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Abstract

This thesis uses asymptotic and numerical techniques to examine high

Reynolds flow past an array of many blades in various configurations. Two-

dimensional flows are considered in this thesis which we treat as a limiting

case of three-dimensional rotor blade flow as one passes far away from the

centre of blade rotation. Chapter 2 considers the flow past a horizontally

aligned array of flat blades with a very small ground clearance, and anal-

yses effects associated with slip-streaming. Chapter 3 investigates the flow

past many blades with a global angle of attack. Viscous-inviscid coupling is

essential in the model derived in this chapter, with the solutions of the vis-

cous and inviscid problems requiring simultaneous treatment. The coupling

is observed through unknown pressure differences and wake-shapes. Chapter

4 extends the analysis of Chapter 3 to include a many-blade limit, where

the boundary-layer is modelled as a periodic sublayer embedded within a

growing bulk-layer.

In Chapter 5, we examine a pressure interactive many-blade limit as an

extension to the work in Chapter 4. In our analysis, the boundary-layer

generates a pressure-displacement interaction. In Chapter 6, a global angle

of attack is reintroduced into the interactive many-blade limit of Chapter

5 so that the sublayer is affected to leading order and the flow response

is described. Chapter 7 considers larger global angles of attack that still

preserve the interactive structure but cause different interactions between

the flow and the blades. In both chapters, the adaptations of the interactive

limit are made clear for each case considered. Finally, Chapter 8 considers

flow past an array of vertically aligned blades in a channel. The analysis

describes the flow upstream of the blades, between the blades and the wake

flow. Analytical solutions for the primarily inviscid leading order flow at the

leading edge are derived for given downstream pressures and a discussion of

the flow development there in relation to the downstream channel geometry

is given. Numerical solutions of the full problem are given for the flow past

1, 2 and 9 blades and the relevant flow features in each case are analysed.

v





Acknowledgements

I would like to express my sincere thanks to my primary adviser, Dr. Richard

Purvis, whose expertise in the subject area, patience and advice have guided

me through this thesis. I would like to thank my second supervisor, Dr.

Paul Hammerton, for some constructive comments on my thesis. A personal

thank you goes to Dr. Mark Cooker, for help in producing and presenting

different outreach activities as a distraction from the project and to Professor

Frank Smith for assistance with a particular numerical issue. Financial sup-

port from the Engineering and Physical Sciences Research Council is greatly

appreciated.

I would like to thank my family for their support and interest in my

work over the duration of my time at university, from undergraduate to

postgraduate, to which I hope my achievements give you much happiness.

Finally, I would like to thank Elizabeth Eves, whose love, support and care

when the going has been tough has been paramount to the completion of my

studies.

vii





Contents

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Physical background . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Flow past many blades in extreme ground effect 13

2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Velocity expansions . . . . . . . . . . . . . . . . . . . . 16

2.2 Discontinuity region . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Non-uniform oncoming velocity . . . . . . . . . . . . . 21

2.2.2 Uniform oncoming flow . . . . . . . . . . . . . . . . . . 22

2.3 Summary of the full problem . . . . . . . . . . . . . . . . . . . 25

2.4 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Leading edge solution . . . . . . . . . . . . . . . . . . . 26

2.4.2 Blade-ground gap solution . . . . . . . . . . . . . . . . 27

2.4.3 Over blade and wake solution . . . . . . . . . . . . . . 28

2.4.4 Solution algorithm . . . . . . . . . . . . . . . . . . . . 28

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Flow characteristics . . . . . . . . . . . . . . . . . . . . 30

2.5.2 Small H . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.3 Large H . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ix



3 Flow past many blades at a global angle of attack 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 The viscous boundary-layer . . . . . . . . . . . . . . . 48

3.2.2 The inviscid free-stream . . . . . . . . . . . . . . . . . 51

3.3 Solution of the inviscid problem . . . . . . . . . . . . . . . . . 53

3.3.1 Finding the complex function w . . . . . . . . . . . . . 53

3.3.2 Summary of the full problem . . . . . . . . . . . . . . . 57

3.4 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Boundary-layer . . . . . . . . . . . . . . . . . . . . . . 58

3.4.2 Inviscid Solution . . . . . . . . . . . . . . . . . . . . . 59

3.4.3 Solution algorithm . . . . . . . . . . . . . . . . . . . . 60

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Method validation . . . . . . . . . . . . . . . . . . . . 62

3.5.2 Solutions for N = 5 flat blades . . . . . . . . . . . . . . 62

3.5.3 Short, thick and many blades . . . . . . . . . . . . . . 69

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Many-blade limit with a global angle of attack 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 Region II: bulk viscous flow . . . . . . . . . . . . . . . 86

4.2.2 Region I: viscous sublayer . . . . . . . . . . . . . . . . 89

4.2.3 Region III: free-stream . . . . . . . . . . . . . . . . . . 90

4.3 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.1 Comparisons . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 The pressure interactive many-blade limit 101

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 The boundary-layer structure . . . . . . . . . . . . . . . . . . 103

5.2.1 The bulk-layer . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.2 Interactive sublayer . . . . . . . . . . . . . . . . . . . . 107

x



5.2.3 Leading-edge discontinuity . . . . . . . . . . . . . . . . 108

5.2.4 Inviscid free-stream region . . . . . . . . . . . . . . . . 110

5.2.5 Comparisons with the non-interactive limit . . . . . . . 113

5.2.6 The condensed limit . . . . . . . . . . . . . . . . . . . 114

5.3 Numerical formulation . . . . . . . . . . . . . . . . . . . . . . 115

5.3.1 Finite-difference discretisation . . . . . . . . . . . . . . 116

5.3.2 Solution over the blade . . . . . . . . . . . . . . . . . . 117

5.3.3 Solution in the wake . . . . . . . . . . . . . . . . . . . 120

5.3.4 The leading edge solution . . . . . . . . . . . . . . . . 121

5.3.5 The streamwise sweep . . . . . . . . . . . . . . . . . . 122

5.3.6 Flow reversal . . . . . . . . . . . . . . . . . . . . . . . 123

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4.1 Symmetric flow problems . . . . . . . . . . . . . . . . . 124

5.4.2 Non-symmetric flow problems . . . . . . . . . . . . . . 126

6 The pressure interactive many-blade limit with a global angle

of attack 139

6.1 Structure with a global angle of attack . . . . . . . . . . . . . 139

6.2 The leading order response for α = Re−1ᾱ . . . . . . . . . . . 141
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blade thicknesses given by f+(x) = 2(x− x2), f−(x) = x2 − x. 77

3.16 Displacement thicknesses for five aerofoils with ᾱ = 0.5, 2.0
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Chapter 1

Introduction

1.1 Physical background

The responses of fluid flow past many blades are seen extensively throughout

the industrial world. In particular, high-speed flows are seen in various ro-

torcraft, such as helicopter rotor blades, propellers and turbines. Helicopters

have many important roles, for example in reaching off-shore oil rigs, air

ambulances and news reporting, as well as military applications, such as air-

attack, troop deployment and other supply logistics. In such applications,

the helicopter’s abilities to perform vertical take-off or landing (VTOL) and

hover for long periods of time are exploited. These abilities rely on the con-

tinually spinning nature of the helicopter rotor, to provide lift and overcome

gravity. Furthermore, each rotor blade passes through the air-flow induced

by the blade ahead and generates a new flow for the blade behind to enter.

Such flow regimes may be understood by examining the flow around the rotor

blade system in each case. If the rotor-flow can be understood, then there are

design considerations for the helicopter, for example to improve its efficiency

in the generation of thrust in forward flight and VTOL.

Related to the helicopter rotor blade is the propeller, used in shipping

and on some aircraft. In this instance, the rotation of the propeller is used

to generate forward movement rather than to directly overcome gravity. The

importance of understanding high-speed flow induced by the propeller of an

aircraft is paramount for safety. For example, the infamous V22 Osprey

tilt-rotor aircraft, capable of performing VTOL, has been involved in several

1
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fatal accidents. One such accident occurred in 2004, killing 19 US Marines on

board. The report by Gross et al. (2004) finds that the accident was caused

by the aircraft entering a vortex ring state, causing the engines to stall in

landing. The vortex ring state can occur when the aircraft starts to descend

vertically, causing the propeller blades to exit a slip-streaming state, form

large recirculations of the flow and induce high turbulence (Johnson (1994)).

By gaining insight into the flow in this regime, a recovery technique may be

developed or design alterations may be found allowing vertical descent to be

carried out safely. Further safety considerations for aircraft are the arrival

and take-off spacings of aircraft at busy airports. Here, understanding the

dispersion of wing-tip vortices and avoiding turbulent wakes is vital to main-

tain the aerodynamics of each departing or arriving aircraft (see Dougherty

et al. (2004) and Gerz et al. (2005)). One technological advancement to

regularise the effects of wing-tip vortices on large aircraft has been the intro-

duction of winglets upon the wing-tips. These winglets can generate vortices

that can be useful to the aircraft (Jupp & Rees (1987)) and offer a reduction

of 1 − 2% in drag caused by the wing-tips (Kroo (2005)).

Fluid flow in and around aircraft jet engines is also of much importance,

not least to reduce annoyance caused by noise levels in take-off and landing.

Noise levels around airports are governed internationally by the International

Civil Aviation Organisation through noise level certification and in the UK,

noise quotas are applied to many airports at night (Girvin (2009)). Polacsek

et al. (2009) give a discussion into the generation of noise within a jet engine

and state that the rotor-stator interaction mechanisms are one of the major

contributions of noise from aircraft. Hence, by understanding the nature of

the flow past the turbines in the jet engine, future improvements may be

found in reducing noise levels by suggesting where to place noise dampening

surfaces. Furthermore, improvements in efficiency may be found, such as

a reduction in fuel consumption. Papers by, for example, Ovenden (2005)

and Richards et al. (2007) both stress the difficulty in calculating the sound

propagation within jet engines due to the little understood and complicated

nature of the fluid flow.

There are many other interesting applications, for example the flow around



1.1 Physical background 3

wind turbines, in domestic fans, food mixers and blenders, hover lawn-mowers

and Formula One cars. In the last application, the design of certain aero-

dynamic features on the car, such as the front spoiler and undertray, are re-

quired to interact with the ground to produce as much downforce as possible

and to affect the performance of an approaching car behind through slip-

streaming effects. Understanding the flow induced in such configurations

may lead to race benefits resulting from the design of these aerodynamic

surfaces.

The high-speed flows induced by the rotor or propeller alone in such ap-

plications are very complex and thus difficult to measure experimentally or

describe theoretically. Even with a single blade in the rotor, to describe the

full flow characteristics poses a serious challenge. With the rotor located on

an arbitrary body, such as a helicopter or a turbo-propellered aircraft, the

added interactions between the rotors and the mainframe or wings repre-

sent a serious challenge. Further, to consider interactions with the ground

or other nearby objects adds considerable difficulty to an already compli-

cated problem. An account of the isolated rotor is given by Johnson (1994).

The rotor was first modelled as an actuator disc in applications to marine

propellers by Rankine in 1865 and Froude in 1885. Momentum theory was

developed by considering the actuator disc acting upon the air around it,

forcing a coloumn of air through the actuator and causing a thrust. By us-

ing Newton’s laws of motion, an explicit formula was derived for the thrust

by considering the mature wake motion away from the disc. The calculated

thrust relied upon a conservation of energy argument, due to a velocity in-

crement in the wake. Although this classical momentum theory provides an

approximation for the lift provided by one rotor, it does not give explicit de-

tails on the flow behaviour around the blades to include interactions between

the blades and of vortex shedding, which are important for the design of, for

example, helicopter rotors.

More recent attempts to understand basic helicopter aerodynamics are

given by Bramwell (1976) and Seddon et al. (2001), among a very large

array of literature. Bramwell (1976) discusses a varied selection of topics,

from the aerodynamics of a helicopter in vertical ascent and forward flight, to
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structural and elastic interactions of the blades. Seddon et al. (2001) includes

discussion on theoretical approaches and focuses more on the control and

stability of the helicopter. Efforts to introduce physical concepts and apply

mathematical analysis to the propeller setting are given by Bertram (2000)

and Hafez & Kwak (2003) in both ship and aircraft contexts. Also of interest

is Conlisk (1997), who gives a review into the development and recent trends

in both computational and experimental techniques.

Experimental studies have been conducted by, for example, Washizu et al.

(1966), Caradonna & Tung (1981), Yu (1995), Yu (2000) and Hoffmann et al.

(2007) for various flight regimes to investigate flow interactions with the

main airframe and the ground and noise propogation. The major drawback

with experiments is that they are often very expensive to carry out and

the data produced can be very difficult to interpret, with the main physical

mechanisms involved not being captured particularly clearly. Inevitably, we

turn to fluid dynamics to try to gain insight into the flow mechanisms present

in such multi-blade flows.

Generally, two main approaches are adopted in tackling such multi-blade

problems, the first being an inviscid, potential flow approach. Potential flow

calculations, particularly for the helicopter rotor have been carried out by, for

example, Caradonna & Isom (1972), Isom (1974), Chaffin & Berry (1990),

Strawn (1996) and Brown et al. (2002). Isom (1974) considers the role of

time dependent flows past a helicopter rotor with transonic blade-tip speeds

and Strawn (1996) give calculations into acoustic effects and noise generation

from the rotors. However, the major drawback with inviscid flow computa-

tions is the neglect of viscosity and the non-application of the no-slip bound-

ary condition. Viscous effects are often estimated in inviscid calculations,

whether by approximations or given directly by empirically measured data.

The inviscid calculations are therefore not so useful in predicting viscous

interactions between the blades.

The second approach is by direct numerical simulation, by numerically

solving the Navier-Stokes equations with high Reynolds number. The Reynolds
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number is given by the ratio of inertial and viscous forces. Due to the in-

clusion of viscosity, the no-slip condition may be applied and viscous separa-

tion and vortices can occur. Ingham et al. (1990) calculate solutions to the

Navier-Stokes equations through a row of normally aligned flat blades using

finite-difference techniques, whilst Natarajan et al. (1993) consider the flow

past a row of flat plates using Galerkin finite element methods. Some other

examples of direct numerical simulation in various multi-blade contexts are

given by Kapadia & Roy (2003), Bhattacharyya & Smith (2004) and Rodi

(2006). A downside to using direct numerical simulation is that the codes

are often computationally very expensive, especially when compared to in-

viscid calculations. Furthermore, for increasing Reynolds number the results

produced can be less accurate. This is particularly true in vortex and eddy

generation; inaccuracies arise due to poorer convergence in the numerical so-

lution and the need for very fine or adaptive discretisation close to the blade

surfaces.

The inclusion of other influences into inviscid and direct numerical sim-

ulation calculations, such as the mainframe of an aircraft, a wing or ground

effect adds considerable difficulty in accurately capturing the flow dynamics.

McCroskey (1995) give an overview of the methods used and the compli-

cations induced by an aircraft and the ground for both experimental and

numerical techniques. For example, the main-frame and tail-rotor of a heli-

copter cause the rotor wake to roll up into a horseshoe vortex in the proximity

of the ground. Another interaction occurs between the mainframe and pro-

peller wake of the V22 Osprey (mentioned earlier), where the wake can be

forced back into the propeller by the mainframe when in vertical descent.

McCroskey (1995) states that this induces extra noise and a 10% decrease in

the thrust produced by the propellers.

Typically, the Reynolds number is large in the physical applications dis-

cussed and as yet, relatively little investigation in comparison to experiments

and computations has been undertaken in boundary-layer theory past many

rotor- or propeller-blades. In purely inviscid models, no boundary-layer ex-

ists due to the neglect of viscosity. In direct numerical simulations, the
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boundary-layer may not be captured accurately without very fine grid refine-

ment, adding to computing time. Rosenhead (1963) gives a derivation of the

boundary-layer problem in the context of three-dimensional rotor blades. In

the derivation, the rotor blades are symmetric and a sketch solution is given

for the radial and tangential flow components in the boundary-layer on a

flat plate. Smith & Timoshin (1996a) consider symmetric, three-dimensional

rotary boundary-layer flow. There, the authors give computational solutions

for a variety of blade numbers and blade and wake lengths for a cut disc. At

large radial distances (that is, away from the centre of rotation) it is shown

that an axisymmetric terminal form of the velocity exists, even in the pres-

ence of many blades and wakes. Further, a many-blade limit was sought,

where the boundary-layer takes on a double viscous structure. Symmetric

three-dimensional solutions are found for infinite and finite blade spans and

a discussion of the flow beyond the blade-tips in the latter case is given. The

blade-tip vortices are captured in the calculations and the behaviour shown

agrees well with that observed in experiment.

Smith & Timoshin (1996b) consider the two-dimensional problem result-

ing from the large radii analysis of Smith & Timoshin (1996a), and includes

non-symmetric blade shapes. In this instance, viscous-inviscid interaction

occurs between the inner (viscous) boundary-layer and the outer (inviscid)

free-stream. The new interaction is seen in the model through a coupling of

the boundary-layer and the free-stream, requiring simultaneous solution. The

coupling arises due to unknown pressure differences across all the blade sur-

faces and unknown wake-shapes. Boundary-layer solutions are presented for

various symmetric and non-symmetric blade configurations before a many-

blade limit is sought. A similar double viscous structure arises, whereby the

boundary-layer is composed of a slowly growing bulk-layer and a periodic

inner sublayer over one blade and wake. This many-blade limit holds for

both the symmetric and non-symmetric blade configurations described and

appears in the numerical calculations after only four or five blades are passed.

Pressure interactive flow past many blades is considered by Bowles &

Smith (2000a), where a pressure gradient appears at leading order within

the boundary-layer, unlike in Smith & Timoshin (1996b). The interactive
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flow considered arises in the many-blade limit of Smith & Timoshin (1996b)

after sufficiently many blades downstream. They found that a pressure-

displacement law covers the entire blade-wake period, a novel result since

interactive flows, such as the triple-deck problem at the trailing edge of a

flat blade (see Stewartson (1969) and Messiter (1970)), are usually local in

nature. Interactive sublayer solutions are given through streamwise velocity,

pressure and skin friction for various blade thicknesses and lengths. Analyt-

ical descriptions of an interesting short-blade limit, where the length of the

blade is much less than that of the wake, is given in relation to helicopter aero-

dynamics. Bowles & Smith (2000b) consider the influence of non-symmetry

in the interactive flow problem. In this instance, a flow discontinuity arises at

the leading edge of the blade in order to satisfy the equi-pressure condition at

the trailing edge. It is found that the nature of the discontinuity is a pressure

jump. The short-blade limit of Bowles & Smith (2000a) is then extended to

include non-symmetry of the blade with several analytical results derived,

such as an expression for the pressure change from the blade leading edge to

the near wake and an approximate equation for lift.

Jones & Smith (2003) consider viscous interactions in ground effect for

the case of one blade. In this instance, the flow structure is such that an

interactive boundary-layer problem governs the flow beneath the blade. A

leading edge region, similar to that in Bowles & Smith (2000b) is encountered.

If the ground clearance is small and the blade is cambered enough, numerical

solutions show that flow reversal can occur beneath the blade. An asymptotic

analysis into the extreme case of small ground clearance is undertaken and

a discussion of three-dimensional effects is given. Interactions between an

array of multiple blades in ground effect are considered by Purvis & Smith

(2004). A coupled viscous-inviscid model is derived with the inclusion of

ground effect. Results are given for various blade geometries and ground

clearances, with the ground effect seen in the results by comparing the wake-

shapes and pressures as the ground clearance becomes small. The cases of

very large or very small ground clearances are studied analytically, with the

results gained agreeing well with the numerical computations. A many-blade

limit is then sought, with the double viscous structure described above. It
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is shown that the sublayer becomes periodic after passing many blades and

comparisons between wake-shapes obtained from the full, coupled model are

compared to the many-blade limit, showing good agreement.

The boundary-layer flow that emerges from a vertically aligned cascade

of blades is considered by Smith (2002). For the case of external wakes,

where the flow is free to interact with the free-stream, the periodic nature of

the flow emerging from between the blades quickly disappears after a short

downstream distance and approaches a uniform state. The case of internal

wakes, where the blades are contained within a larger channel, is governed

by lateral periodicity with a non-zero pressure gradient. In both cases, the

flow is investigated just downstream of the aligned trailing edges. For the

case of internal wakes, the uniform flow state approached downstream and

the pressure rise can be calculated analytically. Wake starting flows that are

non-symmetric (but still laterally periodic) are then considered analytically

and numerically to demonstrate the turning of the wake and the differences

in the development of the velocities downstream.

1.2 Thesis outline

The aim of this thesis is to investigate the flow past many blades by examining

different viscous-inviscid interactions as described in the papers above. In

this thesis, the flows considered are taken to be steady, laminar and two-

dimensional in nature. The flow velocity is non-dimensionalised with respect

to U∞, taken as the velocity of the free-stream and the streamwise and normal

coordinates with respect to L, a typical blade length. The pressure is non-

dimensionalised with respect to ρU2
∞. The governing equations are thus given

by the non-dimensionalised, incompressible fluid form of the Navier-Stokes

equations

U
∂U

∂x
+ V

∂U

∂y
= −∂P

∂x
+

1

Re

(

∂2U

∂x2
+
∂2U

∂y2

)

, (1.1)

U
∂V

∂x
+ V

∂V

∂y
= −∂P

∂y
+

1

Re

(

∂2V

∂x2
+
∂2V

∂y2

)

, (1.2)

∂U

∂x
+
∂V

∂y
= 0, (1.3)
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where the non-dimensional streamwise and normal velocities are given by

U = U(x, y) and V = V (x, y) respectively, with the pressure P = P (x, y).

The non-dimensional streamwise and normal coordinates are given by x and

y respectively. The dimensionless parameter Re in the governing equations

(1.1) - (1.3) is the Reynolds number, given by

Re =
U∞L

ν
, (1.4)

where ν is the constant kinematic viscosity. We will address high Reynolds

number flows past many blades with ground effect, a global angle of attack

and past an internal array of vertically aligned blades.

In Chapter 2, we begin by considering fluid flow past many blades within

a very small distance of the ground. Jones & Smith (2003) considered this

problem for one blade in two-dimensions, but not past many blades, whilst

Purvis & Smith (2004) considered flow past many blades but at ground

clearances much larger than Jones & Smith (2003). A natural extension

to these papers is to consider flow interactions past many blades within a

very small ground clearance, whilst still being applicable to the physical

applications. The model derived is a boundary-layer one, with the pressure

being unknown beneath all the blades and a pressure jump at the leading

edge of each blade. Numerical results are given for flat blades at various

ground clearances before an analysis of the very large and very small cases of

ground clearance is given. When the ground clearance becomes very large,

we show that the asymptotic limit of our analysis is the ground effect case

of Purvis & Smith (2004). For very small clearances, we show that the flow

beneath each blade can be modelled by a small viscous region just after the

leading edge before the flow is dominated by Couette flow for the remainder

of the blade.

Chapter 3 investigates the high Reynolds number flow past an array of

blades with a global angle of attack. Smith & Timoshin (1996b) investigates

the flow past many blades and this chapter extends the analysis to include a

global angle of attack. The global angle of attack is taken to be large enough

such that a leading order change occurs within the boundary-layer problem.

This flow regime is a new non-symmetry not yet investigated in the context
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of flows past many blades. The model is a coupled viscous-inviscid one,

with the boundary-layer and free-stream problems requiring simultaneous

solution. Solutions are given for flat blades with various global angles of

attack and some numerical calculations are conducted for short and thick

blades, all revealing similar results. A ten-blade calculation with a global

angle of attack is studied and we argue that this case suggests a many-blade

limit holds where the boundary-layer can be modelled by a double viscous

structure.

In Chapter 4, we derive the many-blade limit with a global angle of attack.

The double viscous structure for the boundary-layer structure is adopted,

with the inclusion of a global angle of attack of the same size as in Chapter

3. The double viscous structure for the boundary-layer is shown to contain

a periodic sublayer and a slowly growing bulk-layer. Numerical results are

calculated and compared to solutions gained using the method in Chapter 3,

showing good overall agreement. We show that for a larger global angle of

attack, the many-blade limit is approached in our calculations after passing

more blades than that reported in Smith & Timoshin (1996b) and Purvis &

Smith (2004).

Interactive boundary-layer flow is considered in Chapters 5, 6 and 7. In

Chapter 5, we outline the complete flow structure as in Bowles & Smith

(2000a,b) and develop a new numerical technique to solve the sublayer prob-

lem. The numerical technique is based upon Newton linearisation of the

interactive boundary-layer equations and the necessary adjustments to the

procedure in the advent of flow reversal are discussed. Chapter 5 finds some

new solutions to the non-symmetric problem of Bowles & Smith (2000b), us-

ing a different method to force periodicity. In Chapter 6, we add the global

angle of attack into the interactive boundary-layer structure, by finding a

global angle of attack that first causes a leading order change to the sublayer

problem. This change is incorporated into the structure through a bound-

ary condition, the numerical code is adapted to include the new boundary

condition and solutions are given for different blade geometries and global

angles of attack. In Chapter 7, we find larger angles of attack that cause
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a leading order change to the interactive many-blade limit within the bulk-

layer and the free-stream. A further global angle of attack is found that is

large enough to cause a tilt of the sublayer structure. The new interactions

in the tilted sublayer case are found numerically and we present solutions for

various blade geometries.

In the final chapter, we consider boundary-layer flow past a vertically

aligned array of blades within a bounding channel. Smith (2002) considers

the wake flow of such an array of blades but not the flow leading up to

and within the array of blades and those of Smith & Jones (2000), Smith

et al. (2003) and Smith & Jones (2003), who consider the flow response upon

passing the leading edges of the blades. This chapter takes a different stand-

point, by modelling the whole flow upstream of and between each set of blades

and in the wake. The boundary layer equations are shown to hold everywhere

in our problem, with a discontinuity at the leading edge arising due to the

Kutta condition. An analytical solution for the leading order leading edge

flow is given and depends on the downstream fluxes within the channels

formed by the blades. Results for the leading edge problem are presented

for various prescribed fluxes. Solutions to the full boundary-layer problem

are given for differing numbers of blades and blade shapes and a numerical

investigation is undertaken where the upper and lowermost channels become

very large.





Chapter 2

Flow past many blades in

extreme ground effect

We begin by analysing high Reynolds number flow past an array of flat blades

in extreme ground effect. Our motivation for this problem stems from the

design of Formula One cars, specifically the front spoiler or diffuser. The pur-

pose of the front spoiler is to create as much downforce as possible, keeping

the car firmly rooted to the track and enabling high-speed cornering. Fur-

thermore, an efficient car will experience as little drag as possible, improving

fuel consumption. Within our problem, we are interested in the lift and

drag generated on the spoilers present downstream. There are other appli-

cations too, for example in hover lawn-mowers and food blenders, where the

continual spinning of the rotor blade occurs near a stationary, flat surface.

Previous work by Jones & Smith (2003) considers a one blade problem

in extreme ground effect. The ground clearance is taken to be very small,

in non-dimensional coordinates of distance O(Re−1/2) and the term extreme

ground effect is defined by taking a ground clearance of this size. Here, we

have adopted the non-dimensional coordinates in section 1.2 and from now

on in this chapter, and every subsequent one, our analysis will assume those

non-dimensional variables. The boundary-layer created on the blade interacts

directly with the ground, since the boundary-layer growth is of the same size

as the ground clearance. Between the blade and the ground, the problem

is governed by the pressure interactive boundary-layer equations. The same

equations hold elsewhere, but due to matching with the free-stream, the

13
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pressure is constant. Due to the Kutta trailing edge condition, which forces

the pressure to be continuous at the trailing edge, a flow discontinuity occurs

at the leading edge which allows the Kutta condition to be satisfied. Analysis

within the leading edge region shows that a velocity and pressure jump occurs

in the region, causing a rapid deflection of the streamlines at the leading

edge. The full viscous problem relies on this region to determine a starting

condition for the flow just after the leading edge. Numerical solutions for

varying blade shapes are then found to include boundary-layer separation

through flow reversal between the blade and the ground and calculations of

lift and drag. Extremal cases of very large or small ground clearance are

investigated analytically, using asymptotic methods. For very small ground

clearances, there are two streamwise scales of importance, one small scale

just after the leading edge where the full boundary-layer equations hold and

the other, a larger scale spanning the remainder of the blade governed by

a lubrication approximation. For large ground clearances, an inner-outer

interaction prevails between the viscous boundary-layer and inviscid free-

stream beneath the blade.

Purvis & Smith (2004) investigate the fluid flow past many blades with

ground effect. The ground clearance is taken to be of O(1), much larger

than the extreme ground effect analysis of Jones & Smith (2003) discussed

above. Since the ground clearance is now much larger than the boundary-

layer growth, the boundary-layer does not directly interact with the ground

in the same way as Jones & Smith (2003). The model presented has an

inviscid flow everywhere except close to the blade surfaces where a viscous

boundary-layer is located. Global inner-outer interaction occurs whereby the

boundary-layer and free-stream are coupled and must be solved simultane-

ously. This viscous-inviscid coupling is seen in the model through unknown

wake centreline shapes and pressure differences in the viscous and inviscid

problems respectively. Computational results of the coupled problem are

given for various symmetric and non-symmetric blade configurations and

numbers of blades. A main result is that blades positioned downstream ex-

perience less drag, whilst creating less lift, known as a slip-streaming effect.

Cases of large and small ground clearances were analysed analytically. For
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large ground clearances, all interaction with the ground is lost at leading

order, with the problem given by that of Smith & Timoshin (1996b). As the

ground clearance decreases (but still of O(1)), the pressure between the blade

and ground increases so that the solution, at least for one blade, agrees with

that presented by Jones & Smith (2003) for large ground clearances. There

is also a many-blade limit, where periodicity is found in the boundary-layer.

In this chapter, we take the multiple blade stance adopted by Purvis &

Smith (2004) and allow the non-dimensionalised ground clearance to become

O(Re−1/2), that of Jones & Smith (2003). The latter authors pointed out that

this would be an interesting extension to their work. We consider an array of

N flat blades positioned in an otherwise undisturbed uniform flow, with the

governing equations given by the Navier-Stokes relations (1.1) - (1.3). The

array of N blades lie within a non-dimensional ground clearance of O(Re−1/2)

in this chapter. Our aim is to describe the flow in this regime, past all N

blades and within each wake. It is interesting to see how the inner-outer

interaction of Purvis & Smith (2004) carries into this new regime.

2.1 Formulation

The streamwise extent of the problem is taken to be x = O(1). Since all

blades lie within an O(Re−1/2) distance of the ground, we define the normal

coordinate in the problem to be given by Y = O(1), where y = Re−1/2Y .

All the flat blades lie at Y = H , so that the correct scaling for the ground

clearance is achieved. The leading edge of the first blade is taken to lie at a

position (0, H) within a moving frame of reference and each blade to be of

length l = O(1). The oncoming uniform flow is taken to be U = 1, V = 0,

P = 0.
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O x

Y

x = O(1)

O(Re−1/2)
U = 1

Y = H

l

Figure 2.1: The flow problem under consideration. The total normal distance
y = O(Re−1/2) and the streamwise distance x = O(1). The coordinate of the
first leading edge is taken as (0,H). The blade length l is taken to be an O(1)
non-dimensional length.

2.1.1 Velocity expansions

The flow velocity components and the pressure are expanded as

U = u(x, Y ) + · · · , (2.1)

V = Re−1/2v(x, Y ) + · · · , (2.2)

P = p(x, Y ) + · · · , (2.3)

in the problem, with any further terms (of lower order) tending to zero in the

limit Re → ∞. We have that U = O(1) due to the uniform oncoming flow

and hence by the continuity equation, V = O(Re−1/2). The pressure, P , is

O(1) in our expansions. We substitute these expansions into the governing

Navier-Stokes equations, to reveal the leading order problem

u
∂u

∂x
+ v

∂u

∂Y
= −∂p

∂x
+
∂2u

∂Y 2
, (2.4)

0 = −∂p
∂y
, (2.5)

∂u

∂x
+
∂v

∂y
= 0. (2.6)

We see immediately from (2.5) that p(x, Y ) = p(x), meaning that the leading

order problem for u, v and p is governed by the boundary layer equations

u
∂u

∂x
+ v

∂u

∂Y
= −dp

dx
+
∂2u

∂Y 2
, (2.7)

∂u

∂x
+
∂v

∂y
= 0, (2.8)
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subject to the boundary conditions

u = v = 0 on Y = H on the blades, (2.9)

u = 1, v = 0 on Y = 0, ∀x, (2.10)

u→ 1 as Y → ∞. (2.11)

Here, condition (2.9) represents the no-slip and no-normal flow conditions

on the blades and (2.10) the no-slip and no-normal flow conditions at the

ground. The latter condition is needed since within our moving frame of

reference, the blades appear stationary with the ground moving beneath.

The final condition is to match with the free-stream. Upstream of the array

of blades, the solution is given by the uniform flow u = 1, v = 0, p = 0.

Consider the flow in the far-field as Y → ∞ over each blade and wake. We

have that u → 1 and so by substitution into (2.7), we deduce that

−dp

dx
→ 0. (2.12)

Hence over each blade and wake, the pressure p = constant. If the constant

free-stream pressure is zero, then to match as Y → ∞, we must take p(x) = 0

to leading order in the wakes and above the blades.

However, we cannot apply this argument between the blade and the

ground, due to the boundary conditions imposed on the blades. Here, the

pressure remains an O(1) unknown. The pressure beneath the blade must

satisfy the Kutta condition, requiring pressure continuity at the trailing edge.

Hence, just above and below each trailing edge, the pressures must match.

Since p = 0 above the trailing edge and beneath the blade we have that

p = p(x), we have that

p = 0, at every trailing edge. (2.13)

Between any particular blade and the ground, the pressure gradient there

relies on the geometry created by that blade and the ground. Given the flat

blades considered here and with the expectation of forward flow, the pressure

gradient is favourable. Thus the pressure is expected to fall between the blade

and the ground from the leading edge to the trailing edge. So in general, the

Kutta condition at the trailing edge is not satisfied. To ensure this condition
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is satisfied, there must be a jump in the velocity and pressure somewhere

in the flow. A jump in velocity and pressure may occur at the leading and

trailing edges due to the changes in boundary conditions at Y = H . Since

the Kutta condition forces continuity in the pressure and velocities at the

trailing edge, the only place where this jump may occur is at the leading

edge. Thus, as the flow passes the leading edge, the pressure must jump

from its upstream value of zero to a new value between the blade and the

ground downstream, accompanied by adjustments in the velocity. Above the

blade, no jump in pressure occurs since p = 0 there, although there is an

adjustment in velocity. The magnitude of the pressure jump beneath the

blade is chosen by the flow so that the prescribed starting condition means

that the Kutta condition is satisfied. In the current problem where p = 0 at

every trailing edge, a leading edge region must occur at the onset of every

blade.

2.2 Discontinuity region

To determine the nature of the jumps across each leading edge discontinuity,

we seek a formulation valid for each leading edge region. The oncoming flow

in U is O(1) and the normal coordinate is y = O(Re−1/2). The pressure

P = O(1) to match with the pressure between the blade and the ground in

the main flow problem above. To determine the streamwise extent in x of the

region, we consider the limit x−xle → 0 of the Navier-Stokes equations, with

the above scales. Here, xle represents the leading edge of a particular blade.

We find that inertial forces balance with the pressure gradient in the normal

momentum equation when x − xle = O(Re−1/2). Thus from the continuity

equation, we have V = O(1) in the leading edge regions. We define X = O(1)

to be the streamwise variable here, where x − xle = Re−1/2X, and expand

the velocities and pressure as

U = ū(X, Y ) + · · · , (2.14)

V = v̄(X, Y ) + · · · , (2.15)

P = p̄(X, Y ) + · · · . (2.16)
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Substitution into the Navier-Stokes equations yields the inviscid Euler equa-

tions holding to leading order. Furthermore, there is a small boundary-layer

created on the blade and ground surfaces in the leading edge region, due to

the no-slip conditions. By considering the balance UUx ∼ Uyy within the re-

gion, we deduce that the thickness of these boundary-layers is O(Re−3/4).

This normal estimate is much smaller than the current normal scale (of

O(Re−1/2)) and so the contribution to the leading order problem is negli-

gible. We do not formulate this problem further, instead concentrating on

the inviscid solution.

The leading order streamfunction in the region, ψ, is defined as

ū =
∂ψ

∂Y
, v̄ = − ∂ψ

∂X
, (2.17)

with the vorticity of the flow in this region given by

ω =
∂v̄

∂X
− ∂ū

∂Y
. (2.18)

For a general incoming flow profile, each streamline has a different value

of vorticity. Given the inviscid nature of the flow to leading order, by the

Cauchy-Lagrange theorem (see Acheson (1990)) the vorticity of the incoming

flow persists throughout the entire region. Hence, the vorticity on each in-

coming streamline is conserved throughout the region. We substitute (2.17)

into (2.18) to find that the streamfunction in the region is governed by the

Poisson equation

∇2ψ = −ω(ψ), (2.19)

where ω(ψ) represents the vorticity on a particular streamline. The boundary

conditions for the problem are given by

ψ = 0, on Y = 0, ∀X, (2.20)

ψ = ψ0, on Y = H , for X > 0. (2.21)

ψ = ψ(Y ), as X → −∞. (2.22)

The value of ψ0 is the unknown flux entering the blade-ground gap. Applying

Bernoulli’s equation to each streamline gives us that

p̄ +
1

2
(ψ2

X + ψ2
Y ) = B(ψ), (2.23)
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with B(ψ) fixed by applying Bernoulli’s equation to each streamline. Thus,

both functions ω and B are fixed by the incoming flow profile and further

are related by

B′(ψ) = ω(ψ). (2.24)

The result (2.24) follows by employing the chain rule to find the total deriva-

tive
dB

dψ
=
∂X

∂ψ

∂B

∂X
+
∂Y

∂ψ

∂B

∂Y
, (2.25)

along each streamline. We evaluate the partial derivatives of (2.23) with

respect to X and Y and substitute these into the above equation to find

dB

dψ
= (p̄X + ūūX + v̄v̄X)

∂X

∂ψ
+ (p̄Y + ūūY + v̄v̄Y )

∂Y

∂ψ
. (2.26)

From the governing Euler equations, we have that

p̄X + ūūX = −v̄ūY , (2.27)

p̄Y + ūūY = −ūv̄X , (2.28)

which when substituted into (2.26) yield

dB

dψ
= ūY

(

ū
∂Y

∂ψ
− v̄

∂X

∂ψ

)

− v̄X

(

ū
∂Y

∂ψ
− v̄

∂X

∂ψ

)

. (2.29)

By finding the total derivative dψ/dψ, we find that

1 = ū
∂Y

∂ψ
− v̄

∂X

∂ψ
, (2.30)

and hence the result follows.

Equations (2.19) and (2.23) with boundary conditions (2.20) - (2.22) give

the formulation for the leading edge problem. For an arbitrary oncoming

velocity profile, with streamfunction ψ(X, Y ), the full solution of these equa-

tions is a numerical problem in general. In our problem of multiple blades,

we assume that the blades are well separated as this is seen in some of the

applications outlined earlier. A large wake size and the boundary conditions

in the wake allows fluid to accelerate back towards ū = 1. This means that

the magnitude of the normal velocity v̄ decreases. We will choose the length

of the wake to be large enough such that v̄ is much smaller than ū. Thus the

contribution of v̄ in the flow is negligible compared to ū and consequently we

approximate the oncoming velocity and pressure to each leading edge region

by the form ū = ū(Y ), v̄ = 0 and p̄ = 0.



2.2 Discontinuity region 21

2.2.1 Non-uniform oncoming velocity

For approaching non-uniform flow of the form ū = ū(Y ), v̄ = 0, p̄ = 0, let

the approaching streamfunction profile be given by ψ1. This means that

ω(ψ) = −ψ′′
1 (Y (ψ)), B(ψ) =

1

2
ψ′

1(Y (ψ))2, (2.31)

where on any given streamline, Y (ψ) is the normal position of that stream-

line. In the leading edge region, we are concerned with the solution of the

flow as X → ∞. Hence we can determine the jumps in velocity and pres-

sure over the leading edge to give appropriate starting conditions for the flow

above and beneath each blade, without needing to determine the full leading

edge solution.

Between the blade and the ground, the solution as X → ∞ is given by

ψ → ψ∗(Y (ψ)), p̄→ p0 (2.32)

due to the boundary conditions (2.20) and (2.21) requiring the streamlines

to be tangential to the blade and ground surfaces. The downstream position

Y (ψ) of each streamline ψ is unknown and is to be found as part of the

solution. The constant p0 is also unknown, but fixed by the Kutta condition

so that p = 0 at the trailing edge. We substitute equation (2.32) into (2.19)

and integrate once with respect to ψ to find that

ψ′2
∗ (Y (ψ)) = ψ′2

1 (Y (ψ)) + C, (2.33)

with C a constant of integration. As X → −∞, the incoming streamfunction

satisfies ψ′
1 = 1 on Y = 0. Given the jump in pressure to p0 as X → ∞,

there is a jump in velocity to u0 on Y = 0 as a result of applying Bernoulli’s

equation to the ground, with u0 and p0 related by

u0 =
√

1 − 2p0. (2.34)

With the jump in velocity u0, we find that the constant C = u2
0 − 1. Thus

the flow as X → ∞ between the blade and the ground is given by

ū(Y (ψ)) =
√

ψ′2
1 (Y (ψ)) − 1 + u2

0. (2.35)
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The final task is to find the location Y (ψ) of the streamline ψ downstream.

Since ū = ū(Y ), we have that dY/dψ = 1/ū(Y (ψ)) and upon integration

using (2.35)

Y (ψ) =

∫ ψ

0

1
√

ψ′2
1 (Y (ψ̄)) − 1 + u2

0

dψ̄. (2.36)

Equations (2.35) and (2.36) are valid for all values of ψ satisfying 0 ≤ ψ ≤ ψ0.

Above the blade, there is no pressure jump and the equations for the flow

as X → ∞ are given by

ū(Y (ψ)) = ψ′
1(Y (ψ)), (2.37)

Y (ψ) =

∫ ψ

ψ0

1

ū(Y (ψ̄))
dψ̄, (2.38)

which are found in a similar way to before.

Given an incoming flow of the form ū = ū(Y ), v̄ = 0, p̄ = 0 and pressure

jump p0, we can now determine the jumps in velocity and pressure asX → ∞
in the leading edge region. This analysis must be incorporated into the larger

flow problem (on the x = O(1) scale) through the parameter p0 and to find

the correct starting conditions so that the Kutta condition is satisfied.

2.2.2 Uniform oncoming flow

The flow approaching the first blade is given by ū = 1, v̄ = 0, p̄ = 0 and

is a special case for which we gain an analytical solution throughout the

leading edge region. Since the flow upstream is uniform, the vorticity is

zero everywhere in the leading edge region and hence the streamfunction ψ

satisfies Laplace’s equation

∇2ψ = 0, (2.39)

subject to the conditions

ψ = 0, on Y = 0, ∀X, (2.40)

ψ = ψ0, on Y = H , for X > 0, (2.41)

ψ → Y, as X → −∞. (2.42)

By applying the same arguments as above, the solution of the flow asX → ∞
in the blade-ground gap now takes on the form ū → u0, v̄ → 0, p̄→ p0, where

u0 and p0 are constants and equation (2.34) holds everywhere. The value of
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ψ0 = u0H in this problem and is found by evaluating the flux q in the blade-

ground gap. If p0 6= 0 (hence u0 6= 0), then the streamline ψ0 upstream lies

at Y = u0H , whilst downstream lies at Y = H . This means that for any

value of pressure jump p0 6= 0 a deflection of the streamlines occurs through

the leading edge region.

To find the solution to the problem, we turn to the complex plane and

use a conformal mapping technique. We write the streamfunction ψ as

ψ(X, Y ) = Y + Ψ(X, Y ), (2.43)

and by substitution, Ψ satisfies Laplace’s equation subject to the boundary

conditions

Ψ(X, 0) = 0 ∀X, (2.44)

Ψ(X,H) = ψ0 −H for X > 0, (2.45)

Ψ → 0 as X2 + Y 2 → ∞. (2.46)

We map the upper half Z̄-plane to the leading edge (Z-plane) region using the

Schwarz-Christoffel transformation (see Carrier et al. (1966)). In the leading

edge and upper half plane problems, we introduce the complex variables

Z = X + iY and Z̄ = X̄ + iȲ respectively. The conformal mapping from the

Z̄-plane to the Z-plane is given by

Z = f(Z̄) = Hi+
H

π

(

Z̄ − Ln(Z̄) − 1
)

. (2.47)

Although in this instance, the conformal mapping is stated, not derived, we

will discuss how to apply the transformation in chapter 8 later in a similar but

more technical problem. The X̄-axis in the Z̄-plane maps onto the ground

and leading edge geometry in the Z-plane and so the boundary conditions

for the problem in the upper half plane are given by

Ψ = 0 for X̄ < 0, (2.48)

Ψ = ψ0 −H for X̄ > 0, (2.49)

Ψ → 0 as Y → ∞. (2.50)

The boundary conditions give us a Dirichlet problem in the upper half plane
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for Ψ and means that we can write down the solution immediately (see Math-

ews & Howell (2001)) as

Ψ(X̄, Ȳ ) = (ψ0 −H) −
(

ψ0 −H

π

)

arctan

(

Ȳ

X̄

)

, (2.51)

choosing 0 < arctan(Ȳ /X̄) < π. Thus, the total solution for ψ is defined

implicitly as

X =
H

π

(

X̄ − 1

2
log(X̄2 + Ȳ 2) − 1

)

, (2.52)

Y = H +
H

π

(

Ȳ − arctan

(

Ȳ

X̄

))

, (2.53)

ψ(X, Y ) = Y + (ψ0 −H) −
(

ψ0 −H

π

)

arctan

(

Ȳ

X̄

)

. (2.54)

In figure 2.2, we plot an example streamfunction solution. Here, we set

the pressure p0 = 0.3621 in the blade-ground gap, meaning that the value

of ψ0 = 0.5252. The reported deflection of the oncoming streamlines within

this region is seen. The dividing streamline within figure 2.2(b) is given by

ψ0 for this case.
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(a) Streamline solution x ∈ [−1, 1]
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Figure 2.2: Streamfunction solution for the leading edge region when p0 =
0.3621, u0 = 0.5252. The blade lies at H = 1. In (a), streamlines are plotted
in increments of 0.025. In (b), various streamlines showing the behaviour close to
the leading edge of the blade are plotted.
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2.3 Summary of the full problem

Now that the leading edge problem has been outlined, we state the full

problem to be solved. We must solve the boundary-layer equations

u
∂u

∂x
+ v

∂u

∂Y
= −dp

dx
+
∂2u

∂Y 2
, (2.55)

∂u

∂x
+
∂v

∂y
= 0. (2.56)

within each blade-ground gap, subject to the boundary conditions

u = 1, v = 0, on Y = 0, ∀x, (2.57)

u = 0, v = 0, on Y = H on the blades, (2.58)

p = 0, at each trailing edge, (2.59)

u = u(Y ), v = 0, p = p0, at each leading edge. (2.60)

For an oncoming streamfunction ψ1 and pressure jump downstream p0 of a

particular blade ground gap, the leading edge flow between the blade and

the ground may be found through the equations

u(Y (ψ)) =
√

ψ′2
1 (Y (ψ)) − 1 + u2

0, (2.61)

Y (ψ) =

∫ ψ

0

1
√

ψ′2
1 (Y (ψ̄)) − 1 + u2

0

dψ̄, (2.62)

p0 +
1

2
u2

0 =
1

2
, (2.63)

as outlined in the previous section.

Above each blade and in each wake, we solve the same equations (2.55)

and (2.56) but with p = 0. The boundary conditions for the problem above

each blade and in the wakes are given by

u = 0, v = 0, on Y = H on the blades, (2.64)

u = 1, v = 0, on Y = 0 in the wake, (2.65)

u→ 1 as Y → ∞, (2.66)

u = u(Y ), v = 0, p = 0, at each leading edge. (2.67)

After the first leading edge is passed, given the uniform oncoming profile, the

governing boundary-layer equations and the boundary conditions (2.64) and

(2.66), we have Blasius boundary-layer flow (see Blasius (1908)) at a shifted
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position Y +H on top of the first blade. This is not the case for any other

blade, since the oncoming flow to subsequent blades is not uniform. The

leading edge flow is given by the equations (2.37) and (2.38) once the value

of ψ0 is determined for the flow beneath the blade.

2.4 Numerical methods

We now outline the numerical solution procedure. We begin by discussing

the solution of the problem in the leading edge region, followed by solution

at any position x. Then we describe the algorithm to solve the full problem.

2.4.1 Leading edge solution

We firstly describe the method to find the far-field solution as X → ∞ in the

leading edge region, to give starting conditions just after each leading edge.

For a given pressure jump p0, and incoming streamfunction ψ1, we calcu-

late the value of u0, the jump in velocity at the ground. Next, we determine

the value of ψ0, the streamline that lies at a downstream position of Y = H

to allow the pressure to jump to p0 beneath the blade. We do this iteratively,

by guessing a value for ψ0 and using cubic splines to interpolate ψ1(Y (ψ))

between 0 and ψ0 upstream. We then integrate equation (2.62) to find Y (ψ0)

downstream and test whether

|Y (ψ0) −H| < 10−10, (2.68)

for convergence. If convergence is not achieved, then we update the value of

ψ0 using the secant method and recompute Y (ψ0) using the method above,

until convergence is achieved. Once the value of ψ0 is found, the starting

condition beneath the blade is determined. The flow above the blade is

found by integrating equations (2.37) and (2.38) afterwards.

We tested the numerical method against exact solutions arising for a

uniform flow, for various cases of p0. In the exact solution presented in

figure 2.2, we know the value of ψ0 immediately in the problem, whilst the

numerical method must calculate that value. The value returned by the
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numerical technique is ψ0 = 0.5251960, showing very good agreement with

the exact solution.

2.4.2 Blade-ground gap solution

The solution of the boundary-layer equations (2.55) and (2.56) with boundary

conditions (2.57) and (2.58) at a particular value of x is found using a finite-

difference technique. Each gap is discretised into a regularly spaced grid in

x and Y with spacings ∆x and ∆Y respectively. Thus, the ith x- and jth

Y -stations are given by xi = i∆x and Yj = j∆Y respectively.

To discretise the governing equations, we use first-order accurate back-

ward differences in x and second-order accurate centred differences in Y .

Equations (2.55) and (2.56) are then discretised as

uji−1

uji − uji−1

∆x
+ vji−1

uj+1
i − uj−1

i

2∆Y
= −(pi − pi−1)

∆x
+
uj+1
i − 2uji + uj−1

i

(∆Y )2
,

(2.69)

uji − uji−1

∆x
+
vj+1
i − vj−1

i

2∆Y
= 0, (2.70)

where uji and vji are the unknown streamwise and normal velocities at (xi, Yj)

and pi is the unknown pressure at xi. We find the values of uji first, by

rearranging equation (2.69) into a tridiagonal matrix problem

aju
j+1
i + bju

j
i + cju

j−1
i = dj, (2.71)

where aj , bj, cj and dj are given by

aj =
vji−1

2∆Y
− 1

∆Y 2
, (2.72)

bj =
uji−1

∆x
+

2

∆Y 2
, (2.73)

cj =
−vji−1

2∆Y
− 1

∆Y 2
, (2.74)

dj =
(uji−1)

2 − (pi − pi−1)

∆x
. (2.75)

Solution of the tridiagonal problem (2.71) is found using a Thomas algorithm

with boundary conditions u = 1 at Y = 0 and u = 0 at Y = H . The values

of aj , bj , cj are known from the velocities at the previous x-station, but pi and

hence all the dj values are unknown. We treat pi as an unknown parameter
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and seek to determine it iteratively. At any xi, pi is set as pi−1 on the first

iteration and hence we may solve (2.71) to give the values of uji . Once uji

is determined, vji follows from the discretised continuity equation (2.70). In

finding vji , the conditions v = 0 at Y = 0 and Y = H are set and then a

march to the centre of the blade-ground gap from Y = 0 and Y = H ensues,

yielding two values for the normal velocity at Y = H/2. The normal velocity

must be continuous at Y = H/2 and so we test for equality between the two

values for vji there by requiring that their absolute error is less than 10−10.

To gain convergence, the value of pi is updated at each xi using a secant

method, followed by resolution of the tridiagonal problem and the continuity

equation until convergence is achieved. Typically, we needed only five or six

iterations of pi at each xi.

2.4.3 Over blade and wake solution

The solution method at xi in these areas is very similar to that of the previous

subsection. In these areas, p = 0 and so no pressure gradient term appears

in (2.75). We solve a similar tridiagonal problem, with dj replaced by

d∗j =
(uji−1)

2

∆x
, (2.76)

together with the relevant no-slip condition and matching condition as Y →
∞. Once the solution to the tridiagonal system is found, we apply the no-

normal flow condition at the blade or the ground and use the continuity

equation to find v. The solution at xi is then found.

2.4.4 Solution algorithm

Above, we have outlined how to solve the leading edge region and boundary-

layer equations at a particular value of x in the flow domain. This final

subsection deals with solving the full problem, encompassing all the numer-

ical techniques outlined above.

To obtain the solution beneath any blade and the ground, we proceed

as follows. As yet, we have not applied the Kutta condition, requiring that

p = 0 at the trailing edge. To satisfy this condition requires us to find the
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pressure jump p0 beneath the leading edge such that once the flow reaches

the trailing edge, the Kutta condition is satisfied. We begin by guessing a

value of p0 = 0 and then solve the leading edge problem to construct the first

starting condition. We then exploit the parabolicity of the governing equa-

tions and employ a streamwise sweep from the leading edge to the trailing

edge to find the solution at each xi. The absolute value of p at the trailing

edge is tested to see if the Kutta condition (2.59) is satisfied to within a con-

vergence tolerance of 10−10. If the tolerance is not met, the value of p0 at the

leading edge is updated using a secant method, followed by recomputing the

starting conditions for the current blade-ground gap and resweeping. Once

the convergence tolerance is met, we solve the problem above the blades.

We found that this outer iteration requires between five and ten sweeps for

convergence to be achieved. Recall that p = 0 everywhere above the blade,

and so one sweep is needed to the trailing edge.

At the trailing edge, we then obtain the starting condition for the wake,

given by the emerging flow from beneath the blade and the flow at the trailing

edge above the blade. To construct the starting conditions in u and v, we use

cubic splines. Now we may sweep through the wake up to the next leading

edge, ready to solve the leading edge problem for the next blade. The whole

process above is repeated over each of the blades and wakes in the problem.

In performing the sweep, the equations (2.69) and (2.70) in discretised

form are second order accurate in Y but only first order accurate in x. To

gain second-order accuracy in x, we adopt the double stepping method of

Smith & Timoshin (1996b). This method is chosen as it is robust, accurate,

easy to program and deals easily with the continual leading and trailing edge

adjustments present in the multiple blade flow. First, we obtain a first-order

accurate solution for the velocities and pressure. Then, we apply a half-step

solution, from xi−1 to xi− 1

2

and then from xi− 1

2

to xi. If uf and uh are the

first-order accurate and half-stepping solutions for u respectively, then the

second-order accurate solution uc is given by

uc = 2us − uf . (2.77)

This method is completed similarly for v and p and is carried out for all Y
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at every x-station.

In developing the numerical code, we find that values of ∆x = 10−3

with ∆Y = 10−6 are needed to gain accuracy in the solutions of u, v and p

beneath the blade. Accuracy in the solutions is confirmed by adopting much

finer grid resolutions in x and Y . We halved and quartered the x and Y grid

resolutions with the numerical solutions found being almost identical. We

also tested our numerical results from the first blade and wake against those

appearing in Jones (2000) and Jones & Smith (2003), who consider the one

blade case. Although we do not present graphical comparisons, the results are

very similar. Above the blade, a much coarser resolution of ∆x = 0.01 and

∆Y = 0.001 can be used, but in the wake we retain the finer grid resolutions

to accurately capture the flow behaviour just after the trailing edge when H

is small.

2.5 Results

We present results for an N = 6 blade case at scaled ground clearances H

between 32 and 1/16, which captures the majority of the underlying physics.

We take the length of each blade to be unity and the wake of length three

in all our calculations. This allows the flow approaching the next blade

downstream to be such that v ≪ u and hence the leading edge formulation

described earlier can be used. In figure 2.3 we compare the u and v solutions

at the leading edge of blade 2 with H = 1/16. We see that v (dotted line) is

much smaller in magnitude than u (solid line).

We begin with two examples of the flow adjustments close to the entrance

of a blade-ground gap. Next, we summarise the values of the pressure jump

p0 calculated under each leading edge, along with the friction drag, τ and

lift, L. We then consider the extremal cases of very small and very large

ground clearances asymptotically.

2.5.1 Flow characteristics

In figure 2.4 we present three u velocity profiles close to the leading edge of

a blade. We see that the growth of the top and bottom boundary-layers as x
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Figure 2.3: Velocity solutions u (solid line) and v (dotted line) at the leading
edge of blade 2 for a wake of length 3.

increases downstream quickly engulfs the inviscid bulk flow within the centre

of the gap. After only a short distance in figures 2.4(a), (b) and (c), the flow

settles into a Pouseuille-Couette type flow. This velocity profile gives the

solution as the flow progresses downstream to the trailing edge, under every

blade.

In figure 2.5, we outline the pressure solutions beneath each of the N =

6 blades. When the ground clearance H is small the pressure gradient is

constant for the majority of the flow between the blade and the ground for

each blade. As we increase H , the linear nature of the pressure profile is lost.

It is interesting to note that for large H and many N , the pressure beneath

the blades starts to take on a periodic nature as N increases downstream.

Next, we define the total lift L and friction drag τ experienced by each

blade as

L =

∫ xle+1

xle

p(x)dx, (2.78)

τ =

∫ xle+1

xle

∂u+

∂Y
dx+

∫ xle+1

xle

∂u−
∂Y

dx, (2.79)

where u+ and u− are the flow profiles just above and below the blade at

Y = H respectively. The total lift and friction drag experienced by each

blade is plotted in figure 2.6, along with the computed pressure jumps p0

under each leading edge. Slip-streaming effects are observed in the lift and

friction drag for larger values of H . When H is small, we see that the total
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(b) H = 1, blade two.
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(c) H = 4, blade two.

Figure 2.4: Viscid-inviscid interaction in the u velocity profiles at small stream-
wise distances x = 0.001, 0.005, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2 beneath the blade
leading edge. In (a) flow profiles are taken from beneath the first blade with
H = 1, (b) from under the second blade with H = 1 and (c) from beneath the
second blade with H = 4.



2.5 Results 33

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.2  0.4  0.6  0.8  1
x− xle

p(
x
−
x
le
)

(a) H = 1/16

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.2  0.4  0.6  0.8  1
x− xle

p(
x
−
x
le
)

(b) H = 1/8

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.2  0.4  0.6  0.8  1
x− xle

p(
x
−
x
le
)

(c) H = 1/4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.2  0.4  0.6  0.8  1
x− xle

p(
x
−
x
le
)

(d) H = 1/2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.2  0.4  0.6  0.8  1
x− xle

p(
x
−
x
le
)

(e) H = 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.2  0.4  0.6  0.8  1
x− xle

p(
x
−
x
le
)

(f) H = 2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.2  0.4  0.6  0.8  1
x− xle

p(
x
−
x
le
)

(g) H = 4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.2  0.4  0.6  0.8  1
x− xle

p(
x
−
x
le
)

(h) H = 8

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.2  0.4  0.6  0.8  1
x− xle

p(
x
−
x
le
)

(i) H = 16

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.2  0.4  0.6  0.8  1
x− xle

p(
x
−
x
le
)

(j) H = 32

Figure 2.5: Pressure solutions between the blade and ground for each of the
N = 6 blades for different values of H.
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lift and friction drag experienced by each blade is approximately constant for

the first six blades. Slip-streaming behaviour is visible in the value of p0 for

larger values of H . As we let H → 0, the slip-streaming effect in p0 becomes

more obvious before approaching a constant level under each of the N = 6

blades. Numerically, we find that p0 = 0.3748, 0.3734, 0.3730, 0.3728, 0.3726

and 0.3725 (to 4 s.f.) for the six blades with H = 1/16.

2.5.2 Small H

In the previous section, we saw that as H → 0 a near constant value of the

total lift and friction drag and pressure p0 occurred for each blade and that

slip-streaming effects are lost. In figure 2.7, the streamwise velocity profile u

is plotted mid-blade in the blade-ground gap. We see that in each case, we

have a linear profile in u. We noted earlier that the pressure solutions for

the small ground clearance take on a linear profile also. Figure 2.8 shows the

solution for p(x) very close to the leading edge. We see that there is a small

x-zone where a rapid change in pressure occurs, before the negative pressure

gradient becomes constant. To understand the nature of the flow close to

the leading edge, we seek a further asymptotic approximation based on two

x-scales for the flow beneath each blade.

Consider the flow very close to the leading edge. The ground clearance

Y = O(H) and u = O(1). Here, the x-scale is determined by the balance of

the inertial and diffusive operators

u
∂

∂x
=

∂2

∂Y 2
(2.80)

yielding x = O(H2) and by continuity, v = O(H−1). Defining the scaled

coordinates x̃ = O(1) and Ỹ = O(1) where x − xle = H2x̃ and Y = HỸ

respectively, we expand the velocities and pressure as

u(x, Y ) = ũ(x̃, Ỹ ) + · · · , (2.81)

v(x, Y ) =
1

H
ṽ(x̃, Ỹ ) + · · · , (2.82)

p(x) = p̃(x̃) + · · · , (2.83)

where any lower order terms tend to zero as H → 0. These expansions

are substituted into the governing equations (2.55) and (2.56) to reveal the
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Figure 2.6: Calculated values of lift, L, friction drag, τ , and p0 for every blade
with values of H = 32, 16, 8, 4, 2, 1, 1/2, 1/4, 1/8, 1/16.
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Figure 2.7: Calculated u velocity profiles between the blade and the ground. The
profiles are taken from the mid-blade positions of each of the N = 6 blades.
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Figure 2.8: The pressure solutions p(x) under each blade in the six-blade case
for small x. Solutions plotted are for H = 1/16 (dotted line) and H = 1/8 (solid
line).

leading order balances

ũ
∂ũ

∂x̃
+ ṽ

∂ũ

∂Ỹ
= −dp̃

dx̃
+
∂2ũ

∂Ỹ 2
, (2.84)

∂ũ

∂x̃
+
∂Ṽ

∂Ỹ
= 0, (2.85)

and are subject to the boundary conditions

ũ = ṽ = 0 on Ỹ = 1, (2.86)

ũ = 1, ṽ = 0 on Ỹ = 0, (2.87)

ũ = ũ(Ỹ ), p̃ = p0 at every leading edge. (2.88)

On this short scale, the full balance of streamwise advection with pressure
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gradient and diffusion holds, leading to a non-linear interaction at the leading

edge. This corresponds to the viscid-inviscid interaction seen in figures 2.4(a)

and (b).

The second x-scale covers the remainder of the blade-ground gap on an

x = O(1) scale. For the remainder of the gap, the pressure gradient is a

negative constant. Since the gap width is very small (Y = O(H)) in compar-

ison to the blade length (x = O(1)), we expect a lubrication approximation

governed by viscous diffusion and pressure gradient. The streamwise velocity

u = O(1) still due to the no-slip boundary conditions, and so by continuity

we have v = O(H). By considering the balance

dp

dx
=
∂2u

∂Y 2
, (2.89)

we find that p = O(H−2). Thus, the expansions for the velocity and pressure

take the form

u(x, Y ) = û(x̂, Ỹ ) + · · · , (2.90)

v(x, Y ) = Hv̂(x̂, Ỹ ) + · · · , (2.91)

p(x) =
1

H2
p̂(x̂) + · · · , (2.92)

with x̂ = x − xle. Substitution into equations (2.55) and (2.56) gives the

governing equations

0 = −dp̂

dx̂
+
∂2û

∂Ỹ 2
, (2.93)

∂û

∂x̂
+
∂v̂

∂Ỹ
= 0, (2.94)

at leading order and are subject to

û = v̂ = 0 on Ỹ = 1, (2.95)

û = 1, v̂ = 0 on Ỹ = 0, (2.96)

p̂ = 0 at each trailing edge. (2.97)

We integrate equation (2.93) twice with respect to Ỹ to obtain

û(x̂, Ỹ ) =
dp̂

dx̂

Ỹ 2

2
+ Ỹ F (x̂) +G(x̂), (2.98)

where F,G are arbitrary functions of integration. The arbitrary functions are

fixed by the no-slip conditions at Ỹ = 1 and Ỹ = 0 as F (x̂) = −(p̂′/2 + 1)
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and G(x̂) = 1. Hence, we find that û = û(Ỹ ) in this problem and is given by

û(Ỹ ) =
1

2

dp̂

dx̂
Ỹ (Ỹ − 1) − Ỹ + 1, (2.99)

with v̂ = 0 by continuity.

To find the pressure, we integrate (2.99) with respect to Ỹ to reveal the

streamfunction

ψ(Ỹ ) =
1

24

dp̂

dx̂
Ỹ 2(4Ỹ − 6) − Ỹ 2

2
+ Ỹ + c. (2.100)

The constant c = 0 by the condition that ψ = 0 at the ground. To find the

pressure, let ψ = ψ0 at Ỹ = 1, where ψ0 represents the total mass flux in the

blade-ground gap, and integrate with respect to x to obtain

dp̂

dx̂
= −12(ψ0 −

1

2
). (2.101)

We integrate with respect to x̂ and apply the Kutta condition p̂ = 0 at

x̂ = xte = xle + 1, where xte represents the position of each trailing edge to

find

p̂(x̂) = −12(ψ0 −
1

2
)(x̂− xte), (2.102)

completing this part of the asymptotic solution. If, to match to the smaller

x = O(H2) region we have that p̂ = 0 at each leading edge (and so p̂ =

0 everywhere), then we find that the flux ψ0 = H/2. Thus, the velocity

may jump to a minimum value of u0 = 1/2 at the ground and hence by

Bernoulli’s equation, the largest pressure jump allowed in the entrance to

any channel is p0 = 3/8. This is suggested by the listed numerical results

earlier. Furthermore, if p̂ = 0 on the x = O(1) scale, then the solution for

û(Ỹ ) = 1− Ỹ , a Couette flow. This type of flow is seen for small H in figure

2.7.

In the wake, the emerging flow from within the blade-ground gap is

quickly engulfed by the boundary layer created at the ground, leaving a

near linear velocity profile approaching every subsequent blade. Mid-wake

u velocities for small h are shown in figure 2.9. Figure 2.9(a) is the case

where H = 0. Here, the boundary-layer equations are solved with p = 0 over

an infinite flat plate with the same matching condition as Y → ∞ and the
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Figure 2.9: Streamwise u-velocity profiles taken at the midpoint of each wake
(N = 6) for various ground clearances H.

no-slip conditions

u = 1 upstream and in each wake, (2.103)

u = 0 over each blade. (2.104)

We see increasing qualitative agreement in the streamwise velocity profiles

midwake as H → 0. For flow away from the leading and trailing edge singu-

larities, it is expected that the special case H = 0 will give good representa-

tions of the flow behaviour for small H .

2.5.3 Large H

We now turn to the other extreme of a large ground clearance parameter H ,

which is likely to be more physically relevant. For larger values of H , the

pressure solution results plotted in figure 2.5 suggest that as H increases,

the pressure jumps p0 are inversely proportional to H . Figure 2.5(j) also

shows an approximately equal pressure beneath each blade. In figure 2.6, we

saw that as the ground clearance increases, the total lift and friction drag
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Figure 2.10: Streamwise velocity profiles taken from the mid-blade positions
beneath each blade. The uppermost profile corresponds to the solution taken from
the first blade.

decreases. Slip-streaming effects, where the friction drag experienced by each

blade downstream returns.

We seek an asymptotic approximation to the flow behaviour for large H

beneath each blade. In figure 2.10 we present the u velocity solutions at a

mid-blade position between each blade and the ground. We see that there is

a boundary-layer close to the underside of each blade in these profiles with

the remainder of the flow for being a largely uniform, inviscid flow. This

suggests that there are two normal scales present over the whole blade.

We begin with the boundary-layer on the underside of the blade. We

introduce the normal coordinate y1 in the boundary layer as Y = H−y1 and

then expand the velocities and pressure as

u(x, Y ) = u1(x, y1) + · · · , (2.105)

v(x, Y ) = v1(x, y1) + · · · , (2.106)

p(x) =
1

H
p1(x) + · · · , (2.107)

with the scale for p1 suggested from the results above. Substitution into

(2.55) and (2.56) reduces the governing equations to

u1
∂u1

∂x
+ v1

∂u1

∂y1
=

∂2u1

∂y2
1

, (2.108)

∂u1

∂x
+
∂v1

∂y1

= 0, (2.109)
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at leading order. The boundary conditions to be satisfied by u1 and v1 are

u1 = v1 = 0 on y1 = 0, (2.110)

u1 = u1(y1) at each leading edge, (2.111)

u1 → 1 as y1 → ∞. (2.112)

For the first blade, where u1 = 1, these equations and boundary conditions

are exactly those consistent with a Blasius solution.

On the second normal scale, we define Ỹ = O(1), where Y = HỸ . The

flow is given by u = 1 subject to an O(Re−1/2) (= O(H−1)) perturbation from

the blade boundary-layer. We expand the velocity and pressure beneath each

blade as

u(x, Y ) = 1 +
1

H
u2(x, Ỹ ) + · · · , (2.113)

v(x, Y ) = v2(x, Ỹ ) + · · · , (2.114)

p(x) = 0 +
1

H
p2(x) + · · · . (2.115)

In this instance, it is assumed that any lower order terms tend to zero as

H → ∞. These equations are substituted into the governing equations (2.55)

and (2.56), to reveal the leading order balances

∂u2

∂x
= −dp2

dx
, (2.116)

∂u2

∂x
+
∂v2

∂Ỹ
= 0. (2.117)

Substituting the continuity equation (2.117) into the linearised momentum

equation (2.116), followed by differentiation with respect to Ỹ yields the

equation
∂2v2

∂Ỹ 2
= 0, (2.118)

subject to v2(x, 0) = 0 and v2(x, 1) = ve−(x) on Ỹ = 1. The latter condition

is a matching condition to the boundary-layer on the underside of the blade

and is given by ve−(x) = δ′(x). Here, δ(x) is the displacement thickness of

the boundary-layer on the underside of the blade, defined in this instance by

δ(x) =

∫ ∞

0

{1 − u1(x, y1)}dy1. (2.119)
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Integrating twice with respect to Ỹ and using the boundary conditions, we

find that

v2(x, Ỹ ) = Ỹ δ′(x). (2.120)

Hence, by continuity we have u2(x, Ỹ ) = −δ(x) + F (Ỹ ), where F is an

arbitrary function of integration. The function F = 0 using the boundary

condition u2 = 0 at Ỹ = 0. We then find that p2(x) = δ(x) + c, under

each blade, with c an arbitrary constant of integration. This constant c is

fixed as p0 so that the pressure satisfies the Kutta condition at each trailing

edge. The analysis for large H here agrees with the small h case presented

in Purvis (2002) where an asymptotic description of the flow beneath every

blade is found. As we let H → ∞ in our problem, we enter the regime of

Purvis (2002) and so we should expect both our analyses to agree. This is

exactly the case, with the same governing equations and boundary conditions

for large H (our problem) and small h (Purvis (2002)) being found.

However, in our case, after many blades have been passed, the boundary-

layer will have grown large enough to interact directly with the ground, so

that the two-normal scale analysis above does not hold. After N blades, with

N ≫ 1, the boundary-layer thickness will have grown beneath the blade to

be of O(N1/2). Thus, we must assure that H ≫ N1/2 for the above analysis

to hold.

As we move from a blade into a wake, the pressure p2 = 0. If we take

the same expansions above for the second normal scale, then from (2.116),

we have that u2 = G(Ỹ ) = 0 (due to the ground boundary condition) and

hence by continuity, v2 = F (x) = 0, due to no normal flow at the ground.

This shows that as H → ∞ in our analysis, at leading order no flow is

entrained into the central part of the wake and the velocity profile present

at the trailing edge persists over the wake. In figure 2.11 we compare this

simple result to some numerical u solutions taken from downstream distances

of 0.5, 1, 1.5 from the trailing edge in wakes 3, 4, 5 and 6 of the H = 32 case.

We see that the leading order behaviour just described agrees nicely with the

result obtained. Across the wake centreline area, there is a difference in the

profiles as x increases. This is explained by the fact that the boundary-layer
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Figure 2.11: Streamwise velocity profiles at distances x = 0.5, 1, 1.5 downstream
of the trailing edge in the third, fourth, fifth and sixth wakes. In figures (c) and
(d), matching to u = 1 in the far-field is not shown for clarity.

equations (2.108) and (2.109) hold in this area. Fluid is entrained into this

area at lower order in the expansions, allowing the slow increase in u there.

2.6 Summary

In this chapter we have extended the work by Jones & Smith (2003) to

include many blades in extreme ground effect. We formulated the problem

to find that the boundary-layer equations held everywhere, with an O(1),

non-zero pressure gradient beneath each blade and wake. We also found

that a flow discontinuity arises at each leading edge to satisfy the Kutta

trailing edge condition. The flow problem was solved numerically for a case

of N = 6 blades and found that there is a viscous-inviscid interaction close to

the leading edge. For small values of H , the pressure solution beneath each

blade was dominated by a constant, negative pressure gradient. The lift and

friction drag were found to increase as H → 0, becoming constant beneath

each blade considered. For larger values of H , slip-streaming was observed in
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both the lift and friction drag. We then applied asymptotic analysis to the

extremal cases of very small and very large H . In the small H analysis, we

found that two x-scales occurred: one short scale close to the leading edge

where viscous-inviscid interaction dominates, whilst the other x-scale spans

the remainder of the blade and is governed by a lubrication approximation.

In the case of large H , we found that two normal scales in Y dominate the

flow beneath the blade: one a boundary-layer and the other a larger, inviscid

scale.

In our results, we took the wake to be of length 3. We found that reducing

the wake length meant that v(x, Y ) at the next leading edge was large enough

such that the assumption v ≪ u was not true. Therefore, an extension would

be to solve the leading edge problem for an incoming velocity profile of the

form u = u(x, Y ), v = v(x, Y ). The formulation of the leading edge region

would be the same as in this chapter, although the full equations (2.19) and

(2.23) would need to be solved. This would allow the effects of shorter wakes

to be analysed. The slip-streaming effects seen would be increased with

decreasing wake length as the oncoming velocity profile in u has less time to

accelerate back towards unity. Further extensions to this work include adding

shape to the blades, like in the one blade case of Jones & Smith (2003). This

could be achieved by solving the problem in the same way as in that paper, or

developing a different method to allow extension of the numerical techniques

in this chapter. This may allow adverse pressure gradients and separation

to occur if the blade shape has significant camber. It would be interesting

to see whether separation would still occur downstream and whether slip-

streaming effects are seen in these cases. It would also be interesting to

develop an analytical short blade limit, where the wake is much longer than

the blade and would still have applications within the scope of this current

chapter. Blades positioned at differing heights downstream is another valid

extension.



Chapter 3

Flow past many blades at a

global angle of attack

3.1 Introduction

In this chapter, we consider two-dimensional high Reynolds number flow past

an aligned array of blades at a global angle of attack. A global angle of attack

is defined by tilting the whole horizontal alignment of blades by an angle α to

the oncoming uniform stream. Ground effect, as considered in the previous

chapter, is dropped in this problem.

The work in this chapter is directly motivated from applications to heli-

copter aerodynamics and understanding further the flow interactions caused

by the continually spinning rotor blades. This chapter is relevant to a rotor

blade problem where the entire helicopter rotor is tilted, as seen in forward

flight. Another application arises in the correct prediction of aircraft take-off

and arrival spacings, in understanding the creation of wing-tip vortices and

vortex shedding and their interactions with other nearby aircraft. In partic-

ular, this work is relevant to the departure from an airport, where all aircraft

ascend at an angle to the oncoming air.

Smith & Timoshin (1996a) consider the fluid flow past a symmetric rotor

blade in three-dimensions. Firstly, the authors derive a similarity solution for

a configuration of blades with an infinite radial span away from the central

hub. The model derived is an extension of the von Karman disc-flow system

of ordinary differential equations. Within this model, the radial dependence

45
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of the radial and azimuthal velocity components is linear and is scaled out

so that the governing equations for the boundary-layer problem rely on the

azimuthal and normal co-ordinates, thus making this a two-dimensional prob-

lem. Then, the authors introduce a central hub to the system and consider

the problem with an unbounded blade span to include radial derivatives in

the flow. The effect of adding the radial velocity means that fluid flows away

from the central hub and a terminal form appears numerically as distance

from the central hub increases. This terminal form shows that away from

the hub, the radial and azimuthal velocities increase linearly with respect to

r and so the similarity solution mentioned earlier is approached. As a re-

sult, the authors are able to show that away from the central hub in the limit

r → ∞, the problem reduces to a quasi-two-dimensional one. Using the linear

dependence in r of the radial and azimuthal velocities, the radial derivatives

of velocity are removed from the governing three-dimensional boundary-layer

equations. The now quasi-two-dimensional boundary-layer equations are still

coupled with a three-dimensional potential flow problem in the free-stream.

The authors also consider bounded blade span behaviour numerically and

discuss analytical properties associated with the blade tips.

Smith & Timoshin (1996b) consider the two-dimensional problem arising

in Smith & Timoshin (1996a) to include blade asymmetries through a local

angle of attack. Due to the asymmetry, the boundary-layer and free-stream

problems become coupled, necessitating simultaneous solution. This viscous-

inviscid coupling between the inner boundary-layer and outer free-stream

problem is global, spanning all blades and wakes. Numerical solutions show

the appearance of slip-streaming effects on blades downstream, similar to

those seen in the last chapter. There is also the appearance of a periodic

many-blade limit, arising after many rotations of the rotor blades. In this

limit, there is a double viscous structure in the boundary-layer, consisting of a

rapidly varying region close to the blade and a larger bulk region containing

mean Blasius flow. Smith & Timoshin (1996b) point out that after very

many blades are passed (a number n = O(Re3/5)), an interactive multi-blade

limit occurs. These far downstream effects are considered by Bowles & Smith

(2000a,b). Here, the global inner-outer interaction still exists but a pressure
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gradient through the boundary-layer is now supported. The full details of

how the global angle of attack effects these periodic limits is addressed in

later chapters.

Thus, a solid foundation of analytical and numerical work has been carried

out in the previous studies above. As yet, no study has focused on features

associated with a global angle of attack, a different type of asymmetry. In the

studies above, this asymmetry is highlighted as an important and interesting

extension to work already undertaken and furthers the general understanding

of many-blade flows. This chapter includes a global angle of attack into the

formulation of a multi-blade problem, to reveal for the first time what types

of interaction occur between the blades.

3.2 Formulation

The current problem is that of N blades aligned at a global angle of attack

α. The streamwise extent of the whole array of blades and each blade length

are taken to be x = O(1). The leading and trailing edge positions of the ith

blade are given by x = ai and x = bi respectively. For convenience, a1 is

taken to be at the origin.

The oncoming free-stream is given by U = 1, V = 0, P = 0. We turn the

free-stream by an amount −α, so that the blades lie along the x-axis and

the free-stream velocity is given by U = cosα, V = sinα. This analysis takes

α to be small, so that we may expand the oncoming free-stream velocity

components as

cosα = 1 − α2

2
+O(α4), (3.1)

sinα = α +O(α3). (3.2)

In this study, α is taken to be O(Re−1/2). Later, we will see that by choosing

α = O(Re−1/2) causes a leading order change in the free-stream problem.

If α is chosen to be smaller than this, then no leading order change occurs

within the free-stream and hence the leading order problem is that given

by Smith & Timoshin (1996b). If α is larger than this, say of O(1), then

we have the possibility of large scale leading and trailing edge separations.
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a1

b1

a2

b2

a3 b3

Figure 3.1: The flow configuration close to N = 3 thick blades considered in this
analysis.

We introduce ᾱ = O(1) such that α = Re−1/2ᾱ and so to leading order the

free-stream is given by (1, Re−1/2ᾱ). In this analysis, ᾱ is measured positive

in an anti-clockwise direction from the aligned blades along the x-axis (see

figure 3.1).

This analysis allows for slender thickness and camber to be applied to each

blade, through the functions f+ and f−, each of O(1), where y = Re−1/2f±(x)

gives a particular blade surface. The functions f+ and f− represent the

shape of the upper and lower blade surfaces respectively and must satisfy

f+(x) = f−(x) at all leading and trailing edges. By scaling f± in this way

means the maximum thickness of the blades is of the same magnitude as the

boundary-layer thickness and large-scale leading and trailing edge separations

do not occur. The configuration close to the blades is illustrated in figure

3.1. The assumptions in the problem suggest a coupling between a viscous

boundary-layer close to the blades, which is buried within and continually

perturbs an inviscid free-stream.

3.2.1 The viscous boundary-layer

First, we consider the viscous boundary-layer problem. The x co-ordinate

for the boundary-layer is O(1) due to the streamwise extent of the blades
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and U = O(1) due to the oncoming free-stream. We consider the balance

U
∂

∂x
∼ 1

Re

∂2

∂y2
, (3.3)

within the boundary-layer due to the expected balance of inertial and dif-

fusive streamwise terms. Hence, we deduce that the normal scale of the

boundary-layer is y = O(Re−1/2) and by continuity we have V = O(Re−1/2).

We apply a Prandtl shift to the problem, by firstly defining Y = O(1) as the

normal co-ordinate within the boundary-layer, where y = Re−1/2(Y + f(x))

and f(x) is given by

f(x) =







f±(x) if x is on a blade,

s(x) if x is in a wake.
(3.4)

This allows us to remove thickness and camber effects associated with the

blades from the boundary-layer calculations. Above, y = Re−1/2s(x) is the

shape of the wake centreline which is unknown. We substitute the scaled

velocity components U = ū and V = Re−1/2(v̄ + ūf ′(x)) into the Navier-

Stokes equations to obtain

ū
∂ū

∂x
+ v̄

∂ū

∂Y
=

∂2ū

∂Y 2
, (3.5)

0 =
∂p̄

∂Y
, (3.6)

∂ū

∂x
+
∂v̄

∂Y
= 0, (3.7)

which are the classical boundary-layer equations. The pressure, P , is ex-

panded as

P (x, y) = 0 +Re−1/2p̄(x) +O(Re−1), (3.8)

due to matching with the constant free-stream pressure (taken as zero to

leading order) and the leading order perturbation being of O(Re−1/2). We

have that p̄ = p̄(x) in the expansion above due to the normal momentum

balance (3.6) yielding the result that p̄ is independent of Y . The boundary

conditions to be satisfied by (3.5) and (3.7) are

ū = v̄ = 0 on Y = 0 on the blades, (3.9)

ū→ 1 as Y → ±∞, (3.10)
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representing zero flow on the blades and matching to the free-stream. There

is also a requirement of continuous velocities across each wake and a starting

condition at the first leading edge, requiring

ū = 1, v̄ = ᾱ at x = 0, Y 6= 0. (3.11)

The Prandtl shift used earlier is known across the blades through the spec-

ified blade shape functions f± but is unknown across the wakes, due to the

unknown function s(x). In the case of a single blade and wake this does not

affect the boundary-layer calculation, since equations (3.5) and (3.7) along

with the boundary conditions (3.9) and (3.10) give a Prandtl shifted Blasius

boundary-layer solution on the blade surfaces with a Goldstein wake (see

Blasius (1908) and Goldstein (1930) respectively). To determine the wake-

shape and complete the Prandtl shift, we would examine the free-stream

problem once the boundary-layer solution is known. In the current prob-

lem of many-blades, the wake-shapes are of crucial importance. For the first

blade and wake, the boundary-layer solution is exactly that described just

above. However, if we do not know the position of the wake centreline at the

leading edge of a subsequent blade, we cannot determine the starting con-

ditions for the boundary-layer solution past the next blade and wake. The

Y -shift of each wake flow, that is the distance between the wake centreline

and position of the next leading edge, must be determined by considering

the disturbances to the outer, inviscid free-stream. These disturbances are

driven by entrainment velocities into the boundary-layer which cannot be

determined until the boundary-layer solution is found. It is this that causes

the inner-outer interaction between the viscous boundary-layer and inviscid

free-stream.

To determine the entrainment velocities into the boundary-layer, we con-

sider the normal velocity V as Y → ∞. Firstly, the displacement thicknesses

above (δ+) and below (δ−) the blade are given by

δ±(x) = ±
∫ ±∞

0

{

1 − ū(x, Y )
}

dY. (3.12)

Differentiating this expression with respect to x, using the continuity equa-

tion and integrating with respect to Y , we find that as Y → ∞, we have that



3.2 Formulation 51

the normal velocity

v̄ → ±δ′±(x). (3.13)

By using this result and the Prandtl shift equation for V given earlier, the

entrainment velocity into the boundary-layer is given by

V = Re−
1

2

(

± δ′±(x) + f ′(x)
)

. (3.14)

and provides the matching condition for the free-stream problem.

3.2.2 The inviscid free-stream

The free-stream is driven by the presence of the boundary-layer and by

matching the normal velocity, the velocities and pressure are expanded as

U = 1 +Re−
1

2u(x, y) +O(Re−1), (3.15)

V = Re−
1

2 (ᾱ+ v(x, y)) +O(Re−1), (3.16)

P = 0 +Re−
1

2p(x, y) +O(Re−1). (3.17)

We see that the global angle of attack appears at leading order in the free-

stream expansion, forming the rationale for taking α = O(Re−1/2). Substitu-

tion into the Navier-Stokes equations reveals the linearised Euler equations

at leading order

∂u

∂x
= −∂p

∂x
, (3.18)

∂v

∂x
= −∂p

∂y
, (3.19)

∂u

∂x
+
∂v

∂y
= 0, (3.20)

and substituting the mass conservation equation (3.20) into (3.18) yields

∂v

∂x
= −∂p

∂y
, (3.21)

∂v

∂y
=

∂p

∂x
. (3.22)

Hence, the leading order responses for v and p in the free-stream are governed

by the Cauchy-Riemann equations. We note that (3.18) gives the solution

u = −p, by integrating with respect to x and noting that there is no match
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for u as y → 0. To find v and p, we adopt a similar method used by

Purvis (2002). We consider the problem in the complex plane and define

the holomorphic, complex function w which is required to be bounded in the

far-field as

w(x+ iy) = p(x, y) + iv(x, y), (3.23)

and we denote

w(x+ i0) = p+(x) + iv+(x), (3.24)

w(x− i0) = p−(x) + iv−(x), (3.25)

as the values of w just above and below y = 0 respectively. The real and

imaginary parts of w must satisfy the boundary conditions for the problem

which are found upon matching with the boundary-layer as y → 0.

The normal velocity v must match with the entrainment velocities into

the boundary-layer as y → 0±. The boundary-layer entrainment velocities

are given by equation (3.14) and so to match we require

ᾱ + v±(x) = f ′(x) ± δ′±(x). (3.26)

Simple rearrangement gives the boundary conditions for v in this problem as

v±(x) =



















s′(x) − ᾱ for x < 0,

f ′
±(x) ± δ′±(x) − ᾱ for x on a blade,

s′(x) ± δ′±(x) − ᾱ for x in a wake.

(3.27)

The derived boundary conditions for v differ from previous research, such as

Smith & Timoshin (1996b) and Purvis (2002), through the appearance of

the ᾱ term. On the other hand, the conditions for the pressure are given by

p+(x) = p−(x) ∀x in the wakes, (3.28)

p+(bi) = p−(bi) ∀i. (3.29)

The first condition represents pressure continuity across each wake. This is

because the biggest jump in pressure across the wake centre-line is at most

O(Re−1) and applies here as p̄ = p̄(x) at leading order in the boundary-layer.

The second condition represents the Kutta condition at each trailing edge.

The pressures p± are unknown over the blades.
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3.3 Solution of the inviscid problem

3.3.1 Finding the complex function w

To solve the inviscid problem, we must solve the Cauchy-Riemann equations

for v and p. We use Cauchy’s integral formula, which states for a holomor-

phic, complex function g, in a simply connected region with closed contour

Γ, described anticlockwise, and fixed point z0 inside Γ

g(z0) =
1

2πi

∫

Γ

g(z)

z − z0
dz. (3.30)

For our multi-blade problem, we take the contour Γ to be produced by

the contours γ+ and γ−, each composed of a straight line segment from

x = −R to x = R and a semi-circle of radius R centred on the origin in

the upper and lower half planes respectively (see figure 3.2). Applying (3.30)

with z0 = x0 + iy0 lying strictly inside either γ+ or γ−, considering the limit

R → ∞ and comparing real and imaginary parts leads to

p(x0, y0) =
1

2π

∫ ∞

−∞

y0[p](x) + (x− x0)[v](x)

(x− x0)2 + y2
0

dx, (3.31)

v(x0, y0) =
1

2π

∫ ∞

−∞

y0[v](x) − (x− x0)[p](x)

(x− x0)2 + y2
0

dx, (3.32)

where

[p](x) = p+(x) − p−(x), (3.33)

[v](x) = v+(x) − v−(x), (3.34)

denote the difference between the values of p and v above and below y =

0. The values of [v](x) for all x are given by subtraction of the boundary

conditions (3.27) as

[v](x) =



















0 for x < 0,

(f ′
+ − f ′

−)(x) + (δ′+ + δ′−)(x) on blades,

(δ′+ + δ′−)(x) in wakes.

(3.35)

(3.36)

Moreover, for a given boundary-layer solution these conditions are known,
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Blades

y

x−R R

−R

R

(x0, y0) γ+

γ−

Figure 3.2: The contours γ+ and γ− used with Cauchy’s integral formula for
(x0, y0) lying strictly inside either γ+ or γ− with y0 6= 0.

since the unknown s′(x) terms disappear. We also have that

[p](x) = 0 ∀x in the wakes, (3.37)

[p](bi) = 0 ∀i (Kutta), (3.38)

through subtraction of the pressure continuity conditions (3.28) and (3.29).

However, we do not know [p](x) for any ai < x < bi, ∀i, and hence we cannot

solve either of (3.31) or (3.32) for any (x0, y0). To rectify this problem, the

original evaluation point z0 is now taken to lie on y = 0. Care must be taken

as z0 now lies on the straight line segment of the original closed contours γ+

and γ− in figure 3.2. Therefore, we deform the contours γ+ and γ− to include

another small semi-circle of radius ǫ centred on (x0, 0), see figure 3.3.

We now apply Cauchy’s integral formula with the double limit R → ∞
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x0 + ǫx0 − ǫ

Figure 3.3: The deformed contours γ+ and γ− used for Cauchy’s integral formula
at the point (x0, 0).

and ǫ→ 0 to each of w(x+ i0) and w(x− i0) in turn, revealing

w(x0 + i0) =
1

πi

∫ ∞

−∞

w(x+ i0)

x− x0

dx, (3.39)

w(x0 − i0) = − 1

πi

∫ ∞

−∞

w(x− i0)

x− x0
dx. (3.40)

By substituting w(x+ i0) = p+(x) + iv+(x) and w(x− i0) = p−(x) + iv−(x)

into the above equations (3.39) and (3.40) and adding the results we obtain

p+(x0) + iv+(x0) + p−(x0) + iv−(x0) =
1

πi

∫ ∞

−∞

[p](x) + i[v](x)

x− x0
dx, (3.41)

and by comparing real and imaginary parts, we have

〈p〉(x0) =
1

π

∫ ∞

−∞

[v](x)

x− x0
dx, (3.42)

〈v〉(x0) = −1

π

∫ ∞

−∞

[p](x)

x− x0

dx. (3.43)

Here

〈p〉(x) = p+(x) + p−(x), (3.44)

〈v〉(x) = v+(x) + v−(x), (3.45)
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represent the sum of p and v across y = 0. The pressure sums 〈p〉 are given

by equation (3.42) since [v] is known everywhere through (3.35). By adding

the boundary conditions for v± in equation (3.27), we have that

〈v〉(x) =



















2s′(x) − 2ᾱ for x < 0,

(f ′
+ + f ′

−)(x) + (δ′+ − δ′−)(x) − 2ᾱ on blades,

2s′(x) + (δ′+ − δ′−)(x) − 2ᾱ in wakes.

(3.46)

In condition (3.46), the velocity sums are unknown across each wake and

for x < 0 due to the derivative of the unknown wake-shape appearing in

the boundary conditions. Equation (3.43) may be used to find 〈v〉(x) in

the wakes, once [p](x) is known for all x. The pressure differences are zero

at each trailing edge and in each wake by the Kutta condition (3.38) and

pressure continuity (3.37) respectively but is unknown over each blade. We

may recover the pressures p+(x) and p−(x) once 〈p〉(x) and [p](x) are known

at all x using the simple relation

p±(x) =
1

2

(

〈p〉(x) ± [p](x)
)

, (3.47)

and similarly for v±.

Equation (3.43) is a Fredholm equation of the first kind for [p] and the

integrand has a Cauchy kernel containing a singularity at x = x0. This makes

(3.43) very difficult to solve, given the possibility of non-unique solutions.

However, the known boundary conditions on [p] allow progress to be made.

On applying pressure continuity across the wakes (3.37), (3.43) reduces to

〈v〉(x0) = −1

π

N
∑

i=1

∫ bi

ai

[p](x)

x− x0
dx. (3.48)

Now, Muskhelishvili (1946) gives the solution of

k(x0) =
1

π

∫

L

κ(x)

x− x0
dx, (3.49)

where L is composed of N line segments running from ai to bi, with the

constraint κ(bi) = 0 as

κ(x0) = −S
− 1

2 (x0)

π

∫

L

S
1

2 (x)k(x)

x− x0

dx, (3.50)

where

S(x) =

N
∏

i=1









x− ai
x− bi









. (3.51)
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This is exactly the problem here, with k ≡ 〈v〉, κ ≡ −[p] and L is all of

the blade surfaces. The constraint κ(bi) = 0 is exactly the Kutta condition

(3.38) for the differences in pressure being zero at each trailing edge. Thus,

[p](x0) =
S− 1

2 (x0)

π

N
∑

i=1

∫ bi

ai

S
1

2 (x)〈v〉(x)
x− x0

dx, (3.52)

is an integral equation for the values of [p] relying on 〈v〉 over the blades,

which are known through (3.46). Once the pressure differences are calculated

for a point on the blades, (3.48) gives the velocity sums 〈v〉(x) across the

wakes.

To determine s(x), the unknown wake-shapes in the Prandtl-shift, we

rearrange (3.46) in the wakes for s′(x), and integrate with respect x to reveal

an equation for the ith wake-shape as

s(x) = s(bi) +
1

2

∫ x

bi

{

〈v〉(x′) − (δ′+ − δ′−)(x′) + 2ᾱ
}

dx′, (3.53)

which completes the Prandtl-shift and the whole viscous solution.

3.3.2 Summary of the full problem

To summarise the full problem, we must solve the boundary-layer equations

ū
∂ū

∂x
+ v̄

∂ū

∂Y
=

∂2ū

∂Y 2
, (3.54)

∂ū

∂x
+
∂v̄

∂Y
= 0, (3.55)

subject to the boundary conditions

ū = v̄ = 0 on Y = 0 on the blades, (3.56)

ū→ 1 as Y → ±∞. (3.57)

There is a starting condition for the flow at the first blade, given by

ū = 1, v̄ = ᾱ at x = 0, Y 6= 0, (3.58)

whilst for the other blades, the starting conditions are unknown due to the

unknown wake-shapes s(x) appearing in the Prandtl shift.

To rectify this problem, we must find the pressure differences across the

blades through the integral equation

[p](x0) =
S− 1

2 (x0)

π

N
∑

i=1

∫ bi

ai

S
1

2 (x)〈v〉(x)
x− x0

dx, (3.59)
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where

S(x) =
N
∏

i=1









x− ai
x− bi









. (3.60)

This allows us to calculate the unknown velocity sums across the wake and

hence the unknown wake-shapes through the relation

s(x) = s(bi) +
1

2

∫ x

bi

{

〈v〉(x′) − (δ′+ − δ′−)(x′) + 2ᾱ
}

dx′, (3.61)

and complete the Prandtl shift within the boundary-layer.

3.4 Numerical methods

3.4.1 Boundary-layer

To solve the boundary layer problem, we use a finite difference approach,

akin to that used in the previous chapter, Smith & Timoshin (1996b) and

Purvis (2002). A regular grid with spacings ∆x and ∆Y in the x and Y

directions is set up, so that (xi, Yj) = (i∆x, j∆Y ) represents the ith, jth mesh

point. Backward differences in x and centred differences in Y derivatives are

used to discretise (3.54) and (3.55) as

ūji−1

(

ūji − ūji−1

∆x

)

+ v̄ji−1

(

ūj+1
i − ūj−1

i

2∆Y

)

=
ūj+1
i − 2ūji + ūj−1

i

(∆Y )2
, (3.62)

ūji − ūji−1

∆x
+
v̄j+1
i − v̄j−1

i

2∆Y
= 0, (3.63)

where ūji and v̄ji represent the values of ū and v̄ at (i∆x, j∆Y ). We use the

same method as outlined in Chapter 2 to find the solution at each xi, to first

find ū using (3.62) and the boundary conditions (3.56) and (3.57). Once ū is

known, v̄ may be calculated using the discretised continuity equation (3.63).

The solution for all xi is obtained by employing a streamwise sweep in x

and using the double-stepping method of Smith & Timoshin (1996b) used in

Chapter 2 to gain second-order accuracy in x.

As we encounter each leading edge within the sweep, we must apply

a Y -shift to the incoming velocity profile. This is because all the wake-

shapes are unknown and upon applying the Prandtl shift we do not know

the position of the next leading edge in relation to the oncoming flow within
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the boundary-layer. The correct boundary layer solution is determined by

Y -shifting the entire oncoming velocity profiles at the leading edge before

the sweep continues over the next blade-wake. Applying each Y -shift is

achieved using cubic splines on the velocity components, followed by shifting

the profiles by an amount Ys. To do this, each Yj is shifted by an amount Ys at

the leading edge to set the new starting condition. This is how the influence

of ᾱ permeates through the boundary-layer solution, via the viscous-inviscid

coupling. The Y -shifts are calculated using (3.61) in the inviscid solution

and is described in the next section.

To achieve accuracy in ū and v̄ it was necessary to set values of ∆x =

0.005, ∆Y = 0.05 and −400 ≤ j ≤ 400, with finer grid resolutions taken as

a check to confirm accuracy. If ᾱ > 1 with N ≥ 5, a finer grid resolution of

∆x = 0.001, ∆Y = 0.01 and −4000 ≤ j ≤ 4000 was needed for accuracy,

especially far downstream.

3.4.2 Inviscid Solution

To determine the Y -shifts, the values of [p] across each blade must first be

found from the integral equation (3.52). The integrand in equation (3.59)

has a singularity at x = x0 and a removable square-root singularity in S at

each trailing edge. To remove the square root singularity, we introduce Ŝ(x)

such that

S(x) =









x− ai
x− bi









Ŝ(x), (3.64)

Ŝ(x) =
N
∏

j=1,j 6=i









x− aj
x− bj









, (3.65)

and make the change of variables

x = ljsin
2θ + aj , (3.66)

x0 = lisin
2φ+ ai, (3.67)
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as used by Purvis (2002). Here lj = bj − aj represents the length of the jth

blade. Consequently, (3.59) becomes

[p](lisin
2φ+ ai) =

−2S(lisin
2φ+ ai)

− 1

2

π

N
∑

j=1

∫ π
2

0

ljsin
2θ〈v〉(ljsin2θ + aj)Ŝ

1

2 (ljsin
2θ + aj)

ljsin
2θ − lisin

2φ+ aj − ai
dθ.

(3.68)

The only remaining singularity is when θ = φ and i = j and is a Cauchy

Principal Value integral. We evaluate the Principal Value integral by choos-

ing all φ evaluation points as the mid-points of each pair of θ nodes. By

choosing the φ evaluation points in this way, all the integrals above can be

calculated numerically using a trapezoidal rule. For accuracy in calculating

[p], a step-size ∆θ = π/1000 was needed, with tests carried out on smaller

grid sizes of ∆θ to confirm accuracy.

Calculation of the velocity sums 〈v〉 is straightforward. We make the

same substitution for x as in (3.68) to give the values of the velocity sums

across the wake as

〈v〉(x0) = −1

π

N
∑

j=1

∫ π
2

0

[p](ljsin
2θ + aj)

ljsin
2θ + aj − x0

ljsin(2θ)dθ. (3.69)

Since the evaluation point x0 now lies in the wake, no singularites exist in any

integral and 〈v〉 can again be found using the trapezoidal rule. Finally, we

compute the wake-shapes through (3.61) and hence we calculate the Y -shifts

to be applied in the boundary-layer as

Ys(ai+1) = s(bi) +
1

2

∫ ai+1

bi

{

〈v〉(x′) − (δ′+ − δ′−)(x′) + 2ᾱ

}

dx′. (3.70)

3.4.3 Solution algorithm

To solve the discretised problems, we adopt an iterative approach to deal

with the coupled nature of the problem and to find the Y -shifts. We find the

solution for a particular value of ᾱ using the following algorithm.

1. Guess all the Y -shifts (initial guesses of 0 everywhere are sufficient).

2. For the current Y -shifts, solve the boundary-layer problem, interpolat-

ing the velocity profiles and shifting using cubic splines at each leading

edge.
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3. Compute the values of 〈v〉(x) across the blades arising from the boundary-

layer using (3.46).

4. Hence, find [p](x) across each blade using (3.68) and hence 〈v〉(x) across

each wake using (3.43).

5. Calculate the new Y -shifts and test for convergence by comparing them

to the Y -shifts of the previous iteration.

6. If convergence is not achieved in the Y -shifts, then return to 2. and

re-sweep, or finish.

In our code, convergence is achieved in the Y -shifts when the absolute

error between successive calculations of the Y -shifts is less than 10−6. We

find that the number of iterations needed to achieve this varied depending

on the value of ᾱ and the number of blades present. When only two or three

blades are present, convergence is achieved after three or four iterations rising

to around seven or eight iterations for larger values of ᾱ in a configuration

of ten or more blades. In all our computations, the initial guesses of zero

Y -shifts always gave a converged solution.

3.5 Results

Results are presented in three parts. Firstly, to test for accuracy we compare

solutions found using our method to others’ previously published results. In

the second part, we present solutions for a variety of angles ᾱ for N = 5

flat, horizontal blades (f+(x) = f−(x) = 0) and wakes all of length unity,

although the numerical procedure described in the previous section is suitable

for blades and wakes of varying lengths. This configuration helps to pick

out the underlying features of such many-blade flows. In the final part, we

present solutions for a global angle of attack withN = 10 blades, and perform

some computations for short and thick blades which are useful in helicopter

aerodynamics. There is reflective symmetry in the set of solutions about

y = 0 with respect to ᾱ and −ᾱ, so only results for ᾱ ≥ 0 are presented.
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3.5.1 Method validation

First, we test the numerical code against results illustrated in previous re-

search. The first test case is the blade configuration in figure 5 of Smith

& Timoshin (1996b), where there are N = 2 blades present with the first

and second blades of lengths 0.5 and 1.5 respectively. The wake is of length

unity and both blades have a local angle of attack of one. We present the

computed result for [p] in figure 3.4(a) and on viewing the solution found by

Smith & Timoshin (1996b), we see very good agreement. The second test

has blades and wakes of length unity with a local angle of attack of 0.5, as

seen in Purvis & Smith (2004). The test case chosen matches that of figure

7(a) of Purvis & Smith (2004) for a large value of the ground clearance pa-

rameter h in that paper. Although ground effect is not taken into account

in our problem, we see that the result given in figure 3.4(b) shows very good

agreement, which is as expected since the ground effect vanishes as h→ ∞.

The final comparison was made against the configuration of blades given in

figure 3(e) of Bhattacharyya & Smith (2004). The blade and wake lengths

are the same as the Smith & Timoshin (1996b) example above, but with the

second blade shifted in y by 1.5/
√

200. Bhattacharyya & Smith (2004) use

full Navier-Stokes simulations to calculate the wake-shapes. Our calculation

in figure 3.4(c) shows good agreement to that presented in Bhattacharyya &

Smith (2004).

3.5.2 Solutions for N = 5 flat blades

Before introducing a non-zero global angle of attack into the problem, we

first outline the symmetric solution found using our numerical code. The

symmetric solution is found in our code by setting the parameter ᾱ = 0.

The results gained compare well to those seen in Smith & Timoshin (1996b).

For the symmetric configuration, the Prandtl shift is known as s(x) = 0 in

every wake and hence the boundary-layer flow above and below the blades

are identical. Since the Prandtl shift is known, then the whole boundary-

layer problem may be found separately from the free-stream. The velocity

sums 〈v〉(x) = 0 and so there is no pressure difference [p](x) to find over the
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simulations. Blade 1 has length 0.5, wake 1 has length unity and
blade 2 has length 1.5. Blade 2 is shifted in Y by 0.1.

Figure 3.4: Computed results for the test cases taken from (a) Smith & Timoshin
(1996b), (b) Purvis & Smith (2004) and (c) Bhattacharyya & Smith (2004).
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Figure 3.5: Displacement thickness, pressure sums 〈p〉(x) and velocity differences
[v](x) calculated for the symmetric problem with N = 5 flat blades and wakes of
length unity. The flat blades lie at x values satisfying 0 ≤ x ≤ 1, 2 ≤ x ≤ 3, · · · .
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Figure 3.6: Pressures p±(x) and velocities v±(x) calculated for the symmetric
problem with N = 5 flat blades and wakes of length unity.

blades. Thus the symmetric case is a decoupled problem. Solutions for the

displacement thicknesses δ±(x), velocity differences [v] and pressure sums 〈p〉
are given in figure 3.5. The displacement thicknesses of the boundary-layer

are plotted in figure 3.5(a) and we see that there is reflective symmetry about

the x-axis, as expected. The pressure sums calculated in figure 3.5(b) have

singularities at each leading and trailing edge. This is caused by the discon-

tinuous nature of the displacement gradient at the leading and trailing edges.

We find that the velocity differences, [v] also possess these singularities, with

the profile being monotonically decreasing over the blades and monotonically

increasing within each wake.

The pressures p± and velocities v± for the symmetric problem are given

in figure 3.6. Since [p](x) = 0 in this symmetric problem, we have that

p+(x) = p−(x) = 〈p〉(x)/2 and is illustrated in figure 3.6(a). The velocities

v±(x) are plotted in figure 3.6(b). Since 〈v〉(x) = 0, then we have that
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Figure 3.7: Computed pressure differences and sums, [p] and 〈p〉 and velocity
differences and sums for [v] and 〈v〉 with ᾱ = 1, N = 5.
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Figure 3.8: Pressures and velocities p±(x) and v±(x) for N = 5 flat blades at a
global angle of attack ᾱ = 1.

v±(x) = ±[v](x)/2. The result in figure 3.6(b) shows this through symmetry

about the x-axis. The differences [v] are calculated using the derivatives

of the displacement thicknesses from the boundary-layer. Over a blade, we

expect outflow from the boundary-layer to the free-stream, meaning that

v+(x) > 0 and v−(x) < 0 over the blades and hence [v](x) = v+(x)−v−(x) >

0 over each blade. This situation is reversed in the wakes.

In figure 3.7, we compute and present the solutions for 〈p〉, 〈v〉, [p] and

[v] found for the case ᾱ = 1, a non-zero global angle of attack. In figure

3.7(a), we see that a pressure difference between the upper and lower sur-

faces of the blade occurs, with [p](x) < 0. We see at the trailing edges (i.e.

x = 1, 3, 5, 7, 9) that the Kutta condition, requiring the pressure difference to

be zero there, is clearly satisfied. The computed pressure sums and velocity

differences in figures 3.7(b) and show similar characteristics as described in

the symmetric case above. The computed velocity sums 〈v〉 are monotonic
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decreasing over each blade (except the first, where 〈v〉 = −2α) and monoton-

ically increasing in each wake. The velocity sums in each wake are calculated

using the integral equation (3.42) after finding the pressure differences in

figure 3.7(a).

The actual pressures p±(x) and velocities v±(x) using the computed sums

and differences are given in 3.8. As seen in the symmetric case, the singu-

larities present at the leading and trailing edges still reside in the inviscid

problem. An analysis valid close to the singularities is given by Smith &

Timoshin (1996b). The analysis models the boundary-layer flow close to the

leading and trailing edges in two normal flow regions. At the leading edge,

the first normal scale is small with Y = O(Re−1/4) and is viscous due to

the onset of the no-slip boundary condition at the leading edge. The second

normal scale is Y = O(1) and is predominantly inviscid. The analysis was

undertaken to confirm that the correct behaviour of the solutions had been

properly captured by the numerical code as flow passes over the singularities.

Since our test cases agree well with the solutions found in Smith & Timoshin

(1996b), this same analysis is expected to hold close to the singularities in

this instance.

In figures 3.9 - 3.12, the boundary-layer solution through displacement

thicknesses, computed wake-shapes and the pressures p± for various values

of ᾱ are presented. As expected, greater deflections in the wake-shape are

observed when ᾱ is increased. The presence of a non-zero value of ᾱ in the

code now couples the outer free-stream and inner boundary-layer solution

procedures.

The results show sheltering effects for each value of ᾱ, as in each case,

the Y -shift at each leading edge decreases after passing a few blades. For

ᾱ = 0.05 in figure 3.9(a), only a small deflection of the wake-shape is seen, as

expected. As ᾱ is increased to ᾱ = 0.5, greater deflection of the wake-shape

is seen. In figure 3.11, solutions for larger values of ᾱ are presented. For

the values of ᾱ = 4, 8, we see that a Blasius boundary-layer forms beneath

each blade. For these cases of ᾱ, the wake-shape is considerably deflected

and hence the incoming flow to each subsequent leading edge is a uniform

flow. As downstream distance is increased, the sheltering effects observed
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on passing more blades causes the Y -shift to drop. When this happens,

the Blasius behaviour observed under each blade will cease, due to the non-

uniform incoming flow now present there.

The pressures p+ and p− in figures 3.10 and 3.12 are discontinuous at

all leading and trailing edges (but still satisfy the Kutta condition at the

trailing edge), as seen in the symmetric case. As ᾱ is increased, the pressure

solutions show a general increase in the difference between p+ and p− over

the blades. As with the wake-shapes, slip-streaming effects are apparent as

the difference between p+ and p− solutions becomes less after more blades are

passed. Results for the total lift felt by each blade, given by the integral of

−[p] over the whole blade is given in figures 3.13(a) and (b). Slip-streaming

effects are clear, with the decrease of lift on blades downstream. For large

values of ᾱ, the friction drag on each blade, τ , (given by equation (2.79)

in Chapter 2) appears equal for each blade. This suggests a near Blasius

boundary-layer is created above and below the first few blades. For smaller

ᾱ, the friction drag calculated agrees with the symmetric case of blades in

Smith & Timoshin (1996b).

3.5.3 Short, thick and many blades

With the code developed for blades of variable length and blade thicknesses,

we turn to finding solutions to a problem where the blade is much shorter

than the wake. This configuration has applications to the spinning rotor on

a helicopter. Solutions to problems with ᾱ = 0.5 and ᾱ = 2 are presented

in figure 3.14. The length of each blade is taken to be 0.25 with the wake of

length 1.75. We see that the wake-shape and pressure solutions take on a very

similar form past all blades in the configuration. The shortness of the blades

means that, compared to the previous case, the boundary-layer created over

the blades has less streamwise distance to grow. With a long wake, the global

angle of attack exerts itself on the wake-flow over a longer distance in x. This

causes a greater deflection of the wake-shapes compared to the solutions for

the same values of ᾱ in the previous section. Then, each blade experiences

a uniform flow close to both the upper and lower blade surfaces. Hence, the

sheltering effects present (reported in the previous section) are reduced, by
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(c) ᾱ = 0.25.

−6

−4

−2

 0

 2

 4

 6

 0  1  2  3  4  5  6  7  8  9  10
x
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Figure 3.9: Boundary-layer displacement thicknesses δ+, δ− and computed wake-
shapes s(x) for values of small ᾱ for N = 5 flat blades and wakes of length unity.
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Figure 3.10: Corresponding pressures p+ (solid line) and p− (dashed line) for
the cases in figure 3.9 at y = 0±.
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Figure 3.11: Boundary-layer displacement thicknesses δ+, δ− and computed
wake-shapes s(x) for larger values of ᾱ for N = 5 flat blades and wakes of length
unity.
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Figure 3.12: Corresponding pressures p+ (solid line) and p− (dashed line) for
the cases in figure 3.11 at y = 0±.
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ᾱ = 4
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Figure 3.13: Computed values of the scaled lift, L, friction drag, τ and Y -shifts
on each blade, Ys, for the results presented in figures 3.9 - 3.12.

having a larger wake.

Solutions for blades with non-zero thickness are shown in figures 3.15

and 3.16. In figure 3.15 we present the solutions found for a non-symmetric

convex shaped blade with global angles of attack ᾱ = 0.5, 2. The blade and

wake lengths are unity for each case presented. In each case, a decrease in

the Y -shift at each leading edge is observed and suggests that (even with

non-zero blade thickness) a sheltering effect occurs, similar to that in the

last section. The calculated pressures also show similar behaviour.

In figure 3.16 the calculations described above are repeated, but now the

blade has a concave underside. In this case, the Y -shift becomes negative on

blades downstream. As the number of blades passed increases in 3.16(b), the

signs of the pressure solutions for p+ and p− swap close to the leading edge,
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Figure 3.14: Displacement thicknesses and pressures for five flat blades of length
lj = 0.25, for the cases of (a) ᾱ = 0.5 and (b) ᾱ = 2.0.
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in contrast to the previous results. This is caused by the negative Y -shift

occurring at the leading edges of blades downstream. With a larger global

angle of attack, we see in figure 3.16(c) that the Y -shift has not yet become

negative, although similar behaviour in the pressure is seen as the number of

blades passed increases. In general, the flow behaviour seen in the flat blade

case of the last section, appears to be similar to these cases.

Finally in figure 3.17, the number of flat blades is increased to N = 10

to examine what features arise upon passing many blades. For the case pre-

sented, ᾱ = 2 and the blade and wake lengths are equal to one. Beneath

the first few blades in figure 3.17, a near Blasius boundary-layer is created.

On passing a few more blades, this is not true, since the sheltering effect has

now caused the Y -shift at each leading edge to decrease enough so that a

more general boundary-layer grows above and beneath each blade. This is as

reported in the last section for N = 5 blades. Considering the displacement

thicknesses above the blades in figure 3.17(a), there is a slow growth of the

boundary-layer over the whole array of blades, with a rapid change in the

displacement thickness locally over a single blade. These rapid changes over

each blade appear to take on a very similar nature. In the fifth to eighth

wakes, we see that the wake-shape and pressure solutions are also very sim-

ilar. All of this evidence gives an indication that a periodic solution for

many-blades may occur, something we will discuss in the next chapter.
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Figure 3.15: Displacement thicknesses and pressures with ᾱ = 0.5, 2.0 and blade
thicknesses given by f+(x) = 2(x− x2), f−(x) = x2 − x.
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Figure 3.16: Displacement thicknesses for five aerofoils with ᾱ = 0.5, 2.0 and
blade thicknesses given by f+(x) = 4(x− x2), f−(x) = 2(x− x2).
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Figure 3.17: Displacement thicknesses and wake-shapes with corresponding pres-
sure solutions p+ and p− (solid and dashed lines respectively) for 10 flat blades,
ᾱ = 2.0

3.6 Summary

This chapter has extended Smith & Timoshin (1996b) to include a small

global angle of attack to a configuration of blades. Choosing the angle of

size O(Re−1/2) caused a leading order change to the free-stream. A similar

technique to that of Smith & Timoshin (1996b) was applied to solve the

coupled boundary-layer free-stream problem. The global inner-outer coupling

between the boundary-layer and free-stream was observed through Y -shifts

in the boundary layer and unknown pressures across the blades in the free-

stream. We presented solutions for the problem past N = 5 flat blades

and wakes of length unity for various values of ᾱ, to outline the phenomena

associated with these multi-blade flows. Slip-streaming effects were seen

downstream through decreases in Y -shifts and flattening of each wake-shape,

along with decreases in lift and friction drag. We then computed some short

and thick blade solutions. Results for the short blade analysis showed that
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the wake-shapes and pressures were very similar on each blade and in each

wake, whilst the thick blade solutions repeated the sheltering effects seen

in the flat blade case. Finally, a configuration of ten blades was presented

and seemed to indicate the appearance of a many-blade limit, which will be

discussed in the next chapter.

Possible extensions to the work in this chapter include the following.

Firstly, the angle of attack within the problem is taken to be very small, so

that the normal velocity in the free-stream is affected at leading order. An

extension would be to develop a model for flow past blades with a larger angle

of attack, say α = O(1). This has implications for the development of both

the boundary-layer and free-stream and we may expect large scale separations

to occur on the blades if the global angle of attack is large enough. Another

extension of interest would be to develop an analytical short blade analysis

within the current setting, to better understand the phenomena computed in

the solutions presented here. A starting point may be the paper by Bowles

& Smith (2000b), where a short blade analysis is sought for a non-symmetric

configuration of blades far downstream. Unsteady problems, such as start-up

of the rotor system could also be analysed, where very little or no work has

been conducted before.

However, the extension with the most personal interest would be to solve a

non-symmetric, possibly with a global angle of attack, global viscous-inviscid

rotor blade problem in three-dimensions. Smith & Timoshin (1996a) have

shown how the boundary-layer problem may be solved for the rotary sys-

tem, but for non-symmetric configurations of the rotor blades we expect

the viscous-inviscid coupling described here. The main difficulty in three-

dimensions would be to formulate and solve the outer inviscid problem. In

this chapter we were able to use complex analysis to derive an equation for

the pressure differences across the blades, which allowed for the solution of

the inviscid and hence the whole two-dimensional problem. This complex

analysis approach is not possible in three-dimensions. A way to formulate

the potential free-stream problem for pressure or normal velocity would be

to use a boundary integral method. However, there is a difficulty in know-

ing where the leading and trailing edges occur on a three-dimensional rotor
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blade. This is due to the radial flow outwards from the centre of the rotation

being of comparable size to the oncoming flow to the spinning rotor blade.

Thus it is very difficult to apply the Kutta trailing edge condition in the

correct locations in advance. We can reformulate the free-stream problem

in three-dimensions using a boundary integral method to obtain equivalent

integral equations to (3.42) and (3.43), but the result we used in this chap-

ter to solve (3.43) for [p] required Muskhelishvili (1946) and used a complex

variable technique to solve (3.43). In the three-dimensional case, we need to

find a way to transform the integral equation into an equation of the second

kind without using complex analysis or solve the first kind equation directly.

In either case, this presents considerable difficulty, especially in solving a

first kind equation given the non-uniqueness of solutions. If any of the two

difficulties could be overcome, a formulation should be possible in three di-

mensions, at least for infinite blade spans where the Kutta condition may be

easier to apply.





Chapter 4

Many-blade limit with a global

angle of attack

4.1 Introduction

In this chapter, we explore in more depth the flow behaviour on passing

many-blades with a global angle of attack. The analysis carried out in the last

chapter holds for the case of many-blades but computation time is increased

as the number of blades is increased due to the number of discretisation

points required to accurately capture the boundary layer flow. Thus, we

seek a limiting case for the flow behaviour on passing many blades.

Results from the previous chapter (particularly figure 3.17, a case of N =

10 blades) showed a similar wake-shape across every wake with a decreasing

Y -shift as more blades and wakes were passed. There was an overall growth

of the boundary layer on passing all the blades with rapid changes to the

displacement thickness of the boundary layer over a single blade and wake.

The rapid change in the displacement thickness profiles over each blade and

wake are caused by the continual adjustments required to account for the

no-slip boundary conditions on each blade. This suggests that there may be

an underlying structure of the boundary layer, whereby an overall growth is

seen over a long x-scale (over all blades and wakes) whilst effects on a much

shorter x-scale (over each blade and wake) cause the rapid changes in the

local thickness of the boundary layer.

A many-blade limit is reported in Smith & Timoshin (1996b) and Purvis

83
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(2002) for the cases of non-symmetric blades and ground effect respectively.

Within these papers, the boundary layer is modelled in two parts. The first

part contains the majority of the boundary layer flow which varies slowly

in x and accounts for the general overall growth of the boundary layer on

passing many blades. Within this bulk part of the boundary layer, the flow

is given by a Blasius flow on average at leading order. The second part of

the boundary layer is a relatively thin inner, viscous sublayer. The sublayer

occurs over a much shorter scale in x, that of one blade and wake. The sub-

layer deals with the leading- and trailing-edge singularities and the changes

to and from the no-slip condition. Furthermore, a periodic nature is revealed

when the derived scalings for the velocities in the sublayer are applied to the

ū solutions in the boundary layer. The boundary layer is still coupled to the

free-stream through unknown wake-shapes, and the free-stream is coupled to

the boundary layer by unknown pressure differences over the blades.

Given that for similar many-blade studies a periodic many-blade limit

does occur, we investigate this in the context of having a global angle of

attack. Evidence from the calculations in the previous chapter (outlined in

the second paragraph of this chapter) suggests that a many-blade limit may

occur with a global angle of attack, like that of Smith & Timoshin (1996b)

and Purvis (2002). The number, n, of blades passed is now taken to be large

where O(1) ≪ n≪ O(Re3/5). If n = O(Re3/5), as documented by Bowles &

Smith (2000a,b), the proposed analysis here is no longer valid. A discussion

of the breakdown of the many-blade limit is given in later chapters.

4.2 Structure

The approach taken is guided by Smith & Timoshin (1996b) and numerical

results gained in the previous chapter. We consider the flow over blade

and wake n, buried within a very large streamwise array of blades. The

coordinate of the viscous boundary layer is still given by Y , of order unity,

where y = Re−1/2Y .

To represent the two streamwise scales of significance, we proceed as

follows. The long scale in x, after passing n blades is given by x = nxl,
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Figure 4.1: Scaled ū velocities from the previous chapter suggesting the periodic
nature of the viscous sub-layer. Profiles are taken from the mid-blade (top figure)
and mid-wake (bottom figure) positions taken from the 10 blade computation
performed in figure 3.17, where ᾱ = 1.

with xl = O(1). This longer scale observes an overall growth of the whole

boundary layer as more blades are passed. The other is a local, fast scale of

O(1) over each blade and wake and is given by x = xs. This shorter scale

accomodates the change in boundary conditions at the blade surface and

wake centreline from that of no-slip to no-shear, and vice-versa. Therefore,

to represent both x dependencies in the boundary layer, we write

x = xs + nxl. (4.1)

Within the boundary layer, the velocity ū = O(Y n−1/2). The normal scales of

the bulk-layer and the sublayer are deduced by the inertial-diffusive balance

of operators

ū
∂

∂x
∼

∂2

∂Y 2
. (4.2)

At an O(n) distance downstream, we find that the normal scale of the

bulk-layer is O(n1/2) as expected. Hence, ū = O(1) and by continuity,

v̄ = O(n−1/2) in the bulk-layer. Over the shorter, O(1) scale xs, (4.2) yields
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Figure 4.2: The proposed structure of the current many-blade limit showing the
three regions of flow over one blade-wake period.

the balance Y n−1/2
∼ Y −2 and hence the sublayer size Y = O(n1/6). Thus

the velocities scale as ū = O(n−1/3) and v̄ = O(n−1/6) in the sublayer.

In figure 4.1, the sublayer scales for ū and Y are applied to the velocity

profiles mid-blade and mid-wake of the N = 10 blade case of figure 3.17 in

the last chapter. The scaled profiles show that as more blades are passed, the

velocity components begin to settle into a near periodic regime close to the

blade surface and wake centreline. Thus for the current many-blade limit, we

take the sublayer to be periodic. To determine the periodic boundary layer

flow, we consider the flow over one particular blade and wake, that leads to

the proposed structure in figure 4.2. The blade leading edge is taken to be

at x = 0, with trailing edge at x = te and the would-be next leading edge at

x = L.

4.2.1 Region II: bulk viscous flow

The bulk viscous layer makes up the majority of the boundary layer flow.

A new normal coordinate Yb = O(1) is introduced such that Y = n1/2Yb

since the normal scale in region II is of O(n1/2). The governing equations

for region II are the boundary layer equations (3.5) and (3.7) from the last
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chapter. The velocities in the boundary layer, ū and v̄, which must match

both the free-stream and viscous sub-layer, are expanded as,

ū = u0(xl, Yb) + n− 1

3u1(xs, Yb) + n− 2

3u2(xs, Yb) + n−1u3(xs, Yb) + · · · ,

(4.3)

v̄ = n
1

6 v1(xs, Yb) + n− 1

6 v2(xs, Yb) + n− 1

2 v0(xs, Yb) + · · · . (4.4)

Substituting these expressions into the boundary layer equations, we find

u0
∂u1

∂xs
+ v1

∂u0

∂Yb
= 0, (4.5)

∂u1

∂xs
+
∂v1

∂Yb
= 0, (4.6)

are the leading order balances. A simple substitution of (4.6) into (4.5), and

subsequent solution using separation of variables leads to the solutions

u1 = E±(xs)
∂u0

∂Yb
, (4.7)

v1 = −E ′
±(xs)u0. (4.8)

Here and in what follows, the ± subscripts (and later superscripts) refer

to values just above and below Yb = 0 respectively. The functions E± are

determined upon matching to region I at Yb = 0±.

At O(n−1/3), the balances

u0
∂u2

∂xs
+ u1

∂u1

∂xs
+ v1

∂u1

∂Yb
+ v2

∂u0

∂Yb
= 0, (4.9)

∂u2

∂xs
+
∂v2

∂Yb
= 0, (4.10)

hold for u2 and v2. Substitution of (4.10) along with the solutions (4.7) and

(4.8) for u1 and v1 into (4.9) give the equation

u0
∂v2

∂Yb
− v2

∂u0

∂Yb
= E±(xs)E

′
±(xs)

{(

∂u0

∂Yb

)2

− u0
∂2u0

∂Y 2
b

}

, (4.11)

for v2, which may be solved using the integrating factor 1/u0. The solution

to this equation is

v2 = −E±(xs)E
′
±(xs)

∂u0

∂Yb
+ u0G

′
±(xs). (4.12)

Using conservation of mass and integrating with respect to xs, we obtain

u2 =
E2

±(xs)

2

∂2u0

∂Y 2
b

−G±(xs)
∂u0

∂Yb
, (4.13)
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where G±, like E± match region II to the sublayer region. The unknown

functions E± and G± are actually displacement effects to region II from the

sublayer. To see why, we perturb the leading order flow u0(xl, Yb) by a small

amount ǫ = n−1/3E±(xs) + n−2/3G±(xs). Expanding u0(xl, Yb + ǫ) about Yb

using Taylor’s theorem yields

u0(xl, Yb + ǫ) = u0(xl, Yb) + n− 1

3E±

∂u0

∂Yb
+ n− 2

3

{

G±

∂u0

∂Yb
+ E±

∂2u0

∂Y 2
b

}

.

(4.14)

So, upon applying a small displacement to the leading order flow, the so-

lutions for u1 and u2 are recovered at O(n−1/3) and O(n−2/3) respectively,

matching the original expansion for ū.

Finally, at O(n−2/3) the equations

u1
∂u1

∂xs
+ u0

∂u0

∂xl
+ u1

∂u2

∂xs
+ u2

∂u1

∂xs
+ v1

∂u2

∂Yb
+ v2

∂u1

∂Yb
+ v0

∂u0

∂Yb
=

∂2u0

∂Y 2
b

,

(4.15)

∂u0

∂xl
+
∂u3

∂xs
+
∂v0

∂Yb
= 0,

(4.16)

hold, containing both short and long scale variations in x. The periodicity

assumption over the short scale xs is now applied. Integrating (4.15) and

(4.16) with respect to xs from 0 to L leaves

u0
∂u0

∂xl
+ vM

∂u0

∂Yb
=

∂2u0

∂Y 2
b

, (4.17)

∂u0

∂xl
+
∂vM
∂Yb

= 0, (4.18)

where

vM =

∫ L

0
v0dxs

∫ L

0
dxs

, (4.19)

represents the mean value of v0 over the period. The boundary conditions

are

u0 = vM = 0 at Yb = 0±, (4.20)

u0 → 1 as Yb → ±∞, (4.21)

as in Smith & Timoshin (1996b). The equations (4.17) and (4.18) along with

the constraints (4.20) and (4.21) are exactly the conditions required for the



4.2 Structure 89

Blasius boundary layer solution, in this case holding on average for u0 and v0

across the whole period. From a physical stance, this layer is largely passive.

It is sheltered from the leading and trailing edge singularities by region I and

grows slowly over all the blades and wakes, but serves to pass details of the

sublayer displacements out to the free-stream over the shorter scale.

4.2.2 Region I: viscous sublayer

In the sublayer, the normal coordinate Y = O(n1/6). We define Ŷ = O(1) as

the normal coordinate of the sublayer such that Y = n1/6Ŷ . To match with

region II, the expansions

ū(x, Y ) = n− 1

3 û0(xs, Ŷ ) + n− 2

3 û1(xs, Ŷ ) · · · , (4.22)

v̄(x, Y ) = n− 1

6 v̂0(xs, Ŷ ) + n− 1

2 v̂1(xs, Ŷ ) · · · , (4.23)

are substituted into the boundary layer equations to yield

û0
∂û0

∂xs
+ v̂0

∂û0

∂Ŷ
=

∂2û0

∂Ŷ 2
, (4.24)

∂û0

∂xs
+
∂v̂0

∂Ŷ
= 0, (4.25)

at leading order. These equations must be solved subject to the boundary

conditions

û0 = v̂0 = 0 on Ŷ = 0 over the blade, (4.26)

∂û0

∂Ŷ
→ ±λ as Ŷ → ±∞, (4.27)

L-periodicity in xs, (4.28)

Ŷ -shift at x = L. (4.29)

The condition (4.27) is required for the sublayer to match to the leading

order flow in the bulk-layer. The leading order solution for u0 as Yb → 0±

in the bulk-layer is given by the shear flow u0 = ±λ±Yb since u0 is given by

a mean Blasius solution at leading order. The values of λ± in the small Yb

mean Blasius flow are given by

λ± =
∂u0(xl, 0

±)

∂Yb
= f̂ ′′(0)x

−1/2
l , (4.30)

where f̂ is the Blasius function and f̂ ′′(0) = 0.3321. Thus, matching the

sublayer to the bulk-layer requires condition (4.27). Further, this condition
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fixes the displacements E± and their derivatives E ′
± in the bulk-layer solution.

By direct integration of (4.27) and use of continuity, we have

û0 → ±λ(Ŷ + b±(xs)), (4.31)

v̂0 → ∓λb′±(xs)Ŷ , (4.32)

as Ŷ → ∞. Here, b± are functions of integration representing the displace-

ment effects of the sublayer. As Ŷ → ∞, v̂0 must match to v0 in the bulk-layer

as Yb → 0 and so E± ≡ b±. Notice also that over the short periodic scale xs,

λ± are approximately constant. The condition (4.29) is how the global angle

of attack is felt through the boundary layer.

At next order, the equations

û1
∂û0

∂xs
+ û0

∂û1

∂xs
+ v̂1

∂û0

∂Ŷ
+ v̂0

∂û1

∂Ŷ
=

∂2û1

∂Ŷ 2
, (4.33)

∂û0

∂xs
+
∂v̂0

∂Ŷ
= 0, (4.34)

hold, along with the boundary conditions

û1 = v̂1 = 0 on Ŷ = 0 on the blade, (4.35)

∂û0

∂Ŷ
→ 0 as Ŷ → ±∞, (4.36)

L-periodicity in xs. (4.37)

At this order, the bulk-layer displacements G± and it’s derivatives G′
± are de-

termined in a similar way to the leading order method above. By integration

of (4.36) and use of continuity, we have

û1 → ±λc±(xs), (4.38)

v̂1 → ∓λc′±(xs)Ŷ , (4.39)

as Ŷ → ±∞. Thus to match the sublayer and bulk-layer requires G± ≡
c±. In this analysis a leading order solution will be sought, so any effects

associated with the lower order displacement effects c± are neglected.

4.2.3 Region III: free-stream

The final task is to find the perturbation to the free-stream, which will de-

termine the wake-shape required for the boundary layer problem. To ensure
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the free-stream matches to region II in the boundary layer requires the ex-

pansions

u = n
1

6U0(x, y) + · · · , (4.40)

ᾱ + v = n
1

6V0(x, y) + · · · , (4.41)

p = n
1

6P0(x, y) + · · · . (4.42)

These expansions are substituted into the governing Cauchy-Riemann equa-

tions for the free-stream problem leaving them unchanged at leading order,

given here by

∂V0

∂xs
= −∂P0

∂y
, (4.43)

∂V0

∂y
=

∂P0

∂xs
. (4.44)

The boundary conditions to be satisified by P0 are still continuity across

the wakes, with the Kutta condition holding at every trailing edge. The

normal velocity component V0 must once again match the entrainment into

the boundary layer, given by

V0(x, 0
±) =







±b′±(xs) − n− 1

6 ᾱ on the blade,

s′(xs) ± b′±(xs) − n− 1

6 ᾱ for x in a wake.
(4.45)

The boundary conditions stated for V0 are for the case of flat blades. Thick-

ness or camber could be introduced to the blades with the same analysis

holding under the constraint that the aerofoil shape is contained entirely

within region I. This would introduce an f ′
±(xs) term to the boundary con-

dition over the blades.

The free-stream problem is driven by the sublayer displacement effects,

since the boundary conditions (4.45) rely only upon the short xs-scale effects

from the sublayer and the global angle of attack term. The n−1/6 term mul-

tiplying ᾱ in the boundary conditions gives an explanation for the decrease

in the Y -shift on passing more blades. As n increases, the effect of the global

angle of attack decreases like n−1/6 and so the wake-shape and Y -shift must

decrease in the same manner. Thus far downstream, the dominant driving

force will be the displacements caused by the geometry in the sublayer region.

To illustrate how a solution can be found, results will be presented when the
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global angle of attack term is significant in the boundary conditions and it

is possible to compare the predictions of the many-blade limit with those

arising from the method in the previous chapter.

Solution to the free-stream problem is found using the same method as

before. We seek the holomorphic, complex function W = P0 + iV0 which is

bounded in the far-field. Cauchy’s integral formula is applied to evaluation

points on and away from y = 0, to derive similar integral relations for V0

and P0 and their sums and differences across y = 0. Following the same

arguments as the previous chapter, these integral equations must be solved

subject to the boundary conditions

[V0](x) =







(b′+ + b′−)(xs) on the blade,

(b′+ + b′−)(xs) in the wake.
(4.46)

〈V0〉(x) =







(b′+ − b′−)(xs) − 2n−1/6ᾱ on the blade,

2s′(xs) + (b′+ − b′−)(xs) − 2n−1/6ᾱ in the wake,
(4.47)

[P0](x) = 0 in wakes and at trailing edges, (4.48)

where, as in the previous chapter, the 〈〉 and [] parentheses represent the

sum and difference of the boundary values of V0 and P0 respectively. As in

the previous chapter, the key quantity is [P0] across the blades. The integral

equation connecting 〈V0〉 and [P0] is

〈V0〉(x0) = −1

π

∞
∑

i=−∞

∫ bi

ai

[P0](x)

x− x0
dx, (4.49)

after using (4.48) in the wakes. This equation can once be inverted using

Muskhelishvili (1946), to obtain

[P0](x0) =
S− 1

2 (x0)

π

∞
∑

i=−∞

∫ bi

ai

S
1

2 (x)〈V0〉(x)
x− x0

dx. (4.50)

In the many-blade limit, S is effectively evaluated over an infinite array of

blades in either direction, so that

S(x) =

∞
∏

j=−∞









x− aj
x− bj









. (4.51)

The new periodicity requirement allows simplification through the exchange

of the order of summation and integration. The substitution x = xs + jL is
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made, with the leading and trailing edges given by aj = jL and bj = te + jL

respectively and xs running over the period L = aj+1 − aj . This transforms

(4.50), with the periodic boundary conditions (when n is large) to

[P0](x0) =
Ŝ− 1

2 (x0)

π

∫ te

0

∞
∑

i=−∞

Ŝ
1

2 (xs)〈V0〉(xs)
xs + iL− x0

dxs, (4.52)

where Ŝ is given by

Ŝ(x) =
∞
∏

j=−∞









x+ jL

x+ jL− te









. (4.53)

This equation gives [P0] for a point x0 on the blade. A similar method can

be carried out to find the velocity sums across the wake. By using the same

substitution for x and changing the order of summation and integration leads

to the integral equation

〈V0〉(x0) = −1

π

∫ te

0

{ ∞
∑

j=−∞

[P0](xs)

xs + jL− x0

}

dxs, (4.54)

for the velocity sums across the wake. With 〈V0〉 known everywhere, the

wake-shape and hence Y -shift can be calculated using (4.47).

4.3 Numerical Solution

To determine the many-blade limit on a particular blade n downstream,

we solve the coupled sublayer and free-stream problems using an iterative

method. Region I requires the Y -shift through the wake-shape and the

free-stream relies on the pressure difference over the blade caused by the

displacements of the sublayer.

The sublayer problem is very similar to that in the previous chapter.

We discretise the boundary layer equations using the same finite-difference

method as before, with the only change being the matching condition as

Ŷ → ∞ to satisfy (4.27). The first starting condition for the sublayer is

given by a shear flow and an initial guess for the Y -shift on the nth blade

of zero is made. The boundary layer equations are solved by performing a

streamwise sweep from xs = 0 to xs = L. At xs = L, a check on periodicity

is made by comparing the absolute error of successive iterates of û0 and v̂0 at
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x = L. Convergence is achieved if the absolute error at each Yj for successive

sublayer sweeps is less than 10−3. If convergence is not achieved on the

current sweep, the Y -shifted profiles of û0 and v̂0 are set as new starting

conditions, followed by resweeping until convergence is achieved. Depending

on the value of ᾱ, 10 − 20 sweeps were needed to gain convergence in the

Y -shift.

Once the sublayer solution is found, we turn to the free-stream problem

to find the wake-shape s(x). The problems in evaluating (4.52) are much the

same as before, with a Cauchy-type singularity at x0 = xs when j = 0. To

proceed, the j = 0 component in Ŝ is removed, followed by pairing the jth

and −jth terms

Ŝ(x) =









x

x− te









∞
∏

j=1

x2 − j2L2

(x− te)2 − j2L2
, (4.55)

=









x

x− te









S̄(x). (4.56)

The substitutions xs = tesin
2θ and x0 = tesin

2φ are made to calculate [P0]

across the blades, which transforms the integral equation to

[P0](tesin
2φ) =

−2Ŝ(tesin
2φ)−

1

2 te
π

∫ π
2

0

∞
∑

i=−∞

sin2θ〈V0〉(tesin2θ)S̄
1

2 (tesin
2θ)

tesin
2θ + iL− tesin

2φ
dθ.

(4.57)

To compute [P0] over the blades, all φ points are set as the mid-points of

each pair of θ points. Various truncations of the sum in the integrand were

tested until little change in the solutions for P0 and V0 occurred. Typically, a

truncation of ten blades in each direction is required for accuracy, with tests

against 20 and 100 blades showing very little variation.

The velocity sums across the wakes are computed once the pressure dif-

ferences are known across the blade using a similar method to the above

through (4.54). Finally, the wake-shape and Y -shift are calculated through

s(xs) = s(te) +
1

2

∫ xs

te

{

〈v〉(x′) − (b′+ − b′−)(x′) + 2ᾱn−1/6

}

dx′, (4.58)

by rearranging condition (4.47) across the wakes. Convergence in the Y -

shift is obtained when the absolute error between successive Y -shift iterates
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is less than 10−6. If convergence is not achieved, the Y -shift in region I is

updated, followed by complete recomputation of the sublayer and free-stream

problems. We found that two to six complete cycles were needed until the

Y -shift converged.

4.4 Results

Solutions from the current many-blade case are compared to those arising

from calculations using the method of Chapter 3 in figures 4.3 - 4.6. In

figures 4.3 - 4.5, results for p±(x) and the wake-shape s(x) of the many-blade

limit are compared to those calculated over blade and wake 6 of a 12 blade

array from the previous chapter for ᾱ = 0.1, 1, 4. In figure 4.6, the wake-

shapes of wakes 5, 10, 15 of a 20 blade array for both methods are compared.

4.4.1 Comparisons

Varying degrees of agreement are seen throughout the results. For the com-

parisons of ᾱ = 0.1 in figure 4.3, there is good agreement between the pressure

solutions (except perhaps near the leading edge) and wake-shapes. Given

that this is for blade n = 6 of an N = 12 blade array, this shows that

for small global angles of attack, the many-blade limit can be reached after

passing only a few blades.

When ᾱ = 1 in figure 4.4, some agreement is shown with a slight differ-

ence in the wake shape near xs = 2. However, the pressure solutions follow

a similar trend and show good agreement. For ᾱ = 4 in figure 4.5, although

the wake-shapes are similar there are some areas of noticable difference. For

larger values of ᾱ, we saw in the last chapter that a near Blasius boundary

layer formed beneath the first few blades. This is the case here and so the

many-blade limit is not such a good approximation in this instance. This

varies from previous work, where the many-blade limit is a good approxima-

tion to the flow behaviour after only four or five blades have been passed.

However, investigation of the flow features on the fiftieth blade (for example)

in a 100 blade array would produce much better agreement.

In figure 4.6 the wake-shapes of wakes 5, 10 and 15 in a 20 blade array
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Figure 4.3: Comparisons of (a) p+(xs), (b) p−(xs) and (c) s(xs), the wake-shape
between the solutions for the many-blade analysis of this chapter (solid line) and
the full problem (dashed line) for the sixth blade of a 12 flat blade array. Here,
ᾱ = 0.1.
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Figure 4.4: As figure 4.3 but ᾱ = 1.
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Figure 4.5: As figure 4.3 but ᾱ = 4.
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Figure 4.6: Comparisons between the wake-shapes computed using the many-
blade limit of this chapter (solid line) and those in wakes 5, 10 and 15 in a 20 blade
array using the code from the previous chapter. Here, a flat blade occupies the
region 0 ≤ xs ≤ 1 and ᾱ = 1.
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calculated using the method in the previous chapter are compared to those

arising in the current many-blade limit. We see increasing agreement between

the solutions as n increases downstream, as expected, with an overall decrease

in the Y -shift.

4.5 Summary

In this chapter, we have extended the many-blade limit of Smith & Timoshin

(1996b) to include a global angle of attack. There are two streamwise scales of

importance and the boundary layer is modelled as a double viscous structure

of a bulk-layer and sublayer. The leading order solution in the bulk-layer

is mean Blasius flow over the long scale in x with the full boundary layer

equations holding in the sublayer over the short scale in x. Furthermore,

the flow in the sublayer is periodic. The global angle of attack appears in

the boundary conditions for the free-stream problem, multiplied by an n−1/6

term and suggests that as n→ ∞, the global angle of attack drops out of the

leading order problem. We presented comparisons between the many-blade

limit and the results gained from blade n = 6 of an N = 12 blade array

in the previous chapter. Overall, we found qualitative agreement between

the solutions for each method. Lift is still created within this structure with

a global angle of attack and can be most easily deduced from figure 4.5,

where there is clear evidence that the difference p+(xs) − p−(xs) 6= 0 over

most of the blade. Since lift is given by the integral of the non-zero (in

general) pressure difference over the blade surface, then lift is generated on

each blade downstream. Although some differences in the wake-shapes for

the larger cases of ᾱ are seen, better agreement is observed between the two

methods as n increases. This invokes the question of how many blades are

required, for some value of ᾱ, for the many-blade limit to be reached. One

answer could come from condition (4.47). If 〈V0〉 = O(1), with ᾱ large and

n of moderate size, then the many-blade limit is reached when displacement

effects balance with the global angle of attack. Hence an estimate when the

many-blade limit may be reached is when

n ∼ (2ᾱ)6. (4.59)



Chapter 5

The pressure interactive

many-blade limit

5.1 Introduction

The periodic many-blade limit of the last chapter gave us a detailed picture

of the development of the boundary-layer structure on a particular blade n

buried within what is effectively an infinite array of blades. As yet, we have

not stated whether this many-blade limit holds for all downstream distances.

Thus, the purpose of this chapter is to allow the downstream distance to

become very large, by allowing n→ ∞, until a new interaction occurs.

In the previous chapter, we expanded the streamwise component of the

velocity in the sublayer as

U = n−1/3û0(xs, Ŷ ) + · · · , (5.1)

where Ŷ = O(1) is the normal scale of the sublayer and y = n1/6Ŷ . To match

with the free-stream, the pressure within the sublayer takes the form

P = P∞ +Re−1/2n1/6p̂(xs) + · · · , (5.2)

where P∞ is the ambient free-stream pressure (zero) and xs represents the

short, fast x-scale across each blade-wake period. Notice that for increas-

ing n the streamwise velocity is decreasing in magnitude whilst the pressure

within the sublayer increases. In the boundary-layer momentum equation,

we have that the streamwise advection term UUxs
∼ n−2/3 whilst the pres-

sure gradient dP/dxs ∼ Re−1/2n1/6. In the previous many-blade limit, the

101
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pressure gradient was not present at leading order within the sublayer, but

with increasing n we would expect the balance

U
∂U

∂xs
∼ dP

dxs
, (5.3)

to be achieved when n is large. This occurs when n−2/3 ∼ Re−1/2n1/6, and

by rearrangement we have

n ∼ Re3/5. (5.4)

This means that if n (and hence x) is of O(Re3/5), then the previously re-

dundant leading order pressure gradient term exerts itself at leading order in

the sublayer problem, thus violating the formulation in the previous chapter.

This particular downstream distance was first identified by Smith & Timo-

shin (1996b) towards the end of that particular study, and the system as a

whole was investigated more fully by Bowles & Smith (2000a,b).

Bowles & Smith (2000a) examined symmetric, periodic solutions to the

interactive sublayer problem. Solutions for flat blades are found, as well as

solutions for thicker blades, in some cases producing reversed boundary-layer

flow. The authors devised an interesting short blade analysis, by taking a

blade of length O(ǫ) with ǫ ≪ 1 and a wake of length O(1). A five region

structure for the short blade limit is developed in the simplest case of a

flat blade. The vorticity generated at the blade is assumed to be mostly

contained within a thin sublayer surrounding the blade and a portion of

the wake. The remaining parts of the flow are taken to be inviscid and

globally determined. The flow within the thin sublayer is given by a Blasius-

type flow over the blade and a Goldstein-like flow in the near wake. The

remainder of the flow is driven by this region just described. Following this

short blade limit, an extension is given to include much thicker blades, where

care must be taken due to the blade thickness being greater in magnitude

than the sublayer thickness. Bowles & Smith (2000b) then looked at a general

asymmetry through imposing a local angle of attack and a non-zero thickness.

In this paper, a fully non-symmetric model was developed, which included

the novel feature of a small leading edge region to satisfy the Kutta trailing

edge condition, similar to that seen in Chapter 2. Emphasis is placed in

this study on solving the condensed limit, where the displacement caused
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by the boundary-layer as a whole is constant over the blade and wake. The

authors adapted part of the five tiered short blade limit to include the effects

of non-symmetry. For the special case of short flat blades with a local angle

of attack, they were able to deduce a linear relationship between the lift and

the angle of attack of the blade. In this paper, the authors suggest that a

discussion of the effects of a global angle of attack in the pressure interactive

limit is an important extension.

The previous chapter introduced a many-blade limit similar to the Smith

& Timoshin (1996b) one, and an implication of the velocity expansions that

we established in Chapter 4 is that a pressure-interactive many-blade limit

should also exist, like the studies outlined above. Our aim over Chapters 5,

6 and 7 is to extend the previous studies by Bowles & Smith (2000a,b) to

include a global angle of attack. In this chapter, we will derive the interactive

many-blade limit for the case of a general non-symmetric problem of angled

and thick blades, and find some new results using an alternative approach

to Bowles & Smith (2000b). Then, in Chapters 6 and 7, we will conduct an

investigation into the new interactions present within the many-blade limit

when a global angle of attack is introduced.

5.2 The boundary-layer structure

As in the non-interactive limit, the same two x-scales operate, the first being

the short, fast scale varying across each blade-wake period and the other a

long, slow scale over a much larger streamwise extent. The x dependence

now takes the form

x = xs +Re3/5xl, (5.5)

from the previous many-blade limit with n = O(Re3/5). The flow is periodic

over the short scale xs. The leading edge is taken to lie at xs = 0, with trailing

edge at xs = l within the blade-wake period of length L. The scalings for the

sublayer and bulk-layer in the non-interactive many-blade limit of the last

chapter are given by y = O(Re−1/2n1/6) and y = O(Re−1/2n1/2) respectively.
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xs

xs = 0 xs = L

y = O(Re−2/5)

y = O(Re−1/5)

y = O(1)

U = 1

U = 1

xs = l

Free-stream

Free-stream

Bulk-layer

Bulk-layer

Sublayer

Leading-edge region

Figure 5.1: Boundary-layer structure over one period (0 ≤ xs ≤ L) past a thick,
non-symmetric blade showing the sublayer, bulk-layer and free-stream. Also shown
is a small, leading edge region which is discussed in section 5.2.3.

Hence, the scalings for the sublayer and bulk-layer in the interactive many-

blade limit are given by

y = Re−2/5Ŷ and y = Re−1/5Yb, (5.6)

respectively, with Ŷ and Yb both of O(1). Local non-symmetry, through a

choice of local angle of attack, unequal blade thicknesses or both are taken to

lie entirely within the sublayer. These non-symmetries are to be prescribed

through the functions f±(xs) such that y = Re−2/5f±(xs) gives the blade

geometry. The structure is outlined in figure 5.1, where there is a small

leading edge region included and is discussed later. The functions f± must

be smooth and defined such that f+(0) = f−(0) and f+(l) = f−(l). We begin

our investigation in the bulk-layer.
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5.2.1 The bulk-layer

In the bulk-layer, the normal coordinate is given by Yb = O(1) where y =

Re−1/5Yb. The expansions here take the form

U = u0(xl, Yb) +Re−
1

5u1(xs, Yb) +Re−
2

5u2(xs, Yb) +Re−
3

5u3(xs, Yb) + · · · ,

(5.7)

V = Re−
2

5v1(xs, Yb) +Re−
3

5v2(xs, Yb) +Re−
4

5 v0(xs, Yb) + · · · , (5.8)

P = Re−
2

5p1(xs) +Re−
3

5p2(xs) + · · · , (5.9)

by substituting n = Re3/5 in the expansions from the previous chapter.

We substitute these expansions into the governing Navier-Stokes equations,

which yields, at leading order

u0
∂u1

∂xs
+ v1

∂u0

∂Yb
= 0, (5.10)

∂u1

∂xs
+
∂v1

∂Yb
= 0. (5.11)

This balance matches that of the previous chapter and so has the same

solution, which we state here as

u1 = E±(xs)
∂u0

∂Yb
, (5.12)

v1 = −E ′
±(xs)u0, (5.13)

where, for now, E± are arbitrary functions of integration and are determined

by matching to the sublayer. At first order, we have the balances

u0
∂u2

∂xs
+ u1

∂u1

∂xs
+ v1

∂u1

∂Yb
+ v2

∂u0

∂Yb
= −dp1

dxs
, (5.14)

∂u2

∂xs
+
∂v2

∂Yb
= 0. (5.15)

These differ only slightly from the non-interactive limit, in that the pressure

gradient dp1/dxs appears on the right-hand side. The same method can be

applied as in the previous chapter to find the solutions

v2 = −u0

∫

p′1(xs)

u2
0

dYb + E(xs)E
′(xs)

∂u0

∂Y
+G′(xs)u0, (5.16)

u2 =

∫
{

u0

∫

p′1(xs)

u2
0

dYb

}

dxs +
1

2
E(xs)

2∂
2u0

∂Y 2
−G(xs)

∂u0

∂Y
, (5.17)

where G± are functions that match with the sublayer.
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At next order, we have

u0
∂u0

∂xl
+ u0

∂u3

∂xs
+
∂(u1u2)

∂xs
+ v1

∂u2

∂Yb
+ v2

∂u1

∂Yb
+ v3

∂u0

∂Yb
= −dp2

dxs
+
∂2u0

∂Y 2
b

,

(5.18)

∂u0

∂xl
+
∂u3

∂xs
+
∂v0

∂Yb
= 0. (5.19)

Again, this balance is very similar to the non-interactive balances at the

same order in the previous chapter, with numerous short scale derivatives

appearing with the long scale derivative terms. The pressure gradient term

−dp2/dxs now appears on the right-hand side of (5.18), but offers no more

difficulty. We apply the periodicity requirement over xs, to eliminate all of

the short scale terms in equations (5.18) and (5.19). Defining the short scale

mean value of the normal velocity component, vM , as

vM =

∫ L

0
v0dxs

∫ L

0
dxs

, (5.20)

and integrating (5.18) and (5.19) with respect to xs over the period L, we

have

u0
∂u0

∂xl
+ vM

∂u0

∂Yb
=

∂2u0

∂Y 2
b

, (5.21)

∂u0

∂xl
+
∂vM
∂Yb

= 0, (5.22)

as the governing equations for u0 and v0. These equations are subject to the

boundary conditions

u0 = vM = 0 on Yb = 0±, (5.23)

u0 → 1 as Yb → ±∞. (5.24)

The first condition, (5.23), is found to be required for periodicity, as discussed

by Smith & Timoshin (1996a), whilst the second condition (5.24) is required

to match to the leading order free-stream solution. In the non-interactive

limit, we found that the Blasius solution held throughout the bulk-layer in

a mean-sense and this is the case in the interactive limit also. To complete

the solution in this region, we need to match with the sublayer through the

arbitrary functions of integration E± and G±.
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5.2.2 Interactive sublayer

On the current long streamwise scale of O(Re3/5), the sublayer is of thickness

O(Re−2/5). Thus we introduce Ŷ = O(1) as the normal sublayer coordinate

and y = Re−2/5Ŷ . To match with the bulk-layer region, we expand the

velocities and pressure as

U = Re−
1

5 û(xs, Ŷ ) + · · · , (5.25)

V = Re−
3

5 v̂(xs, Ŷ ) + · · · , (5.26)

P = Re−
2

5 p̂(xs) + · · · , (5.27)

and substitute these into the Navier-Stokes equations to yield the leading

order balances

û
∂û

∂xs
+ v̂

∂û

∂Ŷ
= − dp̂

dxs
+
∂2û

∂Ŷ 2
, (5.28)

∂û

∂xs
+
∂v̂

∂Ŷ
= 0, (5.29)

which are the interactive boundary-layer equations. The boundary conditions

to be satisfied by (5.28) and (5.29) are

û = v̂ = 0 on Ŷ = f±(xs), 0 < xs < l, (5.30)

Continuity in û, v̂ and p̂ in the wake, (5.31)

û→ ±λ±(Ŷ + b±(xs)) as Ŷ → ±∞, (5.32)

p̂+(l) = p̂−(l), (5.33)

L-periodicity in û, v̂, and p̂. (5.34)

Condition (5.30) represents the no-slip and no-penetration conditions on the

blade. Condition (5.32) is the matching condition to the bulk-layer and

is deduced by considering the normal derivative ∂/∂y as Ŷ → ∞ in the

sublayer. The functions b± appearing in the boundary condition are the

unknown displacement functions associated with the presence of the sublayer.

The functions b± may be determined by a pressure-displacement relation

resulting from the free-stream solution later. The condition (5.33) is the

Kutta trailing edge condition, requiring equal pressures just above and just
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below the blade at the trailing edge and now appears directly in the sublayer

problem.

As a final task, we need to complete the bulk-layer solution by finding the

functions E± in the leading order solution v1. Using (5.32), differentiation

with respect to xs and the continuity equation, followed by integration with

respect to Ŷ , matching requires that v̂ → v1 in the bulk-layer and so

∓λ±b′±Ŷ ∼ λ±E
′
±Yb. (5.35)

Hence, the bulk-layer functions E± ≡ b±, the displacement gradient of the

sublayer.

5.2.3 Leading-edge discontinuity

For a general non-symmetric blade geometry, the Kutta trailing edge condi-

tion (5.33) is not satisfied. Given the expectation of primarily forward flow

in the sublayer region, the pressure gradient is favourable meaning that the

pressure will fall over the blade from the leading edge to the trailing edge. In

the non-symmetric case, the pressures above and below the blade will be un-

equal in general, due to differing blade shapes, and so will violate the Kutta

trailing edge condition. The resolution of this problem is that there is a flow

discontinuity located in a small region at the leading edge. The discontinuity

allows the velocity and pressure to jump from the oncoming wake values to

new values above and below the blade just downstream of the leading edge.

Similar behaviour was observed in Chapter 2.

To determine the flow behaviour in the leading edge region, we follow

the same process as in Chapter 2. The sublayer is of thickness O(Re−2/5)

and the velocity û = O(Re−1/5). To determine the x-scale of the region,

we consider the limit xs → 0 in the Navier-Stokes equations with the above

scales to find that the normal inertial and pressure gradient terms balance in a

distinguished limit when xs = O(Re−2/5). Thus, by continuity v̂ = O(Re−1/5)

in the local leading edge region. We introduce the leading edge streamwise

coordinate X = O(1) such that xs = Re−2/5X and expand the velocities and
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pressure in this region as

U = Re−
1

5 ū(X, Ŷ ) + · · · , (5.36)

V = Re−
1

5 v̄(X, Ŷ ) + · · · , (5.37)

P = Re−
2

5 p̄(X, Ŷ ) + · · · , (5.38)

which when substituted into the Navier-Stokes equations yield the invis-

cid Euler equations at leading order throughout the region −∞ < X <

∞,−∞ < Ŷ < ∞. We discount bluff leading edge geometries, so that lo-

cally the leading edge appears as a semi-infinite flat plate.

The governing equations for the full leading order problem of the leading

edge region match those of Chapter 2. There, the full equations are given by

(2.17) and (2.18), which are repeated here for clarity

∇2ψ = −ω(ψ), (5.39)

p̄+
1

2
(ψ2

X + ψ2
Ŷ
) = B(ψ), (5.40)

B′(ψ) = −ω(ψ). (5.41)

In the above equations, ψ is the streamfunction (ū = ψŶ , v̄ = −ψX), ω the

vorticity and B the pressure head. In this chapter, we concentrate on the

flow in the limit X → ∞, to provide starting conditions for the sublayer

problem such that the Kutta trailing edge condition is satisfied. In keeping

with Bowles & Smith (2000a) and to simplify the problem in the leading edge

region, the wake length in the sublayer lW is taken so that on comparison

to lB, the length of the blade, lW ≫ lB. This means that the oncoming

velocities in the leading edge region are such that ū ≫ v̄, as seen in Chapter

2.

With the assumption that ū≫ v̄ in the oncoming wake profile, we expect

the flow to enter and exit the region as |X| → ∞ unidirectionally and given

the inviscid nature of the leading order problem, the incoming vorticity is

conserved on each streamline through the region. Thus, we have the Bernoulli

and vorticity requirements across the leading edge

p̄(0−) +
1

2
ū(0−)2 = p̄+(0+) +

1

2
ū2

+(0+) = p̄−(0+) +
1

2
ū2
−(0+), (5.42)

∂ū

∂Ŷ
is conserved along every streamline, (5.43)
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in the sublayer problem. Here, p̄(0−) is the oncoming pressure in the wake,

with velocity profile ū(0−). The exiting pressures and velocity profiles from

the leading edge region above and beneath the blade are given by p̄±(0+) and

ū±(0+) respectively. Note, we have neglected v̄ in the formulation due to our

assumption ū ≫ v̄. The relations (5.42) and (5.43) are enough to give the

velocity as X → ∞ in terms of a known incoming flow profile and pressure

jumps. We discuss this further in the numerical methods section 5.3 later.

The outgoing ū± functions are inviscid approximations to the actual so-

lution on passing the leading edge. With the onset of the no-slip condition

at the leading edge, there would be a Blasius-like boundary-layer in this re-

gion, of normal scale y = O(Re−3/5). The thickness of the boundary-layer

is asymptotically smaller than the thickness of the leading edge region and

thus perturbations to the leading order inviscid problem are small and not

considered further.

5.2.4 Inviscid free-stream region

The free-stream, U = 1, is perturbed by the presence of the boundary-layer,

so that the expansions take on the form

U = 1 +Re−
2

5u(xs, y) + · · · , (5.44)

V = 0 +Re−
2

5v(xs, y) + · · · , (5.45)

P = Re−
2

5p(xs, y) + · · · , (5.46)

with the scales arising on matching with the bulk-layer. Substitution into

the Navier-Stokes equations yields the Cauchy-Riemann equations for p and

v holding at leading order in the free-stream. We notice that this is the same

as in the previous two chapters, but now driven by the interactive sublayer

flow above. To solve the Cauchy-Riemann equations, we use exactly the same

method as presented in the non-interactive many-blade limit of the last chap-

ter. The bounded, analytic complex function w(x+ iy) = p(x, y)+ iv(x, y) is
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sought using Cauchy’s integral formula. This gives the same integral equa-

tions as before, for p and v, for a point away from y = 0

p(x0, y0) =
1

2π

∫ ∞

−∞

y0[p](xs) + (xs − x0)[v](xs)

(xs − x0)2 + y2
0

dxs, (5.47)

v(x0, y0) =
1

2π

∫ ∞

−∞

y0[v](xs) − (xs − x0)[p](xs)

(xs − x0)2 + y2
0

dxs, (5.48)

where

[p](xs) = p+(xs) − p−(xs), (5.49)

[v](xs) = v+(xs) − v−(xs), (5.50)

denote the difference between the values of p and v across the boundary-layer.

Matching the normal velocities in the bulk-layer and free-stream yields v± as

v±(xs) = ∓λ±b′±(xs) for 0 ≤ xs ≤ L. (5.51)

By subtracting the above equations for v+ and v− and applying pressure

continuity in the wake and the Kutta condition, equations (5.47) and (5.48)

are subject to the conditions

[v](xs) = −λ±b′±(xs) for 0 ≤ xs ≤ L, (5.52)

[p](xs) = 0 for xs = l and in the wake. (5.53)

The differences [v] are unknown in advance due to the unknown sublayer

displacements and [p] is unknown over the blade. Cauchy’s integral formula

is now used again, this time for w(x+ i0) = p+(xs)+ iv+(xs) and w(x− i0) =

p−(xs)+ iv−(xs). We find that the pressures p± and the normal velocities v±

are related by

p+(x0) = −1

π

∫ ∞

−∞

v+(xs)

xs − x0
dxs, (5.54)

p−(x0) = −1

π

∫ ∞

−∞

v−(xs)

xs − x0
dxs, (5.55)

v+(x0) =
1

π

∫ ∞

−∞

p+(xs)

xs − x0
dxs, (5.56)

v−(x0) =
1

π

∫ ∞

−∞

p−(xs)

xs − x0
dxs. (5.57)

Next, we apply the periodicity argument to (5.54) only, as the same analysis

can be carried out for all the other equations. The integral in (5.54) is written
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in three parts as follows

∫ ∞

−∞

v+(xs)

xs − x0

dxs =

∫ 0

−∞

v+(xs)

xs − x0

dxs +

∫ L

0

v+(xs)

xs − x0

dxs +

∫ ∞

L

v+(xs)

xs − x0

dxs.

(5.58)

Since the period in xs is from 0 to L, we decompose the first and third

integrals further into an integral across the kth period

∫ ∞

−∞

v+(xs)

xs − x0

dxs =
−1
∑

k=−∞

∫ (k+1)L

kL

v+(xs)

xs − x0

dxs +

∫ L

0

v+(xs)

xs − x0

dxs

+

∞
∑

k=1

∫ (k+1)L

kL

v+(xs)

xs − x0
dxs,

(5.59)

and by defining xs = x′s + kL, we have

∫ ∞

−∞

v+(xs)

xs − x0
dxs =

−1
∑

k=−∞

∫ L

0

v+(x′s)

x′s + kL− x0
dx′s +

∫ L

0

v+(x′s)

x′s − x0
dx′s

+

∞
∑

k=1

∫ L

0

v+(x′s)

x′s + kL− x0
dx′s.

(5.60)

Next, the −kth and kth terms in each of the two sums are paired-off,

∫ ∞

−∞

v+(xs)

xs − x0

dxs =
∞
∑

k=1

∫ L

0

v+(x′s)

x′s − kL− x0

+
v+(x′s)

x′s + kL− x0

dx′s

+

∫ L

0

v+(x′s)

x′s − x0
dx′s, (5.61)

and on simplification, we have

∫ ∞

−∞

v+(xs)

xs − x0

dxs =

∫ L

0

v+(x′s)

{

1

x′s − x0

+
∞
∑

k=1

2(x′s − x0)

(x′s − x0)2 + (kL)2

}

dx′s.

(5.62)

Gradshteyn & Ryzhik (1988) give the summation in the bracketted term in

the integrand as

1

x′s − x0
+

∞
∑

k=1

2(x′s − x0)

(x′s − x0)2 + (kL)2
=
π

L
cot

{

π(x′s − x0)

L

}

, (5.63)

and thus the periodic pressure-displacement law is given by

p+(x0) =
λ+

L

∫ L

0

b′+(xs) cot

{

π(xs − x0)

L

}

dxs, (5.64)
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upon substituting the condition (5.51) for v+. In (5.64) the prime on the xs

term has been dropped for convenience. A similar expression was derived

in Bowles & Smith (2000a) and also Tsao et al. (1997), where stability and

interaction of thin liquid layers on an airfoil were analysed. Applying the

periodicity arguments to the equations (5.55) - (5.57) gives the pressure-

displacement laws as

p±(x0) = ±λ±
L

∫ L

0

b′±(xs) cot

{

π(xs − x0)

L

}

dxs, (5.65)

b′±(x0) = ∓ 1

λ±L

∫ L

0

p±(xs) cot

{

π(xs − x0)

L

}

dxs. (5.66)

5.2.5 Comparisons with the non-interactive limit

Now we have completed the formulation of the pressure interactive many-

blade limit, it is worth briefly drawing a few comparisons with the previous

many-blade limit of Chapter 4.

The bulk-layer solution is much the same as the previous non-interactive

limit. We found identical leading order balances leaving the leading order

term for V and first order term for U unchanged. The first-order balances

differed to the non-interactive limit through the appearance of a pressure

gradient term on the right-hand side of the momentum equation in the bulk-

layer. This adds a slight complexity to the solution of the equations, but

leaves the behaviour essentially unchanged. Another pressure gradient term

appeared in the equations governing the leading order behaviour for U . We

integrated the equations and applied the periodicity argument over xs, which

left the mean-Blasius solution governing the leading order behaviour for U

in the bulk-layer, as previously seen in the non-interactive limit.

The sublayer problem is now governed by the pressure interactive boundary-

layer equations to leading order. Since the pressure gradient appears at lead-

ing order within the sublayer equations, the Kutta condition can now be

applied directly whereas in the non-interactive limit, this condition was en-

forced in the free-stream equations. For the Kutta condition to be satisfied,

a small leading edge region arises, that allows the pressure and velocity to

jump. This is not seen in the non-interactive limit. We can also enforce pres-

sure continuity in the wake through the regularity conditions (5.31) in the
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sublayer. As with the Kutta condition, pressure continuity in the wake was

applied via the free-stream perturbation in the non-interactive limit. There

is a different boundary condition to contend with in this interactive case, as

the unknown displacement functions b± are unknown in the matching con-

dition for û as Ŷ → ∞. These displacement functions are related to the

unknown pressure through the pressure-displacement laws (5.65) and (5.66)

gained from the free-stream.

The governing equations for the perturbations to the free-stream remain

unchanged from the non-interactive limit, but development of the integral

equations resulting from using Cauchy’s integral formula is undertaken in

a slightly different way. The integral equations are used to determine the

unknown displacement functions b± caused by the sublayer and must be

solved in tandem with the sublayer in determining the matching condition

(5.32). Thus we see that the boundary-layer and the free-stream remain

coupled through the unknown pressure and sublayer displacements.

5.2.6 The condensed limit

To simplify our analysis in finding solutions to the interactive sublayer prob-

lem, we will solve a condensed problem. We will explore the condensed limit

as a result of finding the relative sizes of each of Ŷ , û, v̂, p̂ and b± required

to maintain the interactive boundary-layer equations (5.28) and (5.29) and

conditions (5.30) - (5.34) over all scales in xs. Let xs = O(L), where L rep-

resents the streamwise extent of a typical blade-wake period. We look for

balances of

û
∂û

∂xs
∼ ∂2û

∂Ŷ 2
∼ dp̂

dxs
, (5.67)

for the given scale of xs. Within the sublayer, û is estimated to be O(Ŷ ) due

to the predominantly shear like flow behaviour in the sublayer and boundary

condition (5.32). The balance of streamwise advection and diffusion terms,

ûûxs
∼ ûŶ Ŷ , gives us that Ŷ = O(L1/3) and hence û = O(L1/3). The

other balance we seek is ûûxs
∼ p̂′(xs), yielding the result p̂ = O(L2/3).

Hence, by the continuity equation v̂ = O(L−1/3) and so b± = O(L1/3) from

the boundary condition (5.32). However, in the pressure-displacement laws
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(5.65) the right-hand side scales as O(L−2/3) whilst the left-hand side scales

like O(L2/3). Hence in the limit L→ 0, a mismatch occurs in this law unless

b′± = 0. The case where b′± = 0 is called the condensed limit.

Physically, the condensed limit represents the case where a constant dis-

placement is caused to the free-stream by the sublayer. We now have that

b±(xs) = ±c± where c± are unknown constants representing the displacement

caused by the sublayer over the period L. The condensed flow case gives a

simplification to our problem, in that there is no xs-dependence in our far-

field matching condition and furthermore is in keeping with previous works

by Bowles & Smith (2000a,b), especially in the latter, where no attempt is

made to numerically resolve the full problem.

Bowles & Smith (2000a) use the pressure-displacement law in one sublayer

calculation and compare their results with the condensed flow solution, for

the same blade geometry, and find that the condensed case gives a good

representation of the overall flow features. In particular, we note figures 2 and

3 in that paper, where there seems to be good qualitative agreement between

the streamwise velocities, pressure and skin friction. Typical numerical values

of the calculated displacement functions there are of O(10−2), giving only a

small difference to the far-field matching condition (5.32).

Condensed flow problems also appear in internal boundary-layer flows,

such as the boundary-layer flow between two flat, parallel plates, encounter-

ing a bump (see Smith (1982) for a comprehensive review). Other articles

where the condensed limit is studied, are Smith et al. (1981) in relation to

boundary-layer flow past two-dimensional obstacles, and Smith (1983) where

trailing edge separation is considered.

5.3 Numerical formulation

The full problem to be solved is given by (5.28) - (5.29) with the boundary

conditions (5.30) - (5.34), a Y -shift at xs = L and the pressure-displacement

laws (5.65) - (5.66). As just mentioned, we solve the condensed flow problem,

so that b±(xs) = ±c±, where c± are unknown constants. A Prandtl shift is

applied to simplify the blade geometry defined by û = u∗, v̂ = v∗ − u∗f
′(xs),



116 The pressure interactive many-blade limit

p̂ = p∗ and Ŷ = Y∗ + f(xs). Substitution of the Prandtl shift into the

interactive boundary-layer equations leaves them unchanged at leading order

u
∂u

∂x
+ v

∂u

∂Y
= −dp

dx
+
∂2u

∂Y 2
, (5.68)

∂u

∂x
+
∂v

∂Y
= 0, (5.69)

where the ∗ subscripts have been dropped, xs replaced by x and the shears

λ± = 1 are taken for convenience. The boundary conditions are given by

u = v = 0 on Y = 0, 0 < xs < l, (5.70)

∂u

∂Y
= v = 0, p+(x) = p−(x) on Y = 0, l < xs < L, (5.71)

u→ ±(Y + f±(x)) + c± as Y → ±∞, (5.72)

L-periodicity in u, v, and p. (5.73)

Y -shift at x = L. (5.74)

The functions f± are known on the blade, since these describe the blade geom-

etry. Although we have f+ = f− in the wake, the functions are unknown and

must be determined as part of the solution (see later). The condition (5.74)

appears due to the leading edge discontinuity to allow the Kutta trailing

edge condition to be satisfied. The numerical method developed is similar to

the box scheme used by Keller (1978) and Cebeci et al. (1979) in calculating

separating boundary-layer flows.

5.3.1 Finite-difference discretisation

We discretise the equations on a uniform grid, such that each x- and y-

station is described by xi = iδx and Yj = jδY , where δx and δY represent the

uniform grid spacings in the x and Y directions respectively and i = 0, . . . , N ,

j = −M, . . . ,M . The values of u, v and p at (xi, Yj) are given by uji , v
j
i

and pi respectively. The governing equations are discretised using centred

differences in Y and backward differences in x as

uji

(

uji − uji−1

δx

)

+ vji

(

uj+1
i − uj−1

i

2δY

)

= −pi − pi−1

δx
+
uj+1
i − 2uji + uj−1

i

(δY )2
,

(5.75)

uji − uji−1

δx
+
vj+1
i − vj−1

i

2δY
= 0, (5.76)
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with forward flow assumed for now. Since the discretised equations are linked

only to the previous station through x derivatives, we solve the equations

using a streamwise sweep in the positive x direction by Newton linearisation

and iteration. The Newton iterates are defined as

un+1
j = unj + ∆uj, (5.77)

vn+1
j = vnj + ∆vj , (5.78)

pn+1
i = pni + ∆p, (5.79)

where n now represents the nth Newton iterate at a particular station xi.

5.3.2 Solution over the blade

For each xi on the blade we solve two problems, one for Yj > 0 and the

other for Yj < 0. In each case the discretised equations take the same form

with similar boundary conditions but simply reflected about Y = 0 and so

the solution method is described only for the case Yj ≥ 0. We substitute

the Newton iterates into (5.75) and (5.76) and apply Newton linearisation,

where we drop quadratic or higher terms in ∆uj and ∆vj . The momentum

and continuity equations yield the following block tridiagonal system



































B0 C0

A1 B1 C1

. . .
. . .

. . .

Aj Bj Cj

. . .
. . .

. . .

AM−1 BM−1 CM−1

AM BM





































































∆0

∆1

...

∆j

...

∆M−1

∆M



































= Rj −
∆p

δx
Ej,

(5.80)

where ∆j = (∆uj,∆vj)
T , Aj,Bj and Cj are 2 × 2 matrices and Rj and Ej

are 2× 1 column vectors. For 1 ≤ j ≤ M − 1, these matrices and vectors are
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given by

Aj =





−vn
j

2δY
− 1

(δY )2
0

0 − 1
2δY



 , (5.81)

Bj =





2un
j −u

j
i−1

δx
+ 2

(δY )2
un

j+1
−un

j−1

2δY

1
δx

0



 , (5.82)

Cj =





vn
j

2δY
− 1

(δY )2
0

0 1
2δY



 , (5.83)

Rj =







unj

(

un
j −u

j
i−1

δx

)

+ vnj

(

un
j−1

−un
j+1

2δY

)

+ pi−1−pn

δx
+

un
j+1

−2un
j +un

j−1

(δY )2

uj
i−1

−un
j

δx
+

vn
j−1

−vn
j+1

2δY






,

(5.84)

Ej =





1

0



 , (5.85)

with the 0th block matrices given by

B0 =





1 0

0 1



 ,C0 =





0 0

0 0



 ,

R0 =





−un0
−vn0



 ,E0 =





0

0



 , (5.86)

representing no-slip and no-normal flow conditions on the blade. To satisfy

the matching conditions as Y → ∞, (5.72) is differentiated with respect

to Y and is discretised using a first-order backward difference in Y . The

other condition applied is a first-order accurate in Y version of the continuity

equation. The linear system is completed by the block matrices

AM =





−1 0

0 −1
δY



 ,BM =





1 0

1
δx

1
δY



 ,

RM =





δY + unM−1 − unM

uMi−1 − unM + vM−1 − vM



 ,EM =





0

0



 . (5.87)

The conditions as Y → ∞ above are applied at some YM with M taken

suitably large to fully capture the sublayer flow. On building the 2× 2 block

matrix system, it is seen that we have a pentadiagonal system for the values

(∆uj,∆vj) for all j at the current x-station. The pentadiagonal system itself



5.3 Numerical formulation 119

gives 2M + 2 equations for 2M + 3 unknowns, the extra unknown being ∆p.

To solve the linear system we employ the LAPACK subroutine dgbsv, which

solves a general banded linear system. The subroutine is able to solve the

system with two (or more) right-hand sides, and works on LU decomposition

of the banded matrix. We solve the system for each of Rj and Ej, with ∆p

arbitrary. After gaining the solutions of the linear system, we need to satisfy

the final condition on u, namely

u→ Y + c+ + f+(x) as Y → ∞. (5.88)

We use this equation to determine ∆p. At the M th Y -station, we impose

that

unM + ∆uM = YM + c+ + f+(x), (5.89)

and from the solution of the linear system, we have

∆uM = R∗
M − ∆p

δx
E∗
M , (5.90)

where R∗
M and E∗

M are the first components of the solution vectors to each

right-hand side from the banded solver subroutine at YM . We substitute for

∆uM in (5.89) to yield the final equation to determine ∆p

∆p =
δx

E∗
M

(unM +R∗
M − (YM + c+ + f+(xi))) . (5.91)

Once ∆p is determined, we may calculate all the remaining ∆uj and ∆vj

terms and hence the (n + 1)th iterates.

To employ the Newton iteration technique, we require the solution from

the previous and current x-stations. Initially, we guess that the solution at

the current x-station is exactly that at the previous x-station and this forms

our first iterate. Now, we can numerically formulate the linear system for a

given c+ and f+(xi) and solve using the LAPACK subroutine. After gaining

the two solution vectors R∗
j and E∗

j , ∆p is determined so that u satisfies the

matching condition as Y → ∞. This method is repeated at each x-station,

by updating the nth iterates for u, v and p and subsequent recomputation of

the linear system until

ǫ = max{| ∆uj |, | ∆vj |, | ∆p |: 0 ≤ j ≤M} < 10−6. (5.92)
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Once this is achieved, the solution is found at the current x-station and we

may proceed to the next station downstream. Typically, in all our calcula-

tions we found that only four or five iterations were needed before convergence

was achieved.

5.3.3 Solution in the wake

Similar to the solution over the blade, we solve a problem above and below

Y = 0. In the wake, f+ = f− in the wake and must be determined as part of

the solution. Let f+ = f− = f in the wake.

The Newton iterates are substituted into the boundary-layer equations

to form the same linear system (5.85), with the same conditions applied at

YM . However, another 2 × 2 matrix, D0, is included in the first row of the

new linear system to maintain second order accuracy in Y close to Y = 0.

The matrix D0 arises on applying a three-point forward difference formula

to the no-shear condition uY = 0 at Y = 0 in the wake. The final conditions

required to complete the linear system are

B0 =





−3 0

0 1



 , C0 =





4 0

0 0



 , D0 =





−1 0

0 0



 ,

R0 =





3un0 − 4un1 + un2

−vn0



 , E0 =





0

0



 . (5.93)

For a given xi in the wake, the solution proceeds as follows. We solve the

problems for Y > 0 and Y < 0 in tandem. Initially, a value for f(xi) is

guessed (typically f(xi−1)) and this then allows us to build a linear system

for Y > 0 and Y < 0. Both systems are solved, for the given f(xi), using

the Newton iteration method, until the same convergence tolerance ǫ is met

between all the small changes ∆uj,∆vj and ∆p.

To determine f(xi), we enforce the regularity condition that u must be

continuous across Y = 0, to within a specific tolerance. If u is not deemed

continuous, the guess at f(xi) is updated using the secant method, followed

by repeating the procedure described above until the velocity satisfies the

convergence tolerance. For Y > 0 and Y < 0, we denote the velocity at

Y = 0 by u+ and u− respectively. The velocity is deemed continuous when
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ǫ2 = |u+ − u−| < 10−10. When this tolerance criterion is satisfied, pressure

continuity in the wake is satisfied. The solution is then found for the current

xi and we may step forward to xi+1.

The number of Newton iterations needed for convergence in the wake was

typically four or five, except close to the trailing edge, due to the discontin-

uous nature of the pressure gradient. There, up to 12 iterations were needed

for the most extreme cases of non-symmetry. A further four or five iterations

of the value of f(xi) were needed to obtain a continuous velocity.

The solution for each xi on the blade and in the wake was trialled for

values of ǫ = 10−6, 10−8 and 10−10, with very little difference between the

solutions. In the final code, ǫ = 10−6 was taken, since fewer Newton iterations

were needed and this sped up the calculations slightly. The tolerance ǫ2 =

10−10 was kept very small for continuous velocities in the wake to obtain

accurate solutions.

5.3.4 The leading edge solution

The leading edge solution has the vital task of providing the correct leading

edge onset conditions such that the Kutta trailing edge condition will be

satisfied. Recall the equations (5.42) and (5.43) governing the flow behaviour

just before and after the leading edge region

p̄(0−) +
1

2
ū(0−)2 = p̄+(0+) +

1

2
ū2

+(0+) = p̄−(0+) +
1

2
ū2
−(0+), (5.94)

∂ū

∂Ȳ
is conserved along every streamline. (5.95)

The second condition amounts to there being at most a constant shift Ys in

the position of all the oncoming streamlines as the leading edge is passed

over. The unknown Ys gives us the streamline that is deflected vertically

to represent the blade surface in the leading edge region by determining the

correct fluxes for Ȳ > 0 and Ȳ < 0. With the oncoming velocity profile to

the leading edge region, we guess the value of Ys needed to satisfy the Kutta

trailing edge condition, and hence shift all the incoming flow profile by the

amount Ys using cubic splines. After applying the shift, the conditions as

Ȳ → ±∞ (given by (5.72), the sublayer matching condition) on ū+ and ū−



122 The pressure interactive many-blade limit

are not satisfied in general. We apply the far-field condition

ū±(Ȳ±M) = ±Ȳ±M + c± (5.96)

together with (5.94) to deduce the pressure jumps needed downstream for

the far-field condition as Ȳ → ∞ to be satisfied. Once the pressure jumps

are determined, we can then adjust the now known ū±(0+) profiles to ensure

that both the Bernoulli relation (5.94) and conservation of vorticity (5.95)

are satisfied. Hence, the starting conditions required for the blade sweep in

the sublayer region are found.

5.3.5 The streamwise sweep

For the first sweep, the starting condition

u = |Y | + c±, v = 0, (5.97)

is constructed for the sublayer flow with p+(0) = p−(0) = 0 and furthermore,

the values of the constant displacements are set as c± = 0 and Ys = 0.

The solution over the blade is found by marching downstream to the trailing

edge, using the method at each xi described above. At x = l, a test is

made to see if the Kutta condition is met to within a specified tolerance

ǫ3 = |p+(l) = p−(l)| < 10−10. If this is not the case, the Ys value is adjusted

using the secant method followed by returning to the leading edge, updating

the starting conditions and resweeping to the trailing edge. This process

continues until the tolerance criterion ǫ3 is met and usually requires less

than ten iterations. A sweep through the wake then follows, finding f(xi)

and the pressure p(xi) until we arrive at x = L. Here we record the velocity

profiles, pressure and pressure gradients, and a test is made to see if the end

velocities and pressure gradient from the current sweep are the same as those

from the previous sweep to within a relative error of 1%. If convergence is not

met, we use the end velocities and pressure from the current sweep to form

new starting conditions for the leading edge region, followed by complete

recomputation. This method is repeated until we gain convergence in the

velocities and pressure gradient. For a suitable initial guess of c+, we needed

only six or seven iterations to achieve periodicity in the velocities and pressure

gradient.
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Once the velocities and pressure gradient are periodic, we test whether the

pressure is periodic. We calculate the absolute error between the recorded end

pressures from successive sublayer sweeps as our criterion for convergence.

To gain pressure periodicity, the values of c± are adjusted using the secant

method to obtain convergence to within ǫ4 < 10−4, with this final iteration

requiring eight to ten cycles. This leaves only one unknown, c−, the choice

of which is discussed in the results presented later. Once the pressure is

periodic, the solution is found.

We took the normal scale to be −20 ≤ Y ≤ 20 in most of our com-

putations, except for very large blade thicknesses where the normal scale

−40 ≤ Y ≤ 40 was required to fully capture the sublayer behaviour. The

grid spacings δx = 0.01 and δY = 0.05 were chosen with checks carried

out on the smaller grid size δx = 0.005 and δY = 0.01, giving results with

extremely close agreement. As we have seen in previous chapters, the discre-

tised equations are second-order accurate in Y but only first-order accurate

in x. The same double stepping technique (as used in previous chapters) was

used to gain second-order accuracy in x.

5.3.6 Flow reversal

The above procedure solves the sublayer problem in cases of forward flow.

With the pressure gradient now appearing in the sublayer momentum equa-

tion, in contrast to Chapters 3 and 4, flow reversal may occur if the blade

thickness or shape is large enough to provoke a significant adverse pressure

gradient. In the numerical scheme, flow reversal causes a numerical instabil-

ity in the solutions due to the uux term in the momentum equation. This

term becomes positive when flow reversal occurs. To combat this problem,

several approaches were tested. Firstly, the Reyhner & Flugge-Lotz (1968)

approximation was adopted, whereby whenever uj is negative for any j, we

simply drop the uux term from the momentum equations for that particular

j. This approximation (sometimes called a FLARE switch) has been widely

used in calculating separating flow, for example, in Keller (1978) and Cebeci

et al. (1979). However, as pointed out by Smith (1983), dropping the uux
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term means that a slightly different problem is solved and so in this chap-

ter, windward differencing is adopted whenever uj became negative. This

involves changing the discretised version of the uux term to

uux = uji

(

uji+1 − uji
δx

)

.

The uji+1 term used comes from the previous sublayer sweep. Ordinarily,

windward differencing would require multiple sweeping in the separated re-

gion. However, due to the mutliple sweeping already present in the numerical

method, to satisfy periodicity, no additional computational burden is added.

Solutions using both the FLARE and upwinding methods were obtained and

compared, each giving very similar results.

5.4 Results

We use the numerical method described above to solve several problems posed

in Bowles & Smith (2000a,b) for both symmetric and non-symmetric blade

configurations. Throughout this section we present calculations of the skin

frictions τ±, defined as

τ± =
∂û

∂Ŷ

∣

∣

∣

∣

Ŷ=0±
, (5.98)

for the upper and lower blade surfaces respectively and the lift, L, as

L = −
∫ l

0

{p+(xs) − p−(xs)}dxs. (5.99)

First, we consider symmetric flow problems to include blade thickness and

a comparison of the FLARE and upwinding schemes in the advent of flow

reversal. Then we discuss non-symmetric problems of blades with a local

angle of attack and unequal thickness.

5.4.1 Symmetric flow problems

We begin with solutions to some configurations of a symmetric blade. In the

symmetric case, we take L = 25 and the trailing- and leading edge positions

to be L/4 and 3L/4 respectively, so that direct comparisons can be made

with the results presented in Bowles & Smith (2000a). In the symmetric
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Figure 5.2: Velocity, pressure and skin friction solutions for the case of fmax = 0.
In (a), the velocity profiles are taken from positions just before the trailing edge
(solid line), mid-wake (broken line) and just after the leading edge (dotted line).

case, only one constant c+, has to be found as c− = c+. Furthermore, we do

not have to solve the leading edge region as the pressures p̂+ = p̂− everywhere

and so pressure continuity in the wake and the Kutta condition are already

satisfied. We take

f±(xs) =



















±fmax cos(πxs

L
) for 0 ≤ xs ≤ L/4,

0 for L/4 < xs < 3L/4,

±fmax cos(πxs

L
) for 3L/4 ≤ xs ≤ L,

(5.100)

in all the calculations in this subsection, and present solutions for the param-

eter fmax = 0, 0.5, 4.9. We have that f±(xs) = 0 throughout the wake due to

symmetry and this reduces computational time in the wake section.

In figure 5.2 we take fmax = 0 and consider the case of a flat blade. The

solutions for û are taken from the x-stations just before the trailing edge,

mid-wake and just after the leading edge. The pressure solution shows a

favourable pressure gradient over the blade surfaces and an adverse pressure

gradient in the wake. These results are compared to figure 3 in Bowles &
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Smith (2000a) and we see good overall agreement. Figure 5.3 has fmax = 0.5.

The streamline plot shows only a very slight deceleration of the flow on the

backward facing slope of the blade. In the pressure solution, a slight adverse

pressure gradient over the last portion of the blade occurs, but no separation

is encountered. By comparing the skin friction to that in figure 5.2, we see

that the skin friction reduces further before the trailing edge.

In figures 5.4 and 5.5, solutions for the streamlines and pressure are pre-

sented for fmax = 4.9 respectively. In figure 5.4, solutions found using the

FLARE approximation and the upwinding method are given to allow com-

parison of each of the methods in the separated region. Separation occurs on

the backward facing slope of the blade in both figures 5.4(a) and (b), with

a strong adverse pressure gradient, before reattaching on the forward facing

slope of the (would-be) next blade in both streamline plots. This forms a

large separation eddy which covers the entire wake. Overall, there is good

agreement between the streamlines and pressures when using the FLARE

approximation and upwinding method, with the slight differences in the sep-

arated region due to the loss of the term uuxs
in the FLARE approximation.

Furthermore, each method gives excellent agreement in the streamlines and

pressure to that given in Bowles & Smith (2000a). The values of c+ needed

to gain periodic solutions in û, v̂ and p̂ in each of the FLARE approximation

and upwinding schemes are −3.37 and −3.36 (to three significant figures)

respectively. From now on, we adopt the upwinding method if separation is

encountered to improve the accuracy of the solution in the separated region.

5.4.2 Non-symmetric flow problems

In Figures (5.6) - (5.11), we take the period L = 6 and the leading and

trailing edges of the blade to lie at xs = 0 and xs = 1 respectively. Over the

blade, thickness and camber effects are prescribed through the functions f±

as

f±(xs) = ±fmax sin2(πxs) − βxs (5.101)

with f = f± to be found in the wake. The effects of local non-symmetry

are produced by adding a local angle of attack and thickness through the
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Figure 5.3: Streamfunction, pressure and skin friction solutions for the case of
fmax = 0.5.
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Figure 5.4: Comparison of the computed streamlines for the case of fmax = 4.9
for (a) the FLARE approximation and (b) the upwinding scheme.
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Figure 5.5: Corresponding pressure solutions for fmax = 4.9 using the upwinding
scheme (solid line) and FLARE approximation (dotted line).

parameters β and fmax, respectively. In all our calculations, we take c− = c+

to close the system. This choice is taken to analyse the effects produced by

the blade geometries to the sublayer alone and was used in some calculations

by Bowles & Smith (2000b). Results are presented for some of the configu-

rations used in Bowles & Smith (2000b). They obtained their results using

a slightly different method. They prescribe the values for c± and the Y -shift

Ys, and instead find a local angle of attack β that satisfies those parameters.

In our results, we prescribe the parameters fmax and β and deduce c± and

Ys. We find good qualitative agreement between the results in this subsection

and those in Bowles & Smith (2000b).

Table (5.1) summarises the values imposed and calculated in figures 5.6

- 5.11. In each figure, we find that for periodicity to be achieved requires

c+ < 0. We also notice in the table that the pressure jumps |p̂+(0+)| =

|p̂−(0+)| to three significant figures for every case studied. This is due to

the small Ys, explained in the next paragraph. Figure 5.6 is for the case

of a tilted flat blade at angle α = 0.258, as shown in figure 3 of Bowles &
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Figure fmax β c+ Ys L p̂+(0+) p̂−(0+)
5.6 0 0.258 -1.21 7.93 × 10−3 0.301 -0.308 0.308
5.8 0 0.299 -1.84 8.28 × 10−3 0.326 -0.316 0.316
5.9 0.8 0.575 -2.97 9.86 × 10−3 0.292 -0.365 0.365
5.10 1.4 0.386 -1.50 7.04 × 10−3 0.142 -0.271 0.271
5.11 1.6 0.4 -1.81 6.13 × 10−3 9.92 × 10−2 -0.234 0.234

Table 5.1: Summary of the values used and calculated in the presented figures
(to 3 s.f.).

Smith (2000b). The solutions presented here are over two spatial periods

in xs, so as to illustrate the jump over the small leading edge region. In

this case, the calculated Ys = 7.93 × 10−3 is small, but is seen for Y < 0

in figure 5.6(a) through a small upward jump of the streamlines just before

xs = 6. The pressure for this particular solution is monotonic decreasing on

both the upper and lower surfaces of the blade, with the pressure gradient

being favourable on both sides. The pressure difference between the flow

above and beneath the blade gives rise to lift. We calculated the lift to be

0.301 to three significant figures. A discontinuity at both the trailing edges

in the pressure gradient is clearly visible in this figure, as well as the jump

in pressures as flow passes over the leading edge, which are calculated to be

p̂+(0+) = −0.308 and p̂−(0+) = 0.308 to three significant figures. We notice

that p̂+(0+) ≈ −p̂−(0+) for all cases (see table 5.1). The oncoming wake

velocities in û do not shift by a large amount as the discontinuity is passed,

since the Ys is small for each case. Thus, there is an almost equal flux above

and below the blade and so we may expect the pressure jumps to be almost

equal to satisfy the matching condition as Y → ∞. The skin friction was

calculated using (5.98) and shows a monotonic decreasing profile on both

surfaces of the blade (note that only the solution over one blade is shown).

This is as expected and has good qualitative agreement with Bowles & Smith

(2000b).

A check on the periodicity of û and v̂ in the numerical method is given

in figure 5.7, where the velocity profiles at xs = 6 for the penultimate and

final sweeps of the sublayer are presented for the case in figure 5.6. Peri-

odicity is graphically confirmed by the very good agreement of the û and v̂
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Figure 5.6: Streamfunction, pressure and skin friction solutions for the case of a
flat blade tilted at an angle β = 0.258. The calculated value of c+ = −1.21. The
streamlines and pressure are shown over two L-periods.
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Figure 5.7: Calculated periodic velocity profiles for û(6, Y ) and v̂(6, Y ) on suc-
cessive sublayer sweeps. The solid and dotted lines are the velocity profiles from
the final and penultimate sweeps respectively. Figures (b) and (d) are close-ups of
the boxed areas in figures (a) and (c).

velocity profiles. The boxed areas in each of figures 5.7(a) and (c) are given

in figures 5.7(b) and (d) respectively. These areas are where the greatest

error between the penultimate and final velocity profiles is reported and no

significant difference between the profiles is seen.

In figure 5.8 the solution for β = 0.299 is given, as in figure 5 of Bowles

& Smith (2000b). Again, we see similar behaviour in the pressure and skin

friction over the blade and in the wake, with the scaled lift calculated in

this case as 0.326. In figure 5.9, the solutions for a blade with thickness

and local angle of attack is given, with the parameters fmax = 0.8 and α =

0.575. The pressure gradient remains favourable over most of the blade.

However, within the last 40% of the blade, the pressure gradient becomes

adverse. Each of τ± increase over the first portion of the blade as the flow is

accelerated up the forward facing faces of the blade. Over the second portion
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of blade, the skin friction decreases as the flow passes over the backward

facing sides of the blade, before accelerating slightly before the trailing edge.

The deceleration in the flow causes an adverse pressure gradient. These

properties are emphasised more in figures 5.10 and 5.11 and show the onset

of flow reversal. In figure 5.10, where fmax = 1.4 and α = 0.386 (as in

figure 7 of Bowles & Smith (2000b)), a small separation bubble develops

before the trailing edge on the upper blade surface but no reversal occurs

underneath. The separation point occurs at a position xS = 0.86 before

reattaching at xR = 1.01. This is also seen in the τ+ profile, where the

solution drops below τ = 0. In figure 5.11, two-sided separation occurs. A

well-developed eddy is present above the upper surface (xS = 0.79, xR = 1.06)

before the trailing edge and another small eddy develops under the lower

surface (xS = 0.87, xR = 0.97).

In figures 5.12 and 5.13 we set the constants c− 6= c+ and consider a

cambered blade with fmax = 0 and β = 0.4. In figure 5.12 we impose that

c− = c+ − 0.5 and solve using the same method with fmax = 0 and α = 0.4.

We found that c+ = −1.63 (to 3 s.f.) gave us a fully periodic solution. We

impose c− = c+ − 1 in figure 5.13 and find c+ = 2.00. On comparing these

two figures, the shear is greater in the flow close to the blade in figure 5.13,

due to the fact that |c+| is larger than that in figure 5.12. Also, there are

hints of a slight adverse pressure gradient just before the trailing edge in

figure 5.13, even for the case of a flat blade.

This concludes our discussion of the pressure interactive many-blade limit

of Bowles & Smith (2000a,b) for a flow with blade non-symmetries. In

this chapter, we have outlined the boundary-layer structure and expansions

within each region of flow and described the numerical technique to find so-

lutions to the sublayer problem. In the next two chapters, we add the global

angle of attack into the interactive many-blade limit. We will find global

angles of attack that affect the sublayer, bulk-layer and free-stream regions

to leading order and outline how these interactions are embedded into the

mathematical analysis.
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Figure 5.8: Streamfunction, pressure and skin friction solutions for the case of a
flat blade tilted at an angle β = 0.299. Here, the value of c+ = −1.84.
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Figure 5.9: Streamfunction, pressure and skin friction solutions for the case of a
thick blade (fmax = 0.8) at local angle of attack β = 0.575. Here, the calculated
value of c+ = −2.97.
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Figure 5.10: Streamfunction, pressure and skin friction solutions for the case of
a thick blade (fmax = 1.4) at local angle of attack β = 0.386. Here, the calculated
value of c+ = −1.50.
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Ŷ

(a) Streamlines.

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0  1  2  3  4  5  6

xs

p̂ ±
(x

s)

p̂−

p̂+

p̂±

(b) Pressures, p̂±.

-0.1

 0

 0.1

 0.2

 0.3

 0  0.2  0.4  0.6  0.8  1

xs

τ ±

τ−

τ+

(c) Skin friction, τ±.

Figure 5.11: Streamfunction, pressure and skin friction solutions for the case of
a thick blade (fmax = 1.6) at local angle of attack β = 0.4. Here, the calculated
value of c+ = −1.81.



138 The pressure interactive many-blade limit

-5
-4
-3
-2
-1
 0
 1
 2
 3
 4
 5

 0  1  2  3  4  5  6

rep
lacem

en

xs

Ŷ
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Figure 5.12: Streamfunction and pressure solutions for the case of a flat blade
at angle of attack β = 0.4, with c− = c+ − 0.5.
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Figure 5.13: Streamfunction and pressure solutions for the case of a flat blade
at angle of attack β = 0.4, with c− = c+ − 1.



Chapter 6

The pressure interactive

many-blade limit with a global

angle of attack

6.1 Structure with a global angle of attack

In this chapter, we introduce the global angle of attack α into the non-

symmetric, pressure-interactive many-blade limit described in the last chap-

ter. The global angle of attack is taken to be small and we seek a specific

angle that causes a leading order change to the sublayer, before a discussion

of larger global angles of attack is given in the next chapter.

The succession of many aligned blades and wakes aligned at a global angle

of attack is illustrated as dashes and spaces respectively in figure 6.1. In this

chapter, α is measured from the positive x-axis to the line of the array of

blades and α is positive in an anticlockwise direction from the x-axis (see

figure 6.1). For a given downstream distance in x, the corresponding normal

position in y of the blade-wake period is given by

y = Re−
2

5 f±(xs) + x tanα, (6.1)

where f± are O(1) functions prescribing local non-symmetries to the blade

throughout the period and scaled so that the blade geometry is strictly con-

tained within the sublayer. As in the previous chapter, these non-symmetries

may represent blade camber or thickness.

139
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x

y

α≪ 1

U = 1

Each blade and wake represented by each line-space

Figure 6.1: Succession of blades and wakes (given by the dashes and spaces
respectively) all tilted at the global angle of attack α≪ 1.

In the interactive many-blade limit, our horizontal coordinate is described

by x = xs + Re3/5xl. Given α ≪ 1, we have that tanα ≈ α and further we

write α = Re−κᾱ, where ᾱ = O(1) and κ > 0 is a constant to be determined.

As before, we seek periodic solutions to the interactive sublayer problem over

the short scale xs and so the long x-scale, xl, appears approximately constant

over xs. Hence the equation for y in figure 6.1 is given by

y = Re−
2

5f±(xs) +Re−κᾱxs +Re
3

5
−κᾱ. (6.2)

In the sublayer, the normal coordinate Ŷ = O(1) is given by y = Re−2/5Ŷ .

By comparing these two estimates for y, we find that

Ŷ = f±(xs) +Re
2

5
−κᾱxs +Re1−κᾱ. (6.3)

In order to investigate the case where ᾱ first influences the sublayer flow, we

take κ = 1 so that α = Re−1ᾱ. Note that we could have chosen κ = 2/5

in equation (6.3), so that α = Re−2/5ᾱ and a balance between the normal

sublayer coordinate and ᾱxs occurs. This global angle of attack is much

larger than the case κ = 1 and is considered in the next chapter.

It is worth noting that α = O(Re−1) is the smallest possible global angle

of attack that causes any leading order change within the sublayer at down-

stream distances x = O(Re3/5). For downstream distances x < O(Re3/5)

and a global angle of attack of O(Re−1), the flow behaviour over one blade-

wake period is given by the non-interactive limit of Chapter 4. In Chapter
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4, x = xs + nxl and the sublayer thickness is given by y = Re−1/2n1/6Ŷ .

A similar equation for the normal estimate (6.2) can be derived and in this

case, since n < O(Re3/5), it can be shown that the first balance with the nor-

mal sublayer coordinate occurs when n = O(Re3/5). Thus the leading order

solution with a global angle of attack of O(Re−1) in the non-interactive limit

would be given by the non-symmetric problem of Chapter 4 with no global

angle of attack present.

6.2 The leading order response for α = Re−1ᾱ

We take equation (6.3) and substitute κ = 1

Ŷ = f±(xs) +Re−
3

5 ᾱxs + ᾱ, (6.4)

and since Re ≫ 1, the short scale term Re−3/5ᾱxs is small and is neglected.

Thus we take

Ŷ = f±(xs) + ᾱ, (6.5)

to be the leading order balance between the normal sublayer coordinate,

the blade geometry and the global angle of attack in the sublayer. The

appearance of the ᾱ term in the above relation represents a vertical shift

in the position of the blade within the sublayer at x = O(Re3/5) compared

to the non-interactive limit and is illustrated in figure 6.2. Furthermore, we

note that this global angle of attack is very small, even compared to the

thickness of the sublayer.

We begin, as in the previous chapter, with the bulk-layer problem. By

comparing the bulk-layer thickness with the right-hand side of equation (6.2),

there are no leading order balances between Yb and the global angle of attack

terms. Thus, the bulk-layer lies at y = 0 to leading order in this regime.

On matching with the sublayer and free-stream, the same expansions hold

for the velocities and pressure as in the last chapter, leading to exactly the

same solutions. To leading order, U is given by mean-Blasius flow in the

bulk-layer, whilst the leading order term in the expansion for V is given by

v1 = −E ′
±(xs)u0, (6.6)
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After passing more blades and wakes
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Figure 6.2: Influence of the global angle of attack α = Re−1ᾱ on the vertical
position of the blade within the sublayer on entering the interactive multi-blade
limit.

where E± are arbitrary functions of integration and are determined upon

matching with the sublayer.

The main interest here lies in the sublayer problem where the influence

of the global angle of attack is first experienced. Given that the global angle

of attack is much smaller than the sublayer thickness, the same expansions

for (U, V, P ) = (Re−1/5û, Re−3/5v̂, Re−2/5p̂) hold to leading order yielding the

same boundary-layer equations

û
∂û

∂xs
+ v̂

∂û

∂Ŷ
= − dp̂

dxs
+
∂2û

∂Ŷ 2
, (6.7)

∂û

∂x
+
∂v̂

∂Ŷ
= 0, (6.8)

which are to be solved subject to the boundary conditions

û = v̂ = 0 on Ŷ = f±(xs) + ᾱ, 0 < xs ≤ l, (6.9)

Regularity in û, v̂ and p̂ in the wake, (6.10)

û→ ±λ±(Y + b±(xs)) as Ŷ → ±∞, (6.11)

p̂+(l) = p̂−(l), (6.12)

Y -shift at xs = L, (6.13)

Periodicity in û, v̂ and p̂ in xs. (6.14)
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The condition (6.9) arises due to the vertical shift of the blade in the sublayer

within the interactive limit in light of (6.5). Furthermore, we find that on

matching with v1 in the bulk-layer, the functions E± ≡ b±, as before.

The free-stream problem is unchanged from the previous chapter, as the

same expansions and governing equations hold for U, V, P by matching with

the bulk-layer. Thus the same pressure displacement law holds

p±(x0) = ±λ±
L

∫ L

0

b′±(xs) cot

{

π(xs − x0)

L

}

dxs, (6.15)

and provides the final condition to complete the full interactive sublayer

problem.

In summary, the full sublayer problem with a global angle of attack

α = O(Re−1) is given by the interactive boundary-layer equations with

boundary conditions (6.9) - (6.14) and the pressure displacement law (6.15).

In comparison to the limit in Chapter 5, the sublayer problem is now sub-

ject to different no-slip and no-penetration conditions. These in turn cause

different sublayer displacements b′± and so the free-stream solution takes on

a different form. The analysis in all other flow regions is unchanged from

Chapter 5.

6.3 Results

In keeping with the work in the last chapter and that of Bowles & Smith

(2000b), we focus on solving the condensed flow problem, where the dis-

placement functions b±(xs) = ±c±. To solve the problem numerically, we

first apply a Prandtl shift in the sublayer, defined by û = u1, v̂ = v1 − f ′u1,

p̂ = p1 and where the normal sublayer coordinate Y1 is defined by

Ŷ = Y1 + f±(xs) + ᾱ. (6.16)

This leaves the governing interactive boundary-layer equations unchanged

except u1, v1, Y1 replace û, v̂, Ŷ respectively. The boundary conditions (6.12)

and (6.14) are unchanged, whilst (6.9)-(6.11) become

u1 = v1 = 0 on Y1 = 0, 0 < xs ≤ l, (6.17)

∂u1

∂Y1
= v̂ = 0 on Y1 = 0, l < xs ≤ L, (6.18)
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u1 → ±(Y1 + f±(xs) + ᾱ) + c± as Y1 → ±∞, (6.19)

We adopt the numerical method used to solve the sublayer problem in

Chapter 5, since the governing equations are identical. However, an addi-

tional term appears in the matching condition (6.19) and so the numerical

scheme is adapted to incorporate the parameter ᾱ. This parameter affects

the solution at each x-station in finding the pressure p̂ and the leading edge

pressure jumps. As before, the constants λ± appearing in (6.19) are set to

unity.

First, solutions for the case of a flat blade with ᾱ = 0,−0.1,−0.25,−0.5,

−0.75,−1 are presented. Then, the same process is repeated for an angled

and a thick blade with ᾱ = 0,−0.1,−0.25,−0.5,−1. In our computations,

the trailing edge of the blade is taken to lie at l = 1 with the period L = 6.

The unknown displacement constants are set as c+ = c−, in line with the

work in Chapter 5.

6.3.1 Flat blade

In figure 6.3 we present the calculated streamline profiles for the values of ᾱ

given above. The streamlines plotted in all the figures are given by constant

increments and decrements of unity from the streamline ψ = 0. For ᾱ =

−0.1,−0.25 we see very little difference compared to the case ᾱ = 0, whilst

for values ᾱ = −0.75,−1, it is possible to see a shift of the streamline ψ = 0

emanating from the trailing edge of the blade as the leading edge of the next

blade is approached. As ᾱ decreases to ᾱ = −1, a greater spacing between

the streamlines is observed, indicating a reduction in the shear strength for

small Y1.

The pressure solutions in figure 6.4 reflect the small changes in the stream-

lines for the values of ᾱ presented. The functions p̂± are very similar for each

case of ᾱ. As ᾱ is decreased, there is an increasing pressure difference between

the upper and lower surfaces indicating the generation of lift. Furthermore,

as ᾱ is decreased, the fall in pressure from the leading edge to the trail-

ing edge is less within the periodic sublayer. We believe this is due to the

decrease in the value of c+ as ᾱ is decreased (see table 6.1).
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(e) ᾱ = −0.75

-3
-2
-1
 0
 1
 2
 3

 0  1  2  3  4  5  6

xs

Ŷ
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Figure 6.3: Streamline plots with the global angle of attack ᾱ for the case of a
flat blade.
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Figure 6.4: Pressure solutions for the case of a flat blade with the global angles
of attack in figure 6.3.
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Figure 6.5: Skin frictions τ± for the case of a flat blade with the global angles of
attack in figure 6.3.
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Viscous skin friction solutions are presented in figure 6.5. The skin fric-

tion takes on the same definition here as used in Chapter 5, namely through

equation (5.98). For the flat blade case, the skin friction solutions are mono-

tonically decreasing over each blade surface. There is a slight difference be-

tween profiles on the upper and lower blade surfaces when a non-zero value

of the global angle of attack is included. If ᾱ < 0 then there is a normal

component of velocity in the positive Y1 direction through the wake. Conse-

quently, the flow emanating from the upper and lower blade surfaces at the

trailing edge of the blade is advected in the positive Y1 direction over the

wake meaning that in general, a non-symmetric velocity profile encounters

the next blade. This non-symmetric velocity profile causes the differences in

skin friction observed.

The leading edge pressure jumps, Y -shifts and computed values of c± and

the lift, L, are summarised in table 6.1. We see that an increase in the global

angle of attack means an increase in the magnitude of the pressure jumps,

as well as in the Y -shift and lift, as expected. An interesting result appears

to be the decrease in the value of c+ as ᾱ is decreased and may indicate

a limitation of setting c− = c+. However, in comparison to the previous

chapter and Bowles & Smith (2000a,b), the main flow features of interest are

captured.

ᾱ p̂+(0+) p̂−(0+) c+ Ys L
0 0 0 2.56 0 0

-0.1 −2.13 × 10−2 2.15 × 10−2 1.92 9.75 × 10−4 1.01 × 10−2

-0.25 −3.58 × 10−2 3.66 × 10−2 0.890 1.74 × 10−3 1.76 × 10−2

-0.5 −4.76 × 10−2 5.01 × 10−2 -0.503 2.51 × 10−3 2.40 × 10−2

-0.75 −5.41 × 10−2 5.87 × 10−2 -1.61 3.07 × 10−3 2.79 × 10−2

-1.0 −6.18 × 10−2 6.98 × 10−2 -2.34 3.73 × 10−3 3.22 × 10−2

Table 6.1: The calculated values of the leading edge pressure jumps, c+, the
Y -shift and lift L (all to 3 s.f.) for the case of a flat blade with a global angle of
attack ᾱ.
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ᾱ

(e) ᾱ = −1

Figure 6.6: Streamline plots with the global angle of attack ᾱ for the case of an
angled blade given by f±(xs) = −0.2xs.
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Figure 6.7: Pressure solutions for the case of the angled blade and global angles
of attack in figure 6.6.
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(e) ᾱ = −1

Figure 6.8: Skin friction solutions for the case of the angled blade and global
angles of attack in figure 6.6.
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6.3.2 Angled and thick blades

We add a local angle of attack to the blade geometry by setting

f±(xs) = βxs, (6.20)

and we take β = −0.2 in all the computations in this subsection. Figure 6.6

presents the streamlines calculated with ᾱ = 0,−0.1,−0.25,−0.5,−1. Many

of the flow features discussed in the previous section are seen with the local

angle of attack added to the problem, such as the shear strength decreasing

for small Y1 as ᾱ decreases. The streamline ψ = 0 (seen in bold), representing

the blade surface and wake centreline, encounters the next blade beneath the

leading edge for ᾱ = 0. However, for ᾱ = 1, this streamline hits the next

blade above the leading edge.

The pressure solutions presented in figure 6.7 comprise a large difference

in the pressures p̂+ and p̂− over the blade and is caused primarily by the

local angle of attack β. For the case ᾱ = 0, a non-symmetric problem is

solved as in the previous chapter. The fall in pressure from the leading to

trailing edge decreases as the global angle of attack decreases, as seen in the

flat blade case.

The skin friction solutions found are monotonically decreasing functions

of xs as ᾱ is decreased. There is a larger difference between τ+ and τ−

compared to the flat blade case due to the inclusion of the local angle of

attack β. The calculated values of the pressure jumps, c+, the Y -shift and

lift for the angled blade are summarised in table 6.2.

ᾱ p̂+(0+) p̂−(0+) c+ Ys lift
0 -0.292 0.292 -0.136 7.32 × 10−3 0.300

-0.1 -0.258 0.258 -1.01 6.63 × 10−3 0.262
-0.25 -0.231 0.234 -1.80 6.09 × 10−3 0.230
-0.5 -0.208 0.214 -2.47 5.62 × 10−3 0.201
-1.0 -0.175 0.185 -3.61 4.94 × 10−3 0.159

Table 6.2: The calculated values of the leading edge pressure jumps, c+, the
Y -shift and lift L (all to 3 sf) for the case of an angled flat plate with a global
angle of attack ᾱ.
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In the final set of results presented, the functions f± are given by

f±(xs) = ±fmax sin2(πxs), (6.21)

allowing thickness effects to be added to the blade. The parameter fmax

controls the maximum thickness of the blade and is taken to be fmax = 1.7.

ᾱ p+(0+) p−(0+) c+ Ys L
0 0 0 0.455 0 0

-0.1 −4.51 × 10−2 4.53 × 10−2 −0.0473 1.13 × 10−3 5.35 × 10−3

-0.25 −7.37 × 10−2 7.47 × 10−2 -0.907 1.89 × 10−3 1.08 × 10−2

-0.5 -0.101 0.104 -2.24 2.71 × 10−3 1.50 × 10−2

-1.0 -0.143 0.151 -3.83 4.05 × 10−3 1.84 × 10−2

Table 6.3: The calculated values of the leading edge pressure jumps, c+, the
Y -shift and lift L for the case of a thick blade with a global angle of attack ᾱ (all
to 3 s.f.).

With no global angle of attack present, the thickness of the blades causes

flow reversal to occur on both the upper and lower blade surfaces. The eddies

formed within the reversal close after the trailing edge is passed. As the

parameter ᾱ is decreased to ᾱ = −1 in figure 6.9, the size of the separation

eddies decrease. The reduction in the size of the separation bubble is linked

to the decrease in the value of the parameter c+ as ᾱ decreases. Further,

the spacing of the streamlines, as with the the other results in this chapter,

increases as the global angle of attack decreases.

The corresponding pressure solutions in figure 6.10 show a favourable

pressure gradient over the first part of the blade on both surfaces. The

flow reversal reported is accompanied by an adverse pressure gradient on the

backward facing sides of the blade. As the value of ᾱ is decreased, a pressure

difference between the upper and lower blade surfaces occurs indicating the

generation of lift. The lift generated is attributed solely to the global angle

of attack since the blade geometry is symmetric.

We present the skin friction solutions in figure 6.11. The skin friction

increases over the first 40% of the blade, as in the thick blade cases of the

previous chapter and has a local maximum around xs = 0.4. There is a rapid

reduction in the skin friction over the backward facing edges of the blade as

the flow decelerates, leading to negative skin friction before the trailing edge
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Figure 6.9: Streamline plots with the global angle of attack ᾱ for the case of
thick blade with f±(xs) = ±1.7sin2(πxs).
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(c) ᾱ = −0.25

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0  1  2  3  4  5  6

xs

p̂ ±
(x
s)

p̂−

p̂+
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Figure 6.10: Pressure solutions for the thick blade and the global angles of attack
ᾱ in figure 6.9.
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Figure 6.11: Skin friction solutions for the thick blade and the global angles of
attack ᾱ in figure 6.9.
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in each case. The separation and reattachment x-stations are recorded in

table 6.4.

ᾱ x+
S x+

R x−S x−R
0 0.79 1.18 0.79 1.18

0.1 0.80 1.15 0.80 1.15
0.25 0.81 1.14 0.80 1.14
0.5 0.83 1.08 0.82 1.08
1.0 0.89 0.97 0.83 1.00

Table 6.4: Separation and reattachment positions x+
S and x+

R on the upper blade
surface and x−S and x−R on the lower blade surface for the thick blade case.

In conclusion to this chapter, we have added a global angle of attack

to the periodic, interactive many-blade limit of Chapter 5 and Bowles &

Smith (2000a,b). The global angle of attack α = O(Re−1) in this chapter is

the smallest possible angle such that a leading order change in the sublayer

formulation occurs. With the global angle of attack of this size and the

very large downstream distances considered in the interactive many-blade

limit, the blade is shifted within the sublayer to leading order. This caused

different no-slip and no-normal flow boundary conditions. The formulation

in the bulk-layer and free-stream regions is the same as before. We presented

numerical solutions for flat, angled and thick blades with various values of

ᾱ. The results report a decrease in the local shear strength of the flow for

small Y1 in the sublayer and there was a decrease in the size of the pressure

drop from the leading edge to the trailing edge as ᾱ decreased.





Chapter 7

The pressure interactive

many-blade limit with larger

global angles of attack

7.1 Analysis for larger global angles of attack

In the previous chapter, we considered the smallest global angle of attack that

has any influence on this interactive many-blade structure. The purpose of

this chapter is to find larger global angles of attack that still preserve the

overall structure of our interactive many-blade limit. The starting point for

this chapter is equation (6.2) of Chapter 6, where we derived an equation for

the y position of the boundary-layer structure at distances x = O(Re3/5) in

the interactive limit as

y = Re−
2

5 f±(xs) +Re−κᾱxs +Re
3

5
−κᾱ. (7.1)

The global angle of attack α = Re−κᾱ, where ᾱ = O(1) and κ is a constant

to be determined.

In this chapter, we will consider the cases of κ = 4/5, 3/5, 2/5 which

cause interactions to occur in the bulk-layer, the free-stream and over the

short xs scale within the sublayer respectively. In each case, we show how

the interactive limit changes to incorporate these new interactions. There are

two other values for κ that arise, namely κ = 1/5, 0, that are not considered

in this thesis. These cases give α much larger than the sublayer, to which we

159
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question whether the interactive limit would develop.

7.2 Formulation for α = O(Re−4/5)

The case κ = 4/5 arises by considering a balance between the right-hand side

of equation (7.1) and the bulk-layer thickness. The normal coordinate in the

bulk-layer is given by Yb = O(1) where y = Re−1/5Yb. Thus on comparing

this estimate for y with (7.1), we find

Yb = Re−
1

5f±(xs) +Re
1

5
−κᾱxs +Re

4

5
−κᾱ. (7.2)

The choice κ = 4/5, so that α = O(Re−4/5), gives the smallest global angle

of attack that first affects the bulk-layer to leading order. Hence, the leading

order balance of the normal bulk-layer coordinate and the global angle of

attack α = Re−4/5ᾱ for large Re is taken as

Yb = ᾱ. (7.3)

A global angle of attack of this size represents a constant normal shift by an

amount ᾱ in the position of the whole sublayer within the bulk-layer from

Yb = 0 previously to Yb = ᾱ.

We adopt the same interactive many-blade limit expansions for the ve-

locities and pressure in the bulk-layer as seen before, with Yb = O(1) the

normal bulk-layer coordinate. This can be done, since the global angle of

attack is much smaller than the leading order velocities in the bulk-layer and

the sublayer. Hence the same governing equations hold for the leading order

behaviours of u0 and v1 in the bulk-layer, with the matching conditions to

the sublayer given by

u0 = vM = 0 on Yb = ᾱ±., (7.4)

The original mean Blasius flow still holds as the leading order solution for

U , but is Prandtl shifted from Yb = 0 in the non-symmetric case of Chapter

5 to Yb = ᾱ in this chapter. The solution for v1 remains unchanged, except

that matching with the sublayer must take place as Yb → ᾱ±.
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Figure 7.1: Illustration of the development of the interactive many-blade limit
structure with a global angle of attack α = O(Re−4/5).

The sublayer lies at a shifted position Yb = ᾱ within the bulk-layer.

Hence, the normal coordinate Ŷ = O(1) in the sublayer is introduced, where

y = Re−1/5ᾱ +Re−2/5(Ŷ + f±(xs)) (7.5)

gives the y position of the sublayer. On matching to the bulk-layer, the same

expansions for the velocity and pressure hold, leading to the governing inter-

active boundary-layer equations for the sublayer. The boundary conditions

for the problem are exactly those given in Chapter 5. To see why ᾱ does not

appear in the sublayer formulation in this instance, consider the flow before

the interactive many-blade limit is approached, where the non-interactive

limit of Chapter 4 holds. We can modify (7.1) to consider downstream dis-

tances for x < O(Re3/5), and by comparing the resulting equation to the

sublayer thickness, we find that the blade is shifted within the sublayer after

passing a number n = O(Re9/25) of blades (see figure 7.1). As the down-

stream distance increases to that of the interactive limit, the cumulative

effect of passing many blades means that the vertical displacement of the

blade within the sublayer is large enough for the position of the whole sub-

layer to be shifted within the bulk-layer and when x = O(Re3/5), ᾱ drops

out of the leading order problem in the sublayer. Comparing the free-stream

coordinate y with equation (7.1), we find no balances with the global an-

gle of attack terms at leading order and hence the free-stream problem is
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unchanged for α = O(Re−4/5).

In summary, the new interaction featured in this section amounts to a

constant shift of size ᾱ of the whole sublayer within the bulk-layer. The

interactive many-blade structure therefore still holds with the mean Blasius

flow behaviour Prandtl shifted to Yb = ᾱ within the bulk-layer. The free-

stream and sublayer problems are unchanged from Chapter 5.

7.3 Formulation for α = O(Re−3/5)

We next compare the normal coordinate y = O(1) with (7.1) to find that the

global angle of attack that causes a leading order change to the free-stream

is given by the case κ = 3/5. By substituting κ = 3/5 into (7.1), we see that

a global angle of attack of this size causes a shift of the whole boundary-layer

structure within the free-stream, from y = 0 previously to y = ᾱ.

The normal coordinate in the bulk-layer, Yb, is now defined as

y = ᾱ +Re−
1

5Yb, (7.6)

and the same bulk-layer expansions are taken as before. We find that the

problem in the bulk-layer is unchanged from Chapter 5 with the exception

that the boundary-layer structure is shifted vertically by an amount ᾱ. Like-

wise, the normal sublayer coordinate, Ŷ , is given by

y = ᾱ +Re−
2

5 Ŷ , (7.7)

with the same expansions and governing boundary-layer equations at leading

order. The global angle of attack parameter ᾱ does not appear in the sublayer

formulation at leading order and has dropped down to lower order terms.

However, we will need to adapt the formulation for the free-stream prob-

lem because of the normal shift in the boundary layer structure. Due to the

small global angle of attack, the expansions used are unchanged and yield

the governing Cauchy-Riemann equations for v and p at leading order. To

find v and p we employ the method used in Chapter 5, using Cauchy’s inte-

gral formula. We choose a field point (x0, y0) with y0 6= ᾱ and define a new

contour Γ∗ consisting of two semi-circular contours γ∗+ and γ∗− each made up
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Figure 7.2: The new contour Γ∗ used to solve the free-stream problem for a point
(x0, y0) with y0 6= ᾱ.

of a semi-circle of radius R in the upper and lower half-planes respectively,

and a straight line segment from (−R, ᾱ) to (R, ᾱ) (see figure 7.2). In the

limit R → ∞ and taking real and imaginary parts gives the pressure p and

normal velocity v as

p(x0, y0) =
1

2π

∫ ∞

−∞

(xs − x0)[v](xs) − (ᾱ− y0)[p](xs)

(xs − x0)2 + (ᾱ− y0)2
dxs, (7.8)

v(x0, y0) = − 1

2π

∫ ∞

−∞

(xs − x0)[p](xs) + (ᾱ− y0)[v](xs)

(xs − x0)2 + (ᾱ− y0)2
dxs, (7.9)

dependent on the values of [p](xs) = p+(xs, ᾱ) − p−(xs, ᾱ) and [v](xs) =

v+(xs, ᾱ) − v−(xs, ᾱ) across y = ᾱ. Since the values of v+ and v− across

the blades and wakes are unknown (since we have that v± = ∓λ±b′±, the

unknown displacement gradient from the sublayer), we use Cauchy’s integral

formula again for the point (x0, ᾱ). With the field point (x0, ᾱ), the contours

γ∗+ and γ∗− are deformed slightly by including a small semi-circle of radius ǫ,

centred at (x0, ᾱ) (see figure 7.3). We take the real and imaginary parts of

the resulting equation to yield the following relations for the pressure and
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B
lad

e

x

y

Figure 7.3: The contour Γ∗ used to solve the free-stream problem for the point
(x0, ᾱ), with the inclusion of two other small semi-circles of radius ǫ.

velocities just above and below y = ᾱ

p±(x0) = −1

π

∫ ∞

−∞

v±(xs)

xs − x0
dxs, (7.10)

v±(x0) =
1

π

∫ ∞

−∞

p±(xs)

xs − x0
dxs. (7.11)

We notice immediately that these relations are exactly the same as those

found in the case of a general non-symmetry. The same analysis presented

in Chapter 5 can be applied to these equations to reveal the same periodic

pressure-displacement laws as found in Chapter 5. An alternative approach

to finding the relations (7.8) - (7.11) would be to apply the transformation

y = y∗ + ᾱ to the p-v relations in Chapter 5 and reformulate the problem for

y∗.

To complete the analysis, we find the downstream distances at which the

sublayer and bulk-layer first feel the effects of a global angle of attack to

leading order within the non-interactive limit. With α = O(Re−3/5) and

the sublayer and bulk-layer thicknesses of O(Re−1/2n1/6) and O(Re−1/2n1/2)

respectively, we deduce that on passing n = O(Re3/25) the global angle of

attack appears as a shift of the blade within the sublayer at leading order.

Following the same approach, after n = O(Re1/5) blades the sublayer is
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Figure 7.4: Illustration of the development of the interactive many-blade limit
structure with a global angle of attack α = O(Re−3/5).

shifted within the bulk-layer (see figure 7.4). Then, when n = O(Re3/5), as

in this chapter, the whole boundary-layer is shifted within the free-stream.

In conclusion, the interaction for a global angle of attack of size α =

O(Re−3/5) causes a normal shift in the whole boundary-layer structure to

lie at y = ᾱ, with the formulation and solutions in each region largely un-

changed. No sublayer solutions are presented here, since the problem is given

by that of Chapter 5 to leading order.

7.4 Short scale balance in the sublayer

So far, we have described analyses for the global angle of attack being much

smaller than the sublayer size. The final limit of interest arises by taking

κ = 2/5 on comparing equation (7.1) with the sublayer thickness, so that

there is a balance between the short scale global angle of attack term, ᾱxs and

the thickness of the sublayer. Thus in this section, we take α = Re−2/5ᾱ. At

distances x = O(Re3/5) in the free-stream, the whole boundary-layer system

is shifted from y = 0 to y = Re1/5ᾱ. The bulk-layer coordinate, Yb, is given

by

y = Re1/5ᾱ +Re−1/5Yb, (7.12)

with the same expansions holding for U, V, P with the normal coordinate Yb.

The bulk-layer solution is still governed by mean Blasius flow at leading order
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y = Re−2/5Y

Figure 7.5: Illustration of the flow geometry within the sublayer for α = Re−2/5ᾱ.

in U , Prandtl shifted in the y direction by an amount Re1/5ᾱ.

The normal sublayer coordinate is given by

y = Re1/5ᾱ +Re−2/5Ŷ , (7.13)

and the same expansions in the velocity and pressure hold to match with

the bulk-layer. Thus the leading order problem is given by the interactive

boundary layer equations

û
∂û

∂xs
+ v̂

∂û

∂Ŷ
= − dp̂

dxs
+
∂2û

∂Ŷ 2
, (7.14)

∂û

∂xs
+
∂v̂

∂Ŷ
= 0, (7.15)

but now subject to the revised boundary conditions

û = v̂ = 0 on Ŷ = f±(xs) + ᾱxs, 0 < xs ≤ l, (7.16)

Regularity in û, v̂ and p̂ in the wake, (7.17)

û→ ±(Ŷ + b±(xs)) as Ŷ → ±∞, (7.18)

p̂+(l) = p̂−(l), (7.19)

Y -shift at xs = L, (7.20)

Periodicity in û, v̂ and p̂ in xs. (7.21)



7.4 Short scale balance in the sublayer 167

Here, the application of the no-slip and no-penetration flow conditions is at

Ŷ = f±(xs) + ᾱxs instead of Ŷ = f±(xs) in Chapter 5. This means that

the global angle of attack will directly influence the matching conditions for

v1 in the bulk-layer at leading order, not previously seen in our interactive

analyses. This may be seen by first introducing the normal coordinate Ŷ =

Y1 + ᾱxs and has the effect of rotating the whole sublayer to lie horizontally

along the x-axis. On substitution into the boundary conditions, the ᾱxs term

in (7.16) then appears in the matching condition (7.18). Using continuity and

integrating with respect to Y1 in the far-field, gives the sublayer entrainment

velocities as ∓(b′±(xs) + ᾱ) and hence on matching with the bulk-layer, we

have that E±(xs) = b±(xs) + ᾱxs and

v1 = ∓
(

b̄′±(xs) + ᾱ
)

u0. (7.22)

Here, the global angle of attack ᾱ now appears directly in the match with

the bulk-layer, as yet not seen in the previous analyses.

The normal coordinate for the free stream is given by y = Re1/5ᾱ + y∗.

The same expansions for U, V, P still apply with y replaced by y∗ and hence

the same pressure-displacement laws can be derived as listed in equations

(7.10) and (7.11). However, the influence of the global angle of attack now

appears explicitly in the matching conditions with the bulk-layer through

(7.22) and will directly influence the free-stream perturbation solution.

Before finding numerical solutions to the problem, we note that the angle

α = O(Re−2/5) is larger than the original global angle of attack in Chapter

3, that of O(Re−1/2). It could be argued that the interactive limit would not

form if the global angle of attack is of this size, although here we assume

that the interactive many-blade limit does develop. This limit may occur

through a global tilt of the blade system once x = O(Re3/5) downstream or

if this model emerges as a downstream limit of the flow past many blades

with α = O(Re−2/5).

To compute solutions to the sublayer problem, we apply the Prandtl shift

û = u1, v̂ = v1 − (f ′
±(xs) + ᾱ)u1 and p̂ = p1 with the normal coordinate

Ŷ = Y1 + f±(xs) + ᾱxs. Thus, the governing sublayer equations are to be
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solved with the boundary conditions

u1 = v1 = 0 on Y1 = 0, 0 < xs ≤ l, (7.23)

∂u1

∂Y1

= v1 = 0 on Y1 = 0, l < xs ≤ L, (7.24)

u1 → ±(Y1 + f±(xs) + ᾱxs) + c± as Y1 → ±∞, (7.25)

along with the conditions (7.19) - (7.21). The same numerical method as in

the last two chapters is adopted to solve the sublayer problem.

7.5 Results

The pressure-interactive sublayer problem is solved for the global angles of

attack ᾱ = 0,−0.1,−0.25,−0.5 for flat, angled and thick blades. As in

Chapters 5 and 6, we solve the condensed problem, take l = 1 and L = 6 to

be the trailing edge position and blade-wake period respectively and set the

constants c+ = c−.

In figure 7.6, the calculated streamlines past a flat plate with a global

angle of attack are presented. In comparison with the previous chapter,

the streamlines show much larger deflections over all the blade and wake

period for all values of ᾱ used. This deflection through the wake is due

to the global angle of attack term, which appears directly in the boundary

conditions throughout the blade-wake period. We also see that the spacing

of the streamlines increases as the parameter ᾱ is decreased, as discussed in

the last chapter.

The corresponding pressure and skin friction solutions are presented in

figures 7.7 and 7.8 respectively. The pressure solutions show an increasing

pressure difference across the upper and lower blade surfaces as ᾱ is de-

creased, as expected. The differences between the upper and lower surface

pressure and skin friction profiles are much greater compared to the previous

chapter. The computed lift for each case is given in table 7.1, along with the

pressure jumps, c+ and the Y -shift.

The calculated values in table 7.1 show an interesting feature. For the

current problem of a flat blade, we notice that Ys ≈ 6ᾱ = Lᾱ. Such a

large Y -shift means that after the leading edge jumps, a nearly equal flux
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has passed over the upper and lower blade surfaces and hence the pressure

jumps p+ ≈ −p− is required to satisfy the Kutta trailing edge condition. We

believe this is due to the assumption of c± being equal. If the values were

allowed to be unequal, this would give different far-field matching conditions

for û as the leading edge region is passed and so a different Ys, would be

needed to ensure the Kutta condition is met. This feature seemed to occur,

especially for larger values of ᾱ in each case presented.

ᾱ p+(0+) p−(0+) c+ Ys Lift
-0.1 -0.207 0.207 1.56 -0.560 0.212
-0.25 -0.304 0.304 -1.16 -1.49 0.312
-0.5 -0.377 0.377 -3.01 -2.99 0.391

Table 7.1: The calculated values (to 3 sf) of the leading edge pressure jumps, c+,
the Y -shift and lift for a flat blade with a global angle of attack ᾱ.

In figures 7.9 - 7.11, we impose a small local angle of attack on the blade

by choosing

f±(xs) = −0.2xs. (7.26)

In figure 7.9, similar deflections of the streamlines in the wake profile are

seen as in the case of the flat blade, as well as similar behaviour in the

pressure and skin friction. We see in figure 7.10, that when ᾱ = −0.5 a slight

adverse pressure gradient occurs before the trailing edge and is due to the

combination of the local and global angles of attack.

In figure 7.11, we note in the case of ᾱ = −0.5 that the skin friction on the

lower surface becomes approximately constant before the trailing edge whilst

on the upper surface, the skin friction seems to decrease linearly towards zero.

This is similar to the flat blade case presented above, although in the current

case with the addition of a local angle of attack this feature is emphasised.

The values in table 7.1 are repeated for the angled blade case in table 7.2

and show the same characteristics as seen in the flat blade case.

In the final figures of this chapter, we take

f±(xs) = ±fmax sin2(πxs). (7.27)

We present solutions for fmax = 1.4 in figures 7.12 - 7.14 and fmax = 1.8

in figures 7.15 - 7.17. In figure 7.12, we see that for the case of ᾱ = 0
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Figure 7.6: Streamline plots for a flat blade with the global angles of attack
ᾱ = −0.1,−0.25,−0.5.
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Figure 7.7: Corresponding pressure solutions for flow past a flat blade with the
global angles of attack in figure 7.6.
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Figure 7.8: Calculated skin friction for flow past a flat blade with the global
angles of attack in figure 7.6.
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ᾱ
x
s

(c) ᾱ = −0.5

Figure 7.9: Streamline plots for an angled blade f±(xs) = −0.2xs with the global
angles of attack ᾱ = −0.1,−0.25,−0.5.
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Figure 7.10: Corresponding pressure solutions for flow past an angled blade
f±(xs) = −0.2xs with the global angles of attack in figure 7.9.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.2  0.4  0.6  0.8  1

xs

τ ±
(x
s)

τ−

τ+
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Figure 7.11: Calculated skin friction for flow past an angled blade f±(xs) =
−0.2xs with the global angles of attack in figure 7.9.
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ᾱ
x
s

(a) ᾱ = 0
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Figure 7.12: Streamline plots for a thick blade with parameter fmax = 1.4 and
the global angles of attack ᾱ = 0,−0.1,−0.25,−0.5.
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Figure 7.13: Corresponding pressures for the solutions in figure 7.12.
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Figure 7.14: Calculated skin friction for the solutions presented in figure 7.12.
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Figure 7.15: Streamline plots for a thick blade with parameter fmax = 1.8 and
the global angles of attack ᾱ = 0,−0.1,−0.25,−0.5.
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(d) ᾱ = −0.5

Figure 7.16: Corresponding pressures for the solutions in figure 7.15.
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Figure 7.17: Calculated skin friction for the solutions presented in figure 7.15.
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ᾱ p+(0+) p−(0+) c+ Y -shift Lift
-0.1 -0.317 0.317 -1.85 -0.592 0.327
-0.25 -0.366 0.366 -2.76 -1.49 0.379
-0.5 -0.407 0.407 -3.80 -2.99 0.425

Table 7.2: The calculated values of the leading edge pressure jumps, c+, the
Y -shift and lift (to 3 s.f.) for an angled blade f±(xs) = −0.2xs with a global angle
of attack ᾱ.

there is no separation caused by the blade thickness. When ᾱ is decreased, a

small flow separation and subsequent reattachment is invoked on the upper

surface before the trailing edge. Thus, the global angle of attack may cause

separation to occur in the sublayer, even in the presence of small angles of

attack.

The thickness added to the blade creates an adverse pressure gradient

over the leeward facing slope of the blade in all instances in figure 7.13. We

see very little pressure difference across the blade and any difference that is

created is solely due to the global angle of attack. The skin friction profiles

in figure 7.14, like in the previous chapter, show an increase in skin friction

over the front face of the blade before a rapid deceleration of the flow on

the backward facing faces. The separation is seen in these figures by the

τ+ profile falling very slightly below τ = 0 before the trailing edge. On the

lower surface, the skin friction increases as ᾱ decreases as more flow is pressed

against the under-side of the blade for negative values of ᾱ.

In figures 7.15 - 7.17, the parameter fmax = 1.8. The thickness effects of

the blade cause two-sided separation before the trailing edge on both sides

of the blade. As the global angle of attack is decreased, the size of the eddy

beneath the blade becomes smaller and less pronounced. This increase in

skin friction on the lower surface is again due to the global angle of attack.

For the cases of ᾱ = −0.25,−0.5, the flow around the trailing edge becomes

very complicated.

As with the case fmax = 1.4, the pressure solutions in figure 7.16 show an

adverse pressure gradient across the last half of the blade. The skin friction

profiles in figure 7.17, show very similar behaviour to the previous case, with

the flow reversals toward the trailing edge being clearly seen. In the case of
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ᾱ p+(0+) p−(0+) c+ Ys Lift
0 0 0 1.00 0 0

-0.1 -0.113 0.113 0.789 -0.592 0.327
-0.25 -0.229 0.229 -0.0641 -1.49 0.379
-0.5 -0.311 0.311 -2.31 -2.99 0.176

Table 7.3: The calculated values of the leading edge pressure jumps, c+, the
Y -shift and lift (to 3 s.f.) for a thick blade with fmax = 1.4 with a global angle of
attack ᾱ.

ᾱ p+(0+) p−(0+) c+ Ys Lift
0 0 0 0.301 0 0

-0.1 -0.0733 0.0733 -0.257 -0.592 0.0283
-0.25 -0.160 0.160 -0.968 -1.49 0.0634
-0.5 -0.253 0.253 -2.45 -2.99 0.107

Table 7.4: The calculated values of the leading edge pressure jumps, c+, the
Y -shift and lift (to 3 s.f.) for a thick blade with fmax = 1.8 with a global angle of
attack ᾱ.

ᾱ = −0.5, there is a slight acceleration in the flow beneath the blade just

before the trailing edge and is enough to cause reattachment. The pressure

jumps, values of c+, the Y -shift and the lift are given in tables 7.3 and 7.4

and show similar behaviour to that discussed earlier in this section.

7.6 Summary

This concludes our discussion on the interactive many-blade limit with a

global angle of attack. In Chapter 5, we introduced the interactive limit as

seen in Bowles & Smith (2000a,b). At large downstream distances x =

O(Re3/5) a new feature arises whereby a pressure gradient is supported

throughout the sublayer, in contrast to the non-interactive limit in Chap-

ter 4. We outlined a numerical procedure to solve the condensed sublayer

problem and found solutions in a different way to Bowles & Smith (2000a,b).

In Chapter 6, we extended the interactive limit of Chapter 5 to include

a global angle of attack. We sought the smallest global angle of attack that

causes a leading order change to the flow within the sublayer and found this

is the case when α = O(Re−1). Analysis of the problem revealed that the
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global angle of attack parameter ᾱ appeared within the sublayer boundary

conditions, causing a constant vertical shift of the blade within the sublayer.

Numerical solutions were found for the condensed case, as seen in Chapter 5

and Bowles & Smith (2000a,b) to find solutions for various values of ᾱ and

different blade geometries.

In this chapter, we found larger global angles of attack that preserve

the overall structure of the interactive many-blade limit but cause leading

order changes to the bulk-layer and free-stream. We found that an angle

α = O(Re−4/5) was sufficient to cause a shift of the whole sublayer within

the bulk-layer. The sublayer and free-stream problems in this case were

given by those in Chapter 5, whilst the bulk-layer problem was found to be

governed by a Prandtl shifted mean Blasius flow at leading order.

A leading order change to the free-stream problem occurred when α =

O(Re−3/5), whereby the whole boundary-layer system was shifted to a posi-

tion y = ᾱ within the free-stream. The bulk-layer and sublayer solutions were

unchanged from that of Chapter 5, but the analysis for the free-stream had to

be adapted to allow for the change in normal position of the boundary-layer.

We used Cauchy’s integral formula to derive slightly different equations for

v and p away from y = ᾱ compared to Chapter 5. On considering a point

lying on y = ᾱ, we found that the same pressure-displacement laws held, as

derived in Chapter 5.

Finally, we considered a short scale balance between the normal sublayer

coordinate and the global angle of attack, yielding α = O(Re−2/5). Al-

though the same structure of the boundary-layer still holds, we found that

the presence of ᾱ now appears directly in the matching conditions for V in

the bulk-layer and hence the free-stream. Numerical solutions to this prob-

lem using the same methods used in Chapters 5 and 6 were found and a

discussion was given of the most interesting features of the flow, including

increased pressure differences over the blades in the case of flat and angled

blades and separation features in the case of thick blades.

An extension to the work would be to investigate the flow behaviour if c±

were unequal. In the numerical solutions presented throughout Chapters 5,

6 and 7, we arbitrarily took these to be equal. However, if c+ (say) is used
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to gain pressure periodicity, then c− would be unknown, and hence another

condition to determine c− would need to be found. A possible resolution to

this problem could be to simply impose a value for the constant c− ansatz

and find a value of c+ to obtain periodicity based on a choice of c−. Another

option is to find solutions, in the same way as Bowles & Smith (2000b),

where the constants c± are fixed and the problem then becomes finding the

correct local angle of attack such that a periodic solution occurs. A way to

extend their method to the numerical procedure in this chapter would be

to fix c± and the local non-symmetries and find the (now unknown) value

of ᾱ required to obtain a periodic solution. This could be regarded as the

inverse of the method used in this thesis. A further extension is to develop

a stable numerical scheme to calculate solutions to the full sublayer problem

including the pressure-displacement laws.





Chapter 8

Flow past vertically aligned

blades within a channel

8.1 Introduction

In this chapter, we consider an array of N vertically aligned blades within

a bounding horizontal channel, subject to a uniform oncoming stream. The

motivation for this chapter arises in aeronautical applications, such as gas

turbine and atomizer flows appearing in the combustors of jet engines and

the accompanying need to reduce pollutants (see Cohen et al. (1972) and

Lefebvre (1999)). Furthermore, in axial fan flows such as those above, there

is a need to reduce noise, as mentioned in Chapter 1. Further applications

are motivated in physiological flows, such as blood flow past a cerebral arte-

riovenuous malformation (AVM). Such flows are investigated experimentally

by, for example, Marks et al. (1992) and Diehl et al. (1995) by measuring

velocity and volume flow rates. An AVM occurs when a large artery or vein

rapidly branches into many smaller blood vessels raising health concerns of

stroke. Thus, it is important to understand the flow behaviour in such ap-

plications in order to combat these problems.

Smith (2002) considers the symmetric wake flow at the trailing edges of an

array of vertically aligned blades in both external and internal flow problems,

as a theoretical investigation into the gas turbine flows mentioned above.

An internal wake is bounded within a larger channel, whilst the external

wake is open to the free-stream flow. The normal scale in y is taken to be

183
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much smaller than the streamwise extent in x, leading to a boundary-layer

formulation of the problem at leading order. For the external wake, a semi-

periodic flow is specified at the start of the wake, composed of Pouseuille-like

flow at the exit of each daughter channel with a Blasius solution above the

uppermost blade. The periodic nature of the Pouseuille flows at the trailing

edge holds for a very short distance downstream of the trailing edges, before

fluid is entrained into the central parts of the wake. Then, the parabolic

nature of the Pouseuille flows decay downstream to a uniform state, different

from unity. In the internal wake problems, the pressure is non-zero at leading

order within the wake and a new, laterally periodic flow problem is derived.

It is found that a similar uniform state emerges downstream in the wake,

with exponential decay of the starting periodic flow into the uniform state.

Influences of a non-symmetric starting profile were also addressed. In this

case, suitable boundary conditions were applied to force a periodic flow to

emerge downstream. It was found that the normal flow component quickly

decays to zero downstream, leading to a zero pressure gradient and a terminal

form for the streamwise flow component.

Smith & Jones (2000) consider flow branchings as an application to AVM

modelling. They investigate the flow close to the entry of the smaller daugh-

ter channels from the larger mother channel. The nature of the flow close

to the entrances of the daughter channels is essentially inviscid, other than

for the onset of a small boundary-layer close to the dividing surfaces. So-

lutions to the leading order problem (governed by Laplace’s equation) are

found subject to specified fluxes in each daughter channel. Smith & Jones

(2003) extends the above work to accomodate a generalised upstream veloc-

ity profile in the mother channel. Numerical solutions to the problem are

found far downstream inside each daughter for various numbers of daughter

channels and approaching velocity profiles. In the non-linear formulation, it

was found that non-unique solutions existed.

Three-dimensional analysis of a dividing artery is considered by Blyth

& Mestel (2001), by considering an infinite straight pipe of circular cross-

section, divided longitudinally by a semi-infinite flat plate. This study re-

considers the work of Smith (1977). The flow structure is divided into five



8.1 Introduction 185

regions, an inviscid core, a base boundary-layer close to the splitter plate,

a viscous wall layer and two corner regions between the dividing plate and

the sides of the pipe. An asymptotic approach is adopted in each region,

followed by numerical solution for the main inviscid core problem. Solutions

for all values of x in the daughter channels were then found, except within

the corner regions.

Other related works include Smith et al. (2003), Bowles et al. (2005) and

most recently, Smith & Ellis (2010). The latter paper gives rise to another

application, in the sorting of grains of rice falling down a chute. As rice

descends down a chute, strong puffs of air blow bad grains of rice into a

discarding container. If the grains can be sorted appropriately on the chute,

then, when a bad grain of rice is detected, greater success should be achieved

in removing them. The grains of rice are modelled as thin bodies that are

able to move freely within a long bounding channel. The model developed

allows for unsteady interactions, with a main result being the appearance of

a linear instability in the solution.

Within the applications outlined above, there has been emphasis on the

flow close to the daughter entrances and in the wake but not on, for exam-

ple, the flow within each daughter, subject to non-symmetric dividing blade

shapes and various incoming flow profiles, the determination of fluxes enter-

ing each daughter and the flow past the array of N blades as a whole. In

this chapter, we consider the flow past the system of blades in its entirety

and answer some of the questions posed above. We do this by formulating

and solving the whole flow problem, from upstream of the blades, through

all the daughter channels and in the wake. This will extend knowledge into

the gas turbine and AVM modelling applications above. For the latter ap-

plication, we will be able to predict theoretically the response of the fluid

through an array of dividing capillaries, before they rejoin into one artery or

vein downstream.



186 Flow past vertically aligned blades within a channel

x = O(1)

y
=
O

(R
e−

1
/
2
)

x

Y

U = 1

x = l

1

2

3

4

5

6

Y = 0

Y = H

O

Figure 8.1: Problem illustration with N = 5 dividing blades in a non-symmetric
configuration. The daughter channels from one to six are labelled. The coordinate
of the nth leading edge is taken as (0, hn).

8.2 Formulation

In our problem, N dividing blades of finite length are placed within an infinite

channel, giving rise to M = N + 1 daughter channels. The length of the

blades are taken to be x = O(1). We take the bounding channel width to be

y = O(Re−1/2), and so we define a normal coordinate, Y = O(1), within the

mother channel where y = Re−1/2Y . All of the leading and trailing edges of

the N blades will be taken to lie at x = 0 and x = l respectively and the

flow upstream of the blades is given by U = 1, V = 0, P = 0.

The position of the nth leading edge is taken to lie at a position (x, Y ) =

(0, hn), n = 1, . . . , N , within a channel of width H and where the parameters

hn > 0 and 0 < hi < hj for i < j. The channel width, H , is taken such that

H > hN so that all dividing blades lie within the channel. Physically, the

problem is equivalent to the array of blades moving through still air within

the channel. Our aim is to describe how the flow adapts as it approaches

and passes through the daughter channels and in the wake of the dividing

blades.
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8.2.1 Expansions within the main pipe

The oncoming flow velocity U = O(1) and so by continuity and the scales

of the streamwise and normal coordinates, we have that V = O(Re−1/2).

Consequently, we expand the velocities and pressure in the pipe as

U = u(x, Y ) + · · · , (8.1)

V = Re−
1

2v(x, Y ) + · · · , (8.2)

P = p(x, Y ) + · · · , (8.3)

and substitution into the Navier-Stokes equations yields the boundary-layer

equations at leading order

u
∂u

∂x
+ v

∂u

∂Y
= −∂p

∂x
+
∂2u

∂Y 2
, (8.4)

0 = − ∂p

∂Y
, (8.5)

∂u

∂x
+
∂v

∂Y
= 0, (8.6)

and by integrating (8.5), we obtain p = p(x). The boundary conditions for

the problem are given by

u = 1, v = 0 on Y = 0 and Y = H , ∀x (8.7)

u = v = 0 on Y = fn(x), n = 1, . . . , N , 0 < x < l (8.8)

representative of the no-slip and impermeable boundary conditions on the

dividing blades and bounding channel walls. Here, fn(x) is a function that

represents any shape or camber on the nth blade. Upstream of the blades

and as x→ 0−, the solution is given by

u = 1, v = 0, p = 0. (8.9)

The flow must satisfy the Kutta trailing edge condition, requiring

p(l) = p∗, (8.10)

where p∗ is an unknown constant. If there are N different shape functions

fn representing the N blades, then the pressures in the M = N +1 daughter

channels are not equal since the pressure gradient depends on the channel
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geometry. Hence, the Kutta condition is not satisfied in general. This indi-

cates that there is a leading edge discontinuity, akin to that in Chapters 2

and 5, allowing the flow velocity and pressure to jump to satisfy the Kutta

condition. As flow passes through the leading edge region, the flow must

jump from u = 1, v = 0, p = 0 upstream to N + 1 different starting condi-

tions, one per daughter channel. The magnitude of the jumps is determined

by the unknown p∗ in equation (8.10).

8.3 Flow discontinuity region

The discontinuity region spans all the leading edges in a small neighbourhood

around x = 0. A similar leading edge region appears in the work by Bowles

& Smith (2000b) and Jones & Smith (2003), as well as earlier in this thesis

in Chapters 2, 5, 6 and 7.

8.3.1 Expansions and formulation

The y coordinate is O(Re−1/2) as the normal extent of the region must span

all the leading edges and U = O(1) due to the oncoming flow to the region.

As in Chapter 2, we let x → 0 as flow approaches the leading edges and on

examining the normal momentum equation, the inertial forces balance with

the pressure gradient when x = O(Re−1/2). Thus by continuity, V = O(1)

in this region and the expansions take the form

U = ū(X, Y ) + · · · , (8.11)

V = v̄(X, Y ) + · · · , (8.12)

P = p̄(X, Y ) + · · · , (8.13)

as seen previously. Here, we have defined the new x coordinate in the re-

gion, X = O(1), where x = Re−1/2X. Substitution into the Navier Stokes

equations yields the inviscid Euler equations at leading order. We note that

within the region, all blades appear as semi-infinite dividers within an in-

finite channel. As in Chapter 2, thin boundary-layers are created due to

the no-slip conditions occuring on each blade surface for X > 0. These

boundary-layers are of thickness O(Re−3/4), much thinner than the normal
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Figure 8.2: Illustration of N = 4 dividing blades in the discontinuity region.
The flow speed jumps to ucm in the mth channel and will be different in general for
each.

scale of each daughter channel (of O(Re−1/2)) and further discussion of these

boundary-layers is not given. Instead, we concern ourselves with the leading

order inviscid problem past N blades.

The flow entering the leading edge region from upstream (as X → −∞)

is given by the uniform flow ū = 1, v̄ = 0, p̄ = 0. Since the flow is inviscid to

leading order, by Bernoulli’s equation we have that on every streamline

p̄+
1

2
(ū2 + v̄2) =

1

2
, (8.14)

throughout the region. The vorticity ω, in the region is given by

ω =
∂v̄

∂X
− ∂ū

∂Y
, (8.15)

and since the approaching flow is uniform, upstream of the blades ω = 0. The

Cauchy-Lagrange theorem (Acheson (1990)) states that the vorticity retains

the same value for all X in the region and hence ω = 0 everywhere. Defining

the streamfunction in the leading edge region as

ū =
∂ψ

∂Y
, v̄ = − ∂ψ

∂X
, (8.16)

and by substituting (8.16) into (8.15), the governing equation for the stream-

function is given by Laplace’s equation

∇2ψ = 0. (8.17)
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The boundary conditions on each blade are given by ψ = ψk = constant,

where ψk is a streamline representing the kth blade surface for X > 0 (0 ≤
k ≤ N + 1). We define the two cases k = 0 and k = N + 1 to be the

lower and upper walls of the mother channel respectively. The values of

ψk are determined by downstream flux considerations within each daughter

channel. Since the incoming flow is uniform, as X → ∞ the velocities and

pressure in the mth daughter channel are given by

ūm → ucm, v̄m → 0, p̄m → pcm. (8.18)

The values ucm and pcm are unknown constants at this stage, but may be fixed

by N + 1 downstream flux constraints. As X → ∞, Bernoulli’s equation

(8.14) says that the velocity and pressure jumps in the mth daughter channel

are related by

ucm =
√

1 − 2pcm. (8.19)

Hence, the values of ψk are given by

ψk =



















0 for k = 0, ∀X,

uck(hk − hk−1) + ψk−1 for k = 1, . . . , N , X > 0,

H for k = N + 1, ∀X.

(8.20)

To find the streamfunction ψ, we first write it in the form

ψ(X, Y ) = Y + Ψ(X, Y ), (8.21)

and find the O(1) disturbance streamfunction Ψ(X, Y ). By substitution, Ψ

satisfies Laplace’s equation and must be solved subject to

Ψk =



















0 for k = 0, ∀x,
hk(u

c
k − 1) − hk−1 + ψk−1 for k = 1, . . . , N , x > 0,

0 for k = N + 1, ∀x.

(8.22)

To find Ψ, we employ a conformal mapping technique. Let the Z-plane

represent the leading edge region with Z = X + iY . We use the Schwarz-

Christoffel technique (see Carrier et al. (1966)) to map the upper half χ-plane,

with χ = ξ + iζ , onto the leading edge geometry. The Schwarz-Christoffel

transformation maps the upper half χ-plane onto a T = 2N+2 sided polygon

by

Z = f(χ) = A∗

∫ T
∏

k=1

(χ− χ̄k)
θk
π
−1 dχ+B∗, (8.23)
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Figure 8.3: Conformal mapping of the χ-plane onto the Z-plane with N = 2.
The labels A-F are the vertices of the polygon in the Z-plane with corresponding
points A’-F’ in the χ-plane. The positions λ1, λ2 and δ are the two leading edge
points and one other downstream end points respectively, whose position in the
χ-plane is unknown. The points B’-F’ satisfy −1 < λ1 < δ < λ2 < 1.

where A∗ and B∗ are complex constants. The values χ̄k are the positions of

the vertices of the polygon in the χ-plane with θk the corresponding angle in

the Z-plane.

8.3.2 Derivation for the case N = 2

As an illustration of the leading edge region solution, we find the Schwarz-

Christoffel transformation for the case N = 2 explicitly. We first consider

the leading edge geometry as a degenerate polygon (as in figure 8.3) and we

take the limit

θ1, θ2, θ4, θ6 → 0, θ3, θ5 → 2π, (8.24)

to produce our desired leading edge geometry. We choose the upstream point

A in the Z-plane to lie at ξ = −∞ and furthermore, we take the downstream

ends of the daughter channels m = 1 and m = 3 (points B and F) to lie

at the points (−1, 0) and (1, 0) in the χ-plane respectively. On substitution

into the transformation equation (8.23), finding partial fractions and then

integrating, we have that

g(χ) = B∗ −A∗(aLn(χ+ 1) + bLn(χ− δ) + cLn(χ− 1)), (8.25)
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where Ln denotes the principal branch of the complex logarithm. The con-

stants a, b, c are given by

a =
(1 − λ1)(λ2 − 1)

2(δ − 1)
, (8.26)

b =
(δ − λ1)(δ − λ2)

(δ + 1)(δ − 1)
, (8.27)

c =
(1 + λ1)(1 + λ2)

2(δ + 1)
. (8.28)

We use the conditions that f(χ) → ∞ as χ → −1 and g(χ) → ∞ + iH as

χ → 1 to determine values for A∗ and B∗ up to a real constant, BR. The

transformation then takes the form

g(χ) = BR +Hi− H

π
(aLn(χ+ 1) + bLn(χ− δ) + cLn(χ− 1)). (8.29)

The next task is to find the constants a, b, c. To do this, we evaluate ℑ(g) on

each blade surface and map the intervals (−1, δ) and (δ, 1) in the χ-plane to

ℑ(g) = h1 and ℑ(g) = h2 respectively. We first find that c = (H−h2)/H and

then b = (h2 − h1)/H . The partial fractions in the original transformation

give us that the sum a+ b+ c = 1, hence a = h1/H . It is now convenient to

define the channel width of the mth daughter as

h̄m = hm − hm−1, (8.30)

so that the conformal mapping is given by

g(χ) = BR +Hi− 1

π
(h̄1Ln(χ+ 1) + h̄2Ln(χ− δ) + h̄3Ln(χ− 1)). (8.31)

Finally, we must find the positions of λ1, λ2 and δ in the χ-plane. In the

Z-plane, we require that the leading edges line-up exactly. We consider the

quantity

|χ+ 1|h̄1|χ− δ|h̄2|χ− 1|h̄3, (8.32)

which is the argument in the summation of the logarithms upon taking the

real part of (8.31). The constant BR is temporarily dropped. This constant

will act as a horizontal shift of the leading edges within the Z-plane, so that

the nth leading edge has coordinates (X, Y ) = (0, hn). Let

g1(λ1, δ) = (λ1 + 1)h̄1(δ − λ1)
h̄2(1 − λ1)

h̄3 , (8.33)

g2(λ2, δ) = (λ2 + 1)h̄1(λ2 − δ)h̄2(1 − λ2)
h̄3 , (8.34)
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be theX position in the Z-plane of each leading edge. By finding the maxima

and minima of g1 and g2, we will find the positions λ1(δ) and λ2(δ) which

when mapped back to the Z-plane correspond to the position of each leading

edge. We differentiate g1 and g2 with respect to λ1 and λ2 respectively and

find that λ1 and λ2 are given by the solution of the quadratic equations

h̄1(δ − λ1)(1 − λ1) − h̄2(λ1 + 1)(1 − λ1) − h̄3(λ1 + 1)(δ − λ1) = 0,

(8.35)

h̄1(λ2 − δ)(1 − λ2) + h̄2(λ2 + 1)(1 − λ2) − h̄3(λ2 + 1)(λ2 − δ) = 0.

(8.36)

Once solved, we can substitute for λ1 and λ2 in (8.33) and (8.34), followed

by subtracting (8.33) - (8.34) to reveal one equation to determine δ. Once

δ is found, we can then determine λ1 and λ2. The real constant BR may

be found by substituting either λ1 or λ2 into ℜ(g) = 0. For example, if we

choose to substitute for λ1, then

BR =
1

π

{

h̄1ln (λ1 + 1) + h̄2ln (δ − λ1) + h̄3ln (1 − λ1)
}

. (8.37)

For arbitrary values of h̄1, h̄2 and h̄3 a numerical approach is needed to

determine the value of δ. However, if all the channel widths are equal, an

explicit solution for δ can be found.

8.3.3 The special case h̄1 = h̄2 = h̄3 = h̄

In the special case of equal channel widths, we may take out a common factor

h̄ from (8.31) and replace equations (8.33) and (8.34) by

g∗1(λ1, δ) = (λ1 + 1)(δ − λ1)(1 − λ1), (8.38)

g∗2(λ2, δ) = (λ2 + 1)(λ2 − δ)(1 − λ2). (8.39)

The equations for λ1 and λ2 are still given by (8.35) and (8.36), but with h̄m

replaced by unity for all m. The solutions to these quadratic equations are

given by

λ1(δ) =
δ

3
±
√

δ2 + 3

3
, (8.40)

λ2(δ) =
δ

3
∓
√

δ2 + 3

3
. (8.41)
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In either case, the choices for λ1 and λ2 are the same. We must take

λ1(δ) =
δ

3
−
√

δ2 + 3

3
, (8.42)

λ2(δ) =
δ

3
+

√

δ2 + 3

3
, (8.43)

to satisfy the ordering λ1 < δ < λ2 in the χ-plane. To determine the value of

δ, these equations are substituted into g∗1 − g∗2 = 0, which gives the equation

4

3
δ

(

δ2

9
− 1

)

= 0, (8.44)

for δ. Hence, δ = 0,±3 of which only δ = 0 is permissable. With δ = 0, we

have λ1 = −
√

3/3, λ2 =
√

3/3 and the conformal mapping from the upper

half χ-plane to the leading edge geometry in the Z-plane is given by

g(χ) = BR +Hi− h̄

π
{Ln(χ+ 1) + Ln(χ) + Ln(χ− 1)} , (8.45)

for equal daughter channel widths. Substituting λ2 into ℜ(g) = 0, we find

the constant BR is given by

BR =
h̄

π

{

ln

(√
3

3
+ 1

)

+ ln

(√
3

3

)

+ ln

(

1 −
√

3

3

)}

. (8.46)

8.3.4 Generalisation for N dividing blades

The method outlined above is extendable to the case of having N divid-

ing flat blades using the Schwarz-Christoffel transformation. We choose the

downstream ends of daughters m = 1 and m = N + 1 to lie at χ = −1 and

χ = 1 in the χ-plane respectively. Thus, we have N − 1 unknown positions

δj on the real χ-plane axis, representing the remaining N − 1 downstream

ends of the daughter channels. Further, we will need to find the positions of

the N leading edges λn. Applying the Schwarz-Christoffel mapping, finding

the partial fractions in the integrand and then integrating, we find

g(χ) = B∗ −A∗

N+1
∑

m=1

amLn(χ− δm), (8.47)

where A∗ and B∗ are constants to be determined and am are constant co-

efficients. The values of A∗ and B∗ are found in the same way as before,

revealing very similar results. Next, the co-efficients am may be determined



8.3 Flow discontinuity region 195

using the same recursive method as before, by first determining aN+1 then

all subsequent am. The final co-efficient to be determined is a1 and is found

by the result
N+1
∑

m=1

am = 1, (8.48)

arising from the calculation of the partial fractions in the Schwarz-Christoffel

transformation. We find that

am =
h̄m
H
, (8.49)

and hence the conformal mapping is given by

g(χ) = BR +Hi− 1

π

N+1
∑

m=1

h̄mLn(χ− δm). (8.50)

To find the values of δm we apply the condition that the leading edge

positions, when mapped back to the Z-plane have the same real part, so

they all line-up. We define N functions as the argument in the summation

of the logarithms on taking the real part of (8.50), evaluated at each leading

edge position λn as

gn(λn, δ1, . . . , δN+1) =
n
∏

m=1

(λn − δm)h̄m

N+1
∏

m=n+1

(δm − λn)
h̄m , (8.51)

and seek the maxima and minima of each gn to find λn = λn(δ1, . . . , δN+1).

The maxima and minima of each gn, are given by the roots of the polynomial

N+1
∑

k=1

N+1
∏

m=1,m6=k

h̄k (λn − δm) , (8.52)

and notice that by changing the value of n changes only λn. This means that

we can choose any particular value of n and find the roots of this order N

polynomial equation for a given set of δm values. By then substituting the

nth root λn into gn, we determine N − 1 equations for the N − 1 unknowns

δ2, . . . , δN by evaluating

gn − gn−1 = 0, for n = 2, . . . , N. (8.53)

By solving all N − 1 equations above will give us the unknown values of δm

and upon substitution of these values into (8.52) we may find the values of

λn.
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We adopt an iterative numerical approach to find the values of δm and

λn. Firstly, the values of δm on the real χ-plane are guessed and with given

channel widths h̄k, the roots of equation (8.52) are found using Newton’s

method for the corresponding values of λn. Next, a test is carried out to see

if the leading edges of the blades line-up. We choose a reference blade, n = 1

say, and force all other leading edges to line up with the reference blade’s

leading edge by evaluating |gn− g1| at λn for all n. If |gn− g1| < 10−7 for all

n, then the solution has converged and the values of λn and δm are found.

If not, the values of δm are updated and we repeat the whole process above

until convergence is achieved. Lastly, we substitute any chosen value of λn

into ℜ(g) = 0 to determine BR.

8.3.5 The solution for Ψ

With a suitable conformal mapping found, we can find Ψ for general N .

To recall, we must solve Laplace’s equation for Ψ, subject to the boundary

conditions (8.22). This gives us an (N + 1)-valued Dirichlet problem for the

streamfunction in the upper half plane. From the work of Mathews & Howell

(2001), we can immediately write down the solution for Ψ in the upper half

plane as

Ψ(ξ, ζ) =
N+1
∑

m=1

(Ψm − Ψm−1) arctan

(

ζ

ξ − δm

)

, (8.54)

choosing 0 < arctan{ζ/(ξ − δj)} < π. With Ψ known for all values of ξ and

ζ in the χ-plane, the solution is mapped back to a point in the leading edge

geometry Z = X + iY through the relations

X = BR − 1

π

N+1
∑

m=1

h̄m ln
(

(ξ − δm)2 + ζ2
) 1

2 (8.55)

Y = H − 1

π

N+1
∑

m=1

h̄m arctan

(

ζ

ξ − δm

)

, (8.56)

and hence the total streamfunction is defined implicitly in the Z-plane as

ψ(X, Y ) = Y +

N+1
∑

m=1

(Ψm − Ψm−1) arctan

(

ζ

ξ − δm

)

. (8.57)
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(a) H = 2, h̄1 = h̄2 = 1.
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(b) H = 3, h̄1 = 1, h̄2 = 2.

Figure 8.4: Two leading edge region solutions found for the case N = 1. In (a)
we choose ψ1 = 1.1 and (b) ψ1 = 2.

8.4 Leading edge results

We now present some solutions to the leading edge problem, by choosing

the downstream fluxes in each daughter channel. In the full problem, these

fluxes (and hence the full flow solution) are determined by the Kutta condi-

tion. To enforce conservation of mass in the leading edge region, we choose

downstream fluxes in each daughter channel, such that their sum is equal to

H . We may vary the number of dividers N , the total channel width H , and

the daughter channel widths h̄m.

8.4.1 The case N = 1

In Figure 8.4(a), we present a solution in which the main channel is split

equally by one divider (N = 1), with near equal fluxes entering each channel.

The downstream fluxes are deliberately chosen to show that when the fluxes

are nearly equal, very little deflection of the streamlines occurs throughout

the region. In Figure 8.4(b), the downstream flux in the bottom daughter

channel 1 of width h̄1 = 1 is much greater than daughter channel 2, of width

h̄2 = 2. We clearly see a much larger deflection of the incoming streamlines.

In finding solutions to the N = 1 problem, no downstream ends need be

found in the conformal mapping. We find the position of the leading edge in

the χ-plane, λ, is given by

λ = −H − 2h1

H
, (8.58)
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(b) H = 3, h̄j = 1, ∀j.
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(c) H = 7, h̄1 = 2, h̄2 = 1, h̄3 = 4.
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(d) H = 12, h̄1 = 6, h̄2 = 2, h̄3 = 4.

Figure 8.5: Leading edge region solutions found for the case N = 2. The chosen
values of (ψ1, ψ2) are in (a) (0.5, 2.2), (b) (0.3, 0.6), (c) (1, 4) and (d) (8.1, 1).

so that, for example, in figures 8.4(a) and 8.4(b), λ = 0 and λ = −1/3

respectively.

8.4.2 The case N = 2

Figure 8.5 presents four leading edge solutions for various values of H and

differing daughter channel widths h̄m. In figures 8.5(a) and 8.5(b), the chan-

nel widths are equal and the fluxes chosen to show similar behaviour of

the streamlines as the previous subsection. Figure 8.5(b) has the greatest

streamline deflection since 80% of the incoming flow is forced through the

top channel. In figures 8.5(c) and 8.5(d), we choose different daughter chan-

nel widths and present solutions for two particular cases. In figure 8.5(c),

we force 4/7ths of the flow through one daughter channel whose width is

only 1/7th of the total pipe width. Flux constraints within the daughters

cause some of the streamlines to reverse and enter a different channel in the

leading edge region. In Figure 8.5(d) we restrict the flow that enters the
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N δm λn
1 - 0
2 0 0.5774
3 0.4142 0.7654, 0
4 0.6180, 0 0.8507, 0.3249
5 0.7321, 0.2679 0.8966, 0.5176, 0
6 0.8019, 0.4450, 0 0.9241, 0.6395, 0.2282
7 0.8478, 0.5665, 0.1989 0.9420, 0.7210, 0.3902, 0
8 0.8794, 0.6527, 0.3473, 0 0.9542, 0.7779, 0.5077, 0.1763
9 0.9021, 0.7159, 0.4596, 0.1584 0.9629, 0.8191, 0.5951, 0.3129, 0

Table 8.1: The positive values (to 4 s.f.) of all downstream end positions δm and
leading edge positions λn in the χ-plane for the case h̄m = h̄,∀m. The negative
values of δm and λn are given by −δm and −λn in each case.

second daughter. Most of the diverted flow inbound to the second daughter

is deflected so that it passes through the first daughter. In figure 8.5(c),

the trailing edge position is δ2 = −0.3007 and the leading edge positions

are λ1 = −0.6334 and λ1 = 0.08992 and in figure 8.5(d), δ2 = 0.1770,

λ1 = −0.2452 and λ1 = 0.5594 to four significant figures.

8.4.3 Cases of N > 2

For an arbitrary value of N , the first task is to find the positions of the N

leading edges λn and N −1 unknown downstream ends δm, in the upper half

χ-plane. We tabulate the values found for equal daughter channel widths for

N ≤ 9 in table 8.1.

The leading edge flow for increasing N becomes more complicated for

various downstream channel fluxes, but we observe behaviour of the stream-

lines similar to that in the previous subsections. Deflections of the incoming

streamlines into a daughter channel (which allows more fluid to enter) are

visible in figure 8.6.
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(c) N = 7.
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(d) N = 9.

Figure 8.6: Leading edge region solutions found for cases of N > 2. In each case,
the daughter channel widths are taken as h̄j = 1 and H = N+1. The chosen values
of (ψ1, . . . , ψN ) are, in (a) (0.5, 1, 3), (b) (1, 3.5, 4, 4.5, 5), (c) (1, 1.5, 2, 5, 6, 6.5, 7)
and (d) (1, 1.2, 1.4, 1.6, 6.6, 7.4, 7.9, 8, 9).

8.5 Numerical Solution of the full problem

To find the solution of the full problem, we must solve the boundary-layer

equations

u
∂u

∂x
+ v

∂u

∂Y
= −dp

dx
+
∂2u

∂Y 2
, (8.59)

∂u

∂x
+
∂v

∂Y
= 0, (8.60)

subject to

u = 1, v = 0 on Y = 0 and Y = H , ∀x, (8.61)

u = v = 0 on Y = fn(x), n = 1, . . . , N , 0 < x < l, (8.62)

and the Kutta condition

pm(l) = p∗, (8.63)

where the unknown constant p∗ is to be determined such that the total flux in

all the channels is equal to H . We shall solve the equations in each channel
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and wake using a finite-difference method, similar to the method used in

Chapters 2-4, by solving the equations on a regularly spaced grid. To do

this, a transformation is needed which maps a computational domain with

flat channel walls to the real geometry of a daughter channel.

8.5.1 Transformation for each daughter channel

We choose a particular daughter channel, m, and define the functions f =

fm−1, g = fm to represent the lower and upper daughter channel walls, re-

spectively. The computational domain has flat walls at ζ = 0 and ζ = 1 and

coordinates (ξ, ζ). If the velocity and pressure components u = um(x, Y ), v =

vm(x, Y ) and p = pm(x) in the daughter channel, then we require x = x(ξ, ζ)

and y = y(ξ, ζ) to map the flow solution back from our computational domain

to the real daughter channel geometry.

To find the transformed boundary-layer equations to be solved in the

computational domain, we need to evaluate the x and Y partial derivatives.

A suitable map from the computational space to the actual daughter channel

geometry is

x = ξ, (8.64)

Y = (g(ξ)− f(ξ))ζ + f(ξ). (8.65)

Firstly, the derivative with respect to ζ in computational space is given by

∂

∂ζ
=

∂

∂x

∂x

∂ζ
+

∂

∂Y

∂Y

∂ζ
. (8.66)

We can easily find all the partial derivatives

∂x

∂ζ
= 0,

∂x

∂ξ
= 1, (8.67)

∂Y

∂ζ
= g(ξ)− f(ξ)

∂Y

∂ξ
= (g′(ξ) − f ′(ξ))ζ + f ′(ξ), (8.68)

so that by substitution and rearrangement, we have

∂

∂Y
=

1

g(ξ) − f(ξ)

∂

∂ζ
. (8.69)

To find the second derivative with respect to Y , (8.66) is differentiated with

respect to ζ , and in a very similar way, we find

∂2

∂Y 2
=

1

(g(ξ)− f(ξ))2

∂2

∂ζ2
. (8.70)



202 Flow past vertically aligned blades within a channel

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

ξ

ζ

(a) (ξ, ζ) space.

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

X

Y

(b) (x, Y ) space.

Figure 8.7: Illustration of mapping a regularly spaced grid from (a) the compu-
tational space to (b) the actual daughter channel geometry. Here, g(x) = f(x) = 0
except for |x| ≤ 1, where g(x) = 6 − 2.8(1 − x2)2 and f(x) = 0.8(1 − x2)2.

We next consider the derivative with respect to ξ

∂

∂ξ
=

∂

∂x

∂x

∂ξ
+

∂

∂Y

∂Y

∂ξ
, (8.71)

and substituting for the derivatives of xξ and yξ from above

∂

∂ξ
=

∂

∂x
+

(g′(ξ) − f ′(ξ))ζ + f ′(ξ)

g(ξ)− f(ξ)

∂

∂Y
. (8.72)

We then substitute equation (8.66) for the Y derivative, and rearranging, we

find
∂

∂x
=

∂

∂ξ
− (g′(ξ) − f ′(ξ))ζ + f ′(ξ)

g(ξ)− f(ξ)

∂

∂ζ
. (8.73)

Using the transforms of the derivatives above, in computational space the

momentum equation is given by

u

(

∂u

∂ξ
− (g′(ξ) − f ′(ξ))ζ + f ′(ξ)

g(ξ)− f(ξ)

∂u

∂ζ

)

+
1

g(ξ) − f(ξ)
v
∂u

∂ζ
= (8.74)

− dp

dξ
+

1

(g(ξ) − f(ξ))2

∂2u

∂ζ2
,

whilst the continuity equation is given by

(g(ξ) − f(ξ))
∂u

∂ξ
− {(g′(ξ) − f ′(ξ))ζ + f ′(ξ)} ∂u

∂ζ
+
∂v

∂ζ
= 0. (8.75)

The boundary conditions to be solved in each channel are given by

u = v = 0 on ζ = 0 and ζ = 1, (8.76)
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except in channels 1 and N + 1, where we have u = 1 on ζ = 0 and u = 1 on

ζ = 1 respectively. The starting condition in the mth channel is still given

by

u = ucm, v = vcm, p = pcm, (8.77)

which is to be found as part of the solution. Later, we will need to find the

flux in each daughter channel. In computational space, this may be evaluated

at any position ξ = constant through the relation

q = (g(ξ) − f(ξ))

∫ 1

0

u(ξ, ζ)dζ. (8.78)

The boundary-layer equations do not need to be transformed within the

wake, since there are flat bounding walls at Y = 0 and Y = H . We will

discuss how to join the two regions later.

8.5.2 Discretisation in the daughters

The computational grid has spacings ∆ξ and ∆ζ in the ξ and ζ directions

respectively, so that the ith, jth grid point (ξi, ζj) = (i∆ξ, j∆ζ). Within the

daughter channels, we use three-point backward differences in ξ and centred

differences for all ζ derivatives. In discretised form, the momentum equation

(8.74) becomes

uji−1

(

3uji − 4uji−1 + uji−2

2∆ξ
−K(ξi, ζj)

uj+1
i − uj−1

i

2∆ζ

)

+ L(ξi)v
j
i−1

uj+1
i − uj−1

i

2∆ζ

=
3pi − 4pi−1 + pi−2

2∆ξ
+ L2(ξi)

uj+1
i − 2uji + uj−1

i

(∆ζ)2
,

(8.79)

where the functions K and L are defined as

K(ξi, ζj) =
(g′(ξi) − f ′(ξi))ζj + f ′(ξi)

g(ξi) − f(ξi)
, L(ξi) =

1

g(ξi) − f(ξi)
. (8.80)

The discretised continuity equation is

1

L(ξi)

(

3uji − 4uji−1 + uji−2

2∆ξ

)

− K(ξi, ζj)

L(ξi)

uj+1
i − uj−1

i

2∆ζ
+
vj+1
i − vj−1

i

2∆ζ
= 0.

(8.81)

These equations are second order accurate in both ξ and ζ and are used to

find the solution at (ξi, ζj) in each daughter channel. For a particular ξi, the
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solution for the flow between the wall and the blade is found in a similar way

to Chapter 2. For a given value of pi, equation (8.79) is rearranged into a

tridiagonal system for u followed by solution using a Thomas algorithm. The

normal velocity v is obtained afterwards using (8.81). The unknown value

of pi is determined by forcing the the computed values of v across the centre

of the channel to be equal to within a tolerance ǫ1 = 10−10. The value for

pi is updated at each xi using a secant method until the tolerance is met.

Typically, only four or five iterations of the value of pi were needed. This

procedure is used for all ξi in each daughter channel, except at ξ1. Here,

the ξ derivatives, apperaring in the discretised equations (8.79) and (8.81),

must be adapted to be able to solve the equations at ξ1. At this point

only, we use first-order backward differences in ξ, followed by employing the

double-stepping method of Smith & Timoshin (1996b) to ensure second order

accuracy. At ξ0 = 0, the starting condition in the mth daughter channel is

given by

uj0 = ucm, vj0 = 0, p0 = pcm, (8.82)

which arises upon matching with the leading edge region.

8.5.3 Discretisation in the wake

In the wake, the grid coordinates are given by xi = i∆x, Yj = j∆Y and dis-

cretisation of the boundary-layer equations in the wake is achieved using the

same backward differences in x and centred differences in Y as the previous

subsection. The discretised momentum and continuity equations are given

by (8.79) and (8.81) with L = 1, K = 0 and (ξ, ζ) replaced by (x, Y ) respec-

tively. The solution at a particular xi is achieved in the same way as used in

each daughter channel. The only adaptation is that the tridiagonal system

for uji is solved with the boundary conditions u = 1 on both the upper and

lower channel walls.

To gain the wake starting condition, we map the emergent velocities from

each daughter channel back into (x, Y ) space, using cubic splines to interpo-

late the velocity profiles. The wake starting pressure is given by p∗. This gives

the velocities and pressure at the point x = x0 in the wake. We also have to
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apply the double-stepping method, mentioned above, at the point x = x1 in

the wake to resolve the discontinuous nature of the pressure gradient as the

flow exits the daughters into the wake.

8.5.4 Solution algorithm

With the solution method in each daughter channel and within the wake now

described, we outline the full, iterative solution procedure.

We find the solution within the daughter channels first. Firstly, we guess

a value for the unknown pressure p∗, at the trailing edge. Then, we make

N + 1 extra guesses for the starting pressures pcm in each daughter channel.

We can then construct the starting condition in each channel, by using the

Bernoulli equation

ucm =
√

1 − 2pcm, (8.83)

to find the ucm values. We solve each channel independently, by employing

a streamwise sweep from ξ = 0 to ξ = l, finding the solution for u, v and p

at each ξ by the method outlined above. When the sweep reaches ξ = l in

the mth channel, we test to see if pm(l) = p∗. If not, the pressure pcm and

hence ucm are updated for this channel, using the secant method, followed by

resweeping until the absolute error

|pm(l) − p∗| < ǫ2 = 10−10, (8.84)

is satisfied. The number of iterations needed for the tolerance ǫ2 to be met

was typically eight to ten. The same procedure is repeated for all channels.

Then, the flux q∗ at ξ = l is found using Simpson’s rule on equation (8.78)

and the final test

|q∗ −H| < ǫ3 = 10−10, (8.85)

is carried out to ensure conservation of mass from far upstream of the blades,

over the leading edge discontinuity and through all the channels. If this

tolerance is not met, then the value for p∗ is updated, again by the secant

method, followed by repeating the whole procedure above. In all cases, no

more than ten iterations were needed to determine p∗. Once all of these

conditions are satisfied, the wake starting condition is constructed, followed

by a sweep through the wake.
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There are two possible approaches in determining the starting conditions

for the daughter channels. Here, we have chosen to find the pressure jumps

pcm iteratively so that the Kutta trailing edge condition is satisfied. Once the

pressure jumps are known, the details within the leading edge region can be

found retrospectively. The other method assumes values for the downstream

fluxes in the daughter channels, followed by solution of the leading edge

problem to obtain starting conditions for the daughter channel sweeps. Either

way gives identical results.

To gain numerical accuracy in u, v and p, values of ∆x = ∆Y = ∆ξ =

∆ζ = 0.001 were found to be required. To test for accuracy, the same

numerical code was run for several test cases on much finer grid resolutions

of ∆x = ∆Y = ∆ξ = ∆ζ = 0.0005 and ∆x = ∆Y = ∆ξ = ∆ζ = 0.0001.

The results were identical to six significant figures.

8.6 Results

We present streamfunction and pressure solutions of the full viscous problem

in the daughter channels and wake for cases of N = 1, 2, 9 and different blade

shapes. For the case of N = 1 we describe features of the flow in all the

daughters and through the leading edge region. For N = 2, we concentrate

on flows through various geometries, the Kutta condition and the leading

edge jumps. Finally, for N = 9 we look at the development and interactions

of several in-parallel wakes. In all our results, we choose the trailing edge

position of all the blades to be x = 1.

8.6.1 The case N = 1

We begin by presenting results for the case N = 1. In figure 8.8 we present

streamfunctions for two symmetric configurations of the dividing blade. In

each case, the streamlines undergo a rapid adjustment just after the leading

edge as the flow caters for the no-slip condition on the blade surface. In

figure 8.8(a), we see the streamlines become horizontal for x > 0.1 in each

channel up to the trailing edge, indicating that u = u(Y ). The form of u(Y )

depends on the pressure gradient alone. After the trailing edge is passed, as
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(b) f1(x) = 2 ± sin2(πx).

Figure 8.8: Streamfunction solutions for two symmetric configurations. The
total channel width H = 4.

x → 2, we again see ψx → 0. This indicates that the flow is accelerating

back towards a uniform profile.

The corresponding pressure solutions for each configuration are illustrated

in figure 8.9. Due to the symmetry of these problems, the pressures in daugh-

ters one and two are identical. In figure 8.9(a), there is a rapid pressure vari-

ation just after the leading edge region at x = 0, caused by the adjustments

of the flow to cater for the no-slip conditions on the daughter channel walls.

Away from x = 0, the pressure gradient is constant to the trailing edge.

There is a discontinuity in the pressure gradient at x = 1. As the flow enters

the wake, the pressure gradient becomes large, but as x→ 2, dp/dx→ 0. In

figure 8.9(b), the pressure profile shows an increasingly favourable pressure

gradient within each channel, as the flow passes over the dividing blade. The

flow on the leeward sides of the blade relaxes and causes a slightly adverse

pressure gradient close to the trailing edge. After only a short distance in

the wake, the pressure gradient approaches zero.
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Figure 8.9: Corresponding pressure solutions for the streamfunction solutions
plotted in (a) figure 8.8(a) and (b) figure 8.8(b). In each figure, the value of p∗,
the pressure at the trailing edge is given to four significant figures.

A final point to note is the values of p∗ at the trailing edges in each prob-

lem, the values of which are given in figures 8.9(a) and (b) to four significant

figures. The symmetry of the problem and the fixed channel width forces the

pressure jumps to be equal and zero at the leading edges, since the daugh-

ter channel geometries are identical and the oncoming flow is uniform. The

presence of zero pressure jumps means that in the leading edge region, the

streamfunction Ψ = 0.

In figures 8.10 and 8.11, we add non-symmetry to the blades and plot

the streamfunctions in the leading edge region and for the full problem. In

figure 8.10(a), the flat blade is moved to a position Y = 1 within the main

channel. In this case, much more flow passes into the second daughter and

is reflected within the plotted streamlines in the leading edge region. In

figure 8.10(b), the blade has a flat bottom surface (f−
1 (x) = 2) with a curved

top (f+
1 (x) = 2 + 4x(x − 1)). In this case, daughter two constricts over

the first half of the channel and dilates for the second half. The maximum

constriction of the channel is at x = 0.5, where the channel narrows to

a width of unity. The streamlines within this figure show that more fluid

passes into and consequently has a higher velocity through the first channel.

The discontinuity in the pressure gradient at x = 1 causes a rapid change

in the streamlines close to x = 1 before a slower return towards a uniform

state as x → 2. In figure 8.11(b), there is a large constriction in daughter 1
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(or a large dilation in daughter two) towards the trailing edge. As a result,

little flow enters the first daughter channel. After the solutions to these

two configurations were found, we solved the full leading edge problem to

establish what influence the non-symmetric blade shapes have on the flow in

the leading edge region. The leading edge streamline plots agree well with the

reported behaviour in the full problem, with less fluid entering the smaller

channel in figure 8.11(a) and the constricted channel in 8.11(b). We then

repeated the above procedure for two further cases of asymmetry in figure

8.11, to include constrictions of the main channel. Similar behaviour is seen

as above, there is a rapid change in the streamlines just after the trailing

edge and less fluid enters the constricted daughter channels in each case.

Pressure solutions for the configurations in figures 8.10 and 8.11 are given

in figure 8.12. The shape of the pressure profiles share some similarities with

the symmetric cases above. We notice that now the pressure jumps to non-

zero values at x = 0 in each channel. For about 75% of channel one in figure

8.12(d), the pressure is adverse, but as the flow nears the trailing edge, the

pressure gradient strengthens and becomes increasingly favourable. Above

the blade, the flow relaxes and an adverse gradient arises over the final 40%

of the blade.
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Figure 8.10: Leading edge and full problem streamfunction solutions for two non-symmetric configurations. The total channel width H = 4.
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Figure 8.11: Leading edge and full problem streamfunction solutions for two cases of asymmetric blades. The total channel width H = 4.
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Figure 8.12: Corresponding pressure solutions for the streamfunction solutions
plotted in (a) figure 8.10(a), (b) figure 8.10(b), (c) figure 8.11(a) and (d) figure
8.11(b). In each figure, the value of p∗ is given to four significant figures.

8.6.2 The case N = 2

In this section, we introduce another dividing blade into the main channel to

create three daughter channels. In figures 8.13(a)-(c), three streamfunction

solutions are shown with different channel widths in the central daughter,

with all dividers being flat blades. Behaviour similar to the previous cases is

seen in the streamline plots. When the width of the central daughter channel

is large (figure 8.13(b)), more fluid enters this channel and it flows at higher

speed than in the smaller daughters one and three. When the width of the

central daughter is small (figure 8.13(c)), very little flow enters this channel.

In figure 8.14, we plot the pressure for each of the solutions in figure

8.13. In figure 8.14(a), three pressure profiles are plotted, but we find that

p1 = p3. This is because the channel geometries of daughters one and three
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are identical. The pressure p2 is not equal to p1 or p3 due to different no-

slip conditions within the central channel. This theme follows through all

the figures 8.14(a)-(c). We note in figure 8.14(c), that within the wake, the

pressure gradient requires a longer distance in x to settle down to a constant.

Since most of the flow diverts into channels one and three upstream, very

little flow emerges into the wake from daughter two at x = 1. To accelerate

the flow back towards ū = 1, an adverse pressure gradient is needed over a

longer distance in the wake.

In figure 8.15(a), the dividing blades cause a large constriction in the

central daughter at the trailing edge. We see very few streamlines within

daughter channel two in this case showing that very little fluid has entered

this channel upstream. We find that p2(0
+) = 0.4980 in 8.17(a) and cal-

culate that approximately 2% of the approaching flow passes through this

central channel. When the central channel dilates, as seen in 8.17(b), this

situation is reversed, with less fluid entering the daughters one and three.

The streamfunction plotted in 8.17(c) is a non-symmetric case. Channel one

constricts, channel three dilates and channel two has a constant width. Sim-

ilar behaviour is seen in the constricting and dilating channels as described

above.

The leading order solution in the leading edge region for the cases in

figure 8.15 are given in figure 8.16. For the constricting case of blades in

figure 8.16(a), very little flow enters the central channel due to the pressure

jump in that channel being close to 0.5. A slight deflection of the streamlines

into the central channel is seen in figure 8.16(b), due to the dilating geometry

of that channel downstream. In figure 8.16(c), there is a slight deflection of

the streamlines towards the top channel, again due to the dilating nature of

that channel downstream.

Pressure solutions for the daughter channel geometries in figure 8.15a are

plotted in figure 8.17. In figure 8.17(a), the flow within the central daughter

experiences a favourable pressure gradient for 80% of the channel length.

The pressure gradient strengthens rapidly over the remaining 20% as the flow

approaches the trailing edge. The pressure in channels one and three also

has a favourable pressure gradient, the strength of which weakens as x→ 1.
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(b) f1(x) = 0.5, f2(x) = 5.5.
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(c) f1(x) = 2.5, f2(x) = 3.5.

Figure 8.13: Streamfunction solutions for three symmetric configurations of N =
2 blades. The total channel width H = 6. Streamlines are plotted in increments
of 0.2.
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Figure 8.14: Corresponding pressure solutions for the streamfunction solutions
plotted in (a) figure 8.13(a), (b) figure 8.13(b) and (c) figure 8.13(c). In each
figure, the value of p∗ is given to four significant figures.

This feature is reversed for a dilating central channel in figure 8.17(b), so

that a strengthening favourable pressure gradient occurs in channels one and

three. In the final figure, 8.17(c), we observe a strong pressure gradient in the

constricting channel one and a weakening pressure gradient in the dilating

channel three. However, we note that the pressure profile in channel two is

similar to those seen in the cases of flat dividing blades. This is because the

channel width does not vary throughout, and the blades merely guide the

flow direction in this case.
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(a) f1(x) = 2 + 0.85x2, f2(x) = 4 − 0.85x2.
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(b) f1(x) = 2 − 0.85x2, f2(x) = 4 + 0.85x2.
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(c) f1(x) = 2 − 0.85x2, f2(x) = 4 − 0.85x2.

Figure 8.15: Streamfunction solutions for three other configurations of N = 2
blades. The total channel width is chosen as H = 6. Streamlines are plotted in
equal increments of 0.2
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(b) Leading edge solution for figure 8.15b.
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(c) Leading edge solution for figure 8.15c.

Figure 8.16: Calculated leading edge streamfunctions for the solutions in (a)
figure 8.15(a), (b) figure 8.15(b) and (c) figure 8.15(c).

8.6.3 A case of large N

We introduce N = 9 dividing blades forming M = 10 daughter channels.

In figure 8.18, we present solutions for the cases of flat blades, a general

constriction and dilation of all the daughter channels and a non-symmetric

configuration of blades. The corresponding pressure solutions are given in

figure 8.19. The blade shapes for the constricting and dilating cases are given

in table 8.2.

Similar behaviour of the flow in each daughter channel as described in

previous subsections is seen. In figure 8.19(a), we see that the pressure

solution for channels two to nine is identical and so the same flux enters each

of these channels. Daughters one and ten have a different pressure solution,

again due to the different no-slip conditions within those channels. For the

constricted case in figure 8.18(b), the pressure in daughters four to eight

have an increasingly favourable pressure gradient whilst daughters two and

nine have a weakening pressure gradient. In the top and bottom channels,
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Figure 8.17: Corresponding pressure solutions for the streamfunction solutions
plotted in (a) figure 8.15(a), (b) figure 8.15(b) and (c) figure 8.15(c).

the pressure gradient becomes adverse within these channels from x = 0.4 to

x = 1. When the channels dilate, as in figure 8.18(c), the situation is reversed,

with the favourable gradient in the now constricted channels one and ten.

In the non-symmetric case, figure 8.18(d), a collection of all the behaviours

is seen. All the results plotted demonstrate that the flow behaviour in each

daughter channel is driven by the channel geometry and the Kutta trailing

edge condition.

We consider the flow in the wake region in figures 8.20 - 8.23, and compare

our results to the internal flow problem posed in Smith (2002). To recall

from the introduction to this chapter, Smith (2002) poses a laterally periodic

flow at the trailing edges of an array of blades under the same governing

boundary layer equations as in this section. Smith (2002) reports that the

periodic nature of the starting condition at the trailing edge holds for a

short distance downstream of the trailing edges, before a uniform state is

reached far downstream, different to unity. In figure 8.20, where the channel

geometries are identical and formed by flat blades, we have a semi-periodic
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fn Constriction Dilation
1 2 + 2x2 2 − x2

2 4 + 3x2 4 − x2

2

3 6 + 2x2 6 − x2

4

4 8 + x2 8 − x2

8

5 10 10

6 12 − x2 12 + x2

8

7 14 − 2x2 14 + x2

4

8 16 − 3x2 16 + x2

2

9 18 − 2x2 18 + x2

Table 8.2: The blade shape functions fn applied to the constriction and dilation
cases of N = 9 blades in figure 8.18.

flow as the starting condition to the wake, seen in figure 8.20(a). Away

from the mother channel walls and as x increases in the wake, in figure

8.20(b) we see that the periodic nature of the starting condition holds at the

small downstream distances given, whilst the amplitude of the oscillations

decays, in agreement with Smith (2002). Continuing further into the wake,

we see in figures 8.20(c) and 8.20(d) that the central part of the wake has

reached a uniform state, different to unity, again in agreement with Smith

(2002). Towards the mother channel walls, the flow periodicity is broken

in the starting condition due to the conditions of u = 1 at Y = 0 and

Y = H . Thus, the features reported in the symmetric analysis of Smith

(2002) do appear in our problem but do not hold completely due to the

influences of the no-slip conditions at Y = 0 and Y = H . We would expect

the uniform state reached within the centre of the channel to be different to

that calculated by Smith (2002) due to diffusive effects into the centre of the

wake as x increases. The flow emerging from daughters one and ten creates

two jet-like flow velocities. These features slowly accelerate the flow within

the centre of the wake back towards u = 1, with the maximum speed in the

jet decreasing in strength as x increases. Similar jet-like behaviour occurs

for the constriction and dilation cases presented above.

In figure 8.21, we consider a non-symmetric starting condition for the

wake, that arising from the non-symmetric configuration of blades in figure

8.18(d). The starting condition in figure 8.21(a) has no lateral periodicity
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(a) Flat blades.
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(b) General constriction of all blades.
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(c) General dilation of all blades.
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(d) Non-symmetric configuration.

Figure 8.18: Streamfunction solutions for four configurations of N = 9 blades.
The total channel width is chosen as H = 20, so that the entrance width to each
daughter is 2. Streamlines are plotted in increments of 0.5.

and no periodic or uniform state emerges downstream (figures 8.21(b)-(d)).

Smith (2002) discusses the influence of lateral non-symmetry within the wake

but imposes a periodicity condition. Figure 8.21 shows that if the condition

required for a periodic solution is not imposed, no periodic state is possible

downstream for the calculated non-symmetric wake starting condition. In our

problem, each component of the starting condition in the wake is allowed to

interact with the wakes above and beneath it, whilst Smith (2002) imposes

that the u and uy values are equal at y = 0 and y = 1, forcing a periodic

solution to emerge downstream. In figure 8.21(d), we see that the two jet-like

velocities start to form far downstream, with the flow in the centre of the

wake less than unity. Consulting the pressure solution in the wake in figure

8.19(d), we see that the pressure gradient is only slightly adverse in the wake

as x → 2 and hints that very far downstream a solution similar to 8.20(d)

may be possible.

Next, we turn to computing solutions when H = 80 by choosing the
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(b) p∗ = −3.341.
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(c) p∗ = −3.153.
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(d) p∗ = −3.198.

Figure 8.19: The pressure corresponding to the streamfunctions plotted in figures
8.18(a)-(d). The pressures in (d) are, in descending order of p(0), p3, p6, p10, p7, p4

and p5, p1, p9, p8, p2.

entrance widths to daughters one and ten as h̄1 = h̄10 = 32. This is to

investigate phenomena as H → ∞. In figure 8.22 we present solutions for the

u velocities in the wake for the flat blade and non-symmetric configurations

of blades above. We first notice that much less fluid enters the array of

blades, instead being diverted into the top and bottom daughter channels.

Consequently, in each case similar wake starting conditions in daughters one

and ten are seen. In figures 8.22(a) and 8.22(c), similar behaviour reported

above occurs within the central part of the wake profiles. As x increases

in the wake in figures 8.22(b) and 8.22(d) we see very similar forms of the

profiles in each figure. This suggests that the effects of non-symmetric blades

have little influence in the form of the velocity profile as x→ ∞. Figure 8.23

compares the u velocity profiles at x = 3.5 and x = 3.8. We see that there is

only a very small area in the central part of the wake where any significant

difference is seen.

Whilst computing results for this subsection, we found that as H → ∞,
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(a) Starting condition for u in the wake.
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(b) u velocities at distances 0.001, 0.1, 0.2,
0.4 downstream of the trailing edges.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

u(x, Y )

Y

(c) u velocities at distances 0.7, 1, 1.3, 1.6
downstream of the trailing edges.
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(d) u velocities at distances 1.9, 2.2, 2.5, 2.8
downstream of the trailing edges.

Figure 8.20: Wake velocity profiles in u of the flat configuration of blades in
8.18a.

the value of p∗ at the trailing edge slowly decays to 0, proportional to 1/H .

This feature means that less flow passes into daughter channels two to nine,

causing the lower flow speeds in the central part of the wake. If we let

H → ∞, then the configuration of blades tends to an external flow problem

(i.e. no bounding channel). In the case of external flow, there will be a

Blasius boundary-layer flow on the top and bottom surfaces of the dividing

blades N and one. Since p = constant = 0 in the Blasius boundary-layer, for

pressure continuity at the trailing edge we must have that p∗ = 0.

8.7 Summary

In this chapter we have formulated and solved a problem of N dividing blades

moving within a bounding channel. For a thin normal span of all the blades

in comparison to the length of the blades, we found that the boundary-layer
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(a) Starting condition for u in the wake.
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(b) u velocities at distances
0.001, 0.1, 0.2, 0.4 downstream of the
trailing edges.
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(c) u velocities at distances 0.7, 1, 1.3, 1.6
downstream of the trailing edges.
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(d) u velocities at distances 1.9, 2.2, 2.5, 2.8
downstream of the trailing edges.

Figure 8.21: Wake velocity profiles in u of the non-symmetric configuration of
blades in 8.18d.

equations held within all regions of flow, except within a very small region at

the leading edges of the blades. Here, an apparent flow discontinuity occurs

due to the Kutta trailing edge condition downstream. The leading order

problem in this leading edge region was an inviscid one, which we were able

to solve analytically for given downstream fluxes or pressure jumps.

Solutions to the full boundary layer problem were found numerically for

various numbers N and profiles of dividing blades. The case N = 1 was stud-

ied first. When the dividing blade surface was non-symmetric, a pressure

jump occurred at the leading edge to satisfy the Kutta condition. The pres-

sure jumps were used retrospectively to find some examples of the solution

in the leading edge region. We found that less fluid enters a channel that

becomes constricted or is narrower than the other channel. For the N = 2

case, similar flow behaviour was observed as seen in the N = 1 case. Cases of

N = 9 blades were then considered with respect to the wake development in
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(a) Flat blade case. Velocity profiles taken
at x = 1.001, 1.1, 1.2, 1.4.
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(b) Flat blade case. Velocity profiles taken
at x = 2.9, 3.2, 3.5, 3.8.
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(c) Non-symmetric case. Velocity profiles
taken at x = 1.001, 1.1, 1.2, 1.4.
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(d) Non-symmetric case. Velocity profiles
taken at x = 2.9, 3.2, 3.5, 3.8.

Figure 8.22: Wake velocity profiles with H = 80. Figures (a) and (b) are
velocity profiles for the flat blade case, figures (c) and (d) for the non-symmetric
configuration. The entrance widths to daughters two and nine in each of the above
figures are fixed as two.
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(a) u(3.5, Y ).
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Figure 8.23: Two examples of the u velocities away at large x for the case of flat
blades (solid line) and the non-symmetric configuration (dotted line).
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comparison to the periodic effects reported in Smith (2002). In our problem,

we found behaviour similar to that seen by Smith (2002), but with influence

from the wakes of daughters one and ten causing the flow to vary in com-

parison to his complete theory. When we analysed features arising from the

non-symmetric wake starting condition, no periodicity in Y ensued, unlike

in the problem by Smith (2002). Finally, we considered the case H → ∞. In

our problems, results suggested that any non-symmetry in the wake start-

ing condition has little impact on the form of the velocity far downstream,

in comparison to the same wake profile gained from a symmetric starting

condition.

An extension to the work in this chapter would be to change the boundary

conditions on Y = 0 and Y = H to u = 0, instead of u = 1. This means that

a Pouseuille flow is a solution upstream of the blades and forms the oncoming

flow to the leading edge region. The same length scales and expansions for

the velocities still hold, but the leading order problem for the streamfunction

now changes in that the incoming vorticity is now non-zero and is a function

of Y . Thus a new scheme to determine the downstream velocities in each

daughter channel is needed in this problem. Another extension is to add

non-aligned leading and trailing edges into the problem. This is a worth-

while extension due to applications in AVM modelling and rice grain sorting.

In this case, there would be many leading edge regions, subject to varying

incoming flow profiles and numerous Kutta conditions to satisfy. This adds

extra computational burden in determining the correct starting conditions

for the daughter channels, but if the first extension above can be developed,

then finding some solutions to this problem should be achievable.





Chapter 9

Conclusions

9.1 Summary

In this thesis we have considered high Reynolds number fluid flow past many

blades in various configurations, to include features of ground effect, a global

angle of attack and internal boundary-layer problems. Whilst the work con-

ducted has been summarised as the thesis progressed, we conclude by bring-

ing together some of the main points from each chapter and offering possible

extensions.

In Chapter 2 we began by considering two-dimensional fluid flow past

many blades in extreme ground effect, whereby the ground clearance of the

blade was of the same size as the boundary layer thickness. This study was

motivated by applications to better understanding of the flow around the

front wing of a Formula One racing car. The leading order problem was gov-

erned by the boundary-layer equations with the appearance of a local leading

edge region at every blade to allow the Kutta condition to be satisfied, by

causing a jump in the pressure and velocity locally at the leading edge. Re-

sults showed slip-streaming effects of blades downstream through a reduction

in drag and lift, for example. We found that as the ground clearance became

small, these slip-streaming effects decreased over the N = 6 blades present

within the numerical study. We considered analytically the extreme cases of

very large and small ground clearances analytically. We found that for small

ground clearances, the flow beneath each blade was governed primarily by

a Couette flow whilst for larger ground clearances, a viscous-inviscid model,

227
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similar to Purvis & Smith (2004) arises.

The main body of work within this thesis has been to investigate the fluid

flow past a horizontally aligned array of blades at a global angle of attack.

In Chapter 3, the model derived was that of a coupled viscous boundary-

layer and inviscid free-stream, through unknown wake-shapes and pressure

differences. Overall, we found that slip-streaming effects, like in Chapter

2, occur over all blades. The slip-streaming effects were seen immediately

for smaller angles of attack, whilst for larger angles of attack we found that

a near Blasius boundary layer occurred beneath the first few blades. On

passing more blades, the Blasius nature of the boundary-layer beneath the

blade disappeared allowing slip-streaming effects to occur.

In Chapter 4 an investigation was conducted into a periodic many-blade

limit with a global angle of attack. This study was motivated by the results

in Chapter 3, where an overall growth of the boundary-layer occurred with

local adjustments in boundary-layer thickness over each blade and wake. A

flow model was developed on the basis of this result, whereby we modelled

the boundary layer in two parts, a slowly growing bulk layer and a periodic

sublayer close to the blades. We found that the bulk layer was governed by

a mean Blasius flow to leading order and served to pass the displacements

(caused by the sublayer) to the free-stream in an inviscid manner. The

sublayer was governed by the full boundary-layer equations and was found

to be periodic. We computed results using this analysis and compared them

to several cases in the full problem of Chapter 3 and found good qualitative

agreement between the solutions.

The many-blade limit of Chapter 4 holds for all downstream distances

in x until x = O(Re3/5), where a pressure gradient appears throughout the

boundary-layer. In Chapter 5, we adapted the periodic many-blade limit

of Chapter 4 to include pressure interaction. The bulk-layer was still gov-

erned by mean Blasius flow to leading order, whilst the pressure interactive

boundary-layer equations held in the sublayer. We found sample solutions

to the sublayer problem with flat, angled and thick blades for the condensed

case showing agreement with Bowles & Smith (2000a,b).

With the general, non-symmetric pressure interactive many-blade limit



9.1 Summary 229

outlined, we added, in Chapter 6, a global angle of attack to the analysis. We

found that the sublayer is affected to leading order by a global angle of attack

α = O(Re−1). An angle of attack of this size is tiny in comparison to the

sublayer size, but on passing a number n = O(Re3/5) blades, the global angle

of attack caused a shift of the position of the blade within the sublayer. The

change to the leading order formulation of the problem was the inclusion of

a constant ᾱ in the no-slip and no-normal flow boundary conditions. Various

solutions were presented, and they indicated that the streamlines calculated

behaved similarly for all values of the global angle of attack parameter, ᾱ.

For some thick blade calculations, we were able to decrease the value of ᾱ

enough so that the global angle of attack caused flow reversal in the sublayer.

In Chapter 7, we sought larger angles of attack which brought about

different leading order balances to the formulation but preserved the under-

lying flow structure of the interactive limit. We found that a leading order

change in the bulk-layer is caused when α = O(Re−4/5), causing the mean

Blasius flow to be Prandtl shifted by an amount ᾱ within the bulk-layer. A

leading order change was caused to the free-stream when α = O(Re−3/5),

whereby the whole boundary layer was shifted within the free-stream. For

these two cases, the formulations for each region remained largely unchanged

from Chapter 5. We then considered a short scale balance between the global

angle of attack and the sublayer coordinate. The structure of the boundary

layer was seen to be much the same as before. We found numerical solutions

for various blade geometries, with results showing a much greater deflection

of the streamlines across the whole blade-wake period and greater pressure

differences over the blade in comparison to the solutions in Chapter 6.

Finally, in Chapter 8 we considered fluid flow past many vertically aligned

blades within a channel. The study was motivated by applications to atom-

izer flows in the combustors of jet engines and cerebral arteriovenuous mal-

formations. The model developed comprised the boundary-layer equations

everywhere, with the inclusion of a leading edge discontinuity to satisfy the

Kutta condition. An in-depth analysis was given to the primarily inviscid

leading edge problem using complex analysis. We found that the leading edge

pressure and velocity jumps are partly determined by the daughter channel
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geometry in the full flow problem past all the blades. Solutions for N = 1, 2

and 9 blades were given for various blade geometries, and for N = 9 we in-

vestigated the limit H → ∞. We found that the pressure jumps in daughters

one and ten tended to zero as H → ∞, meaning that the far downstream

flow behaviour, past a now-isolated array of blades, appears to not depend

on the blade geometries upstream.

9.2 Further work

Many avenues for further investigation exist in the problems of fluid flow

past many blades of which the following, outlined in the thesis, are of most

interest to the author.

Further study within the interactive many-blade limits of Chapters 5,6

and 7 is needed to investigate the flow response with unequal displacement

constants. We found the constant c+ to be negative in many of the cal-

culations and further investigation into the physical relevance of a negative

displacement constant needs to be understood. In this thesis, we somewhat

arbitrarily took these constants to be equal and it would be interesting to see

how the regime responds to unequal pressures. One constant may be used

to obtain pressure periodicity, but then the other constant is unknown and

another condition would be needed to find the solution. A solution to this

problem would be to simply impose a value for the unknown constant and

find the value of the other such that periodicity is achieved. A more techni-

cal problem is to develop a stable numerical scheme where the full, periodic

pressure-displacement laws could be included within the calculations to allow

a periodic solution to develop.

Another interesting extension would be to develop the extreme ground

effect problem of Chapter 2 to include cambered blades, leading to the pos-

sibility of flow separation beneath the blade. It would be interesting to see if

sheltering effects downstream cause a change in the separation behaviour and

whether this affects the lift produced over each blade. A possible starting

point from this thesis in solving the flow between the blade and the ground,

is to use the transformation and numerical technique used in Chapter 8. It



9.2 Further work 231

is also worthwhile to find a way of solving the leading edge region in full

for a general non-uniform oncoming flow, so that the wake length can be

shortened within the computations. A shorter wake length would still have

the same applications and allow a more general theory of the problem to be

developed.

Finally, and of greatest personal interest is the adaptation of the inviscid

flow problem in Chapter 3 to a three-dimensional rotary regime. A boundary-

integral technique could be used to derive the governing equations for the

free-stream problem, however, a difficulty arises in inverting the resulting

singular integral equations without resorting to complex analysis. A first

consideration may be the three-dimensional rotary flow problem for the case

of infinite blade spans away from the central hub, perhaps using a panel

method, to find the inviscid solution and apply the Kutta condition correctly.

If the inviscid problem can be solved, then a coupled flow problem, similar

to the two-dimensional one appearing in Chapter 3, could be derived. The

boundary-layer formulation is given by Smith & Timoshin (1996a) and it is

believed that with a suitable method to solve the three-dimensional inviscid

problem, progress can be made. To then include a blade hub and finite

blade spans then introduces new problems, especially with the generation of

tip-vortices in the latter case. The generation of tip-vortices in the rotary

framework is discussed by Smith & Timoshin (1996a) for a symmetric rotary

setting and would be of much interest in the case of non-symmetry.
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