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Abstract

The aim of this thesis is to consider an unsteady two-dimensional oblique
stagnation-point flow travelling towards a wall. The far-field comprises an
unsteady orthogonal stagnation-point flow, consisting of a mean component
and an oscillatory component characterised by a relative amplitude and a
dimensionless frequency parameter. Superimposed onto this, is a shear flow
with constant vorticity and a time-dependent uniform stream. A similarity
solution is sought, which is an exact solution of the Navier-Stokes equations.

The flow is discussed in two limiting cases. At high frequency, the asymp-
totic structure is dependent upon the relative sizes of the mean and oscillatory
components. When the mean flow is large, with a relatively small oscillatory
component, the flow can be described with a Stokes layer at the wall match-
ing an outer layer. However, when the oscillatory component dominates, a
steady streaming layer is introduced to match to the far-field, which is con-
siderably larger than that of the outer layer in the previous case. It is shown
numerically in this case that the flow structure described breaks down when
the relative amplitude of the oscillatory component is increased above a cer-
tain threshold, dependent upon the frequency. In the low frequency limit, at
leading order, the problem is quasi-steady.

Two special cases are considered, the first where the vorticity is zero in
the far-field and the streamlines approach the wall orthogonally. In this case
the flow is chosen to approach an oscillating wall. The second case is when
the flow is steady.

In certain time intervals over a single period, the flow structure becomes
multi-layered. The behaviour of the flow within these intervals is investi-
gated. Additionally, in the high frequency case, the streamline pattern is
discussed in both the Stokes and steady streaming layers and the particle

paths are analysed in the steady streaming layer.

11



Acknowledgements

Firstly, I thank Mark Blyth and Paul Hammerton for all their guidance
and support throughout the production of this thesis. Thanks also go to
the entire maths department for their friendship over the years, particularly
Simon Kirby, without whom, life in the postgrad room would have been a
lot less interesting.

A special thank you goes to Melissa Hindley for her friendship throughout
my undergraduate and PhD studies.

Lastly, thank you to my parents and Jen for their love and support

throughout my time at UEA.

v



Contents

Abstract

Acknowledgements

1 Introduction

2 Unsteady orthogonal stagnation-point flow

2.1
2.2
2.3
24

2.5
2.6

2.7
2.8
2.9

Introduction . . . . . .. ..o
Problem formulation . . . ... ... ... ... ...
Large frequency analysis . . . . . . . .. .. ... ... ....
The primary flow . . . . . . .. ..o
2.4.1 The Stokes layer . . . . . ... ... ...
2.4.2 The steady streaming layer . . . . . . . ... ... ...
2.4.3 Numerical Scheme: Runge-Kutta technique . . . . . . .
2.4.4  Asymptotic solution of fy(¢) about ap ~0.75. . . . . .
2.4.5 Numerical scheme: Finite-Difference technique . . . . .
2.4.6 The first order correction, f1(¢) . . . . ... ... ...
Summary of primary flow . . . ... ..o
The subsidiary flow . . . . . .. .. ... ... .. ... ..
2.6.1 The Stokes layer . . . . ... ... ... ... ...
2.6.2 The steady streaming layer . . . . . . .. .. ... ...
2.6.3 Numerics . . . . . ...
Summary of subsidiary flow . . . . ... ... 00000
Wall shear stress . . . . .. . ...

SUMMATY . . . . oo v e e

iii

iv



3 Steady oblique stagnation-point flow 49

3.1 Imtroduction . . . . . . . .. ... 49
3.2 Steady oblique stagnation-point flow . . . . .. ... ... .. 50
3.3  General form of the oblique stagnation-point flow . . . . . . . 55
3.4 Summary ... .. 60
4 Unsteady oblique stagnation-point flow 62
4.1 Introduction . . . . . . . ... 62
4.2 Problem formulation . . .. .. ... ... ... ... 63
4.2.1 The initial velocity profile for the primary flow . . . . . 69
4.2.2 Initial profile for the oblique low . . . . . .. .. ... 71
4.3 Numerics . . . . . ... 73
4.3.1 'The behaviour of the velocity profiles close to the finite-
time singularity . . . . .. ... 0oL 81
4.4 Small frequency . . . . . ... 86
4.5 The structure of the near-wall flow . . . . ... .. ... ... 95
4.6 Summary . . .o ... 113

5 Unsteady oblique stagnation-point flow in the large frequency

limit 116
5.1 Introduction . . . . . . . ... .. 116
5.2 Problem formulation . . . . ... ... ... ... .. .. 117
5.3 Summary of primary flow . . . .. .. ... 000 119
5.4  The oblique equation . . . . . ... ... ... 120
5.4.1 Stokes layer . . . . . ... 120
5.4.2 Steady streaming layer . . . . . . .. .. ... 123

5.5 The structure of the near-wall low . . . . ... .. ... ... 129
5.6 Summary ... .. 147
6 Conclusion 149
6.1 Concluding remarks . . . . . . . .. ... oL 149
6.2 Further work . . . . . . ... ... 152

vi



A Asymptotic solution of Fy({) about ag ~ 0.75 154
B Change of frame of reference 159

References 161

vii



List of tables

4.1 Computing the gradient and the intercept of w(;im, where 75

is the range over which the least squares analysis is conducted. 89

viil



List of figures

1.1
2.1

2.2

2.3

24

2.5

2.6

An illustration of an arterial end-to-side anastomosis. . . . . .
An illustration of the unsteady oscillating stagnation-point
flow approaching an oscillating wall, where the stagnation
point is represented by the solid dot and is fixed at the origin.
(a) The asymptotic structure valid for high frequency, o, and
the oscillation amplitude, A < 1. (b) The asymptotic struc-
ture valid for high frequency, o, and large oscillation ampli-
tude, A. . . L
The primary leading order velocity profiles for the two solu-
tions of f{(¢) for ay = 0.6017 (solid line), ay = 0.65 (dotted
lines) and ap = 0.7 (dashed lines). . . . . ... ... ... ...
Using the results from the Runge-Kutta method close to ag =
0.7, arelationship develops between the shear component fé’ (0)
and e, given by f/(0) ~ €'/2
The leading order asymptotic solution for ¢ — 0, where ¢ =
0.05 (solid line), e = 0.025 (dotted lines) and € = 0.01 (dashed
lines). The vertical lines represent 50, the point at which the
solution no longer satisfies the far-field boundary condition. . .
The leading order asymptotic solution to equation (2.60) for
selected values of €. Due to the scalings on the axes, the region
1 solution is unaffected by the choice of . As e — 0, the region

2 solution matches to the region 1 solution. . . . . . . . . . ..

1X

14

15

28



2.7

2.8

2.9

2.10

2.11

2.12

2.13

The velocity profile for the finite-difference method, repre-
sented by the crosses and the Runge-Kutta method, repre-
sented by the solid line, for A = 1.0714 i.e. ag = 0.7, showing
excellent agreement. . . .. ... ..o
The asymptotic leading order solution for e = 0.001, illus-
trated by the crosses, showing excellent agreement with the
numerical solution for the same value of €, represented by the
solid line. . . . . . . ..
The possible values of A for which solutions of equation (2.51)
3

exist, where A = 7=. The solid line represents the numerics

calculated from the Runge-Kutta technique, while the dotted

line corresponds to the results from the finite difference scheme. 33

The primary shear component f;(0) for ap = 0.6017 and a; =
—0.56 (dashed lines), a; = —0.55 (dotted lines) and a; =
—0.55237 (solid line). This illustrate that for a; = —0.55237,
a unique value of f{'(0) exists. . . .. ... ... ...
(a) The first primary velocity profile for ap = 0.6017,0.65,0.7
with its corresponding subsidiary velocity profile. (b) The
second primary velocity profile for ag = 0.6017,0.65,0.7 with
its corresponding subsidiary velocity profile. We note that
this solution is unable to be calculated by the Runge-Kutta
method when ay 2 0.7. In each case, the solid line represents
ag = 0.6017, the dotted line, ag = 0.65 and the dashed line,
ao=0.7. . . . .
The subsidiary solution for the finite-difference method, rep-
resented by the crosses and the Runge-Kutta method, repre-
sented by solid line for ag = 0.7, showing excellent agreement.
The possible values of A for which solutions to equation (2.132)
exist. The solid line represents the numerics calculated from
the Runge-Kutta method and the dotted line represents the

finite difference method results. . . . . . . . . . . . . .. ...

41

43



3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

An illustration of the dividing streamline meeting the wall
obliquely at an angle of § = tan™'(=2k/¢). . . . . .. ... ..
(a) Profiles of the shear flow component for g = 5, o, 0, —av, —5,
reading from left to right. (b) Streamlines for the case k/( =
0.5 and 3 = a, where € = (k/v)Y2x. . . . . ... ... ... ..
An illustration of the unsteady oblique stagnation-point flow
at an instant in time. Away from the wall, the gradient of
the dividing streamline, ¥ = 0, is given by M = —2ak:/g. As
discussed in chapter 3, the viscosity in the region close to the
wall affects the gradient of the dividing streamline. . . . . . .
The range of the far-field dividing streamline when (a) A <1
and (b) A > 1. Both cases are for B=0.............
The function a(t) = 1 4+ Acoswt for w = 1 and A = 0.85
(solid line), A = 1.2 (dotted lines) and A = 1.5 (dashed lines),
illustrating when A > 1, the function a(t) develops zeros. . . .
The streamlines in the far-field plotted for A = 1.5, and B =1,
with v =k =w = =1for (a) t =2, (b) t = 225, (c)
t = 235, (d) t = 2.8. This illustrates the gradient of the
dividing streamline changing sign from negative in (a) and (b)
to positive in (c¢) and (d), which corresponds to t increasing
through the zeroat 7~ 2.3. . . . . ... ... .. ... .. ..
The initial velocity profile 1 p,(n, 7), given in (4.48), for o =
0.5 and A = 0.5, initiated at different starting times, from left
to right, 7 = 0.0001, 7 = 0.001 and 7 =0.01. . . . . . ... ..
The initial velocity profile for ¢ (n, T) for B =1and o = 0.5,
initiated at different starting times, from top to bottom, 7 =

0.01, 7=0.001 and 7 =0.0001. . . . . ... .. ... .. ...

x1

67



4.7

4.8

4.9

4.10

4.11

(a) The primary velocity profile for o = 0.5 and A = 0.1,0.5,0.8
at 7 = 1. (b) The oblique velocity profile for B =0,0=05
and A = 0.1,0.5,0.8 at 7 = 1. (c¢) A close up of the oblique
velocity profile for the same parameters at 7 = 1. In each case
A = 0.1 is represented by the solid line, A = 0.5, the dotted
lines and A = 0.1, the dashed lines. . . . . . . ... ... ...
(a) The oblique velocity profile for o = 0.5, A = 0.5 at 7 = 1,
where bp = 0 and, from left to right, by, = 1.5,1.02,0. (b)
The oblique velocity profile for 0 = 0.5, A = 0.5 at 7 = 1,
where by, = 0 and, from left to right, bp = 3,2.28,0. . . . . . .
(a) The primary wall shear component ¢ p, (0,7) for o = 0.5
and A < A, over a single time period, for A = 0.5 (solid
line), A = 0.8 (dotted lines) and A = 1 (dashed lines). (b)
The primary wall shear component p,, (0,7) for ¢ = 0.5 and
A > A., where A = 2 (solid line), A = 4 (dotted lines) and
A = 6 (dashed lines). The dots represent where the numerics
break down. . . . . ...
(a) The oblique wall shear component 10, (0, 7) illustrated for
B = 0,0 = 0.5 and A < A, over a single time period, for
A = 0.5 (solid line), A = 0.8 (dotted lines) and A = 1 (dashed
lines). (b) The oblique wall shear component 1o, (0,7) for
B =0,0 =05and A > A, where A = 2 (the solid line),
A =4 (dotted lines) and A = 6 (dashed lines). . . . ... ..
(a) The primary velocity profile, illustrating a minimum as
T — 75 for 0 = 0.5 and A = 2 at 7 = 3.37. (b) The oblique
velocity profile showing a maximum as 7 — 7,, where 0 = 0.5

and A = 2 at 7 = 3.37. For these given parameters, the

finite-time singularity is numerically calculated and given by

xii

79



4.12

4.13

4.14

4.15

4.16

4.17

4.18

(a) The primary function, ¥, ! (9min, 7) plotted against 7 as
T — 7, for A =2and 0 =0.5. (b) A close-up of the primary
function, ¥, ! (1min, 7) plotted against 7 as 7 — 7, for A =2
and o = 0.5. (c) The oblique function, ¥5"  (9maz, 7) plotted
against 7 as 7 — 7, for B: 0,A=2andoc=05. . .....

The time singularities calculated for fixed values of A. Lines of

constant A are plotted, from left to right, A =1.5,2,3,4,5,6,7. 88

The leading order asymptotic primary wall shear component
¥p,,(0,7) plotted against 7 for A = 0.5 (solid line), A = 1
(dotted lines) and A = 2 (dashed lines). When A > 1, it is
observed that the primary wall shear component breaks down.
(a) The primary function Q! (Yiuin, T') plotted against T as
T — T} for A = 2. (b) The oblique function O,,}. (Yinaz T)
plotted against T as T — T}, for B = 0. Both of these figures
illustrate a linear relationship as T — T,7. . . . . .. ... ..
The primary function Q! (V;nin, T') plotted against T as T —
T;", confirming the accuracy of the finite-time singularity Ty =
—1.557. The solid line represents a spacial and temporal step
size of 0.001. The crosses represent a spacial step size of h =
0.001 and a temporal step size of dt = 0.0005. The circles
represent a spacial step size of A = 0.0005 and a temporal
step size of dt =0.001. . . . .. ...
The finite-time singularity approximation (4.81), represented
by the solid line, plotted alongside some numerical results
from section 4.3 for A = 2, represented by the crosses. Good
agreement can be seen between the numerical results and the
asymptotic solution foro ~ 1. . . . . . . .. ...
(a) The primary wall shear component ¢ p,, (0,7) and (b) the
oblique wall shear component o, (0,7), both for E(T) =0,
o =1and A = 0.5 (solid line), A = 0.85 (dashed lines) and

A =12 (dotted lines). . . . ... ... ... L.

xlil

90



4.19

4.20

4.21

4.22

4.23

4.24

4.25

(a) The attachment point zy over a single time period for
o =1and A =0.5. (b) The attachment point z, for 0 =1
and A = 1.2. (c¢) The gradient of the dividing streamline at
the wall over a single time period for o = 1 and A = 0.5. (d)
The gradient of the dividing streamline at the wall for o = 1
and A = 1.2. In each case, Z: v=k=1. ... .. ... ...
The instantaneous streamlines for Z =v=Fkr=1, B = 0,
o = 1 and A = 0.5 over a period of 27 in equally spaced
intervals of /4, beginning at 27. . . . . . ... ...
(a) The primary function ¢p(n,7) for 0 = 1, A = 1.2 at
7 = 117/4, illustrating the two stagnation points at n = 0
and n = 77, which are represented by the solid dots. (b)
The corresponding dividing streamline 4. At 7 = 117 /4, the
vertical distance of the horizontal streamline from the wall is
1y = 2.475, the horizontal position of the stagnation point is
X; = —21.776 and the attachment point is zy = 4.04 where

The instantaneous streamlines for Z =v =Fkr=1, B = 0,
o =1and A = 1.2 over a period of 27 in equally spaced
intervals of 7/4, beginning at 27. . . . . .. .. ... L.
(a) The vertical location of the horizontal streamline for o =
1 and A = 0.8 (bottom curve), A = 0.85 (middle curve)
and A = 0.95 (top curve). (b) The vertical location of the
horizontal streamline forc =1l and A=12 ... ... .. ..

The instantaneous streamlines for A =0.95and o =1 at 7 =

~

9.66, illustrating a triple-layered structure, where v = k = ( = 1.105

The instantaneous streamlines as 7 — 7, at intervals of 7 =
/2, for B =0, A =20 and o = 40, beginning at T = 7/2,

Wherele/:kzl ........................

Xiv



4.26

4.27

4.28

4.29

4.30

4.31

The streamlines as 7 — 7, at intervals of 7 = 7/2 beginning at
7':97T/2for§:0,A:20ando:40,vvhere2:1/:k:1.
This figure is a continuation of figure 4.25. . . . . .. . .. ..
The streamlines as 7 — 7, for 0 = 40 and A = 20 at (a)
T =18.0, (b) 7 = 18.1, (¢) 7 = 18.2, (d) 7 = 18.3, where
Ts = 18.443 and E: v =k = 1. This figure is a continuation
of figure 4.26. . . . . . ...
The vertical location of the horizontal streamlines for o = 40
and A =20. . . ...
(a) The primary velocity profile as 7 — 7, for ¢ = 40 and
A = 20, working from right to left at 7 = 18.0,18.1, 18.2, 18.3.
(b) The oblique velocity profile for B = 0 at the same times
approaching the finite-time singularity 7, = 18.443. . . . . . .
(a) The oblique wall shear stress component v, (0, 7) for o =
1, A =0.5,bp =0 and by; = 0 (solid line), byy = 0.94 (dotted
lines) and by, = 1.54 (dashed lines). (b) The oblique wall
shear stress component o, (0,7) for 0 =1, A = 0.5, by = 0
and bp = 0 (solid line), bp = 0.9 (dotted lines) and bp = 1.5
(dashed lines). . . . . . . .. ..
(a) The oblique wall shear stress component v, (0, 7) for o =
1, A =12 bp =0and by = 0 (solid line), by, = 0.78, (dotted
lines) and by, = 1.5 (dashed lines). (b) The oblique wall shear
stress component o, (0,7) for o =1, A = 1.2, byy = 0 and
bo = 0 (solid line), bp = 0.77 (dotted lines) and bp = 1.5
(dashed lines). . . . . . . ... Lo

XV

108



4.32 (a) The attachment point zy for o0 = 1, A = 0.5, bp = 0 and,

5.1

5.2

5.3

5.4

9.5

5.6

from bottom to top, by; = 0,0.94, 1.54, where Z: v=~k=1.
(b) The attachment point for ¢ = 1, A = 0.5, byy = 0 and
bo = 0 (solid line), bp = 0.9 (dotted line) and bp = 1.5
(dashed lines). (c) A point in the far-field zy for ¢ = 1,
A = 0.5, bp = 0 and from bottom to top by, = 0,0.94, 1.54.
(d) A point in the far-field xy for o = 1, A = 0.5, byy = 0
and bp = 0 (solid line), bp = 0.9 (dotted line) and bp = 1.5
(dashed lines). . . . . . . .. ..
(a) The oblique function h4(() for, working from left to right,
B = 4,2,0,—2,—4 and a9 = 1. (b) The oblique function
hy(¢) for, working from left to right, 3} = 4,2,0, -2, —4,
ap=1land a; =—-05. . ... ... ...
The numerically calculated non-trivial zero &y, in the Stokes
layer, which is represented by the solid line, alongside the
asymptotic predictions of the behaviour of the zeros &, close
to /4 and 7/2, which are represented by the dotted lines.
The asymptotic prediction of the behaviour of the zeros (o,
alongside the numerically calculated zeros, which are repre-
sented by the crosses, showing excellent agreement. . . . . . .
The constant d given in (5.84) plotted against ag, illustrating
for all values of ag, d is positive. The upper branch of the
curve asymptotes to ag =0.75. . . . . . ...
The orthogonal steady streamlines in the steady streaming
layer for (a) ap = 0.6017 and (b) ay = 1. In both cases v =
k =1 and the solid dots represent the stagnation points.

The mean components of the steady streaming layer illustrated
for ap = 1 and (a) B = 1.2, (b) B} = 1.4442, (c) BY = 1.5,
(d) M =1.582, (e) B} = 1.8. In each case (=v=Fk=1.

Xvi

. 132

. 138

. 139



5.7

5.8

9.9

Al

A2

A3

The leading order mean component of the time-dependent
function, B! plotted against z*, the horizontal position of

the stagnation-point for E: v=k=ay=1. ... . ... ... 140
(a) The streamlines that correspond to the streamlines of steady
components in the steady streaming layer for ay = 1 and

BM =12 with { = v =k = 1. (b) The particle paths for the

same parameters where the oscillation amplitude is €2 = 100. . 143
The constant ﬁ, given in (5.123), plotted against ag. The
lower branch of the curve asymptotes to ag =0.75. . . . . .. 147
The numerical results for the subsidiary problem illustrating

a linear relationship between F/(0) ande. . .. ... ..... 155
The region 1, 2 and 3 asymptotic solutions, represented by the

solid line, the dotted lines and the dashed lines for e = 0.001,
where § = (2¢)'/2, alongside the numerical solution for the
same parameter, represented by the crosses. . . . . . .. ... 158

An illustration of the primary and subsidiary regions. . . . . . 158

XVvil



Chapter 1

Introduction

Stagnation-point flows occur when a fluid approaches the impermeable bound-
ary of a body, for example, on an aircraft wing or on an oscillating cylinder
immersed in fluid. These flows have a stagnation-point present in the fluid,
about which the streamlines locally resemble those about a saddle point.
Another example of particular interest, is blood flow at a junction within an
artery. In this thesis, we will be exploring stagnation points, focussing on
two-dimensional flows, in which the flow approaches a body either obliquely
or orthogonally.

An exact solution of the Navier-Stokes equations, which describes the
two-dimensional stagnation-point flow towards a fixed plane wall, was first
examined by Hiemenz (1911). As the flow approaches a rigid wall, it divides
in two and creates a stagnation point at the origin. Due to the no-slip
condition not being satisfied at the wall, a similarity solution is introduced,
which enables the solution to be obtained everywhere in the fluid, matching
the velocity on the wall to that of the far-field.

Riley (1965) and Stuart (1966) were among many to consider a time de-
pendent stagnation-point flow travelling orthogonally towards a fixed wall.
The far-field streamfunction was considered to be purely oscillatory and de-
pendent upon a relative amplitude parameter and a dimensionless frequency
parameter. Similar to that of the Hiemenz problem, the far-field low does

not satisfy the no-slip condition on the wall, so it is necessary to seek a



solution in the form of a similarity solution close to the wall. In the large
frequency limit, the solution exhibits a double layer structure. A Stokes layer
is present close to the wall, where the unsteady time-dependent components
are balanced by the viscous terms in the Navier-Stokes equations. Due to a
mean velocity component persisting to the top of this layer, the Stokes layer
is unable to match to the far-field flow. To allow for the necessary matching
to occur, the introduction of a steady streaming layer between the Stokes
layer and far-field flow is required. The thickness of the steady streaming
layer is on the order of the dimensionless frequency parameter, times the
thickness of the Stokes layer.

Riley and Vasantha (1989) considered this problem, where the free stream
in the far-field is purely oscillatory and solved it numerically to find that
for any value of the dimensionless frequency parameter, the equations break
down at a finite-time singularity. They attributed this to a horizontal velocity
moving towards the origin, causing the fluid to erupt from the boundary layer,
which in turn causes the flow equations to break down.

The inclusion of a mean flow component at infinity was considered by Ped-
ley (1972) and Grosch and Salwen (1982), where the oscillatory component
is small compared to the mean component and the frequency of the oscilla-
tions is large. As above, there exists a Stokes layer nearest the wall, which
matches to a layer whose thickness is on the order of the square root of the
dimensionless frequency parameter, times the thickness of the Stokes layer.
The size of this layer is considerably smaller than the problem discussed by
Riley (1965) discussed above, where a mean flow is absent at infinity.

Merchant and Davis (1989) summarised the work of Pedley (1972) and
Grosch and Salwen (1982), extending it to consider the case where the di-
mensionless frequency parameter is large and the oscillatory component is
much larger than the mean component. If the relative amplitude parame-
ter is large enough, the flow will be allowed to reverse over some portion of
the time period. This case is comparable to the problem discussed by Riley
(1965), where the far-field flow is purely oscillatory, thus, the flow structure



is similar. Merchant and Davis investigated the case where the two outer
layers coincided and found that for a fixed dimensionless frequency, there
exists a critical amplitude, above which, no solutions occur.

Blyth and Hall (2003) considered this problem for a large dimensionless
frequency and when the relative amplitude parameter is at the critical value.
They concluded that for a fixed frequency, when the critical amplitude is
exceeded, the solutions break down at a finite-time singularity. Additionally,
they examined the behaviour of the solutions close to the break-down time.
Blyth and Hall also discussed this problem in the small frequency limit and
found that the leading order solution is quasi-steady. When the relative
amplitude parameter is large enough, solutions again break down at a finite-
time singularity.

All of the studies mentioned above have been stagnation-point flows trav-
elling towards fixed walls. Next, we consider problems in which stagnation-
point flows approach oscillatory walls. By simply changing the frame of
reference, this problem can be considered equivalent to the case where the
far-field flow oscillates horizontally and travels towards a fixed wall, where
only the pressure term is affected.

Rott (1956) examined the case where the plate performed periodic oscil-
lations in its own plane, with a steady orthogonal flow far from the plate.
As before, a similarity solution is introduced comprising two components:
a steady orthogonal function and an oscillatory function. The problem was
discussed in terms of the two limiting cases of small and large frequency.
Glauert (1956) also considered this problem using series methods for solving
the large and small frequency cases. An application of this is a cylinder which
performs horizontal oscillations in a fluid. Watson (1959) generalised Rott’s
and Glauert’s work by allowing the periodic oscillations to be replaced by an
arbitrary horizontal motion. Watson also discussed the problem when the
fluid is instantly started from rest.

Hazel and Pedley (1998), considered an unsteady orthogonal oscillating

two-dimensional stagnation-point flow approaching an oscillating wall. In



comparison to the earlier work on oscillatory walls described above, they con-
sidered the problem in a frame of reference where the stagnation point is fixed
at the origin. In the far-field, the flow is made up of an unsteady stagnation-
point flow containing both a mean and an oscillatory component, which has
been discussed above. Added to this is a periodic horizontal oscillation, with
the same dimensionless frequency as the orthogonal stagnation-point flow.
This flow approaches a wall, which oscillates with the same dimensionless
frequency as the far-field. They considered the problem where the mean
component is dominant over the oscillatory component and in the large fre-
quency limit, the solution exhibited a double layer structure at the wall which
was previously addressed by Pedley (1972), among others. Hazel and Pedley
considered this problem, when the relative amplitude parameter was chosen
such that the flow cannot reverse. The wall shear stress was obtained and
the mean wall shear stress was discussed for all the limiting cases. For the
large frequency case, the oscillating wall was found to have no effect on the
mean wall shear stress and is only reliant upon the orthogonal flow. They
attributed this to the viscous forces within the Stokes layer counteracting
any effect from the oscillating wall.

This configuration can represent a model of the reattachment flow at an
end-to-side anastomosis. These are often used to bypass a blockage within
an artery, where the graft artery bypasses the blockage and rejoins the main
artery beyond the blockage. At the point of reattachment, the end of the
graft artery joins to the side of the main artery. This creates a highly complex
three-dimensional stagnation-point flow opposite the point of reattachment,
which is illustrated in figure 1.1

A full study of the flow in the region of the graft is found in the review
article by Loth et al. (2008), with further references included and here we
provide a brief overview. There are three different formations of anastomoses,
end-to-side, end-to-end and side-to-side. Within the end-to-side configura-
tion, there are two different types of grafts. The first is an arterial bypass

graft, which is a bypass of a blockage in an artery; in this case the flow is
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Figure 1.1: An illustration of an arterial end-to-side anastomosis.

laminar. The second is an arteriovenous graft, which is the join between an
artery and a vein with the flow being turbulent. In this thesis we consider
only the first configuration.

The flow in the region of the arterial end-to-side anastomosis is of interest
as the local haemodynamics are significant to the longevity of the graft. A
common cause of graft failure is intimal hyperplasia, which is the thickening
of the tunica intima, the inner layer of the artery. Intimal hyperplasia occurs
at three areas: the heel, toe and floor of the graft. At the heal and toe,
thickening is attributed to the healing process around the graft join. However,
the thickening of the artery on the floor opposite the graft is associated with
low wall shear stress. Hence, in our analysis presented in later chapters,
attention is drawn to the effect of the flow parameters on the wall shear
stress.

In order to model this problem as an arterial end-to-side anastomosis,
certain assumptions were made by Hazel and Pedley (1998). Near the stag-
nation point, the wall is considered to be flat and the blood is modelled as
a Newtonian fluid. Also, the pulsatile nature of the blood is taken to be
sinusoidal and the authors consider this problem in both two and three di-
mensions. However, in the subsequent sections we focus our attention purely
on the two-dimensional problem.

Having discussed the two-dimensional steady and unsteady orthogonal

stagnation-point flows, we turn our attention to considering the case where



the dividing streamline meets the wall obliquely. This was first discussed
by Stuart (1959), where the flow comprises a steady orthogonal stagnation-
point flow, a shear flow with constant vorticity and a uniform stream. Like
that of the orthogonal problems, the flow can be represented in terms of a
streamfunction. As this streamfunction in the far-field does not match to the
velocity on the wall, a similarity solution is established, comprising a Hiemenz
function and an integral of the shear flow function. Later, Tamada (1979)
discussed this problem with reference to jets impinging a wall obliquely. Dor-
repaal (1986) also considered the oblique stagnation-point flow with a differ-
ent uniform stream at infinity, but he still reported comparable results. The
behaviour of the dividing streamline close to the wall was also investigated
by considering the series expansions of the Hiemenz and shear functions in
the normal variable. It was observed that, due to the viscous forces close to
the wall, the dividing streamline bends and meets the wall at an angle closer
to the normal.

Much later, Drazin and Riley (2006) generalised the previous work, to
include a free parameter at infinity, which corresponds to the strength of
the uniform stream in the far-field. Upon increasing the free parameter, the
shear velocity profile exhibits a region of flow reversal close to the wall. They
concluded their analysis with a discussion of the gradient of the dividing
streamline close to the wall, with similar conclusions to that of Dorrepaal
(1986). In particular, it was shown that the ratio of the dividing streamline
gradient close to the wall, to that of the gradient in the far-field is independent
of the vorticity. Tooke and Blyth (2008) extended the work of Drazin and
Riley by considering what effect the uniform stream has on the streamlines.

Having summarised the previous work in this field, we outline the anal-
ysis which will follow in the subsequent chapters. We begin our analysis
on stagnation-point flows in chapter 2, by considering the two-dimensional
stagnation-point flow travelling towards an oscillating wall, as previously dis-

cussed by Hazel and Pedley (1998) above. They considered solutions for a



large dimensionless frequency parameter and chose a relative amplitude pa-
rameter which does not allow for flow reversal. We extend their analysis by
allowing for flow reversal, while still considering the large frequency limit.
By expressing the problem in the form of a similarity solution, it can be
represented by two coupled equations. The first represents the unsteady or-
thogonal flow travelling towards a flat wall and the seconds represents the
oscillatory components of the flow. For solely the orthogonal problem, the
solution breaks down when, for a fixed dimensionless frequency, the critical
relative amplitude is exceeded. Therefore, we consider the same parameter
range and solve the oscillatory problem. Initially, we consider the orthogonal
problem, which exhibits a double layer structure at the wall, with a Stokes
layer close to the wall matching to a steady streaming layer, which in turn
matches to the far-field flow. As the oscillatory equation is coupled with
that of the orthogonal, it has the same structure. Although the orthogonal
equation has been solved previously, a detailed account is included as the
methods and results will form a basis for the subsequent chapters. The oscil-
latory equation is then solved using similar techniques. The wall shear stress
is obtained and the effect of the oscillatory components on the mean wall
shear stress is discussed for large frequency.

In chapter 3, a steady oblique stagnation-point flow is considered, where
the problem comprises an orthogonal stagnation-point flow, an oblique shear
flow with constant vorticity and a uniform stream. Previous analyses of
oblique stagnation-point flow at a plane wall are discussed and unified with
reference to a free parameter, which can be thought of as altering the strength
of the uniform stream in the far-field. As the strength of the uniform stream
is increased, the oblique component exhibits a region of flow reversal close
to the wall. We consider the effect of increasing the strength of the uniform
stream on the streamline pattern. We note that these results were given in
Tooke and Blyth (2008).

In the latter half of the chapter, a general form of the oblique stagnation-

point flow is obtained, where the flow consists of a Hiemenz flow and an



oblique component. A solution is sought, using a typical boundary layer
approach. In the far-field, an inviscid solution is obtained, which satisfies
the vorticity-transport equation. Close to the wall, viscosity is no longer
negligible and a similarity solution is used. Matching these together, it is
observed that no matching region is necessary and the solutions in the far-
field and close to the wall match directly together.

Having explored the steady oblique stagnation-point flow, in chapter 4
we discuss the effect of the time-dependent terms. We choose the orthog-
onal stagnation-point flow component to be time-dependent, with a mean
and an oscillatory component dependent upon a relative amplitude and a
dimensionless frequency parameter, approaching a fixed wall. To consider an
unsteady oblique flow, we add to this a shear flow with constant vorticity
and time-dependent horizontal velocity component. We note that the shear
flow is unable to be time-dependent, as the vorticity-transport equation is
not satisfied. A similarity solution is obtained, which is simply a time depen-
dent version of one previously stated by Stuart (1959) in chapter 3. Using
this approach, two coupled equations (denoted the orthogonal and oblique
equations) are obtained and solved using a Crank-Nicolson finite-difference
technique. For certain values of the relative amplitude and the dimension-
less frequency parameter, a horizontal streamline appears in the flow over
some period of the cycle, creating a double-layered flow. In some cases, two
horizontal streamlines are present and the flow becomes triple-layered. The
instantaneous streamlines are considered numerically with specific attention
given to those time intervals in which the flow is multi-layered.

As discussed in chapter 2, for a fixed value of the frequency, there exists
a critical amplitude, above which solutions break down at a finite-time sin-
gularity. The behaviour of both the orthogonal equation, previously solved
by Blyth and Hall (2003) and the oblique equation close to the finite-time
singularity are discussed. Additionally, the orthogonal and oblique equations
are considered in the small frequency limit.

Chapter 5 continues directly on from chapter 4, by performing a large



frequency analysis in the parameter range discussed in chapter 2. In this
parameter range, the orthogonal problem exhibits a double layer structure
at the wall. As the oblique equation is coupled with the orthogonal equation,
the structure of the oblique solution is expected to be the same and the results
from the orthogonal problem are utilised. The instantaneous streamlines are
considered in both the Stokes and steady streaming layers, with comparisons
being drawn with the analysis of chapter 4, where the flow structure becomes
multi-layered in some time intervals over the cycle. A particle path analysis is
performed in the steady streaming layer using the method of multiple scales.
Concluding the chapter, is a discussion on the mean wall shear stress and
the magnitude of the time-dependent horizontal velocity component.

Finally, chapter 6 presents the main conclusions from each chapter.



Chapter 2

Unsteady orthogonal

stagnation-point flow

2.1 Introduction

In this chapter, a two-dimensional unsteady stagnation-point flow travelling
towards an oscillating wall is discussed. This problem has previously been
considered by Hazel and Pedley (1998), as a simplied model of an end-to-side
anastomosis located at a bypass graft in an artery, which is seen in figure
1.1. The problem in the far-field comprises of an unsteady Hiemenz flow
containing both a mean component and an oscillatory component dependent
upon a relative amplitude parameter and a dimensionless frequency param-
eter. Added to this is a horizontal oscillatory velocity. This flow approaches
a wall that is oscillating with the same frequency as that of the horizontal
velocity in the far-field. The problem is discussed in the frame of reference
where the stagnation-point is located at the origin. As the no-slip condi-
tion is not satisfied on the wall, a similarity solution is introduced. This is
made up of two components: an unsteady orthogonal stagnation-point flow
component and an oscillatory component, which is an exact solution of the
Navier-Stokes equations. Using this similarity solution, the problem can be
described in terms of two coupled equations, an orthogonal stagnation-point

equation and an oscillatory equation.

10
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Hazel and Pedley (1998) considered this problem for large frequency, but
restricted the amplitude of oscillations to prevent flow reversal occurring. As
discussed in the introduction, the orthogonal equation has been addressed
previously. Merchant and Davis (1989) found that for large frequency, there
exists a critical amplitude dependent upon the frequency, above which solu-
tions do not exist. Therefore, in this chapter, we will seek solutions to the
problem described by Hazel and Pedley, but consider solutions close to the
critical amplitude found by Merchant and Davis, for large frequency.

We begin by considering the orthogonal equation, which exhibits a double
layer structure with a Stokes layer at the wall and a steady streaming layer
matching the Stokes layer to the far-field flow. As the oscillatory equation
is coupled with the orthogonal equation, we expect there to be a similar
structure present. One of the motivations of Hazel and Pedley’s analysis was
to consider what effect the oscillatory components have on the mean wall
shear stress. We will also consider the wall shear stress and consider what
effect the oscillatory components have on the mean wall shear stress when the

relative amplitude parameter is larger and allows for flow reversal to occur.

2.2 Problem formulation

In this section, a two-dimensional unsteady stagnation-point flow with a
horizontal velocity in the far-field travelling towards an oscillating wall is de-
scribed. We begin by mentioning the well-documented Hiemenz stagnation-
point flow travelling towards a flat fixed plate at y = 0, which can be found,
for example, in Batchelor (2000). The flow in the far-field can be expressed
in terms of the velocity components v = kx and v = —ky, where x and y are
the coordinates parallel and normal to the wall. The velocity components
(u,v) are in the (z,y) directions respectively and k is the strength of the
flow. As the flow is two-dimensional and incompressible, it can be expressed

in terms of the streamfunction ¢ = kxy, where u = ¢, and v = —1;.
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Pedley (1972) and Grosch and Salwen (1982) were some of those to ad-
dress an unsteady version of the Hiemenz flow. The streamfunction is ex-
pressed as ¢ = a(t)kxy, where a(t) consists of a mean component and an
oscillatory component. Riley and Vasantha (1989) ascertained that when
a(t) is purely oscillatory, solutions break down at a finite-time singularity for
any given frequency. Hazel and Pedley (1998) extended this analysis by con-
sidering an oscillating unsteady stagnation-point flow, which travels towards
an oscillating wall.

We begin by describing the oscillating unsteady stagnation-point flow
travelling towards a fixed wall, as this is the approach we take in latter
chapters. However, we show that by a simple change of frame of reference,
this problem is equivalent to the flow travelling towards an oscillating wall,
as discussed by Hazel and Pedley (1998). We then proceed by solving the
problem in this frame.

The velocity components are expressed as

U*(x*’ y*’ t*) = a,(t)k’ (ZL'* + Us Sln(it* — gb)) ’

vyt = —a(t)ky®, (2.2)

(2.1)

as y* — oo, where k is the strength of the flow at infinity, w is the frequency
of the oscillations, Ug is the speed of the wall and ¢ is an arbitrary phase

difference. At the wall, the velocity components are given by
u'=0, v"=0 on y"=0, (2.3)

where the stagnation point is located at 2* = —Ugsin(wt* — ¢)/w. The

two-dimensional Navier-Stokes equations in this frame are given by

wp w4 ot = <Pt ), (2.4)
Vpe + UV 0 0 = — + V(U e+ V), (2.5)
Upe + 0, = 0, (2.6)

with the parameters, kinematic viscosity: v, pressure: p and density: p. To

perform this change of frame of reference to one where the wall is oscillating,
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we write © = 2* + Ug sin(wt* — ¢) /w and u = u* + Ug cos(wt* — ¢) with t* = t.
We note there is no change to the vertical length and velocity scale, y* =y

and v* = v. Therefore, we write

o 0 o 0 o 0 ) 9
dr*  9r’  dyr Oy o gy T Useoslwt" =@)gn, (27)

and (2.4) is rewritten as

U + uuy +vu, = _P= + V(Ugy + Uyy), (2.8)

p
where p = p* — zpwU;sin(wt — ¢). We note that the y-momentum equa-
tion and the continuity equation are unaffected by this change of frame of

reference. The velocity profiles are now given by

u = a(t)kx + Ugcos(wt — ¢), (2.9)

v = —a(t)ky, (2.10)
as y — oo and the velocity on the wall is given by
u=Ugcos(wt—¢), v=0 on y=0. (2.11)

Therefore, these velocity components now describe an unsteady stagnation-
point flow with a horizontal velocity component in the far-field travelling
towards an oscillating wall and is illustrated in figure 2.1. We note that
the wall is oscillating with the same frequency, w, as that of the horizontal
component in far-field and the time-dependent function a(t) = 1 + A coswt,
where A is the amplitude and w is the frequency of the oscillations at infinity.

As the velocity components (2.9) - (2.11) are two-dimensional and incom-
pressible, they can be expressed in terms of the streamfunction ¢ (x,y,t), to

give
Y =k(14+ AcosT)ry + Uscos(wt — @)y as y — oo, (2.12)
with the boundary conditions on the wall

Yy(z,y,t) = Uscos(wt — @), Yu(r,y,t)=0 on y=0. (2.13)
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Figure 2.1: An illustration of the unsteady oscillating stagnation-point flow
approaching an oscillating wall, where the stagnation point is represented by
the solid dot and is fixed at the origin.

The Navier-Stokes equations are also rewritten in terms of the streamfunc-
tion, to give

Pz

wyt + wywmy - wxwyy = _? + V<wmmy + wy?ﬂ/)a (2-14>
p
_th - ¢ywxx + ¢$,I7Z)$y = _?y - V(’QZ)JJJJJJ + Q/nyy), (215)
where u = ¢, and v = —1),, with the incompressibility condition automati-

cally satisfied.

As the far-field streamfunction (2.12) does not satisfy the no-slip condi-
tion, a similarity solution is sought close to the wall, which matches the flow
at the wall to that of the far-field. Due to the form of (2.12), the stream-

function is expressed as

v

U(x,y,t) = (yk)l/%z/;p(n, 7)+ Us (E)UQ Ys(n, T), (2.16)

with n = (k/v)"*y and 7 = wt. The first term in (2.16) represents the
orthogonal stagnation-point flow and is denoted ¥p(n, 7), the primary flow.
The second term corresponds to the oscillating wall, denoted vg(n, 7), the
subsidiary flow. Matching the far-field streamfunction (2.12) to the similarity
solution (2.16), we find ¢ p,(n,7) — 1+ Acos7 and g, (n, T) — cos(T — ¢)
as 7 — o00. Therefore, upon substituting streamfunction (2.16) into the z-

momentum equation (2.14) and matching to the far-field, to eliminate the
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Figure 2.2: (a) The asymptotic structure valid for high frequency, o, and the
oscillation amplitude, A < 1. (b) The asymptotic structure valid for high
frequency, o, and large oscillation amplitude, A.

pressure term p,, we obtain

O'Q/me. + (Q/JPn)Q — wpwp,m = —cAsinT + (1 + ACOST)2 + wpmm, (217)
O-anT + ’l/}Sn’l/}Pn - waSnn = (218)

—osin(7 — ¢) + cos(7 — ¢)(1 + AcosT) + Ygym,
with boundary conditions for the primary flow

Yp(0,7) =0, p,(0,7)=0 on n=0, (2.19)

VYp,(n,7) = 1+ AcosT as n— oo, (2.20)

and subsidiary flow boundary conditions

¥s5(0,7) =0, g,(0,7) =cos(t —¢) on n=0, (2.21)

Vg, (n,T) — cos(T —¢) as n — o0. (2.22)

Here 0 = w/k is the Strouhal number, a dimensionless frequency parame-
ter, which is a measure of the time-dependent terms. It should be emphasised
that (2.17) and (2.18) are an exact reduction of the Navier Stokes equations

and it has not been assumed that the Reynolds number is large.
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Following the earlier work of Pedley (1972) and Grosch and Salwen (1982),
Merchant and Davis (1989) considered solutions to the primary equation
(2.17) in the large frequency limit and the mean component of a(7) is much
larger than the oscillatory component. In this case, the asymptotic structure
consists of a Stokes layer of thickness O(c~!/2) at the wall, which occurs in
oscillatory problems and is a balance between the unsteady and the viscous
terms. This layer matches to an outer layer of O(1) thickness, as illustrated
in figure 2.3(a). Consequently, the thickness of the outer layer is of the
order ¢/? multiplied by that of the Stokes layer. Work by Riley (1965)
and Stuart (1966) showed that in the absence of a mean flow at infinity,
the asymptotic structure requires a Stokes layer at the wall, of thickness
O(c~1/?) and a steady streaming layer of thickness O(c'/?), as illustrated in
figure 2.3(b). In this case, the thickness of the steady streaming layer is of
the order o, multiplied by that of the Stokes layer. The implication for the
present work is that the asymptotic structure required to describe the flow
at a high frequency changes, when the amplitude of the oscillatory flow at
infinity also becomes large. Merchant and Davis (1989) and subsequently
Blyth and Hall (2003) considered the latter limit, where both the frequency
and the oscillation amplitude were large. The former authors found a critical
amplitude dependent upon the frequency, above which solutions do not exist.
This amplitude arises when the thickness of the outer layer coincides with the
thickness of the steady streaming layer. Blyth and Hall showed that when

the oscillation amplitude exceeds the critical threshold
A~ O(c"?), (2.23)

the primary solution terminates at a finite-time singularity. The behaviour
of the primary solution close to the finite-time singularity is discussed in

chapter 5. We expand the relation (2.23) as
A= Ago? + Ay 4+ O(0~Y?), (2.24)

where the constant Ay corresponds to the boundary between solutions exist-

ing and breaking down. The second term in the expansion is the correction
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term and only has relevance when solutions are discussed close to the bound-
ary. Through solving the primary problem, both Ay and A; are obtained
and compared later with the results of Blyth and Hall (2003).

Hazel and Pedley (1998) considered solutions for large o, but confined
their attention to the case where the amplitude was restricted, to prevent flow
reversal, i.e. A < 1. To proceed with our investigation, we use the relation
(2.23) and consider the solutions to the primary and subsidiary problems in
the asymptotic limit 0 — oo. The amplitude parameter is also large, which
allows the flow to reverse. As the subsidiary equation is coupled with that
of the primary equation, it is expected that the subsidiary equation will also

break down when this relation is exceeded.

2.3 Large frequency analysis

In this section, we consider the asymptotic solution to equations (2.17) and
(2.18) for large frequency and in the parameter range A ~ O(c'/?). For
convenience, the scalings g = A‘l/Q%, vp = Al/Q’lZ; and 7 = A2y are
introduced so that the amplitude A is no longer coupled with the oscillatory
component of a(7). Furthermore, we introduce new parameters, € = 1/A

and Q = o/A. Subsequently, the rescaled equations become
~ ~ N2 o~ ~ ~
Woprr + (¢p5> — Yppan = —QsinT + (€4 cosT)? + Ppomn,  (2.25)
Q@Sﬁr + Ysstpy — {/}\PwSﬁﬁ = (2.26)
— Qsin(T — ¢) + (cosT +€) cos(T — @) + 'lZSﬁﬁﬁ,
with primary boundary conditions
Up(0,7) =0, Upa(0,7) =0 on 7=0, (2.27)
{Z)\pﬁ(ﬁ, T) — COST +€ as 1 — 00, (2.28)

and subsidiary boundary conditions

bs(0,7) =0, Psp(0,7) = cos(t — @) on 7 =0, (2.29)

Vs7(1, T) — cos(T — @) as 7 — oo. (2.30)
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The relation (2.23) is rewritten in terms of the new parameters € and 2
to obtain an equivalent relation € ~ O(Q™!) and we express this as the

asymptotic expansion
€=ag '+, Q77+ 0(Q7%). (2.31)

The constants ag and a; can be rewritten in terms of the constants Ag and Ay,
given in (2.23) and are expressed as ag = A%% and a; = —2A;a?. The constants
ap and a; are obtained numerically when solving the primary equation (2.25).

We note that (2.25) and its corresponding boundary conditions are inde-
pendent of ’(z;s, while (2.26) and its boundary conditions involve a coupling
of @/Z)\S and {Z)\p. Consequently, we first need to seek a solution to @/Z)\p, by du-
plicating the work of Blyth and Hall (2003), before we obtain a solution for

@S, in which results and methods from the primary problem are used.

2.4 The primary flow

To solve the primary equation (2.25) in the limit  — oo with € ~ O(Q71),
we seek solutions in the Stokes and the steady streaming layers. We begin

by solving the primary equation in the Stokes layer.

2.4.1 The Stokes layer

Initially, we seek a solution to the primary equation (2.25) close to the wall.
The dominating terms in equation (2.25) are QQZ Par ™~ QZ P, Which suggests
the scaling 7 ~ Q~Y2. Therefore, a Stokes layer is present of thickness
O(17'/2). Subsequently, we introduce the variable & = QY2%, where & =
O(1) and equation (2.25) becomes

~ ~ N2 o~ o~
93/21/1P57 +Q ((ng) - wpwpgg) = (2.32)
—QsinT + (cosT 4+ agQ 1) + Q3/2$p555 +0(27?),
with boundary conditions on the wall

$p(0,7) =0, Ppe(0,7) =0 on &=0, (2.33)
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and the matching condition to the far-field
'I:Z)\Pg — Q7 V2cos T+ agQ 2 + a1 Q72+ O as € — oo, (2.34)
To solve (2.32), we pose the asymptotic expansion
Up = Q72U (6,7) + Q32U p (€,7) + O(Q72). (2.35)
Substituting the expansion (2.35) into (2.32), gives at leading and first order

\Ilpoffr_\llpofff = —SiIlT, (236)

Upie, — Upge = o7+ UpUp — (Up)", (2.37)
with the leading and first order boundary conditions on the wall
Up,(0,7) =0, Up(0,7)=0, ¥p(0,7)=0, Wp(0,7)=0.(2.38)

Upon integrating (2.36) and (2.37), we find the leading and first order solu-

tions in the Stokes layer are

Up (&, 7) = EcosT — cos (7‘ — g) +e~/V2 e (T - % - %), (2.39)
Up (§7) = % - % - F cos (27 + Z) (2.40)

1 1 T
_ —E\/_ ( o o _)
+ ——e ¢ cos 2T
4\/5 2\/_ : 4

Ferfulg ) ()
—e 82 [¥ cos (%) + V/2sin <%)] .

We note that the term proportional to e~¢ in the first order solution (2.40)
arises due to the non-linear terms in equation (2.37). In solving equations
(2.36) and (2.37), we have used the boundary conditions on the wall and the
fact that the functions Wp, (€, 7) and Up (&, 7) are periodic and bounded. In

the limit & — oo,
~ 3
Ype — QY2 cos T — ZQ_?’/Q +0(Q75?) as € — oo, (2.41)

Matching the solution (2.41) to the boundary condition (2.34), it can be
seen that the leading order solution matches to the far-field boundary condi-

tion. However, the first order solution (2.40) does not satisfy the condition
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Upe(€,7) — ag as § — oo. Instead, Up, (£, 7) — —3/4 as § — oo. This
term can be interpreted as a horizontal velocity at the top of the Stokes
layer moving towards the origin, which arises due to the non-linear terms in
equation (2.37). To enable this velocity to match with the far-field flow, it is
necessary to introduce a steady streaming layer to match between the Stokes

layer and the far-field.

2.4.2 The steady streaming layer

In this section, we solve equation (2.25) in the steady streaming layer. To en-
able this layer to match with the Stokes layer, we introduce the new variable
¢ = QY25 where ¢ = O(1) and the steady streaming layer has thickness
O(QY/?). Rewriting equation (2.25) in terms of ¢, we obtain

Ql/zlgpg +a7! (<$P<>2 - IZPQZPCC) = (2.42)
— QsinT + (cosT + a0 ) + 973/21;13((( +0(27?),
with far-field boundary condition
{/)\pg — QY2 cos T+ a2+ a QP+ O(?) as ( — oo, (243)

To determine the form of the asymptotic expansion, we rewrite the Stokes
layer solution as & — o0, in terms of the steady streaming layer variable (.
The dominate terms are given by @/Z)\p ~ QY2¢ cos T — Q12 cos (7‘ — %) +- -
This suggests the expansion

™

Up = QY?CcosT 4+ Q12 <— Ccos (7‘ — Z) + Gp(C, 7')) : (2.44)
with Gp((, ) given by
Gr(e.) = (PnlC)+R(O) + 7 (BG4 AQ) + (245)
O (0p,(C,7) + H(Q)) +O0(O2).

The functions f;(¢) are the mean components and ®p, (¢, 7) are the oscillatory
components with a zero time-average, for ¢ > 0. The last component of

(2.45) is included as ®p,(¢,7) is required to obtain the equation for fy(().
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By substituting the steady streaming layer expansions, (2.44) and (2.45),

into the equation (2.42), the leading and first order equations are
Ppye, = 0, (2.46)
Pp e, = 2a9cosT + (Ppye + foe)(cosT — 2(Pp - + for) cosT. (2.47)

To proceed, we integrate equation (2.46) once with respect to 7 and take a
time-average to obtain the function of integration. Secondly, we integrate
with respect to ¢ to give ®p, = go(7). Repeating this process for (2.47),
we find ®p, = (2a0¢ + fi¢ — 3fo)sin7T + ¢1(7), where the prime denotes
differentiation with respect to . The functions go(7) and ¢;(7), are found
via matching to the Stokes layer solution. In the matching region, between
the Stokes and the steady streaming layer, the Stokes layer solution is written

in terms of the steady streaming layer variable (, to give

D QL2 _O-1/2 ™ 3¢
Vp Q/%CcosT — 0 [cos (7‘ 4) + 1 ] (2.48)
13 1 T
—3/2 N - —5/2
+£ {—4\/5 W cos <27‘ + 4” +O(2777%).

From this, it can be seen that go(7) = 0 and ¢;(7) = —ﬁ Cos <27‘ + %) To
obtain the steady stream layer solution, we substitute the values for ®p (¢, 7)

and ®p, (¢, 7) into (2.44) and (2.45) and find
vp = QY%CcosT + Q712 {fo(g) — COS <7‘ - 2)] (2.49)
#0792 | (G(6) = 3(0)) st + 2anC s

—% cos (27’ + 2) + fl(C):| +0(Q7°7).

To obtain the equation for f5(¢), we collect terms of size O(272) in (2.42) to
obtain
Up,, = —f2—2cosT [ (2a0 + Cf! — 2f2)sinT + f{} (2.50)
+(cosT [(Cfé” — fo)sinT + f{'] — cos (7‘ - 2) o
+fofy 4 aj + 2ay cos T + £

Averaging over a single time period, we find

o —Jo + fofd +ag = 0. (2.51)
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To find the boundary condition on ¢ = 0, we match the Stokes layer solution
(2.48) to the steady streaming layer solution (2.49), to obtain fy(¢) — —3(/4
as ( — 0. The boundary condition as ( — oo is found by matching the
steady streaming layer solution to the far-field boundary condition (2.43).
Therefore, the boundary conditions for equation (2.51) are given by

BOV=0, fO=-7  fQO—a as (oo (252)

Similarly, to calculate the equation for fi({), we collect terms of size

O(Q273) in (2.42) and find

Upg, = —2eosT(Vp + f3) = 2f| (a0 + Cff = 25 sin7 + fi]  (2:53)
+ CeosT(Wp + f) = cos (7= T) [(Cf)" = f7)sinT + f1

o fl + fl {(2(10 +(fo—3fo)sinT — % cos (27- =+ Z) + f1]

+2apar + (fy" sinT + fi".

Before taking a time-average of (2.53), we note that Wp,. and Wp, . are
needed. For convenience, we note that the only term which gives a non-zero
time-average when the integral of (2.50) is multiplied by the terms in (2.53),
is Up,, ~ —cos(T—m/4)fy. Therefore, upon taking a time-average of (2.53),

we obtain

"

VA Al o = 2f0f = 2—0 — 2apa;. (2.54)

V2
We note that Merchant and Davis (1989) do not have the term on the right-
hand side proportional to f{/({), but we agree with Blyth and Hall (2003)
that this term should be included. The boundary conditions for equation
(2.54) are obtained using a similar method to that described for equation
(2.51) and are given by
13
12

In the next section, we solve equation (2.51) with boundary conditions

f(0) = fi(0)=0,  fi(Q) »a as (—oo.  (2.55)

(2.52), which has previously been addressed by Merchant and Davis (1989)
and Blyth and Hall (2003). Additionally, these results are used to solve the
subsidiary equation (2.26).
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2.4.3 Numerical Scheme: Runge-Kutta technique

To solve the equation for fy(¢), given in (2.51) with boundary conditions
(2.52), we use a fourth order Runge-Kutta technique. Both Merchant and
Davis (1989) and Blyth and Hall (2003), found that there are no solutions
when ay < ag., two solutions when ag, < ag < 0.75 and a unique solution
when ag > 0.75, where the critical value ag. = 0.602. We proceed by solving
equation (2.51), not only to verify these results, but also to use these to solve
the subsidiary equation, which is considered in section 2.6.3. We convert the
third order equation into three first order equations by letting fy = y; and it

follows that

Y= Y (2.56)
Yo = Us (2.57)
Ys = Yi—yiys — ap, (2.58)
with boundary conditions
NO)=0, 10) =3, (o) = (2.59)

This system is solved using a fourth-order Runge-Kutta technique, which
can be found in Cheney and Kincaid (1994), for example. This is an it-
erative numerical method, evaluating the function at the initial point, two
trial midpoints and at the end of the interval, where a spatial step size of
h = 0.001 is chosen. Since (2.51) is a third order equation, the second order
boundary condition fJ'(0) is needed. To calculate this, we use a shooting
technique by means of Newton’s method and iterate until the condition at
infinity, y2(00) — ag is satisfied.

Upon solving equation (2.51), we have been able to improve the critical
value calculated by Merchant and Davis (1989), to ap. = 0.6017. Upon
increasing ag, we find two solutions for 0.6017 < a¢ < 0.7. In figure 2.3,
the velocity profiles are illustrated for ag = 0.6017,0.65,0.7. However, using
this method and increasing the value of ay beyond 0.7, one of the solutions

becomes more sensitive to the initial conditions and is difficult to compute.
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Figure 2.3: The primary leading order velocity profiles for the two solutions
of f{(¢) for ap = 0.6017 (solid line), ag = 0.65 (dotted lines) and ag = 0.7
(dashed lines).

This breakdown corresponds to the velocity profiles in figure 2.3(b). We
note that Merchant and Davis (1989) also had this problem. Attempting to
rectify this, we increase the accuracy of the numerical method, however, this
becomes time-consuming and impractical.

To calculate the remaining solution of fy(¢) for 0.7 < ag < 0.75, we use a
finite-difference numerical technique, which was used by Riley and Weidman
(1989). Initially, an asymptotic solution at ag ~ 0.75 is obtained and used

as an approximation to begin the numerics.

2.4.4 Asymptotic solution of f;(¢) about ay ~ 0.75

In the previous section, two solutions to equation (2.51) have only been found

for 0.6017 < ag < 0.7, but as ag increases, one of the solutions is unable to
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be calculated using the Runge-Kutta technique. To obtain the remaining
solution of fy(¢) for 0.7 < ag < 0.75, we follow Riley and Weidman (1989) by
seeking the solution using a finite-difference technique. Firstly, an asymptotic
solution to equation (2.51) is required for ag &~ 0.75, which is used as an initial
guess to begin the numerics. The numerics are then marched backwards from
ap ~ 0.75 to match with the Runge-Kutta results for ay ~ 0.7.

To begin, we rewrite the equation (2.51), using the scalings fy(¢) =
a(l]/ 2]?0(2 ) and Z = aé/ ZQ , which expresses the equation in the form that was

discussed by Riley and Weidman (1989) and is given by
fol — J2+ fofi +1=0, (2.60)
with boundary conditions

B0)=0,  FO)==\  fO =1 as (— oo, (2.61)

where \ = ﬁ. We note that equation (2.60) is a special case of the Falkner-
Skan equation. To begin, we duplicate the work of Riley and Weidman
(1989), not only to find an asymptotic solution to begin the numerics, but
also, the details of this asymptotic solution are required for the subsidiary
asymptotic solution, which is discussed in Appendix A.

To find an asymptotic solution to equation (2.60), we write A = 1 4 €
where 0 < ¢ < 1. When A = 1, this corresponds to the case when ag = 0.75
and as € increases, ay decreases. From our numerical results in section 2.4.3,
it appears that ]/%/ (0) ~ €'/ as € — 0, with this relationship illustrated in
figure 2.4. This relation, along with the boundary conditions at E =0, given
in (2.61), indicates the scaling ]?0 = Tls) fo(x) with new variable x = 56, where

1/2

0 = ae'/*. The constant a is obtained when finding the first order asymptotic

solution. We write equation (2.60) in terms of the new variables, to obtain
a’efy’ — fo2 + foft +1=0, (2.62)
with boundary conditions

fo(0) =0, fi(0)=-X, on x=0, (2.63)
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Figure 2.4: Using the results from the Runge-Kutta method close to ag = 0.7,
a relationship develops between the shear component f{/(0) and €, given by
fU0) ~ €/? as e — 0.

and the matching condition to the far-field is given by fj(x) — 1 as x — oo.
The form of equation (2.62) suggests that we pose the asymptotic expan-
sion fo(x) = fa(x)+efs(x) +O(€?). Substituting this expansion into (2.62),

we find at leading order

Fa0OFA00 = FE(X) +1=0, (2.64)
with boundary conditions f4(0) = 0, f4(0) = —1. A solution to equation

(2.64) satisfying the boundary condition at ( = 0, is given by

fa(x) = —sin(x). (2.65)

This is denoted the region 1 solution. As the far-field boundary condition
is not satisfied, we seek a solution to match between the region 1 solution
and the far-field condition. Before obtaining this solution, we find the first
order solution fg, to obtain the constant a, where 6 = ae'/2. At this stage, it
is not known whether the first order solution is required to begin the finite-
difference numerics. This is discussed in section 2.4.5, where the leading
order approximation is plotted against the numerical solution for fO(Z) to

assess its accuracy.

The first order asymptotic expansion of equation (2.62) is given by

fis — 2 cot(x) [z — fp = acot(x), (2.66)

with the boundary conditions on y = 0 given by f(0) =0 and fi(0) = —1.
To find the homogeneous solution to (2.66), we notice that by using the
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simplification fp = sin(x)u(y), it reduces to
sin? xyu” (x) — 2u(x) = 0. (2.67)

Upon solving equation (2.67), we obtain u(x) = Acotx + B(1 — x cot ).

Hence, the homogeneous solution to equation (2.66) is given by

fe(x) = Acos(x) + B(sin(x) — x cos(x)), (2.68)

where A and B are constants. To seek the particular solution of (2.66), we
use the method of variation of parameters and write fp(x) = w1 (x)vi(x) +
uz(x)va(x), where the functions u;(x) and uy() are the solutions from the
homogeneous case, ui(x) = cosx and wus(x) = sin(x) — x cos(x). The func-
tions vy (x) and wve(x) are obtained using this method and equation (2.66)

becomes

vy cos(x) + vy(sin(x) — x cos(x)) = 0, (2.69)
—vpsin(y) + vhxsin(x) = a®cot(y). (2.70)

Solving these, we find

ulx) = “; [Smtx) + /O “n <tan (%)) dx — é;@s(%) (2.71)
(e (D)]

n(y) = —%2 [Z?Eg? +1n (tan @))] . (2.72)

Therefore, combining the homogeneous and particular solution, the general

solution of fp() is given by

fe(x) = Acos(x) + B(sin(x) — x cos(x)) (2.73)
2 X > 2 %
+% COS(X)/O In <tan (%)) dy — % sin(y) In <tan (%)) .
Applying the boundary conditions f(0) = 0 and f(0) = —1, we find A =0
and a?> = 2. However, the constant B is undetermined at this order. This

value for a implies that § = (2¢)'/2 and the first order solution is given by

al) = Blsin) — xeos()) +os(y) [ In (tan (§))d>z<2.74>

iyt (5)).
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Combining the leading order solution (2.65), with the first order solution

(2.74), we obtain the primary asymptotic solution

fw = =0 2 BGing) - xeos() (279

+cos(x) /OX In (tan @)) dg — sin(x) In (tan @)) ] .

As discussed previously, this solution is unable to satisfy the far-field bound-
ary condition, fj(x) — 1 as Y — oo. It can be seen that the leading order

solution

jc\o' = —cos(x), (2.76)

is only valid until yo = 7 i.e. ZO = 7/d. Consequently, another region is
required to match this solution to that of the far-field. Figure 2.5 illustrates
the leading order solution (2.76) for selected values of € along with Z”O for each

value of € and it can be seen that as e — 0, (y increases.

¢

Figure 2.5: The leading order asymptotic solution for ¢ — 0, where ¢ = 0.05
(solid line), € = 0.025 (dotted lines) and € = 0.01 (dashed lines). The vertical

lines represent (y, the point at which the solution no longer satisfies the far-
field boundary condition.

We introduce a new region centered on E: 7/0, which is denoted region 2.
Upon writing fo = Z+N(Z) with new variable Z = E—%, where |N’(E)| < 1,
equation (2.60) is rewritten, after neglecting the quadratic terms, as

N"(Z)+ ZN"(Z)—2N'(Z) = 0. (2.77)
Writing N’ = Ae?*/*u(Z), equation (2.77) reduces to

Z? 5
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where A is a constant, which is found through matching to the region 1
solution. The solution for u(Z) has a solution in the form of a parabolic
cylinder function, which can be found in Abramowitz and Stegun (1964).

Therefore, the solution to (2.77) is given by
N'(Z) = Ae % *D_4(2), (2.79)

where D_3(Z) is a parabolic cylinder function. Subsequently, the leading

order region 2 solution is given by
=1+ Ae%/"D_4(2). (2.80)

To obtain the constant A, we match the region 1 and 2 solutions together. In
the matching region, the region 1 leading order solution (2.76) is expressed

as ]% = cos(0Z). In the limit § — 0, this can be expanded as

- 6272

fi=1- +0(Z%). (2.81)

For the region 2 solution, an expansion for D_3(Z) as Z — —oo is required.
From Whittaker and Watson (1963), D_3(Z) ~ ¥25e7*/%72 as Z — —oc.

Substituting this expansion into the region 2 solution (2.80), gives

=1+ A@ZQ +0(ZY. (2.82)

Upon matching the region 1 and region 2 solutions, (2.81) and (2.82), we find

A= —%. Riley and Weidman (1989) obtained the same formula for A but

without the §2 factor. We think the 62 is necessary in order for the correct
matching to take place. Therefore, the region 2 leading order expansion is
given by
-~ 262
fom1- 2
2V 2T

In figure 2.6, the leading order region 1 solution is plotted alongside the

e 7 1D_5(2). (2.83)

region 2 solution for selected values of €. It can be seen as ¢ — 0, the region
1 and 2 solutions match together.

In this section, we have obtained the asymptotic solution of fy(¢) close
to ap = 0.75. We proceed by using this as an initial guess to begin the finite-
difference numerics for ag ~ 0.75. The numerics are then marched backwards

in ag to match with the Runge-Kutta results obtained in section 2.4.3.
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Figure 2.6: The leading order asymptotic solution to equation (2.60) for
selected values of €. Due to the scalings on the axes, the region 1 solution is

unaffected by the choice of €. As € — 0, the region 2 solution matches to the
region 1 solution.

2.4.5 Numerical scheme: Finite-Difference technique

To obtain the remaining solutions to fy(¢) for 0.7 < ap < 0.75, which were
unable to be calculated using the Runge-Kutta technique, we follow Riley and
Weidman (1989) and use a finite-difference technique. This method involves
an initial guess with an iteration. In section 2.4.4, an asymptotic solution
was obtained close to ag &~ 0.75, which is used in this section as an initial
guess to begin the finite-difference numerics.

By introducing a new variable go = ]/%, equation (2.60) is rewritten as the

second order equation
9o + fogo — g6 +1=10. (2.84)

The non-linear term g2, is rewritten as g2 = 2godo — g&, where go and go are
successive iterates. When gg and gy are within a small tolerance of each other,
this relation is satisfied and the solution for gq is captured. We centrally

discretise equation (2.84) to give

~

1 o, _ 3
ﬁ (90i+1 - 2g0i + g0i71> + % (g0i+1 - 90171) - 2g0i7190¢ =—-1- ggiv (285>
with boundary conditions
f01 = 07 go, = _)\7 Jon = 17 (286>

where A = 1+ € with 0 < e < 1. The functions foi and go, are unknown

at each grid point @ = 1h, where h is the spatial step size and ¢ = 1...N.
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Equation (2.85) is rewritten in terms of the tridiagonal system
;90,41 + bigo, + cigo,_, = di, (2.87)

where the constants a; .. .d; are given by

1 fo
S i 2.
i T (2.88)
-2 N
_ 1 o
G = 5T gp (2.90)
d = —1-g;,. (2.91)

We begin by solving equation (2.87), by using the leading order asymp-
totic solution obtained in section 2.4.4 as the initial guess to the solution.

This is expressed as

I _l0 f 0 <l < 7
folQ) = ~ - (2.92)
o —m o >m
90(2) _ —cos(0() 1f9 <o <m (2.93)
1 o>
where § = (2¢)'/2 and we choose € = 0.001. The spatial step size h = 0.001
to agree with that used in the Runge-Kutta method.

The numerics begin when A &~ 1 with (2.92) and (2.93) being used as the
initial guess to the system (2.87), which is solved using the Thomas algorithm,
which can be found in Hoffman (2001), for example. Once the solution for
go is computed, ﬁ) can easily be calculated by using the trapezium rule. At
the next value of A, the previous solution is used as the initial guess and the
iterative procedure is repeated.

The numerics continue until A ~ 1.0714 i.e. ag ~ 0.7, where A = ﬁ and
the solutions match to those obtained using the Runge-Kutta technique. In
figure 2.7, we compare the velocity profiles from both numerical methods for
A = 1.0714, showing excellent agreement.

We note that only the leading order asymptotic solution is required to

obtain an accurate solution for go, with figure 2.8 showing excellent agreement

between the numerical and the asymptotic solutions for e = 0.001.
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15

Figure 2.7: The velocity profile for the finite-difference method, represented
by the crosses and the Runge-Kutta method, represented by the solid line,
for A = 1.0714 i.e. ag = 0.7, showing excellent agreement.

1

0.5

Figure 2.8: The asymptotic leading order solution for ¢ = 0.001, illustrated
by the crosses, showing excellent agreement with the numerical solution for
the same value of €, represented by the solid line.

Combining the numerical results from the Runge-Kutta and the finite-
difference methods, we construct a curve of the possible values of ag, illus-
trated in figure 2.9. The results show that there is a unique solution when
A < 1, two solutions when 1 < A < 1.246 and no solutions when \ > 1.246.
These are equivalent to a unique solution when ay > 0.75, two solutions when
0.6017 < ag < 0.75 and no solutions when ay < 0.6017.

The previous three sections have been dedicated to solving the equation
for fo(¢), given in (2.51). In the next section, we consider the solution to
f1(¢) whose equation is given by (2.54). This solution is not important in
the context of the steady streaming layer solution (2.49), but the constant

aq is discussed.
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f2(0)

Figure 2.9: The possible values of A for which solutions of equation (2.51)

exist, where \ = 4— The solid line represents the numerics calculated from

the Runge-Kutta technlque while the dotted line corresponds to the results
from the finite difference scheme.

2.4.6 The first order correction, fi(()

In this section, solutions are obtained for f;((), whose equation is given by
(2.54). In solving this, we obtain the value of a; which corresponds to the
critical value of ag., i.e. the correction term in the boundary between the
solutions existing and breaking down at a finite-time singularity.
The first order equation, previously defined in equation (2.54), is given
by
"

0
2v/2

U fufe ot = 2f0f = — 2apaq, (2.94)

with boundary conditions
13
442’

where ag > 0.6017. Equation (2.94) is solved using a fourth-order Runge-

f(0) = fi(0)=0,  fi(Q) —a as (—oo,  (295)

Kutta technique, which is the same method that was used in solving the
equation for fy(¢). In solving equation (2.94), the solutions to fy(¢) at each
value of ag are used. As f1(() is reliant upon fy(¢), we find for each value
of ay, there are no solutions when ay < 0.6017, two solutions when 0.6017 <
ap < 0.75 and a unique solution when ag > 0.75. Figure 2.10 illustrates the

primary shear component f7(0) against ag. At the critical value ag. = 0.6017,
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we find a unique value of f{(0) for a; = —0.55237. For all other values of
ay, f1'(0) tends to either positive or negative infinity. This value agrees with

Blyth and Hall (2003).

2
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Figure 2.10: The primary shear component f7(0) for ap = 0.6017 and a; =
—0.56 (dashed lines), a; = —0.55 (dotted lines) and a; = —0.55237 (solid
line). This illustrate that for a; = —0.55237, a unique value of f]'(0) exists.

2.5 Summary of primary flow

In section 2.4, we have solved the primary equation (2.25) in the parameter
range A ~ O(c'/?), where A and ¢ are large. This problem represents an
unsteady stagnation-point flow travelling towards a fixed wall. The primary
solution exhibits a double layer structure, with a Stokes layer next to the
wall. Due to a horizontal velocity persisting to the top of the Stokes layer,
a steady streaming layer is included to match between the Stokes layer and
the far-field flow.

In solving the primary equation (2.17), we find the critical value given in

(2.24) can be written as
A =1.2890'% +0.763 + O(c—1/?), (2.96)

which is in excellent agreement with that of Blyth and Hall (2003). Above
this critical value, solutions break down at a finite-time singularity and the
behaviour of the solutions close to the time-singularity are discussed in chap-
ter 4. In the next section, the subsidiary equation (2.26) is solved using

methods and results from the primary problem.
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2.6 The subsidiary flow

In this section, the subsidiary equation (2.26) is solved in the limit  — oo
with € ~ O(Q7!). Due to the coupling between the primary and subsidiary
functions in equation (2.26), the structure of the subsidiary solution is similar
to that of the primary solution. A Stokes layer is present at the wall with a
steady streaming layer matching between the Stokes layer and the far-field
flow.

We recall the subsidiary equation, which was initially stated in equation

(2.26), is given by

Q@SﬁT + QZSﬁQZPﬁ - @P@Sﬁﬁ = (2.97)

— Qsin(7 — @) + (cosT +€) cos(T — @) + {p\Sﬁﬁﬁ,
with boundary conditions

$s(0,7) =0, $gp(0,7) = cos(T —¢) on 7=0, (2.98)
isﬁ(ﬁ, T) — cos(T — @) as 1 — oo, (2.99)

where € = a7 + a; 272 + O(273). We begin by seeking a solution in the
Stokes layer.

2.6.1 The Stokes layer

A Stokes layer is a small layer close to a boundary, occurring in oscillatory
flow problems, where the unsteady and viscous components balance. The
dominating terms in equation (2.97) are Q@ Sir ~ @ s, which implies the
scaling 77 ~ Q71/2. Therefore, the Stokes layer is of thickness O(2~'/2) with
variable & = Q1/27), where ¢ = O(1). We note that this is the same thickness
as that of the primary Stokes layer. Rewriting equation (2.97) in terms of ¢,

we obtain

93/21;557 +Q (QZPg{/;Sg - @P@Sgg) = (2.100)

— Qsin(T — ¢) + (cos T +€) cos(T — @) + Q@s&g,
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with boundary conditions on the wall
121\5(0, 7) =0, 121\5,7(0, 7)=Q Y2cos(r —¢) on £=0, (2.101)
and the matching boundary condition to the far-field flow
121\55(5,7') — Q1 2cos(r—¢) as € — oo. (2.102)
We seek a solution to (2.100), by posing the asymptotic expansion
s = Qg (6, 7) + Qg (€, 7) + O(Q2). (2.103)

Substituting the asymptotic expansion (2.103) into the subsidiary equation
(2.100), we find at leading and first order

Vsoer = VUsoeee = —sin(t — ¢), (2.104)

Usier = Usigee = cosTeos(T — ) + UpWsyee — VR sy, (2.105)
with boundary conditions on the wall

Vs, (0,7) =0, Wg,,(0,7) = cos(T — ¢), (2.106)

Vs, (0,7) =0, Ws,(0,7) =0. (2.107)

Integrating (2.104) and (2.105), we obtain

Ve, (§,7) = Ecos(T — @), (2.108)
U (6,7) = %&sinqﬁ v %(1 - %) sin (27 6 g) (2.109)
+%Cos <¢+ %) +$6_5sin <27‘—¢—§— %)

_%ei/\/5 |:COS (% —¢— Z) + sin (27-— % — ¢ — %)} )

When solving the leading and first order equations, (2.104) and (2.105),
we have used the boundary conditions on the wall and the condition that
Vg, (&, 7) and Ug, (€, 7) are periodic and bounded. As & — oo, the Stokes

layer solution is given by

~ 1
Vs, — Q2 cos(T — ¢) + 973/25 sing + 0(Q7%?) as € — oo. (2.110)
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This is unable to satisfy the far-field boundary condition (2.102), due to the
first order component in (2.110), which can be interpreted as a horizontal
velocity at the top of the Stokes layer. We proceed by introducing a steady
streaming layer to match the velocity at the top of the Stokes layer to that
of the far-field flow.

2.6.2 The steady streaming layer

In the previous section, it was found that at first order, the solution (2.109)
in the Stokes layer is unable to satisfy the boundary condition in the far-field.
As a result, like that of the primary problem, it is necessary to introduce a
steady streaming layer of thickness O(2!/2) between the Stokes layer and
the far-field flow. Therefore, we introduce the variable ¢ = Q=29 where
¢ = O(1). Rewriting equation (2.97) in terms of the steady streaming layer

variable, we obtain
25 + Q7 (Spelsc — Driisc) = (2.111)
— Qsin(7 — @) + (cosT +€) cos(T — @) + 9‘3/21254«,
with the far-field boundary condition
{/J\SC — M2 cos(t—¢) as ¢ — oo. (2.112)

To obtain the form of the asymptotic expansion in the steady stream-
ing layer, we rewrite the Stokes layer solution as & — oo in terms of the
steady streaming layer variable (. The dominating terms are given by 121\5 ~
QY2C cos(T — ¢) + Q71?2 sing + - -+ . This suggests the steady streaming

layer expansion takes the form
bs = QY%Ccos(r — o) + QV2Gs(C, 7), (2.113)
where G((, 7) is given by

Gs((,1) = (@(C7) + FolQ)) + 07! (95, (C,7) + Fi(0)) (2:114)
+072(@s,(C.7) + BlQ)) -+
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The functions ®g, (¢, 7) have a zero time-average and F; are mean compo-
nents, for ¢ > 0. The last term in (2.114) is included because ®g, (¢, 7) is
required to obtain the equation for Fy(¢). Substituting the primary steady
streaming layer solution, (2.49) and the subsidiary expansion given by (2.113)
and (2.114) into the subsidiary equation (2.111), the leading and first order

equations are given by

Psper = 0, (2.115)
®s,., = apcos(t — ¢) — cos(T — @) (q)poc + f0<> (2.116)

_cos7'<<1>5OC + Fog) + QCOST(@SOCC + FOCC)'

Integrating (2.115) and (2.116) with respect to 7 and taking a time-average
to obtain the function of integration, we obtain g =0, and Py, = (apC —
fo)sin(r — ¢) + (CF) — 2F) sinT, where the prime denotes differentiation
with respect to (. Upon integrating these equations with respect to (, we
obtain ®g,((,7) = go(7) and Pg, ((,7) = (aoC — fo)sin(r — ¢) + (CF} —
2F) sin T+ g1(7), where go(7) and ¢;(7) are found by matching to the Stokes
layer solution. In the matching region, the Stokes layer solution is written in

terms of the steady streaming layer variable ¢ and is given by

’(ZJ\S ~ QY2Ccos(T — ¢) + Q_l/Q%QSingb (2.117)
sl (1 L Ygn(2r— o
+Q73 22 1 7 sin (27‘ 10) 4)

+ cos <gb + 2) +O(Q75/?),

Therefore, matching (2.117) and (2.113), we find go(7) = 0 and ¢1(7) =
% (1 — %) sin (27‘ —p— %) and the subsidiary steady streaming layer solution

is given by

bs = QY2Ccos(t — ¢) + Q7V2E(C) (2.118)

#0792 (an€ = Q) sintr = 6) + (GFYQ) — 2Fa(0)) snT

1

+5 (1 - %) sin (27 — ¢ - %) + Fl(g)} +0(Q75?).
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To obtain a relationship for the unknown functions Fy(¢), we collect terms

of size O(7?) in equation (2.111), to find
Ugpep = —cos(T— ) [(2&0 +(f=2f))sinT + f{] — Fyfy (2.119)
—CoST [(ao — fo)sin(r — @) + (CFy — Fy)sinT + Fl']
+(cosT [QF(S" sint — fi'sin(r — @) + Fl”}

— cos (7’ — %) F+ foFy + aycos(t — ¢) + Fy.

Averaging over a single time period, we find

_ /
F' — foFy+ foFy = (ao 5 J 0) sin ¢. (2.120)

The boundary conditions at ( = 0 are obtained by matching the steady
streaming layer solution (2.118) to the Stokes layer solution (2.117). In doing
so, we find Fy({) — (sin¢/2 as ( — 0. The far-field boundary condition
is obtained by matching the steady streaming layer solution (2.118) to the
far-field condition (2.112). Therefore, the boundary conditions for equation

(2.120) are given by
1
Fy(0) =0, Fy(0) = 3 sin ¢, Fy(¢)—0 as ¢ —oo. (2.121)

If the phase difference is such that sing = 0 i.e. ¢ = 0,7, the problem

reduces to

' = foFy + foly =0, (2.122)

F(0)=0, F0)=0, F()—0 as (—oo,  (2.123)

and the only solution is the trivial one, F\O(E) = 0. For other values of ¢,
it is convenient to allow equation (2.120) to be independent of the phase
difference, ¢. We let Fy(¢) = sin ¢Fp(¢) and the first order equation (2.120)

becomes

ao—fo/

Ry — foRy+ oy = 20,

(2.124)
with boundary conditions

B0)=0,  FO)=7 RQO=0 a (—oo  (212)
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For completeness, we include the equation for F;((), however, it is not
be solved as it would have little effect on the steady streaming layer solution
(2.118). To obtain the equation for F;((), we collect the terms of size O(£273)

in equation (2.111) and average over a single time period, to find

F// a _f/
F///+ F”—I— F// . /F/ . /F/ _ 0 =+ ( 1) sin ’ 2.126
1 fl 0 fO 1 fO 1 fl 0 2\/5 2 ¢ ( )

with boundary conditions

F1(0) = %cos (¢> + %) . Fl(0)=0, FI()—0 as (— oo, (2.127)

which are obtained in a similar way to that described for Fy(().
In the next section, we solve equation (2.124) with boundary conditions

(2.125) using similar techniques to those used to solve the primary equation

(2.51).

2.6.3 Numerics

In this section, we solve equation (2.124) by initially using a fourth order
Runge-Kutta technique. We write (2.124) in terms of three first order equa-
tions by letting Fyy = z; and fy = y;. It follows that

2 = 2, (2.128)

zy = 23, (2.129)
a/ J—

Z = WQ—%@+<OQMX (2.130)

21(0) =0, 29(0) = = 29(00) = 0. (2.131)

In section 2.4.3, we found that by using a Runge-Kutta technique, fo(¢) has
no solutions when ag < 0.6017. As ag increases, we find two solutions when
0.6017 < ag < 0.7. When ag =~ 0.7, one of the solutions breaks down due
to the primary equation becoming sensitive to the initial conditions. There-
fore, due to the subsidiary equation (2.124) being coupled with the primary

equation, we find there are no solutions for Fy(¢) when ag < 0.6017 and two
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Figure 2.11: (a) The first primary velocity profile for ay = 0.6017,0.65,0.7
with its corresponding subsidiary velocity profile. (b) The second primary
velocity profile for ag = 0.6017,0.65,0.7 with its corresponding subsidiary
velocity profile. We note that this solution is unable to be calculated by the
Runge-Kutta method when ag = 0.7. In each case, the solid line represents
ao = 0.6017, the dotted line, ag = 0.65 and the dashed line, ag = 0.7.

solutions when 0.6017 < ag < 0.7. In figure 2.11, the subsidiary velocity
profiles are plotted for ay = 0.6017,0.65,0.7, along with the corresponding
primary velocity profiles. As is shown in figure 2.11(b), as ag increases, the
disturbance close to ( = 0 increases and exhibits a larger region of flow rever-
sal than the velocity profiles in figure 2.11(a). This behaviour is confirmed
in Appendix A, where the asymptotic solution for Fy(¢) is found close to
ap ~ 0.75.

To obtain the remaining solutions to Fy(¢) when 0.7 < ap < 0.75, we
use a finite-difference technique. We rewrite equation (2.124) without the
ao dependence, by letting Fy = ag/*Fy and as before, fo = a'/2fy with
E: a(l]/zg“, to obtain
1-f;

R R -RR =15

(2.132)
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Like that of the primary problem discussed in section 2.4.5, we let ﬁé = Gy
and ]/% = ¢o, which enables equation (2.132) to be rewritten as the second
order equation

1 —90

Gl — 9oGo + foGly = 5

(2.133)

Centrally discretising equation (2.133), gives

1
h?

Jo,
2h

(GOM —2G, + Goi_l) — g0,Go, + (Gom . Goi_1> _1 —290,. (2.134)

with boundary conditions
~ 1
Fo, =0, Gy, = 27 Goy = 0. (2.135)

The functions foi and g, represent the primary solution and F o, and G,
represent the unknown subsidiary functions at each grid point @ = ih, where
h is the spatial step size and i = 1...N. Equation (2.134) can be rewritten in

the form of the tridiagonal system
AiGo,,, + BiGo, + CiGo,_, = D;, (2.136)

where the constants A; ... D; are given by

1 fo
A = = 2% 2.137
EREET) (2.137)
—2
B, = ﬁ_QON (2.138)
1 fo,
- _ L _Ju 2.1
“ = T (2.139)
D = 1_790 (2.140)

As before, we solve the discretised equation using the Thomas algorithm,
where the spatial step size h = 0.001. This corresponds to the spatial step size
chosen in the primary finite-difference method. The numerics are initiated
at A &= 1, which corresponds to ag ~ 0.75, where A = 14+ e and 0 < e < 1,
which was initially defined when solving the primary equation using the finite-
difference technique. The numerics are marched backwards until A ~ 1.0714,

which corresponds to ag & 0.7. In figure 2.12, we illustrate the subsidiary



2.6 The subsidiary flow 43

Figure 2.12: The subsidiary solution for the finite-difference method, repre-
sented by the crosses and the Runge-Kutta method, represented by solid line
for ag = 0.7, showing excellent agreement.

solution for both the Runge-Kutta and finite-difference methods for ag = 0.7,
showing excellent agreement between these methods.

In figure 2.13, we illustrate the numerical results from the Runge-Kutta
and the finite-difference schemes. This illustrates that there is a unique
solution when A < 1, two solutions when 1 < A < 1.246 and no solutions
when \ > 1.246, where \ = &. These correspond to a unique solution when
ag > 0.75, two solutions when 0.6017 < a9 < 0.75 and no solutions when

ap < 0.6017. Contrary to the primary problem, where the solutions were well

behaved close to ag & 0.75, figure 2.13 illustrates as A — 1, F/(0) — —oo.

-10 ! ! ! ! 1 !
0 .

Figure 2.13: The possible values of A for which solutions to equation (2.132)
exist. The solid line represents the numerics calculated from the Runge-
Kutta method and the dotted line represents the finite difference method
results.
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2.7 Summary of subsidiary flow

In section 2.6, the subsidiary equation (2.26) has been solved in the large
frequency limit, in the parameter range A ~ O(c'/2). As the subsidiary
equation is coupled with the primary equation (2.25), the structure of the
subsidiary problem near the wall is the same. At the wall, there exists a
Stokes layer with a steady streaming layer matching between the Stokes
layer and the far-field flow. In solving the primary equation, the critical value
between solutions existing and breaking down at a finite-time singularity is
found and given in (2.96). Due to the dependence on the primary equation,
we have found that no solutions for the subsidiary equation occur above this
limit.

Having obtained solutions to both the primary and subsidiary equations,
in the next section, we consider the wall shear stress and the effect the

oscillating components have on the mean wall shear stress.

2.8 Wall shear stress

In this section, we obtain the wall shear stress in the large frequency limit
and discuss the effect of the horizontal oscillating components. In section
2.2, the oscillating stagnation-point flow was discussed in two frames of ref-
erence. Firstly, where the oscillatory stagnation-point flow travels towards
a fixed wall and the stagnation point oscillates along the fixed wall. The
second frame was where the oscillating stagnation-point flow travels towards
an oscillating wall and the stagnation point is fixed at the origin. Solutions
were found in the latter frame of reference. However, to obtain the wall shear
stress, we revert back to the original frame and consider a moving stagnation
point.

The wall shear stress is defined as

S = /”Luy‘yzo = l“/}yy|y=07 (2.141)

where p is the viscosity. The streamfunction 1), initially stated in (2.16), is
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written in terms of the scalings, s = A~Y24g, ¥p = AY2p and 7j = A2y
with 7 = (k/v)'/2y, which were introduced in section 2.3, to give

14

1/2 ~
k) AV206(7, 7). (2.142)

Dy, 1) = (k) 2eAY2Pp(@, 7) + Us (

We write o = x5 + % sin(7 — ¢), where zf is the coordinate in the first
frame of reference. Upon substituting this and the streamfunction (2.142)
into (2.141), the wall shear stress is given by S = pkS*. In this, S* is

non-dimensional and given by

S* = [A?’/Z [XO + gsin(T — ) Jpﬁﬁ + Al/gm/b\sﬁﬁ}

. (2.143)
7=0

where Xy = (%)1/2

xy and kK = (lgﬁ, which is a measure of the effect of the
oscillatory components.

Solutions to the primary and subsidiary problems have been obtained in
the parameter range € ~ O(Q!), where Q = o€ and € = 1/A. We recall that
€= a0+ 1072 + O(273), as was initially stated in (2.31). Using this
expansion, relations for 2 and ¢ in terms of A are given by

Q=aA+ 2 4+0A™Y),  o=aA2+ 2 101). (2.144)
ao Qo
Equation (2.143) is rewritten in terms of the Stokes layer variable ¢ = Q27

where the Stokes layer expansions were previously defined in (2.35) and

(2.103). Using the relations given in (2.144), we find

AXy [ a
S = Ay XoWp + al—/; (2710%055 +Up, 55) (2.145)
0

5 .
+_a1/2 (‘I’Slgg +sin(r — ¢)\pr0§§)
0

XQ a% aq
+ 20 ( Ly, — U 4+ U
ag/z(ga% Poge T 5 T e T E e

£=0
We note that Ws,.(0,7) = 0 and ¥p, (£, 7) has not previously been found,
but is required when calculating the mean wall shear stress and is discussed

later in this section. Evaluating the primary and subsidiary functions at
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¢ = 0, the wall shear stress is given by

%a(

ST = A2a(1]/2X0cos (T—Fz)—i- 7
o

4

1 1
—i—(— — —) (cosQT + sin27'>
V2 o2

+£/2Esin(¢+%)+(%—%)sin(2f—¢+%)

+sin(7 — ¢) cos (7‘ + E)

+X0 a? ( +7T) a; 1

——|—=cos(t+—-)——|—=

all? | 8ag 4 2ap \ 2v/2

+( : 1)( 27 +5in27) ) + Upyqq
N o8 27 + sin 27 Page|

The wall shear stress (2.146) is a linear function of X, and at the stagnation

+0(A™Y).

point the wall shear stress is at its lowest. Although it appears in (2.146)
that the wall shear stress tends to infinity as Xy — oo, this model is only
valid local to the stagnation point.

To calculate the mean wall shear stress a time-average of (2.146) is taken.
Before doing so, Wp,(£,7) is needed. By using the same method used in

section 2.4, the equation for ¥p, (£, 7) is given by

Vpyer — UpPygee = 200 COST — 2R, Vp ¢ + VRV e T Vppgetp, (2.147)

with wall boundary conditions ¢p,(0,7) = 0 and ¢p,.(0,7) = 0. From
equations (2.36) and (2.37), the functions ¢p, (&, 7) and ¢p (£, 7) can be
written in the form ¢ p, (&, 7) = €7 g(£) +e " 7g*(€) and ¥p, (&, T) = €*"ho(£) +
e 2ThE(€) + hy(€) where g*(€) and h{(€) are the complex conjugates of g(&)
and ho (&) respectively. Therefore, on substituting the expansions for ¥p, (£, 7)
and 1p, (€, 7) into equation (2.147), we find ¥ p, (€, 7) has the form ¢p, (£, 7) =
ST PL(E) + TPy (€) + e 3T PHE) + e TPy (€), where P} (€) and Py (€) are the
complex conjugates of P;(£) and P(§) respectively. Hence, once a time-
average has been taken, there is no contribution from ¢p, (£, 7) and it is not

necessary to calculate it. Therefore, upon taking a time-average of the wall
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shear stress (2.146), we obtain the mean wall shear stress

_ 121
I A3/2<aA+ﬂ) X, 2.148
’ aop 2v/2 0 ( )

where S* indicates the averaged value. The mean wall shear stress (2.148) is
a linear function of Xg, where X is the distance from the stagnation point.
Consequently, the mean wall shear stress is equal to zero when Xy = 0, at the
stagnation point. As Xy increases, the mean wall shear stress also increases.
It can be seen that the mean wall shear stress has no contribution from the
oscillatory components and is solely dependent upon the primary problem.
Hazel and Pedley (1998) considered the problem described by (2.17) -
(2.22) in the limit of large frequency, but restricted the amplitude to less than
one, to prevent flow reversal from occurring. They ascertained that for large
frequency, the oscillatory component had no effect on the mean wall shear
stress. Therefore, having extended this analysis to allow for flow reversal
to occur, in the parameter range A ~ O(c'/?), the effect of the oscillatory
component on the mean wall shear stress is unchanged, even though the

asymptotic structure has changed.

2.9 Summary

In this chapter, a two-dimensional orthogonal unsteady stagnation-point flow
travelling towards an oscillating wall has been discussed. The flow in the far-
field comprises an unsteady orthogonal stagnation-point flow, consisting of a
mean component and an oscillatory component, dependent upon a relative
amplitude parameter: A and dimensionless frequency parameter: o. Added
to this is a horizontal oscillating component, with the same frequency as the
oscillatory wall. Close to the wall, a similarity solution was sought, which is
an exact solution of the Navier-Stokes equations. The similarity solution is
made up of two terms: an unsteady orthogonal stagnation-point flow com-
ponent and an oscillatory component. The problem is described in terms
of two equations, the orthogonal equation, which was denoted the primary

equation and has previously been addressed by Merchant and Davis (1989),
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among others, and an oscillatory equation, denoted the subsidiary equation,
which had a coupling with the primary. This problem has previously been
addressed by Hazel and Pedley (1998), who chose a relative amplitude that
does not allow the flow to reverse. In this chapter, we have considered solu-
tions to the subsidiary equation, where relative amplitude is chosen to allow
for flow reversal.

For a fixed dimensionless frequency, when the relative amplitude parame-
ter exceeds a critical amplitude, the primary and subsidiary equations break
down at a finite-time singularity. Later in this thesis, in chapter 4, the pri-
mary equation is solved numerically and the behaviour of the solutions, as
the finite-time singularity is approached, are discussed. In the present chap-
ter, an asymptotic analysis has been performed for large frequency close to
this critical amplitude, i.e. A ~ O(c'/?). At the wall, a Stokes layer of thick-
ness O (0'_1/ 2) is present. In this regime, where the oscillatory component
of the unsteady orthogonal flow is much larger than the mean component,
the steady streaming layer, which matches the Stokes layer to the far-field
flow, has thickness on the order of /A times that of the Stokes layer. This
structure is unlike that of the one considered by Hazel and Pedley (1998),
who solved this problem where the mean component dominates in the un-
steady orthogonal component and the steady streaming layer thickness is on
the order of 0'/2/A times that of the Stokes layer.

Hazel and Pedley (1998), who restricted the relative amplitude parameter
to prevent flow reversal occurring, found that the oscillatory components did
not effect the mean wall shear stress, which was only dependent upon the
orthogonal stagnation-point flow. Having extended this analysis to allow for
flow reversal to occur, we found that even though the asymptotic structure
has changed, the oscillatory components did not effect the mean wall shear

stress.



Chapter 3

Steady oblique stagnation-point

flow

3.1 Introduction

Continuing our investigation into stagnation-point flows, we consider a prob-
lem, which is a generalisation of the Hiemenz stagnation-point flow, where the
streamlines meet the wall obliquely. This problem comprises of a Hiemenz
stagnation-point flow and, superimposed onto this, a shear flow with con-
stant vorticity and a uniform stream, whose strength is represented by a free
parameter. We denote these two latter terms as the oblique component. Due
to the no-slip condition not being satisfied at the wall, a similarity solution
is introduced consisting of two components: a Hiemenz function and the
integral of the oblique component.

A special case of the above problem was first considered by Stuart (1959)
with Tamada (1979) and Dorrepaal (1986) later revisiting this problem with
slightly different conditions on the far-field flow. These different cases can
be thought of as changing the uniform stream in the far-field, but ultimately
they obtained similar results. Drazin and Riley (2006) generalised the work of
the previous authors to include a free parameter, which altered the strength
of the uniform stream. They found the free parameter changes the magni-

tude of the pressure gradient, which in turn alters the structure of the oblique

49
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component. If the free parameter is large enough, the oblique velocity com-
ponent has a region of flow reversal near the wall.

In this chapter, we extend the work of Drazin and Riley (2006) to find
what effect this parameter has on the streamlines, even if the oblique com-
ponent has a region of flow reversal close to the wall. Having considered the
form of the oblique stagnation-point flow discussed initially by Stuart (1959),
we then obtain the general form of the far-field solution where a Hiemenz
flow and a general horizontal function is present.

We note that section 3.2 has already been published in the Physics of
Fluids.

3.2 Steady oblique stagnation-point flow

We consider the two-dimensional oblique stagnation-point flow of a viscous
fluid of kinematic viscosity v towards a plane wall. In Cartesian (z,y) coor-
dinates, the wall is located at y = 0 and the fluid occupies the region y > 0.
It is convenient to represent the flow with a streamfunction, ¥ (x,y), defined
in the usual way so that u = v, and v = —,,, where u and v are the velocity
components in the x and y directions respectively. A long way from the wall,

the flow is given by

1, AR
v =kay+ 56 =5 (7) v (3.1)
comprising an irrotational straining flow of strength k, and a rotational shear
flow in the x direction with vorticity —( < 0. The dividing streamline, 1) = 0,
meets the horizontal boundary at the angle tan~!(—2k/¢) and is illustrated
in figure 3.1.

Close to the wall, we seek a solution in the more general form, given by

Stuart (1959)

o=@ af + () [ o0 (32

where n = (k/v)Y/?y. Consistency with the outer flow (3.1) requires both

that f ~n—a and g ~n — [ as 7 — oo, where o and [ are constants.
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xZ

Figure 3.1: An illustration of the dividing streamline meeting the wall
obliquely at an angle of 6§ = tan~!(—2k/().

Substituting (3.2) into the Navier-Stokes equation, demanding no-slip and
no-penetration at the wall, and requiring a match with the outer flow, we

find that f satisfies

" f =P+ 1=0, (3.3)
with
f0)=0, f(0)=0, [f(o0)=1, (3.4)
and that g satisfies
9"+ fd—fg=5-a, (3.5)
with
9(0) =0, g'(c0)=1. (3.6)

The primes denote differentiation with respect to 1. The pressure at any

point in the fluid is given by

1 1
P =po — 5Pk = S pukf* = pukf'+ Cpvk)'* (B — @) , (3.7)

where p is a constant reference value and p is the density of the fluid. When
(8 = « the pressure field is independent of the shear flow.
When ¢ = 0 and the shear flow is removed, we recover the orthogonal

stagnation-point flow studied by Hiemenz (1911) and discussed by Batchelor
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Figure 3.2: (a) Profiles of the shear flow component for 5 =5, «, 0, —a, —5,
reading from left to right. (b) Streamlines for the case k/¢ = 0.5 and 3 = «,
where ¢ = (k/v)Y/?z.

(2000), for example. Accordingly, the whole flow may be viewed as being
composed of orthogonal stagnation-point flow, represented by the first term
in (3.2), combined with a horizontal shear flow represented by the second
term in (3.2). The solution for the shear flow, ¢g(n), is contingent on the
solution for the orthogonal flow, f(n), but not vice versa.

The constant « in (3.5) is determined as part of the solution for the
orthogonal flow, f. However, 3 is a free parameter. The analyses of Stuart
(1959) and Tamada (1979) correspond to 8 = a and the analysis of Dorrepaal
(1986) corresponds to 3 = 0. Referring to (3.7), varying 5 may be interpreted
physically as varying the horizontal pressure gradient linked to the shear flow.
The horizontal velocity wu, is given by

u=kefn+¢ (2)" o0, (39
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and in figure 3.2(a), we show profiles of the shear flow component, g, for a
number of different values of 3. When ( > 1.141, there is a distinct region
of reversed flow corresponding to negative values of g. When combined with
the orthogonal flow, we would expect such a feature to have a significant
effect on the structure of the complete flow. In particular, we would expect
it to shift the stagnation-point of attachment along the wall.

The solution of (3.3) and (3.4) has been obtained numerically (e.g., Gold-
stein (1965)) to find v = f”(0) = 1.233 and o = 0.648. Introducing 6 = ¢'(0),
the general solution to (3.5) and (3.6), previously given by Stuart (1959), is

g(n) = (a—B)f'(n) +~vA h(n), (3.9)

where

h(n) = f"(n) /n[f”(lt)]‘2 el gy, (3.10)

0
and A = d 4+ (8 — a)v. The value of § depends on the choice of 3. Taking
the limit 7 — oo in (3.9), and using the fact that

1" (n) /On[f"(lﬁ)]2 e o IO 4t~ 1335 (5 — ) + - (3.11)

as 1 — 0o, which was used by Glauert (1956), we confirm that (3.9) fulfills
the condition at infinity in (3.6), provided that

A\ = 0.608, (3.12)
regardless of the value of 8. It follows from (3.9) and (3.10) that

g(n) =w(n) —Bf'(n) (3.13)

where w(n) = af'(n) + Y\ h(n) satisfies the same system as g(n), namely
(3.5) and (3.6), with [ set to zero. Substituting (3.13) into (3.2), we find

o= w2 +¢(5) [Tutar (3.14)

where y = 2 — ((v/k3)Y/?3.
Since neither f(n) nor w(n) depend upon 3, we see that the effect of in-

creasing (3 is to shift the streamlines to the right in the positive x direction,
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without changing the overall flow structure. From a mathematical stand-
point, this simply reflects the freedom to shift the origin of the axes noted
by Stuart (1959). So Dorrepaal’s solution, with 5 = 0, is identical to Stu-
art’s and Tamada’s solution, both with # = «a, to within a simple horizontal
translation. However, from a physical standpoint, this seems a remarkable re-
sult. Adding shear flows of quite different character, even with possible flow
reversal, to an orthogonal stagnation-point flow produces an oblique flow
which appears identical to an observer at the stagnation-point, now shifted a
prescribed distance, ((v/k?)"/?3. Contrary to intuition, which suggests the
flow associated with an increasing pressure gradient would move the point
of attachment from right to left, increasing the adverse pressure gradient, by
increasing the value of (3, shifts the stagnation-point of attachment further
to the right in the positive z direction. To provide an explanation, we note
that when the flow pattern shifts, the dividing streamline does not change
its shape but is displaced from the boundary an amount proportional to .
When g > 0, this shifts the stagnation-point of attachment to the right.

To illustrate the flow in a sample case, figure 3.2(b) displays the stream-
lines when k/¢ = 0.5 and = a, corresponding to the value chosen by Stuart
(1959) and Tamada (1979). Applying the analysis of Drazin and Riley (2006)

we find that the dividing streamline meets the wall at the point x = x,, where

2y = —Cu/R)Y2 6y = —C(u /K2 (1141 — ), (3.15)

which in the present case is equal to —0.99(v/k)'/2. The instantaneous slope

of the dividing streamline at the stagnation point is given by

% =75 % (3.16)

So in figure 3.2(b) the dividing streamline meets the wall at 75° to the hor-

=3(+*/A)

izontal. When (8 = 1.141, corresponding to the critical value for reversal in
the shear flow component discussed above, the dividing streamline meets the

wall at the origin.
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3.3 General form of the oblique stagnation-
point flow

In the previous section, we considered an oblique stagnation-point flow trav-
elling towards a fixed wall, where the flow in the far-field is made up of a
Hiemenz stagnation-point flow, a shear flow with constant vorticity —¢ < 0
and a uniform stream, which was previously given by (3.1). In this section,
we wish to find the general form of the oblique stagnation-point flow, which
comprises of a Hiemenz flow and an additional horizontal velocity component.
In the far-field, we write v = 2F(y) +G(y), where F(y) is the Hiemenz func-
tion and G(y) is a horizontal component, which does not affect the flow in
the normal direction.

To begin, we define the dimensional Vorticity Streamfunction Equation

as
vy (V20), — s (V207), = vV, (3.17)
By writing ¢* = ki, where 9 is non-dimensional, equation (3.17) is rewritten
as
vy (V2), — ¢ (V) = %V%- (3.18)

We introduce the new parameter ¢2 = v/k, where € has the dimensions of
length. It follows that the variable y = (v/k)/?n = en, which was introduced
in section 3.2 and is used later in this section. We proceed by looking for a
solution to (3.18), where (v/k) < 1. Later in this section, we seek a solution
close to the wall, when the viscous term in (3.18) is significant.

Substituting the streamfunction ¢ (z,y) = xF(y) + G(y) into equation
(3.18) we obtain, after one integration and letting G(y) = [} g(y)dy

EF" +FF'—F?+C = 0, (3.19)
¢"+Fg —Fg+D = 0, (3.20)
where C' and D are constants of integration. The corresponding boundary

conditions on the wall are given by

F0)=0, F'(0)=0, g¢g(0)=0 on y=0, (3.21)
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satisfying the no-penetration and no-slip conditions. We begin by considering
the solution to (3.19) far from the wall, with the boundary condition F'(y) —
1 as y — 00, as F(y) is the Hiemenz function. Due to the form of equation
(3.19), we pose the asymptotic expansion F(y) = Fy(y) + 2Fi(y) + O(e?)

and find the leading order equation is given by
FF) — F?+C =0. (3.22)

The solution to (3.22) is given by Fy = CY?y — A, where A and C are
constants. To find C, we use the far-field boundary condition Fj(y) — 1 as
y — oo and obtain C' = 1, where C' is assumed to be positive. Therefore, the
leading order solution is given by Fy(y) = y — A as y — oo. However, this
solution does not satisfy the boundary condition at the wall. Subsequently,
a region is introduced at the wall to match the velocity on the wall to that
in the far-field, which is discussed later in this section.

We proceed by considering the higher order equations to equation (3.19).

The first order equation is given by
(y— A)F) —2F =0, (3.23)

and after one integration we find, F|(y) = K;(y— A)?. This only satisfies the
far-field boundary condition F{(y) — 0 as y — oo if the constant K; = 0.
So the first order solution is given by Fj(y) = 0. For higher order terms, we

obtain
(y — A)FT’L' — 2FT’L =0, (3.24)

for n > 1, which has the same structure as that of the first order equation
(3.23). After one integration, equation (3.24) becomes F!(y) = K, (y — A)*.
To enable the far-field boundary conditions F)(y) — 0 as y — oo to be
satisfied, the constants K, = 0, which gives the trivial solutions F),(y) = 0.

Therefore, combining these results, the far-field Hiemenz solution is given by
F=y— A (3.25)

We now consider solutions to ¢(y), the horizontal velocity component

satisfying equation (3.20). Due to the form of (3.20), we expand g(y) similarly
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to F(y) and write g(y) = go(y) +€%g1(y) + O(€*). At leading order, we obtain
(y—A)go— g0+ D =0. (3.26)

Upon solving (3.26), we obtain go(y) = D + E(y — A), where D and FE are
arbitrary constants. Unlike the equation for F'(y), we make no assumptions

on the far-field boundary condition for g(y). At first order, we find
(y—A)gr —g1=0. (3.27)

Upon solving this, we find ¢g;(y) = k1(y — A), where k; is a constant. As this
solution is very similar to that at leading order, we can rewrite the leading
order solution as go = D + E(y — A), where E = E + ¢2k;. The form of the

higher order equations are the same as that at first order and are given by

(y = A)gp — gu =0, (3.28)

for n > 1. Solving equation (3.28), we find g,, = k,(y— A), which can, similar
to that of the first order equation, be incorporated into the previous solution.
Therefore, the far-field solution is given by ¢g(y) = D + E (y — A) and after

one integration we find
G(y) = —=— — By. (3.29)

A constant of integration has not been included, as adding a constant to
the streamfunction does not affect the velocity components. Combining the

solutions for F'(y) and G(y), we obtain the general form of the streamfunction

Ey?

satisfying the far-field boundary condition F'(y) — 1 as y — oo. The first
term corresponds to an orthogonal stagnation-point flow, with the constant
A representing the displacement from the wall in the normal direction. We
find V¢ = E , therefore, the second component is a shear flow with constant
vorticity —E. Welet E = Z , as this is a known constant to represent the

vorticity. The third term is a uniform stream with strength — B, where the



3.3 General form of the oblique stagnation-point flow 58

minus is included to allow for comparison to the streamfunction discussed in
section 3.2.

To obtain the streamfunction (3.30), we have assumed that the viscous
term is small compared to the convective terms in the Vorticity Streamfunc-
tion Equation (3.18). Hence, (3.30) is no longer valid when these terms be-
come comparable. This occurs when y = en and ¢ = 6121\, where € = (v/k)"/?,
which has previously been defined. Expressing equation (3.18) in terms of

these variables, we find

wn@bnnw - ww@bnrm = @Z)mmm (3-31)

with boundary conditions on the wall

~

Uo(,0)=0,  ¢y(2,00=0 on n=0. (3.32)

To calculate the form of the streamfunction to substitute into (3.31), we

express the solution (3.30) in terms of the scalings above, to obtain

2

@E:x(n—f/l\)+ge (%—én), (3.33)

where A = ¢A and B = ZEB\ . Therefore, the streamfunction (3.33) suggests

the similarity solution
W = xHy(n) + CeHa(n), (3.34)

where Hi(n) and Hy(n) are functions of 1. Substituting the streamfunc-

tion (3.34) into equation (3.31), we obtain after one integration and letting

Hy(n) = [y ha(0)di}

H'"+HH —H?+C = 0, (3.35)

W!+ Hihl— Hlhy+D = 0. (3.36)
The corresponding boundary conditions on the wall are
Hi(0)=0, H{(0)=0, hy(0)=0, on n=0, (3.37)
with matching conditions to the far-field

Hi(n) —»n—A, hy(n) =n—B as n— oo (3.38)
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Upon substituting the far-field flow boundary conditions (3.38) into equations
(3.35) and (3.36), we find the constants C=1and D=A— B. We note
that these equations are the same as equations (3.3) and (3.5) and have been
solved in section 3.2.

To allow for a direct comparison between the streamfunctions (3.30) and
(3.34), we express them in terms of ¢*. The streamfunction in the far-field
is given by

o=k [x (y - (%)1/2 ;1\) + % — EZ(%)I/Q y] as y — 00. (3.39)

The first term corresponds to the orthogonal stagnation-point low, where
A acts as a displacement effect in the normal direction and as we get further
away from the wall, this constant becomes negligible in comparison to the
other terms in (3.39). The second term relates to a shear flow of constant
vorticity —Eand the third term is a uniform stream with strength —B. These
two latter terms are denoted the oblique components. As we approach the
wall, this solution is no longer valid and close to the wall the streamfunction

takes the form
o= (k)Y [le(nHZ (%)1/2 /O ’ hz(ﬁ)dﬁ]. (3.40)

Again, the first term relates to the orthogonal stagnation-point flow and
the second term represents the oblique components. When (v/k) < 1,
the orthogonal component is dominant. Unlike many boundary layer prob-
lems, where a matching region is required between the inner and outer solu-
tions, the streamfunction close to the wall matches directly onto the far-field
streamfunction as y — oo.

In order to compare this streamfunction with the streamfunction (3.2),
we write ¢ = kC, Hy(n) = f(n) and ha(n) = g(n) and the streamfunction
(3.40) becomes

v = R+ ¢ () [ m@a (3.41)

Therefore, in this section we have determined the general form of the oblique

stagnation-point flow, containing an orthogonal stagnation-point flow and a
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general horizontal velocity. It is found that the general form of the oblique
stagnation-point flow is that discussed in section 3.2, where the horizontal
component comprises of a shear flow with constant vorticity and a uniform

stream.

3.4 Summary

In this chapter, we have investigated a two-dimensional stagnation-point flow,
where the streamlines in the far-field meet the wall obliquely. In the far-field,
the flow comprises a Hiemenz stagnation-point flow and superimposed onto
this, a shear flow of a constant vorticity and a uniform stream. These two
terms we denote the oblique component. At the wall, a similarity solution is
found, which was first used by Stuart (1959), incorporating two components.
This is an exact solution of the Navier-Stokes equations. The first component
is a Hiemenz function and the second is the integral of the oblique component.
The problem can be described in terms of two coupled ordinary differential
equations. The first equation describes the orthogonal stagnation-point flow,
previously addressed by Hiemenz. The second equation, which is coupled
with the first, describes the oblique component of the flow. These equa-
tions are solved numerically and it is found that upon increasing the uniform
stream, the oblique velocity component exhibits a region of flow reversal at
the wall.

The streamlines were considered and due to the viscosity, as the flow
approaches the wall, the dividing streamline bends towards the wall and
meets the wall at an angle close to the normal. Increasing the strength of
the uniform stream increases the pressure gradient and, contrary to intuition,
increasing the strength of the uniform stream in the far-field, simply shifts
the streamlines and the attachment point with the wall to the right, without
altering its structure.

A general form of the oblique stagnation-point flow was then considered,

consisting of a Hiemenz flow and an arbitrary horizontal component. It was
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demonstrated that the problem initially discussed by Stuart (1959) is the
most general form of oblique stagnation-point flow possible.

In the next chapter, a time-dependent version of the oblique stagnation-
point flow discussed in this chapter is considered, with results and analysis

being used.



Chapter 4

Unsteady oblique

stagnation-point flow

4.1 Introduction

Continuing the investigation into oblique stagnation-point flows, we extend
the problem discussed in chapter 3, where a steady oblique stagnation-point
flow travelling towards a fixed wall was discussed. We now consider a time-
dependent version of this problem. In the far-field, the structure of the flow
incorporates an unsteady orthogonal stagnation-point flow, which is depen-
dent upon a dimensionless frequency parameter o and a relative amplitude
parameter A. Added to this is a shear flow with constant vorticity and a
horizontal time-dependent velocity component. The latter term was steady
in chapter 3 and represented a shift of the streamlines along the wall.

Close to the wall, due to the no-slip condition not being satisfied, a sim-
ilarity solution is introduced comprising of two components. The first com-
ponent describes the unsteady orthogonal stagnation-point flow and is the
same as that discussed in chapter 2. The second describes the shear and the
horizontal velocity components, which in future are denoted as the oblique
components.

In chapter 2, when considering purely the orthogonal problem, Merchant

62
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and Davis (1989) obtained, for large frequency, a critical amplitude depen-
dent upon the frequency given by A, = 1.289¢'/2 +0.763 + O(c~'/?). When
this critical amplitude is exceeded, Blyth and Hall (2003) found that the or-
thogonal solutions break down at a finite-time singularity. Due to the oblique
equation being coupled with the primary, we expect the oblique solution to
also break down at a finite-time singularity, when the amplitude is above the
critical amplitude.

A discussion on the flow structure near the wall over one time period con-
cludes this chapter, with the effect of the time-dependent horizontal velocity

component also being considered.

4.2 Problem formulation

In chapter 3, the general form of the steady oblique stagnation-point flow
was obtained, which comprised in the far-field of a Hiemenz stagnation-point
flow, a shear flow and a uniform stream, given in (3.1). To consider the

unsteady version of this problem, we write

v = a(tkay + 200w - Bl (£) v, (+1)

as y — 00, where the problem is described in Cartesian (z,y) coordinates
and the velocity components (u,v) are in the (x,y) directions respectively
with u =1, and v = —1,. Also, a(t) and B(t) are arbitrary time-dependent
functions, E(t) is the vorticity, k is the strength of the orthogonal stagnation-

point flow and v is the viscosity. To confirm the validity of (4.1), we use the

unsteady Vorticity Streamfunction Equation
(V20), + 1, (V20), = . (V%) = 1970, (1.2

Substituting the streamfunction (4.1) into (4.2) reduces the Vorticity Stream-
function Equation to C/‘; = 0, which implies that flows of this form are only
possible if the vorticity is constant. Therefore, the streamfunction (4.1) is

rewritten as

~ ~ o~ /
v =alt)kay + 50" B¢ (1) (1.3
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The first term corresponds to an unsteady orthogonal stagnation-point flow,
where a(t) = 1+ A coswt with amplitude A and frequency w. The form of a(t)
has been chosen to be the same as that used in chapter 2, when considering
a purely orthogonal stagnation-point flow. The second term is a shear flow
with constant vorticity —Z < 0 and the third component is a time-dependent
horizontal velocity, whose strength is dependent upon B(t) We note the
functions a(t) and 3(t) are dimensionless. We choose 3(7) = by + bo cos T
to reflect the oscillatory nature of the problem, where the oscillations are
at the same frequency as a(7), but by, and bp, the mean and oscillatory

components, have arbitrary amplitudes.

xz

Figure 4.1: An illustration of the unsteady oblique stagnation-point flow
at an instant in time. Away from the wall, the gradient of the dividing
streamline, ¢ = 0, is given by M = —2ak/{. As discussed in chapter 3, the
viscosity in the region close to the wall affects the gradient of the dividing
streamline.

Problems of this nature can be considered either travelling towards a
fixed wall or an oscillating wall by a simple change of frame of reference. In
chapter 2, we followed the work of Hazel and Pedley (1998) and considered the
orthogonal flow travelling towards an oscillating wall. In the present chapter,
we consider the problem described by the streamfunction (4.3) travelling
towards a fixed wall at y = 0, illustrated in figure 4.1. However, details of
the change of frame of reference to one where the oblique stagnation-point
flow is travelling towards an oscillating wall can be found in Appendix B.

In chapter 3, when considering the steady version of this problem, the

gradient of the dividing streamline in the far-field was only dependent upon
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the vorticity and the strength of the orthogonal component. We now consider
the streamfunction (4.3) and find the equation of the dividing streamline,

¥ =0, is given by

2akx ~ s\ 1/2
y=— E + 20 (E> : (4.4)

Therefore, the gradient of the dividing streamline far from the wall is given
by M = —2ak/ E Also, similar to that of the steady problem, the unknown
function B (t) only affects the horizontal displacement of the dividing stream-
line.

To consider the streamlines in the far-field, we examine the gradient of
the dividing streamline over a single time period. To obtain the dividing
streamline, we note that a(t) has a maximum at a,,,, = 1+A and a minimum
at amin = 1 — A. Therefore, the gradient has a maximum at M,,,, = —2(1+
A)/C and a minimum at M, = —2(1 — A)/C. When A < 1, both Myas
and M,,;, are negative and over a single time period, the dividing streamline
oscillates between two bounding values, which can be seen in figure 4.2(a)
for B = 0.

When A > 1, M,,.. is negative, similar to the previous case, but M,,;, is
positive. This configuration is illustrated in figure 4.2(b). To consider how
the dividing streamline oscillates between M,,;, and M,,.., we note that when
A > 1, a(t) has a zero at some point in the time period, which is illustrated
in figure 4.3, for selected values of A. This corresponds to the point at which
the flow reverses in the cycle. When a(t) > 0, the gradient of the dividing
streamline M, is negative. Using the property that v = —1,, we find the
vertical velocity component of (4.3) is given by v = —a(t)y. Therefore, when
a(t) is positive, the vertical velocity v is negative and the flow approaches
the wall. As we progress through the time period, a(t) decreases, causing the
gradient of the dividing streamline to decrease within x < 0. When a(t) < 0,
the gradient of the dividing streamline is positive and lies within x > 0. As
a(t) decreases, the gradient of the dividing streamline increases in x > 0.
Also the vertical velocity is positive which corresponds to the flow travelling

away from the wall. In figure 4.4, we illustrate the far-field streamlines for
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Figure 4.2: The range of the far-field dividing streamline when (a) A < 1
and (b) A > 1. Both cases are for 8 = 0.

A = 1.5 and B = 1 over a single time period. The time interval considered
in this figure corresponds to the time interval in which a zero is present in
a(t).

Having considered the behaviour of the dividing streamline far from the
wall, we now find the exact equation of the dividing streamline to observe
the behaviour close to the wall. As the streamfunction (4.3) is unable to be

satisfy the no-slip condition on the wall, we write

Wi, 7) = (k) agpp(n, 7) + E(%) /0 " oz T)dz, (4.5)

with non-dimensional variable = (k/v)/?y and time component 7 = wt.
We note that the form of (4.5) was initially used by Stuart (1959) when
considering the steady problem discussed in chapter 3.

The first term in (4.5) represents the unsteady orthogonal stagnation-
point flow, which is the same as that in chapter 2 and denoted ©p(n,7),
the primary component. The second term represents the shear flow and

the time-dependent horizontal velocity components and is denoted 1o (7, 7),
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2.5 T

Figure 4.3: The function a(t) = 1 + Acoswt for w = 1 and A = 0.85 (solid
line), A = 1.2 (dotted lines) and A = 1.5 (dashed lines), illustrating when
A > 1, the function a(t) develops zeros.

the oblique component. Matching (4.5) with the far-field flow (4.3), requires
¥p(n,7) = a(r)n—a(r) and Yo (n, 7) — n—B(7) asn — oo, where a(r) = 1+
Acost, B (7) is an arbitrary function and a(7) acts similarly to the constant
a in chapter 3, which was a displacement in the vertical direction. Upon
substituting the far-field streamfunction (4.3) into the horizontal momentum
equation (2.8) and matching to the far-field to eliminate the pressure term

Pz, We obtain
2
UIPPW + (an) - wP’l/}Pm] = oa; + a2 + ’l/}an]u (46)
Vo, +Vpglo — brbo, = —0B +a—aB+ oy,  (47)
with primary boundary conditions
Yp(0,7) =0, p,(0,7)=0 on n=0 (4.8)
vp(n,7) —alt)n—a as n— oo, (4.9)
and oblique boundary conditions
Yo(0,7) =0 on n=0 (4.10)
Yo(n, ) —”7—3 as 1 — 00, (4.11)

where 0 = w/k is the Strouhal number, a dimensionless parameter, which is

a measure of the unsteadiness.
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Figure 4.4: The streamlines in the far-field plotted for A = 1.5, and B =1,
withv=k=w=_=1for (a)t =2, (b) t =225, (c) t =2.35, (d) t = 2.8.
This illustrates the gradient of the dividing streamline changing sign from
negative in (a) and (b) to positive in (c¢) and (d), which corresponds to ¢
increasing through the zero at 7~ 2.3.

To find the dividing streamline, we set the streamfunction (4.5) equal to

zero, which corresponds to the dividing line that intersects the wall, to obtain

xd:—f(iyﬂ M. (4.12)

k3 Yp(n,7)
As Yp(0,7) = 9p,(0,7) = 0, the denominator equals zero at the wall.
Therefore, we need to approximate the solutions close to n = 0 by ex-
panding ¢o(0,7) = 1o, (0,77 + o, (0,7 /2 + OGF) and ¥p(0,7) =
Yp,, (0,7)0%/2 + ¥p,, (0,7)n*/6 + O(n*). Upon substituting these expan-
sions into (4.12), we obtain x4 = xo + G7, where zg is the point at which the

dividing streamline meets the wall and is given by

(Y2 90,(0,7)
2o = —C (ﬁ) ] (4.13)

and 1/G is the gradient of the dividing streamline at the wall, which is given
later in (4.85).
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To proceed, we seek numerical solutions to the primary and subsidiary
equations, given in (4.6) and (4.7) respectively, by marching forward in time
using a Crank-Nicolson finite-difference method. To begin these numerics,

initial profiles for 7 < 1 are required, which are obtained in the next section.

4.2.1 The initial velocity profile for the primary flow

To numerically integrate the primary problem (4.6), an initial profile for
small 7 is required to begin the numerics, which are then marched forwards
in 7. Riley and Vasantha (1989) solved the primary problem where a(7) was
purely oscillatory, i.e. p,(n,7) — cosT as n — oo. We duplicate their
analysis to find the initial profile for the primary equation (4.6), where a(7)
includes a mean component. To allow for comparisons to be made with Riley
and Vasantha, we write a(7) = K7 4+ K5 cos 7, with constants K7 and K, and
note in their case K; = 0 and Ky = 1. Therefore, the primary equation,

which was previously defined in equation (4.6), is rewritten as

TWpys + (Vpy)’ = ptopy, = —0KysinT (4.14)

(K1 + Ky co8T)* 4+ Upyy,
with boundary conditions

1/113(0,7’) = 0, Q/JPn(O, 7') = 0, (415)

Yvp(n,7) — (K1 + KecosT)np —a as n — o0. (4.16)

At 7 = 0, the flow is impulsively started with the velocity component
VYp,(n,7) = K1+ K, for all n > 0. Therefore, there must be a small transition
layer to match the flow at the wall, ¥p,(0,7) = 0, to the impulsively started
flow for n > 0, ¥p,(n,7) = K; + K;. When 7 < 1, close to the wall the
dominating terms in equation (4.14) are ovp,, ~ p,,,, which suggests
the scaling n ~ (7/0)'/%. Hence, the layer has thickness O ((7/0)'/?) with
new variable 7 = (0/7)"/2n where 7§ ~ O(1). Also, the far-field boundary
condition (4.16), suggests the rescaling v p(n, 7) = (7/0)Y?F (7, 7) with a =

(1/0)Y2a, where & ~ O(1). Rewriting equation (4.14) in terms of these



4.2 Problem formulation 70

scalings with 7 < 1, we obtain

g (Fﬁm + gFﬁﬁ) F2 + FF+ (K1 + K»)* —0Fy 4+ O(7) = 0, (4.17)

with boundary conditions

F(0,7) =0, Fx(0,7) =0, (4.18)

Fi,7) — [Kl 4K, (1 -z +0(T4))} T—a as 7— oo, (4.19)

where small 7 expansions for sin 7 and cos 7 have been used. From now on,
as the constants K; and K, always appear together, we write K = K; + K.
To seek a solution to (4.17), we express F'(7, 7) as the asymptotic expansion,
F(n,7) = Fy(n) + 7F1(n) + O(7%). Upon substituting this expansion into
(4.17), we obtain

§<F6” n gF6’> v a(F{” n gF{’ _F ) F2 4 FyF! + K2+ O(r) = 0, (4.20)

where the prime denotes differentiation with respect to 7. At leading order

in 7, we find

FU + gF(;’ —0, (4.21)

with boundary conditions F{(0) = 0, F}(0) = 0 and F}() — K as j — oc.
Solving (4.21) and after applying the boundary conditions, the leading order

solution takes the form

Fo=K {ﬁerf(g\) + % (e’ﬁQ/‘l — 1)] : (4.22)

where a = 2(1\;? and & — (7/0)1/22(1—\;—?) as 7 — 0. Upon differentiating

(4.22), we obtain the leading order velocity profile

F! = Kert (g) , (4.23)

where K = K + K>.
The first order equation is given by

o (F{” + gF{' — F{) =7 — Ry — K2, (4.24)



4.2 Problem formulation 71

with boundary conditions F3(0) = 0, F{(0) = 0 and F{(77) — 0 as  — o0,
where the leading order solution Fy(7) is given by (4.22). At this stage, it
is not known whether the first order solution is required to give accurate
numerical solutions, as the leading order solution may be sufficient. This
will be discussed in section 4.3.

Having obtained an initial velocity profile for a(7) = K; + Ky cosT, we
let K1 =1 and Ky = A. Therefore, the primary leading order initial profile,

in terms of the original variable 7, is given by

vrlnr) = ) [t ((2)72) 4 (0)" (e -1) |, a2

V(0. 7) = (1+A)erf{<g)l/2 g} (4.26)

In section 4.3, the solutions (4.25) and (4.26) are used as the initial profile
to begin the primary finite-difference numerics, as well as a check on the
validity of the numerical method for small 7. Before solving the primary

equation, an initial velocity profile is needed for the oblique problem.

4.2.2 Initial profile for the oblique flow

In section 4.2.1, an initial profile for the primary equation was obtained for
small 7. However, in this section, we only consider the case when K; = 1 and
Ky = A. To obtain an initial profile for the oblique problem when 7 < 1, we
use a similar analysis to that used for the primary equation. We recall the

oblique equation, which was previously defined in equation (4.7), is given by

O-,I/JOT + anwO - waOn = _O-BT + a— aa—i_ 1/1017777 (427>

with boundary conditions

¢O(07 7_) = 07 @00(777 T) — N = Ba (428)

where a(7) = 1+ AcosT and B(T) is an arbitrary function. As the oblique
equation is reliant upon the primary, which is impulsively started at 7 = 0
with velocity 1 p,(n,0) = 1+ A, a layer close to the wall is required to match
the velocity on the wall to that of the impulsively started flow for n > 0. Close
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to the wall when 7 < 1, the dominant terms in equation (4.27) are given by
0o, ~ Yo,,. Therefore, the layer has the same thickness as the primary
flow and we write 7 = (0/7)"?n. Also, the far-field boundary condition
(4.28) requires 1o (n, 7) = (1/0)V2G (7, 7) with B(r) = (r/0)V2B(7), where
B~ O(1) as 7 — 0. In addition, from section 4.2.1, we recall the scalings
Vp(n,7) = (1/0)2F (@, 1) with @ = (1/0)Y?a, where a@ ~ O(1) as 7 — 0.
Hence, equation (4.27) written in terms of these scalings, is given by

(5> v (Gﬁﬁ + gGﬁ - %G - %ﬁ) - (4.29)

T
T

_ 1/2 _
+ (o) (G + B,) — (;) (a— FG + FG; — (1+ A)3).
In section 4.2.1, when solving solving the primary initial profile for 7 < 1, the
asymptotic expansion F' (7], 7) = Fy(7)+7F1 () +O(7?) was posed, where the
leading order solution Fy(7) is given in (4.22). We adopt a similar method
to solve the oblique problem and let G(7,7) = Go(n) + 7G1(n) + O(7?).
Substituting this expansion into (4.30) gives
o\1/2 n 1 1
2) (G + a6~ 5Go—50) = 4.30
<T)<°+2°2°25 (4.30)
N 5 )
— (o) (Gg' + gG; - SGi- 57)

_ (1)1/2 (@ — FyGo + FoGy — (1+A)3) + O (73/2) .

o
At leading order, we find

i e 1o 13
Gy + 3G — 560 = 5B, (4.31)

with boundary conditions G(0) = 0 and Go(7}) — 17— 3(7) as j — oo, where
the prime denotes differentiation with respect to 7. The particular solution
of (4.31) is given by Go(7, 7) = —3. Combining this with the solution to the

homogeneous equation, gives the leading order solution

A~

Go=An+ B [zﬁe—ﬁ2/4 + 77 erf (g)} —B. (4.32)
After applying the leading order boundary conditions, we find

Gy = {1 — 6\2/71 0+ 2?/% [2\/?6_’72/4 + mnert (g)] - 3. (4.33)
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Therefore, the oblique velocity profile, in terms of the original the variable

1, is given by

()

— |t b 2/me O (4.34)

2ym

wn (2) et ((2)7 1) | -5+ 0,

1/’0(717 7_)

In the next section, the leading order velocity profiles (4.25) and (4.34) for
7 < 1 are used to solve the primary and oblique equations (4.6) and (4.7),

for selected values of the frequency o and amplitude A.

4.3 Numerics

In sections 4.2.1 and 4.2.2, the asymptotic solutions for the primary and
oblique problems for 7 < 1 were found and are given in (4.25) and (4.34).
In this section, we use these solutions as initial velocity profiles to solve the
primary and oblique equations, which were initially stated in equations (4.6)

and (4.7) and are given by

2
U¢Pn’r + (an) - waPnn = oar + (1,2 + mema (435)

o, + Vpyo — Pptlo, = —0Br+a—aB + oy,  (4.36)

with boundary conditions

Yp(0,7) =0, ¥p,(0,7) =0, Yo(0,7) =0, (4.37)

bp(n,7) — alr)n—a, vo(n,1)—n—p3 as n—oo, (4.38)

where a(7) = 1+ AcosT, E(T) = by + bo cosT and @(7) is obtained from
the primary solution. To solve equations (4.35) and (4.36), a finite-difference
technique is used with a second order accurate Crank-Nicolson method, which
can be found in most numerical methods books, for example Gerald and
Wheatley (1989). This method averages the centrally discretised functions
at two time steps n and n + 1. One benefit of using the Crank-Nicolson

method over other finite-difference schemes is the stability, as there is no
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restriction on the relation between the temporal and spatial step sizes. As
the oblique equation (4.36) is dependent upon the primary equation, we begin
by solving (4.35). Due to the nonlinear terms in equation (4.35), we write

Yy = ¥p, and rewrite the primary equation as

g, +hpy — Vpty, = oar +a’ + g, , (4.39)

giving a system which is linear in the two variables 1 p, and v¢,. To begin, we
give an example of the Crank-Nicolson method by discretising the convection
terms in equation (4.39). We use the notation ¢y = ,(m;,t,) and Y =

Vp(n;,t,) and write

L, —ep)
2h % 2h ’

1
wqun ~ 5 qi

i n+l _ /n+l n o
1 - qit1 qi—1 n qit1 qi—1
2 | F 2h P 2h ’

wP'le)qn ~

where h corresponds to the grid spacing 7; = t¢h with ¢« = 1...N and dt
represents the time interval ¢, = ndt with n = 1...M. Discretising the

primary problem and using the expansions given in (4.40), we obtain

qi qi qi Pit1 P/ Yh qi+1 qi—1
dt 4h
+ Zz’ (1/}73141 - w%—l) - 1/}71131< Zz’ﬂ - 2171)
4h

_ (4.41)
1 9 n 1 9 n+1
é(aaT—i-a ) +§<aa7+a )
+ ( g;i B 277Z)Zi+1 + @Z)Z;j + wgi-kl - 277Z)Zi + wgi—l)

2h2 ’

( n+l n) n+1( n+l _ n+1) n+1( n+l __ n+1)
g

with boundary conditions

ro=0, oy = 1+ Acos(Mdt). (4.42)

q1

The first term in equation (4.41) corresponds to the unsteady term in equa-
tion (4.35) and the second and third terms are a combination of the convective

terms given in (4.40). The unsteady time-dependent components a and a,
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have been averaged over two time steps and finally the last term represents
the viscous term in (4.35). We rewrite (4.41) in terms of the tridiagonal

system

Api 4+ Bttt + Cpit = Dy, (4.43)

qi+1

with coefficients A;...D; given by

h
2h’o hy . .
h
G = —1+5up, (4.46)

D;, = wqu <1 + 51/11:;.) + 1y, {7 -2 - 5 (¢p¢+1 - Qﬁpil)} (4.47)

2
() 2 o ]

Within the coefficient D;, everything is known at the n'* time step, whereas
the coefficients A;, B; and C; all have unknown functions at the n + 1** time
step.

To solve the tridiagonal system (4.43), we use the using the leading order
asymptotic approximation found in section 4.2.1 as a starting profile. This
profile could be written in terms of the scaled variable 7 = (o /7)'/?n, which
was used in obtaining the small 7 approximation. However, this would require
the primary equation and boundary conditions to be rescaled in terms of 7
and the numerics beginning at 7 = 0. Instead, it is easier to consider the
initial profile in terms of 7, given by

T (1+A)erf[(§>1/2%?], (4.48)

Y o= (1+A) {(%)m nrerf ((%)1/2 %) + % (e—"iig - 1)} . (4.49)

and begin the numerics at small 7. Figure 4.5 illustrates the starting profile

Yy (N, Tinitiar) for different start times, denoted 7jp;riq. Numerical trials have
suggested that the starting profile does not affect the solution v,(n, ) as
long as Tiuitia is small and only the leading order initial profile is required to

give accurate solutions.
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At the first time step, ¥/5™ = %, where % is the initial profile (4.49).
The tridiagonal system (4.43) is solved using the Thomas algorithm, which
can be found, for example in Hoffman (2001), to give wg“. Integrating
this function with respect to 7 via the trapezium rule, we obtain ¥/%™. An
n+1
P

iterative procedure is performed, where 15" is compared with the previous

iterate. When these iterates are within a small tolerance of each other, the
value of ¢ is then used as the initial profile at the next time step.

16
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Figure 4.5: The initial velocity profile ¥p, (1, 7), given in (4.48), for o = 0.5
and A = 0.5, initiated at different starting times, from left to right, 7 =
0.0001, 7 = 0.001 and 7 = 0.01.

Having described the method used to solve the primary equation, a similar
method is used to solve the oblique equation (4.36). As this equation is linear
in ¥§, = Yo(mi,tn), the solution V% = ¥p(m;,t,) at each time step is used.
The oblique equation (4.36) is discretised as

(Vo —vB) | VoI WL — VR — v (UGl — Vel
dt 4h
+¢%i(¢%+1 —¢p_,) — ¥ Wh,,, — V5, )
4h
_ (4.50)
O (2n | Antl L | ~npt 1 n n+1\ (An | An+l
—§< T+ O ) +§<0‘z‘ +o; ) 1 ((a’i +ajtt) (ﬁi + ))
+( O = 2050 BT AR, — 208, +UB,)
2h? ’

with boundary conditions

W =0, ¥ =hN — B (4.51)
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The terms in (4.50) have been discretised similar to that of the primary
equation (4.41). Additionally, the time-dependent function & = lim,, . (an—
¥p) is obtained from solving the primary problem and is discretised over the
current and next time step, with the function 3 (1) discretised similarly over
two time steps. Expressing equation (4.50) in terms of a tridiagonal system,

we obtain
a Yt + bt + et = d;, (4.52)

with coefficients a;...d; given by
h

o = —1- Ty, (4.53)
2h%o h

by = dt +2+ 9 ( 21&1 o w%q) ’ <4'54>

¢ = —1+ zp"“, (4.55)

2h? h
A = Vb, (1 + —w%) + 40, {7“ —2— = (Vb - w;z,._l)}(zl-%)

v, (1-5un) - 5 (B Bir)
dg @) - g [ty (34 )]

2 4
We note that the form of the oblique equation (4.36) is similar to that of the
equation for v, given by (4.39). Consequently, the coefficients a;, b; and ¢;
are identical to the coefficients A;, B; and C; from the primary discretisation
and the only difference between d; and D; are the contributions from the
time-dependent functions a, & and B However, as the primary problem is
now known at each time step the coefficients a;...d; are already known.

To solve the tridiagonal system (4.52), we use the leading order asymp-
totic approximation for small 7 found in section 4.2.2. Similar to the primary
problem, the starting profile could be written in terms of the scaled variable
7, but that would require a rescaling of equation (4.36). Instead, we choose
to write the initial profile in terms of 7, which is given by
BORE=

T

Vo, =

f lzf e /AT (4.57)

o (2)" e <<;>” %) -2vd|
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and begin the numerics for small 7. We note when a = 0, the starting profile
is independent of time and is simply given by ¢ = n;'. As an example, we
plot the initial oblique profile (4.57) in figure 4.6 when B = 1, for different
starting times. Similar to the primary problem, numerical trials have shown
that the oblique starting profile (4.57) does not affect the oblique solutions,
as long as the starting time is small.

01
0
-0.1f
02}
03
04l
Yo s .
-07H 1
-09f R
-1 Il Il Il Il

Figure 4.6: The initial velocity profile for ¢)o(n, ) for B=1and o= 0.5,
initiated at different starting times, from top to bottom, 7 = 0.01, 7 = 0.001
and 7 = 0.0001.

Having described the theory used in solving the primary and oblique equa-
tions, by means of a Crank-Nicolson finite difference technique, we proceed
by presenting a sample of results for selected values of the amplitude A and
the frequency o for different times, .

Figure 4.7 illustrates the velocity profiles ¢p, (1, 7) and ¥o(n,7) where
B =0 for c =0.5and A =0.1,0.5,0.8 at 7 = 1. It can be seen in figure
4.7(b) that ¢o(n,7) is virtually independent of A over the whole range of
n. This is due to the amplitude A not appearing in equation (4.50) or
the boundary conditions (4.51) and the only contribution comes from the
primary solution ©p(n, 7). Therefore, there is very little difference between
the velocity profiles for differing values of the amplitude. For the parameter
values chosen, the largest difference occurs in the region 0.5 < 1 < 2 and this
is illustrated in 4.7(c).

In figure 4.8(a), the oblique velocity profile is plotted for o = 0.5 and A =

0.5 at 7 =1, where bp = 0 and by; = 0,1.02,1.5, i.e. aonly contains a mean
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Figure 4.7: (a) The primary velocity profile for ¢ = 0.5 and A = 0.1,0.5,0.8
at 7 = 1. (b) The oblique velocity profile for 8 = 0, ¢ = 0.5 and A =
0.1,0.5,0.8 at 7 = 1. (c) A close up of the oblique velocity profile for the

same parameters at 7 = 1. In each case A = 0.1 is represented by the solid
line, A = 0.5, the dotted lines and A = 0.1, the dashed lines.
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Figure 4.8: (a) The oblique velocity profile for ¢ = 0.5, A = 0.5 at 7 = 1,
where bp = 0 and, from left to right, by, = 1.5,1.02,0. (b) The oblique
velocity profile for 0 = 0.5, A = 0.5 at 7 = 1, where by; = 0 and, from left
to right, bo = 3,2.28, 0.

component. When by; > 1.02, a region of flow reversal occurs close to the
wall. Increasing the mean component by, increases this region. Numerical
trials have shown that as ¢ increases, the value of by, at which flow reversal
occurs decreases. Figure 4.8(b) illustrates the oblique velocity profile when
by = 0 and bp = 0,2.28, 3, i.e. B (1) is purely oscillatory. Similarly, we notice
that when bp > 2.28, a region of flow reversal is present close to the wall.
Therefore, for a fixed value of the frequency and amplitude there exists a
value of B , above which there is a region of flow reversal.

In performing these numerics, we have taken the spatial step size h =
0.001 and the temporal step size dt = 0.001. In the standard way, the values

of h and dt are decreased as a way of validating our numerical calculations,
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which do not affect our solutions. For the selected values of A chosen, so-
lutions are found for 7 < 1. However, Blyth and Hall (2003) found that
for a fixed frequency, if the amplitude is increased beyond a critical value,
Yp(n,7) breaks down at a finite-time singularity. Therefore, we proceed by
considering the long term behaviour of ¢p(n, 7) and 1o (n, 7) for values of A,
both above and below the critical amplitude, which we denote A.(c).

For A < A, the primary wall shear component v p,, (0,7) is obtained
for all 7 and is illustrated in figure 4.9(a) over a period of 27 for o = 0.5
and A = 0.5,0.8,1. However, for A > A., a time is reached at which
the numerical scheme fails and the solutions break down at a finite-time
singularity. This can be seen in figure 4.9(b), where the ¥p, (0, 7) is plotted
for c = 0.5 and A = 2,4, 6.

Similarly, the oblique wall shear component o, (0,7) is computed for
A < A, and A > A, respectively. For A < A, the oblique wall shear
component is obtained for all 7 and is plotted over a period of 27 in figure
4.10(a) for 0 = 0.5 and A = 0.5,0.8, 1. Like that of the primary problem, for
A > A, the oblique problem breaks down at a finite-time singularity, which
is illustrated in figure 4.10(b) for o = 0.5 and A = 2,4,6. We note that
the finite-time singularity is the same for both the primary and the oblique
problems and the singular behaviour is more noticeable in the oblique case.
We note that figures 4.9(b) and 4.10(b) show that for a fixed value of o,
the time at which the solutions break down decreases as A increases. An
estimate of the finite-time singularity can be obtained numerically for each
value of the amplitude for a fixed frequency. However, in the next section, the
behaviour of the solutions close to the finite-time singularity are discussed

and a more accurate value of the finite-time singularity is obtained.

4.3.1 The behaviour of the velocity profiles close to

the finite-time singularity

For a given o and A, the methods described in the previous section give

a good estimate to the finite-time singularity, which occurs in the primary
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Figure 4.9: (a) The primary wall shear component ¢ p,, (0, 7) for o = 0.5 and
A < A, over a single time period, for A = 0.5 (solid line), A = 0.8 (dotted
lines) and A = 1 (dashed lines). (b) The primary wall shear component
Yp,,(0,7) for 0 = 0.5 and A > A, where A = 2 (solid line), A = 4 (dotted
lines) and A = 6 (dashed lines). The dots represent where the numerics
break down.

and oblique problems when, for a fixed frequency, the amplitude exceeds
a critical amplitude. Similar time singularities appear in the flow around
an impulsively rotated sphere considered by Banks and Zaturska (1979).
In this case, a local asymptotic analysis in the region close to the finite-
time singularity was presented. A similar technique was used by Blyth and
Hall (2003) for the primary problem. We extend this analysis, to include
the oblique problem. Blyth and Hall discovered that as 7 — 7., where
7, denotes the finite-time singularity, the velocity profile ,(n, ) develops
a minimum ,, , at Nmi. Close to the finite-time singularity, 7., scales

1

like (1, — 7)7!, and 1, scales like (1, — 7)™ as 7 — 7,°. Using these, we

obtain 1, . at each time step and a linear relationship is obtained between
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Figure 4.10: (a) The oblique wall shear component ¢, (0, 7) illustrated for
B =0, 0 =05 and A < A, over a single time period, for A = 0.5 (solid
line), A = 0.8 (dotted lines) and A =1 (dashed lines). (b) The oblique wall
shear component o, (0, 7) for B =0,0=05and A > A., where A = 2
(the solid line), A =4 (dotted lines) and A = 6 (dashed lines).

w;ﬂ%m (Dmin, ) and 7, for a fixed value of 0 and A > A, as 7 — 7,. We
illustrate this relationship by considering the case for ¢ = 0.5 and A = 2,
which was previously discussed by Blyth and Hall (2003). Additionally, we
confirm the finite-time singularity 7,, calculated by Blyth and Hall for this
choice of parameters and use this result and method to discuss the behaviour
of the primary and oblique velocity profiles as the finite-time singularity is
approached.

Using the numerical results obtained in section 4.3, for 0 = 0.5 and A = 2,

Ui (Mmin, T) 1s obtained at each time step. Figure 4.11(a) illustrates this

minimum for 7 = 3.37, which is close to the finite-time singularity 7,. We
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Figure 4.11: (a) The primary velocity profile, illustrating a minimum as
T — 75 for 0 = 0.5 and A = 2 at 7 = 3.37. (b) The oblique velocity profile
showing a maximum as 7 — 75, where ¢ = 0.5 and A = 2 at 7 = 3.37. For
these given parameters, the finite-time singularity is numerically calculated
and given by 7, = 3.396.

improve g, (Mmin, T) at each time step by using quadratic interpolation.
Three points around the minimum, denoted (91,1, ), (72, ¥g,) and (93, ¥4,)
are taken. A quadratic polynomial is sought through these points and we

solve the system
W = b + e+ d, (4.58)

for : = 1,2,3. Having obtained the values for b, ¢ and d at each minimum,

we obtain the interpolating polynomial ¢} = bn? + cn + d. The minimum

ap: . .
occurs when d—nq = 0, at Nmin = —5;. From the improved value of 7, we

can obtain the improved minimum, v, . = bn2.. + chmin +d. The improved

minimum is calculated for each value of 7 as 7 — 7.
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In figures 4.12(a) and 4.12(b), ¥, ! (9min, 7) is plotted against 7, illus-
trating the linear relationship between wq;llm and 7 as 7 — 7, . By linear
extrapolation, this line can be extended to meet the intercept of 7 axis, which
corresponds to the finite-time singularity, 7,. To obtain the line through
these points, the least squares method is used (Mathews (1986)). For ease of
notation, we let ¢, ' = g;* at each time 7,, where n = 1...N. Using the re-
sults obtained from the interpolation method, the least squares line through
the points (71,¢; ") — (7n, qy') is found. We write the least squares line as
q(m,) = C7, + D, where C and D are to be found. The error between ¢(7,)

and ¢, ! is defined by e, = q(7,) — ¢; ! and we express the root-mean-square

error as

| 1/2

_112
E(q) = [NZ’Q(%) —q,"] ] : (4.59)
It follows that

E(C, D)= (Cro+D—q")" = N[E(q)]. (4.60)

n=1
To calculate the minimal value of (4.60), we find the partial derivatives of
E(C, D) with respect to C' and D and set these equal to zero. Therefore, we

obtain the system

N N N
CZT,% +DZ7‘n = Zangl, (4.61)
n=1 n=1 n=1

N N
CZTn+ND = qul, (4.62)
n=1 n=1

where ¢!

and 7, are known at each time step n. Solving the system of
equations (4.61) and (4.62), we obtain C' and D, which correspond to the
gradient and the intercept of the least squares line respectively. We are most
interested in the intercept D, as this corresponds to the finite-time singularity,
Ts. The results of the linear extrapolation can be seen in table 4.3.1, where
C and D have been calculated for different spatial step sizes and different

time ranges. However, it can be seen that C' and D are independent of these

changes and we find C' = 0.50 and D = 3.396. Therefore, for o = 0.5 and
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A = 2.0, we obtain 7, = 3.396 correct to 3.d.p, which is in good agreement
to Blyth and Hall (2003), who found 7, = 3.39.

Turning our attention to the oblique problem, a maximum, denoted
V0,100 Mmaz, T), develops in the oblique velocity profile as 7 — 7, which can
be seen in figure 4.11(b). Close to the finite-time singularity, we choose 7,4,
to scale like (1, — 7)~!, which follows from the primary problem and v,

to scale like (7, — 7)1

as T — 7, . From these scalings, a linear relationship
can be seen between @Z)(_):nax(nmaw, 7) and 7 as 7 — 7, which is illustrated in
figure 4.12(c). Upon repeating the above analysis for the oblique problem,
the finite-time singularity agrees with that calculated for the primary prob-
lem and is independent of the value of B . We note that the primary velocity
profile develops a minimum as 7 — 7, , however, the oblique velocity profile
develops a maximum as 7 — 7, .

Having obtained the finite-time singularity for ¢ = 0.5 and A = 2 in
figure 4.13, we present the time singularities for other selected values of o
and A, where lines of constant A are plotted. These time singularities were
obtained using the method described above. As an example, for o = 2.5 an
A = 3, the finite-time singularity is given by 7, = 5.179. We note that as
o tends to the critical value for a fixed A, the time at which the solutions
break down increases.

Having solved the primary and oblique equations numerically, in the next
section, we consider solutions in the small frequency limit. In addition to this,

the small frequency approximation to the finite-time singularity is obtained.

4.4 Small frequency

In section 4.3, the primary and oblique equations, (4.6) and (4.7) respec-
tively, were solved numerically. In this section, solutions to the primary and
oblique equations are obtained in the small frequency limit. Also, an asymp-
totic expansion to the finite-time singularity for small ¢ is obtained, with

comparisons being made with the time singularities calculated in section 4.3.
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Figure 4.12: (a) The primary function, 1, (7min, ) plotted against T as
T — 71, for A =2 and ¢ = 0.5. (b) A close-up of the primary function,
Yol (Nmin, T) plotted against 7 as 7 — 77 for A = 2 and 0 = 0.5. (c)
The oblique function, @Z)&}nw(nmaw, 7) plotted against T as 7 — 7, for B =0,
A =2and o =0.5.
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14

10

Figure 4.13: The time singularities calculated for fixed values of A. Lines of
constant A are plotted, from left to right, A =1.5,2,3,4,5,6,7.

Riley and Vasantha (1989), who considered a flow with only an oscillatory
component in the far-field, obtained the finite-time singularity expressed as
an asymptotic series as ¢ — 0. Blyth and Hall (2003) paralleled their work
by considering the primary problem for ¢ — 0. They found, for a fixed
value of the amplitude above the threshold limit, a similar small frequency
asymptotic approximation to the finite-time singularity. We follow Blyth and
Hall (2003) by duplicating their work for the primary problem to validate
their analysis and to enable us to solve the oblique problem.

When the frequency o = 0, the primary equation reduces to the steady
Hiemenz equation and the oblique equation reduces to that of the steady
oblique equation discussed in chapter 3. Therefore, we expect as ¢ — 0,
the primary and oblique equations to be quasi-steady. To seek the primary
solution, we pose the asymptotic expansion ¥p(n,7) = fo(n,7) + 0o fi(n,7) +
O(c?), as 0 — 0. Substituting this expansion into the primary equation

(4.6), gives at leading order

Jonfomm — fozn + fonmm + a® =0, (4.63)

with boundary conditions fo(0,7) = 0, f5(0,7) = 0 and fi(n,7) — a(7) as
n — oo, where a(17) = 1+ Acos7t. To remove the time dependence from
equation (4.63), we write fo = a/2fy and 77 = a/2, where a(r) > 0, to give

the leading order equation

for — foi + foform +1 =0, (4.64)
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‘ TR A B h
3.30-3.39 0.50689 3.39624 | 0.001
3.31-3.39 0.55571 3.3961 | 0.001
3.32-3.39 0.504385 3.39608 | 0.001
3.33-3.39 || 0.503332037 | 3.39602 | 0.001
3.34-3.39 || 0.502411456 | 3.3959 | 0.001
3.35-3.39 || 0.5016214 | 3.39595 | 0.001
3.36-3.39 0.500955 3.39593 | 0.001
3.37-3.39 || 0.5003979 | 3.39591 | 0.001
3.38-3.39 0.49988 3.395906 | 0.001
3.33-3.39 0.50345 3.39603 | 0.005
3.34-3.39 0.502512 3.39598 | 0.005
3.35-3.39 || 0.501704479 | 3.39595 | 0.005
3.36-3.39 || 0.50102189 | 3.39593 | 0.005
3.37-3.39 0.50045 3.395917 | 0.005
3.38-3.39 || 0.4999444 | 3.39590 | 0.005

Table 4.1: Computing the gradient and the intercept of @/);T}Lm, where 7 is
the range over which the least squares analysis is conducted.

with boundary conditions fO(O) =0, %(O) = 0 and %(ﬁ) — 1 asn — oo.
Therefore, the leading order equation in scaled variables for 0 < A < 1, as
o — 0, is the same as the Hiemenz equation (3.3).

Having obtained the quasi-steady leading order approximation for the
primary equation, we seek a similar approximation for the oblique equation.
To do so, we write Yo(n,7) = go(n,7) + 0g1(n, 7) + O(c?), as ¢ — 0. Also,
the primary scalings above are used with @ = a'/?2a. This scaling follows
from the far-field boundary condition (4.9), where « is a constant known
from the steady problem in chapter 3. Upon substituting these scalings into

the oblique equation, we obtain the leading order equation

0gor +a (%WO — fogoﬁ) = —00, +a?a—aB + agoi- (4.65)

The far-field boundary condition ¥o(n,7) — n — B suggests the scalings
go = a~ %G, and a = a~'/23, where a(7) > 0. The constant 3 is known from

the steady problem in chapter 3 and is the strength of the uniform stream.
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Using these scalings, equation (4.65) becomes

a2, + aV/? ( Fordo — %g@ - (4.66)

—o0a 26, + a'”? (a = B) + a"*Gogy.

Thus, as ¢ — 0, the leading order equation in scaled variables for 0 < A < 1

is given by
o + fogow — gofoy = B — a, (4.67)

with boundary conditions go(0) = 0 and go(17) — 7 — 5 as 7 — oo, which is
the same as the steady oblique equation (3.5).

When A > 1, the approximations (4.64) and (4.67) are no longer valid
for all 7 as there is a region in which a(7) < 0. This is illustrated in figure
4.14, where the leading order asymptotic approximation ¥p, (0,7) = (1 +
A cos 7')3/2]7:0/'(0) is plotted for A = 0.5,1, 2, where %’(0) = 1.233. Therefore,
we proceed by looking for solutions to the primary and oblique equations

(4.6) and (4.7), when A > 1 for small o.

Figure 4.14: The leading order asymptotic primary wall shear component
Vp,,(0,7) plotted against 7 for A = 0.5 (solid line), A = 1 (dotted lines)
and A = 2 (dashed lines). When A > 1, it is observed that the primary wall
shear component breaks down.

When A > 1, a(r) = 14 AcosT develops a zero at 7o = 7 — cos™ ' (%).
The quasi-steady approximations break down when 7 — 7, i.e. when the
time-dependent terms become comparable to the steady terms in equations

(4.6) and (4.7). Comparing the magnitudes of the terms in the primary
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equation, o p,, ~ (wpn)2 leads to the approximation a ~ /2. Using this
scaling, we rescale the primary and oblique variables as
vp(n.7) = P(Y.T), do(n.r) =0 "OY.T), =01V, (4.68)
(o —7) = ¢'?T, a=o'"q, B =043

As a(1) appears explicitly in the primary equation (4.6), we take a Taylor

expansion of a(7) about 7y, to obtain

a=a, (1)t —10)+ O ((7’ — 70)2) , (4.69)

since a(7y) = 0. Using the property sin g = (1 — cos? 7'0)1/2

< (A? — 1)"? and (4.69) becomes

, we find sinty =

a=(A?=D)Y}(ry—7)4+0 ((r—10)%) . (4.70)

Using the scalings (4.68) and the expansion (4.70), the primary and oblique

equations become

_ﬁYT + ﬁ)% — ﬁﬁyy = —N + M2T2 + ﬁyyy, (471)

—Op+O0Py — POy = fBr+a—uTB+ Oyy, (4.72)

with boundary conditions

~ ~

P(0,T)=0, P'(0,T)=0, O(0,T)=0, (4.73)

P\, T) = uT, O, T)—Y -3 as Y — oo, (4.74)

where 1 = (A2 — 1)/2 with A2 — 1 > 0.

We begin by solving equations (4.71) and (4.72) using a Crank-Nicolson
finite-difference technique described previously in section 4.3. However, equa-
tions (4.71) and (4.72) are integrated backwards in 7", which is equivalent to
integrating forwards in 7. The computations are initiated at T" = T, = 5.
At T, the functions IS(Y, T) and 5(Y, T') need to match to the quasi-steady

- 12 -
approximations (4.64) and (4.67). Hence, we write P = (%) P, O =

—1/2 ~ /2 < “1/2 12
(£> 0, a= (ﬂ) a, = <£) [ with variable Z = (ﬂ) Yy

Too Too Too Too
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Substituting these scalings into equations (4.71) and (4.72), we obtain the

leading order profiles

P BR_ProTE — (4.75)

0"+ PO — 0P = a-Typ3, (4.76)

with boundary conditions

P(0,T)=0, P'(0,T)=0, O(0,T)=0, (4.77)

P(Z,T) — T, OZT)—Z—3 as Z— oo, (4.78)

where the prime denotes differentiation with respect to Z. We note the
equations (4.75) and (4.76) are scaled versions of the leading order quasi-
steady approximations (4.64) and (4.67).

To solve the primary equation (4.71), we use the starting profile (4.75),
which is a scaled version of the Hiemenz equation, to initiate the numerics.
The solutions ﬁ(Y, T) are used at each time step T' to solve the oblique
equation (4.72) with the starting profile (4.76). As the primary equation

(4.71) is nonlinear, we write Q = Py and rewrite the equation (4.71) as
~Qr+QPy —PQy = —u+p’T" + Qvy, (4.79)

with boundary conditions Q(0,7) = 0 and Q(Y,T) — uT as Y — oc.
Equation (4.79) is discretised similarly to that in section 4.3 and integrated
backwards in T using the Thomas algorithm until the computations fail to
converge at some T, denoted Tj.

We solve (4.79) for the example case of A = 2, which was the case con-
sidered by Blyth and Hall (2003). Similarly to that of the primary problem
discussed in section 4.3.1, Q(Y,T) develops a minimum @Q,,in(Yonin, T), as
T — T;". We choose the scalings Qmin ~ (Ts —T) ™" with Yy ~ (Ts —T) 7!
as T — T and a linear relationship is found between Q% (Yiuin, T') and
T. To improve the minimum @Q,,in(Yonin, T'), which was obtained numerically
at each time step, we seek a quadratic polynomial through the three points

around the minimum. Figure 4.15(a) illustrates the linear relationship be-

tween the improved minimum Q% (Y, T) and T for A = 2. Using linear

min
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Figure 4.15: (a) The primary function Q. } (Yuin,T) plotted against T' as

man

T — T for A = 2. (b) The oblique function O (V;.4z,T) plotted against

TasT — T;, for B = (0. Both of these figures illustrate a linear relationship
as T — T

extrapolation, this line is extended to intersect the T-axis, where the intercept
corresponds to the finite-time singularity T;. These methods were previously
discussed in section 4.3.1. In the case of A =2, we find T, = —1.557.

This finite-time singularity 7T differs slightly from the work of Blyth and
Hall (2003), who calculate the finite-time singularity 7, = —1.51. There-
fore, to confirm the accuracy of our numerics and T}, figure 4.16 illustrates
QL (Yoin, T) plotted against T for different values of the spacial and tem-
poral step sizes. It can be seen when both the spacial and the temporal
step sizes are decreased, there is no change to the linear relationship or the
finite-time singularity 7. We also note that the value of the intercept Ty is

independent of the starting time T, as long as T, is large. As an outcome,

we believe that the finite-time singularity calculated is correct.



4.4 Small frequency 94

I I I I I I I I
-6 -15 -14 -13 -12 -11 -1 -09 -08 -07 -

-0.9 I

T

Figure 4.16: The primary function Q. (Y, T) plotted against 7' as T —

T:", confirming the accuracy of the finite-time singularity 75 = —1.557. The
solid line represents a spacial and temporal step size of 0.001. The crosses
represent a spacial step size of h = 0.001 and a temporal step size of dt =
0.0005. The circles represent a spacial step size of h = 0.0005 and a temporal
step size of dt = 0.001.

The oblique equation (4.72) is solved using the same method as that for
the primary equation (4.71). Similar to that of the oblique equation discussed
in section 4.3.1, 6(Y, T) develops a maximum 6max(Yma$,T), as T — T
and we scale O,,,, ~ (T, — T)™' with Ve ~ (Ty = T)™' as T — T
Using these scalings, a linear relationship between (/)\;Lém(Ymam, T) and T oc-
curs as T'— T.F. The maximum 6,”%, which was obtained numerically, is
improved using a quadratic polynomial through three points around the max-
imum. We illustrate the linear relationship between the improved maximum
07! (Yyaw, T) and T in figure 4.15(b) for A = 2 and we find T, = —1.557,
which agrees with the finite-time singularity calculated in the primary prob-
lem.

To obtain the general relation for the finite-time singularity 7T, and 7,, we

use the scaling given in (4.68) and find
T(0,A)  m—cosT' (5) T(A)

o o ol/?

+0(0) as o —0. (4.80)

For the sample case of A = 2, we find 7, is given by

T, 2w  1.557
;:3—U—|—W+-~- as o — 0. (4.81)

In figure 4.17, the finite-time singularity (4.81) is considered alongside the
numerical results obtained in section 4.3 for A = 2, showing good agreement

as ¢ — 0.
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Figure 4.17: The finite-time singularity approximation (4.81), represented by
the solid line, plotted alongside some numerical results from section 4.3 for
A = 2, represented by the crosses. Good agreement can be seen between the
numerical results and the asymptotic solution for o ~ 1.

Having considered the solutions to the primary and oblique equations,
both numerically for selected values of the amplitude A and frequency ¢ and
in the small frequency limit, in the next section we discuss the streamlines
for different values of o and A. Predominantly, in this section, the numerics

have been obtained for 8 = 0, whereas in the next section the effect of the

time-dependent horizontal component B\ # 0 is discussed.

4.5 The structure of the near-wall flow

In section 4.3, the primary and oblique equations have been solved numeri-
cally using a finite-difference method for selected values of A and ¢. In this
section, we discuss the flow structure near the wall. To do so, we consider
the dividing streamline and the attachment point with the wall for a range
of values of A and o.

We recall that the streamfunction, initially stated in (4.5), is given by
v\ [T
vlen.r) = 0 o)+ 0(7) [ volarids 482
0

where n = (k/v)/?%y, Eis the constant vorticity, k is the strength of the

orthogonal component and v is the viscosity. To find the dividing streamline,
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we set (4.82) equal to zero, to obtain

it V2 Jy to(z mdz (4.83)

K wp(n,7)
Due to the wall boundary conditions ¢p(0,7) = ¢ p,(0,7) = 0, the denom-
inator of (4.83) equals zero at 7 = 0. Therefore, the primary and oblique
components are expressed in the small 7 limit as 1o (0,7) = 1o, (0,7)n +
Y0,,(0,7)7°/2 + O(7°) and ¥p(0,7) = ¥p,,(0,7)0%/2 + ¥p,,, (0,7)n° /6 +
O(n*). Substituting these expansions into (4.83), we obtain x4 = x¢ + Gn,

where x is given by

=~/ v\Y290,(0,7)
vo = —C (ﬁ) R (4.84)

which is the point at which the dividing streamline meets the wall. Addi-
tionally, the gradient of the dividing streamline at the wall is given by 1/G,

where

. ~7v\1/2 1 wOn(OvT)mem(OvT)
¢ - ()" 7o [@bonn(ox)— D )

We recall that only the oblique function 1o (n, 7) is dependent upon the

time-dependent function B (1) = bas + bo cos T, where the oscillatory compo-
nent oscillates with the same frequency as a(7) = 1+ Acos7. For the most
part, in this section, the dividing streamline is considered for B(T) =0, but
the effect of B(T) # 0 is also discussed.

In order to analyse xy, we illustrate the primary and oblique wall shear
components ¥p, (0, 7) and ¥, (0, 7) in figure 4.18 for 0 = 1 and A = 0.5, 0.85
and A = 1.2 over a single time period. Figure 4.18(a) shows that as A in-
creases, ¥p,, (0, 7) develops zeros and becomes negative at some point during
the time period. Numerical trials indicate that when A < 0.785 there are
no zeros in 9 p,, (0,7). The zeros in ¢ p,, (0,7), which occur in the case when
A = 0.85, are surprising as a(7), illustrated in figure 4.3 for A = 0.85 does
not have any zeros and the primary flow does not reverse. Therefore, the
zeros occurring in the primary wall shear component and a(7) are indepen-
dent. We note that the oblique wall shear component, illustrated in figure

4.18(b), is positive everywhere for the selected values of A above.
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When A = 0.5, both ¥p,, (0,7) > 0 and o, (0,7) > 0, implying that as 7
increases, the attachment point ¢, given in (4.84), is negative and oscillates
between two bounding values. This is illustrated in figure 4.19(a) for o = 1
and A = 0.5 over one time period.

We now consider the behaviour of the dividing streamline x4, which is
given in (4.83), far from the wall. We note that for B = 0, the oblique
function [/ ¢o(z, 7)dz — n?/2 as n — oo over the time period. Additionally,
as ¥p,,(0,7) > 0, a local minimum in ¢p occurs at 7 = 0 and as  — oo,
Yp(n,7) — an — a. Since a(r) > 0 for A = 0.5, ¥p(n, 7) is positive as
n — oo. Hence, the dividing streamline is negative and oscillates between
two bounding values. This behaviour is illustrated in figure 4.20, where the
dividing streamline is plotted for ¢ = 1, A = 0.5 and B = 0 over a single
time period.

The gradient of the dividing streamline at the wall 1/G, where G is given
in (4.85) is also considered. In figure 4.19(c), we illustrate the gradient 1/G
for 0 =1 and A = 0.5. We note that the gradient over a period of 27 sweeps
between two bounding values.

Due to the zeros that occur in the primary wall shear component for
A = 0.85 and A = 1.2, which can be seen in figure 4.18, the attachment
point xg and the dividing streamline x4 behave differently to those described
above for A = 0.5. We note in each case, ¥o, (0, 7) > 0 over the cycle. When
Vp,,(0,7) > 0, 2o is negative. As we progress through the time period and
the zero in ¢ p,, (0, 7) is approached, , tends to negative infinity before reap-
pearing at positive infinity. Similarly, when ¢ p, (0,7) < 0, the attachment
point xg is positive and tends to positive infinity before reappearing at nega-
tive infinity. The attachment point xg is illustrated for c =1 and A = 1.2 in
figure 4.19(b). The gradient with the wall for the same parameters is shown
in figure 4.19(d).

The dividing streamline x4, given in (4.83), is now discussed at a fixed
time 7 for both ¥p, (0,7) < 0 and ¥p,, (0,7) > 0. When ¢¥p, (0,7) < 0,

¥p(n,7) has a local maximum at n = 0 and as n — oo, ¥p(n,7) — an — Q.
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Figure 4.18: (a) The primary wall shear component ¢ p,, (0,7) and (b) the

oblique wall shear component 1o, (0,7), both for B(T) =0, 0 =1 and
A = 0.5 (solid line), A = 0.85 (dashed lines) and A = 1.2 (dotted lines).

If a(t) < 0, ¥p(n,7) is negative and the dividing streamline z, is to the
right of xg, similar to the dividing streamline discussed above for o = 1 and
A =0.5. Ifa(r) >0, ¥p(n;,7) =0 at n = nf, as illustrated in figure 4.21(a)
for 0 = 1 and A = 1.2. To consider how the dividing streamline behaves
close to n = 7}, we perform a local analysis about n = n;. Differentiating
the streamfunction (4.82), we obtain the velocity components u = (vk)"/?u*

and v = (vk)'/?v*, where u* and v* are given by

o= lepn(n,T)—i—%z/Jo(n,T), (4.86)
vt o= _¢P(n77)7 (487)

1/2

where X = (%) x. The vertical velocity component (4.87) suggests that the

stagnation points occur when ¥p(n,7) = 0, i.e. when n =0 and n = . At
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Figure 4.19: (a) The attachment point zy over a single time period for o = 1
and A = 0.5. (b) The attachment point z( for 0 =1 and A = 1.2. (c¢) The
gradient of the dividing streamline at the wall over a single time period for
o =1and A =0.5. (d) The gradient of the dividing streamline at the wall
forc=1and A =1.2. Ineachcase,z\:y:kzl.

n =0, v¢p,(0,7) <0 and as n increases, ¥p(n, 7) decreases, so the dividing
streamline x4, given in (4.83), increases. The second stagnation point, n = n;
corresponds to the point located at (X, n}), for example. To determine this
nature of the stagnation point, we write N = n — n and X=X- X5 and

the velocity components (4.86) and (4.87) are rewritten as

~

w = (R Xe (N ) (N fT), (489)

v = —gp(N 7). (4.89)
Expanding (4.88) and (4.89) using a Taylor’s series, we find

u = [+ X0) (6, (0, 7) + Noop,, (57, 7)) (4:90)
> [wolri, 1)+ Nuo, (n;, )] + O(N?),
v = = [Yp(nf,7) + Noog, (37,7)] + O(N?). (4.91)

+

Upon linearising and using the properties X1¢p, (0}, 7) + %1/10 (ny,7) =0 and
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Figure 4.20: The instantaneous streamlines for Z: v=Fk=1, B =0,0=1
and A = 0.5 over a period of 27 in equally spaced intervals of 7/4, beginning
at 2.
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Yp(ni, 7) = 0, we obtain

~

* v * * C *
vt = —Ntp, (0, 7). (4.93)
We express the velocity components as u* = % and v* = Z_Zv where s

represents a parameter along the streamline. Therefore, (4.92) and (4.93)

become

ax - AN
— = AX+ BN, — =—-AN 4.94
dS + b dS ) ( )

where A = ¢p, (nf,7) and B = X1¢p,, (0, 7) + %@Z)On (n;, 7). Using standard
techniques for analysing equilibrium points, we express the system (4.94) in

matrix form, to find

A~ A~

d [ X A B X
S\N 0 —A N

where the eigenvalues of the system are given by —A and A. As the de-
terminant of the matrix is negative, this suggests that 7} is a saddle point.
The first eigenvector represents the horizontal streamline through 7} and the

second eigenvector represents the streamline
n= (X - X)) (4.96)
which is the dividing streamline through n{, with gradient —2A/B. The
horizontal position of this stagnation point can be calculated numerically by
setting the horizontal velocity component (4.86) equal to zero and evaluating
at (X1,n7), to give X; = —%lpo(ni‘,T)/z/zpn(ni‘,T). An example of this flow
structure can be seen in figure 4.21(b), for 0 = 1, A = 1.2 and B =0 at
T = 117 /4, where xo = 4.043, X; = —21.776 and n} = 2.475 for Z: k=1.
Having discussed the dividing streamline x4, when ¥ p, (0, 7) < 0, we now
consider the streamline pattern when x4 at a fixed time 7 when ¢ p,, (0, 7) > 0.
As mentioned above, when ¥p, (0,7) > 0, the attachment point g, given
in (4.84) is negative, as 1o, (0,7) > 0 over the time period. There exists a

minimum at 7 = 0 and as n — o0, ¥p(n, 7) — an — @. Similar to the case
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Figure 4.21: (a) The primary function ¥p(n,7) for ¢ = 1, A = 1.2 at
T = 117/4, illustrating the two stagnation points at 7 = 0 and 1 = n;, which
are represented by the solid dots. (b) The corresponding dividing streamline
xqg. At 7 = 11mw/4, the vertical distance of the horizontal streamline from
the wall is nj = 2.475, the horizontal position of the stagnation point is
X7 = —21.776 and the attachment point is o = 4.04 where E: k=1.

when ¢p, (0,7) < 0, a(7) can either be positive or negative. If a(r) > 0,
the dividing streamline has one stagnation point at 7 = 0 and as 7 increases,
Yp(n,T) is positive. So, the dividing streamline is negative and oscillates
between two limits. If a(7) < 0, there will be two stagnation points, one at
n = 0 and another at n = ;. The stagnation point n = 7n; behaves similarly
to 77, which was discussed for the case when %p,, (0,7) < 0. Therefore,
n =1, is a saddle point with a horizontal streamline and a streamline with
gradient —2A/ B, through the stagnation point.

In figure 4.22, the instantaneous streamlines for ¢ = 1 and A = 1.2
are illustrated over a period of 27, in equally spaced intervals. It can be
seen that over one time period the horizontal streamline appears and then

disappears. To consider the behaviour of the horizontal streamline over one
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Figure 4.22: The instantaneous streamlines for Z: v=Fk=1, B =0,0=1
and A = 1.2 over a period of 27 in equally spaced intervals of 7/4, beginning
at 2m.
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Figure 4.23: (a) The vertical location of the horizontal streamline for o = 1
and A = 0.8 (bottom curve), A = 0.85 (middle curve) and A = 0.95 (top
curve). (b) The vertical location of the horizontal streamline for ¢ = 1 and
A=1.2
time period, we illustrate the zero of ¥p, which we denote n*, for ¢ = 1 and
A = 0.8,0.85,0.95 in figure 4.23(a). We observe that for A = 0.8, the zero
appears at 7 = 8.95 and then disappears at 7 = 9.27. For A = 0.85, it can
be seen that one zero appears at 7 = 8.76, with a second zero appearing at
7 = 9.455 before both disappear at 7 = 9.46. This behaviour is illustrated
more clearly for A = 0.95, where the first zero appears at 7 = 8.56, the
second appears at 7 = 9.63 and then both disappear at 7 = 9.71.

In figure 4.23(b), the zeros are illustrated for o = 1 and A = 1.2. We
notice in this case there are two distinct time intervals over the period when
a zero is present. At 7 = 8.33, the zero appears from the wall before moving

up to infinity. This time corresponds to the zero of a(7) = 1+ A cos 7, which
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occurs at 7 = cos™'(1/A) = 8.84. However, in the second time interval, the
first zero appears from the wall at 7 = 9.79 and the second zero descends
from infinity at 7 = cos™!(1/A) = 10.01. The two zeros collide and disappear
at 7 = 10.06.

n
e e =S 1 1 1 1
9200 -150 -100 -50 0 50 100 150
x
Figure 4.24: The instantaneous streamlines for A = 0.95 and ¢ = 1 at

T = 9.66, illustrating a triple-layered structure, where v =k = ( = 1.

Having given some numerical examples of the behaviour of the horizontal
streamlines, we now discuss the flow structure over one time period for o = 1.
When A < 0.785, the structure of the instantaneous streamlines are single-
layered with the dividing streamline approaching from infinity and meeting
the wall at an angle. When 0.785 < A < 0.835, a horizontal streamline
appears once over the cycle. This causes the flow to develop a double-layered
structure, where the layer near the wall is separated from the upper region
by the horizontal streamline. The horizontal streamline then moves back to
the wall and the flow returns to a single-layered flow. For 0.835 < A < 1,
a similar structure to the previous case occurs, with a horizontal streamline
moving up from the wall. However, as the first horizontal streamline moves
down towards the wall, a second horizontal streamline appears from the wall,
causing the flow to develop triple-layered structure. Figure 4.24, illustrates
the instantaneous streamlines for o = 1 and A = 0.95 at 7 = 9.66, where the
triple-layered structure is present. When these two horizontal streamlines
meet, the structure again returns to a single-layered flow.

When A > 1, there are two distinct regions within the time period where
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the flow becomes multi-layered. In the first instance, one horizontal stream-
line emerges from the wall, creating a double-layered structure. This case is
unlike those described above, as the horizontal streamline moves up to infin-
ity instead of returning to the wall. At the second time interval, a horizontal
streamline appears from the wall, creating a double-layered structure. As
this horizontal streamline moves away from the wall, a horizontal streamline
moves down from infinity creating a triple-layered structure, similar to the
one illustrated in figure 4.24. When these horizontal streamlines collide, the
flow returns to a single-layered flow.

We now consider the instantaneous streamlines for an amplitude above
the critical value A.. In figures 4.25, 4.26 and 4.27, we illustrate the in-
stantaneous streamlines for ¢ = 40 and choose A = 20, which corresponds
to a value above the critical amplitude A.(0), given in section 4.1. Using
the method presented in section 4.3.1, the finite-time singularity is given by
7, = 18.443. Figure 4.28 illustrates the zeros of ¢ p,, (0,7) for o = 40 and
A = 20. It can be seen that as 7 — 7., the zero, which descends from in-
finity, does not meet the zero that appears from the wall and instead moves
up to infinity. We also illustrate the orthogonal velocity profile as 7 — 7 in
figure 4.29(a) and we can see that as 7 — 7., the minimum which develops
in the orthogonal velocity component decreases, i.e. the region of flow re-
versal gets bigger and the distance required to satisfy the far-field boundary
condition increases.

The above analysis has been presented for B = 0. We now discuss the
streamline pattern when B # 0. We recall that the time-dependent function
B(7) = by + bocos 7. We note that the vertical location of the horizontal
streamline is solely dependent upon the primary problem. However, the
horizontal position of the stagnation point on the horizontal streamline is
affected.

For the parameters 0 = 1 and A = 0.5, we illustrate the oblique wall
shear component 9o, (0,7) in figure 4.30 for bp = 0 and by = 0,0.94,1.54.

When by, > 0.94, the oblique wall shear component becomes negative over
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Figure 4.25: The instantaneous streamlines as 7 — 7, at 1ntervals of T =m/2,
forﬁ—() A =20 and o = 40, beginning at 7 = 7/2, Whereg—y—k—l
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Figure 4.26: The streamlines as 7 — 7, at mtervals of 7 = /2 beginning at
T—97T/2forﬁ—0 A =20 and o = 40, WhereC—V—k—l This figure
is a continuation of figure 4.25.

Figure 4.27: The streamlines as 7 — 7,7, for 0 = 40 and A = 20 at (a)
7 =18.0, (b) 7 = 18.1, (¢) 7 = 18.2, (d) 7 = 18.3, where 7, = 18.443 and
( =v =k = 1. This figure is a continuation of figure 4.26.
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Figure 4.28: The vertical location of the horizontal streamlines for o = 40

and A = 20.

a certain period of the cycle. As p, (0,7) > 0 over the whole period, when
Y0,(0,7) < 0, the attachment point zg, given in (4.84), becomes positive.
Additionally, when by, > 1.54, 10, (0,7) < 0 everywhere over the time pe-
riod. Therefore, the attachment point xg, is positive over the entire time
period. These results are illustrated in figure 4.32(a), where z; is plotted as
a function of 7 for bp = 0 and by; = 0,0.94, 1.54. Similarly, figure 4.30 shows
the oblique wall shear component for by; = 0 and bp = 0,0.9,1.5. When
bo > 0.9, ¥o,(0,7) is negative for some portion of the time period. So as
with the case described above, when 1o, (0,7) < 0, the attachment point
becomes positive and can be seen in figure 4.32(b), where x, is illustrated
over a single time period. We note that there exist two values over the time
period that give the same value of xg, irrespective of bo.

A similar analysis can be applied when ¢ = 1 and A = 1.2. In figure
4.31(a), the oblique wall shear component is illustrated for 0 = 1, A = 1.2,
bo = 0 and by, = 0,0.78,1.5. When by > 0.78, ¥, (0,7) is negative over
a short interval of the time period. As p, (0,7) > 0 in this time interval,
the attachment point xg, becomes positive. When b;; > 4.5, the oblique wall
shear component is negative everywhere over the time period. Therefore, the
attachment point xy behaves similarly to that in figure 4.19(b) for A = 1.2,
but is reflected in the y-axis, i.e. the sign of xy changes. In figure 4.31(b),
the oblique wall shear component is plotted for o = 1, A = 1.2, byy = 0

and for bp = 0,0.77,1.5. Similar to the discussion above, when bp > 0.77,
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Figure 4.29: (a) The primary velocity profile as 7 — 7, for ¢ = 40 and
A = 20, working from right to left at = = 18.0,18.1,18.2,18.3. (b) The

~

oblique velocity profile for § = 0 at the same times approaching the finite-
time singularity 7, = 18.443.

the oblique wall shear component becomes negative for some time during the
time period. During this time interval, ¥p (0,7) > 0 and the attachment
point xg is positive. Therefore, as A increases, the values of by, and bo, which
cause o, (0,7) < 0, decrease.

Finally, we consider how the far-field dividing streamline changes as a
changes, when the flow is single-layered. To do so, we choose a point in the
far-field n = 50 and the corresponding point on the dividing streamline x

is given by

o —E<i>1/2 Jo 1/}O<Z,T)d2' (4.97)

k3 ¢P(nN7 T)
In figure 4.32(c) we plot zy foro =1, A = 0.5, bp = 0 and by, = 0,0.94, 1.54,
which are the same values of by, that were chosen when considering the

attachment point xy above. Upon increasing by, x is shifted in the positive
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Figure 4.30: (a) The oblique wall shear stress component ¢, (0,7) for o =1,
A = 0.5, bo = 0 and by, = 0 (solid line), by; = 0.94 (dotted lines) and
by = 1.54 (dashed lines). (b) The oblique wall shear stress component
V0,(0,7) for 0 = 1, A = 0.5, byy = 0 and bp = 0 (solid line), bp = 0.9
(dotted lines) and bp = 1.5 (dashed lines).
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Figure 4.31: (a) The oblique wall shear stress component v, (0,7) for o =1,
A =1.2,bp =0 and by, = 0 (solid line), by, = 0.78, (dotted lines) and by, =
1.5 (dashed lines). (b) The oblique wall shear stress component 1o, (0, 7) for
oc=1,A=1.2 by =0 and bp =0 (solid line), bp = 0.77 (dotted lines) and
bo = 1.5 (dashed lines).

direction and behaves similarly to that of the steady case discussed in chapter
3, where by; acts as a horizontal shift. Similarly, we consider B as a purely
oscillatory function, i.e. by, = 0 and figure 4.32(d) illustrates xy for by =
0,0.9.1.5. As bp is increased, the dividing streamline simply oscillates about
its mean position. We note that in both the cases, when by, # 0 and by # 0
that the horizontal velocity component B affects the dividing streamline in
the far-field and close to the wall differently.

When the flow structure is multi-layered, the time-dependent horizontal
velocity component B affects the horizontal position of the stagnation point
on the horizontal streamline. In chapter 5, a large frequency asymptotic

analysis is performed and the effect of B on the streamlines when the flow is
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Figure 4.32: (a) The attachment point zo for 0 = 1, A = 0.5, bp = 0
and, from bottom to top, by = 0,0.94,1.54, where E: v=Fk=1 (b)
The attachment point for o = 1, A = 0.5, byy = 0 and bp = 0 (solid line),
bo = 0.9 (dotted line) and bp = 1.5 (dashed lines). (c) A point in the far-field
xy for o =1, A = 0.5, bp = 0 and from bottom to top by, = 0,0.94, 1.54.
(d) A point in the far-field z for 0 =1, A = 0.5, byy = 0 and by = 0 (solid
line), bp = 0.9 (dotted line) and by = 1.5 (dashed lines).

multi-layered is discussed.
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4.6 Summary

In this chapter, a two-dimensional unsteady oblique stagnation-point flow
travelling towards a fixed wall has been considered. In the far-field, the
flow is the sum of three separate flows. The first is an unsteady orthogonal
stagnation-point flow with a mean component and an oscillatory component,
dependent upon a relative amplitude parameter A and a dimensionless fre-
quency parameter o. Superimposed onto this is a shear flow with constant
vorticity and a time-dependent horizontal velocity component.

At the wall, a similarity solution, which is an exact solution of the Navier-
Stokes equations, is introduced consisting of two components, the first repre-
senting the orthogonal stagnation-point flow and the second representing the
shear and horizontal velocity components. Two partial differential equations
are obtained and solved numerically for a range of parameters A and o using
a Crank-Nicolson finite-difference method, whose numerical calculations are
initiated with asymptotic solutions for small time.

The flow has been investigated for different values of the relative ampli-
tude parameter A. When A < A, where A; < Ay < 1, the flow struc-
ture is at its simplest. The far-field dividing streamline approaches the wall
obliquely and near the wall, due to the viscosity, it bends towards the wall at
an angle closer to the normal and meets the wall at a stagnation point. Over
a single time period, the dividing streamline, the attachment point and the
angle with the wall oscillate between two bounding values. As A increases,
the structure of the flow becomes more complex. When A; < A < As, a hor-
izontal streamline appears from the wall, creating a double-layered structure
in the flow. There is one layer at the wall, which is separated from the upper
region by a horizontal streamline. This horizontal streamline returns to the
wall after a short time and the flow returns to a single-layered structure.
When Ay < A < 1, again a horizontal streamline appears from the wall. As
this horizontal streamline returns to the wall, a second horizontal streamline

appears, causing the flow to develop a triple-layered structure. When these
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two horizontal streamlines collide, the flow again returns to a simple single-
layered flow. When A > 1, in each time period, there are two time intervals
in which the horizontal streamlines are present. The first of these inter-
vals exhibits single and double-layered structures. However, different to the
cases described above, the horizontal streamline that appears from the wall
moves up to infinity. The second time interval exhibits all three structures.
The first horizontal streamline moves up from wall, creating a double-layered
structure. When the second horizontal streamline moves down from infin-
ity, a triple-layered structure develops before the two horizontal streamlines
collide, returning the flow to a single-layered structure.

Streamline patterns were plotted for various parameter values. For the
simplest case when A < A;, it was observed that the time-dependent hor-
izontal velocity component affects the instantaneous streamlines far from
the wall and close to the wall differently. Far from the wall, over a single
period, the horizontal velocity component simply shifted the streamline pat-
tern about its mean position. In contrast, close to the wall, over a one time
period, increasing the horizontal velocity component affects the attachment
point and the gradient of the dividing streamline differently, depending on
the time interval chosen. For other values of the amplitude, due to the whole
range of different behaviour close to the wall, the streamline pattern is much
more complicated.

When the relative amplitude A becomes large, the existence of time pe-
riodic solutions must be considered. For the orthogonal problem, Merchant
and Davis (1989) showed that for a fixed dimensionless frequency, there exists
a critical relative amplitude, above this, the orthogonal solution breaks down
at a finite-time singularity. In this chapter, this analysis was extended to in-
clude the other components of the far-field low. We found that the oblique
solution, as it has a coupling with the orthogonal equation, also breaks down
at the same finite-time singularity.

The next chapter follows on from the work in this chapter but the orthog-

onal and oblique equations are considered in the limit 0 — oo, where the
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relative amplitude is close to the critical value. The double and triple-layered
structures described above are still present within this limit and are consid-
ered further using the asymptotic method which was previously discussed in
chapter 2.

We note that a concise study of the work within this chapter can be found

in Tooke et al. (2010).



Chapter 5

Unsteady oblique
stagnation-point flow in the

large frequency limit

5.1 Introduction

This chapter follows on immediately from chapter 4, where an unsteady
two-dimensional oblique stagnation-point flow travelling towards a fixed wall
was discussed. The flow in the far-field comprises of a two-dimensional
stagnation-point flow, dependent on the relative amplitude parameter A and
the dimensionless frequency parameter o, a shear low with constant vorticity
and a time-dependent horizontal velocity component. A similarity solution
was found close to the wall, from which two equations were derived. The
first describes an orthogonal stagnation-point flow and is denoted the pri-
mary equation. The second represents the shear flow and the horizontal
velocity component, which we denote the oblique equation.

In chapter 4, the primary and oblique equations were solved numerically
for a range of values of the parameters o and A. For certain values of the rela-
tive amplitude and the dimensionless frequency parameter, the flow structure
becomes double or triple-layered. This is due to interior stagnation points

appearing in the flow, each with a horizontal streamline passing through it.

116
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In chapter 2, when only the primary problem was analysed, it was found
that as 0 — 00, a critical amplitude A, arises, such that for A > A_, solutions
break down at a finite-time singularity. In this limit, the flow structure
exhibits a Stokes layer at the wall and a steady streaming layer matching the
Stokes layer to that of the far-field flow. In the present chapter, we solve the
oblique equation close to the critical amplitude and obtain solutions in the
Stokes and the steady streaming layers.

We conclude with a discussion on the instantaneous streamlines in the
Stokes and the steady streaming layers, confirming the multi-layered struc-
ture which was present in chapter 4. Additionally, a particle path analysis

in the steady streaming layer is performed.

5.2 Problem formulation

In chapter 4, the streamfunction in the far-field, describing the unsteady
oblique stagnation-point flow, initially stated in (4.3), is given by

~ ~ o~ /
v =a(t)kay + 500" 0T (V). (51)

as y — oo. The first term is an unsteady orthogonal stagnation-point flow
with strength & and a(t) = 1 + Acoswt. The second term is a shear flow
with constant vorticity with constant vorticity —E < 0 and the third is a
time-dependent horizontal velocity, dependent upon an arbitrary function
B (t). A sketch of the dividing streamline, ¢ = 0, is illustrated in figure 4.1.
As the far-field solution (5.1) does not satisfy the no-slip condition, close to

the wall we write

W, 7) = (k) agpp(n, 7) + 5(%) /0 "oz T)dz, (5.2)

where 1 = (k/v)Y/?y and 7 = wt. The first component represents the orthog-
onal stagnation-point flow and is denoted 1p(n, 7), the primary component.
The second term in (5.2) represents the shear flow and the time-dependent
horizontal velocity component and is denoted 1o(n, 7), the oblique compo-

nent. The equations for ¢p(n, 7) and ¥o(n, 7) have previously been derived
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in section 4.2 and are given by

TVpne + (Vpy)’ = ptopy = oAsinT+ (14+AcosT)?+ Ypy, (5.3)

0bor +bpo —Upto, = —0f +@— (1+AcosT)F+ oy, (5.4)
with primary boundary conditions
Yp(0,7) =0, p,(0,7)=0 on n=0, (5.5)
Yp(n,7) — (14 AcosT)np —a as n — o0, (5.6)
and subsidiary boundary conditions
Yo(0,7) =0, on n=0, (5.7)
o(n.T) = n—F as n— oo (5.8)

where @ = lim, ,(an — ¥p) and ¢ = w/k is the Strouhal number. For
convenience, we choose the scalings ¥p = AY2p, 1o = A~Y2 and & =
AV?q, with n = A~Y/?7 and B = A*I/QE. Additionally, the parameters
€=1/A and Q = o/A are introduced, where € is a small parameter. The

equations (5.3) and (5.4) in terms of the new variables become
—~ ~ N2 o~ o~ ~
Q?/)pﬁ,r + (@Z)pﬁ) — ’ll)p’l?[)p% = —Qsin7T + (/€\+ COS 7')2 + ¢PW7 (59)
o, + 'J)\Pﬁ'J)\O - 'J)\P'J)\Oﬁ = O3, +a-— (€ + cos T)BJF QZO%, (5.10)
with the primary flow boundary conditions
$p(0,7) =0, ¥ps(0,7) =0 on 7=0, (5.11)
bp(A,7) = (cosT +E)f—a as 7 — oo, (5.12)
and the subsidiary flow boundary conditions

’l:/;o(o, 7)=0 on 7 =0, (5.13)
Yo(@,7) == as 7 — oo (5.14)
As we wish to solve equations (5.9) and (5.10) asymptotically, an ex-

pansion for € is required in terms of €, which has previously been found in

chapter 2 and is given by € = aoQ ' +a;Q2~2. The constant ag can be thought
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of as the boundary between the solutions existing and breaking down at a
finite-time singularity and a; is the correction term. The time-dependent
function a(7) is found from solving the primary equation (5.9), which is dis-
cussed in section 5.3 and is written & = Q712 + O(27%/%). Additionally,
we choose the magnitude of the horizontal velocity component B to be the
same size as the mean component in the far-field orthogonal flow a(7), i.e.
3 ~ O(1). Therefore, it follows that 3 = QY2 8y(7) + QY26 (1) + O (Q73/2).
In section 5.5, we comment on other possible magnitudes of B

Due to the coupling of @/Z)\p and @/Z)\O in equation (5.10), we begin by sum-
marising the primary solution, which was previously solved in chapter 2,

before seeking a solution to the oblique equation (5.10).

5.3 Summary of primary flow

In this section, the primary flow is summarised by describing the necessary
methods and results that are required to solve the oblique equation (5.10),
with a more detailed account found in section 2.4.

At the wall, there exists a Stokes layer of thickness O(Q~/2) with variable
¢ = QY% where ¢ = O(1). Solving equation (5.9) in the Stokes layer, we
find

vp ~ Q2 lf COST — COS (7‘ - g) ] (5.15)
Q732 {% — Zf — % cos (27‘ + 2)} +0(Q7%2),

as £ — o00. As equation (5.15) does not, at first order, satisfy the far-
field boundary condition 121\1:% (&7) = Q7 2cosT + Q% 2ag + O (27/?) as
¢ — 00, a steady streaming layer is introduced to match the Stokes layer
solution to that of the far-field. To allow for correct matching, we introduce
the variable ¢ = Q7127 where ¢ = O(1). After solving (5.9) in the steady

streaming layer, we find

T

vp = QY2CcosT+ Q2 [fO(C) — cos (7’ — Z)] +0(Q73/?), (5.16)
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where fy(¢) is the numerical solution to
o = fo+ fofg +ay =0, (5.17)

with boundary conditions

3

0 =0, fi(0) =7,

fo(¢) ma¢ —C as (— o0, (5.18)
where the constant C' is found numerically by solving equation (5.17) using
a fourth-order Runge-Kutta technique and a finite-difference technique.

To solve the oblique equation (5.10), the asymptotic expansion for « is
required. By matching the steady streaming layer solution (5.16) with the
primary far-field boundary condition {/1\1:(77, T) — (€+cosT))— @ as ] — o0,
we find a(7) = Q2ap + O(Q7%?), where g = cos (1 — %) + C.

Having summarised the main results of the primary equation (5.9), in the

subsequent section we solve the oblique equation (5.10).

5.4 The oblique equation

In this section, we solve the oblique equation (5.10) in the limit Q — oo,
with € ~ O(Q7'). The structure of the solution is similar to that of the
primary solution, with a Stokes layer closest to the wall. Due to this solution
not satisfying the far-field boundary condition, a steady streaming layer is

introduced, matching the Stokes layer and the far-field flow.

5.4.1 Stokes layer

Similar to the primary equation (5.9), the dominating terms in (5.10) are
the unsteady and the viscous terms, Q{D\OT ~ QZOm implying the scaling 7 ~
Q~1/2. Therefore, we have a Stokes layer of thickness O(2~'/2) with variable
¢ = QY% where € = O(1). We rescale the oblique equation (5.10) in terms
of the Stokes layer variable & with 3(7) = QY28,(7) + Q~V28,(7) + O(Q~3/2)
and @ = Q7 Y2qy + O(Q7%/2), which were initially stated in section 5.2, to
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give

Mo, + Q2 (@\oapg — '(ZP{Z)\O§> = —Q3? (Bor + Q' Bir + Q%B2) (5.19)
+ Q7205 — QY% (cos T 4+ a7 + a1 Q72 (B + Q71 6)

+ Q@/Z)\Ogg + 0(9_3/2),

with the wall boundary condition

~

Yo(0,7) =0, on &=0. (5.20)
We pose the asymptotic expansion
Yo = QV2Wo, (€, 7) + Q720 (€, 7)) + O(Q7/?), (5.21)
and recall the primary expansion
bp = Q7 V2 (6,7) + Q20 p (6, 7) + O(Q7?). (5.22)

Substituting these expansions into (5.19), the leading, first and second order

equations are given by

To,, — Popee = —Bor, (5.23)
\I/OIT — \Ilolﬁﬁ = \IIPO\Iloog - \I’pog\poo — ﬁlT - ﬁo COS T, (524)
Vo,, — Vo,ee = Up Vo, + Up Vo, — Up o, — Up T, (5.25)

—Bar + g — apfBy — P cos T,

with boundary conditions on the wall
\I/OO(O,T) = 0, \I’OI(O,T) = 0, \I/OQ(O,T) =0. (526)

We express (3; = M + B9 cos (1 + ¢) for i > 0, where 3M is the mean
component and 39 is the oscillatory component with an arbitrary phase
difference ¢. To solve equations (5.23) - (5.25), we use the boundary condition
on the wall (5.26) and note that W, (£, 7) are periodic and bounded, i.e.

Vo, (&, 7) does not have exponentially large solutions. Therefore, the leading
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and first order solutions are given by

Vo, (&, 7) = b€+ ﬁé) le‘g/ﬁ cos (7‘ +¢— %) —cos (T + gb)} , (5.27)

Uo (6,7) = ot + 3@500 cos (6 + %) = iﬁg)ﬂeﬁﬂsm (0+ Z) (5.28)
—%@?eﬁ/ﬂ [sin <% + ¢) + 3sin <% - ¢)
+ cos (% - ) + %ﬁoogei/ﬁ [sin <¢ - % + %)
—sin <2¢— %+¢+%)
+= ﬁo €sin (¢ =27 —9) - % 0¢=¢/V2 i <% —or gb)

+BO[ E (\% )_cos(r+¢)]
_5M{ ~6VE gy <%_ )—l—smr}
b 35 e—EV2 g (%_ ) IV (T—£/\/§+Z)
o) -5
& V2D,

Uo,(€,7) = (aB) —C) = —g +dé+T(E,7), (5.29)

2

where b, ¢ and d are constants and T'(£,7) is a function containing time-
dependent and exponentially decaying terms.

At the top of the Stokes layer, we find

QZ)\O ~ QY2 [bg — BOO cos (T + gb)} (5.30)

3v269 T
—-1/2 ZvVaro Z
+€ c€ + 1 Cos (gb + 4)

—BM sinT — B9 cos (1 + ¢) + bcos <T+ %)

(03" ) & & ”ﬂ’g 24 dg 1+ T(E,7)

+Q732 +0(Q7),
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as £ — o00. As equation (5.30) does not satisfy the far-field boundary
condition o — (B3 — BF cos (T + @) + Q72 (¢ — M — B cos (T + ¢)),
a steady streaming layer solution is introduced to match to the far-field flow.
When matching the Stokes layer to the steady streaming layer the constants

b, c and d are found.

5.4.2 Steady streaming layer

In this section, we seek a solution to (5.10) in the steady streaming layer,
which matches the solution in the Stokes layer to the far-field flow. From
the primary problem, the steady streaming layer has thickness O(Q'/?) with
steady streaming layer variable ¢ = Q~Y27, where ( = O(1). Also, as

before, [(r) = 020, + Q72 + O(Q2) and &(r) = Q/2an +O(Q2).
Rewriting the oblique equation (5.10) in terms of the steady streaming layer

variable ¢, we obtain

Q@//)\OT + Q712 <7:Z)\O'(Z;Pg — @ZP@//)\Og“) = Q2 (Bor + Q7' Bir + Q7%B2) (5.31)
+ Q7 V205 — QY2 (cos T + a7 + a1 Q%) (B + Q1 5Y)

+ Q—l{z)\OCC + 0(9—3/2)’
with the matching condition to the far-field flow given by
o = Q¢ —B) — Q2B + 0 as (—oo,  (5.32)

where 3; = M + 89 cos (1 + ¢) for i > 0.
Rewriting the dominant terms in the Stokes layer, which are given in

(5.30), in terms of ( suggests we write

o = OV (Holc,m) + ho(Q)) + QY2 (H(¢. 1)+ ma(0))  (5:33)
+Q72(Ha(C,7) + ha(0)),
where the functions H;((, 7) have a zero time-average and h;({) are the mean

components, where ¢ > 0. Upon substituting oblique expansion (5.33) and

the primary steady streaming layer solution (5.16) into equation (5.31), we
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obtain

Hy = 0, (5.34)
Hy, = ((Hoc+ hoe)cosT — (Hy + hg) cos T + 85 sin (7 + ¢), (5.35)
Hyr = ((Hic+ hic)cost + [fo — cos (7‘ — Z)] (Hoe + hoe)  (5.36)
—(Hy + hy) cosT — foc(Ho + ho) + Y sin (7 + ¢)
—B3 cos T — 35 cos T cos (T + ¢) + Hoee + hoce
Upon integrating (5.34) and (5.35) with respect to 7 and taking a time-
average to obtain the function of integration, we find
Ho(¢,7) = 0, (5.37)
H((,7) = —f85cos(T+4 @)+ (Chy — ho)sinT, (5.38)

where the prime denotes differentiation with respect to (. Taking a time-

average of equation (5.36), we obtain
W+ foho — hoftl = 0. (5.39)

To find the boundary conditions on ( = 0, we match the steady streaming
layer expansion (5.33) to the Stokes layer. The Stokes layer solution in terms

of (, is given by

2 1120
2 16

0
3\/_%ﬁocos <¢+§) +d¢ — B sinT

¢2 (5.40)

bo = QB/?bC_'_Ql/Q |:CC_'_(aoﬁé\4_C>

—BOO cos (T + gb)] + Q2 [

— 3 cos (T + ¢) + bceos (7‘ + Z) } +0(Q7%?).

Therefore, matching (5.40) with the steady streaming layer expansion (5.33),
we find ho(¢) — bC as ¢ — 0. Similarly, matching the steady streaming layer
to the far-field boundary condition (5.32), we find ho(¢) — 0 as ( — oc.

Hence, the boundary conditions for equation (5.39) are given by
ho(0) =0, ho(¢) =0 as (¢ — oo. (5.41)

Numerical solutions of equation (5.39) along with the boundary conditions
(5.41) suggest ho(¢) = 0. To illustrate that there are no eigensolutions to

equation (5.39), an analytic solution is obtained.
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One solution to equation (5.39) is given by ho(¢) = f(¢), where fo(() is
given in equation (5.17). To seek the second solution we use the method of

reduction of order and write ho(() = f(Q)U((), to obtain

ho(¢) = AF(C) + Bfy(C). (5.42)

where

¢ ; )
F(O) = f1(C) / O] e s (5.43)

Applying the boundary conditions ho(0) = 0 and h{(0) = b, we find A =
bfi(0) and B = 0. Therefore, we obtain the solution hy = bf(0)F ().
Following Glauert (1956), it can be shown that F'(¢) — k1{ + k2 as ( — o0,
where k1 and k9 are dependent upon ag and are obtained numerically. Thus,
to satisfy the far-field boundary condition ho({) — 0 as ( — oo, the only
possibility is b = 0 as fi(0) # 0 and it follows that the only solution to
equation (5.39) is ho(¢) = 0.

The steady streaming layer solution can now be expressed as

Yo = Q2 [(h(Q) — B cos (7 + ¢)] + Q72— P cos (r+ ¢) (5.44)
—B3" sinT + (CRL(C) — hi(¢)) sinT + h2<C)j| +0(Q73/?),

To obtain the equation for h;(¢), we collect terms of O(2~'/2) in equation

(5.31), to find

Hs, = —(Hy+h)f)— (Ho+ hy)cosT+ CcosT(Hy+ hy)  (5.45)
+ [fo — oS (7‘ — %)] (Hy + hYy) + 85 sin (1 + ¢) + ag
—ao (B + ¢ cos (7 + ) )

—cosr(ﬁfijﬁlocos (T+¢)> + HY + hy.

We substitute ag = cos (7‘ — %) + C, H{(¢,7) which is given in (5.38) and
Hy(¢,7) = (Chy—hy) sinT— B9 cos (1 + ¢)— B3} sin 7 into (5.45). After taking

a time-average over one time period, we obtain

i + fol = hafy = aofy" — C. (5.46)
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The constant C' = lim;_.~(ao( — fo) and is found by solving the equation for
fo(€), given in (5.17). Similarly, to obtain the equation for hy((), we collect

terms of size O(27%/2) in equation (5.31) and take a time-average, to find
hy + fohy — foha = fihn — fihy + aoB" + aifg" — D. (5.47)

The constant D = lim_,o(a1{ — f1), which is calculated by solving equation
(2.54).

We proceed by solving the numerical equations (5.46) and (5.47), but first,
the boundary conditions on ( = 0 and as ( — oo are needed. To find the
boundary conditions at ( = 0, we match the Stokes layer (5.40) to the steady
streaming layer expansion (5.33), to obtain h; — ¢ + (a8} — C’)C—z2 and
hy — ﬁ cos (gb + %) +d(+0(¢?) as ¢ — 0. To obtain the constants ¢ and d,
it is necessary to find the small ¢ expansions for h;(¢) and ho(¢). As these are
dependent upon the primary functions fo(¢) and f;(¢), we initially find the
small ¢ expansion for fy(¢). We express fo(¢) = —%C + CITCQ + O(¢?), having
used the boundary conditions f5(0) = 0 and f}(0) = —3. The constant C} is
obtained by substituting this expansion into the equation for fo((), given by

(5.17) and equating coefficients. Hence, we find

" 2
@) = 2+ B0 L o), (5.48)
By repeating this process, we find
_ 13 A0)¢ 3
O = 5t Ty O (5.49)
2
m(Q) = K0+ (b~ O)% +O(E), (5.50)
0 2
m(Q) = 2 con (64 5) + R0+ (aof — O +0(). (551

Therefore, we find ¢ = h{(0) and d = h4(0) and the boundary conditions at
¢ = 0 are given by

O

hi(0) =0, Ri(0)=¢, he(0)= % cos <¢+ %) . hy(0)=d. (5.52)

The far-field boundary conditions are given by

h(C) = ¢ =By, ha(¢) = —p" as (— oo, (5.53)
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which are obtained by matching to the steady streaming layer solution to the
far-field boundary condition (5.32).

To find the analytic solution for h1((), whose equation is given by (5.46),
we note that the homogenous solution satisfying the new boundary conditions
at ( =0, hy1(0) =0 and A} (0) = 9, is given by hy = AF', where F(() is given
by (5.43). At ¢ = 0, we find § = AF'(0) = A\/f;(0). As discussed above,
F(¢) — ri1C + ke as ( — o0, so to satisfy the far-field boundary condition
Ri(¢) — 1 as ¢ — oo, we find k1 = 1/(3f](0)).

Combining the homogeneous solution with the particular solution, we

obtain

- e )

where F'(¢) is given by (5.43) and from h;((),

_ 1 C — aoﬁéw ” 27 3&%
c = k1 f1(0) + < - ) ( 0(0) + 6177(0) 4f6/(0)) . (5.55)

For the example case of ag = 1 and 3} = 1, we compute k; = 2.257 and

using the relation given in (5.55), we find ¢ = 0.893.

Having obtained the analytic solution for hi(¢), we now solve h;({) nu-
merically. To do so, we use a fourth order Runge-Kutta method with a
shooting technique. We begin by converting equation (5.46) into two first
order ones by writing hy = z; with fo = y; and f] = y,. It follows that

4=z, (5.56)

2y = 21y — 2y +af) — C, (5.57)
with boundary conditions

21(0) =0, zi(c0) =¢— G, (5.58)

where 25(0) is chosen, such that the condition z;(c0) is satisfied. The primary
functions y1, y» and C have previously been found in chapter 2, for all values
of ap > 0.6017. As the system (5.56) - (5.58) is reliant upon the primary

function fo(¢), we find two solutions when 0.6017 < ay < 0.75 and one
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Figure 5.1: (a) The oblique function hy({) for, working from left to right,
M =4,20,—2,—4 and ag = 1. (b) The oblique function hy(¢) for, working
from left to right, B} = 4,2,0,-2,—4, ap = 1 and a; = —0.5.

solution when ag > 0.75. Figure 5.1(a) illustrates the solutions to hy(() for
ap =1l and B} = —4,-2,0,2,4. Tt can be seen that as 3}! increases, a region
of flow reversal develops close to ( = 0. Numerical trials have suggested that
as ag decreases, the value of 457 at which flow reversal occurs increases. Since
the results plotted in figure 5.1(a) are for equally spaced values of 3}, the
behaviour of hy(¢) for ¢ > 1 suggests that in the far-field, h;(¢) and B8
have a linear relationship. This is confirmed by the analytic solution (5.54).

For completeness, the equation for hy((), given by (5.47), is solved nu-
merically using a similar method, although hs({) has very little effect on
the steady streaming layer solution (5.44). Figure 5.1(b) illustrates the ve-
locity profiles for selected values of 837 for ag = 1, a; = —0.5 and 8! =
—4,-2.0,2,4.

In this section, the solution of the oblique equation (5.10) has been found
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in the Stokes layer and a steady streaming layer. In the steady streaming
layer solution (5.44), the leading order steady component hi(() has been
solved. It can be seen clearly in figure 5.1(a) that the value of 3}7, which is
the leading order mean horizontal velocity component, determines whether
flow reversal occurs and its extent.

Having found solutions in both the Stokes layer and the steady streaming
layer, in the next section we discuss the flow structure in both these layers
over one time period. Additionally, a particle path analysis is performed in

the steady streaming layer.

5.5 The structure of the near-wall flow

In chapter 4, where the primary and oblique equations were solved numeri-
cally, it was found that for certain parameters and over some time intervals of
the cycle, horizontal streamlines appear in the flow, creating a multi-layered
flow. In the present chapter, we have investigated the primary and oblique
problems for large frequency with A ~ O(¢'/?) and have found the prob-
lem is described in terms of a Stokes layer and a steady streaming layer.
In this section, the flow structure in both of these layers is discussed, with
comparisons being drawn to the numerical results in chapter 4.

The streamfunction, which is previously defined in equation (5.2), is writ-
ten in terms of the scalings 1p = A5 1ho = A~V20 with n = A"12q,

which were introduced in section 5.2, to give

= (Vk)l/Q:EAI/QQZp(ﬁ, T) + E(%) A1 /O77 Yoz, 7)dz. (5.59)

To consider the flow structure in the Stokes layer, we differentiate the
streamfunction (5.59), to obtain the horizontal and vertical velocity compo-

nents

—~ ~/\NV2 o~
u = kwapﬁ—i—C(E) A2, (5.60)
v o= —(vk)2PAY2 . (5.61)
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Upon writing the velocity components (5.60) and (5.61) in terms of the Stokes

layer variable, £ = Q27 and using the expansion

Q ay
A= —— — Q! .62
- aTo@™), (562)
we obtain
kx a _
u = a_o [Q@PO£+WP1§_;;WPO§+O(Q 1)} + (563)
~rvap\ 1/2 a
C (f) [WOO + Qil (2—;()\1100 + WOI) + 0 (92)} )
e 1/2
vo= — (ZI—) \I’po -+ O (Qil) . (564)
0

Stagnation points occur when the velocity components u and v, given
in (5.63) and (5.64) are equal to zero. Considering the vertical velocity
component, Wp, (§,7) = 0 when £ = 0 and £ = &. To examine what effect
these zeros have on the flow structure, we begin by obtaining the dividing
streamline. To do so, we set (5.59) equal to zero and rewrite it in terms of
the Stokes layer variables, to give

1/2 3
za=—C (”k—‘f) / %fo ii:g:))dz +0(Q7?). (5.65)
As Up (0,7) = 0, ¥p(0,7) = 0 and Vo, (0,7) = 0, at the wall the de-

nominator is equal to zero. So, we take small ¢ expansions of the primary
and oblique functions, Wp,(0,7) = ¥p, (0, 7)6*/2 + O (&) and Vg, (0,7) =
V0,0, 7)€+ O (€?), to obtain the attachment point of the dividing stream-
line with the wall. We recall the primary leading order solution is given
by

Up, (&, 7) =EcosT — cos <7‘ — 2) + e V2 cos (7‘ L z) (5.66)

NI
and the oblique leading order solution is given in (5.27). Therefore, the
attachment point of the dividing streamline with the wall, is given by

=g (1h) "R+
0= k3 Q COS(T+§)

+0(Q7?). (5.67)

If the phase difference ¢ is an integer multiple of 7, the time-dependent

horizontal velocity component B is either exactly in phase or exactly out of
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phase with the primary function a(7). When 3§ # 0, if ¢ is an even multiple
of m, the attachment point is positive and is fixed over the time period.
Similarly, if ¢ is an odd multiple, the attachment point is negative and fixed
over the time period. For any other value of ¢, the attachment point tends
to either positive or negative infinity as 7 — 7 /4 and 7 — 57 /4.

Having discussed the zero at & = 0, we now consider the zero at £ = &.
We find this zero only occurs when 7/4 < 7 < 7/2 and 57/4 <7 < 37/2. In
figure 5.2, the first of these non-trivial zeros, & is illustrated. This zero causes
a horizontal streamline to appear in the flow, creating a double-layered flow.
As 7 increases within these time intervals, the horizontal streamline moves up
through the Stokes layer and approaches infinity as 7 — 7~ and as 7 — 37”7.

We now investigate the behaviour of the non-trivial zero & in the time
interval /4 < 7 < 7/2. As stated above, a non-trivial zero { = &, develops
within the Stokes layer solution at 7 = /4. To consider the flow structure
around this time, we expand the primary and oblique leading order solutions
in the Stokes layer, by writing 7 = §+f where |f| < 1. Initially considering

the primary solution, we find

Up = {% — 1+ e V2 cos (%)} (5.68)

+T {—% + e ¢V2gin (%)] +O(T?).

The first squared bracketed term only has a zero at £ = 0. Balancing the

leading and first order terms in (5.68), we find the zero £ = &, appears when

& = 3v2T, (5.69)
for small T > 0. Similarly, for small ﬁ the oblique Stokes layer solution
becomes

U, — gO|.tnve T _ S (E ) .
0o By [e cos | o + ¢ 7/ cos (7 + ¢ (5.70)

+T [sin (% + <b> — e V%gin (% +¢— %)} +O(T?).

On the horizontal streamline, a stagnation point is present. To consider

the horizontal position of this stagnation point, we set the horizontal velocity
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component (5.63) equal to zero and obtain

~ Va,3 1/2 1 \I[Oo(£07T) _
l‘|§:§0 = —g (k—:;)) EW + O (Q 2) . (571)

Evaluating the primary and oblique leading order solutions about (5.69), we

find

3 ~
~ —T27 \I]OO

£§=%o \/§

Substituting the leading order expansions (5.72) into (5.71), we obtain

Up, o~ 3V2T 39 sin ¢. (5.72)

3

1/2
I A R 573
teey ~ =C (T2 ) 200 sino , (5.73)

for small 7. Therefore, the horizontal streamline emerges from the wall at
7 = 7/4 and moves up through the Stokes layer, with the stagnation point on
the horizontal streamline moving in from either positive or negative infinity,
depending on the parameters, 5§ and ¢.

35

30
251
20
€o

15

101

Figure 5.2: The numerically calculated non-trivial zero &, in the Stokes layer,
which is represented by the solid line, alongside the asymptotic predictions
of the behaviour of the zeros &, close to 7/4 and 7/2, which are represented
by the dotted lines.

To investigate the behaviour of the zero &, close to 7 = 7/2, we let
T= g—l—f, where |f | < 1. Hence, the primary leading order equation (5.66),

becomes

\I/poz—fsinf—cos (%+f)+ei§/ﬁcos <E pot
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Expanding for small T, we obtain

Up, = —% [1 4 tV? (cos (%) + sin <%))} (5.75)
+T {—5 + % (1 4 tV? (sin (%) — cos <%)))} +O(T?).

For a zero to occur in (5.75), we need & ~ O(T~1). Therefore, we set & = £ /T,

to give
v ! 3 (5.76)
Py \/5 . .
Therefore, as 7 — 77, the zero of ¥p, occurs when
L =4
So=——"F+2T7, (5.77)

V2

as T — 0~. This estimate is illustrated alongside the numerically computed

zero as T — 3 in figure 5.2. As T — 07, the horizontal streamline moves

up through the Stokes layer and enters the steady streaming layer.

To consider the behaviour of the stagnation point on the horizontal stream-

s

line close to 7 = 5

in the Stokes layer, we evaluate the leading order primary

and oblique solutions in the present time zone and find

Upe| ~-T, Wo,| ~f9sing. (5.78)
&=%o =£o
Substituting (5.78) into (5.71), we obtain
~ (vag i O 11
Tle—g, ~ C =3 By sin QT+, (5.79)

Therefore, as the horizontal streamline moves up through the Stokes layer,
the stagnation point on the horizontal streamline moves towards either pos-
itive or negative infinity, depending upon 3¢ and ¢.

We now discuss how the horizontal streamline behaves as it enters the
steady streaming layer. We write the primary steady streaming solution
(5.16) in terms of the present time variable and find

—-1/2

bp = —QY2¢sinT —
wP C \/5

(cosf — sin f) + Q24+ 0 (Q79%) . (5.80)
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Taking small T expansions of (5.80), we find

bp = QYT + Q712 <f0 — %) +o (12, (5.81)

To balance the first two terms, we choose T = pQ~t where p = O(1).
Therefore, (5.81) becomes

vp = -2 (fo — p¢ — %) +0 (%), (5.82)

The bracketed term in (5.82), for large negative values of p has a zero (o,

which is small in magnitude. Expanding (5.82) for small (, we obtain the
approximation

1
V2(p+3)

As p increases, the zero (p increases and the horizontal streamline moves

Co~ — (5.83)

upwards through the steady streaming layer. The numerical results suggest
that (o — 00 as u — a,. We estimate (, asymptotically, by seeking a large

¢ approximation of (5.82), where fj — ag as ( — oo and we find that

d 1
~ , here d=—+ lim (agC — . 5.84
Co a0 — 1t w NG CHOO( o¢ — fo) ( )

Therefore, as © — ay, ¢ increases and the horizontal streamline moves up to

infinity. This occurs at 7 ~7 = § + ao€)~1. The critical time 7, corresponds
to a zero developing in the primary function a(7) = 1+ A cos 7, which arises
at 7 = m — cos! (i) Expanding for large A, we obtain 7 = § + i ~ T,
where A ~ Q/ay. In figure 5.3, we plot on a log-log graph the asymptotic
prediction of the zeros (p, given in (5.84), with the numerically computed
zeros for a range of values of i, showing excellent agreement.

To find the location of the stagnation point as the horizontal streamline
enters the steady streaming layer, we set the horizontal velocity component
(5.60) equal to zero and rewrite in terms of the steady streaming layer vari-
ables, to give

_C (vad\ " ha(G) — B8 cos(r + 9)
o=t = Q0 (k—?’o) CoST + ?2*1]“6(@“0) ' (5:85)
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Figure 5.3: The asymptotic prediction of the behaviour of the zeros ¢y, along-
side the numerically calculated zeros, which are represented by the crosses,
showing excellent agreement.

Close to 7 = 7, (5.85) is rewritten as

¢ (vad\"? hi(Go) + 69 sin ¢
oo~ (8) Tl (5.86)

This matches directly to the Stokes layer expansion (5.79) when T — —,

where the small (5 approximation, given in (5.83), is used. To consider how
the stagnation point on the horizontal streamline behaves as the horizontal
streamline moves up to infinity, we recall that h;(¢) — (=3} and f{(¢) — ag
as ( — o0o. Using the scaling T = 127! and the large (, approximation, given
in (5.84), we find
3\ 1/2
Tlemgy ~ —C (%) ﬁ. (5.87)
The constant d, given in (5.84), is plotted in figure 5.4. This figure illustrates
that for all possible values of ag, d is positive. Therefore, as ;1 — a,, which
corresponds to point when the horizontal streamline moves up to infinity, the
stagnation point on this streamline tends to negative infinity, irrespective of
the choice of B . This result agrees with the numerical results in chapter 4.
Extending the above analysis over a period of 27, the streamline pattern
changes between a single and a double-layered structure. In the interval 0 <
7 < 7, the streamline pattern is single-layered, with the dividing streamline
approaching the wall at an angle. When 7 < 7 < 7, the flow structure is

double-layered, with a horizontal streamline present within the fluid, which

5m

r» the flow returns

moves upwards to infinity and vanishes at 7. For 7 < 7 <
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10

(%)

Figure 5.4: The constant d given in (5.84) plotted against ayg, illustrating for
all values of ag, d is positive. The upper branch of the curve asymptotes to
ag = 0.75.

to a single-layered structure. At 7 = %, a horizontal streamline develops in
the Stokes layer and behaves similarly to the case described above when
7 = 7. To observe how the horizontal streamline moves through the steady
streaming layer, we write 7 = 37” + T for |T| < 1 and the steady streaming
layer solution becomes
op = QYT + Q2 <f0 _L. i) +0(Q73/2). (5.88)
V2 V2

To gain a balance between the first and second terms, we write 7 = pQ~!,

where 1 = O(1) is a constant. Therefore, we obtain

bp =12 (fo + ¢ + %) +o(Q71?). (5.89)

For a large positive fi, the bracketed term in (5.89) has no zeros and for
large negative values of pi there is one zero. This zero corresponds to a
horizontal streamline entering the steady streaming layer from the Stokes
layer. When i = —ag, a second zero occurs in the bracketed term in (5.89).
This corresponds to a second horizontal streamline entering the flow from
infinity when fi = —ag, i.e. when 7 = 2 — qQ!, where A = Q/a,.
Therefore, the flow develops a triple-layered structure. As ji increases, the
second horizontal streamline moves down from infinity. At some point, the
two streamlines collide and the flow returns to a single-layered structure for

the remainder of the period. These observations agree with the numerical

results obtained in section 4.5.
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Having considered the instantaneous streamlines in both the Stokes and
steady streaming layers, we now discuss the particle paths in the steady
streaming layer, as this layer occupies the larger part of the region at the
wall. To begin, we rewrite the velocity components (5.60) and (5.61), in

terms of the steady streaming layer variables, to give

_ Q 1z
u = kaQ1? (a )zppg g(”ZO) Q12 <1+29a0) do, (5.90)

0

vk 1/2
c () () -

Substituting the primary and oblique solutions (5.16) and (5.44) into (5.90)
and (5.91), we obtain

Q
u = kx (a—o — Z—%) |:COST + QM+ 0 (7 ] (5.92)
+E(%)U2 (1 + 231@0) [hl — 8% cos (1 +¢) + O (Q_l) ],
vk\ /2 ap
v o= _<CL_0) Q(I_QQCLQ) |:CCOST+Q (fo (5.93)

— COoS (T— 2) ) +O(Q2)].

Initially we discuss the steady terms in the steady streaming layer. Later,
the time-dependent terms are included and the particle paths are sought to
consider what effect the time-dependence has on the steady streamlines.

To consider the flow structure of the steady components, we note that
the vertical velocity (5.93) is equal to zero when fy(¢) = 0. This occurs
when ¢ = 0, which corresponds to a stagnation point at the bottom of the
steady streaming layer. In addition to this, we find a second zero at ( = (¥,
which corresponds to an interior stagnation point in the steady streaming
layer, through which a horizontal streamline exists, causing the flow to have
a double-layered structure. The steady streamline pattern is illustrated in
figure 5.5 for ag = 0.6017 and ay = 1, when the vorticity Z: 0, i.e. solely
the primary flow is considered.

When E # 0, the flow is made up of both primary and oblique com-
ponents. The dividing streamline is no longer orthogonal and the stream-

lines now approach the wall at an oblique gradient of —2a(7)k/ E, where
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Figure 5.5: The orthogonal steady streamlines in the steady streaming layer
for (a) ap = 0.6017 and (b) ap = 1. In both cases ¥ = k = 1 and the solid
dots represent the stagnation points.

a(t) = 1+ Acost. Figure 5.6 illustrates the streamlines for ay = 1 and
BM =1.2,1.4442,1.5,1.582,1.8. We note that there are two dividing stream-
lines, the first is the dividing streamline in the far-field, which divides the
streamlines either travelling to the right or the left and the second is the
dividing streamline which intersects with the bottom of the steady stream-
ing layer. In figure 5.6, it can be seen that upon increasing 3}! causes the
streamlines in the far-field shift to the right and below the horizontal stream-
line at ( = (*, the direction of the flow along the streamlines changes. Also,
it can be seen that the gradient of the dividing streamline changes as 3}
increases. We note there are two critical values of 8)7. The first, where the
dividing streamline goes through both stagnation points, ( = 0 and ¢ = (¥,
when ) = 1.4442, is illustrated in figure 5.6(b). The second is where both
of the stagnation points are at z = 0, which occurs when )7 = 1.582 and
can be seen in figure 5.6(d).

To consider the behaviour of the stagnation point along the horizontal
streamline, we set the horizontal velocity component (5.92) equal to zero

and find

a3\ V2 (C )
= —C (%) }}O,Egi +0(Q), (5.94)

where z* is the location of the stagnation point and Z , k and v are constants.
The horizontal location z* is obtained numerically for different values of 5.
A linear relationship between x* and (337 is observed and as 3} is increased

x* moves to the right, which is illustrated in figure 5.7 for ag = 1. This is
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Figure 5.6: The mean components of the steady streaming layer illustrated
for ap = 1 and (a) 3} = 1.2, (b) B = 1.4442, (c) 3} = 1.5, (d) B} = 1.582,
(e) B =1.8. Ineach case (=v =k =1.

confirmed by the analytic solution found for hy((), given in (5.54), where
hi(¢) has a linear dependence upon 3.

We now consider the time-dependent terms as well as the steady terms
in velocity components (5.92) and (5.93). The particle paths are computed
as the solution of the differential system

dr o dy
de’ Cdt’

u =

(5.95)

where u and v are given in (5.92) and (5.93). We recall that 7 = okt and

using the relation for o in terms of 2, which was initially given in (2.144),
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Figure 5.7: The leading order mean component of the time-dependent func-
tion, 3} plotted against x*, the horizontal position of the stagnation-point
for(=v=k=aqa9=1.

we find
Q2 Q
= (— - %) kt+0(1). (5.96)

We rewrite the velocity components (5.92) and (5.93) in terms of the di-
mensional variables x, y and ¢ and upon introducing the small parameter

J = Q7! we obtain

dz B 1 ay 1 ay kzx ,
dat b <a05 a a%) o8 [(a()é? a a%5) kjt} * ag Jo (5:97)
o A P 1 e
+ (52 [hl 55 cos<(a052 aga) ktw)] +0(0),
dy 1 ay 1 ay
Yoy (=2 M\ .
dt Y <a05 ag) s [(5%0 5@3) } (5.98)

v\ V2 1 aq ™
(%) oo ((am - )1 -3)] oo

As the right hand sides of (5.97) and (5.98) involve both steady terms and
unsteady terms with high frequency oscillations, the particle paths are ex-
pected to operate on two distinct time scales. Therefore, we introduce the
new slow and fast time variables ¢ and 7', which are given by

Kkt 1
f=— and T= <— - ﬂ) kt. (5.99)

ao 52(10 5(10
Since the right hand side of (5.98) is independent of x, we begin by solving
this equation. As the variables x(¢,T) and y(¢,T) are dependent upon both
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the time scales, it follows that

d k 0 1 aq 0
— =tk — s | 5 5.100
& adt " (52% 5a3) T (5.100)
By rewriting (5.98) in terms of the new time scales, we obtain
k 1 ¢ 1 ¢
—6%yr + k (— - %) yr = —kyo (— - %) cosT (5.101)
Qo Qo ag ag ay
vk\ ' T
() fier-5)] 0w
Qo 4

The dominant balance in equation (5.101) is yr = —dy cos T', which gives the

solution
y([,T)=YE, where E=¢ 57 (5.102)

Substituting (5.102) into equation (5.101), gives

2EXY B (i - 5—‘?) Y = (5.103)
Qo Qo ag
e (Y e - (r-5)|+0()
o 0 cos 1 )

We pose the asymptotic expansion Y (£, T') = Yy (£, T)+0Y:(, T)+62Ya(E, T)+
O(8%), giving at leading and first order, Yy = Yy(f) and Y1 = Y;(f). At second

order, we find

Yor = —Yoi — (%)W [fo(f/o) — cos (T - 2)} . (5.104)

Integrating this with respect to T', we obtain

Yy = — [%mL (%)m fo(?o)} T+ (%)m sin (7 = %) + Y2 (D), (5.105)

where Y5 (t) is a function of integration. Following the standard method for
multiple scales, to avoid the growth of the secular term in (5.105), we require

Voo = — (20) " fo3). (5.106)

We now consider the particle path for z, whose equation is given by (5.97).

Rewriting (5.97) in terms of the two time scales given in (5.100), we find

ﬁéz T+ <i - 5;“21) r = kxd <i — 5—621) cosT + 52£xf6 (5.107)
Qo ao  ag ap  ag ao
~ /
+ 6%¢C (%) [hl — BY cos (T + ¢)} +0(5%).
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Similar to equation (5.101), the dominant balance in equation (5.107) is

xr = —dxcosT, giving
2([,T)=XE, where E=¢™"7, (5.108)
Upon substituting (5.108) into (5.107), we find

52Eﬁ)?{+ E (i — @) Xp =8 {E X fI(EY) (5.109)

+ E(%) i (h1(E)A/) - 500 cos (T'+ Gb)) } +0 (53) :

Equation (5.109) suggests the asymptotic expansion X (£,T) = Xo(Z,T) +
60X, (6, T) 4+ *Xo(¢,T) + O(6%). Tt follows that at leading and first order,
Xo = Xo(f) and X; = X; () and at second order

Xor = —Xoz + Xof5(Yo) +¢ (k—;]) (hl(Yo) — B cos (T + ¢)> . (5.110)
Upon integrating (5.110) with respect to 7', we obtain

-~~~ v\ -
xzzzlﬂ%fh%%a@+<(%?) mE)|T (a1

1/2 N
%C%)/fm@+@+&®

where X, (%) is a function of integration. To avoid the secular term in (5.111)

growing, we let

3\ 1/2
KXot = Xof)(Yo) + € <Va°) hy (Vo). (5.112)

Equations (5.106) and (5.112) are solved numerically, using a second order
Runge-Kutta method. Different particle paths are found, by choosing differ-
ent initial conditions, Xo(f = 0) and Yy(f = 0). The functions fy and hy have
been solved numerically earlier in this chapter for each value of ay > 0.6017.
To obtain values for fo(Yy) and hy(Yp) at a given value of Yy, a linear interpo-
lation is performed. Once the solutions )N(O(f) and %(f) have been computed,
they are combined with the oscillatory component £ = e~ 257 to give the
leading order particle paths © = E-1X, and y = EY,. In figure 5.8(a),
we illustrate Xo(f) and Yy(f) for ag = 1 and 8 = 1.2. We notice that the
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Figure 5.8: (a) The streamlines that correspond to the streamlines of steady
components in the steady streaming layer for ap = 1 and B} = 1.2 with
E: v =k = 1. (b) The particle paths for the same parameters where the
oscillation amplitude is € = 100.

streamlines in this figure correspond to the streamlines of steady components
in the steady streaming layer seen in figure 5.6(a). Figure 5.8(b) illustrates
the particle paths for the same parameters with 6 = 0.01, which corresponds
to an oscillation amplitude of 2 = 100. Therefore, the small oscillations
simply cause the particle paths to oscillate about their mean position.

To conclude this section, we consider the effect of the oblique components
on the wall shear stress, which is defined as S = puy|y,—o = by, |y—o. Using
the streamfunction (5.59), which is written in terms of the scaled variables
introduced in section 5.2, we find the wall shear stress is given by

k3 1/2 - R
eu(®) Sl s

n=0
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Expressing (5.113) in terms of the Stokes layer variables, we obtain

3\ 2 a
S = ol <—3> i |:QQ\IIPO££ +Q <\I’p1§§ — —10\I’p0§§> + O(l)} (5114)

vag 2a

+E[Q\IIOO£ + Vo, +0 (Qfl)]

£=0

Upon substituting the Stokes layer components in (5.114) and evaluating at

¢ = 0, we find the wall shear stress is given by

+0 <21W+Sm (27+%) <1—%)) +0(1)

QﬁOOSin(TJFQZ)—g)+C—%ﬁoosin<¢+g>

02 cos (r n %) (5.115)

+uC

—(1—%) sin(2¢+%+¢> —ﬁé‘/fsin(TJr%)

— 37 cos (T + % 1 qb) + O(Q‘l)] .

Taking a time-average over one time period, we obtain the mean wall shear

S = u(f—;g)l/zx{%+0(1)} (5.116)

+/LZ [c — %BOO sin (gb + Z) +0 (Q_l)} ,

stress

where S is the average value and c is a constant which is given in (5.55).
In both the wall shear stress and the mean wall shear stress, the dominant
contribution comes from the orthogonal component of the flow. We note that
although the component proportional to 3¢ in (5.116) is only dependent upon
the time-dependent horizontal velocity component, this term arises due to the
coupling of the orthogonal and oblique components. Additionally, the mean
wall shear stress term cZ describes the interaction between the orthogonal
stagnation-point flow and the shear flow, as ¢ is dependent upon orthogonal
parameters. In the absence of an orthogonal flow, i.e. @/Z)\p = 0, equation

(5.10) becomes

Vo, — bogs = —0P:, (5.117)
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~

with the boundary conditions @ZO(O, 7) =0 and @50(777 T) — 1 — B9 cos(T+ @)

as 1) — oo, where 8} = 0. Upon solving equation (5.117), we find

Ql/Qﬁ
V2

The wall shear stress in this case is given by S = ME , which is the wall shear

bo =7+ 0?59 |:e_Ql/2ﬁ/\/§ cos (7‘ — + ¢) — cos (1 + (]5)] . (5.118)

stress imposed by the shear flow.

In the current analysis, we have assumed that the horizontal velocity
component B\ ~ O(1), which corresponds to B being of the same order of
magnitude as the mean component in a(7) = 1 + Acos7. However, other
magnitudes of B could have been chosen. A weaker time-dependent horizontal
velocity could be considered by setting 3 and 3 equal to zero. Also, we
could have chosen a stronger horizontal velocity and considered the problem
where B is of the same order of magnitude as the oscillatory component in

a(r), i.e. 3~ O(A). This corresponds to choosing

G o= Q6+ B9 cos(t + ¢)) (5.119)
+Q2 (B + 87 cos(T + ¢)) + O(Q71/?).

Using this new expansion for 5 , an asymptotic analysis similar to the one
used previously is performed. We find the Stokes layer expansion is now given
by ¢¥o ~ O(Q%?), where the leading and first order equations are the same
as those given in (5.23) and (5.24). Additionally, the steady streaming layer
Yo ~ O(92°?). We note that both of these layers are  times that of those
discussed above. In solving the oblique equation in the steady streaming

layer, the equation for h; is given by
hi + fohy = foha = a3y’ (5.120)
with boundary conditions
hi(0) =0, K (0)=c, h ——B) as (— oo (5.121)

We note this is not the same as the equation for h; given in (5.46), as the

primary constant C' = lim¢ . (ao¢ — fo) is unaffected by the choice of 3
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and appears at higher order. The analytic solution to equation (5.120) is

obtained in a similar way to that in section 5.4.2 and has the solution

_ _%( / 3fo”(<))
hy = ” f°(§)+4fé’(0) , (5.122)
where
B 27 3a?
o = o (5O s ) (5.123)

This solution is of interest as the constant ¢ appears in the mean wall shear
stress.

To obtain the wall shear stress, we substitute the new oblique Stokes layer
expansion into (5.113) and find

k3 1/2 ) a
e (E) g+ (- o) s0tt] o120

+Z[QQ\IJOO§ +QWo,, +O(1)]

£=0
Substituting the Stokes layer solutions into (5.124) and upon taking a time-
average over one time period, we obtain the mean wall shear stress
1/2

S = u (f—;g) / x% + 0 [c - %ﬁ(‘f sin (¢ + 2)} +0(1). (5.125)
Therefore, we find that increasing the magnitude of the horizontal velocity
component B, causes the oblique component to appear at the same order as
the primary component in both the wall shear stress and the mean wall shear
stress, unlike that when § ~ O(1).

The point at which the mean shear stress is equal to zero, is given by

2y = —2V2( {c — %ﬁoo sin ((;5 - %)} : (5.126)

The point of zero mean wall shear stress x,, can be shifted either upstream
or downstream depending on the values of ag, 8}, 5§ and ¢. In figure 5.9,
we illustrate the constant c¢/3)! against ag. For all values of ag, c¢/3} is
always negative. Therefore, in the case when 3§ = 0, the point of zero mean
wall shear stress is positive and as 3} increases, z, is shifted in a positive

direction.



5.6 Summary 147

Figure 5.9: The constant 5, given in (5.123), plotted against ag. The lower
0
branch of the curve asymptotes to ag = 0.75.

5.6 Summary

This chapter is a continuation of chapter 4, but now focuses on a large fre-
quency asymptotic analysis of a two-dimensional unsteady stagnation-point
flow, travelling obliquely towards a fixed wall. As in chapter 4, the flow
in the far-field is made up of an unsteady orthogonal stagnation-point flow,
including both a mean component and an oscillatory component, which is
dependent upon a relative amplitude parameter A, and a dimensionless fre-
quency parameter o. Added to this is a shear flow with constant vorticity
and a time-dependent horizontal velocity component.

As initially discussed in chapter 2, for a given dimensionless frequency,
a critical relative amplitude occurs, above which the orthogonal and oblique
solutions break down at a finite-time singularity. We have performed an
asymptotic analysis for large parameters close to the critical value, through
which we found that the problem exhibits a double-layer structure. At the
wall, a Stokes layer is present and due to a mean velocity persisting to the top
of the Stokes layer, a steady streaming layer is introduced to match between
the Stokes layer and the far-field flow.

Over a single time period, the flow structure is particularly complicated as
a multi-layered structure appears twice. In the first time interval, a horizontal
streamline appears at the Stokes layer, creating a double-layered structure.

This streamline then moves up through the steady streaming layer, until it
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disappears to infinity and the flow returns to a single-layered structure. At
the second time interval, like that of the first, a horizontal streamline emerges
from the Stokes layer and moves upwards into the steady streaming layer.
A second horizontal streamline moves down from infinity, creating a triple-
layered structure. At some time in the interval, the two horizontal streamlines
collide and the streamline pattern returns to a single-layered structure.

When the structure of the streamlines is single-layered, the horizontal
velocity component simply shifts the instantaneous streamlines in the far-
field and the attachment point with the wall to the right. When the flow
has a double or triple-layered structure, the location of the stagnation point
on the horizontal streamline emerges from either positive or negative infinity.
As the streamline moves up to infinity, the stagnation point tends to negative
infinity regardless of the horizontal velocity.

When considering the mean wall shear stress, for which we have chosen
a horizontal velocity of the same order of magnitude as that of the mean
component of the unsteady orthogonal stagnation-point flow, the contribu-
tion for the oblique components appear at a higher order than the orthogonal
components. However, choosing the horizontal velocity component to be the
same order of magnitude as the large oscillatory component of the orthogonal
flow, we find that the oblique component appears at the same order as the
orthogonal component in the mean wall shear stress. In this case, the loca-
tion of zero mean wall shear stress can be moved upstream or downstream
by altering the parameters.

The particle paths within the steady streaming layer were considered
using the method of multiple scales. It was observed that the particle paths
have small amplitude rapid oscillations, which simply cause the particles to
oscillate about their mean position.

A brief summary of the work within this chapter can be found in Tooke

et al. (2010).



Chapter 6

Conclusion

6.1 Concluding remarks

This thesis has focused on orthogonal and oblique stagnation-point flows. In
each case, the problem comprised an orthogonal equation with a secondary
equation, which is coupled with the orthogonal equation and describes the
additional components of the problem.

In chapter 2, an unsteady orthogonal stagnation-point flow travelling to-
wards an oscillating wall was considered. This problem was previously ad-
dressed by Hazel and Pedley (1998) in reference to a simplified model of
an arterial end-to-side anastomosis, which is illustrated in figure 1.1. Hazel
and Pedley considered the problem for a large dimensionless frequency pa-
rameter, but chose a relative amplitude parameter to prevent flow reversal
occurring. The orthogonal problem was addressed by many authors, includ-
ing Merchant and Davis (1989). They showed that for a large dimensionless
frequency, there exists a critical relative amplitude, above which solutions
do not exist. Blyth and Hall (2003) extended this analysis and found that
solutions above the critical amplitude break down at a finite-time singular-
ity. Therefore, we performed an asymptotic analysis for a large dimensionless
frequency close to the critical amplitude, which allows for flow reversal. The
solutions exhibit a double layer structure, where the thickness of the layers

is dependent upon the relative sizes of the mean and oscillatory components

149
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of the far-field orthogonal flow. In the case where the oscillatory component
is dominant in the far-field, the solution exhibits a Stokes layer at the wall
with a steady streaming layer matching between the Stokes layer and the
far-field flow. The wall shear stress was calculated and we found that for a
large dimensionless frequency parameter, the oscillatory components of the
flow do not effect the mean wall shear stress. This agreed with the results
obtained by Hazel and Pedley (1998). Therefore, even though the asymptotic
structure has changed, the effect of the oscillatory components on the mean
wall shear stress has not.

In chapter 2, we followed Hazel and Pedley (1998) by considering an oscil-
lating stagnation-point flow travelling towards an oscillating wall. However,
in the subsequent chapters, stagnation-point flows were discussed travelling
towards fixed walls. By a simple change of frame of reference, it is easy to
switch between frames, with only the pressure term being affected.

Chapter 3 considered a two-dimensional stagnation-point flow where the
streamlines approach a fixed wall obliquely. The problem is comprised of
three separate flows, a Hiemenz stagnation-point flow, a shear flow with
constant vorticity and a uniform stream. As the streamlines approach the
wall, the viscosity caused the dividing streamline to turn in towards the wall
and meet the wall at an angle closer to the normal. We ascertained that
increasing the uniform stream in the far-field, simply shifted the streamlines
and the attachment point of the dividing streamline with the wall to the
right, without affecting the structure of the streamlines.

As an extension to chapter 3, chapter 4 considered an oblique unsteady
two-dimensional stagnation-point flow. Like that in chapter 2, in the far-field,
there is a orthogonal stagnation-point flow, which is dependent upon a dimen-
sionless frequency and a relative amplitude parameter. Superimposed onto
this is a shear flow with constant vorticity and a time-dependent horizontal
velocity component. The problem can be described as two coupled equations
and solved numerically using a Crank-Nicolson finite-difference technique.

Over a single time period, the flow structure is dependent upon the
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relative amplitude parameter. For a fixed dimensionless frequency, when
A < Ay, where Ay < Ay < 1, the streamline pattern is at its simplest. The
dividing streamline approaches the wall obliquely and its gradient oscillates
between two bounding values. When A; < A < Ay, a horizontal streamline
appears from the wall, creating a double-layered structure in the flow for a
short time interval. The layer at the wall is separated from the remaining
flow by a horizontal streamline through a stagnation point. As the horizontal
streamline returns to the wall, the flow returns to a single-layered flow. When
Ay < A < 1, a horizontal streamline appears at the wall and moves into the
fluid. As the first horizontal streamline is moving back towards the wall,
a second horizontal streamline appears from the wall. This creates a triple-
layered structure in the flow for a short time, before the two streamlines meet
and the flow returns to a single-layered structure. When A > 1, there are
two time intervals over the period in which the horizontal streamline appear
within the flow. At the first time interval, a horizontal streamline appears in
the flow before moving up and disappearing at infinity. In the second case,
the horizontal streamline appears from the wall and after a short time, a sec-
ond horizontal streamline moves down from infinity creating a triple-layered
structure. When these two horizontal streamlines collide, the flow returns to
a single-layered flow.

When A > 1, there exists a critical relative amplitude parameter Ag(o),
such that when A > A, the orthogonal and oblique solutions breakdown at
a finite-time singularity. In the large frequency limit, which was discussed
in chapter 5, an exact expression was found for the relationship between A,
and o.

The particle paths within the steady streaming layer were obtained using
the method of multiple scales. It was found that the particle paths follow the
streamlines that correspond to the steady components of the steady stream-
ing layer solution, with the particles performing small rapid oscillations about
their mean position.

If the magnitude of the horizontal velocity component is the same order
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as the oscillatory component of the unsteady orthogonal stagnation-point
flow, the location of the zero mean wall shear stress can be shifted upstream

or downstream dependent upon the parameters chosen.

6.2 Further work

As discussed in the introduction, the stagnation-point flows considered in this
thesis can have applications to blood flow, specifically as simplified models
of an end-to-side anastomosis, which is a surgical graft performed to bypass
a blocked artery, for example. To allow for more accurate models to be
calculated, we discuss some of those simplifications.

Hazel and Pedley (1998), who considered this application provide physi-
ological values for all the required parameters. In particular, they calculate
the dimensionless amplitude parameter to be A = 0.6, which does not allow
for any flow reversal to occur. Due to the pulsatile nature of the heart, there
are two alternating cycles called systole and diastole. During systole, the
blood is pumped from the heart, whereas during diastole, the period when
the heart is resting, the flow is either stationary or reversed in some arteries,
such as the external carotid or the femoral artery (Ku (1997)). Hazel and
Pedley (1998) have previously discussed the three-dimensional orthogonal
stagnation-point flow, but like that of the two-dimensional case, as discussed
above, they chose a relative amplitude parameter that does not allow for flow
reversal. Hence, an obvious extension is to consider the orthogonal problem
in the three dimensional case, for a relative amplitude parameter, which will
allow flow reversal to occur.

Hazel and Pedley (1998) found the frequency parameter o ~ 0.62. Heil
and Hazel (2003) investigated an oscillating two-dimensional stagnation-
point flow similar to that of Hazel and Pedley. Their application was to
consider how the flow close to a stagnation point in an end-to-side anasto-
mosis behaves and they focussed on the parameter range 0.04 < o < 0.4.

Therefore, the analysis performed in chapter 4, where an unsteady oblique
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stagnation-point flow was considered, can be applied to an end-to-side anas-
tomosis for these parameters. Also, if physiological parameters can be ob-
tained for the oblique problem, the optimum angle at which the streamlines
approach the wall, which may improve the graft’s longevity could be inves-
tigated.

Ojha et al. (1990), are among many who have found that there is a link
between low wall shear stress and intimal hyperplasia, which is the thick-
ening of the inner layer of an artery. This thickening of the arterial wall
causes changes in the geometry of the vessel wall, which can no longer be
considered flat. Therefore, a more physical assumption would be to consider
the wall with either a bump or dip on its surface. In addition, the effect
of surface curvature could take be taken into account like that of Sanchez-
Sanz and Blyth (2007) who considered an unsteady axisymmetric orthogonal
stagnation-point flow approaching a cylinder.

In this thesis, only two-dimensional problems have been considered. Both
Riley (1993) and Weidman and Putkaradze (2003) investigated axisymmetric
problems. Riley considered the flow travelling towards a cylinder orthogo-
nally, while Weidman and Putkaradze considered a steady axisymmetric flow
travelling obliquely towards a cylinder. Therefore, the oblique analysis per-
formed in chapters 4 and 5 can be extended to consider an axisymmetric
oblique unsteady stagnation-point flow travelling towards an cylinder.

Even though blood is non-Newtonian, Perktold et al. (1991) stated that
in large arteries there was very little difference in the flow characteristics
between non-Newtonian and Newtonian fluids. However, Gijsen et al. (1999)
later suggested that the effect of shear thinning and the viscoelasticity of
the blood is important in the carotid artery. Therefore, as an extension, the
orthogonal and oblique problems could be considered in a non-Newtonian
fluid, where comparisons could be drawn with the analysis and results within

this thesis.



Appendix A

Asymptotic solution of Fj(()
about ag ~ 0.75

In this appendix, we obtain the asymptotic solution of ﬁo(f ) close to ag ~
0.75. This equation was initially derived in chapter 2 and from the numerical
results obtained in section 2.6.3, it can be seen that the velocity profiles
exhibit a region of flow reversal close to E: 0 as ag — 0.75. By seeking the
asymptotic solution close to ag ~ 0.75, we confirm this behaviour.

The equation for ﬁo, which was previously derived in equation (2.132), is
given by

]

~ ~ ~ A~ 1 —
Ry~ BB+ TFy = 1220, (A1)

with boundary conditions

Fy(0) =0, ﬁg(()):%, F(@Q) =0 as — . (A.2)

Similar to the analysis used when obtaining the primary asymptotic solu-

tion in section 2.4.4, we introduce the parameter \ = ﬁ and write A = 1+¢

where 0 < € < 1. We note that A = 1 is equivalent to ag = 0.75.

We begin by considering the solution close to Z: 0. Unlike the primary

1/2

problem, where ]/%’ (0) ~ €/ as € — 0, the numerical results for the sub-

1

sidiary problem, obtained in section 2.6.3, show that ﬁo”(O) ~e ase— 0.

This relationship is illustrated in figure A.1. This relation, along with the
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boundary conditions at E: 0, suggests the scaling 130 = §?G with variable
Y = E/ §2. The parameter § = (2¢)'/? was found when obtaining the primary

asymptotic solution in section 2.4.4.

1.3

1.2

11r-

Al

~ 09
logFy/(0) osf
0.7

0.6
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-29 -28 -27 -26 -25 -24 -23 -22 -21 -2 -

loge

Figure A.1: The numerical results for the subsidiary problem illustrating a
linear relationship between F{J(0) and e.

~

We recall the primary asymptotic solution close to ( = 0, which as pre-
viously stated in equation (2.75), is given by
~ sin(y 0 )
fo = =22 2 BGin(n) - xeostn) (A3

+ cos(x) /OX In(tan (y/2))dy — sin(x) In(tan(x/2))| + - - -,

where y = 56. In the limit Y — 0, we can approximate equation (A.3) as

- 4
fo:—52Y—5TY+---. (A.4)

Upon substituting (A.4) and the subsidiary scalings into equation (A.1),

we obtain
G, + 0 <GY —Ya,, — 1) +0(6% = 0. (A.5)

Equation (A.5) suggests we expand G = G + O(6*) and at leading order,
we find Gy, = 0. Integrating this three times and applying the boundary
conditions at Y = 0, we find Go(Y) = ATYQ + ¥, where A is an arbitrary

constant. Therefore,

- 2
Ly = % (AY?4Y). (A.6)

We shall denote this the region la solution, which is within region 1 of the
primary solution. Figure A.3 illustrates the structure of the layers in both

the primary and subsidiary problems.
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As (A.6) does not satisfy the boundary condition at infinity, F'— 0 as
E — 00, we introduce another region, within the region 1 primary solution.
Similar to the results found in figure A.1, it appears that ﬁO(Z) ~ €2 as
EH 0o. Therefore, we let Fy = s H(x) with x = 8¢, where this variable
was initially introduced when obtaining the primary asymptotic solution in
region 1. Upon substituting the primary solution (A.3) and the subsidiary
scalings into the subsidiary equation (A.1), we find

1 +Cosx)

52HXXX + cos(x)H,y, — sin(x)Hyy, = 53 ( 5

(A7)

This expansion suggests we write H = Hy + O(§?) and we solve the leading
order equation, cos(x)Ho, — sin(x)Hy,, = 0, to obtain

Hy(x) = Ccos(x) + D. (A.8)

This is denoted the region 1b solution. Therefore, the primary region 1
solution spans the subsidiary regions la and 1b. The constants C' and D are
found via matching to the region la solution. We let y — 0 and approximate
(A.8) as the power series, Hy(x) ~ C+ D — CTXQ + O(x*). In the matching

region, the region la and 1b leading order solutions are given by

5 A x
Foo= S5t o (A.9)
~ 1 C?

From these, we can see that A = —C' and C' + D = 0. Therefore, the region

1b solution is given by

Fy = é(1 — cos(x)). (A.11)
In section 2.4.4, it was found that the leading order primary solution in
region 1, fo’ = —cos X, is unable to satisfy the far-field boundary condition
]?6 — 1 as x — oo. Due to the subsidiary equation being dependent upon
the primary equation, the solution (A.11) also breaks down when xy = T,
ie. E: 7/6. As with the primary problem, to allow for matching with the

far-field boundary condition 1/7\6 — 0 as y — oo, another region is introduced,
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centred on Z = 7/9, which we denote region 2. We recall, for the primary
problem, we write f, = Z+ N(Z) with |N'(Z)| < 1 and Z = Z—%. Similarly,
the far-field boundary condition 1/7’\6 — 0 as Z—> 00, along with the region 1b
expansion 1/7\0 = Hy /&%, suggests we write

Fy

= 5 (B+a(2)), (A.12)

where |d/(Z)| < 1 and B is an arbitrary constant, which is found through
matching to the region 1b solution. Substituting these scalings into the sub-

sidiary equation (A.1), gives

N/

a"—(1+N)d + (Z+ N)d" = 5 (A.13)

After neglecting the quadratic terms in a and N, we obtain
a" —ad + Zd" = —N7I. (A.14)
Upon choosing a(Z) = —@, we retrieve equation (2.77), where the function

N(Z) has a solution in the form of a parabolic cylinder function, N'(Z) =

—%6_Z2/4D,3<Z). To find the constant B, we match this solution to the

region 1b solution (A.11) about x = m. We find B = 2A and the region 2

solution is given by
24 T(3) /5—% i s
Fo="—"+ e ? D _3(Z)dZ. A.15
A TAY N ) (A 19)

The constant A is obtained numerically using the relation 52F\6' (0) = A. As
0 — 0, A— —04. In figure A.2 the region la, 1b and 2 leading order asymp-
totic solutions are plotted for e = 0.001 alongside the numerical solution for
the same parameter showing excellent agreement. Therefore, we have ob-
tained the analytic solution for Fy(¢) close to agp = 0.75 and confirmed the
numerical results and the behaviour of the velocity profiles as ag — 0.75 in

section 2.6.3.
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Figure A.2: The region 1, 2 and 3 asymptotic solutions, represented by the
solid line, the dotted lines and the dashed lines for ¢ = 0.001, where § =
(2¢)'/2, alongside the numerical solution for the same parameter, represented
by the crosses.

Region 2 Region 2
Region 1b
Region1 g ,,,,,,,,,,,,,,,,
Region 1la
Primary structure Subsidiary structure

Figure A.3: An illustration of the primary and subsidiary regions.



Appendix B

Change of frame of reference

The problem discussed in chapter 4, described a two-dimensional unsteady
stagnation-point flow travelling obliquely towards a fixed wall. In this ap-
pendix, we show by a simple change of frame of reference that this problem
is equivalent to a two-dimensional unsteady stagnation-point flow, travelling
towards an oscillating wall.

The streamfunction in the far-field, initially stated in equation (5.1), is

given by
1~y 5, ~/V\/2
¥ = al)kzy + 5Cy° — B(1)¢ <E) Y- (B.1)
Using the properties u = 9, and v = —1),, the velocity components are
expressed as
~ o~ ~sUN1/2
u = ake+Cy— B0 (7) (B.2)
v = —a(t)ky, (B.3)

with boundary conditions at the wall given by
u=0, v=0 on y=0, (B.4)

where the stagnation point is located at x = Bf(l//k;)l/z/(ak:).
To consider this problem approaching an oscillating wall, similar to the

change of frame of reference in chapter 2, we write

S AN N 1/2 D\~ (v)1/2
T=x— LQ)C (%) and u=u— a <7ﬁ(t)ga§f) ) ; (B.5)

ak dt
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with no change to the vertical length and velocity scale iy and ¥ = v. There-

fore, the far-field velocity boundary conditions can be rewritten as

i = a(t)kT+(§- B,

5= —a(bk7,
with boundary conditions on the wall
u=-B, v=0 on y=0,

where

p=2(3)" g (B).

(B.6)
(B.7)

(B.9)

Having performed this change of frame of reference, the problem given by

(B.6) - (B.8) now describes a two-dimensional stagnation-point flow, travel-

ling obliquely towards an oscillating wall. Therefore, problems of this nature

can either be solved approaching an oscillating or a fixed wall.
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