallel walls. The three-dimensional results of Stabeal.ef2003) exhibit the same
qualitative behaviour such that the angular speed of thigcfgimcreases with the offset
from the centreline before reaching a maximum and decrgasirthe gap between the
plane wall and the particle becomes small. The explanatitrigpward by Staben et al.
(2003) for the retardation lies in the competition betwe®s incident velocity gradient
which causes the rotation and the hydrodynamic interastaomd shear stresses which
oppose the rotation.
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3.5 Discussion

In this chapter we have considered a pressure-driven chiowewhich contains a rigid
neutrally buoyant particle. We formulated the problem gsire boundary integral method
and found its solution numerically using the boundary elenmeethod. The solution pro-
vides the tractions on the particle boundary, the disturbdractions on the channel walls
and the pressure drop across the particle.

We found that in all cases the disturbance tractions decty#tkir expected values
as we approached the entrance or exit. The disturbanceityetlacayed rapidly as we
moved away from the particle, and we found that the disturbaslocity due to the parti-
cle decayed to less thdf of its maximum value at a distance of three particle radiirfro
the centre. When the particle lay with its centre on the chhoentreline, six stagnation
points are present on the particle’s boundary. When thécfmmwas moved away from
the centreline the stagnation points disappeared and thielpavas surrounded by a thin
region of circulating fluid, similar to that found by Jeffrapd Onishi (1981) on their work
regarding a rotating cylinder above a plane wall.

For all particle positions we found that the translationgloeity is less than the cen-
treline Poiseuille velocity demonstrating that the péetislips’ relative to the background
Poiseuille flow. When the particle radius is small, the jgéeis velocity is approximately
equal to the Poiseuille velocity calculated at the partieltre. For a centred circular par-
ticle, we demonstrated an excellent agreement with thdtsestiSugihara-Seki (1993)
(figure 3) regarding the relationship between the partielecity and particle size. The
difference between the Poiseuille velocity and the pa'Salelocity increases as the gap
between one or both of the walls and the particle becomed.shié effect is due to the
stress exerted on the particle by the fluid in the narrow gapden the particle boundary
and the wall as decribed by Staben et al. (2003) in their warla @phere in a channel
flow between plane walls. We also confirmed that gheomponent of the translational
velocity was zero, which we expect due to the reversibilitptokes flow, i.e. the particle
does not move closer to either wall as it translates. We fahatla centred particle did
not rotate and small particles rotated with a speed equaktopredicted by the vorticity
of the Poiseuille velocity. As the particle is moved awaynirthe centreline the angu-
lar speed increases to a maximum at which point the flow in #veow gap slows the
particle’s rotation and the angular speed decreases.

We found that the pressure drop across the particle inatessen we fixed the cen-
troid and increased the patrticle radius, and when we fixeddtliels and moved the cap-
sule further from the centreline. When we moved the par@olay from the channel
centreline two eddies were formed in the fluid in front of amthind the particle. Ed-
dies similar to the ones seen here were studied and photagtdyy Hasimoto and Sano
(1980). When the gap between the particle and one or botleafdtls is small, we found
that the pressure drop between the ends of the computatongin increases exponen-
tially as the gap width decreases.



Chapter 4

The motion of a fluid drop or a
flexible capsule in a straight channel

In the previous chapter we studied the disturbance causedibid particle in a channel
flow. Now we replace the rigid particle with a flexible one, lwihe aim of modelling the
motion of a fluid drop or a fluid-filled elastic capsule in a gjr& channel. We maintain
our assumption that the capsule is neutrally buoyant aridhiiedlow imparts no force or
torque on the capsule. We model the disturbance caused pgttide using the boundary
integral method and derive the boundary integral equatidnish govern the motion of
the fluid and the capsule. We will formulate the constitutiggiations, applicable to fluid
drops and elastic capsules, which govern the behavioureofléxible boundary. The
mathematical treatment in this chapter will help us in lateapters where we will add
an additional channel which will branch off from the main chal. We will solve the
boundary integral equations numerically by applicatiotnhaf boundary element method
and compare our solution to known results where applicable.

4.1 Problem statement

Following our work in the previous chapter, we consider thaiom of a fluid with vis-
cosity i in an infinite straight-walled channel of wid#i. A disturbance to the flow is
caused by the presence of a deformable capsule which motleshaiflow. We assume
that the capsule is neutrally buoyant and that the flow doesmaart a force or a torque
on the capsule. The capsule contains a fluid with viscosityso that whem\ > 1 the
encapsulated fluid is more viscous than the ambient fluid &elwersa. The fluid vis-
cosities are identical whek = 1. Since we omit the body force due to gravity from the
Stokes equation the fluid density does not play a role in thve Iflehaviour. The channel
geometry is displayed in figure 4.1, where we label the cHamalls, C, and the capsule,
P. Far upstream and downstream of the disturbance causee bgpisule, the flow in the
channel is described by classical unidirectional Poitetidw, which is characterised by
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C

Figure 4.1 : A straight-walled channel containing a neutrally-buoyaagsule which encapsulates
a fluid of viscosityAp.

the prescribed fluxp. The equations describing the Poiseuille flow are

ul =l i, (4.1)
y?
ut’ = Uy <1 — ﬁ> , (4.2)
Q= 44Uy, (4.3)
and
P_ _pPp. et AR , 4.4
fl p nl + lu (axj + axz nj? ( )

wherel; is the Poiseuille centreline speeff, is the Poiseuille tractioms” is the Poiseuille
pressure anah is the unit normal vector. In preparation for the numericatmod, we
truncate the channel and label the entrance to the commuaitiiomain ag;, and the
exit to the domain ag,. The entrance and exit are locatedrat 0 andx = [ respec-
tively. The unit normal vectorsg, on all boundaries point into the ambient fluid which
we will label fluid 1. The fluid inside the capsule will be laleg fluid 2. The capsule’s
presence disturbs the Poiseuille flow, buEaandé,, we assume that the disturbance has
decayed and the flow has settled to Poiseuille flow. In theiguevchapter we justified
this assumption for a rigid particle with reference to thekvof Sugihara-Seki (1993),
Gaver and Kute (1998), Cortez (2002) and showed that theildecay is indeed rapid
as we move away from the source of the disturbance. The tmeftkional study of fluid
drops in a channel by Mortazavi and Tryggvason (2000) detratiesl that the velocity
decay was sufficiently rapid for a range of Reynolds nhumbEng authors justified their
assumption regarding the decay of the disturbance velagityreference to the work of
Liron and Mochon (1976), Liron and Shahar (1978) who studieddisturbance due to
a three-dimensional Stokeslet in the flow between two platesin a pipe, and found
that the disturbance velocity decayed exponentially. @loee we will follow the lead
of Mortazavi and Tryggvason (2000) together with the resaftour previous chapters
and maintain that the disturbance velocity decays as we iwag from the capsule, and
is negligible at the entrance and exit to our computatiomahain. We will verify this
assumption when we validate the numerical solution.

We assume that the Reynolds number of the flow is very smalhabothe flow in
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the channel may be described using the linear equationokéStlow given in equation
(1.3.4). Our aim is to compute the velocity field throughdw flow domain, the addi-
tional pressure drop between the entrance and exit due taiseile and the motion of the
capsule’s boundary. From the work of previous authors (daytazavi and Tryggvason
2000) we know that a capsule with a flexible boundary will ratgrtowards the channel
centreline for moderat®. When\ is small, Mortazavi and Tryggvason (2000) found that
a fluid drop migrated towards a point between the channetelerd and the nearest wall.
Although this lateral migration may seem contrary to thesreibility of Stokes flow, the
capsule’s deformation allows such a migration to occur.rétoee we would also like to
examine the capsule’'s behaviour when its starting posisaway from the centreline,
and for a range ok.

We decompose the velocity field, the stress fieldy, and the traction fieldf, into
Poiseuille and disturbance components in the usual waly, thad

u=u"+u”, (4.5)
o=oc"+o", (4.6)
fF=f+f7 (4.7)

where theP and D superscripts indicate the Poiseuille and disturbance coemts re-
spectively. Our boundary conditions are

u=u"=u"=0 (4.8)
onC due to no-slip and no-penetration, and

u” =0, (4.9)
fD = —pD n, (410)

at&; and&,, wherep? is the disturbance pressure which is constant over theremtrar
exit. We assume that no fluid passes across the capsule mpamththat the velocity on
both sides of the boundary is equal, so thafowe have

u) = 4@ (4.11)

where the superscript indicates the fluid to which the vejoapplies, i.eu(® is the
velocity of fluid 2 inside the capsule. We also introduce titerifacial traction jumpAf,
which is defined by

Af = (U(l) — 0(2)) n=f0_ @ (4.12)

where the superscripts indicate to which fluid the tractipplias. We will see later that
we can calculate the interfacial traction jump from a sué@atonstitutive equation. For
example, Af may be calculated from the Young-Laplace equation whendpsude is a
drop of an immiscible liquid. Therefore in the derivationafr equation we will seek
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to eliminate disturbance velocities and tractions on thpsake boundary in favour of the
total velocities and tractions.

Since we are interested in the additional pressure dropdegtithe entrance and exit
due to the capsule, we set'(£;) = 0 without loss of generality and lgt” (&) = 7.
Therefore the disturbance traction&tis given by

fP=-mn, (4.13)
and the disturbance pressure drop between the entrancheaexit is
ApP =pP (&) - pP (&) = —mo. (4.14)

Therefore we expect, to be negative because the capsule’s presence will inctease
total pressure drop. The Poiseuille pressure in the chasgelen by

pP'=G(—x) (4.15)

whereG = 2 11 Uy /d? is a positive constant; G is the imposed constant pressure gradient
between the entrance and the exit, and we have chosen theuleipressure to be zero
at&,. Therefore the total pressure drabpp, between the entrance and exit is

Ap =p(&1) — p(&2) = p"(&1) + " (&) — (p7(&2) + 0" (&2))
=Gl —m. (4.16)

To obtain an equation for the disturbance pressure we appigritz’s reciprocal relation
(1.3.22) to the Poiseuille and disturbance flows. We will @gaation (3.22) (on page 45)
from the previous chapter as our starting point, which weritevinere as

Qmy = / <u<1> fP—ul. f<1>) ds), (4.17)

P

and where we have added thi§ superscript to indicate that the velocity and traction ap-
ply to fluid 1. Next we apply the Lorentz reciprocal relatiarthe Poiseuille flow and the
capsule’s internal flow in order to introduce the interfagiaction, Af, to our equation.
Since the viscosity of the Poiseuille flow and the internalvflre different we use the
Lorentz reciprocal relation applicable to two fluids whicvhk different viscosities, to get

v (u uf @ pu® . fP) —0, (4.18)

which we divide byu, integrate ove® and add to (4.17) to get

Ty = —

/ uP . AF ds6d) + (A — 1) / u. P ds) | (a19)

P P

Q
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where we have also used equation (4.11). Therefore theloistce pressure is dependent
on the capsule’s shape and the velocity of the capsule’mpégt. The interfacial tractions
will be obtained from a constitutive equation, and the Rdlke velocity and traction
values may be calculated from equations (4.1) and (4.49.ihtéresting to note that when
A = 1 the velocities orP are not included in the equation and the disturbance pressur
may be calculated directly given the capsule shape and tbddnial traction.

We obtain an alternative expression farfrom the Stokes equation for the total stress
in the ambient fluidV - o) = 0. We integrate around the flow boundary and apply the
divergence theorem to get

0= / FO dsto)

or

- / f¥ ds) + 2dmai + / FP dsk) + / FO ds) + / FU ds), (4.20)
&1 Es C P

where we have applied the boundary conditions. Integraéfingr(?) = 0 overP gives

/ F@ ds) = 0 4.21)
P

which we subtract from equation (4.20) to get

0= [ f¥ dsi) + 2dmi+ [ f¥ ds)+ [ £V ds) + [ Af dsk). (4.22)
/ [ 7 [0 |

We can substitute the Poiseuille traction and the stresotdnto the cap integrals in
(4.22) to get

JF ds) + | fF dse) = [ of dsg) — [ of dst)
Jr o [0 s [ e |
= 2d G135, (4.23)

sinceo,, = —p(x) ando,, = M%- After substitution of (4.23) into (4.22) theand
y components are given by

772Gl21d(/f(l)-z’ds(x)Jr/Af-ids(x)), (4.24)

C P

0= [ fW.jdsk)+ [ Af -7 ds). (4.25)
[13e0]

The total tractions,f(l), on the walls consists of the known Poiseuille tractions ted
unknown disturbance tractions. The unknowns in equatio®4fdare the disturbance
tractions on the walls and the capsule shape, which is irastirto equation (4.19) which
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requires the velocities on the capsule boundary and itsesh@éfhen\ = 1, w5 can be
calculated directly using equation (4.19). However, we araeble to calculaters di-
rectly using equation (4.24) under any circumstances. taquéd.25) therefore provides
a method of checking the disturbance tractions on the walls.

Now that we have a formula for the disturbance pressure, Wéoeus on deriving a
boundary integral equation which governs the disturbamdecity in the channel. When
the pole,xg, lies in fluid 1 the disturbance velocity satisfies equati®g), which we
rewrite as

47T,uu§)(xo) :772/7%- Gij dS@() — /fZD Gz‘j dS(X)
& c

- /fz'(l) Gij dsf) +M/u§1) Ty ni Askx), (4.26)

P P

where we have added the superscfipt to the traction and the velocity in the capsule
integrals to indicate that the traction and velocity apmyfltid 1. Application of the
general boundary integral equation (1.3.40) to the flondmshe particle gives

0=— / PGy dsk) + A / u$? Tjpny ds), (4.27)
P P

where the left-hand side is zero becaungdies outside of the domain ¢?. We subtract
(4.27) from (4.26) to get

u?(xo) = ﬁ (71'2/’02‘ Gij dSé() —/fZ-D Gij dS(X)
C

&

_ / Af; Gy dst) + p(1 — ) / ul T ds(x)) . (4.28)
P

P

which may be used to calculate the disturbance velocity yapaimt in fluid 1 given the
disturbance pressure, the disturbance tractions on thenehavalls, the interfacial trac-
tions on the capsule boundary and the velocity field on thewdaepoundary. When the
viscosity ratio is unity the integral involving the capswelocities disappears from the
equation. In the previous section we had to add a ‘deflatiemhtto the boundary inte-
gral equation because the equation did not admit a uniquei@el We do not have the
same problem with equation (4.28) becausg will be known and hence the integral,
fp Af; Gi; ds), can be computed. However the boundary integral equatas te-
come ill-conditioned in the limits\ — 0 and A — oo, which correspond to a bubble
and a rigid particle respectively. The integral equatiory iba regularised by adding the
deflation term given in Zhou and Pozrikidis (1993), Stabeal.e2003) who studied the
motion of a drop in a two-dimensional channel and a partitia ¢channel between plane
walls respectively. Here we limit the range bfso that we do not encounter problems.
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The total velocity at a point in the fluid is computed by addihg Poiseuille velocity to
the disturbance velocity obtained from equation (4.28).

Before we can use (4.28) we need to find the disturbance peggsuthe disturbance
tractions onC and the velocities ofP. Therefore we would like to place the pole on
the channel walls and the capsule boundary and evaluatethelary integral equation.
Whenxg lies on the channel walls equation (4.28) reduces to

0=m | n; Gy dsx) — [ fP Gy; dst)
Jroven-]

- / Af, Gy dsg) + p(1— N / A Ty, dsk),  (4.29)
P

P

where the left-hand side is zero becausé = 0 on the channel walls and although the
double-layer potential is present it is not discontinuotemx lies onC. When the pole
lies on the capsule’s boundary the double-layer poterstial i

PV
/ u? Tyjeny dstx) = 27 ) (xo) + / ul) Typng ds),  (4.30)
P P

by equation (2.6.25) in Pozrikidis (1992), and wét®” indicates the principal value of
the integral. Substitution into (4.28) yields

2 (1+ Nul (x0) = dmpul (x0) + o / n; Gy; dsx) — / P Gy ds)
Ea C
PV

= [ ARGy ds)+ut-3) [l Ty, dsg). @.30)
P P

which is valid whenx, lies on the capsule boundary and where we have expressed the
left-hand side in terms of the total velocity.

Now that we have derived the equation fer and the boundary integral equations
which are valid wher lies onC andP, we find the solution by writing the equations as a
linear system and solving it by standard means. To congtmadinear system we employ
the boundary element method (Pozrikidis 2002a) wherebyisazatise the channel walls
and the capsule boundary into elements. We evaluate (4i#9}he polex,, on each of
the boundary elements ¢fto obtain a sufficient number of equations for the unknown
disturbance tractions on the channel walls. We have the saffieiency on the capsule
boundary by evaluating equation (4.31) with on each of the boundary elements7of
The remaining unknown quantity s, for which we have equation (4.19). Therefore we
have the same number of unknowns as equations and so oumsgstemplete. When
the solution to the linear system is available, we may cateuthe velocity at any point in
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the flow domain using,

C

)

_/Afi Gij dsx) + p(1 —A)/uﬁ” Tijr dS(X)) . (4.32)
P

P

where we have added equation (4.26) to the Poiseuille vglaziget the total velocity.
We non-dimensionalise equations (4.19) and (4.32) to olite important parameters.
We scale distances hy, velocities byU,, and tractions and pressures py/y/d, and
identify dimensionless quantities with a circumflex. Thetdibance pressure equation
(4.19) becomes

frgz_% (/aP-A}d§+(A1)/a(1)-}Pd§), (4.33)
P

P

and equation (4.32) becomes

1 A~
i (xo) = @ (xo) + o (fv/m Gij dﬁ—/fz'D Gij ds
C

)

—/Aﬁ- Gijds+ (1 — A)/ag” Tk dé) . (4.34)
P P
Therefore it is clear that the flow is dependent on the shapeasd location of the parti-
cle via the integrals ovelP together with the ratio of the fluid viscosities and the pbabi
properties of the capsule boundary. We have completed ttiatien of our governing
equations, however to proceed we require a method of céileglthe interfacial traction
jump, Af. In the next section we demonstrate how to calculsfe

4.2 Constitutive equations for fluid drops and elastic capskes

We will consider capsules of two fundamentally differenpdg. First we will look at
fluid drops with constant surface tension before examirtiegoehaviour of a fluid encap-
sulated by an infinitely thin flexible membrane. To calculdie jump in the interfacial
traction for a fluid drop, we use the Young-Laplace equat@g.(Batchelor 1967, p.69),

Af(s) = vk(s)n(s) (4.35)

wherey is the constant surface tensiaenis the local curvaturen is the unit normal vector
pointing into fluid 1, and where we have included the argusiéot clarity. The arc-
length, s, increases as we move anti-clockwise around the capsukingrthe definition
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of the curvature from (Stoker 1969, Eq 2.17), we have

dt
= —— 4.36
k(s)n 5 (4.36)
wheret is the unit tangent vector oriented in the direction of imsiags, and where we
have used the minus sign to make the definition geometricalhsistent. Equivalently

we may write,
dt B dn .

ds  ds
For instance, a circle of radiuswill have curvaturex = 1/r. On the circle we have
n=rt= 0 ands = rf, wherer and@ are the orthogonal unit vectors in the radial and
0 directions respectively. Substitution into (4.37) gives

(4.37)

k(s) =—n

1d6 1 1
= — r . _——_— = —— r . (—7 = — 4_
: " (r d6> rr (=7) r (4.38)
since% = —7. To ensure that equation (4.35) is consistent with our defmbf curva-

ture we formn - Af, to get
vi=n-Af =n-(cM —c?). n. (4.39)
To expand the right-hand side we use

n; US) n; = M+ 2un; e n;, (4.40)

ij
n; ag) n; = —p® 42 un; 62(]2') n;, (4.41)

(@ gyl . . .
whereeg?) =1 <ng;’7_ + g;i > is the rate of strain tensor for fluid = 1, 2. On the

perimeter of the fluid dropg) = eg-) sinceu® = u(?. Therefore we may write
vr=p? —pM 4+ 21— Npun; eg;) nj. (4.42)

Since we are interested only in checking the sign of the ¢urgave consider a bubble in
air so that\ = 1, and
p(2) = p(l) =+ YK, (4.43)

wherep™) is the air pressure ang® is the pressure inside the bubble. Sipé® >
pM) and the surface tension, will be a positive constant we require the curvature to
be positive, which is consistent with our definition in egoat(4.37). In summary, to
calculate Af for a fluid drop we specify the surface tension and computentivenal
vector and the curvature,

We compute the interfacial traction jump for an elastic cégsccording to an as-
sumed equilibrium balance between the elastic forces dpiwej within the two-dimensional
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elastic membrane and the hydrodynamic load on the capshéecdpsule is shown in fig-
ure 4.2. The capsule membrane is treated as being compfisethim incompressible

Figure 4.2 : Elastic capsule with unit normai, unit tangent, in-plane tension and transverse
shear tensiop. The arc-length is and its direction is indicated by the arrow.

elastic material (e.g. Barthes-Biesel 1980). To estahlitismulae for the traction jump,
we first define the membrane tension vector,

T=qgn+1t, (4.44)

wherer is the in-plane tension anglis the transverse shear tension which incorporates
the effects of bending resistance. Next, we consider a foatence over an infinitesimal
section of the membrane to obtain

d—T + Af =0, (4.45)
ds

which expresses the equilibrium balance between the elststiss and the hydrodynamic
load on the capsule membrane. Differentiating the tensi@guation (4.44) with respect
to s gives

dT dg dn dr

- = — 4+ —t— 4.4

ds dsn ds+dst rT (4.46)

by the chain rule and equation (4.36). Taking the scalarymbdith n gives

+4q

dT dg

sincen -t = ‘31—? -n = 0. The tangential component of the tension is given by

dT d d d
—t=qtr T =kgt (4.48)

using equation (4.37). Therefore the normal and tangestiaponents of equation (4.45)
give us

Af -t =— (d—T + qu) (4.49)
ds
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and

Af.n:—<—z—m>, (4.50)

for the components of the hydrodynamic load. For simpligity adopt a linear elastic
model for the in-plane elastic tension, and assume that yt Ineaexpressed as a linear
function of the membrane strain. Following Breyiannis andrikidis (2000) we write

T=k(e—1), (4.51)

wherek is the membrane stiffness aad- 1 is the membrane strain with the extension,

Js

:8—SR

e (4.52)
wheres(t) is arc-length along the deforming membrane boundarysarislarc-length in
the unstressed membrane. Although the simple relatiorfgtiiyd) is strictly only true for
small deformations, it still captures qualitatively thelination for a deformed capsule to
return to its unstressed configuration. In the unstressed,st= s., and so the in-plane
tension will be zero. A moment balance over an infinitesinegitisn of the membrane

yields
_dm

T ods’
wherem is membrane bending moment. Following Pozrikidis (20021, assume a
linear constitutive relationship between the bending ntraed the membrane curvature
to get

q (4.53)

m = Eg (k — Kg), (4.54)

where F; is the bending modulus and, is the curvature of the unstressed membrane.
The physical properties of the capsule boundary are the masmalstiffnessk, and the
bending modulusk,. We setF, = 0 to model a membrane which does not resist bending,
which is equivalent to setting = 0. From inspection of (4.49) and (4.50), we can see
that we need to compute ¢, %, T andj—g in order to calculate\f. The computation of
q and% is equivalent to calculating the first and second derivativihe curvature. For
simplicity, we will assume that the shape of an unstressastielcapsule will be a circle.
Therefore the reference curvaturg, is constant and does not affect the calculations.
Now that we have the governing integral equations and a rdeth@alculating the
interfacial traction jump we have completed our derivatibthe equations and so we are

in a position to proceed to the numerical method.

4.3 Numerical method

Now that we have the governing equations we wish to write tirethe form of a linear
system,
A-x=0b, (4.55)
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as we have explained in the previous section and chaptertaffiatise boundary element
method, we discretise the geometry into boundary elemgvegdivide the channel walls
into N¢ equally-sized straight elements upon each of which we seuittknown distur-
bance traction to a constant vector. OnitHewall element the disturbance tractionfi§ .

We continue to use straight-line boundary elements on thsuta as we did in the previ-
ous section and discretise the capsule iMwboundary elements. Since we will evaluate
the boundary integral equation at the element mid-peipt, we will set the velocity to
beu!! atthe mid-point of the” element. The vector of unknowns is therefore given by

e=[rr UY m| . (4.56)

where T means transpose, arfd? is a vector storing the disturbance tractions on the
walls andU g) is the vector of capsule velocities. The vectﬁrg andU g) are,

FE =2 12 P 1P (4.57)
(1 1 1 1 1
UP) = [ui& uévi ui}vp ué?vp} . (4.58)

The evaluation of the disturbance pressure equation andatedary integral equation
involves the computation ofAf which in turn requires the value of the curvature and
possibly its derivatives. Since the curvature is zero omaggit line we require a method
of calculatingx on a boundary element. Therefore we will introduce a peciadibic
spline (e.g. Pozrikidis 200243) to represent the capsule’s boundary, and from this spline
we will calculate the necessary derivatives. In order t@ierdhe periodic cubic spline
we must introduce a monotonically increasing parametethferspline. We choose, for
simplicity, the cumulative straight line distance along #traight elements which we will
label 5. We compute3 at each node by traversing the capsule’s boundary elernsrds,
useg, to indicate the value of at thert” node. The length of the! element id, and
is computed by, = §,.1 — (.. By periodicity, the start point of the first element will
have = 0 and3 = [r whereSr is the total polygonal arc-length of the boundary.
We construct thé3, x) spline using the value gf at each of the boundary’s nodes. The
spline provides an approximation to the capsule’s true Bagnand also the first and
second derivatives of with respect tg3. The curvature may then be calculated using the
formula o

w(p) = —L (4.59)

()2 +(y)?)*

where the primes denotes differentiation with respegt tblowever the inherent problem
with a cubic spline is that the first derivative is quadrati¢iand the second is linear ih
Furthermore the second derivative is continuous but ntgréifitiable at a boundary node.
To smooth the derivatives we use the first derivative from(thex) spline to construct
a (3,x') spline, which in turn is used to construct a spline for theosecderivative.
These latter two splines are then used to calculate the tcwevay equation (4.59). The
calculated value of: for each value of5 is used to construct &3, x) spline. When
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we consider an elastic capsule that resists bending we edgire the derivatives of the
curvature. We therefore apply the same process and constiei¢s, ') spline from

the curvature spline, and the spline for the second der&vdétom the spline for the first
derivative. The Af calculation requires the values & and s

e which we calculate
from the splines using the chain rule, to get

de K
dQK K s K
W o (4.61)
wheres’ = /(2/)? + (v')? ands” = (2’2" + y'y")/s’. To validate the calculation of the

curvature and its derivatives we considered the unit ciadle ellipses of various aspect
ratios but with an area equal 40 The curvature of a circle is equal to the reciprocal of its
radius and the derivatives are zero. The values obtainedltfie cubic spline calculations
were within10~7 of their expected values (where the value has been non-dioratlised

by multiplication of the appropriate power of the radius)heTcurvature of an ellipse
defined by(z/a)? + (y/b)? = 1is given by

3
2

K = ab ((%)23/2 + (2)2 x2> N (4.62)

The curvature derivatives may be obtained by differemtgathis expression. The error in
the calculations increased for the ellipses but lay witttin* for all tested aspect ratios.
Once again the values were appropriately non-dimensgathli

An elastic capsule also requires the value of the in-plangid@a,r, and its first deriva-
tive in the computation ofAf. We approximater, given in equation (4.51), using the
lengths of the boundary elements in their rest and stredasgess The value of on the
rt" element is approximated by

ds l,

wherel,. is the element length arigl, is the length of the unstressed element. We construct
a (g, ) periodic cubic spline using the value @fat the element mid-point and the value
of 7 computed from equation (4.63)

We now proceed to the discretisation of the equations,jstartith the pressure equa-
tion (4.19), which we write as

Qma+ (A — 1)/u<1> - fP dsk) = —/uP - Af dsk). (4.64)

P P

We approximate the integrals as sums over the boundary etersach that the integral
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on the left-hand side is

(1) [ f" dsto ~ (- 1) Zu S o) s
P
_ W
=IIp-Ujp (4.65)
wheref!(x,,,) is the Poiseuille traction computed at the element mid-{paimd

e =\ =1) [P0 fh0 o [Py, o ix,|.  (466)

The integral on the right-hand side of (4.64) is

Np
[ AF A8 = 3 ) - AF (o) = Tl (4.67)
P r=1

so that we may write equation (4.64) as the madlfrector product,
[0 iy Q] ‘@ = —Tla. (4.68)

Next we discretise the boundary integral equation whicklglwhenx lies on the walls
of the channel. We separate the unknown and the known gearititequation (4.29) to
get

/ JP Gy dst) — / 0y Gy ds) + p(r — 1) / Ty, ds)

) P

__ / Afi Gy dsg).  (4.69)
P

The first term on the left-hand side is approximated by

[ 126Gy a6 ~ 18 xa) - PE (4.70)
C
where
IcG,j(XO) = [éxj,l éyj,l éxj,Nc éyj,Nc] ) (4.71)

andéiw is defined by equation (2.55). The integral ogelis labelled

I§ ;(x0) = / n; Gij(x,%o) dst) (4.72)
)

and can be computed exactly from equations (2.44) and (2M&)enote the integral of
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the stress tensor over the element,E,, by

T o(x0) = / T, (. %0) . dS(e), 4.73)
E,

which is zero wherg lies on the element for the reasons given in section 2.1 oa p4dg
Using (4.73) we can approximate the capsule integral onédftehéind side of equation
(4.69) to get

Np ) -
[ T st = 3~ ul!) oy x0) = 1, x0) - [UF)] (4.74)
P r=1
where
IgJ(XO) = {ij71(X0) Tij(XQ) cee ij,N'p(XO) Tyj,Np(XO)} . (475)

The integral on the right-hand side of (4.69) is
/Afz i X X0 dS(X) ZAfz er ( ) = HG,j(XO) (476)

so that we may write the discretised analogue of equatidi®)4s

I8,(x0) p(A =D IE(x0) ~IE ;(x0)] @ = ~Tgy(x0).  (477)

Re-evaluation of this equation witk, at the mid-point of each of the channel walls’
boundary elements creatd®& pairs of equations which are assembled into the matrix,

Cc Cp c&} -z = be (4.78)

where each of¢, Cp, C¢, andb. consist of theVe pairs ofIgj(xo), (A — )Ip](xo)
-1 592 j (x0) and—II¢ ;(x¢) respectively. Finally we discretise the boundary integrpla-
tion (4.31) which is valid whery lies on the capsule boundary. We rewrite the equation as

PV
/fZD Gij ds(x) — ﬂg/ni Gij dsx) + u(A —1) / ugl) Tijr ng ds(x)
P

C &

+2mp (1 + Nul (x0) = dmpad (x0) — / Af,Gij dsk).  (4.79)

We usexg) to indicate the mid-point of the'" element and define

Pu,j (X(()r)) = {5r151j 6r15yj te 57‘N7)6:Ej 6er6yj] ’ (480)
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which enables us to write equation (4.79) in the form

[Igj (x) pO =D IR (<) + 200 (1 + NPy (x)) —IE (xg")} ‘x

=4dru uf (X(OT)) —1lg,; (X(OT)). (4.81)

Re-evaluation of this equation witky at the mid-point of each of the capsule’s boundary
elements create¥p pairs of equations which are assembled into the matrix,

[Pc Pp Pe| w=bp (4.82)

where each ofP¢, Pp, Pe, andbp consist of the2Np equations generated from equa-
tion (4.81).

We have now completed the discretisation of the disturbg@nessure equations and
the boundary integral equations which govern the flow. Werabk$e the master linear
system from equations (4.68), (4.78) and (4.82) to get

Cc Cp Ce, be
0 IIp Q —Ia

The submatrices in the first column of equation (4.83) tzdVe columns, the submatrices
in the second colum haveNp columns and the final column has one. The rows of
equation (4.83) each hadVe, 2Np and 1 row(s) respectively. Therefore the influence
matrix has siz€2N¢+2Np+1) x (2N¢+2Np+1). In our simulations we se¥e = 800
for the channel walls, an®/» = 316 for a capsule of initial radiug.5. We increasedVp
for larger particles to maintain the element length, andeksedV, for smaller particles.
The initial capsule shape was usually circular but the fdatan caters for an arbitrary
initial shape. In the absence of external forces the fluigh avidl adopt a circular shape.
The elastic capsule has a circle as its unstressed shape.

Now we can build the linear system and solve it using a stahdeathod. We found
it practical to use the Generalised Minimal Residuals (GMBREe.g. Trefethen and Bau
1997, Saad 2003) to find the disturbance tractions, thertetice pressure and the cap-
sule element mid-point velocities. The iterative schenpécslly converged in unde200
iterations for the discretisation configuration given aboWe therefore found it unnec-
essary to precondition the matrix. We computed the capsudie welocities from the
mid-point velocities via a periodic cubic spline. We use tnative solver in favour of
Gaussian elimination because it is an order of magnituderfasd we will be using the
solution to move the capsule. Once the capsule nodes hamentme=d the master linear
system is rebuilt and resolved. To move the capsule we tiedithe kinematic equation,

dx,

dt

= ’LL(XT), (4.84)
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wherex, is the position vector of the!” capsule node and the valueswofx,) are ob-
tained from the velocity cubic spline, which was constrdaising the element mid-point
velocities. It should be noted that we have a choice in thewagnove the capsule bound-
ary. We chose to use equation (4.84) which in effect usesotta fluid velocity. As an
alternative, we could have used the normal component otitglto move each node. We
used the adaptive time-stepping Runga-Kutta-Fehlberdhadete.g. Atkinson 1978) to
integrate (4.84). For the time integration we took an ihiiiae step of d = 0.01d/Uj
for a fluid drop and d = 0.005d/U, for an elastic capsule which does not resist bend-
ing. A particularly small time step was found to be requirddew bending moments are
taken into account in the membrarieg # 0, in line with the observations of Pozrikidis
(2001). Therefore we took the initial time step to e=e10.0005 d/U, for an elastic cap-
sule which resists bending. To avoid a situation where tipsida would move close to
the exit, after each iteration of the numerical scheme weaddkie capsule such that the
x-component of its centroid was positionedrgt! = [/2. We exit the numerical scheme
if the capsule attains a steady shape, where we define a sthagg to be one where
the y-component of the centroid’s velocity and the normal congodrof the boundary
node velocities, with respect to the velocity of the capseletroid, are all less than than
0.0001 Uy. We computed the instantaneous streamlines by integréteégquation

((ii_)s( = u(x) (4.85)
along the streamline, wheseis the position vector of a point on the streamlinanea-
sures the arc-length along the streamline and the velooithe right-hand side is com-
puted from equation (4.32). We also calculated the stremwlrelative to a frame of
reference fixed at the capsule’s centroid, which we will pathlines to distinguish them
from the streamlines. To calculate the pathlines, we imttegr the kinematic equation,

dd—);/ =u(x') — V1, (4.86)
wherex’ is the position vector of a point moving with the frame of refece,u is again
calculated from equation (4.32), abg is thexz-component of the velocity of the capsule’s
centroid.

The discretisation which leads to the linear system in egud#.83) was formulated
for a general capsule. However whan= 1, considerable simplifications can be made.

The disturbance pressure equation becomes,

Ty = —ép/uf’ -Af ds), (4.87)

which can be computed directly for a given capsule shape.nithdies onC, equation
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(4.29) simplifies to

[ 126Gy dst = m [ niGyy dst) — [ A5Gy dst.  (488)
¢ P

)

which means that the linear system reduces to,
Ce- FE =be, (4.89)

and the left-hand side is independent of the capsule. Tdrerethe inverse of th€.
matrix is computed and the wall disturbance tractions aneddairectly, and the iterative
method is not required. As the capsule’s shape evolves gihe-liand side of equation
(4.89) is recomputed and the solution found by

FP =(Ce)™' - be. (4.90)

The capsule node velocities, or any other point in the flowy then be found by

1 1
& c

- [ana, ds(x)) . @9
P

and the capsule nodes are updated using equation (4.84).

We have now finished describing the numerical method. Wefinsti consider a fluid
drop and validate the numerical model before moving on todkalts. An elastic capsule
is considered in section 4.4.2.

4.4 Model validation and results

For all results we truncated the channel so that12 d. We found this truncation length
sufficient for the disturbance flow to decay as we approactettieance or exit to the
computational domain. The Poiseuille pressure drop betiles entrance and exit for a
channel of lengthh = 12 d is 24 uUy /d.

The dynamics depend on the viscosity ratig the initial dimensionless patrticle ra-
dius, p, and the initial centreline offset;,, which are defined by

p== o=, (4.92)

wherea is the radius of the unstressed circular shapes (z., y.) is the capsule centroid
calculated using equation (3.8). We placed the drop or ¢ag=ntroid at the mid-point
of the channel, such that./d = 6, and varied\, p ando. As in previous chapters,
we checked the numerical implementation by confirming thatdiscretised form of the
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integral identities for Stokes flow given in equations (343.and (1.3.31) were satisfied
to within an acceptable tolerance. We checked the validiboth identities by setting
to the mid-point of every boundary element and to severaitpanside and outside of the
flow domain.

To validate the numerical solution we used a channel Withl2 d and a capsule with
p = 0.5 ando = 0 as our reference configuration. The boundary velocitiegwealuded
in the solution by setting. = 2. Firstly we computed the solution for a longer channel
with [ = 24 d, then we reset the channel length and doubled the numbeemieetts on
each boundary with respect to the reference configuratioall cases we found that the
tractions in the solution vector differed by less tia®01 Uy /d from the values obtained
for the reference configuration, and the nodal velocitiekebg thard.0005 U .

We will present results for a fluid drop before moving on to ks&c capsule in 4.4.2.

4.4.1 A fluid drop — results

In addition to \, p, and o the dynamics of a fluid drop also depend on the Capillary
number,C,, which we define as
C, = M—UO, (4.93)
Y
wherel is the centreline velocity of the undisturbed Poiseuille/famd-y is the constant
surface tension. The capillary number represents theveleffect of viscous forces to
surface tension.

To further validate the numerics for a fluid drop, we compdhedsteady shape for the
reference configuration described above with the steadyesivhen the number of bound-
ary elements was doubled. In both simulations welset 1 andC, = 1. There were
negligible differences between the two shapes. For instahe difference in the position
of the nodes between the two configurations was lessf@n1 d. Also the evolution of
the pressure for the two configurations typically differgddss thar.0001 U, /d for a
given time.

We placed a circular drop in the flow and computed the dishabgressure and the
wall tractions forA = 1. At ¢ = 0 we expect the disturbance pressure to be zero because
the drop is in its unstressed state and so the pressure @yuadiuces to

o= —— (WP Af dst) = — 28 /uP ‘n dsk), (4.94)
Q Q

P P

which is zero wherP is a circle. We also expect the disturbance tractions ontiaarcel

walls to vanish since from equation (4.29) we have
[ 12y a6 =~ [ ARGy dst) = —n [ Gy ds) 0. (@.95)
C P P

by equation (1.3.34). In our computations we found~ 10~ uUy/d and |f?| ~
10~12 U, /d for a range of, o andC,. Under these conditions the disturbance velocity
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is negligible. When\ # 1 the disturbance pressure will be non-zero for a circulasckgp
because an additional integral over the capsule is inclirdéte calculation.

For each simulation, we will check that the velocity decagsve move away from
the drop and is negligible at the entrance and exit, and hieadisturbance tractions decay
to zero at the entrance. At the exit we will check tifdt decays to zero at the exit
and fyD tends to the disturbance pressure. We will also check tleat#psule’s area
is preserved since it should remain constant due to the ipoesgibility of the capsule
fluid. If numerical error leads to the area error increasibgva0.1% then we perform
an isotropic expansion or deflation of the shape by dividiaghenode vector (from the
centroid) by a factor equal to the original radius dividedtsy current equivalent radius,
\/A/m, where A is the current area, which is in line with Zhou and Pozrikii993).
To compute the area we apply the divergence theorem withegbtwrfield equal to the
position vectorxg = 1 + yj. SinceV - x = 2, we have

/a:-n ds(x):/ V-x dAx) =2 Ap, (4.96)

P Dp
whereDp is the capsule domain antly is the capsule area, and so

1

Ap = 3 /a: -n dsfx), (4.97)

P

where we can compute on the capsule boundary using the, «) spline, andn =
(«',y")/s’, where the prime denotes differentiation with respectitoOur final check
regards the drop’s interfacial tractions. Application qtiation (4.36) gives

/m ds(x):—/% ds(x):—/dt:() (4.98)

P P P

by periodicity. Therefore, for a fluid drop, we have

/ Af dsk) = 0, (4.99)
P

which is used at each time step in the numerical integratiaiéck the computed values
of the interfacial traction jump. We found that for all siratibns| [, = n dsf)| < 10~*.
During the course of the simulation the boundary elemenislarthen or shorten. If the
lengths of one or more element became less or more than adfdeslue, the boundary
was rediscretised with points located regularly with respe 3. The boundary was then
smoothed using the 5-point formula of Longuet-Higgins andtelet (1976).

We start our results with an initially circular drop whichsha= 1, p = 0.5, 0 =0
andC, = 1. At t = 0 the disturbance pressure and tractions are negligibley@ected.
Therefore the disturbance to the flow, in terms of the vejoaitd wall tractions, is also
negligible. As the simulation progresses the circular shdgforms due to the incident
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velocity profile and at = 9.12d/Uy, the drop attains a steady shape. When the drop
attains a steady shape, the disturbance pressur@.099 .Uy /d, the centroid velocity is
0.935Uj ¢ and it has travelled a distance of 17 drop radii along the whlarTo compare
the results for a fluid drop with those for a rigid particle wat the initial shape of the
rigid particle to be the shape of the steady drop and comphiedlisturbance pressure
and translational velocity. The disturbance pressuredi@87 nU, /d for the rigid particle
which is almost three times greater than for a fluid drop. Tdjie particle translates with
velocity 0.895 Uy ¢ which is 96% of the drop’s velocity. It is interesting to note that
while the particle and drop velocities do not differ greatlye disturbance pressure is
significantly higher for a rigid particle. Next we checkec thalue of the disturbance
pressure against that predicted by equation (4.24), andifthat it differed by less than
0.02% from —0.099 nU, /d. We can see from the decay of the disturbance traction shown
in figure 4.3 (a) that the-component decays to zero, and theomponent decays to zero
at the entrance and to the value of the disturbance presstire exit. Thez-component
of the fluid velocity along the channel centreling,d = 0, is plotted in figure 4.3 (b).
The gap in the profile corresponds to the drop, where the igla@s not calculated.
Both parts of the curve terminate af) = 0.935 U, but close to the left-hand side
of the drop thex-component of velocity decreases further before returtin@.935 U

at the drop boundary. Points close to the drop suffer thetggedisturbance from the
Poiseuille centreline velocity, but upstream and dowastrethe disturbance has decayed
to less thanl% after 4 drop radii from the drop centroid. The steady shapEh@wvn

0.4 T T T T T 101
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01

P uvo/d
u:(ltl)/UU

0

01k

0 2 4 zﬁ/d 8 10 12 0 2 4 16/d 8 10 12
(a) z-component (=) ang-component-(-) of the (b) z-component of the channel centreline velocity.

disturbance traction on the top wall. The gap between/d ~ 6 + 0.5 corresponds to the
drop.

Figure 4.3 : Disturbance tractions on the top wall and the centrelineaig} for a steady drop
withA=1,p=0.5,0 =0andC, = 1.

in figure 4.4 (a) where we can see that the rear of the drop besdlattened and the
shape resembles a rounded triangle. The disturbance prdasdlisplayed in figure 4.4
(b), where we define the normalised disturbance pressut®y 7o = w9 d/uly. In the

figure we can see that the pressure increases in magnitude&m to a maximum value
of 75 = —0.104 att = 2.65d/U, before tending tar, = —0.099. The evolution of

the disturbance pressure is characterised by the inijdl reghange as the circular drop
responds to the incident flow, and a second phase in whichrtpesktties to its steady
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Figure 4.4 : Steady shape, disturbance pressure, boundary velogitisterfacial traction jump
for a steady fluid drop with =1, p =0.5,0 =0, C, = 1.

shape. In figure 4.4 (c) we plot the normal and tangentialoiés, with respect to the
drop centroid, as a function of arc-length, We measure anti-clockwise from zero at
the right-most point on the drop, and the total arc-lengttthef drop isS; = 3.19d.
The normal component is effectively zero, which is impligddur criteria for a steady
shape. The tangential component reveals some interestitigrés of the drop’s boundary
velocities. For positives close to zero the tangential velocity is negative whichdatiés
the velocity is directed towards the point with= 0. The tangential velocity is zero
ats = 0.19d. Fors € (0.19d, S7/2) the tangential velocity is positive and therefore
in the same direction as increasingand a maximum value of the tangential velocity is
attained ats = 0.9d. The tangential velocity is zero at= Sr/2. The story is reversed
on the lower half of the drop. Far € (Sr/2,3.00d) the velocity is towards the rear of
the drop, and in the regiof8.00 d, St) the velocity is towards the point with = 0 or
equivalentlys = Sp. These zeroes in the tangential velocity imply that theesfaur
stagnation points on the drop boundarysai = 0, 0.19, 1.60 and3.00. In figure 4.4
(d) we show the normal component of the interfacial tracfionp, Af, which equalsyx.
Since the surface tension is constant, the figure shows hewuitvature varies with arc-
length around the drop. There are three peaks in the cuevathich correspond to the
three ‘corners’ of the rounded triangle. On the rear of thrapdthe curvature drops to a
minimum of0.5 which would be the curvature of a circle of radius 2. Finatlythis drop,
we plot the instantaneous streamlines in figure 4.5 (a) amgadithlines in figure 4.5 (b),
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where the former is from a frame of reference fixed to the vaaild the latter for a frame
of reference moving with the constant translational veéjyoof the centroid. The pathlines
close to the left-hand side of the steady drop are shown imdigb (c) where we can
see the presence of a point(at48, 0)d which moves with the same velocity as the drop.
Fluid on the centreline with /d < 5.48, and fluid in the gap betweetyd = 5.48 and the
drop moves towards the poif%.48,0)d. The pathlines which enter the figure from the
top-right move towards the centreline before turning slyaspd moving upwards and to
the left. The pathlines then move towards the entrance gsibge away from the drop.

In our next set of results we increase the drop radius su¢hthad.75, and maintain
the values of the remaining parameters. The drop attairesadyshape dt= 17.58 d/Uj
which is almost twice as long as for the drop with= 0.5 considered above. The dis-
turbance pressure and translational velocity for the steldp are—0.266 U, /d and
0.899 U ¢ respectively. Using equation (4.24), we computed a valu¢hie disturbance
pressure which differed by only.02%. Compared to the drop with = 0.5, the distur-
bance pressure has increased by a factor of @bduthile the velocity has only decreased
by 3.8%. Figure 4.6 (a) shows theandy components of the disturbance tractions on the
top wall. We can see that thecomponent decays to zero at the entrance and exit, the
y-component decays to zero at the entrance and to the valbe dfsturbance presure at
the exit. The magnitude of the maximum disturbance tradtasincreased significantly
compared to the previous case whes= 0.5. We computed the centreline velocity and
found the disturbance velocity close to the drop decaydi®f its maximum value at a
distance of 3.2 drop radii, upstream and downstream, fradtbp centroid. This dis-
tance is only slightly greater than for the drop wjith= 0.5 which demonstrates the rapid
decay of the disturbance velocity as we move away from thp.drbe steady drop shape
is shown in figure 4.6 (b) where this time the shape resembtbetiet, and a slight dimple
may be seen at the rear of the drop. The drop has travelledi&ip8adii (or equivalently
15.6 d) along the channel when it reaches its steady shape. Thetievobf the distur-
bance pressure is shown in figure 4.6 (c). The behaviour iktafixgely similar to the
p = 0.5 case but this time the disturbance pressure overshootsethdysvalue consider-
ably before settling to the steady value. Figure 4.6 (d) shthve normal and tangential
velocities, with respect to the drop centroid, as a functibarc-length,s. Agains = 0 at
the right-most point of the drop. The total arc-length ofdnep isS = 5.10 d and again
the normal component is zero since the drop is steady. Tlgemdial component exhibits
the same qualitative behaviour as for the drop wite- 0.5, but now the magnitude of
the maximum velocity is greater. We show the pathlines inrfBgu7 where the frame
of reference is moving with the constant translational e#jyoof the drop centroid. The
pathlines are similar in nature to those shown previousfigure 4.5 (b).

Next we decrease the capillary number and place a drop oretitestine such that,
A=1,p=050=0andC, = 0.5. Adecrease in the capillary number corresponds to
an increase in the effect of surface tension relative to ibeous forces on the drop. The
drop attained a steady shape at 4.35 d/U, with respect to an increased nodal velocity
tolerance 00.0007 Uy. The steady drop’s velocity 931 ¢. The steady shape is shown
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(b) Pathlines from a frame of reference moving with the aadtof the steady drop. The arrows indicate the
direction of the fluid relative to the fluid drop.
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(c) Pathlines close to the left hand side of the fluid drop weHzsundary is
indicated by the thick line on the right. The arrows indicdte fluid direction
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Figure 4.5 : Streamlines and pathlines for a steady fluid dkop 1, p = 0.5,0 =0, C, = 1.

in figure 4.8 (a). We can see that the shape is noticeably Efssnded than the shape in
figure 4.4 (a) wher€’, = 1 and the remaining parameters are identical. The distugbanc
pressure settles te0.108 uUy/d which is slightly higher than the disturbance pressure
whenC, = 1. The evolution of the disturbance pressure is shown in figusgb). We
can see from the figure that the disturbance pressure doesershoot the steady value
during the initial period of deformation. The pathlines am®wn in figure 4.8 (c) where



4.4 Model validation and results 93

1 T T T T T 08

08

06

(=}
)
3 o4 0.2
~
= =
%\ 02 ; ol
] -0.2
02 0.4
04 -0.6
o6 ‘ ‘ ‘ ‘ ‘ o ‘
0 2 4 6 8 10 12 5 55 6 6.5 7
z/d z/d .
(a) z-component () ang-component-(-) of the (b) Steady shape of the fluid drop.
disturbance traction on the top wall.
0.1
o 0.2
-0.1
o 0.1
02 S
~
@ 03 L",;} ok
-0.4
-0.1
osl
06 - 02
o 2 4 6 8 10 12 14 16 18 o 1 2 3 4 5
) tUg/d . s/d .
(c) Disturbance pressure vs. time. (d) Normal (-) and tangential () velocities on the

drop boundary relative to the drop centroid.

Figure 4.6 : Top wall disturbance tractions, steady shape, disturbpressure and drop boundary
velocities for a steady fluid dropwith=1, p =0.75,0 =0, C, = 1.
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Figure 4.7 : Pathlines for a steady fluid drop= 1, p = 0.75, ¢ = 0 andC,, = 1. The frame of
reference is moving with the drop centroid.

the behaviour is similar to previous simulations.

In our next set of results we increase the capillary numberiter to observe the
effect of a lower surface tension. The simulation paramseteer = 1, p = 0.5, 0 = 0
andC, = 2. The shape becomes steady at 19.28 d/U, with respect to an increased
velocity tolerance 0f).002 Uy. The drop shape is shown in figure 4.9 (a) where we can
see a well developed dimple at the rear of the drop, and theeskaleformed more than
the simulation in whichC,, = 1. The evolution of the disturbance pressure is shown in
figure 4.9 (b) where we see that the disturbance pressurs thground-0.102 uUy /d
before settling to-0.079 uUy /d. The pathlines relative to the moving drop are shown in
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(c) Pathlines around a steady fluid drop. The frame of reteré&moving with the drop centroid.

Figure 4.8 : Steady drop shape, disturbance pressure and pathlinedléod @rop with A = 1,
p=050=0andC, = 0.5.

figure 4.9 (c).

Next we offset the drop from the centreline and set 1, p = 0.5, ¢ = 0.25 and
C, = 1. The drop moves towards the centreline as the simulatiogresses. When
t = 11.14d/U, the drop’s centroid lies g6, 0.125) which is half way to the centreline,
and the centroid is within.001 d whent > 102.8d/U,. The migration of the drop to-
wards the centreline is much swifter initially, reflectidgetfact that the velocity gradient
across the drop (in the-direction) is greatest when the drop is offset from the iedinie.
The centroid’'sy-component is plotted against time in figure 4.10 (a). We baedrop
moves slightly closer to the top wall at the start of the satioh during a period of initial-
isation. As time progresses the distance between the tirate:nd the centroid reduces
exponentially, withy./d ~ o exp~ "6t The disturbance pressure is shown in figure 4.10
(b), where we see a large change initially before the presseitles to-0.099 nUy /d,
which is slightly different to the case for a centred drop.e ™iscrepancy is due to the
fact the drop does not quite reach the centreline and itsdaymemains slightly unsym-
metric. We computed the normal and tangential component&lotity on the drop’s
perimeter, relative to the drop’s centroid, wher- 11.14d/Uy, and they are shown in
figure 4.10 (c) where the arc-length,is measured anti-clockwise from zero at the right-
most point of the drop. The centroid’s velocity at this juretis(0.928, —0.009)Uy. The
normal component, although small, is non-zero indicativgdrop shape is still evolving.
The tangential component is zero at four points around thedeary;s/d = 0.19, 1.18,
1.82 and2.55, thus indicating the presence of four stagnation pointderbbundary. The
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(c) Pathlines around a steady fluid drop. The frame of referénmoving with the drop centroid.

Figure 4.9 : Steady drop shape, disturbance pressure and pathlinedléod arop with A = 1,
p=050=0andC, = 2.

tangential component has a maximuns &f ~ 1 which corresponds to the portion of the
drop closest to the top wall. We computed the pathlines ferditop when its centroid is
located at6,0.125) and they are shown in figure 4.11. We can see the change indpe dr
shape, with the region closest to the top wall suffering tlestdeformation. Two eddies
are present, one upstream and one downstream from the dragirnilar fashion to the
case of an off-centre rigid particle discussed in the previchapter. However, in this case
the eddies are considerably different in size. The fluid ithlealdies moves in a clockwise
direction. The pathlines which are closest to the channééwaffer little deflection from
their original paths, but the pathlines which pass closénéodrop are deflected around
the drop. The most deflection is suffered by the pathline Wwpiasses around the top of
the drop and then circumnavigates the downstream eddyebefmtinuing its journey to
the exit. The figure also shows a pathline which terminatesecto the right-most point
of the drop, corresponding to the stagnation point/at= 0.19.

We ran simulations for drops with = 2 and5, and withp = 0.5, 0 = 0 andC,, = 1.
The eventual drop shape was not materially different to\tke 1 case shown in figure 4.4
(a), however as the viscosity ratio increases it takes lofagehe drop to attain the shape.
The disturbance pressure induced by the drop is consigenadtier when\ > 1. When
A = 1 the disturbance pressure tends-.099 .Uy /d which increases te-0.171 uUy /d
when\ = 2, and t0—0.232 uUy/d when A = 5. For comparison purposes, the distur-
bance pressure for a rigid particle with the same shap®i237 U, /d. Therefore as the
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Figure 4.10 : Evolution of the drop centroid, disturbance pressure aedtundary velocity for
a fluid drop withA =1, p = 0.5, 0 = 0.25 andC, = 1.
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Figure 4.11 : Pathlines around the fluid drop with= 1, p = 0.5, 0 = 0.25 andC, = 1 at

t = 11.14d/U,. The centroid is displayed as a dot(&t0.125) and the frame of reference is
moving axially with the drop centroid. Arc-length is measdianti-clockwise from zero at the
rightmost point of the drop.

viscosity ratio increases, the disturbance pressure tentte rigid particle disturbance
pressure, which we expect since the limit,— oo, corresponds to the drop becoming
a rigid particle. The drop centroid velocities @&®20 Uy ¢« and0.907 Uy ¢ for the drops
with A = 2 and 5 respectively. Both drops move more slowly thantke 1 drop, which
translates with velocity).935 Uy 2. As \ increases further we would expect the velocity
to tend to the rigid particle’s translational velocity @895 Uy 4. In figure 4.12 we com-
pare the evolution of the disturbance pressures\fer 1, 2 and5. At the start of each
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simulation we see that the disturbance pressure increageagnitude, although the rate
at which it changes decreases as the viscosity ratio ireseaks the viscosity ratio in-
creases the difference between the initial value of thesdiance pressure and its steady
value becomes smaller.

o
I
2
&

0 1 2 3 4 5 6 7 8 9
tUq/d

Figure 4.12 : Disturbance pressure for drops wijth= 0.5, ¢ = 0 andC,, = 1. The viscosity
ratiosareA =1 (-),A=2(-)andA=5(---).

Finally we attempted to replicate the results in figure 14ldZand Pozrikidis (1994)
who considered the two-dimensional pressure-driven flowgoid drops in a channel
using the boundary integral method. The parameters forithelations werex = 10,

p = 0.25 andC, = 1. The evolution of drops released with their dimensionldtsets at
o = —0.05, —0.35, —0.5 and—0.65 were computed. The centroid paths are displayed in
figure 4.13 and the evolving drop shape for the- —0.65 case is shown in figure 4.14,
where these figures are the analogues of Figures 14(a) aaylihid{hou and Pozrikidis
(1994). The centroids displayed in figure 4.13 do not mealikkethe centroids in Zhou
and Pozrikidis (1994). We find that the drop with= —0.05 does not deviate, whereas
Zhou and Pozrikidis (1994) found that it moved away from thetceline. The other drops
all move towards the centreline, whereas Zhou and PozsiKith94) found their drops
tended to congregate in the regief.55 < y/d < —0.4. The evolution of the drop shape
for o = —0.65 is shown in figure 4.14 and we can see that the initial defdonas the
greatest before the drop regains a more circular shaperasets towards the centreline.
The drop shapes in Zhou and Pozrikidis (1994) exhibit gredéformation for longer.
There are several possible reasons for the differenceshdn Znd Pozrikidis (1994) the
boundary integral equation was deflated and a periodiggéirahannel Green’s function
was used. Additionally an adaptive method regarding theiloligion of the drop’s marker
points was adopted whereby a node would either be addedmnoinatied depending on
the size of its neighbouring boundary elements (more detailthe adaptive boundary
element method may be found in Pozrikidis (1992)). Howevahould be noted that in
experiments with fluid drop in tubes at low Reynolds numberg. Hiller and Kowalewski
1986), the fluid drops do not exhibit the oscillatory behavishown in figure 14 of Zhou
and Pozrikidis (1994). Indeed, the paths of the drop ceatiérin figure 14 of Hiller and
Kowalewski (1986) demonstrate a smooth transition tow#rdsequilibrium position, as
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Figure 4.13 : Centroid paths for fluid drops with = 10, p = 0.25, C, = 1 ando = —0.05,
—0.35, —0.5 and—0.65.
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Figure 4.14 : Evolution of the drop shape for = 10, p = 0.25, ¢ = —0.65 andC, = 1. The
drops from left to right are fotUy/d = 0, 4, 8, 12, 17, 21, 25 and 28.8. The abscissa label is
intentionally omitted, however the marks indicate theoordinate of the drop centroid.

shown for our two-dimensional model in figure 4.13.

4.4.2 An elastic capsule — results

The dynamics of the elastic capsule depend on the viscaity, i\, the capsule radius
to channel height ratiop = a/d, the initial centreline offsety = y./d, and the two
dimensionless parameters,

E kd
M=—2_  W=_-"
pQd pQ

whereF; is the bending modulus of the elastic membranefaisthe membrane stiffness.
The M parameter describes the relative importance of bending entsrin the elastic
capsule membrane an#l describes the relative importance of the membrane stiéfnes
We setM = 0 to model a capsule which does not resist bending /ahe: 0.001 for a
capsule which does. The model was sensitive to the siaé wfith larger values causing
instabilities to develop in the numerics. The small valuébfs of a similar order to the
analogous three-dimensional quantity used in Pozrik@®{). The unstressed capsule
shape is a circle, and in most of our presented results theulmwill also start each
simulation as a circle. When the capsule is unstressed thddaial traction jumpAf,

will be zero. Therefore when the capsule starts as a cirale\as 1, the disturbance

(4.100)
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pressuress, will be zero by equation (4.19) and the disturbance trastion the walls will
be zero by equation (4.29). In our computations we founek 10~ uly /d and|fP| ~
10~1° Uy /d for a range of\, p, o, W and M. Under these conditions the disturbance
velocity is negligible. As the numerical simulation progges, the capsule will deform
and its motion will be computed by (4.84). After each itevatdf the numerical scheme
we will store the distance moved and re-centre the capsgle that thez-component of
its centroid lies at the mid-point of the channefd = /2, thus keeping it away froré;
and &, and avoiding the requirement to discretise further pogtiohthe channel walls.
For each simulation, we checked that the velocity decays easnave away from the
capsule and is negligible at the entrance and exit, andhbatisturbance tractions decay
to zero at the entrance. At the exit we will check thattheomponent of the disturbance
traction decays to zero and thhecomponent tends to the disturbance pressure. We will
also check that the capsule’s area is preserved since itdstemain constant due to the
incompressibility of the capsule fluid. If numerical erreatls to the area error increasing
above(.5% then we perform an isotropic expansion or deflation of thepsles described
in the previous section.

To further confirm the numerical code for the elastic capsuth no resistance to
bending, we placed the capsule in a simple shear flow and dechhe deformation
and the steady capsule shape. We compared our results w#é tiven in figure 2 of
Breyiannis and Pozrikidis (2000) fér = 0.0125, 0.125 and1.2, where the authors define

=

a

1
0=
k )

(4.101)

wheref is the shear ratey is the equivalent radius of the capsule anig the membrane
stiffness. We computed the evolution of the Taylor deforamaparameter,

L-B

= — 4.102
L+ B’ ( )

where L is the length of the capsule arigl is the breadth. Our computations shown in
figure 4.15 demonstrate a good qualitative agreement withr€i2(a) in Breyiannis and
Pozrikidis (2000). As our final validation of the numerics &m elastic drop, we compared
the steady shape for a reference configuration with the pteapsule shape when the
number of boundary elements on each boundary was doubledottnsimulations we
setA = 1, M = 0.001 andW = 1. There were negligible differences between the two
steady shapes.

In our first set of results, we consider an initially circutdastic capsule which does
not resist bending. The simulations parametershate 1, p = 0.5, 0 = 0, M = 0 and
W = 1. The capsule is released into the flow at 0 and we allow the capsule to deform.
The capsule shape @t 13.5d/U, is shown in figure 4.16 (a), at which point the error in
the capsule area has increased)l®# from its initial value. The convex front and con-
cave rear is consistent with shapes of vesicles which haste dleserved in capillary tubes
(Secomb et al. 2007). The disturbance pressure at this potithe is —0.4245 uUy /d
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Figure 4.15 : Deformation of an elastic capsule wifti = 0 in a shear flow fo2 = 0.0125,

0.125 and1.2. For comparison against Figure 2 in Breyiannis and PozsKzD00).

which has an error 09.83% compared with the value predicted by equation (4.24). The
evolution of the disturbance pressure is shown in figure 4b)Gvhere we can see the
magnitude gradually increasing. We can see that after @boutd/U, ripples appear in
the pressure profile. This may be attributed to the onset wienical issues which later
caused us to terminate the simulation due to loss of accufecthe simulation proceeds
beyond the instant shown in figure 4.16 (a), the two trailipg tf the capsule become
increasingly slender and the smooth capsule boundary Eonnkled. Our failure to
compute a steady shape is due to problems resolving thengegfavery high curvature at
the capsule tips, and not due to the lack of existence of sebape. Indeed steady shapes
for elastic capsules, in the absence of bending moments, e@n computed in two and
three-dimensional shear flows by Breyiannis and Pozrik@g@0) and Ramanujan and
Pozrikidis (1998) respectively. Furthermore the authotsfl that the elastic capsule at-
tained a steady shape irrespective of the rate of the incilear flow. The disturbance
tractions on the top wall are shown in figure 4.16 (c) where aresee that the tractions
decay to zero at the entrance, and theomponent decays to zero at the exit while the
y-component tends to the value of the disturbance pressugeireF4.16 (d) shows the
velocity along the centreline;,/d = 0, which decays rapidly as we move away upstream
or downstream from the capsule. The gap at araufill~ 6 corresponds to the capsule,
inside which the velocity was not calculated. It is inteirggtto note that the velocity
slightly upstream from the capsule is slower than the veladightly downstream. This
is to be expected since the capsule has not attained a stesuly. ST he disturbance veloc-
ity has decayed t6% of its maximum value at/d = 4.03 downstream, and /d = 8.11
upstream, which are both approximately 4 capsule radii fieencapsule’s centroid. At
&1 and&,, where we expect the velocity to be purely Poiseuille, we firad the error in
the velocity is no more tha®.07%.

In the hope of computing a steady state in which the capsgledesed to deform, we
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Figure 4.16 : Capsule shape, disturbance pressure, wall disturbarat®tracentreline velocity
and interfacial tractions for an elastic capsule with- 1, p = 0.5, =0, W = 1 andM = 0.

repeated the calculation with the same parameter valuepekt = 0.001, which corre-
sponds to the introduction of bending resistance. In thegmee of bending moments, we
find that the capsule does eventually attain a steady stdte.capsule rapidly develops
its concave rear shape after travelling a distance of alboei tcapsule radii.

The steady state is reachedtat 47.2d/U, by which point the centroid of the cap-
sule has travelled an approximate distances®fi along the channel centreline. The
steady capsule configuration is shown in figure 4.17 (a) andeiocity is0.864 Uy 2. It
is interesting to note that the steady deformed shape ofapsute is qualitatively con-
sistent with the three-dimensional cell shapes compute@uguiner and Barthes-Biesel
(1997), Pozrikidis (2005a) and Pozrikidis (2005c) in cgifical tube flow. The capsule’s
resistance to bending forces is clearly seen in the shape afailing tips which are now
much more rounded than in thed = 0 case shown in figure 4.16 (a). The shape of
the capsule perimeters closeggd = 0 show little difference between the = 0 and
M = 0.001 cases. The evolution of the disturbance pressure is shoviguire 4.17 (b)
where we can see the pressure increasing in magnitude liefafieg to—0.570 pUp/d.

In this case the error in the disturbance pressure with ct$pehe value obtained from
equation (4.24) reduces t©09% which is better than the previous result for the case
M = 0. Figure 4.17 (c) shows the disturbance tractions on the @ which we com-
pare with figure 4.16 (c). The profile in both figures is the stumgever the steady shape
for M = 0.001 induces disturbance tractions which are greater in maggmitu~igure
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(e) Arc-length vsAf - n att = 47.2d/Uy.  (f) Arc-length vs.Af -t att = 47.2 d/U,. Positive
Af - tis directed in an anti-clockwise direction.

Figure 4.17 : Capsule shape, disturbance pressure, wall disturbarat®trand centreline veloc-
ity for an elastic capsule with =1, p = 0.5,0 = 0, W = 1 andM = 0.001.

4.17 (c) also confirms the decay of the disturbance tracticdheir appropriate values at
the entrance and exit of the computational domain. A rigidigla with the same shape
as in figure 4.17 (a) induces a disturbance pressureddi69 U, /d and translates with
velocity 0.864 Uy ¢, both of which are almost identical to their elastic capstdenter-
parts. Thex-component of the centreline velocity is displayed in figdr&7 (d) which
tells a story similar to that in figure 4.16 (d), albeit withlaystly larger disturbance to
the velocity. Again, once we have moved roughly four capsatii from the centroid
the disturbance velocity has decayed %6 of its maximum value. By the time we have
reached the ends, where the velocity is assumed to be Htasthe error in the velocity
is no more thar.01%. The normal and tangential components of the interfacgaition,
Af , are plotted against arc-length around the capsule’s péeinin figures 4.17 (e) and
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Figure 4.18 : The membrane tensions and the bending momemt versus gttyléor the steady-
state capsule shown in figure 4.17 (a). Arc-length is meadsangi-clockwise from zero at the
front of the capsule. The trailing tips aresat 1.55d ands = 3.08d respectively.

4.17 (f). Arc-length is measured anti-clockwise from zeroh& rightmost point on the
capsule’s perimeter. At the start of the simulation thel tate-length of the capsule in its
undeformed state isd. At t = 47.2d/U, the total arc-length of the deformed capsule is
4.63 d, which represents an extension4a®,. Although this may be outside the limit of
linear elasticity, and indeed the physical capabilitiesnainy materials, we will continue
to use our linear relationship between the in-plane tenamhthe stretch. However we
note that a comparison of the results presented here wigle tioo different elasticity laws
would be interesting further work. The normal componenthaf tiuid loading on the
capsule membrane attains its maximum values at the poimgeafest curvature, namely
at the front of the capsule and at the trailing edges. Thectatia component of the fluid
loading goes through both positive and negative valueg;atidg that some parts of the
capsule wall receive a compressive force while others @éxpes an extensional force.
These forces are most intensive at the trailing tips of thgs@le, corresponding to the
arc-lengthsl.55d and3.08 d. In figure 4.18 (a) we show the in-plane tensienhand the
transverse tension, plotted against arc-length for the steady-state shapeumefi4.17
(a). The in-plane tensior, graphed in figure 4.18 (a) achieves its maxima at 0.48 d
ands = 4.15 d; the local membrane extension is then greatest at thests@mioording to
equation (4.51). The membrane is in extension around madbkegberimeter, where is
positive, and is in compression in a region around the ti@iiips wherer is negative. The
bending momenty, is plotted against arc-length in figure 4.18 (b). This gragpmotable
for the two spikes which occur at the trailing tips, where= 1.55d ands = 3.08d. A
similar qualitative spike-like behaviour in the bendingment profile was encountered
by Pozrikidis (2005a) in his axisymmetric calculationsed blood cells moving in a tube
flow (see his figure §).

In the next set of results we increase the membrane stiffwegdsthatil = 5 and set
the remaining parameters o= 1, p = 0.5, 0 = 0 andM = 0.001. The steady state
is reached at ~ 12.3d/U, when the capsule has travelled approximatzty: along
the channel centreline. The steady shape is shown in figi@(4) and its velocity is
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(a) Steady capsule shapetat 12.3 d/Uy. (b) Disturbance pressure evolution.
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disturbance tractions at= 12.3 d/Uy. t = 12.3d/Uy. The gap corresponds to the capsule.

Figure 4.19 : Capsule shape, disturbance pressure, wall disturbarat®trand centreline veloc-
ity for an elastic capsule with =1, p = 0.5,0 = 0, W = 5 andM = 0.001.

0.883 Uy ¢. The evolution of the disturbance pressure is shown in figut® (b) where
we can see the pressure increasing in magnitude beforentetodi-0.358 ©Up/d. In this
case the error in the disturbance pressure with respeat teathe obtained from equation
(4.24) is0.03%. Comparing the results for thd” = 1 and thelW = 5 cases we see
that the capsule withl” = 5 attains its steady shape approximately four times quicker,
translates slightly faster, has less deformed trailing &ipd induces a slightly lower distur-
bance pressure. Figure 4.19 (c) shows the disturbanc@etraan the top wall, which we
compare with those in figure 4.17 (c). The profile in both figusethe same however the
capsule withiW = 5 induces disturbance tractions which are smaller in magdaithan
those shown in figure 4.17 (c). Figure 4.19 (c) also confirradigcay of the disturbance
traction to their appropriate values at the entrance artdogxine computational domain.
The z-component of the centreline velocity is displayed in figdr&9 (d) which tells a
story similar to that in figure 4.17 (d), albeit with a smaltisturbance to the velocity.
Again, once we have moved roughly four capsule radii fromcibratroid the disturbance
velocity has decayed t% of its maximum value. By the time we have reached the ends,
where the velocity is assumed to be Poiseuille, the errdnénvelocity is no more than
0.001%.

In the next set of results we increase the viscosity rati$e5 and set the remaining
parameters tp = 0.5,0 = 0, W = 1 andM = 0.001. We terminated the simulation at
t = 88.6 d/Uy when the magnitude of the capsule’s velocity normal to thenbary was
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Figure 4.20 : Capsule shape, disturbance pressure, wall disturbarat®trand centreline veloc-
ity for an elastic capsule with =5, p = 0.5,0 =0, W = 1 andM = 0.001.

less tharD.0003 Uy. The capsule is not steady with respect to our nodal velatitgria
although the nodal velocities are small. The discrepancy lmeadue to the calculation of
the nodal velocities from the mid-point velocities usingudic spline, which is required
when\ # 1. The capsule shape at= 88.6d/Uy is shown as the solid lined shape in
figure 4.20 (a) where it had travelled the equivalent of 15&saée radii, its velocity was
0.864 Uy and the disturbance pressure wa&573 uUp/d, which are almost equal to the
computed values for thie = 1 case. The capsule’s shape is almost identical to the steady
shape forA = 1, although in this case the shape here is achieved in twicéetiggh

of time. The dashed-line shape in figure 4.20 (a) is the shape-a47.2d/U, which

is the time at which the\ = 1 capsule attains a steady shape. Although there is little
difference between the shapes, the= 5 shape does deform more slowly, and it takes
an additional time of1.39 d/U, to deform to the solid-lined shape. The evolution of the
disturbance pressure is shown in figure 4.20 (b) where weemthe pressure increasing
in magnitude before tending t60.573 nUy/d. In this case the error in the disturbance
pressure with respect to the value obtained from equati@4)4s0.14%. Figure 4.20 (c)
shows the disturbance tractions on the top wall, which ar®si identical to the profile
shown in figure 4.17 (c) foh = 1, which is expected since the= 5 shape has almost
attained the same shape. Figure 4.20 (c) confirms the deddne afisturbance traction

to their appropriate values at the entrance and exit of timepctational domain. The
x-component of the centreline velocity is displayed in figdr20 (d) which displays the
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same profile as figure 4.17 (d). Again, once we have moved tpdgtr capsule radii

from the centroid the disturbance velocity has decayetyi®f its maximum value. By
the time we have reached the ends, where the velocity is &sktorbe Poiseuille, the
error in the velocity is no more than02%.

In the previous chapter we verified that a rigid particle iegrby a flow parallel to a
solid wall remains at a fixed distance from the wall in accamawith the reversibility
of Stokes flow. In the previous section we showed that a fluigh dnigrates away from
the wall in a channel flow due to the flexibility of its boundayxperiments conducted
by Secomb et al. (2007) and previous three-dimensionalledions (Pozrikidis 2005c)
have shown that a deformable capsule will tend to migrateydwsn a solid boundary.
Accordingly we expect that a capsule released away from tlamreel centreline will
migrate towards the centreline over time. We performedetlsimulations for capsules
withA=1,p=0.5,W =1, M = 0.001 and set to 0.1, 0.2 and 0.3. In each simulation
the capsule starts in its circular stress-free shape. Indfigi21 (a) we see the trajectories
of the capsule centroids. As can be seen, the long-term lmelmawf the capsules is
a gradual drift toward the channel centreline. In the eat®ygas of each simulation,
however, the capsule moves upwards towards the channelogated aty = d. The
same qualitative behaviour is observed in figure 6 of Patigkj2005c) for the motion of
an initially spherical elastic particle in a cylindricalbel. Capsules with their centroids
placed further from the centreline show a more pronouncgilicleviation toward the
upper wall before migrating towards the centreline. Theso@pwithoc = 0.2 moves
towards the top wall at ~ 20d/U, as well as in the initial period of the simulation.
However the other two simulations do not exhibit this bebaxialthough their migration
towards the centreline is arrested for a short period at 15d/U, for theo = 0.1
drop andt ~ 25d/U, for theo = 0.3 drop. In the latter stages of the simulation the
y-offset is decreasing exponentially slowly as time incesa®.gy ~ e 2% for the
capsule released from= 0.1. Since the capsules did not quite reach the centreline in the
simulations we stopped at= 65 d/Uy. Figure 4.21 (b) displays the computed shapes at
two different times for the capsule releasedrat 0.1. Whent = 2.39d/Uj, the capsule
centroid is at its closest to the upper wall, and at 3.96 d/U, the centroid has returned
to y = 0.1d on its journey towards the centreline. The capsule profilesigtively
resemble those found by Secomb et al. (2007) for particlessed away from the line
of symmetry. As might be expected, when the capsule is altvettannel centreline the
upper of the two trailing tips deforms the most and tendsdogdte more than the lower
trailing tip. The width, measured in thgdirection between the top and bottom of the
capsule, increases beyond that of the initial shape. Inaatpsimulation with the same
parameter values, the limiting capsule shape shown in figgdre(a) was released with its
centroid atr = 0.1. This time we observed a slightly smaller initial movemenwards
the upper wall before the capsule drifted towards the ckméreWe show the evolution
of the disturbance pressure in figure 4.21 (c), where we carmsenitial rapid increase
in the magnitude of the pressure before it tends back towseds in thec = 0.2 and
0.3 cases, and remains relatively constant for a shortgh@rithes = 0.1 case. As time
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Figure 4.21 : Centroid trajectories and capsule shapes\fer 1, p = 0.5, W = 1 andM = 1073,

progresses the disturbance pressure in all cases terds67 U, /d which is close to

the 0.570 uUy/d value computed in the = 0 case earlier. The difference is due to the
fact that the simulations far # 0 do not quite reach a steady state withig 65d/Uj.

The z-component of velocity for the capsule’s centroid is pldtie figure 4.21 (d), from
which we can see a dramatic decrease in the velocity at theo$tiie simulation before
the velocity increases and then settle§.&64 U, att = 65 d/Uy, which equals the value
for the steady capsule with = 0. In figure 4.21 (e) we show the evolution of the shape
for the capsule released fromn = 0.3, where we have chosen this case to demonstrate
the significant deformation which is experienced by a capsilien it is further from the
centreline. The capsule shaperdt! = 1.64, whent = 2.77d/Uy, is comparable with
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the solid-lined shape in figure 4.21 (b) because they bottesept the capsule’s closest
approach to the top wall. The capsule shape insthe 0.1 simulation has developed a
parachute shape by= 2.39d/U,, whereas the capsule in tae= 0.3 simulation does
not develop the parachute shape until slightly before 18.79d/Uy, which is almost
eight times as long. As time progresses the lower tip extandsthe upper tip contracts
as the particle shape settles to the limiting configuratiepicted in figure 4.17 (a).

We will briefly look at thec = 0.3 simulation in isolation. Figure 4.22 shows the
top wall disturbance tractions and the centreline velofotythe capsule withr = 0.3
att = 2.08d/U,, at which time the capsule is at its closest to the top wall ted
disturbance pressure is at its maximum value. The censro®locity at this moment is
(0.774,107°) Up. and the disturbance pressure-i8.517 Uy /d, which differs from the
value obtained from equation (4.24) by)3%. The disturbance tractions on the top wall
are shown in figure 4.22 (a) for thie= 2.08 d/U, capsule shape shown in figure 4.21 (e).
Since the capsule is closer to the top wall the induced diahge tractions are of generally
greater magnitude than the disturbance tractions for agteantred capsule shown in
figure 4.17 (c). There is a sharp peak in both thendy component of the disturbance
tractions in figure 4.22 (a) at/d = 5.1 which is above the capsule’s top trailing edge.
Figure 4.22 (a) also confirms the decay of the disturbanaidrato their appropriate
values at the entrance and exit of the computational domaire z-component of the
centreline velocity for the = 2.08 d/U, capsule shape in figure 4.21 (e) is displayed in
figure 4.22 (b) which shows the disturbance decays rapidiyesnove away from the
capsule, and has a small oscillation close to the downstes#ge of the capsule. We
can see from the pathlines shown in figure 4.22 (c) that twaesdate present, with the
downstream one of greater size. The fluid in the eddies mavasclockwise direction.
Since the motion of the fluid is relative to the capsule, thiel ftlose to the centreline is
moving from left to right, and the fluid closer to the walls i®wng from right to left.
The disturbance velocity has decayed1fd of its maximum value wher:/d = 3.69
andz/d = 8.19 which represent 4.62 and 4.38 capsule radii from the cap=sr&oid
respectively. By the time we have reached the ends, wheneetbeity is assumed to be
Poiseuille, the magnitude of the disturbance velocityss lani0=6 U,.

So far we have considered capsules with= 0.5. Now let us increase the capsule
radius so thap = 0.75 and withA = 1,0 =0, W = 1 and M = 0.001. We terminated
the simulation at = 66.0 d/Uy when the capsule shape was almost steady, meaning that
the absolute value of the normal components of velocity erc#ipsule boundary were less
than0.001 Uy. The capsule shape is shown in figure 4.23 (a) and its velsdity 99 Uy .
The capsule had travelled an approximate distancel afalong the channel centreline
att = 66.0d/Uy. The evolution of the disturbance pressure is shown in figu28 (b)
where we can see the pressure increasing in magnitude tadarel5 pUy/d. In this
case the error in the disturbance pressure with respeat teathe obtained from equation
(4.24) is0.02%. Figure 4.23 (c) shows the disturbance tractions on the @l which
decay rapidly to their appropriate values at the entranckexit of the computational
domain. The profile of the disturbance tractions for= 0.75 is similar to the profile
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(c) Pathlines in a portion of the channeltat 2.08 d/U, where the frame of reference is moving axially with
the capsule’s centroid.

Figure 4.22 : Wall disturbance traction, centreline velocity and thehpaes att = 2.08 d/U, for
an elastic capsulewith=1, p =0.5,0 = 0.3, W = 1 andM = 0.001.

whenp = 0.5, although the sharp peak afd = 5.9 for the smaller capsule has now
been replaced by a flattened region where the peak value dlishebance traction has
more than doubled. The-component of the centreline velocity is displayed in figure
4.23 (d) which also shows a rapid decay in the disturbancecitglas we move away
from the capsule even for this large capsule. The distudbaalocity has decayed 3%

of its maximum value at/d = 3.39 andx/d = 8.80 which correspond t8.48 and3.73
capsule radii respectively. By the time we have reached ttlds,evhere the velocity is
assumed to be Poiseuille, the disturbance velocity is hessi > Uj.

Finally we will consider an oversize capsule wijth= 1.1 which in its unstressed
state would not fit into the channel. The remaining paramseag)\ = 1,0 =0, W =1
and M = 0.001. Before releasing the capsule, we deform the circular bagnahto
an elliptical one such that the axis in thedirection is1.5125d and the axis in the-
direction is0.8 d. Since we have seen that the capsule quickly adopts a shapk ish
essentially similar in nature to its steady shape, we stesitulation at = 20d/U, to
observe the shape, the disturbance tractions and the lggatvelocity. The velocity of
the capsule centroid 8811 U, ¢ and the capsule shape is shown in figure 4.24 (a) where
we can see the elongated trailing tips. At this moment thewaphas moved about 14
capsule radii along the channel and the disturbance peesisop is3.021 Uy /d which
eguates to about one eighth of the Poiseuille pressure diteg.error in the disturbance
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Figure 4.23 : Capsule shape, disturbance pressure, wall disturbarat®trand centreline veloc-
ity for an elastic capsule with =1, p = 0.75,0 =0, W = 1 andM = 0.001.

pressure with respect to that computed from equation (4s24)4%. The evolution of
the disturbance pressure is shown in figure 4.24 (b) whereanesee the magnitude of
the disturbance pressure increasing until it reaches tveelalateau betweenh= 8d/Uj
andt = 15d/U,, after which the disturbance pressure continues to inereasnagni-
tude. Figure 4.24 (c) shows the disturbance tractions otognevall, which confirms the
decay of the disturbance traction to their appropriateesht the entrance and exit of the
computational domain. The-component of the centreline velocity is displayed in figure
4.24 (d) which show that the decay of the disturbance velaeitnains rapid even for an
oversize capsule. The disturbance velocity has decayéttof its maximum value at
x/d = 2.57 andz/d = 10.06, which are 3.1 and 3.7 initial capsule radii from the cap-
sule centroid respectively. By the time we have reached itkde,evhere the velocity is
assumed to be Poiseuille, the disturbance velocity is n@nian10~*U,. Although the
velocity and traction decay to their expected values as weertmwards the channel ends
the pressure continues to change. This indicates that tmemcal model is suffering
from a loss in precision. The reasons for this could be th&iprity of the capsule to the
ends or the regions of high curvature on the trailing tips.
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Figure 4.24 : Capsule shape, disturbance pressure, wall disturbarat®trand centreline veloc-
ity for an elastic capsule with =1, p =1.1,0 =0, W = 1, M = 0.001 and an elliptical initial
shape.

4.5 Discussion

In this chapter we have considered a pressure-driven chiowewhich contains a fluid
drop or an elastic capsule. We formulated the problem usi@poundary integral method
and found its solution numerically using the boundary eleimeethod. The solution
provides the velocities on the capsule boundary, the diahae tractions on the channel
walls and the pressure drop across the patrticle.

In summary we have found that an elastic capsule which sgs&iding will attain a
steady shape, but a capsule which does not suffers numseiasitivities which result in
the failure of the numerical method due to a lack of resotuiioregions of high curvature.
A higher value of the membrane stiffness results in a capsthieh reaches its steady
shape quicker, translates faster and induces a lower loistae pressure drop due to the
fact that the capsule deforms less. A comparison betweesutepwhich only differ by
their viscosity ratios shows that there is little differensetween the eventual shape of
the deformed capsule boundary but a higher value of the sitycatio leads to a higher
characteristic time of deformation. We can rearrange thgession ford/ in equation
(4.100) to show

3
p o i (4.103)

B

from which we can see that the characteristic time dependailly on the viscosity. This
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observation and the findings herein are in accord with theetdimensional work of
Quéguiner and Barthés-Biesel (1997) who studied theymisetric motion of a capsule
into a circular pore using the boundary integral method egirier and Barthés-Biesel
(2997) limit their study to capsules with = 1 on the basis that the viscosity ratio only
affects the transient phase of the capsule motion and netéstual equilibrium shape.

We found that capsules which start away from the centrelilegnadually drift to-
wards it, although this migration becomes exponentialbyvsiWe found that larger cap-
sules tend to a steady shape with elongated trailing tighjci@ a greater disturbance
pressure and translate slower than smaller capsules dlenthannel. Finally we found
that in all cases the disturbance velocity decayed rapidtlyibhad reduced ta% of its
maximum value at a typical distance of four capsule radinftbe capsule’s centroid, and
at the ends the disturbance velocity was negligible.



Chapter 5

Stokes flow through a bifurcation

In the previous two chapters we studied the motion of a rigidigle, a fluid drop and
an elastic capsule in a straight two-dimensional chanmethis chapter we add a side-
branch to the main channel and examine the motion of the flw@ugh the bifurcation.
Upstream and downstream of the branch entrance we assunflevthis described by
unidirectional Poiseuille flow. We derive the equations aithgovern the motion of the
fluid in the main channel and in the branch, and we calculaealisturbance caused by
the branch using the boundary integral method. By derivirggdiscrete analogues to
the governing equations we utilise the boundary elemenhaodein order to write the
equations as a linear matrix system, which we solve by stdnaethods. In the next
chapter we will introduce a force-free torque-free netyralioyant rigid particle to the
flow which will draw extensively on the models derived herd anchapter 3.

5.1 Problem statement

Let us consider the motion of a fluid with viscosijtyin an infinite straight-walled chan-
nel of width, 2d, which is attached to a semi-infinite straight-walled cledrof width,
2D. A disturbance to the upstream and downstream flows is cdugsdide branch en-
trance, or bifurcation, where the fluid either carries omglthe main channel or moves
into the branch channel. The geometry of the branching aidarshown in figure 5.1
and comprises the walls of the main chanigglthe walls of the branch channé$, and

a notional dividing boundaryd, which we introduce in order to treat the channels sep-
arately. Far upstream and downstream in the main channehanoranch channel, the
disturbance caused by the branch entrance is assumed tal&esged so that the flow
in the channel is described by classical unidirectionak@adille flow. In preparation for
the numerical method, we truncate the infinite main channelthe semi-infinite branch
channel and label the entrance to the main channé| ahe exit to the main channel as
&> and the exit to the branch channel&s The endst; and &, are located at = 0
andz = [ respectively. In the branch we define local coordingt€sY"), which are po-
sitioned as indicated in the figure. The branch joins ontantlaén channel such that the
centreline of the branch channel megtst the point(//2, —d), and meets the lower wall
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Figure 5.1 : A straight-walled channel with a branch which contains alfhfiviscosity.

at the points(l/2 — D cosec a, —d) and (I/2 + D cosec a, —d). The exit to the branch
channel,&;, lies atX = 0. The unit normal vectorsr, on all boundaries point into
the fluid as shown in figure 5.1. We choose to direct the unit@bivector onA into
the fluid of the main channel. To define the mapping betweentpoelative to the two
coordinate systems, we label the origin &has O, and the origin orf; asOj3, where
O3 = (I/2+ L cos a, —d — L sin «) relative toO;. If a point relative toO, is labelled
p, then relative ta0s it is given by

b3 = R- (pl - 03)7 (51)

wherep; is the point relative t@3 and R is the rotation matix given by

sina  cos«

R_ lcosa —sina] . (5.2)

The unit normals in th&X andY directions are,
i’ =cosai—sinaj, j =sinai + cosa g, (5.3)

in terms ofz, j and«, which were calculated using the inverserdf

The branch entrance disturbs the flow bu€at &, and &3 we assume that the dis-
turbance has decayed and the flow has settled to Poiseuile dlwaracterised by the
streamwise flux rate at the pertinent entrance or exit&;Ate label the fluxQ;, where
i = 1, 2 and 3 refer to the entrance, the exit of the main channetrandxit of the branch
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channel respectively. We have

Q1=Q2+Q3 (5.4)

for the fluxes where all); are positive. Therefore the Poiseuille velocityatis

2
uh = b <1 - %) i=ulrs, (5.5)

and at&s itis ,
uf? = Ul (1 . %) i =uP2i, (5.6)

whereU;" are the centreline velocities of the Poiseuille velocitfirtel with reference
to &;. At &5 we have

Y2
uls =yl <1 — —> i =u 4, (5.7)

whereU;* is the centreline Poiseuille velocity &. TheU," are related to the fluxes,

Qi, by
Qi =4a,UL", (5.8)

i=3
with d; = dy = d andds = D. Application of equation (5.8) at the exits in conjunction

with equation (5.4) yields the following relationshipsWween the centreline speeds at the
exits and the entrance,

Ul =qul, (5.9)

Ul = (%) Ul (5.10)
where( is the flux ratio in the main channel, aids the channel width ratio, which are
defined by
Q= % and = % (5.11)

Our aim is to compute the velocity field throughout the flow éémand the additional
pressure drop at both exits due to disturbance caused byahetbentrance. We assume
that the Reynolds number of the flow is very small so that the iitcthe channels may be
described using the linear equations of Stokes flow givemjuagon (1.3.4). We decom-
pose the velocity fieldu, the stress fieldg, and the traction fieldf, into background
Poiseuille and disturbance components, which we indicatid superscript$’; and D;
respectively, and where theindicates to which of; the quantity applies. In the main

channel we have,

u=ult +ulr =u ful?, (5.12)
oc=0c"+oP =g o2, (5.13)
F=r" 4P =" (5.14)

where theP; and D; quantities are defined with referencetth; and theP, and D,
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quantities are defined with reference&to In the branch channel we have,

u=u® +ul, (5.15)
oc=0c 4o, (5.16)
f=r" -+, (5.17)

where theP; and D3 quantities are defined with reference&g On the main channel
walls, C, we have
=u? =uP? =0, (5.18)

P3 — uD3 — 0’ (5.19)

by no-slip and no-penetration. We will seek a solution witiel unidirectional Poiseuille
flow as its entrance and exit flows. Therefore we will assuneedisturbance velocity
decays so that

uPt -0, uP? =0, u”? =0, (5.20)

as we approach the ends, & and &3 respectively. We also assume that the spatial
derivatives of the disturbance velocity decay along with disturbance velocity which
allows us to write the disturbance traction at the ends as

o= —pPip, FP2 = —pPop, fPs = —pPsn, (5.22)

as we approaclfi;, & and&; respectively, and where theé”" (r = 1, 2 or 3) are the
disturbance pressures. The total pressprés obtained by adding the disturbance and
Poiseuille pressures with matching indices, @.g= p’* + pP'. At each of the ends
the disturbance pressure in equation (5.21) is constansiand we are interested in the
additional disturbance pressure drop between the entamit¢he exits, we set’' = 0

at & without loss of generality. For brevity we label the exittdibance pressures as
pP2 = my at& andp?? = 73 atE3, so that the disturbance tractions may be expressed as

P =0 até&y, (5.22)
fP2 = —momn atéy, (5.23)
fP = —mgm atés. (5.24)

The Poiseuille pressures in the main channel are given by

p(z) = —Gi =, (5.25)
p2(z) = —Gow (5.26)

wherep’ () is the Poiseuille pressure due to the entrance Poiseuilewith pressure
gradient—G4, andp’(z) is the Poiseuille pressure due to the Poiseuille flow which
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exits the main channel which has pressure gradiet;. The pressure gradients may be
expressed in terms of the centreline velocity or the flux by,

_2p05" _ 3pQ
2 2 a3
G2 = QGh. (5.28)

G

(5.27)

We have defined the Poiseuille pressures suchptfiat= p™> = 0 at&;. The Poiseuille
pressure drops betweén and&, for the two main channel Poiseuille flows are

Ap™ = p"i (&)

1 (&2) = G, (5.29)
Ap™ = pl2(&

_ ppl
) — p2 (&) = Gal. (5.30)
In the branch channel the Poiseuille pressure is
pP(X) = -Gz X (5.31)

whereGs = 2 Ul® /D? = 31Q3/2D?, and—Gj is the pressure gradient which when
applied to the branch channel results in the fiuxat &5. We may now write the pressure
difference between the entrance and the exit of the mainnghafip,, as

Apay = p(&1) — p(&2)
= (" (&) + " (&) — (P2 (E2) + P72 (£2))
= G2 l — 79 (532)

by equations (5.25) and (5.26), and between the entrante ofidin channel and the exit
of the branch channef\ps, as

Aps = p(&1) — p(E3)
= (" (&) + " (&) — (P72 (E3) + 02 (E3))
= —73 (5.33)

by equations (5.25) and (5.31). The total pressures at fkeane
p(&2) =m — G2l, and p(&) = ms. (5.34)

So far we have discussed the boundary conditions on the ehaalfis and at the entrance
and exits. The only remaining boundary is the notional bamyyd4, on which we impose
continuity of velocity and traction, so that

u=ult +ulr =u2 +uP2 = 4+ ubs (5.35)

F=f0 = P = e (5.36)

Since the traction is defined with reference to the unit nbkmeetor, f = o - n, we define
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the tractions in equation (5.36) with respect to the samenarimal vector which points
into the main channel.

We have introduced unknown disturbance tractions on themedtboundary and on
the walls of the channels, unknown pressures at the exitaiakibwn velocities on the
notional boundary. The disturbance tractions and vekxitire defined with reference
to &1, & or &. Therefore during the forthcoming derivation of the equagi we will
need to choose which quantities to keep and which to eliminatthe main channel we
have the disturbance pressure, and the disturbance tractiong”* , on the walls. In
the branch channel we have the disturbance pressy,randeS on the walls. On the
notional boundary we are free to choose any one of the detigeb quantities since we
can eliminate the other ones by the continuity of velocitgl &action stated in equations
(5.35) and (5.36). Ol we will choose to favour the disturbance tractions and veés;
fP1 anduP1, for consistency with the main channel, where we fiSe .

We are now in a position to derive equations for the distutbgiressure and velocity
in the channels. Let us start with the main channel and useettiprocal relation of
Lorentz given in equation (1.3.22) to derive an equationtlier disturbance pressure at
E>. We apply the formula to the pair of flows " , o ) and(u?! , 1) to get

V- (u - oPr —uPr . o™) =0, (5.37)

which we integrate over the main channel’s flow domain andyapp divergence theorem
to get

/ ult - P dsk) = / uPr . P dsk), (5.38)

ory ary

wheredl’, = & U & U AU C, which can be simplified to

/(uP1 'fDl —ul .fpl) ds(x) = /(uDl ,fP1 —uh .fDl ) ds(x), (5.39)

& A

by the boundary conditions given in equations (5.20) an2fl{stogether with the no-slip
and no-penetration conditions on the walls. Although this@adlle velocity,u’ , is zero

on the notional boundary, as itis displayed in figure 5.1, @tain the term because in later
chapters we will deformd and so the velocity may be non-zero. Using the decomposi-
tions of velocity and traction in equations (5.12) and (3, &4d by applying the boundary
conditions (5.20) and (5.21) we have

uPr =ul? —ulr| (5.40)

o= = —mm, (5.41)

which we substitute into the left-hand side of equation{pt8 get

/ (ufr - fP1 —uPr. f7) ds) = Q) mat / (w72 —ul> . 1) ds), (5.42)

52 52
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where we have used the definition of the fld¥, = — f& u’ - n ds). By equation
(5.9) and the definition of the traction and pressure in thmrolaannel we find

u? =Quf, and f2 =Q M, (5.43)
so that

/ (WPt fPr — P2 7 ds@) = 0 (5.44)

)

and equation (5.42) simplifies to

[ g7 P ) ds) = Qi (5.45)

&
Substitution of equation (5.45) into equation (5.39) gives

_ b
e

T2

/ (ulr- 7 — . fP1) ds) (5.46)

A

for the disturbance pressure &. Using equation (5.46) we can find the disturbance
pressure ats, given the disturbance velocities and tractions on the natioundary.
Integration of the Stokes equatioti,- o' = 0, for the disturbance in the main channel
yields the following equations

T =(Q—-1)G1— % / P dsk), and (5.47)
A,C

1 1
0:ﬁ / [P dsk), (5.48)

AC

which are useful for checking the disturbance pressuéi ahd the disturbance tractions
on.A andC in the numerical solution and whefé = (f21, fPr).

Now let us derive an equation for the disturbance pressui; dly applying the
Lorentz reciprocal relation to th@ , o' ) and(u”s , o3 ) flows in the branch chan-
nel, to get

Vo (uf . oPs —ubs -UPS):O. (5.49)

We integrate the equation over the flow domain of the branemmél and apply the di-
vergence theorem to get

/ ul . D3 dsk) = / uPs . P dsk), (5.50)

ar, ar,

wheredl’, = AU BU &;. By the requirements of the divergence theorem, the unihabr
vectors all point out of the flow domain. In previous applicas of the Lorentz reciprocal
relation we have implicitly negated the normal vectors idesrfor them to point into the
flow domain. However, in this case we will only negate the rareector on3 and&;
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since we want the normal a# to point into the main channel. Expanding equation (5.50)
gives

/(upa FPs —uls . fP) dsk) = / (u - fP3 —uPs . fP5) dsk), (5.51)

A B,E3

where we have amended the direction of the normal vectorésdst Application of the
boundary conditions in equations (5.18) and (5.20) enabl® gimplify equation (5.51)
to
/uP3 fPs dsk) = /(up3 CfPs —ubs -fPS) ds), (5.52)
s A
where the normal vector ad points into the main channel and the normal&rpoints
into the branch channel. The left-hand side is simplifiethierr using equation (5.21) and

Q3 = — [o, u"™ -n dsk) to get

/ ul . D5 dsfx) = —73 / u  ndsk) = Qs 3 (5.53)

53 53
which allows us to write equation (5.52) as

1

_ @ /(UPS .fDS — ubs .fPS) ds), (5.54)

A

3

which provides an equation for the disturbance pressufg iatterms of the disturbance
velocities and tractions on the notional boundaty, However we would like to express
equation (5.54) in terms of the unknown disturbance vekxiand tractionsy”' and
FP1 . Using the continuity of velocity and traction ohgiven in the equations (5.35) and
(5.36), we can rewrite (5.54) as

= é (/ (uPs - fP1 —uPi . P ds) +¢) 7 (5.55)
A
where
Y= / (uls - 7 —ulft - f75) ds), (5.56)
A

which only contains known Poiseuille velocities and trags, and whe is straight is
given by
v =4u(l-Q)(2 cota —1/d)(Us")" (5.57)
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Integrating the Stokes equation for the disturbance in thadh,V - 6”3 = 0, yields

my = 5 ( / (£7 — f) ds) + / £ ds) — / o ds@«)) . (558)

A A B

0= %J ( / (F7 = £) dse) + / FP dste) — / £ ds@«)) ., (5.59)
A B

A

which we can use to check the disturbance pressufgatd the disturbance tractions on
A andB, and where’ andj’ are defined in equation (5.3). Whehis straight ther and
y components of the first integral ovdrare given by,

/(fp1 —fPS) dS(}():QuUOP1 cosec « < (5.60)

A

2D 1D | 2Ld(1 - Q)
d’ & D2 '

Now that we have equations for the disturbance pressuresove am to the derivation of
the boundary integral equations starting with the main obanWe apply the boundary
integral equation (1.3.40) to the”* , o1 ) disturbance flow in the main channel to get

1 1
P (xa) =~ [ 1P Gy ds+ o [l Ty gk, (660
T, o,

for x¢ in the fluid of the main channel and whetg; is the free-space Green’s function
andTj;y, is its associated stress tensor. Ond& and P! are known on the boundaries
we may calculate the disturbance velocity anywhere in théd iiiuthe main channel using
equation (5.61). We expand the single-layer potential to ge

If’arl(xo) = /fiD1 Gij dsfx) = / [ Gy dst)

ar, AE1EC
- / 21 Gy ds) — / 0y Gy dsg) + (Q — 1) / 7 Gy dsk),
AC Eo Eo

(5.62)

where we have used equations (5.22), (5.41) and (5.43). ®bbletlayer potential is
expanded to give

D,ar _
1,77 Y (xo) = /UZD1 Tijk mu dstk) = / wt Ty e dsx)

or'y A&1,E2,C
— [l Ty s + (@~ 1) [l Ty o). (5.69)
A &y

where we have used the boundary conditions given in eqaf®a8), (5.20) and (5.40).
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Substituting equations (5.62) and (5.63) into (5.61) gives

4 ule (Xo) = — / fZ-D1 Gij ds) + o /ni Gz‘j ds(x)
AL

&2
b [P T dsg) + Lixa), (6.64)
A
wherel(xy) is defined by
Lixo) = (1-Q) [ (7 Goy = pul* Ty ds0), (5.65)

)

which is a known function of./* andf* and its calculation is described in Appendix C.
The integral ove€s; in equation (5.64) may be evaluated exactly using equati4gl)
and (2.45). We can find the total velocity in the main chaneglby calculatingu”*
from equation (5.64) and adding the Poiseuille velocity! . The unknown quantities
in equation (5.64) are the disturbance tractions on theraamnalls and the notional
boundary, the disturbance velocities on the notional bagndndm,. Equation (5.46)
for the disturbance pressure;, means that we do not have to evaluate the boundary
integral equation with the pole ofi,. We have proceeded in this manner to avoid just
such an evaluation which suffers from numerical sensiisias documented by Pozrikidis
(2005b).

In order to find the disturbance tractions and velocitieshentoundaries we require
the boundary integral equations which are valid wkgties on the walls and osl. Since
the discontinuous double-layer potential over the chawadls does not appear in (5.64)
we are able to write

0= / PGy ds) + s / ns Gy dse) + / WP Ty ds) + I (xo),
AC Ea A
(5.66)

whenx, lies onC sinceu” = 0 onC. When we place the pole oA the double-layer
potential is

PV
ulPt Tijkng, dsfk) = 2w uiDl + /uiD1 Tiji . ds) (5.67)
A

7

L\

where PV indicates that the integral takes its principal value, \Wwhipon substitution
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into (5.64) leads to

27T,uuD1 /fD1 Gij dS(X)-FWg/nZ G;j dsk)

&

PV
i [P Ty dst) + Lix) (5.68)
A

which is valid whenx lies on A.

Now that we have considered the main channel, we derive adaoyiintegral equa-
tion which is valid for the(u”s,o"3) flow in the branch channel. Using equation
(1.3.40) we write

W) = [ ARGy dst)+ - [ T ds). (569

arz ar2

which is valid forxg in the fluid of the branch channel and where the subsgipdicates
that the unit normal vector points into the fluid of the bracblannel. Knowledge a3
and fg3 on the boundaries would enable us to calculate the distaebaelocity at any
point in the branch channel using equation (5.69). Sincestlseno ambiguity about the
direction of the normal vectors o and &3 we omit the subscript from the disturbance
traction and the normal vector on these boundaries. Howewer the normal vector
points into the main channel. Therefore we will replagewith —n andfg3 with — £ s

in the integrals over in equation (5.69). Expanding the single-layer potentields

7o) = [ 181Gy dst) = / 122Gy ds)+ [ 172Gy dsg)

ar, B,E3

/ 171Gy ds) - / (47~ 1) Gy ds)

A

/ fP2 Gy dstx) — 3 / n; Gij dsx) (5.70)

&3

where we have used equations (5.24) and (5.36). The doayde-potential is expanded
to give

D.or _
1772 (x0) = /UZD3 ik Bk dSk) = / u® Tijeng, ds)

or, AB,Es
—— [P Ty ds@
A
= —/ulpl Tiji ng, dsfx) + / (uf)S —UZPI) Tijr ng, dsx) (5.71)
A A

where we have used the boundary conditions given in equatma9), (5.20) and (5.35).
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Substituting equations (5.70) and (5.71) into (5.69) gives

4 ujD?’(XQ) = /fl-D1 Gz‘j dS(X) — /fZ-D?’ Gz‘j dS(X) +7T3/7”LZ‘ Gz‘j dS(X)
A B Es

_u / WP Ty dsg) + Kj(xo),  (5.72)
A

where K (x¢) is defined by

K;(x0) = / ((fip1 - fZ-P3) Gij + 1 (ulP3 — ufl) Tijk nk) dsx). (5.73)

A

The unknown quantities in equation (5.72) are the distwrbaractions on the channel
walls, w3 and the disturbance tractions and velocities on the ndtiboandary. The
J g, i Gij ds(x) integral may be calculated exactly using equations (2a4) (2.45), but
where the integration is performed relative to the coorirsystem with its origin 0@,
and the result transformed accordingly. Equation (5.56jHe disturbance pressure;,
means that we do not have to evaluate the boundary integratieq with the pole o&’;.
We can find the total velocity in the branch channelpy calculatingu”? from equation
(5.72) and adding the Poiseuille velocity!® .

To calculate the unknown quantities on the boundaries wainethe boundary inte-
gral equations which are valid whea lies on the notional boundaryl, and the channel
walls, B. Since the discontinuous double-layer potential only gest to the notional
boundary, we can write,

0= fiDl Gij dsf) — fiDl Gi; dsk) + 73 | n; Gy ds)
/ / /
[l T dst) + Kyxa), (674

A

whenxg lies on B becauseu”? (xy) = 0 on the walls. When the pole lies o4 the
double-layer potential involving”* in equation (5.72) and the double-layer potential in
equation (5.73) are both discontinuous, which leads to

2 (" (o) + " (o) = P (x0)) = [ 177 Gy o)~ [ £ Gy s
A B

PV

b [0 Gy dst) —p [ ul Ty ds6) + K[V (xa), (679
&3 A

where we have expressed the left-hand side in terms™6f using equation (5.35), and
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where
PV
KPV(xo) = /(ffl — fZ.P3) Gij dskx) + u /(uf?’ — ufl) Tijrng ds).  (5.76)
A A

We use the boundary element method (e.g. Pozrikidis 2002#i%¢retise the geome-
try and the governing equations. The boundaries are disedeinto elements upon which
we evaluate the boundary integral equations. We obtainfetigmt number of equations
for the unknown tractions ofi by evaluating equation (5.66) on each boundary element.
We have the same sufficiency @¢husing equation (5.74). Evaluation of the equations
(5.68) and (5.75) ol provides a sufficient number of equations for the disturbéarec-
tions and velocities on the notional boundar, The disturbance pressure equations
(5.46) and (5.55) provide the two equations for the distuckapressures. Therefore we
have the same number of equations as unknowns and so ounsyfségjuations is com-
plete. We have completed our derivation of the governingagqgus for the flow through
a bifurcation and now we move on to the describe how the bayrelament method is
applied in order to find the numerical solution.

5.2 Numerical method

As in previous chapters our aim is to discretise the goveraguations using the boundary
element method and form the equations into the linear maystem,

A-z=b, (5.77)

where A is the influence matrix containing the coefficients of thenown disturbance
pressures, tractions and velocities stored in the coluentev,x, andb is a column-vector
containing known values. To apply the boundary element atkthe discretise the main
channel walls, the branch channel walls and the notionahthaty intoNe, Nz and N 4
equally-sized straight elements respectively. On eacheoétlements we set the unknown
traction to a constant 2-vector, which we Iatfé?l on ther element ofC, f}?3 on the
rt element of3 and 7' on ther* element ofA. Additionally we set the disturbance
velocity tou on ther?” element ofA. Therefore the vector of unknowns is defined by

T
z=|FP F} FR U] m m (5.78)

whereFé) is a vector containing th2/No components of the disturbance tractiongCof
F1is a vector which holds th&V 4 components of the disturbance tractiondnF'g is
a vector holding th@ Nz components of the disturbance tractions[erﬂ is the2 N 4
vector which stores the components of the disturbance Wiglson.4, and the final two
elements are the disturbance pressure @nd&; respectively. The vectong , Fﬂ ,
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FZ andU?] are defined to be

e R o

R L A T |

FR=[2 5% - P %)
and

UR=[uly wli Dy, Py ).

(5.79)
(5.80)

(5.81)

(5.82)

We will now start on the discretisation of the governing dipres starting with the equa-
tions for the disturbance pressures. Equation (5.46) frdikturbance pressure;, is

approximated by

0=Qmt [ (uP fP — P 1) dsg)

A

Na
~ Ql T + Z (’LLP1 (Xm,r) ' frDl - fPl (XWL,T) : u?“Dl) lr’

r=1

wherex,, , is the mid-point of the'*” element and, is its length. By defining

Ufﬁ _ {upl (X, )l - uPr(x,, ) lNA:| 7
Foo= (12 )l o 7 ) b -
we may write equation (5.83) as
Qim+UY -FR—F - UL =0,
which in terms of the vector of unknowns, is
o U o -F} @ o] -a-
Similarly for themrs equation (5.55), we have

b= Qyrs+ / (uPr - f7 —uPs . £01) dst)

A
N

~ Qs+ Y (7 () - uP =l (x,) - fP) 1y,

r=1

which we can write as

0 U 0 -F} 0 Qs]-2=v

(5.83)

(5.84)

(5.85)

(5.86)

(5.87)

(5.88)

(5.89)
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by defining
U./IZS = |:uP3 (Xm, 1) ll e UPS (Xm, N_A) lN_A:| ? (590)
F = [ )l o 17 () b - (5.91)

and wherey is evaluated using equation (5.57) for a straightBefore considering the
boundary integral equations, we will summarise our previnatation in order for us to
concisely discretise the boundary integral equationscfoiocated on the boundarie$,
B andC. On a boundaryp, which hasV, elements labelledsl, ... El4, we define the
vectors,

15,00 = [Gupalx0) Gypa(x) - CGopny(x0) Gy x)] . (5.92)
I£7j(X0):|:TIj,1(XQ) Tyj,l(x(]) ij,N¢(XO) Tyj,N¢(XO)}7 (593)

whereG;; - andT;;,. are the integrals over theé” element of the Green’s function and
the stress tensor respectively, and are defined by

éz‘j7r(X0) = /Gij(X,XO) dS@(), (594)
FEl,

T (x0) = [ Tigeloxxo) . ds) (5.95)
FEl,

Whenx lies on El,. the Green’s function is weakly singular but integrable. Blress
tensor is also singular whex lies on El,. and so we replacé;; . (xo) with the principal

value integral,
PV

T (x0) = / Tjk(x, x0) ny. dsx), (5.96)
FEl,

in ther!" pair of elements of } ;(xo) and denote the vector b/'7™" (xo). Itis important
to note that the value of the jump in the discontinuous dotdler potential will already
have been included in the governing boundary integral émuaiVe have shown in equa-

tion (2.37) that wherEl, is straight,ﬂiy(xo) = 0. Proceeding to the boundary integral
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eqguations, we write equations (5.66), (5.68), (5.74) andbjbas

/ PGy ds) — 7o / n; Gij ds(x) — / ult Ty, dsk) = I;(x0),  (5.97)
& A
PV

/ £ Goy ds) 2 [ ;G o) — o [l T ds)
A

&
+2mpu;’t (x0) = Ij(xo),  (5.98)

/ £P2 Gy dskx) — / fPray; dske) — / n; Gi; dst)

&3

s /Z- Ty dsG) = K (x0),  (5.99)

A
/fz'DS Gij dS(X) — /fZ-D1 Gij dS@() — T3 /7”1,Z Gz‘j dS@() + 27T,u ufl (XO)
B A &3
PV
10 [ 0P T 06 = KI (o) + 2 (w2 (x0) = ! (x0) . (5.100)
A

where (5.97) is valid foxg on C, (5.99) is valid forxy on 5, and both of (5.98) and
(5.100) are forx, located onA. The integrals of the disturbance tractions oxgr3 and
C are approximated by

Na
/ I Gy dse) ~ 3 Cigplxo) /2 = 1S, (x0) - F3,  (5.101)
r=1
/ 1P Gy dsge) ~ ZGm x0) 2% = IS, (x0) - F, (5.102)
/ fPrGy; dsk) ~ ZGW xo) i = I¢ j(x0) - F. (5.103)

We label the integral ovefs aslg’j(xo) = f&ni G; dsfx), which can be calculated
exactly using equations (2.44) and (2.45). We may also wessetkquations to calculate
the integral ove€s, which we Iabellg”j(xo), by using the mapping given in equation
(5.1). The integrals of the disturbance velocity oveare approximated by

/ P Ty, dst) ~ ZTWXO uPr = 1% i(x0) - UR, (5.104)
A
PV
/ P Ty, dst) = ZTJJY ubt = 157 (x0) - UR. (5.105)

A
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Finally we approximatd (x,), defined in equation (5.65) (x¢), defined in equation
(5.73) andK "V (x) using

Ng2
Lixo) = (1-Q)) (f D %) G + pu”™ (m,r) ij,r) ; (5.106)

Kix0) = 3 ((#7 Gomr) = £ () G

(0l (k) = o)) Tigpmi) . (5207)

KJPV(XO) ~ Z ((fipl (Xm,r) - fZPB(Xm,r)> Gij,r
Ps Py =PV
o () =l (o)) THY i) . (5.108)
We are now able to write the discretised form of equation{p®

18,(x0) IG,(x0) 0 —uTh(x0) ~IE ;(x0) 0] -@=Ii(x0),  (5.109)

wherexg lies onC. Repeated evaluation of this equation wthplaced at the mid-point
of each ofC’s boundary elements creatd%& pairs of equations which are assembled into
the matrix,

Cc €4 0 CL cCe O]-x:CI, (5.110)

where each o€¢, C4, CY, Cs, andC; consist of theNe pairs of I ;(xo), IG ;(x0),
— Iﬁ’j(xo), —Igj(xo) and;(xo) respectively. The discretised analogue of equation
(5.98) is

T,PV
16,(x0) I9,(x0) 0 —uT5" (x0) ~IE ;(x0) 0] @

+ 2mp ufl (x0) = Ij(x0), (5.111)

wherexg is on.A. Repeated evaluation of this equation wethplaced at the mid-point of
each ofA’s elements create 4 pairs of equations which are assembled into the matrix,

[Ac A 0 AT A 0] 2= A (5.112)

where each ofA¢, A%, Ag, and.A; consist of theN.4 pairs of I& ;(xo), IG ;(x0),

—Ig j(x0) and I;(x) respectively. TheAZ’T submatrix consists of th&/ 4 pairs of

—u IV (x0). To clarify the structure of the matrix we define,

0 T2 e TN, TN,
T>9 0 e TonN,—1 Ton,
=T
Ay = : : 5 : (5.113)
Tny12 TnNy-12 - 0 Tny-1,N,
| T'nan Tny2 - TNny-1,N4-1 0 |
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where each entry is itselfax 2 matrix, and

B Tm,q(x(()p)) Tyw,q(x(op)) (5.114)
P4 — |5 T .
T:cy,q (X((]p) ) vy,q (Xép) )

whenp # ¢, andT,, = 0 whenp = ¢ becaus@fvf;(xép)) = 0 on a straight element.

The indicesp and ¢ refer to the element on whick, is located and the element over
which we evaluatd’;; , respectively. Therefore we can write

AT = A+ 2mp o, (5.115)

where the second term on the right-hand side accounts fdmdmj’.jl (xp) term in equa-
tion (5.98) andyy , is the identity matrix of siz& N 4 x 2N 4.
The discretised form of equation (5.99) wheplies onB is

0 —1G;(x0) I8,(x0) nIh;(x0) 0 ~IE (x0)| @ = K(x0).  (5.116)

When we placex, at the mid-point of each of the boundary element#$3afie generate
Nj pairs of equations which we write as

0 By Bz B, 0 Bgl| =By, (5.117)
A 3

where each 0B 4, Bg, BY;, Be, andBj consist of theV pairs of—I% ;(xq), I§ ;(x0),
pIﬂvj(xo), —Igj(xo) and K;(xo) respectively. The discretised version of equation
(5.100) is
T,PV
0 —I,(x0) T§,(x0) nIZT(x0) 0 ~IE ;(x0)| -2

+ 2mp u]]-:)1 (x0) = KJPV(X(]) + 27p <uf3 (x0) — ufl (xo)) . (5.118)

wherexg is on.A. Repeated evaluation of this equation withplaced at the mid-point of
each ofA’s elements create§ 4 pairs of equations which are assembled into the matrix,

0 A Az AT 0 Ag-w= Ay, (5.119)

where each ofd’, A; and.Ag, consist of theN 4 pairs of—IﬁJ(xO), Ig,j(XO) and
—IE (xo) respectively. Thed';” submatrix is

~T
.Ai’lT =p Ay +2mp Ion,, (5.120)

and each pair of rows QL corresponds to the right-hand side of (5.118).
Assembling equations (5.87), (5.89), (5.110), (5.112)11%) and (5.119) into one



5.3 Validation 131

matrix system gives

Ce Cy 0 Ca Ce, 0 Cr
Ac A% 0 AT Ag, 0 Ar
0 B Bz B 0 B B
A TE A Slia=|F (5.121)
0 Ay Az A 0 Ag Ak
o U} o -F}' @ 0 0
o U o -FP 0 Qs] K

which is in our desired form. The ‘influence’ matrix elemeat®ur master linear system
(5.121) are mostly submatrices as we have seen. The firstemotd rows correspond
to the boundary integral equations valid in the main chaandlwhere the first row cor-
responds taxy on the walls of the channel and the secondkgolying on the notional

boundary,A. The third and fourth rows correspond to the boundary irlegquations

valid in the branch channel and where the third row corredpdox, on the walls of the

channel and the fourth tey lying on the notional boundaryd. The fifth and sixth rows

correspond to the pressure equations#ornd w3 respectively. The size of the ‘influ-
ence’ matrix is(4N 4 + 2Np + 2N¢ + 2) x (4N 4+ 2N + 2N¢ + 2). In our simulations

we took N 4 = 200, Nz = 400 and N¢ = 800.

Once the master linear system is built we solve it using adst@hmethod. Since
our ‘influence’ matrix is considerably larger than in praxsochapters we favoured the
GMRES (e.g. Saad 2003) iterative solver over Gaussian mditioin due to speed consid-
erations. We can then calculate the disturbance velocitypatint using either equation
(5.64) or (5.72) depending on the location of the point. Aiddiof the pertinent Poiseuille
velocity provides the total velocity at the point. We calted the flow streamlines by in-
tegrating the equation

((ii_)s( = u(x) (5.122)
along the streamline, where is the position vector of a point on the streamline and
s measures the arc-length along the streamline. We used #peivael stepping Runga-
Kutta-Fehlberg method (e.g. Atkinson 1978) to integrat&Z3).

5.3 Validation

We truncated the channels so thiat= 12d and L = [/2. We found this truncation
length sufficient for the disturbance velocity to decay asapproach the ends of the
computational domain, as per our initial assumptions. higortant parameters are the
ratio of channel heights) = D/d, the branch anglex and the flux ratio, Q. As a
check on the numerical implementation, we confirmed thatdiberetised form of the
integral identities (1.3.34) and (1.3.31) were satisfietviihin an acceptable tolerance.
In each set of presented results we will check that the ugldigld in the channel tends
to the applicable Poiseuille flow as we approach the endse&air set of parameters we
will show the profile of the velocity along the centreline bétmain channel and branch
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channel. From these plots we will see the disturbance coemaf the velocity decay
rapidly as we move away from the branch entrance. As we mavartts the entrance
or exits the profiles will show the velocity tending to the eqgiate centreline Poiseuille
velocity. In all calculations, we found that the streamwisdocity in the channels was
well within 1% of its predicted value at an axial distance3dffrom the branch entrance.
They-component in the main channel and thecomponent in the branch channel, which
should tend to zero, were all less theu®05 U(fl at a distance o8d from the branch
entrance. However, in the one case where we considered!, so that the branch was
wider than the main channel, the velocity disturbance hadykd to the stated tolerances
at the distancejd, which is somewhat closer ;. Although the velocity has decayed
satisfactorily at this distance, the efiglis only a further distancé, which lends weight
to an argument for a longer branch channel when 1 to allow for the slower decay of
the disturbance velocity.

In the main channel we checked the total traction and wealigple profile on the top
wall for the first three simulations. The profile is somewhiffecent to the disturbance
tractions that we have seen in previous chapters becausesplaydthe total traction and
not the disturbance traction. The reason for the changénlittee choice we must make
between the disturbance tractionfd* and f”2 , where the former decays to zerot
and the latter which decays tory n at £. Therefore plotting the total traction against
x/d allows us to see the traction attain a linear profile as weagmbr the ends, together
with the traction disturbance close to the branch entralmcall discussions regarding the
pressures and tractions we render the quantity dimens®bledividing byuUOPI/d and
indicate a dimensionless quantity by a circumflex, ¢.g= pr(fl/d. Since we have

~ ~P1 ~Dy ~Ps ~Do
f=fr +fr =r"+r-, (5.123)
we calculate
F=f"+ 7 =20, —2/d)+ £ (5.124)
or equivalently
r 2P D2 ~Do
f=Ff"+f =200, —z/d)+f ", (5.125)

on the top wall, and where we have used the definition of tlesstiensor to calculate the
traction together with the Poiseuille pressures given wmaéigns (5.25) and (5.26). On
the top wall at the entrancé;, we have

f=1(2,0 (5.126)

. D
sincef '=0, and

~

F=020Q,—2Ql/d+ ) =(2Q,—24Q + 79) (5.127)

on the top wall at the exit),. Therefore we expect thecomponent of the dimensionless
traction to tend t@ at&; and2@) at&,. They-component of the traction will vary linearly
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with x along the channel wall, from zero &t to —2Q! + 72 at&,. We only have the one
disturbance tractior]fps, in the branch channel. In our results we show the profiLéPSf
along the right-hand wally’ = D, where we expect th& -component to tend to zero as
we approaclfs and theY'-component to tend to the disturbance pressiye,

To validate the numerical solution we used a configuratioth Wi= 12d, L = 1/2,

a = /2 andD = d as our reference configuration. Firstly we doubled the nurobe
elements on each boundary in the reference configuratiofoand that the total pressure
at the exits differed by less than1%. With regards to the boundary tractions, we found
the largest discrepancy occurred on the elements neiginigaiine corners of the entrance
to the branch channel where the stress is formally infinée (Appendix E for details).
Away from the corners, we found that the absolute errors énlbtbundary tractions and
velocities were less than01 MU({D ! /d and0.005 UOP ! respectively. Next we computed the
solution for a longer channel with= 24 d and L = 12 d while preserving the element
length with respect to the reference configuration. We fotlnad the pressures at the
exits differed by less thai4% with respect to the reference configuration, and where the
additional Poiseuille pressure drops at both ends due textina channel length has been
taken into account. We found that the maximum absolute @mnrtite velocities and the
tangential component of the tractions remained less @02 U and 0.005 uUL™" /d
respectively. The maximum absolute error in the normal comept of the boundary
tractions remained less tharos pUL" /d.

To provide additional confirmation on the validity of the oeity field we compared
the boundary integral calculation to a finite-differenckakation for a configuration with
«a = 7/2 and various values of the flux rati§). The details of the finite-difference cal-
culation are given in Appendix D. The differences betweenltbundary integral and the
finite-difference models’ velocity fields were negligibkexcept for regions close to the
entrance and exits. The maximum discrepancy in the veldatyween the two calcula-
tions was0.05 Uéjl which only occurred in the regions within a distanceddirom the
ends of the computational domain, probably due to end sfféatreasing the resolution
reduced the error but did not remove the issue. Use of an ppate forward or backward
difference formula in areas close to the ends may remove eliamate this error. At the
ends, we found that the velocity obtained by the boundasgial method was in much
better agreement with the unidirectional Poiseuille vigyothan the velocity calculated
by the finite-difference method. Therefore we found thatlibandary integral method
provides a more accurate method of calculating the veldty throughout the entire
flow domain.

5.4 Results for a fluid-filled branching channel

In our first set of results we s = 0.5, § = 1 anda = «/2. In figure 5.2 we show
the streamlines, wall tractions and centreline velocitfifers for the branching channel.
The streamlines for the flow are shown in figure 5.2 (a). Occedly the streamlines
computed using the numerical integration scheme termibetere the exit due to the
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adaptive stepping method employed to calculate the streamiVhen the next point lies
outside the flow domain the streamline figure shows the ldstileied point which lies
within the flow domain. The streamline which starts frgin0) is the dividing streamline
when@ = 0.5, i.e. the streamlines which start below this point&rwill travel into the
branch channel and those which start above the point wilanerim the main channel. In
the finite-difference calculation the dividing streamlo@responds t@ = 0.5, wherey

is the stream-function, and it terminated on the right-hemaher of the branch entrance.
As we can see from figure 5.2 (a), the dividing streamline dodeed split the flow,
however due to a slight inaccuracy in the calculation theastiline does not terminate
on the corner. Doubling the number of boundary elementsesat®e streamline started
from (0, 0) to move0.03 d closer to the right-hand wall of the branch channel wherleas t
remaining streamlines trace the same paths to wiiliid7 d. We found that a streamline
started from(0, 0.0034)d does indeed terminate on the right-hand corner.

At & and &3 the pressures are17.294 uUZL" /d and —18.227 uUL™ /d respectively.
Figure 5.2 (b) shows the total traction on the top wall of th@mchannel. Equations
(5.126) and (5.127) show that the total dimensionlessitnaettz /d = 0 should b2, 0)
and equal to(1,—17.294) at &, which are in good agreement with the curves in the
figure. We found that the value of the wall traction on the twthoee boundary elements
adjacent to the end suffered from a numerical sensitivitr. &xample, on the wall &f;
the error in thex-component wa$.8% and the absolute error in thecomponent was
0.009 ,uUéjl /d. On the next boundary element away frégimthe error was halved. We
also found that when the number of boundary elements wasdgeed, the error reduced
and the disturbance pressures changed very slightly. Fongbe, doubling the number
of boundary elements changed the disturbance pressuressthian).06%. The region
in which the traction adjusts to its upstream or downstreanfilp is short compared to
the length of the channel, showing that the disturbanceechby the branch entrance
decays rapidly as we move away from it. In figure 5.2 (c) we fhietdisturbance traction
FP* on the right-hand wall of the branch channel, where 1/2 + D. We expect the:
andy components off”¢ to tend tor; and zero respectively as we move towafgsat
y/d = —17. Both components of ’* decay rapidly to their expected values as we move
away from the branch entrancegtd = —1 and move towardss. The values ofr, and
w3 differed from the values obtained from equations (5.47) @%i8) by0.03%, and the
check on thg/-component found an absolute error of less tha01 uUéjl /d.

Figures 5.2 (d) and 5.2 (e) show the centreline velocitighénmain and the branch
channels. In the main channel we can see that as we move awayife branch entrance
and approach; the disturbance to the velocity decays rapidly. The vejdeibds toUéD tg
as we approach; and0.5 Uéj 1 4 as we approachs. In figure 5.2 (e) we show the velocity
along the centreline of the branch channel and up to the tdpofvethe main channel.
Again we can see that as we move away from the branch entrhaceetocity decays
rapidly to—0.5 Ué)lj, or equivalently0.5 Uéjl /. Atthe ends, the error in the velocity on
the channel centreline was10% at&;, 0.07% at&; and0.23% at £3. When we doubled
the number of elements we halved the velocity error. In tlggores at the channel ends
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(a) Streamlines for an empty branching channel with 1, « = n/2 and@ = 0.5.
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Figure 5.2 : Streamlines, wall tractions and centreline velocitiesddsranching channel with
0=1,a=n/2andQ = 0.5.
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which are very close to the channel walls the error incredsatsthe magnitude of the
velocity is small compared to that on the centreline andetioee has little effect upon the
flow.

In the next set of results we keép= 1 anda = 7/2 and reduce) to 0.1 thereby
decreasing the amount of fluid which travels&pwith a concomitant increase in the
amount of fluid travelling o€3. We plot the streamlines in figure 5.3 (a) where we can
see the majority of the streamlines entering the branchrefaifhe pressures &t and&s
are—12.697 uUéjl /d and—23.592 uUéjl /d respectively. The change in flux has increased
the pressure at the end to which the majority of the fluid isawehen compared with the
previous simulation. Figure 5.3 (b) shows the total tractim the top wall of the main
channel. Equations (5.126) and (5.127) show thait 2/d = 0 should be(2,0) and
equal to(0.2, —12.6969) at&,, which are in good agreement with the curves in the figure.
The error in the traction is similar to the previous simulati Once again the region in
which the traction adjusts to its downstream and upstredoesas short compared with
the channel length. The change in thecomponent occurs betweeryd = 4 and 8,
and the change in thg-component occurs between/d = 4 and8.5. In figure 5.3 (c)
we plot the disturbance tractiofi”> on the right-hand wall of the branch channel. We
expect ther andy components off ”* to tend tors and zero respectively as we move
towards&s. Both components of P2 decay rapidly to their expected values as we move
away from the branch entrance gtd = —1 and move toward€s. The values ofr,
andrs differed from the values obtained from equations (5.47) @68) by0.03% and
0.04% respectively, and the check on thecomponent found an absolute error of less
than0.001 pUg* /d.

Figures 5.3 (d) and 5.3 (e) show the centreline velocitieghénmain and the branch
channels. In the main channel we can see that the disturbianite velocity occurs
betweenz/d = 4 and 8, and as we move away from this region the disturbandeeto t
velocity decays rapidly. The velocity tends ltdjl % as we approac; and0.1 Uéjl © as
we approaclt,. In figure 5.3 (e) we show the velocity along the centrelinéhefbranch
channel and up to the top wall of the main channel. Again wesesmthat as we move
away from the branch entrance the velocity decays rapidiyt® U(flj. The error in the
centreline velocity wa8.17% at&q, 0.43% at&; and0.22% at&s.

In the next set of results we s = 0.9 so that90% of the fluid travels taS;. We
maintain the values of = 1 anda = =/2. The flow streamlines are plotted in figure
5.4 (a) where we can see the majority of the streamlinesllimyahe exit of the main
channel. It is interesting to see that one streamline tsawmdd the branch channel close
to the right-hand corner before re-entering the main chiaane travelling to,. The
pressures af, and &3 are —21.891 uUéjl /d and —12.862 uUOPI /d respectively. Once
more we see that the change(nhresults in a higher pressure at the end receiving the
majority of the fluid. Figure 5.4 (b) shows the total tractiom the top wall of the main
channel. Equations (5.126) and (5.127) show yfwat:c/d = 0 should bg2,0) and equal
to (1.8, —21.8909) at &, which agrees with the figure. The error in the traction israga
similar to the previous simulation. The change in theomponent off occurs between
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(a) Streamlines for an empty branching channel with 1, « = 7/2 and@ = 0.1.

‘s “ z; 4t
v/ ' ' © o gDs ‘
(b) = (-) andy (---) components of the tractionon  (c) x (=) andy () components of the disturbance
the top wall of the main channel. traction on the right-hand wall of the branch
channel.
E':O QTO
2 2
3 3 oz
=/d e
(d) = (-) andy () components of the velocity (e) = () andy (--) components of the velocity along
along the centreline of the main channel. the centreline of the branch channel.

Figure 5.3 : Streamlines, wall tractions and centreline velocitiesddsranching channel with
0=1,a=n/2and@ = 0.1.
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(a) Streamlines for an empty branching channel With 1, « = 7/2 and@ = 0.9.
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Figure 5.4 : Streamlines, wall tractions and centreline velocitiesddsranching channel with
0=1,a=n/2andQ =0.9.
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x/d = 4 and 8, and the change in tecomponent occurs betweenfd = 3 and9. In
figure 5.4 (c) we plot the disturbance tractigh® on the right-hand wall of the branch
channel. We expect theandy components of ”* to tend torrs and zero respectively as
we move towardss. Both components of P decay rapidly to their expected values as
we move away from the branch entrance/af = —1 and move towards§s. The values
of o andws differed from the values obtained from equations (5.47) @&sB) by0.13%
and0.01% respectively, and the check on thecomponent found an absolute error of
less tharD.002 uUéjl /d. Figures 5.4 (d) and 5.4 (e) show the centreline velocitiethé
main and the branch channels. In the main channel we canaehéhdisturbance to the
velocity again occurs betweeryd = 4 and 8, and the disturbance to the velocity decays
rapidly as we move away from this region. The velocity temjéff ! 4 as we approach
&1 and0.9 Uéjli as we approaclds. In figure 5.4 (e) we show the velocity along the
centreline of the branch channel and up to the top wall of tagmrohannel. We can see
that as we move away from the branch entrance the velocigydeapidly to—0.1 U(flj.
The error in the centreline velocity wa€4% at&q, 0.03% at&; and0.23% at&s.

Now we set the flux ratio equal @5 but change the branch angle so that /4
and maintainy = 1. The flow streamlines are plotted in figure 5.5 (a). Wher = /2 the
dividing streamline started froif), 0). Now that the branch angle has changed té we
do not know whether the dividing streamline will terminate the right-hand corner of
the branch entrance. We can see from the figure that the dimesstarted fron{0, 0) ter-
minates at. In the next section we will explore more fully the dependehetween the
branch angle and the location at which the dividing streaeniérminates. The pressures
at&, and&; are —16.474 pUL" /d and —16.921 pUS ™" /d respectively, which represent a
4.7% and a7.1% reduction compared to the same case with 7 /2. Figures 5.5 (b) and
5.5 (c) show the centreline velocities in the main and theditechannels. In the main
channel we can see that the disturbance to the velocity sdmiween:/d = 3 and?9,
and the disturbance to the velocity decays rapidly as we raaay from this region. The
velocity tends toUé) !4 as we approacld; and0.5 UOP ' 4 as we approaclf,. In figure
5.5 (c) we show thé X, Y') components of the velocity along the centreline of the branc
channel and up to the top wall of the main channel. The vsldeitds to the Poiseuille
velocity 0.5 U(fl i’ as we get close t8;. The error in the centreline velocity wa$6% at
£1,0.09% at&y and0.10% at&s.

Now we decreasé) thus sending more fluid t63. The simulation parameters are
0 =1,a=mn/4and@ = 0.1. The flow streamlines are plotted in figure 5.6 (a) where
we can see the majority entering the branch channel, as texpethe pressures &b
and&; are—11.951 uUéDl /d and —21.830 ,uUéDl /d respectively, where the pressure has
increased at the end which receives the most fluid. Figugby.and 5.6 (c) show the
centreline velocities in the main and the branch channelthd main channel we can see
that the disturbance to the velocity occurs betweéi = 3 and 9, and the disturbance
to the velocity decays rapidly as we move away from this negibhe velocity tends to
Uéjl ¢ as we approach; and0.1 Uéjl 1 as we approach,. In figure 5.6 (c) we show the
(X,Y) components of the velocity along the centreline of the bnactannel and up to
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Figure 5.5 : Streamlines, wall tractions and centreline velocitiesddsranching channel with
0=1,a=n/4and@ = 0.5.

the top wall of the main channel. The velocity tends to thes@aiile velocity0.9 Uéjlz" as
we get close t@3, where the disturbance effect of the branch entrance hapabsared by
y/d = —3. The error in the centreline velocity wa9)5% at&;, 0.08% at &, and0.04%
até&s.

Now we increasé) thus sending more fluid t6,. The simulation parameters afe-
1,a =w/4and@ = 0.9. The flow streamlines are plotted in figure 5.7 (a) where we can
the majority travelling t&,, as expected. The pressuregaand&s are—20.997 uUéD 1/d
and —12.012 ,uUéjl /d respectively, where the pressure has increased at the eicth wh
receives the most fluid, relative to the simulation with= 1, o = 7/4 and@ = 0.5.
Figures 5.7 (b) and 5.7 (c) show the centreline velocitieshan main and the branch
channels. In the main channel we can see that the disturbianitte velocity occurs
betweenr/d = 3 and 9, and the disturbance to the velocity decays rapidlyeasmave
away from this region. The velocity tendsll@’:'1 1 as we approach; and0.9 UOP1 i aswe
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Figure 5.6 : Streamlines, wall tractions and centreline velocitiesddsranching channel with
0=1,a=n/4and@ = 0.1.

approach€,. In figure 5.7 (c) we show theéX,Y') components of the velocity along the
centreline of the branch channel and up to the top wall of thmrohannel. The velocity
tends to the Poiseuille velocity.1 Uéjl i’ as we get close t&3, where the disturbance
effect of the branch entrance has disappeared/y= —3. The error in the centreline
velocity was0.17% at &, 0.11% at & and1.27% at £3. We found that the error was
consistently the highest at the end receiving the least, flgdwhen@ was high and;
receives the least fluid the error will be the highest thetas Tactor is partly due to the
lowering of the exit Poiseuille velocity on which the errauwe is based.

Now we set) = 0.5, § = 1 and change the branch angle3to/4. The flow stream-
lines are plotted in figure 5.8 (a). The pressure§.atnd &3 are —16.752 uUéDl /d and
—17.480 MUOPI /d respectively. Figures 5.8 (b) and 5.8 (c) show the centelilocities
in the main and the branch channels. In the main channel weamthat the disturbance
to the velocity occurs betweeryd = 3 and 9, and the disturbance to the velocity decays
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(a) Streamlines for an empty branching channel With 1, « = 7/4 and@ = 0.9.
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Figure 5.7 : Streamlines, wall tractions and centreline velocitiesddsranching channel with
0=1,a=n/4and@ = 0.9.

rapidly as we move away from this region. The velocity tertdéfcf 1 4 as we approach
&1 and0.5 Uéjl i as we approaclfs. In figure 5.8 (c) we show théX,Y") components
of the velocity along the centreline of the branch channel am to the top wall of the
main channel. The velocity tends to the Poiseuille veIoﬁifyUéDli’ as we get close to
&3, where the disturbance effect of the branch entrance happksired by /d = —3.
The error in the centreline velocity wa€)1% at&q, 0.22% at&, and0.24% at&s.

Now we decreasé) to 0.1 thus sending more fluid t65. The simulation parameters
ared = 1, a« = 3r/4 and@ = 0.1. The flow streamlines are plotted in figure 5.9 (a)
where most of the streamlines travel into the branch charire pressures @ and&s
are—12.427 uUS* /d and—22.377 uUZ* /d respectively. Figures 5.9 (b) and 5.9 (c) show
the centreline velocities in the main and the branch chanhelthe main channel we can
see that the disturbance to the velocity occurs betw¢dn= 3 and 8, and the disturbance
to the velocity decays rapidly as we move away from this megibhe velocity tends to
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Figure 5.8 : Streamlines, wall tractions and centreline velocitiesddsranching channel with
0=1,a=3r/4andQ = 0.5.

Uéjl 1 as we approach; and0.1 Uéjl 1 as we approach,. In figure 5.9 (c) we show the
(X,Y) components of the velocity along the centreline of the bnactannel and up to
the top wall of the main channel. The velocity tends to thes@aiile velocity0.9 Uéjlz" as
we get close t@3, where the disturbance effect of the branch entrance happabared by
y/d = —3. The error in the centreline velocity wa)1% até&;, 1.27% at&; and0.14%
até&s.

Now we increasé) to 0.9 thus sending more fluid t8;. The simulation parameters
areé = 1, « = 3r/4 and@ = 0.9. The flow streamlines are plotted in figure 5.10
(a) where most of the streamlines travel to the exit of thennshannel. The streamline
which passes very close to the right-hand side of the brantarece terminates on the
wall in the main channel g7.6, —1)d. The pressures @& and&; are —21.076 uUé)l /d
and —12.583MU§1/d respectively. Figures 5.10 (b) and 5.10 (c) show the cengel
velocities in the main and the branch channels. In the maammoél we can see that the
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(a) Streamlines for an empty branching channel with 1, o = 37/4 and@ = 0.1.
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Figure 5.9 : Streamlines, wall tractions and centreline velocitiesddsranching channel with
0=1,a=3r/4and@ = 0.1.

disturbance to the velocity occurs betweefil = 3 and 9, and the disturbance to the
velocity decays rapidly as we move away from this region. \iélecity tends tdjéD '¢as
we approactt; and0.9 Uéjl ¢ as we approachi,. In figure 5.6 (c) we show théX,Y)
components of the velocity along the centreline of the iari@annel. The velocity tends
to the Poiseuille velocity.1 Uéjl i’ as we get close t63, where the disturbance effect of
the branch entrance has disappeareg /= —3.5. The error in the centreline velocity
was0.003% at&y, 0.11% at&y and1.12% at &s.

In the next set of results we set= 7/2, @ = 0.5 and reduce the width of the branch
such that = 0.5. The streamlines for the flow are shown in figure 5.11 (a)Aand&s
the pressures are17.822 ,uUéjl /d and—63.000 uUéDl /d respectively, where the differ-
ence in magnitude is due to the narrowing of the branch chafhe Poiseuille pressure
drop betweery/d = —1 andy/d = —7 increases front uU;" /d to 48 uUS™" /d when
D is reduced froml to d/2. Figures 5.11 (b) and 5.11 (c) show the centreline velcitie
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Figure 5.10 : Streamlines, wall tractions and centreline velocitiesgdiranching channel with
0=1,a=3r/4and@ = 0.9.

in the main and the branch channels. In the main channel weearthat as we move
away from the branch entrance and approégctthe disturbance to the velocity decays
rapidly. The velocity tends tbféj 1 4 as we approach; and0.5 Uéj 1 4 as we approachs.

In figure 5.11 (c) we show the velocity along the centrelinghef branch channel. We
can see that as we move away from the branch entrance thatyalecays rapidly to
—% Uéjlj = —U(flj. At the ends, the error in the velocity on the channel cengel
was0.05% at&q, 0.10% at &, and0.06% at Es.

In the final set of results we set = 7/2, @ = 0.5 and increase the width of the
branch such thai = 2. The streamlines for the flow are shown in figure 5.12 (a). At
&y and&;s the pressures arel5.201 uUéDl /d and—10.932 uUéDl /d respectively. Figures
5.12 (b) and 5.12 (c) show the centreline velocities in thénnshannel and the branch
channel. In the main channel we can see that as we move awaytmbranch entrance
and approaclt; the disturbance to the velocity decays rapidly. The vejotanhds to
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Figure 5.11 : Streamlines, wall tractions and centreline velocitiesgdiranching channel with
0=0.5,a=mn/2and@ = 0.5.

Uéjl 1 as we approach; and0.5 Uéjl 1 as we approach,. In figure 5.12 (c) we show
the velocity along the centreline of the branch channel gntbuhe top wall of the main
channel. We can see that as we move away from the branch emtifa velocity decays
rapidly to — 152 Ug"j = —0.25U]"4. At the ends, the error in the velocity on the
channel centreline was28% at &, 0.002% at &y and0.73% at&s.

5.5 The dividing streamline

In a branching channel we use the flux ratip,to define the proportion of the fluid &t
which travels to the exit of the main channelféat The remaining fluid travels to the exit
of the branch channel @. As we have shown, the flow streamlines may be plotted to
gain insight into the direction in which the fluid travels aparticular location. In each
flow there is a dividing streamline which terminates at sowiatmn either the right-hand
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(a) Streamlines for an empty branching channel with 2, « = 7/2 and@ = 0.5.
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Figure 5.12 : Streamlines, wall tractions and centreline velocitiesgdiranching channel with
0=2,a=mn/2andQ = 0.5.

wall of the branch channel, the right-hand corner of the tinaentrance or at some point
on the lower right-hand portion of the wall in the main chdnhet us define the starting
point of the dividing streamline to b@, y,¢)d. Therefore a fluid element which starts its
journey at(0, y)d with y > y,s will remain above the dividing streamline and travettQ
whereas a fluid element started fr@th y)d with y < y, will travel to £5. To calculate
Yps fOr a given value of the flux ratio we integrate the Poisewi#écity at&; from y,.d

to d to get the following cubic polynomial,

Yo = 3yps +2(1—2Q) = 0. (5.128)

When@ = 0.5 we expecty,s = 0. Substitution of¢Q = 0.5 into the cubic polynomial
gives (y%, — 3) y,s = 0, which hasy,s = 0 as its only root in the rangg,s € [—1,1].
To calculate the termination point of the dividing strearaliwe examine the wall shear
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stress;r, on the channel walls close to the right-hand corner of tledit entrance. On
the bottom-right hand portion of wall in the main channeé wall shear stress is given by

T:ug—Z:f-i:2uU0Pl/d+ffl, (5.129)

wherefP1 is obtained from the solution vector to the linear systend, @mthe right-hand
wall of the branch channel by

T=pae=f (=)= =2uU%/D + (= fP* cosa + fP sina), (5.130)
wheref?? is also obtained from the solution to the linear system. e the termination
point of the dividing streamline to be the location at whicls zero, if there is such a
point. Whenr = 0 on the channel walls we assume the dividing streamline text@s on
the right-hand corner of the branch entrance where thessisésrmally infinite, which
is shown in Appendix E. Since the disturbance tractions arestant over a boundary
element we find the two neighbouring elements between whichanges sign, and use
linear interpolation to obtain the coordinates of the paintvhichT = 0. The element
length close to the corner was abouil d for all calculations. Therefore the error bounds
in the calculation of the termination point is accurate tthim +0.01 d. The termination
point is therefore sensitive to the size of the boundary efgsclose to the right-hand
corner of the branch entrance. We usg to indicate the distance of the point where
7 = 0 to the right-hand corner of the branch entrance. Whgns negative the point is
on the wall in the branch channel and a positive value indg#tat the point is on the
wall in the main channel. In figure 5.13 we plot the distaggeagainst the branch angle
« for the three flux ratios@) = 0.1, @ = 0.5 and@ = 0.9. The points at whicly,; was
calculated are indicated by the points on the curves. When 0.1 we can see from the
figure s, is positive for acute and obtuse angles which demonstragste termination
point of the dividing streamline is on the bottom-right waflithe main channel. When we
increasex beyond0.7x the termination point of the dividing streamline moves othe
wall of the branch channel. FGr = 0.5 and@ = 0.9 the termination point of the dividing
streamline is always either at the corner or at a point on thkiwthe branch channel.
As the branch angle becomes more obtuse the valsig, decomes increasingly negative.
Therefore the termination point of the dividing streamlineves away from the corner as
the branch angle is increased and along the wall of the bretmatmel. The value &f, for
the three values af) anda = /2 were independently verified using a finite-difference
calculation with a grid size oAz /d = Ay/d = 1/64 with good agreement.

We are now in a position to interpret the dividing streamiime¢he streamline plots
of the previous section fa¥ = 1. In figure 5.2 (a) wherex = 7/2 and@ = 0.5 the
dividing streamline starts frorf, 0)d and should terminate on the right-hand corner of
the branch entrance. As noted earlier, we had to start taemstine at0, 0.0034)d for it to
terminate on the corner, which represents an acceptatdedermumerical error. In figure
5.3 (a) wheren = 7/2 and@ = 0.1 the dividing streamline starts froif, 0.6084)d
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Figure 5.13 : Distance of point where = 0 from the right-hand corner of the branch entrance.

and terminates on the main channel wallsgf = 0.02d. When@ = 0.9 the dividing
streamline for figure 5.4 (a) where = 7/2 and@ = 0.9 the dividing streamline starts
from (0, —0.6084)d and terminates on the branch channel wall at a distarfic@7d from
the corner. The dividing streamline’s termination pointfigures 5.5 (a)-5.10 (a) may be
predicted with reference to the curves in figure 5.13.

5.6 Discussion

In this chapter we have considered a pressure-driven floweivaanel with a side branch.
We prescribed the flux rates at the entrance and exits. Weufated the problem using
the boundary integral method and found its solution nuradlyiaising the boundary el-
ement method. The solution provides the disturbance traston the channel walls and
the pressure drops between the entrance and both exits.

We summarise the pressure drops for the simulations in Eable The table displays
the parameter values from each simulation together witiptassure drop\p-, between
the entrance anék, and the pressure drof\ps, between the entrance afigl The pres-
sure drops are defined in equations (5.32) and (5.33). Tteeafathe Poiseuille pressure
drop, Ap', to the total pressure drop in the main channel is displayéid last column.
A comparison is not made for the branch channel because thésflmt purely Poiseuille
at its entrance. For reference, from equation (5.26) we hgyvé = 24QMU531 /d for a
channel withl = 12 d. The units for the pressure drops aré’é)l /d. We can see from the
table that for a fixed value of the flux rati@), the pressure drop is greatest wheg- /2
and the least whem = /4. The pressure drops for # 7/2 are betwee% and8% less
than the pressure drop far= 7/2. For constanty, the pressure drop is greatest between
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a Q Apy Aps  Ap™/Ap,
7T/4 0.1 11.951 21.830 20%
w/2 0.1 12.697 23.592 19%
371'/4 0.1 12427 22377 19%
7T/4 0.5 16.474 16.921 73%
05 7/2 0.5 17.822 63.000 67%
7T/2 0.5 17.294 18.227 69%
7T/2 0.5 15.201 10.932 79%
37T/4 0.5 16.752 17.480 72%
7T/4 0.9 20.997 12.012 97%
7T/2 0.9 21.891 12.862 99%
3r/4 0.9 21.076 12.583 102%

PR R R

PR R RNR

Table 5.1 : Pressure drops between the entrance and exits of a braratiangel for a range of
branch widthsg, branch anglesy, and flux ratios().

the entrance and the exit to which the majority of the fluid Bo®pecifically, the pressure
drop Ap, decreases b6% when the flux ratio is reduced from5 to 0.1, and increases
by the same percentage when it is increased fodirto 0.9. ConverselyAps increases
by 28% when the flux ratio is reduced frof5 to 0.1, and decreases by the same propor-
tion when@ is raised fron0.5 to 0.9. Maintaining the branch angle and the flux ratio but
reducing the width of the branch channel has little effectlmnpressure drop between
the entrance and-, but nearly quadruples the pressure drop between the eaterd
&s. Increasing the width of the branch channel so that it istgrethan the width of the
main channel causes a reduction in both pressure dropstheittlecrease ihp3 signifi-
cantly greater. The pressure ratio in the final column of atiet shows that the Poiseuille
pressure drop constitutes only arou2ids of the total pressure drop whep = 0.1 for
all branch angles. The ratio increases to betw&gh and79% when@ = 0.5, showing
that the pressure drop is dominated by the Poiseuille floneW¢h= 0.9 the disturbance
pressure drop is a very small proportion (arodfig) of the total pressure drop. The value
of 102% for « = 37 /4 is due to a small negative disturbance pressure drop in tlre ma
channel, thereby lowering the pressure drop required im&i@ channel to maintain the
flux rate at&,. With regards to the disturbance caused by the branch estrave have
seen from the simulations that the disturbance to the ugldeicays rapidly as we move
away from the branch entrance. As previously mentionedyéhecity is within 1% of
its appropriate Poiseuille value at a distancg®from the branch entrance, which pro-
vides evidence that our initial assumption on the decayeflitsturbance velocity is valid.
However when considering a branch channel which is widem thea main channel, we
should make the branch channel longer than the currentatianclength,L = [/2, to
allow for the slower decay rate of the disturbance velocity.

Finally we note that the termination point of the dividingestmline is dependent on
the flux ratio,, and the branch angle;. When the flux ratio is small so that most of
the fluid enters the branch the dividing streamline terneisain the bottom-right hand
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wall of the main channel at a point withinn03d from the corner for a wide range of
branch angles. When the flux ratio is increased so that therityapf fluid continues
along the main channel we found that the dividing streami@reninated on the right-
hand wall of the branch channel for acute and obtuse brarglesainAs the branch angle
becomes more obtuse the termination point moves furthen fte corner and into the
branch channel, e.g. the dividing streamline terminates @int a distance from the
corner wher = 0.1 anda = 0.71 7.






Chapter 6

The motion of a rigid particle
through a bifurcation

In this chapter we introduce a neutrally-buoyant rigid jgéetinto the branching channel
studied in the previous chapter. The mathematical modelsiom the analysis of a rigid
particle in a straight channel contained in chapter 3. Thigghais free to move with the

flow and we assume that the flow exerts no force or torque upopdtticle. We derive the
eqguations which govern the motion of the fluid and the particlthe main channel and
in the branch, and we calculate the disturbance caused Hyraéineh using the boundary
integral method. The governing equations describe thecitglfield throughout the flow

domain together with the pressures at the exits to the catipnal domain. Application

of the boundary element method to the governing equatiogisl/ia set of discretised
eqguations which may be written as a linear matrix system ailvéd by standard methods.

6.1 Problem statement

We consider the motion of a fluid with viscosityin an infinite straight-walled channel
of width 2d. A branch channel of widtR D is attached to the lower wall of the channel
at an anglex. Whena = 7/2 the branch channel is perpendicular to the main channel.
A disturbance to the upstream and downstream flows is causdidelbranch entrance
and by the presence of a rigid particle of a fixed shape, whichem with the flow. We
assume that the particle is neutrally buoyant and that the dberts no force or torque
on the particle. The geometry is shown in figure 6.1 and caeprihe walls of the main
channel,C, the walls of the branch channéd$, the particle? and a notional boundary,
A, which we introduce to treat the main and branch channelraggy. All unit normal
vectors,n, point into the fluid. On the notional boundary the unit nokuetor points into
the fluid of the main channel. We assume that the disturbasgsed by the particle and
the branch entrance decays upstream and downstream frasouhee of the disturbance
so that the flow far from the disturbance is described by wlabksnidirectional Poiseuille
flow. Since we will require a channel of finite length in the rarinal method, we truncate
the channels so that the main channel has lehgtid the branch channel has lendth
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©2d

Figure 6.1 : A straight-walled channel with a branch which contains alfhfiviscosity.

as measured along their centrelines and illustrated indigut. We position the branch
channel so that its centreline intersects the mid-poirtt®fawer wall of the main channel,
(1/2,—d). We label the entrance of the main channeEgsthe exit of the main channel
asé&, and the exit of the branch channel&s The entrance and exit in the main channel
are located at = 0 andx = [ respectively. In the branch channel we introduce local
coordinates( X, Y"), which have their origin on the centreline&tas indicated in figure
6.1. The mappings between tle, y) coordinates of the main channel and {h¢, Y)
coordinates of the branch channel are given in equation ¢the previous chapter. The
unit vectors in the main channel aiend 5, which are mapped to their branch channel
equivalentsi’ and 3" using equation (5.3). The particle and the branch entraisterd
the flow but at&;, & and&; we assume that the disturbance has decayed and the flow
has settled to Poiseuille flow, characterised by the strésenfiux rate at the pertinent
entrance or exit. As in the previous chapter we label the e at each ofy, & and&s
as(@), Q2 andQs respectively. The equations for the fluxes and the Poisewdlocities
are given in equations (5.4)—(5.11) of the previous chapter

Our aim is to compute the velocity field throughout the flow é@mand the additional
pressure drop at both exits due to disturbance caused byrémetbentrance and the
particle. We assume that the Reynolds number of the flow issraall so that the flow in
the channels may be described using the linear equation®kdé<sflow given in equation
(1.3.4). We decompose the velocity field, the stress fieldg, and the traction field,
f, into background Poiseuille and disturbance componertig;have identify using the



6.1 Problem statement 155

superscripts” and D respectively. The decompositions in the main channel aendiy,

uw=u" +uP =u? ful?, (6.1)
oc=0c"+oP =g 4 o2, (6.2)
F=r" 4P =" (6.3)

where the quantities with th&; and D, superscripts are defined with referencefto
and the quantities with th&, and Dy superscripts are defined with referencefto The
velocity, stress and traction decompositions in the branemnel are

u=u +ul (6.4)
o=0c 4+, (6.5)
=1t g, (6.6)

which are all defined with reference &. On the notional boundary, which separates
the channels we impose continuity of the velocity, stresbkteaction fields such that

w=u" +uPr =u? +ul? =uB 4 u? (6.7)
o=+ =" 4 P2 = 5 4 573, (6.8)
F=f0 + = fP2 = (6.9)

where we define all tractions with reference to a unit norneaker which points into the
main channel. On the channel walls we have- 0 by no-slip and no-penetration, which
implies

ul' =uPr =u? =uP? =0 (6.10)

on the walls of the main channel, and
=u =0, (6.11)

on the walls of the branch channel. In the previous chaptgrding a fluid-filled branch-
ing channel we assumed and demonstrated that the disterbatorities,

uPt — 0, uP? -0, uP? — 0, (6.12)

as we approach the ends,, & and&; respectively. In this chapter we have introduced
a rigid particle whose effect on a straight channel flow wegtigated in chapter 3. We
found that the disturbance velocity due to the rigid pagtial a straight channel decayed
to less than % of its maximum value at a distance of 3 particle radii from tleatroid.

In light of this evidence and on previously cited works re&tjag flows in channels, we
are justified in assuming the validity of equation (6.12)lléwding the same argument as
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given in the derivation of equations (5.21)—(5.24), we assu

fPr =0 at&, (6.13)
fP2 = —mom até, (6.14)
fP = —mym atés, (6.15)

where we have taken the disturbance pressui@ ,af, and &3 to be zero,m, and s
respectively. The Poiseuille pressures in the main chaamesggiven by

p(z) = -Giw (6.16)
p? () = —-Gax (6.17)

wherep” (z) is the Poiseuille pressure due to the entrance Poiseuiewith pressure
gradient—G4, and p(x) is the Poiseuille pressure due to the Poiseuille flow which
exits the main channel which has pressure gradie@t;. The pressure gradients may be
expressed in terms of the centreline velocity or the flux by,

_2uUy" _ 3ph
a2 2 a3
G2 = QGh. (6.19)

Gy (6.18)

We have defined the Poiseuille pressures suchptfiat= p™> = 0 at&;. In the branch
channel the Poiseuille pressure is

p(X)=-G3 X (6.20)

whereGs = 2 Ul® /D? = 311Q3/2D?, and—Gj is the pressure gradient which when
applied to the branch channel results in the flu€aequalling@s;. We may now write
the pressure difference between the entrance and the ki ofiain channel\p,, as

Apy = p(&1) — p(&E2)
= (" (&) + " (&) — (P72 (&2) + P72 (E2))
== G2 [ — T2 (621)

by equations (6.16) and (6.17), and between the entranctharekit of the branch chan-
nel, Aps, as

Aps = p(E1) — p(E3)
= (" (&) + "1 (&) — (P (Es) + P2 (E3))
— (6.22)
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by equations (6.16) and (6.20). The total pressures at tkeane
p(&2) = m — G2l, and p(&) = ms. (6.23)

The final boundary condition regards the particle which glaties with velocity,V =
(Vz, V), and rotates with velocity2 = Qk, wherek is the unit vector pointing out of
the paper towards the reader. ThereforgPowe have,

u(x) =V + QA (x — %), (6.24)

wherex is a point onP andx. is the centroid of the particle calculated using equation
(3.8) (on page 43).

In our discussion of the boundary conditions we have intceduunknown distur-
bance tractions, velocities and pressures. All quantitiesdefined with reference &,

&y or &. Therefore during the forthcoming derivation of the equradi we will need to
choose which quantities to keep and which to eliminate. émtlain channel we have the
disturbance pressures, and the disturbance tractiong” , on the channel walls. In the
branch channel we have, and thef”? on the channel walls. On the notional boundary
we choosefPt andu”1, for consistency with the main channel.

To derive equations for the disturbance pressuresnd 73 we bring together the
analysis given in chapter 3 when discussing a rigid partick straight channel, and the
derivation of the disturbance pressures equations for achiag channel given in the
previous chapter. Firstly we will consider the main charwmleén it contains the particle,
and apply the Lorentz reciprocal relation (1.3.22) to thi paflows, (uf* , o1 ) and
(uPr,aP1), to get

V- (uft oD —uli o) =0, (6.25)

which we integrate over the main channel’s flow domain andyapp divergence theorem

to get
/ uPt . P dsk) = / uPt . P dsk), (6.26)

ory ar,

wheredl’, = & U & U AUC U P, which can be simplified to

Jlar g ul g s = [ (P - ul ) dsg), (627

52 A7P

using equations (6.10) and (6.12). The left-hand side sfieplto ()1 > by equation
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(5.45) from the previous chapter, and the integral ®eiimplifies to

/ (uPr - 7 =l fPV) dst) = / ((w =) f7 —ult (f = £7)) dsto)

P P

= / (u fPl —aulr. f) ds)

P

—_ / ult - f dsk), (6.28)

P

using equations (6.1) and (6.3), and whgiﬁeu . fP1 dsfx) = 0 was shown in equation
(3.31) of chapter 3. Therefore we can simplify equation{pt2 get,

2 1 (/(um P P fP) ds) — /uPl f dS(x)) : (6.29)

G
A P

for the disturbance pressure&t If the particle were in the branch channel the integral
over P would be omitted from equation (6.29). To obtain an equat@nr; when the
particle is in the branch channel, we include the particlenoary in equation (5.50) and
obtain

/(upa P —uDs L fP) dsf) = / (u - fP2 —uPs . £ dsk). (6.30)

Es AP

The left-hand side is simplified using boundary conditich4.2) and (6.15), to get

/ (uPs - P —uls . fP5) dse) = Qs ms, (6.31)
&3
and where we have usegs = — fgg n - u’® dsf). The integral ovef® may be re-

expressed in the same way as equation (6.28) by changingdbe 1 to 3, to obtain

/ (WP - fP5 —uDs . FP) dsi) = — / uPs - f dsg). (6.32)

P P

Substitution of equations (6.31) and (6.32) into (6.30) afwhination ofu”* and £
on A in favour ofu”! and f”' gives

e

A P

3 . (/ (ufs - P —uPr . f7Y) dS(X)+7/)—/uP3 - f dS(x)) ., (6.33)

wherev is defined by equation (5.56). When the patrticle is in the nshemnel the inte-
gral overP is omitted from equation (6.33). To write the disturbancespure equations
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concisely we introduce a functiofi{, which is defined by

0 when the particle is in the branch channel,
Hp = { P (6.34)

1 when the particle is in the main channel,

so that,

Ty = & (/(uD1 P —ufr ) dsk) - Hp/upl - f dS(X)) ; (6.35)
A

P

T3 = Qi (/(up3 P =l ) ds) + 4 - (1—H7>)/UP3 -f dS(X)) :
3 4 P
(6.36)

for the disturbance pressures at the exits. When theyliee —d bisects the particle it
is between channels. In this situation the notional boundawill be deformed around
the particle so that it lies wholly within the main or brandimaanel. The unknowns in
equations (6.35) and (6.36) are the disturbance presdhessgsturbance velocities and
tractions on4 and the tractions on the particle boundary.

We start the derivation of the boundary integral equatiorttie main channel using
equation (5.64) and include the particle boundary, to get

47T}L ule (XO) = — / fiD1 Gij dSé() + 7o /nz Gij dS(X)

A,C,P &

b [P Ty 05+ i), (637)
AP

for xq in the fluid of the main channel, and wheféx) is defined by equation (5.65).
Application of the boundary integral equation (1.3.40)he tu’ , o) flow over the
particle gives,

0= —/fl.P1 Gi; ds) +u/uf)1 Tiji n dsx), (6.38)
P P
for xq in the fluid of the main channel. Adding this equation to (§.§ives

tm ) = = [ 17 Gy dst) — [ £:Giy st + 72 [ i Gy dsto)
AC P Ea

o / WPV Ty ds@) + 1(xo) + / w; Ty, dsg),  (6.39)
A P

and we have shown that the double-layer potential integred a rigid particle is zero in
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(3.47). Therefore we may write equation (6.39) as

1
AcC P

+7T2/7”LZ‘ Gz‘j dS(X) —|-,U,/UZD1 Tz’jk ng dS(X) —l—[](Xo)) s (640)

) A

which is valid forxg in the fluid of the main channel. When the patrticle is in thenblra
channel the particle integral is omitted. Equation (6.40als0 valid on the walls of the
channel and the particle boundary because the disconsndmuble-layer potential is not
evaluated over eithef or P. When the particle is in the main channel and the pole,
o, is placed orP we useu”! (xq) = u(xg) — u!* (x0), to replace the left-hand side
of equation (6.40), and use equation (6.24) to wtitén terms of the translational and
rotational velocities. WheRry lies on the notional boundaryl, we obtain

1
ule(XO) =5 |- / fPr Gy dS(x)—HP/fz‘ Gij dsk)
it
AcC P

PV
+7T2/ni Gij dsk) + p / ul' Ty g ds) +[](X0)) ; (6.41)
Eo A

by the same process as given in the derivation of equati@®)5The derivation of the
boundary integral equation applicable to the branch cHamoeeeds in much the same
way as the main channel. We start by including the particlendary in the branch chan-
nel boundary integral equation (5.72), to get

P (xg) = / PGy dsk) — / P2 G; dst) + s / ns Gy dst)
BP

A Es

- M/UZDI Tijkny dsk) +M/UZDS Tijkny dskx) + Kj(xo), (6.42)
A P

for x( located in the fluid of the branch channel, and wh&réx) is defined by (5.73).
This time we apply the boundary integral equation (1.3.4Qhe (u!> , o3 ) flow over
the particle, and get

P

P
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for x in the fluid of the branch channel, which we add to equatiof2)6to obtain

il o) = [ PGy dst) — [ 1P Gy dst) — [ 1:Giy dst) s [ Gy dsto)
A B P Es

[ T dst) 4 [T dste) + K (x0) (6.44)
A P

and we have shown that the double-layer potential integred a rigid particle is zero in
(3.47). Therefore we may write equation (6.44) as

1
W (x0) = o (Z 71 Gij dst) — B/ 17 Gij dste) — (1 = Hp) P/ fi Gij dst)
+7T3/nz' G;j dsx) —M/uiDl ijk e dS(X)+Kj(X0)) ; (6.45)
& A

Since the discontinuous double-layer potential is onlysene for the notional boundary,
equation (6.45) is also valid wheqy lies on the walls of the branch channel and on the
particle boundary. Whegy lies on the left-hand side is zero by no-slip, and when
lies onP we writeu”? (x¢) = u(xg) — u’® (x). When the pole lies oml we follow the
same process as given in the derivation of equation (5.@%5)et

P x0) = 5 ( [ 76y st~ [ 172Gy a5t~ (1= Hp) [ 16y dsto)
A B P
PV
D1 PV
+7T3/ni Gi; ds) —M/ui Tijeny, dsk) + K (Xo)) : (6.46)
&3 A

We now have equations for the disturbance pressures andaaguimtegral equations for
the main and branch channels. However, there is a probleandieg the uniqueness of
the solution as discussed in chapter 3 (page 50). To rendesdlation unique we add
a deflation term, which can be shown to be zero, to the intemyral 7. The deflation
term is

D;(x0) = n(xa) [ i fi dsto) (6.47)

P

which we add to the boundary integral equations wheneveantbgral overP is present.
More details on the deflation term may be found in Appendix B Bozrikidis (2005b).
To obtain a linear system which represents the governingtems we employ the bound-
ary element method (e.g. Pozrikidis 2002a). We discretisebbundaries into elements
upon which we evaluate the boundary integral equations. M#&roa sufficient number of
equations for the unknown tractions 6rand5 by evaluating equations (6.40) and (6.45)
with xo on each element of the respective boundary. Evaluationeoétfuations (6.41)
and (6.46) withx, on A provides a sufficient number of equations for the disturbanc
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tractions and velocities on the notional boundary. Depandn whether the particle is in
the main channel or the branch channel, we evaluate eitlhvatieq (6.40) or (6.45) with
xo on each boundary element of the particle to obtain equaf@mrite particle tractions.
We have two equations for the disturbance pressures at itse mxmely equations (6.35)
and (6.36). However, we still have the unknown rotationabei¢y and the two compo-
nents of the unknown translational velocity. Since we hasimed that the particle is
force and torque free, we include equations (3.33) and 3vBéth state this assumption
mathematically. Therefore we have the same number of emsatis unknowns and so
our system is complete. We have completed our derivatioheofbverning equations for
the flow of a particle through a bifurcation and now we movemthe describe how the
boundary element method is applied in order to find the nuwraksolution.

6.2 Numerical method

In section 5.2 of the previous chapter we discretised themping equations for a branch-
ing channel into the linear matrix form,

A-z=b, (6.48)

where A is the influence matrixg is the column-vector of unknown pressures, tractions
and velocities, andl is a column-vector containing known values. As before, gerditise
the main channel walls, the branch channel walls and themaltboundary intaVe, N
and N 4 equally-sized straight elements respectively. We alscrelise the particle into
Np equally-sized straight elements. On each element we setrtkiiown disturbance
traction to a constant 2-vector, which we lalféf* on ther element ofA4 andC, 22

on thert" element of 3 and f, on ther" element ofP. We also set the disturbance
velocity tou? on thert" element of4. The vector of unknowns is defined by

T
z=|FP F} FR UR m =5 Fp V 0 (6.49)
where the vector&?, FI, FE andUY are defined in section 5.F» is defined by

Fp=|fo1 fy1 -~ forne funnl (6.50)

and wheréV and(2 are the translational and rotational velocities. To disseghe distur-
bance pressure equations, we write the equations as

Q12+ /(upl fPr— P17 ds() +Hp/ uP . f dsk) =0, (6.51)

A P

Q33 + / (wPr P — ufs . fP1) ds) + (1— Hp) / ul® f dsk) =v. (6.52)

A P
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We need only concentrate on the particle integral becagseethaining terms have been
discretised in equations (5.87) and (5.89). The integral the particle in equation (6.51)
is approximated by

Np
[ur £ a5 =Y w (o) (6.53)
P r=1

wherex,,, - is the mid-point of the*" element and, is its length. By defining

U"P;l = |:uP1 (Xm, 1) ll e upl (Xm, Np) le] ’ (654)
we may write
/ u . f dst) =~ UL - Fp, (6.55)
P

and so equation (6.51) can be expressed in the form,
[0 Uil 0 —Ffll Q1 0 H’PU;;I 0 0] cx =0, (6.56)

whereU f@ andFﬁ1 are defined by equations (5.84) and (5.85). To discretiseghation
for w3 we define

U7P;3 = |:uP3 (Xm, 1) ll o ’u’PS (Xm, Np) le] ’ (657)
so that equation (6.52) may be written as
[o —U% 0 —F% 0 Qs (1-Hp)UZ 0 o} x =, (6.58)

whereU’¢ and F} are defined by equations (5.90) and (5.91), and whereay be
calculated exactly from equation (5.57) whghis straight. However, thel boundary
may now be deformed to facilitate the passage of the paiitittethe branch channel.
When this occurs we approximageusing

Na

(RS Z (UP3 (Xm,r) : fPl (Xm,r) —uh (Xm,r) : fPS (Xm,r)) Ly (6.59)

r=1

To discretise the boundary integral equations, we staft thié main channel and write
equation (6.40) as

/ fPray; dst) + Hp / fiGij dskk) — m2 / ni Gij ds)
Ac P

)

i [l Ty dst) = Lxa). (660
A
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which is valid forx, onC, sinceu” = 0. The only term which we have not previously
discretised is the single-layer potential o#&rwhich we approximate by

[ #:Gs dst) = 1, (x0) - B (6.61)
P

where

IE;(x0) = [ij,l(xo) Gyji(x0) - Gajnp(x0) éyj,Np(Xo)] (6.62)

andG;;, is the integral of the Green’s function over thHé element,Fl,., and is defined
by
Gujrx0) = [ Gl ) dsto) (6.63)
El,

Therefore we can write equation (6.60) in the matrix form,

Igj(xo) Iﬁ,j(XO) 0 —pu Ia,j(XO) —[g;’j(xo) 0 H'}DI}G:J(XQ) 0 O] - = Ij(xo),
(6.64)
by augmenting equation (5.109) witlip Ig,j(xo). When we repeatedly evaluate (6.64)
with x( placed at the mid-point of each 6fs boundary elements, we obtain

[cc Ci 0 CL Cep O HpCp O O]-:c:CI, (6.65)

whereCp corresponds to th&/c pairs ofIg,j(xo), and the remaining terms are defined
in the derivation of equation (5.109). By following the saprecess withxy placed on
the walls of 3 and the notional boundaryl, we obtain

Ce Cy 0 Ca Ce, 0 HpCp 00 Cr

Ac A 0 AnAl’T Ac, 0 HPA% 00 Aj

0 Bs Bgp Bﬂ 0 Bey (1—Hp)Bp 0 0 B Bx

0 Ay, As A 0 Ay (1-Hp)AL 0 0 T |Ax|’

o U} o -Fi' Q1 0 HpUL 0 0 0

0 U o -FP 0 Q (1-Hp)Up 0 0] |
(6.66)

where Ap and.A% correspond to thé/ 4 pairs of I g, ;(x0) with xo on A, Bp corresponds

to the N pairs ofI,(ivj (x0) with xo on B, and the remaining terms are all defined in section
5.2 of the previous chapter. Whexg lies on the particle boundary and the particle is in
the main channel we write the boundary integral equatiof0j6as

/fZ.Dl Gi; dsk) —ﬂ/uf’l Tk ni ds() —7T2/nz‘ Gij ds) +/fz‘ Gij dsk)
Ac A & P
+ dmp ug(x0) = Ij(x0) + 4mp ul (%), (6.67)
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which by writingu(xg) = V + Qk A (xo — x.), we discretise to

1G,(x0) IG,(x0) 0 —pI% (x0) —IS (x0) 0 I%;(x0) I, [Q,j(xo)]-:c

= I;(x0) +4mp ufl (x0), (6.68)

wherel, ; andlq j(x) are defined by
Lo;=Admp [5]' 5jy] , (6.69)
I j(x0) = 4mp e (o — Tey)- (6.70)

Evaluation of (6.68) on each boundary elemerPdéads toN, pairs of equations which
we write as

Pe Pa 0 Py Ps 0 Pp Py Po|-@=P;, (671

where each element corresponds to Mye pairs of elements in equation (6.68) afgi
corresponds to th&/p pairs ofI;(x¢) + 4mp ufl (x0). Equation (6.71) is only included
in the linear system when the particle is in the main chanwéien the patrticle is in the
branch channel we write the boundary integral equatiorbjGag

- / 21 Gy dst) + / P3Gy dse) + / WP Ty ds) — s / ns Gy ds)
A B A

&3

b [ 4Gy dst) + am wyxo) = K (o) + Al (o), (6.72)
P

for x¢ on the particle boundary. Using(xg) = V + Qk A (x¢9 — x.), we discretise
equation (6.72) to get

0 —IG,(x0) Ig;(x0) pll;(x0) 0 —IE (x0) I3;(x0) Iuj Ioj(x0)|

= Kj(x0) +4mp uf?’ (x0). (6.73)

Evaluation of (6.73) on each boundary elemerPdéads toN, pairs of equations which
we write as

0 Pu Ps PL 0 Pey Pp Py Pol-z=Pi  (674)

where each element corresponds to My pairs of elements in equation (6.73) aRg
corresponds to th&p pairs of K (xg) + 4mp uf3 (x0). Equation (6.74) is only included
in the linear system when the particle is in the branch channe

To complete the linear system we require the discretisaifoiine force and torque
equations which ensure that the particle remains force ampi¢ free. We may write
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down the zero force condition with reference to equatioB3B.which is
Ly -FF =o, (6.75)

where Lp is defined in equation (3.76). The zero torque condition asest by (3.34),
which is

Tp-FP =0, (6.76)

whereT'» is defined in equation (3.78).
From the discretisations of the boundary integral equatidtihe pressure equations
and the force and torque equations we form the linear system,

Cc C4 0 C4 C, 0O Cp 0O O Cr
Ac AL 0 AT A;, 0 AF 0 0 Ay
0 By Bs By, 0 B 0 0 0 Bx
o Ay Az A 0 A, 0 0 o0 Ax
o Uy} o -F @ o Uy o o|-x=|0], 677
o -UP o -F 0 Q@ 0 0 0 P
Pc Pa 0 PL Ps, 0 Pp P, Po P;
0 0 0 0 0 0 Lp 0 O 0
0 0 0 0 0O 0 Tp 0 O | 0

when the particle is in the main channel. When the particia the branch channel we
have

Cc Cis 0 CL ¢, o0 0 0 O Cr
Ac AL 0 AT A, 0 0 0 0 A;
0 By Bsg B, 0 Bg Bp 0 0 Bk
0 Ay Az AT 0 A, AL 0 0 Ag
o U} o -FP @ o0 o0 0 0|-x=|0]|. (678)
o -UP o -F* 0 @ UP 0 0 P
0 Pa Ps PL 0 Pg Pp P. Po P
0 0 0 0 0 0 Lp 0 O 0
0 0 0 0 0 0 Tp 0 0| 0

We recover the linear system given in equation (5.121) frgoeé&ons (6.77) and (6.78)
by omitting the last three columns of the matrix and the laste rows from the matrix
and the column vectors.
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Finally we must add the discretisation of the deflation tesrthe appropriate subma-
trix to obtain a unique solution. The discretisation of tiedlation term is

Np
n; (xo) / ni f; dst) ~ n(x0) 3 i finls
D r=1
= n;(xo)Dp - F'p, (6.79)

where

Dp = |:TLI71 nyJ e TLLNP ny7NP} . (680)

We addn;(x)Dp to Cp, A% andPp in (6.77), and td3p, A% andPp in (6.78).

The size of the ‘influence’ matrix in equations (6.77) and@®.is (4N 4 + 2Np +
2N¢ + 2Np + 5) x (4N4 + 2N + 2Ne + 2Np + 5). In our simulations we took
N4 = 200, Ng = 400, N¢ = 800 and Np = 316 for a particle of radiugl/2. When we
changed the size of the particle we altered the number ofdayrelements to maintain a
constant element length. We found this number of boundamehts to be an acceptable
compromise between accuracy and calculation time. For pbearvhen the number of
the boundary elements was doubled the pressures at theckaitged by no more than
0.07% for a particle of radiu$).5 d located atx./d = (6,0) in a branching channel with
a = m/2and@ = 0.5. The translational velocity changed by less titad2% and the
rotational velocity changed ly3%. Once we had calculated the influence matrix and the
vector of known values we solved the system using GMRES $agd 2003). We used an
iterative solver due to the size of the influence matrix ardfdst execution speed of the
iterative method. The computation time of the solution ® lihear system increased by
just over4 times when the number of boundary elements was doubledoddtithis is a
significant increase, it should be noted that the iterathese was arountd) times faster
than Gaussian elimination. A further time saving was madstasting the next iteration
with the solution to the previous iteration. We can then wdale the disturbance velocity
using either equation (6.40) or (6.45) depending on thetimcaf the point. Addition of
the pertinent Poiseuille velocity provides the total vélpat the point.

We move the particle using the translational and rotatigakdcities from the solution
of the linear system. Once the particle has been moved theenmiaear system is rebuilt
and resolved. To move the capsule we integrated the kinematiation,

dx,

dt

= u(x,), (6.81)

wherex, is the position vector of the!” capsule node and the valueswfx,) are ob-
tained from equation (6.24). We used the second order Rngfa-method (e.g. Atkin-
son 1978) to integrate (6.81) where we took an initial tirepsif0.01 d/U,. We found
that using a smaller time step caused no significant chantie ipath taken by the parti-
cle. In chapter 3 we showed that the disturbance velocitaykst to less thah% of its
maximum value at a distance of 3 particle radii. Thereforedidenot allow the distance
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between the particle and the entrance or the exits to becessdhan this distance.

6.3 Validation

For the validation and the presented results we truncaeahhnnels so thdt= 12d
andL = [/2. Once again we found this truncation length sufficient far disturbance
velocity to decay and for the disturbance tractions to mattaisteady value. Although
the mathematical model is derived for a particle with anteaiby shape, we restrict our
attention to a circle of radius, which is placed with its centroid at. = (x.,y.). In
chapter 3 we only requiregl. to parameterise the position, however now that the particle
is free to move into the branch channel we require both coatds. From the previous
chapter we saw that the important parameters are the rativasinel heightsy = D/d,
the branch angley and the flux ratio ). We useUéj1 as our velocity scaled as our
length scale anthOPI/d as the scale for pressure and traction. In summary our pégame
space is,

p=1, (6.82)

Xe = (x07yc)7 (683)
D

-2 84

0 7 (6.84)

together witha: and Q. In this section and the results we only consider= 7/2 and
D =d.

As a check on the numerical implementation, we confirmedtti@tliscretised form
of the integral identities (1.3.34) and (1.3.31) were §atikto within an acceptable toler-
ance. Our next check on the validity of the numerical simaitatvas the introduction of a
small particle withp = 0.01 at several different locations throughout the channelsrerhe
the flux ratio,Q = 0.5. A patrticle of this size should hardly affect the flow and se th
results can be checked against those in the previous cheyiierre we should obtain exit
pressures very close to those for a fluid-filled branchinghnbh The capsule velocity
should also be extremely close to the local fluid velocitye3édnchecks help to validate
the numerical code for the branching channel when it costaiparticle. We placed the
small particle at a distance @il from the entrance and the exits and on the centreline of
the respective channel. The centroid locations weré)d, (10,0)d and (6, —5)d. For
a fluid-filled branching channel the exits pressures wééa) = —17.294 uUZ* /d and
p(&3) = —18.227MU(§D1 /d. For each simulation involving the small particle, we found
p(&) = —17.292 uUL" Jd andp(E3) = —18.223 uUL™ /d, which represent an error of
0.01% and0.02% respectively. For each particle we found the translatieedcity to be
within 0.1% of its expected value. We checked the velocity error at thieeoe and exits
for each particle location and found that the error was noetloan0.1% at &, 0.05% at
&, and0.2% at&s. We also place a particle with= 0.01 at(6, 0)d and obtained identical
results for the exit pressures and the velocity error at thks.e
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Now that we have checked the model against the fluid-fillechdhveng channel, we
check our model against the straight channel geometry gfteh&. In the previous
chapter we showed that the disturbance due to the branamertdecayed rapidly as we
moved away from the branch. Therefore we expect that a fmpiaced sufficiently ‘far’
from the branch entrance will translate with the same vejaas in the straight channel
case. We placed a particle of radjus= 0.5 at each of the location&, 0)d, (10,0)d and
(6, —5)d, and calculated the translational velocity of the partitd¢hen the particle was
placed at2,0)d it translated with velocity).889 Uéj ! 4, whereas in a straight channel the
speed wa$.888 U . Close tof, we found that the particle’s velocity wais444 U™ i
which is the expected value sinég = 0.5. For the particle close t63 we expect the
translational velocity to be-0.444 U(fl 7, where we computed-0.445 Uéjl 2. In each
case the velocity error at the nearest entrance or exit wasane thar0.1%.

As in previous chapters we validated the numerical solutipoomparing the solution
obtained for a reference configuration with the solutiondonfigurations with twice as
many boundary elements and longer channels. The referendiguration had = 12d,

L =1/2,a = /2, D = d and a particle of radiud/2 located at(l/2,0)d. We found
excellent agreement in all cases. For example, the vedgciind exit pressures were all
within 0.3% of the values for the reference configuration.

Finally to illustrate the decay of the velocity in the maindadoranch channels, we
place a particle of radius = 0.5 at (6, 0)d and calculate the velocity along the centreline
of the main channel. We also place a particle of the same Bitleel branch channel
at (6, —2)d and compute the velocity along the centreline of the brar@ncel. The
velocity components are shown in figures 6.2 (a) and 6.2 (e Jgap in both profiles
corresponds to the particle location where the velocity masalculated. In both figures
we can see the velocity disturbance decaying rapidly as weraway from the particle
towards the entrance or the exits. The error in the velositya more thar.2% at any
one of&y, & or &s.

We have therefore satisfied ourselves that the numericakhfod a rigid particle
in a branching channel flow is performing as per our assumptiblowever we have not
discussed the motion of a particle, and in particular themeétion of A when the particle
migrates into the branch channel. In the next section we &aleveral configurations for
the deformed notional boundary and select a method by whichildeform the notional
boundary during a simulation.

6.4 Deformation of the notional boundary

When the particle moves from the main channel into the brahemnel the shape of the
notional boundary that separates the main channel fromrénech channel is deformed
to facilitate the transition. A straight dividing boundasythe default or reference con-
figuration. When a patrticle translates along the channelagpdoaches4, the notional
boundary will deform. However we wish to deforrhin such a way that we maintain the
accuracy of the numerical solution. We investigated foapsls forA:
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Figure 6.2 : Velocity profiles in a channel witth = d, o = 7/2 and@ = 0.5.
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i. A ‘goal’ shape with vertical straight lines going in thegitive y-direction from the
corners of the branch entrance to the centreline of the ntaanrel, which were
then connected by a horizontal straight line.

ii. AV’ shape with straight lines leaving the corners of theanch entrance and meet-
ing at the intersection of the branch channel centrelineyand—2d.

iii. Keeping A in its reference configuration as much as possible and orityrmdéeng
A under the particle so that the shape of the deformed portiod traces the
particle shape.

iv. Keeping A in its reference configuration as much as possible and défgrthe
boundary over the particle so that the shape of the deforrogibp of A traces the
particle shape.

In the last two the minimum distance betwedrand the particle i9.1 d. We found that
this distance provides sufficient separation between toederies of4 andP such that
the integral identities of Stokes flow given in equation8@34) and (1.3.31) are satisfied
to within a satisfactory numerical tolerance.

To quantify the differences between the configurations veeequd a particle of ra-
dius p = 0.2 in a branching channel with = 7/2 and@ = 0.5. To place the par-
ticle above, on and below the reference configuration wexsgf = (6.65, —0.795),
x./d = (6.65,—1) andx./d = (6.65, —1.205) respectively. All of the configurations are
shown in figures 6.3, 6.4 and 6.5 for the particle in the thogations. The only param-
eters which varied between the figures are the location of¢h&roid and the number of
boundary elements oA, where we increased the number of elements on the defarned
to maintain a constant element length.dn

We calculated the particle’s instantaneous translatieellcity together with the exit
pressures af; and&; for each configuration. The calculated values are shownbile ta
6.1 The units of velocity and pressure a/f('él and ,uUéjl/d respectively. In the table ‘not
applicable’ refers to the fact that would intersect the particle boundary. The velocity and
the pressures should be identical for each of the particd@ipos, and any discrepancies
should be due to inaccuracies in the numerical solutionngrifsom the different shapes
of A. As we can see from the table, although there are differelnesgeen the particle’s
velocity and the exit pressures for the different configares, they are very minor.

In the case when the particle is above and close to eitheecofrthe branch entrance
the ‘goal’ shaped configuration may not be appropriate. [&ntgithe ‘v’ shaped bound-
ary could become compromised for a particle travelling eltsthe wall of the branch
channel. Therefore we choose to defarrusing shapdiii) as the particle draws near.
If the particle moves further into the branch we will congnto deform.A around the
particle such that no boundary elementfs closer to the particle than our pre-defined
minimum value. When the particle’s centroid crosges —d we will flip A so that the
particle moves into the branch channel and the shapérohtches that of shafiév). As
the particle moves further into the branch we will continaeléform.A until the particle
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Particle centroid Configuration od Particle velocity  p(&2) p(E3)
(6.65,—0.795)d  Straight (0.19819,—0.13913) —17.600 —18.513
Shape(i) (0.19819, —0.13900) —17.596 —18.504
Shape(ii) (0.19809, —0.13899) —17.597 —18.505
Shape(iii) (0.19817,—0.13913) —17.600 —18.513
Shape(iv) (0.19823, —0.13935) —17.604 —18.523

(6.65,—1)d Straight Not applicable

Shape(i) 0.06712,—0.18359) —17.605 —18.465
Shape(ii) 0.06700,—0.18393) —17.615 —18.484
Shape(iii) 0.06704,—0.18416) —17.619 —18.496

—_ — =

(6.65,—1.205)d  Straight 0.02184, —0.22889) —17.440 —18.455

(
(
(
Shape(iv) (0.06705, —0.18423)  —17.620 —18.497
(
Shape(i) (0.02203, —0.22545) —17.364 —18.283

Shape(ii) Not applicable
Shape(iii) (0.02187, —0.22883) —17.439 —18.452
Shape(iv) (0.02185, —0.22885) —17.440 —18.453

Table 6.1 : Particle velocity and exit pressures for different confagions of A in a branching
channel containing a particle wigh= 0.2 positioned at three different locations.

is wholly belowy = —d (plus some tolerance) whereupon we will changdack into
its reference configuration. The evolution of the defororatf the notional boundary is
shown in figure 6.6.
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Figure 6.3 : Section of the flow domain showing the notional boundary cpméitions for a parti-
cle of radiusp = 0.2 and centroid ak./d = (6.65, —0.795).
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Figure 6.4 : Section of the flow domain showing the notional boundary cpméitions for a parti-
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Figure 6.6 : Dividing boundary configurations during particle migratioto the branch channel.
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6.5 Results

In our results we restrict our attention to a particle of size= 0.5 which is initially
located atx./d = (2,0) in a branching channel withh = d anda = x/2. We ran
three simulations witld) = 0.1, 0.5 and0.9 where we expect the particle in tiig= 0.1
simulation to pass into the branch channel thereby defatiia notional boundary in the
way described in the previous section. We do not exhaugtiestt the parameter space
here because our focus is on testing the algorithm by whicheferm.4 in preparation
for the next chapter where we will more fully explore the effef the parameters on a
flexible capsule in a branching channel.

In figure 6.7 we plot the trajectories of the centroids of tapsules for the different
flux ratios. Whenp = 0.1 the particle migrates into the branch channel as expected an
we can see that the particle only travels a short distandeeibitanch channel before it is
travelling parallel to the walls. This is to be expected fribva results of the previous chap-
ter where we showed that the disturbance due to the bran@meatdecayed withi2d of
the branch entrance, as measured along the centreline.aftidgthen travels along the
branch channel toward$; slightly to the right of the branch channel’s centreline. aith
we set the flux ratio t@) = 0.5, the particle travels towards the right-hand corner of the
branch entrance. The simulations terminate when part opéngcle boundary moves
outside of the flow domain due to the constant time-step usttkinumerical integration
method employed to move the particle. Brenner (1961) shahetth three-dimensional
particle settling towards an infinite plane only does soraite infinite time. It seems
plausible that the same result applies in two-dimensiomsesihe fluid can now only es-
cape in two directions. However we must take the sharp cafride right-hand entrance
to the branch channel into consideration. Cawthorn and ®ati (2010) consider the
lubrication flow caused by a wedge falling under gravity todgea plane surface in a two-
dimensional Stokes flow and find that contact occurs in fimite In light of Cawthorn
and Balmforth (2010) we may consider the particle to be dlpsanooth surface and the
corner of the branch entrance to be a wedge by changing eneke frame, and surmise
that the particle may indeed touch the corner. Wges: 0.9 the patrticle travels towards
the exit&; and is dragged down towards the branch channel when it iseatbevbranch
entrance. Once the particle has passed the branch enttanogds parallel to the walls
of the main channel, slightly below the centreline due tode#ection experienced as it
passed over the branch entrance.

In figure 6.8 we show the evolution of the normalised exit puess at, and&; as
the particle travels along the channel. We normalise thespire by dividing the varying
pressure by the constant exit pressures obtained for the sanfiguration but without
the particle, and label the normalised pressure(&s) andp(&s). The evolution of the
normalised exit pressures for thhe= 0.1 case are shown in figure 6.8 (a). For reference,
the pressures &, and&; are —12.70 uUOPI /d and—23.59 uUéjl /d respectively. At the
start of the simulation, when the particle is locatestgtd = (2, 0), the magnitude of the
pressures af; and&; have increased by.5% and1.3% respectively, over the pressures
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Figure 6.7 : A portion of the flow domain showing the centroid trajecterfer a rigid particle
with p = 0.5, @ = /2 initially located atx./d = (2,0) for @ = 0.1, 0.5 and0.9.

for a fluid-filled branching channel. The larger increaseha magnitude of the exit
pressure af, is due to both pressures’ magnitude increasing by apprdglynthe same
amount and the exit pressure&tbeing almost twice the pressure&t The maximum
increase inp(&:) is 7.3% which occurs at = 5.04 d/UéD1 when the particle’s centroid
is located atx./d = (5.98,—0.87) and just overl0% of the particle’s area is below the
branch entrance at/d = —1. As the particle moves further into the branch channel the
magnitude of the pressure &t reduces until it is slightly less than the pressure when a
particle is not present, implying that the disturbance edusy the particle in the branch
channel ‘helps’ the fluid in the main channel to maintain thg fate att,. The maximum
increase inp(&;) is 8.7% which occurs at the earlier time of= 4.35d/U;* when the
particle’s centroid is located at./d = (5.70,—0.41) and the particle is wholly in the
main channel.

The normalised pressures for tlie = 0.5 simulation are shown in figure 6.8 (b).
In a fluid-filled branching channel with the same parameteeseit pressures are equal
to —17.29 uUL" /d at & and —18.23 uUL" /d at £;. At the start of the simulation the
magnitude of both of the exit pressures arg’, more than when the particle is absent.
As the simulation progresses, the magnitude of the presgwreases until the simulation
terminates when the patrticle is incident upon the righteheorner of the branch entrance.
The normalised pressure&gincreases more rapidly aftee 3 d/UOPl but as the particle
gets closer to the corner, the normalised pressure inad@s®me almost equal.

The evolution of the normalised disturbance pressure frctse wher) = 0.9 is
shown in figure 6.8 (c), where the particle travels to the ekihe main channel and is
deflected slightly from its path as it passes close to thedhrantrance. For a branching
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channel without a particle the exit pressures-apg.90 qupl /d and—12.86 qupl /d at
&y and&s respectively. The increase to the normalised exit pressiuitee main channel
remains between% and2% for the duration of the simulation, with the increase at the
start and end equal 05%. The normalised exit pressure&tincreases to a maximum of
4.7% att = 4.06 d/UL* when its centroid is at./d = (5.56, —0.11), before decreasing
to unity as the particle continues its journey&on

Finally we will show the evolution of the particle’s veloeis for the three simulations.
In figure 6.9 (a) we plot the magnitude of the translation&eiy for the particle over the
course of each simulation. The horizontal dotted linfuat= 0.888 UJ" corresponds to
the translational velocity of a particle located on the oaitte of a straight channel. For
a particle offset by).07 d from the centreline, as in the final position for tpe= 0.1 and
Q = 0.9 cases, the translational velocity in a straight channel§g3 U . Therefore we
also include a horizontal dotted line % of this value, which i$.795 Uéjl, to indicate
the expected velocity as the particle approacfie®r &3, where thed0% reflects the
flux ratio. At the start of each simulation we can see that thgmitude of the particle’s
velocity matches the predicted value @888 UOPI. When@ = 0.1 or Q = 0.9 the
velocity is equal to the expected value ®795 UéD ! as the particle approaches the exit.
It is interesing to note that the velocity attains a lowerueain the@ = 0.9 case than
in the@ = 0.1 case, and it also takes longer to achieve its downstreardystedocity.
This may be explained by the distance each particle hasveltfilom the point where
the centroid lies at approximatelys, 0)d. When@ = 0.9 the particle has to traveld
to pass over the bifurcation. However, wh@n= 0.1 the particle has to travel a shorter
distance of approximately; d/2, thereby allowing the particle to attain its unidirectibna
motion sooner. In all simulations the magnitude of the vigjofalls below the lower
of the predicted downstream steady velocities. Since the-stepping method moved
the particle out of the flow domain whe@ = 0.5, we were unfortunately unable to
compare the decrease in the particle’s velocity with thatligted by lubrication theory.
The rotational velocity of the particle is shown in figure @®for each of the simulations,
where a positive value indicates anti-clockwise rotatidine rotational velocity in the
Q = 0.5 and@ = 0.9 simulations fluctuates until either the simulation ternsaas
in the former, or it attains a constant rate of rotation ashm latter. In the simulation
with @ = 0.1 the particle attains a maximum rotational speed-6f287 U(f’ V/d att =
4.2d/UL*, which is close to the time where the disturbance pressut attains its
maximum. From inspection of the exit pressure€ain figure 6.8 (a) and the rotational
velocity in figure 6.9 (b) for the cas@ = 0.1, we can see that the peak in the rotation
velocity coincides with the peak in3. However it is uncertain whether the peak in the
disturbance pressure is caused by the relatively quickioot velocity or the particle’s
location. The patrticle in the simulation with = 0.5 slows as it approaches the corner.
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6.6 Discussion

In this chapter we have considered a pressure-driven flovelraanel with a side branch
which contains a rigid neutrally buoyant particle. We primd the flux rates at the
entrance and exits. We formulated the problem using the deyrintegral method and
found its solution numerically using the boundary elemeethrad. The solution provides
the tractions on the particle boundary, the disturbancgitras on the channel walls and
the pressure drops between the entrance and both exits.

We have tested the numerical model for a branching chann&hicing a rigid particle
and obtained satisfactory accuracy. For a small particlebt@ined the same results as for
a fluid-filled branching channel. Far from the branch enteawe obtained results were
in agreement with the results for a rigid particle in a stnaichannel, which confirms our
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Figure 6.9 : Magnitude of the translational velocity and the rotatiorelbcity for a particle with
p = 0.5, « = w/2 and initially located ak./d = (2,0) for @ = 0.1, 0.5 and0.9.
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assumption that the disturbance due to the branch entracegslas we move towards the
entrance or exits. We have discussed various methods afvliefpthe notional boundary
to allow the particle to migrate into the branch channel, simmved that the pressures and
particle velocities vary only slightly between the diffateconfigurations. To allow the
particle to pass close to the corners of the branch entrapahese to deformi so that it
remains mostly straight except in the vicinity of the paetiwhere the notional boundary
is deformed to closely fit the particle.

We performed simulations which allowed a particle to trateslalong the channel
to both exits and showed that the results when the partickolmse to the entrance or
the exits match the straight channel model. We showed howxitgressures fluctuate
during the course of each simulation and found that the maxirpressure af; occurs
at roughly the same time as the particle experiences theegteangular velocity. We
also found that the magnitude of the translational veldillg below the entrance or exit
speed when the particle is close to the branch entrance. thecparticle has passed
the branch entrance, the particle speed increases untthihs the value predicted by
the straight channel model. Therefore the disturbancesteffethe branch entrance is
such that it slows the particle and in the case when the parioves into the branch
considerably increases its angular velocity. When we sefltix ratio such that half the
fluid enters each downstream channel, the particle moveshatsharp right-hand corner
of the branch entrance and the simulation terminates.






Chapter 7

The motion of a flexible capsule
through a bifurcation

In the previous chapter we studied the motion of a rigid pkrtihrough a bifurcation. In
this chapter we replace the rigid particle with an elastjgscée and examine the motion
of the capsule and its deformation under various flow comakti The derivation of the
governing equations brings together the analysis in cregtand 5 regarding the defor-
mation of a flexible capsule in a straight channel and the floid through a bifurcation
respectively. The branch entrance and the capsule caustiebdince to the upstream and
downstream unidirectional flows which we describe matherally using the boundary
integral method. The governing equations describe thecirglfield throughout the flow
domain together with the velocity of the capsule boundad/the pressures at the exits to
the computational domain. Application of the boundary edatrmethod to the governing
equations yields a set of discretised equations which mawriiten as a linear matrix
system and solved by standard methods.

7.1 Problem statement

We consider the motion of a fluid with viscosityin an infinite straight-walled channel
of width 2d. A branch channel of widtB D is attached to the lower wall of the channel at
an anglen. A disturbance to the upstream and downstream flows is cdasttk branch
entrance and by the presence of a deformable capsule, whiebsmvith the flow. The
geometry is shown in figure 7.1 and comprises the walls of thiechannel(, the walls

of the branch channel3, the capsule? and a notional boundary4, which separates
the main channel from the branch channel. All unit normaltoes; n, point into the
fluid, and the unit normal ot points into the fluid of the main channel. We assume
that the disturbance caused by the capsule and the braneimemidecays upstream and
downstream from the source of the disturbance so that theffiofvom the disturbance

is described by classical unidirectional Poiseuille flomc® we will require channels of
finite length in the numerical method, we truncate the chisns® that the main channel
has length and the branch channel has lendgthas measured along their centrelines and
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Figure 7.1 : A straight-walled branching channel which contains a fluidviscosity ¢ and a
deformable capsule containing a fluid of viscosity.

illustrated in figure 7.1. We position the branch channellsd its centreline intersects
the mid-point of the lower wall of the main channél/2, —d). We label the entrance
of the main channel a§;, the exit of the main channel & and the exit of the branch
channel ag3;. The entrance and exit in the main channel are located=at) andx = [
respectively. In the branch channel we introduce local dioates,(X,Y'), which have
their origin on the centreline & as indicated in figure 7.1. The mappings between the
(z,y) coordinates of the main channel and tl¢ Y') coordinates of the branch channel
are given in equation (5.1) on page 114. The unit vectorsémthin channel aré and

4, which are mapped to their branch channel equivaléngmd ;' using equation (5.3).
The particle and the branch entrance disturb the flow bét af, and&3 we assume that
the disturbance has decayed and the flow has settled to Rleidlew, characterised by
the streamwise flux rate at the pertinent entrance or exiin Atse previous two chapters
we label the flux rate), at each of, wherer = 1, 2 or 3. The equations for the fluxes
and the Poiseuille velocities are given in equations (534)1) of chapter 5. We label the
ambient fluid in the channel as fluid 1 and the fluid inside thesake as fluid 2.

Our aim is to compute the velocity field throughout the flow émthe velocity field
on the capsule boundary and the additional pressure dregebetthe entrance and both
exits due to disturbance caused by the branch entrance amépisule. To calculate the
additional pressure drop due to the capsule we may compagdissure drop calculated
here with the value obtained in chapter 5 for a fluid-fillednmf@ing channel under the
same flow parameters. We assume that the Reynolds number fdduthis very small so
that the flow in the channels may be described using the liegaations of Stokes flow
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given in equation (1.3.4). In the usual way, we decomposeséheity field, »(!), and
the traction field ("), into background Poiseuille and disturbance componertishave
identify using the superscript8. and D,. respectively, and where thandicates to which
of &, the quantity applies. The superscri on the velocity and traction indicates that
the quantity applies to the ambient fluid in the channel. Téeodhpositions in the main
and branch channels are given by,

u=ult +ulr =u? +ul? (7.1)
F=f" 4 ="+ (7.2)
u=u +ubs , (7.3)
F=pT g, (7.4)

where the first pair of equations apply in the main channelthadsecond pair apply in
the branch channel. On the notional boundatywe impose continuity of the velocity
and traction fields such that

u=u" +ult =ul? uP? =uls fuls (7.5)

R SUEF N s L (7.6)

where we define all tractions with reference to a unit norneater which points into the
main channel. On the channel walls we have= 0 by no-slip and no-penetration. On
the walls of the main channef, we have

P = P2 =0, (7.7)

u® =uPs =0. (7.8)

In chapter 4 we discussed the decay of the disturbance teliwe to a flexible capsule
in a straight channel. We cited the work of Sugihara-Sek®8)9Gaver and Kute (1998),
Mortazavi and Tryggvason (2000) and Cortez (2002) and stiaiat the disturbance
velocity in our calculations did indeed decay rapidly as weved away from the capsule.
Typically we found that the disturbance velocity had dedapd % of its maximum value
at a distance of three capsule radii from the capsule centrbhe effect of the branch
entrance was calculated in chapter 5 and we showed that thedlocity is within 1% of

its appropriate Poiseuille velocity at a distancg@from the branch entrance. Therefore
based on the previously cited works, and the evidence intelep and 5, we assume

uPt =0, and fP' = —mn até, (7.9)
uP? =0, and fP? = —myn ats, and (7.10)
uPs =0, and fP? = —m3n at&s (7.11)
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wherem, my and s are the constant disturbance pressures at the entrancexithe
the main channel and the exit to the branch channel respict@ince we are interested
in the pressure drop between the entrance and the exits wg set0 without loss of
generality. To calculate the total pressure at the entranexits we add the disturbance
pressure to the corresponding Poiseuille pressure. Treefbe pressures in the main
channel are given by

p(z) = -Gz, (7.12)
p2(z) = —Ga =, (7.13)

wherep’ is the Poiseuille pressure of the entrance Poiseuille flaw ednstant gradient
—G4, andp’™ is the Poiseuille pressure of the Poiseuille flow defined watipect to the
flux at & and with constant gradientGs. We have defined both Poiseuille pressures to
be zero at;. The pressure gradient constants, and G, are related to the Poiseuille
centreline velocity and the flux rate by,

Py
r Uy 3pu@Q
G1 =2 d2 - 5 d3 (714)
Gy =Q Gy, (7.15)
where we have defined the flux ratio,
Q- % (7.16)

to measure the proportion of the fluid which enters the coatmrtal domain at; and
exits from&,. Equation (7.15) may be used to show,

u? =Qu, [ =Qf", andp™ =Qp". (7.17)
In the branch channel the Poiseuille pressure is
p(X)=-G3 X (7.18)

whereGs = 2MU§3/D2 = 31 Qs3/2D3. When the constant pressure gradiernt's
is applied to the branch channel the flux&gtis Q3. In the main channel, the pressure
difference between the entrance and the &Xiiy, is given by

Apz = p(&1) — p(&2)
= (M (&) +m) — (P72 (&) + m2)
= Gzl — T, (719)
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by equations (7.12) and (7.13), and between the entranctharekit of the branch chan-
nel, Aps, by

Aps = p(&1) — p(&3)
= (" (&) +m) — (p73(E3) + m3)
S (7.20)

by equations (7.12) and (7.18). The total pressures at tkeane
p(&2) = — G2l, and p(&3) = m3. (7.21)

On the capsule boundary we assume that the velocity on baddls sif the boundary is
equal, so that
ull) = 4@ (7.22)

onP and where thé¢1) superscript indicates the ambient fluid in the channel aad2h
superscript indicates the fluid inside the capsule. We alsoduce the interfacial traction
jump,

Af = fU — @), (7.23)

where once again the superscripts indicate to which fluidréion applies. The con-
stitutive equations which may be used to calculage were introduced in section 4.2.
Therefore on the capsule boundary we will seek to elimirtagedisturbance velocity and
traction in favour of the total velocity and traction.

In our discussion of the boundary conditions we have intcedwnknown disturbance
tractions, velocities and pressures. In the main channdlave the disturbance pressure,
79, and the disturbance tractionﬁ?1 , on the channel walls. In the branch channel we
havers and thef”? on the channel walls. On the notional boundary we chqpde
andu”1 for consistency with the main channel. On the particle bampdhe interfacial
traction jump is known from a suitable constitutive equaiémd the velocity is unknown.

To derive equations for the disturbance pressuresnd 73 we bring together the
analysis given in chapter 4 when discussing a flexible capsua straight channel, and
the derivation of the disturbance pressures equations foraaching channel given in
chapter 5. Firstly we will consider the capsule in the maiargtel, and apply the Lorentz
reciprocal relation (1.3.22) to the’* andu”! flows to get

V. (uP1 coPr — M -Upl) =0, (7.24)

which we integrate over the main channel’s flow domain andyapp divergence theorem
to get

/ ult P dsk) = / ulr P ds), (7.25)

ory ar,

wheredl’, = & U & U AUC UP is the boundary of the flow domain, and which can be
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simplified to

Jlwrt PP g s = [ (P £ - ul ) dsto. (726

52 A7P

using equations (7.7) and (7.9). The left-hand side sinaglifo); o by equation (5.45)
and the integral oveP is expressed in terms of the total velocity and traction thus

/(uDl -fPl _ul .fD1 ) dsx) = / <(u(1) —ub )- fP1 —ublr. (f(l) _ fP1 )) ds)

P P

- / (u®- 7 = w50 dsge), (7.27)

P

using equations (7.1) and (7.2). Next we apply the Lorentiprecal relation to the
Poiseuille flow,u , and the capsule’s internal flow in order to introduce therfacial
traction to our equation. Since the viscosity of the Poitefiow and the internal flow
are different we use the Lorentz reciprocal relation apjplie to two fluids which have
different viscosities, which is

v (u Pt O apu®. fpl) —0. (7.28)

We divide this equation by and integrate only over the capsule’s domain to get,

0= / (ua CFO @ fpl) dst)

P

_ / (uP1 @ A .fPl) ds), (7.29)

P
by equation (7.22). Adding equation (7.29) to equation{yy2elds

/ (uPr - P —uPr . fPY) dsk) = — / ult - Af ds)

P P

+(1=2) / w7 ds), (7.30)
P

which upon substitution into equation (7.26) gives,

_L Dy, gPr _ ,,P1, £D1
772—@1 (A/(u f u'l-f )ds(x)

- / uPt - Af dse) + (1 N) / u . fh ds@«)), (7.31)

P P

for the disturbance pressureéat If the branch were absent then the integral odevould
disappear from the equation and we would recover equatidi®)4or the disturbance
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pressure in a straight channel. Therefore the disturbaressyre at, is dependent on
the capsule’s shape, the velocity of the capsule’s perinagtd the disturbance velocity
and traction on the notional boundary. It is interesting twenthat when\ = 1 the
velocities onP are not included in equation (7.31). When the capsule iseénbitanch
channel we omit the integrals overfrom the equation forrs.

To obtain an equation for3 we consider the branch channel when it contains the
capsule, and apply the Lorentz reciprocal relation (1)3a&2previously, but to the
andu™? flows, to get

V. (up3 coPs —uls -UPS) =0, (7.32)

which we integrate over the branch channel’s flow domain gqopdlyathe divergence the-
orem to obtain

/ uP . D5 dsk) = / uPs . P dsk), (7.33)

or, ar,

wheredl’, = €3 U AU B U P is the boundary of the flow domain. Expansiorodf, into
its constituent boundaries yields,

/(uP3 .fDS — ubs ,fPS) dsx) = — /(uDa . fPS —ufs. st) dsx)
Es A

+ / (uPs . P —uPs. fP3) ds),  (7.34)

P

where we have used equations (7.8) and (7.11), and whergthelgnge on the integral
over A is due to the normal vector ad pointing into the main channel. The left-hand
side simplifies taQs 73 by equation (5.53). In the integral overwe eliminatex™* and
fP2 in favour of u”' and fP' using the continuity of velocity and traction given in
equations (7.5) and (7.6), to get

/ (wh. fP3 —uls. fFs) dsix) = / (ufs fPr —uPr 7)) ds) +v  (7.35)

A A

where

P = / (uls - 7 —ufr - 7)) dsk), (7.36)
A

which was first introduced in equation (5.56). Whdris straighty> may be calculated
exactly using equation (5.57). The integral of®in equation (7.34) is expressed in terms
of the total velocity and traction as

/(uD3 .fpg —ubs. ng) dsx) = / <(u(1) —ubs )- fPs —ubs. (f(l) _ fPs )) ds(x)

P

P
- / (u®- 7 —uPr. V) dsge), (7.37)
P
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where we have used equations (7.3) and (7.4). In equati@®)(7had we applied the
Lorentz reciprocal relation ta’* instead ofu’" we would have obtained,

0— / (up3 RS WCHN fp3) ds), (7.38)

P

which we add to equation (7.37) to get,

/(uD3 Pl fPs) dsk) = —/uP3 - Af dsk)

P

P
+(1-2) / ul) . P ds). (7.39)
P

Substitution of this equation into equation (7.34) gives,

_ 1
Q3

™3

(/(UPS . fDl —ub .fPS) dS(X)—i—i/J
A

— / u® - Af ds) + (1 —\) / ull) . phs ds(x)) , (7.40)

P P

for the disturbance pressure&t Once again, when = 1 the velocities onP disappear
from the equation. When the capsule is in the branch chaneamit the integrals over
P from equation (7.40), which as expected is identical to #qoa5.54) forxs for a
fluid-filled branching channel.

In order to write the disturbance pressure equations ies@ of the capsule loca-
tion, we use the functiorit{p», introduced in the previous chapter, and which is defined

by

0 when the capsule is in the branch channel,
Hp = - : (7.41)
1 when the capsule is in the main channel,
so that,
ﬂgzi/(uDl P — -fDl) ds(x)
Q1
A
+ % ( / ult - Af ds) + (1 - \) / ull) . ds(x)) . (7.42)
' P P
T3 = QL (/ (ufs N -fPS) dS(X)—|—¢)
*\4
+ 1_QH7’ ( / uPs - Af ds) + (1—\) / ull) . f1 ds(x)> . (7.43)
3
P P

for the disturbance pressures at the exits. The unknowrwiations (7.42) and (7.43) are
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the disturbance pressures, the disturbance velocitiesractibns onA, and the velocity
of the capsule boundary.

Our next goal is to derive a pair of boundary integral equegtizvhich describe the
velocity field throughout the main channel and the branciebl Once again we start
by considering the main channel. In chapter 5 we derived temu#5.64) which may
be used here provided the capsule boundary is also includén iboundary to the flow
domain. Inclusion of? in the derivation of equation (5.64) gives,

4 ufl (Xo) = — / fZDl Gij ds) + 7o /ni Gij ds(x)

AC,P &g

b / WP Ty, ds@) + Ij(xo),  (7.44)
AP

for x¢ in the fluid of the main channel, and wheféx,) is defined by equation (5.65).
Application of the boundary integral equation (1.3.40)lie 4™ flow over the particle
boundary gives,

P P

for x¢ in the fluid of the main channel. Adding this equation to etpnaf7.44) we obtain,

A P (xp) = — / P16, dsk) — / DG, dst) + / ny Gy dst)
AC P

&

+ ,LL/UZD1 Tz‘jk Nk dS(X) + Ij(XO) + ,u/ugl) Tijk Nk dS(X) (7.46)
A P

The boundary integral equation for thé? flow whenx, lies in the ambient fluid in the
main channel is

0=— / fP Gy dsk) + A\ / u® Tyjp.ny, ds), (7.47)
P P

where we have only considered the capsule’s boundary andevthe left-hand side is
zero becausg lies outside ofP. Subtraction of this equation from equation (7.46) gives

4 u]].jl (Xo) = — / fZ-Dl Gij ds) + o /ni Gij ds) +M/UZD1 Tz’jk ny ds(x)
AC & A

+ Ii(xo) + Hp ( / Afi Gij ds) + p(1 - N) / ul" Ty dSéc)) , (7.48)
P P
where we have included the functi@fy to indicate when the integrals ov@rappear in
the equation. Equation (7.48) is valid fay located in fluid 1 in the main channel and
may be used to calculate the disturbance veloaity in the main channel at any point
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givenm, £ onAandC, u”' on.A and the velocity of the capsule boundary. To obtain
the total velocity, the calculated value @f’! (x) is added tau* (x). When\ = 1 the
velocities orP disappear from the boundary integral equation in the sanyeawéhey did

in the pressure equations. Equation (7.48) is also valithervalls of the channel because
the discontinuous double-layer potential is not evaluatext C. Therefore wherx lies
on( the left-hand side of equation (7.48) is zero by the no-gliprialary condition. When
xq lies on.A we follow the derivation of equation (5.68) and obtain,

PV

2y u (x0) = — / fPrGyj dste) + o / n; Gij dsf) + p / uP! Tyjp ny, dsfx)
A

AC )

T Ii(x0) + Hp ( [ AfiGy; dst) + ut / 07,y dSéc)) . (7.49)

where PV indicates that we take the principal value of the integraihef double-layer
potential overd. When the capsule is in the main channel agdies onP, the double-
layer potential integral oveP is present in equation (7.48) and in terms of its principal
value is given by,

PV
/ ut! Ty dste) = 27 ul!) (x0) + / ul Ty, ds), (7.50)
P P

using equation (2.6.25) in Pozrikidis (1992). Substitatioto (7.48) yields

2 (1+ Nl (x0) = dmpul (xo) /f 1 Gy ds)

+ / ns Gy dse) + / WP Ty dst) + I (xo)

Es A
PV
- / Af Gy dsg) + p(1— N / D Ty ds), (7.51)
P P

which is valid wherx lies on the capsule boundary and where we have expresseddtthe |
hand side in terms of the total velocity. The derivation & Boundary integral equation
applicable to the branch channel proceeds in much the samasvior the main chan-
nel. We start by including the particle boundary in the bradcannel boundary integral
equation (5.72), to get

Ay u® (x0) = / fPray; dst) — / 1P Gy dstx) + 3 / n; Gij dsf)

A Es

—M/UZDI Tijk g dS(X)+M/UZD3 ik e ds) + Kjj(xo), (7.52)
A P
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for x located in the fluid of the branch channel, and whB&féx) is defined by (5.73).
This time we apply the boundary integral equation (1.3.4@hew’ flow only over the
particle boundary, and obtain

0= —/fZ.P?’ Gi; ds) —l—,u/uf)3 Tk g ds), (7.53)
P

P

for xg in the fluid of the branch channel, which we add to equatiob2)7and rearrange
to obtain

Ay ul® (x0) = /fiDl Gij; dsfx) — /fiD3 Gij dsk)
A B

. / ns Gy dse) + / WPt T dst) + K (xo)
) A

+(1— Hp) ( / Afi Gij ds) + p(1 - N) / R dSéc)) , (7.54)
P P

which is valid forxq in fluid 1 in the branch channel. Equation (7.54) is valid fgr
located in fluid 1 in the branch channel and may be used to leddcthe disturbance
velocity u”# at any point in the branch channel given f”* andu®?' on A, f”* onB
and the velocity of the capsule boundary. To obtain the tahlcity, the calculated value
of u3 (x¢) is added tou’® (x9). When\ = 1 the velocities or® disappear from the
equation (7.54). Equation (7.54) is also valid on the wdllhe branch channel because
the discontinuous double-layer potential is not evaluatest 3. Therefore wherx lies
on B the left-hand side of equation (7.54) is zero by the no-siipridlary condition. When
xq lies on.A we follow the derivation of equation (5.75) and obtain,

2m ul o) = [ £ Gy ds) — [ 11 Gy ds
A B

PV
+7T3/”z‘ Gij dsfx) + p / up Tyje g ds) + K (xo)
Es A

+(1— Hp) ( / Afi Gij ds) + p(L - N) / R dSéc)) , (7.55)
P P

and we may eliminate.”* on the left-hand side in favour af”! using equation (7.5).
When the capsule is in the branch channel apdies onP, the double-layer potential
integral overpP is expressed in terms of its principal value in equationdy,.&hich upon
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substitution into (7.54) yields
2 (14 Nl (x0) = gl (o) + [ 17 Gy dst) — [ 120Gy dsto)
A B

. / ns Gy dse) + / WP Ty dst) + K (xo)

Es A
PV
- / Af, Gy dsg) + p(1— N / o Ty ds), (7.56)
P P

which is valid whenxg lies on the capsule boundary and where we have expressed the
left-hand side in terms of the total velocity.

We now have equations for the disturbance pressures andléiguimtegral equa-
tions for the velocity field in the main and branch channels.olbtain a linear system
which represents the governing equations we employ thedaoyrelement method (e.g.
Pozrikidis 2002a). We discretise the boundaries into efgsngpon which we evaluate the
boundary integral equations. We obtain a sufficient numbeguoations for the unknown
tractions onC and B by evaluating equations (7.48) and (7.54) witfhon each element
of the respective boundary. Evaluation of the equatior49j7and (7.55) withk, on .4
provides a sufficient number of equations for the disturbanactions and velocities on
the notional boundary. Depending on whether the particle tke main channel or the
branch channel, we evaluate equation (7.51) or (7.56) sjtbn each boundary element
of the particle to obtain equations for the particle veiesit We have two equations for
the disturbance pressures at the exits, namely equatiof®) @nd (7.43). Therefore we
have the same number of equations as unknowns and so ounsgstemplete. We have
completed our derivation of the governing equations forftbe of a flexible capsule
through a bifurcation and now we move on to describe how thedary element method
is applied in order to find the numerical solution.

7.2 Numerical method

As in previous chapters our aim is to discretise the goveraguations using the boundary
element method and form the equations into the linear maystem,

A-xz=»b, (7.57)

where A is the influence matrix containing the coefficients of thenokn disturbance
pressures, tractions and velocities stored in the coluemtev, , and b is a column-
vector containing known values. As before, when applyirggltbundary element method
we discretise the notional boundary, the branch channdswtale main channel walls,
and the capsule’s boundary indd4, Nz, Ne and Np equally-sized straight elements re-
spectively. On each wall element we set the unknown distudbaraction to a constant
2-vector, which we Iabeff?1 on ther! element of4 andC, andff?3 on ther' element
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of B. On ther'" element o4 we set the disturbance velocity4d’:, and onP we set the
element midpoint velocity ta.,.. We specify the midpoint of the capsule boundary ele-
ment because when we evaluate the boundary integral equuatithe boundary elements
of P, we will place the pole at the midpoint of each element. Whercame to move the
capsule using the calculated boundary velocities, we wiNethe element endpoints, or
nodes, and we will calculate the nodal velocities using @gér cubic spline constructed
from the midpoint velocities. We define the column-vectao be

T
x:[Fé) FQ FR UR m my UY (7.58)

where the first four subvectors are described and defineatiores.2,m, andrs are the
disturbance pressures &t and &3 respectively, and thé/'g) subvector houses tiEVp
components of the velocity at the midpoint of each of the gkgpboundary’s elements.
The subvectoU(j) is defined by

1 _ | a 1 1 1
Uy _[ugg ul) o uly ul | (7.59)

We we will first discretise the disturbance pressure egnatarting with equation (7.42)
for o, which we write as

Q1 7m0 + / (wP - FPr —uPr . §7) dsko)

A

+Hp(A—=1) / ul) . P ds) = —Hp / uP - Af dsk),  (7.60)

P P

with the unknown disturbance pressure, disturbance trastand capsule velocities on
the left-hand side and the known value on the right-hand. side integrals oveP are
discretised as follows,

()\—1)/ P ds) &~ (A — 1) Zu P (k) =TI U, (7.6)

P

Np
/ ul - Af dse) & Y u (xy) - AF () 1 = TIX, (7.62)
P r=1

wherel, andx,, , are the element length and midpoint respectively, the tation of Af
is discussed in section 4.3, and

o5 = (\—1) AL fin fﬁ}VPlNP fj}VPlNP]- (7.63)

Combining equations (7.61) and (7.62) with the discratisatf the remaining terms
given in equation (5.87), we may write the discretised agadoof equation (7.60) as

0 UZ 0 -F} @ 0 HpTIR| o= -HpTk, (7.64)
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WhereUfZ1 andFﬁ1 are defined by equations (5.84) and (5.85) respectivelyoieing
a similar exercise for thes disturbance pressure equation (7.43), we get

0 ~UL 0 ~F} 0 Q (1-Hp)IR|-@=v—(1-Hp)IY, (7.65)

WhereUfﬁ is defined by equation (5.90)?513 is defined by equation (5.91), and

Np

e =" ul () - Af Kmr) b, (7.66)
r=1

0P == [P0 (A e, o] 6D

Equations (7.64) and (7.65) represent the discretisedovesrsf the disturbance pressure
equations (7.42) and (7.43) respectively.

To discretise the boundary integral equations for the maghthe branch channels
derived in the previous section, we start by comparing therthé boundary integral
equations derived for a fluid-filled branching channel inptba5. It is revealing to note
that the main channel’s boundary integral equation (7.48) e obtained by adding

B) =u0=1) [l Ty dse) + [ AfiGy s, (7.68)
P P

to the main channel equation (5.64) for a fluid-filled branghchannel. Similarly, when
the capsule is in the branch channel, we may obtain the boyitagral equation (7.54)
by adding equation (7.68) to equation (5.72) for a fluid-ill@anching channel. There-
fore the discretisation of the boundary integral equatfonthe main and branch channels
are obtained by adding the discretisations of equatior8j#@®the equations for a fluid-
filled branching channel. The discretisation of the integna equation (7.68) are given
in equations (4.74) and (4.76) of chapter 4, and are

T
/ ul! Ty dse) = Ih (x0) - [U] (7.69)
P
/AM%@mw®®wHw@m (7.70)
P

whereI7T37j is a row vector defined by equation (4.75), and where the fghasion of
Il ;(x0) is given in equation (4.76). Therefore the discretisatibaquation (7.68) is

Ji(x0) & (A — )T ;(x0) - [U%’]T + Tl (x0)- (7.71)

When the capsule is in the main channel, we plagat the midpoint of each element of
A andC, and evaluate equation (7.71). Following the placememd,ain the elements of
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C we have2 N equations which we write in matrix form as,
1"
Jo="Hp (Cp- [UP } rcn), (7.72)

where we have include{» to indicate that the terms are only non-zero when the capsule
is in the main channel, and whe€p> and Cy; house the2 N, components ofu(A —
1)I7T37j(x0), andIlg ;(xo) respectively. Following the same procedure fbowe obtain

N 4 pairs of equations which we write in matrix form as

Jm=H <A -[U<”}T+A> (7.73)
A P | Ap PN 1 .

where them superscript indicates the main channel equation (7.49) varere Ap and
Ajr are similarly defined with respect to equation (7.71). Whaa ¢apsule is in the
branch channel we follow the same process and write

Jp = (1—"Hp) (BP : [Ug)]T + BH) , (7.74)

when xg is placed onB, and where(l — Hp) indicates that the terms are only non-
zero when the capsule is in the branch channel, and wBgerand B; house the2Ng
components ofu(A — 1)I% .(x), andTlg ;(xo) respectively. Wherx, is placed onA
we have

WJ
Jh = (1—Hp) <A’p : [U%’]T + AH> : (7.75)

where theb superscript indicates the branch channel equation (7a6%) wheredp» and
A are the same as in equation (7.73). Putting together egsafit72) — (7.75) we
obtain,

Je HpCp HpCh

IR | HrAn | gt | e o9
J5 (1—"Hp)Bp (1 —"Hp)Bn

Ji)4 (1 —"Hp)Ap (1 —"Hp)An

We will now consider the linear the linear system for the fifil@d branching channel
and show how it can be augmented to include equation (7.7@&}ing/the linear system
for a fluid-filled branching channel given in equation (5.13%

(cc ¢4 o ¢4 ¢, 0 0] Crr 0O [ c; ]
Ac A% 0 AT A, 0 0O m.0 Ar
0 Bs Bs By 0 Bg 0 o Brr O o Bk @
0o A% Az A 0 A 0 Al 0 Ax
o U} o -F' @ o0 o0 p 0 0
o Ul o -F 0 Q3 0] 15, 0] K

where we have introduced a shorthand for the rows of the imflienatrix, set the coeffi-
cients ong) to zero and where the subscripf’ indicates a quantity defined in chapter
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5 for a fluid-filled branching channel. The elements of theumfice matrix and the vector
of known values in the linear system (7.77) are mostly subioest or subvectors. The
first and second rows of the linear system correspond to thie of@nnel’s boundary
integral equations with the first row generated whgnwas placed on the walls of the
main channel and the second row whenwas placed on the elements.df The third
and fourth rows correspond to the branch channel’'s bounitéegral equations where
the third row corresponds t&, on the walls of the branch channel and the fourth row to
x¢ lying on the notional boundaryd. The fifth and sixth rows correspond to the pressure
equations forre andms respectively. To incorporate the effect of the capsule wethd
discretisation of the capsule integrals given in equatibiiq) to the linear system (7.77)
and include the discretised pressure equations (7.64)7a68)(to get,

[Crr HpCp | ¢ | HpCn
?F H'pAp A H'/)AH
Brr (1—Hp)Bp -:1:: Bk | |(1—Hp)Bn 7 (7.78)
App (1 —Hp)Ap Ax (1 —Hp)An
7,  HpIL 0 Hp TIX!
e (1— Hp)IL | v | (= Hp)Iy

as our linear system, and where the first column vector orighéhand side corresponds
to the vector of known values for a fluid-filled branching chenand the second corre-

sponds to the capsule.
It remains to discretise the boundary integral equatiotfercase wher lies on the

capsule boundary. Let us write equation (7.51) as

/fiDl Gy dskx) —u/uf)l Tiji iy dsx) —772/7%' Gij ds)

AC A )
PV
+2mp (1+ A (x0) + p(A = 1) / ut!) Ty dste)
P
= I;(x0) + 4mpul* (xo) — /Afi Gij dsf) (7.79)
P

which is valid forxy on the capsule boundary when the capsule lies in the maimehan
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The discretised analogues of the integrals odemnd the channel walls are given by

/ PGy dst) ~ 16 (xo) - F, (7.80)
A
[ 172Gy dst) ~ 1§, (x0) - FE. (7.81)
B
/ fPr Gy ds) ~ IS ;(x0) - FE (7.82)
C
/ wt Ty dstx) = Iy ;(x0) - UR, (7.83)
A

where each of G ;(xo), I ;(xo), I¢ ;(x0) andI’y ;(xo) are defined in equations (5.101)
—(5.104), and where we have also included the integral Bvueecause we will use it in
the discretisation of equation (7.56) when the capsuléadidise branch channel. We label
the integral ove€, by Igz,j(XO) and its value may be calculated exactly using equations
(2.44) and (2.45). Therefore we may approximate equatiof®jby

Iﬁ,j(XO) FL+ Igj(XO) F§ - ulﬁ,j(xO) Uh - 7T2I£G2,j(X0)

PV
+2m (1 + N (x0) + p(A — 1) / ulY Tyjp iy dse)
P
= I;(x0) + 47p ufl (x0) — g ;(X0). (7.84)

To discretise the capsule integral and the velocity on tipsde boundary we define

PV

Pj(x(()r)) =2mu(1+ A)uEl)(xér)) +uA=1) uz(l) Tijk vy ds), (7.85)

ﬁ\

wherex(()’") is the midpoint of the*" element, and which we may approximate by

Py(x{") ~ (%M 1+ NP (x) + p(r — 1)I7T;5V(x(07"))> U

= Ip(xy)) - U}, (7.86)

and where
Pug(6)) = (6180 61807 - Srvpbay rvpdys) (7.87)
I7T>’5V(X(()r)): [Txﬂ Tyin - ng}i Tgf;}i oo Tuing Tyine|, (7.88)

with the ' pair of entries off "/ V(x{") taking the principal value of the stress tensor
integral becausg lies on ther” boundary element oP. Substituting equation (7.86)
into equation (7.84) and writing the resultant matrix egurain terms of the solution
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vectorz we obtain,

I¢ (x0) IG;(x0) O —ully;(x0) —IE ;(x0) 0 Ip(x0)| -
= Ij(x0) + 4mpul (x) — T j (o). (7.89)

Evaluation of this equation witk, placed at the midpoint of each of the capsule’s bound-
ary elements results 2V equation which we write as

Py Py o0 PR PR o PE|-a-Ph (7.90)

where them superscript indicates that the capsule is in the main chamkthe ele-
ments of PZ, Py, PQ’T, P and P} house theNp values ofIgj(xo), Iﬁ,j(Xo),

—pI’ ;(%0), —I§, ;(x0) and I(xo) respectively, andPy; houses theNp values of
I;(x0) + 4mp ufl (x0) — Il j(x0). For convenience we write

P =[Py Py 0 PRT PL 0 (7.91)

which enables us to write the linear system as

Crr Cp Cr Cn
e Ap Ar A

Brr O Bx 0

AL, 0 |rx=|Ag|—| O |, (7.92)
R ¥ ri 0 !

.. o 0 0

| P PP | 0 | | — P11

when the capsule is in the main channel.
Next we assume the capsule is in the branch channel and Wweiteranch channel’'s

boundary integral equation (7.56) as

- / P Gy dst) + / P2 Gy dst) + u / WP Ty dse)
A B

A
PV
— 73 /nz Gij dste) + 2mp (1 + Nl (x0) + (A = 1) / ul" Ty, dst)
= Kj(xo) + 4mpul® (x0) — / Af;i Gij dsk), (7.93)
P

for xq on the capsule boundary. We approximate the equation by atexnform,

0 —1G,(x0) T§;(x0) nlf(x0) 0 —IE ;(x0) Th(xo)| @

= Kj(x0) + 4mpul® (x0) — e j(x0), (7.94)
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whereIg’j(xo) is defined in equation (7.81). Evaluation of this equatiothwi, placed
at the midpoint of each of the capsule’s boundary elemestgteein2 N» equation which
we write as

o Py Py PY 0 PL PL|-x="Py, (7.95)

where theb superscript indicates that the capsule is in the branchrnehand the ele-
ments of PY, P, P%", P, and P} house theNp values of—IG ;(xo), 1§ ,(xo),

pdy j(xo), — I ;(x0) andI’(xo) respectively, andPy; houses the Ny values ofK; (xo )+

Ay ufS (x0) — g ;(x0). We write

P'=lo Py Py PY o P (7.96)

which enables us to write the linear system as

Crr O Cr 0
m. 0 Ar 0
Brr Bp By Bn
AL Ap|xz=|Ax| - | An |, (7.97)
 § (O 0 0
My I ¥ Iy’
Pt PL Lo | [-PYy

when the capsule is in the branch channel. We are now in aigro$a construct the

linear system using equation (7.92) when the capsule isanrthin channel and using
equation (7.97) when the capsule lies in the branch charinisl.important to note that

the linear system simplifies significantly when the visgosdtio is unity. We have seen
in the governing disturbance pressure and velocity egustivat when\ = 1 the capsule

velocities disappear from the equations. Therefore we redyae the linear system by
omitting Ug) from x which makes it equal to the vector of unknowns for a fluid-dille
branching channel, which we will labalrr. The second column from the matrix in
equations (7.92) and (7.97) may also be omitted. We also timewd to evaluate the
relevant boundary integral equation on the boundary of #pswale in order to solve the
linear system and so the last row in the aforementioned rlisgstems is also omitted.
The resultant linear system is given by,

Crr Cr HpCr
L Ar Hp An
1 _
Brrl ppr = | P - (1="p)Bu | (7.98)
Aprp Ak (1 —"Hp)An
. 0 Hop TN
Ly v | (1 Hp)IR

which is only different to the linear system for a fluid-fillémlanching channel by the
second column vector on the right-hand side, which adds igtardance caused by the
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capsule’s presence to the linear system. The matrix in Eguét.98), and more impor-
tantly its inverse, need only be computed once for a giveffigaration of the ends4,
B andC. When the capsule is moved the vector on the right-hand sidpdated and the
solution to the linear system is obtained by multiplying bg tatrix inverse.

The size of the ‘influence’ matrix on the left-hand side in &ipn (7.98) iS(4N 4 +
2Np + 2N¢ + 2) x (AN4 + 2N + 2N¢ + 2). When\ # 1 the ‘influence’ matrix in
equations (7.92) and (7.84) increaseg4®/ 4 + 2Ng + 2N¢ + 2Np + 2) x (4N4 +
2Np + 2N¢ + 2Np + 2). In our simulations we tookV 4 = 200, Ng = 400, N¢ = 800
and Np = 316 for a particle of radius//2. When we changed the size of the particle
we altered the number of boundary elements to preserve ¢neeek length. We found
this number of boundary elements to be an acceptable congedratween accuracy and
calculation time. Details on the validation of the numdrizaculations are given in the
next section.

Once we had calculated the influence matrix and the vectarmfk values we solved
the system using GMRES (e.g. Saad 2003) whe# 1 and by left-multiplication of
the inverse of the ‘influence’ matrix whexi= 1. To obtain the nodal velocities of the
capsule we evaluate the relevant boundary integral equadien\ = 1. When\ # 1 we
construct a periodic cubic spline using the cumulative gohal arc-length and use the
spline to interpolate the nodal velocities. Once the nod#aities are known we move
the capsule, update the linear system and obtain the newosold’o move the capsule
we integrated the kinematic equation,

dx,

dt

= u(x,), (7.99)

wherex, is the position vector of the'” capsule node and the valueswfx,) are the
velocities of the capsule nodes. To integrate (7.99) we tisecdaptive time-stepping
Runga-Kutta-Fehlberg method (e.g. Atkinson 1978) wheragoek an initial time step
of 0.0005d/US" when we included bending moments ahd05d/U;"* when bending
moments were absent. Our small initial time step followsrfthe observations made by
Pozrikidis (2001) on the effects of bending resistance capsale in a three-dimensional
shear flow.

In chapter 3 we showed that the disturbance velocity dectyéeks thanl % of its
maximum value at a distance of 3 particle radii. Thereforedidenot allow the distance
between the particle and the entrance or the exits to becessdhan this distance.

7.3 Flow parameters

Except for where indicated, all of the validation and restidt be presented in next two
sections, were computed for the case when the main chandeharside branch are of
equal width,D/d = 1. In all cases the main channel length is- 12d and the length
of the branch isL. = 6d. The dynamics depend on the viscosity rathg,the initial
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dimensionless capsule radius,
a

_¢ 7.100
p== (7.100)

wherea is the radius of the unstressed circular shape, the inti@bs of the capsule, the
initial centroid location,
Xe = (5607 yc)> (7-101)

the branch angle;, the ratio of the branch widths,

== 7.102
5=, (7.102)

the flux ratio,@, and the two dimensionless parameters,

E kd
M= 8 W = , (7.103)
pQid p Q1

whereFE is the bending modulus of the elastic membranefaisdthe membrane stiffness.

The M parameter describes the relative importance of bending entsrin the elastic
capsule membrane an#l’ describes the relative importance of the membrane stifnes
We setM = 0 to model a capsule which does not resist bending /ahe- 0.001 for a
capsule which does. The model was sensitive to the siaé wofith larger values causing
instabilities to develop in the numerics. The small valuelbfis of a similar order to
the analogous three-dimensional quantity used by PomikD01). We also point out
that in biological cells, such as red blood cells, the memésaresistance to stretching is
much stronger than its resistance to bending (e.g. Secoaib2f107), thereby providing
further justification for our choice of values faf andW. The unstressed capsule shape
is a circle, and in most of our presented results the capsilllalgo start each simulation
as a circle. When the capsule is unstressed the interfaa@idn jump,Af, will be zero.
Therefore when the capsule starts as a circle anrd 1, the disturbance pressures,
and s, and the unknown wall tractions and the tractions and vedéscon.A will equal
those obtained for a fluid-filled branching channel with thme parameters. We choose
d, Q1/d andd?/Q; as our length, velocity and time scales.

7.4 Validation

We have already validated the numerical code for the elaapisule in chapter 4 where
we also satisfied ourselves that the disturbance velodiyded by the capsule’s presence
decayed rapidly as we approached the ends of the compwhtdomain. In all of the
results to be presented in the next section, the centreigterbance velocities d;, &
and&; are all less thath.5% of the respective Poiseuille velocities. We also confirnied t
the tractions on the channel walls smoothly approach theoapgte values for Poiseuille
flow as we approach the entrance or the exits.

To check the numerical solution we placed an unstressedieapgh A = 1, p = 0.5,
W =1, M = 0.001 andx./d = (6,0) in a branching channel flow with = 124,
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L =1/2,a = m/2,Q = 0.5andd = 1. Since an unstressed capsule should have
a negligible effect on the flow, the exit pressures shouldakthose for a fluid-filled
branching channel with the same flow parameters. We fourtdhkaexit pressures did
not change when the unstressed capsule was present. Weatthecapsule and doubled
the number of elements. The exit pressures changed by notiremm®.06%. We then
reintroduced the stress-free capsule and once again fbahthe capsule’s presence did
not affect the exit pressures. Furthermore we increaselgtiggh of the channels so that
[ = 24d while preserving the element length on the channel boueslaind compared
the boundary tractions and velocities with those for thateh@hannel. The values were
in excellent agreement; the absolute error in the boundastions remained less than
0.05 uUL" /d, and the absolute error in the velocities.dmwere less than.005 U™

Next we took the steady state capsule from a straight chaimelation with param-
eters\=1,p=0.5,W =1, M = 0.001 and placed it in a branching channel such that
x./d = (6,0), « = 7/2, Q = 0.5 andé = 1. When we doubled the number of boundary
elements the disturbance pressures at the exits changemrhgne thar0.05%.

To verify the numerical time integration method we compaiezisolution obtained
from the Runga-Kutta-Fehlberg method with two separateikitions which used the sec-
ond order Runge-Kutta method with constant time stefdsioD5 /U and0.001 d/UZ™ .
The simulation parameters weke=1, p = 0.5, W =1, M = 0.001, o = 7/2,Q = 0.9
ando = 1. The capsule was released with its centroi&atd = (2,0). There were no
significant differences between the three simulations

Due to the incompressibility of the capsule fluid, the aresadia the capsule should
remain constant during a simulation. As a further check arcomputations, we monitor
the area contained inside the capsule boundary. For thitsrésbe presented in the next
section, it has been confirmed that the area changes by nothare.05% of its initial
value for simulations with bending momenfg, # 0, and by no more thaf.22% of its
initial value for simulations for no bending momenid, = 0.

7.5 Results

We begin by examining the motion with a moderate sized capsith p = 0.5 for differ-
ent values of the flux rati@). We showed in chapter 4 that a flexible capsule in a straight
channel required a distance of very many capsule diametachieve a steady-state con-
figuration. However the capsule deforms into a parachiieedhape which qualitatively
resembles the steady-state shape after only a few capasntetdirs. Therefore in the sim-
ulations to be presented, the capsule was started sufficfantupstream of the branch
entrance for the parachute-like shape to emerge beforeaffmile reached the junction.
Furthermore, in some applications there may be numerouhiregs which occur over
a relatively short distance and so it is questionable whedheapsule could achieve a
steady-state between branchings. For example, capdlariéhe microcirculation have
numerous branchings. For this reason there is some jutitfida preferring near steady-
state configurations to steady-state configurations whanlating a capsule entering a
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(a) Capsule shapes faf = 0 at(Q1/d*)t =0, (b) Capsule shapes faf = 0.001 at(Q1/d*)t = 0,
2.21, 4.26, 6.29 and8.66. 2.22, 4.26, 6.30, 8.66 and11.06.

Figure 7.2 : Capsule journeyswhekh=1,p = 0.5, W =1, a« = n/2 andQ = 0.9. At ¢t = 0 the
capsule centroid is at./d = (2,0).

branch. In the following simulations, the capsule is redebatt = 0 in its unstressed
circular configuration and witk./d = (2,0), unless stated otherwise. It should be noted
that a deformed capsule shape could be used as the initjg¢ shawever the initial de-
formation must then be taken into account when interpretiivegresults, especially for
capsules which begin their journey offset from the cemeeli

We begin by discussing results for the case 1 so that the viscosity of the ambient
fluid equals that of the fluid contained in the capsule. In tiet few cases we compare the
results obtained with no bending resistance to those adatdimthe absence of bending
moments in a branching channel with= 1 anda = /2. In figure 7.2 we show capsule
journeys for a capsule with = 0.5, W = 1 and@Q = 0.9. The capsule in figure 7.2
() hasM = 0 and so does not resist bending. In figure 7.2 (b) the capsusla lsanall
resistance to bending with/ = 0.001. When@ = 0.9 the capsule remains in the main
channel, as can be observed in figures 7.2 (a) and 7.2 (a).oWee trailing tip becomes
more deformed than the top trailing tip as it feels the eftddhe fluid being drawn into
the side branch. Once the capsule has passed over the erttvdihe side branch, it begins
to return to the symmetrical steady state shape seen inrtighgtchannel simulations in
chapter 4. As was remarked there, a distance of a considenaibhber of capsule radii
is required to attain the steady shape and the present catigmal domain is too short
to observe this. We can see that wheh = 0 the capsule shape has noticeably more
pointed tips than whe/ = 0.001. The simulation with\/ = 0 was terminated before
the simulation forM/ = 0.001 because the numerical error became unacceptably large as
the capsule travelled over the right-hand side of the bramtfance due to a steep rise in
the curvature at the sharp lower trailing tip.

When@ = 0.1 the flow in the side branch is sufficiently strong to draw thpstde
out of the main channel, as can be seen in figures 7.3 (a) arfd)i®erel’’ = 1 in both
figures andM = 0 in the former andV/ = 0.001 in the latter. Again the sharp trailing
tips are evident when bending resistance is absent. Thallinitircular capsule quickly
deforms within two particle radii to the familiar parachieape. As the capsule nego-
tiates the corner into the side branch it undergoes coraitiefurther deformation. The
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(a) Capsule shapes faf = 0 at(Q1/d*)t = 0, (b) Capsule shapes faf = 0.001 at(Q1/d*)t = 0,
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(c) The transverse tensiofi= g (uQ1/d) (=), and (d) The bendlng momenﬁ m (MQ )plotted

in-plane membrané = 7(uQ1/d) () plotted against arc-length for the capsuletat 13.06 d*/Q1
against arc-length for the capsuletat 13.06 d*/Q; in figure 7.3 (b).
in figure 7.3 (b).

Figure 7.3 : Capsule journeys, membrane tensions and bending momeats\wh 1, p = 0.5,

W =1 a=mx/2and@ = 0.1. At ¢t = 0 the capsule centroid is &./d = (2,0). In (c) and
(d) arc-length is measured anti-clockwise from zero at tweekmost point on the capsule as it
appears in the final shape in figure 7.3 (b).

in-plane and transverse membrane tensions and the bendimgm for the last capsule
shown in figure 7.3 (b) at time = 13.06 d?/Q are displayed in figures 7.3 (c) and 7.3
(d). In figure 7.4 we show the membrane tensions and bendimgants for the steady-
state shape of a capsule in a straight channel with the sam@é&iameters. The capsule
shape is shown in figure 4.17 (a) of chapter 4. It is intergdtimote that the peak values
of the transverse and in-plane tensions in figure 7.3 (c)l@ytetly more than half of those
for the steady-state solution in figure 7.4 (a), while thekpedue of the bending moment
in figure 7.3 (d) is about0% of the peak value in figure 7.4 (b). The deformation seen in
figure 7.3 (b) is sufficiently severe that the capsule retirssignature of the distortion
suffered at the junction up to the point where the simulati@s terminated. We expect
that the capsule will slowly return to the steady-state shagit moves further down the
branch. According to the results from chapter 4, we may megdy assume that the last
capsule shape showntat 13.06 d? /Q1 is sufficiently far from the junction to consider it
as being effectively carried in a unidirectional flow, asidem the disturbance due to the
capsule itself. With this in mind, to estimate the recoveasgahce required for the capsule
to attain a steady-state shape, we took the last capsule ghdigure 7.3 (b), which is
shown at the time = 13.06 d>/Q1, placed it into a straight channel flow with the same
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Figure 7.4 : The membrane tensions and the bending moment versus attxléor the steady-
state shape of a capsule in a straight channelwith 1, p = 0.5, W = 1 andM = 0.001. The
capsule shape is shown in figure 4.17 (a).
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Figure 7.5 : Evolution of the final capsule shape from figure 7.3 (b) whea 13.06 d?/Q;.
Capsule shapes shown (i), (b), (c) and(d) at (Q1/d?)t = 0, 3.7, 9.0 and37.1 respectively.
The final shape is the steady-state shape.

flux as that in the side branch. The evolution of the defornegubule shape is shown in
figure 7.5 . Att = 0 the deformed capsule is released and allowed to evolve.eSham
the figure shows the capsuletat 3.7 d%/Q; when it has travelled.1 capsule radii along
the channel. The capsule has developed the familiar paashape. At = 9.0d?/Q,
the capsule has movéa.2 radii along the channel from its starting position. The cégs
shape is shown as shaf® in the figure and it closely resembles the steady-state shape
which it finally attains at = 37.1d?/Q; when the capsule has travelled a distance of
48.9 radii along the channel. A steady state was deemed to havedobéved when the
normal component of the nodal velocity,- dX;/dt, on the capsule boundary relative to
the capsule centroid is less tha01 @, /d for all capsule nodes= 1, ..., N,. This re-
sult indicates that the capsule retains the signature dfrdwech distortion for a recovery
length of very many capsule radii after it has passed throliglbranch entrance. With re-
gard to blood flow in the capillary network, for example, thigygests that although cells
will tend to return to a shape resembling their equilibriunmfiguration for a straight tube
over a fairly short distance, there is unlikely to be suffitieoom for equilibrium to be
fully established before the cell encounters a further ¢nany.

Figure 7.6 displays the normalised exit pressupest &, andps at&s, for the capsule
journey shown in figure 7.3 (b). The normalised pressurefinele to be the pressure in
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Figure 7.6 : Normalised pressure® (-) andps (--) against time foh = 1, p = 0.5, W = 1,
M =1073,a = 7/2 andQ = 0.1. The capsule journey is shown in figure 7.3 (b).

the presence of the capsule divided by the constant pregbtaimed under the same flow
conditions but in the absence of the capsule. Wihee- 1 or p3 = 1 the pressure at the
exit equals the fluid-filled channel exit pressure.tAt 0 the traction jumpAf, is zero
and the flow behaves as if the capsule were absent, in whielpgandps are both equal
to one. Both of the normalised pressurgg,andps increase in the early stages of the
motion as stresses develop in the membrane. At d2/Q; the particle moves from the
centreline of the main channel towards the branch and tlisdsmpanied by an increase
in the branch pressurgg, and a reduction ip,. The maximum values gf; andps occur
att ~ 8d?/Qy andt ~ 7d?/Q; respectively. At both of these times most of the capsule
has passed into the branch. As the capsule travels furtteethia branch the normalised
pressures decrease. At the end of the simulagigrreturns to unity anghs approaches
1.008, the increase over its initial value of unity being due to phesence of the capsule
in the side branch.

When@ = 0.5, so that the flux at the exits are the same, a capsule releaedswy
centroid on the channel centreline tends to get caught onighehand side of the branch
entrance. This is illustrated in figure 7.7 (a) whére = 0 and in figure 7.7 (b) where
M = 0.001. We can see once again that the trailing tips of the capsunwh = 0
are pointed rather than rounded. The trapped capsule iscaug/hat is effectively an
extensional flow which stretches the capsule simultanganisl the branch and along the
main channel. Manga (2006) found similar behaviour for aitiqdrop caught at the apex
of a bifurcating channel. Since the wall shear stress at gstmner is formally infinite
in a Stokes flow (see Appendix E), it is interesting to lookhet tensions which develop
in the elastic membrane when the capsule is close to thig.poifigure 7.7 (c) we plot
the in-plane and transverse membrane tensions, ¢ (uQ1/d) and7 = 7(uQ1/d),
for the final capsule shape presented in figure 7.7 (b) atthetti= 12.55d?/Q;. The
capsule profile at this instant is shown in figure 7.7 (d). Thedverse tensionq, is rather
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(a) Capsule shapes faf = 0 at(Q1/d*)t =0, (b) Capsule shapes faf = 0.001 at(Q1/d*)t = 0,
1.63, 3.34, 5.08, 6.79, 8.90 and12.61. 1.63, 3.34, 5.08, 6.79, 8.90 and12.55.
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Figure 7.7 : Capsule journeys and membrane tensions whenl, p = 0.5, W =1, o = 7/2
and@ = 0.5. At ¢t = 0 the capsule centroid is at./d = (2,0).

small around the capsule perimeter. The in-plane tensimmains positive around the
capsule boundary, implying through the constitutive lave{4, given in chapter 4, that
the membrane is everywhere in extension from its circuli@remce configuration. Local
minima of 7 occur at the tips of the capsule labellBdand D in the figure. The maxima
of 7, which occur at the points marketlandC' in the figure, is more than twice that for
the steady-state capsule shown in figure 4.18 (a) of chaptdihé occurrence of such
large tensions on the capsule boundary close to the shamprcauggests the possibility
of bursting.

Capsules with a stronger membrane stiffness are expectefdom less during the
motion. This is confirmed in figure 7.8 which shows the resuiits calculation for\ = 1,
p=0.5W =5 M =0.001 anda = 7/2. In figure 7.8 (a) we s&p = 0.9. The capsule
experiences noticeably less deformation than that seegunefi7z.2 (b). Figure 7.8 (b)
shows the capsule entering the branch wies: 0.1. As expected the capsule becomes
less deformed than that shown in figure 7.3 (b) whiér= 1.

The effect of increasing the viscosity ratio is examinedduife 7.9 . Capsule journeys
for the flux ratiosQ) = 0.1 and@ = 0.9 are shown for the caske = 5 corresponding to
a more viscous fluid inside the capsule, and where 0.5, W = 1, M = 0.001 and
a = m/2. The capsules in figure 7.9 (a) deform appreciably less thasetseen in figure
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Figure 7.8 : Capsule journeys fok = 1, p = 0.5, W = 5, M = 0.001 anda = 7/2. Att =0
the capsule centroid is at./d = (2, 0).
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(@) Q = 0.9 and capsules 49, /d*)t = 0,2.21, (b) Q@ = 0.1 and capsules Q1 /d*)t = 0, 2.88,
4.26, 6.29, 8.66 and11.06. 5.24, 7.70, 10.12 and13.06.
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Figure 7.9 : Capsule journeys fok = 5,a = 0.5d, W = 1 andM = 1075,

7.2 (b), which was computed for the same parameter valuesithut = 1. Comparison

of figures 7.9 (b) and 7.3 (b) also reveals that the capsufersutss deformation when
A takes the higher value. To observe the effect of the visgaatio on the trajectory
of a capsule, a number of simulations were conducted for iéialiy circular capsule of
radiusp = 0.5 initially located atx./d = (2,0) whenWW =1, M = 0.001, o = =/2 and

Q@ = 0.5 for values of\ in the rangd).5 to 10. In all of the simulations, the capsule became
trapped on the far corner of the branch entrance as in figédr@Y.. The trajectories of the
capsule centroid are almost coincident over the range akeguovalues, demonstrating
that the viscosity ratio has little effect on the path takgrh capsule.

Figure 7.10 illustrates the motion for the larger capsute gi= 0.75 when\ = 1,
W=1,M=10"3a=7/2,Q=0.9andQ = 0.1. In both figure 7.10 (a) and 7.10 (b)
the parachute-type shape is again evident but with muctelangiling tips than is found
for the smaller particle. Fap = 0.9 the lower trailing tip extends more than the upper as
the capsule passes over the entrance to the side branclq) £00.1, the upper trailing
tip extends more than the lower as the capsule turns therciotoghe side branch.

In applications, an elastic capsule may be too large to fitudin a channel or tube
in its resting configuration and may need to deform in ordesgoeeze through. One
example is that of a red blood cell squeezing through a nacapillary. In figure 7.11
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Figure 7.10 : Capsule journeys wheh = 1, p = 0.75, W = 1, M = 1073 anda = /2. At
t = 0 the capsule centroid is at./d = (2, 0).
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(a) Capsule journey fgp = 1.1 andW = 5. (b) Capsule journey fop = 0.6, W = 1 and
Capsules are shown @91 /d?) t = 0, 5.0 and8.96. § = 0.5. Capsules are shown @91 /d*) t = 0, 2.88,
5.24 and7.70.

Figure 7.11 : Capsule journeyswheh = 1, M = 1073, a = 7/2 and@ = 0.1. Att = 0 the
capsule centroid is at./d = (2,0).

(a) we show the results of a simulation for a capsule whostassed circular shape of
radiusp = 1.1 does not fit into the main channel. The initial configuratidithe capsule
shown att = 0 in the figure was produced by first deforming the circular ipkrtinto
an ellipse with semi-major axis 5125 d and semi-minor axi§.8 d, which has the same
area as the undeformed circular capsule, and accountinghdostrain incurred during
the deformation. The ellipse was then placed into a straighhnel flow with no side
branch and allowed to evolve until it had developed a paraclke shape. This shape
was then taken as the starting configuratioh-at0 for the side-branch calculation shown
in figure 7.11 (a). The membrane tensionsg, and the bending moment;, correct for
the deformed capsule were set at the start of the simulafitve. transit of the capsule
from the main channel into the side branch is computed saftdgs As in figures 7.3
(b) and 7.10 (b), the upper trailing tip of the capsule is edtzl more than the lower
tip as the capsule turns the corner into the branch. The salnelation repeated for
W = 1, and with the other parameters the same, shows more sevegudliiatively
similar deformation of the capsule. In figure 7.11 (b) wesithate the motion of a capsule
which fits into the main channel but not into the side brandthw=1,p = 0.6, W =1,
M = 0.001, « = /2 andé = 0.5. At the start of the simulation the capsule is inside



212 The motion of a flexible capsule through a bifurcation

j)g

6L d rys

7k 7h

(@) Att =0,x./d = (2,0). @ =0.1t00.9 in steps (b) @ = 0.5 and capsule centroid at. = (2d, y.)
of 0.1. att = 0 with y./d varying from—0.4 to 0.4 in steps
of 0.1.

L IE
10 12

Figure 7.12 : Centroid paths for capsules with= 1, p = 0.5, W = 1, M = 0.001 anda = 7/2.
In both figures trajectories terminating in a dot corresptandapsules which become trapped at
the corner.

the main channel. The flux rati@ = 0.1 is set so that the capsule is drawn out of the
main channel and into the side branch. As the capsule sqigdadhe branch, it rapidly
undergoes severe deformation which is qualitatively sinti that seen in figures 7.3 (b)
and 7.10 (b), but is much more strongly pronounced. In paeicthe upper trailing tip
forms an elongated tendril dragging behind the capsule.

In figure 7.12 (a) we plot the trajectories of the capsule roghtfor numerous sim-
ulations carried out when = 1, p = 0.5, W = 1, andM = 0.001 anda = 7/2 for
flux ratios equally-spaced betweéh = 0.1 and@ = 0.9. At ¢ = 0 the capsule cen-
troid was atx./d = (2,0). Those trajectories which terminate at a large dot cormes$po
to capsules which have become trapped at the corner, as e figti (b). For the other
trajectories, the capsule migrates towards the centrefitige respective channel section
after it has negotiated the branch region. The simulatiomeWalted when the assump-
tion of negligible disturbance velocities at either of tk@®&; or £5 is compromised due
to the proximity of the capsule to the exits. In figure 7.12{i&) plot the trajectories of
the capsule centroid fox = 1, p = 0.5, W =1, M = 0.001, « = 7/2 and@ = 0.5,
when the capsule is started with its centrexgtd = (2, y./d), where the offsey./d is
taken from the sef = {—0.4,-0.3,—-0.2,—-0.1,0,0.1,0.2,0.3,0.4}. Fory./d < —0.3
the capsule is drawn into the side branch. &gkl = —0.2 up t00.3 inclusive the capsule
is caught on the far corner of the side branch. Note that indfvine cases shown the
capsule centroid ends up outside the channelyEat = 0.4 the capsule passes over the
side branch and continues along the main channel. Thesksresggest that there is a
capture zone, within which passing capsules will be carinéal the side branch, which
covers approximately the rangel < y/d < —0.3.

In applications such as capillary flow, the corners at brangshwill not be sharp, as
here, but rounded. Although it is not straightforward togtdhe current method to cater
for rounded corners due to complications with the deforomatf the notional boundary
A, we can nonetheless make reasonable predictions of theleapstion for non-sharp
corners. By carefully scrutinising the near-corner capgubfiles, we can make a decision
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as to the subsequent capsule path were the corner to becanteboff. For example, in
figure 7.7 (b), we can see that most of the capsule has mowethimbranch by the time it
has become trapped at the corner, and it seems likely thatitvrefeased, by rounding the
corner for example, it would subsequently proceed into tla@dh. However, the tenta-
tive nature of such predictions should be emphasised. &édsiple that a capsule which is
extended some distance into the branch, and which appdaestoving in that direction,
may recover and continue along the main channel. Therefogemight hypothesise that
the particular deformation experienced by a capsule magialhy affect the path taken.
In fact, it may be the case that two capsules with differeaste properties, which are
initially following identical trajectories, take diffen¢ routes with one proceeding along
the main channel, and the other being captured by the sidelnra-or the trajectories
shown in figure 7.12 (b) we estimate that the capsules withinikial centroid locations
y./d = —0.2, —0.1, 0 and0.1 would proceed into the side branch on rounding the corner.
Similarly, we estimate that the capsules with the intialtc®d locations,y./d = 0.2
and0.3, would continue along the main channel. In the light of this, may tentatively
conclude that in a right-angled branching flow with equal flates through the exits,
a mid-sized patrticle placed at a random position upstreatheirmain channel will mi-
grate into the branch more than half of the time. We can alsdlse by examining the
streamline figure 5.2 (a) in chapter 5 for a fluid-filled branghchannel with the same pa-
rameters as above. The streamlines below the dividingrstie@are more tightly packed
than above, and so the fluid is flowing relatively faster inréngion close to the left-hand
side of the branch entrance. Since small particles shooiglgifollow the streamlines we
may anticipate that half of a distribution of small capsuteselling from upstream along
the channel will enter the branch. Although a large capsiilledigtort the instantaneous
streamline field, this nonetheless suggests that largsutegpapproaching the branch en-
trance along the dividing streamline will tend to deform mat the bottom than at the
top. Moreover, such a skewed distortion might favour a clgpswoving into the branch
rather than proceeding along the main channel. This sligistfavouring movement into
the branch fol) = 0.5 suggests that, of a distribution of larger capsules trangeklong
the channel, slightly more than half will be be drawn into linench. This would tend to
suggest that for multiple-particle flows, with a sufficiemtricle spacing for the present
conclusions to hold, the particle fraction in the brancH b slightly higher than in the
main channel.

The effect of changing the branch angle is examined in figut8 7 Figure 7.13 (a)
illustrates a capsule journey for an acute-angled branth ai= 7 /4 for a capsule of
sizep = 0.5 whenA = 1, W =1, M = 0.001 and@ = 0.1. Comparison of the
final capsule shapes in figures 7.13 (a) and 7.3 (b) shows tietav = 7 /4 the rear of
the capsule is marginally more dimpled and therefore dlightser to the limiting shape
found for a straight channel. For moderate values of the #tig (), the capsule tends to
shag on the rightmost corner of the branch opening; the rah@evalues for which the
capsule becomes trapped is wider than that for the rightedrigranch discussed above.
When( is sufficiently large, so that most of the fluid proceeds althrggmain channel,
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(a) @ = 0.1 anda = /4. Capsules are shown at (b) @ = 0.5 anda = 37 /4. Capsules are shown at
(Ql/dz) t=0,2.88,5.24,7.70, 10.12, 13.07. (Ql/d2) t=0,2.89,5.20, 8.40 and18.18.

Figure 7.13 : Capsule journey wheR = 1, p = 0.5, W = 1 andM = 1073,

the capsule suffers minor deformation as it passes overrdmech opening, similar to
that observed in figure 7.2 (b). A calculation for a capsuleng a side branch at an
obtuse angle is presented in figure 7.13 (b) for the case 1, p = 0.5, W = 1 and
M = 0.001, o = 37/4 and with@ = 0.5. Backward-pointing branches of this type may
arise in microfluidic circuits (Roberts and Olbricht 2008he journey and deformation
experienced by the capsule is markedly different to thaafaght-angled or acute-angled
branch. For an obtuse angle, the capsule passes cleanlthatoranch, and tends to
elongate into a slender shape. This is in contrast to thevimirafound fora < 7/2,
when the capsule tends to snag on the rightmost corner oféimelo for mid-range values
of Q. For the obtuse-angled branch, we carried out simulationdifferent particle sizes
and for different viscosity ratios, and over a range of valaB() small enough to ensure
the capsule enters the branch. In all cases, the resultssiveilar to that seen in figure
7.13 (b). Under no circumstances did we find an example ofdlpswde snagging on the
sharp leftmost corner of the branch.

To investigate the sensitivity of the capsule trajectorytsdocation in the oncoming
flow for obtuse and acute branch angles, we performed a sisglaof calculations to
those shown in figure 7.12 (b). In figure 7.14 (a) we presentltee$or simulations in
whichA =1, p =05 W =1, M = 0.001, « = /4, @ = 0.5 and the initial capsule
centroid,x, = (2d,y.) with values ofy./d taken from the sef. For this acute angle
all of the capsules become trapped at the rightmost corndreobranch entrance with
the exception of those with initial centroid locations/d = 0.4 and —0.4, which con-
tinue along the main channel and enter the branch resplgcti&kecareful consideration
of the near-corner profiles for the capsules which beconppéd, with the aim of decid-
ing upon the subsequent path, is unfortunately inconauskigure 7.14 (b) shows the
centroid paths for the same parameters but with the brargle an= 37 /4. In all of the
simulations the capsules either proceed along the maimehan enter the branch with-
out becoming trapped. The capsules wjthid = —0.4 up to and includingy./d = 0.1
enter the side branch, and the rest exit throéighso that more than half enter the side
branch. Itis likely that the exact proportion will dependtbe deformability of the cap-
sule. For example, for the simulation wigh = 0.2d when the capsule reaches the branch
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(a) Centroid paths whem = 7 /4. (b) Centroid paths when = 37 /4.
Figure 7.14 : Centroid paths for capsules with= 1, p = 0.5, W = 1, M = 0.001 and@ = 0.5.
Capsule centroid & = 0 is x. = (2d,y.) wherey../d varies from—0.4 to 0.4 in steps of0.1.
Trajectories terminating in a dot correspond to capsulesiwibecome trapped at the corner.
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(a) Capsule journey whei’ = 1. Capsules shown (b) Capsule journey wheW = 5. Capsules shown
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Figure 7.15 : Capsule journeys wheh =1, p = 0.5, M = 0.001, « = 37/4 and@ = 0.5. The
capsule centroid is initially located &2, 0.13)d.

almost half of it becomes extended down into the branch befw capsule recovers and
continues along the main channel. The very delicate balbatgeen which of the two
routes the capsule eventually takes could well be influetgethe elastic properties of
the capsule.

The preceding remarks suggest that the route taken by aleapay depend crucially
on the extent to which it is able to deform. In figure 7.15 weegin example in which
a capsule either proceeds along the main channel or elsatesgnto the side branch,
depending on its elastic properties. The flow parameteithéowo simulations aré = 1,

p = 05, M = 0.001, ando = 37/4 with W = 1 in figure 7.15 (a) andV = 5

in figure 7.15 (b). In both of the simulations the capsule lsaged with its centroid
atx./d = (2,0.13). The deformation is quite different in the two simulatiornsdat
ultimately determines the route taken by the capsule. Wkies 1 the capsule is drawn
into the branch, but whelW” = 5 it continues along the main channel. It is noteworthy
that for both of the capsules it takes a time20f9 d? /Q; to negotiate the area of the
junction and move down either into the branch or along thearohannel (where the time
is calculated from the difference between the third and tied iapsule shapes). The long
residence time of the capsule in the vicinity of the junctiould be compared with those
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(a) Membrane tensiong,= ¢ (uQ1/d) () and (b) Bending momenth = m (uQ1) versus
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Figure 7.16 : Membrane tensions and bending moment for the final capsolersm 7.15 (a) at
t = 25.88 d?/Q;. Arc-lengths at the trailing and leading tips ar&l = 0.80 ands/d = 3.23
respectively, and is measured in an anti-clockwise dioecti

for capsules which pass more readily into the side bran@hf¢sexample the simulations
shown in figure 7.13 (@). The longer residence times in tlesgmt calculations may to
some extent be explained by reference to the streamlinerpahown in figure 5.8 (a)
of chapter 5, which suggest an area of slow flow around thenatemn point where the
dividing streamline connects with the side branch wall. Bfgeated the calculations for
the same parameter values and for initial centroid postiarthe rangé2,0.12)d up to
(2,0.16)d. Again we found that the path taken by the capsule changed the branch

to the main channel wheW was switched from 1 to 5. These calculations support the
hypothesis put forward earlier that deformation may havérgrortant influence on the
route taken by a capsule at a junction. The strong deformatiperienced by the capsule
with W = 1 is sufficient to extend the capsule into the branch and drawaty from the
main channel. The capsule with" = 5 suffers considerably less deformation and as a
consequence follows the path of the main channel.

In figure 7.16 (a) we show the in-plane and transverse merakemsions and the
membrane bending moment for the last capsule shown in figueg(@) at = 25.88d°/Q;.
The maximum tensions are comparable in magnitude to thaswlftor the steady-state
capsule shape shown in figure 4.18 (a) in chapter 4. The sasaiitatjue spike-like be-
haviour in the bending moment, which was observed for thedststate capsule, is also
observed in figure 7.16 (b) and the maximum overall bendinghend is comparable be-
tween the two. We can therefore see that although a capstdargnan obtuse-angled
branch is distorted into a quite different shape from thadestate found in a straight
channel, it suffers similar sized tensions and bending nmbsne

We performed similar calculations to those shown in figud271b) but where we
reduce the width of the side branch. Given the difficultiegwapsules snagging on the
rightmost corner of a right-angled or acute-angled bramahconfined our attention to
an obtuse-angled branch, and conducted a suite of catmsataking\ = 1, p = 0.5,
W =1, M = 0.001, « = 37/4, andé = 0.5 so that the width of the side branch is
half that of the main channel and is equal to the unstressededer of the capsule. In
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the first case we s&) = 0.5 and set the capsule centroid so that at 0, x. = (2d, y.)
with the valuesy./d are taken from the s&f. We found that all of the capsules except
for the one started with its centroid @k, 0.4)d enter the branch and continuefe. The
simulations were repeated for the same parameter valuegthutl’ = 5, so that the cap-
sules have a stronger resistance to deformation, where atj&iut one capsule enter the
branch channel. This at first may seem contrary to the phenomef plasma skimming
(Krogh 1922) whereby the plasma layer close to the capileails is skimmed off into
the daughter vessel. However the relative flux rates and Vieliocities play a key role
in determining the haematocrit in the daughter capillariese experiments of Johnson
(1971) concerning the flow of blood through a single capjllbifurcation demonstrated
that the daughter capillary with the higher velocity tendedeceive the greater haema-
tocrit. Further confirmation was obtained experimentaljyv¥en and Fung (1978) using
gelatin pellets to simulate red blood cells in a bifurcatoapillary-sized tube. Slightly
larger blood vessels were the focus of experiments by Ptiak €1986) who studied a
microvascular segment of a rat's mesentery. They showddhbhahaemotcrit depends
on the flux rates in the downstream channels as well as tteeatithe mean velocity of
the ambient fluid to the mean capsule velocity. In our sinoetwe have) = 0.5 and

Q@ = 0.5 so that the centreline velocities &t and&3 are equal, and the centreline veloc-
ity at & is half that at&;. It seems that the higher centreline velocity is respoadiot
most of the capsules being drawn into the branch, even faaldbpw rates at the exits.
Capsules which start off the centreline of the main chareva to drift toward the faster
fluid in the middle and are then flushed through into the sidgadin. Therefore our two-
dimensional simulations are in accord with the above mantioexperiments. Next we
set) = 0.75 so that most of the fluid exits througfy and the centreline velocity &

is greater than that &. The majority of the capsules, specifically those wjtlid in the
range—0.3 up to0.4 inclusive, are carried along . The capsule which started with its
centroid at(2, —0.4)d enters the side branch. As predicted by experiment, weftirere
see that the centreline velocities play an important role¢heneventual course taken by
the capsule.

Finally we setQ = 2/3 so that the centreline velocities at the eXftsand&; are
equal. WhenlW = 1 we found that the capsules witp > 0.1 travelled to&,, and
the capsules which started wifh < 0 migrated into the branch. The journey of the
capsule which started with. = 0 is shown in figure 7.17 (a) where we can see that
the capsule became very stretched over the right-hand sidenee to the branch. The
capsule did eventually move into the branch channel anéltte\fs. It is worth noting
that the capsule started wigh = 0 takes approximately twice as long to travel to the
exit as the capsules started with= —0.4 andy. = 0.4. In figure 7.17 (b) we show the
journey of a capsule started frof@, 0)d but with W = 5 thus making it more resistant
to stretching. When the capsule approaches the rightmastbrcorner it deforms less
than the previous case and does not get drawn into the braiacimel. The area error was
higher for these simulations. For instance, the final capshipes shown in figures 7.17
(a) and 7.17 (b) have area errorsddt% and0.1% respectively. In summary, we see that
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(a) Capsule journey whel’ = 1. Capsules shown (b) Capsule journey wheW = 5. Capsules shown
at(Q1/d*)t = 0,3.31, 5.84, 8.31 and25.05. at(Q1/d*)t =0,3.31, 5.86, 10.74 and16.48.

Figure 7.17 : Capsule journeys wheh = 1, p = 0.5, M = 0.001, « = 3w /4, = 1/2 and
@ = 2/3. The capsule centroid is initially located @ 0)d.

the majority of capsules will migrate towards the exit whiwds the greatest centreline
velocity. When the centreline velocities of the exits araadhen the elastic properties
of the membrane may determine the capsule’s trajectori mvire deformable capsules
increasingly likely to enter the branch channel.

7.6 Deformation of the notional boundary

We have seen that when the capsule enters the branch it cargorskvere deformation.
As the capsule passes into the branch the notional boundarg,deformed to facilitate
the transition from the main channel to the branch channel.th& notional boundary
is deformed from its straight reference state boundary etesnare added in order to
preserve the original element length. When the capsule iearregion of the branch
entrance and is bisected by the lipe= —d it is unclear in which channel the capsule
resides. We define the capsule to be in the main channel weerafisule’s centroid is
such thaty. > —d and the notional boundary is deformed around the underditieeo
capsule. This situation is depicted in figure 7.18 (a) wheegake the capsule from the
simulation shown in figure 7.3 (b) when the capsule’s cedti®islightly abovey = —d
and also show the notional boundary. We maintain the straggérence configuration for
A close to the left and right hand entrances to the branch ehamd deformA around
the capsule while ensuring that the deformed notional bayndoes not cross itselR?
or leave the flow domain. The notional boundary may be thoofjlats a cradle which
will deform further as the capsule continues into the braciwdinnel. In figure 7.18 (b)
we show the capsule after its centroid has moved below —d together with.A. We
can see that the notional boundary has been flipped over sthéhaapsule now resides
in the ambient fluid of the branch channel and beneath themaltboundary. Once again
we only deformA close to the capsule and maintain the straight referenciégooation
alongy = —d as much as possible. As the capsule moves further into theehnae
modify the notional boundary so that it becomes less defdrridi¢éhen the entire capsule
lies belowy = —d (plus a small tolerance) the notional boundary is resetststitaight
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reference configuration.

In the simulation shown in figure 7.7 (b) whéh= 0.5 the capsule became trapped
on the right-hand side of the branch entrance. The final ¢agbape from the simulation
is shown in figure 7.18 (c) together with the notional bougpdém this case the notional
boundary becomes extended around the top tip of the capsdl®adhe right of the right
hand of the branch entrance.

7.7 Discussion

We have considered the pressure-driven flow of an elasteutaphrough a channel with
a side branch. The capsule boundary was treated as a twaolonal elastic membrane
capable of resisting elastic stretching and bending. Theuwa was carried in a pressure-
driven ambient flow of fluid with generally different viscosiwhose velocity profile ap-
proaches that corresponding to undirectional Poiseuile flith a prescribed flow rate
far upstream and downstream in the main channel and downstie the side branch.
The Reynolds number was assumed to be sufficiently smalh&flow to be described
using the linear equations of Stokes flow.

The problem was formulated and solved numerically usinghbibendary integral
method. The computational domain was a truncated sectithredifranch geometry which
allowed sufficient entry and exit lengths for the flow to rettw its assumed unidirectional
motion away from the junction. A domain decomposition-tgpproach was used which
meant that it was only necessary to collocate the channéd wiaé capsule boundary, and
the notional boundary in order to solve for the velocity fiattd compute the motion of
the capsule. Although the introduction of a notional boumdavoided the need to col-
locate the entrance and exits to the computational domaie, reeded to be exercised
when the capsule moved into the side branch, particularlhifghly deformed capsules.

Previous workers have observed that a deformable elagtgutzwill tend to drift
toward the centreline in a tube flow, and this trend was cosfitrior the present two-
dimensional calculations in a straight channel with no sidench. We noted a tendency
for the capsule to first move a little way toward the wall befbeading toward the cen-
treline, and this is in line with the three-dimensional cédtions of Pozrikidis (2005c).
Our two-dimensional calculations of the steady-state shajmmputed in the presence
of bending moments resemble those seen in experimentsSecgmb et al. 2007) and
in axisymmetric calculations (Quéguiner and BarthéssBl 1997, Secomb et al. 2001,
Pozrikidis 2005a).

For a channel with a side branch, when the flow rate in the bransufficiently low,
moderate-sized capsules approaching along the centr@littee main channel deviate
downwards slightly from their path but do not enter the blan&s expected, when the
flow rate in the branch is increased sufficiently, the capisulieawn into the branch. Cap-
sules which approach the branch junction along the mainreiaentreline may spend
a considerable time negotiating the branch region. Thegsutes are naturally drawn
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Figure 7.18 : Configurations of the deformed notional boundary.
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toward an area of relatively slow-moving fluid at the pointesd the dividing stream-
line, which separates the fluid which enters the branch fitoab which proceeds along
the main channel, makes contact with the wall. In the préseoinsidered geometry,
capsules entering a right-angled or acute-angled sidebnaray snag on the corner and
become trapped. Capsules entering an obtuse-angled tanat become trapped, but
nevertheless may linger at the junction for some time uraeggsignificant deformation
before continuing to one or other of the exits. Although tleéodmation in the region
of the junction tends to be less pronounced for capsuleshwpéss successfully into
right-angled or acute-angled branch than an obtuse-argkatch, the elastic tensions
and bending moments in the capsule membrane are comparable.

When the flow rates through the main channel exit and the gigech exit are the
same, capsules will tend to follow the path where the velasitgreatest. Accordingly,
they will tend to migrate into a side branch which is narrowean the main channel.
When the two exits are of equal width, there is still an oudrials toward the side branch.
However when the branch channel is narrower than the maimnehand the centreline
velocity at the branch exit is less than at the exit of the nchginnel we find that the ma-
jority of capsules remain in the main channel. This effe¢ch@microcirculation is known
as plasma skimming since the daughter channel may receelatavely high proportion
of the blood plasma.

When a capsule has entered the side branch, eventuallyl imigtate toward the
centreline and relax to an equilibrium shape. Although iyrgaickly recover a shape
resembling the final state, it may travel some consideraistarite before fully achiev-
ing equilibrium. This suggest that in a complex tube netweith frequent successive
branches capsules might not have sufficient room to redesiadquilibrium before en-
countering another division. Consequently, the grosodiet which may result from
turning through a significant branch angle into a side tuth&esy to persist and be com-
pounded at subsequent branches. In simulations, the tibstdrecomes less severe on
increasing the elastic membrane stiffness or increasiagigtosity of the encapsulated
fluid.

The route taken by a capsule at a branching may depend on fitvend¢ion expe-
rienced in the branch region, and consequently on the elpstiperties of the capsule
membrane. We have found that two capsules of differentielasffness, for example,
which are started from the same position upstream of thechrander identical flow con-
ditions may take different routes, with one continuing gldhe main channel and the
other being drawn into the branch.

While the present work has considered the motion of a siragbswe, in applications
such as blood flow, for example, there may be many capsulssmrelf the capsules are
widely spaced, then the present results may be applied. Wedwen from simulations
of capsules which start with different offsets from the celime that the path taken by
the capsule depends on the flux rate at the exit together hétambient fluid velocity.
By changing the centreline velocities at the exits by aiggthe flux ratio we were able to
draw the majority of capsules along the main channel or Hamimigrate into the branch
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channel thus altering the discharge haematocrit at the. éXitese observations are in line
with the observations on the flow of red blood cells (RBCs)ha microcirculation on
p.59 of Popel and Johnson (2005) (and the references thevbnfind that the different
discharge haematocrits are due to daughter branches wgltethflux rates drawing a
disproportionate number of RBCs into the vessel.

For tightly-packed capsules, interactions between neigttis expected to have an
effect on the transit and deformation of each individualscég. Although the addition
of more capsules to the flow is theoretically simple withia framework presented here,
there are practical computational difficulties associatétth the deformation of the no-
tional boundaryA when multiple capsules are present. Moreover, the conipogdt
domain will require a longer entrance and longer exits soaga contravene the as-
sumptions of the problem formulation, with a consequentaase in the demands placed
on computer memory and CPU time.

7.8 Further work

In the numerical simulations presented in this chapter amatévious chapters we have
found good agreement between the results of our calcutatiod published results for
straight channels, pipes and branching channels. Howevenwst stress that when com-
paring our results with three-dimensional calculationsoaa only perform qualitative
comparisons. To extend our current model into three dinoaissive must implement the
notional boundary as a deformable surface, which is chgitbencomputationally. We
have also mentioned our desire to round the corners of tharemt to the branching
channel in order to more accurately model the flow of red bloelts through a branch-
ing capillary. The rounding of the corners would also makenitlear where to join the
notional boundary onto the channel walls. Furthermore,dfimtroduced an additional
capsule into the branching channel flow we would have to dethe notional boundary
around one or all of the capsules. We will now investigate tiviewe can avoid these
implementational difficulties by omitting the notional balary from the formulation.

We consider the same two-dimensional geometry as depintéidure 7.1 but we
remove the notional boundary. To derive a boundary integral equation for the flow we
define the flow domain bounda§yI" = & U & U & U B U C U P, and apply the general
boundary integral equation (1.3.40) to the total velocitg &raction to get,

drrp M (x0) = — / VG, ds) + p / ul T my dst) (7.104)
or or

for xq in the ambient fluid. If the channel contained more than ompsue thenP is
the boundary of all of the capsules. After applying the np-ahd no-penetration condi-
tions on the channel walls and the boundary conditions attitrnce and exits given in
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equations (7.9), (7.10) and (7.11) we obtain

Amp u Z/fPr G;; ds) +Z7r,n/nl Gi; ds)

- [ 16 dsto »s [l T s + s [l T dso.
B.C,P r=lg, P
(7.105)

All of the integrals overg;, & and &3 may all be calculated analytically. We apply the
boundary integral equation (1.3.40) to the total flow overphrticle boundary to get

~ [ 12 Gy s +un [l Ty dso) (7.106
P

P

for xg in the fluid of the main channel, and subtract the equatiom fequation (7.105) to
get

Amp u Z/fPr G;; ds) +Z7r,n/nl Gi; ds)

/ Y Gy dsk) — / Afi Gij dS()()—F,uZ / ul" Gy; ds)

B r=lg

(1 - N / ul Tipmye ds) (7.107)
P

for xg located in the fluid. Since the discontinuous double-laygeptial over the channel
walls is not present the equation is also valid fgrlocated on the walls of the main
channel or the branch channel, and where the velocity onetitdndnd side is zero by
no-slip. The unknowns in equation (7.107) are the disturbagressures af, and &3,
the tractions on the channel walls and the velocities on épsule boundary. Evaluation
of equation (7.107) withxq located on the walls will allow the calculation of the wall
tractions. We may also evaluate the equation withon the capsule boundary, while
taking care to include the discontinuous jump in the doldyer potential, in order to
calculate the velocities on the capsule boundary. Howeeestill require equations for
the disturbance pressures;, andws. Previously we have used the Lorentz reciprocal
relation to derive equations for the disturbance presshoyeapplying the relation to a
pair of flows. Now that we are treating the main channel andthach channel as one,
we would like apply the reciprocal relation to the total flomdaone of the disturbance
flows. However we do not have a natural choice for the dishwédlow. If we chose
thew”* flow then we would have to evaluate it in the branch channelaalternative
we consider a simpler method. The flow throughout the brawgcbhannel satisfies the
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Stokes equation,
v.-eM =0 (7.108)

wherea) s the stress field in fluid 1. Integrating this equation over flow domainl

gives

0= Hv-a(l) dA(x) = /f“) dsx) (7.109)
r or
by the divergence theorem. After applying the boundary itmms at the entrance and
exits we obtain

3
Z / fP ds) + 2dmo i+ 2D w34 + / FU ds) = 0, (7.110)

r=lg B,C,P

wheres’ is defined in equation (5.3). The fluid inside the capsule i&gued by
V.o =0 (7.111)

which when integrated over the capsule leads to

0= ﬂv-a@) dA(x) = / @ dsk) (7.112)
P

P

by the divergence theorem. Subtracting this equation frguagon (7.110) gives

3
S [ £ dsto +2ami+ 20w+ [ £ dso+ [ AF dsg) = 0. (7.113)
r:lgr P

B.,C

From the definitions of the Poiseuille tractions we find that

3
Z/fpr dsk) = —2d1Q G 1, (7.114)

T:15r

which upon substitution into equation (7.113) gives

/f<1> ds) + 2d o i + 2D w34’ = 2deG1i—/Af ds), (7.115)
B,C P

where the terms on the left-hand side involve unknown gtiestand the terms on the
right-hand side are known functions. The two equations Hier disturbance pressures
are provided by theé and 5 components of this equation. We therefore have a sufficient
number of equations to calculate the wall tractions andidisince pressures at the exits.
Since we make no assumptions about the geometry in equdiidk®7) and (7.115) we
may round the corners of the branch channel entrance. IttHact is almost no need to
distinguish between the walls of the main and branch chanmel could just refer to the
walls as one boundary.
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Application of the boundary element method to the geomdtiy,boundary integral
equation (7.107) and equation (7.115) will lead to set ardifsed equations which can
be formed into a linear system as we have demonstrated pgdyioThe solution may
then be used to compute the motion of the capsule or capssiteg an appropriate time-
integration method. It is also worth noting that when= 1 and the capsule boundary
velocities disappear from equation (7.107) the inversénefrhatrix in the linear system
need only be calculated once, independent of the locatidheo€apsule. Previously we
had to recompute the matrix inverse when we changed the sii#ieenotional boundary.

We also wish to extend our two-dimensional model to threeedlisions to more accu-
rately predict the motion of an elastic capsule along a bviagctube. Two-dimensional
simulations are able to capture some of the qualitative \beta of three-dimensional
capsules in straight tube flow, including some of the keyuiesst of the capsule profile
and the tendency of capsules to migrate laterally to the talmtreline. However, two-
dimensional studies are severely limited in their desicripof the elastic behaviour of the
capsule membrane. For example, in-plane shear deformadizurs in three-dimensions
but not in two-dimensions. Moreover some elastic capsuégsblood cells for example,
show a strong resistance to change in the local surface driba mvaintaining the same
interior cell volume. In the present two-dimensional wattke area inside a capsule is
preserved but the capsule perimeter extends under deformat

In summary, we have sketched out a method by which we couldvertine notional
boundary. We would therefore be able to extend the computtimodel to include
the effects of rounded corners and the motion of multiplesubgs. The removal ofl
alone would facilitate a simpler transition from the cutrémo-dimensional model to
a three-dimensional model which calculates the passage efaatic capsule through a
branching tube.






Chapter 8

Conclusions

We started in chapter 1 by discussing the physical backgradrparticle and capsule
motion in a variety of situations. We mentioned the motiortta fluid-filled capsules,
fluid drops and rigid particle in shear flows, channel flows brahching channel flows.
This discussion provided a motivation to our research iméomotion of a flexible capsule
in a branching channel flow. We also provided the mathemdt@aekground to Stokes
flow, Poiseuille flow and the boundary integral method whiehused in each subsequent
chapter. In chapters 2—7 we formulated a set of boundargratequations which gov-
erned the motion. In each channel flow we considered a peessiven Stokes flow and
prescribed the flux rate at the exit or exits to the computatiolomain. The pressure at
each exit was therefore included as an unknown in each chiowe Each problem was
formulated and solved numerically using the boundary malegethod. The computa-
tional domain was a truncated section of the channel gegmétich allowed sufficient
entry and exit lengths for the flow to return to its assumedlivectional motion away
from any disturbance, whether caused by the presence otialpacapsule or a branch
channel. We obtained equations for the pressure using thentzoreciprocal relation
which avoided collocation of the channel ends which has meged to cause numeri-
cal sensitivities (Pozrikidis 2005c). By setting the unkmotractions and velocities on
the boundaries to constant vectors we applied the boundiamyeat method to the chan-
nel geometry and the equations in order to obtain a set obedgeequations which we
solved by standard matrix methods. We showed that in eaghtbasnumerical solution
was consistent with the underlying assumptions and we mdatiajjood agreement with
published results where possible. As we added complexitgga@hannel flow, by intro-
ducing a flexible capsule for example, we found that the bapndlement formulation
easily incorporated the increasingly diverse paramet&cep

In chapter 2 we provided an introduction to the boundarygirgemethod and its
application to a simple but non-trivial fluid-filled straigbhannel flow which involved
the placement on one of the walls of a small conveyor beltcivhioved with a constant
velocity. Despite the simplicity of the flow, a parallel mag drawn with cytoplasmic
streaming in large plant cells (Verchot-Lubicz and Golats@009). In the absence of
a background Poiseuille flow we showed that an eddy is indicélde fluid when the
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conveyor belt moves in either direction. The direction o fluid in the eddy being
determined by the direction of the conveyor belt's motionha a background flow is
introduced the fluid behaviour is dependent on the direatfaihe conveyor belt. When
the belt moves in the opposite direction to the background fleen an eddy is created
in the fluid and close to the belt for all values of the belt she€he size of eddy, and
the pressure drop between the entrance and exit, increadetherbelt speed. When the
conveyor belt moved in the same direction as the backgroomdtfien there is a critical
belt speed below which the fluid is drawn towards the belt beihtcontinues to the exit.
However, when the belt speed reaches this critical valueddy appears close to the top
wall, and increases in size as the belt speed is increasetbuive this critical belt speed
to be the value which induced a zero wall shear stress at d poithe top wall. For
all belt speeds the pressure drop between the ends decegabése belt's motion may
be interpreted as helping to maintain the flux rate in the kA larger conveyor belt
induced a more rounded eddy while a smaller induced a trlangddy.

In chapter 3 we dispensed with the conveyor belt and intredw rigid particle of
constant shape, in a first step towards a model for a flexilpsuta in a channel flow. We
repeated our application of the boundary integral and eimethods in order to obtain a
linear system from whose solution we obtained the boundistyilalition of the tractions
and the particle’s velocity. We found that the particle dat move nearer to either wall
which is in agreement with the reversibility property of Kt flow. We also found that
the particle’s velocity was always less than the backgrdiow, evaluated at the parti-
cle’s centre, thus demonstrating that the particle ‘slig$ative to the background flow,
and showed excellent agreement with the results of SugBeka (1993). Of particular
importance to our investigation was the rate of decay of tsieidance due to the particle
as we moved away from it. We found that at a distance of thretcfgaradii from the
particle’s centre the disturbance velocity was less tharflis maximum, and the veloc-
ity continued to fall with distance. When the particle laytbe centreline, we found that
in a frame of reference moving with the particle there wexrestagnation points present
on the particle’s perimeter. These points disappeared thecparticle was moved away
from the centreline, and instead a thin region of circutafilnid surrounded the particle
and eddies appeared in the fluid. We found off-centre pasgticlduced a greater pressure
drop than centred ones, most likely due to asymmetry craatéte flow and the pres-
ence of the eddies. Increasing the particle size while fiksgentre also created a larger
pressure drop across the computational domain. When theigépbetween the particle
and one or both of the walls became small the pressure drogaises exponentially, due
to the increased stress in the gap (Staben et al. 2003). Wd tiwit Hasimoto and Sano
(1980) had photographed eddies similar to the ones seen here

In chapter 4 we removed the rigid particle and investigalbednotion of a fluid drop
in a straight channel, and the motion of a fluid-filled capsnla straight channel. We
found that a fluid drop reached a steady state after tragetiiany drop radii, and induced
an additional pressure drop which was significantly less that for a rigid particle of the
same shape. Once again we found the disturbance velociyeécapidly as we moved
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away from the drop, and in this case the disturbance veldeltyto less than 1% at a
distance of 4 drop radii. We found that when a drop was stdeednough away from
the centreline it gradually moved towards the centrelittepagh we did find that when a
drop was started only slightly off-centr25% of the channel width for example, the drop
did not noticeably move laterally in the channel. We did fihdttdrops started further
from the centreline moved fastest towards to it but then stbtheir approach. We found
qualitative agreement with the published results of Mataand Tryggvason (2000) and
Zhou and Pozrikidis (1994). The differences between owlt®and those of Mortazavi
and Tryggvason (2000) may be attributed to the fundamestalimptions about the flow.
We are considering a Stokes flow whereas Mortazavi and Tasgmgv (2000) consider a
range of Reynolds numbers, the smallest of which ®v25. We noted that the differences
between our results and the results of Zhou and Pozrikidi84)lwere most likely due to
the authors’ use of a channel specific Green’s function arablaptive boundary element
implementation.

We treated the elastic capsule as a two-dimensional elastiobrane capable of re-
sisting elastic stretching and bending, and which conthimdluid of generally differ-
ent viscosity to the ambient fluid. Before placing the etastpsule into a channel,
we checked the results of the elastic capsule module of ale egainst the results of
Breyiannis and Pozrikidis (2000) for an elastic capsule lim@ar shear flow, and found
excellent agreement. We then replaced the fluid drop in there# with an elastic cap-
sule, a change which was easily incorporated into the baynelament formulation,
and allowed the capsule to deform. We found that when bendisigtance was omitted
our numerical calculations failed to obtain a steady sh#hewgh such a shape has been
shown to exist in two-dimensions by Breyiannis and Pozisk{d000). When we included
a small resistance to bending we obtained a steady shapeefoapsule after it had trav-
elled many capsule radii. Our two-dimensional steadyesthape resembled that seen in
experiments (e.g. Secomb et al. 2007) and in axisymmethiuletions (Quéguiner and
Barthés-Biesel 1997, Secomb et al. 2001, Pozrikidis 2008z additional pressure drop
for an elastic capsule was approximately the same as foidgadgticle of the same shape.
Increasing the membrane stiffness led to a less deformadysshape which was attained
in a shorter time, translated along the channel faster, rshetied a lower additional pres-
sure drop. The viscosity of the encapsulated fluid was showrave little effect on the
eventual steady shape, although the time to reach the stbagg increased with the cap-
sule’s fluid viscosity, in line with comments in QuéguinedaBarthés-Biesel (1997) who
studied the three-dimensional axisymmetric motion of a@sted capsule into a circular
pore. Capsules which are initially displaced from the clehcentreline migrate towards
the centreline, which is in line with the three-dimensiowatk of Pozrikidis (2005c) with
which we found good qualitative agreement. Larger capdeled to steady shapes with
elongated trailing tips. Additionally the larger capsulemnslate slower along the chan-
nel and induce a greater additional pressure drop. Finadljound that in all cases the
disturbance velocity decayed rapidly and it had reducedit®f its maximum value at a
typical distance of four capsule radii from the capsulelstiasd.
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In chapter 5 we considered the fluid motion in a branching cakin the absence of a
particle or capsule, and with prescribed flux rates at this exihe computational domain.
We used the boundary integral method to calculate the fluidom@nd validated the
results by comparison with the results obtained from a fidiffterence code. The results
were in excellent agreement for a variety of flow conditioms.the boundary integral
formulation we introduced a notional dividing boundaryvibe¢n the main channel and
the branch channel to facilitate the separate treatmehedidws in the distinct channels.
We note also that the boundary integral formulation morée@meludes the branch angle
than the finite difference method which would have requirggicant amendment to
include the effect of an arbitrary branch angle. In our bamdonditions we assumed
that the flow disturbance induced by the branch decayed as avedraway from the
branch entrance towards the entrance or either exit. Welfthat the boundary tractions
did indeed decay to their expected values as we moved awaytfie branch and the
velocity profile settled to the pertinent Poiseuille profilghin 2 channel widths from the
centre of the branch entrance. When we varied the flux rdtigs tletermining the flux
rate at the exits, we found that the pressure drop betweeaneetand exit was greatest
at the exit which received the majority of the fluid. We fourne pressure drop to be
greatest at the exits, for a fixed value of the flux ratio, whenliranch angle was/2 and
a minimum for an acute angle. By considering the shear stnesbe walls close to the
downstream corner of the branch entrance, we found thabtaion of the termination
point of the streamline which divides the flow depends uperratio of the fluxes entering
the downstream channels and the branch angle. When mog @titth continues along
the main channel the dividing streamline terminates on thadh channel wall, for acute
and obtuse branch angles. As the branch angle becomes ntose dhe termination
point moves further from the corner and into the branch chhrtiowever, if the branch
channel receives the majority of the fluid then the termamatpoint lies on the main
channel wall. Changing the branch angle in this case doesigoificantly move the
dividing streamline’s termination point.

Next we introduced a rigid particle into the branching clelnBefore examining the
particle motion we checked that the computed results weagieement with those of a
fluid-filled branching channel by comparing the wall trangpdisturbance velocities and
pressures between those obtained in chapter 5 and thosdatadcwith a small particle.
We found consistent results for a variety of particle possi. When we released a small
particle close to the entrance and among streamlines whitchwelled to a particular exit
the particle did indeed travel to that exit. A particle raled with its centroid on the divid-
ing streamline caused the numerical simulation to terreimdten the particle touched the
corner of the branch entrance, as expected. We found thenuiniparticle translational
velocity to occur when the particle is in the vicinity of theabch entrance. When the par-
ticle is several particle radii from the branch entrance sxenfl the velocity to match that
predicted by the straight channel model considered in enghtthus providing further
evidence that the effect of the branch is limited to a regiomsesto the branch entrance.
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We discussed the method by which we would deform the notibaahdary which sep-
arates the main channel from the branch channel. We foundlifferent configurations
did not greatly affect the numerical solution. We decidedrup. method by which the
notional boundary would remain in its original configuratias much as possible, and
only be deformed in the region close to the particle, wherewweld change the shape of
the notional boundary to closely follow the shape of theiplart

In chapter 7 we considered the pressure-driven flow of artieleapsule through
a channel with a side branch. We treated the capsule bourdaaytwo-dimensional
elastic membrane which resisted elastic stretching andibgrusing simple constitutive
relations. For simplicity, we used a circle as the unstissate of the capsule and when
released we allowed it to deform as it moved with the flow. Wtiendeformed capsule
was in the vicinity of the branch entrance care needed to &eied when deforming the
notional boundary around the capsule, particularly whercépsule was highly deformed.

After releasing the capsule we found that it adopted a patedike shape as ob-
served in experiments (e.g. Secomb et al. 2007). When tisaileapasses over the branch
entrance on its way to the exit of the main channel, or migrat® the branch channel it
suffers considerable deformation. However, since we exheceffect of the branch en-
trance to decay as we move away from it we found that the cesilllmigrate towards
the channel centreline and relax to a shape resemblingutbtEgm state. We found that
the capsule did not fully achieve its steady-state shape sindistance longer than that
of our truncated computational domain was required. Thesduggest however that in
a complex network of channels with frequent branches, dapsuie more likely to attain
this semi-equilibrium state since the distance betweendbhes may be relatively short.
We found that the capsule deformation was less when we isedethe elastic membrane
stiffness or the viscosity of the encapsulated fluid.

Using the streamline calculations from the fluid-filled bohimg channel, we accu-
rately predicted the direction which the capsule takes whisrreleased entirely within
a region of streamlines which travel to a particular exit. #psule which approaches
the branch junction along the dividing streamline may sperdnsiderable time negoti-
ating the branch region, since the fluid moves relativelybian this region especially
close to the wall where we expect, in the absence of a caph@e]ividing streamline
to terminate. We found that when a capsule approaches thasti@am corner of the
branch entrance and the branch angle was acute or a riglet-thieg the capsule becomes
trapped on the corner. The capsule is then caught in an étah$low which deforms
the capsule along both channels simultaneously. For treeafaen obtuse angled branch,
we found that the capsule does not get caught on either cofrtbe branch entrance.
When the capsule does migrate into the branch it could takesiderable length of time
to navigate its way fully into the branch entrance, and tdndsuffer considerably more
deformation than a capsule which remains in the main chasmeigrates into an acute-
angled branch. However we found that when the capsules ssfodg travel to either exit
the elastic tensions and bending moments in the capsule raembare comparable for all
branch angles. The greatest membrane tensions occur wdheaghule becomes trapped
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at the branch entrance corner. We found that there existgi@ré&om which we could
release the capsule and its path is determined by the easfierties of the membrane.
For instance, a capsule released with its centroid in tlggrewhich travelled into the
branch channel could be made to remain in the main channelcbgdsing its membrane
stiffness thereby making it more resistant to deformation.

When we narrowed the branch width, the capsule consisténathelled to the exit
with the maximum centreline velocity. Putting this in thentext of blood flow where
red blood cells tend to congregate on the channel centradinmrtion of the ambient
plasma is ‘skimmed’ from the main channel and enters thedbra®ur results are con-
sistent with this observed ‘plasma skimming’ effect in lmfaing capillaries. When the
downstream centreline velocities were equal we found anegiose to the entrance and
on the centreline from which it is possible to affect the éxitvhich the capsule travels.
For example, a capsule started with its centroid on the elemtrof the main channel and
which travelled into the branch channel could be made teetravthe exit of the main
channel by increasing the capsule’s membrane stiffnessthi&vefore demonstrated that
the direction in which the capsule travels may, in the maigoases, be determined by
the elastic properties of the membrane.

While we have considered the motion of a single capsule, psua-laden flows
which arise in nature and industry there may be many capgutsent. We can apply
the current results provided the capsules are sufficiepeed, although care must be
exercised when a capsule becomes trapped at a corner samédtthen be approached
by another capsule and the capsule interation must therkée iato account. For tightly-
packed capsules, interactions between neighbours istexpiechave an effect on the tran-
sit and deformation of each individual capsule. Althoughakdition of more capsules to
the flow is theoretically simple within the framework pretshhere, there are practical
computational difficulties associated with the deformatd the boundary which divides
the main and branch channels when multiple capsules arerfiréaurthermore, we would
require a longer computational domain so that the assungptiEgarding the decay of the
disturbance due to each capsule is not violated. To amudidrés problem, we pro-
vided a sketch of a method by which we could remove the ndtiomandary entirely, and
therefore easily include the motion of multiple capsulemiehdments to the channel ge-
ometry, round corners at the branch entrance for exampli @dso be included via this
alternative method. Moreover, the path to a more realistieg-dimensional boundary
integral implementation of an elastic capsule in a brarghithe would be rendered more
straightforward, since the necessity for a deformableditig surface would be removed.

Finally we note that throughout our discussions we havemasdithe channel walls
to be straight. In flow domains, such as blood flow in the capék, this is evidently
not the case. We do point out however that we have made thisngsi®n in the interest
of simplicity and irregularly shaped channel walls couldiabe incorporated into the
boundary element formulation, in two or three dimensionsr é&xample Secomb et al.
(2007) digitised a section of a rat's mesentery in order tivige a realistic domain for
their finite-element calculations. This domain could bedukg the boundary integral
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formulation without amendment, and with the additional dférof a cheaper computa-
tional cost since only the elements of the walls need to beretised, as opposed to the
entire flow domain when using the finite-element method. H@awéhe resulting matrix
in the linear system will be much denser for the boundary elgrmethod than for the
finite-element method. Repeatedly solving a linear systé@madense matrix may prove
computationally expensive. Also we point out that the b@updntegral method may
only be applied to flows in which the Reynolds number is snimit, it is in those flows
where the boundary integral method provides an efficiertptdble and accurate method
of calculating the velocity field.
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Appendix A — Integration of the
two-dimensional free-space Green’s
function

We used a quadrature to approximate the integral of the fmemsional free space
Green’s function, or Stokeslet, over a straight elemente filp-dimensional Stokeslet
is defined by

(z; — w0,)(25 — 20,5)

Gij(x,x0) = =6 In(r) + 2 (A.1)
wherer = |x — x|, and the integral over elemerit, is
Guj(xo) = [ iyl x0) s, (A.2)
E

where the element is taken to be a straight-line with startpe, = (x5, ys), and end
point,x. = (z¢, y.). We use Gauss-Legendre quadrature to integrate the Stbkesher-
ically along a line. Since the quadrature uses Legendrenpafiyals, which are defined
on the domairj—1, 1], we introduce a parametérc [—1, 1], so that the line betweex,
andx. may be represented parametrically as

z(§) =
y(§) =

N[= D=

(xe + xs) + %(xe - xs) §, (A.3)
(ye + ys) + %(ye - ys) §. (A-4)

As ¢ increases from-1 to 1, the pointx moves fromx, to x.. Expressing the integration
variable in terms of gives

ds() = \/dz? + dy?
VG -2 do)* + (e — ) )’

\/(we - xs)Q + (ye - ys)2 df
3 de, (A.5)

I
o NI
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whereh, is the half-length of an element and defined by

h§ = %\/(xe - xS)Q + (ye - ys)2 . (A6)

Therefore we can expresf%ij in terms of¢ and approximate the integral using Gauss-
Legendre quadrature to get,

Gij(x0) = | Gij(x,%0) dsx)
/

1
— he / Gij (x(€),x0) o
~ he Z Gij(x ) Wy, (A7)

where Vg is the specified number of base poings,is the " root of the Ng-degree
Legendre polynomial and:, is the integration weight for the?” base point.

There are two cases to consider. In the first case the ggledoes not lie on the
element and so the Stokeslet is well defined and we can egdhmintegral using (A.7).
Whenxg lies on the element the Stokeslet is logarithmically siaguThis is the second
case and it occurs during the construction of the ‘influemeatrix because, is placed
at the midpoint of each of the boundary elements. In this tasdelpful to note that

r= \/(55—560)+(y Yo)?

= /(3 (e — )2 + (& (ye — 1) £)?
= Iheél, (A8)

sincex — xp = 3(x. — x;) &, and so@ij becomes

1

Gutoa) = [ (i i + B

-1

1
= —hedy; (21nh5 + /m!&\ d{) 4 (Teim xz)}(fj “taa) - (ag)
¢

-1

which contains an integrable logarithmic singularityéat 0 wheni = j. Taking the
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principal value of the integral when the singularity is Eneisgives

_ xs)

éwa:(xo) = 2h5 (1 —In h&) + (.%.GT, (AlO)
Gay(x0) = Gyul(x0) = (e = x;éj ), (A.11)

N 2

Glyy(x0) = 2he (1 — Inhe) + % (A.12)

for the components of equation (A.9). More details on thedgataire method, together
with the treatment of other kinds of boundary elements, mayfdund in Pozrikidis
(1998).



Appendix B — Influence matrix
deflation for a rigid particle

When a rigid solid particle travels along a straight chartheldisturbance velocity”,
caused by the particle is governed by the boundary integrateon,

A uD(X ) = 7T2/TL'(X) Gij(x,%x0) dsf)
/ FP(x) Gy, i) — / fix) Gyl x0) dsg). (B.Y)

derived in chapter 3, and wheég is the exit to computational domainy is the distur-
bance pressure &b, n is the normal vector which points into the flui@;; (x, xo) is the
free-space Green’s functionjs arc-length f” is the disturbance traction on the channel
wallsC, andf are the tractions on the particle boundd&py,Unfortunately equation (B.1)
does not have a unique solution. Let us define

f=Ff+xn, (B.2)

for the traction on the particle and whefeis the particular solutiony is an arbitrary
constant anch is the normal vector which points out of the particle and itite fluid.
Substituting equation (B.2) into equation (B.1) gives

trp uP (%) = / 1(50) Gy (3, %) dse) — / 1P () G (%, %0) dste)
/ £:(3) G 3, x0) dste) — / ni(x) Gy (x. %0) ds)
’
— / ni(x) Gy (x, %0) dsx) — / FP (%) Gy (x. x0) ds)
/ (%) Gy (x, x0) ds) (B.3)

becausefp n;(x) Gij(x,x0) dsf) = 0 by equation (1.3.34). Therefore an arbitrary mul-
tiple of the normal vector may be added to the particle tomctvithout violating equation
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(B.1). To ensure the uniqueness of the traction on the paficundary an additional
term, called the ‘deflation’ term, is added to the boundatggral equation (B.1). Since
the lack of a unique solution stems from the tractions on #réighe boundary we define
the deflation term to be

D;(x0) = n;(x0) / ni(x) fi(x) dsx), (B.4)

P

which is given in Pozrikidis (2005b). Substitution of edoat(B.2) into equation (B.4)
gives

D; (o) = i) [ mi(x) i) ds) + xm;x0) 5. (B.5)

P

which shows that an arbitrary multiple of the normal vectammot be added to the particle
traction in the deflation term, and wheseg is the total arc-length of the perimeter Bf
Therefore we can ensure that the tractions on the particledary are unique in equation
(B.1) by adding the deflation terni)(xy), to the boundary integral equation. However
we need to know how the presence of the deflation term willcaffiee solution to the
boundary integral equation, and in particular will a salatito the ‘deflated’ boundary
integral equation,

A UJD(X()) + Dj(xg) = WQ/ni(X) Gij(x,%0) dsf)
&

/ FP(x) Gy (x, x0) dst) — / Ji(x) Gy (x,x0) ds),  (B.6)

be a solution to the original equation (B.1) ? To calculat dkflation term’s value we
multiply equation (B.6) by ;(xo) and integrate oveP with respect tos(xg) to get

4 L+ 1, =myl3— Iy — I5, (B?)
where
B = [ P o) s o) i) ©.9)
P
[2 = /Dj(XQ)nj(Xo) dS(XQ), (Bg)
P
n- | (4/ i) G (%, %0) dSéc)) n;(x0) dsto), (B.10)
P 2
1 :/ ( fZD(X) Gij(x,%0) dS(x)) n;j(xo) dsfo), (B.11)
P \C
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and

/ (/ fz z] X XO) dS@()) nj(xo) dS(XQ). (812)

To evaluatel; we cannot apply the divergence theorem becatfdds undefined in the
region bounded byP. However we can write the velocity in terms of the total véipc
and the Poiseuille velocity using” = u — u”’, wherew is the total velocity and:” is
the Poiseuille velocity. Therefore we have

I = [P n(x) dsto)
P
/ w(x) - n(x) dst) — / P(x) - n(x) dsf), (B.13)
P P

where we have reverted toas the dependent variable. We may use the divergence theo-
rem to transform the integral ovér involving the Poiseuille velocity to an integral over
the region bounded b which we will label Ap, to get

B = [ ulx) i) dsg) - /Vu ) dA(x)

u(x) - n(x) dsf), (B.14)

ﬁ\ﬁ

sinceV-u? = 0 because the Poiseuille flow is incompressible everywheteichannel.
On the particle boundary we may write the velocity in termsthad translational and
rotational velocitiesy and) k, using

u(x) =V +QkA (x—x.) (B.15)
to get

L u(x) - n(x) ds)

I
Ve

V. /n ) dsx) + Q/(k A (x —x¢)) - n(x) dsfx)

P

P
V. [nx)dsk)+Q [ V- (kA (x—x:))dA(x), (B.16)
[rowoe [T

where we have used the divergence theorem to transform ¢badntegral on the right-

hand side. Since the normal vector in Cartesian coordingtegr, y) = (%, ——) the
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first integral on the right-hand side is

/ ) ds) = / 'L——Jd(x) / i—/dxj:O (B.17)

P P

by periodicity. Since the rigid particle is allowed to movétwthe flow, the centroid,
x. = (x., yc), and the position vectok, = (z, y), will only depend on the time. Therefore
the integrand of the second integral in equation (B.16) is

V- (kA (x(t) = x:(1)) = V- (—(y(t) + ye(£))i + (2(t) + z.(1))j) = 0. (B.18)
Therefore substituting equations (B.17) and (B.18) intaadipn (B.16) shows that
I =0. (B.19)
The next term idy which is

I, = /Dj(Xo)nj(Xo) dsfxo)
P

:/ (”j(xo) /”‘(X) fi(x) dS(X)) n;(xo) dso)
( n;j(x0)n;(xo) ds(xo)) (/ ni(x) fi(x) ds(x))

P

— Sp x) ds), (B.20)

whereSp is the total arc-length of the particle. Fby, I, andI5 we rearrange the order
of integration to get

Iy = /ni(X) (/ n;(xo) Gij(x,Xo) dS(Xo)) dsf), (B.21)

£ P
Iy = /fiD(X) (/ n;(x0) Gij (%, %0) dS(Xo)) ds), (B.22)

and ’ '
Is = /fz(X) (/ n;(x0) Gij (%, %0) dS(Xo)) ds), (B.23)

P P

which all contain the common integral,

1671'(X) = /nj(Xo) Gz‘j(X,Xo) dS(XQ). (824)

P
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Making use of the symmetry of the Green’s functiéh,; (x,xo) = G;i(xo,x), we write
equation (B.24) as

IGJ(X) = /nj(Xo) Gji(XQ,X) dS(XQ). (825)
P
By swapping: < j andx < xg in equation (B.25) we obtain

Ts.j(x0) = / ni(x) G (x, o) ds() (B.26)
P

which is zero by the continuity equation (1.3.34). Therefae have
L=[3=I=1I=0, (B.27)

and so equation (B.7) reducesftp= 0, which implies

/ ni(x) fi(x) dsg) = 0 (B.28)

P

since the perimetef§p, is non-zero. Therefore the deflation term,

D;(x0) = nj(x) [ mi(x) fix) ds) = 0. (B.29)

P

and the boundary integral equation (B.6) will be unaffedtgdts presence, and a solu-
tion of the deflated boundary integral equation will also ®ktion of the non-deflated
system.

The same process may be applied to the boundary integrali@gder a branching
channel containing a rigid particle to obtain the same tesul



Appendix C — Calculation of I (x)

When we consider a branching channel, the boundary integtgdtion for the main chan-
nel gives rise to the term,

Lixo) = (1= Q) [ (5 Gy = wul Ty dse), (€1)

)

which we may calculate exactly by substitution of the Pdletraction, £ , the Poiseuille
velocity, w1 |, the Green’s function and the stress tensor.£Atve write the Poiseuille
velocity and traction as
2
WP — Gy d

2
_ y_ . P _ g .

where—( is the constant pressure gradient betwéeand&,. We substitute the equa-
tions in (C.2) into equation (C.1) to get,
d? 1,
Ij(XQ) = (1 — Q) G1 —l ij + yGyj + E rjr — §y Tarjx dS@() (C3)
&

The Green’s function and the stress tensor are defined irtieqsig1.3.29) and (1.3.30),
from which we can see that both functions are written in tesfifs wherex = x—xg. At
Es, & = x — 1z = | — 29 Which is constant. Writing equation (C.3) in termsjof y — 1
we obtain

o) = (1= Q)G [ (=1Gu;+ Gy + 3Gy
&

d® — yg Lo
+ 5 g = 90§ e — 50 Toje )i, (C4)

whereds = dg. Therefore to evaluate the integral (C.4) we must evalledeantegrals,

/ Gy di, / G, d, / 3Gy g,
52 52

)

/ Toyo i / §Thpdj, and / 7 Tozo d.
& &2 &2
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Calculation of the components of these integrals gives,

[ Gerdi= (30 -1 117, (C5)
1)
/nydg:/c:yxdg:@[lnr]g‘id, (C.6)
& )
/ny dj = [2§ — §Inr — 2 arctan(j/2) /=7, (C.7)
&
/g Gye df = @ [§ — Zarctan(j/2) V=" ;| (C.8)
&
/gayy dj = 1[39° —2(r2+2fc2)1nr]zjd, (C.9)
&

for the integrals involving the Green'’s function, whéile = d) = d — yo, §(y = —d) =
—d — yp andr = /22 + §2. The integrals involving the stress tensor are

i y=d
/Tmm dg = -2 [—2 + arctan(g)/ﬁc)] , (C.10)
2
1]y
/TW dg = 242 [ —2} , (C.11)
& "=
1 7v=e
[itmai=2a| 5| C12)
& " dy=d
PN y=d
/ § Ty dij = 2 [ U arctan(gj/:?:)} : (C.13)
é ' y=—d
2
o y=d
% Ty dgj = 2 22 [ — - arctan(gj/:?:)] , (C.14)
é ' y=—d
2
~9 y=d
/QQTdeg:_m?[f—zulm] . (C.15)
Yy
)

Substitution of equations (C.5)—(C.15) into equation J@idlds thex andy components
of I(xo) for a givenx.



Appendix D — Finite difference
model for a branching channel

The geometry for a two-dimensional branching channel wteréranch is at right-angles
to the main channel is shown in figure D.1. We take the top wathe main channel to
lie aty = d and the bottom wall to lie ay = —d. The branch channel has the same
width and joins on to the main channel such that the midpdithe lower wall lies on
the centreline of the branch channel. We take the main clémgth to bel2d and the
branch channel length to 6. We may calculate the flow through the bifurcation using
the finite-difference method by introducing the stream fiomg ¢(x), which is constant
along a streamline and satisfies the biharmonic equation,

viy =0, (D.1)

in an incompressible flow. The velocity(x) = (u(x),v(x)), is calculated from the
stream-function by
oy

u:a— and v = 8_1/1

v —o (D.2)

We introduce the vorticity component in tthedirection,

ov  OJu
=k A R v
(=k-(VAw =g -5 =V
so that we may write the biharmonic equation {dix) as a pair of coupled partial differ-
ential equations,

¢(=-V% and V¢ =0. (D.3)

For a two-dimensional flow we have

C = _wmx - wyy and 0= Ca:x + ny7 (D-4)

At the entrance and exits we assume that any disturbancedaysthe branch channel
has decayed and that the velocity is unidirectional Pdigeflow characterised by the
flux. At the entrance the flux i€, and the Poiseuille velocity ia’" , at the exit of the
main channel the flux i€, and the Poiseuille velocity i8’ and at the exit of the branch
channel the flux i€); and the Poiseuille velocity i8> . We have; = Q2 + Q3 and all
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L»W ———————— - e e - &g

E3

Figure D.1 : Two-dimensional fluid-filled branching channel. The arramdicate the prevailing
flow direction and the walls are numbergéb.

fluxes are positive. The Poiseuille velocities are defined by

uP (y) = Uy (1 -2 /d) s, (D.5)
uP (y) = Ug*(1 = /d) 4, (D-6)
uls (z) = U (1 - (z - 6d)*/d*) 4, (D.7)

and the centreline speet¥”, Ul” andUZ* are related to each other by

Uz =qult, (D.8)
Us* =(1-Q)Uy", (D.9)

where we have defined the flux ratio,

Q= %, (D.10)
andU}™" is related toQ; by
legdUﬁ, (D.11)
Integrating the equation far in (D.2) at&; betweeny = —d andy we obtain
Yy
vly) = v(-d) = [i-u @)y = [i-u” (o)d. (0.12)
& —d

Wheny = d in this equation we have(d) — ¥(—d) = @1, so the flux equals the
difference in the values af between the lower wall and the upper wallé&at Without
loss of generality we set(—d) = 0 so thaty) = @), on the upper wall af;. Since) is
constant along a streamline, it follows that= 0 on walls 1 and 2, ang = (); on wall
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5. Similarly we find that) = Q3 on walls 3 and 4. In summary we have

=0 onwalls1land2,
Y =07 onwallb, (D.13)
¥ = Q3 onwalls 3and4,

as the boundary conditions fgron the walls. To find)(x) at the entrance and exits we
integrate equation (D.2) for the pertinent Poiseuille gityoat &1, £, and&s to get

&) =Uuh v 2, D.14

vl =0 (v 2o+ 3a) (0.14)

&) = UP v 2, D.15

Y(y; &) = U, (y—3d2+§>+Q3 (D.15)
—6d)3 16

Therefore we know) on all the boundaries.

Our next step involves meshing the computational domaingudix d and Ay d as
the grid spacing in the andy directions respectively. We usg ; and(; ; to denote the
value ofy and¢ atx = iAz andy = jAy, and where = 0... N(= 12d/Az) and
j =0...M(= 8d/Ay). Using centred finite differences we approximate the equoati
in equation (D.4) using

Yig15 — 205+ Vic1y . iy — 205 + i
Gij=— < N + A (D.17)
Git1j — 2Gij +Cim1,j . Cij+1 — 2G5 + Gij—1
— ) ) ) ) ) ) . D.18
0 Az? + Ay? ( )

To complete our boundary conditions we require equations & the entrance, exits and
on the walls. The values @fat the entrance and exits are calculated using equation (D.3
and equations (D.5)—(D.7) to get

Py

C(y;&1) = (258 )y (D.19)
Py

((y;: &) = (2529 )y (D.20)
205"

C(x;&3) = ( dg ) (z —6d). (D.21)

To find ¢ on the walls we consider wall 1 on whieh = 0 and soy,, = 0 and,, = 0
which gives¢ = —,,, and

Vi = 20+ Y
Gij=—

A , (D.22)

with j # 0 and where(; ; lies on the wall; ;41 lies in the fluid in the main channel and
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Gi,j—1 is a‘ghost’ point which lies outside of the computationafrd@on. To eliminate the
‘ghost’ point we note that, = 0 on wall 1 so that

B i — i
0= u(z;,y;) = a—z(xi,yj) ~ % (D.23)

which givesy; ;11 = 1; j—1 and so

Yij — Yijn Vi1

on wall 1 sincey; ; is on the wall and) = 0. Applying the same process to the remaining
walls yields similar expressions. Therefore we can compubeactly at the entrance and
exits and use a finite difference approximation to calcufate the walls. It remains to
find expressions faf; ; ands); ; which can be obtained from equations (D.17) and (D.18)
to get

G = Ax?(Gije1 + Gig-1) + Ay (g1 + Gio1y)
e 2(Ax? + Ay?) ’
AP (a1 4 igo1) + ARPAY?G S+ Ay (i + Yio1y)

Yij = NN : (D.26)

(D.25)

Using these equations we calcul@ig and+; ; at each node in the fluid domain. We
continue iterating over the nodes which lie in the fluid dameid the walls on which we
calculateg; ; until the values of) in the fluid and in the fluid and on the walls converge.
Convergence is deemed to have occurred when the valueamd( at every node change
by less thari0~? @, and10~° Q; /d? in one iteration respectively. The flow streamlines
are then plotted using the valueswf The velocity at a node in the fluid is calculated by

O hijer—hij

u(zi, yi) = 9 oAy (D.27)
) i1 — Wit
v(wi, yi) = _a_i) = Yicty — Vir1y ijf L (D.28)

The streamlines fo€) = 0.5 are shown in figure D.2. Comparison with figure 5.2 (a) in
chapter 5 shows an excellent agreement. The dividing stieastarts from the centre of
the entrance on the left and terminates on the right-hanaecaf the branch.
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Figure D.2 : Streamlines fof) = 0.5 in a section of the branching channel computed by the finite
difference method.



Appendix E — Stress at a corner in a
branching channel

In figure E.1 we show a section of the branching channel whicludes the right-hand
branch entrance. We define local polar coordinataadé wherer is the radial distance
from the branch corner artlis the angle. We sét = 0 on wall 1 andd = 3 on wall 2
which extends into the branch channel. We introduce thd Eioeam-functiong)(r, 6),
which satisfies the biharmonic equation,

Vi =0, (E.1)

in an incompressible flow. In terms @f, ther andfd components of velocity are

o
or’

10y

ug(r,0) = — up(r,0) = ~ 90" (E.2)

whereuy is the # component of velocity and,. is ther component. On the walls we
choose

w(ﬁ 0) - 1/1(7°7 ﬁ) =0, (E3)

and impose the tangential flow condition so that
ur(r,0) = u(r, 8) = 0, (E.4)
which may be written in terms of stream-function as

= 0. (E.5)

In polar coordinates we write the biharmonic equation (Bsl)
2 10 1 0%\
bl - = 0. E.
<37°2+7“87“+7°2392> v=0 (E6)

Following the analysis given in chapter 7 of Acheson (1998)pwestulate that the stream-
function takes the form

P(r,0) =7 f(6), (E.7)
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Fluid

\J Wall 1 0=0

Wall 2

0=p=21—«

Figure E.1 : Local geometry at the right-hand corner of the branch eontaf the branching
channel, with plane polar coordinateandd.

where~ is a constant. We substitute equation (E.7) into equatio®) @hd obtain

1

g +(y—2)7%g=0, (E.8)

where
9(0;7) = £(0) +~* f(0) (E.9)

and a prime denotes differentiation with respectoWe have three special cases to
consider:

Casei:y=0

When~ = 0 the stream-function is given by

Y(0) = f(9) (E.10)

which represents a radial flow with a source or a sink at ttggrorSince we are interested
in flow around the corner we disregard this solution.

Caseii:y=1

The solution to equations (E.8) and (E.9) whega- 1 is

f(0) = Acosf + Bsinf + CO cos 6 + DO sin 6. (E.12)

Applying the boundary conditions given in equations (Er3] &£.4) on the wall a# = 0
we get
A=0, and B+C=0. (E.12)

On wall 2 whered = 5 we find that3 must satisfy
sin? 8 = 3? (E.13)

to avoid a trivial solution, and which is only satisfied wheén= 0. Therefore we reject
the solution.
Case iii: vy =2
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When~ = 2 we obtain
Y(r,0) = 12 (A + B + C'sin(20) + D cos(26)) , (E.14)

for the stream-function. To satisfy the boundary condgigiven in equations (E.3) and
(E.4), the anglgd must satisfy

Bsin(26) +cos(28) —1=0 (E.15)

to avoid a trivial solution. Equation (E.15) is satisfied wht= 0, 7,27 and§ ~ 1.437
for 5 € [0, 27]. Since we are interested in the flow around a corner we rdjedtrst three
angles and sety = 1.437. The stream-function is given by

Y(r,0) = Ar? (1 — cos(20) + x (20 — sin(26))), (E.16)

where

N Sin(2ﬁ0) —

The velocity components are

up = 2A7r (sin(26) + x (1 — cos(260) ) ), (E.18)
ug = 2Ar (1 —cos(20) + x (20 —sin(20) ) ). (E.19)

The streamlines are shown in figure E.2 for a positive valugd,offhere we can see the
presence of a stagnation point on the corner. The streamiiiaetion is reversed when
Ais negative. If a ‘far’ field boundary condition were to belired then the value ol
could be determined and we would have a unique solution. Megwte have calculated
the velocity components we can compute the stress on the usitig the stress tensor,

oij = —pdij + 2 p e, (E.20)

wherep is the pressure ang; is the rate of strain tensor. Since we are only interested in
the behaviour of the stress we will focus our attention orréite of strain tensor. In polar
coordinates we have

erp = % = 24 (sin(20) + x (1 — cos(26) ), (E.21)
r
10ug  up
€oo = r 00 + , = —Cprr, (E22)
0 (ug 10u, ] .
2e,9 = T (7) + ey i 4A (cos(20) + x sin(26) ), (E.23)

all of which are independent efand well defined with respect tb On the wallf = 0
we have
err = —€gop=0, and ey = 2A, (E.24)
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and
Crr = —€hg = 0, and €rog = —2A, (E.25)

onéd = (3. We expect the sign to change on #)g component because the unit vector
in the 6 direction points into the fluid on wall 1 and away from the flaid wall 2. In
summary, the stress is finite at the corner whea 2 and 3 = 3, provided the pressure
is finite.

We will now consider the general case wheg- 0, v # 1 andy # 2. The solution
to equations (E.8) and (E.9) gives

e(r,0) =17 f(0)
=17 (Acos(v8) + Bsin(70) + C cos((y — 2)0) + Dsin((y — 2)0)), (E.26)

for the stream-function wherd, B, C' and D are constants. Applying the boundary
conditions on wall 1 wheré = 0 gives

C=—A, (E.27)
D=_1 B (E.28)
2—ny

The conditions aff = 3 only give a non-trivial solution fod and B when~ satisfies

sin(y4) sin((y =2)8) (v —2)
1 —cos(yB3) cos((y —2)B) 2 —27+2 (E.29)

for a given angle. Furthermore we find

L (—ysin(yB) + (v = 2)sin((y — 2)8)\ _
B=A < vy cos(yf) — v cos((y — 2)5) > = A¢, (E.30)

where¢ is a known constant determined fromand 5. Therefore we are left with the
constant,A, which could be calculated given a ‘far’ field boundary cdiadi. The stream
function is

Y(r,0) =r7 f(0) (E.31)
where
f(0) = A(cos(v0) + &sin(v0) — cos((y — 2)0) + 27_&7 sin((y —2)6)). (E.32)
The velocity components are given by
up(r,0) = 1771 j—g (E.33)
ug(r,0) = —y 771 f. (E.34)

To avoid a singularity in the velocity as— 0 we requirey > 1. In the chapters in which
we consider a branching channel we set the angter /4, 7 /2 and3x /4. The values of
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~ computed using equation (E.29) for these branch anglesiae i table E.1.

Branch angleq) (=27 —« ~
3m/4 5 /4 1.67358343
/2 3m/2 1.54448374
1.90852919
/4 /4 1.50500970
1.65970163

Table E.1 : Values of the stream-function parametgrfor various branch angles.

Now that we have the exponent ofin the stream function, we will compute the,
component of the rate of strain tensor,

Crp = % =(y—1)r"? % (E.35)
Sincey < 2 for all three branch angles,, ~ r7~2 asr — 0 and the rate of strain tensor
is singular and hence the stress is also singular at the cofherefore we have shown
that the stress is singular at the corner in the cases coedidechapters 5-7.

In figure E.3 we plot the streamlines far = 37/4 and~y = 1.67358343. The
streamlines are directed around the corner with the doealietermined from the sign
of the constantd in equation (E.32). The stress on the walls is well-defineattajpom
at the corner where it is singular. Figure E.4 shows the tliaas for the two values
of v whena = 7/2. When~ = 1.54448374 the streamlines follow the shape of the
corner, whereas whefn = 1.90852919 the flow exhibits a stagnation-point flow with
both velocity components tending to zeroras— 0. Finally, in figure E.5, we show
the streamlines for an acute angled branch whkere 7/4. Once again there are two
solutions fory. Wheny = 1.50500970 the flow traces the shape of the channel walls and
flows around the corner. A stagnation flow is observed whea 1.65970163 with the
streamlines dividing and travelling either to the right abve wall 1 or down and along
wall 2.
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15

y/d

z/d

Figure E.2 : Streamlines close to a corner far= 0.577 andy = 2. The stress on the walls is
well-defined in this case. When the constdns positive in equation (E.16) the streamlines enter
from the top-left.

T T T
15 / =
1 E
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1k i
-15 | -
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-2 1.5 1 0.5 0 0.5 1 15 2

Figure E.3 : Streamlines close to a corner far= 37/4 and~y = 1.67358343. The stress is
singular at the corner.
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xz/d z/d
(a) Streamlines whefy = 1.54448374. (b) Streamlines whefy = 1.90852919.

Figure E.4 : Streamlines close to a corner with= 7 /2 for the two values ofy. The stress is
singular at the corner in both cases.
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(a) Streamlines whefy = 1.50500970. (b) Streamlines whefy = 1.65970163.

Figure E.5 : Streamlines close to a corner with= 7 /4 for the two values ofy. The stress is
singular at the corner in both cases.
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