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Abstract

The motion of a rigid particle and a flexible fluid-filled capsule in a pressure-driven

flow through a channel with a side branch is investigated. Thefluid velocity profiles are

assumed to adopt those of unidirectional Poiseuille flow farupstream and downstream

in the main channel, and downstream in the side branch. The flow rates are prescribed,

leaving the instantaneous pressure drop between the entrance and exits to be calculated as

part of the solution. The rigid particle is assumed to be bothforce-free and torque-free.

The membrane of the flexible capsule is treated as a thin two-dimensional elastic sheet

which develops elastic tensions and bending moments according to simple constitutive

laws. The problem is solved numerically using the boundary element method for Stokes

flow. The computational novelty of the formulation is the inclusion of a notional boundary

at the entrance to the side branch which avoids the need to collocate the channel ends.

An elastic capsule which is released in a straight channel flow quickly deforms from

its resting configuration into a parachute-like shape aftertravelling a few capsule radii,

but takes a much greater distance to attain a steady shape. Increasing the viscosity of the

fluid inside the capsule increases the time taken to reach an almost identical steady-state

shape. However, when the stiffness of the membrane is increased, the capsule deforms

less and the steady-state shape is attained in a shorter time.

A capsule in a branching channel flow is drawn out of the main channel when the

flow rate in the side branch is sufficiently strong. The deformation suffered by an elastic

capsule depends on its size, its initial location and the width and angle of the branch chan-

nel. When the branch angle is acute or a right-angle, the capsule may become trapped on

the downstream branch corner and experience relatively large membrane tensions, thus

presenting the possibility of bursting. Obtuse-angled branchings decrease the possibility

of a capsule becoming trapped on the corner, although the residence time in the vicinity

of the corner increases significantly. A capsule may suffer considerable distortion as it ne-

gotiates the branching region, but the membrane tensions are less than those experienced

by a trapped capsule. When a capsule is on a path which takes itclose to the downstream

corner of the branch entrance, the path taken depends on the properties of the elastic mem-

brane. A capsule with a stiffer membrane is more likely to remain in the main channel.

Although the results are for a two-dimensional branching, they are nonetheless consistent

with experimental observations of plasma skimming.
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Chapter 1

Introduction

In this introductory chapter we will motivate our research by providing the physical and

mathematical background to the motion of a particle in a channel which we will investi-

gate in subsequent chapters.

1.1 Physical background

There are many examples of small particles moving within a fluid which is also in motion.

If we limit our attention to the motion of particles in pipes,then one of the most well

known examples is the circulation of blood around the cardiovascular system. During

the journey of oxygenated blood through the systemic circulation, blood travels from the

heart into the aorta and on into the arteries, then into smaller vessels called arterioles and

then into the capillaries which are the smallest blood vessels. Oxygen-depleted blood is

returned from the capillaries via venules and the veins to the heart where it is pumped

to the lungs in order to release carbon dioxide and receive oxygen. Blood consists of

platelets, white blood cells and red blood cells which are all suspended in plasma. In a

healthy cubic millimetre of human blood there will be approximately5 million red blood

cells,7500 white blood cells and0.5 million platelets. While the red blood cells account

for around45% of blood volume the combined volume of white blood cells and platelets

is around1%. Further detail on the constituents of blood and blood flow may be found

in Caro et al. (1978). Therefore the mechanical properties of blood are dominated by the

behaviour of the red blood cells due to their high concentration. In vessels such as the

aorta and large arteries, blood flow may be treated homogeneously because the cells are

much smaller than the vessel through which they travel. However in the smaller blood

vessels, such as capillaries, the size of the red blood cellsis of the same order as the

vessel and so blood must be treated heterogeneously and the particulate nature must be

taken into account. To put this into perspective, a typical human red blood cell whose

undeformed shape is a biconcave disk, has a thickness of2µm and a maximum diameter

of 8µm which is larger than the minimum diameter of a capillary, which can be as low

as 5µm. To pass through capillaries of this size red blood cells undergo considerable

deformation, and either adopt a shape which is similar to a parachute or they fold along a
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diameter of the cell. The red blood cells are therefore extremely flexible. There are several

different types of white blood cells and they are all roughlyspherical, with the diameter

of the largest type around21µm in humans. Platelets are smaller than red blood cells and

are irregularly shaped with a volume which is about1/10 th that of a red blood cell.

The properties of blood flow have been widely studied in many disciplines, including

medicine, physiology and mathematics. The first published results which quantitatively

described the flow of blood were by Jean Louis Marie Poiseuille in 1840 where he exper-

imentally derived his law1 in a circular pipe. The law relates the volumetric flow rate,

Q, along the pipe to the applied pressure difference,∆p, the diameter,D, and the vessel

lengthL and was originally stated as

Q = K
∆pD4

L
(1.1.1)

whereK was an experimentally derived constant which depended on the temperature

and the liquid. Later it was found thatK = π/128µ whereµ is the fluid’s viscosity.

A history of Poiseuille’s law is given in Sutera and Skalak (1993). We can see that the

flux is proportional to the pressure drop and to the fourth power of the pipe diameter.

Consequently to maintain a specific flow rate along a pipe the applied pressure difference

must be quadrupled if the cross-sectional area is halved. The Hagen-Poiseuille law may be

applied successfully to the flow of blood through the smallervessels, and more generally

to any non-turbulent fluid flow along a pipe of constant circular cross-section.

There are numerous other examples of particles moving alongchannels in nature as

well as technology. For example the flow of particles into theair pathways of the lungs

is of particular interest in the design of medicines. Fluidisation chambers are used in the

petrochemical industry as well as other industries (Davidson et al. 1985). An example

is the fluid catalytic cracking process which is used to breakapart the heavier petroleum

compounds to extract petroleum spirit. The resulting fluid may then be easily extracted

along pipes. The flow of immiscible fluids through a porous media is of interest to many

disciplines, including petroleum engineers and geophysicists (e.g. Gunstensen and Roth-

man 1993). The coating of paper and the manufacture of ink involves the flow of emul-

sions or colloids through pipes (e.g. Jensen et al. 2006). Anin-depth knowledge of the

fluid mechanics are required in the design and construction of microfluidic devices (e.g.

Roberts and Olbricht 2006) which could for example be used tosort cells, or some other

chemical investigation.

To determine the governing forces in a specific flow a measure which is of interest to

engineers and mathematicians is the Reynolds number, whichmay be thought of as the

ratio of inertial forces to viscous forces. A high Reynolds number indicates that inertia

dominates the fluid motion, and a low Reynolds number means that viscosity dominates.

If U is the typical fluid velocity andL is the typical length (e.g. the tube diameter) then

1Called the Hagen-Poiseuille law to recognise its independent discovery by Gotthilf Hagen.
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the Reynolds number,Re, is defined by

Re =
ρU L

µ
(1.1.2)

whereµ is the fluid’s viscosity andρ is its density. In the cardiovascular system the

Reynolds number is greater in the larger blood vessels, i.e.it is high in the aorta, and low

in the capillaries (Re = 0.0003 (Popel and Johnson 2005)). It must also be said that the

viscosity of whole blood varies from vessel to vessel in the cardiovascular system. This

variation is called the Fahraeus-Lindqvist effect and is observed in vessels with a diameter

of less than about 1 mm. There are several factors which causethe decrease in viscosity

but the main physical reason for the effect is due to the red blood cells migrating towards

the vessel centreline. A cell-free layer near the wall is created which then reduces the

flow resistance and therefore the apparent viscosity. For a fuller desciption of the effect

see chapter 4 in Pozrikidis (2003) and the references therein. Throughout this work we

are interested in regimes where the Reynolds number is smallsuch that viscous forces

dominate the mechanics of the fluid and particle motion. Furthermore we are interested

in cells which may contain a fluid of generally different viscosity to the surrounding fluid.

For example a red blood cell contains haemoglobin which is4–5 times as viscous as the

surrounding plasma (Caro et al. 1978, p. 161).

In this work we will use the term particle to refer to a rigid cell of constant shape,

the term drop to refer to an immiscible liquid suspended in anambient fluid and the term

capsule to refer to a thin, flexible walled cell which contains a secondary fluid. We will use

the term cell as a collective term for a rigid particle of constant shape, a fluid drop and an

elastic capsule. Although there is a small difference between the density of blood plasma

and blood cells (e.g. Benson 1999), the effect will be negligible in the microcirculation

due to the small size of the cells and vessels. For the cells considered herein we will

therefore assume that the ambient fluid and the encapsulatedfluid have the same constant

density and that the cell is inertia-free thus rendering thecell neutrally buoyant.

1.2 Literature review

The motion of fluid drops, particles and elastic capules is a rich and intensively stud-

ied area of hydrodynamics. The behaviour of each type of cellhas been investigated in

unbounded flows as well as above plane walls and in channels and tubes. While some

studies concentrate on a single cell, others investigate the behaviour of aggregates or sus-

pensions of many cells. The field has been studied experimentally and theoretically with

both disciplines employing a wide variety of investigativetools. Here we will provide a

brief review of the literature regarding the motion of cell through channels and tubes.

The placement of a cell in an unbounded flow allows the analysis to concentrate on

the dynamics of the cell and its motion. Investigations intothe nature of the deforma-

tion could lead to predictions on the conditions which wouldcause the cell to break up.

Barthès-Biesel (1980) used asymptotic expansions to investigate the small deformations
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of a spherical capsule in a shear flow. She found that increasing the viscosity of the

encapsulated fluid increased the capsule’s inclination to the incident streamlines of the

background shear flow. The assumption of a small deformationwas relaxed by Zahalak

et al. (1987) in their two-dimensional work on an inextensible capsule in an unbounded

shear flow using a series solution and conformal transformations. They found that the

capsule reaches an equilibrium state in which the normal component of the membrane’s

velocity is zero while the tangential component is non-zeroso that the cell boundary ex-

hibits a tank-treading motion. Furthermore, they showed how the shear rate of the back-

ground flow and the fluid viscosities affect the velocity field, membrane deformation and

tension. In a later work, Rao et al. (1994) studied an elasticcapsule in an unbounded

two-dimensional shear flow and concentrated on how the viscosity ratio affected the ap-

parent viscosity of the whole fluid. They found that the apparent viscosity was inversely

proportional to the encapsulated fluid’s viscosity. Zhou and Pozrikidis (1995) considered

a cell with an incompressible membrane with a variety of undeformed shapes in a two-

dimensional shear flow, and a spheroidal cell in a three-dimensional shear flow. They

found that the deformed steady cell shape depended on the undeformed shape and that

there were qualitative and quantitative similarities between the deformation of the two

and three-dimensional cells. Ramanujan and Pozrikidis (1998) studied the deformation

of a cell with an elastic membrane in a three-dimensional shear flow. They found that the

viscosity ratio did not profoundly affect the equilibrium shape of the cell.

In the above cited works, the cell membrane does not resist bending. The inclusion

of a bending stiffness was made in Pozrikidis (2001) in orderto study its effect on the

cell’s deformation in a three-dimensional shear flow and foran arbitrary viscosity ratio.

He found that the bending resistance restricted the cell’s deformation and prevented the

cell from developing regions of relatively high curvature.However the time-integration

method was shown to be sensitive to the size of the time-step,with a smaller time-step

required when bending resistance was taken into account.

The fluid was unbounded in the previous studies. However in many applications of

practical interest the cell travels along a channel or pipe.Rigid particles in an elastic

tube were studied by Lighthill (1968) who used lubrication theory to show the existence

of a thin lubricating layer (0.2µm) in the case of tightly fitting pellets. Later, Tözeren

and Skalak (1978) presented a significantly more accurate method of calculating the pres-

sure drop across a tightly fitting pellet which was duly endorsed by Lighthill. Bren-

ner (1970) derived analytic expressions for the additionalpressure drop due to a rigid

neutrally-buoyant particle moving in a tube where the background flow was Poiseuille.

He considered a sphere in a circular pipe as well as non-circular pipes and ellipsoidal par-

ticles. The motion of fluid drops and bubbles of constant surface tension was investigated

in Brenner (1971) where expressions for the pressure drop were derived. Sugihara-Seki

(1993) studied the motion of an inertia-free elliptical cylinder in a channel with a back-

ground Poiseuille flow. The finite-element method was used tocalculate the velocity

of the particle and the fluid. He calculated the particle trajectories for a range of parti-

cle sizes and displacements from the centreline. In Sugihara-Seki (1996) the numerical
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model was updated to model the motion of an ellipsoid in a circular tube. Prolate and

oblate spheroids were shown to exhibit differing behaviourdepending on several factors

including the particle-tube size ratio and centreline offset.

Quéguiner and Barthès-Biesel (1997) developed a numerical axisymmetric model for

an elastic cell which encapsulated a fluid of the same viscosity as the ambient fluid. The

cell travelled from a hyperbolic entrance area into a circular tube where it was allowed

to reach an equilibrium state. The deformation was then alsostudied as the cell moved

out of the tube into a hyperbolic exit area. They showed that steady-state deformed shape

was similar to that seen in experiments (e.g. Secomb et al. 2007). The length of the

tube required to reach the steady shape displayed a strong dependence on the cell size

and membrane behaviour. Mortazavi and Tryggvason (2000) studied the motion of an

immiscible fluid drop of a generally different viscosity anddensity in a two-dimensional

channel using the finite-difference method for Reynolds numbers of0.25 and above. They

showed that the drops migrate across streamlines with the motion directed towards an

equilibrium position at the centreline or at a point closer to the wall which for a specific

Reynolds number depended on the viscosity ratio and densityratio.

Staben et al. (2003) used the boundary integral method to investigate the motion of a

rigid spherical particle in a Poiseuille flow between two plane walls, and where the par-

ticle was close to one or both of the walls. The formulation allowed the authors to avoid

meshing the channel walls which facilitated the accurate computation of the particle mo-

tion even when the particle-wall separation was less than1% of the particle radius. They

showed that larger particles translated slower along the channel. They also calculated the

rotational velocity and showed how it increased as the particle was moved away from the

centreline. However at a point close to the wall the rotational velocity began to decrease

due to the proximity of the walls. Pozrikidis (2005b) computed the motion of a rigid

spherical particle and the induced additional pressure drop in a tube using the boundary

integral method, and where the background flow was assumed tobe Poiseuille. The re-

sults were found to be consistent with previous asymptotic solutions. The rigid particle

was replaced by an elastic cell in Pozrikidis (2005c). The cell did not resist bending and

contained a fluid with viscosity equal to that of the ambient fluid. The concentrically

positioned cell was found to develop a shape resembling a parachute. An eccentrically

positioned cell was found to migrate towards the centrelinewhile developing a shape re-

sembling a slipper. Both shapes are observed in experimentson the flow of red blood cells

in capillaries (e.g. Secomb et al. 2007).

Pipes and channels with a branch or even multiple branchingshave been studied both

experimentally and theoretically. Pries et al. (1986) studied the flow of blood cells in a

section of the rat mesentery experimentally. They found that the more peripheral vessels

received a lower proportion of the red blood cells. Yan et al.(1991) studied the three-

dimensional motion of a rigid spheres moving from a large tube into a smaller circular

side pore. However comparisons with the fluid-skimming phenomenon (e.g. Krogh 1922)

observed in capillaries revealed differences which were attributed to the rigid nature of the

particles in the study. Kiani and Cokelet (1994) calculatedthe additional pressure drop
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at a single bifurcation using a large-scale experimental apparatus consisting of circular

tubes containing glycerol and flexible disks to model the blood plasma and red blood cells

respectively. They found that the pressure drop was significantly higher across the bifur-

cation when the disks were introduced into the system. A theoretical study by El-Kareh

and Secomb (2000) considered the motion of rigid spherical caps in the flow between

parallel plates with a cylinder joining the plates to simulate a bifurcation. They concluded

that red blood cells will only follow fluid streamlines if thecells approach the bifurcation

with random orientations with respect to the streamlines ofthe background flow. Manga

(2006) studied the effect of a symmetric branching on the flowof one or more fluid drops

in two dimensions using the boundary integral method. He found that the drops were more

likely to enter the branch with the higher flow rate when the viscosity ratio decreases, the

capillary number increases or the drop size increases.

Roberts and Olbricht (2006) studied experimentally the motion of rigid disks in branch-

ing channels of square and rectangular cross-section. Theylimited their study to two

specific bifurcation geometries. They found that under certain flow conditions the par-

ticles could be segregated from the suspending fluid. Secombet al. (2007) studied the

motion of red blood cells through a single bifurcation in a microvessel of a rat’s mesen-

tery. They then went on to perform a numerical study of their observed results by loading

a two-dimensional rendering of the blood vessel into a finite-element software package

together with a visco-elastic model capsule. The mechanical properties of the capsule

were set from experimental calculations. They found that their numerical model accu-

rately predicted their observed results regarding capsuleshape and lateral migration in

the channel. In their treatment only a specific channel geometry was considered and the

additional pressure drop across the particle was not computed. The work of Barber et al.

(2008) followed on from Secomb et al. (2007). Barber et al. (2008) computed the parti-

tioning and deformation at a rounded capillary bifurcationusing a visco-elastic capsule

and the finite-element method. They found that the numericalpredictions of their two-

dimensional model were consistent with the experimental results. However the evolution

of the additional pressure drop due to the capsule was not included in their analysis.

In the majority of the above works the cell is treated in isolation. The motion and

behaviour of multiple cells in a suspension has been studiedby many authors, with ap-

plications including various industrial and natural processes, as previously mentioned.

Batchelor (1970) derived an analytic formula for the bulk stress of a suspension in an

unbounded flow by averaging over the system. Zhou and Pozrikidis (1993, 1994) studied

the motion of a suspension of fluid drops in a two-dimensionalchannel flow using the

boundary integral method. A single file of drops was considered in Zhou and Pozrikidis

(1993) where the motion was driven by a shear flow and shear-thinning of the suspen-

sion was evident in all simulations. A Poiseuille flow was used for the background flow in

Zhou and Pozrikidis (1994) where the drops were found to migrate towards the centreline,

forming either a single row or multiple rows. Numerical simulations were carried out by

Loewenberg and Hinch (1996) who studied the motion of a three-dimensional periodic

array of up to twelve drops in an unbounded shear flow. Their results revealed a complex
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rheology in the suspension with the emphasis on drops which encapsulated a fluid with

viscosity equal to that of the ambient fluid, although some steady-state comparisons are

made for drops with viscosity ratios in the range zero to five.Secomb and Hsu (1996)

studied the axisymmetric motion of elastic fluid-filled capsules in a tube where lubrica-

tion theory was employed to describe the motion of the surrounding plasma. They showed

that the resistance to cell motion was higher in a tube of varying cross-section than in a

tube of uniform cross-section, thereby demonstrating thatthe deformation suffered by a

red blood cell may contribute significantly to the flow resistance in capillaries.

Coulliette and Pozrikidis (1998) conducted a three-dimensional analysis of an array

of fluid drops in a circular pipe with a background Poiseuilleflow, and where the ambient

and encapsulated fluids’ viscosities were assumed to be equal. They found that drops

migrated towards the centreline. They calculated the apparent viscosity of the suspension

by averaging over the system and found that the apparent viscosity was higher for a non-

axisymmetric file of drops than for an axisymmetric one. Breyiannis and Pozrikidis (2000)

investigated the motion of up to50 elastic cells in a periodic domain in a two-dimensional

shear flow where the viscosity of the encapsulated fluid was assumed to be equal to that of

the ambient fluid. They found that a solitary test cell reached an equilibrium state for all

values of the imposed shear rate of the background flow and that the rheological properties

of the suspension was somewhere between that of a suspensionof fluid drops and rigid

particles, due to cell deformability and the tank-treadingability of the cell membrane.

Secomb et al. (2001) studied numerically the effect of an endothelial surface layer (ESL)

on the motion of red blood cells in a capillary. Their elasticcell also included resistance

to bending and the parameter values of the cell were taken from human red blood cells.

They showed that the ESL causes the red cell shape and its velocity to more closely

match experimental results. Pozrikidis (2005a) examined the axisymmetric motion of

a file of elastic cells in a Poiseuille flow in a tube using the boundary integral method.

The cell resisted bending and the viscosity ratio was set to unity. The results showed the

significance of capillary size and cell spacing on the discharge haematocrit and apparent

viscosity of the whole fluid.

We can therefore see that theoretical studies have tended toconcentrate on the motion

of elastic capsules in unbounded domains, straight channels and tubes, whereas motion of

capsules at bifurcations has received less attention. In some applications bifurcations may

closely follow each other. In capillary networks, for example, the blood vessels undergo

numerous branchings (Popel and Johnson 2005), and the distribution of cells throughout

the network is known to be non-uniform, with cells at flow junctions tending to favour the

branch with the higher flow rate (Fung 1973). Indeed Pozrikidis (2009) performed sim-

ulations in a tree-like capillary capillary network where aprobability function was used

to decide on the direction of the cell at a branching. In microfluidic channels, branchings

may be engineered to selectively control the distribution of cells (Roberts and Olbricht

2006). In order to more fully understand the mechanical factors which affect capsule

motion at a junction we require a numerical model which not only takes into account the

properties of the membrane but also the flow conditions and the branch geometry. Our aim
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therefore is to construct a numerical model which accurately reflects the complex interac-

tion between the fluid flow, the deforming capsule boundary and the channel geometry at

a bifurcation.

1.3 Mathematical background

In this section we provide the details of the mathematical tools which we will use to study

the motion of a particle or capule in a straight and a branching channel flow. We will

describe the equations of Poiseuille flow for the unidirectional flow of fluid in a straight

channel and the boundary integral method which we will lateruse to derive the governing

equations in the regimes of interest. We will start by describing the Stokes equations

which govern the flow of fluids in the limit of vanishing Reynolds number.

1.3.1 Stokes equation

Throughout this thesis we are concerned with the flow of Newtonian fluids of constant

density which have a small Reynolds number. A Newtonian fluidis one in which the

relationship between the fluid stress,σ, and the rate of strain is linear and is described

mathematically by

σij = −p δij + µ

(

∂ui

∂xj
+
∂uj

∂xi

)

, (1.3.1)

wherep is the pressure,δij is the Kronecker delta which equals1 when i = j and 0

otherwise,u is the velocity, andi, j = x, y in two-dimensions. For example, in the

cardiovascular system both the haemoglobin encapsulated by a red blood cell and the

plasma may be treated as Newtonian fluids (Halpern and Secomb2006). When the density

is constant the conservation of mass gives

∇ · u = 0 (1.3.2)

which is called the incompressibility condition, or the continuity equation. The corner-

stone of fluid mechanics is the Navier-Stokes equation,

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p+ µ∇2u, (1.3.3)

which relates the velocity and its derivatives to the spatial derivative of the pressure. By

an appropriate scaling of the pressure, velocity and lengththe Navier-Stokes equation

becomes the Stokes equation (e.g. Pozrikidis 1992),

−∇p+ µ∇2u = 0 (1.3.4)

in the limitRe → 0, and where we assume the flow to be steady (i.e. to be independent

of time) and unaffected by a body force. Care must be exercised when assuming the flow

to be steady, especially in regimes like the cardiovascularsystem where the flow of blood
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is pulsatile and therefore unsteady. In the larger blood vessels the pulsatile nature cannot

be omitted, however in the capillaries the pulse has a negligible effect (p.291 Fung 1997)

and so the flow there may be treated as steady.

Since we have assumed that all considered fluids have the sameconstant density

there will be no buoyancy effect. If we were to include a body force such as gravity

we could modify the pressure accordingly since gravity is a conservative field. However

we consider very small length scales and so we neglect gravity. One may restate equation

(1.3.4) as

∇ · σ = 0 (1.3.5)

using equations (1.3.1) and (1.3.2). With reference to the normal vector,n, the traction,

f = σ · n, (1.3.6)

may be used to calculate the force on an element of fluid from the normal component of

the stress tensor. In index notation we have

fi = σij nj = −p ni + µ

(

∂ui

∂xj
+
∂uj

∂xi

)

nj. (1.3.7)

When the velocity vanishes on a surface due to the no-slip andno-penetration conditions,

the pressure on that surface may be obtained from the traction by taking the scalar product

with the normal to get

p = −f · n. (1.3.8)

When we examine the motion of a particle or a capule in a channel flow we will treat the

flow as being composed of a background and a disturbance flow. The natural choice for

the background flow in a channel is the Poiseuille flow which satisfies both the Stokes

equation and the Navier-Stokes equations exactly. The mathematical details of which

are described in the next section. If we represent the Poiseuille stress byσP and the

disturbance stress byσD then the total stressσ is given by

σ = σP + σD, (1.3.9)

which also satisfies the Stokes equation (1.3.5) provided∇ · σD = 0. We will use this

idea to separate the background flow from the disturbance flowthroughout this thesis.

1.3.2 Poiseuille flow

Let us consider a two-dimensional channel of width,2d, which contains an incompressible

viscous fluid. When a constant pressure gradient is applied across two end-points of the

channel the resultant fluid motion is called Poiseuille flow,after the aforementioned Jean

Louis Marie Poiseuille. The velocity is observed to be steady, unidirectional and oriented

in the axial direction. The geometry is illustrated in figure1.3.1. Writing the velocity as,

uP = uP (x, y) i (1.3.10)
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Flow direction

x

y

y = d

y = 0

y = −d

Figure 1.3.1 : Two-dimensional Poiseuille flow in a straight channel. The parabolic velocity
profile is shown on the left.

wherei is the unit vector in the axial (orx) direction. We can show that the continuity

equation (1.3.2) is satisfied only when the velocity is purely a function ofy. Therefore

the left-hand side of the Navier-Stokes equation (1.3.3) iszero and so Poiseuille flow

automatically satisfies the Stokes equation (1.3.4). Expanding equation (1.3.4) shows that

the pressure is purely a function ofx. Let us set the pressure gradient,

dpP

dx
= −G (1.3.11)

whereG is a positive constant. The Poiseuille pressure is given by

pP (x) = −Gx (1.3.12)

where we have chosen the pressure to be zero atx = 0. We impose the no-slip and

no-penetration condition,

uP = 0 (1.3.13)

on the walls, and solve equation (1.3.4) for the velocity to obtain

uP = uP (y) i = U0

(

1 −
y2

d2

)

i (1.3.14)

where

U0 =
Gd2

2µ
, (1.3.15)

is the centreline velocity. The parabolic profile is shown onthe left-hand side in figure

1.3.1. The streamwise flux rate,Q, may be found by integrating the velocity between

y = −d andy = d to get

Q =
2Gd3

3µ
=

4

3
dU0. (1.3.16)

By subsituting the Poiseuille pressure and velocity into equation (1.3.1) we find the Poiseuille

stress tensor is given by

σP
ij =

[

σxx σxy

σyx σyy

]

=

[

−pP µ ∂uP

∂y

µ ∂uP

∂y −pP

]

= G

[

x −y

−y x

]

, (1.3.17)
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and the Poiseuille traction is given by

fP
i = σP

ij nj = G

[

x −y

−y x

]

·

[

nx

ny

]

, (1.3.18)

wheren = (nx, ny).

1.3.3 Two-dimensional boundary integral equations for Stokes flow

To derive the two-dimensional boundary integral equationsfor Stokes flow we bring to-

gether the Green’s functions for Stokes flow and the reciprocal relation of Lorentz. See

Kuiken (1996) for an accessible review of the work of Lorentz. To start our discussion we

will outline the derivation of the reciprocal relation.

Let us define two incompressible flows so that the viscosity, velocity and stress is

(µ1,u1,σ1) in flow 1 and(µ2,u2,σ2) in flow 2. To proceed, let us constructµ1 u1 ·

σ2 − µ2 u2 · σ1 and take its divergence to obtain

∂

∂xj

(

µ1 u1,i σ2,ij − µ2 u2,i σ1,ij

)

= µ1 u1,i

(

∂σ2,ij

∂xj

)

− µ2 u2,i

(

∂σ1,ij

∂xj

)

(1.3.19)

in index notation, and where the additional terms from performing the differentiation

disappear either due to incompressibility or cancellation. If both flows also satisfy the

Stokes equation (1.3.5) over some regionΓ then the right-hand side of equation (1.3.19)

will be zero and we have

∇ · (µ1 u1 · σ2 − µ2 u2 · σ1) = 0 (1.3.20)

in vector notation. Next we integrate equation (1.3.20) over Γ and apply the divergence

theorem to get
∫

∂Γ

µ1 u1 · f2 ds(x) =

∫

∂Γ

µ2 u2 · f1 ds(x), (1.3.21)

where∂Γ is the piecewise continuous boundary of the domainΓ, f1 = σ1 · n is the

traction of flow 1,f2 = σ2 · n is the traction in flow 2,n is the unit normal vector

pointing out ofΓ ands is the arc-length along∂Γ. When the viscosities are equal we have

µ1 = µ2 and equations (1.3.20) and (1.3.21) become

∇ · (u1 · σ2 − u2 · σ1) = 0, (1.3.22)

in vector notation, and
∫

∂Γ

u1 · f2 ds(x) =

∫

∂Γ

u2 · f1 ds(x) (1.3.23)

respectively. Equations (1.3.21) and (1.3.23) are known asthe Lorentz reciprocal relations

for Stokes flow. The reciprocal relations give us the abilityto compute information about

a particular flow by using another flow, e.g. one could computethe force on a particle

by eliminating the disturbance velocity caused by the particle in favour of the known
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background flow.

The Green’s functions for Stokes flow are solutions to the singularly forced Stokes

equation,

−∇p′ + µ∇2u′ = ∇ · σ′ = −b′ δ(x − x0), (1.3.24)

whereb′ is the strength of a point force located atx0 andδ(x−x0) is the two-dimensional

Dirac delta function which is zero everywhere exceptx0 where its value tends to infinity

and whose integral over all space equals1. If we introduce the Green’s functionG(x,x0)

then the velocity, pressure and stress fields which satisfy equation (1.3.24) are given by

u′i(x) =
1

4πµ
Gij(x,x0) bj, (1.3.25)

p′(x) =
1

4π
Pj(x,x0) bj , (1.3.26)

σ′ik(x) =
1

4π
Tijk(x,x0) bj , (1.3.27)

whereP (x,x0) andT (x,x0) are the pressure vector and the stress tensor associated with

the Green’s function. We callx0 the pole or the singular point. The stress tensor is defined

in relation to the pressure vector and the Green’s function as

Tijk(x,x0) = −δik Pj(x,x0) +
∂

∂xk

(

Gij(x,x0)
)

+
∂

∂xi

(

Gkj(x,x0)
)

, (1.3.28)

from which we can see that the stress tensor is symmetric, i.e. Tijk(x,x0) = Tkji(x,x0).

The simplest Green’s function is the free-space Green’s function although the choice of

Green’s function may be dependent on the geometry under consideration and the boundary

conditions. Throughout this thesis we will elect to use the two-dimensional free-space

Green’s function which is defined by

Gij(x,x0) = −δij ln |x − x0| +
x̂i x̂j

|x − x0|2
, (1.3.29)

wherex̂i = xi − x0,i, and its associated stress tensor is

Tijk(x,x0) = −4
x̂i x̂j x̂k

|x − x0|4
. (1.3.30)

A derivation of equations (1.3.29) and (1.3.30) may be foundin Pozrikidis (1992). Using

equations (1.3.24)–(1.3.28) and the properties of the Dirac delta function we may prove
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the following integral identities for Stokes flow,

∫

∂Γ

Tijk(x,x0)ni(x) ds(x) =







4π

2π

0






δjk (1.3.31)

ǫilm

∫

∂Γ

xl Tmjk(x,x0)nk(x) ds(x), =







4π

2π

0






ǫilj x0,l, (1.3.32)

where the4π value is taken whenx0 lies insideΓ, the2π value is taken whenx0 lies on

∂Γ and the identity equals zero whenx0 lies outsideΓ, and wheren is the unit normal

vector directed intoΓ andǫilm is the alternating tensor defined by

ǫilm =











1 when ‘ilm’ form a cyclic permutation, e.g.123,

−1 when ‘ilm’ form a anti-cyclic permutation, e.g.321,

0 when any ofi, l orm are equal.

(1.3.33)

We obtain one final identity by substituting equation (1.3.25) into the continuity equation

(1.3.2), integrating overΓ and applying the divergence theorem to get

∫

∂Γ

Gij(x,x0)ni(x) ds(x) = 0, (1.3.34)

for x0 insideΓ, outsideΓ or on the boundary∂Γ. Equation (1.3.34) is the integral ana-

logue of the continuity equation. We are now in a position to provide a sketch of the

derivation of the boundary integral equations for Stokes flow. A full derivation may be

found in chapter 2 of Pozrikidis (1992). In equation (1.3.22) we set flow 1 to be the

solution to the singularly forced Stokes equation and flow 2 to be a solution to Stokes

equation. We substitute equations (1.3.25) and (1.3.27) into equation (1.3.22) and adopt

index notation to get

∂

∂xk
(Gij σik − µui Tijk) = 4πµ uj δ(x − x0), (1.3.35)

where we have cancelled the common factor,bj , and dropped the 2 subscript from flow 2.

Whenx0 lies outsideΓ the left-hand side of equation (1.3.35) is regular throughout Γ and

so we can integrate overΓ and apply the divergence theorem to get

∫

∂Γ

(−Gij σik + µui Tijk)nk ds(x) = 0, (1.3.36)

where we have definedn to point intoΓ. This is the boundary integral equation which is

valid whenx0 lies outside of the flow domainΓ.

Whenx0 lies insideΓ the left-hand side of equation (1.3.35) is singular atx0 and

so we define a small circle aroundx0 with domainΓ0 and boundary∂Γ0. Integrating
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equation (1.3.35) over the reduced areaΓ − Γ0 and applying the divergence theorem we

obtain
∫

∂Γ,∂Γ0

(−Gij σik + µui Tijk)nk ds(x) = 0, (1.3.37)

sincex0 lies outside the reduced area. Calculation of the integral over ∂Γ0 as the radius

of Γ0 tends to zero yields the result,

∫

∂Γ

(−Gij σik + µui Tijk)nk ds(x) = 4πµ uj(x0), (1.3.38)

for x0 insideΓ. Finally whenx0 lies on the boundary ofΓ we find

−

∫

∂Γ

Gij σik nk ds(x) + µ

PV
∫

∂Γ

ui Tijk nk ds(x) = 2πµ uj(x0), (1.3.39)

wherePV indicates a principal value integral. The requirement to take the principal value

of the integral comes from the discontinuous behaviour of the integral over the stress

tensor which jumps in value by4πµu asx0 crosses the domain boundary. Equations

(1.3.36)–(1.3.39) may be summarised as

χuj(x0) = −
1

4πµ

∫

∂Γ

fi(x)Gij(x,x0) ds(x)

+
1

4π

∫

∂Γ

ui(x)Tijk(x,x0)nk(x) ds(x), (1.3.40)

whereχ = 0 whenx0 lies outsideΓ, χ = 1/2 whenx0 lies on∂Γ andχ = 1 whenx0

lies insideΓ, and remembering to take the principal value of the second integral whenx0

lies on∂Γ. In the literature the first integral is called the single layer potential and the

second is called the double layer potential.

To compute the velocity field in a Stokes flow using the boundary integral method

we start by applying equation (1.3.40) to the flow and placex0 on the boundaries of

the flow domain. We use the boundary element method (Pozrikidis 2002a) to discretise

the boundaries into small elements and the equations into their discrete analogues. By

assigning unknown tractions and velocities to the boundaryelements we can construct a

system of algebraic equations from which thea priori unknown boundary values may be

computed. The velocity field throughout the flow domain is then be computed from the

discrete version of equation (1.3.40) using the calculatedvalues of the unknown boundary

tractions and velocities. We will explain this process fully and carefully in each chapter.

Our investigation begins in the next chapter with an examination of the motion of a

fluid in a straight two-dimensional channel with rigid wallswhich is subject to a distur-

bance caused by the motion of a small ‘conveyor’ belt on one ofthe channel walls. This
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example provides an introduction to the boundary integral and boundary element meth-

ods and their application to a simple flow in a channel. In chapter 2 and all subsequent

chapters we will assume that the flow in the channel is pressure-driven with a prescribed

flow rate and is governed by the equations of Stokes flow.

In chapter 3 we introduce a rigid particle into the straight channel before replacing the

rigid particle with a fluid-filled elastic capsule in chapter4. We will assume that the fluid

inside the capsule is also governed by the Stokes equations and that the capsule membrane

obeys simple constitutive laws which describe the in-planeand transverse membrane ten-

sions. We calculate the limiting or steady shape of the capsule in chapter 4 together with

the additional pressure drop due to the capsule.

We remove the capsule and add a daughter channel to the straight channel in chapter 5

and examine its effect upon the fluid flow while maintaining a prescribed flow rates which

we vary to increase or decrease the proportion of fluid which enters the branch channel.

In chapter 6 we study the motion of a rigid particle in a branching channel flow.

In chapter 7 we replace the rigid particle with a fluid-filled elastic capsule and inves-

tigate its motion through a bifurcation. Our aim in chapter 7is to compute the trajectory

of a capsule started from an arbitrary position upstream of the branch, and to calculate the

pressure drop across the branch both in the presence and in the absence of the capsule. Of

particular interest is the deformation experienced by the capsule in the neighbourhood of

the branch entrance, and the conditions under which the capsule is drawn into the branch.

We also examine the effect of the channel geometry, the capsule’s elastic properties, the

ratio of the encapsulated fluid to the ambient fluid, the capsule size and the flow condi-

tions. Also of interest is the magnitude of the stress experienced by the capsule under

deformation, particularly in the case when the capsule becomes trapped at the sharp cor-

ners at the branch entrance. In this case, the portion of the membrane closest to the sharp

corner is placed under a high level of stress, which may ultimately cause the capsule to

burst. We will show that as we add a branch channel and a flexible capsule the increas-

ingly diverse parameter space will be easily incorporated via the boundary integral and

boundary element formulation. Our results are discussed inchapter 8.





Chapter 2

A conveyor belt, a straight channel

and the boundary integral method

In this chapter we demonstrate the application of the boundary integral method to a simple

channel flow containing a disturbance caused by a conveyor belt on a portion of one of

the walls. This problem provides an insight into the effect of a disturbance to the channel

flow which will be of benefit in subsequent chapters. In chapter 3 we will change the

source of the disturbance from a conveyor belt to a rigid particle moving with the flow.

Much of the analysis contained in this chapter is directly applicable to the mathematical

model of a channel containing a particle. A free-boundary issubstituted for the rigid

particle in chapter 4, where we examine the motion of a fluid drop and an elastic capsule

in a straight channel. In chapters 5 onwards we extend the analysis by adding a branch

channel to the main channel and examining the disturbance caused by the branch entrance

and the capsule.

Although we use an isolated conveyor belt here to demonstrate the application of the

boundary integral and element methods, a parallel may be drawn between the problem

studied in this chapter and the mechanism by which large plant cells induce cytoplas-

mic streaming (e.g. Verchot-Lubicz and Goldstein 2009). Inlarge tubular plant cells,

streaming is induced by molecular motors arranged along helical cytoskeletal filaments.

Therefore the cell walls in a plant cell could be viewed as a continuous conveyor belt

which moves with a suitable velocity distribution.

2.1 Problem statement

Let us consider the motion of a fluid with viscosityµ in an infinite straight-walled chan-

nel of width 2d. The flow is disturbed by a portion of one of the walls which behaves

like a conveyor belt. The flow geometry which is sketched in figure 2.1, comprises the

channel,C, and the conveyor belt,A, which is centred on the lower wall of the channel.

The unit vectors in thex andy directions arei andj respectively. We introduce the dis-

turbance by setting the velocity to beu = U i onA whereU is a constant. Far upstream

and downstream of the disturbance, the flow in the channel is described by the classical
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Figure 2.1 : Channel with a localised disturbance on the lower wall

unidirectional Poiseuille solution with fluxQ and velocityuP , defined by

uP = U0

(

1 −
y2

d2

)

i (2.1)

whereU0 is the centreline speed of the Poiseuille flow and is related to the flux,Q, by

Q =
4

3
dU0. (2.2)

Our aim is to compute the velocity field throughout the flow domain. We assume that the

Reynolds number of the flow is very small, and that the main flowin the channel may be

described using the linear equations of Stokes flow (1.3.4).

In preparation for the numerical method, we truncate the channel and designate the

channel entry, located atx = 0, asE1, and the exit, located atx = l, asE2. We note that

E1 andE2 are the entrance and exit to the computational domain and arenot the inflow

and outflow of the channel, where end effects would be encountered. The unit normal

vectors,n, on all boundaries point into the fluid as shown in figure 2.1. The regionA has

lengthL and lies betweenx = l/2 − L/2 andx = l/2 + L/2. The motion ofA disturbs

the oncoming Poiseuille flow, but at the capsE1 andE2, we assume that the disturbance

has decayed and the flow has settled to Poiseuille flow.

We decompose the velocity field,u, the stress field,σ, and the traction field,f , into

background Poiseuille and disturbance components, indicated by the superscriptsP and

D respectively, so that

u = uP + uD, (2.3)

σ = σP + σD, (2.4)

f = fP + fD (2.5)

and where the traction,f = σ · n. OnC we have

u = uP = uD = 0 (2.6)
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due to the no-slip and no-penetration conditions, and

u = uD = U i, uP = 0 (2.7)

on the disturbance region,A.

Previous studies on two-dimensional channel flow by Gaver and Kute (1998) and

Cortez (2002) show that the disturbance velocity decays upstream and downstream from

the disturbance. Gaver and Kute (1998) studied a straight-walled channel with a semi-

circular protrusion on one wall. The flow is driven by a constant pressure drop across the

entrance and exit. When the protuberance is small the disturbance decays rapidly with

distance from the centre of the bump. In section 4.3 of Cortez(2002) the same geometry

is examined, albeit with a slightly longer channel. The pressure drop is again prescribed

and the disturbance velocity due to the obstruction is assumed to have decayed so that

the velocity profile at the entrance and exit is Poiseuille. The results from this example

in Cortez (2002) are nearly identical to the pertinent case in Gaver and Kute (1998). We

will therefore assume that the disturbance velocity field due to the conveyor belt decays

rapidly as we move away from it and that the velocity at the entrance and exit is Poiseuille.

We will however make sure the numerical solution satisfies this assumption in section 2.3.

We therefore set

uD = 0 (2.8)

at E1 andE2. As a consequence of the rapid decay of the disturbance velocity and hence

its derivatives, we may write the disturbance traction,

fD
i = −pD ni + µ

(

∂uD
i

∂xj
+
∂uD

j

∂xi

)

nj, (2.9)

as

fD
i ≈ −pD ni (2.10)

to leading order, wherepD(x) is the disturbance pressure and the indexi = 1, 2. Substi-

tuting the stress tensor definition (1.3.1) into the Stokes equation,∇ · σD = 0, we find

that they-component gives

0 = −
∂pD

∂y
+ µ

∂2uD
y

∂x2
i

≈ −
∂pD

∂y
(2.11)

as we move away from the source of the disturbance due to the rapid decay of the dis-

turbance velocity. Therefore at the caps the disturbance pressure will be constant. By

setting the disturbance pressures atE1 andE2 to π1 andπ2 respectively, we may write the

disturbance traction atE1 as

fD = −π1 n, (2.12)

and

fD = −π2 n (2.13)
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at E2. Since we are interested in the additional pressure drop betweenE1 andE2 we set

π1 = 0 without loss of generality. The disturbance pressure drop,∆pD, betweenE1 and

E2 is given by

∆pD = pD(E1) − pD(E2) = −π2. (2.14)

The Poiseuille pressure,pP (x), is a known function defined by

pP (x) = G (l − x) (2.15)

whereG = 2µU0/d
2 is a positive constant, and−G is the imposed constant pressure

gradient between the entrance and exit. We have definedpP so that it is zero atE2. The

total pressures at the caps are

p(E1) = pP (E1) + pD(E1) = pP (E1) = Gl, (2.16)

p(E2) = pP (E2) + pD(E2) = pD(E2) = π2, (2.17)

and so the total pressure atE1 is given by the Poiseuille pressure and the total pressure at

E2 equals the disturbance pressure. The total pressure drop between the entrance and exit,

∆p, is given by

∆p = p(E1) − p(E2) = Gl − π2. (2.18)

We may now derive an equation forπ2 by applying Lorentz’s reciprocal relation (1.3.22)

to the Poiseuille and disturbance flows in the channel, to give

∇ · (uD · σP − uP · σD) = 0. (2.19)

Let us integrate (2.19) around the flow domain to get

∫

∂Γ

uD · fP ds(x) =

∫

∂Γ

uP · fD ds(x), (2.20)

wheres is the boundary arc-length,∂Γ = E1 ∪ C ∪ A ∪ E2 is the piecewise-continuous

closed boundary of the flow domainΓ, and the divergence theorem has been used to

convert the area integrals into line integrals. Expansion of the integral on the left-hand

side of (2.20) gives

∫

∂Γ

uD · fP ds(x) =

∫

E1,E2,C

uD · fP ds(x) +

∫

A

uD · fP ds(x)

= U

∫

A

i · fP ds(x) (2.21)

since the disturbance velocity at the caps and on the walls iszero. The integrand may be



2.1 Problem statement 21

simplified using the definition of the traction and the stresstensor to get

i · fP = fP
x = σP

xj nj = σP
xy = µ

∂uP

∂y
(2.22)

sincen = j onA and whereuP is thex-component of the Poiseuille velocity which is

defined in equation (2.1). Hence we have

i · fP = −
2µU0

d2
y =

2µU0

d
(2.23)

sincey = −d onA. Substitution into (2.21) yields

∫

∂Γ

uD · fP ds(x) =
2µU U0

d

∫

A

ds(x) =
2µLU U0

d
. (2.24)

We now substitute (2.24) back into (2.20) and expand the integral on the right-hand side

to obtain

2µLU U0

d
=

∫

A,C,E1

uP · fD ds(x) +

∫

E2

uP · fD ds(x)

= −π2

∫

E2

uP · n ds(x) (2.25)

since the Poiseuille velocity is zero onA andC and the disturbance pressure is zero atE1.

The integral on the right-hand side is the flux,Q, which is defined by

Q =

∫

E1

n · uP ds(x) = −

∫

E2

n · uP ds(x), (2.26)

and so we can rearrange (2.25) to get

π2 =
2µLU

d

(

U0

Q

)

=
3µLU

2 d2
, (2.27)

where equation (2.2) has been used to eliminateU0/Q. Equation (2.27) provides us with a

simple formula for calculating the disturbance pressure atE2 and hence the total pressure

drop,

∆p =
µ

2 d2
(4 l U0 − 3LU) . (2.28)

We can derive an alternative expression for the disturbancepressure by integrating the

Stokes equation for the disturbance stress,∇·σD = 0, over the flow domain. Application
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of the divergence theorem and the boundary conditions provides the equations,

π2 = −
1

2 d

∫

A,C

i · fD ds(x) and (2.29)

0 =

∫

A,C

j · fD ds(x). (2.30)

Equation (2.27) is favoured over (2.29) becauseπ2 may be calculated exactly usingL,

U , µ andd. We can only evaluate equation (2.29) exactly if we know the disturbance

tractions at every point onA andC. However, as we will see in the next section, the

method of solution will only provide discrete values of the disturbance tractions and so

equation (2.29) would only provide an approximation.

It is interesting to note from (2.27) that the sign ofπ2 depends solely on the sign

of U . WhenU is in the positivex direction,π2 is positive and the total pressure drop

in equation (2.18) is reduced. The disturbance flow caused bythe motion ofA could

therefore be interpreted as helping the flow because a lower pressure drop is required to

maintain the flow. WhenU is negative, the disturbance could be seen to impede the flow

because a larger pressure difference is needed to maintain the same flow rate.

Now that we have a formula for the disturbance pressure drop,we move onto our

next goal of deriving an integral equation which governs thedisturbance velocity in the

channel. We apply the boundary integral equation (1.3.40) to the disturbance flow with

the pole,x0, in the fluid to get

4πµuD
j (x0) = −

∫

∂Γ

fD
i Gij ds(x) + µ

∫

∂Γ

uD
i Tijk nk ds(x), (2.31)

whereGij andTijk are the free-space Green’s function and its associated stress tensor

defined in equations (1.3.29) and (1.3.30). Knowledge of thedisturbance tractions and

velocities on the boundaries coupled with equation (2.31) would allow the disturbance

velocity to be calculated at any point in the flow domain. To obtain the boundary values

of fD anduD we start by writing down the boundary integral equation forx0 on the

domain boundary,

2πµuD
j (x0) = −

∫

∂Γ

fD
i Gij ds(x) + µ

PV
∫

∂Γ

uD
i Tijk nk ds(x), (2.32)

using (1.3.40) and wherePV indicates a principal value integral. We simplify (2.32) by

applying the boundary conditions given in equations (2.6),(2.7), (2.8), (2.13) together
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with the zero disturbance pressure onE1 to get

2πµuD
j (x0) = −

∫

A,C

fD
i Gij ds(x) + π2

∫

E2

niGij ds(x) + µU

PV
∫

A

Txjk nk ds(x),

(2.33)

where the principal value of the double-layer potential integral in (2.33) need only be

evaluated when the pole is located onA. The only unknown quantities in equation (2.33)

are the disturbance tractions onA andC. The formula for the disturbance pressure at

E2 means that we do not need to find the tractions there, moreoverwe do not need to

evaluate (2.33) with the pole on eitherE1 or E2. Pozrikidis (2005c) notes that evaluation

of the boundary integral equation for flow in a pipe suffers from numerical sensitivities

when the pole is located on the entrance or exit. This issue isneatly side-stepped by

adapting the derivation of the disturbance pressure equation given in Pozrikidis (2005b)

to our geometry.

It is worth noting that we could choose a Green’s function which would be zero on the

channel walls, thereby removing the single-layer potential integral overC in (2.33). How-

ever, the Green’s function for a straight channel is computationally intensive to calculate

relative to the Stokeslet. In future models, we will add a branch to the channel which

would invalidate the use of the straight channel Green’s function. Modifications could

theoretically be made to the Green’s function, but we would need to exercise care in order

to avoid singularities occurring within the flow domain. At the expense of computing the

integral overC, the two-dimensional Stokeslet is used.

It is enlightening to non-dimensionalise equation (2.33) usingU , d andµU/d as the

velocity, length and traction scales to get

2π uD
j (x0) = −

∫

A,C

fD
i Gij ds(x) + π2

∫

E2

niGij ds(x) +

PV
∫

A

Txjk nk ds(x) (2.34)

where all quantities are dimensionless. From this equationwe can see that the dimension-

less disturbance tractions are invariant to the belt speed but depend on the size of the belt

via the integrals overA. Therefore it is only necessary to find the dimensionless distur-

bance tractions, for a givenL, and scale them according to the belt speed,U . However,

we will calculate the total velocity by adding the Poiseuille velocity to the disturbance

velocity and so our problem contains two velocity scales,U0 andU . We will choose to

useU0 as our scale and so we will continue with the dimensional equation (2.33).

To obtain the solution we employ the boundary element method(Pozrikidis 2002a)

and discretise the boundary into straight elements. The accuracy of our numerical scheme

is therefore equal to the level of discretisation, i.e. if each element is of lengthh then the

solution isO(h) accurate. On each element ofA andC we set the disturbance traction to
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a constant 2-vector. Whenx0 is placed onA, equation (2.33) becomes

2πµ U δjx = −

∫

A,C

fD
i Gij ds(x) + π2

∫

E2

niGij ds(x) + µU

PV
∫

A

Txjk nk ds(x) (2.35)

and whenx0 is onC we have

0 = −

∫

A,C

fD
i Gij ds(x) + π2

∫

E2

niGij ds(x) + µU

∫

A

Txjk nk ds(x). (2.36)

Now let us focus our attention on the integrand of the double-layer potential integral in

equation (2.35). The stress tensor is singular whenx = x0 but asx → x0 alongA

we have

Txjknk = −4
x̂ x̂j x̂k

r4
nk = −4

x̂ x̂j

r4
x̂k nk = 0 (2.37)

sincex̂k andnk are orthogonal. Therefore the double-layer potential in (2.35) is zero and

so the equation reduces to

2πµ U δjx = −

∫

A,C

fD
i Gij ds(x) + π2

∫

E2

niGij ds(x) (2.38)

when x0 lies onA. We can simplify (2.36) whenx0 lies on the lower wall because

ŷ = y − y0 = 0 and so the stress tensor is zero. Equation (2.36) becomes

0 = −

∫

A,C

fD
i Gij ds(x) + π2

∫

E2

niGij ds(x) (2.39)

whenx0 is positioned on the lower wall ofC.

Evaluation of (2.38) withx0 at the mid-point of each boundary element ofA provides

a sufficient number of equations for the unknown tractions onA. We have the same

sufficiency onC by equation (2.36). Therefore the number of unknowns equalsthe number

of equations and so our system is complete. Once the solutionis known we may calculate

the velocity at any point in the flow domain using

uj(x0) = uP
j (x0) +

1

4πµ






−

∫

A,C

fD
i Gij ds(x)

+π2

∫

E2

niGij ds(x) + µU

∫

A

Txjy ds(x)



 (2.40)

which we obtained from equation (2.31) by applying the boundary conditions and adding

the Poiseuille velocity,uP .
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2.2 Numerical method

Our aim is to write the governing boundary integral equations in the form of the linear

system,

A · x = b, (2.41)

whereA is a square matrix of ‘influence’ coefficients,x is the column vector of unknown

tractions onA andC, andb is a column vector of known values. Let us begin by separating

the unknown tractions from the known values in equation (2.38) to get

∫

A,C

fD
i Gij ds(x) = π2

∫

E2

niGij ds(x) − 2πµ U δjx (2.42)

for x0 onA, and in equation (2.36) to get

∫

A,C

fD
i Gij ds(x) = π2

∫

E2

niGij ds(x) + µU H(x0)

∫

A

Txjy ds(x) (2.43)

whenx0 is onC, and whereH(x0) = 0 whenx0 is on the lower wall ofC andH(x0) = 1

when it is on the top wall. The right-hand sides of (2.42) and (2.43) are known functions

of x0. We may calculate
∫

E2
niGij ds(x) analytically forx0 away fromE2, to get

∫

E2

niGix ds(x) = −

∫

E2

Gxx ds(x) =
1

2

(

d ln(r1 r2) + y0 ln

(

r2
r1

)

− 4 d

)

(2.44)

∫

E2

niGiy ds(x) = −

∫

E2

Gxy ds(x) =
x̂

2
ln

(

r2
r1

)

(2.45)

sincen = −i onE2, and wherêx = l−x0, r1 = x̂2 +(d−y0)
2 andr2 = x̂2 +(d+y0)

2.

The integral ofTxjy overA is

∫

A

Txxy ds(x) = 2

(

arctan(â) − arctan(b̂) −
â

1 + â2
+

b̂

1 + b̂2

)

, (2.46)

∫

A

Txyy ds(x) = 2

(

1

1 + b̂2
−

1

1 + â2

)

, (2.47)

whereâ = (l/2 − L/2 − x0)/ŷ, b̂ = (l/2 + L/2 − x0)/ŷ andŷ = −(d + y0). We now

have formulae for the right-hand sides of equations (2.42) and (2.43).
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Let us define

IS
A,j(x0) =

∫

A

fD
i Gij ds(x), (2.48)

IS
C,j(x0) =

∫

C

fD
i Gij ds(x), (2.49)

kA,j(x0) = π2

∫

E2

niGij ds(x) − 2πµ U δjx , and (2.50)

kC,j(x0) = π2

∫

E2

niGij ds(x) + µU H(x0)

∫

A

Txjy ds(x) (2.51)

where theS superscript is shorthand for single-layer potential, and wherekA,j(x0) and

kC,j(x0) are the right-hand sides of equations (2.42) and (2.43) respectively. The govern-

ing equations (2.42) and (2.43) may be concisely written as

IS
A,j(x0) + IS

C,j(x0) = kA,j(x0), (2.52)

and

IS
A,j(x0) + IS

C,j(x0) = kC,j(x0). (2.53)

To apply the boundary element method we discretiseA into NA equally-sized straight

elements andC into NC equally-sized straight elements. On therth boundary element,

Er, we label the disturbance tractionfD
r and discretiseIS

A andIS
C so that the integral

over the boundary is approximated by a sum of integrals over the boundary elements. The

discretised equations are

IS
A,j(x0) =

∫

A

fD
i Gij ds(x) ≈

NA
∑

r=1

fD
i,r G̃ij,r , (2.54)

where

G̃ij,r(x0) =

∫

Er

Gij(x,x0) ds(x) , (2.55)

and

IS
C,j(x0) =

∫

C

fD
i Gij ds(x) ≈

NC
∑

r=1

fD
i,r G̃ij,r . (2.56)

When x0 lies on therth element,Gij(x,x0) will have a logarithmic singularity but

G̃ij,r(x0) remains integrable. Details of the numerical integration scheme may be found

in Appendix A and Pozrikidis (1998). For the numerical integration, we typically used20
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base-points in the numerical scheme. Expanding (2.54) gives

IS
A,j(x0) =

(

G̃xj,1 f
D
x,1 + G̃yj,1 f

D
y,1 + . . . + G̃xj,NA

fD
x,NA

+ G̃yj,NA
fD

y,NA

)

=
[

G̃xj,1 G̃yj,1 · · · G̃xj,NA
G̃yj,NA

] [

fD
x,1 fD

y,1 · · · fD
x,NA

fD
y,NA

]T

= IG
A,j(x0) · FA, (2.57)

where theT superscript means transpose, and we have defined the1 × 2NA ‘influence’

row-vectorIG
A,j(x0) to be,

IG
A,j(x0) =

[

G̃xj,1 G̃yj,1 . . . G̃xj,NA
G̃yj,NA

]

, (2.58)

and the column-vectorFA to be,

FA =
[

fD
x,1 fD

y,1 . . . fD
x,NA

fD
y,NA

]T
, (2.59)

which represents the disturbance tractions on the elementsof A. Expanding (2.56) gives

IS
C,j(x0) =

(

G̃xj,1 f
D
x,1 + G̃yj,1 f

D
y,1 + . . .+ G̃xj,NC

fD
x,NC

+ G̃yj,NC
fD

y,NC

)

=
[

G̃xj,1 G̃yj,1 . . . G̃xj,NC
G̃yj,NC

] [

fD
x,1 fD

y,1 . . . fD
x,NC

fD
y,NC

]T

= IG
C,j(x0) · FC , (2.60)

whereIG
C,j is the1 × 2NC ‘influence’ row-vector,

IG
C,j(x0) =

[

G̃xj,1 G̃yj,1 . . . G̃xj,NC
G̃yj,NC

]

, (2.61)

and the column-vector,FC , is

FC =
[

fD
x,1 fD

y,1 . . . fD
x,NC

fD
y,NC

]T
, (2.62)

which represents the disturbance tractions onC. We may therefore write thex and y

components of the discretised version of (2.52) more compactly as

[

IG
A,x(x0) IG

C,x(x0)

IG
A,y(x0) IG

C,y(x0)

][

FA

FC

]

=

[

kA,x(x0)

kA,y(x0)

]

, (2.63)

which is forx0 onA. The discretised version of (2.53) is

[

IG
A,x(x0) IG

C,x(x0)

IG
A,y(x0) IG

C,y(x0)

][

FA

FC

]

=

[

kC,x(x0)

kC,y(x0)

]

. (2.64)

wherex0 is onC. As we movex0 overA we re-evaluate (2.63) and generateNA pairs of
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equations which may be expressed as the matrix/vector product,

[

AA AC

]

[

FA

FC

]

= KA, (2.65)

where

AA =



















IG
A,x

(

x
(1)
0

)

IG
A,y

(

x
(1)
0

)

...

IG
A,x

(

x
(NA)
0

)

IG
A,y

(

x
(NA)
0

)



















, AC =



















IG
C,x

(

x
(1)
0

)

IG
C,y

(

x
(1)
0

)

...

IG
C,x

(

x
(NA)
0

)

IG
C,y

(

x
(NA)
0

)



















, KA =



















kA,x

(

x
(1)
0

)

kA,y

(

x
(1)
0

)

...

kA,x

(

x
(NA)
0

)

kA,y

(

x
(NA)
0

)



















, (2.66)

andx
(1)
0 . . .x

(NC)
0 are the boundary element mid-points ofA. The matrixAA has size

2NA × 2NA and represents the influence ofA on itself.AC represents the effect ofA on

C and has size2NA × 2NC . KA is a column vector containing2NA elements. We follow

the same procedure for equation (2.64), and movex0 over theNC elements ofC to get

[

CA CC

]

[

FA

FC

]

= KC , (2.67)

where

CA =



















IG
A,x

(

x
(1)
0

)

IG
A,y

(

x
(1)
0

)

...

IG
A,x

(

x
(NC)
0

)

IG
A,y

(

x
(NC)
0

)



















, CC =



















IG
C,x

(

x
(1)
0

)

IG
C,y

(

x
(1)
0

)

...

IG
C,x

(

x
(NC)
0

)

IG
C,y

(

x
(NC)
0

)



















, KC =



















kC,x

(

x
(1)
0

)

kC,y

(

x
(1)
0

)

...

kC,x

(

x
(NC)
0

)

kC,y

(

x
(NC)
0

)



















, (2.68)

which have dimensions2NC × 2NA, 2NC × 2NC and2NC × 1 respectively. The points

x
(1)
0 . . .x

(NC)
0 are the boundary element mid-points ofC. CA represents the effect ofC on

A andCC describes the effect ofC on itself. We can combine equations (2.65) and (2.67)

to get
[

AA AC

CA CC

][

FA

FC

]

=

[

KA

KC

]

(2.69)

which matches the form of our linear system in (2.41) and has dimension2NA + 2NC .

The solution of (2.69) provides the disturbance tractions on A andC. In our simulations

we tookNA = 200 andNC = 800.

We are now able to construct our linear system and solve it using a standard numer-

ical method. We found it practical to use Gaussian elimination to find the disturbance

tractions. The values of the disturbance tractions may thenbe used in (2.31) to obtain the

disturbance velocity at any point in the flow. To calculate the streamlines of the flow, we
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start at a specified point and integrate the equation

dx

ds
= u(x), (2.70)

wherex is the position vector of the point,s is the arc-length along the streamline, and the

velocity on the right-hand side of (2.70) is computed from (2.40). We used the adaptive

stepping Runga-Kutta-Fehlberg method of orders 2 and 3 (e.g. Atkinson 1978) to integrate

equation (2.70).

2.3 Validation

When checking the numerical solution we set the conveyor belt length,L = 2 d, and

truncated the channel so thatl = 12 d, which was found to be sufficient for the disturbance

to decay. The geometry discretisation was verified using thediscretised analogues of the

integral identities for Stokes flow,

S
(1)
j (x0) =

∫

∂Γ

niGij ds(x) = 0, (2.71)

S
(2)
ij (x0) =

1

4πµ

∫

∂Γ

Tijk nk ds(x) =











0 whenx0 is outsideΓ
1

2
δij whenx0 lies on∂Γ

δij whenx0 lies insideΓ

(2.72)

with x0 at the mid-point of each boundary element, and at several points inside and outside

the flow domain. Both of the integral identities were satisfied such that|S(1)
j (x0)| < 10−9

and|S(2)
ij − 1/2 k δij | < 10−9 for all tested values ofx0, and wherek = 0, 1, 2 whenx0

lies outside, on and inside the boundary.

In our formulation of the governing equations, we assumed that the disturbance ve-

locity decayed rapidly to zero as we approached the caps. To check this assumption we

removed the Poiseuille flow and set the belt speed,U = 1, and the belt lengthL/d = 2.

The maximum values of thex andy components of the disturbance velocity at the caps

were0.02% of the belt speed. The error was the same when we introduced the Poiseuille

flow and setU0 = U .

To validate the accuracy of the computed disturbance tractions we compared the trac-

tion distributions over the top and bottom walls when the number of boundary elements

and the channel length were increased. The tractions are displayed for the simulations in

figure 2.2 . The channel in each simulation has been centred sothatE1 lies atx = −l/2

andE2 lies at l/2. Our reference configuration has a channel length ofl = 12 d with

200 boundary elements onA and800 elements onC. To test the effect of adding more

boundary elements we doubled the number of elements such that A was discretised into

400 elements andC into 1600 elements. The only observable difference can be seen in

figure 2.2 (c) where the spike in the value of the traction has amagnitude which is double

that seen in the reference case. Since thex component of the traction represents the wall
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Figure 2.2 : Disturbance tractions for a variety of configurations on theupper and lower walls
plotted against a rebasedx coordinate forL = 2 d andU = 1. Reference configuration (–) is
for l = 12 d andN = 1000, (r) is for l = 12 d andN = 2000 and (· · · ) is for l = 24 d and
N = 1800. The conveyor belt lies betweenx/d = −1 and1.

shear stress, we expect the traction to be singular at the point where the lower wall meets

the conveyor belt because the velocity on the wall jumps fromzero toU . Increasing the

number of boundary elements leads to an increased resolution of the singularity. To test

the effect of the channel length, we doubled the length so that l = 24 d and preserved the

element length on the channel walls with respect to the reference configuration and main-

tained the length ofA. The total number of elements in this configuration isN = 1800.

The traction profiles, as depicted in figure 2.2 , demonstratethe excellent agreement be-

tween the solutions. The absolute value in the difference between the solutions is less

than0.001µU/d.

Finally, as a check on the disturbance tractions, we calculated the approximate value

of the disturbance pressure using equation (2.29). The error in the approximate value

was0.02%. When the number of boundary elements was doubled the error was halved,

showing that the error is due to the discretisation. They-component of the disturbance

tractions was checked using equation (2.30). The equation was satisfied to within a nu-

merical tolerance of10−10.
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Figure 2.3 : Disturbance tractions on the upper and lower walls plotted against thex coordinate
for β = 2 andU = 1. The conveyor belt lies betweenx/d = 5 and7.

2.4 Results

All of the results to be presented in this section were computed with the channel length,

l = 12 d. In the first case we discuss the effect of the belt in isolation and define the

dimensionless belt size,β, to be

β =
L

d
, (2.73)

which we will set to2 initially. We remove the Poiseuille flow and set the belt speed,

U = 1, and look at the effect of the belt. For these parameters the disturbance pressure,

π2 = 3µU/d and the pressure drop between the entrance and exit is−π2. Figure 2.3

shows the variation in the disturbance tractions over the walls and the belt. We expect the

y-component of the disturbance traction to decay to zero at the entrance because we have

set the disturbance pressure to zero there. We can see from figures (b) and (d) that this

decay condition is satisfied. Towards the entrance the traction values decay to no more

than0.002µU/d. Both components of the traction reach their steady value ata distance

of approximately a quarter of the channel length from the channel centre. As we approach

the exit we expect the normal component of the disturbance traction to tend to the distur-

bance pressure which takes the value3µU/d. Figures (b) and (d) show that the normal

component of the disturbance traction tends to this value onthe top and bottom walls,

where the sign change is due to the direction of the normal vector. The discontinuity in

thex-component of the traction in figure 2.3 (c) at the points whereA andC meet is to be
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Figure 2.4 : Velocities and streamlines forβ = 2 andU = 1 when the Poiseuille flow is absent.
The conveyor belt lies betweenx/d = 5 and7.

expected, since the velocity is also discontinuous at thesepoints. The numerical method

performs no special treatment of the traction discontinuity at these points. This concludes

the discussion on the disturbance tractions since we are able to obtain the disturbance

tractions for other belt speeds by scaling byU , as noted earlier. A change in the belt size

would require the disturbance tractions to be recomputed.

In figure 2.4 we show the velocity and streamlines for the casejust discussed, where

β = 2 andU = 1. The velocity profile along the centreline is shown in figure 2.4 (a).

The velocity decays rapidly as we move away from the belt and reaches its steady values

at aroundx/d = 2 andx/d = 10. At the caps, thex andy components of velocity

are no more than0.02% of U . If the conveyor belt were absent the velocities would be

u = 0. In figure 2.4 (b) we can see how the velocity varies on the channel mid-point line,

x/d = 6. They-component is zero for all values ofy, which shows that all movement is

in thex-direction. Thex-component of velocity has both positive and negative regions,

indicating that the fluid close toA is moving in the positivex-direction and the fluid

abovey/d ≈ −0.37 is moving in the opposite direction. The sign change in the velocity

suggests that a region of circulating region of fluid is present with its centre closer to the

bottom wall. The magnitude of velocity is greatest onA and the fluid close toA flows

faster than fluid elsewhere on the mid-point line. The fluid flows with greater speed when

−1 < y/d < −0.615 than in any other region on the mid-point line. In figure 2.4 (c)we

plot the streamlines for the flow usingx/d = 6 andy/d = −0.3 . . . 0.9 as the starting
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points, wherey/d is incremented in steps of0.2. The fluid in the eddy moves in an anti-

clockwise direction. When we change the direction of the conveyor belt the fluid inside

the eddy moves in the opposite direction. It is interesting to note that even though the

pressure drop between the entrance and exit is non-zero, there is no induced transfer of

fluid. Since there is no flux between the entrance and exit there must be zero flux across

every cross-section of the channel. Thus on every cross-section which intersects the eddy

we would expect the fluid flux moving in the positivex-direction to exactly balance the

flux moving in the negativex-direction. This is particularly interesting in light of the fact

that the pressure drop between the entrance and exit equals−π2 which is non-zero. In

a channel with a quiescent fluid, this pressure drop would normally induce a Poiseuille

flow in the negativex-direction. However, the presence of the eddy exactly balances the

pressure drop thus ensuring zero flux at the caps.

When the Poiseuille flow is present, the dynamics are governed by the prescribed flux

and the speed and size of the conveyor belt. Dimensional analysis reveals the importance

of the previously mentioned dimensionless belt size and therelative importance of the belt

speed to the centreline speed of the Poiseuille flow,

F =
U

U0
. (2.74)

In the following results we maintain the size of the belt and varyF . Later we will change

the size of the belt and examine the effect upon the flow.

In the next set of results we set the centreline speed of the Poiseuille flow equal to the

speed of the conveyor belt and maintain the size of the belt, so thatF = 1 andβ = 2. The

centreline velocity is shown in figure 2.5 (a) where we can seethat the velocity profiles

are equivalent to those in figure 2.4 (a), albeit with a shift in thex-component due to the

non-zero Poiseuille velocity. We can see that thex-component decays to its Poiseuille

value at a distance of around4 d from the caps. They-component does not decay quite

so rapidly, but has decayed to zero a further distanced toward either cap. The channel

mid-point line velocity is plotted in figure 2.5 (b). They-component is zero showing that

the movement is solely in thex-direction and thex-component smoothly falls from its

conveyor belt speed ofU on A to its no-slip value of zero on the top wall as we move

from the lower wall to the upper one. The streamlines are shown in figure 2.5 (c) for the

starting positions,x/d = 0 andy/d = −0.9 . . . 0.9 wherey/d was increased in steps of

0.2. We can see that all of the streamlines are drawn towards the conveyor belt with the

greatest deflection being experienced by those which start closer to the lower wall. When

a streamline starts close to the lower wall it turns very sharply close to the meeting points

of A andC. Although all the streamlines start atx = 0 they do not terminate at the same

value ofx. The last point of each streamline in the figure is the last valid point recorded

by the adaptive time-stepping Runge-Kutta-Fehlberg method.

The next set of results are for the same sized belt and withF = 6 andβ = 2. The

centreline and mid-point line velocity profiles together with the streamlines are shown

in figure 2.6 . The profiles of the velocity along the centreline are equivalent to those in
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(c) Streamlines for starting pointsx/d = 0, y/d = −0.9 . . . 0.9.

Figure 2.5 : Velocity and streamlines whenF = 1 andβ = 2. The conveyor belt lies between
x/d = 5 and7.

figure 2.4 with the disturbance velocity scaled byF . In figure 2.6 (b) thex-component of

velocity is negative wheny/d > −0.165 which means that the fluid above this value

moves in the negativex-direction while the fluid below moves in the opposite direc-

tion. The streamlines are shown in figure 2.6 (c) for the starting pointsx/d = 0 and

y/d = −0.9 . . . 0.9, wherey/d has been incremented in steps of0.2. The figure shows

the eddy streamlines which move in an anti-clockwise direction and were started from

x/d = 6 with y/d = −0.1 . . . 0.9, wherey/d value was incremented in steps of0.2. The

streamlines which move from entrance to exit become very tightly grouped in the region

close toA. We found stagnation points on the top wall close tox/d = 4.7 and7.3. The

x-component of velocity to the left and right of these points are of opposite sign.

We have seen that as the conveyor belt speed is increased above the Poiseuille centre-

line speed a symmetric eddy is created aboveA. Although the eddy centre in the previous

case is closer to the lower wall, we found that when an eddy first appears it is closer to

the top wall. Therefore there is a critical value ofF , for a fixedβ, which identifies the

transition point between a flow without an eddy and one with aneddy. We investigated

the behaviour of thex-component of the disturbance traction on the top wall as a pos-

sible explanation for eddy formation. There are two reasonsfor this; the eddy andfD
x

are both symmetrical aboutx/d = 6, andfD
x is a component of the shear stress on the

wall, which we would expect to change sign when there is a sudden flow reversal. The

shear wall stress,τ , on the top wall is given byτ = σP
xy + σD

xy = −fP
x − fD

x , where

fP
x = 2µU0/d. We normaliseτ by dividing by the wall stress due to the Poiseuille flow,

as if the disturbance were not present, to getτ̂ = −τ/fP
x = 1 + fD

x /f
P
x . The normalised
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(c) Streamlines for starting pointsx/d = 0, y/d = −0.9 . . . 0.9 andx/d = 6, y/d = −0.1 . . . 0.9. The eddy
streamlines move in an anti-clockwise direction.

Figure 2.6 : Velocities and streamlines when whenF = 6 andβ = 2. The conveyor belt lies
betweenx/d = 5 and7.
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Figure 2.7 : The normalised top-wall shear stress,τ̂ , for F = 1, 2.21 and6 andβ = 2. The solid
line isF = 1, the dashed line isF = 2.21 and the dotted line isF = 6. The conveyor belt lies
betweenx/d = 5 and7.

top-wall shear stress for three values ofF is shown in figure 2.7 . We have seen that an

eddy does not occur forF = 1 and figure 2.7 shows us that the shear wall stress does not

change sign along the top wall. We found the critical value ofF by substituting the mini-

mum value offD
x (= −0.904µU/d) into the expression forτ and setting it equal to zero,

which givesF = 2.21. IncreasingF to the critical value makes the shear wall stress zero

atx/d = 6 and the eddy forms forF ≥ 2.21. SettingF = 6 makeŝτ zero atx/d = 4.72

and7.28. We can see from figure 2.6 (c) that this region is where the streamlines, which

start from from the entrance and close to the top wall, meet the eddy streamlines. These
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(c) Streamlines for starting pointsx/d = 0, y/d = −0.9 . . . 0.9 andx/d = 6, y/d = −0.7,−0.9.

Figure 2.8 : Velocities and streamlines whenF = −1 andβ = 2. The conveyor belt lies between
x/d = 5 and7.

points also correspond to the locations of the stagnation points noted earlier. To create a

small eddy we setF = 2.24. The centre of the eddy is located aty/d ≈ 0.97 and it has

height0.028 d and width0.153 d, where height and width are measured in thex andy

directions respectively. AsF is increased beyond2.21 the eddy increases in size and its

centre moves towards the lower wall.

So far we have had the conveyor belt moving in the positivex-direction. For the

next set of results we reverse the direction of the belt such thatF = −1. The velocity

profiles and the streamlines are shown in figure 2.8. The profiles along the centreline are

again equivalent to those in 2.5 with the disturbance velocity negated due to the velocity

scaling. The mid-point line profiles indicate the presence of an eddy which is shown in the

streamline figure 2.8 (c). The streamlines were started fromx/d = 0, y/d = −0.9 . . . 0.9

incremented in steps of0.2, andx/d = 6, y/d = −0.7 and−0.9. An eddy is created

close toA for all negativeF .

In this set of results we increase the size of the belt so thatβ = 4 and setF = 6. Since

we have changed the size of the belt, we checked the decay of the disturbance velocity

and the disturbance pressure. We found the maximum error in the disturbance velocity at

the caps to be0.03% of U0. The approximate value of the disturbance pressure calculated

from equation (2.29) differed from the exact value by0.003%. In figure 2.9 we show

the disturbance tractions on the top wall, the velocity profiles along the centreline and

mid-line, and the streamlines. The disturbance tractions on the top wall are shown in

figures 2.9 (a) and 2.9 (b). We can see that the profile is blunted for thex-component

and the turning points are moved towards the caps for they-component. The disturbance
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(e) Streamlines for starting pointsx/d = 0, y/d = −0.9 . . . 0.9 andx/d = 6, y/d = −0.1 . . . 0.9.

Figure 2.9 : Disturbance tractions, velocity profiles and streamlines for F = 6 andβ = 4. The
conveyor belt lies betweenx/d = 4 and8.

tractions on the lower wall are not materially different from those shown in figure 2.3. An

interesting feature of the centreline velocity profile, shown in figure 2.9 (c), is the plateau

region in thex-component above the belt. The mid-line plot in figure 2.9 (d)shows that

the x-component of velocity changes sign and so an eddy will be present. From the

velocity profiles we expect the eddy to be wider, measured in thex-direction, because the

x-component of velocity reaches a steady value above the belt. Confirmation is shown in

figure 2.9 (e) which shows the flow streamlines, plotted for starting positionsx/d = 0,

y/d = −0.9 . . . 0.9 andx/d = 6, y = −0.1 . . . 0.9, wherey/d is incremented in steps of

0.2 in both cases.

In the penultimate set of results we reduce the size of the conveyor belt so thatβ = 1

andF = 6. Since we have again changed the size of the belt, we checked the decay

of the disturbance velocity and the disturbance pressure. We found the maximum error
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(c) Streamlines for starting pointsx/d = 0, y/d = −0.9 . . . 0.9 andx/d = 6, y/d = −0.1 . . . 0.9. The
conveyor belt lies between the unlabelled points on thex/d axis.

Figure 2.10 : Velocity profiles and streamlines forF = 6 andβ = 1. The conveyor belt lies
betweenx/d = 5.5 and6.5.

in the disturbance velocity at the caps to be0.1% of U0. The approximate value of the

disturbance pressure calculated from equation (2.29) differed from the exact value by

0.05%. In figure 2.10 we show the centreline velocity profiles, the mid-line velocity

profiles and the streamlines. The disturbance tractions were not materially different from

those shown in figure 2.3 and so are not plotted. From the centreline velocity profile,

shown in figure 2.10 (a), we can see that the velocity is almostzero at(6, 0). The mid-line

plot in figure 2.10 (b) shows that an eddy is present because thex-component of velocity

changes sign aty/d = −0.12. The streamlines are shown in figure 2.10 (c) and were

started fromx/d = 0, y/d = −0.9 . . . 0.9 andx/d = 6, y = 0.1 . . . 0.9, wherey/d is

incremented in steps of0.2 in both cases. The eddy shape is noticeably more triangular

than in the previous results.

Finally, we reduce the belt length such thatβ = 0.5 and setF = 12. For this value

of β we checked the disturbance velocity decay and the disturbance pressure. We found

the maximum error in the disturbance velocity at the caps to be 0.4% of U0. Once again

we use equation (2.29) to calculate the approximate value ofthe disturbance pressure.

The approximate value differed from the exact value by0.08%. In figure 2.11 we show

the centreline velocity profiles, the mid-line velocity profiles and the streamlines. The

disturbance tractions were not materially different from those shown in figure 2.3 and

so are not plotted. The results are similar to the previous set for F = 6 andβ = 1.

However whenβ = 1/2 an eddy is not present forF = 6 and so we increasedF to 12.

The velocity profile on the mid-line, shown in figure 2.11 (b),shows that the fluid moves
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(c) Streamlines for starting pointsx/d = 0, y/d = −0.9 . . . 0.9 andx/d = 6, y/d = −0.1 . . . 0.9. The
conveyor belt lies between the unlabelled points on thex/d axis.

Figure 2.11 : Velocity profiles and streamlines forF = 12 andβ = 0.5. The conveyor belt lies
betweenx/d = 5.75 and6.25.

relatively slowly above the eddy centre. The streamlines infigure 2.11 (c) again show

an eddy with a ‘rounded’ triangular shape. The streamlines were started fromx/d = 0,

y/d = −0.9 . . . 0.9 andx/d = 6, y = −0.1 . . . 0.9, wherey/d is incremented in steps of

0.2 in both cases.

2.5 Discussion

We derived boundary integral equations which govern the velocity field inside a channel

containing a disturbance caused by a conveyor belt on one of the walls. An exact ex-

pression for the disturbance pressure at the channel exit was derived using the Lorentz

reciprocal relation, wherein the disturbance flow was related to the Poiseuille flow. We

discretised the geometry and equations using the boundary element method. We con-

structed a linear system from the discretised equations andfound its solution by a standard

numerical method.

If the Poiseuille flow was absent then the conveyor belt created an eddy in the fluid.

When the Poiseuille flow was present and the conveyor belt speed was in the same direc-

tion and sufficiently small then the fluid experienced a pull towards the conveyor belt. The

pull towards the conveyor belt increased when the conveyor belt speed was increased. At

a critical value of the conveyor belt speed an eddy formed close to the top wall. As the

conveyor belt speed was increased past this critical value the eddy increased in size and

its centre moved further towards the lower wall. When the conveyor belt speed was in
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the same direction as the Poiseuille flow the pressure drop between the entrance and exit

decreased. However even when the pressure drop is zero, the presence of the conveyor

belt and the induced eddy maintain the flux rate at the exit.

Changing the size of the belt affects the shape and size of theeddy. When the belt size

is increased the eddy becomes wider and the fluid closest to the belt moves almost parallel

to it. A smaller belt induces an eddy which does not exhibit this property. Instead the

eddy adopts a ‘rounded’ triangular shape. When the conveyorbelt moved in the opposite

direction to the Poiseuille flow, an eddy was immediately created close to the conveyor

belt. The fluid which was not caught in the eddy was diverted away from the conveyor

belt. Interesting further work on this problem could involve a parameter study whereby

the speed and size of the conveyor belt could be related to theeddy size.

This concludes the chapter on the conveyor belt problem. In the next chapter we will

consider a straight channel containing a disturbance caused by the presence of a capsule.



Chapter 3

The motion of a rigid particle in a

straight channel

In the previous chapter we studied the disturbance flow due tothe motion of a conveyor

belt on one of the walls in a two-dimensional channel flow. In this chapter we remove

the conveyor belt and introduce a rigid neutrally-buoyant particle to the flow. The particle

is free to move with the flow and we assume that the flow exerts noforce or torque on

the particle. We model the disturbance caused by the particle using the boundary integral

method and derive the equations which govern the motion of the fluid and the particle.

We derive the discrete analogues of the governing equationsusing the boundary element

method and write the equations in the form of a linear matrix system. We solve the linear

system by a standard numerical method, and compare the solution to known results where

applicable. The mathematical treatment of this problem will provide a guide to the next

chapter, where we will substitute the particle’s rigid boundary with a flexible one, and

allow it to contain a secondary fluid.

3.1 Problem statement

Let us consider the motion of a fluid with viscosityµ in an infinite straight-walled channel

of width 2d. A disturbance to the pressure-driven flow is caused by the presence of a rigid

particle of a prescribed shape. We assume that the particle is neutrally-buoyant and that

the flow exerts zero force and torque on the particle so that the particle has zero inertia

and moves freely with the flow. The geometry is shown in figure 3.1 and comprises the

channel walls,C, and the particle,P. Far upstream and downstream of the disturbance

caused by the particle, the flow in the channel is described byclassical unidirectional

Poiseuille flow, which is characterised by the prescribed flux, Q. The Poiseuille velocity,

uP , is defined by

uP = U0

(

1 −
y2

d2

)

i = uP i (3.1)
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Figure 3.1 : A straight-walled channel containing a rigid neutrally-buoyant particle.

whereU0 is the speed on the centreline anduP = U0(1 − y2/d2) is thex-component of

the Poiseuille velocity. The flux and the centreline speed are related by

Q = 4

3
dU0. (3.2)

Our aim is to compute the velocity field throughout the flow domain, the translational and

rotational velocities of the particle and the additional pressure drop between the entrance

and exit due to the presence of the particle. We assume that the Reynolds number of

the flow is very small so that the flow in the channel may be described using the linear

equations of Stokes flow given in equation (1.3.4).

In preparation for the numerical method, we truncate the channel and label the en-

trance, located atx = 0, asE1 and the exit, located atx = l, asE2. We note thatE1

andE2 are the entrance and exit to the computational domain and arenot the inflow and

outflow of the channel, where end effects would be encountered. The unit normal vectors,

n, on all boundaries point into the fluid as shown in figure 3.1. The particle disturbs the

Poiseuille flow, but atE1 andE2, we assume that the disturbance has decayed and the flow

has settled to Poiseuille flow.

We decompose the velocity field,u, the stress field,σ, and the traction field,f , into

background Poiseuille and disturbance components, which we indicate by the superscripts

P andD respectively, so that

u = uP + uD, (3.3)

σ = σP + σD, (3.4)

f = fP + fD (3.5)

and where the traction,f = σ · n. OnC we have

u = uP = uD = 0 (3.6)

due to the no-slip and no-penetration conditions, and onP we have

u = V + Ω ∧ (x− xc) (3.7)

whereV = (Vx, Vy) is the translational velocity,Ω is the rotational velocity,x is a point
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on the particle boundary andxc is the particle’s centroid, calculated by

xc =
1

SP

∫

P

x ds(x), (3.8)

whereSP is the length of the particle perimeter. When the particle rotates in thexy-

plane, the rotational velocity is given byΩ = Ωk, whereΩ is the angular velocity andk

is the unit vector which points out of the paper towards the reader. WhenΩ is positive the

particle rotates in an anti-clockwise direction.

In the previous chapter we assumed that the disturbance velocity decayed rapidly as

we moved away from the source of the disturbance. We justifiedthis assumption on the

basis of studies of Gaver and Kute (1998) and Cortez (2002) regarding the effects of a

small obstruction in a channel. We calculated the disturbance velocity at the entrance and

exit to the computational domain and found an excellent agreement between the numerical

results and our assumptions. Now that the source of our disturbance is allowed to flow

with the fluid we must examine our assumption. Naturally we expect the disturbance flow

caused by the particle to decay as we move away from the particle. However we require

the decay to be sufficiently rapid so that our assumption of Poiseuille flow atE1 andE2 is

justified. Sugihara-Seki (1993) studied the motion of a rigid ellipse in a two-dimensional

channel flow. The velocity decay was assumed, and computed, to be sufficiently rapid for

a shorter computational domain than the one considered in this chapter. Therefore from

our results in the previous chapter, the results of Gaver andKute (1998), Cortez (2002) on

the decay of a disturbance in a channel and the results of Sugihara-Seki (1993) regarding

the decay of an ellipse in a channel flow, we assume that the disturbance velocity decays

sufficiently rapidly as we approach the ends. In summary, thedisturbance velocity and

disturbance traction satisfy

uD = 0, (3.9)

fD = −pD n (3.10)

at E1 andE2 wherepD is the disturbance pressure due to the particle. We takepD to be

constant at the ends and setpD = 0 atE1 without loss of generality. AtE2 we have

fD = −π2 n (3.11)

whereπ2 = pD(E2) is the disturbance pressure at the exit. The disturbance pressure drop

between the entrance and exit due to the particle is therefore given by

∆pD = pD(E1) − pD(E2) = −π2. (3.12)

The Poiseuille pressure in the channel is given by

pP = G (l − x) (3.13)
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whereG = 2µU0/d
2 is a positive constant, and−G is the imposed constant pressure

gradient between the entrance and the exit. The Poiseuille pressure varies linearly along

thex-axis of the channel and is zero atE2 wherex = l. Therefore the total pressure drop,

∆p, between the entrance and exit is

∆p = p(E1) − p(E2) = pP (E1) + pD(E1) −
(

pP (E2) + pD(E2)
)

= Gl − π2. (3.14)

We may now derive an equation forπ2 by applying Lorentz’s reciprocal relation (1.3.22)

to the Poiseuille and disturbance flows in the channel, to give

∇ · (uD · σP − uP · σD) = 0. (3.15)

Integration of (3.15) over the flow domain,Γ, gives

∫

∂Γ

uD · fP ds(x) =

∫

∂Γ

uP · fD ds(x), (3.16)

wheres is the boundary arc-length,∂Γ = E1 ∪ C ∪ P ∪ E2 is the piecewise-continuous

closed boundary ofΓ, and the divergence theorem has been used to convert the area

integrals into line integrals. Expansion of the integral onthe left-hand side of equation

(3.16) gives

∫

∂Γ

uD · fP ds(x) =

∫

E1,E2,C

uD · fP ds(x) +

∫

P

uD · fP ds(x)

=

∫

P

uD · fP ds(x) (3.17)

since the disturbance velocity atE1, E2 and on the walls is zero. The right-hand side of

(3.16) simplifies to

∫

∂Γ

uP · fD ds(x) =

∫

E1,C

uP · fD ds(x) +

∫

E2,P

uP · fD ds(x)

=

∫

E2,P

uP · fD ds(x) (3.18)
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because the velocity is zero on the walls andfD = 0 atE1. Substitution into (3.16) gives

∫

P

uD · fP ds(x) =

∫

E2,P

uP · fD ds(x)

= −π2

∫

E2

uP · n ds(x) +

∫

P

uP · fD ds(x)

= π2Q+

∫

P

uP · fD ds(x) (3.19)

since the flux atE2 is defined by

Q =

∫

E2

uP ds(x) = −

∫

E2

uP · n ds(x). (3.20)

Rearranging (3.19) gives

π2 =
1

Q

∫

P

(

uD · fP − uP · fD
)

ds(x), (3.21)

where the unknown quantities are the disturbance tractionsand velocities onP. How-

ever, equation (3.7) provides a boundary condition for the total velocity,u, on the parti-

cle’s boundary and so we eliminate the disturbance quantities using the decompositions

in equations (3.3) and (3.5). Equation (3.21) becomes

π2 =
1

Q

∫

P

(

(u − uP ) · fP − uP · (f − fP )
)

ds(x)

=
1

Q

∫

P

(

u · fP − uP · f
)

ds(x). (3.22)

We may simplify this equation further by writing the total velocity in the integrand’s first

term in terms of the particle’s translational and rotational velocities, to get

∫

P

u · fP ds(x) =

∫

P

(V + Ω ∧ (x − xc)) · f
P ds(x)

= V ·

∫

P

fP ds(x) + Ω ·

∫

P

(x− xc) ∧ fP ds(x), (3.23)

whereV andΩ may be brought in front of the integral sign because they are instanta-

neously constant on the particle’s perimeter, and where thetriple product,Ω∧(x−xc)·f
P ,

has been rewritten using the identity,(a ∧ b) · c ≡ a · (b ∧ c). Now let us define the
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Poiseuille force and torque vectors,

F P =

∫

P

fP ds(x), (3.24)

T P =

∫

P

(x − xc) ∧ fP ds(x), (3.25)

whereF P corresponds to the force exerted on the particle by the Poiseuille flow, andT P

corresponds to the torque. More specificallyF P andT P are the force and torque exerted

on a contour in the flow which is identical to the particle’s boundary because they depend

solely on the background Poiseuille flow. We may write equation (3.23) as

∫

P

u · fP ds(x) = V · F P + Ω · T P . (3.26)

Application of the divergence theorem toF P gives

F P =

∫

P

σP · n ds(x) =
x

P

∇ · σP dA(x) = 0 (3.27)

sinceσP satisfies the Stokes equation,∇ · σP = 0. Similarly for the Poiseuille torque,

in index notation, we have

TP
i =

∫

P

ǫijk (xj − xc,j) σ
P
kl nl ds(x), (3.28)

whereǫijk is the alternating tensor defined in equation (1.3.33). We use the divergence

theorem to transform (3.28) from a line integral to

TP
i =

x

P

∂

∂xl

(

ǫijk (xj − xc,j)σ
P
kl

)

dA(x)

= ǫijk

x

P

σP
kj + (xj − xc,j)

∂

∂xl
(σP

kl) dA(x)

= ǫijk
x

P

(xj − xc,j)
∂

∂xl
(σP

kl) dA(x) (3.29)

whereA is the area bounded byP and whereǫijkσP
kj = 0 due to the anti-symmetry of

the alternating tensor,ǫijk = −ǫikj, and the symmetry of the stress tensor,σij = σji.

Reverting to vector notation we have

T P =
x

P

(x− xc) ∧ (∇ · σP ) dA(x) = 0, (3.30)

since∇ ·σP = 0, and so both the Poiseuille force and traction on the particle contour are
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zero. Substituting (3.27) and (3.30) into (3.26) gives

∫

P

u · fP ds(x) = 0 (3.31)

which simplifies equation (3.22) to

π2 = −
1

Q

∫

P

uP · f ds(x), (3.32)

which is our equation for the disturbance pressure. Therefore the disturbance pressure

at E2 is expressed in terms of the prescribed flux,Q, the known Poiseuille velocity,uP ,

and the unknown tractions on the perimeter of the particle. It is interesting to note that

the disturbance pressure may only be calculated from equation (3.32) when we know

the tractions on the particle’s boundary, which is in contrast to the explicit disturbance

pressure formula given in equation (2.27) of the previous chapter. Since the Poiseuille

velocity is unidirectional only thex-components off will affect π2. We may also define

the force,F , and the torque,T , on the particle due to the total flow which are both zero

because we have assumed the particle is force and torque free. Therefore,

F =

∫

P

f ds(x) = 0, (3.33)

T =

∫

P

(x− xc) ∧ f ds(x) = 0, (3.34)

and the force and torque on the particle due to the disturbance flow are given by

F D =

∫

P

fD ds(x) = 0, (3.35)

T D =

∫

P

(x− xc) ∧ fD ds(x) = 0, (3.36)

which are both zero becauseF = F P + F D andT = T P + T D.

In the previous chapter we derived an alternative expression for the disturbance pres-

sure by integrating the Stokes equation for the disturbancestress. Integrating∇ ·σD = 0

over the flow domain and applying the Divergence theorem gives

π2 i = −
1

2 d

∫

C,P

fD ds(x)

= −
1

2 d





∫

C

fD ds(x) + F D





= −
1

2 d

∫

C

fD ds(x), (3.37)
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which in component form gives

π2 = −
1

2 d

∫

C

i · fD ds(x), (3.38)

0 =

∫

C

j · fD ds(x). (3.39)

Equation (3.38) expressesπ2 in terms of the disturbance tractions over the channel walls

as opposed to equation (3.32), which expressesπ2 in terms of the total traction over the

particle. We choose to calculateπ2 using (3.32) and use equation (3.38) as a means of

checking the disturbance pressure. We use equation (3.39) to check they-components of

the disturbance tractions.

Now that we have a formula for the disturbance pressure, we move onto our next goal

of deriving an integral equation which governs the disturbance velocity in the channel.

We apply the boundary integral equation (1.3.40) to the disturbance flow with the pole,

x0, located in the fluid to get

4πµuD
j (x0) = −

∫

∂Γ

fD
i Gij ds(x) + µ

∫

∂Γ

uD
i Tijk nk ds(x), (3.40)

whereGij is the free-space Green’s function andTijk is its associated stress tensor. The

velocity can be calculated at any point in the flow given the disturbance tractions and

velocities on the boundaries. We simplify (3.40) by applying the boundary conditions

given in equations (3.6), (3.9), (3.11) together with the zero disturbance pressure onE1 to

get

4πµuD
j (x0) = π2

∫

E2

niGij ds(x) −
∫

C,P

fD
i Gij ds(x) + µ

∫

P

uD
i Tijk nk ds(x). (3.41)

Once again we would like to eliminateuD from the equation in favour of the total velocity

because the boundary condition onP is written in terms ofu. By considering only the

boundary of the particle and the Poiseuille flow, we can write

0 = −

∫

P

fP
i Gij ds(x) + µ

∫

P

uP
i Tijk nk ds(x), (3.42)

for x0 in the fluid and where the left-hand side is zero becausex0 lies outside ofP. Since

x0 lies in the fluid in both equations (3.41) and (3.42) we may addthem to get

4πµuD
j (x0) = π2

∫

E2

niGij ds(x) −
∫

C

fD
i Gij ds(x)

−

∫

P

fiGij ds(x) + µ

∫

P

ui Tijk nk ds(x), (3.43)
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where we have fulfilled our aim of eliminating the disturbance velocity on the particle

boundary in favour of the total velocity. Re-expressing thedouble-layer potential in terms

of the translational and rotational velocities gives

∫

P

ui Tijk nk ds(x) =

∫

P

(Vi + ǫilm Ωl (xm − xc,m))Tijk nk ds(x)

= (Vi − ǫilm Ωl xc,m)

∫

P

Tijk nk ds(x)

+ ǫilm Ωl

∫

P

xm Tijk nk ds(x), (3.44)

which may be evaluated using the stress tensor identities (Pozrikidis 1992, p59)

∫

P

Tijk nk ds(x) = 0, (3.45)

ǫlmi

∫

P

xm Tijk nk ds(x) = 0, (3.46)

which are valid whenx0 lies outside the domain ofP, and so

∫

P

ui Tijk nk ds(x) = 0. (3.47)

The boundary integral equation (3.43) therefore reduces to

uD
j (x0) =

1

4πµ



π2

∫

E2

niGij ds(x) −
∫

C

fD
i Gij ds(x) −

∫

P

fiGij ds(x)



 . (3.48)

The total velocity,u, is found by adding the Poiseuille velocity. The unknown quantities

in (3.48) are the disturbance tractions on the channel walls, the tractions on the particle

and the disturbance pressure at the exit. The particle velocities are unknown but only enter

the problem via the boundary condition onP. The equation for the disturbance pressure

means that we do not have to evaluate (3.48) at a point onE2 in order to obtain an extra

equation forπ2. Pozrikidis (2005b) notes the presence of numerical sensitivities in the

boundary integral equation whenx0 lies onE1 or E2. We have side-stepped this issue by

proceeding in line with Brenner (1971) and Pozrikidis (2005b) and derived an equation

for the disturbance pressure using the Lorentz reciprocal relation.

There is a problem in equation (3.48) regarding the uniqueness of the solution. The

equation does not permit a unique solution because an arbitrary multiple of the normal

vector may be added to the particle’s traction. Lettingχ be an arbitrary constant and
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mappingf → f + χn in the integral overP gives

∫

P

fiGij ds(x) →
∫

P

(fi + χni)Gij ds(x)

=

∫

P

fiGij ds(x) + χ

∫

P

niGij ds(x)

=

∫

P

fiGij ds(x), (3.49)

since
∫

P
niGij ds(x) = 0 is one of the integral identities of Stokes flow. To render

the solution unique and thus regularise equation (3.48) we add a ‘deflation’ term to the

equation. The deflation term is a function ofx0, the particle shape and its tractions, and

is defined to be

Dj(x0) = nj(x0)

∫

P

ni fi ds(x), (3.50)

which is not invariant under the mapping given above. We can show that the deflation

term is zero. Thus addition ofD to equation (3.48) preserves the solution and ensures

its uniqueness. Details on the deflation term can be found in Appendix B and Pozrikidis

(1992).

In order to use (3.48) we need to find the disturbance pressure, π2, the disturbance

tractions onC and the tractions onP. To calculate the disturbance tractions we require

a boundary integral equation which is valid on the boundaries of the flow domain. Since

the double-layer potential is absent from (3.48) the equation is continuous as the pole ap-

proaches the boundary of the flow domain. This would not be thecase if the double-layer

potential were present. Therefore equation (3.48) is validwhenx0 lies on the boundary

and is

0 = π2

∫

E2

niGij ds(x) −
∫

C

fD
i Gij ds(x) −

∫

P

fiGij ds(x) (3.51)

whenx0 lies on the channel walls sinceuD = 0 onC, and

4πµuD
j (x0) = π2

∫

E2

niGij ds(x) −
∫

C

fD
i Gij ds(x) −

∫

P

fiGij ds(x) (3.52)

whenx0 lies on the particle perimeter. To bring the unknown translational and angular

velocities into equation (3.52) we substituteuD = u − uP into the equation and write

the total velocity in terms ofV andΩ.

Before moving on we will confirm the validity of equations (3.51) and (3.52) by de-

riving them directly from the form of the general boundary integral equation applicable
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whenx0 lies on the domain boundary. Whenx0 lies onC, equation (1.3.40) gives

π2

∫

E2

niGij ds(x) −
∫

C,P

fD
i Gij ds(x) + µ

∫

P

uD
i Tijk nk ds(x) = 2πµuD

j (x0)

= 0 (3.53)

after applying the boundary conditions. Application of equation (1.3.40) to the Poiseuille

flow and the particle gives

0 = −

∫

P

fP
i Gij ds(x) + µ

∫

P

uP
i Tijk nk ds(x) (3.54)

where the left-hand side is zero becausex0 lies outside ofP. Addition of equations (3.53)

and (3.54) and elimination of the double-layer potential byequation (3.47) gives

0 = π2

∫

E2

niGij ds(x) −
∫

C

fD
i Gij ds(x) −

∫

P

fiGij ds(x) (3.55)

which is identical to (3.51). Therefore we have verified thatequation (3.51) is valid when

x0 lies on the channel walls. Whenx0 lies onP we obtain

2πµuD
j (x0) = π2

∫

E2

niGij ds(x)−
∫

C,P

fD
i Gij ds(x)+µ

PV
∫

P

uD
i Tijk nk ds(x), (3.56)

by considering the disturbance flow in the whole flow domain, and

−2πµuP
j (x0) = −

∫

P

fP
i Gij ds(x) + µ

PV
∫

P

uP
i Tijk nk ds(x) (3.57)

for the Poiseuille flow over the particle’s domain, and wherethe minus sign on the left-

hand side appears because the normal vector is directed out of P. When we add equations

(3.56) and (3.57) we cannot eliminate the double-layer potential because it takes its prin-

cipal value, and so we get

2πµ
(

uD
j (x0) − uP

j (x0)
)

= π2

∫

E2

niGij ds(x) −
∫

C

fD
i Gij ds(x)

−

∫

P

fiGij ds(x) + µ

PV
∫

P

ui Tijk nk ds(x). (3.58)
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We can evaluate the double-layer potential by using the aforementioned stress tensor iden-

tities which take the values
∫

P

Tijk nk ds(x) = −2π δij , (3.59)

ǫlmi

∫

P

xm Tijk nk ds(x) = −2π ǫlmj x0,m, (3.60)

whenx0 lies on the boundary and where the signs on the right-hand side are due to the

direction of the normal vector onP. Therefore the double-layer potential is

PV
∫

P

ui Tijk nk ds(x) = (Vi − ǫilm Ωl xc,m)

PV
∫

P

Tijk nk ds(x)

+ ǫilm Ωl

PV
∫

P

xm Tijk nk ds(x)

= −2π (Vj − ǫjlm Ωl xc,m + ǫjlm Ωlx0,m)

= −2π uj(x0) (3.61)

which upon substitution into (3.58) gives

4πµuD
j (x0) = π2

∫

E2

niGij ds(x) −
∫

C

fD
i Gij ds(x) −

∫

P

fiGij ds(x) (3.62)

which is identical to equation (3.52). We have now verified that equation (3.52) is valid

whenx0 lies on the particle perimeter.

We use the boundary element method (Pozrikidis 2002a) to obtain a linear system

which represents the governing equations. The boundaries are discretised into elements

upon which we evaluate the pertinent boundary integral equation. Evaluation of (3.51)

with x0 on each ofC’s boundary elements will provide a sufficient number of equations

for the unknown disturbance tractions on the walls. We have the same sufficiency onP

by equation (3.52), and equation (3.32) provides forπ2. However we require three more

equations to complement the unknown translational and angular velocities of the particle.

Inclusion of the force equation (3.33) provides two equations and thez-component of the

torque equation (3.34) provides the final equation. Therefore the number of unknowns

equals the number of equations and so our system is complete.Once the disturbance

pressure and the unknown tractions are known we may calculate the velocity at any point

in the flow domain using

uj(x0) = uP
j (x0) +

1

4πµ



π2

∫

E2

niGij ds(x) −
∫

C

fD
i Gij ds(x) −

∫

P

fiGij ds(x)



 ,

(3.63)
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where we have added the Poiseuille velocity to get the total velocity on the left-hand

side. To ascertain the important parameters in equations (3.32) and (3.63) we render them

dimensionless by scaling distances byd, velocities byU0, and tractions and pressures by

µU0/d, to get

π̂2 = −
3

4

∫

P

ûP · f̂ dŝ (3.64)

for the disturbance pressure, where a circumflex indicates adimensionless quantity, and

ûj(x0) = ûP
j (x0) +

1

4π



π̂2

∫

E2

niGij dŝ−

∫

C

f̂D
i Gij dŝ−

∫

P

f̂iGij dŝ



 (3.65)

for the boundary integral equation. Therefore it is clear that the flow is solely dependent

on the shape, size and location of the particle via the integrals overP. We have now

fulfilled our aim of deriving the boundary integral equationfor a channel containing a

rigid particle.

3.2 Numerical method

As in the previous chapter we will discretise the boundary integral equations using the

boundary element method and form the equations into the linear matrix system,

A · x = b, (3.66)

whereA is the square ‘influence’ matrix,x is the vector of unknown tractions, the dis-

turbance pressure and the particle velocities andb is the vector of known values. To

apply the boundary element method we discretise the channelwalls intoNC equally-sized

straight elements. We may discretiseP into straight lines, circular arcs or cubic splines

(e.g. Pozrikidis 2002a). Here, for simplicity, we choose touse straight boundary elements

for the particle and discretise the perimeter intoNP equally-sized straight elements. The

numerical scheme is thereforeO(h) accurate whereh is the element length. On each of

the elements we set the unknown traction to a constant2-vector. We label the disturbance

traction on therth element ofC asfD
r and the traction of therth element ofP asf r. The

vector of unknowns is

x =
[

F D
C FP π2 V Ω

]T
(3.67)

whereF D
C is a vector containing the2NC components of the disturbance tractions ofC,

F P is a vector which holds the2NP components of the tractions ofP, V is the2-vector

representing the particle’s translational velocity and the superscriptT means transpose.
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The vectorsF D
C , FP andV are defined to be

F D
C =

[

fD
x,1 fD

y,1 . . . fD
x,NC

fD
y,NC

]

, (3.68)

FP =
[

fx,1 fy,1 . . . fx,NP
fy,NP

]

, (3.69)

V =
[

Vx Vy

]

. (3.70)

We will now derive the discretised analogues of the governing equations. The equation

for the disturbance pressure (3.32) is approximated by

0 = Qπ2 +

∫

P

uP · f ds(x)

≈ Qπ2 +

NP
∑

r=1

uP (xm,r) fx,r lr, (3.71)

whereuP is thex-component of the Poiseuille velocity,xm,r = (xm,r, ym,r) is the mid-

point of therth element andlr is the element length. By defining,

WP =
[

uP (xm,1) l1 0 · · · uP (xm,NP
) lNP

0
]

, (3.72)

we may write (3.71) as the product of two vectors,

[

0 WP Q 0 0
]

· x = 0. (3.73)

The discretisation of the force equation (3.33) is

Fi =

NP
∑

r=1

∫

Er

fi,r ds(x) ≈
NP
∑

r=1

fi,r lr = 0 (3.74)

which by defining

LP =

[

l1 0 . . . lNP
0

0 l1 . . . 0 lNP

]

(3.75)

may be written as
[

0 LP 0 0 0

]

· x = 0. (3.76)

Similarly for thez-component of the torque equation (3.34) we have

ǫzjk

∫

P

(xj − xc,j)fk ds(x) = 0 (3.77)

which we can represent as

[

0 TP 0 0 0
]

· x = 0 (3.78)
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where the row vector,

T P =
[

−(ym,1 − yc)l1 (xm,1 − xc)l1 · · · −(ym,NP
− yc)lNP

(xm,NP
− xc)lNP

]

,

(3.79)

and where the particle centre,xc = (xc, yc). To complete the construction of the linear

system we will discretise the boundary integral equations using the procedure detailed in

section 2.2 of the previous chapter. First we will place the pole,x0, on the channel walls

and write equation (3.51) as

∫

C

fD
i Gij ds(x) +

∫

P

fiGij ds(x) + nj(x0)

∫

P

ni fi ds(x)

− π2

∫

E2

niGij ds(x) = 0, (3.80)

where we have also included the deflation term (3.50). Takingthe equation term by term,

we discretise the integral overC to get

∫

C

fD
i Gij ds(x) ≈

NC
∑

r=1

fD
i,r G̃ij,r = IG

C,j(x0) · [F
D
C ]T (3.81)

whereG̃ij,r contains the integrated Green’s function and is defined by equation (2.55),

andIG
C,j(x0) is defined by (2.61), which is

IG
C,j(x0) =

[

G̃xj,1 G̃yj,1 . . . G̃xj,NC
G̃yj,NC

]

. (3.82)

The calculation ofG̃ij,r was carried out by numerically integrating the Green’s function

using Gauss-Legendre quadrature, details of which may be found in Appendix A and

Pozrikidis (1998). We typically used20 base-points in the quadrature. For the integrals

overP we have

∫

P

fiGij ds(x) + nj(x0)

∫

P

ni fi ds(x) ≈
NP
∑

r=1

fi,r G̃ij,r + nj(x0)

NP
∑

r=1

ni,r fi,r lr

= IG
P,j(x0) · [FP ]T (3.83)

where we have included the deflation term defined in equation (3.50), andIG
P,j(x0) is

defined to be

IG
P,j(x0) =

[

G̃xj,1 G̃yj,1 . . . G̃xj,NP
G̃yj,NP

]

+

nj(x0)
[

nx,1l1 ny,1l1 . . . nx,NP
lNP

ny,NP
lNP

]

, (3.84)

and wherenr = (nx,r, ny,r) is the unit normal vector on therth element ofP.

The integral overE2 can be calculated exactly using the formulae given in equations

(2.44) and (2.45) of the previous chapter. Putting equations (3.81) and (3.83) together and
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defining,

IG
E2,j =

∫

E2

niGij ds(x), (3.85)

we can represent the boundary integral equation (3.80) as

[

IG
C,j(x0) IG

P,j(x0) −IG
E2,j(x0) 0 0

]

· x = 0. (3.86)

Re-evaluation of this equation withx0 equal to the mid-point of each of the channel walls’

boundary elements createsNC pairs of equations which are assembled into the matrix,

[

CC CP CE2 0 0

]

· x = 0, (3.87)

where each ofCC , CP andCE2 consist of theNC pairs ofIG
C,j(x0), IG

P,j(x0) and−IG
E2,j(x0)

respectively. The matrix labels are in the formAB in order to clearly identifyA as the

boundary on which the pole lies, andB as the boundary over which we are integrating.

So for example, the matrixCP has the pole onC and it corresponds to the integral overP.

The boundary integral equation forx0 on the particle boundary is

∫

C

fD
i Gij ds(x) +

∫

P

fiGij ds(x) − π2

∫

E2

niGij ds(x) + 4πµ uj(x0) = 4πµ uP
j (x0).

(3.88)

We have already discussed the discretisation of the integrals in this equation. It remains

to discretise the total velocity on the left-hand side and write down the components of the

Poiseuille velocity on the right-hand side. By writing the total velocity in terms of the

unknown translational and angular velocities, and usingΩ = Ω k, we get

uj(x0) = Vj + ǫjkl Ωk (x0,l − xc,l) = Vj + ǫzlj Ω (x0,l − xc,l), (3.89)

which we can write in matrix form as

uj(x0) =
[

δjx δjy ǫzlj (x0,l − xc,l)
]

·
[

Vx Vy Ω
]T
. (3.90)

By defining,

Iu,j = 4πµ
[

δjx δjy

]

, (3.91)

IΩ,j(x0) = 4πµ ǫzlj (x0,l − xc,l), (3.92)

we we can write the discretised version of equation (3.88) as

[

IG
C,j(x0) IG

P,j(x0) −IG
E2,j(x0) Iu,j IΩ,j(x0)

]

· x = 4πµ uP
j (x0) (3.93)

Re-evaluation of this equation withx0 at the mid-point of each of the particle’s boundary
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elements createsNP pairs of equations which we assemble into the matrix,

[

PC PP PE2 Pu PΩ

]

· x = bP , (3.94)

where each ofPC , PP , PE2 , Pu andPΩ consist of theNP pairs ofIG
C,j(x0), IG

P,j(x0),

−IG
E2,j(x0), Iu,j andIΩ,j(x0) respectively, andbP is the vector containing theNP pairs

of components of the Poiseuille velocity for the different values ofx0 on the particle’s

boundary elements.

We have now completed the discretisation of the boundary integral equations, the

disturbance pressure equation and the force and torque equations. We assemble the master

linear system from equations (3.73), (3.76), (3.78), (3.87) and (3.94) to get

















CC CP CE2 0 0

PC PP PE2 Pu PΩ

0 WP Q 0 0

0 LP 0 0 0

0 TP 0 0 0

















· x =

















0

bP

0

0

0

















(3.95)

which is in our desired form. The rows and columns of the ‘influence’ matrix in (3.95)

may contain one or more rows and columns. For example,CC is a matrix with dimen-

sions2NC × 2NC , where the rows correspond to thex andy components of the pertinent

boundary integral equation withx0 placed on an element ofC. The size of the ‘influence’

matrix is(2NC + 2NP + 4) × (2NC + 2NP + 4). In our simulations we tookNC = 800

andNP = 316. We increasedNP for larger particles to maintain the element length,

and decreasedNP for smaller particles. Our formulation caters for an arbitrary shaped

particle but in the simulations we restrict our attention toa circular particle of radiusa.

One of the features of Stokes flow is its reversibility, i.e. the Stokes equation is invari-

ant to a transformation whereby the pressure and velocity fields are negated. Therefore

fluid particles in a Stokes flow will eventually regain their original position if the flow

is reversed. More details may be found in Acheson (1990). Letus consider a circular

particle translating along the channel and suppose the particle is also moving towards one

of the channel walls. Now reverse the flow by negating the pressure and velocity fields.

Due to reversibility the particle will start to return to itsoriginal position. Therefore the

particle will start to move away from the wall it was travelling towards and back to its

original location. However the velocity shear from the incident flow across the particle

before and after the flow reversal are equal but opposite, implying that in one case the

particle moves towards a region of higher shear and in the other case towards a region

of lower shear. We have a contradication and so the particle cannot move towards either

channel wall. Therefore the particle must remain at its initial axial location andVy = 0.

For a geometrical argument see Cox and Mason (1971). Furthermore, by symmetry a

circular particle will have constantVx andΩ.

Now we can build the linear system and solve it using a standard method. We found

it practical to use Gaussian elimination to find the tractions, disturbance pressure and the
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particle velocities. The solution was then used in equation(3.63) to find the velocity at

any point in the flow domain.

We calculated the flow streamlines by integrating the equation

dx

ds
= u(x) (3.96)

along the streamline, wherex is the position vector of a point on the streamline,s mea-

sures the arc-length along the streamline and the velocity on the right-hand side is com-

puted from equation (3.63). We also calculated the streamlines relative to a frame of

reference fixed on the particle, which we will call pathlinesto distinguish them from the

streamlines. To calculate the pathlines, we integrated thekinematic equation,

dx′

dt
= u(x′) − Vxi, (3.97)

wherex
′ is the position vector of a point moving with the frame of reference,u is again

calculated from equation (3.63), andVx is thex-component of the particle’s translational

velocity. We used the adaptive time-stepping Runga-Kutta-Fehlberg method (e.g. Atkin-

son 1978) to integrate (3.97).

3.3 Validation

For all validation checks and results we truncated the channel so thatl = 12 d. We found

this truncation length sufficient for the disturbance flow todecay as per our initial as-

sumptions. For this channel length, the Poiseuille pressure drop is24µU0/d between the

entrance and the exit. Dimensional analysis shows the importance of the dimensionless

particle radiusρ, and the centreline offset,σ, which are defined to be

ρ =
a

d
, (3.98)

σ =
yc

d
. (3.99)

We placed the particle at the mid-point of the channel,x/d = 6, and varied the offset

from the centreline,σ, and its dimensionless radius,ρ.

As a check on the numerical implementation, we confirmed thatthe discretised form

of the integral identities (1.3.34) and (1.3.31) were satisfied to within an acceptable toler-

ance. We checked the validity of both identities by settingx0 to the mid-point of every

boundary element and to several points inside and outside ofthe flow domain. Equation

(1.3.34) was satisfied to within a numerical tolerance of10−9d and (1.3.31) was satisfied

to within 10−9. We also checked that the discretised value of the integral in the deflation

term was effectively zero for a range ofρ andσ.

For each simulation, we checked that thex-components of the disturbance tractions on

the walls decayed to zero as we approached the entrance and the exit. Thex-components

of the disturbance tractions on the elements close toE1 andE2 were typically10−5 µU0/d.
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We expect they-component of the disturbance pressure to tend to zero at theentrance

whereas we found thatfD
y ≈ 10−5 µU0/d. At the exit, they-component of the distur-

bance traction should tend to the disturbance pressure. We found the difference between

π2 andfD
y at this point to be no more than0.001%. For all of the simulations the dis-

turbance velocity decayed as we approachE1 andE2 with the disturbance velocity com-

ponents no more than10−6 U0 at the entrance or exit. Figure 3.2 shows the decay of the

x-component of the velocity along the channel centreline betweenE1 and the particle,

which lies on the centreline withρ = 0.5 and its centre at(6 d, 0). At x/d = 5.5 the

velocity equals the particle’s translational velocity,Vx = 0.888. We can see that the ve-
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Figure 3.2 : Decay of the disturbance to thex-component of velocity along the centreline for
ρ = 0.5 andσ = 0. The particle boundary is atx/d = 5.5.

locity rapidly attains its Poiseuille centreline speed as we move away from the particle,

where the disturbance is at its maximum. As we move away from the particle along the

centreline the disturbance velocity decays to0.5% of its peak value atx/d = 4 and0.02%

atx/d = 3.5, which represent 3 and 4 radii from the particle boundary respectively. We

performed the same check for a range of values ofρ andσ with very similar results for

the disturbance velocity decay.

To validate the numerical solution we used the configurationdescribed above as our

reference configuration. Firstly we computed the solution for a longer channel withl =

24 d while preserving the element length, with respect to the reference configuration. To

test the effect of the number of boundary elements we took thereference configuration

and doubled the number of elements on each of the boundaries.In all cases we found

that the tractions in the solution vector differed by less than0.002µU0/d from the values

obtained for the reference configuration.

As a final check on the equations which are used to construct the linear system, we

calculated the force and torque using (3.74) and (3.77). Both quantities were effectively

zero as the force is approximately10−14 µU0 and the torque is approximately10−14 µU0d.

To verify the disturbance tractions onC we calculated the disturbance pressure from
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equation (3.38) which uses the disturbance tractions on thewall. For a range of radii,

the difference between the two independently calculated values ofπ2 was no more than

0.0001%. They-components of the disturbance tractions were verified by equation (3.39),

which was satisfied to within a numerical tolerance of10−10µU0/d.

The only remaining quantities in the solution vector which require checking are the

particle velocities. We expect the particle to ‘slip’ in thefluid relative to the Poiseuille

velocity calculated at the particle’s centre. For a range ofρ andσ we foundVx was less

than the Poiseuille velocity calculated aty = yc. Due to the reversibility of Stokes flow

we expectVy = 0 and we find that this condition is met to a very fine degree of accuracy

in our numerical solution. When we reduce the particle radius to zero the particle tends

to a fluid element and thus it will not cause a disturbance flow.Therefore we expect

the translational velocity of the particle to equal the Poiseuille velocity calculated at the

particle centre in the limit of vanishing particle radius. Furthermore the angular velocity

may be checked against the local vorticity since we expect the angular velocity to equal

half the vorticity of the Poiseuille flow. Therefore we expect

Ω ≈ 1
2 |∇ ∧ uP | = 1

2

∣

∣

∣

∣

−
2 U0

d2
y k

∣

∣

∣

∣

=
U0

d2
y. (3.100)

We setρ = 0.01 and computedV andΩ for σ between0 and0.9. For yc/d ≤ 0.7 the

error inVx with respect to the computed Poiseuille velocity was less than0.04%, and the

error inΩ was less than0.05%, with respect to equation (3.100). For largerσ the error

increased. For example, the error is0.5% whenσ = 0.9 for bothVx andΩ.

We have checked the geometry and the numerical solution to the discretised boundary

integral equations and found that the computed values show excellent agreement with the

theoretical predictions.

3.4 Results

In all results we truncate the channel length so thatl = 12 d. In the first set of results

we setρ = 0.5 and place the particle on the centreline so thatσ = 0. The disturbance

tractions on the upper wall and the particle tractions are shown in figure 3.3. The lower

wall disturbance tractions are not shown because thex-component is identical to that on

the upper wall and they-component is equal to the negated disturbance traction on the up-

per wall, due to the opposite direction of the normal vector.The decay of the disturbance

traction to a steady value is evident as we move away from the particle. Thex-component

decays to zero at the entrance and exit. They-component decays to zero at the entrance

but tends to the negated value of the disturbance pressure atthe exit due to the direc-

tion of the normal vector on the upper wall. For these parameter valuesVx = 0.888U0

andπ2 = −0.319µU0/d. The values ofVy andΩ are effectively zero. Therefore the

particle’s presence increases the pressure drop by only1.3%. The normal and tangential

components of the particle tractions are shown in figure 3.3 (b). The normal component

of the particle traction,f · n, is symmetric aboutθ = π which impliesf · n is equal for
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(d) Pathlines in a section of the upper half-channel. The frame of reference is moving with the particle. The
arrows indicate the flow direction relative to the particle.

Figure 3.3 : Upper wall disturbance tractions, particle tractions, streamlines and pathlines for
ρ = 0.5 andσ = 0.

equal values ofx/d. We expect this behaviour due to the symmetry of the flow geometry

in this case. The particle’s tangent vector is directed in ananti-clockwise direction. The

tangential component,f · t, on the upper half-perimeter is symmetric aboutθ = π/2

and symmetric on the lower half-perimeter aboutθ = 3π/2. It is interesting to note

that there are six points on the particle perimeter where thetangential components of the

traction change sign. As we saw in the previous chapter, whenthe tangential component

of the traction changed sign there was a stagnation point anda sudden flow reversal on

either side of the point. These points lie at approximatelyθ = nπ/4 wheren = 0, 1,

3, 4, 5 and 7. Figure 3.3 (c) shows the instantaneous streamlines in a truncated portion

of the upper half-channel. Only the upper half is shown because the flow is symmetrical

abouty/d = 0. The streamlines only deviate from lines parallel to they-axis close to

the particle. The pathlines shown in figure 3.3 (d), for the same channel region, show the

flow behaviour relative to the particle. The frame of reference moves with the particle’s
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constant translational velocity. The arrows in the figure indicate the direction of the flow

relative to the particle. There are stagnation points atθ = 0 andθ = π. The streamline

which starts aty/d = 0 on E1 terminates at a stagnation point on the particle boundary,

corresponding toθ = π. The fluid close to the centreline moves towards the particle

whenx/d < 5.5 in the region indicated by the bottom-left arrow. When the streamline

approaches the particle it moves away from the centreline and into a region of slower

moving fluid, where it travels back towards the entrance, relative to the particle. The fluid

close to the exit may be divided into three regions; the first region is close to the wall and

is not significantly affected by the particle’s presence, the second, which at the exit lies in

the range0.33 < |y/d| < 0.57, moves closer to the particle where the fluid moves towards

the centreline and into the third region, which moves fasterthan the particle. The loca-

tion of the stagnation points on the particle’s upper half-perimeter can be inferred from

figure 3.3 (d). For example, for the pathlines starting at theexit, and withy/d between

0.57 and0.6, there will be a pathline which stagnates on the particle’s boundary because

the pathlines diverge, with one passing over the top of the particle and the other moving

towards the centreline before travelling to the exit. Therefore stagnation points occur at

all the points where the tangential component of the particle traction are zero. Increasing

the size of the particle while keepingσ = 0 does not materially change the behaviour

of the flow. For example, whenρ = 0.9 the disturbance pressure,π2 = −7.778µU0/d,

andVx = 0.712U0. The disturbance pressure represents a32.4% rise in the Poiseuille

pressure drop.

In the next set of results we setρ = 0.5 andσ = 0.25. For these parameters the

particle translates withVx = 0.816U0 and rotates withΩ = 0.210U0/d which is anti-

clockwise. The translational velocity is smaller than whenthe particle was positioned

on the centreline. The disturbance pressure drop is0.993µU0/d, which represents an

increase to the Poiseuille pressure drop of4.1%, and is higher than for the same sized

particle located on the centreline. At first sight this may seem counter-intuitive because an

off-centre particle induces a greater disturbance pressure. However we will see that when

we break the flow symmetry, by placing the particle away from the centreline, we cause a

significant increase in the maximum value of the boundary tractions. Since the disturbance

pressure is calculated from the boundary tractions the disturbance pressure increases. In

figures 3.4 (a) and 3.4 (b) we show the distribution of the disturbance tractions on both

walls, where we have used the same scale on the traction axis to demonstrate the difference

in magnitude. All components at the entrance are zero and they-component tends to

the disturbance pressure,π2 = −0.993µU0/d, at the exit. The opposite sign offD
y on

the lower wall is due to the normal vector which is oriented inthe opposite direction.

Comparison of the disturbance tractions on the upper wall, depicted in figures 3.3 (a) and

3.4 (a), shows that the profiles are very similar but the latter demonstrates a significant

amplification. Thex component of the disturbance traction on the lower wall doesnot

change significantly while they-component increases in the right-hand half of the channel

and does not exhibit the peaked profile of the top wall. The maximum values of thex

andy components offD on the top wall are approximately 6 and 8 times larger when
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Figure 3.4 : Tractions on the channel walls and the particle forρ = 0.5 andσ = 0.25.

σ = 0.25 than whenσ = 0. From equation (3.37) we can see thatfD
x directly affects

the disturbance pressure, and soπ2 will increase. The particle tractions are shown in

figure 3.4 (c) where we can see that the normal component’s symmetry aboutθ = π has

disappeared. The tangential component of the particle traction has preserved its symmetry,

wherebyf · t is symmetric aboutθ = π/2 on the upper half-perimeter, and symmetric

aboutθ = 3π/2 on the lower half-perimeter. The normal and tangential components

of the tractions are approximately 2–3 times greater than for the centred particle. The

tangential component of the particle traction is zero for six values ofθ with two on the top

half-perimeter and four on the lower. Previously we saw thatstagnation points occurred at

these points. However the particle is now rotating and so stagnation points will not occur

on its boundary. The pathlines for the flow are plotted in figure 3.5 where the arrows

show the direction of the fluid relative to the particle. The flow in the upper half-channel

is similar in behaviour to that in the previous set of resultswhereσ = 0. The lower

half-channel now exhibits two interesting features. The first is the presence of eddies

which lie upstream and downstream of the particle and below the channel’s centreline. In

both eddies the fluid rotates in a clockwise direction. The second feature relates to the

behaviour of the velocity on the segment of the mid-line,x/d = 6, below the particle,

particularly aroundy/d = −0.479. Fluid below this value is moving slower in thex-

direction than the particle and so will move towards the entrance, relative to the particle.
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Figure 3.5 : Pathlines in a section of the channel forρ = 0.5 andσ = 0.25. The particle rotates
anti-clockwise and the fluid in the eddies rotates clockwise. The frame of reference is moving with
the particle. The arrows indicate the flow direction relative to the particle.

Fluid above this critical point will continue to the exit in the same way as the streamline

which skirts the underside of the particle in the figure. Since they-component of velocity

is zero on the mid-line, the point(6,−0.479) d is a saddle-like critical point in the flow.

Eddies similar to the ones seen here were studied and photographed by Hasimoto and

Sano (1980), who also examined the flow around two stationarycylinders.

Although it is not evident from figure 3.5, there is a small region close to the particle

in which pathlines orbit the particle in an anti-clockwise direction. Jeffrey and Onishi

(1981) show a circulating region of fluid around their rotating cylinder above a plane

wall. In figure 3.5, pathlines started from(6d, qd) where−0.284 ≤ q/d < −0.25 move

anti-clockwise around the particle demonstrating the presence of a ‘captured’ layer of

thickness0.034 d. The key differences between this set of results and the previous one is

the presence of eddies, the increased disturbance pressure, the increased boundary trac-

tions and the presence of pathlines circulating around the particle. We conclude that the

increased disturbance pressure drop is due to the off-centre location of the particle which

causes a significant increase to the boundary tractions, especially in the region of the wall

closest to the particle.

For the next set of results we maintainσ = 0.25 and increase the particle size toρ =

0.7 so that the gap between the top of the particle and the top wallreduces to0.05 d. The

disturbance pressureπ2 = −7.454µU0/d, which represents a31% rise to the Poiseuille

pressure drop. The particle’s velocities areVx = 0.706U0 andΩ = 0.167U0/d. When

a particle of this size is located on the centreline,π2 = −1.506µU0/d. The pathlines

for the flow are shown in figure 3.6 where again we can see that eddies are present in the

flow, and are about the same size as in figure 3.5. The particle has a layer of fluid which

circulates around its perimeter, although the thickness ofthe ‘captured’ layer has reduced

to 0.011 d.

So far we have discussed the flow for specific values ofρ andσ. Now we look at

how the pressure and particle velocities vary withρ andσ. In figure 3.7 we show how

the disturbance pressure varies withρ for a centred particle and for two particles with

σ = 0.25 and0.5. In figure 3.7 (a) we can see that the behaviour is qualitatively similar

for all three values ofσ. For smallρ the disturbance pressure increases at a very low
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Figure 3.7 : Disturbance pressure vs.ρ for offsetsσ = 0 (—), 0.25 (r) and0.5 (· · ·).

rate. For largerρ the disturbance pressure increases rapidly. We can see fromthe plot

of log |π2| againstρ in figure 3.7 (b) that the pressure increases almost exponentially for

larger values ofρ since the curves have become nearly straight. It is interesting to note

that for a givenρ, the disturbance pressure increases with the offset from the centreline.

The kinks for smallρ in figure 3.7 (b) are due to the constant increment size inρ used in

the calculation of the pressure. A smaller increment would provide a smoother curve. For

example, whenρ = 0.41 the disturbance pressures are−0.138µU0/d, −0.469µU0/d

and−2.357µU0/d for the particles withσ = 0, 0.25 and0.5 respectively. Therefore we

can see that asσ increases, and the gap between the top of the particle and wall reduces,

the disturbance pressure increases significantly.

In figure 3.8 we plot the disturbance pressure againstσ for a particle withρ = 0.25

and a particle withρ = 0.5. Figure 3.8 (a) shows howπ2 varies with respect toσ. The

larger particle induces a greater disturbance pressure forthe same value ofσ. In figure 3.8

(b) we plot the logarithm of the disturbance pressure against σ for the two particles. Since

both curves are approximately straight lines, we conclude that the disturbance pressure

depends almost exponentially onσ.

Next we examine the effect ofρ andσ on the particle’s velocity. In figure 3.9 (a) we

plot the translational velocity,Vx/U0, againstρ. Whenρ is small, the particle’s velocity

is approximately equal to the Poiseuille velocity calculated at the particle centre. Asρ
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Figure 3.8 : Disturbance pressure vs.σ for two particles withρ = 0.25 (—) and0.5 (r).
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Figure 3.9 : Variation of the particle’s translational velocity with respect toρ andσ.

increases the particle’s velocity decreases almost linearly with ρ and the particle ‘slips’

relative to the Poiseuille velocity calculated at particlecentre. The results for theσ = 0

case show an excellent agreement with the equivalent results in figure 3 of Sugihara-

Seki (1993), which were calculated using the finite element method. The particle with

σ = 0.25 initially translates at the Poiseuille velocity. The particle’s velocity decreases as

the particle size increases but does not strongly exhibit a linear dependence onρ. When

σ is increased to0.5 the particle’s velocity starts at the Poiseuille velocity.As ρ increases

the particle’s velocity decreases at an increasing rate, and does not display a linear rela-

tionship betweenVx and the particle size. In summary, the difference betweenU0 and

the particle’s velocity is significantly greater whenρ is large or when the particle is close

to the channel wall. This effect is due to the stress exerted on the particle by the fluid in

the narrow gap between the particle boundary and the wall as decribed by Staben et al.

(2003) who used the boundary integral method to analyse the motion of a sphere in a

Poiseuille flow between two plane walls. Figure 3.9 (b) showsthe relationship between

the particle’s translational velocity andσ for two particles withρ = 0.25 and0.5. A por-

tion of the Poiseuille velocity profile is also shown to aid comparison. For smallσ, both

particles show similar behaviour to the Poiseuille velocity profile. As the distance from
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Figure 3.10 : Variation of the dimensionless particle angular velocity with respect toρ andσ.

the centreline increases the particle velocity decreases at a faster rate than the Poiseuille

velocity.

Finally we look at the angular velocityΩ and its dependence onρ andσ. Figure

3.10 (a) showsΩd/U0 plotted againstρ for two particles withσ = 0.25 and0.5. For

small ρ the angular velocity is approximately equal to that predicted by the vorticity of

the Poiseuille velocity. As the particle increases in size the angular velocity decreases at

an increasing rate. We also note that a centred particle hasΩ = 0 for all ρ. In figure

3.10 (b) we plotΩd/U0 againstσ for two particles withρ = 0.25 and0.5. The straight

line is the angular velocity calculated from the vorticity of the Poiseuille velocity. The

smaller particle deviates slightly from the straight line until σ ≈ 0.5. After which it

attains a maximum ofΩ = 0.518U0/d atσ = 0.62 before decreasing rapidly as the gap

between the particle and the wall reduces in size. The gap width is 0.13 d for σ = 0.62

andρ = 0.25. If Ω were dependent on the difference between the Poiseuille velocities at

the top and bottom of the particle then we would expect the maximum value ofΩ to occur

at aroundσ = 0.75 for a particle withρ = 0.25. However, we can see that the proximity

of the upper wall and the flow in the gap start to play a significant role whenσ > 0.62.

The particle’s angular speed starts to decrease rapidly. The particle withρ = 0.5 shows

behaviour similar in nature to the smaller particle. A maximum angular speed is attained

at aroundσ = 0.41, corresponding to a gap width of0.09 d. As the gap width becomes

even smaller the angular speed reduces. A comparison can be made between the results

presented in figure 3.10 (b) and those shown in figure 5 of Staben et al. (2003), who study

the motion of a solid sphere in a Poiseuille flow in an infinite channel between two plane

parallel walls. The three-dimensional results of Staben etal. (2003) exhibit the same

qualitative behaviour such that the angular speed of the particle increases with the offset

from the centreline before reaching a maximum and decreasing as the gap between the

plane wall and the particle becomes small. The explanation put forward by Staben et al.

(2003) for the retardation lies in the competition between the incident velocity gradient

which causes the rotation and the hydrodynamic interactions and shear stresses which

oppose the rotation.
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3.5 Discussion

In this chapter we have considered a pressure-driven channel flow which contains a rigid

neutrally buoyant particle. We formulated the problem using the boundary integral method

and found its solution numerically using the boundary element method. The solution pro-

vides the tractions on the particle boundary, the disturbance tractions on the channel walls

and the pressure drop across the particle.

We found that in all cases the disturbance tractions decayedto their expected values

as we approached the entrance or exit. The disturbance velocity decayed rapidly as we

moved away from the particle, and we found that the disturbance velocity due to the parti-

cle decayed to less than1% of its maximum value at a distance of three particle radii from

the centre. When the particle lay with its centre on the channel centreline, six stagnation

points are present on the particle’s boundary. When the particle was moved away from

the centreline the stagnation points disappeared and the particle was surrounded by a thin

region of circulating fluid, similar to that found by Jeffreyand Onishi (1981) on their work

regarding a rotating cylinder above a plane wall.

For all particle positions we found that the translational velocity is less than the cen-

treline Poiseuille velocity demonstrating that the particle ‘slips’ relative to the background

Poiseuille flow. When the particle radius is small, the particle’s velocity is approximately

equal to the Poiseuille velocity calculated at the particlecentre. For a centred circular par-

ticle, we demonstrated an excellent agreement with the results of Sugihara-Seki (1993)

(figure 3) regarding the relationship between the particle velocity and particle size. The

difference between the Poiseuille velocity and the particle’s velocity increases as the gap

between one or both of the walls and the particle becomes small. This effect is due to the

stress exerted on the particle by the fluid in the narrow gap between the particle boundary

and the wall as decribed by Staben et al. (2003) in their work on a sphere in a channel

flow between plane walls. We also confirmed that they-component of the translational

velocity was zero, which we expect due to the reversibility of Stokes flow, i.e. the particle

does not move closer to either wall as it translates. We foundthat a centred particle did

not rotate and small particles rotated with a speed equal to that predicted by the vorticity

of the Poiseuille velocity. As the particle is moved away from the centreline the angu-

lar speed increases to a maximum at which point the flow in the narrow gap slows the

particle’s rotation and the angular speed decreases.

We found that the pressure drop across the particle increased when we fixed the cen-

troid and increased the particle radius, and when we fixed theradius and moved the cap-

sule further from the centreline. When we moved the particleaway from the channel

centreline two eddies were formed in the fluid in front of and behind the particle. Ed-

dies similar to the ones seen here were studied and photographed by Hasimoto and Sano

(1980). When the gap between the particle and one or both of the walls is small, we found

that the pressure drop between the ends of the computationaldomain increases exponen-

tially as the gap width decreases.



Chapter 4

The motion of a fluid drop or a

flexible capsule in a straight channel

In the previous chapter we studied the disturbance caused bya rigid particle in a channel

flow. Now we replace the rigid particle with a flexible one, with the aim of modelling the

motion of a fluid drop or a fluid-filled elastic capsule in a straight channel. We maintain

our assumption that the capsule is neutrally buoyant and that the flow imparts no force or

torque on the capsule. We model the disturbance caused by theparticle using the boundary

integral method and derive the boundary integral equationswhich govern the motion of

the fluid and the capsule. We will formulate the constitutiveequations, applicable to fluid

drops and elastic capsules, which govern the behaviour of the flexible boundary. The

mathematical treatment in this chapter will help us in laterchapters where we will add

an additional channel which will branch off from the main channel. We will solve the

boundary integral equations numerically by application ofthe boundary element method

and compare our solution to known results where applicable.

4.1 Problem statement

Following our work in the previous chapter, we consider the motion of a fluid with vis-

cosityµ in an infinite straight-walled channel of width2d. A disturbance to the flow is

caused by the presence of a deformable capsule which moves with the flow. We assume

that the capsule is neutrally buoyant and that the flow does not impart a force or a torque

on the capsule. The capsule contains a fluid with viscosityλµ so that whenλ > 1 the

encapsulated fluid is more viscous than the ambient fluid and vice versa. The fluid vis-

cosities are identical whenλ = 1. Since we omit the body force due to gravity from the

Stokes equation the fluid density does not play a role in the flow behaviour. The channel

geometry is displayed in figure 4.1, where we label the channel walls, C, and the capsule,

P. Far upstream and downstream of the disturbance caused by the capsule, the flow in the

channel is described by classical unidirectional Poiseuille flow, which is characterised by
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Figure 4.1 : A straight-walled channel containing a neutrally-buoyantcapsule which encapsulates
a fluid of viscosityλµ.

the prescribed flux,Q. The equations describing the Poiseuille flow are

uP = uP i, (4.1)

uP = U0

(

1 −
y2

d2

)

, (4.2)

Q = 4

3
dU0, (4.3)

and

fP
i = −pP ni + µ

(

∂uP
i

∂xj
+
∂uP

j

∂xi

)

nj, (4.4)

whereU0 is the Poiseuille centreline speed,fP is the Poiseuille traction,pP is the Poiseuille

pressure andn is the unit normal vector. In preparation for the numerical method, we

truncate the channel and label the entrance to the computational domain asE1, and the

exit to the domain asE2. The entrance and exit are located atx = 0 andx = l respec-

tively. The unit normal vectors,n, on all boundaries point into the ambient fluid which

we will label fluid 1. The fluid inside the capsule will be labelled fluid 2. The capsule’s

presence disturbs the Poiseuille flow, but atE1 andE2, we assume that the disturbance has

decayed and the flow has settled to Poiseuille flow. In the previous chapter we justified

this assumption for a rigid particle with reference to the work of Sugihara-Seki (1993),

Gaver and Kute (1998), Cortez (2002) and showed that the velocity decay is indeed rapid

as we move away from the source of the disturbance. The two-dimensional study of fluid

drops in a channel by Mortazavi and Tryggvason (2000) demonstrated that the velocity

decay was sufficiently rapid for a range of Reynolds numbers.The authors justified their

assumption regarding the decay of the disturbance velocitywith reference to the work of

Liron and Mochon (1976), Liron and Shahar (1978) who studiedthe disturbance due to

a three-dimensional Stokeslet in the flow between two platesand in a pipe, and found

that the disturbance velocity decayed exponentially. Therefore we will follow the lead

of Mortazavi and Tryggvason (2000) together with the results of our previous chapters

and maintain that the disturbance velocity decays as we moveaway from the capsule, and

is negligible at the entrance and exit to our computational domain. We will verify this

assumption when we validate the numerical solution.

We assume that the Reynolds number of the flow is very small so that the flow in
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the channel may be described using the linear equations of Stokes flow given in equation

(1.3.4). Our aim is to compute the velocity field throughout the flow domain, the addi-

tional pressure drop between the entrance and exit due to thecapsule and the motion of the

capsule’s boundary. From the work of previous authors (e.g.Mortazavi and Tryggvason

2000) we know that a capsule with a flexible boundary will migrate towards the channel

centreline for moderateλ. Whenλ is small, Mortazavi and Tryggvason (2000) found that

a fluid drop migrated towards a point between the channel centreline and the nearest wall.

Although this lateral migration may seem contrary to the reversibility of Stokes flow, the

capsule’s deformation allows such a migration to occur. Therefore we would also like to

examine the capsule’s behaviour when its starting positionis away from the centreline,

and for a range ofλ.

We decompose the velocity field,u, the stress field,σ, and the traction field,f , into

Poiseuille and disturbance components in the usual way, such that

u = uP + uD, (4.5)

σ = σP + σD, (4.6)

f = fP + fD, (4.7)

where theP andD superscripts indicate the Poiseuille and disturbance components re-

spectively. Our boundary conditions are

u = uP = uD = 0 (4.8)

onC due to no-slip and no-penetration, and

uD = 0, (4.9)

fD = −pD n, (4.10)

at E1 andE2, wherepD is the disturbance pressure which is constant over the entrance or

exit. We assume that no fluid passes across the capsule boundary and that the velocity on

both sides of the boundary is equal, so that onP we have

u(1) = u(2), (4.11)

where the superscript indicates the fluid to which the velocity applies, i.e.u(2) is the

velocity of fluid 2 inside the capsule. We also introduce the interfacial traction jump,∆f ,

which is defined by

∆f = (σ(1) − σ(2)) · n = f (1) − f (2), (4.12)

where the superscripts indicate to which fluid the traction applies. We will see later that

we can calculate the interfacial traction jump from a suitable constitutive equation. For

example,∆f may be calculated from the Young-Laplace equation when the capsule is a

drop of an immiscible liquid. Therefore in the derivation ofour equation we will seek
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to eliminate disturbance velocities and tractions on the capsule boundary in favour of the

total velocities and tractions.

Since we are interested in the additional pressure drop between the entrance and exit

due to the capsule, we setpD(E1) = 0 without loss of generality and letpD(E2) = π2.

Therefore the disturbance traction atE2 is given by

fD = −π2 n, (4.13)

and the disturbance pressure drop between the entrance and the exit is

∆pD = pD(E1) − pD(E2) = −π2. (4.14)

Therefore we expectπ2 to be negative because the capsule’s presence will increasethe

total pressure drop. The Poiseuille pressure in the channelis given by

pP = G (l − x) (4.15)

whereG = 2µU0/d
2 is a positive constant,−G is the imposed constant pressure gradient

between the entrance and the exit, and we have chosen the Poiseuille pressure to be zero

atE2. Therefore the total pressure drop,∆p, between the entrance and exit is

∆p = p(E1) − p(E2) = pP (E1) + pD(E1) −
(

pP (E2) + pD(E2)
)

= Gl − π2. (4.16)

To obtain an equation for the disturbance pressure we apply Lorentz’s reciprocal relation

(1.3.22) to the Poiseuille and disturbance flows. We will useequation (3.22) (on page 45)

from the previous chapter as our starting point, which we rewrite here as

Qπ2 =

∫

P

(

u(1) · fP − uP · f (1)
)

ds(x), (4.17)

and where we have added the(1) superscript to indicate that the velocity and traction ap-

ply to fluid 1. Next we apply the Lorentz reciprocal relation to the Poiseuille flow and the

capsule’s internal flow in order to introduce the interfacial traction,∆f , to our equation.

Since the viscosity of the Poiseuille flow and the internal flow are different we use the

Lorentz reciprocal relation applicable to two fluids which have different viscosities, to get

∇ ·
(

µuP · f (2) − λµu(2) · fP
)

= 0, (4.18)

which we divide byµ, integrate overP and add to (4.17) to get

π2 = −
1

Q





∫

P

uP · ∆f ds(x) + (λ− 1)

∫

P

u(1) · fP ds(x)



 , (4.19)
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where we have also used equation (4.11). Therefore the disturbance pressure is dependent

on the capsule’s shape and the velocity of the capsule’s perimeter. The interfacial tractions

will be obtained from a constitutive equation, and the Poiseuille velocity and traction

values may be calculated from equations (4.1) and (4.4). It is interesting to note that when

λ = 1 the velocities onP are not included in the equation and the disturbance pressure

may be calculated directly given the capsule shape and the interfacial traction.

We obtain an alternative expression forπ2 from the Stokes equation for the total stress

in the ambient fluid,∇ · σ(1) = 0. We integrate around the flow boundary and apply the

divergence theorem to get

0 =

∫

∂Γ

f (1) ds(x)

=

∫

E1

fP ds(x) + 2dπ2i +

∫

E2

fP ds(x) +

∫

C

f (1) ds(x) +

∫

P

f (1) ds(x), (4.20)

where we have applied the boundary conditions. Integrating∇ · σ(2) = 0 overP gives

∫

P

f (2) ds(x) = 0 (4.21)

which we subtract from equation (4.20) to get

0 =

∫

E1

fP ds(x) + 2dπ2i +

∫

E2

fP ds(x) +

∫

C

f (1) ds(x) +

∫

P

∆f ds(x). (4.22)

We can substitute the Poiseuille traction and the stress tensor into the cap integrals in

(4.22) to get

∫

E1

fP
i ds(x) +

∫

E2

fP
i ds(x) =

∫

E1

σP
ix ds(x) −

∫

E2

σP
ix ds(x)

= −2 dG l δix, (4.23)

sinceσxx = −pP (x) andσyx = µ∂uP

∂y . After substitution of (4.23) into (4.22) thex and

y components are given by

π2 = Gl −
1

2d





∫

C

f (1) · i ds(x) +

∫

P

∆f · i ds(x)



 , (4.24)

0 =

∫

C

f (1) · j ds(x) +

∫

P

∆f · j ds(x). (4.25)

The total tractions,f (1), on the walls consists of the known Poiseuille tractions andthe

unknown disturbance tractions. The unknowns in equation (4.24) are the disturbance

tractions on the walls and the capsule shape, which is in contrast to equation (4.19) which
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requires the velocities on the capsule boundary and its shape. Whenλ = 1, π2 can be

calculated directly using equation (4.19). However, we areunable to calculateπ2 di-

rectly using equation (4.24) under any circumstances. Equation (4.25) therefore provides

a method of checking the disturbance tractions on the walls.

Now that we have a formula for the disturbance pressure, we will focus on deriving a

boundary integral equation which governs the disturbance velocity in the channel. When

the pole,x0, lies in fluid 1 the disturbance velocity satisfies equation (3.43), which we

rewrite as

4πµuD
j (x0) = π2

∫

E2

niGij ds(x) −
∫

C

fD
i Gij ds(x)

−

∫

P

f
(1)
i Gij ds(x) + µ

∫

P

u
(1)
i Tijk nk ds(x), (4.26)

where we have added the superscript(1) to the traction and the velocity in the capsule

integrals to indicate that the traction and velocity apply to fluid 1. Application of the

general boundary integral equation (1.3.40) to the flow inside the particle gives

0 = −

∫

P

f
(2)
i Gij ds(x) + λµ

∫

P

u
(2)
i Tijk nk ds(x), (4.27)

where the left-hand side is zero becausex0 lies outside of the domain ofP. We subtract

(4.27) from (4.26) to get

uD
j (x0) =

1

4πµ



π2

∫

E2

niGij ds(x) −
∫

C

fD
i Gij ds(x)

−

∫

P

∆fiGij ds(x) + µ(1 − λ)

∫

P

u
(1)
i Tijk nk ds(x)



 , (4.28)

which may be used to calculate the disturbance velocity at any point in fluid 1 given the

disturbance pressure, the disturbance tractions on the channel walls, the interfacial trac-

tions on the capsule boundary and the velocity field on the capsule boundary. When the

viscosity ratio is unity the integral involving the capsulevelocities disappears from the

equation. In the previous section we had to add a ‘deflation’ term to the boundary inte-

gral equation because the equation did not admit a unique solution. We do not have the

same problem with equation (4.28) because∆f will be known and hence the integral,
∫

P
∆fiGij ds(x), can be computed. However the boundary integral equation does be-

come ill-conditioned in the limitsλ → 0 andλ → ∞, which correspond to a bubble

and a rigid particle respectively. The integral equation may be regularised by adding the

deflation term given in Zhou and Pozrikidis (1993), Staben etal. (2003) who studied the

motion of a drop in a two-dimensional channel and a particle in a channel between plane

walls respectively. Here we limit the range ofλ so that we do not encounter problems.
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The total velocity at a point in the fluid is computed by addingthe Poiseuille velocity to

the disturbance velocity obtained from equation (4.28).

Before we can use (4.28) we need to find the disturbance pressure,π2, the disturbance

tractions onC and the velocities ofP. Therefore we would like to place the pole on

the channel walls and the capsule boundary and evaluate the boundary integral equation.

Whenx0 lies on the channel walls equation (4.28) reduces to

0 = π2

∫

E2

niGij ds(x) −
∫

C

fD
i Gij ds(x)

−

∫

P

∆fiGij ds(x) + µ(1 − λ)

∫

P

u
(1)
i Tijk nk ds(x), (4.29)

where the left-hand side is zero becauseuD = 0 on the channel walls and although the

double-layer potential is present it is not discontinuous whenx0 lies onC. When the pole

lies on the capsule’s boundary the double-layer potential is

∫

P

u
(1)
i Tijk nk ds(x) = 2π u

(1)
j (x0) +

PV
∫

P

u
(1)
i Tijk nk ds(x), (4.30)

by equation (2.6.25) in Pozrikidis (1992), and werePV indicates the principal value of

the integral. Substitution into (4.28) yields

2πµ (1 + λ)u
(1)
j (x0) = 4πµuP

j (x0) + π2

∫

E2

niGij ds(x) −
∫

C

fD
i Gij ds(x)

−

∫

P

∆fiGij ds(x) + µ(1 − λ)

PV
∫

P

u
(1)
i Tijk nk ds(x), (4.31)

which is valid whenx0 lies on the capsule boundary and where we have expressed the

left-hand side in terms of the total velocity.

Now that we have derived the equation forπ2 and the boundary integral equations

which are valid whenx0 lies onC andP, we find the solution by writing the equations as a

linear system and solving it by standard means. To constructthe linear system we employ

the boundary element method (Pozrikidis 2002a) whereby we discretise the channel walls

and the capsule boundary into elements. We evaluate (4.29) with the pole,x0, on each of

the boundary elements ofC to obtain a sufficient number of equations for the unknown

disturbance tractions on the channel walls. We have the samesufficiency on the capsule

boundary by evaluating equation (4.31) withx0 on each of the boundary elements ofP.

The remaining unknown quantity isπ2 for which we have equation (4.19). Therefore we

have the same number of unknowns as equations and so our system is complete. When

the solution to the linear system is available, we may calculate the velocity at any point in
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the flow domain using,

u
(1)
j (x0) = uP

j (x0) +
1

4πµ



π2

∫

E2

niGij ds(x) −
∫

C

fD
i Gij ds(x)

−

∫

P

∆fiGij ds(x) + µ(1 − λ)

∫

P

u
(1)
i Tijk nk ds(x)



 , (4.32)

where we have added equation (4.26) to the Poiseuille velocity to get the total velocity.

We non-dimensionalise equations (4.19) and (4.32) to obtain the important parameters.

We scale distances byd, velocities byU0, and tractions and pressures byµU0/d, and

identify dimensionless quantities with a circumflex. The disturbance pressure equation

(4.19) becomes

π̂2 = −
3

4





∫

P

ûP · ∆f̂ dŝ+ (λ− 1)

∫

P

û(1) · f̂
P

dŝ



 , (4.33)

and equation (4.32) becomes

û
(1)
j (x0) = ûP

j (x0) +
1

4π



π̂2

∫

E2

niGij dŝ−

∫

C

f̂D
i Gij dŝ

−

∫

P

∆f̂iGij dŝ+ (1 − λ)

∫

P

û
(1)
i T̂ijk nk dŝ



 . (4.34)

Therefore it is clear that the flow is dependent on the shape, size and location of the parti-

cle via the integrals overP together with the ratio of the fluid viscosities and the physical

properties of the capsule boundary. We have completed the derivation of our governing

equations, however to proceed we require a method of calculating the interfacial traction

jump,∆f . In the next section we demonstrate how to calculate∆f .

4.2 Constitutive equations for fluid drops and elastic capsules

We will consider capsules of two fundamentally different types. First we will look at

fluid drops with constant surface tension before examining the behaviour of a fluid encap-

sulated by an infinitely thin flexible membrane. To calculatethe jump in the interfacial

traction for a fluid drop, we use the Young-Laplace equation (e.g. Batchelor 1967, p.69),

∆f(s) = γ κ(s)n(s) (4.35)

whereγ is the constant surface tension,κ is the local curvature,n is the unit normal vector

pointing into fluid 1, and where we have included the arguments for clarity. The arc-

length,s, increases as we move anti-clockwise around the capsule. Taking the definition
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of the curvature from (Stoker 1969, Eq 2.17), we have

κ(s)n = −
dt

ds
, (4.36)

wheret is the unit tangent vector oriented in the direction of increasings, and where we

have used the minus sign to make the definition geometricallyconsistent. Equivalently

we may write,

κ(s) = −n ·
dt

ds
=

dn

ds
· t. (4.37)

For instance, a circle of radiusr will have curvature,κ = 1/r. On the circle we have

n = r̂, t = θ̂ ands = rθ, wherer̂ andθ̂ are the orthogonal unit vectors in the radial and

θ directions respectively. Substitution into (4.37) gives

κ = −r̂ ·

(

1

r

dθ̂

dθ

)

= −
1

r
r̂ · (−r̂) =

1

r
(4.38)

sincedθ̂
dθ = −r̂. To ensure that equation (4.35) is consistent with our definition of curva-

ture we formn · ∆f , to get

γ κ = n · ∆f = n · (σ(1) − σ(2)) · n. (4.39)

To expand the right-hand side we use

ni σ
(1)
ij nj = −p(1) + 2µni e

(1)
ij nj, (4.40)

ni σ
(2)
ij nj = −p(2) + 2λµni e

(2)
ij nj, (4.41)

wheree(a)
ij = 1

2

(

∂u
(a)
i

∂xj
+

∂u
(a)
j

∂xi

)

is the rate of strain tensor for fluida = 1, 2. On the

perimeter of the fluid drope(1)ij = e
(2)
ij sinceu(1) = u(2). Therefore we may write

γ κ = p(2) − p(1) + 2 (1 − λ)µni e
(1)
ij nj. (4.42)

Since we are interested only in checking the sign of the curvature we consider a bubble in

air so thatλ = 1, and

p(2) = p(1) + γ κ, (4.43)

wherep(1) is the air pressure andp(2) is the pressure inside the bubble. Sincep(2) >

p(1) and the surface tension,γ, will be a positive constant we require the curvature to

be positive, which is consistent with our definition in equation (4.37). In summary, to

calculate∆f for a fluid drop we specify the surface tension and compute thenormal

vector and the curvature,κ.

We compute the interfacial traction jump for an elastic capsule according to an as-

sumed equilibrium balance between the elastic forces developing within the two-dimensional
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elastic membrane and the hydrodynamic load on the capsule. The capsule is shown in fig-

ure 4.2. The capsule membrane is treated as being comprised of a thin incompressible

n

t

q

τ

µ

λµ

s

P

Figure 4.2 : Elastic capsule with unit normaln, unit tangentt, in-plane tensionτ and transverse
shear tensionq. The arc-length iss and its direction is indicated by the arrow.

elastic material (e.g. Barthès-Biesel 1980). To establish formulae for the traction jump,

we first define the membrane tension vector,

T ≡ qn + τ t, (4.44)

whereτ is the in-plane tension andq is the transverse shear tension which incorporates

the effects of bending resistance. Next, we consider a forcebalance over an infinitesimal

section of the membrane to obtain

dT

ds
+ ∆f = 0, (4.45)

which expresses the equilibrium balance between the elastic stress and the hydrodynamic

load on the capsule membrane. Differentiating the tension in equation (4.44) with respect

to s gives
dT

ds
=

dq

ds
n + q

dn

ds
+

dτ

ds
t − κ τ n (4.46)

by the chain rule and equation (4.36). Taking the scalar product withn gives

dT

ds
· n =

dq

ds
− κ τ (4.47)

sincen · t = dn
ds · n = 0. The tangential component of the tension is given by

dT

ds
· t = q

dn

ds
· t +

dτ

ds
= κ q +

dτ

ds
(4.48)

using equation (4.37). Therefore the normal and tangentialcomponents of equation (4.45)

give us

∆f · t = −

(

dτ

ds
+ κ q

)

(4.49)
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and

∆f · n = −

(

dq

ds
− κ τ

)

, (4.50)

for the components of the hydrodynamic load. For simplicitywe adopt a linear elastic

model for the in-plane elastic tension, and assume that it may be expressed as a linear

function of the membrane strain. Following Breyiannis and Pozrikidis (2000) we write

τ = k (e− 1) , (4.51)

wherek is the membrane stiffness ande− 1 is the membrane strain with the extension,

e =
∂s

∂sR

(4.52)

wheres(t) is arc-length along the deforming membrane boundary andsR is arc-length in

the unstressed membrane. Although the simple relationship(4.51) is strictly only true for

small deformations, it still captures qualitatively the inclination for a deformed capsule to

return to its unstressed configuration. In the unstressed state,s = sR, and so the in-plane

tension will be zero. A moment balance over an infinitesimal section of the membrane

yields

q =
dm

ds
, (4.53)

wherem is membrane bending moment. Following Pozrikidis (2002b),we assume a

linear constitutive relationship between the bending moment and the membrane curvature

to get

m = EB (κ− κR), (4.54)

whereEB is the bending modulus andκR is the curvature of the unstressed membrane.

The physical properties of the capsule boundary are the membrane stiffness,k, and the

bending modulus,EB. We setEB = 0 to model a membrane which does not resist bending,

which is equivalent to settingq = 0. From inspection of (4.49) and (4.50), we can see

that we need to computeκ, q, dq
ds , τ and dτ

ds in order to calculate∆f . The computation of

q and dq
ds is equivalent to calculating the first and second derivativeof the curvature. For

simplicity, we will assume that the shape of an unstressed elastic capsule will be a circle.

Therefore the reference curvature,κR, is constant and does not affect the calculations.

Now that we have the governing integral equations and a method of calculating the

interfacial traction jump we have completed our derivationof the equations and so we are

in a position to proceed to the numerical method.

4.3 Numerical method

Now that we have the governing equations we wish to write themin the form of a linear

system,

A · x = b, (4.55)
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as we have explained in the previous section and chapter. To start the boundary element

method, we discretise the geometry into boundary elements.We divide the channel walls

into NC equally-sized straight elements upon each of which we set the unknown distur-

bance traction to a constant vector. On therth wall element the disturbance traction isfD
r .

We continue to use straight-line boundary elements on the capsule as we did in the previ-

ous section and discretise the capsule intoNP boundary elements. Since we will evaluate

the boundary integral equation at the element mid-point,xm, we will set the velocity to

beu
(1)
r at the mid-point of therth element. The vector of unknowns is therefore given by

x =
[

F D
C U

(1)
P

π2

]T
, (4.56)

whereT means transpose, andF D
C is a vector storing the disturbance tractions on the

walls andU (1)
P

is the vector of capsule velocities. The vectorsF D
C andU

(1)
P

are,

F D
C =

[

fD
x,1 fD

y,1 . . . fD
x,NC

fD
y,NC

]

, (4.57)

U
(1)
P

=
[

u
(1)
x,1 u

(1)
y,1 . . . u

(1)
x,NP

u
(1)
y,NP

]

. (4.58)

The evaluation of the disturbance pressure equation and theboundary integral equation

involves the computation of∆f which in turn requires the value of the curvature,κ, and

possibly its derivatives. Since the curvature is zero on a straight line we require a method

of calculatingκ on a boundary element. Therefore we will introduce a periodic cubic

spline (e.g. Pozrikidis 2002a,§3) to represent the capsule’s boundary, and from this spline

we will calculate the necessary derivatives. In order to create the periodic cubic spline

we must introduce a monotonically increasing parameter forthe spline. We choose, for

simplicity, the cumulative straight line distance along the straight elements which we will

labelβ. We computeβ at each node by traversing the capsule’s boundary elements,and

useβr to indicate the value ofβ at therth node. The length of therth element islr and

is computed bylr = βr+1 − βr. By periodicity, the start point of the first element will

haveβ = 0 andβ = βT whereβT is the total polygonal arc-length of the boundary.

We construct the(β,x) spline using the value ofβ at each of the boundary’s nodes. The

spline provides an approximation to the capsule’s true boundary and also the first and

second derivatives ofx with respect toβ. The curvature may then be calculated using the

formula

κ(β) =
x′ y′′ − x′′ y′

(

(x′)2 + (y′)2
)

3
2

, (4.59)

where the primes denotes differentiation with respect toβ. However the inherent problem

with a cubic spline is that the first derivative is quadratic inβ and the second is linear inβ.

Furthermore the second derivative is continuous but not differentiable at a boundary node.

To smooth the derivatives we use the first derivative from the(β,x) spline to construct

a (β,x′) spline, which in turn is used to construct a spline for the second derivative.

These latter two splines are then used to calculate the curvature by equation (4.59). The

calculated value ofκ for each value ofβ is used to construct a(β, κ) spline. When
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we consider an elastic capsule that resists bending we also require the derivatives of the

curvature. We therefore apply the same process and construct the (β, κ′) spline from

the curvature spline, and the spline for the second derivative from the spline for the first

derivative. The ∆f calculation requires the values ofdκ
ds and d2κ

ds2 , which we calculate

from the splines using the chain rule, to get

dκ

ds
=
κ′

s′
, (4.60)

d2κ

ds2
=

κ′′

(s′)2
−
s′′ κ′

(s′)3
, (4.61)

wheres′ =
√

(x′)2 + (y′)2 ands′′ = (x′x′′ + y′y′′)/s′. To validate the calculation of the

curvature and its derivatives we considered the unit circleand ellipses of various aspect

ratios but with an area equal toπ. The curvature of a circle is equal to the reciprocal of its

radius and the derivatives are zero. The values obtained from the cubic spline calculations

were within10−7 of their expected values (where the value has been non-dimensionalised

by multiplication of the appropriate power of the radius). The curvature of an ellipse

defined by(x/a)2 + (y/b)2 = 1 is given by

κ = ab

(

(

a

b

)2

y2 +

(

b

a

)2

x2

)−
3
2

. (4.62)

The curvature derivatives may be obtained by differentiating this expression. The error in

the calculations increased for the ellipses but lay within10−4 for all tested aspect ratios.

Once again the values were appropriately non-dimensionalised.

An elastic capsule also requires the value of the in-plane tension,τ , and its first deriva-

tive in the computation of∆f . We approximateτ , given in equation (4.51), using the

lengths of the boundary elements in their rest and stressed states. The value ofτ on the

rth element is approximated by

τ = k

(

∂s

∂sR

− 1

)

≈ k

(

lr
lr,0

− 1

)

, (4.63)

wherelr is the element length andlr,0 is the length of the unstressed element. We construct

a (β, τ) periodic cubic spline using the value ofβ at the element mid-point and the value

of τ computed from equation (4.63)

We now proceed to the discretisation of the equations, starting with the pressure equa-

tion (4.19), which we write as

Qπ2 + (λ− 1)

∫

P

u(1) · fP ds(x) = −

∫

P

uP · ∆f ds(x). (4.64)

We approximate the integrals as sums over the boundary elements such that the integral
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on the left-hand side is

(λ− 1)

∫

P

u(1) · fP ds(x) ≈ (λ− 1)

NP
∑

r=1

u(1)
r · fP

r (xm,r) lr

= ΠP · U
(1)
P

(4.65)

wherefP
r (xm,r) is the Poiseuille traction computed at the element mid-point, and

ΠP = (λ− 1)
[

fP
x,1 l1 fP

y,1 l1 . . . fP
x,NP

lNP
fP

y,NP
lNP

]

. (4.66)

The integral on the right-hand side of (4.64) is

∫

P

uP · ∆f ds(x) ≈
NP
∑

r=1

uP (xm,r) · ∆f(xm,r) lr = Π∆ (4.67)

so that we may write equation (4.64) as the matrix/vector product,

[

0 ΠP Q
]

· x = −Π∆. (4.68)

Next we discretise the boundary integral equation which is valid whenx0 lies on the walls

of the channel. We separate the unknown and the known quantities in equation (4.29) to

get

∫

C

fD
i Gij ds(x) − π2

∫

E2

niGij ds(x) + µ(λ− 1)

∫

P

u
(1)
i Tijk nk ds(x)

= −

∫

P

∆fiGij ds(x). (4.69)

The first term on the left-hand side is approximated by

∫

C

fD
i Gij ds(x) ≈ IG

C,j(x0) · [F
D
C ]T (4.70)

where

IG
C,j(x0) =

[

G̃xj,1 G̃yj,1 · · · G̃xj,NC
G̃yj,NC

]

, (4.71)

andG̃ij,r is defined by equation (2.55). The integral overE2 is labelled

IG
E2,j(x0) =

∫

E2

niGij(x,x0) ds(x) (4.72)

and can be computed exactly from equations (2.44) and (2.45). We denote the integral of
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the stress tensor over therth element,Er, by

T̃ij,r(x0) =

∫

Er

Tijk(x,x0)nk ds(x), (4.73)

which is zero whenx0 lies on the element for the reasons given in section 2.1 on page 24.

Using (4.73) we can approximate the capsule integral on the left-hand side of equation

(4.69) to get

∫

P

u
(1)
i Tijk nk ds(x) ≈

NP
∑

r=1

u
(1)
r,i T̃ij,r(x0) = IT

P,j(x0) ·
[

U
(1)
P

]T
(4.74)

where

IT
P,j(x0) =

[

T̃xj,1(x0) T̃yj,1(x0) · · · T̃xj,NP
(x0) T̃yj,NP

(x0)
]

. (4.75)

The integral on the right-hand side of (4.69) is

∫

P

∆fiGij(x,x0) ds(x) ≈
NP
∑

r=1

∆fi(xm,r) G̃ij,r(x0) = ΠG,j(x0) (4.76)

so that we may write the discretised analogue of equation (4.69) as

[

IG
C,j(x0) µ(λ− 1) IT

P,j(x0) −IG
E2,j(x0)

]

· x = −ΠG,j(x0). (4.77)

Re-evaluation of this equation withx0 at the mid-point of each of the channel walls’

boundary elements createsNC pairs of equations which are assembled into the matrix,

[

CC CP CE2

]

· x = bC (4.78)

where each ofCC , CP , CE2 andbC consist of theNC pairs ofIG
C,j(x0), µ(λ− 1)IT

P,j(x0),

−IG
E2,j(x0) and−ΠG,j(x0) respectively. Finally we discretise the boundary integralequa-

tion (4.31) which is valid whenx0 lies on the capsule boundary. We rewrite the equation as

∫

C

fD
i Gij ds(x) − π2

∫

E2

niGij ds(x) + µ(λ− 1)

PV
∫

P

u
(1)
i Tijk nk ds(x)

+ 2πµ (1 + λ)u
(1)
j (x0) = 4πµuP

j (x0) −

∫

P

∆fiGij ds(x). (4.79)

We usex(r)
0 to indicate the mid-point of therth element and define

Pu,j

(

x
(r)
0

)

=
[

δr1δxj δr1δyj · · · δrNP
δxj δrNP

δyj

]

, (4.80)
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which enables us to write equation (4.79) in the form

[

IG
C,j

(

x
(r)
0

)

µ(λ− 1) I
T,PV
P,j

(

x
(r)
0

)

+ 2πµ (1 + λ)Pu,j

(

x
(r)
0

)

−IG
E2,j

(

x
(r)
0

)

]

· x

= 4πµuP
j

(

x
(r)
0

)

− ΠG,j

(

x
(r)
0

)

. (4.81)

Re-evaluation of this equation withx0 at the mid-point of each of the capsule’s boundary

elements createsNP pairs of equations which are assembled into the matrix,

[

PC PP PE2

]

· x = bP (4.82)

where each ofPC , PP , PE2 andbP consist of the2NP equations generated from equa-

tion (4.81).

We have now completed the discretisation of the disturbancepressure equations and

the boundary integral equations which govern the flow. We assemble the master linear

system from equations (4.68), (4.78) and (4.82) to get







CC CP CE2

PC PP PE2

0 ΠP Q






· x =







bC

bP

−Π∆






. (4.83)

The submatrices in the first column of equation (4.83) have2NC columns, the submatrices

in the second colum have2NP columns and the final column has one. The rows of

equation (4.83) each have2NC , 2NP and 1 row(s) respectively. Therefore the influence

matrix has size(2NC+2NP +1)×(2NC+2NP +1). In our simulations we setNC = 800

for the channel walls, andNP = 316 for a capsule of initial radius0.5. We increasedNP

for larger particles to maintain the element length, and decreasedNP for smaller particles.

The initial capsule shape was usually circular but the formulation caters for an arbitrary

initial shape. In the absence of external forces the fluid drop will adopt a circular shape.

The elastic capsule has a circle as its unstressed shape.

Now we can build the linear system and solve it using a standard method. We found

it practical to use the Generalised Minimal Residuals (GMRES) (e.g. Trefethen and Bau

1997, Saad 2003) to find the disturbance tractions, the disturbance pressure and the cap-

sule element mid-point velocities. The iterative scheme typically converged in under200

iterations for the discretisation configuration given above. We therefore found it unnec-

essary to precondition the matrix. We computed the capsule node velocities from the

mid-point velocities via a periodic cubic spline. We use an iterative solver in favour of

Gaussian elimination because it is an order of magnitude faster and we will be using the

solution to move the capsule. Once the capsule nodes have been moved the master linear

system is rebuilt and resolved. To move the capsule we integrated the kinematic equation,

dxr

dt
= u(xr), (4.84)
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wherexr is the position vector of therth capsule node and the values ofu(xr) are ob-

tained from the velocity cubic spline, which was constructed using the element mid-point

velocities. It should be noted that we have a choice in the waywe move the capsule bound-

ary. We chose to use equation (4.84) which in effect uses the local fluid velocity. As an

alternative, we could have used the normal component of velocity to move each node. We

used the adaptive time-stepping Runga-Kutta-Fehlberg method (e.g. Atkinson 1978) to

integrate (4.84). For the time integration we took an initial time step of dt = 0.01 d/U0

for a fluid drop and dt = 0.005 d/U0 for an elastic capsule which does not resist bend-

ing. A particularly small time step was found to be required when bending moments are

taken into account in the membrane,EB 6= 0, in line with the observations of Pozrikidis

(2001). Therefore we took the initial time step to be dt = 0.0005 d/U0 for an elastic cap-

sule which resists bending. To avoid a situation where the capsule would move close to

the exit, after each iteration of the numerical scheme we moved the capsule such that the

x-component of its centroid was positioned atx/d = l/2. We exit the numerical scheme

if the capsule attains a steady shape, where we define a steadyshape to be one where

the y-component of the centroid’s velocity and the normal component of the boundary

node velocities, with respect to the velocity of the capsulecentroid, are all less than than

0.0001U0 . We computed the instantaneous streamlines by integratingthe equation

dx

ds
= u(x) (4.85)

along the streamline, wherex is the position vector of a point on the streamline,s mea-

sures the arc-length along the streamline and the velocity on the right-hand side is com-

puted from equation (4.32). We also calculated the streamlines relative to a frame of

reference fixed at the capsule’s centroid, which we will callpathlines to distinguish them

from the streamlines. To calculate the pathlines, we integrated the kinematic equation,

dx′

dt
= u(x′) − Vxi, (4.86)

wherex
′ is the position vector of a point moving with the frame of reference,u is again

calculated from equation (4.32), andVx is thex-component of the velocity of the capsule’s

centroid.

The discretisation which leads to the linear system in equation (4.83) was formulated

for a general capsule. However whenλ = 1, considerable simplifications can be made.

The disturbance pressure equation becomes,

π2 = −
1

Q

∫

P

uP · ∆f ds(x), (4.87)

which can be computed directly for a given capsule shape. When x0 lies onC, equation
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(4.29) simplifies to

∫

C

fD
i Gij ds(x) = π2

∫

E2

niGij ds(x) −
∫

P

∆fiGij ds(x), (4.88)

which means that the linear system reduces to,

CC · F
D
C = bC , (4.89)

and the left-hand side is independent of the capsule. Therefore, the inverse of theCC

matrix is computed and the wall disturbance tractions are found directly, and the iterative

method is not required. As the capsule’s shape evolves the right-hand side of equation

(4.89) is recomputed and the solution found by

F D
C = (CC)

−1 · bC . (4.90)

The capsule node velocities, or any other point in the flow, may then be found by

u
(1)
j (x0) = uP

j (x0) +
1

4πµ



π2

∫

E2

niGij ds(x) −
∫

C

fD
i Gij ds(x)

−

∫

P

∆fiGij ds(x)



 , (4.91)

and the capsule nodes are updated using equation (4.84).

We have now finished describing the numerical method. We willfirst consider a fluid

drop and validate the numerical model before moving on to theresults. An elastic capsule

is considered in section 4.4.2.

4.4 Model validation and results

For all results we truncated the channel so thatl = 12 d. We found this truncation length

sufficient for the disturbance flow to decay as we approach theentrance or exit to the

computational domain. The Poiseuille pressure drop between the entrance and exit for a

channel of lengthl = 12 d is 24µU0/d.

The dynamics depend on the viscosity ratio,λ, the initial dimensionless particle ra-

dius,ρ, and the initial centreline offset,σ, which are defined by

ρ =
a

d
, σ =

yc

d
, (4.92)

wherea is the radius of the unstressed circular shape,xc = (xc, yc) is the capsule centroid

calculated using equation (3.8). We placed the drop or capsule centroid at the mid-point

of the channel, such thatxc/d = 6, and variedλ, ρ andσ. As in previous chapters,

we checked the numerical implementation by confirming that the discretised form of the
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integral identities for Stokes flow given in equations (1.3.34) and (1.3.31) were satisfied

to within an acceptable tolerance. We checked the validity of both identities by settingx0

to the mid-point of every boundary element and to several points inside and outside of the

flow domain.

To validate the numerical solution we used a channel withl = 12 d and a capsule with

ρ = 0.5 andσ = 0 as our reference configuration. The boundary velocities were included

in the solution by settingλ = 2. Firstly we computed the solution for a longer channel

with l = 24 d, then we reset the channel length and doubled the number of elements on

each boundary with respect to the reference configuration. In all cases we found that the

tractions in the solution vector differed by less than0.001µU0/d from the values obtained

for the reference configuration, and the nodal velocities byless than0.0005U0 .

We will present results for a fluid drop before moving on to an elastic capsule in 4.4.2.

4.4.1 A fluid drop – results

In addition toλ, ρ, andσ the dynamics of a fluid drop also depend on the Capillary

number,Ca, which we define as

Ca =
µU0

γ
, (4.93)

whereU0 is the centreline velocity of the undisturbed Poiseuille flow andγ is the constant

surface tension. The capillary number represents the relative effect of viscous forces to

surface tension.

To further validate the numerics for a fluid drop, we comparedthe steady shape for the

reference configuration described above with the steady shape when the number of bound-

ary elements was doubled. In both simulations we setλ = 1 andCa = 1. There were

negligible differences between the two shapes. For instance, the difference in the position

of the nodes between the two configurations was less than0.0001 d. Also the evolution of

the pressure for the two configurations typically differed by less than0.0001µU0/d for a

given time.

We placed a circular drop in the flow and computed the disturbance pressure and the

wall tractions forλ = 1. At t = 0 we expect the disturbance pressure to be zero because

the drop is in its unstressed state and so the pressure equation reduces to

π2 = −
1

Q

∫

P

uP · ∆f ds(x) = −
γκ

Q

∫

P

uP · n ds(x), (4.94)

which is zero whenP is a circle. We also expect the disturbance tractions on the channel

walls to vanish since from equation (4.29) we have

∫

C

fD
i Gij ds(x) ≈ −

∫

P

∆fiGij ds(x) = −γκ

∫

P

niGij ds(x) = 0, (4.95)

by equation (1.3.34). In our computations we foundπ2 ≈ 10−14 µU0/d and |fD| ≈

10−12 µU0/d for a range ofρ, σ andCa. Under these conditions the disturbance velocity



88 The motion of a fluid drop or a flexible capsule in a straight channel

is negligible. Whenλ 6= 1 the disturbance pressure will be non-zero for a circular capsule

because an additional integral over the capsule is includedin the calculation.

For each simulation, we will check that the velocity decays as we move away from

the drop and is negligible at the entrance and exit, and that the disturbance tractions decay

to zero at the entrance. At the exit we will check thatfD
x decays to zero at the exit

and fD
y tends to the disturbance pressure. We will also check that the capsule’s area

is preserved since it should remain constant due to the incompressibility of the capsule

fluid. If numerical error leads to the area error increasing above0.1% then we perform

an isotropic expansion or deflation of the shape by dividing each node vector (from the

centroid) by a factor equal to the original radius divided bythe current equivalent radius,
√

A/π, whereA is the current area, which is in line with Zhou and Pozrikidis(1993).

To compute the area we apply the divergence theorem with the vector field equal to the

position vector,x = xi + yj. Since∇ · x = 2, we have

∫

P

x · n ds(x) =

∫∫

DP

∇ · x dA(x) = 2AP , (4.96)

whereDP is the capsule domain andAP is the capsule area, and so

AP =
1

2

∫

P

x · n ds(x), (4.97)

where we can computex on the capsule boundary using the(β,x) spline, andn =

(x′, y′)/s′, where the prime denotes differentiation with respect toβ. Our final check

regards the drop’s interfacial tractions. Application of equation (4.36) gives

∫

P

κn ds(x) = −

∫

P

dt

ds
ds(x) = −

∫

P

dt = 0 (4.98)

by periodicity. Therefore, for a fluid drop, we have

∫

P

∆f ds(x) = 0, (4.99)

which is used at each time step in the numerical integration to check the computed values

of the interfacial traction jump. We found that for all simulations
∣

∣

∫

P
κn ds(x)

∣

∣ < 10−4.

During the course of the simulation the boundary elements may lengthen or shorten. If the

lengths of one or more element became less or more than a threshold value, the boundary

was rediscretised with points located regularly with respect toβ. The boundary was then

smoothed using the 5-point formula of Longuet-Higgins and Cokelet (1976).

We start our results with an initially circular drop which has λ = 1, ρ = 0.5, σ = 0

andCa = 1. At t = 0 the disturbance pressure and tractions are negligible, as expected.

Therefore the disturbance to the flow, in terms of the velocity and wall tractions, is also

negligible. As the simulation progresses the circular shape deforms due to the incident
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velocity profile and att = 9.12 d/U0, the drop attains a steady shape. When the drop

attains a steady shape, the disturbance pressure is−0.099µU0/d, the centroid velocity is

0.935U0 i and it has travelled a distance of 17 drop radii along the channel. To compare

the results for a fluid drop with those for a rigid particle we set the initial shape of the

rigid particle to be the shape of the steady drop and computedthe disturbance pressure

and translational velocity. The disturbance pressure is−0.287µU0/d for the rigid particle

which is almost three times greater than for a fluid drop. The rigid particle translates with

velocity 0.895U0 i which is 96% of the drop’s velocity. It is interesting to note that

while the particle and drop velocities do not differ greatly, the disturbance pressure is

significantly higher for a rigid particle. Next we checked the value of the disturbance

pressure against that predicted by equation (4.24), and found that it differed by less than

0.02% from−0.099µU0/d. We can see from the decay of the disturbance traction shown

in figure 4.3 (a) that thex-component decays to zero, and they-component decays to zero

at the entrance and to the value of the disturbance pressure at the exit. Thex-component

of the fluid velocity along the channel centreline,y/d = 0, is plotted in figure 4.3 (b).

The gap in the profile corresponds to the drop, where the velocity was not calculated.

Both parts of the curve terminate atu(1)
x = 0.935U0, but close to the left-hand side

of the drop thex-component of velocity decreases further before returningto 0.935U0

at the drop boundary. Points close to the drop suffer the greatest disturbance from the

Poiseuille centreline velocity, but upstream and downstream, the disturbance has decayed

to less than1% after 4 drop radii from the drop centroid. The steady shape isshown
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The gap betweenx/d ≈ 6 ± 0.5 corresponds to the
drop.

Figure 4.3 : Disturbance tractions on the top wall and the centreline velocity for a steady drop
with λ = 1, ρ = 0.5, σ = 0 andCa = 1.

in figure 4.4 (a) where we can see that the rear of the drop becomes flattened and the

shape resembles a rounded triangle. The disturbance pressure is displayed in figure 4.4

(b), where we define the normalised disturbance pressureπ̂2 by π̂2 = π2 d/µU0. In the

figure we can see that the pressure increases in magnitude from zero to a maximum value

of π̂2 = −0.104 at t = 2.65 d/U0 before tending tôπ2 = −0.099. The evolution of

the disturbance pressure is characterised by the initial rapid change as the circular drop

responds to the incident flow, and a second phase in which the drop settles to its steady
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(c) Normal (–) and tangential (r) velocities on the
drop boundary relative to the drop centroid.
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Figure 4.4 : Steady shape, disturbance pressure, boundary velocities and interfacial traction jump
for a steady fluid drop withλ = 1, ρ = 0.5, σ = 0, Ca = 1.

shape. In figure 4.4 (c) we plot the normal and tangential velocities, with respect to the

drop centroid, as a function of arc-length,s. We measures anti-clockwise from zero at

the right-most point on the drop, and the total arc-length ofthe drop isST = 3.19 d.

The normal component is effectively zero, which is implied by our criteria for a steady

shape. The tangential component reveals some interesting features of the drop’s boundary

velocities. For positives close to zero the tangential velocity is negative which indicates

the velocity is directed towards the point withs = 0. The tangential velocity is zero

at s = 0.19 d. For s ∈ (0.19 d, ST /2) the tangential velocity is positive and therefore

in the same direction as increasings, and a maximum value of the tangential velocity is

attained ats = 0.9 d. The tangential velocity is zero ats = ST /2. The story is reversed

on the lower half of the drop. Fors ∈ (ST /2, 3.00 d) the velocity is towards the rear of

the drop, and in the region(3.00 d, ST ) the velocity is towards the point withs = 0 or

equivalentlys = ST . These zeroes in the tangential velocity imply that there are four

stagnation points on the drop boundary ats/d = 0, 0.19, 1.60 and3.00. In figure 4.4

(d) we show the normal component of the interfacial tractionjump,∆f , which equalsγκ.

Since the surface tension is constant, the figure shows how the curvature varies with arc-

length around the drop. There are three peaks in the curvature which correspond to the

three ‘corners’ of the rounded triangle. On the rear of the drop, the curvature drops to a

minimum of0.5 which would be the curvature of a circle of radius 2. Finally for this drop,

we plot the instantaneous streamlines in figure 4.5 (a) and the pathlines in figure 4.5 (b),
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where the former is from a frame of reference fixed to the wallsand the latter for a frame

of reference moving with the constant translational velocity of the centroid. The pathlines

close to the left-hand side of the steady drop are shown in figure 4.5 (c) where we can

see the presence of a point at(5.48, 0)d which moves with the same velocity as the drop.

Fluid on the centreline withx/d < 5.48, and fluid in the gap betweenx/d = 5.48 and the

drop moves towards the point(5.48, 0)d. The pathlines which enter the figure from the

top-right move towards the centreline before turning sharply and moving upwards and to

the left. The pathlines then move towards the entrance as they move away from the drop.

In our next set of results we increase the drop radius such that ρ = 0.75, and maintain

the values of the remaining parameters. The drop attains a steady shape att = 17.58 d/U0

which is almost twice as long as for the drop withρ = 0.5 considered above. The dis-

turbance pressure and translational velocity for the steady drop are−0.266µU0/d and

0.899U0 i respectively. Using equation (4.24), we computed a value for the disturbance

pressure which differed by only0.02%. Compared to the drop withρ = 0.5, the distur-

bance pressure has increased by a factor of about2.7 while the velocity has only decreased

by 3.8%. Figure 4.6 (a) shows thex andy components of the disturbance tractions on the

top wall. We can see that thex-component decays to zero at the entrance and exit, the

y-component decays to zero at the entrance and to the value of the disturbance presure at

the exit. The magnitude of the maximum disturbance tractionhas increased significantly

compared to the previous case whenρ = 0.5. We computed the centreline velocity and

found the disturbance velocity close to the drop decays to1% of its maximum value at a

distance of 3.2 drop radii, upstream and downstream, from the drop centroid. This dis-

tance is only slightly greater than for the drop withρ = 0.5 which demonstrates the rapid

decay of the disturbance velocity as we move away from the drop. The steady drop shape

is shown in figure 4.6 (b) where this time the shape resembles abullet, and a slight dimple

may be seen at the rear of the drop. The drop has travelled 20.8drop radii (or equivalently

15.6 d) along the channel when it reaches its steady shape. The evolution of the distur-

bance pressure is shown in figure 4.6 (c). The behaviour is qualitatively similar to the

ρ = 0.5 case but this time the disturbance pressure overshoots the steady value consider-

ably before settling to the steady value. Figure 4.6 (d) shows the normal and tangential

velocities, with respect to the drop centroid, as a functionof arc-length,s. Agains = 0 at

the right-most point of the drop. The total arc-length of thedrop isST = 5.10 d and again

the normal component is zero since the drop is steady. The tangential component exhibits

the same qualitative behaviour as for the drop withρ = 0.5, but now the magnitude of

the maximum velocity is greater. We show the pathlines in figure 4.7 where the frame

of reference is moving with the constant translational velocity of the drop centroid. The

pathlines are similar in nature to those shown previously infigure 4.5 (b).

Next we decrease the capillary number and place a drop on the centreline such that,

λ = 1, ρ = 0.5, σ = 0 andCa = 0.5. A decrease in the capillary number corresponds to

an increase in the effect of surface tension relative to the viscous forces on the drop. The

drop attained a steady shape att = 4.35 d/U0 with respect to an increased nodal velocity

tolerance of0.0007U0. The steady drop’s velocity is0.931 i. The steady shape is shown
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(b) Pathlines from a frame of reference moving with the centroid of the steady drop. The arrows indicate the
direction of the fluid relative to the fluid drop.
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(c) Pathlines close to the left hand side of the fluid drop whose boundary is
indicated by the thick line on the right. The arrows indicatethe fluid direction
relative to the drop.

Figure 4.5 : Streamlines and pathlines for a steady fluid dropλ = 1, ρ = 0.5, σ = 0, Ca = 1.

in figure 4.8 (a). We can see that the shape is noticeably less deformed than the shape in

figure 4.4 (a) whereCa = 1 and the remaining parameters are identical. The disturbance

pressure settles to−0.108µU0/d which is slightly higher than the disturbance pressure

whenCa = 1. The evolution of the disturbance pressure is shown in figure4.8 (b). We

can see from the figure that the disturbance pressure does notovershoot the steady value

during the initial period of deformation. The pathlines areshown in figure 4.8 (c) where
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(b) Steady shape of the fluid drop.
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(c) Disturbance pressure vs. time.
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(d) Normal (–) and tangential (r) velocities on the
drop boundary relative to the drop centroid.

Figure 4.6 : Top wall disturbance tractions, steady shape, disturbancepressure and drop boundary
velocities for a steady fluid drop withλ = 1, ρ = 0.75, σ = 0, Ca = 1.
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Figure 4.7 : Pathlines for a steady fluid dropλ = 1, ρ = 0.75, σ = 0 andCa = 1. The frame of
reference is moving with the drop centroid.

the behaviour is similar to previous simulations.

In our next set of results we increase the capillary number inorder to observe the

effect of a lower surface tension. The simulation parameters areλ = 1, ρ = 0.5, σ = 0

andCa = 2. The shape becomes steady att = 19.28 d/U0 with respect to an increased

velocity tolerance of0.002U0. The drop shape is shown in figure 4.9 (a) where we can

see a well developed dimple at the rear of the drop, and the shape is deformed more than

the simulation in whichCa = 1. The evolution of the disturbance pressure is shown in

figure 4.9 (b) where we see that the disturbance pressure drops to around−0.102µU0/d

before settling to−0.079µU0/d. The pathlines relative to the moving drop are shown in
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(a) Steady shape of the fluid drop.
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(b) Disturbance pressure vs. time.
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(c) Pathlines around a steady fluid drop. The frame of reference is moving with the drop centroid.

Figure 4.8 : Steady drop shape, disturbance pressure and pathlines for afluid drop withλ = 1,
ρ = 0.5, σ = 0 andCa = 0.5.

figure 4.9 (c).

Next we offset the drop from the centreline and setλ = 1, ρ = 0.5, σ = 0.25 and

Ca = 1. The drop moves towards the centreline as the simulation progresses. When

t = 11.14 d/U0 the drop’s centroid lies at(6, 0.125) which is half way to the centreline,

and the centroid is within0.001 d whent > 102.8 d/U0 . The migration of the drop to-

wards the centreline is much swifter initially, reflecting the fact that the velocity gradient

across the drop (in they-direction) is greatest when the drop is offset from the centreline.

The centroid’sy-component is plotted against time in figure 4.10 (a). We see that drop

moves slightly closer to the top wall at the start of the simulation during a period of initial-

isation. As time progresses the distance between the centreline and the centroid reduces

exponentially, withyc/d ≈ σ exp−0.06 t. The disturbance pressure is shown in figure 4.10

(b), where we see a large change initially before the pressure settles to−0.099µU0/d,

which is slightly different to the case for a centred drop. The discrepancy is due to the

fact the drop does not quite reach the centreline and its boundary remains slightly unsym-

metric. We computed the normal and tangential components ofvelocity on the drop’s

perimeter, relative to the drop’s centroid, whent = 11.14 d/U0 , and they are shown in

figure 4.10 (c) where the arc-length,s, is measured anti-clockwise from zero at the right-

most point of the drop. The centroid’s velocity at this juncture is(0.928,−0.009)U0 . The

normal component, although small, is non-zero indicating the drop shape is still evolving.

The tangential component is zero at four points around the boundary;s/d = 0.19, 1.18,

1.82 and2.55, thus indicating the presence of four stagnation points on the boundary. The
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(c) Pathlines around a steady fluid drop. The frame of reference is moving with the drop centroid.

Figure 4.9 : Steady drop shape, disturbance pressure and pathlines for afluid drop withλ = 1,
ρ = 0.5, σ = 0 andCa = 2.

tangential component has a maximum ats/d ≈ 1 which corresponds to the portion of the

drop closest to the top wall. We computed the pathlines for the drop when its centroid is

located at(6, 0.125) and they are shown in figure 4.11. We can see the change in the drop

shape, with the region closest to the top wall suffering the most deformation. Two eddies

are present, one upstream and one downstream from the drop, in a similar fashion to the

case of an off-centre rigid particle discussed in the previous chapter. However, in this case

the eddies are considerably different in size. The fluid in both eddies moves in a clockwise

direction. The pathlines which are closest to the channel walls suffer little deflection from

their original paths, but the pathlines which pass close to the drop are deflected around

the drop. The most deflection is suffered by the pathline which passes around the top of

the drop and then circumnavigates the downstream eddy before continuing its journey to

the exit. The figure also shows a pathline which terminates close to the right-most point

of the drop, corresponding to the stagnation point ats/d = 0.19.

We ran simulations for drops withλ = 2 and5, and withρ = 0.5, σ = 0 andCa = 1.

The eventual drop shape was not materially different to theλ = 1 case shown in figure 4.4

(a), however as the viscosity ratio increases it takes longer for the drop to attain the shape.

The disturbance pressure induced by the drop is considerably higher whenλ > 1. When

λ = 1 the disturbance pressure tends to−0.099µU0/d which increases to−0.171µU0/d

whenλ = 2, and to−0.232µU0/d whenλ = 5. For comparison purposes, the distur-

bance pressure for a rigid particle with the same shape is−0.287µU0/d. Therefore as the
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(a) Path of the drop centroid against time.
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(b) Disturbance pressure vs. time.
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(c) Normal (–) and tangential (r) velocities on the
drop boundary relative to the drop centroid at
t = 11.14 d/U0.

Figure 4.10 : Evolution of the drop centroid, disturbance pressure and the boundary velocity for
a fluid drop withλ = 1, ρ = 0.5, σ = 0.25 andCa = 1.
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Figure 4.11 : Pathlines around the fluid drop withλ = 1, ρ = 0.5, σ = 0.25 andCa = 1 at
t = 11.14 d/U0. The centroid is displayed as a dot at(6, 0.125) and the frame of reference is
moving axially with the drop centroid. Arc-length is measured anti-clockwise from zero at the
rightmost point of the drop.

viscosity ratio increases, the disturbance pressure tendsto the rigid particle disturbance

pressure, which we expect since the limit,λ → ∞, corresponds to the drop becoming

a rigid particle. The drop centroid velocities are0.920U0 i and0.907U0 i for the drops

with λ = 2 and 5 respectively. Both drops move more slowly than theλ = 1 drop, which

translates with velocity0.935U0 i. As λ increases further we would expect the velocity

to tend to the rigid particle’s translational velocity of0.895U0 i. In figure 4.12 we com-

pare the evolution of the disturbance pressures forλ = 1, 2 and5. At the start of each
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simulation we see that the disturbance pressure increases in magnitude, although the rate

at which it changes decreases as the viscosity ratio increases. As the viscosity ratio in-

creases the difference between the initial value of the disturbance pressure and its steady

value becomes smaller.
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Figure 4.12 : Disturbance pressure for drops withρ = 0.5, σ = 0 andCa = 1. The viscosity
ratios areλ = 1 (–),λ = 2 (r) andλ = 5 (· · · ).

Finally we attempted to replicate the results in figure 14 of Zhou and Pozrikidis (1994)

who considered the two-dimensional pressure-driven flow ofliquid drops in a channel

using the boundary integral method. The parameters for the simulations wereλ = 10,

ρ = 0.25 andCa = 1. The evolution of drops released with their dimensionless offsets at

σ = −0.05, −0.35, −0.5 and−0.65 were computed. The centroid paths are displayed in

figure 4.13 and the evolving drop shape for theσ = −0.65 case is shown in figure 4.14,

where these figures are the analogues of Figures 14(a) and 14(e) in Zhou and Pozrikidis

(1994). The centroids displayed in figure 4.13 do not meanderlike the centroids in Zhou

and Pozrikidis (1994). We find that the drop withσ = −0.05 does not deviate, whereas

Zhou and Pozrikidis (1994) found that it moved away from the centreline. The other drops

all move towards the centreline, whereas Zhou and Pozrikidis (1994) found their drops

tended to congregate in the region−0.55 < y/d < −0.4. The evolution of the drop shape

for σ = −0.65 is shown in figure 4.14 and we can see that the initial deformation is the

greatest before the drop regains a more circular shape as it travels towards the centreline.

The drop shapes in Zhou and Pozrikidis (1994) exhibit greater deformation for longer.

There are several possible reasons for the differences. In Zhou and Pozrikidis (1994) the

boundary integral equation was deflated and a periodic straight channel Green’s function

was used. Additionally an adaptive method regarding the distribution of the drop’s marker

points was adopted whereby a node would either be added or eliminated depending on

the size of its neighbouring boundary elements (more details on the adaptive boundary

element method may be found in Pozrikidis (1992)). However,it should be noted that in

experiments with fluid drop in tubes at low Reynolds numbers (e.g. Hiller and Kowalewski

1986), the fluid drops do not exhibit the oscillatory behaviour shown in figure 14 of Zhou

and Pozrikidis (1994). Indeed, the paths of the drop centroids in figure 14 of Hiller and

Kowalewski (1986) demonstrate a smooth transition towardsthe equilibrium position, as
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Figure 4.13 : Centroid paths for fluid drops withλ = 10, ρ = 0.25, Ca = 1 andσ = −0.05,
−0.35, −0.5 and−0.65.
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Figure 4.14 : Evolution of the drop shape forλ = 10, ρ = 0.25, σ = −0.65 andCa = 1. The
drops from left to right are fort U0/d = 0, 4, 8, 12, 17, 21, 25 and 28.8. The abscissa label is
intentionally omitted, however the marks indicate thex-coordinate of the drop centroid.

shown for our two-dimensional model in figure 4.13.

4.4.2 An elastic capsule – results

The dynamics of the elastic capsule depend on the viscosity ratio, λ, the capsule radius

to channel height ratio,ρ = a/d, the initial centreline offset,σ = yc/d, and the two

dimensionless parameters,

M =
EB

µQd
, W =

k d

µQ
, (4.100)

whereEB is the bending modulus of the elastic membrane andk is the membrane stiffness.

TheM parameter describes the relative importance of bending moments in the elastic

capsule membrane andW describes the relative importance of the membrane stiffness.

We setM = 0 to model a capsule which does not resist bending andM = 0.001 for a

capsule which does. The model was sensitive to the size ofM with larger values causing

instabilities to develop in the numerics. The small value ofM is of a similar order to the

analogous three-dimensional quantity used in Pozrikidis (2001). The unstressed capsule

shape is a circle, and in most of our presented results the capsule will also start each

simulation as a circle. When the capsule is unstressed the interfacial traction jump,∆f ,

will be zero. Therefore when the capsule starts as a circle and λ = 1, the disturbance
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pressure,π2, will be zero by equation (4.19) and the disturbance tractions on the walls will

be zero by equation (4.29). In our computations we foundπ2 ≈ 10−19 µU0/d and|fD| ≈

10−15 µU0/d for a range ofλ, ρ, σ, W andM . Under these conditions the disturbance

velocity is negligible. As the numerical simulation progresses, the capsule will deform

and its motion will be computed by (4.84). After each iteration of the numerical scheme

we will store the distance moved and re-centre the capsule such that thex-component of

its centroid lies at the mid-point of the channel,x/d = l/2, thus keeping it away fromE1

andE2 and avoiding the requirement to discretise further portions of the channel walls.

For each simulation, we checked that the velocity decays as we move away from the

capsule and is negligible at the entrance and exit, and that the disturbance tractions decay

to zero at the entrance. At the exit we will check that thex-component of the disturbance

traction decays to zero and they-component tends to the disturbance pressure. We will

also check that the capsule’s area is preserved since it should remain constant due to the

incompressibility of the capsule fluid. If numerical error leads to the area error increasing

above0.5% then we perform an isotropic expansion or deflation of the shape as described

in the previous section.

To further confirm the numerical code for the elastic capsulewith no resistance to

bending, we placed the capsule in a simple shear flow and computed the deformation

and the steady capsule shape. We compared our results with those given in figure 2 of

Breyiannis and Pozrikidis (2000) forΩ = 0.0125, 0.125 and1.2, where the authors define

Ω =
µ k̂ a

k
, (4.101)

wherek̂ is the shear rate,a is the equivalent radius of the capsule andk is the membrane

stiffness. We computed the evolution of the Taylor deformation parameter,

D =
L−B

L+B
, (4.102)

whereL is the length of the capsule andB is the breadth. Our computations shown in

figure 4.15 demonstrate a good qualitative agreement with Figure 2(a) in Breyiannis and

Pozrikidis (2000). As our final validation of the numerics for an elastic drop, we compared

the steady shape for a reference configuration with the steady capsule shape when the

number of boundary elements on each boundary was doubled. Inboth simulations we

setλ = 1, M = 0.001 andW = 1. There were negligible differences between the two

steady shapes.

In our first set of results, we consider an initially circularelastic capsule which does

not resist bending. The simulations parameters areλ = 1, ρ = 0.5, σ = 0, M = 0 and

W = 1. The capsule is released into the flow att = 0 and we allow the capsule to deform.

The capsule shape att = 13.5 d/U0 is shown in figure 4.16 (a), at which point the error in

the capsule area has increased by0.2% from its initial value. The convex front and con-

cave rear is consistent with shapes of vesicles which have been observed in capillary tubes

(Secomb et al. 2007). The disturbance pressure at this pointin time is−0.4245µU0/d
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Figure 4.15 : Deformation of an elastic capsule withM = 0 in a shear flow forΩ = 0.0125,
0.125 and1.2. For comparison against Figure 2 in Breyiannis and Pozrikidis (2000).

which has an error of0.83% compared with the value predicted by equation (4.24). The

evolution of the disturbance pressure is shown in figure 4.16(b) where we can see the

magnitude gradually increasing. We can see that after aboutt = 4 d/U0 ripples appear in

the pressure profile. This may be attributed to the onset of numerical issues which later

caused us to terminate the simulation due to loss of accuracy. As the simulation proceeds

beyond the instant shown in figure 4.16 (a), the two trailing tips of the capsule become

increasingly slender and the smooth capsule boundary becomes crinkled. Our failure to

compute a steady shape is due to problems resolving the regions of very high curvature at

the capsule tips, and not due to the lack of existence of such ashape. Indeed steady shapes

for elastic capsules, in the absence of bending moments, have been computed in two and

three-dimensional shear flows by Breyiannis and Pozrikidis(2000) and Ramanujan and

Pozrikidis (1998) respectively. Furthermore the authors found that the elastic capsule at-

tained a steady shape irrespective of the rate of the incident shear flow. The disturbance

tractions on the top wall are shown in figure 4.16 (c) where we can see that the tractions

decay to zero at the entrance, and thex-component decays to zero at the exit while the

y-component tends to the value of the disturbance pressure. Figure 4.16 (d) shows the

velocity along the centreline,y/d = 0, which decays rapidly as we move away upstream

or downstream from the capsule. The gap at aroundx/d ≈ 6 corresponds to the capsule,

inside which the velocity was not calculated. It is interesting to note that the velocity

slightly upstream from the capsule is slower than the velocity slightly downstream. This

is to be expected since the capsule has not attained a steady shape. The disturbance veloc-

ity has decayed to1% of its maximum value atx/d = 4.03 downstream, andx/d = 8.11

upstream, which are both approximately 4 capsule radii fromthe capsule’s centroid. At

E1 andE2, where we expect the velocity to be purely Poiseuille, we findthat the error in

the velocity is no more than0.07%.

In the hope of computing a steady state in which the capsule has ceased to deform, we
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(a) Capsule shape att = 13.5 d/U0.
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(b) Disturbance pressure evolution.
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(c) x (–) andy (r) components of the top wall
disturbance tractions att = 13.5 d/U0.
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(d) x-component of the centreline velocity at
t = 13.5 d/U0. The gap corresponds to the capsule.

Figure 4.16 : Capsule shape, disturbance pressure, wall disturbance traction, centreline velocity
and interfacial tractions for an elastic capsule withλ = 1, ρ = 0.5, σ = 0,W = 1 andM = 0.

repeated the calculation with the same parameter values exceptM = 0.001, which corre-

sponds to the introduction of bending resistance. In the presence of bending moments, we

find that the capsule does eventually attain a steady state. The capsule rapidly develops

its concave rear shape after travelling a distance of about three capsule radii.

The steady state is reached att ≈ 47.2 d/U0 by which point the centroid of the cap-

sule has travelled an approximate distance of82 a along the channel centreline. The

steady capsule configuration is shown in figure 4.17 (a) and its velocity is0.864U0 i. It

is interesting to note that the steady deformed shape of the capsule is qualitatively con-

sistent with the three-dimensional cell shapes computed byQuéguiner and Barthès-Biesel

(1997), Pozrikidis (2005a) and Pozrikidis (2005c) in cylindrical tube flow. The capsule’s

resistance to bending forces is clearly seen in the shape of the trailing tips which are now

much more rounded than in theM = 0 case shown in figure 4.16 (a). The shape of

the capsule perimeters close toy/d = 0 show little difference between theM = 0 and

M = 0.001 cases. The evolution of the disturbance pressure is shown infigure 4.17 (b)

where we can see the pressure increasing in magnitude beforetending to−0.570 µU0/d.

In this case the error in the disturbance pressure with respect to the value obtained from

equation (4.24) reduces to0.09% which is better than the previous result for the case

M = 0. Figure 4.17 (c) shows the disturbance tractions on the top wall, which we com-

pare with figure 4.16 (c). The profile in both figures is the samehowever the steady shape

for M = 0.001 induces disturbance tractions which are greater in magnitude. Figure
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(a) Steady capsule shape att = 47.2 d/U0.
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(b) Disturbance pressure evolution.
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(c) x (–) andy (r) components of the top wall
disturbance tractions att = 47.2 d/U0.
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(d) x-component of the centreline velocity at
t = 47.2 d/U0. The gap corresponds to the capsule.
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(e) Arc-length vs.∆f · n at t = 47.2 d/U0.

-4

-2

 0

 2

 4

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

∆
f
·t

d
/
µ

U
0

s

(f) Arc-length vs.∆f · t at t = 47.2 d/U0. Positive
∆f · t is directed in an anti-clockwise direction.

Figure 4.17 : Capsule shape, disturbance pressure, wall disturbance traction and centreline veloc-
ity for an elastic capsule withλ = 1, ρ = 0.5, σ = 0,W = 1 andM = 0.001.

4.17 (c) also confirms the decay of the disturbance traction to their appropriate values at

the entrance and exit of the computational domain. A rigid particle with the same shape

as in figure 4.17 (a) induces a disturbance pressure of−0.569µU0/d and translates with

velocity 0.864U0 i, both of which are almost identical to their elastic capsulecounter-

parts. Thex-component of the centreline velocity is displayed in figure4.17 (d) which

tells a story similar to that in figure 4.16 (d), albeit with a slightly larger disturbance to

the velocity. Again, once we have moved roughly four capsuleradii from the centroid

the disturbance velocity has decayed to1% of its maximum value. By the time we have

reached the ends, where the velocity is assumed to be Poiseuille, the error in the velocity

is no more than0.01%. The normal and tangential components of the interfacial traction,

∆f , are plotted against arc-length around the capsule’s perimeter in figures 4.17 (e) and
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Figure 4.18 : The membrane tensions and the bending momemt versus arc-length, for the steady-
state capsule shown in figure 4.17 (a). Arc-length is measured anti-clockwise from zero at the
front of the capsule. The trailing tips are ats = 1.55d ands = 3.08d respectively.

4.17 (f). Arc-length is measured anti-clockwise from zero at the rightmost point on the

capsule’s perimeter. At the start of the simulation the total arc-length of the capsule in its

undeformed state isπ d. At t = 47.2 d/U0 the total arc-length of the deformed capsule is

4.63 d, which represents an extension of47%. Although this may be outside the limit of

linear elasticity, and indeed the physical capabilities ofmany materials, we will continue

to use our linear relationship between the in-plane tensionand the stretch. However we

note that a comparison of the results presented here with those for different elasticity laws

would be interesting further work. The normal component of the fluid loading on the

capsule membrane attains its maximum values at the points ofgreatest curvature, namely

at the front of the capsule and at the trailing edges. The tangential component of the fluid

loading goes through both positive and negative values, indicating that some parts of the

capsule wall receive a compressive force while others experience an extensional force.

These forces are most intensive at the trailing tips of the capsule, corresponding to the

arc-lengths1.55 d and3.08 d. In figure 4.18 (a) we show the in-plane tension,τ , and the

transverse tension,q, plotted against arc-length for the steady-state shape in figure 4.17

(a). The in-plane tension,τ , graphed in figure 4.18 (a) achieves its maxima ats = 0.48 d

ands = 4.15 d; the local membrane extension is then greatest at these points according to

equation (4.51). The membrane is in extension around most ofthe perimeter, whereτ is

positive, and is in compression in a region around the trailing tips whereτ is negative. The

bending moment,m, is plotted against arc-length in figure 4.18 (b). This graphis notable

for the two spikes which occur at the trailing tips, wheres = 1.55d ands = 3.08d. A

similar qualitative spike-like behaviour in the bending moment profile was encountered

by Pozrikidis (2005a) in his axisymmetric calculations of red blood cells moving in a tube

flow (see his figure 9b).

In the next set of results we increase the membrane stiffnesssuch thatW = 5 and set

the remaining parameters toλ = 1, ρ = 0.5, σ = 0 andM = 0.001. The steady state

is reached att ≈ 12.3 d/U0 when the capsule has travelled approximately22 a along

the channel centreline. The steady shape is shown in figure 4.19 (a) and its velocity is
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(a) Steady capsule shape att = 12.3 d/U0.

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0  2  4  6  8  10  12  14

t U0/d

π
2

d
/
µ

U
0

(b) Disturbance pressure evolution.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  2  4  6  8  10  12

x/d

f
D

d
/
µ

U
0

(c) x (–) andy (r) components of the top wall
disturbance tractions att = 12.3 d/U0.
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(d) x-component of the centreline velocity at
t = 12.3 d/U0. The gap corresponds to the capsule.

Figure 4.19 : Capsule shape, disturbance pressure, wall disturbance traction and centreline veloc-
ity for an elastic capsule withλ = 1, ρ = 0.5, σ = 0,W = 5 andM = 0.001.

0.883U0 i. The evolution of the disturbance pressure is shown in figure4.19 (b) where

we can see the pressure increasing in magnitude before tending to−0.358 µU0/d. In this

case the error in the disturbance pressure with respect to the value obtained from equation

(4.24) is0.03%. Comparing the results for theW = 1 and theW = 5 cases we see

that the capsule withW = 5 attains its steady shape approximately four times quicker,

translates slightly faster, has less deformed trailing tips and induces a slightly lower distur-

bance pressure. Figure 4.19 (c) shows the disturbance tractions on the top wall, which we

compare with those in figure 4.17 (c). The profile in both figures is the same however the

capsule withW = 5 induces disturbance tractions which are smaller in magnitude than

those shown in figure 4.17 (c). Figure 4.19 (c) also confirms the decay of the disturbance

traction to their appropriate values at the entrance and exit of the computational domain.

Thex-component of the centreline velocity is displayed in figure4.19 (d) which tells a

story similar to that in figure 4.17 (d), albeit with a smallerdisturbance to the velocity.

Again, once we have moved roughly four capsule radii from thecentroid the disturbance

velocity has decayed to1% of its maximum value. By the time we have reached the ends,

where the velocity is assumed to be Poiseuille, the error in the velocity is no more than

0.001%.

In the next set of results we increase the viscosity ratio toλ = 5 and set the remaining

parameters toρ = 0.5, σ = 0, W = 1 andM = 0.001. We terminated the simulation at

t = 88.6 d/U0 when the magnitude of the capsule’s velocity normal to the boundary was
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(b) Disturbance pressure evolution.
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(c) x (–) andy (r) components of the top wall
disturbance tractions att = 88.6 d/U0.
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(d) x-component of the centreline velocity at
t = 88.6 d/U0. The gap corresponds to the capsule.

Figure 4.20 : Capsule shape, disturbance pressure, wall disturbance traction and centreline veloc-
ity for an elastic capsule withλ = 5, ρ = 0.5, σ = 0,W = 1 andM = 0.001.

less than0.0003U0 . The capsule is not steady with respect to our nodal velocitycriteria

although the nodal velocities are small. The discrepancy may be due to the calculation of

the nodal velocities from the mid-point velocities using a cubic spline, which is required

whenλ 6= 1. The capsule shape att = 88.6 d/U0 is shown as the solid lined shape in

figure 4.20 (a) where it had travelled the equivalent of 155 capsule radii, its velocity was

0.864U0 and the disturbance pressure was−0.573µU0/d, which are almost equal to the

computed values for theλ = 1 case. The capsule’s shape is almost identical to the steady

shape forλ = 1, although in this case the shape here is achieved in twice thelength

of time. The dashed-line shape in figure 4.20 (a) is the shape at t = 47.2 d/U0 which

is the time at which theλ = 1 capsule attains a steady shape. Although there is little

difference between the shapes, theλ = 5 shape does deform more slowly, and it takes

an additional time of41.39 d/U0 to deform to the solid-lined shape. The evolution of the

disturbance pressure is shown in figure 4.20 (b) where we can see the pressure increasing

in magnitude before tending to−0.573 µU0/d. In this case the error in the disturbance

pressure with respect to the value obtained from equation (4.24) is0.14%. Figure 4.20 (c)

shows the disturbance tractions on the top wall, which are almost identical to the profile

shown in figure 4.17 (c) forλ = 1, which is expected since theλ = 5 shape has almost

attained the same shape. Figure 4.20 (c) confirms the decay ofthe disturbance traction

to their appropriate values at the entrance and exit of the computational domain. The

x-component of the centreline velocity is displayed in figure4.20 (d) which displays the
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same profile as figure 4.17 (d). Again, once we have moved roughly four capsule radii

from the centroid the disturbance velocity has decayed to1% of its maximum value. By

the time we have reached the ends, where the velocity is assumed to be Poiseuille, the

error in the velocity is no more than0.02%.

In the previous chapter we verified that a rigid particle carried by a flow parallel to a

solid wall remains at a fixed distance from the wall in accordance with the reversibility

of Stokes flow. In the previous section we showed that a fluid drop migrates away from

the wall in a channel flow due to the flexibility of its boundary. Experiments conducted

by Secomb et al. (2007) and previous three-dimensional calculations (Pozrikidis 2005c)

have shown that a deformable capsule will tend to migrate away from a solid boundary.

Accordingly we expect that a capsule released away from the channel centreline will

migrate towards the centreline over time. We performed three simulations for capsules

with λ = 1, ρ = 0.5,W = 1,M = 0.001 and setσ to 0.1, 0.2 and 0.3. In each simulation

the capsule starts in its circular stress-free shape. In figure 4.21 (a) we see the trajectories

of the capsule centroids. As can be seen, the long-term behaviour of the capsules is

a gradual drift toward the channel centreline. In the early stages of each simulation,

however, the capsule moves upwards towards the channel walllocated aty = d. The

same qualitative behaviour is observed in figure 6 of Pozrikidis (2005c) for the motion of

an initially spherical elastic particle in a cylindrical tube. Capsules with their centroids

placed further from the centreline show a more pronounced initial deviation toward the

upper wall before migrating towards the centreline. The capsule withσ = 0.2 moves

towards the top wall att ≈ 20 d/U0 as well as in the initial period of the simulation.

However the other two simulations do not exhibit this behaviour, although their migration

towards the centreline is arrested for a short period att ≈ 15 d/U0 for the σ = 0.1

drop andt ≈ 25 d/U0 for theσ = 0.3 drop. In the latter stages of the simulation the

y-offset is decreasing exponentially slowly as time increases, e.g.y ≈ e−0.04 t for the

capsule released fromσ = 0.1. Since the capsules did not quite reach the centreline in the

simulations we stopped att = 65 d/U0. Figure 4.21 (b) displays the computed shapes at

two different times for the capsule released atσ = 0.1. Whent = 2.39 d/U0 the capsule

centroid is at its closest to the upper wall, and att = 3.96 d/U0 the centroid has returned

to y = 0.1 d on its journey towards the centreline. The capsule profiles qualitatively

resemble those found by Secomb et al. (2007) for particles released away from the line

of symmetry. As might be expected, when the capsule is above the channel centreline the

upper of the two trailing tips deforms the most and tends to elongate more than the lower

trailing tip. The width, measured in they-direction between the top and bottom of the

capsule, increases beyond that of the initial shape. In a separate simulation with the same

parameter values, the limiting capsule shape shown in figure4.17 (a) was released with its

centroid atσ = 0.1. This time we observed a slightly smaller initial movement towards

the upper wall before the capsule drifted towards the centreline. We show the evolution

of the disturbance pressure in figure 4.21 (c), where we can see an initial rapid increase

in the magnitude of the pressure before it tends back towardszero in theσ = 0.2 and

0.3 cases, and remains relatively constant for a short period in theσ = 0.1 case. As time
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y/d = 0.1.
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(c) Disturbance pressure evolution for the capsules
started fromσ = 0.1 (–), 0.2 (r) and 0.3 (· · · ).

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0  10  20  30  40  50  60

t U0/d

u
(
1
)
·
i
/
U

0

(d) Centroid velocity evolution for the capsules
started fromσ = 0.1 (–), 0.2 (r) and 0.3 (· · · ).

-1

-0.5

 0

 0.5

 1

0 1.64 10.37 16.94 28.72 58.93

x/d

y
/
d
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Figure 4.21 : Centroid trajectories and capsule shapes forλ = 1, ρ = 0.5,W = 1 andM = 10−3.

progresses the disturbance pressure in all cases tends to−0.567µU0/d which is close to

the0.570µU0/d value computed in theσ = 0 case earlier. The difference is due to the

fact that the simulations forσ 6= 0 do not quite reach a steady state withint = 65 d/U0.

Thex-component of velocity for the capsule’s centroid is plotted in figure 4.21 (d), from

which we can see a dramatic decrease in the velocity at the start of the simulation before

the velocity increases and then settles to0.864U0 at t = 65 d/U0, which equals the value

for the steady capsule withσ = 0. In figure 4.21 (e) we show the evolution of the shape

for the capsule released fromσ = 0.3, where we have chosen this case to demonstrate

the significant deformation which is experienced by a capsule when it is further from the

centreline. The capsule shape atx/d = 1.64, whent = 2.77 d/U0, is comparable with
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the solid-lined shape in figure 4.21 (b) because they both represent the capsule’s closest

approach to the top wall. The capsule shape in theσ = 0.1 simulation has developed a

parachute shape byt = 2.39 d/U0, whereas the capsule in theσ = 0.3 simulation does

not develop the parachute shape until slightly beforet = 18.79 d/U0 , which is almost

eight times as long. As time progresses the lower tip extendsand the upper tip contracts

as the particle shape settles to the limiting configuration depicted in figure 4.17 (a).

We will briefly look at theσ = 0.3 simulation in isolation. Figure 4.22 shows the

top wall disturbance tractions and the centreline velocityfor the capsule withσ = 0.3

at t = 2.08 d/U0, at which time the capsule is at its closest to the top wall andthe

disturbance pressure is at its maximum value. The centroid’s velocity at this moment is

(0.774, 10−5)U0. and the disturbance pressure is−0.517 µU0/d, which differs from the

value obtained from equation (4.24) by0.03%. The disturbance tractions on the top wall

are shown in figure 4.22 (a) for thet = 2.08 d/U0 capsule shape shown in figure 4.21 (e).

Since the capsule is closer to the top wall the induced disturbance tractions are of generally

greater magnitude than the disturbance tractions for a steady centred capsule shown in

figure 4.17 (c). There is a sharp peak in both thex andy component of the disturbance

tractions in figure 4.22 (a) atx/d = 5.1 which is above the capsule’s top trailing edge.

Figure 4.22 (a) also confirms the decay of the disturbance traction to their appropriate

values at the entrance and exit of the computational domain.The x-component of the

centreline velocity for thet = 2.08 d/U0 capsule shape in figure 4.21 (e) is displayed in

figure 4.22 (b) which shows the disturbance decays rapidly aswe move away from the

capsule, and has a small oscillation close to the downstreamedge of the capsule. We

can see from the pathlines shown in figure 4.22 (c) that two eddies are present, with the

downstream one of greater size. The fluid in the eddies moves in a clockwise direction.

Since the motion of the fluid is relative to the capsule, the fluid close to the centreline is

moving from left to right, and the fluid closer to the walls is moving from right to left.

The disturbance velocity has decayed to1% of its maximum value whenx/d = 3.69

andx/d = 8.19 which represent 4.62 and 4.38 capsule radii from the capsulecentroid

respectively. By the time we have reached the ends, where thevelocity is assumed to be

Poiseuille, the magnitude of the disturbance velocity is less than10−6 U0.

So far we have considered capsules withρ = 0.5. Now let us increase the capsule

radius so thatρ = 0.75 and withλ = 1, σ = 0, W = 1 andM = 0.001. We terminated

the simulation att = 66.0 d/U0 when the capsule shape was almost steady, meaning that

the absolute value of the normal components of velocity on the capsule boundary were less

than0.001U0. The capsule shape is shown in figure 4.23 (a) and its velocityis 0.799U0 i.

The capsule had travelled an approximate distance of71 a along the channel centreline

at t = 66.0 d/U0 . The evolution of the disturbance pressure is shown in figure4.23 (b)

where we can see the pressure increasing in magnitude to around −2.5 µU0/d. In this

case the error in the disturbance pressure with respect to the value obtained from equation

(4.24) is0.02%. Figure 4.23 (c) shows the disturbance tractions on the top wall, which

decay rapidly to their appropriate values at the entrance and exit of the computational

domain. The profile of the disturbance tractions forρ = 0.75 is similar to the profile
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(c) Pathlines in a portion of the channel att = 2.08 d/U0 where the frame of reference is moving axially with
the capsule’s centroid.

Figure 4.22 : Wall disturbance traction, centreline velocity and the pathlines att = 2.08 d/U0 for
an elastic capsule withλ = 1, ρ = 0.5, σ = 0.3,W = 1 andM = 0.001.

whenρ = 0.5, although the sharp peak atx/d = 5.9 for the smaller capsule has now

been replaced by a flattened region where the peak value of thedisturbance traction has

more than doubled. Thex-component of the centreline velocity is displayed in figure

4.23 (d) which also shows a rapid decay in the disturbance velocity as we move away

from the capsule even for this large capsule. The disturbance velocity has decayed to1%

of its maximum value atx/d = 3.39 andx/d = 8.80 which correspond to3.48 and3.73

capsule radii respectively. By the time we have reached the ends, where the velocity is

assumed to be Poiseuille, the disturbance velocity is less than10−5 U0.

Finally we will consider an oversize capsule withρ = 1.1 which in its unstressed

state would not fit into the channel. The remaining parameters areλ = 1, σ = 0, W = 1

andM = 0.001. Before releasing the capsule, we deform the circular boundary into

an elliptical one such that the axis in thex-direction is1.5125 d and the axis in they-

direction is0.8 d. Since we have seen that the capsule quickly adopts a shape which is

essentially similar in nature to its steady shape, we stop the simulation att = 20 d/U0 to

observe the shape, the disturbance tractions and the centreline velocity. The velocity of

the capsule centroid is0.811U0 i and the capsule shape is shown in figure 4.24 (a) where

we can see the elongated trailing tips. At this moment the capsule has moved about 14

capsule radii along the channel and the disturbance pressure drop is3.021µU0/d which

equates to about one eighth of the Poiseuille pressure drop.The error in the disturbance
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(a) Capsule shape att = 66.0 d/U0.
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(b) Disturbance pressure evolution.
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(c) x (–) andy (r) components of the top wall
disturbance tractions att = 66.0 d/U0.
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Figure 4.23 : Capsule shape, disturbance pressure, wall disturbance traction and centreline veloc-
ity for an elastic capsule withλ = 1, ρ = 0.75, σ = 0,W = 1 andM = 0.001.

pressure with respect to that computed from equation (4.24)is 0.04%. The evolution of

the disturbance pressure is shown in figure 4.24 (b) where we can see the magnitude of

the disturbance pressure increasing until it reaches a relative plateau betweent = 8 d/U0

and t = 15 d/U0, after which the disturbance pressure continues to increase in magni-

tude. Figure 4.24 (c) shows the disturbance tractions on thetop wall, which confirms the

decay of the disturbance traction to their appropriate values at the entrance and exit of the

computational domain. Thex-component of the centreline velocity is displayed in figure

4.24 (d) which show that the decay of the disturbance velocity remains rapid even for an

oversize capsule. The disturbance velocity has decayed to1% of its maximum value at

x/d = 2.57 andx/d = 10.06, which are 3.1 and 3.7 initial capsule radii from the cap-

sule centroid respectively. By the time we have reached the ends, where the velocity is

assumed to be Poiseuille, the disturbance velocity is no more than10−4U0. Although the

velocity and traction decay to their expected values as we move towards the channel ends

the pressure continues to change. This indicates that the numerical model is suffering

from a loss in precision. The reasons for this could be the proximity of the capsule to the

ends or the regions of high curvature on the trailing tips.
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Figure 4.24 : Capsule shape, disturbance pressure, wall disturbance traction and centreline veloc-
ity for an elastic capsule withλ = 1, ρ = 1.1, σ = 0,W = 1,M = 0.001 and an elliptical initial
shape.

4.5 Discussion

In this chapter we have considered a pressure-driven channel flow which contains a fluid

drop or an elastic capsule. We formulated the problem using the boundary integral method

and found its solution numerically using the boundary element method. The solution

provides the velocities on the capsule boundary, the disturbance tractions on the channel

walls and the pressure drop across the particle.

In summary we have found that an elastic capsule which resists bending will attain a

steady shape, but a capsule which does not suffers numericalsensitivities which result in

the failure of the numerical method due to a lack of resolution in regions of high curvature.

A higher value of the membrane stiffness results in a capsulewhich reaches its steady

shape quicker, translates faster and induces a lower disturbance pressure drop due to the

fact that the capsule deforms less. A comparison between capsules which only differ by

their viscosity ratios shows that there is little difference between the eventual shape of

the deformed capsule boundary but a higher value of the viscosity ratio leads to a higher

characteristic time of deformation. We can rearrange the expression forM in equation

(4.100) to show

t ∼
µd3

EB

, (4.103)

from which we can see that the characteristic time depends linearly on the viscosity. This
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observation and the findings herein are in accord with the three-dimensional work of

Quéguiner and Barthès-Biesel (1997) who studied the axisymmetric motion of a capsule

into a circular pore using the boundary integral method. Qu´eguiner and Barthès-Biesel

(1997) limit their study to capsules withλ = 1 on the basis that the viscosity ratio only

affects the transient phase of the capsule motion and not itseventual equilibrium shape.

We found that capsules which start away from the centreline will gradually drift to-

wards it, although this migration becomes exponentially slow. We found that larger cap-

sules tend to a steady shape with elongated trailing tips, induce a greater disturbance

pressure and translate slower than smaller capsules along the channel. Finally we found

that in all cases the disturbance velocity decayed rapidly and it had reduced to1% of its

maximum value at a typical distance of four capsule radii from the capsule’s centroid, and

at the ends the disturbance velocity was negligible.



Chapter 5

Stokes flow through a bifurcation

In the previous two chapters we studied the motion of a rigid particle, a fluid drop and

an elastic capsule in a straight two-dimensional channel. In this chapter we add a side-

branch to the main channel and examine the motion of the fluid through the bifurcation.

Upstream and downstream of the branch entrance we assume theflow is described by

unidirectional Poiseuille flow. We derive the equations which govern the motion of the

fluid in the main channel and in the branch, and we calculate the disturbance caused by

the branch using the boundary integral method. By deriving the discrete analogues to

the governing equations we utilise the boundary element method in order to write the

equations as a linear matrix system, which we solve by standard methods. In the next

chapter we will introduce a force-free torque-free neutrally-buoyant rigid particle to the

flow which will draw extensively on the models derived here and in chapter 3.

5.1 Problem statement

Let us consider the motion of a fluid with viscosityµ in an infinite straight-walled chan-

nel of width, 2d, which is attached to a semi-infinite straight-walled channel of width,

2D. A disturbance to the upstream and downstream flows is causedby the branch en-

trance, or bifurcation, where the fluid either carries on along the main channel or moves

into the branch channel. The geometry of the branching channel is shown in figure 5.1

and comprises the walls of the main channel,C, the walls of the branch channel,B, and

a notional dividing boundary,A, which we introduce in order to treat the channels sep-

arately. Far upstream and downstream in the main channel andthe branch channel, the

disturbance caused by the branch entrance is assumed to havedecayed so that the flow

in the channel is described by classical unidirectional Poiseuille flow. In preparation for

the numerical method, we truncate the infinite main channel and the semi-infinite branch

channel and label the entrance to the main channel asE1, the exit to the main channel as

E2 and the exit to the branch channel asE3. The endsE1 andE2 are located atx = 0

andx = l respectively. In the branch we define local coordinates(X,Y ), which are po-

sitioned as indicated in the figure. The branch joins onto themain channel such that the

centreline of the branch channel meetsA at the point(l/2,−d), and meets the lower wall
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Figure 5.1 : A straight-walled channel with a branch which contains a fluid of viscosityµ.

at the points(l/2 − D cosecα,−d) and(l/2 + D cosecα,−d). The exit to the branch

channel,E3, lies atX = 0. The unit normal vectors,n, on all boundaries point into

the fluid as shown in figure 5.1. We choose to direct the unit normal vector onA into

the fluid of the main channel. To define the mapping between points relative to the two

coordinate systems, we label the origin onE1 asO1 and the origin onE3 asO3, where

O3 = (l/2 + L cosα,−d − L sinα) relative toO1. If a point relative toO1 is labelled

p1 then relative toO3 it is given by

p3 = R · (p1 − O3), (5.1)

wherep3 is the point relative toO3 andR is the rotation matix given by

R =

[

cosα − sinα

sinα cosα

]

. (5.2)

The unit normals in theX andY directions are,

i′ = cosα i − sinα j, j′ = sinα i + cosα j, (5.3)

in terms ofi, j andα, which were calculated using the inverse ofR.

The branch entrance disturbs the flow but atE1, E2 andE3 we assume that the dis-

turbance has decayed and the flow has settled to Poiseuille flow, characterised by the

streamwise flux rate at the pertinent entrance or exit. AtEi we label the flux,Qi, where

i = 1, 2 and 3 refer to the entrance, the exit of the main channel andthe exit of the branch
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channel respectively. We have

Q1 = Q2 +Q3 (5.4)

for the fluxes where allQi are positive. Therefore the Poiseuille velocity atE1 is

uP1 = UP1
0

(

1 −
y2

d2

)

i = uP1 i, (5.5)

and atE2 it is

uP2 = UP2
0

(

1 −
y2

d2

)

i = uP2 i, (5.6)

whereUPi
0 are the centreline velocities of the Poiseuille velocity defined with reference

to Ei. At E3 we have

uP3 = UP3
0

(

1 −
Y 2

D2

)

i′ = uP3 i′, (5.7)

whereUP3
0 is the centreline Poiseuille velocity atE3. TheUPi

0 are related to the fluxes,

Qi, by

Qi = 4

3
di U

Pi
0 , (5.8)

with d1 = d2 = d andd3 = D. Application of equation (5.8) at the exits in conjunction

with equation (5.4) yields the following relationships between the centreline speeds at the

exits and the entrance,

UP2
0 = QUP1

0 , (5.9)

UP3
0 =

(

1 −Q

δ

)

UP1
0 , (5.10)

whereQ is the flux ratio in the main channel, andδ is the channel width ratio, which are

defined by

Q =
Q2

Q1
and δ =

D

d
. (5.11)

Our aim is to compute the velocity field throughout the flow domain and the additional

pressure drop at both exits due to disturbance caused by the branch entrance. We assume

that the Reynolds number of the flow is very small so that the flow in the channels may be

described using the linear equations of Stokes flow given in equation (1.3.4). We decom-

pose the velocity field,u, the stress field,σ, and the traction field,f , into background

Poiseuille and disturbance components, which we indicate by the superscriptsPi andDi

respectively, and where thei indicates to which ofEi the quantity applies. In the main

channel we have,

u = uP1 + uD1 = uP2 + uD2 , (5.12)

σ = σP1 + σD1 = σP2 + σD2 , (5.13)

f = fP1 + fD1 = fP2 + fD2 , (5.14)

where theP1 andD1 quantities are defined with reference tobE1 and theP2 andD2
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quantities are defined with reference toE2. In the branch channel we have,

u = uP3 + uD3 , (5.15)

σ = σP3 + σD3 , (5.16)

f = fP3 + fD3 , (5.17)

where theP3 andD3 quantities are defined with reference toE3. On the main channel

walls,C, we have

u = uP1 = uD1 = uP2 = uD2 = 0, (5.18)

and on the walls of the branch channel, we have

u = uP3 = uD3 = 0, (5.19)

by no-slip and no-penetration. We will seek a solution whichhas unidirectional Poiseuille

flow as its entrance and exit flows. Therefore we will assume the disturbance velocity

decays so that

uD1 → 0, uD2 → 0, uD3 → 0, (5.20)

as we approach the endsE1, E2 and E3 respectively. We also assume that the spatial

derivatives of the disturbance velocity decay along with the disturbance velocity which

allows us to write the disturbance traction at the ends as

fD1 = −pD1 n, fD2 = −pD2 n, fD3 = −pD3 n, (5.21)

as we approachE1, E2 andE3 respectively, and where thepDr (r = 1, 2 or 3) are the

disturbance pressures. The total pressure,p, is obtained by adding the disturbance and

Poiseuille pressures with matching indices, e.g.p = pP1 + pD1. At each of the ends

the disturbance pressure in equation (5.21) is constant andsince we are interested in the

additional disturbance pressure drop between the entranceand the exits, we setpD1 = 0

at E1 without loss of generality. For brevity we label the exit disturbance pressures as

pD2 = π2 atE2 andpD3 = π3 atE3, so that the disturbance tractions may be expressed as

fD1 = 0 atE1, (5.22)

fD2 = −π2 n atE2, (5.23)

fD3 = −π3 n atE3. (5.24)

The Poiseuille pressures in the main channel are given by

pP1(x) = −G1 x, (5.25)

pP2(x) = −G2 x (5.26)

wherepP1(x) is the Poiseuille pressure due to the entrance Poiseuille flow with pressure

gradient−G1, andpP2(x) is the Poiseuille pressure due to the Poiseuille flow which
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exits the main channel which has pressure gradient,−G2. The pressure gradients may be

expressed in terms of the centreline velocity or the flux by,

G1 =
2µUP1

0

d2
=

3

2

µQ1

d3
(5.27)

G2 = QG1. (5.28)

We have defined the Poiseuille pressures such thatpP1 = pP2 = 0 at E1. The Poiseuille

pressure drops betweenE1 andE2 for the two main channel Poiseuille flows are

∆pP1 = pP1(E1) − pP1(E2) = G1 l, (5.29)

∆pP2 = pP2(E1) − pP2(E2) = G2 l. (5.30)

In the branch channel the Poiseuille pressure is

pP3(X) = −G3X (5.31)

whereG3 = 2µUP3
0 /D2 = 3µQ3/2D

3, and−G3 is the pressure gradient which when

applied to the branch channel results in the fluxQ3 atE3. We may now write the pressure

difference between the entrance and the exit of the main channel,∆p2, as

∆p2 = p(E1) − p(E2)

=
(

pP1(E1) + pD1(E1)
)

−
(

pP2(E2) + pD2(E2)
)

= G2 l − π2 (5.32)

by equations (5.25) and (5.26), and between the entrance of the main channel and the exit

of the branch channel,∆p3, as

∆p3 = p(E1) − p(E3)

=
(

pP1(E1) + pD1(E1)
)

−
(

pP3(E3) + pD3(E3)
)

= −π3 (5.33)

by equations (5.25) and (5.31). The total pressures at the exits are

p(E2) = π2 −G2 l, and p(E3) = π3. (5.34)

So far we have discussed the boundary conditions on the channel walls and at the entrance

and exits. The only remaining boundary is the notional boundary,A, on which we impose

continuity of velocity and traction, so that

u = uP1 + uD1 = uP2 + uD2 = uP3 + uD3 (5.35)

f = fP1 + fD1 = fP2 + fD2 = fP3 + fD3 . (5.36)

Since the traction is defined with reference to the unit normal vector,f = σ ·n, we define
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the tractions in equation (5.36) with respect to the same unit normal vector which points

into the main channel.

We have introduced unknown disturbance tractions on the notional boundary and on

the walls of the channels, unknown pressures at the exits andunknown velocities on the

notional boundary. The disturbance tractions and velocities are defined with reference

to E1, E2 or E3. Therefore during the forthcoming derivation of the equations we will

need to choose which quantities to keep and which to eliminate. In the main channel we

have the disturbance pressure,π2, and the disturbance tractions,fD1 , on the walls. In

the branch channel we have the disturbance pressure,π3, andfD3 on the walls. On the

notional boundary we are free to choose any one of the disturbance quantities since we

can eliminate the other ones by the continuity of velocity and traction stated in equations

(5.35) and (5.36). OnA we will choose to favour the disturbance tractions and velocities,

fD1 anduD1 , for consistency with the main channel, where we usefD1 .

We are now in a position to derive equations for the disturbance pressure and velocity

in the channels. Let us start with the main channel and use thereciprocal relation of

Lorentz given in equation (1.3.22) to derive an equation forthe disturbance pressure at

E2. We apply the formula to the pair of flows(uP1 ,σP1 ) and(uD1 ,σD1 ) to get

∇ ·
(

uP1 · σD1 − uD1 · σP1
)

= 0, (5.37)

which we integrate over the main channel’s flow domain and apply the divergence theorem

to get
∫

∂Γ1

uP1 · fD1 ds(x) =

∫

∂Γ1

uD1 · fP1 ds(x), (5.38)

where∂Γ1 = E1 ∪ E2 ∪A ∪ C, which can be simplified to

∫

E2

(

uP1 · fD1 − uD1 · fP1
)

ds(x) =

∫

A

(

uD1 · fP1 − uP1 · fD1
)

ds(x), (5.39)

by the boundary conditions given in equations (5.20) and (5.21) together with the no-slip

and no-penetration conditions on the walls. Although the Poiseuille velocity,uP1 , is zero

on the notional boundary, as it is displayed in figure 5.1, we retain the term because in later

chapters we will deformA and so the velocity may be non-zero. Using the decomposi-

tions of velocity and traction in equations (5.12) and (5.14), and by applying the boundary

conditions (5.20) and (5.21) we have

uD1 = uP2 − uP1 , (5.40)

fD1 = fP2 − fP1 − π2 n, (5.41)

which we substitute into the left-hand side of equation (5.39) to get

∫

E2

(

uP1 · fD1 − uD1 · fP1
)

ds(x) = Q1 π2+

∫

E2

(

uP1 · fP2 − uP2 · fP1
)

ds(x), (5.42)
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where we have used the definition of the flux,Q1 = −
∫

E2
uP1 · n ds(x). By equation

(5.9) and the definition of the traction and pressure in the main channel we find

uP2 = QuP1 , and fP2 = QfP1 , (5.43)

so that
∫

E2

(

uP1 · fP2 − uP2 · fP1
)

ds(x) = 0 (5.44)

and equation (5.42) simplifies to

∫

E2

(

uP1 · fD1 − uD1 · fP1
)

ds(x) = Q1 π2. (5.45)

Substitution of equation (5.45) into equation (5.39) gives

π2 =
1

Q1

∫

A

(

uD1 · fP1 − uP1 · fD1
)

ds(x) (5.46)

for the disturbance pressure atE2. Using equation (5.46) we can find the disturbance

pressure atE2 given the disturbance velocities and tractions on the notional boundary.

Integration of the Stokes equation,∇ · σD1 = 0, for the disturbance in the main channel

yields the following equations

π2 = (Q− 1)G1 l −
1

2d

∫

A,C

fD1
x ds(x), and (5.47)

0 =
1

2d

∫

A,C

fD1
y ds(x), (5.48)

which are useful for checking the disturbance pressure atE2 and the disturbance tractions

onA andC in the numerical solution and wherefD1 = (fD1
x , fD1

y ).

Now let us derive an equation for the disturbance pressure atE3 by applying the

Lorentz reciprocal relation to the(uP3 ,σP3 ) and(uD3 ,σD3 ) flows in the branch chan-

nel, to get

∇ ·
(

uP3 · σD3 − uD3 · σP3
)

= 0. (5.49)

We integrate the equation over the flow domain of the branch channel and apply the di-

vergence theorem to get

∫

∂Γ2

uP3 · fD3 ds(x) =

∫

∂Γ2

uD3 · fP3 ds(x), (5.50)

where∂Γ2 = A∪B∪E3. By the requirements of the divergence theorem, the unit normal

vectors all point out of the flow domain. In previous applications of the Lorentz reciprocal

relation we have implicitly negated the normal vectors in order for them to point into the

flow domain. However, in this case we will only negate the normal vector onB andE3
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since we want the normal onA to point into the main channel. Expanding equation (5.50)

gives

∫

A

(

uP3 · fD3 − uD3 · fP3
)

ds(x) =

∫

B,E3

(

uP3 · fD3 − uD3 · fP3
)

ds(x), (5.51)

where we have amended the direction of the normal vector as stated. Application of the

boundary conditions in equations (5.18) and (5.20) enable us to simplify equation (5.51)

to
∫

E3

uP3 · fD3 ds(x) =

∫

A

(

uP3 · fD3 − uD3 · fP3
)

ds(x), (5.52)

where the normal vector onA points into the main channel and the normal onE2 points

into the branch channel. The left-hand side is simplified further using equation (5.21) and

Q3 = −
∫

E3
uP3 · n ds(x) to get

∫

E3

uP3 · fD3 ds(x) = −π3

∫

E3

uP3 · n ds(x) = Q3 π3 (5.53)

which allows us to write equation (5.52) as

π3 =
1

Q3

∫

A

(

uP3 · fD3 − uD3 · fP3
)

ds(x), (5.54)

which provides an equation for the disturbance pressure atE3 in terms of the disturbance

velocities and tractions on the notional boundary,A. However we would like to express

equation (5.54) in terms of the unknown disturbance velocities and tractions,uD1 and

fD1 . Using the continuity of velocity and traction onA given in the equations (5.35) and

(5.36), we can rewrite (5.54) as

π3 =
1

Q3





∫

A

(

uP3 · fD1 − uD1 · fP3
)

ds(x) + ψ



 , (5.55)

where

ψ =

∫

A

(

uP3 · fP1 − uP1 · fP3
)

ds(x), (5.56)

which only contains known Poiseuille velocities and tractions, and whenA is straight is

given by

ψ = 4

3
µ
(

1 −Q
)(

2 cotα− l/d
)(

UP1
0

)2
. (5.57)
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Integrating the Stokes equation for the disturbance in the branch,∇ · σD3 = 0, yields

π3 =
1

2D
i′ ·





∫

A

(

fP1 − fP3
)

ds(x) +

∫

A

fD1 ds(x) −
∫

B

fD3 ds(x)



 , (5.58)

0 =
1

2D
j ′ ·





∫

A

(

fP1 − fP3
)

ds(x) +

∫

A

fD1 ds(x) −
∫

B

fD3 ds(x)



 , (5.59)

which we can use to check the disturbance pressure atE3 and the disturbance tractions on

A andB, and wherei′ andj′ are defined in equation (5.3). WhenA is straight thex and

y components of the first integral overA are given by,

∫

A

(

fP1 − fP3
)

ds(x) = 2µUP1
0 cosecα

(

2D

d
,
lD

d2
+

2Ld(1 −Q)

D2

)

. (5.60)

Now that we have equations for the disturbance pressures we move on to the derivation of

the boundary integral equations starting with the main channel. We apply the boundary

integral equation (1.3.40) to the(uD1 ,σD1 ) disturbance flow in the main channel to get

uD1
j (x0) = −

1

4πµ

∫

∂Γ1

fD1
j Gij ds(x) +

1

4π

∫

∂Γ1

uD1
i Tijk nk ds(x), (5.61)

for x0 in the fluid of the main channel and whereGij is the free-space Green’s function

andTijk is its associated stress tensor. OnceuD1 andfD1 are known on the boundaries

we may calculate the disturbance velocity anywhere in the fluid in the main channel using

equation (5.61). We expand the single-layer potential to get

I
S,∂Γ1
j (x0) ≡

∫

∂Γ1

fD1
i Gij ds(x) =

∫

A,E1,E2,C

fD1
i Gij ds(x)

=

∫

A,C

fD1
i Gij ds(x) − π2

∫

E2

niGij ds(x) + (Q− 1)

∫

E2

fP1
i Gij ds(x),

(5.62)

where we have used equations (5.22), (5.41) and (5.43). The double-layer potential is

expanded to give

I
D,∂Γ1
j (x0) ≡

∫

∂Γ1

uD1
i Tijk nk ds(x) =

∫

A,E1,E2,C

uD1
i Tijk nk ds(x)

=

∫

A

uD1
i Tijk nk ds(x) + (Q− 1)

∫

E2

uP1
i Tijk nk ds(x), (5.63)

where we have used the boundary conditions given in equations (5.18), (5.20) and (5.40).
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Substituting equations (5.62) and (5.63) into (5.61) gives

4πµ uD1
j (x0) = −

∫

A,C

fD1
i Gij ds(x) + π2

∫

E2

niGij ds(x)

+ µ

∫

A

uD1
i Tijk nk ds(x) + Ij(x0), (5.64)

whereI(x0) is defined by

Ij(x0) = (1 −Q)

∫

E2

(

fP1
i Gij − µuP1

i Tijk nk

)

ds(x), (5.65)

which is a known function ofuP1 andfP1 and its calculation is described in Appendix C.

The integral overE2 in equation (5.64) may be evaluated exactly using equations(2.44)

and (2.45). We can find the total velocity in the main channel,u, by calculatinguD1

from equation (5.64) and adding the Poiseuille velocity,uP1 . The unknown quantities

in equation (5.64) are the disturbance tractions on the channel walls and the notional

boundary, the disturbance velocities on the notional boundary andπ2. Equation (5.46)

for the disturbance pressure,π2, means that we do not have to evaluate the boundary

integral equation with the pole onE2. We have proceeded in this manner to avoid just

such an evaluation which suffers from numerical sensitivities as documented by Pozrikidis

(2005b).

In order to find the disturbance tractions and velocities on the boundaries we require

the boundary integral equations which are valid whenx0 lies on the walls and onA. Since

the discontinuous double-layer potential over the channelwalls does not appear in (5.64)

we are able to write

0 = −

∫

A,C

fD1
i Gij ds(x) + π2

∫

E2

niGij ds(x) + µ

∫

A

uD1
i Tijk nk ds(x) + Ij(x0),

(5.66)

whenx0 lies onC sinceuD1 = 0 on C. When we place the pole onA the double-layer

potential is

∫

A

uD1
i Tijk nk ds(x) = 2π uD1

i +

PV
∫

A

uD1
i Tijk nk ds(x) (5.67)

wherePV indicates that the integral takes its principal value, which upon substitution
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into (5.64) leads to

2πµuD1
i (x0) = −

∫

A,C

fD1
i Gij ds(x) + π2

∫

E2

niGij ds(x)

+ µ

PV
∫

A

uD1
i Tijk nk ds(x) + Ij(x0), (5.68)

which is valid whenx0 lies onA.

Now that we have considered the main channel, we derive a boundary integral equa-

tion which is valid for the(uD3 ,σD3 ) flow in the branch channel. Using equation

(1.3.40) we write

uD3
j (x0) = −

1

4πµ

∫

∂Γ2

fD3
B,j Gij ds(x) +

1

4π

∫

∂Γ2

uD3
i Tijk nB,k ds(x), (5.69)

which is valid forx0 in the fluid of the branch channel and where the subscriptB indicates

that the unit normal vector points into the fluid of the branchchannel. Knowledge ofuD3

andfD3
B

on the boundaries would enable us to calculate the disturbance velocity at any

point in the branch channel using equation (5.69). Since there is no ambiguity about the

direction of the normal vectors onB andE3 we omit the subscript from the disturbance

traction and the normal vector on these boundaries. However, on A the normal vector

points into the main channel. Therefore we will replacenB with −n andfD3
B

with −fD3

in the integrals overA in equation (5.69). Expanding the single-layer potential yields

I
S,∂Γ2
j (x0) ≡

∫

∂Γ2

fD3
B,i Gij ds(x) = −

∫

A

fD3
i Gij ds(x) +

∫

B,E3

fD3
i Gij ds(x)

= −

∫

A

fD1
i Gij ds(x) −

∫

A

(

fP1
i − fP3

i

)

Gij ds(x)

+

∫

B

fD3
i Gij ds(x) − π3

∫

E3

niGij ds(x) (5.70)

where we have used equations (5.24) and (5.36). The double-layer potential is expanded

to give

I
D,∂Γ2
j (x0) ≡

∫

∂Γ2

uD3
i Tijk nB,k ds(x) =

∫

A,B,E3

uD3
i Tijk nB,k ds(x)

= −

∫

A

uD3
i Tijk nk ds(x)

= −

∫

A

uD1
i Tijk nk ds(x) +

∫

A

(

uP3
i − uP1

i

)

Tijk nk ds(x) (5.71)

where we have used the boundary conditions given in equations (5.19), (5.20) and (5.35).
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Substituting equations (5.70) and (5.71) into (5.69) gives

4πµ uD3
j (x0) =

∫

A

fD1
i Gij ds(x) −

∫

B

fD3
i Gij ds(x) + π3

∫

E3

niGij ds(x)

− µ

∫

A

uD1
i Tijk nk ds(x) +Kj(x0), (5.72)

whereK(x0) is defined by

Kj(x0) =

∫

A

((

fP1
i − fP3

i

)

Gij + µ
(

uP3
i − uP1

i

)

Tijk nk

)

ds(x). (5.73)

The unknown quantities in equation (5.72) are the disturbance tractions on the channel

walls, π3 and the disturbance tractions and velocities on the notional boundary. The
∫

E3
niGij ds(x) integral may be calculated exactly using equations (2.44)and (2.45), but

where the integration is performed relative to the coordinate system with its origin onE3,

and the result transformed accordingly. Equation (5.55) for the disturbance pressure,π3,

means that we do not have to evaluate the boundary integral equation with the pole onE3.

We can find the total velocity in the branch channel,u, by calculatinguD3 from equation

(5.72) and adding the Poiseuille velocity,uP3 .

To calculate the unknown quantities on the boundaries we require the boundary inte-

gral equations which are valid whenx0 lies on the notional boundary,A, and the channel

walls, B. Since the discontinuous double-layer potential only pertains to the notional

boundary, we can write,

0 =

∫

A

fD1
i Gij ds(x) −

∫

B

fD1
i Gij ds(x) + π3

∫

E3

niGij ds(x)

− µ

∫

A

uD1
i Tijk nk ds(x) +Kj(x0), (5.74)

whenx0 lies onB becauseuD3 (x0) = 0 on the walls. When the pole lies onA the

double-layer potential involvinguD1 in equation (5.72) and the double-layer potential in

equation (5.73) are both discontinuous, which leads to

2πµ
(

uD1
j (x0) + uP1

j (x0) − uP3
j (x0)

)

=

∫

A

fD1
i Gij ds(x) −

∫

B

fD1
i Gij ds(x)

+ π3

∫

E3

niGij ds(x) − µ

PV
∫

A

uD1
i Tijk nk ds(x) +KPV

j (x0), (5.75)

where we have expressed the left-hand side in terms ofuD1 using equation (5.35), and
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where

KPV
j (x0) =

∫

A

(

fP1
i − fP3

i

)

Gij ds(x) + µ

PV
∫

A

(

uP3
i − uP1

i

)

Tijk nk ds(x). (5.76)

We use the boundary element method (e.g. Pozrikidis 2002a) to discretise the geome-

try and the governing equations. The boundaries are discretised into elements upon which

we evaluate the boundary integral equations. We obtain a sufficient number of equations

for the unknown tractions onC by evaluating equation (5.66) on each boundary element.

We have the same sufficiency onB using equation (5.74). Evaluation of the equations

(5.68) and (5.75) onA provides a sufficient number of equations for the disturbance trac-

tions and velocities on the notional boundary,A. The disturbance pressure equations

(5.46) and (5.55) provide the two equations for the disturbance pressures. Therefore we

have the same number of equations as unknowns and so our system of equations is com-

plete. We have completed our derivation of the governing equations for the flow through

a bifurcation and now we move on to the describe how the boundary element method is

applied in order to find the numerical solution.

5.2 Numerical method

As in previous chapters our aim is to discretise the governing equations using the boundary

element method and form the equations into the linear matrixsystem,

A · x = b, (5.77)

whereA is the influence matrix containing the coefficients of the unknown disturbance

pressures, tractions and velocities stored in the column-vector,x, andb is a column-vector

containing known values. To apply the boundary element method we discretise the main

channel walls, the branch channel walls and the notional boundary intoNC , NB andNA

equally-sized straight elements respectively. On each of the elements we set the unknown

traction to a constant 2-vector, which we labelfD1
r on therth element ofC, fD3

r on the

rth element ofB andfD1
r on therth element ofA. Additionally we set the disturbance

velocity touD1
r on therth element ofA. Therefore the vector of unknowns is defined by

x =
[

F D
C F D

A F D
B UD

A π2 π3

]T
(5.78)

whereF D
C is a vector containing the2NC components of the disturbance tractions ofC,

F D
A is a vector which holds the2NA components of the disturbance traction onA, F D

B is

a vector holding the2NB components of the disturbance tractions onB, UD
A is the2NA

vector which stores the components of the disturbance velocities onA, and the final two

elements are the disturbance pressures atE2 andE3 respectively. The vectorsF D
C , F D

A ,
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F D
B andUD

A are defined to be

F D
C =

[

fD1
x,1 fD1

y,1 · · · fD1
x,NC

fD1
y,NC

]

, (5.79)

F D
A =

[

fD1
x,1 fD1

y,1 · · · fD1
x,NA

fD1
y,NA

]

, (5.80)

F D
B =

[

fD3
x,1 fD3

y,1 · · · fD3
x,NB

fD3
y,NB

]

, (5.81)

and

UD
A =

[

uD1
x,1 uD1

y,1 · · · uD1
x,NA

uD1
y,NA

]

. (5.82)

We will now start on the discretisation of the governing equations starting with the equa-

tions for the disturbance pressures. Equation (5.46) for the disturbance pressure,π2, is

approximated by

0 = Q1 π2 +

∫

A

(

uP1 · fD1 − uD1 · fP1
)

ds(x)

≈ Q1 π2 +

NA
∑

r=1

(

uP1 (xm,r) · f
D1
r − fP1 (xm,r) · u

D1
r

)

lr, (5.83)

wherexm,r is the mid-point of therth element andlr is its length. By defining

UP1
A

=
[

uP1 (xm, 1) l1 · · · uP1 (xm, NA
) lNA

]

, (5.84)

F P1
A

=
[

fP1 (xm, 1) l1 · · · fP1 (xm, NA
) lNA

]

, (5.85)

we may write equation (5.83) as

Q1 π2 + UP1
A

· F D
A − F P1

A
· UD

A = 0, (5.86)

which in terms of the vector of unknowns,x, is

[

0 UP1
A

0 −F P1
A

Q1 0
]

· x = 0. (5.87)

Similarly for theπ3 equation (5.55), we have

ψ = Q3 π3 +

∫

A

(

uD1 · fP3 − uP3 · fD1
)

ds(x)

≈ Q3 π3 +

NA
∑

r=1

(

fP3 (xm,r) · u
D1 − uP3 (xm,r) · f

D1
)

lr, (5.88)

which we can write as

[

0 −UP3
A

0 −F P3
A

0 Q3

]

· x = ψ, (5.89)
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by defining

UP3
A

=
[

uP3 (xm, 1) l1 · · · uP3 (xm, NA
) lNA

]

, (5.90)

F P3
A

=
[

fP3 (xm, 1) l1 · · · fP3 (xm, NA
) lNA

]

, (5.91)

and whereψ is evaluated using equation (5.57) for a straightA. Before considering the

boundary integral equations, we will summarise our previous notation in order for us to

concisely discretise the boundary integral equations forx0 located on the boundariesA,

B andC. On a boundaryφ, which hasNφ elements labelledEl1 . . . Elφ, we define the

vectors,

IG
φ,j(x0) =

[

G̃xj,1(x0) G̃yj,1(x0) · · · G̃xj,Nφ
(x0) G̃yj,Nφ

(x0)
]

, (5.92)

IT
φ,j(x0) =

[

T̃xj,1(x0) T̃yj,1(x0) · · · T̃xj,Nφ
(x0) T̃yj,Nφ

(x0)
]

, (5.93)

whereG̃ij,r and T̃ij,r are the integrals over therth element of the Green’s function and

the stress tensor respectively, and are defined by

G̃ij,r(x0) =

∫

Elr

Gij(x,x0) ds(x), (5.94)

T̃ij,r(x0) =

∫

Elr

Tijk(x,x0)nk ds(x). (5.95)

Whenx0 lies onElr the Green’s function is weakly singular but integrable. Thestress

tensor is also singular whenx0 lies onElr and so we replacẽTij,r(x0) with the principal

value integral,

T̃PV
ij,r (x0) =

PV
∫

Elr

Tijk(x,x0)nk ds(x), (5.96)

in therth pair of elements ofIT
φ,j(x0) and denote the vector byIT,PV

φ,j (x0). It is important

to note that the value of the jump in the discontinuous double-layer potential will already

have been included in the governing boundary integral equation. We have shown in equa-

tion (2.37) that whenElr is straight,T̃PV
ij,r (x0) = 0. Proceeding to the boundary integral
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equations, we write equations (5.66), (5.68), (5.74) and (5.75) as

∫

A,C

fD1
i Gij ds(x) − π2

∫

E2

niGij ds(x) − µ

∫

A

uD1
i Tijk nk ds(x) = Ij(x0), (5.97)

∫

A,C

fD1
i Gij ds(x) − π2

∫

E2

niGij ds(x) − µ

PV
∫

A

uD1
i Tijk nk ds(x)

+2πµuD1
i (x0) = Ij(x0), (5.98)

∫

B

fD3
i Gij ds(x) −

∫

A

fD1
i Gij ds(x) − π3

∫

E3

niGij ds(x)

+µ

∫

A

uD1
i Tijk nk ds(x) = Kj(x0), (5.99)

∫

B

fD3
i Gij ds(x) −

∫

A

fD1
i Gij ds(x) − π3

∫

E3

niGij ds(x) + 2πµuD1
j (x0)

+µ

PV
∫

A

uD1
i Tijk nk ds(x) = KPV

j (x0) + 2πµ
(

uP3
j (x0) − uP1

j (x0)
)

, (5.100)

where (5.97) is valid forx0 on C, (5.99) is valid forx0 on B, and both of (5.98) and

(5.100) are forx0 located onA. The integrals of the disturbance tractions overA, B and

C are approximated by

∫

A

fD1
i Gij ds(x) ≈

NA
∑

r=1

G̃ij,r(x0)f
D1
i,r = IG

A,j(x0) · F
D
A , (5.101)

∫

B

fD3
i Gij ds(x) ≈

NB
∑

r=1

G̃ij,r(x0)f
D3
i,r = IG

B,j(x0) · F
D
B , (5.102)

∫

C

fD1
i Gij ds(x) ≈

NC
∑

r=1

G̃ij,r(x0)f
D1
i,r = IG

C,j(x0) · F
D
A . (5.103)

We label the integral overE2 as IG
E2,j(x0) =

∫

E2
niGij ds(x), which can be calculated

exactly using equations (2.44) and (2.45). We may also use these equations to calculate

the integral overE3, which we labelIG
E3,j(x0), by using the mapping given in equation

(5.1). The integrals of the disturbance velocity overA are approximated by

∫

A

uD1
i Tijk nk ds(x) ≈

NA
∑

r=1

T̃ij,r(x0)u
D1
i,r = IT

A,j(x0) · U
D
A , (5.104)

PV
∫

A

uD1
i Tijk nk ds(x) ≈

NA
∑

r=1

T̃PV
ij,r (x0)u

D1
i,r = I

T,PV
A,j (x0) · U

D
A . (5.105)
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Finally we approximateI(x0), defined in equation (5.65),K(x0), defined in equation

(5.73) andKPV (x0) using

Ij(x0) ≈ (1 −Q)

NE2
∑

r=1

(

fP1
i (xm,r) G̃ij,r + µuP1(xm,r) T̃xj,r

)

, (5.106)

Kj(x0) ≈

NA
∑

r=1

((

fP1
i (xm,r) − fP3

i (xm,r)
)

G̃ij,r

+µ
(

uP3
i (xm,r) − uP1

i (xm,r)
)

T̃ij,r nk

)

, (5.107)

KPV
j (x0) ≈

NA
∑

r=1

((

fP1
i (xm,r) − fP3

i (xm,r)
)

G̃ij,r

+µ
(

uP3
i (xm,r) − uP1

i (xm,r)
)

T̃PV
ij,r nk

)

. (5.108)

We are now able to write the discretised form of equation (5.97) as

[

IG
C,j(x0) IG

A,j(x0) 0 −µ IT
A,j(x0) −IG

E2,j(x0) 0
]

· x = Ij(x0), (5.109)

wherex0 lies onC. Repeated evaluation of this equation withx0 placed at the mid-point

of each ofC’s boundary elements createsNC pairs of equations which are assembled into

the matrix,
[

CC CA 0 CT
A CE2 0

]

· x = CI , (5.110)

where each ofCC , CA, C
T
A, CE2 andCI consist of theNC pairs ofIG

C,j(x0), IG
A,j(x0),

−µ IT
A,j(x0), −IG

E2,j(x0) andIj(x0) respectively. The discretised analogue of equation

(5.98) is

[

IG
C,j(x0) IG

A,j(x0) 0 −µ I
T,PV
A,j (x0) −IG

E2,j(x0) 0
]

· x

+ 2πµuD1
j (x0) = Ij(x0), (5.111)

wherex0 is onA. Repeated evaluation of this equation withx0 placed at the mid-point of

each ofA’s elements createsNA pairs of equations which are assembled into the matrix,

[

AC A
m
A 0 A

m,T
A

AE2 0

]

· x = AI , (5.112)

where each ofAC , Am
A , AE2 and AI consist of theNA pairs of IG

C,j(x0), IG
A,j(x0),

−IG
E2,j(x0) and Ij(x0) respectively. TheAm,T

A
submatrix consists of theNA pairs of

−µ I
T,PV
A,j (x0). To clarify the structure of the matrix we define,

Ã
T
A =



















0 T 1,2 · · · T 1,NA−1 T 1,NA

T 2,2 0 · · · T 2,NA−1 T 2,NA

...
...

. . .
...

...

T NA−1,2 T NA−1,2 · · · 0 T NA−1,NA

T NA,1 T NA,2 · · · T NA−1,NA−1 0



















(5.113)
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where each entry is itself a2 × 2 matrix, and

T p,q =

[

T̃xx,q(x
(p)
0 ) T̃yx,q(x

(p)
0 )

T̃xy,q(x
(p)
0 ) T̃yy,q(x

(p)
0 )

]

(5.114)

whenp 6= q, andT p,q = 0 whenp = q becausẽTPV
yx,p(x

(p)
0 ) = 0 on a straight element.

The indicesp and q refer to the element on whichx0 is located and the element over

which we evaluatẽTij,q respectively. Therefore we can write

A
m,T
A

= −µ Ã
T
A + 2πµ I2NA

, (5.115)

where the second term on the right-hand side accounts for the2πµuD1
j (x0) term in equa-

tion (5.98) andI2NA
is the identity matrix of size2NA × 2NA.

The discretised form of equation (5.99) whenx0 lies onB is

[

0 −IG
A,j(x0) IG

B,j(x0) µ IT
A,j(x0) 0 −IG

E3,j(x0)
]

· x = Kj(x0). (5.116)

When we placex0 at the mid-point of each of the boundary elements ofB we generate

NB pairs of equations which we write as

[

0 BA BB BT
A 0 BE3

]

· x = BK , (5.117)

where each ofBA, BB, BT
A, BE3 andBK consist of theNB pairs of−IG

A,j(x0), IG
B,j(x0),

µ IT
A,j(x0), −IG

E3,j(x0) andKj(x0) respectively. The discretised version of equation

(5.100) is

[

0 −IG
A,j(x0) IG

B,j(x0) µ I
T,PV
A,j (x0) 0 −IG

E3,j(x0)
]

· x

+ 2πµuD1
j (x0) = KPV

j (x0) + 2πµ
(

uP3
j (x0) − uP1

j (x0)
)

, (5.118)

wherex0 is onA. Repeated evaluation of this equation withx0 placed at the mid-point of

each ofA’s elements createsNA pairs of equations which are assembled into the matrix,

[

0 Ab
A AB A

b,T
A

0 AE3

]

· x = AK , (5.119)

where each ofAb
A, AB andAE3 consist of theNA pairs of−IG

A,j(x0), IG
B,j(x0) and

−IG
E4,j(x0) respectively. TheAb,T

A
submatrix is

A
b,T
A

= µ Ã
T
A + 2πµ I2NA

, (5.120)

and each pair of rows ofAK corresponds to the right-hand side of (5.118).

Assembling equations (5.87), (5.89), (5.110), (5.112), (5.117) and (5.119) into one
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matrix system gives























CC CA 0 CT
A CE2 0

AC Am
A 0 A

m,T
A

AE2 0

0 BA BB BT
A 0 BE3

0 Ab
A AB A

b,T
A

0 AE3

0 UP1
A

0 −F P1
A

Q1 0

0 −UP3
A

0 −F P3
A

0 Q3























· x =























CI

AI

BK

AK

0

ψ























(5.121)

which is in our desired form. The ‘influence’ matrix elementsof our master linear system

(5.121) are mostly submatrices as we have seen. The first and second rows correspond

to the boundary integral equations valid in the main channeland where the first row cor-

responds tox0 on the walls of the channel and the second tox0 lying on the notional

boundary,A. The third and fourth rows correspond to the boundary integral equations

valid in the branch channel and where the third row corresponds tox0 on the walls of the

channel and the fourth tox0 lying on the notional boundary,A. The fifth and sixth rows

correspond to the pressure equations forπ2 andπ3 respectively. The size of the ‘influ-

ence’ matrix is(4NA + 2NB + 2NC + 2)× (4NA + 2NB + 2NC + 2). In our simulations

we tookNA = 200, NB = 400 andNC = 800.

Once the master linear system is built we solve it using a standard method. Since

our ‘influence’ matrix is considerably larger than in previous chapters we favoured the

GMRES (e.g. Saad 2003) iterative solver over Gaussian elimination due to speed consid-

erations. We can then calculate the disturbance velocity ata point using either equation

(5.64) or (5.72) depending on the location of the point. Addition of the pertinent Poiseuille

velocity provides the total velocity at the point. We calculated the flow streamlines by in-

tegrating the equation
dx

ds
= u(x) (5.122)

along the streamline, wherex is the position vector of a point on the streamline and

s measures the arc-length along the streamline. We used the adaptive stepping Runga-

Kutta-Fehlberg method (e.g. Atkinson 1978) to integrate (5.122).

5.3 Validation

We truncated the channels so thatl = 12 d andL = l/2. We found this truncation

length sufficient for the disturbance velocity to decay as weapproach the ends of the

computational domain, as per our initial assumptions. The important parameters are the

ratio of channel heights,δ = D/d, the branch angle,α and the flux ratio,Q. As a

check on the numerical implementation, we confirmed that thediscretised form of the

integral identities (1.3.34) and (1.3.31) were satisfied towithin an acceptable tolerance.

In each set of presented results we will check that the velocity field in the channel tends

to the applicable Poiseuille flow as we approach the ends. Foreach set of parameters we

will show the profile of the velocity along the centreline of the main channel and branch
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channel. From these plots we will see the disturbance component of the velocity decay

rapidly as we move away from the branch entrance. As we move towards the entrance

or exits the profiles will show the velocity tending to the appropriate centreline Poiseuille

velocity. In all calculations, we found that the streamwisevelocity in the channels was

well within 1% of its predicted value at an axial distance of3d from the branch entrance.

They-component in the main channel and theY -component in the branch channel, which

should tend to zero, were all less than0.005UP1
0 at a distance of3d from the branch

entrance. However, in the one case where we consideredδ > 1, so that the branch was

wider than the main channel, the velocity disturbance had decayed to the stated tolerances

at the distance,5d, which is somewhat closer toE3. Although the velocity has decayed

satisfactorily at this distance, the endE3 is only a further distanced, which lends weight

to an argument for a longer branch channel whenδ > 1 to allow for the slower decay of

the disturbance velocity.

In the main channel we checked the total traction and we display the profile on the top

wall for the first three simulations. The profile is somewhat different to the disturbance

tractions that we have seen in previous chapters because we display the total traction and

not the disturbance traction. The reason for the change liesin the choice we must make

between the disturbance tractions,fD1 andfD2 , where the former decays to zero atE1

and the latter which decays to−π2 n at E2. Therefore plotting the total traction against

x/d allows us to see the traction attain a linear profile as we approach the ends, together

with the traction disturbance close to the branch entrance.In all discussions regarding the

pressures and tractions we render the quantity dimensionless by dividing byµUP1
0 /d and

indicate a dimensionless quantity by a circumflex, e.g.f = f̂ µUP1
0 /d. Since we have

f̂ = f̂
P1

+ f̂
D1

= f̂
P2

+ f̂
D2
, (5.123)

we calculate

f̂ = f̂
P1

+ f̂
D1

= 2 (1,−x/d) + f̂
D1 (5.124)

or equivalently

f̂ = f̂
P2

+ f̂
D2

= 2Q (1,−x/d) + f̂
D2
, (5.125)

on the top wall, and where we have used the definition of the stress tensor to calculate the

traction together with the Poiseuille pressures given in equations (5.25) and (5.26). On

the top wall at the entrance,E1, we have

f̂ = (2, 0) (5.126)

sincef̂
D1

= 0, and

f̂ = (2Q,−2Q l/d + π̂2) = (2Q,−24Q + π̂2) (5.127)

on the top wall at the exit,E2. Therefore we expect thex-component of the dimensionless

traction to tend to2 atE1 and2Q atE2. They-component of the traction will vary linearly
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with x along the channel wall, from zero atE1 to−2Ql+ π̂2 atE2. We only have the one

disturbance traction,̂f
P3

, in the branch channel. In our results we show the profile off̂
P3

along the right-hand wall,Y = D, where we expect theX-component to tend to zero as

we approachE3 and theY -component to tend to the disturbance pressure,π̂3.

To validate the numerical solution we used a configuration with l = 12 d, L = l/2,

α = π/2 andD = d as our reference configuration. Firstly we doubled the number of

elements on each boundary in the reference configuration andfound that the total pressure

at the exits differed by less than0.1%. With regards to the boundary tractions, we found

the largest discrepancy occurred on the elements neighbouring the corners of the entrance

to the branch channel where the stress is formally infinite (see Appendix E for details).

Away from the corners, we found that the absolute errors in the boundary tractions and

velocities were less than0.01µUP1
0 /d and0.005UP1

0 respectively. Next we computed the

solution for a longer channel withl = 24 d andL = 12 d while preserving the element

length with respect to the reference configuration. We foundthat the pressures at the

exits differed by less than0.4% with respect to the reference configuration, and where the

additional Poiseuille pressure drops at both ends due to theextra channel length has been

taken into account. We found that the maximum absolute errorin the velocities and the

tangential component of the tractions remained less than0.002UP1
0 and0.005µUP1

0 /d

respectively. The maximum absolute error in the normal component of the boundary

tractions remained less than0.05µUP1
0 /d.

To provide additional confirmation on the validity of the velocity field we compared

the boundary integral calculation to a finite-difference calculation for a configuration with

α = π/2 and various values of the flux ratio,Q. The details of the finite-difference cal-

culation are given in Appendix D. The differences between the boundary integral and the

finite-difference models’ velocity fields were negligible,except for regions close to the

entrance and exits. The maximum discrepancy in the velocitybetween the two calcula-

tions was0.05UP1
0 which only occurred in the regions within a distance ofd from the

ends of the computational domain, probably due to end effects. Increasing the resolution

reduced the error but did not remove the issue. Use of an appropriate forward or backward

difference formula in areas close to the ends may remove or ameliorate this error. At the

ends, we found that the velocity obtained by the boundary integral method was in much

better agreement with the unidirectional Poiseuille velocity than the velocity calculated

by the finite-difference method. Therefore we found that theboundary integral method

provides a more accurate method of calculating the velocityfield throughout the entire

flow domain.

5.4 Results for a fluid-filled branching channel

In our first set of results we setQ = 0.5, δ = 1 andα = π/2. In figure 5.2 we show

the streamlines, wall tractions and centreline velocity profiles for the branching channel.

The streamlines for the flow are shown in figure 5.2 (a). Occasionally the streamlines

computed using the numerical integration scheme terminatebefore the exit due to the
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adaptive stepping method employed to calculate the streamline. When the next point lies

outside the flow domain the streamline figure shows the last calculated point which lies

within the flow domain. The streamline which starts from(0, 0) is the dividing streamline

whenQ = 0.5, i.e. the streamlines which start below this point onE1 will travel into the

branch channel and those which start above the point will remain in the main channel. In

the finite-difference calculation the dividing streamlinecorresponds toψ = 0.5, whereψ

is the stream-function, and it terminated on the right-handcorner of the branch entrance.

As we can see from figure 5.2 (a), the dividing streamline doesindeed split the flow,

however due to a slight inaccuracy in the calculation the streamline does not terminate

on the corner. Doubling the number of boundary elements causes the streamline started

from (0, 0) to move0.03 d closer to the right-hand wall of the branch channel whereas the

remaining streamlines trace the same paths to within0.007 d. We found that a streamline

started from(0, 0.0034)d does indeed terminate on the right-hand corner.

At E2 andE3 the pressures are−17.294µUP1
0 /d and−18.227µUP1

0 /d respectively.

Figure 5.2 (b) shows the total traction on the top wall of the main channel. Equations

(5.126) and (5.127) show that the total dimensionless traction atx/d = 0 should be(2, 0)

and equal to(1,−17.294) at E2, which are in good agreement with the curves in the

figure. We found that the value of the wall traction on the two or three boundary elements

adjacent to the end suffered from a numerical sensitivity. For example, on the wall atE1

the error in thex-component was0.8% and the absolute error in they-component was

0.009µUP1
0 /d. On the next boundary element away fromE1 the error was halved. We

also found that when the number of boundary elements was increased, the error reduced

and the disturbance pressures changed very slightly. For example, doubling the number

of boundary elements changed the disturbance pressures by less than0.06%. The region

in which the traction adjusts to its upstream or downstream profile is short compared to

the length of the channel, showing that the disturbance caused by the branch entrance

decays rapidly as we move away from it. In figure 5.2 (c) we plotthe disturbance traction

fP3 on the right-hand wall of the branch channel, wherex = l/2 +D. We expect thex

andy components offD3 to tend toπ3 and zero respectively as we move towardsE3 at

y/d = −7. Both components offD3 decay rapidly to their expected values as we move

away from the branch entrance aty/d = −1 and move towardsE3. The values ofπ2 and

π3 differed from the values obtained from equations (5.47) and(5.58) by0.03%, and the

check on they-component found an absolute error of less than0.001µUP1
0 /d.

Figures 5.2 (d) and 5.2 (e) show the centreline velocities inthe main and the branch

channels. In the main channel we can see that as we move away from the branch entrance

and approachE1 the disturbance to the velocity decays rapidly. The velocity tends toUP1
0 i

as we approachE1 and0.5UP1
0 i as we approachE2. In figure 5.2 (e) we show the velocity

along the centreline of the branch channel and up to the top wall of the main channel.

Again we can see that as we move away from the branch entrance the velocity decays

rapidly to−0.5UP1
0 j, or equivalently0.5UP1

0 i′. At the ends, the error in the velocity on

the channel centreline was0.10% atE1, 0.07% atE2 and0.23% atE3. When we doubled

the number of elements we halved the velocity error. In the regions at the channel ends
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(a) Streamlines for an empty branching channel withδ = 1, α = π/2 andQ = 0.5.
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Figure 5.2 : Streamlines, wall tractions and centreline velocities fora branching channel with
δ = 1, α = π/2 andQ = 0.5.
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which are very close to the channel walls the error increases, but the magnitude of the

velocity is small compared to that on the centreline and therefore has little effect upon the

flow.

In the next set of results we keepδ = 1 andα = π/2 and reduceQ to 0.1 thereby

decreasing the amount of fluid which travels toE2 with a concomitant increase in the

amount of fluid travelling otE3. We plot the streamlines in figure 5.3 (a) where we can

see the majority of the streamlines entering the branch channel. The pressures atE2 andE3

are−12.697µUP1
0 /d and−23.592µUP1

0 /d respectively. The change in flux has increased

the pressure at the end to which the majority of the fluid travels, when compared with the

previous simulation. Figure 5.3 (b) shows the total traction on the top wall of the main

channel. Equations (5.126) and (5.127) show thatf̂ at x/d = 0 should be(2, 0) and

equal to(0.2,−12.6969) atE2, which are in good agreement with the curves in the figure.

The error in the traction is similar to the previous simulation. Once again the region in

which the traction adjusts to its downstream and upstream values is short compared with

the channel length. The change in thex-component occurs betweenx/d = 4 and 8,

and the change in they-component occurs betweenx/d = 4 and8.5. In figure 5.3 (c)

we plot the disturbance tractionfP3 on the right-hand wall of the branch channel. We

expect thex andy components offD3 to tend toπ3 and zero respectively as we move

towardsE3. Both components offD3 decay rapidly to their expected values as we move

away from the branch entrance aty/d = −1 and move towardsE3. The values ofπ2

andπ3 differed from the values obtained from equations (5.47) and(5.58) by0.03% and

0.04% respectively, and the check on they-component found an absolute error of less

than0.001µUP1
0 /d.

Figures 5.3 (d) and 5.3 (e) show the centreline velocities inthe main and the branch

channels. In the main channel we can see that the disturbanceto the velocity occurs

betweenx/d = 4 and 8, and as we move away from this region the disturbance to the

velocity decays rapidly. The velocity tends toUP1
0 i as we approachE1 and0.1UP1

0 i as

we approachE2. In figure 5.3 (e) we show the velocity along the centreline ofthe branch

channel and up to the top wall of the main channel. Again we cansee that as we move

away from the branch entrance the velocity decays rapidly to−0.9UP1
0 j. The error in the

centreline velocity was0.17% atE1, 0.43% atE2 and0.22% atE3.

In the next set of results we setQ = 0.9 so that90% of the fluid travels toE2. We

maintain the values ofδ = 1 andα = π/2. The flow streamlines are plotted in figure

5.4 (a) where we can see the majority of the streamlines travelling the exit of the main

channel. It is interesting to see that one streamline travels into the branch channel close

to the right-hand corner before re-entering the main channel and travelling toE2. The

pressures atE2 andE3 are−21.891µUP1
0 /d and−12.862µUP1

0 /d respectively. Once

more we see that the change inQ results in a higher pressure at the end receiving the

majority of the fluid. Figure 5.4 (b) shows the total tractionon the top wall of the main

channel. Equations (5.126) and (5.127) show thatf̂ atx/d = 0 should be(2, 0) and equal

to (1.8,−21.8909) at E2, which agrees with the figure. The error in the traction is again

similar to the previous simulation. The change in thex-component off occurs between
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Figure 5.3 : Streamlines, wall tractions and centreline velocities fora branching channel with
δ = 1, α = π/2 andQ = 0.1.
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(a) Streamlines for an empty branching channel withδ = 1, α = π/2 andQ = 0.9.
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Figure 5.4 : Streamlines, wall tractions and centreline velocities fora branching channel with
δ = 1, α = π/2 andQ = 0.9.
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x/d = 4 and 8, and the change in they-component occurs betweenx/d = 3 and9. In

figure 5.4 (c) we plot the disturbance tractionfP3 on the right-hand wall of the branch

channel. We expect thex andy components offD3 to tend toπ3 and zero respectively as

we move towardsE3. Both components offD3 decay rapidly to their expected values as

we move away from the branch entrance aty/d = −1 and move towardsE3. The values

of π2 andπ3 differed from the values obtained from equations (5.47) and(5.58) by0.13%

and0.01% respectively, and the check on they-component found an absolute error of

less than0.002µUP1
0 /d. Figures 5.4 (d) and 5.4 (e) show the centreline velocities in the

main and the branch channels. In the main channel we can see that the disturbance to the

velocity again occurs betweenx/d = 4 and 8, and the disturbance to the velocity decays

rapidly as we move away from this region. The velocity tends to UP1
0 i as we approach

E1 and0.9UP1
0 i as we approachE2. In figure 5.4 (e) we show the velocity along the

centreline of the branch channel and up to the top wall of the main channel. We can see

that as we move away from the branch entrance the velocity decays rapidly to−0.1UP1
0 j.

The error in the centreline velocity was0.04% atE1, 0.03% atE2 and0.23% atE3.

Now we set the flux ratio equal to0.5 but change the branch angle so thatα = π/4

and maintainδ = 1. The flow streamlines are plotted in figure 5.5 (a). Whenα = π/2 the

dividing streamline started from(0, 0). Now that the branch angle has changed toπ/4 we

do not know whether the dividing streamline will terminate on the right-hand corner of

the branch entrance. We can see from the figure that the streamline started from(0, 0) ter-

minates atE2. In the next section we will explore more fully the dependence between the

branch angle and the location at which the dividing streamline terminates. The pressures

at E2 andE3 are−16.474µUP1
0 /d and−16.921µUP1

0 /d respectively, which represent a

4.7% and a7.1% reduction compared to the same case withα = π/2. Figures 5.5 (b) and

5.5 (c) show the centreline velocities in the main and the branch channels. In the main

channel we can see that the disturbance to the velocity occurs betweenx/d = 3 and9,

and the disturbance to the velocity decays rapidly as we moveaway from this region. The

velocity tends toUP1
0 i as we approachE1 and0.5UP1

0 i as we approachE2. In figure

5.5 (c) we show the(X,Y ) components of the velocity along the centreline of the branch

channel and up to the top wall of the main channel. The velocity tends to the Poiseuille

velocity0.5UP1
0 i′ as we get close toE3. The error in the centreline velocity was0.06% at

E1, 0.09% atE2 and0.10% atE3.

Now we decreaseQ thus sending more fluid toE3. The simulation parameters are

δ = 1, α = π/4 andQ = 0.1. The flow streamlines are plotted in figure 5.6 (a) where

we can see the majority entering the branch channel, as expected. The pressures atE2

andE3 are−11.951µUP1
0 /d and−21.830µUP1

0 /d respectively, where the pressure has

increased at the end which receives the most fluid. Figures 5.6 (b) and 5.6 (c) show the

centreline velocities in the main and the branch channels. In the main channel we can see

that the disturbance to the velocity occurs betweenx/d = 3 and 9, and the disturbance

to the velocity decays rapidly as we move away from this region. The velocity tends to

UP1
0 i as we approachE1 and0.1UP1

0 i as we approachE2. In figure 5.6 (c) we show the

(X,Y ) components of the velocity along the centreline of the branch channel and up to
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(a) Streamlines for an empty branching channel withδ = 1, α = π/4 andQ = 0.5.
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(c) X (r) andY (–) components of the velocity along
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Figure 5.5 : Streamlines, wall tractions and centreline velocities fora branching channel with
δ = 1, α = π/4 andQ = 0.5.

the top wall of the main channel. The velocity tends to the Poiseuille velocity0.9UP1
0 i′ as

we get close toE3, where the disturbance effect of the branch entrance has disappeared by

y/d = −3. The error in the centreline velocity was0.05% atE1, 0.08% at E2 and0.04%

atE3.

Now we increaseQ thus sending more fluid toE2. The simulation parameters areδ =

1, α = π/4 andQ = 0.9. The flow streamlines are plotted in figure 5.7 (a) where we can

the majority travelling toE2, as expected. The pressures atE2 andE3 are−20.997µUP1
0 /d

and−12.012µUP1
0 /d respectively, where the pressure has increased at the end which

receives the most fluid, relative to the simulation withδ = 1, α = π/4 andQ = 0.5.

Figures 5.7 (b) and 5.7 (c) show the centreline velocities inthe main and the branch

channels. In the main channel we can see that the disturbanceto the velocity occurs

betweenx/d = 3 and 9, and the disturbance to the velocity decays rapidly as we move

away from this region. The velocity tends toUP1
0 i as we approachE1 and0.9UP1

0 i as we
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(a) Streamlines for an empty branching channel withδ = 1, α = π/4 andQ = 0.1.
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(c) X (r) andY (–) components of the velocity along
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Figure 5.6 : Streamlines, wall tractions and centreline velocities fora branching channel with
δ = 1, α = π/4 andQ = 0.1.

approachE2. In figure 5.7 (c) we show the(X,Y ) components of the velocity along the

centreline of the branch channel and up to the top wall of the main channel. The velocity

tends to the Poiseuille velocity0.1UP1
0 i′ as we get close toE3, where the disturbance

effect of the branch entrance has disappeared byy/d = −3. The error in the centreline

velocity was0.17% at E1, 0.11% at E2 and1.27% at E3. We found that the error was

consistently the highest at the end receiving the least fluid, i.e. whenQ was high andE3

receives the least fluid the error will be the highest there. This factor is partly due to the

lowering of the exit Poiseuille velocity on which the error value is based.

Now we setQ = 0.5, δ = 1 and change the branch angle to3π/4. The flow stream-

lines are plotted in figure 5.8 (a). The pressures atE2 andE3 are−16.752µUP1
0 /d and

−17.480µUP1
0 /d respectively. Figures 5.8 (b) and 5.8 (c) show the centreline velocities

in the main and the branch channels. In the main channel we cansee that the disturbance

to the velocity occurs betweenx/d = 3 and 9, and the disturbance to the velocity decays
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(a) Streamlines for an empty branching channel withδ = 1, α = π/4 andQ = 0.9.
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Figure 5.7 : Streamlines, wall tractions and centreline velocities fora branching channel with
δ = 1, α = π/4 andQ = 0.9.

rapidly as we move away from this region. The velocity tends to UP1
0 i as we approach

E1 and0.5UP1
0 i as we approachE2. In figure 5.8 (c) we show the(X,Y ) components

of the velocity along the centreline of the branch channel and up to the top wall of the

main channel. The velocity tends to the Poiseuille velocity0.5UP1
0 i′ as we get close to

E3, where the disturbance effect of the branch entrance has disappeared byy/d = −3.

The error in the centreline velocity was0.01% atE1, 0.22% atE2 and0.24% atE3.

Now we decreaseQ to 0.1 thus sending more fluid toE3. The simulation parameters

areδ = 1, α = 3π/4 andQ = 0.1. The flow streamlines are plotted in figure 5.9 (a)

where most of the streamlines travel into the branch channel. The pressures atE2 andE3

are−12.427µUP1
0 /d and−22.377µUP1

0 /d respectively. Figures 5.9 (b) and 5.9 (c) show

the centreline velocities in the main and the branch channels. In the main channel we can

see that the disturbance to the velocity occurs betweenx/d = 3 and 8, and the disturbance

to the velocity decays rapidly as we move away from this region. The velocity tends to
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(a) Streamlines for an empty branching channel withδ = 1, α = 3π/4 andQ = 0.5.
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Figure 5.8 : Streamlines, wall tractions and centreline velocities fora branching channel with
δ = 1, α = 3π/4 andQ = 0.5.

UP1
0 i as we approachE1 and0.1UP1

0 i as we approachE2. In figure 5.9 (c) we show the

(X,Y ) components of the velocity along the centreline of the branch channel and up to

the top wall of the main channel. The velocity tends to the Poiseuille velocity0.9UP1
0 i′ as

we get close toE3, where the disturbance effect of the branch entrance has disappeared by

y/d = −3. The error in the centreline velocity was0.01% atE1, 1.27% at E2 and0.14%

atE3.

Now we increaseQ to 0.9 thus sending more fluid toE2. The simulation parameters

are δ = 1, α = 3π/4 andQ = 0.9. The flow streamlines are plotted in figure 5.10

(a) where most of the streamlines travel to the exit of the main channel. The streamline

which passes very close to the right-hand side of the branch entrance terminates on the

wall in the main channel at(7.6,−1)d. The pressures atE2 andE3 are−21.076µUP1
0 /d

and−12.583µUP1
0 /d respectively. Figures 5.10 (b) and 5.10 (c) show the centreline

velocities in the main and the branch channels. In the main channel we can see that the
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(a) Streamlines for an empty branching channel withδ = 1, α = 3π/4 andQ = 0.1.
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Figure 5.9 : Streamlines, wall tractions and centreline velocities fora branching channel with
δ = 1, α = 3π/4 andQ = 0.1.

disturbance to the velocity occurs betweenx/d = 3 and 9, and the disturbance to the

velocity decays rapidly as we move away from this region. Thevelocity tends toUP1
0 i as

we approachE1 and0.9UP1
0 i as we approachE2. In figure 5.6 (c) we show the(X,Y )

components of the velocity along the centreline of the branch channel. The velocity tends

to the Poiseuille velocity0.1UP1
0 i′ as we get close toE3, where the disturbance effect of

the branch entrance has disappeared byy/d = −3.5. The error in the centreline velocity

was0.003% atE1, 0.11% atE2 and1.12% atE3.

In the next set of results we setα = π/2,Q = 0.5 and reduce the width of the branch

such thatδ = 0.5. The streamlines for the flow are shown in figure 5.11 (a). AtE2 andE3

the pressures are−17.822µUP1
0 /d and−63.000µUP1

0 /d respectively, where the differ-

ence in magnitude is due to the narrowing of the branch channel. The Poiseuille pressure

drop betweeny/d = −1 andy/d = −7 increases from6µUP1
0 /d to 48µUP1

0 /d when

D is reduced fromd to d/2. Figures 5.11 (b) and 5.11 (c) show the centreline velocities
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(a) Streamlines for an empty branching channel withδ = 1, α = 3π/4 andQ = 0.9.
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Figure 5.10 : Streamlines, wall tractions and centreline velocities fora branching channel with
δ = 1, α = 3π/4 andQ = 0.9.

in the main and the branch channels. In the main channel we cansee that as we move

away from the branch entrance and approachE1 the disturbance to the velocity decays

rapidly. The velocity tends toUP1
0 i as we approachE1 and0.5UP1

0 i as we approachE2.

In figure 5.11 (c) we show the velocity along the centreline ofthe branch channel. We

can see that as we move away from the branch entrance the velocity decays rapidly to

−1−Q
δ UP1

0 j = −UP1
0 j. At the ends, the error in the velocity on the channel centreline

was0.05% atE1, 0.10% atE2 and0.06% atE3.

In the final set of results we setα = π/2, Q = 0.5 and increase the width of the

branch such thatδ = 2. The streamlines for the flow are shown in figure 5.12 (a). At

E2 andE3 the pressures are−15.201µUP1
0 /d and−10.932µUP1

0 /d respectively. Figures

5.12 (b) and 5.12 (c) show the centreline velocities in the main channel and the branch

channel. In the main channel we can see that as we move away from the branch entrance

and approachE1 the disturbance to the velocity decays rapidly. The velocity tends to
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(a) Streamlines for an empty branching channel withδ = 0.5, α = π/2 andQ = 0.5.
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Figure 5.11 : Streamlines, wall tractions and centreline velocities fora branching channel with
δ = 0.5, α = π/2 andQ = 0.5.

UP1
0 i as we approachE1 and0.5UP1

0 i as we approachE2. In figure 5.12 (c) we show

the velocity along the centreline of the branch channel and up to the top wall of the main

channel. We can see that as we move away from the branch entrance the velocity decays

rapidly to −1−Q
δ UP1

0 j = −0.25UP1
0 j. At the ends, the error in the velocity on the

channel centreline was0.28% atE1, 0.002% atE2 and0.73% atE3.

5.5 The dividing streamline

In a branching channel we use the flux ratio,Q, to define the proportion of the fluid atE1

which travels to the exit of the main channel atE2. The remaining fluid travels to the exit

of the branch channel atE3. As we have shown, the flow streamlines may be plotted to

gain insight into the direction in which the fluid travels at aparticular location. In each

flow there is a dividing streamline which terminates at some point on either the right-hand
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(a) Streamlines for an empty branching channel withδ = 2, α = π/2 andQ = 0.5.
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Figure 5.12 : Streamlines, wall tractions and centreline velocities fora branching channel with
δ = 2, α = π/2 andQ = 0.5.

wall of the branch channel, the right-hand corner of the branch entrance or at some point

on the lower right-hand portion of the wall in the main channel. Let us define the starting

point of the dividing streamline to be(0, yDS)d. Therefore a fluid element which starts its

journey at(0, y)d with y > yDS will remain above the dividing streamline and travel toE2,

whereas a fluid element started from(0, y)d with y < yDS will travel to E3. To calculate

yDS for a given value of the flux ratio we integrate the Poiseuillevelocity atE1 from yDSd

to d to get the following cubic polynomial,

y3
DS
− 3 yDS + 2(1 − 2Q) = 0. (5.128)

WhenQ = 0.5 we expectyDS = 0. Substitution ofQ = 0.5 into the cubic polynomial

gives(y2
DS

− 3) yDS = 0, which hasyDS = 0 as its only root in the rangeyDS ∈ [−1, 1].

To calculate the termination point of the dividing streamline we examine the wall shear
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stress,τ , on the channel walls close to the right-hand corner of the branch entrance. On

the bottom-right hand portion of wall in the main channel, the wall shear stress is given by

τ = µ
∂u

∂y
= f · i = 2µUP1

0 /d+ fD1
x , (5.129)

wherefD1
x is obtained from the solution vector to the linear system, and on the right-hand

wall of the branch channel by

τ = µ
∂u

∂Y
= f · (−i′) = −2µUP3

0 /D + (−fD3
x cosα+ fD3

y sinα), (5.130)

wherefD3 is also obtained from the solution to the linear system. We take the termination

point of the dividing streamline to be the location at whichτ is zero, if there is such a

point. Whenτ 6= 0 on the channel walls we assume the dividing streamline terminates on

the right-hand corner of the branch entrance where the stress is formally infinite, which

is shown in Appendix E. Since the disturbance tractions are constant over a boundary

element we find the two neighbouring elements between whichτ changes sign, and use

linear interpolation to obtain the coordinates of the pointat whichτ = 0. The element

length close to the corner was about0.01 d for all calculations. Therefore the error bounds

in the calculation of the termination point is accurate to within ±0.01 d. The termination

point is therefore sensitive to the size of the boundary elements close to the right-hand

corner of the branch entrance. We usesDS to indicate the distance of the point where

τ = 0 to the right-hand corner of the branch entrance. WhensDS is negative the point is

on the wall in the branch channel and a positive value indicates that the point is on the

wall in the main channel. In figure 5.13 we plot the distancesDS against the branch angle

α for the three flux ratios,Q = 0.1, Q = 0.5 andQ = 0.9. The points at whichsDS was

calculated are indicated by the points on the curves. WhenQ = 0.1 we can see from the

figuresDS is positive for acute and obtuse angles which demonstrates that the termination

point of the dividing streamline is on the bottom-right wallof the main channel. When we

increaseα beyond0.7π the termination point of the dividing streamline moves ontothe

wall of the branch channel. ForQ = 0.5 andQ = 0.9 the termination point of the dividing

streamline is always either at the corner or at a point on the wall in the branch channel.

As the branch angle becomes more obtuse the value ofsDS becomes increasingly negative.

Therefore the termination point of the dividing streamlinemoves away from the corner as

the branch angle is increased and along the wall of the branchchannel. The value ofsDS for

the three values ofQ andα = π/2 were independently verified using a finite-difference

calculation with a grid size of∆x/d = ∆y/d = 1/64 with good agreement.

We are now in a position to interpret the dividing streamlinein the streamline plots

of the previous section forδ = 1. In figure 5.2 (a) whereα = π/2 andQ = 0.5 the

dividing streamline starts from(0, 0)d and should terminate on the right-hand corner of

the branch entrance. As noted earlier, we had to start the streamline at(0, 0.0034)d for it to

terminate on the corner, which represents an acceptable level of numerical error. In figure

5.3 (a) whereα = π/2 andQ = 0.1 the dividing streamline starts from(0, 0.6084)d
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Figure 5.13 : Distance of point whereτ = 0 from the right-hand corner of the branch entrance.

and terminates on the main channel wall atsDS = 0.02d. WhenQ = 0.9 the dividing

streamline for figure 5.4 (a) whereα = π/2 andQ = 0.9 the dividing streamline starts

from (0,−0.6084)d and terminates on the branch channel wall at a distance−0.07d from

the corner. The dividing streamline’s termination point for figures 5.5 (a)–5.10 (a) may be

predicted with reference to the curves in figure 5.13.

5.6 Discussion

In this chapter we have considered a pressure-driven flow in achannel with a side branch.

We prescribed the flux rates at the entrance and exits. We formulated the problem using

the boundary integral method and found its solution numerically using the boundary el-

ement method. The solution provides the disturbance tractions on the channel walls and

the pressure drops between the entrance and both exits.

We summarise the pressure drops for the simulations in table5.1 . The table displays

the parameter values from each simulation together with thepressure drop,∆p2, between

the entrance andE2, and the pressure drop,∆p3, between the entrance andE3. The pres-

sure drops are defined in equations (5.32) and (5.33). The ratio of the Poiseuille pressure

drop,∆pP2, to the total pressure drop in the main channel is displayed in the last column.

A comparison is not made for the branch channel because the flow is not purely Poiseuille

at its entrance. For reference, from equation (5.26) we have∆pP2 = 24QµUP1
0 /d for a

channel withl = 12 d. The units for the pressure drops areµUP1
0 /d. We can see from the

table that for a fixed value of the flux ratio,Q, the pressure drop is greatest whenα = π/2

and the least whenα = π/4. The pressure drops forα 6= π/2 are between2% and8% less

than the pressure drop forα = π/2. For constantα, the pressure drop is greatest between



150 Stokes flow through a bifurcation

δ α Q ∆p2 ∆p3 ∆pP2/∆p2

1 π/4 0.1 11.951 21.830 20%
1 π/2 0.1 12.697 23.592 19%
1 3π/4 0.1 12.427 22.377 19%
1 π/4 0.5 16.474 16.921 73%

0.5 π/2 0.5 17.822 63.000 67%
1 π/2 0.5 17.294 18.227 69%
2 π/2 0.5 15.201 10.932 79%
1 3π/4 0.5 16.752 17.480 72%
1 π/4 0.9 20.997 12.012 97%
1 π/2 0.9 21.891 12.862 99%
1 3π/4 0.9 21.076 12.583 102%

Table 5.1 : Pressure drops between the entrance and exits of a branchingchannel for a range of
branch widths,δ, branch angles,α, and flux ratios,Q.

the entrance and the exit to which the majority of the fluid flows. Specifically, the pressure

drop∆p2 decreases by26% when the flux ratio is reduced from0.5 to 0.1, and increases

by the same percentage when it is increased from0.5 to 0.9. Conversely,∆p3 increases

by 28% when the flux ratio is reduced from0.5 to 0.1, and decreases by the same propor-

tion whenQ is raised from0.5 to 0.9. Maintaining the branch angle and the flux ratio but

reducing the width of the branch channel has little effect onthe pressure drop between

the entrance andE2, but nearly quadruples the pressure drop between the entrance and

E3. Increasing the width of the branch channel so that it is greater than the width of the

main channel causes a reduction in both pressure drops, withthe decrease in∆p3 signifi-

cantly greater. The pressure ratio in the final column of the table shows that the Poiseuille

pressure drop constitutes only around20% of the total pressure drop whenQ = 0.1 for

all branch angles. The ratio increases to between67% and79% whenQ = 0.5, showing

that the pressure drop is dominated by the Poiseuille flow. WhenQ = 0.9 the disturbance

pressure drop is a very small proportion (around3%) of the total pressure drop. The value

of 102% for α = 3π/4 is due to a small negative disturbance pressure drop in the main

channel, thereby lowering the pressure drop required in themain channel to maintain the

flux rate atE2. With regards to the disturbance caused by the branch entrance, we have

seen from the simulations that the disturbance to the velocity decays rapidly as we move

away from the branch entrance. As previously mentioned, thevelocity is within 1% of

its appropriate Poiseuille value at a distance of3d from the branch entrance, which pro-

vides evidence that our initial assumption on the decay of the disturbance velocity is valid.

However when considering a branch channel which is wider than the main channel, we

should make the branch channel longer than the current truncation length,L = l/2, to

allow for the slower decay rate of the disturbance velocity.

Finally we note that the termination point of the dividing streamline is dependent on

the flux ratio,Q, and the branch angle,α. When the flux ratio is small so that most of

the fluid enters the branch the dividing streamline terminates on the bottom-right hand
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wall of the main channel at a point within0.03d from the corner for a wide range of

branch angles. When the flux ratio is increased so that the majority of fluid continues

along the main channel we found that the dividing streamlineterminated on the right-

hand wall of the branch channel for acute and obtuse branch angles. As the branch angle

becomes more obtuse the termination point moves further from the corner and into the

branch channel, e.g. the dividing streamline terminates ata point a distanced from the

corner whenQ = 0.1 andα = 0.71π.





Chapter 6

The motion of a rigid particle

through a bifurcation

In this chapter we introduce a neutrally-buoyant rigid particle into the branching channel

studied in the previous chapter. The mathematical model draws on the analysis of a rigid

particle in a straight channel contained in chapter 3. The particle is free to move with the

flow and we assume that the flow exerts no force or torque upon the particle. We derive the

equations which govern the motion of the fluid and the particle in the main channel and

in the branch, and we calculate the disturbance caused by thebranch using the boundary

integral method. The governing equations describe the velocity field throughout the flow

domain together with the pressures at the exits to the computational domain. Application

of the boundary element method to the governing equations yields a set of discretised

equations which may be written as a linear matrix system and solved by standard methods.

6.1 Problem statement

We consider the motion of a fluid with viscosityµ in an infinite straight-walled channel

of width 2d. A branch channel of width2D is attached to the lower wall of the channel

at an angleα. Whenα = π/2 the branch channel is perpendicular to the main channel.

A disturbance to the upstream and downstream flows is caused by the branch entrance

and by the presence of a rigid particle of a fixed shape, which moves with the flow. We

assume that the particle is neutrally buoyant and that the flow exerts no force or torque

on the particle. The geometry is shown in figure 6.1 and comprises the walls of the main

channel,C, the walls of the branch channel,B, the particleP and a notional boundary,

A, which we introduce to treat the main and branch channels separately. All unit normal

vectors,n, point into the fluid. On the notional boundary the unit normal vector points into

the fluid of the main channel. We assume that the disturbance caused by the particle and

the branch entrance decays upstream and downstream from thesource of the disturbance

so that the flow far from the disturbance is described by classical unidirectional Poiseuille

flow. Since we will require a channel of finite length in the numerical method, we truncate

the channels so that the main channel has lengthl and the branch channel has lengthL,
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Figure 6.1 : A straight-walled channel with a branch which contains a fluid of viscosityµ.

as measured along their centrelines and illustrated in figure 6.1. We position the branch

channel so that its centreline intersects the mid-point of the lower wall of the main channel,

(l/2,−d). We label the entrance of the main channel asE1, the exit of the main channel

asE2 and the exit of the branch channel asE3. The entrance and exit in the main channel

are located atx = 0 andx = l respectively. In the branch channel we introduce local

coordinates,(X,Y ), which have their origin on the centreline atE3 as indicated in figure

6.1. The mappings between the(x, y) coordinates of the main channel and the(X,Y )

coordinates of the branch channel are given in equation (5.1) of the previous chapter. The

unit vectors in the main channel arei andj, which are mapped to their branch channel

equivalentsi′ andj ′ using equation (5.3). The particle and the branch entrance disturb

the flow but atE1, E2 andE3 we assume that the disturbance has decayed and the flow

has settled to Poiseuille flow, characterised by the streamwise flux rate at the pertinent

entrance or exit. As in the previous chapter we label the flux rate at each ofE1, E2 andE3

asQ1, Q2 andQ3 respectively. The equations for the fluxes and the Poiseuille velocities

are given in equations (5.4)–(5.11) of the previous chapter.

Our aim is to compute the velocity field throughout the flow domain and the additional

pressure drop at both exits due to disturbance caused by the branch entrance and the

particle. We assume that the Reynolds number of the flow is very small so that the flow in

the channels may be described using the linear equations of Stokes flow given in equation

(1.3.4). We decompose the velocity field,u, the stress field,σ, and the traction field,

f , into background Poiseuille and disturbance components, which we identify using the
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superscriptsP andD respectively. The decompositions in the main channel are given by,

u = uP1 + uD1 = uP2 + uD2 , (6.1)

σ = σP1 + σD1 = σP2 + σD2 , (6.2)

f = fP1 + fD1 = fP2 + fD2 , (6.3)

where the quantities with theP1 andD1 superscripts are defined with reference toE1,

and the quantities with theP2 andD2 superscripts are defined with reference toE2. The

velocity, stress and traction decompositions in the branchchannel are

u = uP3 + uD3 , (6.4)

σ = σP3 + σD3, (6.5)

f = fP3 + fD3 , (6.6)

which are all defined with reference toE3. On the notional boundary,A, which separates

the channels we impose continuity of the velocity, stress and traction fields such that

u = uP1 + uD1 = uP2 + uD2 = uP3 + uD3 (6.7)

σ = σP1 + σD1 = σP2 + σD2 = σP3 + σD3 , (6.8)

f = fP1 + fD1 = fP2 + fD2 = fP3 + fD3 , (6.9)

where we define all tractions with reference to a unit normal vector which points into the

main channel. On the channel walls we haveu = 0 by no-slip and no-penetration, which

implies

uP1 = uD1 = uP2 = uD2 = 0 (6.10)

on the walls of the main channel, and

uP3 = uD3 = 0, (6.11)

on the walls of the branch channel. In the previous chapter regarding a fluid-filled branch-

ing channel we assumed and demonstrated that the disturbance velocities,

uD1 → 0, uD2 → 0, uD3 → 0, (6.12)

as we approach the ends,E1, E2 andE3 respectively. In this chapter we have introduced

a rigid particle whose effect on a straight channel flow we investigated in chapter 3. We

found that the disturbance velocity due to the rigid particle in a straight channel decayed

to less than1% of its maximum value at a distance of 3 particle radii from thecentroid.

In light of this evidence and on previously cited works regarding flows in channels, we

are justified in assuming the validity of equation (6.12). Following the same argument as
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given in the derivation of equations (5.21)–(5.24), we assume

fD1 = 0 atE1, (6.13)

fD2 = −π2 n atE2, (6.14)

fD3 = −π3 n atE3, (6.15)

where we have taken the disturbance pressure atE1, E2 andE3 to be zero,π2 andπ3

respectively. The Poiseuille pressures in the main channelare given by

pP1(x) = −G1 x (6.16)

pP2(x) = −G2 x (6.17)

wherepP1(x) is the Poiseuille pressure due to the entrance Poiseuille flow with pressure

gradient−G1, andpP2(x) is the Poiseuille pressure due to the Poiseuille flow which

exits the main channel which has pressure gradient,−G2. The pressure gradients may be

expressed in terms of the centreline velocity or the flux by,

G1 =
2µUP1

0

d2
=

3

2

µQ1

d3
(6.18)

G2 = QG1. (6.19)

We have defined the Poiseuille pressures such thatpP1 = pP2 = 0 at E1. In the branch

channel the Poiseuille pressure is

pP3(X) = −G3X (6.20)

whereG3 = 2µUP3
0 /D2 = 3µQ3/2D

3, and−G3 is the pressure gradient which when

applied to the branch channel results in the flux atE3 equallingQ3. We may now write

the pressure difference between the entrance and the exit ofthe main channel,∆p2, as

∆p2 = p(E1) − p(E2)

=
(

pP1(E1) + pD1(E1)
)

−
(

pP2(E2) + pD2(E2)
)

= G2 l − π2 (6.21)

by equations (6.16) and (6.17), and between the entrance andthe exit of the branch chan-

nel,∆p3, as

∆p3 = p(E1) − p(E3)

=
(

pP1(E1) + pD1(E1)
)

−
(

pP3(E3) + pD3(E3)
)

= −π3 (6.22)
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by equations (6.16) and (6.20). The total pressures at the exits are

p(E2) = π2 −G2 l, and p(E3) = π3. (6.23)

The final boundary condition regards the particle which translates with velocity,V =

(Vx, Vy), and rotates with velocity,Ω = Ωk, wherek is the unit vector pointing out of

the paper towards the reader. Therefore onP we have,

u(x) = V + Ω ∧ (x − xc), (6.24)

wherex is a point onP andxc is the centroid of the particle calculated using equation

(3.8) (on page 43).

In our discussion of the boundary conditions we have introduced unknown distur-

bance tractions, velocities and pressures. All quantitiesare defined with reference toE1,

E2 or E3. Therefore during the forthcoming derivation of the equations we will need to

choose which quantities to keep and which to eliminate. In the main channel we have the

disturbance pressure,π2, and the disturbance tractions,fD1 , on the channel walls. In the

branch channel we haveπ3 and thefD3 on the channel walls. On the notional boundary

we choosefD1 anduD1 , for consistency with the main channel.

To derive equations for the disturbance pressuresπ2 andπ3 we bring together the

analysis given in chapter 3 when discussing a rigid particlein a straight channel, and the

derivation of the disturbance pressures equations for a branching channel given in the

previous chapter. Firstly we will consider the main channelwhen it contains the particle,

and apply the Lorentz reciprocal relation (1.3.22) to the pair of flows, (uP1 ,σP1 ) and

(uD1 ,σD1 ), to get

∇ ·
(

uP1 · σD1 − uD1 · σP1
)

= 0, (6.25)

which we integrate over the main channel’s flow domain and apply the divergence theorem

to get
∫

∂Γ1

uP1 · fD1 ds(x) =

∫

∂Γ1

uD1 · fP1 ds(x), (6.26)

where∂Γ1 = E1 ∪ E2 ∪ A ∪ C ∪ P, which can be simplified to

∫

E2

(

uP1 · fD1 − uD1 · fP1
)

ds(x) =

∫

A,P

(

uD1 · fP1 − uP1 · fD1
)

ds(x), (6.27)

using equations (6.10) and (6.12). The left-hand side simplifies toQ1 π2 by equation
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(5.45) from the previous chapter, and the integral overP simplifies to

∫

P

(

uD1 · fP1 − uP1 · fD1
)

ds(x) =

∫

P

(

(u − uP1 )· fP1 − uP1 · (f − fP1 )
)

ds(x)

=

∫

P

(

u· fP1 − uP1 · f
)

ds(x)

= −

∫

P

uP1 · f ds(x), (6.28)

using equations (6.1) and (6.3), and where
∫

P
u · fP1 ds(x) = 0 was shown in equation

(3.31) of chapter 3. Therefore we can simplify equation (6.27) to get,

π2 =
1

Q1





∫

A

(

uD1 · fP1 − uP1 · fD1
)

ds(x) −
∫

P

uP1 · f ds(x)



 , (6.29)

for the disturbance pressure atE2. If the particle were in the branch channel the integral

overP would be omitted from equation (6.29). To obtain an equationfor π3 when the

particle is in the branch channel, we include the particle boundary in equation (5.50) and

obtain
∫

E3

(

uP3 · fD3 − uD3 · fP3
)

ds(x) =

∫

A,P

(

uP3 · fD3 − uD3 · fP3
)

ds(x). (6.30)

The left-hand side is simplified using boundary conditions (6.12) and (6.15), to get

∫

E3

(

uP3 · fD3 − uD3 · fP3
)

ds(x) = Q3 π3, (6.31)

and where we have usedQ3 = −
∫

E3
n · uP3 ds(x). The integral overP may be re-

expressed in the same way as equation (6.28) by changing the index 1 to 3, to obtain

∫

P

(

uP3 · fD3 − uD3 · fP3
)

ds(x) = −

∫

P

uP3 · f ds(x). (6.32)

Substitution of equations (6.31) and (6.32) into (6.30) andelimination ofuD3 andfD3

onA in favour ofuD1 andfD1 gives

π3 =
1

Q3





∫

A

(

uP3 · fD1 − uD1 · fP3
)

ds(x) + ψ −

∫

P

uP3 · f ds(x)



 , (6.33)

whereψ is defined by equation (5.56). When the particle is in the mainchannel the inte-

gral overP is omitted from equation (6.33). To write the disturbance pressure equations
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concisely we introduce a function,HP , which is defined by

HP =

{

0 when the particle is in the branch channel,

1 when the particle is in the main channel,
(6.34)

so that,

π2 =
1

Q1





∫

A

(

uD1 ·fP1− uP1 ·fD1
)

ds(x) −HP

∫

P

uP1 · f ds(x)



 , (6.35)

π3 =
1

Q3





∫

A

(

uP3 ·fD1− uD1 ·fP3
)

ds(x) + ψ − (1−HP)

∫

P

uP3 ·f ds(x)



 ,

(6.36)

for the disturbance pressures at the exits. When the liney = −d bisects the particle it

is between channels. In this situation the notional boundary A will be deformed around

the particle so that it lies wholly within the main or branch channel. The unknowns in

equations (6.35) and (6.36) are the disturbance pressures,the disturbance velocities and

tractions onA and the tractions on the particle boundary.

We start the derivation of the boundary integral equation for the main channel using

equation (5.64) and include the particle boundary, to get

4πµ uD1
j (x0) = −

∫

A,C,P

fD1
i Gij ds(x) + π2

∫

E2

niGij ds(x)

+ µ

∫

A,P

uD1
i Tijk nk ds(x) + Ij(x0), (6.37)

for x0 in the fluid of the main channel, and whereI(x0) is defined by equation (5.65).

Application of the boundary integral equation (1.3.40) to the (uP1 ,σP1 ) flow over the

particle gives,

0 = −

∫

P

fP1
i Gij ds(x) + µ

∫

P

uP1
i Tijk nk ds(x), (6.38)

for x0 in the fluid of the main channel. Adding this equation to (6.37) gives

4πµ uD1
j (x0) = −

∫

A,C

fD1
i Gij ds(x) −

∫

P

fiGij ds(x) + π2

∫

E2

niGij ds(x)

+ µ

∫

A

uD1
i Tijk nk ds(x) + Ij(x0) + µ

∫

P

ui Tijk nk ds(x), (6.39)

and we have shown that the double-layer potential integral over a rigid particle is zero in
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(3.47). Therefore we may write equation (6.39) as

uD1
j (x0) =

1

4πµ






−

∫

A,C

fD1
i Gij ds(x) −HP

∫

P

fiGij ds(x)

+π2

∫

E2

niGij ds(x) + µ

∫

A

uD1
i Tijk nk ds(x) + Ij(x0)



 , (6.40)

which is valid forx0 in the fluid of the main channel. When the particle is in the branch

channel the particle integral is omitted. Equation (6.40) is also valid on the walls of the

channel and the particle boundary because the discontinuous double-layer potential is not

evaluated over eitherC or P. When the particle is in the main channel and the pole,

x0, is placed onP we useuD1 (x0) = u(x0) − uP1 (x0), to replace the left-hand side

of equation (6.40), and use equation (6.24) to writeu in terms of the translational and

rotational velocities. Whenx0 lies on the notional boundary,A, we obtain

uD1
j (x0) =

1

2πµ






−

∫

A,C

fD1
i Gij ds(x) −HP

∫

P

fiGij ds(x)

+π2

∫

E2

niGij ds(x) + µ

PV
∫

A

uD1
i Tijk nk ds(x) + Ij(x0)



 , (6.41)

by the same process as given in the derivation of equation (5.68). The derivation of the

boundary integral equation applicable to the branch channel proceeds in much the same

way as the main channel. We start by including the particle boundary in the branch chan-

nel boundary integral equation (5.72), to get

4πµ uD3
j (x0) =

∫

A

fD1
i Gij ds(x) −

∫

B,P

fD3
i Gij ds(x) + π3

∫

E3

niGij ds(x)

− µ

∫

A

uD1
i Tijk nk ds(x) + µ

∫

P

uD3
i Tijk nk ds(x) +Kj(x0), (6.42)

for x0 located in the fluid of the branch channel, and whereK(x0) is defined by (5.73).

This time we apply the boundary integral equation (1.3.40) to the(uP3 ,σP3 ) flow over

the particle, and get

0 = −

∫

P

fP3
i Gij ds(x) + µ

∫

P

uP3
i Tijk nk ds(x), (6.43)
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for x0 in the fluid of the branch channel, which we add to equation (6.42) to obtain

4πµ uD3
j (x0) =

∫

A

fD1
i Gij ds(x) −

∫

B

fD3
i Gij ds(x) −

∫

P

fiGij ds(x) + π3

∫

E3

niGij ds(x)

− µ

∫

A

uD1
i Tijk nk ds(x) + µ

∫

P

ui Tijk nk ds(x) +Kj(x0), (6.44)

and we have shown that the double-layer potential integral over a rigid particle is zero in

(3.47). Therefore we may write equation (6.44) as

uD3
j (x0) =

1

4πµ





∫

A

fD1
i Gij ds(x) −

∫

B

fD3
i Gij ds(x) − (1 −HP)

∫

P

fiGij ds(x)

+π3

∫

E3

niGij ds(x) − µ

∫

A

uD1
i Tijk nk ds(x) +Kj(x0)



 , (6.45)

Since the discontinuous double-layer potential is only present for the notional boundary,

equation (6.45) is also valid whenx0 lies on the walls of the branch channel and on the

particle boundary. Whenx0 lies onB the left-hand side is zero by no-slip, and whenx0

lies onP we writeuD3 (x0) = u(x0)−uP3 (x0). When the pole lies onA we follow the

same process as given in the derivation of equation (5.75), to get

uD3
j (x0) =

1

2πµ





∫

A

fD1
i Gij ds(x) −

∫

B

fD3
i Gij ds(x) − (1 −HP)

∫

P

fiGij ds(x)

+π3

∫

E3

niGij ds(x) − µ

PV
∫

A

uD1
i Tijk nk ds(x) +KPV

j (x0)



 . (6.46)

We now have equations for the disturbance pressures and boundary integral equations for

the main and branch channels. However, there is a problem regarding the uniqueness of

the solution as discussed in chapter 3 (page 50). To render the solution unique we add

a deflation term, which can be shown to be zero, to the integraloverP. The deflation

term is

Dj(x0) = nj(x0)

∫

P

ni fi ds(x), (6.47)

which we add to the boundary integral equations whenever theintegral overP is present.

More details on the deflation term may be found in Appendix B and Pozrikidis (2005b).

To obtain a linear system which represents the governing equations we employ the bound-

ary element method (e.g. Pozrikidis 2002a). We discretise the boundaries into elements

upon which we evaluate the boundary integral equations. We obtain a sufficient number of

equations for the unknown tractions onC andB by evaluating equations (6.40) and (6.45)

with x0 on each element of the respective boundary. Evaluation of the equations (6.41)

and (6.46) withx0 on A provides a sufficient number of equations for the disturbance
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tractions and velocities on the notional boundary. Depending on whether the particle is in

the main channel or the branch channel, we evaluate either equation (6.40) or (6.45) with

x0 on each boundary element of the particle to obtain equationsfor the particle tractions.

We have two equations for the disturbance pressures at the exits, namely equations (6.35)

and (6.36). However, we still have the unknown rotational velocity and the two compo-

nents of the unknown translational velocity. Since we have assumed that the particle is

force and torque free, we include equations (3.33) and (3.34) which state this assumption

mathematically. Therefore we have the same number of equations as unknowns and so

our system is complete. We have completed our derivation of the governing equations for

the flow of a particle through a bifurcation and now we move on to the describe how the

boundary element method is applied in order to find the numerical solution.

6.2 Numerical method

In section 5.2 of the previous chapter we discretised the governing equations for a branch-

ing channel into the linear matrix form,

A · x = b, (6.48)

whereA is the influence matrix,x is the column-vector of unknown pressures, tractions

and velocities, andb is a column-vector containing known values. As before, we discretise

the main channel walls, the branch channel walls and the notional boundary intoNC ,NB

andNA equally-sized straight elements respectively. We also discretise the particle into

NP equally-sized straight elements. On each element we set theunknown disturbance

traction to a constant 2-vector, which we labelfD1
r on therth element ofA andC, fD3

r

on therth element ofB andf r on therth element ofP. We also set the disturbance

velocity touD1
r on therth element ofA. The vector of unknowns is defined by

x =
[

F D
C F D

A F D
B UD

A π2 π3 FP V Ω
]T

(6.49)

where the vectorsF D
C , F D

A , F D
B andUD

A are defined in section 5.2,FP is defined by

FP =
[

fx,1 fy,1 · · · fx,NP
fy,NP

]

, (6.50)

and whereV andΩ are the translational and rotational velocities. To discretise the distur-

bance pressure equations, we write the equations as

Q1 π2 +

∫

A

(

uP1 ·fD1− uD1 ·fP1
)

ds(x) + HP

∫

P

uP1 · f ds(x) = 0, (6.51)

Q3 π3 +

∫

A

(

uD1 ·fP3− uP3 ·fD1
)

ds(x) + (1−HP)

∫

P

uP3 ·f ds(x) = ψ. (6.52)
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We need only concentrate on the particle integral because the remaining terms have been

discretised in equations (5.87) and (5.89). The integral over the particle in equation (6.51)

is approximated by

∫

P

uP1 · f ds(x) ≈
NP
∑

r=1

uP1 (xm,r) · f r lr, (6.53)

wherexm,r is the mid-point of therth element andlr is its length. By defining

UP1
P

=
[

uP1 (xm, 1) l1 · · · uP1 (xm, NP
) lNP

]

, (6.54)

we may write
∫

P

uP1 · f ds(x) ≈ UP1
P

· FP , (6.55)

and so equation (6.51) can be expressed in the form,

[

0 UP1
A

0 −F P1
A

Q1 0 HP UP1
P

0 0
]

· x = 0, (6.56)

whereUP1
A

andF P1
A

are defined by equations (5.84) and (5.85). To discretise theequation

for π3 we define

UP3
P

=
[

uP3 (xm, 1) l1 · · · uP3 (xm, NP
) lNP

]

, (6.57)

so that equation (6.52) may be written as

[

0 −UP3
A

0 −F P3
A

0 Q3 (1−HP) UP3
P

0 0
]

· x = ψ, (6.58)

whereUP3
A

andF P3
A

are defined by equations (5.90) and (5.91), and whereψ may be

calculated exactly from equation (5.57) whenA is straight. However, theA boundary

may now be deformed to facilitate the passage of the particleinto the branch channel.

When this occurs we approximateψ using

ψ ≈

NA
∑

r=1

(

uP3 (xm,r) · f
P1 (xm,r) − uP1 (xm,r) · f

P3 (xm,r)
)

lr. (6.59)

To discretise the boundary integral equations, we start with the main channel and write

equation (6.40) as

∫

A,C

fD1
i Gij ds(x) + HP

∫

P

fiGij ds(x) − π2

∫

E2

niGij ds(x)

− µ

∫

A

uD1
i Tijk nk ds(x) = Ij(x0), (6.60)
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which is valid forx0 onC, sinceuD1 = 0. The only term which we have not previously

discretised is the single-layer potential overP, which we approximate by

∫

P

fiGij ds(x) ≈ IG
P,j(x0) · F

P , (6.61)

where

IG
P,j(x0) =

[

G̃xj,1(x0) G̃yj,1(x0) · · · G̃xj,NP
(x0) G̃yj,NP

(x0)
]

(6.62)

andG̃ij,r is the integral of the Green’s function over therth element,Elr, and is defined

by

G̃ij,r(x0) =

∫

Elr

Gij(x,x0) ds(x). (6.63)

Therefore we can write equation (6.60) in the matrix form,

[

IG
C,j(x0) IG

A,j(x0) 0 −µ IT
A,j(x0) −IG

E2,j(x0) 0 HPIG
P,j(x0) 0 0

]

·x = Ij(x0),

(6.64)

by augmenting equation (5.109) withHP IG
P,j(x0). When we repeatedly evaluate (6.64)

with x0 placed at the mid-point of each ofC’s boundary elements, we obtain

[

CC CA 0 CT
A CE2 0 HPCP 0 0

]

· x = CI , (6.65)

whereCP corresponds to theNC pairs ofIG
P,j(x0), and the remaining terms are defined

in the derivation of equation (5.109). By following the sameprocess withx0 placed on

the walls ofB and the notional boundary,A, we obtain























CC CA 0 CT
A CE2 0 HP CP 0 0

AC Am
A 0 A

m,T
A

AE2 0 HPAm
P 0 0

0 BA BB BT
A 0 BE3 (1 −HP)BP 0 0

0 A
b
A AB A

b,T
A

0 AE3 (1 −HP)Ab
P 0 0

0 UP1
A

0 −F P1
A

Q1 0 HP UP1
P

0 0

0 −UP3
A

0 −F P3
A

0 Q3 (1 −HP)UP3
P

0 0























· x =























CI

AI

BK

AK

0

ψ























,

(6.66)

whereAm
P andAb

P correspond to theNA pairs ofIG
P,j(x0) with x0 onA, BP corresponds

to theNB pairs ofIG
P,j(x0) with x0 onB, and the remaining terms are all defined in section

5.2 of the previous chapter. Whenx0 lies on the particle boundary and the particle is in

the main channel we write the boundary integral equation (6.40) as

∫

A,C

fD1
i Gij ds(x) − µ

∫

A

uD1
i Tijk nk ds(x) − π2

∫

E2

niGij ds(x) +

∫

P

fiGij ds(x)

+ 4πµ uj(x0) = Ij(x0) + 4πµ uP1
j (x0), (6.67)
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which by writingu(x0) = V + Ω k ∧ (x0 − xc), we discretise to

[

IG
C,j(x0) IG

A,j(x0) 0 −µ IT
A,j(x0) −IG

E2,j(x0) 0 IG
P,j(x0) Iu,j IΩ,j(x0)

]

· x

= Ij(x0) + 4πµ uP1
j (x0), (6.68)

whereIu,j andIΩ,j(x0) are defined by

Iu,j = 4πµ
[

δjx δjy

]

, (6.69)

IΩ,j(x0) = 4πµ ǫzlj (x0,l − xc,l). (6.70)

Evaluation of (6.68) on each boundary element ofP leads toNP pairs of equations which

we write as

[

PC PA 0 P
T
A PE2 0 PP Pu PΩ

]

· x = P∗
I , (6.71)

where each element corresponds to theNP pairs of elements in equation (6.68) andP∗
I

corresponds to theNP pairs ofIj(x0) + 4πµ uP1
j (x0). Equation (6.71) is only included

in the linear system when the particle is in the main channel.When the particle is in the

branch channel we write the boundary integral equation (6.45) as

−

∫

A

fD1
i Gij ds(x) +

∫

B

fD3
i Gij ds(x) + µ

∫

A

uD1
i Tijk nk ds(x) − π3

∫

E3

niGij ds(x)

+

∫

P

fiGij ds(x) + 4πµ uj(x0) = Kj(x0) + 4πµ uP3
j (x0), (6.72)

for x0 on the particle boundary. Usingu(x0) = V + Ω k ∧ (x0 − xc), we discretise

equation (6.72) to get

[

0 −IG
A,j(x0) IG

B,j(x0) µ IT
A,j(x0) 0 −IG

E3,j(x0) IG
P,j(x0) Iu,j IΩ,j(x0)

]

· x

= Kj(x0) + 4πµ uP3
j (x0). (6.73)

Evaluation of (6.73) on each boundary element ofP leads toNP pairs of equations which

we write as

[

0 PA PB PT
A 0 PE3 PP Pu PΩ

]

· x = P∗
K , (6.74)

where each element corresponds to theNP pairs of elements in equation (6.73) andP∗
K

corresponds to theNP pairs ofKj(x0) + 4πµ uP3
j (x0). Equation (6.74) is only included

in the linear system when the particle is in the branch channel.

To complete the linear system we require the discretisationof the force and torque

equations which ensure that the particle remains force and torque free. We may write
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down the zero force condition with reference to equation (3.33), which is

LP · F P = 0, (6.75)

whereLP is defined in equation (3.76). The zero torque condition is stated by (3.34),

which is

TP · F P = 0, (6.76)

whereT P is defined in equation (3.78).

From the discretisations of the boundary integral equations, the pressure equations

and the force and torque equations we form the linear system,
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, (6.77)

when the particle is in the main channel. When the particle isin the branch channel we

have
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. (6.78)

We recover the linear system given in equation (5.121) from equations (6.77) and (6.78)

by omitting the last three columns of the matrix and the last three rows from the matrix

and the column vectors.
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Finally we must add the discretisation of the deflation term to the appropriate subma-

trix to obtain a unique solution. The discretisation of the deflation term is

nj(x0)

∫

P

ni fi ds(x) ≈ nj(x0)

NP
∑

r=1

ni,r fi,r lr

= nj(x0)DP · FP , (6.79)

where

DP =
[

nx,1 ny,1 · · · nx,NP
ny,NP

]

. (6.80)

We addnj(x0)DP to CP , Am
P andPP in (6.77), and toBP , Ab

P andPP in (6.78).

The size of the ‘influence’ matrix in equations (6.77) and (6.78) is (4NA + 2NB +

2NC + 2NP + 5) × (4NA + 2NB + 2NC + 2NP + 5). In our simulations we took

NA = 200, NB = 400, NC = 800 andNP = 316 for a particle of radiusd/2. When we

changed the size of the particle we altered the number of boundary elements to maintain a

constant element length. We found this number of boundary elements to be an acceptable

compromise between accuracy and calculation time. For example, when the number of

the boundary elements was doubled the pressures at the exitschanged by no more than

0.07% for a particle of radius0.5 d located atxc/d = (6, 0) in a branching channel with

α = π/2 andQ = 0.5. The translational velocity changed by less than0.02% and the

rotational velocity changed by0.3%. Once we had calculated the influence matrix and the

vector of known values we solved the system using GMRES (e.g.Saad 2003). We used an

iterative solver due to the size of the influence matrix and the fast execution speed of the

iterative method. The computation time of the solution to the linear system increased by

just over4 times when the number of boundary elements was doubled. Although this is a

significant increase, it should be noted that the iterative scheme was around10 times faster

than Gaussian elimination. A further time saving was made bystarting the next iteration

with the solution to the previous iteration. We can then calculate the disturbance velocity

using either equation (6.40) or (6.45) depending on the location of the point. Addition of

the pertinent Poiseuille velocity provides the total velocity at the point.

We move the particle using the translational and rotationalvelocities from the solution

of the linear system. Once the particle has been moved the master linear system is rebuilt

and resolved. To move the capsule we integrated the kinematic equation,

dxr

dt
= u(xr), (6.81)

wherexr is the position vector of therth capsule node and the values ofu(xr) are ob-

tained from equation (6.24). We used the second order Runga-Kutta method (e.g. Atkin-

son 1978) to integrate (6.81) where we took an initial time step of0.01 d/U0. We found

that using a smaller time step caused no significant change inthe path taken by the parti-

cle. In chapter 3 we showed that the disturbance velocity decayed to less than1% of its

maximum value at a distance of 3 particle radii. Therefore wedid not allow the distance
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between the particle and the entrance or the exits to become less than this distance.

6.3 Validation

For the validation and the presented results we truncated the channels so thatl = 12 d

andL = l/2. Once again we found this truncation length sufficient for the disturbance

velocity to decay and for the disturbance tractions to attain a steady value. Although

the mathematical model is derived for a particle with an arbitrary shape, we restrict our

attention to a circle of radiusa, which is placed with its centroid atxc = (xc, yc). In

chapter 3 we only requiredyc to parameterise the position, however now that the particle

is free to move into the branch channel we require both coordinates. From the previous

chapter we saw that the important parameters are the ratio ofchannel heights,δ = D/d,

the branch angle,α and the flux ratio,Q. We useUP1
0 as our velocity scale,d as our

length scale andµUP1
0 /d as the scale for pressure and traction. In summary our parameter

space is,

ρ =
a

d
, (6.82)

xc = (xc, yc), (6.83)

δ =
D

d
, (6.84)

together withα andQ. In this section and the results we only considerα = π/2 and

D = d.

As a check on the numerical implementation, we confirmed thatthe discretised form

of the integral identities (1.3.34) and (1.3.31) were satisfied to within an acceptable toler-

ance. Our next check on the validity of the numerical simulation was the introduction of a

small particle withρ = 0.01 at several different locations throughout the channels where

the flux ratio,Q = 0.5. A particle of this size should hardly affect the flow and so the

results can be checked against those in the previous chapter, where we should obtain exit

pressures very close to those for a fluid-filled branching channel. The capsule velocity

should also be extremely close to the local fluid velocity. These checks help to validate

the numerical code for the branching channel when it contains a particle. We placed the

small particle at a distance of2d from the entrance and the exits and on the centreline of

the respective channel. The centroid locations were(2, 0)d, (10, 0)d and(6,−5)d. For

a fluid-filled branching channel the exits pressures werep(E2) = −17.294µUP1
0 /d and

p(E3) = −18.227µUP1
0 /d. For each simulation involving the small particle, we found

p(E2) = −17.292µUP1
0 /d andp(E3) = −18.223µUP1

0 /d, which represent an error of

0.01% and0.02% respectively. For each particle we found the translationalvelocity to be

within 0.1% of its expected value. We checked the velocity error at the entrance and exits

for each particle location and found that the error was no more than0.1% atE1, 0.05% at

E2 and0.2% atE3. We also place a particle withρ = 0.01 at(6, 0)d and obtained identical

results for the exit pressures and the velocity error at the ends.
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Now that we have checked the model against the fluid-filled branching channel, we

check our model against the straight channel geometry of chapter 3. In the previous

chapter we showed that the disturbance due to the branch entrance decayed rapidly as we

moved away from the branch. Therefore we expect that a particle placed sufficiently ‘far’

from the branch entrance will translate with the same velocity as in the straight channel

case. We placed a particle of radiusρ = 0.5 at each of the locations(2, 0)d, (10, 0)d and

(6,−5)d, and calculated the translational velocity of the particle. When the particle was

placed at(2, 0)d it translated with velocity0.889UP1
0 i, whereas in a straight channel the

speed was0.888UP1
0 . Close toE2 we found that the particle’s velocity was0.444UP1

0 i

which is the expected value sinceQ = 0.5. For the particle close toE3 we expect the

translational velocity to be−0.444UP1
0 j, where we computed−0.445UP1

0 i. In each

case the velocity error at the nearest entrance or exit was nomore than0.1%.

As in previous chapters we validated the numerical solutionby comparing the solution

obtained for a reference configuration with the solution forconfigurations with twice as

many boundary elements and longer channels. The reference configuration hadl = 12 d,

L = l/2, α = π/2, D = d and a particle of radiusd/2 located at(l/2, 0)d. We found

excellent agreement in all cases. For example, the velocities and exit pressures were all

within 0.3% of the values for the reference configuration.

Finally to illustrate the decay of the velocity in the main and branch channels, we

place a particle of radiusρ = 0.5 at (6, 0)d and calculate the velocity along the centreline

of the main channel. We also place a particle of the same size in the branch channel

at (6,−2)d and compute the velocity along the centreline of the branch channel. The

velocity components are shown in figures 6.2 (a) and 6.2 (b). The gap in both profiles

corresponds to the particle location where the velocity wasnot calculated. In both figures

we can see the velocity disturbance decaying rapidly as we move away from the particle

towards the entrance or the exits. The error in the velocity is no more than0.2% at any

one ofE1, E2 or E3.

We have therefore satisfied ourselves that the numerical model for a rigid particle

in a branching channel flow is performing as per our assumptions. However we have not

discussed the motion of a particle, and in particular the deformation ofA when the particle

migrates into the branch channel. In the next section we lookat several configurations for

the deformed notional boundary and select a method by which we will deform the notional

boundary during a simulation.

6.4 Deformation of the notional boundary

When the particle moves from the main channel into the branchchannel the shape of the

notional boundary that separates the main channel from the branch channel is deformed

to facilitate the transition. A straight dividing boundaryis the default or reference con-

figuration. When a particle translates along the channel andapproachesA, the notional

boundary will deform. However we wish to deformA in such a way that we maintain the

accuracy of the numerical solution. We investigated four shapes forA:
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Figure 6.2 : Velocity profiles in a channel withD = d, α = π/2 andQ = 0.5.
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i. A ‘goal’ shape with vertical straight lines going in the positive y-direction from the

corners of the branch entrance to the centreline of the main channel, which were

then connected by a horizontal straight line.

ii. A ‘V’ shape with straight lines leaving the corners of thebranch entrance and meet-

ing at the intersection of the branch channel centreline andy = −2d.

iii. KeepingA in its reference configuration as much as possible and only deforming

A under the particle so that the shape of the deformed portion of A traces the

particle shape.

iv. KeepingA in its reference configuration as much as possible and deforming the

boundary over the particle so that the shape of the deformed portion ofA traces the

particle shape.

In the last two the minimum distance betweenA and the particle is0.1 d. We found that

this distance provides sufficient separation between the boundaries ofA andP such that

the integral identities of Stokes flow given in equations (1.3.34) and (1.3.31) are satisfied

to within a satisfactory numerical tolerance.

To quantify the differences between the configurations we placed a particle of ra-

dius ρ = 0.2 in a branching channel withα = π/2 andQ = 0.5. To place the par-

ticle above, on and below the reference configuration we setxc/d = (6.65,−0.795),

xc/d = (6.65,−1) andxc/d = (6.65,−1.205) respectively. All of the configurations are

shown in figures 6.3, 6.4 and 6.5 for the particle in the three locations. The only param-

eters which varied between the figures are the location of thecentroid and the number of

boundary elements onA, where we increased the number of elements on the deformedA

to maintain a constant element length onA.

We calculated the particle’s instantaneous translationalvelocity together with the exit

pressures atE2 andE3 for each configuration. The calculated values are shown in table

6.1. The units of velocity and pressure areUP1
0 andµUP1

0 /d respectively. In the table ‘not

applicable’ refers to the fact thatAwould intersect the particle boundary. The velocity and

the pressures should be identical for each of the particle positions, and any discrepancies

should be due to inaccuracies in the numerical solution arising from the different shapes

of A. As we can see from the table, although there are differencesbetween the particle’s

velocity and the exit pressures for the different configurations, they are very minor.

In the case when the particle is above and close to either corner of the branch entrance

the ‘goal’ shaped configuration may not be appropriate. Similarly the ‘V’ shaped bound-

ary could become compromised for a particle travelling close to the wall of the branch

channel. Therefore we choose to deformA using shape(iii) as the particle draws near.

If the particle moves further into the branch we will continue to deformA around the

particle such that no boundary element ofA is closer to the particle than our pre-defined

minimum value. When the particle’s centroid crossesy = −d we will flip A so that the

particle moves into the branch channel and the shape ofA matches that of shape(iv). As

the particle moves further into the branch we will continue to deformA until the particle
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Particle centroid Configuration ofA Particle velocity p(E2) p(E3)

(6.65,−0.795)d Straight (0.19819,−0.13913) −17.600 −18.513
Shape(i) (0.19819,−0.13900) −17.596 −18.504
Shape(ii) (0.19809,−0.13899) −17.597 −18.505
Shape(iii) (0.19817,−0.13913) −17.600 −18.513
Shape(iv) (0.19823,−0.13935) −17.604 −18.523

(6.65,−1)d Straight Not applicable
Shape(i) (0.06712,−0.18359) −17.605 −18.465
Shape(ii) (0.06700,−0.18393) −17.615 −18.484
Shape(iii) (0.06704,−0.18416) −17.619 −18.496
Shape(iv) (0.06705,−0.18423) −17.620 −18.497

(6.65,−1.205)d Straight (0.02184,−0.22889) −17.440 −18.455
Shape(i) (0.02203,−0.22545) −17.364 −18.283
Shape(ii) Not applicable
Shape(iii) (0.02187,−0.22883) −17.439 −18.452
Shape(iv) (0.02185,−0.22885) −17.440 −18.453

Table 6.1 : Particle velocity and exit pressures for different configurations ofA in a branching
channel containing a particle withρ = 0.2 positioned at three different locations.

is wholly belowy = −d (plus some tolerance) whereupon we will changeA back into

its reference configuration. The evolution of the deformation of the notional boundary is

shown in figure 6.6.
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Figure 6.3 : Section of the flow domain showing the notional boundary configurations for a parti-
cle of radiusρ = 0.2 and centroid atxc/d = (6.65,−0.795).
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Figure 6.4 : Section of the flow domain showing the notional boundary configurations for a parti-
cle of radiusρ = 0.2 and centroid atxc/d = (6.65,−1).
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Figure 6.5 : Section of the flow domain showing the notional boundary configurations for a parti-
cle of radiusρ = 0.2 and centroid atxc/d = (6.65,−1.205).
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Figure 6.6 : Dividing boundary configurations during particle migration into the branch channel.
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6.5 Results

In our results we restrict our attention to a particle of sizeρ = 0.5 which is initially

located atxc/d = (2, 0) in a branching channel withD = d andα = π/2. We ran

three simulations withQ = 0.1, 0.5 and0.9 where we expect the particle in theQ = 0.1

simulation to pass into the branch channel thereby deforming the notional boundary in the

way described in the previous section. We do not exhaustively test the parameter space

here because our focus is on testing the algorithm by which wedeformA in preparation

for the next chapter where we will more fully explore the effect of the parameters on a

flexible capsule in a branching channel.

In figure 6.7 we plot the trajectories of the centroids of the capsules for the different

flux ratios. WhenQ = 0.1 the particle migrates into the branch channel as expected and

we can see that the particle only travels a short distance in the branch channel before it is

travelling parallel to the walls. This is to be expected fromthe results of the previous chap-

ter where we showed that the disturbance due to the branch entrance decayed within2d of

the branch entrance, as measured along the centreline. The particle then travels along the

branch channel towardsE3 slightly to the right of the branch channel’s centreline. When

we set the flux ratio toQ = 0.5, the particle travels towards the right-hand corner of the

branch entrance. The simulations terminate when part of theparticle boundary moves

outside of the flow domain due to the constant time-step used in the numerical integration

method employed to move the particle. Brenner (1961) showedthat a three-dimensional

particle settling towards an infinite plane only does so after an infinite time. It seems

plausible that the same result applies in two-dimensions since the fluid can now only es-

cape in two directions. However we must take the sharp cornerof the right-hand entrance

to the branch channel into consideration. Cawthorn and Balmforth (2010) consider the

lubrication flow caused by a wedge falling under gravity towards a plane surface in a two-

dimensional Stokes flow and find that contact occurs in finite time. In light of Cawthorn

and Balmforth (2010) we may consider the particle to be a locally smooth surface and the

corner of the branch entrance to be a wedge by changing the reference frame, and surmise

that the particle may indeed touch the corner. WhenQ = 0.9 the particle travels towards

the exitE2 and is dragged down towards the branch channel when it is above the branch

entrance. Once the particle has passed the branch entrance it moves parallel to the walls

of the main channel, slightly below the centreline due to thedeflection experienced as it

passed over the branch entrance.

In figure 6.8 we show the evolution of the normalised exit pressures atE2 andE3 as

the particle travels along the channel. We normalise the pressure by dividing the varying

pressure by the constant exit pressures obtained for the same configuration but without

the particle, and label the normalised pressures asp̂(E2) andp̂(E3). The evolution of the

normalised exit pressures for theQ = 0.1 case are shown in figure 6.8 (a). For reference,

the pressures atE2 andE3 are−12.70µUP1
0 /d and−23.59µUP1

0 /d respectively. At the

start of the simulation, when the particle is located atxc/d = (2, 0), the magnitude of the

pressures atE2 andE3 have increased by2.5% and1.3% respectively, over the pressures
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Figure 6.7 : A portion of the flow domain showing the centroid trajectories for a rigid particle
with ρ = 0.5, α = π/2 initially located atxc/d = (2, 0) for Q = 0.1, 0.5 and0.9.

for a fluid-filled branching channel. The larger increase in the magnitude of the exit

pressure atE2 is due to both pressures’ magnitude increasing by approximately the same

amount and the exit pressure atE3 being almost twice the pressure atE2. The maximum

increase in̂p(E2) is 7.3% which occurs att = 5.04 d/UP1
0 when the particle’s centroid

is located atxc/d = (5.98,−0.87) and just over40% of the particle’s area is below the

branch entrance aty/d = −1. As the particle moves further into the branch channel the

magnitude of the pressure atE2 reduces until it is slightly less than the pressure when a

particle is not present, implying that the disturbance caused by the particle in the branch

channel ‘helps’ the fluid in the main channel to maintain the flux rate atE2. The maximum

increase in̂p(E3) is 8.7% which occurs at the earlier time oft = 4.35 d/UP1
0 when the

particle’s centroid is located atxc/d = (5.70,−0.41) and the particle is wholly in the

main channel.

The normalised pressures for theQ = 0.5 simulation are shown in figure 6.8 (b).

In a fluid-filled branching channel with the same parameters the exit pressures are equal

to −17.29µUP1
0 /d at E2 and−18.23µUP1

0 /d at E3. At the start of the simulation the

magnitude of both of the exit pressures are1.8% more than when the particle is absent.

As the simulation progresses, the magnitude of the pressures increases until the simulation

terminates when the particle is incident upon the right-hand corner of the branch entrance.

The normalised pressure atE3 increases more rapidly aftert = 3 d/UP1
0 but as the particle

gets closer to the corner, the normalised pressure increases become almost equal.

The evolution of the normalised disturbance pressure for the case whenQ = 0.9 is

shown in figure 6.8 (c), where the particle travels to the exitof the main channel and is

deflected slightly from its path as it passes close to the branch entrance. For a branching
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channel without a particle the exit pressures are−21.90µUP1
0 /d and−12.86µUP1

0 /d at

E2 andE3 respectively. The increase to the normalised exit pressureof the main channel

remains between1% and2% for the duration of the simulation, with the increase at the

start and end equal to1.5%. The normalised exit pressure atE3 increases to a maximum of

4.7% at t = 4.06 d/UP1
0 when its centroid is atxc/d = (5.56,−0.11), before decreasing

to unity as the particle continues its journey toE2.

Finally we will show the evolution of the particle’s velocities for the three simulations.

In figure 6.9 (a) we plot the magnitude of the translational velocity for the particle over the

course of each simulation. The horizontal dotted line at|u| = 0.888UP1
0 corresponds to

the translational velocity of a particle located on the centreline of a straight channel. For

a particle offset by0.07 d from the centreline, as in the final position for theQ = 0.1 and

Q = 0.9 cases, the translational velocity in a straight channel is0.883UP1
0 . Therefore we

also include a horizontal dotted line at90% of this value, which is0.795UP1
0 , to indicate

the expected velocity as the particle approachesE2 or E3, where the90% reflects the

flux ratio. At the start of each simulation we can see that the magnitude of the particle’s

velocity matches the predicted value of0.888UP1
0 . WhenQ = 0.1 or Q = 0.9 the

velocity is equal to the expected value of0.795UP1
0 as the particle approaches the exit.

It is interesing to note that the velocity attains a lower value in theQ = 0.9 case than

in theQ = 0.1 case, and it also takes longer to achieve its downstream steady velocity.

This may be explained by the distance each particle has to travel from the point where

the centroid lies at approximately(5, 0)d. WhenQ = 0.9 the particle has to travel2d

to pass over the bifurcation. However, whenQ = 0.1 the particle has to travel a shorter

distance of approximately,π d/2, thereby allowing the particle to attain its unidirectional

motion sooner. In all simulations the magnitude of the velocity falls below the lower

of the predicted downstream steady velocities. Since the time-stepping method moved

the particle out of the flow domain whenQ = 0.5, we were unfortunately unable to

compare the decrease in the particle’s velocity with that predicted by lubrication theory.

The rotational velocity of the particle is shown in figure 6.9(b) for each of the simulations,

where a positive value indicates anti-clockwise rotation.The rotational velocity in the

Q = 0.5 andQ = 0.9 simulations fluctuates until either the simulation terminates as

in the former, or it attains a constant rate of rotation as in the latter. In the simulation

with Q = 0.1 the particle attains a maximum rotational speed of−0.287UP1
0 /d at t =

4.2 d/UP1
0 , which is close to the time where the disturbance pressure atE3 attains its

maximum. From inspection of the exit pressure atE3 in figure 6.8 (a) and the rotational

velocity in figure 6.9 (b) for the caseQ = 0.1, we can see that the peak in the rotation

velocity coincides with the peak inπ3. However it is uncertain whether the peak in the

disturbance pressure is caused by the relatively quick rotational velocity or the particle’s

location. The particle in the simulation withQ = 0.5 slows as it approaches the corner.
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Figure 6.8 : Normalised pressures for a rigid particle withρ = 0.5, α = π/2 initially located at
xc/d = (2, 0) for Q = 0.1, 0.5 and0.9.
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6.6 Discussion

In this chapter we have considered a pressure-driven flow in achannel with a side branch

which contains a rigid neutrally buoyant particle. We prescribed the flux rates at the

entrance and exits. We formulated the problem using the boundary integral method and

found its solution numerically using the boundary element method. The solution provides

the tractions on the particle boundary, the disturbance tractions on the channel walls and

the pressure drops between the entrance and both exits.

We have tested the numerical model for a branching channel containing a rigid particle

and obtained satisfactory accuracy. For a small particle weobtained the same results as for

a fluid-filled branching channel. Far from the branch entrance we obtained results were

in agreement with the results for a rigid particle in a straight channel, which confirms our
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assumption that the disturbance due to the branch entrance decays as we move towards the

entrance or exits. We have discussed various methods of deforming the notional boundary

to allow the particle to migrate into the branch channel, andshowed that the pressures and

particle velocities vary only slightly between the different configurations. To allow the

particle to pass close to the corners of the branch entrance we chose to deformA so that it

remains mostly straight except in the vicinity of the particle where the notional boundary

is deformed to closely fit the particle.

We performed simulations which allowed a particle to translate along the channel

to both exits and showed that the results when the particle was close to the entrance or

the exits match the straight channel model. We showed how theexit pressures fluctuate

during the course of each simulation and found that the maximum pressure atE3 occurs

at roughly the same time as the particle experiences the greatest angular velocity. We

also found that the magnitude of the translational velocityfalls below the entrance or exit

speed when the particle is close to the branch entrance. Oncethe particle has passed

the branch entrance, the particle speed increases until it attains the value predicted by

the straight channel model. Therefore the disturbance effect of the branch entrance is

such that it slows the particle and in the case when the particle moves into the branch

considerably increases its angular velocity. When we set the flux ratio such that half the

fluid enters each downstream channel, the particle moves onto the sharp right-hand corner

of the branch entrance and the simulation terminates.





Chapter 7

The motion of a flexible capsule

through a bifurcation

In the previous chapter we studied the motion of a rigid particle through a bifurcation. In

this chapter we replace the rigid particle with an elastic capsule and examine the motion

of the capsule and its deformation under various flow conditions. The derivation of the

governing equations brings together the analysis in chapters 4 and 5 regarding the defor-

mation of a flexible capsule in a straight channel and the fluidflow through a bifurcation

respectively. The branch entrance and the capsule cause a disturbance to the upstream and

downstream unidirectional flows which we describe mathematically using the boundary

integral method. The governing equations describe the velocity field throughout the flow

domain together with the velocity of the capsule boundary and the pressures at the exits to

the computational domain. Application of the boundary element method to the governing

equations yields a set of discretised equations which may bewritten as a linear matrix

system and solved by standard methods.

7.1 Problem statement

We consider the motion of a fluid with viscosityµ in an infinite straight-walled channel

of width 2d. A branch channel of width2D is attached to the lower wall of the channel at

an angleα. A disturbance to the upstream and downstream flows is causedby the branch

entrance and by the presence of a deformable capsule, which moves with the flow. The

geometry is shown in figure 7.1 and comprises the walls of the main channel,C, the walls

of the branch channel,B, the capsuleP and a notional boundary,A, which separates

the main channel from the branch channel. All unit normal vectors, n, point into the

fluid, and the unit normal onA points into the fluid of the main channel. We assume

that the disturbance caused by the capsule and the branch entrance decays upstream and

downstream from the source of the disturbance so that the flowfar from the disturbance

is described by classical unidirectional Poiseuille flow. Since we will require channels of

finite length in the numerical method, we truncate the channels so that the main channel

has lengthl and the branch channel has lengthL, as measured along their centrelines and



184 The motion of a flexible capsule through a bifurcation

E1 E2

E3

C

B

A

P

l

L

2d

2D

x

y

X

Y

n

n

n n
n

n

n

α

µ

λµ

Figure 7.1 : A straight-walled branching channel which contains a fluid of viscosity µ and a
deformable capsule containing a fluid of viscosityλµ.

illustrated in figure 7.1. We position the branch channel so that its centreline intersects

the mid-point of the lower wall of the main channel,(l/2,−d). We label the entrance

of the main channel asE1, the exit of the main channel asE2 and the exit of the branch

channel asE3. The entrance and exit in the main channel are located atx = 0 andx = l

respectively. In the branch channel we introduce local coordinates,(X,Y ), which have

their origin on the centreline atE3 as indicated in figure 7.1. The mappings between the

(x, y) coordinates of the main channel and the(X,Y ) coordinates of the branch channel

are given in equation (5.1) on page 114. The unit vectors in the main channel arei and

j, which are mapped to their branch channel equivalentsi′ andj ′ using equation (5.3).

The particle and the branch entrance disturb the flow but atE1, E2 andE3 we assume that

the disturbance has decayed and the flow has settled to Poiseuille flow, characterised by

the streamwise flux rate at the pertinent entrance or exit. Asin the previous two chapters

we label the flux rateQr at each ofEr wherer = 1, 2 or 3. The equations for the fluxes

and the Poiseuille velocities are given in equations (5.4)–(5.11) of chapter 5. We label the

ambient fluid in the channel as fluid 1 and the fluid inside the capsule as fluid 2.

Our aim is to compute the velocity field throughout the flow domain, the velocity field

on the capsule boundary and the additional pressure drop between the entrance and both

exits due to disturbance caused by the branch entrance and the capsule. To calculate the

additional pressure drop due to the capsule we may compare the pressure drop calculated

here with the value obtained in chapter 5 for a fluid-filled branching channel under the

same flow parameters. We assume that the Reynolds number of the flow is very small so

that the flow in the channels may be described using the linearequations of Stokes flow
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given in equation (1.3.4). In the usual way, we decompose thevelocity field,u(1), and

the traction field,f (1), into background Poiseuille and disturbance components, which we

identify using the superscriptsPr andDr respectively, and where ther indicates to which

of Er the quantity applies. The superscript(1) on the velocity and traction indicates that

the quantity applies to the ambient fluid in the channel. The decompositions in the main

and branch channels are given by,

u = uP1 + uD1 = uP2 + uD2 , (7.1)

f = fP1 + fD1 = fP2 + fD2 , (7.2)

u = uP3 + uD3 , (7.3)

f = fP3 + fD3 , (7.4)

where the first pair of equations apply in the main channel andthe second pair apply in

the branch channel. On the notional boundary,A, we impose continuity of the velocity

and traction fields such that

u = uP1 + uD1 = uP2 + uD2 = uP3 + uD3 (7.5)

f = fP1 + fD1 = fP2 + fD2 = fP3 + fD3 , (7.6)

where we define all tractions with reference to a unit normal vector which points into the

main channel. On the channel walls we haveu = 0 by no-slip and no-penetration. On

the walls of the main channel,C, we have

uP1 = uD1 = uP2 = uD2 = 0, (7.7)

and on the walls of the branch channel,B, we have

uP3 = uD3 = 0. (7.8)

In chapter 4 we discussed the decay of the disturbance velocity due to a flexible capsule

in a straight channel. We cited the work of Sugihara-Seki (1993), Gaver and Kute (1998),

Mortazavi and Tryggvason (2000) and Cortez (2002) and showed that the disturbance

velocity in our calculations did indeed decay rapidly as we moved away from the capsule.

Typically we found that the disturbance velocity had decayed to1% of its maximum value

at a distance of three capsule radii from the capsule centroid. The effect of the branch

entrance was calculated in chapter 5 and we showed that the flow velocity is within1% of

its appropriate Poiseuille velocity at a distance of3d from the branch entrance. Therefore

based on the previously cited works, and the evidence in chapters 4 and 5, we assume

uD1 = 0, and fD1 = −π1 n atE1, (7.9)

uD2 = 0, and fD2 = −π2 n atE2, and (7.10)

uD3 = 0, and fD3 = −π3 n atE3 (7.11)
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whereπ1, π2 andπ3 are the constant disturbance pressures at the entrance, theexit to

the main channel and the exit to the branch channel respectively. Since we are interested

in the pressure drop between the entrance and the exits we setπ1 = 0 without loss of

generality. To calculate the total pressure at the entranceor exits we add the disturbance

pressure to the corresponding Poiseuille pressure. The Poiseuille pressures in the main

channel are given by

pP1(x) = −G1 x, (7.12)

pP2(x) = −G2 x, (7.13)

wherepP1 is the Poiseuille pressure of the entrance Poiseuille flow with constant gradient

−G1, andpP2 is the Poiseuille pressure of the Poiseuille flow defined withrespect to the

flux at E2 and with constant gradient−G2. We have defined both Poiseuille pressures to

be zero atE1. The pressure gradient constants,G1 andG2, are related to the Poiseuille

centreline velocity and the flux rate by,

G1 = 2
µUP1

0

d2
=

3

2

µQ1

d3
(7.14)

G2 = QG1, (7.15)

where we have defined the flux ratio,

Q =
Q2

Q1
, (7.16)

to measure the proportion of the fluid which enters the computational domain atE1 and

exits fromE2. Equation (7.15) may be used to show,

uP2 = QuP1 , fP2 = QfP1 , and pP2 = QpP1. (7.17)

In the branch channel the Poiseuille pressure is

pP3(X) = −G3X (7.18)

whereG3 = 2µUP3
0 /D2 = 3µQ3/2D

3. When the constant pressure gradient−G3

is applied to the branch channel the flux atE3 is Q3. In the main channel, the pressure

difference between the entrance and the exit,∆p2, is given by

∆p2 = p(E1) − p(E2)

=
(

pP1(E1) + π1

)

−
(

pP2(E2) + π2

)

= G2 l − π2, (7.19)
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by equations (7.12) and (7.13), and between the entrance andthe exit of the branch chan-

nel,∆p3, by

∆p3 = p(E1) − p(E3)

=
(

pP1(E1) + π1

)

−
(

pP3(E3) + π3

)

= −π3, (7.20)

by equations (7.12) and (7.18). The total pressures at the exits are

p(E2) = π2 −G2 l, and p(E3) = π3. (7.21)

On the capsule boundary we assume that the velocity on both sides of the boundary is

equal, so that

u(1) = u(2) (7.22)

onP and where the(1) superscript indicates the ambient fluid in the channel and the (2)

superscript indicates the fluid inside the capsule. We also introduce the interfacial traction

jump,

∆f = f (1) − f (2), (7.23)

where once again the superscripts indicate to which fluid thetraction applies. The con-

stitutive equations which may be used to calculate∆f were introduced in section 4.2.

Therefore on the capsule boundary we will seek to eliminate the disturbance velocity and

traction in favour of the total velocity and traction.

In our discussion of the boundary conditions we have introduced unknown disturbance

tractions, velocities and pressures. In the main channel wehave the disturbance pressure,

π2, and the disturbance tractions,fD1 , on the channel walls. In the branch channel we

haveπ3 and thefD3 on the channel walls. On the notional boundary we choosefD1

anduD1 for consistency with the main channel. On the particle boundary the interfacial

traction jump is known from a suitable constitutive equation and the velocity is unknown.

To derive equations for the disturbance pressuresπ2 andπ3 we bring together the

analysis given in chapter 4 when discussing a flexible capsule in a straight channel, and

the derivation of the disturbance pressures equations for abranching channel given in

chapter 5. Firstly we will consider the capsule in the main channel, and apply the Lorentz

reciprocal relation (1.3.22) to theuP1 anduD1 flows to get

∇ ·
(

uP1 · σD1 − uD1 · σP1
)

= 0, (7.24)

which we integrate over the main channel’s flow domain and apply the divergence theorem

to get
∫

∂Γ1

uP1 · fD1 ds(x) =

∫

∂Γ1

uD1 · fP1 ds(x), (7.25)

where∂Γ1 = E1 ∪ E2 ∪A∪ C ∪ P is the boundary of the flow domain, and which can be
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simplified to

∫

E2

(

uP1 · fD1 − uD1 · fP1
)

ds(x) =

∫

A,P

(

uD1 · fP1 − uP1 · fD1
)

ds(x), (7.26)

using equations (7.7) and (7.9). The left-hand side simplifies toQ1 π2 by equation (5.45)

and the integral overP is expressed in terms of the total velocity and traction thus,

∫

P

(

uD1 · fP1 − uP1 · fD1
)

ds(x) =

∫

P

(

(u(1) − uP1 )· fP1 − uP1 · (f (1) − fP1 )
)

ds(x)

=

∫

P

(

u(1) · fP1 − uP1 · f (1)
)

ds(x), (7.27)

using equations (7.1) and (7.2). Next we apply the Lorentz reciprocal relation to the

Poiseuille flow,uP1 , and the capsule’s internal flow in order to introduce the interfacial

traction to our equation. Since the viscosity of the Poiseuille flow and the internal flow

are different we use the Lorentz reciprocal relation applicable to two fluids which have

different viscosities, which is

∇ ·
(

µuP1 · f (2) − λµu(2) · fP1

)

= 0. (7.28)

We divide this equation byµ and integrate only over the capsule’s domain to get,

0 =

∫

P

(

uP1 · f (2) − λu(2) · fP1

)

ds(x)

=

∫

P

(

uP1 · f (2) − λu(1) · fP1

)

ds(x), (7.29)

by equation (7.22). Adding equation (7.29) to equation (7.27) yields

∫

P

(

uD1 · fP1 − uP1 · fD1
)

ds(x) = −

∫

P

uP1 · ∆f ds(x)

+ (1 − λ)

∫

P

u(1) · fP1 ds(x), (7.30)

which upon substitution into equation (7.26) gives,

π2 =
1

Q1





∫

A

(

uD1 · fP1 − uP1 · fD1
)

ds(x)

−

∫

P

uP1 · ∆f ds(x) + (1 − λ)

∫

P

u(1) · fP1 ds(x)



 , (7.31)

for the disturbance pressure atE2. If the branch were absent then the integral overA would

disappear from the equation and we would recover equation (4.19) for the disturbance
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pressure in a straight channel. Therefore the disturbance pressure atE2 is dependent on

the capsule’s shape, the velocity of the capsule’s perimeter and the disturbance velocity

and traction on the notional boundary. It is interesting to note that whenλ = 1 the

velocities onP are not included in equation (7.31). When the capsule is in the branch

channel we omit the integrals overP from the equation forπ2.

To obtain an equation forπ3 we consider the branch channel when it contains the

capsule, and apply the Lorentz reciprocal relation (1.3.22) as previously, but to theuP3

anduD3 flows, to get

∇ ·
(

uP3 · σD3 − uD3 · σP3
)

= 0, (7.32)

which we integrate over the branch channel’s flow domain and apply the divergence the-

orem to obtain
∫

∂Γ2

uP3 · fD3 ds(x) =

∫

∂Γ2

uD3 · fP3 ds(x), (7.33)

where∂Γ2 = E3 ∪A∪B ∪P is the boundary of the flow domain. Expansion of∂Γ2 into

its constituent boundaries yields,

∫

E3

(

uP3 · fD3 − uD3 · fP3
)

ds(x) = −

∫

A

(

uD3 · fP3 − uP3 · fD3
)

ds(x)

+

∫

P

(

uD3 · fP3 − uP3 · fD3
)

ds(x), (7.34)

where we have used equations (7.8) and (7.11), and where the sign change on the integral

overA is due to the normal vector onA pointing into the main channel. The left-hand

side simplifies toQ3 π3 by equation (5.53). In the integral overA we eliminateuD3 and

fD3 in favour of uD1 andfD1 using the continuity of velocity and traction given in

equations (7.5) and (7.6), to get

∫

A

(

uP3 ·fD3 − uD3 ·fP3
)

ds(x) =

∫

A

(

uP3 ·fD1 − uD1 ·fP3
)

ds(x) + ψ (7.35)

where

ψ =

∫

A

(

uP3 · fP1 − uP1 · fP3
)

ds(x), (7.36)

which was first introduced in equation (5.56). WhenA is straightψ may be calculated

exactly using equation (5.57). The integral overP in equation (7.34) is expressed in terms

of the total velocity and traction as

∫

P

(

uD3 · fP3 − uP3 · fD3
)

ds(x) =

∫

P

(

(u(1) − uP3 )· fP3 − uP3 · (f (1) − fP3 )
)

ds(x)

=

∫

P

(

u(1) · fP3 − uP3 · f (1)
)

ds(x), (7.37)
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where we have used equations (7.3) and (7.4). In equation (7.30), had we applied the

Lorentz reciprocal relation touP3 instead ofuP1 we would have obtained,

0 =

∫

P

(

uP3 · f (2) − λu(1) · fP3

)

ds(x), (7.38)

which we add to equation (7.37) to get,

∫

P

(

uD3 · fP3 − uP3 · fD3
)

ds(x) = −

∫

P

uP3 · ∆f ds(x)

+ (1 − λ)

∫

P

u(1) · fP3 ds(x). (7.39)

Substitution of this equation into equation (7.34) gives,

π3 =
1

Q3





∫

A

(

uP3 · fD1 − uD1 · fP3
)

ds(x) + ψ

−

∫

P

uP3 · ∆f ds(x) + (1 − λ)

∫

P

u(1) · fP3 ds(x)



 , (7.40)

for the disturbance pressure atE3. Once again, whenλ = 1 the velocities onP disappear

from the equation. When the capsule is in the branch channel we omit the integrals over

P from equation (7.40), which as expected is identical to equation (5.54) forπ3 for a

fluid-filled branching channel.

In order to write the disturbance pressure equations irrespective of the capsule loca-

tion, we use the function,HP , introduced in the previous chapter, and which is defined

by

HP =

{

0 when the capsule is in the branch channel,

1 when the capsule is in the main channel,
(7.41)

so that,

π2 =
1

Q1

∫

A

(

uD1 · fP1 − uP1 · fD1
)

ds(x)

+
HP

Q1



−

∫

P

uP1 · ∆f ds(x) + (1 − λ)

∫

P

u(1) · fP1 ds(x)



 , (7.42)

π3 =
1

Q3





∫

A

(

uP3 · fD1 − uD1 · fP3
)

ds(x) + ψ





+
1−HP

Q3



−

∫

P

uP3 · ∆f ds(x) + (1 − λ)

∫

P

u(1) · fP3 ds(x)



 , (7.43)

for the disturbance pressures at the exits. The unknowns in equations (7.42) and (7.43) are
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the disturbance pressures, the disturbance velocities andtractions onA, and the velocity

of the capsule boundary.

Our next goal is to derive a pair of boundary integral equations which describe the

velocity field throughout the main channel and the branch channel. Once again we start

by considering the main channel. In chapter 5 we derived equation (5.64) which may

be used here provided the capsule boundary is also included in the boundary to the flow

domain. Inclusion ofP in the derivation of equation (5.64) gives,

4πµ uD1
j (x0) = −

∫

A,C,P

fD1
i Gij ds(x) + π2

∫

E2

niGij ds(x)

+ µ

∫

A,P

uD1
i Tijk nk ds(x) + Ij(x0), (7.44)

for x0 in the fluid of the main channel, and whereI(x0) is defined by equation (5.65).

Application of the boundary integral equation (1.3.40) to theuP1 flow over the particle

boundary gives,

0 = −

∫

P

fP1
i Gij ds(x) + µ

∫

P

uP1
i Tijk nk ds(x), (7.45)

for x0 in the fluid of the main channel. Adding this equation to equation (7.44) we obtain,

4πµ uD1
j (x0) = −

∫

A,C

fD1
i Gij ds(x) −

∫

P

f
(1)
i Gij ds(x) + π2

∫

E2

niGij ds(x)

+ µ

∫

A

uD1
i Tijk nk ds(x) + Ij(x0) + µ

∫

P

u
(1)
i Tijk nk ds(x). (7.46)

The boundary integral equation for theu(2) flow whenx0 lies in the ambient fluid in the

main channel is

0 = −

∫

P

f (2)Gij ds(x) + λµ

∫

P

u(2) Tijk nk ds(x), (7.47)

where we have only considered the capsule’s boundary and where the left-hand side is

zero becausex0 lies outside ofP. Subtraction of this equation from equation (7.46) gives

4πµ uD1
j (x0) = −

∫

A,C

fD1
i Gij ds(x) + π2

∫

E2

niGij ds(x) + µ

∫

A

uD1
i Tijk nk ds(x)

+ Ij(x0) + HP



−

∫

P

∆fiGij ds(x) + µ(1 − λ)

∫

P

u
(1)
i Tijk nk ds(x)



 , (7.48)

where we have included the functionHP to indicate when the integrals overP appear in

the equation. Equation (7.48) is valid forx0 located in fluid 1 in the main channel and

may be used to calculate the disturbance velocityuD1 in the main channel at any point
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givenπ2, fD1 onA andC, uD1 onA and the velocity of the capsule boundary. To obtain

the total velocity, the calculated value ofuD1 (x0) is added touP1 (x0). Whenλ = 1 the

velocities onP disappear from the boundary integral equation in the same way as they did

in the pressure equations. Equation (7.48) is also valid on the walls of the channel because

the discontinuous double-layer potential is not evaluatedoverC. Therefore whenx0 lies

onC the left-hand side of equation (7.48) is zero by the no-slip boundary condition. When

x0 lies onA we follow the derivation of equation (5.68) and obtain,

2πµ uD1
j (x0) = −

∫

A,C

fD1
i Gij ds(x) + π2

∫

E2

niGij ds(x) + µ

PV
∫

A

uD1
i Tijk nk ds(x)

+ Ij(x0) + HP



−

∫

P

∆fiGij ds(x) + µ(1 − λ)

∫

P

u
(1)
i Tijk nk ds(x)



 , (7.49)

wherePV indicates that we take the principal value of the integral ofthe double-layer

potential overA. When the capsule is in the main channel andx0 lies onP, the double-

layer potential integral overP is present in equation (7.48) and in terms of its principal

value is given by,

∫

P

u
(1)
i Tijk nk ds(x) = 2π u

(1)
j (x0) +

PV
∫

P

u
(1)
i Tijk nk ds(x), (7.50)

using equation (2.6.25) in Pozrikidis (1992). Substitution into (7.48) yields

2πµ (1 + λ)u
(1)
j (x0) = 4πµuP1

j (x0) −

∫

A,C

fD1
i Gij ds(x)

+ π2

∫

E2

niGij ds(x) + µ

∫

A

uD1
i Tijk nk ds(x) + Ij(x0)

−

∫

P

∆fiGij ds(x) + µ(1 − λ)

PV
∫

P

u
(1)
i Tijk nk ds(x), (7.51)

which is valid whenx0 lies on the capsule boundary and where we have expressed the left-

hand side in terms of the total velocity. The derivation of the boundary integral equation

applicable to the branch channel proceeds in much the same way as for the main chan-

nel. We start by including the particle boundary in the branch channel boundary integral

equation (5.72), to get

4πµ uD3
j (x0) =

∫

A

fD1
i Gij ds(x) −

∫

B,P

fD3
i Gij ds(x) + π3

∫

E3

niGij ds(x)

− µ

∫

A

uD1
i Tijk nk ds(x) + µ

∫

P

uD3
i Tijk nk ds(x) +Kj(x0), (7.52)
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for x0 located in the fluid of the branch channel, and whereK(x0) is defined by (5.73).

This time we apply the boundary integral equation (1.3.40) to theuP3 flow only over the

particle boundary, and obtain

0 = −

∫

P

fP3
i Gij ds(x) + µ

∫

P

uP3
i Tijk nk ds(x), (7.53)

for x0 in the fluid of the branch channel, which we add to equation (7.52) and rearrange

to obtain

4πµ uD3
j (x0) =

∫

A

fD1
i Gij ds(x) −

∫

B

fD3
i Gij ds(x)

+ π3

∫

E3

niGij ds(x) + µ

∫

A

uD1
i Tijk nk ds(x) +Kj(x0)

+ (1 −HP)



−

∫

P

∆fiGij ds(x) + µ(1 − λ)

∫

P

u
(1)
i Tijk nk ds(x)



 , (7.54)

which is valid forx0 in fluid 1 in the branch channel. Equation (7.54) is valid forx0

located in fluid 1 in the branch channel and may be used to calculate the disturbance

velocityuD3 at any point in the branch channel givenπ3, fD1 anduD1 onA, fD3 onB

and the velocity of the capsule boundary. To obtain the totalvelocity, the calculated value

of uD3 (x0) is added touP3 (x0). Whenλ = 1 the velocities onP disappear from the

equation (7.54). Equation (7.54) is also valid on the walls of the branch channel because

the discontinuous double-layer potential is not evaluatedoverB. Therefore whenx0 lies

onB the left-hand side of equation (7.54) is zero by the no-slip boundary condition. When

x0 lies onA we follow the derivation of equation (5.75) and obtain,

2πµ uD3
j (x0) =

∫

A

fD1
i Gij ds(x) −

∫

B

fD3
i Gij ds(x)

+ π3

∫

E3

niGij ds(x) + µ

PV
∫

A

uD1
i Tijk nk ds(x) +KPV

j (x0)

+ (1 −HP)



−

∫

P

∆fiGij ds(x) + µ(1 − λ)

∫

P

u
(1)
i Tijk nk ds(x)



 , (7.55)

and we may eliminateuD3 on the left-hand side in favour ofuD1 using equation (7.5).

When the capsule is in the branch channel andx0 lies onP, the double-layer potential

integral overP is expressed in terms of its principal value in equation (7.50), which upon
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substitution into (7.54) yields

2πµ (1 + λ)u
(1)
j (x0) = 4πµuP3

j (x0) +

∫

A

fD1
i Gij ds(x) −

∫

B

fD3
i Gij ds(x)

+ π3

∫

E3

niGij ds(x) + µ

∫

A

uD1
i Tijk nk ds(x) +Kj(x0)

−

∫

P

∆fiGij ds(x) + µ(1 − λ)

PV
∫

P

u
(1)
i Tijk nk ds(x), (7.56)

which is valid whenx0 lies on the capsule boundary and where we have expressed the

left-hand side in terms of the total velocity.

We now have equations for the disturbance pressures and boundary integral equa-

tions for the velocity field in the main and branch channels. To obtain a linear system

which represents the governing equations we employ the boundary element method (e.g.

Pozrikidis 2002a). We discretise the boundaries into elements upon which we evaluate the

boundary integral equations. We obtain a sufficient number of equations for the unknown

tractions onC andB by evaluating equations (7.48) and (7.54) withx0 on each element

of the respective boundary. Evaluation of the equations (7.49) and (7.55) withx0 on A

provides a sufficient number of equations for the disturbance tractions and velocities on

the notional boundary. Depending on whether the particle isin the main channel or the

branch channel, we evaluate equation (7.51) or (7.56) withx0 on each boundary element

of the particle to obtain equations for the particle velocities. We have two equations for

the disturbance pressures at the exits, namely equations (7.42) and (7.43). Therefore we

have the same number of equations as unknowns and so our system is complete. We have

completed our derivation of the governing equations for theflow of a flexible capsule

through a bifurcation and now we move on to describe how the boundary element method

is applied in order to find the numerical solution.

7.2 Numerical method

As in previous chapters our aim is to discretise the governing equations using the boundary

element method and form the equations into the linear matrixsystem,

A · x = b, (7.57)

whereA is the influence matrix containing the coefficients of the unknown disturbance

pressures, tractions and velocities stored in the column-vector, x, andb is a column-

vector containing known values. As before, when applying the boundary element method

we discretise the notional boundary, the branch channel walls, the main channel walls,

and the capsule’s boundary intoNA, NB, NC andNP equally-sized straight elements re-

spectively. On each wall element we set the unknown disturbance traction to a constant

2-vector, which we labelfD1
r on therth element ofA andC, andfD3

r on therth element
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of B. On therth element ofA we set the disturbance velocity touD1
r , and onP we set the

element midpoint velocity tour. We specify the midpoint of the capsule boundary ele-

ment because when we evaluate the boundary integral equation on the boundary elements

of P, we will place the pole at the midpoint of each element. When we come to move the

capsule using the calculated boundary velocities, we will move the element endpoints, or

nodes, and we will calculate the nodal velocities using a periodic cubic spline constructed

from the midpoint velocities. We define the column-vectorx to be

x =
[

F D
C F D

A F D
B UD

A π2 π3 U
(1)
P

]T
(7.58)

where the first four subvectors are described and defined in section 5.2,π2 andπ3 are the

disturbance pressures atE2 andE3 respectively, and theU (1)
P

subvector houses the2NP

components of the velocity at the midpoint of each of the capsule boundary’s elements.

The subvectorU (1)
A

is defined by

U
(1)
P

=
[

u
(1)
x,1 u

(1)
y,1 · · · u

(1)
x,NP

u
(1)
y,NP

]

. (7.59)

We we will first discretise the disturbance pressure equations starting with equation (7.42)

for π2, which we write as

Q1 π2 +

∫

A

(

uP1 · fD1 − uD1 · fP1
)

ds(x)

+ HP (λ− 1)

∫

P

u(1) · fP1 ds(x) = −HP

∫

P

uP1 · ∆f ds(x), (7.60)

with the unknown disturbance pressure, disturbance tractions and capsule velocities on

the left-hand side and the known value on the right-hand side. The integrals overP are

discretised as follows,

(λ− 1)

∫

P

u(1) · fP1 ds(x) ≈ (λ− 1)

NP
∑

r=1

u(1)
r · fP1

r (xm,r) lr = Π
P1
P

· U
(1)
P
, (7.61)

∫

P

uP1 · ∆f ds(x) ≈
NP
∑

r=1

uP1(xm,r) · ∆f(xm,r) lr = ΠP1
∆ , (7.62)

wherelr andxm,r are the element length and midpoint respectively, the calculation of∆f

is discussed in section 4.3, and

Π
P1
P

= (λ− 1)
[

fP1
x,1 l1 fP1

y,1 l1 . . . fP1
x,NP

lNP
fP1

y,NP
lNP

]

. (7.63)

Combining equations (7.61) and (7.62) with the discretisation of the remaining terms

given in equation (5.87), we may write the discretised analogue of equation (7.60) as

[

0 UP1
A

0 −F P1
A

Q1 0 HP Π
P1
P

]

· x = −HP ΠP1
∆ , (7.64)
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whereUP1
A

andF P1
A

are defined by equations (5.84) and (5.85) respectively. Performing

a similar exercise for theπ3 disturbance pressure equation (7.43), we get

[

0 −UP3
A

0 −F P3
A

0 Q3 (1 −HP)ΠP3
P

]

· x = ψ − (1 −HP)ΠP3
∆ , (7.65)

whereUP3
A

is defined by equation (5.90),F P3
A

is defined by equation (5.91), and

ΠP3
∆ =

NP
∑

r=1

uP3(xm,r) · ∆f(xm,r) lr, (7.66)

Π
P3
P

= (λ− 1)
[

fP3
x,1 l1 fP3

y,1 l1 . . . fP3
x,NP

lNP
fP3

y,NP
lNP

]

. (7.67)

Equations (7.64) and (7.65) represent the discretised versions of the disturbance pressure

equations (7.42) and (7.43) respectively.

To discretise the boundary integral equations for the main and the branch channels

derived in the previous section, we start by comparing them to the boundary integral

equations derived for a fluid-filled branching channel in chapter 5. It is revealing to note

that the main channel’s boundary integral equation (7.48) may be obtained by adding

Jj(x0) = µ(λ− 1)

∫

P

u
(1)
i Tijk nk ds(x) +

∫

P

∆fiGij ds(x), (7.68)

to the main channel equation (5.64) for a fluid-filled branching channel. Similarly, when

the capsule is in the branch channel, we may obtain the boundary integral equation (7.54)

by adding equation (7.68) to equation (5.72) for a fluid-filled branching channel. There-

fore the discretisation of the boundary integral equationsfor the main and branch channels

are obtained by adding the discretisations of equation (7.68) to the equations for a fluid-

filled branching channel. The discretisation of the integrals in equation (7.68) are given

in equations (4.74) and (4.76) of chapter 4, and are

∫

P

u
(1)
i Tijk nk ds(x) ≈ IT

P,j(x0) ·
[

U
(1)
P

]T
, (7.69)

∫

P

∆fiGij(x,x0) ds(x) ≈ ΠG,j(x0), (7.70)

whereIT
P,j is a row vector defined by equation (4.75), and where the full expansion of

ΠG,j(x0) is given in equation (4.76). Therefore the discretisation of equation (7.68) is

Jj(x0) ≈ µ(λ− 1)IT
P,j(x0) ·

[

U
(1)
P

]T
+ ΠG,j(x0). (7.71)

When the capsule is in the main channel, we placex0 at the midpoint of each element of

A andC, and evaluate equation (7.71). Following the placement ofx0 on the elements of
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C we have2NC equations which we write in matrix form as,

JC = HP

(

CP ·
[

U
(1)
P

]T
+ CΠ

)

, (7.72)

where we have includedHP to indicate that the terms are only non-zero when the capsule

is in the main channel, and whereCP and CΠ house the2NC components ofµ(λ −

1)IT
P,j(x0), andΠG,j(x0) respectively. Following the same procedure forA we obtain

NA pairs of equations which we write in matrix form as

Jm
A = HP

(

AP ·
[

U
(1)
P

]T
+ AΠ

)

, (7.73)

where them superscript indicates the main channel equation (7.49), and whereAP and

AΠ are similarly defined with respect to equation (7.71). When the capsule is in the

branch channel we follow the same process and write

JB = (1 −HP)

(

BP ·
[

U
(1)
P

]T
+ BΠ

)

, (7.74)

when x0 is placed onB, and where(1 − HP) indicates that the terms are only non-

zero when the capsule is in the branch channel, and whereBP andBΠ house the2NB

components ofµ(λ − 1)IT
P,j(x0), andΠG,j(x0) respectively. Whenx0 is placed onA

we have

Jb
A = (1 −HP)

(

AP ·
[

U
(1)
P

]T
+ AΠ

)

, (7.75)

where theb superscript indicates the branch channel equation (7.55),and whereAP and

AΠ are the same as in equation (7.73). Putting together equations (7.72) – (7.75) we

obtain,












JC

Jm
A

JB

J b
A













=













HPCP

HPAP

(1 −HP)BP

(1 −HP)AP













·
[

U
(1)
P

]T
+













HPCΠ

HPAΠ

(1 −HP)BΠ

(1 −HP)AΠ













. (7.76)

We will now consider the linear the linear system for the fluid-filled branching channel

and show how it can be augmented to include equation (7.76). Writing the linear system

for a fluid-filled branching channel given in equation (5.121) as























CC CA 0 C
T
A CE2 0 0

AC Am
A 0 A

m,T
A

AE2 0 0

0 BA BB BT
A 0 BE3 0

0 Ab
A AB A

b,T
A

0 AE3 0

0 UP1
A

0 −F P1
A

Q1 0 0

0 −UP3
A

0 −F P3
A

0 Q3 0























·x ≡


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






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





CFF 0

Am
FF 0

BFF 0

Ab
FF 0

Π
m
FF 0

Π
b
FF 0


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

















·x =























CI

AI

BK

AK

0

ψ























, (7.77)

where we have introduced a shorthand for the rows of the influence matrix, set the coeffi-

cients ofU (1)
P

to zero and where the subscriptFF indicates a quantity defined in chapter
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5 for a fluid-filled branching channel. The elements of the influence matrix and the vector

of known values in the linear system (7.77) are mostly submatrices or subvectors. The

first and second rows of the linear system correspond to the main channel’s boundary

integral equations with the first row generated whenx0 was placed on the walls of the

main channel and the second row whenx0 was placed on the elements ofA. The third

and fourth rows correspond to the branch channel’s boundaryintegral equations where

the third row corresponds tox0 on the walls of the branch channel and the fourth row to

x0 lying on the notional boundary,A. The fifth and sixth rows correspond to the pressure

equations forπ2 andπ3 respectively. To incorporate the effect of the capsule we add the

discretisation of the capsule integrals given in equation (7.76) to the linear system (7.77)

and include the discretised pressure equations (7.64) and (7.65) to get,























CFF HPCP

Am
FF HPAP

BFF (1 −HP)BP

Ab
FF (1 −HP)AP

Π
m
FF HPΠ
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P

Π
b
FF (1 −HP)ΠP3

P


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















· x =
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0
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−
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
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





HPCΠ

HPAΠ

(1 −HP)BΠ

(1 −HP)AΠ

HP ΠP1
∆

(1 −HP)ΠP3
∆























, (7.78)

as our linear system, and where the first column vector on the right-hand side corresponds

to the vector of known values for a fluid-filled branching channel and the second corre-

sponds to the capsule.

It remains to discretise the boundary integral equation forthe case whenx0 lies on the

capsule boundary. Let us write equation (7.51) as

∫

A,C

fD1
i Gij ds(x) − µ

∫

A

uD1
i Tijk nk ds(x) − π2

∫

E2

niGij ds(x)

+ 2πµ (1 + λ)u
(1)
j (x0) + µ(λ− 1)

PV
∫

P

u
(1)
i Tijk nk ds(x)

= Ij(x0) + 4πµuP1
j (x0) −

∫

P

∆fiGij ds(x) (7.79)

which is valid forx0 on the capsule boundary when the capsule lies in the main channel.
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The discretised analogues of the integrals overA and the channel walls are given by

∫

A

fD1
i Gij ds(x) ≈ IG

A,j(x0) · F
D
A , (7.80)

∫

B

fD3
i Gij ds(x) ≈ IG

B,j(x0) · F
D
B , (7.81)

∫

C

fD1
i Gij ds(x) ≈ IG

C,j(x0) · F
D
C , (7.82)

∫

A

uD1
i Tijk nk ds(x) ≈ IT

A,j(x0) · U
D
A , (7.83)

where each ofIG
A,j(x0), IG

B,j(x0), IG
C,j(x0) andIT

A,j(x0) are defined in equations (5.101)

– (5.104), and where we have also included the integral overB because we will use it in

the discretisation of equation (7.56) when the capsule liesin the branch channel. We label

the integral overE2 by IG
E2,j(x0) and its value may be calculated exactly using equations

(2.44) and (2.45). Therefore we may approximate equation (7.79) by

IG
A,j(x0) · F

D
A + IG

C,j(x0) · F
D
C − µIT

A,j(x0) · U
D
A − π2I

G
E2,j(x0)

+ 2πµ (1 + λ)u
(1)
j (x0) + µ(λ− 1)

PV
∫

P

u
(1)
i Tijk nk ds(x)

= Ij(x0) + 4πµuP1
j (x0) − ΠG,j(x0). (7.84)

To discretise the capsule integral and the velocity on the capsule boundary we define

Pj(x
(r)
0 ) = 2πµ (1 + λ)u

(1)
j (x

(r)
0 ) + µ(λ− 1)

PV
∫

P

u
(1)
i Tijk nk ds(x), (7.85)

wherex(r)
0 is the midpoint of therth element, and which we may approximate by

Pj(x
(r)
0 ) ≈

(

2πµ (1 + λ)Pu,j(x
(r)
0 ) + µ(λ− 1)IT,PV

P,j (x
(r)
0 )
)

· U
(1)
P

= IP
P(x

(r)
0 ) · U

(1)
P
, (7.86)

and where

Pu,j

(

x
(r)
0

)

=
[

δr1δxj δr1δyj · · · δrNP
δxj δrNP

δyj

]

, (7.87)

I
T,PV
P,j (x

(r)
0 ) =

[

T̃xj,1 T̃yj,1 · · · T̃PV
xj,r T̃PV

yj,r · · · T̃xj,NP
T̃yj,NP

]

, (7.88)

with the rth pair of entries ofIT,PV
P,j (x

(r)
0 ) taking the principal value of the stress tensor

integral becausex0 lies on therth boundary element ofP. Substituting equation (7.86)

into equation (7.84) and writing the resultant matrix equation in terms of the solution
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vectorx we obtain,

[

IG
C,j(x0) IG

A,j(x0) 0 −µIT
A,j(x0) −IG

E2,j(x0) 0 IP
P(x0)

]

· x

= Ij(x0) + 4πµuP1
j (x0) − ΠG,j(x0). (7.89)

Evaluation of this equation withx0 placed at the midpoint of each of the capsule’s bound-

ary elements results in2NP equation which we write as

[

Pm
C Pm

A 0 P
m,T
A

Pm
E2

0 Pm
P

]

· x = P
m
Π , (7.90)

where them superscript indicates that the capsule is in the main channel and the ele-

ments ofPm
C , Pm

A , P
m,T
A

, Pm
E2

andPm
P house the2NP values ofIG

C,j(x0), IG
A,j(x0),

−µIT
A,j(x0), −IG

E2,j(x0) and IP
P(x0) respectively, andPm

Π houses the2NP values of

Ij(x0) + 4πµuP1
j (x0) − ΠG,j(x0). For convenience we write

P
m =

[

Pm
C Pm

A 0 P
m,T
A

Pm
E2

0

]

(7.91)

which enables us to write the linear system as
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


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CΠ

AΠ
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0

ΠP1
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0
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
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







, (7.92)

when the capsule is in the main channel.

Next we assume the capsule is in the branch channel and write the branch channel’s

boundary integral equation (7.56) as

−

∫

A

fD1
i Gij ds(x) +

∫

B

fD3
i Gij ds(x) + µ

∫

A

uD1
i Tijk nk ds(x)

− π3

∫

E3

niGij ds(x) + 2πµ (1 + λ)u
(1)
j (x0) + µ(λ− 1)

PV
∫

P

u
(1)
i Tijk nk ds(x)

= Kj(x0) + 4πµuP3
j (x0) −

∫

P

∆fiGij ds(x), (7.93)

for x0 on the capsule boundary. We approximate the equation by the matrix form,

[

0 −IG
A,j(x0) IG

B,j(x0) µIT
A,j(x0) 0 −IG

E3,j(x0) IP
P(x0)

]

· x

= Kj(x0) + 4πµuP3
j (x0) − ΠG,j(x0), (7.94)
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whereIG
B,j(x0) is defined in equation (7.81). Evaluation of this equation with x0 placed

at the midpoint of each of the capsule’s boundary elements results in2NP equation which

we write as
[

0 P
b
A P

b
B P

b,T
A

0 P
b
E3

P
b
P

]

· x = P
b
Π, (7.95)

where theb superscript indicates that the capsule is in the branch channel and the ele-

ments ofPb
A, Pb

B, P
b,T
A

, Pb
E3

andPb
P house the2NP values of−IG

A,j(x0), IG
B,j(x0),

µIT
A,j(x0),−IG

E3,j(x0) andIP
P(x0) respectively, andPb

Π houses the2NP values ofKj(x0)+

4πµuP3
j (x0) − ΠG,j(x0). We write

P
b =

[

0 P
b
A P

b
B P

b,T
A

0 P
b
E3

]

(7.96)

which enables us to write the linear system as
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, (7.97)

when the capsule is in the branch channel. We are now in a position to construct the

linear system using equation (7.92) when the capsule is in the main channel and using

equation (7.97) when the capsule lies in the branch channel.It is important to note that

the linear system simplifies significantly when the viscosity ratio is unity. We have seen

in the governing disturbance pressure and velocity equations that whenλ = 1 the capsule

velocities disappear from the equations. Therefore we may reduce the linear system by

omitting U
(1)
P

from x which makes it equal to the vector of unknowns for a fluid-filled

branching channel, which we will labelxFF . The second column from the matrix in

equations (7.92) and (7.97) may also be omitted. We also do not need to evaluate the

relevant boundary integral equation on the boundary of the capsule in order to solve the

linear system and so the last row in the aforementioned linear systems is also omitted.

The resultant linear system is given by,
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, (7.98)

which is only different to the linear system for a fluid-filledbranching channel by the

second column vector on the right-hand side, which adds the disturbance caused by the
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capsule’s presence to the linear system. The matrix in equation (7.98), and more impor-

tantly its inverse, need only be computed once for a given configuration of the ends,A,

B andC. When the capsule is moved the vector on the right-hand side is updated and the

solution to the linear system is obtained by multiplying by the matrix inverse.

The size of the ‘influence’ matrix on the left-hand side in equation (7.98) is(4NA +

2NB + 2NC + 2) × (4NA + 2NB + 2NC + 2). Whenλ 6= 1 the ‘influence’ matrix in

equations (7.92) and (7.84) increases to(4NA + 2NB + 2NC + 2NP + 2) × (4NA +

2NB + 2NC + 2NP + 2). In our simulations we tookNA = 200, NB = 400, NC = 800

andNP = 316 for a particle of radiusd/2. When we changed the size of the particle

we altered the number of boundary elements to preserve the element length. We found

this number of boundary elements to be an acceptable compromise between accuracy and

calculation time. Details on the validation of the numerical calculations are given in the

next section.

Once we had calculated the influence matrix and the vector of known values we solved

the system using GMRES (e.g. Saad 2003) whenλ 6= 1 and by left-multiplication of

the inverse of the ‘influence’ matrix whenλ = 1. To obtain the nodal velocities of the

capsule we evaluate the relevant boundary integral equation whenλ = 1. Whenλ 6= 1 we

construct a periodic cubic spline using the cumulative polygonal arc-length and use the

spline to interpolate the nodal velocities. Once the nodal velocities are known we move

the capsule, update the linear system and obtain the new solution. To move the capsule

we integrated the kinematic equation,

dxr

dt
= u(xr), (7.99)

wherexr is the position vector of therth capsule node and the values ofu(xr) are the

velocities of the capsule nodes. To integrate (7.99) we usedthe adaptive time-stepping

Runga-Kutta-Fehlberg method (e.g. Atkinson 1978) where wetook an initial time step

of 0.0005 d/UP1
0 when we included bending moments and0.005 d/UP1

0 when bending

moments were absent. Our small initial time step follows from the observations made by

Pozrikidis (2001) on the effects of bending resistance on a capsule in a three-dimensional

shear flow.

In chapter 3 we showed that the disturbance velocity decayedto less than1% of its

maximum value at a distance of 3 particle radii. Therefore wedid not allow the distance

between the particle and the entrance or the exits to become less than this distance.

7.3 Flow parameters

Except for where indicated, all of the validation and results to be presented in next two

sections, were computed for the case when the main channel and the side branch are of

equal width,D/d = 1. In all cases the main channel length isl = 12d and the length

of the branch isL = 6d. The dynamics depend on the viscosity ratio,λ, the initial
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dimensionless capsule radius,

ρ =
a

d
, (7.100)

wherea is the radius of the unstressed circular shape, the initial shape of the capsule, the

initial centroid location,

xc = (xc, yc), (7.101)

the branch angleα, the ratio of the branch widths,

δ =
D

d
, (7.102)

the flux ratio,Q, and the two dimensionless parameters,

M =
EB

µQ1 d
, W =

k d

µQ1
, (7.103)

whereEB is the bending modulus of the elastic membrane andk is the membrane stiffness.

TheM parameter describes the relative importance of bending moments in the elastic

capsule membrane andW describes the relative importance of the membrane stiffness.

We setM = 0 to model a capsule which does not resist bending andM = 0.001 for a

capsule which does. The model was sensitive to the size ofM with larger values causing

instabilities to develop in the numerics. The small value ofM is of a similar order to

the analogous three-dimensional quantity used by Pozrikidis (2001). We also point out

that in biological cells, such as red blood cells, the membrane’s resistance to stretching is

much stronger than its resistance to bending (e.g. Secomb etal. 2007), thereby providing

further justification for our choice of values forM andW . The unstressed capsule shape

is a circle, and in most of our presented results the capsule will also start each simulation

as a circle. When the capsule is unstressed the interfacial traction jump,∆f , will be zero.

Therefore when the capsule starts as a circle andλ = 1, the disturbance pressures,π2

andπ3, and the unknown wall tractions and the tractions and velocities onA will equal

those obtained for a fluid-filled branching channel with the same parameters. We choose

d,Q1/d andd2/Q1 as our length, velocity and time scales.

7.4 Validation

We have already validated the numerical code for the elasticcapsule in chapter 4 where

we also satisfied ourselves that the disturbance velocity induced by the capsule’s presence

decayed rapidly as we approached the ends of the computational domain. In all of the

results to be presented in the next section, the centreline disturbance velocities atE1, E2

andE3 are all less than1.5% of the respective Poiseuille velocities. We also confirmed that

the tractions on the channel walls smoothly approach the appropriate values for Poiseuille

flow as we approach the entrance or the exits.

To check the numerical solution we placed an unstressed capsule withλ = 1, ρ = 0.5,

W = 1, M = 0.001 andxc/d = (6, 0) in a branching channel flow withl = 12 d,



204 The motion of a flexible capsule through a bifurcation

L = l/2, α = π/2, Q = 0.5 and δ = 1. Since an unstressed capsule should have

a negligible effect on the flow, the exit pressures should equal those for a fluid-filled

branching channel with the same flow parameters. We found that the exit pressures did

not change when the unstressed capsule was present. We removed the capsule and doubled

the number of elements. The exit pressures changed by no morethan0.06%. We then

reintroduced the stress-free capsule and once again found that the capsule’s presence did

not affect the exit pressures. Furthermore we increased thelength of the channels so that

l = 24 d while preserving the element length on the channel boundaries and compared

the boundary tractions and velocities with those for the shorter channel. The values were

in excellent agreement; the absolute error in the boundary tractions remained less than

0.05µUP1
0 /d, and the absolute error in the velocities onA were less than0.005UP1

0 .

Next we took the steady state capsule from a straight channelsimulation with param-

etersλ = 1, ρ = 0.5, W = 1, M = 0.001 and placed it in a branching channel such that

xc/d = (6, 0), α = π/2, Q = 0.5 andδ = 1. When we doubled the number of boundary

elements the disturbance pressures at the exits changed by no more than0.05%.

To verify the numerical time integration method we comparedthe solution obtained

from the Runga-Kutta-Fehlberg method with two separate simulations which used the sec-

ond order Runge-Kutta method with constant time steps of0.0005 d/UP1
0 and0.001 d/UP1

0 .

The simulation parameters wereλ = 1, ρ = 0.5,W = 1,M = 0.001, α = π/2,Q = 0.9

andδ = 1. The capsule was released with its centroid atxc/d = (2, 0). There were no

significant differences between the three simulations

Due to the incompressibility of the capsule fluid, the area inside the capsule should

remain constant during a simulation. As a further check on our computations, we monitor

the area contained inside the capsule boundary. For the results to be presented in the next

section, it has been confirmed that the area changes by no morethan0.05% of its initial

value for simulations with bending moments,M 6= 0, and by no more than0.22% of its

initial value for simulations for no bending moments,M = 0.

7.5 Results

We begin by examining the motion with a moderate sized capsule withρ = 0.5 for differ-

ent values of the flux ratioQ. We showed in chapter 4 that a flexible capsule in a straight

channel required a distance of very many capsule diameters to achieve a steady-state con-

figuration. However the capsule deforms into a parachute-like shape which qualitatively

resembles the steady-state shape after only a few capsule diameters. Therefore in the sim-

ulations to be presented, the capsule was started sufficiently far upstream of the branch

entrance for the parachute-like shape to emerge before the capsule reached the junction.

Furthermore, in some applications there may be numerous branchings which occur over

a relatively short distance and so it is questionable whether a capsule could achieve a

steady-state between branchings. For example, capillaries in the microcirculation have

numerous branchings. For this reason there is some justification in preferring near steady-

state configurations to steady-state configurations when simulating a capsule entering a
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(a) Capsule shapes forM = 0 at (Q1/d2) t = 0,
2.21, 4.26, 6.29 and8.66.
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(b) Capsule shapes forM = 0.001 at (Q1/d2) t = 0,
2.22, 4.26, 6.30, 8.66 and11.06.

Figure 7.2 : Capsule journeys whenλ = 1, ρ = 0.5,W = 1, α = π/2 andQ = 0.9. At t = 0 the
capsule centroid is atxc/d = (2, 0).

branch. In the following simulations, the capsule is released att = 0 in its unstressed

circular configuration and withxc/d = (2, 0), unless stated otherwise. It should be noted

that a deformed capsule shape could be used as the initial shape, however the initial de-

formation must then be taken into account when interpretingthe results, especially for

capsules which begin their journey offset from the centreline.

We begin by discussing results for the caseλ = 1 so that the viscosity of the ambient

fluid equals that of the fluid contained in the capsule. In the first few cases we compare the

results obtained with no bending resistance to those obtained in the absence of bending

moments in a branching channel withδ = 1 andα = π/2. In figure 7.2 we show capsule

journeys for a capsule withρ = 0.5, W = 1 andQ = 0.9. The capsule in figure 7.2

(a) hasM = 0 and so does not resist bending. In figure 7.2 (b) the capsule has a small

resistance to bending withM = 0.001. WhenQ = 0.9 the capsule remains in the main

channel, as can be observed in figures 7.2 (a) and 7.2 (a). The lower trailing tip becomes

more deformed than the top trailing tip as it feels the effectof the fluid being drawn into

the side branch. Once the capsule has passed over the entrance to the side branch, it begins

to return to the symmetrical steady state shape seen in the straight channel simulations in

chapter 4. As was remarked there, a distance of a considerable number of capsule radii

is required to attain the steady shape and the present computational domain is too short

to observe this. We can see that whenM = 0 the capsule shape has noticeably more

pointed tips than whenM = 0.001. The simulation withM = 0 was terminated before

the simulation forM = 0.001 because the numerical error became unacceptably large as

the capsule travelled over the right-hand side of the branchentrance due to a steep rise in

the curvature at the sharp lower trailing tip.

WhenQ = 0.1 the flow in the side branch is sufficiently strong to draw the capsule

out of the main channel, as can be seen in figures 7.3 (a) and 7.3(b) whereW = 1 in both

figures andM = 0 in the former andM = 0.001 in the latter. Again the sharp trailing

tips are evident when bending resistance is absent. The initially circular capsule quickly

deforms within two particle radii to the familiar parachuteshape. As the capsule nego-

tiates the corner into the side branch it undergoes considerable further deformation. The
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(a) Capsule shapes forM = 0 at (Q1/d2) t = 0,
2.88, 5.24, 7.70, 10.12 and13.06.
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(b) Capsule shapes forM = 0.001 at (Q1/d2) t = 0,
2.88, 5.24, 7.70, 10.12 and13.06.
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(c) The transverse tension,q̂ = q (µQ1/d) (–), and
in-plane membranêτ = τ (µQ1/d) (r) plotted
against arc-length for the capsule att = 13.06 d2/Q1

in figure 7.3 (b).
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in figure 7.3 (b).

Figure 7.3 : Capsule journeys, membrane tensions and bending moments whenλ = 1, ρ = 0.5,
W = 1, α = π/2 andQ = 0.1. At t = 0 the capsule centroid is atxc/d = (2, 0). In (c) and
(d) arc-length is measured anti-clockwise from zero at the lowermost point on the capsule as it
appears in the final shape in figure 7.3 (b).

in-plane and transverse membrane tensions and the bending moment for the last capsule

shown in figure 7.3 (b) at timet = 13.06 d2/Q1 are displayed in figures 7.3 (c) and 7.3

(d). In figure 7.4 we show the membrane tensions and bending moments for the steady-

state shape of a capsule in a straight channel with the same flow parameters. The capsule

shape is shown in figure 4.17 (a) of chapter 4. It is interesting to note that the peak values

of the transverse and in-plane tensions in figure 7.3 (c) are slightly more than half of those

for the steady-state solution in figure 7.4 (a), while the peak value of the bending moment

in figure 7.3 (d) is about70% of the peak value in figure 7.4 (b). The deformation seen in

figure 7.3 (b) is sufficiently severe that the capsule retainsthe signature of the distortion

suffered at the junction up to the point where the simulationwas terminated. We expect

that the capsule will slowly return to the steady-state shape as it moves further down the

branch. According to the results from chapter 4, we may reasonably assume that the last

capsule shape shown att = 13.06 d2/Q1 is sufficiently far from the junction to consider it

as being effectively carried in a unidirectional flow, asidefrom the disturbance due to the

capsule itself. With this in mind, to estimate the recovery distance required for the capsule

to attain a steady-state shape, we took the last capsule shape in figure 7.3 (b), which is

shown at the timet = 13.06 d2/Q1, placed it into a straight channel flow with the same
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(a) The membrane tensionŝq = q (µQ1/d) (–) and
τ̂ = τ (µQ1/d) (r) versus arc-length.
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Figure 7.4 : The membrane tensions and the bending moment versus arc-length, for the steady-
state shape of a capsule in a straight channel withλ = 1, ρ = 0.5, W = 1 andM = 0.001. The
capsule shape is shown in figure 4.17 (a).
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Figure 7.5 : Evolution of the final capsule shape from figure 7.3 (b) whent = 13.06 d2/Q1.
Capsule shapes shown in(a), (b), (c) and(d) at (Q1/d

2) t = 0, 3.7, 9.0 and37.1 respectively.
The final shape is the steady-state shape.

flux as that in the side branch. The evolution of the deformed capsule shape is shown in

figure 7.5 . Att = 0 the deformed capsule is released and allowed to evolve. Shape (b) in

the figure shows the capsule att = 3.7 d2/Q1 when it has travelled5.1 capsule radii along

the channel. The capsule has developed the familiar parachute shape. Att = 9.0 d2/Q1

the capsule has moved12.2 radii along the channel from its starting position. The capsule

shape is shown as shape(c) in the figure and it closely resembles the steady-state shape

which it finally attains att = 37.1 d2/Q1 when the capsule has travelled a distance of

48.9 radii along the channel. A steady state was deemed to have been achieved when the

normal component of the nodal velocity,n · dXi/dt, on the capsule boundary relative to

the capsule centroid is less than0.001Q1/d for all capsule nodesi = 1, . . . , Np. This re-

sult indicates that the capsule retains the signature of thebranch distortion for a recovery

length of very many capsule radii after it has passed throughthe branch entrance. With re-

gard to blood flow in the capillary network, for example, thissuggests that although cells

will tend to return to a shape resembling their equilibrium configuration for a straight tube

over a fairly short distance, there is unlikely to be sufficient room for equilibrium to be

fully established before the cell encounters a further branching.

Figure 7.6 displays the normalised exit pressures,p̂2 atE2, andp̂3 atE3, for the capsule

journey shown in figure 7.3 (b). The normalised pressure is defined to be the pressure in
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Figure 7.6 : Normalised pressureŝp2 (–) andp̂3 (r) against time forλ = 1, ρ = 0.5, W = 1,
M = 10−3, α = π/2 andQ = 0.1. The capsule journey is shown in figure 7.3 (b).

the presence of the capsule divided by the constant pressureobtained under the same flow

conditions but in the absence of the capsule. Whenp̂2 = 1 or p̂3 = 1 the pressure at the

exit equals the fluid-filled channel exit pressure. Att = 0 the traction jump,∆f , is zero

and the flow behaves as if the capsule were absent, in which case p̂2 andp̂3 are both equal

to one. Both of the normalised pressures,p̂2 and p̂3 increase in the early stages of the

motion as stresses develop in the membrane. Att ≈ 4 d2/Q1 the particle moves from the

centreline of the main channel towards the branch and this isaccompanied by an increase

in the branch pressure,p̂3, and a reduction in̂p2. The maximum values of̂p2 andp̂3 occur

at t ≈ 8 d2/Q1 andt ≈ 7 d2/Q1 respectively. At both of these times most of the capsule

has passed into the branch. As the capsule travels further into the branch the normalised

pressures decrease. At the end of the simulation,p̂2 returns to unity and̂p3 approaches

1.008, the increase over its initial value of unity being due to thepresence of the capsule

in the side branch.

WhenQ = 0.5, so that the flux at the exits are the same, a capsule released with its

centroid on the channel centreline tends to get caught on theright-hand side of the branch

entrance. This is illustrated in figure 7.7 (a) whereM = 0 and in figure 7.7 (b) where

M = 0.001. We can see once again that the trailing tips of the capsule whenM = 0

are pointed rather than rounded. The trapped capsule is caught in what is effectively an

extensional flow which stretches the capsule simultaneously into the branch and along the

main channel. Manga (2006) found similar behaviour for a liquid drop caught at the apex

of a bifurcating channel. Since the wall shear stress at a sharp corner is formally infinite

in a Stokes flow (see Appendix E), it is interesting to look at the tensions which develop

in the elastic membrane when the capsule is close to this point. In figure 7.7 (c) we plot

the in-plane and transverse membrane tensions,q̂ = q (µQ1/d) and τ̂ = τ(µQ1/d),

for the final capsule shape presented in figure 7.7 (b) at the time t = 12.55 d2/Q1. The

capsule profile at this instant is shown in figure 7.7 (d). The transverse tension,̂q, is rather
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(a) Capsule shapes forM = 0 at (Q1/d2) t = 0,
1.63, 3.34, 5.08, 6.79, 8.90 and12.61.
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(b) Capsule shapes forM = 0.001 at (Q1/d2) t = 0,
1.63, 3.34, 5.08, 6.79, 8.90 and12.55.
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Figure 7.7 : Capsule journeys and membrane tensions whenλ = 1, ρ = 0.5, W = 1, α = π/2
andQ = 0.5. At t = 0 the capsule centroid is atxc/d = (2, 0).

small around the capsule perimeter. The in-plane tensionτ̂ remains positive around the

capsule boundary, implying through the constitutive law (4.51), given in chapter 4, that

the membrane is everywhere in extension from its circular reference configuration. Local

minima of τ̂ occur at the tips of the capsule labelledB andD in the figure. The maxima

of τ̂ , which occur at the points markedA andC in the figure, is more than twice that for

the steady-state capsule shown in figure 4.18 (a) of chapter 4. The occurrence of such

large tensions on the capsule boundary close to the sharp corner suggests the possibility

of bursting.

Capsules with a stronger membrane stiffness are expected todeform less during the

motion. This is confirmed in figure 7.8 which shows the resultsof a calculation forλ = 1,

ρ = 0.5,W = 5,M = 0.001 andα = π/2. In figure 7.8 (a) we setQ = 0.9. The capsule

experiences noticeably less deformation than that seen in figure 7.2 (b). Figure 7.8 (b)

shows the capsule entering the branch whenQ = 0.1. As expected the capsule becomes

less deformed than that shown in figure 7.3 (b) whenW = 1.

The effect of increasing the viscosity ratio is examined in figure 7.9 . Capsule journeys

for the flux ratiosQ = 0.1 andQ = 0.9 are shown for the caseλ = 5 corresponding to

a more viscous fluid inside the capsule, and whereρ = 0.5, W = 1, M = 0.001 and

α = π/2. The capsules in figure 7.9 (a) deform appreciably less than those seen in figure
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(a) Capsule journey whenQ = 0.9. Capsule shapes
at (Q1/d2) t = 0, 2.21, 4.27, 6.30, 8.68, 11.07 and
13.50.

-7

-6

-5

-4

-3

-2

-1

 0

 1

 0  2  4  6  8  10  12

(b) Capsule journey whenQ = 0.1. Capsule shapes
at (Q1/d2) t = 0, 2.88, 5.24, 7.70, 10.12 and13.06.

Figure 7.8 : Capsule journeys forλ = 1, ρ = 0.5, W = 5, M = 0.001 andα = π/2. At t = 0
the capsule centroid is atxc/d = (2, 0).
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(a) Q = 0.9 and capsules at(Q1/d2) t = 0, 2.21,
4.26, 6.29, 8.66 and11.06.
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(b) Q = 0.1 and capsules at(Q1/d2) t = 0, 2.88,
5.24, 7.70, 10.12 and13.06.

Figure 7.9 : Capsule journeys forλ = 5, a = 0.5 d,W = 1 andM = 10−3.

7.2 (b), which was computed for the same parameter values butwith λ = 1. Comparison

of figures 7.9 (b) and 7.3 (b) also reveals that the capsule suffers less deformation when

λ takes the higher value. To observe the effect of the viscosity ratio on the trajectory

of a capsule, a number of simulations were conducted for an initially circular capsule of

radiusρ = 0.5 initially located atxc/d = (2, 0) whenW = 1,M = 0.001, α = π/2 and

Q = 0.5 for values ofλ in the range0.5 to10. In all of the simulations, the capsule became

trapped on the far corner of the branch entrance as in figure 7.7 (b). The trajectories of the

capsule centroid are almost coincident over the range of quotedλ values, demonstrating

that the viscosity ratio has little effect on the path taken by the capsule.

Figure 7.10 illustrates the motion for the larger capsule sizeρ = 0.75 whenλ = 1,

W = 1,M = 10−3, α = π/2,Q = 0.9 andQ = 0.1. In both figure 7.10 (a) and 7.10 (b)

the parachute-type shape is again evident but with much longer trailing tips than is found

for the smaller particle. ForQ = 0.9 the lower trailing tip extends more than the upper as

the capsule passes over the entrance to the side branch. ForQ = 0.1, the upper trailing

tip extends more than the lower as the capsule turns the corner into the side branch.

In applications, an elastic capsule may be too large to fit through a channel or tube

in its resting configuration and may need to deform in order tosqueeze through. One

example is that of a red blood cell squeezing through a narrowcapillary. In figure 7.11
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(a) Capsule journey forQ = 0.9 with capsules at
(Q1/d2) t = 0, 4.26, 7.96 and12.28.
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(b) Capsule journey forQ = 0.1 with capsules at
(Q1/d2) t = 0, 2.88, 7.70 and13.06.

Figure 7.10 : Capsule journeys whenλ = 1, ρ = 0.75, W = 1, M = 10−3 andα = π/2. At
t = 0 the capsule centroid is atxc/d = (2, 0).
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(a) Capsule journey forρ = 1.1 andW = 5.
Capsules are shown at(Q1/d2) t = 0, 5.0 and8.96.
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(b) Capsule journey forρ = 0.6, W = 1 and
δ = 0.5. Capsules are shown at(Q1/d2) t = 0, 2.88,
5.24 and7.70.

Figure 7.11 : Capsule journeys whenλ = 1, M = 10−3, α = π/2 andQ = 0.1. At t = 0 the
capsule centroid is atxc/d = (2, 0).

(a) we show the results of a simulation for a capsule whose unstressed circular shape of

radiusρ = 1.1 does not fit into the main channel. The initial configuration of the capsule

shown att = 0 in the figure was produced by first deforming the circular particle into

an ellipse with semi-major axis1.5125 d and semi-minor axis0.8 d, which has the same

area as the undeformed circular capsule, and accounting forthe strain incurred during

the deformation. The ellipse was then placed into a straightchannel flow with no side

branch and allowed to evolve until it had developed a parachute-like shape. This shape

was then taken as the starting configuration att = 0 for the side-branch calculation shown

in figure 7.11 (a). The membrane tensions,τ , q, and the bending moment,m, correct for

the deformed capsule were set at the start of the simulation.The transit of the capsule

from the main channel into the side branch is computed successfully. As in figures 7.3

(b) and 7.10 (b), the upper trailing tip of the capsule is extended more than the lower

tip as the capsule turns the corner into the branch. The same calculation repeated for

W = 1, and with the other parameters the same, shows more severe but qualitatively

similar deformation of the capsule. In figure 7.11 (b) we illustrate the motion of a capsule

which fits into the main channel but not into the side branch, with λ = 1, ρ = 0.6,W = 1,

M = 0.001, α = π/2 andδ = 0.5. At the start of the simulation the capsule is inside
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(a) At t = 0, xc/d = (2, 0). Q = 0.1 to 0.9 in steps
of 0.1.
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(b) Q = 0.5 and capsule centroid atxc = (2d, yc)
at t = 0 with yc/d varying from−0.4 to 0.4 in steps
of 0.1.

Figure 7.12 : Centroid paths for capsules withλ = 1, ρ = 0.5,W = 1,M = 0.001 andα = π/2.
In both figures trajectories terminating in a dot correspondto capsules which become trapped at
the corner.

the main channel. The flux ratioQ = 0.1 is set so that the capsule is drawn out of the

main channel and into the side branch. As the capsule squeezes into the branch, it rapidly

undergoes severe deformation which is qualitatively similar to that seen in figures 7.3 (b)

and 7.10 (b), but is much more strongly pronounced. In particular, the upper trailing tip

forms an elongated tendril dragging behind the capsule.

In figure 7.12 (a) we plot the trajectories of the capsule centroid for numerous sim-

ulations carried out whenλ = 1, ρ = 0.5, W = 1, andM = 0.001 andα = π/2 for

flux ratios equally-spaced betweenQ = 0.1 andQ = 0.9. At t = 0 the capsule cen-

troid was atxc/d = (2, 0). Those trajectories which terminate at a large dot correspond

to capsules which have become trapped at the corner, as in figure 7.7 (b). For the other

trajectories, the capsule migrates towards the centrelineof the respective channel section

after it has negotiated the branch region. The simulations were halted when the assump-

tion of negligible disturbance velocities at either of the exits E2 or E3 is compromised due

to the proximity of the capsule to the exits. In figure 7.12 (b)we plot the trajectories of

the capsule centroid forλ = 1, ρ = 0.5, W = 1, M = 0.001, α = π/2 andQ = 0.5,

when the capsule is started with its centre atxc/d = (2, yc/d), where the offsetyc/d is

taken from the setS = {−0.4,−0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3, 0.4}. Foryc/d ≤ −0.3

the capsule is drawn into the side branch. Foryc/d = −0.2 up to0.3 inclusive the capsule

is caught on the far corner of the side branch. Note that in twoof the cases shown the

capsule centroid ends up outside the channel. Foryc/d = 0.4 the capsule passes over the

side branch and continues along the main channel. These results suggest that there is a

capture zone, within which passing capsules will be carriedinto the side branch, which

covers approximately the range−1 < y/d < −0.3.

In applications such as capillary flow, the corners at branchings will not be sharp, as

here, but rounded. Although it is not straightforward to adapt the current method to cater

for rounded corners due to complications with the deformation of the notional boundary

A, we can nonetheless make reasonable predictions of the capsule motion for non-sharp

corners. By carefully scrutinising the near-corner capsule profiles, we can make a decision
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as to the subsequent capsule path were the corner to become rounded-off. For example, in

figure 7.7 (b), we can see that most of the capsule has moved into the branch by the time it

has become trapped at the corner, and it seems likely that were it released, by rounding the

corner for example, it would subsequently proceed into the branch. However, the tenta-

tive nature of such predictions should be emphasised. It is possible that a capsule which is

extended some distance into the branch, and which appears tobe moving in that direction,

may recover and continue along the main channel. Therefore,one might hypothesise that

the particular deformation experienced by a capsule may crucially affect the path taken.

In fact, it may be the case that two capsules with different elastic properties, which are

initially following identical trajectories, take different routes with one proceeding along

the main channel, and the other being captured by the side branch. For the trajectories

shown in figure 7.12 (b) we estimate that the capsules with theinitial centroid locations

yc/d = −0.2, −0.1, 0 and0.1 would proceed into the side branch on rounding the corner.

Similarly, we estimate that the capsules with the intial centroid locations,yc/d = 0.2

and0.3, would continue along the main channel. In the light of this,we may tentatively

conclude that in a right-angled branching flow with equal flowrates through the exits,

a mid-sized particle placed at a random position upstream inthe main channel will mi-

grate into the branch more than half of the time. We can also see this by examining the

streamline figure 5.2 (a) in chapter 5 for a fluid-filled branching channel with the same pa-

rameters as above. The streamlines below the dividing streamline are more tightly packed

than above, and so the fluid is flowing relatively faster in theregion close to the left-hand

side of the branch entrance. Since small particles should simply follow the streamlines we

may anticipate that half of a distribution of small capsulestravelling from upstream along

the channel will enter the branch. Although a large capsule will distort the instantaneous

streamline field, this nonetheless suggests that larger capsules approaching the branch en-

trance along the dividing streamline will tend to deform more at the bottom than at the

top. Moreover, such a skewed distortion might favour a capsule moving into the branch

rather than proceeding along the main channel. This slight bias favouring movement into

the branch forQ = 0.5 suggests that, of a distribution of larger capsules travelling along

the channel, slightly more than half will be be drawn into thebranch. This would tend to

suggest that for multiple-particle flows, with a sufficient particle spacing for the present

conclusions to hold, the particle fraction in the branch will be slightly higher than in the

main channel.

The effect of changing the branch angle is examined in figure 7.13 . Figure 7.13 (a)

illustrates a capsule journey for an acute-angled branch with α = π/4 for a capsule of

size ρ = 0.5 whenλ = 1, W = 1, M = 0.001 andQ = 0.1. Comparison of the

final capsule shapes in figures 7.13 (a) and 7.3 (b) shows that whenα = π/4 the rear of

the capsule is marginally more dimpled and therefore slightly closer to the limiting shape

found for a straight channel. For moderate values of the flux ratio,Q, the capsule tends to

snag on the rightmost corner of the branch opening; the rangeof Q values for which the

capsule becomes trapped is wider than that for the right-angled branch discussed above.

WhenQ is sufficiently large, so that most of the fluid proceeds alongthe main channel,
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(a) Q = 0.1 andα = π/4. Capsules are shown at
(Q1/d2) t = 0, 2.88, 5.24, 7.70, 10.12, 13.07.
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(b) Q = 0.5 andα = 3π/4. Capsules are shown at
(Q1/d2) t = 0, 2.89, 5.20, 8.40 and18.18.

Figure 7.13 : Capsule journey whenλ = 1, ρ = 0.5,W = 1 andM = 10−3.

the capsule suffers minor deformation as it passes over the branch opening, similar to

that observed in figure 7.2 (b). A calculation for a capsule entering a side branch at an

obtuse angle is presented in figure 7.13 (b) for the caseλ = 1, ρ = 0.5, W = 1 and

M = 0.001, α = 3π/4 and withQ = 0.5. Backward-pointing branches of this type may

arise in microfluidic circuits (Roberts and Olbricht 2006).The journey and deformation

experienced by the capsule is markedly different to that fora right-angled or acute-angled

branch. For an obtuse angle, the capsule passes cleanly intothe branch, and tends to

elongate into a slender shape. This is in contrast to the behaviour found forα ≤ π/2,

when the capsule tends to snag on the rightmost corner of the branch for mid-range values

of Q. For the obtuse-angled branch, we carried out simulations for different particle sizes

and for different viscosity ratios, and over a range of values ofQ small enough to ensure

the capsule enters the branch. In all cases, the results weresimilar to that seen in figure

7.13 (b). Under no circumstances did we find an example of the capsule snagging on the

sharp leftmost corner of the branch.

To investigate the sensitivity of the capsule trajectory toits location in the oncoming

flow for obtuse and acute branch angles, we performed a similar set of calculations to

those shown in figure 7.12 (b). In figure 7.14 (a) we present results for simulations in

which λ = 1, ρ = 0.5, W = 1, M = 0.001, α = π/4, Q = 0.5 and the initial capsule

centroid,xc = (2d, yc) with values ofyc/d taken from the setS. For this acute angle

all of the capsules become trapped at the rightmost corner ofthe branch entrance with

the exception of those with initial centroid locationsyc/d = 0.4 and−0.4, which con-

tinue along the main channel and enter the branch respectively. A careful consideration

of the near-corner profiles for the capsules which become trapped, with the aim of decid-

ing upon the subsequent path, is unfortunately inconclusive. Figure 7.14 (b) shows the

centroid paths for the same parameters but with the branch angleα = 3π/4. In all of the

simulations the capsules either proceed along the main channel or enter the branch with-

out becoming trapped. The capsules withyc/d = −0.4 up to and includingyc/d = 0.1

enter the side branch, and the rest exit throughE2, so that more than half enter the side

branch. It is likely that the exact proportion will depend onthe deformability of the cap-

sule. For example, for the simulation withyc = 0.2d when the capsule reaches the branch
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(a) Centroid paths whenα = π/4.

-7

-6

-5

-4

-3

-2

-1

 0

 1

 0  2  4  6  8  10  12

(b) Centroid paths whenα = 3π/4.

Figure 7.14 : Centroid paths for capsules withλ = 1, ρ = 0.5,W = 1,M = 0.001 andQ = 0.5.
Capsule centroid att = 0 is xc = (2d, yc) whereyc/d varies from−0.4 to 0.4 in steps of0.1.
Trajectories terminating in a dot correspond to capsules which become trapped at the corner.
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(a) Capsule journey whenW = 1. Capsules shown
at (Q1/d2) t = 0, 2.38, 4.98, 7.11, 12.37, 25.88.
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(b) Capsule journey whenW = 5. Capsules shown
at (Q1/d2) t = 0, 2.38, 4.98, 7.98, 19.26, 25.88.

Figure 7.15 : Capsule journeys whenλ = 1, ρ = 0.5,M = 0.001, α = 3π/4 andQ = 0.5. The
capsule centroid is initially located at(2, 0.13)d.

almost half of it becomes extended down into the branch before the capsule recovers and

continues along the main channel. The very delicate balancebetween which of the two

routes the capsule eventually takes could well be influencedby the elastic properties of

the capsule.

The preceding remarks suggest that the route taken by a capsule may depend crucially

on the extent to which it is able to deform. In figure 7.15 we give an example in which

a capsule either proceeds along the main channel or else migrates into the side branch,

depending on its elastic properties. The flow parameters forthe two simulations areλ = 1,

ρ = 0.5, M = 0.001, andα = 3π/4 with W = 1 in figure 7.15 (a) andW = 5

in figure 7.15 (b). In both of the simulations the capsule is released with its centroid

at xc/d = (2, 0.13). The deformation is quite different in the two simulations and it

ultimately determines the route taken by the capsule. WhenW = 1 the capsule is drawn

into the branch, but whenW = 5 it continues along the main channel. It is noteworthy

that for both of the capsules it takes a time of20.9 d2/Q1 to negotiate the area of the

junction and move down either into the branch or along the main channel (where the time

is calculated from the difference between the third and the final capsule shapes). The long

residence time of the capsule in the vicinity of the junctionshould be compared with those
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Figure 7.16 : Membrane tensions and bending moment for the final capsule shown in 7.15 (a) at
t = 25.88 d2/Q1. Arc-lengths at the trailing and leading tips ares/d = 0.80 ands/d = 3.23
respectively, and is measured in an anti-clockwise direction.

for capsules which pass more readily into the side branch (see for example the simulations

shown in figure 7.13 (a)). The longer residence times in the present calculations may to

some extent be explained by reference to the streamline pattern shown in figure 5.8 (a)

of chapter 5, which suggest an area of slow flow around the stagnation point where the

dividing streamline connects with the side branch wall. We repeated the calculations for

the same parameter values and for initial centroid positions in the range(2, 0.12)d up to

(2, 0.16)d. Again we found that the path taken by the capsule changed from the branch

to the main channel whenW was switched from 1 to 5. These calculations support the

hypothesis put forward earlier that deformation may have animportant influence on the

route taken by a capsule at a junction. The strong deformation experienced by the capsule

with W = 1 is sufficient to extend the capsule into the branch and draw itaway from the

main channel. The capsule withW = 5 suffers considerably less deformation and as a

consequence follows the path of the main channel.

In figure 7.16 (a) we show the in-plane and transverse membrane tensions and the

membrane bending moment for the last capsule shown in figure 7.15 (a) att = 25.88d2/Q1.

The maximum tensions are comparable in magnitude to those found for the steady-state

capsule shape shown in figure 4.18 (a) in chapter 4. The same qualitative spike-like be-

haviour in the bending moment, which was observed for the steady-state capsule, is also

observed in figure 7.16 (b) and the maximum overall bending moment is comparable be-

tween the two. We can therefore see that although a capsule entering an obtuse-angled

branch is distorted into a quite different shape from the steady-state found in a straight

channel, it suffers similar sized tensions and bending moments.

We performed similar calculations to those shown in figure 7.12 (b) but where we

reduce the width of the side branch. Given the difficulties with capsules snagging on the

rightmost corner of a right-angled or acute-angled branch,we confined our attention to

an obtuse-angled branch, and conducted a suite of calculations takingλ = 1, ρ = 0.5,

W = 1, M = 0.001, α = 3π/4, andδ = 0.5 so that the width of the side branch is

half that of the main channel and is equal to the unstressed diameter of the capsule. In
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the first case we setQ = 0.5 and set the capsule centroid so that att = 0, xc = (2d, yc)

with the valuesyc/d are taken from the setS. We found that all of the capsules except

for the one started with its centroid at(2, 0.4)d enter the branch and continue toE3. The

simulations were repeated for the same parameter values butwithW = 5, so that the cap-

sules have a stronger resistance to deformation, where again all but one capsule enter the

branch channel. This at first may seem contrary to the phenomenon of plasma skimming

(Krogh 1922) whereby the plasma layer close to the capillarywalls is skimmed off into

the daughter vessel. However the relative flux rates and fluidvelocities play a key role

in determining the haematocrit in the daughter capillaries. The experiments of Johnson

(1971) concerning the flow of blood through a single capillary bifurcation demonstrated

that the daughter capillary with the higher velocity tendedto receive the greater haema-

tocrit. Further confirmation was obtained experimentally by Yen and Fung (1978) using

gelatin pellets to simulate red blood cells in a bifurcatingcapillary-sized tube. Slightly

larger blood vessels were the focus of experiments by Pries et al. (1986) who studied a

microvascular segment of a rat’s mesentery. They showed that the haemotcrit depends

on the flux rates in the downstream channels as well as the ratio of the mean velocity of

the ambient fluid to the mean capsule velocity. In our simulations we haveδ = 0.5 and

Q = 0.5 so that the centreline velocities atE1 andE3 are equal, and the centreline veloc-

ity at E2 is half that atE1. It seems that the higher centreline velocity is responsible for

most of the capsules being drawn into the branch, even for equal flow rates at the exits.

Capsules which start off the centreline of the main channel tend to drift toward the faster

fluid in the middle and are then flushed through into the side branch. Therefore our two-

dimensional simulations are in accord with the above mentioned experiments. Next we

setQ = 0.75 so that most of the fluid exits throughE2 and the centreline velocity atE2

is greater than that atE3. The majority of the capsules, specifically those withyc/d in the

range−0.3 up to0.4 inclusive, are carried along toE2. The capsule which started with its

centroid at(2,−0.4)d enters the side branch. As predicted by experiment, we therefore

see that the centreline velocities play an important role onthe eventual course taken by

the capsule.

Finally we setQ = 2/3 so that the centreline velocities at the exitsE2 andE3 are

equal. WhenW = 1 we found that the capsules withyc ≥ 0.1 travelled toE2, and

the capsules which started withyc ≤ 0 migrated into the branch. The journey of the

capsule which started withyc = 0 is shown in figure 7.17 (a) where we can see that

the capsule became very stretched over the right-hand side entrance to the branch. The

capsule did eventually move into the branch channel and travel to E3. It is worth noting

that the capsule started withyc = 0 takes approximately twice as long to travel to the

exit as the capsules started withyc = −0.4 andyc = 0.4. In figure 7.17 (b) we show the

journey of a capsule started from(2, 0)d but withW = 5 thus making it more resistant

to stretching. When the capsule approaches the rightmost branch corner it deforms less

than the previous case and does not get drawn into the branch channel. The area error was

higher for these simulations. For instance, the final capsule shapes shown in figures 7.17

(a) and 7.17 (b) have area errors of0.2% and0.1% respectively. In summary, we see that
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(a) Capsule journey whenW = 1. Capsules shown
at (Q1/d2) t = 0, 3.31, 5.84, 8.31 and25.05.
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(b) Capsule journey whenW = 5. Capsules shown
at (Q1/d2) t = 0, 3.31, 5.86, 10.74 and16.48.

Figure 7.17 : Capsule journeys whenλ = 1, ρ = 0.5, M = 0.001, α = 3π/4, δ = 1/2 and
Q = 2/3. The capsule centroid is initially located at(2, 0)d.

the majority of capsules will migrate towards the exit whichhas the greatest centreline

velocity. When the centreline velocities of the exits are equal then the elastic properties

of the membrane may determine the capsule’s trajectory, with more deformable capsules

increasingly likely to enter the branch channel.

7.6 Deformation of the notional boundary

We have seen that when the capsule enters the branch it can undergo severe deformation.

As the capsule passes into the branch the notional boundary,A, is deformed to facilitate

the transition from the main channel to the branch channel. As the notional boundary

is deformed from its straight reference state boundary elements are added in order to

preserve the original element length. When the capsule is inthe region of the branch

entrance and is bisected by the liney = −d it is unclear in which channel the capsule

resides. We define the capsule to be in the main channel when the capsule’s centroid is

such thatyc ≥ −d and the notional boundary is deformed around the underside of the

capsule. This situation is depicted in figure 7.18 (a) where we take the capsule from the

simulation shown in figure 7.3 (b) when the capsule’s centroid is slightly abovey = −d

and also show the notional boundary. We maintain the straight reference configuration for

A close to the left and right hand entrances to the branch channel and deformA around

the capsule while ensuring that the deformed notional boundary does not cross itself,P

or leave the flow domain. The notional boundary may be thoughtof as a cradle which

will deform further as the capsule continues into the branchchannel. In figure 7.18 (b)

we show the capsule after its centroid has moved belowy = −d together withA. We

can see that the notional boundary has been flipped over so that the capsule now resides

in the ambient fluid of the branch channel and beneath the notional boundary. Once again

we only deformA close to the capsule and maintain the straight reference configuration

alongy = −d as much as possible. As the capsule moves further into the branch we

modify the notional boundary so that it becomes less deformed. When the entire capsule

lies belowy = −d (plus a small tolerance) the notional boundary is reset to its straight
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reference configuration.

In the simulation shown in figure 7.7 (b) whenQ = 0.5 the capsule became trapped

on the right-hand side of the branch entrance. The final capsule shape from the simulation

is shown in figure 7.18 (c) together with the notional boundary. In this case the notional

boundary becomes extended around the top tip of the capsule and to the right of the right

hand of the branch entrance.

7.7 Discussion

We have considered the pressure-driven flow of an elastic capsule through a channel with

a side branch. The capsule boundary was treated as a two-dimensional elastic membrane

capable of resisting elastic stretching and bending. The capsule was carried in a pressure-

driven ambient flow of fluid with generally different viscosity whose velocity profile ap-

proaches that corresponding to undirectional Poiseuille flow with a prescribed flow rate

far upstream and downstream in the main channel and downstream in the side branch.

The Reynolds number was assumed to be sufficiently small for the flow to be described

using the linear equations of Stokes flow.

The problem was formulated and solved numerically using theboundary integral

method. The computational domain was a truncated section ofthe branch geometry which

allowed sufficient entry and exit lengths for the flow to return to its assumed unidirectional

motion away from the junction. A domain decomposition-typeapproach was used which

meant that it was only necessary to collocate the channel walls, the capsule boundary, and

the notional boundary in order to solve for the velocity fieldand compute the motion of

the capsule. Although the introduction of a notional boundary avoided the need to col-

locate the entrance and exits to the computational domain, care needed to be exercised

when the capsule moved into the side branch, particularly for highly deformed capsules.

Previous workers have observed that a deformable elastic capsule will tend to drift

toward the centreline in a tube flow, and this trend was confirmed for the present two-

dimensional calculations in a straight channel with no sidebranch. We noted a tendency

for the capsule to first move a little way toward the wall before heading toward the cen-

treline, and this is in line with the three-dimensional calculations of Pozrikidis (2005c).

Our two-dimensional calculations of the steady-state shapes computed in the presence

of bending moments resemble those seen in experiments (e.g.Secomb et al. 2007) and

in axisymmetric calculations (Quéguiner and Barthès-Biesel 1997, Secomb et al. 2001,

Pozrikidis 2005a).

For a channel with a side branch, when the flow rate in the branch is sufficiently low,

moderate-sized capsules approaching along the centrelineof the main channel deviate

downwards slightly from their path but do not enter the branch. As expected, when the

flow rate in the branch is increased sufficiently, the capsuleis drawn into the branch. Cap-

sules which approach the branch junction along the main channel centreline may spend

a considerable time negotiating the branch region. These capsules are naturally drawn
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(a) Deformed capsule from simulation shown in figure 7.3 (b) when capsule
centroid is abovey = −d.
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(b) Deformed capsule from simulation shown in figure 7.3 (b) when capsule
centroid is belowy = −d.
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(c) Deformed capsule from simulation shown in figure 7.7 (b) when capsule
centroid is belowy = −d and the capsule is extended over the right-hand corner
of the branch entrance.

Figure 7.18 : Configurations of the deformed notional boundary.
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toward an area of relatively slow-moving fluid at the point where the dividing stream-

line, which separates the fluid which enters the branch from that which proceeds along

the main channel, makes contact with the wall. In the presently considered geometry,

capsules entering a right-angled or acute-angled side branch may snag on the corner and

become trapped. Capsules entering an obtuse-angled branchdo not become trapped, but

nevertheless may linger at the junction for some time undergoing significant deformation

before continuing to one or other of the exits. Although the deformation in the region

of the junction tends to be less pronounced for capsules which pass successfully into

right-angled or acute-angled branch than an obtuse-angledbranch, the elastic tensions

and bending moments in the capsule membrane are comparable.

When the flow rates through the main channel exit and the side branch exit are the

same, capsules will tend to follow the path where the velocity is greatest. Accordingly,

they will tend to migrate into a side branch which is narrowerthan the main channel.

When the two exits are of equal width, there is still an overall bias toward the side branch.

However when the branch channel is narrower than the main channel and the centreline

velocity at the branch exit is less than at the exit of the mainchannel we find that the ma-

jority of capsules remain in the main channel. This effect inthe microcirculation is known

as plasma skimming since the daughter channel may receive a relatively high proportion

of the blood plasma.

When a capsule has entered the side branch, eventually it will migrate toward the

centreline and relax to an equilibrium shape. Although it may quickly recover a shape

resembling the final state, it may travel some considerable distance before fully achiev-

ing equilibrium. This suggest that in a complex tube networkwith frequent successive

branches capsules might not have sufficient room to re-establish equilibrium before en-

countering another division. Consequently, the gross distortion which may result from

turning through a significant branch angle into a side tube islikely to persist and be com-

pounded at subsequent branches. In simulations, the distortion becomes less severe on

increasing the elastic membrane stiffness or increasing the viscosity of the encapsulated

fluid.

The route taken by a capsule at a branching may depend on the deformation expe-

rienced in the branch region, and consequently on the elastic properties of the capsule

membrane. We have found that two capsules of different elastic stiffness, for example,

which are started from the same position upstream of the branch under identical flow con-

ditions may take different routes, with one continuing along the main channel and the

other being drawn into the branch.

While the present work has considered the motion of a single capsule, in applications

such as blood flow, for example, there may be many capsules present. If the capsules are

widely spaced, then the present results may be applied. We have seen from simulations

of capsules which start with different offsets from the centreline that the path taken by

the capsule depends on the flux rate at the exit together with the ambient fluid velocity.

By changing the centreline velocities at the exits by altering the flux ratio we were able to

draw the majority of capsules along the main channel or have them migrate into the branch
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channel thus altering the discharge haematocrit at the exits. These observations are in line

with the observations on the flow of red blood cells (RBCs) in the microcirculation on

p.59 of Popel and Johnson (2005) (and the references therein) who find that the different

discharge haematocrits are due to daughter branches with higher flux rates drawing a

disproportionate number of RBCs into the vessel.

For tightly-packed capsules, interactions between neighbours is expected to have an

effect on the transit and deformation of each individual capsule. Although the addition

of more capsules to the flow is theoretically simple within the framework presented here,

there are practical computational difficulties associatedwith the deformation of the no-

tional boundaryA when multiple capsules are present. Moreover, the computational

domain will require a longer entrance and longer exits so as not to contravene the as-

sumptions of the problem formulation, with a consequent increase in the demands placed

on computer memory and CPU time.

7.8 Further work

In the numerical simulations presented in this chapter and in previous chapters we have

found good agreement between the results of our calculations and published results for

straight channels, pipes and branching channels. However we must stress that when com-

paring our results with three-dimensional calculations wecan only perform qualitative

comparisons. To extend our current model into three dimensions we must implement the

notional boundary as a deformable surface, which is challenging computationally. We

have also mentioned our desire to round the corners of the entrance to the branching

channel in order to more accurately model the flow of red bloodcells through a branch-

ing capillary. The rounding of the corners would also make itunclear where to join the

notional boundary onto the channel walls. Furthermore, if we introduced an additional

capsule into the branching channel flow we would have to deform the notional boundary

around one or all of the capsules. We will now investigate whether we can avoid these

implementational difficulties by omitting the notional boundary from the formulation.

We consider the same two-dimensional geometry as depicted in figure 7.1 but we

remove the notional boundaryA. To derive a boundary integral equation for the flow we

define the flow domain boundary,∂Γ = E1 ∪ E2 ∪ E3 ∪ B ∪ C ∪ P, and apply the general

boundary integral equation (1.3.40) to the total velocity and traction to get,

4πµ u
(1)
j (x0) = −

∫

∂Γ

f
(1)
i Gij ds(x) + µ

∫

∂Γ

u
(1)
i Tijk nk ds(x) (7.104)

for x0 in the ambient fluid. If the channel contained more than one capsule thenP is

the boundary of all of the capsules. After applying the no-slip and no-penetration condi-

tions on the channel walls and the boundary conditions at theentrance and exits given in
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equations (7.9), (7.10) and (7.11) we obtain

4πµ u
(1)
j (x0) = −

3
∑

r=1

∫

Er

fPr
i Gij ds(x) +

3
∑

r=2

πr

∫

Er

niGij ds(x)

−

∫

B,C,P

f
(1)
i Gij ds(x) + µ

3
∑

r=1

∫

Er

uPr
i Tijk nk ds(x) + µ

∫

P

u
(1)
i Tijk nk ds(x).

(7.105)

All of the integrals overE1, E2 andE3 may all be calculated analytically. We apply the

boundary integral equation (1.3.40) to the total flow over the particle boundary to get

0 = −

∫

P

f
(2)
i Gij ds(x) + µλ

∫

P

u
(2)
i Tijk nk ds(x), (7.106)

for x0 in the fluid of the main channel, and subtract the equation from equation (7.105) to

get

4πµ u
(1)
j (x0) = −

3
∑

r=1

∫

Er

fPr
i Gij ds(x) +

3
∑

r=2

πr

∫

Er

niGij ds(x)

−

∫

B,C

f
(1)
i Gij ds(x) −

∫

P

∆fiGij ds(x) + µ

3
∑

r=1

∫

Er

uPr
i Gij ds(x)

+ µ(1 − λ)

∫

P

u
(1)
i Tijk nk ds(x) (7.107)

for x0 located in the fluid. Since the discontinuous double-layer potential over the channel

walls is not present the equation is also valid forx0 located on the walls of the main

channel or the branch channel, and where the velocity on the left-hand side is zero by

no-slip. The unknowns in equation (7.107) are the disturbance pressures atE2 andE3,

the tractions on the channel walls and the velocities on the capsule boundary. Evaluation

of equation (7.107) withx0 located on the walls will allow the calculation of the wall

tractions. We may also evaluate the equation withx0 on the capsule boundary, while

taking care to include the discontinuous jump in the double-layer potential, in order to

calculate the velocities on the capsule boundary. However we still require equations for

the disturbance pressures,π2 andπ3. Previously we have used the Lorentz reciprocal

relation to derive equations for the disturbance pressuresby applying the relation to a

pair of flows. Now that we are treating the main channel and thebranch channel as one,

we would like apply the reciprocal relation to the total flow and one of the disturbance

flows. However we do not have a natural choice for the disturbance flow. If we chose

theuD1 flow then we would have to evaluate it in the branch channel. Asan alternative

we consider a simpler method. The flow throughout the branching channel satisfies the
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Stokes equation,

∇ · σ(1) = 0 (7.108)

whereσ(1) is the stress field in fluid 1. Integrating this equation over the flow domainΓ

gives

0 =
x

Γ

∇ · σ(1) dA(x) =

∫

∂Γ

f (1) ds(x) (7.109)

by the divergence theorem. After applying the boundary conditions at the entrance and

exits we obtain

3
∑

r=1

∫

Er

fPr ds(x) + 2dπ2 i + 2Dπ3 i′ +

∫

B,C,P

f (1) ds(x) = 0, (7.110)

wherei′ is defined in equation (5.3). The fluid inside the capsule is governed by

∇ · σ(2) = 0 (7.111)

which when integrated over the capsule leads to

0 =
x

P

∇ · σ(2) dA(x) =

∫

P

f (2) ds(x) (7.112)

by the divergence theorem. Subtracting this equation from equation (7.110) gives

3
∑

r=1

∫

Er

fPr ds(x) + 2dπ2 i + 2Dπ3 i′ +

∫

B,C

f (1) ds(x) +

∫

P

∆f ds(x) = 0. (7.113)

From the definitions of the Poiseuille tractions we find that

3
∑

r=1

∫

Er

fPr ds(x) = −2 d l QG1 i, (7.114)

which upon substitution into equation (7.113) gives

∫

B,C

f (1) ds(x) + 2dπ2 i + 2Dπ3 i′ = 2 d l QG1 i −

∫

P

∆f ds(x), (7.115)

where the terms on the left-hand side involve unknown quantities and the terms on the

right-hand side are known functions. The two equations for the disturbance pressures

are provided by thei andj components of this equation. We therefore have a sufficient

number of equations to calculate the wall tractions and disturbance pressures at the exits.

Since we make no assumptions about the geometry in equations(7.107) and (7.115) we

may round the corners of the branch channel entrance. In factthere is almost no need to

distinguish between the walls of the main and branch channels; we could just refer to the

walls as one boundary.
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Application of the boundary element method to the geometry,the boundary integral

equation (7.107) and equation (7.115) will lead to set a discretised equations which can

be formed into a linear system as we have demonstrated previously. The solution may

then be used to compute the motion of the capsule or capsules using an appropriate time-

integration method. It is also worth noting that whenλ = 1 and the capsule boundary

velocities disappear from equation (7.107) the inverse of the matrix in the linear system

need only be calculated once, independent of the location ofthe capsule. Previously we

had to recompute the matrix inverse when we changed the shapeof the notional boundary.

We also wish to extend our two-dimensional model to three-dimensions to more accu-

rately predict the motion of an elastic capsule along a branching tube. Two-dimensional

simulations are able to capture some of the qualitative behaviour of three-dimensional

capsules in straight tube flow, including some of the key features of the capsule profile

and the tendency of capsules to migrate laterally to the tubecentreline. However, two-

dimensional studies are severely limited in their description of the elastic behaviour of the

capsule membrane. For example, in-plane shear deformationoccurs in three-dimensions

but not in two-dimensions. Moreover some elastic capsules,red blood cells for example,

show a strong resistance to change in the local surface area while maintaining the same

interior cell volume. In the present two-dimensional work,the area inside a capsule is

preserved but the capsule perimeter extends under deformation.

In summary, we have sketched out a method by which we could remove the notional

boundary. We would therefore be able to extend the computational model to include

the effects of rounded corners and the motion of multiple capsules. The removal ofA

alone would facilitate a simpler transition from the current two-dimensional model to

a three-dimensional model which calculates the passage of an elastic capsule through a

branching tube.





Chapter 8

Conclusions

We started in chapter 1 by discussing the physical background of particle and capsule

motion in a variety of situations. We mentioned the motion ofthe fluid-filled capsules,

fluid drops and rigid particle in shear flows, channel flows andbranching channel flows.

This discussion provided a motivation to our research into the motion of a flexible capsule

in a branching channel flow. We also provided the mathematical background to Stokes

flow, Poiseuille flow and the boundary integral method which we used in each subsequent

chapter. In chapters 2–7 we formulated a set of boundary integral equations which gov-

erned the motion. In each channel flow we considered a pressure-driven Stokes flow and

prescribed the flux rate at the exit or exits to the computational domain. The pressure at

each exit was therefore included as an unknown in each channel flow. Each problem was

formulated and solved numerically using the boundary integral method. The computa-

tional domain was a truncated section of the channel geometry which allowed sufficient

entry and exit lengths for the flow to return to its assumed unidirectional motion away

from any disturbance, whether caused by the presence of a particle, capsule or a branch

channel. We obtained equations for the pressure using the Lorentz reciprocal relation

which avoided collocation of the channel ends which has beennoted to cause numeri-

cal sensitivities (Pozrikidis 2005c). By setting the unknown tractions and velocities on

the boundaries to constant vectors we applied the boundary element method to the chan-

nel geometry and the equations in order to obtain a set of algebraic equations which we

solved by standard matrix methods. We showed that in each case the numerical solution

was consistent with the underlying assumptions and we obtained good agreement with

published results where possible. As we added complexity tothe channel flow, by intro-

ducing a flexible capsule for example, we found that the boundary element formulation

easily incorporated the increasingly diverse parameter space.

In chapter 2 we provided an introduction to the boundary integral method and its

application to a simple but non-trivial fluid-filled straight channel flow which involved

the placement on one of the walls of a small conveyor belt, which moved with a constant

velocity. Despite the simplicity of the flow, a parallel may be drawn with cytoplasmic

streaming in large plant cells (Verchot-Lubicz and Goldstein 2009). In the absence of

a background Poiseuille flow we showed that an eddy is inducedin the fluid when the
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conveyor belt moves in either direction. The direction of the fluid in the eddy being

determined by the direction of the conveyor belt’s motion. When a background flow is

introduced the fluid behaviour is dependent on the directionof the conveyor belt. When

the belt moves in the opposite direction to the background flow then an eddy is created

in the fluid and close to the belt for all values of the belt speed. The size of eddy, and

the pressure drop between the entrance and exit, increased with the belt speed. When the

conveyor belt moved in the same direction as the background flow then there is a critical

belt speed below which the fluid is drawn towards the belt but then continues to the exit.

However, when the belt speed reaches this critical value an eddy appears close to the top

wall, and increases in size as the belt speed is increased. Wefound this critical belt speed

to be the value which induced a zero wall shear stress at a point on the top wall. For

all belt speeds the pressure drop between the ends decreasesand the belt’s motion may

be interpreted as helping to maintain the flux rate in the channel. A larger conveyor belt

induced a more rounded eddy while a smaller induced a triangular eddy.

In chapter 3 we dispensed with the conveyor belt and introduced a rigid particle of

constant shape, in a first step towards a model for a flexible capsule in a channel flow. We

repeated our application of the boundary integral and element methods in order to obtain a

linear system from whose solution we obtained the boundary distribution of the tractions

and the particle’s velocity. We found that the particle did not move nearer to either wall

which is in agreement with the reversibility property of Stokes flow. We also found that

the particle’s velocity was always less than the backgroundflow, evaluated at the parti-

cle’s centre, thus demonstrating that the particle ‘slips’relative to the background flow,

and showed excellent agreement with the results of Sugihara-Seki (1993). Of particular

importance to our investigation was the rate of decay of the disturbance due to the particle

as we moved away from it. We found that at a distance of three particle radii from the

particle’s centre the disturbance velocity was less than 1%of its maximum, and the veloc-

ity continued to fall with distance. When the particle lay onthe centreline, we found that

in a frame of reference moving with the particle there were six stagnation points present

on the particle’s perimeter. These points disappeared oncethe particle was moved away

from the centreline, and instead a thin region of circulating fluid surrounded the particle

and eddies appeared in the fluid. We found off-centre particles induced a greater pressure

drop than centred ones, most likely due to asymmetry createdin the flow and the pres-

ence of the eddies. Increasing the particle size while fixingits centre also created a larger

pressure drop across the computational domain. When the gapwidth between the particle

and one or both of the walls became small the pressure drop increases exponentially, due

to the increased stress in the gap (Staben et al. 2003). We noted that Hasimoto and Sano

(1980) had photographed eddies similar to the ones seen here.

In chapter 4 we removed the rigid particle and investigated the motion of a fluid drop

in a straight channel, and the motion of a fluid-filled capsulein a straight channel. We

found that a fluid drop reached a steady state after travelling many drop radii, and induced

an additional pressure drop which was significantly less than that for a rigid particle of the

same shape. Once again we found the disturbance velocity decayed rapidly as we moved
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away from the drop, and in this case the disturbance velocityfell to less than 1% at a

distance of 4 drop radii. We found that when a drop was startedfar enough away from

the centreline it gradually moved towards the centreline, although we did find that when a

drop was started only slightly off-centre,2.5% of the channel width for example, the drop

did not noticeably move laterally in the channel. We did find that drops started further

from the centreline moved fastest towards to it but then slowed their approach. We found

qualitative agreement with the published results of Mortazavi and Tryggvason (2000) and

Zhou and Pozrikidis (1994). The differences between our results and those of Mortazavi

and Tryggvason (2000) may be attributed to the fundamental assumptions about the flow.

We are considering a Stokes flow whereas Mortazavi and Tryggvason (2000) consider a

range of Reynolds numbers, the smallest of which was0.25. We noted that the differences

between our results and the results of Zhou and Pozrikidis (1994) were most likely due to

the authors’ use of a channel specific Green’s function and anadaptive boundary element

implementation.

We treated the elastic capsule as a two-dimensional elasticmembrane capable of re-

sisting elastic stretching and bending, and which contained a fluid of generally differ-

ent viscosity to the ambient fluid. Before placing the elastic capsule into a channel,

we checked the results of the elastic capsule module of our code against the results of

Breyiannis and Pozrikidis (2000) for an elastic capsule in alinear shear flow, and found

excellent agreement. We then replaced the fluid drop in the channel with an elastic cap-

sule, a change which was easily incorporated into the boundary element formulation,

and allowed the capsule to deform. We found that when bendingresistance was omitted

our numerical calculations failed to obtain a steady shape although such a shape has been

shown to exist in two-dimensions by Breyiannis and Pozrikidis (2000). When we included

a small resistance to bending we obtained a steady shape for the capsule after it had trav-

elled many capsule radii. Our two-dimensional steady-state shape resembled that seen in

experiments (e.g. Secomb et al. 2007) and in axisymmetric calculations (Quéguiner and

Barthès-Biesel 1997, Secomb et al. 2001, Pozrikidis 2005a). The additional pressure drop

for an elastic capsule was approximately the same as for a rigid particle of the same shape.

Increasing the membrane stiffness led to a less deformed steady shape which was attained

in a shorter time, translated along the channel faster, and induced a lower additional pres-

sure drop. The viscosity of the encapsulated fluid was shown to have little effect on the

eventual steady shape, although the time to reach the steadyshape increased with the cap-

sule’s fluid viscosity, in line with comments in Quéguiner and Barthès-Biesel (1997) who

studied the three-dimensional axisymmetric motion of an elastic capsule into a circular

pore. Capsules which are initially displaced from the channel centreline migrate towards

the centreline, which is in line with the three-dimensionalwork of Pozrikidis (2005c) with

which we found good qualitative agreement. Larger capsulestend to steady shapes with

elongated trailing tips. Additionally the larger capsulestranslate slower along the chan-

nel and induce a greater additional pressure drop. Finally we found that in all cases the

disturbance velocity decayed rapidly and it had reduced to1% of its maximum value at a

typical distance of four capsule radii from the capsule’s centroid.
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In chapter 5 we considered the fluid motion in a branching channel in the absence of a

particle or capsule, and with prescribed flux rates at the exits of the computational domain.

We used the boundary integral method to calculate the fluid motion and validated the

results by comparison with the results obtained from a finitedifference code. The results

were in excellent agreement for a variety of flow conditions.In the boundary integral

formulation we introduced a notional dividing boundary between the main channel and

the branch channel to facilitate the separate treatment of the flows in the distinct channels.

We note also that the boundary integral formulation more easily includes the branch angle

than the finite difference method which would have required significant amendment to

include the effect of an arbitrary branch angle. In our boundary conditions we assumed

that the flow disturbance induced by the branch decayed as we moved away from the

branch entrance towards the entrance or either exit. We found that the boundary tractions

did indeed decay to their expected values as we moved away from the branch and the

velocity profile settled to the pertinent Poiseuille profilewithin 2 channel widths from the

centre of the branch entrance. When we varied the flux ratio, thus determining the flux

rate at the exits, we found that the pressure drop between entrance and exit was greatest

at the exit which received the majority of the fluid. We found the pressure drop to be

greatest at the exits, for a fixed value of the flux ratio, when the branch angle wasπ/2 and

a minimum for an acute angle. By considering the shear stresson the walls close to the

downstream corner of the branch entrance, we found that the location of the termination

point of the streamline which divides the flow depends upon the ratio of the fluxes entering

the downstream channels and the branch angle. When most of the fluid continues along

the main channel the dividing streamline terminates on the branch channel wall, for acute

and obtuse branch angles. As the branch angle becomes more obtuse the termination

point moves further from the corner and into the branch channel. However, if the branch

channel receives the majority of the fluid then the termination point lies on the main

channel wall. Changing the branch angle in this case does notsignificantly move the

dividing streamline’s termination point.

Next we introduced a rigid particle into the branching channel. Before examining the

particle motion we checked that the computed results were inagreement with those of a

fluid-filled branching channel by comparing the wall tractions, disturbance velocities and

pressures between those obtained in chapter 5 and those calculated with a small particle.

We found consistent results for a variety of particle positions. When we released a small

particle close to the entrance and among streamlines which all travelled to a particular exit

the particle did indeed travel to that exit. A particle released with its centroid on the divid-

ing streamline caused the numerical simulation to terminate when the particle touched the

corner of the branch entrance, as expected. We found the minimum particle translational

velocity to occur when the particle is in the vicinity of the branch entrance. When the par-

ticle is several particle radii from the branch entrance we found the velocity to match that

predicted by the straight channel model considered in chapter 3, thus providing further

evidence that the effect of the branch is limited to a region close to the branch entrance.
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We discussed the method by which we would deform the notionalboundary which sep-

arates the main channel from the branch channel. We found that different configurations

did not greatly affect the numerical solution. We decided upon a method by which the

notional boundary would remain in its original configuration as much as possible, and

only be deformed in the region close to the particle, where wewould change the shape of

the notional boundary to closely follow the shape of the particle.

In chapter 7 we considered the pressure-driven flow of an elastic capsule through

a channel with a side branch. We treated the capsule boundaryas a two-dimensional

elastic membrane which resisted elastic stretching and bending using simple constitutive

relations. For simplicity, we used a circle as the unstressed state of the capsule and when

released we allowed it to deform as it moved with the flow. Whenthe deformed capsule

was in the vicinity of the branch entrance care needed to be exercised when deforming the

notional boundary around the capsule, particularly when the capsule was highly deformed.

After releasing the capsule we found that it adopted a parachute-like shape as ob-

served in experiments (e.g. Secomb et al. 2007). When the capsule passes over the branch

entrance on its way to the exit of the main channel, or migrates into the branch channel it

suffers considerable deformation. However, since we expect the effect of the branch en-

trance to decay as we move away from it we found that the capsule will migrate towards

the channel centreline and relax to a shape resembling its equilibrium state. We found that

the capsule did not fully achieve its steady-state shape since a distance longer than that

of our truncated computational domain was required. This does suggest however that in

a complex network of channels with frequent branches, capsules are more likely to attain

this semi-equilibrium state since the distance between branches may be relatively short.

We found that the capsule deformation was less when we increased the elastic membrane

stiffness or the viscosity of the encapsulated fluid.

Using the streamline calculations from the fluid-filled branching channel, we accu-

rately predicted the direction which the capsule takes whenit is released entirely within

a region of streamlines which travel to a particular exit. A capsule which approaches

the branch junction along the dividing streamline may spenda considerable time negoti-

ating the branch region, since the fluid moves relatively slowly in this region especially

close to the wall where we expect, in the absence of a capsule,the dividing streamline

to terminate. We found that when a capsule approaches the downstream corner of the

branch entrance and the branch angle was acute or a right-angle then the capsule becomes

trapped on the corner. The capsule is then caught in an extensional flow which deforms

the capsule along both channels simultaneously. For the case of an obtuse angled branch,

we found that the capsule does not get caught on either cornerof the branch entrance.

When the capsule does migrate into the branch it could take a considerable length of time

to navigate its way fully into the branch entrance, and tendsto suffer considerably more

deformation than a capsule which remains in the main channelor migrates into an acute-

angled branch. However we found that when the capsules successfully travel to either exit

the elastic tensions and bending moments in the capsule membrane are comparable for all

branch angles. The greatest membrane tensions occur when the capsule becomes trapped
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at the branch entrance corner. We found that there exists a region from which we could

release the capsule and its path is determined by the elasticproperties of the membrane.

For instance, a capsule released with its centroid in this region which travelled into the

branch channel could be made to remain in the main channel by increasing its membrane

stiffness thereby making it more resistant to deformation.

When we narrowed the branch width, the capsule consistentlytravelled to the exit

with the maximum centreline velocity. Putting this in the context of blood flow where

red blood cells tend to congregate on the channel centreline, a portion of the ambient

plasma is ‘skimmed’ from the main channel and enters the branch. Our results are con-

sistent with this observed ‘plasma skimming’ effect in branching capillaries. When the

downstream centreline velocities were equal we found a region close to the entrance and

on the centreline from which it is possible to affect the exitto which the capsule travels.

For example, a capsule started with its centroid on the centreline of the main channel and

which travelled into the branch channel could be made to travel to the exit of the main

channel by increasing the capsule’s membrane stiffness. Wetherefore demonstrated that

the direction in which the capsule travels may, in the marginal cases, be determined by

the elastic properties of the membrane.

While we have considered the motion of a single capsule, in capsule-laden flows

which arise in nature and industry there may be many capsulespresent. We can apply

the current results provided the capsules are sufficiently spaced, although care must be

exercised when a capsule becomes trapped at a corner since itcould then be approached

by another capsule and the capsule interation must then be taken into account. For tightly-

packed capsules, interactions between neighbours is expected to have an effect on the tran-

sit and deformation of each individual capsule. Although the addition of more capsules to

the flow is theoretically simple within the framework presented here, there are practical

computational difficulties associated with the deformation of the boundary which divides

the main and branch channels when multiple capsules are present. Furthermore, we would

require a longer computational domain so that the assumptions regarding the decay of the

disturbance due to each capsule is not violated. To ameliorate this problem, we pro-

vided a sketch of a method by which we could remove the notional boundary entirely, and

therefore easily include the motion of multiple capsules. Amendments to the channel ge-

ometry, round corners at the branch entrance for example, could also be included via this

alternative method. Moreover, the path to a more realistic three-dimensional boundary

integral implementation of an elastic capsule in a branching tube would be rendered more

straightforward, since the necessity for a deformable dividing surface would be removed.

Finally we note that throughout our discussions we have assumed the channel walls

to be straight. In flow domains, such as blood flow in the capillaries, this is evidently

not the case. We do point out however that we have made this assumption in the interest

of simplicity and irregularly shaped channel walls could easily be incorporated into the

boundary element formulation, in two or three dimensions. For example Secomb et al.

(2007) digitised a section of a rat’s mesentery in order to provide a realistic domain for

their finite-element calculations. This domain could be used by the boundary integral
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formulation without amendment, and with the additional benefit of a cheaper computa-

tional cost since only the elements of the walls need to be discretised, as opposed to the

entire flow domain when using the finite-element method. However the resulting matrix

in the linear system will be much denser for the boundary element method than for the

finite-element method. Repeatedly solving a linear system with a dense matrix may prove

computationally expensive. Also we point out that the boundary integral method may

only be applied to flows in which the Reynolds number is small,but it is in those flows

where the boundary integral method provides an efficient, adaptable and accurate method

of calculating the velocity field.
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Appendix A – Integration of the

two-dimensional free-space Green’s

function

We used a quadrature to approximate the integral of the two-dimensional free space

Green’s function, or Stokeslet, over a straight element. The two-dimensional Stokeslet

is defined by

Gij(x,x0) = −δij ln(r) +
(xi − x0,i)(xj − x0,j)

r2
(A.1)

wherer = |x − x0|, and the integral over element,E, is

G̃ij(x0) =

∫

E

Gij(x,x0) ds(x), (A.2)

where the element is taken to be a straight-line with start point, xs = (xs, ys), and end

point,xe = (xe, ye). We use Gauss-Legendre quadrature to integrate the Stokeslet numer-

ically along a line. Since the quadrature uses Legendre polynomials, which are defined

on the domain[−1, 1], we introduce a parameterξ ∈ [−1, 1], so that the line betweenxs

andxe may be represented parametrically as

x(ξ) = 1

2
(xe + xs) + 1

2
(xe − xs) ξ, (A.3)

y(ξ) = 1

2
(ye + ys) + 1

2
(ye − ys) ξ. (A.4)

As ξ increases from−1 to 1, the pointx moves fromxs to xe. Expressing the integration

variable in terms ofξ gives

ds(ξ) =
√

dx2 + dy2

=

√

(

1

2
(xe − xs) dξ

)2
+
(

1

2
(ye − ys) dξ

)2

= 1
2

√

(xe − xs)
2 + (ye − ys)

2 dξ

= hξ dξ, (A.5)
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wherehξ is the half-length of an element and defined by

hξ = 1

2

√

(xe − xs)2 + (ye − ys)2 . (A.6)

Therefore we can express̃Gij in terms ofξ and approximate the integral using Gauss-

Legendre quadrature to get,

G̃ij(x0) =

∫

E

Gij(x,x0) ds(x)

= hξ

1
∫

−1

Gij(x(ξ),x0) dξ

≈ hξ

NQ
∑

r=1

Gij(x(ξr),x0)wr, (A.7)

whereNQ is the specified number of base points,ξr is the rth root of theNQ-degree

Legendre polynomial andwr is the integration weight for therth base point.

There are two cases to consider. In the first case the pole,x0, does not lie on the

element and so the Stokeslet is well defined and we can evaluate the integral using (A.7).

Whenx0 lies on the element the Stokeslet is logarithmically singular. This is the second

case and it occurs during the construction of the ‘influence’matrix becausex0 is placed

at the midpoint of each of the boundary elements. In this caseit is helpful to note that

r =
√

(x− x0)2 + (y − y0)2

=
√

(1

2
(xe − xs) ξ)2 + (1

2
(ye − ys) ξ)2

= |hξ ξ|, (A.8)

sincex− x0 = 1

2
(xe − xs) ξ, and soG̃ij becomes

G̃ij(x0) = hξ

1
∫

−1

(

−δij ln |hξξ| +
(xi − x0,i)(xj − x0,j)

(hξ ξ)2

)

dξ

= −hξ δij



2 lnhξ +

1
∫

−1

ln |ξ| dξ



+
(xe,i − xs,i)(xe,j − xs,j)

2hξ
, (A.9)

which contains an integrable logarithmic singularity atξ = 0 when i = j. Taking the
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principal value of the integral when the singularity is present gives

G̃xx(x0) = 2hξ (1 − lnhξ) +
(xe − xs)

2

2hξ
, (A.10)

G̃xy(x0) = G̃yx(x0) =
(xe − xs)(ye − ys)

2hξ
, (A.11)

G̃yy(x0) = 2hξ (1 − lnhξ) +
(ye − ys)

2

2hξ
, (A.12)

for the components of equation (A.9). More details on the quadrature method, together

with the treatment of other kinds of boundary elements, may be found in Pozrikidis

(1998).



Appendix B – Influence matrix

deflation for a rigid particle

When a rigid solid particle travels along a straight channelthe disturbance velocity,uD,

caused by the particle is governed by the boundary integral equation,

4πµ uD
j (x0) = π2

∫

E2

ni(x)Gij(x,x0) ds(x)

−

∫

C

fD
i (x)Gij(x,x0) ds(x) −

∫

P

fi(x)Gij(x,x0) ds(x), (B.1)

derived in chapter 3, and whereE2 is the exit to computational domain,π2 is the distur-

bance pressure atE2, n is the normal vector which points into the fluid,Gij(x,x0) is the

free-space Green’s function,s is arc-length,fD is the disturbance traction on the channel

wallsC, andf are the tractions on the particle boundary,P. Unfortunately equation (B.1)

does not have a unique solution. Let us define

f = f̂ + χn, (B.2)

for the traction on the particle and wherêf is the particular solution,χ is an arbitrary

constant andn is the normal vector which points out of the particle and intothe fluid.

Substituting equation (B.2) into equation (B.1) gives

4πµ uD
j (x0) = π2

∫

E2

ni(x)Gij(x,x0) ds(x) −
∫

C

fD
i (x)Gij(x,x0) ds(x)

−

∫

P

f̂i(x)Gij(x,x0) ds(x) − χ

∫

P

ni(x)Gij(x,x0) ds(x)

= π2

∫

E2

ni(x)Gij(x,x0) ds(x) −
∫

C

fD
i (x)Gij(x,x0) ds(x)

−

∫

P

f̂i(x)Gij(x,x0) ds(x) (B.3)

because
∫

P
ni(x)Gij(x,x0) ds(x) = 0 by equation (1.3.34). Therefore an arbitrary mul-

tiple of the normal vector may be added to the particle traction without violating equation
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(B.1). To ensure the uniqueness of the traction on the particle boundary an additional

term, called the ‘deflation’ term, is added to the boundary integral equation (B.1). Since

the lack of a unique solution stems from the tractions on the particle boundary we define

the deflation term to be

Dj(x0) = nj(x0)

∫

P

ni(x) fi(x) ds(x), (B.4)

which is given in Pozrikidis (2005b). Substitution of equation (B.2) into equation (B.4)

gives

Dj(x0) = nj(x0)

∫

P

ni(x) f̂i(x) ds(x) + χnj(x0)SP , (B.5)

which shows that an arbitrary multiple of the normal vector cannot be added to the particle

traction in the deflation term, and whereSP is the total arc-length of the perimeter ofP.

Therefore we can ensure that the tractions on the particle boundary are unique in equation

(B.1) by adding the deflation term,D(x0), to the boundary integral equation. However

we need to know how the presence of the deflation term will affect the solution to the

boundary integral equation, and in particular will a solution to the ‘deflated’ boundary

integral equation,

4πµ uD
j (x0) +Dj(x0) = π2

∫

E2

ni(x)Gij(x,x0) ds(x)

−

∫

C

fD
i (x)Gij(x,x0) ds(x) −

∫

P

fi(x)Gij(x,x0) ds(x), (B.6)

be a solution to the original equation (B.1) ? To calculate the deflation term’s value we

multiply equation (B.6) bynj(x0) and integrate overP with respect tos(x0) to get

4πµ I1 + I2 = π2 I3 − I4 − I5, (B.7)

where

I1 =

∫

P

uD
j (x0)nj(x0) ds(x0), (B.8)

I2 =

∫

P

Dj(x0)nj(x0) ds(x0), (B.9)

I3 =

∫

P





∫

E2

ni(x)Gij(x,x0) ds(x)



nj(x0) ds(x0), (B.10)

I4 =

∫

P





∫

C

fD
i (x)Gij(x,x0) ds(x)



nj(x0) ds(x0), (B.11)
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and

I5 =

∫

P





∫

P

fi(x)Gij(x,x0) ds(x)



nj(x0) ds(x0). (B.12)

To evaluateI1 we cannot apply the divergence theorem becauseuD is undefined in the

region bounded byP. However we can write the velocity in terms of the total velocity

and the Poiseuille velocity usinguD = u − uP , whereu is the total velocity anduP is

the Poiseuille velocity. Therefore we have

I1 =

∫

P

uD(x) · n(x) ds(x)

=

∫

P

u(x) · n(x) ds(x) −
∫

P

uP (x) · n(x) ds(x), (B.13)

where we have reverted tox as the dependent variable. We may use the divergence theo-

rem to transform the integral overP involving the Poiseuille velocity to an integral over

the region bounded byP which we will labelAP , to get

I1 =

∫

P

u(x) · n(x) ds(x) −
∫

AP

∇ · uP (x) dA(x)

=

∫

P

u(x) · n(x) ds(x), (B.14)

since∇·uP = 0 because the Poiseuille flow is incompressible everywhere inthe channel.

On the particle boundary we may write the velocity in terms ofthe translational and

rotational velocities,V andΩ k, using

u(x) = V + Ω k ∧ (x− xc) (B.15)

to get

I1 =

∫

P

u(x) · n(x) ds(x)

= V ·

∫

P

n(x) ds(x) + Ω

∫

P

(k ∧ (x − xc)) · n(x) ds(x)

= V ·

∫

P

n(x) ds(x) + Ω

∫

AP

∇ · (k ∧ (x− xc)) dA(x), (B.16)

where we have used the divergence theorem to transform the second integral on the right-

hand side. Since the normal vector in Cartesian coordinatesis n(x, y) = (dy
ds ,−

dx
ds ), the
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first integral on the right-hand side is

∫

P

n(x) ds(x) =

∫

P

dy

ds
i −

dx

ds
j ds(x) =

∫

P

dy i −

∫

P

dx j = 0 (B.17)

by periodicity. Since the rigid particle is allowed to move with the flow, the centroid,

xc = (xc, yc), and the position vector,x = (x, y), will only depend on the time. Therefore

the integrand of the second integral in equation (B.16) is

∇ · (k ∧ (x(t) − xc(t))) = ∇ · (−(y(t) + yc(t))i + (x(t) + xc(t))j) = 0. (B.18)

Therefore substituting equations (B.17) and (B.18) into equation (B.16) shows that

I1 = 0. (B.19)

The next term isI2 which is

I2 =

∫

P

Dj(x0)nj(x0) ds(x0)

=

∫

P



nj(x0)

∫

P

ni(x) fi(x) ds(x)



nj(x0) ds(x0)

=





∫

P

nj(x0)nj(x0) ds(x0)









∫

P

ni(x) fi(x) ds(x)





= SP

∫

P

ni(x) fi(x) ds(x), (B.20)

whereSP is the total arc-length of the particle. ForI3, I4 andI5 we rearrange the order

of integration to get

I3 =

∫

E2

ni(x)





∫

P

nj(x0)Gij(x,x0) ds(x0)



 ds(x), (B.21)

I4 =

∫

C

fD
i (x)





∫

P

nj(x0)Gij(x,x0) ds(x0)



 ds(x), (B.22)

and

I5 =

∫

P

fi(x)





∫

P

nj(x0)Gij(x,x0) ds(x0)



 ds(x), (B.23)

which all contain the common integral,

I6,i(x) =

∫

P

nj(x0)Gij(x,x0) ds(x0). (B.24)
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Making use of the symmetry of the Green’s function,Gij(x,x0) = Gji(x0,x), we write

equation (B.24) as

I6,i(x) =

∫

P

nj(x0)Gji(x0,x) ds(x0). (B.25)

By swappingi↔ j andx ↔ x0 in equation (B.25) we obtain

I6,j(x0) =

∫

P

ni(x)Gij(x,x0) ds(x) (B.26)

which is zero by the continuity equation (1.3.34). Therefore we have

I1 = I3 = I4 = I5 = 0, (B.27)

and so equation (B.7) reduces toI2 = 0, which implies

∫

P

ni(x) fi(x) ds(x) = 0 (B.28)

since the perimeter,SP , is non-zero. Therefore the deflation term,

Dj(x0) = nj(x0)

∫

P

ni(x) fi(x) ds(x) = 0, (B.29)

and the boundary integral equation (B.6) will be unaffectedby its presence, and a solu-

tion of the deflated boundary integral equation will also be asolution of the non-deflated

system.

The same process may be applied to the boundary integral equation for a branching

channel containing a rigid particle to obtain the same result.



Appendix C – Calculation of I(x0)

When we consider a branching channel, the boundary integralequation for the main chan-

nel gives rise to the term,

Ij(x0) = (1 −Q)

∫

E2

(

fP1
i Gij − µuP1

i Tijk nk

)

ds(x), (C.1)

which we may calculate exactly by substitution of the Poiseuille traction,fP1 , the Poiseuille

velocity, uP1 , the Green’s function and the stress tensor. AtE2 we write the Poiseuille

velocity and traction as

uP1 =
G1 d

2

2µ

(

1 −
y2

d2

)

i, fP1 = G1(−l i + y j), (C.2)

where−G1 is the constant pressure gradient betweenE1 andE2. We substitute the equa-

tions in (C.2) into equation (C.1) to get,

Ij(x0) = (1 −Q)G1

∫

E2

(

−l Gxj + y Gyj +
d2

2
Txjx −

1

2
y2 Txjx

)

ds(x). (C.3)

The Green’s function and the stress tensor are defined in equations (1.3.29) and (1.3.30),

from which we can see that both functions are written in termsof x̂, wherex̂ = x−x0. At

E2, x̂ = x−x0 = l−x0 which is constant. Writing equation (C.3) in terms ofŷ = y−y0

we obtain

Ij(x0) = (1 −Q)G1

∫

E2

(

− l Gxj + y0Gyj + ŷ Gyj

+
d2 − y2

0

2
Txjx − y0 ŷ Txjx −

1

2
ŷ2 Txjx

)

dŷ, (C.4)

whereds = dŷ. Therefore to evaluate the integral (C.4) we must evaluate the integrals,

∫

E2

Gxj dŷ,

∫

E2

Gyj dŷ,

∫

E2

ŷ Gyj dŷ,

∫

E2

Txjx dŷ,

∫

E2

ŷ Txjx dŷ, and
∫

E2

ŷ2 Txjx dŷ.
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Calculation of the components of these integrals gives,

∫

E2

Gxx dŷ = [ ŷ(1 − ln r) ]y=d
y=−d , (C.5)

∫

E2

Gxy dŷ =

∫

E2

Gyx dŷ = x̂ [ ln r ]y=d
y=−d , (C.6)

∫

E2

Gyy dŷ = [ 2ŷ − ŷ ln r − 2x̂ arctan(ŷ/x̂) ]y=d
y=−d , (C.7)

∫

E2

ŷ Gyx dŷ = x̂ [ ŷ − x̂ arctan(ŷ/x̂) ]y=d
y=−d , (C.8)

∫

E2

ŷ Gyy dŷ = 1

4

[

3ŷ2 − 2(r2 + 2x̂2) ln r
]y=d

y=−d
, (C.9)

for the integrals involving the Green’s function, whereŷ(y = d) = d− y0 , ŷ(y = −d) =

−d− y0 andr =
√

x̂2 + ŷ2. The integrals involving the stress tensor are

∫

E2

Txxx dŷ = −2

[

x̂ ŷ

r2
+ arctan(ŷ/x̂)

]y=d

y=−d

, (C.10)

∫

E2

Txyx dŷ = 2 x̂2

[

1

r2

]y=d

y=−d

, (C.11)

∫

E2

ŷ Txxx dŷ = 2 x̂3

[

1

r2

]y=d

y=−d

, (C.12)

∫

E2

ŷ Txyx dŷ = 2 x̂

[

x̂ ŷ

r2
− arctan(ŷ/x̂)

]y=d

y=−d

, (C.13)

∫

E2

ŷ2 Txxx dŷ = 2 x̂2

[

x̂ ŷ

r2
− arctan(ŷ/x̂)

]y=d

y=−d

, (C.14)

∫

E2

ŷ2 Txyx dŷ = −2 x̂2

[

x̂2

r2
+ 2 ln r

]y=d

y=−d

. (C.15)

Substitution of equations (C.5)–(C.15) into equation (C.4) yields thex andy components

of I(x0) for a givenx0.



Appendix D – Finite difference

model for a branching channel

The geometry for a two-dimensional branching channel wherethe branch is at right-angles

to the main channel is shown in figure D.1. We take the top wall of the main channel to

lie at y = d and the bottom wall to lie aty = −d. The branch channel has the same

width and joins on to the main channel such that the midpoint of the lower wall lies on

the centreline of the branch channel. We take the main channel length to be12d and the

branch channel length to be6d. We may calculate the flow through the bifurcation using

the finite-difference method by introducing the stream function, ψ(x), which is constant

along a streamline and satisfies the biharmonic equation,

∇4ψ = 0, (D.1)

in an incompressible flow. The velocity,u(x) = (u(x), v(x)), is calculated from the

stream-function by

u =
∂ψ

∂y
and v = −

∂ψ

∂x
. (D.2)

We introduce the vorticity component in thek direction,

ζ = k · (∇∧ u) =
∂v

∂x
−
∂u

∂y
= −∇2ψ,

so that we may write the biharmonic equation forψ(x) as a pair of coupled partial differ-

ential equations,

ζ = −∇2ψ and ∇2ζ = 0. (D.3)

For a two-dimensional flow we have

ζ = −ψxx − ψyy and 0 = ζxx + ζyy, (D.4)

At the entrance and exits we assume that any disturbance caused by the branch channel

has decayed and that the velocity is unidirectional Poiseuille flow characterised by the

flux. At the entrance the flux isQ1 and the Poiseuille velocity isuP1 , at the exit of the

main channel the flux isQ2 and the Poiseuille velocity isuP2 and at the exit of the branch

channel the flux isQ3 and the Poiseuille velocity isuP3 . We haveQ1 = Q2 +Q3 and all
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Figure D.1 : Two-dimensional fluid-filled branching channel. The arrowsindicate the prevailing
flow direction and the walls are numbered1–5.

fluxes are positive. The Poiseuille velocities are defined by

uP1 (y) = UP1
0 (1 − y2/d2) i, (D.5)

uP2 (y) = UP2
0 (1 − y2/d2) i, (D.6)

uP3 (x) = −UP3
0 (1 − (x− 6d)2/d2) j, (D.7)

and the centreline speedsUP1
0 , UP2

0 andUP3
0 are related to each other by

UP2
0 = QUP1

0 , (D.8)

UP3
0 = (1 −Q)UP1

0 , (D.9)

where we have defined the flux ratio,

Q =
Q2

Q1
, (D.10)

andUP1
0 is related toQ1 by

Q1 =
4

3
dUP1

0 . (D.11)

Integrating the equation foru in (D.2) atE1 betweeny = −d andy we obtain

ψ(y) − ψ(−d) =

∫

E1

i · uP1 (y) dy =

y
∫

−d

i · uP1 (y) dy. (D.12)

When y = d in this equation we haveψ(d) − ψ(−d) = Q1, so the flux equals the

difference in the values ofψ between the lower wall and the upper wall atE1. Without

loss of generality we setψ(−d) = 0 so thatψ = Q1 on the upper wall atE1. Sinceψ is

constant along a streamline, it follows thatψ = 0 on walls 1 and 2, andψ = Q1 on wall
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5. Similarly we find thatψ = Q3 on walls 3 and 4. In summary we have

ψ = 0 on walls 1 and 2,

ψ = Q1 on wall 5,

ψ = Q3 on walls 3 and 4,

(D.13)

as the boundary conditions forψ on the walls. To findψ(x) at the entrance and exits we

integrate equation (D.2) for the pertinent Poiseuille velocity atE1, E2 andE3 to get

ψ(y; E1) = UP1
0

(

y −
y3

3 d2
+

2

3
d

)

(D.14)

ψ(y; E2) = UP2
0

(

y −
y3

3 d2
+

2

3
d

)

+Q3 (D.15)

ψ(x; E3) = UP3
0

(

x−
(x− 6 d)3

3 d2
−

16

3
d

)

. (D.16)

Therefore we knowψ on all the boundaries.

Our next step involves meshing the computational domain using ∆x d and∆y d as

the grid spacing in thex andy directions respectively. We useψi,j andζi,j to denote the

value ofψ andζ at x = i∆x andy = j∆y, and wherei = 0 . . . N(= 12d/∆x) and

j = 0 . . .M(= 8d/∆y). Using centred finite differences we approximate the equations

in equation (D.4) using

ζi,j = −

(

ψi+1,j − 2ψi,j + ψi−1,j

∆x2
+
ψi,j+1 − 2ψi,j + ψi,j−1

∆y2

)

(D.17)

0 =
ζi+1,j − 2ζi,j + ζi−1,j

∆x2
+
ζi,j+1 − 2ζi,j + ζi,j−1

∆y2
. (D.18)

To complete our boundary conditions we require equations for ζ at the entrance, exits and

on the walls. The values ofζ at the entrance and exits are calculated using equation (D.3)

and equations (D.5)–(D.7) to get

ζ(y; E1) =

(

2UP1
0

d2

)

y, (D.19)

ζ(y; E2) =

(

2UP2
0

d2

)

y, (D.20)

ζ(x; E3) =

(

2UP3
0

d2

)

(x− 6 d). (D.21)

To find ζ on the walls we consider wall 1 on whichψ = 0 and soψx = 0 andψxx = 0

which givesζ = −ψyy and

ζi,j = −
ψi,j+1 − 2ψi,j + ψi,j−1

∆y2
, (D.22)

with j 6= 0 and whereζi,j lies on the wall,ζi,j+1 lies in the fluid in the main channel and
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ζi,j−1 is a ‘ghost’ point which lies outside of the computational domain. To eliminate the

‘ghost’ point we note thatu = 0 on wall 1 so that

0 = u(xi, yj) =
∂ψ

∂y
(xi, yj) ≈

ψi,j+1 − ψi,j−1

2∆y
(D.23)

which givesψi,j+1 = ψi,j−1 and so

ζi,j = 2
ψi,j − ψi,j+1

∆y2
= −2

ψi,j+1

∆y2
, (D.24)

on wall 1 sinceψi,j is on the wall andψ = 0. Applying the same process to the remaining

walls yields similar expressions. Therefore we can computeζ exactly at the entrance and

exits and use a finite difference approximation to calculateζ on the walls. It remains to

find expressions forζi,j andψi,j which can be obtained from equations (D.17) and (D.18)

to get

ζi,j =
∆x2(ζi,j+1 + ζi,j−1) + ∆y2(ζi+1,j + ζi−1,j)

2(∆x2 + ∆y2)
, (D.25)

ψi,j =
∆x2(ψi,j+1 + ψi,j−1) + ∆x2∆y2ζi,j + ∆y2(ψi+1,j + ψi−1,j)

2(∆x2 + ∆y2)
. (D.26)

Using these equations we calculateζi,j andψi,j at each node in the fluid domain. We

continue iterating over the nodes which lie in the fluid domain and the walls on which we

calculateζi,j until the values ofψ in the fluid andζ in the fluid and on the walls converge.

Convergence is deemed to have occurred when the values ofψ andζ at every node change

by less than10−9Q1 and10−9Q1/d
2 in one iteration respectively. The flow streamlines

are then plotted using the values ofψ. The velocity at a node in the fluid is calculated by

u(xi, yi) =
∂ψ

∂y
=
ψi,j+1 − ψi,j−1

2∆y
, (D.27)

v(xi, yi) = −
∂ψ

∂x
=
ψi−1,j − ψi+1,j

2∆x
. (D.28)

The streamlines forQ = 0.5 are shown in figure D.2. Comparison with figure 5.2 (a) in

chapter 5 shows an excellent agreement. The dividing streamline starts from the centre of

the entrance on the left and terminates on the right-hand corner of the branch.
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Figure D.2 : Streamlines forQ = 0.5 in a section of the branching channel computed by the finite
difference method.



Appendix E – Stress at a corner in a

branching channel

In figure E.1 we show a section of the branching channel which includes the right-hand

branch entrance. We define local polar coordinatesr andθ wherer is the radial distance

from the branch corner andθ is the angle. We setθ = 0 on wall 1 andθ = β on wall 2

which extends into the branch channel. We introduce the local stream-function,ψ(r, θ),

which satisfies the biharmonic equation,

∇4ψ = 0, (E.1)

in an incompressible flow. In terms ofψ, ther andθ components of velocity are

uθ(r, θ) = −
∂ψ

∂r
, ur(r, θ) =

1

r

∂ψ

∂θ
, (E.2)

whereuθ is theθ component of velocity andur is ther component. On the walls we

choose

ψ(r, 0) = ψ(r, β) = 0, (E.3)

and impose the tangential flow condition so that

ur(r, 0) = ur(r, β) = 0, (E.4)

which may be written in terms of stream-function as

1

r

∂ψ

∂θ

∣

∣

∣

∣

θ=0

=
1

r

∂ψ

∂θ

∣

∣

∣

∣

θ=β

= 0. (E.5)

In polar coordinates we write the biharmonic equation (E.1)as

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)2

ψ = 0. (E.6)

Following the analysis given in chapter 7 of Acheson (1990) we postulate that the stream-

function takes the form

ψ(r, θ) = rγ f(θ), (E.7)
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θ = 0

θ = β = 2π − α

Wall 1

Wall 2

α

Figure E.1 : Local geometry at the right-hand corner of the branch entrance of the branching
channel, with plane polar coordinatesr andθ.

whereγ is a constant. We substitute equation (E.7) into equation (E.6) and obtain

g
′′

+ (γ − 2)2g = 0, (E.8)

where

g(θ; γ) = f
′′
(θ) + γ2 f(θ) (E.9)

and a prime denotes differentiation with respect toθ. We have three special cases to

consider:

Case i:γ = 0

Whenγ = 0 the stream-function is given by

ψ(θ) = f(θ) (E.10)

which represents a radial flow with a source or a sink at the origin. Since we are interested

in flow around the corner we disregard this solution.

Case ii: γ = 1

The solution to equations (E.8) and (E.9) whenγ = 1 is

f(θ) = A cos θ +B sin θ + Cθ cos θ +Dθ sin θ. (E.11)

Applying the boundary conditions given in equations (E.3) and (E.4) on the wall atθ = 0

we get

A = 0, and B + C = 0. (E.12)

On wall 2 whereθ = β we find thatβ must satisfy

sin2 β = β2 (E.13)

to avoid a trivial solution, and which is only satisfied whenβ = 0. Therefore we reject

the solution.

Case iii: γ = 2



253

Whenγ = 2 we obtain

ψ(r, θ) = r2 (A+Bθ + C sin(2θ) +D cos(2θ)) , (E.14)

for the stream-function. To satisfy the boundary conditions given in equations (E.3) and

(E.4), the angleβ must satisfy

β sin(2β) + cos(2β) − 1 = 0 (E.15)

to avoid a trivial solution. Equation (E.15) is satisfied when β = 0, π, 2π andβ ≈ 1.43π

for β ∈ [0, 2π]. Since we are interested in the flow around a corner we reject the first three

angles and setβ0 = 1.43π. The stream-function is given by

ψ(r, θ) = Ar2 (1 − cos(2θ) + χ (2θ − sin(2θ))) , (E.16)

where

χ =
sin(2β0)

cos(2β0) − 1
≈ −0.223. (E.17)

The velocity components are

ur = 2Ar ( sin(2θ) + χ ( 1 − cos(2θ) ) ), (E.18)

uθ = 2Ar ( 1 − cos(2θ) + χ ( 2θ − sin(2θ) ) ). (E.19)

The streamlines are shown in figure E.2 for a positive value ofA, where we can see the

presence of a stagnation point on the corner. The streamlinedirection is reversed when

A is negative. If a ‘far’ field boundary condition were to be included then the value ofA

could be determined and we would have a unique solution. Now that we have calculated

the velocity components we can compute the stress on the walls using the stress tensor,

σij = −p δij + 2µ eij , (E.20)

wherep is the pressure andeij is the rate of strain tensor. Since we are only interested in

the behaviour of the stress we will focus our attention on therate of strain tensor. In polar

coordinates we have

err =
∂ur

∂r
= 2A ( sin(2θ) + χ ( 1 − cos(2θ) ) ), (E.21)

eθθ =
1

r

∂uθ

∂θ
+
ur

r
= −err, (E.22)

2 erθ = r
∂

∂r

(uθ

r

)

+
1

r

∂ur

∂θ
= 4A ( cos(2θ) + χ sin(2θ) ), (E.23)

all of which are independent ofr and well defined with respect toθ. On the wallθ = 0

we have

err = −eθθ = 0, and erθ = 2A, (E.24)
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and

err = −eθθ = 0, and erθ = −2A, (E.25)

on θ = β. We expect the sign to change on theerθ component because the unit vector

in the θ direction points into the fluid on wall 1 and away from the fluidon wall 2. In

summary, the stress is finite at the corner whenγ = 2 andβ = β0 provided the pressure

is finite.

We will now consider the general case whenγ 6= 0, γ 6= 1 andγ 6= 2. The solution

to equations (E.8) and (E.9) gives

ψ(r, θ) = rγ f(θ)

= rγ
(

A cos(γθ) +B sin(γθ) + C cos((γ − 2)θ) +D sin((γ − 2)θ)
)

, (E.26)

for the stream-function whereA, B, C andD are constants. Applying the boundary

conditions on wall 1 whereθ = 0 gives

C = −A, (E.27)

D =
γ

2 − γ
B. (E.28)

The conditions atθ = β only give a non-trivial solution forA andB whenγ satisfies

sin(γβ) sin((γ − 2)β)

1 − cos(γβ) cos((γ − 2)β)
=

γ(γ − 2)

γ2 − 2 γ + 2
(E.29)

for a given angle,β. Furthermore we find

B = A

(

−γ sin(γβ) + (γ − 2) sin((γ − 2)β)

γ cos(γβ) − γ cos((γ − 2)β)

)

= Aξ, (E.30)

whereξ is a known constant determined fromγ andβ. Therefore we are left with the

constant,A, which could be calculated given a ‘far’ field boundary condition. The stream

function is

ψ(r, θ) = rγ f(θ) (E.31)

where

f(θ) = A
(

cos(γθ) + ξ sin(γθ) − cos((γ − 2)θ) +
γ ξ

2 − γ
sin((γ − 2)θ)

)

. (E.32)

The velocity components are given by

ur(r, θ) = rγ−1 df

dθ
(E.33)

uθ(r, θ) = −γ rγ−1 f. (E.34)

To avoid a singularity in the velocity asr → 0 we requireγ ≥ 1. In the chapters in which

we consider a branching channel we set the angleα to π/4, π/2 and3π/4. The values of
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γ computed using equation (E.29) for these branch angles are given in table E.1.

Branch angle (α) β = 2π − α γ

3π/4 5π/4 1.67358343
π/2 3π/2 1.54448374

1.90852919
π/4 7π/4 1.50500970

1.65970163

Table E.1 : Values of the stream-function parameter,γ, for various branch angles.

Now that we have the exponent ofr in the stream function, we will compute theerr

component of the rate of strain tensor,

err =
∂ur

∂r
= (γ − 1) rγ−2 df

dθ
. (E.35)

Sinceγ < 2 for all three branch angles,err ∼ rγ−2 asr → 0 and the rate of strain tensor

is singular and hence the stress is also singular at the corner. Therefore we have shown

that the stress is singular at the corner in the cases considered in chapters 5–7.

In figure E.3 we plot the streamlines forα = 3π/4 and γ = 1.67358343. The

streamlines are directed around the corner with the direction determined from the sign

of the constantA in equation (E.32). The stress on the walls is well-defined apart from

at the corner where it is singular. Figure E.4 shows the streamlines for the two values

of γ whenα = π/2. Whenγ = 1.54448374 the streamlines follow the shape of the

corner, whereas whenγ = 1.90852919 the flow exhibits a stagnation-point flow with

both velocity components tending to zero asr → 0. Finally, in figure E.5, we show

the streamlines for an acute angled branch whereα = π/4. Once again there are two

solutions forγ. Whenγ = 1.50500970 the flow traces the shape of the channel walls and

flows around the corner. A stagnation flow is observed whenγ = 1.65970163 with the

streamlines dividing and travelling either to the right andabove wall 1 or down and along

wall 2.
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Figure E.2 : Streamlines close to a corner forα = 0.57π andγ = 2. The stress on the walls is
well-defined in this case. When the constantA is positive in equation (E.16) the streamlines enter
from the top-left.
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Figure E.3 : Streamlines close to a corner forα = 3π/4 andγ = 1.67358343. The stress is
singular at the corner.
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(a) Streamlines whenγ = 1.54448374.
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(b) Streamlines whenγ = 1.90852919.

Figure E.4 : Streamlines close to a corner withα = π/2 for the two values ofγ. The stress is
singular at the corner in both cases.
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(a) Streamlines whenγ = 1.50500970.
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(b) Streamlines whenγ = 1.65970163.

Figure E.5 : Streamlines close to a corner withα = π/4 for the two values ofγ. The stress is
singular at the corner in both cases.
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