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Abstract

The aim of this thesis is to consider an unsteady two-dimensional oblique

stagnation-point flow travelling towards a wall. The far-field comprises an

unsteady orthogonal stagnation-point flow, consisting of a mean component

and an oscillatory component characterised by a relative amplitude and a

dimensionless frequency parameter. Superimposed onto this, is a shear flow

with constant vorticity and a time-dependent uniform stream. A similarity

solution is sought, which is an exact solution of the Navier-Stokes equations.

The flow is discussed in two limiting cases. At high frequency, the asymp-

totic structure is dependent upon the relative sizes of the mean and oscillatory

components. When the mean flow is large, with a relatively small oscillatory

component, the flow can be described with a Stokes layer at the wall match-

ing an outer layer. However, when the oscillatory component dominates, a

steady streaming layer is introduced to match to the far-field, which is con-

siderably larger than that of the outer layer in the previous case. It is shown

numerically in this case that the flow structure described breaks down when

the relative amplitude of the oscillatory component is increased above a cer-

tain threshold, dependent upon the frequency. In the low frequency limit, at

leading order, the problem is quasi-steady.

Two special cases are considered, the first where the vorticity is zero in

the far-field and the streamlines approach the wall orthogonally. In this case

the flow is chosen to approach an oscillating wall. The second case is when

the flow is steady.

In certain time intervals over a single period, the flow structure becomes

multi-layered. The behaviour of the flow within these intervals is investi-

gated. Additionally, in the high frequency case, the streamline pattern is

discussed in both the Stokes and steady streaming layers and the particle

paths are analysed in the steady streaming layer.
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Chapter 1

Introduction

Stagnation-point flows occur when a fluid approaches the impermeable bound-

ary of a body, for example, on an aircraft wing or on an oscillating cylinder

immersed in fluid. These flows have a stagnation-point present in the fluid,

about which the streamlines locally resemble those about a saddle point.

Another example of particular interest, is blood flow at a junction within an

artery. In this thesis, we will be exploring stagnation points, focussing on

two-dimensional flows, in which the flow approaches a body either obliquely

or orthogonally.

An exact solution of the Navier-Stokes equations, which describes the

two-dimensional stagnation-point flow towards a fixed plane wall, was first

examined by Hiemenz (1911). As the flow approaches a rigid wall, it divides

in two and creates a stagnation point at the origin. Due to the no-slip

condition not being satisfied at the wall, a similarity solution is introduced,

which enables the solution to be obtained everywhere in the fluid, matching

the velocity on the wall to that of the far-field.

Riley (1965) and Stuart (1966) were among many to consider a time de-

pendent stagnation-point flow travelling orthogonally towards a fixed wall.

The far-field streamfunction was considered to be purely oscillatory and de-

pendent upon a relative amplitude parameter and a dimensionless frequency

parameter. Similar to that of the Hiemenz problem, the far-field flow does

not satisfy the no-slip condition on the wall, so it is necessary to seek a

1
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solution in the form of a similarity solution close to the wall. In the large

frequency limit, the solution exhibits a double layer structure. A Stokes layer

is present close to the wall, where the unsteady time-dependent components

are balanced by the viscous terms in the Navier-Stokes equations. Due to a

mean velocity component persisting to the top of this layer, the Stokes layer

is unable to match to the far-field flow. To allow for the necessary matching

to occur, the introduction of a steady streaming layer between the Stokes

layer and far-field flow is required. The thickness of the steady streaming

layer is on the order of the dimensionless frequency parameter, times the

thickness of the Stokes layer.

Riley and Vasantha (1989) considered this problem, where the free stream

in the far-field is purely oscillatory and solved it numerically to find that

for any value of the dimensionless frequency parameter, the equations break

down at a finite-time singularity. They attributed this to a horizontal velocity

moving towards the origin, causing the fluid to erupt from the boundary layer,

which in turn causes the flow equations to break down.

The inclusion of a mean flow component at infinity was considered by Ped-

ley (1972) and Grosch and Salwen (1982), where the oscillatory component

is small compared to the mean component and the frequency of the oscilla-

tions is large. As above, there exists a Stokes layer nearest the wall, which

matches to a layer whose thickness is on the order of the square root of the

dimensionless frequency parameter, times the thickness of the Stokes layer.

The size of this layer is considerably smaller than the problem discussed by

Riley (1965) discussed above, where a mean flow is absent at infinity.

Merchant and Davis (1989) summarised the work of Pedley (1972) and

Grosch and Salwen (1982), extending it to consider the case where the di-

mensionless frequency parameter is large and the oscillatory component is

much larger than the mean component. If the relative amplitude parame-

ter is large enough, the flow will be allowed to reverse over some portion of

the time period. This case is comparable to the problem discussed by Riley

(1965), where the far-field flow is purely oscillatory, thus, the flow structure
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is similar. Merchant and Davis investigated the case where the two outer

layers coincided and found that for a fixed dimensionless frequency, there

exists a critical amplitude, above which, no solutions occur.

Blyth and Hall (2003) considered this problem for a large dimensionless

frequency and when the relative amplitude parameter is at the critical value.

They concluded that for a fixed frequency, when the critical amplitude is

exceeded, the solutions break down at a finite-time singularity. Additionally,

they examined the behaviour of the solutions close to the break-down time.

Blyth and Hall also discussed this problem in the small frequency limit and

found that the leading order solution is quasi-steady. When the relative

amplitude parameter is large enough, solutions again break down at a finite-

time singularity.

All of the studies mentioned above have been stagnation-point flows trav-

elling towards fixed walls. Next, we consider problems in which stagnation-

point flows approach oscillatory walls. By simply changing the frame of

reference, this problem can be considered equivalent to the case where the

far-field flow oscillates horizontally and travels towards a fixed wall, where

only the pressure term is affected.

Rott (1956) examined the case where the plate performed periodic oscil-

lations in its own plane, with a steady orthogonal flow far from the plate.

As before, a similarity solution is introduced comprising two components:

a steady orthogonal function and an oscillatory function. The problem was

discussed in terms of the two limiting cases of small and large frequency.

Glauert (1956) also considered this problem using series methods for solving

the large and small frequency cases. An application of this is a cylinder which

performs horizontal oscillations in a fluid. Watson (1959) generalised Rott’s

and Glauert’s work by allowing the periodic oscillations to be replaced by an

arbitrary horizontal motion. Watson also discussed the problem when the

fluid is instantly started from rest.

Hazel and Pedley (1998), considered an unsteady orthogonal oscillating

two-dimensional stagnation-point flow approaching an oscillating wall. In
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comparison to the earlier work on oscillatory walls described above, they con-

sidered the problem in a frame of reference where the stagnation point is fixed

at the origin. In the far-field, the flow is made up of an unsteady stagnation-

point flow containing both a mean and an oscillatory component, which has

been discussed above. Added to this is a periodic horizontal oscillation, with

the same dimensionless frequency as the orthogonal stagnation-point flow.

This flow approaches a wall, which oscillates with the same dimensionless

frequency as the far-field. They considered the problem where the mean

component is dominant over the oscillatory component and in the large fre-

quency limit, the solution exhibited a double layer structure at the wall which

was previously addressed by Pedley (1972), among others. Hazel and Pedley

considered this problem, when the relative amplitude parameter was chosen

such that the flow cannot reverse. The wall shear stress was obtained and

the mean wall shear stress was discussed for all the limiting cases. For the

large frequency case, the oscillating wall was found to have no effect on the

mean wall shear stress and is only reliant upon the orthogonal flow. They

attributed this to the viscous forces within the Stokes layer counteracting

any effect from the oscillating wall.

This configuration can represent a model of the reattachment flow at an

end-to-side anastomosis. These are often used to bypass a blockage within

an artery, where the graft artery bypasses the blockage and rejoins the main

artery beyond the blockage. At the point of reattachment, the end of the

graft artery joins to the side of the main artery. This creates a highly complex

three-dimensional stagnation-point flow opposite the point of reattachment,

which is illustrated in figure 1.1

A full study of the flow in the region of the graft is found in the review

article by Loth et al. (2008), with further references included and here we

provide a brief overview. There are three different formations of anastomoses,

end-to-side, end-to-end and side-to-side. Within the end-to-side configura-

tion, there are two different types of grafts. The first is an arterial bypass

graft, which is a bypass of a blockage in an artery; in this case the flow is
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Figure 1.1: An illustration of an arterial end-to-side anastomosis.

laminar. The second is an arteriovenous graft, which is the join between an

artery and a vein with the flow being turbulent. In this thesis we consider

only the first configuration.

The flow in the region of the arterial end-to-side anastomosis is of interest

as the local haemodynamics are significant to the longevity of the graft. A

common cause of graft failure is intimal hyperplasia, which is the thickening

of the tunica intima, the inner layer of the artery. Intimal hyperplasia occurs

at three areas: the heel, toe and floor of the graft. At the heal and toe,

thickening is attributed to the healing process around the graft join. However,

the thickening of the artery on the floor opposite the graft is associated with

low wall shear stress. Hence, in our analysis presented in later chapters,

attention is drawn to the effect of the flow parameters on the wall shear

stress.

In order to model this problem as an arterial end-to-side anastomosis,

certain assumptions were made by Hazel and Pedley (1998). Near the stag-

nation point, the wall is considered to be flat and the blood is modelled as

a Newtonian fluid. Also, the pulsatile nature of the blood is taken to be

sinusoidal and the authors consider this problem in both two and three di-

mensions. However, in the subsequent sections we focus our attention purely

on the two-dimensional problem.

Having discussed the two-dimensional steady and unsteady orthogonal

stagnation-point flows, we turn our attention to considering the case where
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the dividing streamline meets the wall obliquely. This was first discussed

by Stuart (1959), where the flow comprises a steady orthogonal stagnation-

point flow, a shear flow with constant vorticity and a uniform stream. Like

that of the orthogonal problems, the flow can be represented in terms of a

streamfunction. As this streamfunction in the far-field does not match to the

velocity on the wall, a similarity solution is established, comprising a Hiemenz

function and an integral of the shear flow function. Later, Tamada (1979)

discussed this problem with reference to jets impinging a wall obliquely. Dor-

repaal (1986) also considered the oblique stagnation-point flow with a differ-

ent uniform stream at infinity, but he still reported comparable results. The

behaviour of the dividing streamline close to the wall was also investigated

by considering the series expansions of the Hiemenz and shear functions in

the normal variable. It was observed that, due to the viscous forces close to

the wall, the dividing streamline bends and meets the wall at an angle closer

to the normal.

Much later, Drazin and Riley (2006) generalised the previous work, to

include a free parameter at infinity, which corresponds to the strength of

the uniform stream in the far-field. Upon increasing the free parameter, the

shear velocity profile exhibits a region of flow reversal close to the wall. They

concluded their analysis with a discussion of the gradient of the dividing

streamline close to the wall, with similar conclusions to that of Dorrepaal

(1986). In particular, it was shown that the ratio of the dividing streamline

gradient close to the wall, to that of the gradient in the far-field is independent

of the vorticity. Tooke and Blyth (2008) extended the work of Drazin and

Riley by considering what effect the uniform stream has on the streamlines.

Having summarised the previous work in this field, we outline the anal-

ysis which will follow in the subsequent chapters. We begin our analysis

on stagnation-point flows in chapter 2, by considering the two-dimensional

stagnation-point flow travelling towards an oscillating wall, as previously dis-

cussed by Hazel and Pedley (1998) above. They considered solutions for a
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large dimensionless frequency parameter and chose a relative amplitude pa-

rameter which does not allow for flow reversal. We extend their analysis by

allowing for flow reversal, while still considering the large frequency limit.

By expressing the problem in the form of a similarity solution, it can be

represented by two coupled equations. The first represents the unsteady or-

thogonal flow travelling towards a flat wall and the seconds represents the

oscillatory components of the flow. For solely the orthogonal problem, the

solution breaks down when, for a fixed dimensionless frequency, the critical

relative amplitude is exceeded. Therefore, we consider the same parameter

range and solve the oscillatory problem. Initially, we consider the orthogonal

problem, which exhibits a double layer structure at the wall, with a Stokes

layer close to the wall matching to a steady streaming layer, which in turn

matches to the far-field flow. As the oscillatory equation is coupled with

that of the orthogonal, it has the same structure. Although the orthogonal

equation has been solved previously, a detailed account is included as the

methods and results will form a basis for the subsequent chapters. The oscil-

latory equation is then solved using similar techniques. The wall shear stress

is obtained and the effect of the oscillatory components on the mean wall

shear stress is discussed for large frequency.

In chapter 3, a steady oblique stagnation-point flow is considered, where

the problem comprises an orthogonal stagnation-point flow, an oblique shear

flow with constant vorticity and a uniform stream. Previous analyses of

oblique stagnation-point flow at a plane wall are discussed and unified with

reference to a free parameter, which can be thought of as altering the strength

of the uniform stream in the far-field. As the strength of the uniform stream

is increased, the oblique component exhibits a region of flow reversal close

to the wall. We consider the effect of increasing the strength of the uniform

stream on the streamline pattern. We note that these results were given in

Tooke and Blyth (2008).

In the latter half of the chapter, a general form of the oblique stagnation-

point flow is obtained, where the flow consists of a Hiemenz flow and an



8

oblique component. A solution is sought, using a typical boundary layer

approach. In the far-field, an inviscid solution is obtained, which satisfies

the vorticity-transport equation. Close to the wall, viscosity is no longer

negligible and a similarity solution is used. Matching these together, it is

observed that no matching region is necessary and the solutions in the far-

field and close to the wall match directly together.

Having explored the steady oblique stagnation-point flow, in chapter 4

we discuss the effect of the time-dependent terms. We choose the orthog-

onal stagnation-point flow component to be time-dependent, with a mean

and an oscillatory component dependent upon a relative amplitude and a

dimensionless frequency parameter, approaching a fixed wall. To consider an

unsteady oblique flow, we add to this a shear flow with constant vorticity

and time-dependent horizontal velocity component. We note that the shear

flow is unable to be time-dependent, as the vorticity-transport equation is

not satisfied. A similarity solution is obtained, which is simply a time depen-

dent version of one previously stated by Stuart (1959) in chapter 3. Using

this approach, two coupled equations (denoted the orthogonal and oblique

equations) are obtained and solved using a Crank-Nicolson finite-difference

technique. For certain values of the relative amplitude and the dimension-

less frequency parameter, a horizontal streamline appears in the flow over

some period of the cycle, creating a double-layered flow. In some cases, two

horizontal streamlines are present and the flow becomes triple-layered. The

instantaneous streamlines are considered numerically with specific attention

given to those time intervals in which the flow is multi-layered.

As discussed in chapter 2, for a fixed value of the frequency, there exists

a critical amplitude, above which solutions break down at a finite-time sin-

gularity. The behaviour of both the orthogonal equation, previously solved

by Blyth and Hall (2003) and the oblique equation close to the finite-time

singularity are discussed. Additionally, the orthogonal and oblique equations

are considered in the small frequency limit.

Chapter 5 continues directly on from chapter 4, by performing a large
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frequency analysis in the parameter range discussed in chapter 2. In this

parameter range, the orthogonal problem exhibits a double layer structure

at the wall. As the oblique equation is coupled with the orthogonal equation,

the structure of the oblique solution is expected to be the same and the results

from the orthogonal problem are utilised. The instantaneous streamlines are

considered in both the Stokes and steady streaming layers, with comparisons

being drawn with the analysis of chapter 4, where the flow structure becomes

multi-layered in some time intervals over the cycle. A particle path analysis is

performed in the steady streaming layer using the method of multiple scales.

Concluding the chapter, is a discussion on the mean wall shear stress and

the magnitude of the time-dependent horizontal velocity component.

Finally, chapter 6 presents the main conclusions from each chapter.



Chapter 2

Unsteady orthogonal

stagnation-point flow

2.1 Introduction

In this chapter, a two-dimensional unsteady stagnation-point flow travelling

towards an oscillating wall is discussed. This problem has previously been

considered by Hazel and Pedley (1998), as a simplied model of an end-to-side

anastomosis located at a bypass graft in an artery, which is seen in figure

1.1. The problem in the far-field comprises of an unsteady Hiemenz flow

containing both a mean component and an oscillatory component dependent

upon a relative amplitude parameter and a dimensionless frequency param-

eter. Added to this is a horizontal oscillatory velocity. This flow approaches

a wall that is oscillating with the same frequency as that of the horizontal

velocity in the far-field. The problem is discussed in the frame of reference

where the stagnation-point is located at the origin. As the no-slip condi-

tion is not satisfied on the wall, a similarity solution is introduced. This is

made up of two components: an unsteady orthogonal stagnation-point flow

component and an oscillatory component, which is an exact solution of the

Navier-Stokes equations. Using this similarity solution, the problem can be

described in terms of two coupled equations, an orthogonal stagnation-point

equation and an oscillatory equation.

10
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Hazel and Pedley (1998) considered this problem for large frequency, but

restricted the amplitude of oscillations to prevent flow reversal occurring. As

discussed in the introduction, the orthogonal equation has been addressed

previously. Merchant and Davis (1989) found that for large frequency, there

exists a critical amplitude dependent upon the frequency, above which solu-

tions do not exist. Therefore, in this chapter, we will seek solutions to the

problem described by Hazel and Pedley, but consider solutions close to the

critical amplitude found by Merchant and Davis, for large frequency.

We begin by considering the orthogonal equation, which exhibits a double

layer structure with a Stokes layer at the wall and a steady streaming layer

matching the Stokes layer to the far-field flow. As the oscillatory equation

is coupled with the orthogonal equation, we expect there to be a similar

structure present. One of the motivations of Hazel and Pedley’s analysis was

to consider what effect the oscillatory components have on the mean wall

shear stress. We will also consider the wall shear stress and consider what

effect the oscillatory components have on the mean wall shear stress when the

relative amplitude parameter is larger and allows for flow reversal to occur.

2.2 Problem formulation

In this section, a two-dimensional unsteady stagnation-point flow with a

horizontal velocity in the far-field travelling towards an oscillating wall is de-

scribed. We begin by mentioning the well-documented Hiemenz stagnation-

point flow travelling towards a flat fixed plate at y = 0, which can be found,

for example, in Batchelor (2000). The flow in the far-field can be expressed

in terms of the velocity components u = kx and v = −ky, where x and y are

the coordinates parallel and normal to the wall. The velocity components

(u, v) are in the (x, y) directions respectively and k is the strength of the

flow. As the flow is two-dimensional and incompressible, it can be expressed

in terms of the streamfunction ψ = kxy, where u = ψy and v = −ψx.
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Pedley (1972) and Grosch and Salwen (1982) were some of those to ad-

dress an unsteady version of the Hiemenz flow. The streamfunction is ex-

pressed as ψ = a(t)kxy, where a(t) consists of a mean component and an

oscillatory component. Riley and Vasantha (1989) ascertained that when

a(t) is purely oscillatory, solutions break down at a finite-time singularity for

any given frequency. Hazel and Pedley (1998) extended this analysis by con-

sidering an oscillating unsteady stagnation-point flow, which travels towards

an oscillating wall.

We begin by describing the oscillating unsteady stagnation-point flow

travelling towards a fixed wall, as this is the approach we take in latter

chapters. However, we show that by a simple change of frame of reference,

this problem is equivalent to the flow travelling towards an oscillating wall,

as discussed by Hazel and Pedley (1998). We then proceed by solving the

problem in this frame.

The velocity components are expressed as

u∗(x∗, y∗, t∗) = a(t)k

(
x∗ +

US sin(ωt∗ − φ)

ω

)
, (2.1)

v∗(x∗, y∗, t∗) = −a(t)ky∗, (2.2)

as y∗ → ∞, where k is the strength of the flow at infinity, ω is the frequency

of the oscillations, US is the speed of the wall and φ is an arbitrary phase

difference. At the wall, the velocity components are given by

u∗ = 0, v∗ = 0 on y∗ = 0, (2.3)

where the stagnation point is located at x∗ = −US sin(ωt∗ − φ)/ω. The

two-dimensional Navier-Stokes equations in this frame are given by

u∗t∗ + u∗u∗x∗ + v∗u∗y∗ = −p
∗
x∗

ρ
+ ν(u∗x∗x∗ + u∗y∗y∗), (2.4)

v∗t∗ + u∗v∗x∗ + v∗v∗y∗ = −
p∗y∗

ρ
+ ν(v∗x∗x∗ + v∗y∗y∗), (2.5)

u∗x∗ + v∗y∗ = 0, (2.6)

with the parameters, kinematic viscosity: ν, pressure: p and density: ρ. To

perform this change of frame of reference to one where the wall is oscillating,
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we write x = x∗+US sin(ωt∗−φ)/ω and u = u∗+US cos(ωt∗−φ) with t∗ = t.

We note there is no change to the vertical length and velocity scale, y∗ = y

and v∗ = v. Therefore, we write

∂

∂x∗
=

∂

∂x
,

∂

∂y∗
=

∂

∂y
,

∂

∂t∗
=

∂

∂t
+ US cos(ωt∗ − φ)

∂

∂x
, (2.7)

and (2.4) is rewritten as

ut + uux + vuy = −px
ρ

+ ν(uxx + uyy), (2.8)

where p = p∗ − xρωUs sin(ωt − φ). We note that the y-momentum equa-

tion and the continuity equation are unaffected by this change of frame of

reference. The velocity profiles are now given by

u = a(t)kx+ US cos(ωt− φ), (2.9)

v = −a(t)ky, (2.10)

as y → ∞ and the velocity on the wall is given by

u = US cos(ωt− φ), v = 0 on y = 0. (2.11)

Therefore, these velocity components now describe an unsteady stagnation-

point flow with a horizontal velocity component in the far-field travelling

towards an oscillating wall and is illustrated in figure 2.1. We note that

the wall is oscillating with the same frequency, ω, as that of the horizontal

component in far-field and the time-dependent function a(t) = 1 + ∆ cosωt,

where ∆ is the amplitude and ω is the frequency of the oscillations at infinity.

As the velocity components (2.9) - (2.11) are two-dimensional and incom-

pressible, they can be expressed in terms of the streamfunction ψ(x, y, t), to

give

ψ = k(1 + ∆ cos τ)xy + US cos(ωt− φ)y as y → ∞, (2.12)

with the boundary conditions on the wall

ψy(x, y, t) = Us cos(ωt− φ), ψx(x, y, t) = 0 on y = 0. (2.13)
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Figure 2.1: An illustration of the unsteady oscillating stagnation-point flow
approaching an oscillating wall, where the stagnation point is represented by
the solid dot and is fixed at the origin.

The Navier-Stokes equations are also rewritten in terms of the streamfunc-

tion, to give

ψyt + ψyψxy − ψxψyy = −px
ρ

+ ν(ψxxy + ψyyy), (2.14)

−ψxt − ψyψxx + ψxψxy = −py
ρ

− ν(ψxxx + ψxyy), (2.15)

where u = ψy and v = −ψx, with the incompressibility condition automati-

cally satisfied.

As the far-field streamfunction (2.12) does not satisfy the no-slip condi-

tion, a similarity solution is sought close to the wall, which matches the flow

at the wall to that of the far-field. Due to the form of (2.12), the stream-

function is expressed as

ψ(x, y, t) = (νk)1/2xψP (η, τ) + US

(ν
k

)1/2

ψS(η, τ), (2.16)

with η = (k/ν)1/2 y and τ = ωt. The first term in (2.16) represents the

orthogonal stagnation-point flow and is denoted ψP (η, τ), the primary flow.

The second term corresponds to the oscillating wall, denoted ψS(η, τ), the

subsidiary flow. Matching the far-field streamfunction (2.12) to the similarity

solution (2.16), we find ψP η(η, τ) → 1 + ∆ cos τ and ψSη(η, τ) → cos(τ − φ)

as η → ∞. Therefore, upon substituting streamfunction (2.16) into the x-

momentum equation (2.14) and matching to the far-field, to eliminate the
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Figure 2.2: (a) The asymptotic structure valid for high frequency, σ, and the
oscillation amplitude, ∆ < 1. (b) The asymptotic structure valid for high
frequency, σ, and large oscillation amplitude, ∆.

pressure term px, we obtain

σψP ητ +
(
ψP η

)2 − ψPψP ηη = −σ∆ sin τ + (1 + ∆ cos τ)2 + ψP ηηη, (2.17)

σψSητ + ψSηψP η − ψPψSηη = (2.18)

− σ sin(τ − φ) + cos(τ − φ)(1 + ∆ cos τ) + ψSηηη ,

with boundary conditions for the primary flow

ψP (0, τ) = 0, ψP η(0, τ) = 0 on η = 0, (2.19)

ψP η(η, τ) → 1 + ∆ cos τ as η → ∞, (2.20)

and subsidiary flow boundary conditions

ψS(0, τ) = 0, ψSη(0, τ) = cos(τ − φ) on η = 0, (2.21)

ψSη(η, τ) → cos(τ − φ) as η → ∞. (2.22)

Here σ = ω/k is the Strouhal number, a dimensionless frequency parame-

ter, which is a measure of the time-dependent terms. It should be emphasised

that (2.17) and (2.18) are an exact reduction of the Navier Stokes equations

and it has not been assumed that the Reynolds number is large.
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Following the earlier work of Pedley (1972) and Grosch and Salwen (1982),

Merchant and Davis (1989) considered solutions to the primary equation

(2.17) in the large frequency limit and the mean component of a(τ) is much

larger than the oscillatory component. In this case, the asymptotic structure

consists of a Stokes layer of thickness O(σ−1/2) at the wall, which occurs in

oscillatory problems and is a balance between the unsteady and the viscous

terms. This layer matches to an outer layer of O(1) thickness, as illustrated

in figure 2.3(a). Consequently, the thickness of the outer layer is of the

order σ1/2 multiplied by that of the Stokes layer. Work by Riley (1965)

and Stuart (1966) showed that in the absence of a mean flow at infinity,

the asymptotic structure requires a Stokes layer at the wall, of thickness

O(σ−1/2) and a steady streaming layer of thickness O(σ1/2), as illustrated in

figure 2.3(b). In this case, the thickness of the steady streaming layer is of

the order σ, multiplied by that of the Stokes layer. The implication for the

present work is that the asymptotic structure required to describe the flow

at a high frequency changes, when the amplitude of the oscillatory flow at

infinity also becomes large. Merchant and Davis (1989) and subsequently

Blyth and Hall (2003) considered the latter limit, where both the frequency

and the oscillation amplitude were large. The former authors found a critical

amplitude dependent upon the frequency, above which solutions do not exist.

This amplitude arises when the thickness of the outer layer coincides with the

thickness of the steady streaming layer. Blyth and Hall showed that when

the oscillation amplitude exceeds the critical threshold

∆ ∼ O(σ1/2), (2.23)

the primary solution terminates at a finite-time singularity. The behaviour

of the primary solution close to the finite-time singularity is discussed in

chapter 5. We expand the relation (2.23) as

∆ = A0σ
1/2 + A1 +O(σ−1/2), (2.24)

where the constant A0 corresponds to the boundary between solutions exist-

ing and breaking down. The second term in the expansion is the correction
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term and only has relevance when solutions are discussed close to the bound-

ary. Through solving the primary problem, both A0 and A1 are obtained

and compared later with the results of Blyth and Hall (2003).

Hazel and Pedley (1998) considered solutions for large σ, but confined

their attention to the case where the amplitude was restricted, to prevent flow

reversal, i.e. ∆ < 1. To proceed with our investigation, we use the relation

(2.23) and consider the solutions to the primary and subsidiary problems in

the asymptotic limit σ → ∞. The amplitude parameter is also large, which

allows the flow to reverse. As the subsidiary equation is coupled with that

of the primary equation, it is expected that the subsidiary equation will also

break down when this relation is exceeded.

2.3 Large frequency analysis

In this section, we consider the asymptotic solution to equations (2.17) and

(2.18) for large frequency and in the parameter range ∆ ∼ O(σ1/2). For

convenience, the scalings ψS = ∆−1/2ψ̂S, ψP = ∆1/2ψ̂P and η̂ = ∆1/2η are

introduced so that the amplitude ∆ is no longer coupled with the oscillatory

component of a(τ). Furthermore, we introduce new parameters, ǫ̂ = 1/∆

and Ω = σ/∆. Subsequently, the rescaled equations become

Ωψ̂P
bητ +

(
ψ̂P

bη

)2

− ψ̂P ψ̂P
bηbη = −Ω sin τ + (ǫ̂+ cos τ)2 + ψ̂P

bηbηbη, (2.25)

Ωψ̂S
bητ + ψ̂S

bηψ̂P bη − ψ̂P ψ̂S
bηbη = (2.26)

− Ω sin(τ − φ) + (cos τ + ǫ̂ ) cos(τ − φ) + ψ̂S
bηbηbη,

with primary boundary conditions

ψ̂P (0, τ) = 0, ψ̂P
bη(0, τ) = 0 on η̂ = 0, (2.27)

ψ̂P
bη(η̂, τ) → cos τ + ǫ̂ as η̂ → ∞, (2.28)

and subsidiary boundary conditions

ψ̂S(0, τ) = 0, ψ̂S
bη(0, τ) = cos(τ − φ) on η̂ = 0, (2.29)

ψ̂S
bη(η̂, τ) → cos(τ − φ) as η̂ → ∞. (2.30)
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The relation (2.23) is rewritten in terms of the new parameters ǫ̂ and Ω

to obtain an equivalent relation ǫ̂ ∼ O(Ω−1) and we express this as the

asymptotic expansion

ǫ̂ = a0Ω
−1 + a1Ω

−2 +O(Ω−3). (2.31)

The constants a0 and a1 can be rewritten in terms of the constants A0 and A1,

given in (2.23) and are expressed as a0 = 1
A2

0

and a1 = −2A1a
2
0. The constants

a0 and a1 are obtained numerically when solving the primary equation (2.25).

We note that (2.25) and its corresponding boundary conditions are inde-

pendent of ψ̂S , while (2.26) and its boundary conditions involve a coupling

of ψ̂S and ψ̂P . Consequently, we first need to seek a solution to ψ̂P , by du-

plicating the work of Blyth and Hall (2003), before we obtain a solution for

ψ̂S , in which results and methods from the primary problem are used.

2.4 The primary flow

To solve the primary equation (2.25) in the limit Ω → ∞ with ǫ̂ ∼ O(Ω−1),

we seek solutions in the Stokes and the steady streaming layers. We begin

by solving the primary equation in the Stokes layer.

2.4.1 The Stokes layer

Initially, we seek a solution to the primary equation (2.25) close to the wall.

The dominating terms in equation (2.25) are Ωψ̂P
bητ ∼ ψ̂P

bηbηbη, which suggests

the scaling η̂ ∼ Ω−1/2. Therefore, a Stokes layer is present of thickness

O(Ω−1/2). Subsequently, we introduce the variable ξ = Ω1/2η̂, where ξ =

O(1) and equation (2.25) becomes

Ω3/2ψ̂P ξτ + Ω

((
ψ̂P ξ

)2

− ψ̂P ψ̂P ξξ

)
= (2.32)

− Ω sin τ + (cos τ + a0Ω
−1)2 + Ω3/2ψ̂P ξξξ +O(Ω−2),

with boundary conditions on the wall

ψ̂P (0, τ) = 0, ψ̂P ξ(0, τ) = 0 on ξ = 0, (2.33)
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and the matching condition to the far-field

ψ̂P ξ → Ω−1/2 cos τ + a0Ω
−3/2 + a1Ω

−5/2 +O(Ω−7/2) as ξ → ∞. (2.34)

To solve (2.32), we pose the asymptotic expansion

ψ̂P = Ω−1/2ΨP0
(ξ, τ) + Ω−3/2ΨP1

(ξ, τ) +O(Ω−2). (2.35)

Substituting the expansion (2.35) into (2.32), gives at leading and first order

ΨP0ξτ − ΨP0ξξξ = − sin τ, (2.36)

ΨP1ξτ − ΨP1ξξξ = cos2 τ + ΨP0
ΨP0ξξ −

(
ΨP0ξ

)2
, (2.37)

with the leading and first order boundary conditions on the wall

ΨP0
(0, τ) = 0, ΨP0ξ(0, τ) = 0, ΨP1

(0, τ) = 0, ΨP1ξ(0, τ) = 0. (2.38)

Upon integrating (2.36) and (2.37), we find the leading and first order solu-

tions in the Stokes layer are

ΨP0
(ξ, τ) = ξ cos τ − cos

(
τ − π

4

)
+ e−ξ/

√
2 cos

(
τ − ξ√

2
− π

4

)
, (2.39)

ΨP1
(ξ, τ) =

13

4
√

2
− 3

4
ξ − 1

2
√

2
cos
(
2τ +

π

4

)
(2.40)

− 1

4
√

2
e−ξ

√
2 +

1

2
√

2
e−ξ cos

(
ξ − 2τ − π

4

)

+
ξ

2
e−ξ/

√
2

[
sin

(
ξ√
2
− 2τ

)
− sin

(
ξ√
2

)]

−e−ξ/
√

2

[
3
√

2

2
cos

(
ξ√
2

)
+
√

2 sin

(
ξ√
2

)]
.

We note that the term proportional to e−ξ in the first order solution (2.40)

arises due to the non-linear terms in equation (2.37). In solving equations

(2.36) and (2.37), we have used the boundary conditions on the wall and the

fact that the functions ΨP0
(ξ, τ) and ΨP1

(ξ, τ) are periodic and bounded. In

the limit ξ → ∞,

ψ̂P ξ → Ω−1/2 cos τ − 3

4
Ω−3/2 +O(Ω−5/2) as ξ → ∞. (2.41)

Matching the solution (2.41) to the boundary condition (2.34), it can be

seen that the leading order solution matches to the far-field boundary condi-

tion. However, the first order solution (2.40) does not satisfy the condition
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ΨP1ξ(ξ, τ) → a0 as ξ → ∞. Instead, ΨP1ξ(ξ, τ) → −3/4 as ξ → ∞. This

term can be interpreted as a horizontal velocity at the top of the Stokes

layer moving towards the origin, which arises due to the non-linear terms in

equation (2.37). To enable this velocity to match with the far-field flow, it is

necessary to introduce a steady streaming layer to match between the Stokes

layer and the far-field.

2.4.2 The steady streaming layer

In this section, we solve equation (2.25) in the steady streaming layer. To en-

able this layer to match with the Stokes layer, we introduce the new variable

ζ = Ω−1/2η̂, where ζ = O(1) and the steady streaming layer has thickness

O(Ω1/2). Rewriting equation (2.25) in terms of ζ , we obtain

Ω1/2ψ̂P ζτ + Ω−1

((
ψ̂P ζ

)2

− ψ̂P ψ̂P ζζ

)
= (2.42)

− Ω sin τ + (cos τ + a0Ω
−1)2 + Ω−3/2ψ̂P ζζζ +O(Ω−2),

with far-field boundary condition

ψ̂P ζ → Ω1/2 cos τ + a0Ω
−1/2 + a1Ω

−3/2 +O(Ω−5/2) as ζ → ∞. (2.43)

To determine the form of the asymptotic expansion, we rewrite the Stokes

layer solution as ξ → ∞, in terms of the steady streaming layer variable ζ .

The dominate terms are given by ψ̂P ∼ Ω1/2ζ cos τ −Ω−1/2 cos
(
τ − π

4

)
+ · · · .

This suggests the expansion

ψ̂P = Ω1/2ζ cos τ + Ω−1/2
(
− cos

(
τ − π

4

)
+GP (ζ, τ)

)
, (2.44)

with GP (ζ, τ) given by

GP (ζ, τ) =
(
ΦP0

(ζ, τ) + f0(ζ)
)

+ Ω−1
(
ΦP1

(ζ, τ) + f1(ζ)
)

+ (2.45)

Ω−2
(
ΦP2

(ζ, τ) + f2(ζ)
)

+O(Ω−3).

The functions fi(ζ) are the mean components and ΦPi
(ζ, τ) are the oscillatory

components with a zero time-average, for i ≥ 0. The last component of

(2.45) is included as ΦP2
(ζ, τ) is required to obtain the equation for f0(ζ).
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By substituting the steady streaming layer expansions, (2.44) and (2.45),

into the equation (2.42), the leading and first order equations are

ΦP0ζτ = 0, (2.46)

ΦP1ζτ = 2a0 cos τ + (ΦP0ζζ + f 0ζζ)ζ cos τ − 2(ΦP0ζ + f 0ζ) cos τ. (2.47)

To proceed, we integrate equation (2.46) once with respect to τ and take a

time-average to obtain the function of integration. Secondly, we integrate

with respect to ζ to give ΦP0
= g0(τ). Repeating this process for (2.47),

we find ΦP1
= (2a0ζ + f ′

0ζ − 3f0) sin τ + g1(τ), where the prime denotes

differentiation with respect to ζ . The functions g0(τ) and g1(τ), are found

via matching to the Stokes layer solution. In the matching region, between

the Stokes and the steady streaming layer, the Stokes layer solution is written

in terms of the steady streaming layer variable ζ , to give

ψ̂P ∼ Ω1/2ζ cos τ − Ω−1/2

[
cos
(
τ − π

4

)
+

3ζ

4

]
(2.48)

+Ω−3/2

[
13

4
√

2
− 1

2
√

2
cos
(
2τ +

π

4

)]
+O(Ω−5/2).

From this, it can be seen that g0(τ) = 0 and g1(τ) = − 1
2
√

2
cos
(
2τ + π

4

)
. To

obtain the steady stream layer solution, we substitute the values for ΦP0
(ζ, τ)

and ΦP1
(ζ, τ) into (2.44) and (2.45) and find

ψ̂P = Ω1/2ζ cos τ + Ω−1/2

[
f0(ζ) − cos

(
τ − π

4

)]
(2.49)

+Ω−3/2

[(
ζf ′

0(ζ) − 3f0(ζ)
)

sin τ + 2a0ζ sin τ

− 1

2
√

2
cos
(
2τ +

π

4

)
+ f1(ζ)

]
+O(Ω−5/2).

To obtain the equation for f0(ζ), we collect terms of size O(Ω−2) in (2.42) to

obtain

ΨP2ζτ = −f ′2
0 − 2 cos τ

[
(2a0 + ζf ′′

0 − 2f ′
0) sin τ + f ′

1

]
(2.50)

+ζ cos τ
[
(ζf ′′′

0 − f ′′
0 ) sin τ + f ′′

1

]
− cos

(
τ − π

4

)
f ′′

0

+f0f
′′
0 + a2

0 + 2a1 cos τ + f ′′′
0 .

Averaging over a single time period, we find

f ′′′
0 − f ′2

0 + f0f
′′
0 + a2

0 = 0. (2.51)
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To find the boundary condition on ζ = 0, we match the Stokes layer solution

(2.48) to the steady streaming layer solution (2.49), to obtain f0(ζ) → −3ζ/4

as ζ → 0. The boundary condition as ζ → ∞ is found by matching the

steady streaming layer solution to the far-field boundary condition (2.43).

Therefore, the boundary conditions for equation (2.51) are given by

f0(0) = 0, f ′
0(0) = −3

4
, f ′

0(ζ) → a0 as ζ → ∞. (2.52)

Similarly, to calculate the equation for f1(ζ), we collect terms of size

O(Ω−3) in (2.42) and find

ΨP3ζτ = −2 cos τ(ΨP2ζ + f ′
2) − 2f ′

0

[
(2a0 + ζf ′′

0 − 2f ′
0) sin τ + f ′

1

]
(2.53)

+ ζ cos τ(ΨP2ζζ + f ′′
2 ) − cos

(
τ − π

4

) [
(ζf ′′′

0 − f ′′
0 ) sin τ + f ′′

1

]

+f0f
′′
1 + f ′′

0

[
(2a0 + ζf ′

0 − 3f0) sin τ − 1

2
√

2
cos
(
2τ +

π

4

)
+ f1

]

+2a0a1 + ζf ′′′′
0 sin τ + f ′′′

1 .

Before taking a time-average of (2.53), we note that ΨP2ζ and ΨP2ζζ are

needed. For convenience, we note that the only term which gives a non-zero

time-average when the integral of (2.50) is multiplied by the terms in (2.53),

is ΨP2ζτ ∼ − cos(τ−π/4)f ′′
0 . Therefore, upon taking a time-average of (2.53),

we obtain

f ′′′
1 + f1f

′′
0 + f0f

′′
1 − 2f ′

0f
′
1 =

f ′′
0

2
√

2
− 2a0a1. (2.54)

We note that Merchant and Davis (1989) do not have the term on the right-

hand side proportional to f ′′
0 (ζ), but we agree with Blyth and Hall (2003)

that this term should be included. The boundary conditions for equation

(2.54) are obtained using a similar method to that described for equation

(2.51) and are given by

f1(0) =
13

4
√

2
, f ′

1(0) = 0, f ′
1(ζ) → a1 as ζ → ∞. (2.55)

In the next section, we solve equation (2.51) with boundary conditions

(2.52), which has previously been addressed by Merchant and Davis (1989)

and Blyth and Hall (2003). Additionally, these results are used to solve the

subsidiary equation (2.26).
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2.4.3 Numerical Scheme: Runge-Kutta technique

To solve the equation for f0(ζ), given in (2.51) with boundary conditions

(2.52), we use a fourth order Runge-Kutta technique. Both Merchant and

Davis (1989) and Blyth and Hall (2003), found that there are no solutions

when a0 < a0c, two solutions when a0c < a0 < 0.75 and a unique solution

when a0 > 0.75, where the critical value a0c = 0.602. We proceed by solving

equation (2.51), not only to verify these results, but also to use these to solve

the subsidiary equation, which is considered in section 2.6.3. We convert the

third order equation into three first order equations by letting f0 = y1 and it

follows that

y′1 = y2, (2.56)

y′2 = y3, (2.57)

y′3 = y2
2 − y1y3 − a2

0, (2.58)

with boundary conditions

y1(0) = 0, y2(0) = −3

4
, y2(∞) = a0. (2.59)

This system is solved using a fourth-order Runge-Kutta technique, which

can be found in Cheney and Kincaid (1994), for example. This is an it-

erative numerical method, evaluating the function at the initial point, two

trial midpoints and at the end of the interval, where a spatial step size of

h = 0.001 is chosen. Since (2.51) is a third order equation, the second order

boundary condition f ′′
0 (0) is needed. To calculate this, we use a shooting

technique by means of Newton’s method and iterate until the condition at

infinity, y2(∞) → a0 is satisfied.

Upon solving equation (2.51), we have been able to improve the critical

value calculated by Merchant and Davis (1989), to a0c = 0.6017. Upon

increasing a0, we find two solutions for 0.6017 < a0 < 0.7. In figure 2.3,

the velocity profiles are illustrated for a0 = 0.6017, 0.65, 0.7. However, using

this method and increasing the value of a0 beyond 0.7, one of the solutions

becomes more sensitive to the initial conditions and is difficult to compute.
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Figure 2.3: The primary leading order velocity profiles for the two solutions
of f ′

0(ζ) for a0 = 0.6017 (solid line), a0 = 0.65 (dotted lines) and a0 = 0.7
(dashed lines).

This breakdown corresponds to the velocity profiles in figure 2.3(b). We

note that Merchant and Davis (1989) also had this problem. Attempting to

rectify this, we increase the accuracy of the numerical method, however, this

becomes time-consuming and impractical.

To calculate the remaining solution of f0(ζ) for 0.7 < a0 < 0.75, we use a

finite-difference numerical technique, which was used by Riley and Weidman

(1989). Initially, an asymptotic solution at a0 ≈ 0.75 is obtained and used

as an approximation to begin the numerics.

2.4.4 Asymptotic solution of f0(ζ) about a0 ≈ 0.75

In the previous section, two solutions to equation (2.51) have only been found

for 0.6017 < a0 < 0.7, but as a0 increases, one of the solutions is unable to
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be calculated using the Runge-Kutta technique. To obtain the remaining

solution of f0(ζ) for 0.7 < a0 < 0.75, we follow Riley and Weidman (1989) by

seeking the solution using a finite-difference technique. Firstly, an asymptotic

solution to equation (2.51) is required for a0 ≈ 0.75, which is used as an initial

guess to begin the numerics. The numerics are then marched backwards from

a0 ≈ 0.75 to match with the Runge-Kutta results for a0 ≈ 0.7.

To begin, we rewrite the equation (2.51), using the scalings f0(ζ) =

a
1/2
0 f̂0(ζ̂) and ζ̂ = a

1/2
0 ζ , which expresses the equation in the form that was

discussed by Riley and Weidman (1989) and is given by

f̂ ′′′
0 − f̂ ′2

0 + f̂0f̂
′′
0 + 1 = 0, (2.60)

with boundary conditions

f̂0(0) = 0, f̂ ′
0(0) = −λ, f̂ ′

0(ζ̂) → 1 as ζ̂ → ∞, (2.61)

where λ = 3
4a0

. We note that equation (2.60) is a special case of the Falkner-

Skan equation. To begin, we duplicate the work of Riley and Weidman

(1989), not only to find an asymptotic solution to begin the numerics, but

also, the details of this asymptotic solution are required for the subsidiary

asymptotic solution, which is discussed in Appendix A.

To find an asymptotic solution to equation (2.60), we write λ = 1 + ǫ

where 0 < ǫ ≪ 1. When λ = 1, this corresponds to the case when a0 = 0.75

and as ǫ increases, a0 decreases. From our numerical results in section 2.4.3,

it appears that f̂ ′′
0 (0) ∼ ǫ1/2 as ǫ → 0, with this relationship illustrated in

figure 2.4. This relation, along with the boundary conditions at ζ̂ = 0, given

in (2.61), indicates the scaling f̂0 = 1
δ(ǫ)

f̄0(χ) with new variable χ = δζ̂, where

δ = aǫ1/2. The constant a is obtained when finding the first order asymptotic

solution. We write equation (2.60) in terms of the new variables, to obtain

a2ǫf̄ ′′′
0 − f̄ ′2

0 + f̄0f̄
′′
0 + 1 = 0, (2.62)

with boundary conditions

f̄0(0) = 0, f̄ ′
0(0) = −λ, on χ = 0, (2.63)
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Figure 2.4: Using the results from the Runge-Kutta method close to a0 ≈ 0.7,
a relationship develops between the shear component f̂ ′′

0 (0) and ǫ, given by

f̂ ′′
0 (0) ∼ ǫ1/2 as ǫ→ 0.

and the matching condition to the far-field is given by f̄ ′
0(χ) → 1 as χ→ ∞.

The form of equation (2.62) suggests that we pose the asymptotic expan-

sion f̄0(χ) = f̄A(χ)+ ǫf̄B(χ)+O(ǫ2). Substituting this expansion into (2.62),

we find at leading order

f̄A(χ)f̄ ′′
A(χ) − f̄ ′2

A (χ) + 1 = 0, (2.64)

with boundary conditions f̄A(0) = 0, f̄ ′
A(0) = −1. A solution to equation

(2.64) satisfying the boundary condition at ζ = 0, is given by

f̄A(χ) = − sin(χ). (2.65)

This is denoted the region 1 solution. As the far-field boundary condition

is not satisfied, we seek a solution to match between the region 1 solution

and the far-field condition. Before obtaining this solution, we find the first

order solution f̄B, to obtain the constant a, where δ = aǫ1/2. At this stage, it

is not known whether the first order solution is required to begin the finite-

difference numerics. This is discussed in section 2.4.5, where the leading

order approximation is plotted against the numerical solution for f0(ζ̂) to

assess its accuracy.

The first order asymptotic expansion of equation (2.62) is given by

f̄ ′′
B − 2 cot(χ)f̄ ′

B − f̄B = a cot(χ), (2.66)

with the boundary conditions on χ = 0 given by f̄B(0) = 0 and f̄ ′
B(0) = −1.

To find the homogeneous solution to (2.66), we notice that by using the
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simplification f̄B = sin(χ)u(χ), it reduces to

sin2 χu′′(χ) − 2u(χ) = 0. (2.67)

Upon solving equation (2.67), we obtain u(χ) = A cotχ + B(1 − χ cotχ).

Hence, the homogeneous solution to equation (2.66) is given by

f̄B(χ) = A cos(χ) +B(sin(χ) − χ cos(χ)), (2.68)

where A and B are constants. To seek the particular solution of (2.66), we

use the method of variation of parameters and write f̄B(χ) = u1(χ)v1(χ) +

u2(χ)v2(χ), where the functions u1(χ) and u2(χ) are the solutions from the

homogeneous case, u1(χ) = cosχ and u2(χ) = sin(χ) − χ cos(χ). The func-

tions v1(χ) and v2(χ) are obtained using this method and equation (2.66)

becomes

v′1 cos(χ) + v′2(sin(χ) − χ cos(χ)) = 0, (2.69)

−v′1 sin(χ) + v′2χ sin(χ) = a2 cot(χ). (2.70)

Solving these, we find

v1(χ) =
a2

2

[
1

sin(χ)
+

∫ χ

0

ln

(
tan

(
χ̂

2

))
dχ̂− χ cos(χ)

sin2(χ)
(2.71)

−χ ln

(
tan

(
χ̂

2

))]
,

v2(χ) = −a
2

2

[
cos(χ)

sin2 χ
+ ln

(
tan

(
χ̂

2

))]
. (2.72)

Therefore, combining the homogeneous and particular solution, the general

solution of f̄B(χ) is given by

f̄B(χ) = A cos(χ) +B(sin(χ) − χ cos(χ)) (2.73)

+
a2

2
cos(χ)

∫ χ

0

ln

(
tan

(
χ̂

2

))
dχ̂− a2

2
sin(χ) ln

(
tan

(
χ̂

2

))
.

Applying the boundary conditions f̄B(0) = 0 and f̄ ′
B(0) = −1, we find A = 0

and a2 = 2. However, the constant B is undetermined at this order. This

value for a implies that δ = (2ǫ)1/2 and the first order solution is given by

f̄B(χ) = B(sin(χ) − χ cos(χ)) + cos(χ)

∫ χ

0

ln

(
tan

(
χ̂

2

))
dχ̂ (2.74)

− sin(χ) ln

(
tan

(
χ̂

2

))
.
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Combining the leading order solution (2.65), with the first order solution

(2.74), we obtain the primary asymptotic solution

f̄0(χ) = −sin(χ)

δ
+
δ

2

[
B(sin(χ) − χ cos(χ)) (2.75)

+ cos(χ)

∫ χ

0

ln

(
tan

(
χ̂

2

))
dχ̂− sin(χ) ln

(
tan

(
χ̂

2

))]
+ · · · .

As discussed previously, this solution is unable to satisfy the far-field bound-

ary condition, f̄ ′
0(χ) → 1 as χ → ∞. It can be seen that the leading order

solution

f̂ ′
0 = − cos(χ), (2.76)

is only valid until χ0 = π i.e. ζ̂0 = π/δ. Consequently, another region is

required to match this solution to that of the far-field. Figure 2.5 illustrates

the leading order solution (2.76) for selected values of ǫ along with ζ̂0 for each

value of ǫ and it can be seen that as ǫ→ 0, ζ̂0 increases.
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 0  5  10  15  20  25

ζ̂

f̂ ′
0

Figure 2.5: The leading order asymptotic solution for ǫ→ 0, where ǫ = 0.05
(solid line), ǫ = 0.025 (dotted lines) and ǫ = 0.01 (dashed lines). The vertical

lines represent ζ̂0, the point at which the solution no longer satisfies the far-
field boundary condition.

We introduce a new region centered on ζ̂ = π/δ, which is denoted region 2.

Upon writing f̂0 = Z+N(Z) with new variable Z = ζ̂− π
δ
, where |N ′(ζ̂)| ≪ 1,

equation (2.60) is rewritten, after neglecting the quadratic terms, as

N ′′′(Z) + ZN ′′(Z) − 2N ′(Z) = 0. (2.77)

Writing N ′ = Ae−Z
2/4u(Z), equation (2.77) reduces to

u′′ − u
(Z2

4
+

5

2

)
= 0, (2.78)
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where A is a constant, which is found through matching to the region 1

solution. The solution for u(Z) has a solution in the form of a parabolic

cylinder function, which can be found in Abramowitz and Stegun (1964).

Therefore, the solution to (2.77) is given by

N ′(Z) = Ae−Z
2/4D−3(Z), (2.79)

where D−3(Z) is a parabolic cylinder function. Subsequently, the leading

order region 2 solution is given by

f̂ ′
0 = 1 + Ae−Z

2/4D−3(Z). (2.80)

To obtain the constant A, we match the region 1 and 2 solutions together. In

the matching region, the region 1 leading order solution (2.76) is expressed

as f̂ ′
0 = cos(δZ). In the limit δ → 0, this can be expanded as

f̂ ′
0 = 1 − δ2Z2

2
+O(Z4). (2.81)

For the region 2 solution, an expansion for D−3(Z) as Z → −∞ is required.

From Whittaker and Watson (1963), D−3(Z) ∼
√

2π
2
eZ

2/4Z2 as Z → −∞.

Substituting this expansion into the region 2 solution (2.80), gives

f̂ ′
0 = 1 + A

√
2π

2
Z2 +O(Z4). (2.82)

Upon matching the region 1 and region 2 solutions, (2.81) and (2.82), we find

A = − δ2√
2π

. Riley and Weidman (1989) obtained the same formula for A but

without the δ2 factor. We think the δ2 is necessary in order for the correct

matching to take place. Therefore, the region 2 leading order expansion is

given by

f̂ ′
0 = 1 − 2δ2

2
√

2π
e−Z

2/4D−3(Z). (2.83)

In figure 2.6, the leading order region 1 solution is plotted alongside the

region 2 solution for selected values of ǫ. It can be seen as ǫ→ 0, the region

1 and 2 solutions match together.

In this section, we have obtained the asymptotic solution of f0(ζ) close

to a0 ≈ 0.75. We proceed by using this as an initial guess to begin the finite-

difference numerics for a0 ≈ 0.75. The numerics are then marched backwards

in a0 to match with the Runge-Kutta results obtained in section 2.4.3.



2.4 The primary flow 30

−1

−0.5

 0

 0.5

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

δζ̂

f̂ ′
0

ǫ = 0.1

ǫ = 0.05

ǫ = 0.001

Figure 2.6: The leading order asymptotic solution to equation (2.60) for
selected values of ǫ. Due to the scalings on the axes, the region 1 solution is
unaffected by the choice of ǫ. As ǫ→ 0, the region 2 solution matches to the
region 1 solution.

2.4.5 Numerical scheme: Finite-Difference technique

To obtain the remaining solutions to f0(ζ) for 0.7 < a0 < 0.75, which were

unable to be calculated using the Runge-Kutta technique, we follow Riley and

Weidman (1989) and use a finite-difference technique. This method involves

an initial guess with an iteration. In section 2.4.4, an asymptotic solution

was obtained close to a0 ≈ 0.75, which is used in this section as an initial

guess to begin the finite-difference numerics.

By introducing a new variable g0 = f̂ ′
0, equation (2.60) is rewritten as the

second order equation

g′′0 + f̂0g
′
0 − g2

0 + 1 = 0. (2.84)

The non-linear term g2
0, is rewritten as g2

0 = 2g0g̃0 − g̃2
0, where g̃0 and g0 are

successive iterates. When g̃0 and g0 are within a small tolerance of each other,

this relation is satisfied and the solution for g0 is captured. We centrally

discretise equation (2.84) to give

1

h2

(
g0i+1

− 2g0i
+ g0i−1

)
+
f̂ 0i

2h

(
g0i+1

− g0i−1

)
− 2g0i−1

g̃0i
= −1 − g̃2

0i
, (2.85)

with boundary conditions

f̂ 01
= 0, g01

= −λ, g0N
= 1, (2.86)

where λ = 1 + ǫ with 0 < ǫ ≪ 1. The functions f̂0i
and g0i

are unknown

at each grid point ζ̂i = ih, where h is the spatial step size and i = 1...N .
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Equation (2.85) is rewritten in terms of the tridiagonal system

aig0i+1
+ big0i

+ cig0i−1
= di, (2.87)

where the constants ai . . . di are given by

ai =
1

h2
+
f̂ 0i

2h
, (2.88)

bi =
−2

h2
− 2g̃0i

, (2.89)

ci =
1

h2
− f̂ 0i

2h
, (2.90)

di = −1 − g̃2
0i
. (2.91)

We begin by solving equation (2.87), by using the leading order asymp-

totic solution obtained in section 2.4.4 as the initial guess to the solution.

This is expressed as

f̂0(ζ̂) =





− sin(δbζ)
δ

if 0 < δζ̂ < π

δζ̂ − π δζ̂ > π
(2.92)

g̃0(ζ̂) =





− cos(δζ̂) if 0 < δζ̂ < π

1 δζ̂ > π
(2.93)

where δ = (2ǫ)1/2 and we choose ǫ = 0.001. The spatial step size h = 0.001

to agree with that used in the Runge-Kutta method.

The numerics begin when λ ≈ 1 with (2.92) and (2.93) being used as the

initial guess to the system (2.87), which is solved using the Thomas algorithm,

which can be found in Hoffman (2001), for example. Once the solution for

g0 is computed, f̂0 can easily be calculated by using the trapezium rule. At

the next value of λ, the previous solution is used as the initial guess and the

iterative procedure is repeated.

The numerics continue until λ ≈ 1.0714 i.e. a0 ≈ 0.7, where λ = 3
4a0

and

the solutions match to those obtained using the Runge-Kutta technique. In

figure 2.7, we compare the velocity profiles from both numerical methods for

λ = 1.0714, showing excellent agreement.

We note that only the leading order asymptotic solution is required to

obtain an accurate solution for g0, with figure 2.8 showing excellent agreement

between the numerical and the asymptotic solutions for ǫ = 0.001.
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Figure 2.7: The velocity profile for the finite-difference method, represented
by the crosses and the Runge-Kutta method, represented by the solid line,
for λ = 1.0714 i.e. a0 = 0.7, showing excellent agreement.
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Figure 2.8: The asymptotic leading order solution for ǫ = 0.001, illustrated
by the crosses, showing excellent agreement with the numerical solution for
the same value of ǫ, represented by the solid line.

Combining the numerical results from the Runge-Kutta and the finite-

difference methods, we construct a curve of the possible values of a0, illus-

trated in figure 2.9. The results show that there is a unique solution when

λ < 1, two solutions when 1 < λ < 1.246 and no solutions when λ > 1.246.

These are equivalent to a unique solution when a0 > 0.75, two solutions when

0.6017 < a0 < 0.75 and no solutions when a0 < 0.6017.

The previous three sections have been dedicated to solving the equation

for f0(ζ), given in (2.51). In the next section, we consider the solution to

f1(ζ) whose equation is given by (2.54). This solution is not important in

the context of the steady streaming layer solution (2.49), but the constant

a1 is discussed.
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Figure 2.9: The possible values of λ for which solutions of equation (2.51)
exist, where λ = 3

4a0
. The solid line represents the numerics calculated from

the Runge-Kutta technique, while the dotted line corresponds to the results
from the finite difference scheme.

2.4.6 The first order correction, f1(ζ)

In this section, solutions are obtained for f1(ζ), whose equation is given by

(2.54). In solving this, we obtain the value of a1 which corresponds to the

critical value of a0c, i.e. the correction term in the boundary between the

solutions existing and breaking down at a finite-time singularity.

The first order equation, previously defined in equation (2.54), is given

by

f ′′′
1 + f1f

′′
0 + f0f

′′
1 − 2f ′

0f
′
1 =

f ′′
0

2
√

2
− 2a0a1, (2.94)

with boundary conditions

f1(0) =
13

4
√

2
, f ′

1(0) = 0, f ′
1(ζ) → a1 as ζ → ∞, (2.95)

where a0 > 0.6017. Equation (2.94) is solved using a fourth-order Runge-

Kutta technique, which is the same method that was used in solving the

equation for f0(ζ). In solving equation (2.94), the solutions to f0(ζ) at each

value of a0 are used. As f1(ζ) is reliant upon f0(ζ), we find for each value

of a1, there are no solutions when a0 < 0.6017, two solutions when 0.6017 <

a0 < 0.75 and a unique solution when a0 > 0.75. Figure 2.10 illustrates the

primary shear component f ′′
1 (0) against a0. At the critical value a0c = 0.6017,
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we find a unique value of f ′′
1 (0) for a1 = −0.55237. For all other values of

a1, f
′′
1 (0) tends to either positive or negative infinity. This value agrees with

Blyth and Hall (2003).
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Figure 2.10: The primary shear component f ′′
1 (0) for a0 = 0.6017 and a1 =

−0.56 (dashed lines), a1 = −0.55 (dotted lines) and a1 = −0.55237 (solid
line). This illustrate that for a1 = −0.55237, a unique value of f ′′

1 (0) exists.

2.5 Summary of primary flow

In section 2.4, we have solved the primary equation (2.25) in the parameter

range ∆ ∼ O(σ1/2), where ∆ and σ are large. This problem represents an

unsteady stagnation-point flow travelling towards a fixed wall. The primary

solution exhibits a double layer structure, with a Stokes layer next to the

wall. Due to a horizontal velocity persisting to the top of the Stokes layer,

a steady streaming layer is included to match between the Stokes layer and

the far-field flow.

In solving the primary equation (2.17), we find the critical value given in

(2.24) can be written as

∆ = 1.289σ1/2 + 0.763 +O(σ−1/2), (2.96)

which is in excellent agreement with that of Blyth and Hall (2003). Above

this critical value, solutions break down at a finite-time singularity and the

behaviour of the solutions close to the time-singularity are discussed in chap-

ter 4. In the next section, the subsidiary equation (2.26) is solved using

methods and results from the primary problem.
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2.6 The subsidiary flow

In this section, the subsidiary equation (2.26) is solved in the limit Ω → ∞
with ǫ̂ ∼ O(Ω−1). Due to the coupling between the primary and subsidiary

functions in equation (2.26), the structure of the subsidiary solution is similar

to that of the primary solution. A Stokes layer is present at the wall with a

steady streaming layer matching between the Stokes layer and the far-field

flow.

We recall the subsidiary equation, which was initially stated in equation

(2.26), is given by

Ωψ̂S
bητ + ψ̂S

bηψ̂P bη − ψ̂P ψ̂S
bηbη = (2.97)

− Ω sin(τ − φ) + (cos τ + ǫ̂ ) cos(τ − φ) + ψ̂S
bηbηbη,

with boundary conditions

ψ̂S(0, τ) = 0, ψ̂S
bη(0, τ) = cos(τ − φ) on η̂ = 0, (2.98)

ψ̂S
bη(η̂, τ) → cos(τ − φ) as η̂ → ∞, (2.99)

where ǫ̂ = a0Ω
−1 + a1Ω

−2 + O(Ω−3). We begin by seeking a solution in the

Stokes layer.

2.6.1 The Stokes layer

A Stokes layer is a small layer close to a boundary, occurring in oscillatory

flow problems, where the unsteady and viscous components balance. The

dominating terms in equation (2.97) are Ωψ̂S
bητ ∼ ψ̂S

bηbηbη, which implies the

scaling η̂ ∼ Ω−1/2. Therefore, the Stokes layer is of thickness O(Ω−1/2) with

variable ξ = Ω1/2η̂, where ξ = O(1). We note that this is the same thickness

as that of the primary Stokes layer. Rewriting equation (2.97) in terms of ξ,

we obtain

Ω3/2ψ̂Sξτ + Ω
(
ψ̂P ξψ̂Sξ − ψ̂P ψ̂Sξξ

)
= (2.100)

− Ω sin(τ − φ) + (cos τ + ǫ̂ ) cos(τ − φ) + Ωψ̂Sξξξ,
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with boundary conditions on the wall

ψ̂S(0, τ) = 0, ψ̂Sη(0, τ) = Ω−1/2 cos(τ − φ) on ξ = 0, (2.101)

and the matching boundary condition to the far-field flow

ψ̂Sξ(ξ, τ) → Ω−1/2 cos(τ − φ) as ξ → ∞. (2.102)

We seek a solution to (2.100), by posing the asymptotic expansion

ψ̄S = Ω−1/2ΨS0
(ξ, τ) + Ω−3/2ΨS1

(ξ, τ) +O(Ω−5/2). (2.103)

Substituting the asymptotic expansion (2.103) into the subsidiary equation

(2.100), we find at leading and first order

ΨS0ξτ − ΨS0ξξξ = − sin(τ − φ), (2.104)

ΨS1ξτ − ΨS1ξξξ = cos τ cos(τ − φ) + ΨP0
ΨS0ξξ − ΨP0ξΨS0ξ, (2.105)

with boundary conditions on the wall

ΨS0
(0, τ) = 0, ΨS0ξ(0, τ) = cos(τ − φ), (2.106)

ΨS1
(0, τ) = 0, ΨS1ξ(0, τ) = 0. (2.107)

Integrating (2.104) and (2.105), we obtain

ΨS0
(ξ, τ) = ξ cos(τ − φ), (2.108)

ΨS1
(ξ, τ) =

1

2
ξ sin φ+

1

2

(
1 − 1√

2

)
sin
(
2τ − φ− π

4

)
(2.109)

+
1

2
cos
(
φ+

π

4

)
+

1

2
√

2
e−ξ sin

(
2τ − φ− ξ − π

4

)

−1

2
e−ξ/

√
2

[
cos

(
ξ√
2
− φ− π

4

)
+ sin

(
2τ − ξ√

2
− φ− π

4

)]
.

When solving the leading and first order equations, (2.104) and (2.105),

we have used the boundary conditions on the wall and the condition that

ΨS0
(ξ, τ) and ΨS1

(ξ, τ) are periodic and bounded. As ξ → ∞, the Stokes

layer solution is given by

ψ̂Sξ
→ Ω−1/2 cos(τ − φ) + Ω−3/2 1

2
sinφ+O(Ω−5/2) as ξ → ∞. (2.110)
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This is unable to satisfy the far-field boundary condition (2.102), due to the

first order component in (2.110), which can be interpreted as a horizontal

velocity at the top of the Stokes layer. We proceed by introducing a steady

streaming layer to match the velocity at the top of the Stokes layer to that

of the far-field flow.

2.6.2 The steady streaming layer

In the previous section, it was found that at first order, the solution (2.109)

in the Stokes layer is unable to satisfy the boundary condition in the far-field.

As a result, like that of the primary problem, it is necessary to introduce a

steady streaming layer of thickness O(Ω1/2) between the Stokes layer and

the far-field flow. Therefore, we introduce the variable ζ = Ω−1/2η̂, where

ζ = O(1). Rewriting equation (2.97) in terms of the steady streaming layer

variable, we obtain

Ω1/2ψ̂Sζτ + Ω−1
(
ψ̂P ζψ̂Sζ − ψ̂P ψ̂Sζζ

)
= (2.111)

− Ω sin(τ − φ) + (cos τ + ǫ̂ ) cos(τ − φ) + Ω−3/2ψ̂Sζζζ,

with the far-field boundary condition

ψ̂Sζ → Ω1/2 cos(τ − φ) as ζ → ∞. (2.112)

To obtain the form of the asymptotic expansion in the steady stream-

ing layer, we rewrite the Stokes layer solution as ξ → ∞ in terms of the

steady streaming layer variable ζ . The dominating terms are given by ψ̂S ∼
Ω1/2ζ cos(τ − φ) + Ω−1/2 1

2
ζ sinφ + · · · . This suggests the steady streaming

layer expansion takes the form

ψ̂S = Ω1/2ζ cos(τ − φ) + Ω−1/2GS(ζ, τ), (2.113)

where GS(ζ, τ) is given by

GS(ζ, τ) =
(
ΦS0

(ζ, τ) + F0(ζ)
)

+ Ω−1
(
ΦS1

(ζ, τ) + F1(ζ)
)

(2.114)

+Ω−2
(
ΦS2

(ζ, τ) + F2(ζ)
)
· · · .
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The functions ΦSi
(ζ, τ) have a zero time-average and Fi are mean compo-

nents, for i ≥ 0. The last term in (2.114) is included because ΦS2
(ζ, τ) is

required to obtain the equation for F0(ζ). Substituting the primary steady

streaming layer solution, (2.49) and the subsidiary expansion given by (2.113)

and (2.114) into the subsidiary equation (2.111), the leading and first order

equations are given by

ΦS0ζτ = 0, (2.115)

ΦS1ζτ = a0 cos(τ − φ) − cos(τ − φ)
(
ΦP0ζ + f 0ζ

)
(2.116)

− cos τ
(
ΦS0ζ + F 0ζ

)
+ ζ cos τ

(
ΦS0ζζ + F 0ζζ

)
.

Integrating (2.115) and (2.116) with respect to τ and taking a time-average

to obtain the function of integration, we obtain ΦS0ζ = 0, and ΦS1ζ = (a0ζ −
f 0) sin(τ − φ) + (ζF ′

0 − 2F 0) sin τ, where the prime denotes differentiation

with respect to ζ . Upon integrating these equations with respect to ζ , we

obtain ΦS0
(ζ, τ) = g0(τ) and ΦS1

(ζ, τ) = (a0ζ − f 0) sin(τ − φ) + (ζF ′
0 −

2F 0) sin τ+g1(τ), where g0(τ) and g1(τ) are found by matching to the Stokes

layer solution. In the matching region, the Stokes layer solution is written in

terms of the steady streaming layer variable ζ and is given by

ψ̂S ∼ Ω1/2ζ cos(τ − φ) + Ω−1/2 1

2
ζ sinφ (2.117)

+Ω−3/2 1

2

[(
1 − 1√

2

)
sin
(
2τ − φ− π

4

)

+ cos
(
φ+

π

4

)]
+O(Ω−5/2).

Therefore, matching (2.117) and (2.113), we find g0(τ) = 0 and g1(τ) =

1
2

(
1− 1√

2

)
sin
(
2τ−φ− π

4

)
and the subsidiary steady streaming layer solution

is given by

ψ̂S = Ω1/2ζ cos(τ − φ) + Ω−1/2F0(ζ) (2.118)

+Ω−3/2

[(
a0ζ − f0(ζ)

)
sin(τ − φ) +

(
ζF ′

0(ζ) − 2F 0(ζ)
)

sin τ

+
1

2

(
1 − 1√

2

)
sin
(
2τ − φ− π

4

)
+ F1(ζ)

]
+O(Ω−5/2).
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To obtain a relationship for the unknown functions F0(ζ), we collect terms

of size O(Ω−2) in equation (2.111), to find

ΨS2ζτ = − cos(τ − φ)
[
(2a0 + ζf ′′

0 − 2f ′
0) sin τ + f ′

1

]
− F ′

0f
′
0 (2.119)

− cos τ
[
(a0 − f ′

0) sin(τ − φ) + (ζF ′′
0 − F ′

0) sin τ + F ′
1

]

+ζ cos τ
[
ζF ′′′

0 sin τ − f ′′
0 sin(τ − φ) + F ′′

1

]

− cos
(
τ − π

4

)
F ′′

0 + f0F
′′
0 + a1 cos(τ − φ) + F ′′′

0 .

Averaging over a single time period, we find

F ′′′
0 − f ′

0F
′
0 + f0F

′′
0 =

(
a0 − f ′

0

2

)
sin φ. (2.120)

The boundary conditions at ζ = 0 are obtained by matching the steady

streaming layer solution (2.118) to the Stokes layer solution (2.117). In doing

so, we find F0(ζ) → ζ sin φ/2 as ζ → 0. The far-field boundary condition

is obtained by matching the steady streaming layer solution (2.118) to the

far-field condition (2.112). Therefore, the boundary conditions for equation

(2.120) are given by

F0(0) = 0, F ′
0(0) =

1

2
sin φ, F ′

0(ζ) → 0 as ζ → ∞. (2.121)

If the phase difference is such that sinφ = 0 i.e. φ = 0, π, the problem

reduces to

F ′′′
0 − f ′

0F
′
0 + f0F

′′
0 = 0, (2.122)

F0(0) = 0, F ′
0(0) = 0, F ′

0(ζ) → 0 as ζ → ∞, (2.123)

and the only solution is the trivial one, F̂0(ζ̂) = 0. For other values of φ,

it is convenient to allow equation (2.120) to be independent of the phase

difference, φ. We let F0(ζ) = sin φF̄0(ζ) and the first order equation (2.120)

becomes

F̄ ′′′
0 − f ′

0F̄
′
0 + f0F̄

′′
0 =

a0 − f ′
0

2
, (2.124)

with boundary conditions

F̄0(0) = 0, F̄ ′
0(0) =

1

2
, F̄ ′

0(ζ) → 0 as ζ → ∞. (2.125)
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For completeness, we include the equation for F1(ζ), however, it is not

be solved as it would have little effect on the steady streaming layer solution

(2.118). To obtain the equation for F1(ζ), we collect the terms of size O(Ω−3)

in equation (2.111) and average over a single time period, to find

F ′′′
1 + f1F

′′
0 + f0F

′′
1 − f ′

0F
′
1 − f ′

1F
′
0 =

F ′′
0

2
√

2
+

(
a1 − f ′

1

2

)
sinφ, (2.126)

with boundary conditions

F1(0) =
1

2
cos
(
φ+

π

4

)
, F ′

1(0) = 0, F ′
1(ζ) → 0 as ζ → ∞, (2.127)

which are obtained in a similar way to that described for F0(ζ).

In the next section, we solve equation (2.124) with boundary conditions

(2.125) using similar techniques to those used to solve the primary equation

(2.51).

2.6.3 Numerics

In this section, we solve equation (2.124) by initially using a fourth order

Runge-Kutta technique. We write (2.124) in terms of three first order equa-

tions by letting F̄0 = z1 and f0 = y1. It follows that

z′1 = z2, (2.128)

z′2 = z3, (2.129)

z′3 = y2z2 − y1z3 +
(a0 − y2)

2
, (2.130)

with boundary conditions

z1(0) = 0, z2(0) =
1

2
, z2(∞) = 0. (2.131)

In section 2.4.3, we found that by using a Runge-Kutta technique, f0(ζ) has

no solutions when a0 < 0.6017. As a0 increases, we find two solutions when

0.6017 < a0 < 0.7. When a0 ≈ 0.7, one of the solutions breaks down due

to the primary equation becoming sensitive to the initial conditions. There-

fore, due to the subsidiary equation (2.124) being coupled with the primary

equation, we find there are no solutions for F̄0(ζ) when a0 < 0.6017 and two
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Figure 2.11: (a) The first primary velocity profile for a0 = 0.6017, 0.65, 0.7
with its corresponding subsidiary velocity profile. (b) The second primary
velocity profile for a0 = 0.6017, 0.65, 0.7 with its corresponding subsidiary
velocity profile. We note that this solution is unable to be calculated by the
Runge-Kutta method when a0 & 0.7. In each case, the solid line represents
a0 = 0.6017, the dotted line, a0 = 0.65 and the dashed line, a0 = 0.7.

solutions when 0.6017 < a0 < 0.7. In figure 2.11, the subsidiary velocity

profiles are plotted for a0 = 0.6017, 0.65, 0.7, along with the corresponding

primary velocity profiles. As is shown in figure 2.11(b), as a0 increases, the

disturbance close to ζ = 0 increases and exhibits a larger region of flow rever-

sal than the velocity profiles in figure 2.11(a). This behaviour is confirmed

in Appendix A, where the asymptotic solution for F0(ζ) is found close to

a0 ≈ 0.75.

To obtain the remaining solutions to F̄0(ζ) when 0.7 < a0 < 0.75, we

use a finite-difference technique. We rewrite equation (2.124) without the

a0 dependence, by letting F̄0 = a
−1/2
0 F̂0 and as before, f0 = a1/2f̂0 with

ζ̂ = a
1/2
0 ζ , to obtain

F̂ ′′′
0 − f̂ ′

0F̂
′
0 − f̂0F̂

′′
0 =

1 − f̂ ′
0

2
. (2.132)
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Like that of the primary problem discussed in section 2.4.5, we let F̂ ′
0 = G0

and f̂ ′
0 = g0, which enables equation (2.132) to be rewritten as the second

order equation

G′′
0 − g0G0 + f̂0G

′
0 =

1 − g0

2
. (2.133)

Centrally discretising equation (2.133), gives

1

h2

(
G0i+1

− 2G0i
+G0i−1

)
− g0i

G0i
+
f̂ 0i

2h

(
G0i+1

−G0i−1

)
=

1 − g0i

2
, (2.134)

with boundary conditions

F̂ 01
= 0, G01

=
1

2
, G0N

= 0. (2.135)

The functions f̂ 0i
and g0i

represent the primary solution and F̂ 0i
and G0i

represent the unknown subsidiary functions at each grid point ζ̂i = ih, where

h is the spatial step size and i = 1...N . Equation (2.134) can be rewritten in

the form of the tridiagonal system

AiG0i+1
+BiG0i

+ CiG0i−1
= Di, (2.136)

where the constants Ai . . .Di are given by

Ai =
1

h2
+
f̂0i

2h
, (2.137)

Bi =
−2

h2
− g0i

, (2.138)

Ci =
1

h2
− f̂ 0i

2h
, (2.139)

Di =
1 − g0i

2
. (2.140)

As before, we solve the discretised equation using the Thomas algorithm,

where the spatial step size h = 0.001. This corresponds to the spatial step size

chosen in the primary finite-difference method. The numerics are initiated

at λ ≈ 1, which corresponds to a0 ≈ 0.75, where λ = 1 + ǫ and 0 < ǫ ≪ 1,

which was initially defined when solving the primary equation using the finite-

difference technique. The numerics are marched backwards until λ ≈ 1.0714,

which corresponds to a0 ≈ 0.7. In figure 2.12, we illustrate the subsidiary
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Figure 2.12: The subsidiary solution for the finite-difference method, repre-
sented by the crosses and the Runge-Kutta method, represented by solid line
for a0 = 0.7, showing excellent agreement.

solution for both the Runge-Kutta and finite-difference methods for a0 = 0.7,

showing excellent agreement between these methods.

In figure 2.13, we illustrate the numerical results from the Runge-Kutta

and the finite-difference schemes. This illustrates that there is a unique

solution when λ < 1, two solutions when 1 < λ < 1.246 and no solutions

when λ > 1.246, where λ = 3
4a0

. These correspond to a unique solution when

a0 > 0.75, two solutions when 0.6017 < a0 < 0.75 and no solutions when

a0 < 0.6017. Contrary to the primary problem, where the solutions were well

behaved close to a0 ≈ 0.75, figure 2.13 illustrates as λ→ 1, F̂ ′′
0 (0) → −∞.
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Figure 2.13: The possible values of λ for which solutions to equation (2.132)
exist. The solid line represents the numerics calculated from the Runge-
Kutta method and the dotted line represents the finite difference method
results.
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2.7 Summary of subsidiary flow

In section 2.6, the subsidiary equation (2.26) has been solved in the large

frequency limit, in the parameter range ∆ ∼ O(σ1/2). As the subsidiary

equation is coupled with the primary equation (2.25), the structure of the

subsidiary problem near the wall is the same. At the wall, there exists a

Stokes layer with a steady streaming layer matching between the Stokes

layer and the far-field flow. In solving the primary equation, the critical value

between solutions existing and breaking down at a finite-time singularity is

found and given in (2.96). Due to the dependence on the primary equation,

we have found that no solutions for the subsidiary equation occur above this

limit.

Having obtained solutions to both the primary and subsidiary equations,

in the next section, we consider the wall shear stress and the effect the

oscillating components have on the mean wall shear stress.

2.8 Wall shear stress

In this section, we obtain the wall shear stress in the large frequency limit

and discuss the effect of the horizontal oscillating components. In section

2.2, the oscillating stagnation-point flow was discussed in two frames of ref-

erence. Firstly, where the oscillatory stagnation-point flow travels towards

a fixed wall and the stagnation point oscillates along the fixed wall. The

second frame was where the oscillating stagnation-point flow travels towards

an oscillating wall and the stagnation point is fixed at the origin. Solutions

were found in the latter frame of reference. However, to obtain the wall shear

stress, we revert back to the original frame and consider a moving stagnation

point.

The wall shear stress is defined as

S = µuy|y=0
= µψyy|y=0, (2.141)

where µ is the viscosity. The streamfunction ψ, initially stated in (2.16), is
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written in terms of the scalings, ψS = ∆−1/2ψ̂S, ψP = ∆1/2ψ̂P and η̂ = ∆1/2η

with η = (k/ν)1/2y, which were introduced in section 2.3, to give

ψ(x, y, t) = (νk)1/2x∆1/2ψ̂P (η̂, τ) + US

(ν
k

)1/2

∆−1/2ψ̂S(η̂, τ). (2.142)

We write x = x∗0 + US

ω
sin(τ − φ), where x∗0 is the coordinate in the first

frame of reference. Upon substituting this and the streamfunction (2.142)

into (2.141), the wall shear stress is given by S = µkS∗. In this, S∗ is

non-dimensional and given by

S∗ =
[
∆3/2

[
X0 +

κ

σ
sin(τ − φ)

]
ψ̂Pbηbη

+ ∆1/2κψ̂Sbηbη

] ∣∣∣∣
bη=0

, (2.143)

where X0 =
(
k
ν

)1/2
x∗0 and κ = US

(kν)1/2 , which is a measure of the effect of the

oscillatory components.

Solutions to the primary and subsidiary problems have been obtained in

the parameter range ǫ̂ ∼ O(Ω−1), where Ω = σǫ̂ and ǫ̂ = 1/∆. We recall that

ǫ̂ = a0Ω
−1 + a1Ω

−2 + O(Ω−3), as was initially stated in (2.31). Using this

expansion, relations for Ω and σ in terms of ∆ are given by

Ω = a0∆ +
a1

a0
+O(∆−1), σ = a0∆

2 +
a1∆

a0
+O(1). (2.144)

Equation (2.143) is rewritten in terms of the Stokes layer variable ξ = Ω1/2η̂,

where the Stokes layer expansions were previously defined in (2.35) and

(2.103). Using the relations given in (2.144), we find

S∗ = ∆2a
1/2
0 X0ΨP0ξξ +

∆X0

a
1/2
0

(
a1

2a0
ΨP0ξξ + ΨP1ξξ

)
(2.145)

+
κ

a
1/2
0

(
ΨS1ξξ + sin(τ − φ)ΨP0ξξ

)

+
X0

a
3/2
0

(
a2

1

8a2
0

ΨP0ξξ −
a1

2a0
ΨP1ξξ + ΨP2ξξ

)∣∣∣∣∣
ξ=0

+O(∆−1).

We note that ΨS0ξξ(0, τ) = 0 and ΨP2ξξ(ξ, τ) has not previously been found,

but is required when calculating the mean wall shear stress and is discussed

later in this section. Evaluating the primary and subsidiary functions at
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ξ = 0, the wall shear stress is given by

S∗ = ∆2a
1/2
0 X0 cos

(
τ +

π

4

)
+

∆X0

a
1/2
0

[
a1

2a0

cos
(
τ +

π

4

)
+

1

2
√

2
(2.146)

+
( 1√

2
− 1

2

)(
cos 2τ + sin 2τ

)]

+
κ

a
1/2
0

[
1

2
sin
(
φ+

π

4

)
+
( 1√

2
− 1

2

)
sin
(
2τ − φ+

π

4

)

+ sin(τ − φ) cos
(
τ +

π

4

)]

+
X0

a
3/2
0

[
a2

1

8a2
0

cos
(
τ +

π

4

)
− a1

2a0

(
1

2
√

2

+
( 1√

2
− 1

2

)(
cos 2τ + sin 2τ

))
+ ΨP2ξξ

∣∣∣
ξ=0

]
+ O(∆−1).

The wall shear stress (2.146) is a linear function of X0 and at the stagnation

point the wall shear stress is at its lowest. Although it appears in (2.146)

that the wall shear stress tends to infinity as X0 → ∞, this model is only

valid local to the stagnation point.

To calculate the mean wall shear stress a time-average of (2.146) is taken.

Before doing so, ΨP2
(ξ, τ) is needed. By using the same method used in

section 2.4, the equation for ΨP2
(ξ, τ) is given by

ψP2ξτ − ψP2ξξξ = 2a0 cos τ − 2ψP0ξψP1ξ + ψP0
ψP1ξξ + ψP0ξξψP1

, (2.147)

with wall boundary conditions ψP2
(0, τ) = 0 and ψP2ξ(0, τ) = 0. From

equations (2.36) and (2.37), the functions ψP0
(ξ, τ) and ψP1

(ξ, τ) can be

written in the form ψP0
(ξ, τ) = eiτg(ξ)+e−iτg∗(ξ) and ψP1

(ξ, τ) = e2iτh0(ξ)+

e−2iτh∗0(ξ) + h1(ξ) where g∗(ξ) and h∗0(ξ) are the complex conjugates of g(ξ)

and h0(ξ) respectively. Therefore, on substituting the expansions for ψP0
(ξ, τ)

and ψP1
(ξ, τ) into equation (2.147), we find ψP2

(ξ, τ) has the form ψP2
(ξ, τ) =

e3iτP1(ξ)+ eiτP2(ξ)+ e−3iτP ∗
1 (ξ)+ e−iτP ∗

2 (ξ), where P ∗
1 (ξ) and P ∗

2 (ξ) are the

complex conjugates of P1(ξ) and P2(ξ) respectively. Hence, once a time-

average has been taken, there is no contribution from ψP2
(ξ, τ) and it is not

necessary to calculate it. Therefore, upon taking a time-average of the wall



2.9 Summary 47

shear stress (2.146), we obtain the mean wall shear stress

S̄∗ = ∆3/2
(
a0∆ +

a1

a0

)−1/2 1

2
√

2
X0, (2.148)

where S̄∗ indicates the averaged value. The mean wall shear stress (2.148) is

a linear function of X0, where X0 is the distance from the stagnation point.

Consequently, the mean wall shear stress is equal to zero when X0 = 0, at the

stagnation point. As X0 increases, the mean wall shear stress also increases.

It can be seen that the mean wall shear stress has no contribution from the

oscillatory components and is solely dependent upon the primary problem.

Hazel and Pedley (1998) considered the problem described by (2.17) -

(2.22) in the limit of large frequency, but restricted the amplitude to less than

one, to prevent flow reversal from occurring. They ascertained that for large

frequency, the oscillatory component had no effect on the mean wall shear

stress. Therefore, having extended this analysis to allow for flow reversal

to occur, in the parameter range ∆ ∼ O(σ1/2), the effect of the oscillatory

component on the mean wall shear stress is unchanged, even though the

asymptotic structure has changed.

2.9 Summary

In this chapter, a two-dimensional orthogonal unsteady stagnation-point flow

travelling towards an oscillating wall has been discussed. The flow in the far-

field comprises an unsteady orthogonal stagnation-point flow, consisting of a

mean component and an oscillatory component, dependent upon a relative

amplitude parameter: ∆ and dimensionless frequency parameter: σ. Added

to this is a horizontal oscillating component, with the same frequency as the

oscillatory wall. Close to the wall, a similarity solution was sought, which is

an exact solution of the Navier-Stokes equations. The similarity solution is

made up of two terms: an unsteady orthogonal stagnation-point flow com-

ponent and an oscillatory component. The problem is described in terms

of two equations, the orthogonal equation, which was denoted the primary

equation and has previously been addressed by Merchant and Davis (1989),
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among others, and an oscillatory equation, denoted the subsidiary equation,

which had a coupling with the primary. This problem has previously been

addressed by Hazel and Pedley (1998), who chose a relative amplitude that

does not allow the flow to reverse. In this chapter, we have considered solu-

tions to the subsidiary equation, where relative amplitude is chosen to allow

for flow reversal.

For a fixed dimensionless frequency, when the relative amplitude parame-

ter exceeds a critical amplitude, the primary and subsidiary equations break

down at a finite-time singularity. Later in this thesis, in chapter 4, the pri-

mary equation is solved numerically and the behaviour of the solutions, as

the finite-time singularity is approached, are discussed. In the present chap-

ter, an asymptotic analysis has been performed for large frequency close to

this critical amplitude, i.e. ∆ ∼ O(σ1/2). At the wall, a Stokes layer of thick-

ness O
(
σ−1/2

)
is present. In this regime, where the oscillatory component

of the unsteady orthogonal flow is much larger than the mean component,

the steady streaming layer, which matches the Stokes layer to the far-field

flow, has thickness on the order of σ/∆ times that of the Stokes layer. This

structure is unlike that of the one considered by Hazel and Pedley (1998),

who solved this problem where the mean component dominates in the un-

steady orthogonal component and the steady streaming layer thickness is on

the order of σ1/2/∆ times that of the Stokes layer.

Hazel and Pedley (1998), who restricted the relative amplitude parameter

to prevent flow reversal occurring, found that the oscillatory components did

not effect the mean wall shear stress, which was only dependent upon the

orthogonal stagnation-point flow. Having extended this analysis to allow for

flow reversal to occur, we found that even though the asymptotic structure

has changed, the oscillatory components did not effect the mean wall shear

stress.



Chapter 3

Steady oblique stagnation-point

flow

3.1 Introduction

Continuing our investigation into stagnation-point flows, we consider a prob-

lem, which is a generalisation of the Hiemenz stagnation-point flow, where the

streamlines meet the wall obliquely. This problem comprises of a Hiemenz

stagnation-point flow and, superimposed onto this, a shear flow with con-

stant vorticity and a uniform stream, whose strength is represented by a free

parameter. We denote these two latter terms as the oblique component. Due

to the no-slip condition not being satisfied at the wall, a similarity solution

is introduced consisting of two components: a Hiemenz function and the

integral of the oblique component.

A special case of the above problem was first considered by Stuart (1959)

with Tamada (1979) and Dorrepaal (1986) later revisiting this problem with

slightly different conditions on the far-field flow. These different cases can

be thought of as changing the uniform stream in the far-field, but ultimately

they obtained similar results. Drazin and Riley (2006) generalised the work of

the previous authors to include a free parameter, which altered the strength

of the uniform stream. They found the free parameter changes the magni-

tude of the pressure gradient, which in turn alters the structure of the oblique

49
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component. If the free parameter is large enough, the oblique velocity com-

ponent has a region of flow reversal near the wall.

In this chapter, we extend the work of Drazin and Riley (2006) to find

what effect this parameter has on the streamlines, even if the oblique com-

ponent has a region of flow reversal close to the wall. Having considered the

form of the oblique stagnation-point flow discussed initially by Stuart (1959),

we then obtain the general form of the far-field solution where a Hiemenz

flow and a general horizontal function is present.

We note that section 3.2 has already been published in the Physics of

Fluids.

3.2 Steady oblique stagnation-point flow

We consider the two-dimensional oblique stagnation-point flow of a viscous

fluid of kinematic viscosity ν towards a plane wall. In Cartesian (x, y) coor-

dinates, the wall is located at y = 0 and the fluid occupies the region y > 0.

It is convenient to represent the flow with a streamfunction, ψ(x, y), defined

in the usual way so that u = ψy and v = −ψx, where u and v are the velocity

components in the x and y directions respectively. A long way from the wall,

the flow is given by

ψ = kxy +
1

2
ζy2 − βζ

(ν
k

)1/2

y, (3.1)

comprising an irrotational straining flow of strength k, and a rotational shear

flow in the x direction with vorticity −ζ < 0. The dividing streamline, ψ = 0,

meets the horizontal boundary at the angle tan−1(−2k/ζ) and is illustrated

in figure 3.1.

Close to the wall, we seek a solution in the more general form, given by

Stuart (1959)

ψ = (νk)1/2xf(η) + ζ
(ν
k

)∫ η

0

g(t) dt, (3.2)

where η = (k/ν)1/2y. Consistency with the outer flow (3.1) requires both

that f ∼ η − α and g ∼ η − β as η → ∞, where α and β are constants.
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θ

x

y

Figure 3.1: An illustration of the dividing streamline meeting the wall
obliquely at an angle of θ = tan−1(−2k/ζ).

Substituting (3.2) into the Navier-Stokes equation, demanding no-slip and

no-penetration at the wall, and requiring a match with the outer flow, we

find that f satisfies

f ′′′ + ff ′′ − f ′2 + 1 = 0, (3.3)

with

f(0) = 0, f ′(0) = 0, f ′(∞) = 1, (3.4)

and that g satisfies

g′′ + fg′ − f ′g = β − α, (3.5)

with

g(0) = 0, g′(∞) = 1. (3.6)

The primes denote differentiation with respect to η. The pressure at any

point in the fluid is given by

p = p0 −
1

2
ρk2x2 − 1

2
ρνkf 2 − ρνkf ′ + ζρ(νk)1/2 (β − α) x, (3.7)

where p0 is a constant reference value and ρ is the density of the fluid. When

β = α the pressure field is independent of the shear flow.

When ζ = 0 and the shear flow is removed, we recover the orthogonal

stagnation-point flow studied by Hiemenz (1911) and discussed by Batchelor



3.2 Steady oblique stagnation-point flow 52

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

−4 −2  0  2  4  6  8  10

g(η)

η

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

−4 −3 −2 −1  0  1  2  3

ξ

η

(b)

Figure 3.2: (a) Profiles of the shear flow component for β = 5, α, 0,−α,−5,
reading from left to right. (b) Streamlines for the case k/ζ = 0.5 and β = α,
where ξ = (k/ν)1/2x.

(2000), for example. Accordingly, the whole flow may be viewed as being

composed of orthogonal stagnation-point flow, represented by the first term

in (3.2), combined with a horizontal shear flow represented by the second

term in (3.2). The solution for the shear flow, g(η), is contingent on the

solution for the orthogonal flow, f(η), but not vice versa.

The constant α in (3.5) is determined as part of the solution for the

orthogonal flow, f . However, β is a free parameter. The analyses of Stuart

(1959) and Tamada (1979) correspond to β = α and the analysis of Dorrepaal

(1986) corresponds to β = 0. Referring to (3.7), varying β may be interpreted

physically as varying the horizontal pressure gradient linked to the shear flow.

The horizontal velocity u, is given by

u = kxf ′(η) + ζ
(ν
k

)1/2

g(η), (3.8)



3.2 Steady oblique stagnation-point flow 53

and in figure 3.2(a), we show profiles of the shear flow component, g, for a

number of different values of β. When β > 1.141, there is a distinct region

of reversed flow corresponding to negative values of g. When combined with

the orthogonal flow, we would expect such a feature to have a significant

effect on the structure of the complete flow. In particular, we would expect

it to shift the stagnation-point of attachment along the wall.

The solution of (3.3) and (3.4) has been obtained numerically (e.g., Gold-

stein (1965)) to find γ ≡ f ′′(0) = 1.233 and α = 0.648. Introducing δ ≡ g′(0),

the general solution to (3.5) and (3.6), previously given by Stuart (1959), is

g(η) = (α− β)f ′(η) + γλ h(η), (3.9)

where

h(η) = f ′′(η)

∫ η

0

[f ′′(t)]−2 e−
R t
0
f(s) ds dt, (3.10)

and λ = δ + (β − α)γ. The value of δ depends on the choice of β. Taking

the limit η → ∞ in (3.9), and using the fact that

f ′′(η)

∫ η

0

[f ′′(t)]−2 e−
R t
0
f(s) ds dt ∼ 1.335 (η − α) + · · · (3.11)

as η → ∞, which was used by Glauert (1956), we confirm that (3.9) fulfills

the condition at infinity in (3.6), provided that

λ = 0.608, (3.12)

regardless of the value of β. It follows from (3.9) and (3.10) that

g(η) = w(η) − βf ′(η) (3.13)

where w(η) = αf ′(η) + γλ h(η) satisfies the same system as g(η), namely

(3.5) and (3.6), with β set to zero. Substituting (3.13) into (3.2), we find

ψ = (νk)1/2χf(η) + ζ
(ν
k

) ∫ η

0

w(t) dt, (3.14)

where χ = x− ζ(ν/k3)1/2β.

Since neither f(η) nor w(η) depend upon β, we see that the effect of in-

creasing β is to shift the streamlines to the right in the positive x direction,
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without changing the overall flow structure. From a mathematical stand-

point, this simply reflects the freedom to shift the origin of the axes noted

by Stuart (1959). So Dorrepaal’s solution, with β = 0, is identical to Stu-

art’s and Tamada’s solution, both with β = α, to within a simple horizontal

translation. However, from a physical standpoint, this seems a remarkable re-

sult. Adding shear flows of quite different character, even with possible flow

reversal, to an orthogonal stagnation-point flow produces an oblique flow

which appears identical to an observer at the stagnation-point, now shifted a

prescribed distance, ζ(ν/k3)1/2β. Contrary to intuition, which suggests the

flow associated with an increasing pressure gradient would move the point

of attachment from right to left, increasing the adverse pressure gradient, by

increasing the value of β, shifts the stagnation-point of attachment further

to the right in the positive x direction. To provide an explanation, we note

that when the flow pattern shifts, the dividing streamline does not change

its shape but is displaced from the boundary an amount proportional to β.

When β > 0, this shifts the stagnation-point of attachment to the right.

To illustrate the flow in a sample case, figure 3.2(b) displays the stream-

lines when k/ζ = 0.5 and β = α, corresponding to the value chosen by Stuart

(1959) and Tamada (1979). Applying the analysis of Drazin and Riley (2006)

we find that the dividing streamline meets the wall at the point x = xs, where

xs = −ζ(ν/k3)1/2 δ/γ = −ζ(ν/k3)1/2 (1.141 − β), (3.15)

which in the present case is equal to −0.99(ν/k)1/2. The instantaneous slope

of the dividing streamline at the stagnation point is given by

−3(γ2/λ)
k

ζ
= −7.5

k

ζ
. (3.16)

So in figure 3.2(b) the dividing streamline meets the wall at 75◦ to the hor-

izontal. When β = 1.141, corresponding to the critical value for reversal in

the shear flow component discussed above, the dividing streamline meets the

wall at the origin.
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3.3 General form of the oblique stagnation-

point flow

In the previous section, we considered an oblique stagnation-point flow trav-

elling towards a fixed wall, where the flow in the far-field is made up of a

Hiemenz stagnation-point flow, a shear flow with constant vorticity −ζ < 0

and a uniform stream, which was previously given by (3.1). In this section,

we wish to find the general form of the oblique stagnation-point flow, which

comprises of a Hiemenz flow and an additional horizontal velocity component.

In the far-field, we write ψ = xF (y)+G(y), where F (y) is the Hiemenz func-

tion and G(y) is a horizontal component, which does not affect the flow in

the normal direction.

To begin, we define the dimensional Vorticity Streamfunction Equation

as

ψ∗
y

(
∇2ψ∗

)
x
− ψ∗

x

(
∇2ψ∗

)
y

= ν∇4ψ∗. (3.17)

By writing ψ∗ = kψ, where ψ is non-dimensional, equation (3.17) is rewritten

as

ψy
(
∇2ψ

)
x
− ψx

(
∇2ψ

)
y

=
ν

k
∇4ψ. (3.18)

We introduce the new parameter ǫ2 = ν/k, where ǫ has the dimensions of

length. It follows that the variable y = (ν/k)1/2η = ǫη, which was introduced

in section 3.2 and is used later in this section. We proceed by looking for a

solution to (3.18), where (ν/k) ≪ 1. Later in this section, we seek a solution

close to the wall, when the viscous term in (3.18) is significant.

Substituting the streamfunction ψ(x, y) = xF (y) + G(y) into equation

(3.18) we obtain, after one integration and letting G(y) =
∫ y
0
g(ŷ)dŷ

ǫ2F ′′′ + FF ′′ − F ′2 + C = 0, (3.19)

ǫ2g′′ + Fg′ − F ′g +D = 0, (3.20)

where C and D are constants of integration. The corresponding boundary

conditions on the wall are given by

F (0) = 0, F ′(0) = 0, g(0) = 0 on y = 0, (3.21)
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satisfying the no-penetration and no-slip conditions. We begin by considering

the solution to (3.19) far from the wall, with the boundary condition F ′(y) →
1 as y → ∞, as F (y) is the Hiemenz function. Due to the form of equation

(3.19), we pose the asymptotic expansion F (y) = F0(y) + ǫ2F1(y) + O(ǫ4)

and find the leading order equation is given by

F0F
′′
0 − F ′2

0 + C = 0. (3.22)

The solution to (3.22) is given by F0 = C1/2y − A, where A and C are

constants. To find C, we use the far-field boundary condition F ′
0(y) → 1 as

y → ∞ and obtain C = 1, where C is assumed to be positive. Therefore, the

leading order solution is given by F0(y) = y − A as y → ∞. However, this

solution does not satisfy the boundary condition at the wall. Subsequently,

a region is introduced at the wall to match the velocity on the wall to that

in the far-field, which is discussed later in this section.

We proceed by considering the higher order equations to equation (3.19).

The first order equation is given by

(y − A)F ′′
1 − 2F ′

1 = 0, (3.23)

and after one integration we find, F ′
1(y) = K1(y−A)2. This only satisfies the

far-field boundary condition F ′
1(y) → 0 as y → ∞ if the constant K1 = 0.

So the first order solution is given by F1(y) = 0. For higher order terms, we

obtain

(y − A)F ′′
n − 2F ′

n = 0, (3.24)

for n > 1, which has the same structure as that of the first order equation

(3.23). After one integration, equation (3.24) becomes F ′
n(y) = Kn(y − A)2.

To enable the far-field boundary conditions F ′
n(y) → 0 as y → ∞ to be

satisfied, the constants Kn = 0, which gives the trivial solutions Fn(y) = 0.

Therefore, combining these results, the far-field Hiemenz solution is given by

F = y − A. (3.25)

We now consider solutions to g(y), the horizontal velocity component

satisfying equation (3.20). Due to the form of (3.20), we expand g(y) similarly
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to F (y) and write g(y) = g0(y)+ǫ2g1(y)+O(ǫ4). At leading order, we obtain

(y − A)g′0 − g0 +D = 0. (3.26)

Upon solving (3.26), we obtain g0(y) = D + E(y − A), where D and E are

arbitrary constants. Unlike the equation for F (y), we make no assumptions

on the far-field boundary condition for g(y). At first order, we find

(y − A)g′1 − g1 = 0. (3.27)

Upon solving this, we find g1(y) = k1(y−A), where k1 is a constant. As this

solution is very similar to that at leading order, we can rewrite the leading

order solution as g0 = D + Ê(y − A), where Ê = E + ǫ2k1. The form of the

higher order equations are the same as that at first order and are given by

(y − A)g′n − gn = 0, (3.28)

for n > 1. Solving equation (3.28), we find gn = kn(y−A), which can, similar

to that of the first order equation, be incorporated into the previous solution.

Therefore, the far-field solution is given by g(y) = D + Ê(y − A) and after

one integration we find

G(y) =
Êy2

2
−By. (3.29)

A constant of integration has not been included, as adding a constant to

the streamfunction does not affect the velocity components. Combining the

solutions for F (y) and G(y), we obtain the general form of the streamfunction

ψ = x(y −A) +
Êy2

2
− By, as y → ∞, (3.30)

satisfying the far-field boundary condition F ′(y) → 1 as y → ∞. The first

term corresponds to an orthogonal stagnation-point flow, with the constant

A representing the displacement from the wall in the normal direction. We

find ∇2ψ = Ê, therefore, the second component is a shear flow with constant

vorticity −Ê. We let Ê = ζ̂, as this is a known constant to represent the

vorticity. The third term is a uniform stream with strength −B, where the
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minus is included to allow for comparison to the streamfunction discussed in

section 3.2.

To obtain the streamfunction (3.30), we have assumed that the viscous

term is small compared to the convective terms in the Vorticity Streamfunc-

tion Equation (3.18). Hence, (3.30) is no longer valid when these terms be-

come comparable. This occurs when y = ǫη and ψ = ǫψ̂, where ǫ = (ν/k)1/2,

which has previously been defined. Expressing equation (3.18) in terms of

these variables, we find

ψ̂ηψ̂ηηx − ψ̂xψ̂ηηη = ψ̂ηηηη , (3.31)

with boundary conditions on the wall

ψ̂x(x, 0) = 0, ψ̂η(x, 0) = 0 on η = 0. (3.32)

To calculate the form of the streamfunction to substitute into (3.31), we

express the solution (3.30) in terms of the scalings above, to obtain

ψ̂ = x
(
η − Â

)
+ ζ̂ǫ

(
η2

2
− B̂η

)
, (3.33)

where A = ǫÂ and B = ζ̂ǫB̂. Therefore, the streamfunction (3.33) suggests

the similarity solution

ψ̂ = xH1(η) + ζ̂ǫH2(η), (3.34)

where H1(η) and H2(η) are functions of η. Substituting the streamfunc-

tion (3.34) into equation (3.31), we obtain after one integration and letting

H2(η) =
∫ η
0
h2(η̂)dη̂

H ′′′
1 +H1H

′′
1 −H ′2

1 + Ĉ = 0, (3.35)

h′′2 +H1h
′
2 −H ′

1h2 + D̂ = 0. (3.36)

The corresponding boundary conditions on the wall are

H1(0) = 0, H ′
1(0) = 0, h2(0) = 0, on η = 0, (3.37)

with matching conditions to the far-field

H1(η) → η − Â, h2(η) → η − B̂ as η → ∞. (3.38)
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Upon substituting the far-field flow boundary conditions (3.38) into equations

(3.35) and (3.36), we find the constants Ĉ = 1 and D̂ = Â − B̂. We note

that these equations are the same as equations (3.3) and (3.5) and have been

solved in section 3.2.

To allow for a direct comparison between the streamfunctions (3.30) and

(3.34), we express them in terms of ψ∗. The streamfunction in the far-field

is given by

ψ∗ = k

[
x

(
y −

(ν
k

)1/2

Â

)
+
ζ̂y2

2
− B̂ζ̂

(ν
k

)1/2

y

]
as y → ∞. (3.39)

The first term corresponds to the orthogonal stagnation-point flow, where

Â acts as a displacement effect in the normal direction and as we get further

away from the wall, this constant becomes negligible in comparison to the

other terms in (3.39). The second term relates to a shear flow of constant

vorticity −ζ̂ and the third term is a uniform stream with strength −B̂. These

two latter terms are denoted the oblique components. As we approach the

wall, this solution is no longer valid and close to the wall the streamfunction

takes the form

ψ∗ = (νk)1/2

[
xH1(η) + ζ̂

(ν
k

)1/2
∫ η

0

h2(η̂)dη̂

]
. (3.40)

Again, the first term relates to the orthogonal stagnation-point flow and

the second term represents the oblique components. When (ν/k) ≪ 1,

the orthogonal component is dominant. Unlike many boundary layer prob-

lems, where a matching region is required between the inner and outer solu-

tions, the streamfunction close to the wall matches directly onto the far-field

streamfunction as y → ∞.

In order to compare this streamfunction with the streamfunction (3.2),

we write ζ = kζ̂, H1(η) = f(η) and h2(η) = g(η) and the streamfunction

(3.40) becomes

ψ∗ = (νk)1/2xH1(η) + ζ
(ν
k

)∫ η

0

h2(η̂)dη̂. (3.41)

Therefore, in this section we have determined the general form of the oblique

stagnation-point flow, containing an orthogonal stagnation-point flow and a
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general horizontal velocity. It is found that the general form of the oblique

stagnation-point flow is that discussed in section 3.2, where the horizontal

component comprises of a shear flow with constant vorticity and a uniform

stream.

3.4 Summary

In this chapter, we have investigated a two-dimensional stagnation-point flow,

where the streamlines in the far-field meet the wall obliquely. In the far-field,

the flow comprises a Hiemenz stagnation-point flow and superimposed onto

this, a shear flow of a constant vorticity and a uniform stream. These two

terms we denote the oblique component. At the wall, a similarity solution is

found, which was first used by Stuart (1959), incorporating two components.

This is an exact solution of the Navier-Stokes equations. The first component

is a Hiemenz function and the second is the integral of the oblique component.

The problem can be described in terms of two coupled ordinary differential

equations. The first equation describes the orthogonal stagnation-point flow,

previously addressed by Hiemenz. The second equation, which is coupled

with the first, describes the oblique component of the flow. These equa-

tions are solved numerically and it is found that upon increasing the uniform

stream, the oblique velocity component exhibits a region of flow reversal at

the wall.

The streamlines were considered and due to the viscosity, as the flow

approaches the wall, the dividing streamline bends towards the wall and

meets the wall at an angle close to the normal. Increasing the strength of

the uniform stream increases the pressure gradient and, contrary to intuition,

increasing the strength of the uniform stream in the far-field, simply shifts

the streamlines and the attachment point with the wall to the right, without

altering its structure.

A general form of the oblique stagnation-point flow was then considered,

consisting of a Hiemenz flow and an arbitrary horizontal component. It was
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demonstrated that the problem initially discussed by Stuart (1959) is the

most general form of oblique stagnation-point flow possible.

In the next chapter, a time-dependent version of the oblique stagnation-

point flow discussed in this chapter is considered, with results and analysis

being used.



Chapter 4

Unsteady oblique

stagnation-point flow

4.1 Introduction

Continuing the investigation into oblique stagnation-point flows, we extend

the problem discussed in chapter 3, where a steady oblique stagnation-point

flow travelling towards a fixed wall was discussed. We now consider a time-

dependent version of this problem. In the far-field, the structure of the flow

incorporates an unsteady orthogonal stagnation-point flow, which is depen-

dent upon a dimensionless frequency parameter σ and a relative amplitude

parameter ∆. Added to this is a shear flow with constant vorticity and a

horizontal time-dependent velocity component. The latter term was steady

in chapter 3 and represented a shift of the streamlines along the wall.

Close to the wall, due to the no-slip condition not being satisfied, a sim-

ilarity solution is introduced comprising of two components. The first com-

ponent describes the unsteady orthogonal stagnation-point flow and is the

same as that discussed in chapter 2. The second describes the shear and the

horizontal velocity components, which in future are denoted as the oblique

components.

In chapter 2, when considering purely the orthogonal problem, Merchant

62
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and Davis (1989) obtained, for large frequency, a critical amplitude depen-

dent upon the frequency given by ∆c = 1.289σ1/2 + 0.763 +O(σ−1/2). When

this critical amplitude is exceeded, Blyth and Hall (2003) found that the or-

thogonal solutions break down at a finite-time singularity. Due to the oblique

equation being coupled with the primary, we expect the oblique solution to

also break down at a finite-time singularity, when the amplitude is above the

critical amplitude.

A discussion on the flow structure near the wall over one time period con-

cludes this chapter, with the effect of the time-dependent horizontal velocity

component also being considered.

4.2 Problem formulation

In chapter 3, the general form of the steady oblique stagnation-point flow

was obtained, which comprised in the far-field of a Hiemenz stagnation-point

flow, a shear flow and a uniform stream, given in (3.1). To consider the

unsteady version of this problem, we write

ψ = a(t)kxy +
1

2
ζ̂(t)y2 − β̂(t)ζ̂(t)

(ν
k

)1/2

y, (4.1)

as y → ∞, where the problem is described in Cartesian (x, y) coordinates

and the velocity components (u, v) are in the (x, y) directions respectively

with u = ψy and v = −ψx. Also, a(t) and β̂(t) are arbitrary time-dependent

functions, ζ̂(t) is the vorticity, k is the strength of the orthogonal stagnation-

point flow and ν is the viscosity. To confirm the validity of (4.1), we use the

unsteady Vorticity Streamfunction Equation

(
∇2ψ

)
t
+ ψy

(
∇2ψ

)
x
− ψx

(
∇2ψ

)
y

= ν∇4ψ. (4.2)

Substituting the streamfunction (4.1) into (4.2) reduces the Vorticity Stream-

function Equation to ζ̂t = 0, which implies that flows of this form are only

possible if the vorticity is constant. Therefore, the streamfunction (4.1) is

rewritten as

ψ = a(t)kxy +
1

2
ζ̂y2 − β̂(t)ζ̂

(ν
k

)1/2

y. (4.3)
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The first term corresponds to an unsteady orthogonal stagnation-point flow,

where a(t) = 1+∆ cosωtwith amplitude ∆ and frequency ω. The form of a(t)

has been chosen to be the same as that used in chapter 2, when considering

a purely orthogonal stagnation-point flow. The second term is a shear flow

with constant vorticity −ζ̂ < 0 and the third component is a time-dependent

horizontal velocity, whose strength is dependent upon β̂(t). We note the

functions a(t) and β̂(t) are dimensionless. We choose β̂(τ) = bM + bO cos τ

to reflect the oscillatory nature of the problem, where the oscillations are

at the same frequency as a(τ), but bM and bO, the mean and oscillatory

components, have arbitrary amplitudes.

x

y

Figure 4.1: An illustration of the unsteady oblique stagnation-point flow
at an instant in time. Away from the wall, the gradient of the dividing
streamline, ψ = 0, is given by M = −2ak/ζ̂ . As discussed in chapter 3, the
viscosity in the region close to the wall affects the gradient of the dividing
streamline.

Problems of this nature can be considered either travelling towards a

fixed wall or an oscillating wall by a simple change of frame of reference. In

chapter 2, we followed the work of Hazel and Pedley (1998) and considered the

orthogonal flow travelling towards an oscillating wall. In the present chapter,

we consider the problem described by the streamfunction (4.3) travelling

towards a fixed wall at y = 0, illustrated in figure 4.1. However, details of

the change of frame of reference to one where the oblique stagnation-point

flow is travelling towards an oscillating wall can be found in Appendix B.

In chapter 3, when considering the steady version of this problem, the

gradient of the dividing streamline in the far-field was only dependent upon
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the vorticity and the strength of the orthogonal component. We now consider

the streamfunction (4.3) and find the equation of the dividing streamline,

ψ = 0, is given by

y = −2akx

ζ̂
+ 2β̂

(ν
k

)1/2

. (4.4)

Therefore, the gradient of the dividing streamline far from the wall is given

by M = −2ak/ζ̂. Also, similar to that of the steady problem, the unknown

function β̂(t) only affects the horizontal displacement of the dividing stream-

line.

To consider the streamlines in the far-field, we examine the gradient of

the dividing streamline over a single time period. To obtain the dividing

streamline, we note that a(t) has a maximum at amax = 1+∆ and a minimum

at amin = 1−∆. Therefore, the gradient has a maximum at Mmax = −2(1+

∆)/ζ̂ and a minimum at Mmin = −2(1 − ∆)/ζ̂. When ∆ < 1, both Mmax

and Mmin are negative and over a single time period, the dividing streamline

oscillates between two bounding values, which can be seen in figure 4.2(a)

for β̂ = 0.

When ∆ > 1, Mmax is negative, similar to the previous case, but Mmin is

positive. This configuration is illustrated in figure 4.2(b). To consider how

the dividing streamline oscillates between Mmin andMmax, we note that when

∆ > 1, a(t) has a zero at some point in the time period, which is illustrated

in figure 4.3, for selected values of ∆. This corresponds to the point at which

the flow reverses in the cycle. When a(t) > 0, the gradient of the dividing

streamline M , is negative. Using the property that v = −ψx, we find the

vertical velocity component of (4.3) is given by v = −a(t)y. Therefore, when

a(t) is positive, the vertical velocity v is negative and the flow approaches

the wall. As we progress through the time period, a(t) decreases, causing the

gradient of the dividing streamline to decrease within x < 0. When a(t) < 0,

the gradient of the dividing streamline is positive and lies within x > 0. As

a(t) decreases, the gradient of the dividing streamline increases in x > 0.

Also the vertical velocity is positive which corresponds to the flow travelling

away from the wall. In figure 4.4, we illustrate the far-field streamlines for
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x

yMmax

Mmin

(a)

x

y

Mmax Mmin

(b)

Figure 4.2: The range of the far-field dividing streamline when (a) ∆ < 1

and (b) ∆ > 1. Both cases are for β̂ = 0.

∆ = 1.5 and β̂ = 1 over a single time period. The time interval considered

in this figure corresponds to the time interval in which a zero is present in

a(t).

Having considered the behaviour of the dividing streamline far from the

wall, we now find the exact equation of the dividing streamline to observe

the behaviour close to the wall. As the streamfunction (4.3) is unable to be

satisfy the no-slip condition on the wall, we write

ψ(x, η, τ) = (νk)1/2xψP (η, τ) + ζ̂
(ν
k

)∫ η

0

ψO(z, τ)dz, (4.5)

with non-dimensional variable η = (k/ν)1/2y and time component τ = ωt.

We note that the form of (4.5) was initially used by Stuart (1959) when

considering the steady problem discussed in chapter 3.

The first term in (4.5) represents the unsteady orthogonal stagnation-

point flow, which is the same as that in chapter 2 and denoted ψP (η, τ),

the primary component. The second term represents the shear flow and

the time-dependent horizontal velocity components and is denoted ψO(η, τ),
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Figure 4.3: The function a(t) = 1 + ∆ cosωt for ω = 1 and ∆ = 0.85 (solid
line), ∆ = 1.2 (dotted lines) and ∆ = 1.5 (dashed lines), illustrating when
∆ > 1, the function a(t) develops zeros.

the oblique component. Matching (4.5) with the far-field flow (4.3), requires

ψP (η, τ) → a(τ)η−α̂(τ) and ψO(η, τ) → η−β̂(τ) as η → ∞, where a(τ) = 1+

∆ cos τ , β̂(τ) is an arbitrary function and α̂(τ) acts similarly to the constant

α in chapter 3, which was a displacement in the vertical direction. Upon

substituting the far-field streamfunction (4.3) into the horizontal momentum

equation (2.8) and matching to the far-field to eliminate the pressure term

px, we obtain

σψP ητ +
(
ψP η

)2 − ψPψP ηη = σaτ + a2 + ψP ηηη , (4.6)

σψOτ + ψP ηψO − ψPψOη = −σβ̂τ + α̂− aβ̂ + ψOηη, (4.7)

with primary boundary conditions

ψP (0, τ) = 0, ψP η(0, τ) = 0 on η = 0 (4.8)

ψP (η, τ) → a(τ)η − α̂ as η → ∞, (4.9)

and oblique boundary conditions

ψO(0, τ) = 0 on η = 0 (4.10)

ψO(η, τ) → η − β̂ as η → ∞, (4.11)

where σ = ω/k is the Strouhal number, a dimensionless parameter, which is

a measure of the unsteadiness.
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Figure 4.4: The streamlines in the far-field plotted for ∆ = 1.5, and β̂ = 1,
with ν = k = ω = ζ̂ = 1 for (a) t = 2, (b) t = 2.25, (c) t = 2.35, (d) t = 2.8.
This illustrates the gradient of the dividing streamline changing sign from
negative in (a) and (b) to positive in (c) and (d), which corresponds to t
increasing through the zero at τ ≈ 2.3.

To find the dividing streamline, we set the streamfunction (4.5) equal to

zero, which corresponds to the dividing line that intersects the wall, to obtain

xd = −ζ̂
( ν
k3

)1/2
∫ η
0
ψO(z, τ)dz

ψP (η, τ)
. (4.12)

As ψP (0, τ) = ψPη(0, τ) = 0, the denominator equals zero at the wall.

Therefore, we need to approximate the solutions close to η = 0 by ex-

panding ψO(0, τ) = ψOη(0, τ)η + ψOηη(0, τ)η
2/2 + O(η3) and ψP (0, τ) =

ψPηη(0, τ)η
2/2 + ψPηηη(0, τ)η

3/6 + O(η4). Upon substituting these expan-

sions into (4.12), we obtain xd = x0 +Gη, where x0 is the point at which the

dividing streamline meets the wall and is given by

x0 = −ζ̂
( ν
k3

)1/2 ψOη(0, τ)

ψPηη(0, τ)
, (4.13)

and 1/G is the gradient of the dividing streamline at the wall, which is given

later in (4.85).
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To proceed, we seek numerical solutions to the primary and subsidiary

equations, given in (4.6) and (4.7) respectively, by marching forward in time

using a Crank-Nicolson finite-difference method. To begin these numerics,

initial profiles for τ ≪ 1 are required, which are obtained in the next section.

4.2.1 The initial velocity profile for the primary flow

To numerically integrate the primary problem (4.6), an initial profile for

small τ is required to begin the numerics, which are then marched forwards

in τ . Riley and Vasantha (1989) solved the primary problem where a(τ) was

purely oscillatory, i.e. ψP η(η, τ) → cos τ as η → ∞. We duplicate their

analysis to find the initial profile for the primary equation (4.6), where a(τ)

includes a mean component. To allow for comparisons to be made with Riley

and Vasantha, we write a(τ) = K1 +K2 cos τ , with constants K1 and K2 and

note in their case K1 = 0 and K2 = 1. Therefore, the primary equation,

which was previously defined in equation (4.6), is rewritten as

σψP ητ +
(
ψP η

)2 − ψPψP ηη = −σK2 sin τ (4.14)

+(K1 +K2 cos τ)2 + ψP ηηη ,

with boundary conditions

ψP (0, τ) = 0, ψP η(0, τ) = 0, (4.15)

ψP (η, τ) → (K1 +K2 cos τ)η − α̂ as η → ∞. (4.16)

At τ = 0, the flow is impulsively started with the velocity component

ψP η(η, τ) = K1+K2 for all η > 0. Therefore, there must be a small transition

layer to match the flow at the wall, ψP η(0, τ) = 0, to the impulsively started

flow for η > 0, ψP η(η, τ) = K1 + K2. When τ ≪ 1, close to the wall the

dominating terms in equation (4.14) are σψP ητ ∼ ψP ηηη , which suggests

the scaling η ∼ (τ/σ)1/2. Hence, the layer has thickness O
(
(τ/σ)1/2

)
with

new variable η̂ = (σ/τ)1/2η where η̂ ∼ O(1). Also, the far-field boundary

condition (4.16), suggests the rescaling ψP (η, τ) = (τ/σ)1/2F (η̂, τ) with α̂ =

(τ/σ)1/2ᾱ, where ᾱ ∼ O(1). Rewriting equation (4.14) in terms of these
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scalings with τ ≪ 1, we obtain

σ

τ

(
F

bηbηbη +
η̂

2
F

bηbη

)
− F 2

bη + FF
bηbη + (K1 +K2)

2 − σF
bητ +O(τ) = 0, (4.17)

with boundary conditions

F (0, τ) = 0, F
bη(0, τ) = 0, (4.18)

F (η̂, τ) →
[
K1 +K2

(
1 − τ2

2
+O(τ 4)

)]
η̂ − ᾱ as η̂ → ∞, (4.19)

where small τ expansions for sin τ and cos τ have been used. From now on,

as the constants K1 and K2 always appear together, we write K = K1 +K2.

To seek a solution to (4.17), we express F (η̂, τ) as the asymptotic expansion,

F (η̂, τ) = F0(η̂) + τF1(η̂) + O(τ 2). Upon substituting this expansion into

(4.17), we obtain

σ

τ

(
F ′′′

0 +
η̂

2
F ′′

0

)
+ σ
(
F ′′′

1 +
η̂

2
F ′′

1 − F ′
1

)
− F 2

0 + F0F
′′
0 +K2 +O(τ) = 0, (4.20)

where the prime denotes differentiation with respect to η̂. At leading order

in τ , we find

F ′′′
0 +

η̂

2
F ′′

0 = 0, (4.21)

with boundary conditions F ′
0(0) = 0, F ′

0(0) = 0 and F ′
0(η̂) → K as η̂ → ∞.

Solving (4.21) and after applying the boundary conditions, the leading order

solution takes the form

F0 = K

[
η̂erf

( η̂
2

)
+

2√
π

(
e−bη2/4 − 1

)]
, (4.22)

where ᾱ = 2(1+∆)√
π

and α̂ → (τ/σ)1/2 2(1+∆)√
π

as τ → 0. Upon differentiating

(4.22), we obtain the leading order velocity profile

F ′
0 = Kerf

(
η̂

2

)
, (4.23)

where K = K1 +K2.

The first order equation is given by

σ

(
F ′′′

1 +
η̂

2
F ′′

1 − F ′
1

)
= F 2

0 − F0F
′′
0 −K2, (4.24)
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with boundary conditions F1(0) = 0, F ′
1(0) = 0 and F ′

1(η̂) → 0 as η̂ → ∞,

where the leading order solution F0(η̂) is given by (4.22). At this stage, it

is not known whether the first order solution is required to give accurate

numerical solutions, as the leading order solution may be sufficient. This

will be discussed in section 4.3.

Having obtained an initial velocity profile for a(τ) = K1 + K2 cos τ , we

let K1 = 1 and K2 = ∆. Therefore, the primary leading order initial profile,

in terms of the original variable η, is given by

ψP (η, τ) = (1 + ∆)

[
ηerf

((σ
τ

)1/2 η

2

)
+
( τ
σ

)1/2
(
e−

ση2

4τ − 1

)]
, (4.25)

ψP η(η, τ) = (1 + ∆)erf

[(σ
τ

)1/2 η

2

]
. (4.26)

In section 4.3, the solutions (4.25) and (4.26) are used as the initial profile

to begin the primary finite-difference numerics, as well as a check on the

validity of the numerical method for small τ . Before solving the primary

equation, an initial velocity profile is needed for the oblique problem.

4.2.2 Initial profile for the oblique flow

In section 4.2.1, an initial profile for the primary equation was obtained for

small τ . However, in this section, we only consider the case when K1 = 1 and

K2 = ∆. To obtain an initial profile for the oblique problem when τ ≪ 1, we

use a similar analysis to that used for the primary equation. We recall the

oblique equation, which was previously defined in equation (4.7), is given by

σψOτ + ψP ηψO − ψPψOη = −σβ̂τ + α̂− aβ̂ + ψOηη, (4.27)

with boundary conditions

ψO(0, τ) = 0, ψO(η, τ) → η − β̂, (4.28)

where a(τ) = 1 + ∆ cos τ and β̂(τ) is an arbitrary function. As the oblique

equation is reliant upon the primary, which is impulsively started at τ = 0

with velocity ψP η(η, 0) = 1+∆, a layer close to the wall is required to match

the velocity on the wall to that of the impulsively started flow for η > 0. Close
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to the wall when τ ≪ 1, the dominant terms in equation (4.27) are given by

σψOτ ∼ ψOηη. Therefore, the layer has the same thickness as the primary

flow and we write η̂ = (σ/τ)1/2η. Also, the far-field boundary condition

(4.28) requires ψO(η, τ) = (τ/σ)1/2G(η̂, τ) with β̂(τ) = (τ/σ)1/2β̄(τ), where

β̄ ∼ O(1) as τ → 0. In addition, from section 4.2.1, we recall the scalings

ψP (η, τ) = (τ/σ)1/2F (η̂, τ) with α̂ = (τ/σ)1/2ᾱ, where ᾱ ∼ O(1) as τ → 0.

Hence, equation (4.27) written in terms of these scalings, is given by

(σ
τ

)1/2(
G

bηbη +
η̂

2
G

bη −
1

2
G− 1

2
β̄
)

= (4.29)

+ (στ)1/2
(
Gτ + β̄τ

)
−
(τ
σ

)1/2(
ᾱ− F

bηG+ FG
bη − (1 + ∆)β̄

)
.

In section 4.2.1, when solving solving the primary initial profile for τ ≪ 1, the

asymptotic expansion F (η̂, τ) = F0(η̂)+τF1(η̂)+O(τ 2) was posed, where the

leading order solution F0(η̂) is given in (4.22). We adopt a similar method

to solve the oblique problem and let G(η̂, τ) = G0(η̂) + τG1(η̂) + O(τ 2).

Substituting this expansion into (4.30) gives

(σ
τ

)1/2(
G′′

0 +
η̂

2
G′

0 −
1

2
G0 −

1

2
β̄
)

= (4.30)

− (στ)1/2
(
G′′

1 +
η̂

2
G′

1 −
3

2
G1 − β̄τ

)

−
( τ
σ

)1/2 (
ᾱ− F ′

0G0 + F0G
′
0 − (1 + ∆)β̄

)
+O

(
τ 3/2

)
.

At leading order, we find

G′′
0 +

η̂

2
G′

0 −
1

2
G0 =

1

2
β̄, (4.31)

with boundary conditions G0(0) = 0 and G0(η̂) → η̂− β̄(τ) as η̂ → ∞, where

the prime denotes differentiation with respect to η̂. The particular solution

of (4.31) is given by G0(η̂, τ) = −β̄. Combining this with the solution to the

homogeneous equation, gives the leading order solution

G0 = Aη̂ +B

[
2
√
πe−bη2/4 + πη̂ erf

(
η̂

2

)]
− β̄. (4.32)

After applying the leading order boundary conditions, we find

G0 =

[
1 − β̄

√
π

2

]
η̂ +

β̄

2
√
π

[
2
√
πe−bη2/4 + πη̂erf

(
η̂

2

)]
− β̄. (4.33)
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Therefore, the oblique velocity profile, in terms of the original the variable

η, is given by

ψO(η, τ) =

[
1 −

(σ
τ

)1/2 β̂
√
π

2

]
η +

β̂

2
√
π

[
2
√
πe−ση

2/4τ (4.34)

+π
(σ
τ

)1/2

η erf

((σ
τ

)1/2 η

2

)]
− β̂ +O(τ).

In the next section, the leading order velocity profiles (4.25) and (4.34) for

τ ≪ 1 are used to solve the primary and oblique equations (4.6) and (4.7),

for selected values of the frequency σ and amplitude ∆.

4.3 Numerics

In sections 4.2.1 and 4.2.2, the asymptotic solutions for the primary and

oblique problems for τ ≪ 1 were found and are given in (4.25) and (4.34).

In this section, we use these solutions as initial velocity profiles to solve the

primary and oblique equations, which were initially stated in equations (4.6)

and (4.7) and are given by

σψP ητ +
(
ψP η

)2 − ψPψP ηη = σaτ + a2 + ψP ηηη , (4.35)

σψOτ + ψP ηψO − ψPψOη = −σβ̂τ + α̂− aβ̂ + ψOηη, (4.36)

with boundary conditions

ψP (0, τ) = 0, ψP η(0, τ) = 0, ψO(0, τ) = 0, (4.37)

ψP (η, τ) → a(τ)η − α̂, ψO(η, τ) → η − β̂ as η → ∞, (4.38)

where a(τ) = 1 + ∆ cos τ , β̂(τ) = bM + bO cos τ and α̂(τ) is obtained from

the primary solution. To solve equations (4.35) and (4.36), a finite-difference

technique is used with a second order accurate Crank-Nicolson method, which

can be found in most numerical methods books, for example Gerald and

Wheatley (1989). This method averages the centrally discretised functions

at two time steps n and n + 1. One benefit of using the Crank-Nicolson

method over other finite-difference schemes is the stability, as there is no
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restriction on the relation between the temporal and spatial step sizes. As

the oblique equation (4.36) is dependent upon the primary equation, we begin

by solving (4.35). Due to the nonlinear terms in equation (4.35), we write

ψq = ψP η and rewrite the primary equation as

σψqτ + ψqψP η − ψPψqη = σaτ + a2 + ψqηη, (4.39)

giving a system which is linear in the two variables ψPη and ψq. To begin, we

give an example of the Crank-Nicolson method by discretising the convection

terms in equation (4.39). We use the notation ψnqi = ψq(ηi, tn) and ψnPi
=

ψP (ηi, tn) and write

ψqψP η ≈ 1

2



ψn+1
qi

(
ψn+1
Pi+1

− ψn+1
Pi−1

)

2h
+ ψnqi

(
ψnPi+1

− ψnPi−1

)

2h



 ,

(4.40)

ψPψqη ≈ 1

2


ψn+1

Pi

(
ψn+1
qi+1

− ψn+1
qi−1

)

2h
+ ψnPi

(
ψnqi+1

− ψnqi−1

)

2h


 ,

where h corresponds to the grid spacing ηi = ih with i = 1...N and dt

represents the time interval tn = ndt with n = 1...M . Discretising the

primary problem and using the expansions given in (4.40), we obtain

σ

(
ψn+1
qi

− ψnqi
)

dt
+
ψn+1
qi

(ψn+1
Pi+1

− ψn+1
Pi−1

) − ψn+1
Pi

(ψn+1
qi+1

− ψn+1
qi−1

)

4h

+
ψnqi(ψ

n
Pi+1

− ψnPi−1
) − ψnPi

(ψnqi+1
− ψnqi−1

)

4h

= (4.41)

1

2

(
σaτ + a2

)n
i

+
1

2

(
σaτ + a2

)n+1

i

+

(
ψn+1
qi+1

− 2ψn+1
qi

+ ψn+1
qi−1

+ ψnqi+1
− 2ψnqi + ψnqi−1

)

2h2
,

with boundary conditions

ψnq1 = 0, ψnqN = 1 + ∆ cos(Mdt). (4.42)

The first term in equation (4.41) corresponds to the unsteady term in equa-

tion (4.35) and the second and third terms are a combination of the convective

terms given in (4.40). The unsteady time-dependent components a and aτ
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have been averaged over two time steps and finally the last term represents

the viscous term in (4.35). We rewrite (4.41) in terms of the tridiagonal

system

Aiψ
n+1
qi+1

+Biψ
n+1
qi

+ Ciψ
n+1
qi−1

= Di, (4.43)

with coefficients Ai...Di given by

Ai = −1 − h

2
ψn+1
Pi

, (4.44)

Bi =
2h2σ

dt
+ 2 +

h

2

(
ψn+1
Pi+1

− ψn+1
Pi−1

)
, (4.45)

Ci = −1 +
h

2
ψn+1
Pi

, (4.46)

Di = ψnqi+1

(
1 +

h

2
ψnPi

)
+ ψnqi

[
2h2σ

dt
− 2 − h

2

(
ψnPi+1

− ψnPi−1

)]
(4.47)

+ψnqi−1

(
1 − h

2
ψnPi

)
+
h2

2

[(
σaτ + a2

)n
i

+
(
σaτ + a2

)n+1

i

]
.

Within the coefficient Di, everything is known at the nth time step, whereas

the coefficients Ai, Bi and Ci all have unknown functions at the n+ 1th time

step.

To solve the tridiagonal system (4.43), we use the using the leading order

asymptotic approximation found in section 4.2.1 as a starting profile. This

profile could be written in terms of the scaled variable η̂ = (σ/τ)1/2η, which

was used in obtaining the small τ approximation. However, this would require

the primary equation and boundary conditions to be rescaled in terms of η̂

and the numerics beginning at τ = 0. Instead, it is easier to consider the

initial profile in terms of η, given by

ψnqi = (1 + ∆)erf

[(σ
τ

)1/2 ηni
2

]
, (4.48)

ψnPi
= (1 + ∆)

[(σ
τ

)1/2

ηni erf

((σ
τ

)1/2 ηni
2

)
+

2√
π

(
e−

η2n
i σ

4τ − 1

)]
, (4.49)

and begin the numerics at small τ . Figure 4.5 illustrates the starting profile

ψq(η, τinitial) for different start times, denoted τinitial. Numerical trials have

suggested that the starting profile does not affect the solution ψq(η, τ) as

long as τinitial is small and only the leading order initial profile is required to

give accurate solutions.
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At the first time step, ψn+1
P = ψnP , where ψnP is the initial profile (4.49).

The tridiagonal system (4.43) is solved using the Thomas algorithm, which

can be found, for example in Hoffman (2001), to give ψn+1
q . Integrating

this function with respect to η via the trapezium rule, we obtain ψn+1
P . An

iterative procedure is performed, where ψn+1
Pi

is compared with the previous

iterate. When these iterates are within a small tolerance of each other, the

value of ψn+1
P is then used as the initial profile at the next time step.
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Figure 4.5: The initial velocity profile ψP η(η, τ), given in (4.48), for σ = 0.5
and ∆ = 0.5, initiated at different starting times, from left to right, τ =
0.0001, τ = 0.001 and τ = 0.01.

Having described the method used to solve the primary equation, a similar

method is used to solve the oblique equation (4.36). As this equation is linear

in ψnOi
= ψO(ηi, tn), the solution ψnPi

= ψP (ηi, tn) at each time step is used.

The oblique equation (4.36) is discretised as

σ

(
ψn+1
Oi

− ψnOi

)

dt
+
ψn+1
Oi

(ψn+1
Pi+1

− ψn+1
Pi−1

) − ψn+1
Pi

(ψn+1
Oi+1

− ψn+1
Oi−1

)

4h

+
ψnOi

(ψnPi+1
− ψnPi−1

) − ψnPi
(ψnOi+1

− ψnOi−1
)

4h

= (4.50)

−σ
2

(
β̂nτi + β̂n+1

τi

)
+

1

2

(
α̂ni + α̂n+1

i

)
− 1

4

((
ani + an+1

i

) (
β̂ni + β̂n+1

i

))

+

(
ψn+1
Oi+1

− 2ψn+1
Oi

+ ψn+1
Oi−1

+ ψnOi+1
− 2ψnOi

+ ψnOi−1

)

2h2
,

with boundary conditions

ψnO1
= 0, ψnON

= hN − β̂nN . (4.51)
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The terms in (4.50) have been discretised similar to that of the primary

equation (4.41). Additionally, the time-dependent function α̂ = limη→∞(aη−
ψP ) is obtained from solving the primary problem and is discretised over the

current and next time step, with the function β̂(τ) discretised similarly over

two time steps. Expressing equation (4.50) in terms of a tridiagonal system,

we obtain

aiψ
n+1
Oi+1

+ biψ
n+1
Oi

+ ciψ
n+1
Oi−1

= di, (4.52)

with coefficients ai...di given by

ai = −1 − h

2
ψn+1
Pi

, (4.53)

bi =
2h2σ

dt
+ 2 +

h

2

(
ψn+1
Pi+1

− ψnPi−1

)
, (4.54)

ci = −1 +
h

2
ψn+1
Pi

, (4.55)

di = ψnOi+1

(
1 +

h

2
ψnPi

)
+ ψnOi

[
2h2σ

dt
− 2 − h

2

(
ψnPi+1

− ψnPi−1

)]
(4.56)

+ψnOi−1

(
1 − h

2
ψnPi

)
− σ

2

(
β̂nτi + β̂n+1

τi

)

+
1

2

(
α̂ni + α̂n+1

i

)
− 1

4

[(
ani + an+1

i

) (
β̂ni + β̂n+1

i

)]
.

We note that the form of the oblique equation (4.36) is similar to that of the

equation for ψq, given by (4.39). Consequently, the coefficients ai, bi and ci

are identical to the coefficients Ai, Bi and Ci from the primary discretisation

and the only difference between di and Di are the contributions from the

time-dependent functions a, α̂ and β̂. However, as the primary problem is

now known at each time step the coefficients ai...di are already known.

To solve the tridiagonal system (4.52), we use the leading order asymp-

totic approximation for small τ found in section 4.2.2. Similar to the primary

problem, the starting profile could be written in terms of the scaled variable

η̂, but that would require a rescaling of equation (4.36). Instead, we choose

to write the initial profile in terms of η, which is given by

ψnOi
=

[
1 −

(σ
τ

)1/2 β̂
√
π

2

]
ηni +

β̂

2
√
π

[
2
√
πe−ση

2n
i /4τ (4.57)

+π
(σ
τ

)1/2

ηni erf

((σ
τ

)1/2 ηni
2

)
− 2

√
π

]
,
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and begin the numerics for small τ . We note when β̂ = 0, the starting profile

is independent of time and is simply given by ψnOi
= ηni . As an example, we

plot the initial oblique profile (4.57) in figure 4.6 when β̂ = 1, for different

starting times. Similar to the primary problem, numerical trials have shown

that the oblique starting profile (4.57) does not affect the oblique solutions,

as long as the starting time is small.
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Figure 4.6: The initial velocity profile for ψO(η, τ) for β̂ = 1 and σ = 0.5,
initiated at different starting times, from top to bottom, τ = 0.01, τ = 0.001
and τ = 0.0001.

Having described the theory used in solving the primary and oblique equa-

tions, by means of a Crank-Nicolson finite difference technique, we proceed

by presenting a sample of results for selected values of the amplitude ∆ and

the frequency σ for different times, τ .

Figure 4.7 illustrates the velocity profiles ψPη(η, τ) and ψO(η, τ) where

β̂ = 0 for σ = 0.5 and ∆ = 0.1, 0.5, 0.8 at τ = 1. It can be seen in figure

4.7(b) that ψO(η, τ) is virtually independent of ∆ over the whole range of

η. This is due to the amplitude ∆ not appearing in equation (4.50) or

the boundary conditions (4.51) and the only contribution comes from the

primary solution ψP (η, τ). Therefore, there is very little difference between

the velocity profiles for differing values of the amplitude. For the parameter

values chosen, the largest difference occurs in the region 0.5 < η < 2 and this

is illustrated in 4.7(c).

In figure 4.8(a), the oblique velocity profile is plotted for σ = 0.5 and ∆ =

0.5 at τ = 1, where bO = 0 and bM = 0, 1.02, 1.5, i.e. β̂ only contains a mean
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Figure 4.7: (a) The primary velocity profile for σ = 0.5 and ∆ = 0.1, 0.5, 0.8

at τ = 1. (b) The oblique velocity profile for β̂ = 0, σ = 0.5 and ∆ =
0.1, 0.5, 0.8 at τ = 1. (c) A close up of the oblique velocity profile for the
same parameters at τ = 1. In each case ∆ = 0.1 is represented by the solid
line, ∆ = 0.5, the dotted lines and ∆ = 0.1, the dashed lines.
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Figure 4.8: (a) The oblique velocity profile for σ = 0.5, ∆ = 0.5 at τ = 1,
where bO = 0 and, from left to right, bM = 1.5, 1.02, 0. (b) The oblique
velocity profile for σ = 0.5, ∆ = 0.5 at τ = 1, where bM = 0 and, from left
to right, bO = 3, 2.28, 0.

component. When bM > 1.02, a region of flow reversal occurs close to the

wall. Increasing the mean component bM , increases this region. Numerical

trials have shown that as σ increases, the value of bM at which flow reversal

occurs decreases. Figure 4.8(b) illustrates the oblique velocity profile when

bM = 0 and bO = 0, 2.28, 3, i.e. β̂(τ) is purely oscillatory. Similarly, we notice

that when bO > 2.28, a region of flow reversal is present close to the wall.

Therefore, for a fixed value of the frequency and amplitude there exists a

value of β̂, above which there is a region of flow reversal.

In performing these numerics, we have taken the spatial step size h =

0.001 and the temporal step size dt = 0.001. In the standard way, the values

of h and dt are decreased as a way of validating our numerical calculations,
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which do not affect our solutions. For the selected values of ∆ chosen, so-

lutions are found for τ < 1. However, Blyth and Hall (2003) found that

for a fixed frequency, if the amplitude is increased beyond a critical value,

ψP (η, τ) breaks down at a finite-time singularity. Therefore, we proceed by

considering the long term behaviour of ψP (η, τ) and ψO(η, τ) for values of ∆,

both above and below the critical amplitude, which we denote ∆c(σ).

For ∆ < ∆c, the primary wall shear component ψPηη(0, τ) is obtained

for all τ and is illustrated in figure 4.9(a) over a period of 2π for σ = 0.5

and ∆ = 0.5, 0.8, 1. However, for ∆ > ∆c, a time is reached at which

the numerical scheme fails and the solutions break down at a finite-time

singularity. This can be seen in figure 4.9(b), where the ψPηη(0, τ) is plotted

for σ = 0.5 and ∆ = 2, 4, 6.

Similarly, the oblique wall shear component ψOη(0, τ) is computed for

∆ < ∆c and ∆ > ∆c respectively. For ∆ < ∆c, the oblique wall shear

component is obtained for all τ and is plotted over a period of 2π in figure

4.10(a) for σ = 0.5 and ∆ = 0.5, 0.8, 1. Like that of the primary problem, for

∆ > ∆c, the oblique problem breaks down at a finite-time singularity, which

is illustrated in figure 4.10(b) for σ = 0.5 and ∆ = 2, 4, 6. We note that

the finite-time singularity is the same for both the primary and the oblique

problems and the singular behaviour is more noticeable in the oblique case.

We note that figures 4.9(b) and 4.10(b) show that for a fixed value of σ,

the time at which the solutions break down decreases as ∆ increases. An

estimate of the finite-time singularity can be obtained numerically for each

value of the amplitude for a fixed frequency. However, in the next section, the

behaviour of the solutions close to the finite-time singularity are discussed

and a more accurate value of the finite-time singularity is obtained.

4.3.1 The behaviour of the velocity profiles close to

the finite-time singularity

For a given σ and ∆, the methods described in the previous section give

a good estimate to the finite-time singularity, which occurs in the primary
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Figure 4.9: (a) The primary wall shear component ψPηη(0, τ) for σ = 0.5 and
∆ < ∆c over a single time period, for ∆ = 0.5 (solid line), ∆ = 0.8 (dotted
lines) and ∆ = 1 (dashed lines). (b) The primary wall shear component
ψPηη(0, τ) for σ = 0.5 and ∆ > ∆c, where ∆ = 2 (solid line), ∆ = 4 (dotted
lines) and ∆ = 6 (dashed lines). The dots represent where the numerics
break down.

and oblique problems when, for a fixed frequency, the amplitude exceeds

a critical amplitude. Similar time singularities appear in the flow around

an impulsively rotated sphere considered by Banks and Zaturska (1979).

In this case, a local asymptotic analysis in the region close to the finite-

time singularity was presented. A similar technique was used by Blyth and

Hall (2003) for the primary problem. We extend this analysis, to include

the oblique problem. Blyth and Hall discovered that as τ → τ−s , where

τs denotes the finite-time singularity, the velocity profile ψq(η, τ) develops

a minimum ψqmin
at ηmin. Close to the finite-time singularity, ηmin scales

like (τs − τ)−1, and ψqmin
scales like (τs − τ)−1 as τ → τ−s . Using these, we

obtain ψqmin
at each time step and a linear relationship is obtained between
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Figure 4.10: (a) The oblique wall shear component ψOη(0, τ) illustrated for

β̂ = 0, σ = 0.5 and ∆ < ∆c over a single time period, for ∆ = 0.5 (solid
line), ∆ = 0.8 (dotted lines) and ∆ = 1 (dashed lines). (b) The oblique wall

shear component ψOη(0, τ) for β̂ = 0, σ = 0.5 and ∆ > ∆c, where ∆ = 2
(the solid line), ∆ = 4 (dotted lines) and ∆ = 6 (dashed lines).

ψ−1
qmin

(ηmin, τ) and τ , for a fixed value of σ and ∆ > ∆c as τ → τ−s . We

illustrate this relationship by considering the case for σ = 0.5 and ∆ = 2,

which was previously discussed by Blyth and Hall (2003). Additionally, we

confirm the finite-time singularity τs, calculated by Blyth and Hall for this

choice of parameters and use this result and method to discuss the behaviour

of the primary and oblique velocity profiles as the finite-time singularity is

approached.

Using the numerical results obtained in section 4.3, for σ = 0.5 and ∆ = 2,

ψqmin
(ηmin, τ) is obtained at each time step. Figure 4.11(a) illustrates this

minimum for τ = 3.37, which is close to the finite-time singularity τs. We
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Figure 4.11: (a) The primary velocity profile, illustrating a minimum as
τ → τs for σ = 0.5 and ∆ = 2 at τ = 3.37. (b) The oblique velocity profile
showing a maximum as τ → τs, where σ = 0.5 and ∆ = 2 at τ = 3.37. For
these given parameters, the finite-time singularity is numerically calculated
and given by τs = 3.396.

improve ψqmin
(ηmin, τ) at each time step by using quadratic interpolation.

Three points around the minimum, denoted (η1, ψq1), (η2, ψq2) and (η3, ψq3)

are taken. A quadratic polynomial is sought through these points and we

solve the system

ψqi = bη2
i + cηi + d, (4.58)

for i = 1, 2, 3. Having obtained the values for b, c and d at each minimum,

we obtain the interpolating polynomial ψ∗
q = bη2 + cη + d. The minimum

occurs when
dψ∗

q

dη
= 0, at ηmin = − c

2b
. From the improved value of ηmin, we

can obtain the improved minimum, ψqmin
= bη2

min+ cηmin+d. The improved

minimum is calculated for each value of τ as τ → τ−s .
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In figures 4.12(a) and 4.12(b), ψ−1
qmin

(ηmin, τ) is plotted against τ , illus-

trating the linear relationship between ψ−1
qmin

and τ as τ → τ−s . By linear

extrapolation, this line can be extended to meet the intercept of τ axis, which

corresponds to the finite-time singularity, τs. To obtain the line through

these points, the least squares method is used (Mathews (1986)). For ease of

notation, we let ψ−1
qmin

= q−1
n at each time τn, where n = 1...N . Using the re-

sults obtained from the interpolation method, the least squares line through

the points (τ1, q
−1
1 ) − (τN , q

−1
N ) is found. We write the least squares line as

q(τn) = Cτn +D, where C and D are to be found. The error between q(τn)

and q−1
n is defined by en = q(τn) − q−1

n and we express the root-mean-square

error as

E(q) =

[
1

N

N∑

n=1

∣∣q(τn) − q−1
n

∣∣2
]1/2

. (4.59)

It follows that

E(C,D) =

N∑

n=1

(
Cτn +D − q−1

n

)2
= N [E(q)]2 . (4.60)

To calculate the minimal value of (4.60), we find the partial derivatives of

E(C,D) with respect to C and D and set these equal to zero. Therefore, we

obtain the system

C
N∑

n=1

τ 2
n +D

N∑

n=1

τn =
N∑

n=1

τnq
−1
n , (4.61)

C

N∑

n=1

τn +ND =

N∑

n=1

q−1
n , (4.62)

where q−1
n and τn are known at each time step n. Solving the system of

equations (4.61) and (4.62), we obtain C and D, which correspond to the

gradient and the intercept of the least squares line respectively. We are most

interested in the intercept D, as this corresponds to the finite-time singularity,

τs. The results of the linear extrapolation can be seen in table 4.3.1, where

C and D have been calculated for different spatial step sizes and different

time ranges. However, it can be seen that C and D are independent of these

changes and we find C = 0.50 and D = 3.396. Therefore, for σ = 0.5 and
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∆ = 2.0, we obtain τs = 3.396 correct to 3.d.p, which is in good agreement

to Blyth and Hall (2003), who found τs = 3.39.

Turning our attention to the oblique problem, a maximum, denoted

ψOmax(ηmax, τ), develops in the oblique velocity profile as τ → τs, which can

be seen in figure 4.11(b). Close to the finite-time singularity, we choose ηmax

to scale like (τs − τ)−1, which follows from the primary problem and ψOmax

to scale like (τs − τ)−1 as τ → τ−s . From these scalings, a linear relationship

can be seen between ψ−1
Omax

(ηmax, τ) and τ as τ → τ−s , which is illustrated in

figure 4.12(c). Upon repeating the above analysis for the oblique problem,

the finite-time singularity agrees with that calculated for the primary prob-

lem and is independent of the value of β̂. We note that the primary velocity

profile develops a minimum as τ → τ−s , however, the oblique velocity profile

develops a maximum as τ → τ−s .

Having obtained the finite-time singularity for σ = 0.5 and ∆ = 2 in

figure 4.13, we present the time singularities for other selected values of σ

and ∆, where lines of constant ∆ are plotted. These time singularities were

obtained using the method described above. As an example, for σ = 2.5 an

∆ = 3, the finite-time singularity is given by τs = 5.179. We note that as

σ tends to the critical value for a fixed ∆, the time at which the solutions

break down increases.

Having solved the primary and oblique equations numerically, in the next

section, we consider solutions in the small frequency limit. In addition to this,

the small frequency approximation to the finite-time singularity is obtained.

4.4 Small frequency

In section 4.3, the primary and oblique equations, (4.6) and (4.7) respec-

tively, were solved numerically. In this section, solutions to the primary and

oblique equations are obtained in the small frequency limit. Also, an asymp-

totic expansion to the finite-time singularity for small σ is obtained, with

comparisons being made with the time singularities calculated in section 4.3.
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Figure 4.12: (a) The primary function, ψ−1
qmin

(ηmin, τ) plotted against τ as
τ → τ−s for ∆ = 2 and σ = 0.5. (b) A close-up of the primary function,
ψ−1
qmin

(ηmin, τ) plotted against τ as τ → τ−s for ∆ = 2 and σ = 0.5. (c)

The oblique function, ψ−1
Omax

(ηmax, τ) plotted against τ as τ → τ−s for β̂ = 0,
∆ = 2 and σ = 0.5.
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Figure 4.13: The time singularities calculated for fixed values of ∆. Lines of
constant ∆ are plotted, from left to right, ∆ = 1.5, 2, 3, 4, 5, 6, 7.

Riley and Vasantha (1989), who considered a flow with only an oscillatory

component in the far-field, obtained the finite-time singularity expressed as

an asymptotic series as σ → 0. Blyth and Hall (2003) paralleled their work

by considering the primary problem for σ → 0. They found, for a fixed

value of the amplitude above the threshold limit, a similar small frequency

asymptotic approximation to the finite-time singularity. We follow Blyth and

Hall (2003) by duplicating their work for the primary problem to validate

their analysis and to enable us to solve the oblique problem.

When the frequency σ = 0, the primary equation reduces to the steady

Hiemenz equation and the oblique equation reduces to that of the steady

oblique equation discussed in chapter 3. Therefore, we expect as σ → 0,

the primary and oblique equations to be quasi-steady. To seek the primary

solution, we pose the asymptotic expansion ψP (η, τ) = f0(η, τ) + σf1(η, τ) +

O(σ2), as σ → 0. Substituting this expansion into the primary equation

(4.6), gives at leading order

f0ηf0ηη − f 2
0η + f0ηηη + a2 = 0, (4.63)

with boundary conditions f0(0, τ) = 0, f ′
0(0, τ) = 0 and f ′

0(η, τ) → a(τ) as

η → ∞, where a(τ) = 1 + ∆ cos τ . To remove the time dependence from

equation (4.63), we write f0 = a1/2f̃0 and η̃ = a1/2η, where a(τ) > 0, to give

the leading order equation

f̃0eηeηeη − f̃ 2
0eη + f̃0f̃0eηeη + 1 = 0, (4.64)
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τR A B h

3.30-3.39 0.50689 3.39624 0.001
3.31-3.39 0.55571 3.3961 0.001
3.32-3.39 0.504385 3.39608 0.001
3.33-3.39 0.503332037 3.39602 0.001
3.34-3.39 0.502411456 3.3959 0.001
3.35-3.39 0.5016214 3.39595 0.001
3.36-3.39 0.500955 3.39593 0.001
3.37-3.39 0.5003979 3.39591 0.001
3.38-3.39 0.49988 3.395906 0.001

3.33-3.39 0.50345 3.39603 0.005
3.34-3.39 0.502512 3.39598 0.005
3.35-3.39 0.501704479 3.39595 0.005
3.36-3.39 0.50102189 3.39593 0.005
3.37-3.39 0.50045 3.395917 0.005
3.38-3.39 0.4999444 3.39590 0.005

Table 4.1: Computing the gradient and the intercept of ψ−1
qmin

, where τR is
the range over which the least squares analysis is conducted.

with boundary conditions f̃0(0) = 0, f̃ ′
0(0) = 0 and f̃ ′

0(η̃) → 1 as η̃ → ∞.

Therefore, the leading order equation in scaled variables for 0 < ∆ < 1, as

σ → 0, is the same as the Hiemenz equation (3.3).

Having obtained the quasi-steady leading order approximation for the

primary equation, we seek a similar approximation for the oblique equation.

To do so, we write ψO(η, τ) = g0(η, τ) + σg1(η, τ) + O(σ2), as σ → 0. Also,

the primary scalings above are used with α̂ = a1/2α. This scaling follows

from the far-field boundary condition (4.9), where α is a constant known

from the steady problem in chapter 3. Upon substituting these scalings into

the oblique equation, we obtain the leading order equation

σg0τ + a
(
f̃0eηg0 − f̃0g0eη

)
= −σβ̂τ + a1/2α− aβ̂ + ag0eηeη. (4.65)

The far-field boundary condition ψO(η, τ) → η − β̂ suggests the scalings

g0 = a−1/2g̃0 and β̂ = a−1/2β, where a(τ) > 0. The constant β is known from

the steady problem in chapter 3 and is the strength of the uniform stream.
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Using these scalings, equation (4.65) becomes

σa−1/2g̃0τ + a1/2
(
f̃0eη g̃0 − f̃0g̃0eη

)
= (4.66)

− σa−1/2βτ + a1/2 (α− β) + a1/2g̃0eηeη.

Thus, as σ → 0, the leading order equation in scaled variables for 0 < ∆ < 1

is given by

g̃0eηeη + f̃0g̃0eη − g̃0f̃0eη = β − α, (4.67)

with boundary conditions g̃0(0) = 0 and g̃0(η̃) → η̃ − β as η̃ → ∞, which is

the same as the steady oblique equation (3.5).

When ∆ > 1, the approximations (4.64) and (4.67) are no longer valid

for all τ as there is a region in which a(τ) < 0. This is illustrated in figure

4.14, where the leading order asymptotic approximation ψPηη(0, τ) = (1 +

∆ cos τ)3/2f̃ ′′
0 (0) is plotted for ∆ = 0.5, 1, 2, where f̃ ′′

0 (0) = 1.233. Therefore,

we proceed by looking for solutions to the primary and oblique equations

(4.6) and (4.7), when ∆ > 1 for small σ.
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Figure 4.14: The leading order asymptotic primary wall shear component
ψPηη(0, τ) plotted against τ for ∆ = 0.5 (solid line), ∆ = 1 (dotted lines)
and ∆ = 2 (dashed lines). When ∆ > 1, it is observed that the primary wall
shear component breaks down.

When ∆ > 1, a(τ) = 1 + ∆ cos τ develops a zero at τ0 = π − cos−1( 1
∆

).

The quasi-steady approximations break down when τ → τ0, i.e. when the

time-dependent terms become comparable to the steady terms in equations

(4.6) and (4.7). Comparing the magnitudes of the terms in the primary
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equation, σψP ητ ∼
(
ψP η

)2
leads to the approximation a ∼ σ1/2. Using this

scaling, we rescale the primary and oblique variables as

ψP (η, τ) = σ1/4P̂ (Y, T ), ψO(η, τ) = σ−1/4Ô(Y, T ), η = σ−1/4Y, (4.68)

(τ0 − τ) = σ1/2T, α̂ = σ1/4α̃, β̂ = σ−1/4β̃.

As a(τ) appears explicitly in the primary equation (4.6), we take a Taylor

expansion of a(τ) about τ0, to obtain

a = aτ (τ0)(τ − τ0) +O
(
(τ − τ0)

2
)
, (4.69)

since a(τ0) = 0. Using the property sin τ0 = (1 − cos2 τ0)
1/2

, we find sin τ0 =

1
∆

(∆2 − 1)
1/2

and (4.69) becomes

a = (∆2 − 1)1/2(τ0 − τ) +O
(
(τ − τ0)

2
)
. (4.70)

Using the scalings (4.68) and the expansion (4.70), the primary and oblique

equations become

−P̂Y T + P̂ 2
Y − P̂ P̂Y Y = −µ + µ2T 2 + P̂Y Y Y , (4.71)

−ÔT + ÔP̂Y − P̂ ÔY = β̃T + α̃− µT β̃ + ÔY Y , (4.72)

with boundary conditions

P̂ (0, T ) = 0, P̂ ′(0, T ) = 0, Ô(0, T ) = 0, (4.73)

P̂ ′(Y, T ) → µT, Ô(Y, T ) → Y − β̂ as Y → ∞, (4.74)

where µ = (∆2 − 1)1/2 with ∆2 − 1 > 0.

We begin by solving equations (4.71) and (4.72) using a Crank-Nicolson

finite-difference technique described previously in section 4.3. However, equa-

tions (4.71) and (4.72) are integrated backwards in T , which is equivalent to

integrating forwards in τ . The computations are initiated at T = T∞ = 5.

At T∞, the functions P̂ (Y, T ) and Ô(Y, T ) need to match to the quasi-steady

approximations (4.64) and (4.67). Hence, we write P̂ =
(
µT
T∞

)1/2

P̃ , Ô =
(
µT
T∞

)−1/2

Õ, α̃ =
(
µT
T∞

)1/2

ᾱ, β̃ =
(
µT
T∞

)−1/2

β̄ with variable Z =
(
µT
T∞

)1/2

Y .
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Substituting these scalings into equations (4.71) and (4.72), we obtain the

leading order profiles

P̃ ′′′ + P̃ P̃ ′′ − P̃ ′2 + T 2
∞ = 0, (4.75)

Õ′′ + P̃ Õ′ − ÕP̃ ′ = ᾱ− T∞β̄, (4.76)

with boundary conditions

P̃ (0, T ) = 0, P̃ ′(0, T ) = 0, Õ(0, T ) = 0, (4.77)

P̃ ′(Z, T ) → T∞, Õ(Z, T ) → Z − β̃ as Z → ∞, (4.78)

where the prime denotes differentiation with respect to Z. We note the

equations (4.75) and (4.76) are scaled versions of the leading order quasi-

steady approximations (4.64) and (4.67).

To solve the primary equation (4.71), we use the starting profile (4.75),

which is a scaled version of the Hiemenz equation, to initiate the numerics.

The solutions P̂ (Y, T ) are used at each time step T to solve the oblique

equation (4.72) with the starting profile (4.76). As the primary equation

(4.71) is nonlinear, we write Q = P̂Y and rewrite the equation (4.71) as

−QT +QP̂Y − P̂QY = −µ+ µ2T 2 +QY Y , (4.79)

with boundary conditions Q(0, T ) = 0 and Q(Y, T ) → µT as Y → ∞.

Equation (4.79) is discretised similarly to that in section 4.3 and integrated

backwards in T using the Thomas algorithm until the computations fail to

converge at some T , denoted Ts.

We solve (4.79) for the example case of ∆ = 2, which was the case con-

sidered by Blyth and Hall (2003). Similarly to that of the primary problem

discussed in section 4.3.1, Q(Y, T ) develops a minimum Qmin(Ymin, T ), as

T → T+
s . We choose the scalings Qmin ∼ (Ts− T )−1 with Ymin ∼ (Ts− T )−1

as T → T+
s and a linear relationship is found between Q−1

min(Ymin, T ) and

T . To improve the minimum Qmin(Ymin, T ), which was obtained numerically

at each time step, we seek a quadratic polynomial through the three points

around the minimum. Figure 4.15(a) illustrates the linear relationship be-

tween the improved minimum Q−1
min(Ymin, T ) and T for ∆ = 2. Using linear
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Figure 4.15: (a) The primary function Q−1
min(Ymin, T ) plotted against T as

T → T+
s for ∆ = 2. (b) The oblique function O−1

max(Ymax, T ) plotted against

T as T → T+
s , for β̂ = 0. Both of these figures illustrate a linear relationship

as T → T+
s .

extrapolation, this line is extended to intersect the T -axis, where the intercept

corresponds to the finite-time singularity Ts. These methods were previously

discussed in section 4.3.1. In the case of ∆ = 2, we find Ts = −1.557.

This finite-time singularity Ts differs slightly from the work of Blyth and

Hall (2003), who calculate the finite-time singularity Ts = −1.51. There-

fore, to confirm the accuracy of our numerics and Ts, figure 4.16 illustrates

Q−1
min(Ymin, T ) plotted against T for different values of the spacial and tem-

poral step sizes. It can be seen when both the spacial and the temporal

step sizes are decreased, there is no change to the linear relationship or the

finite-time singularity Ts. We also note that the value of the intercept Ts is

independent of the starting time T∞, as long as T∞ is large. As an outcome,

we believe that the finite-time singularity calculated is correct.
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Figure 4.16: The primary function Q−1
min(Ymin, T ) plotted against T as T →

T+
s , confirming the accuracy of the finite-time singularity Ts = −1.557. The

solid line represents a spacial and temporal step size of 0.001. The crosses
represent a spacial step size of h = 0.001 and a temporal step size of dt =
0.0005. The circles represent a spacial step size of h = 0.0005 and a temporal
step size of dt = 0.001.

The oblique equation (4.72) is solved using the same method as that for

the primary equation (4.71). Similar to that of the oblique equation discussed

in section 4.3.1, Ô(Y, T ) develops a maximum Ômax(Ymax, T ), as T → T+
s

and we scale Ômax ∼ (Ts − T )−1 with Ymax ∼ (Ts − T )−1 as T → T+
s .

Using these scalings, a linear relationship between Ô−1
max(Ymax, T ) and T oc-

curs as T → T+
s . The maximum Ômax, which was obtained numerically, is

improved using a quadratic polynomial through three points around the max-

imum. We illustrate the linear relationship between the improved maximum

Ô−1
max(Ymax, T ) and T in figure 4.15(b) for ∆ = 2 and we find Ts = −1.557,

which agrees with the finite-time singularity calculated in the primary prob-

lem.

To obtain the general relation for the finite-time singularity Ts and τs, we

use the scaling given in (4.68) and find

τs(σ,∆)

σ
=
π − cos−1

(
1
∆

)

σ
− Ts(∆)

σ1/2
+O(σ) as σ → 0. (4.80)

For the sample case of ∆ = 2, we find τs is given by

τs
σ

=
2π

3σ
+

1.557

σ1/2
+ · · · as σ → 0. (4.81)

In figure 4.17, the finite-time singularity (4.81) is considered alongside the

numerical results obtained in section 4.3 for ∆ = 2, showing good agreement

as σ → 0.
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Figure 4.17: The finite-time singularity approximation (4.81), represented by
the solid line, plotted alongside some numerical results from section 4.3 for
∆ = 2, represented by the crosses. Good agreement can be seen between the
numerical results and the asymptotic solution for σ ∼ 1.

Having considered the solutions to the primary and oblique equations,

both numerically for selected values of the amplitude ∆ and frequency σ and

in the small frequency limit, in the next section we discuss the streamlines

for different values of σ and ∆. Predominantly, in this section, the numerics

have been obtained for β̂ = 0, whereas in the next section the effect of the

time-dependent horizontal component β̂ 6= 0 is discussed.

4.5 The structure of the near-wall flow

In section 4.3, the primary and oblique equations have been solved numeri-

cally using a finite-difference method for selected values of ∆ and σ. In this

section, we discuss the flow structure near the wall. To do so, we consider

the dividing streamline and the attachment point with the wall for a range

of values of ∆ and σ.

We recall that the streamfunction, initially stated in (4.5), is given by

ψ(x, η, τ) = (νk)1/2xψP (η, τ) + ζ̂
(ν
k

)∫ η

0

ψO(z, τ)dz, (4.82)

where η = (k/ν)1/2y, ζ̂ is the constant vorticity, k is the strength of the

orthogonal component and ν is the viscosity. To find the dividing streamline,
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we set (4.82) equal to zero, to obtain

xd = −ζ̂
( ν
k3

)1/2
∫ η
0
ψO(z, τ)dz

ψP (η, τ)
. (4.83)

Due to the wall boundary conditions ψP (0, τ) = ψPη(0, τ) = 0, the denom-

inator of (4.83) equals zero at η = 0. Therefore, the primary and oblique

components are expressed in the small η limit as ψO(0, τ) = ψOη(0, τ)η +

ψOηη(0, τ)η
2/2 + O(η3) and ψP (0, τ) = ψPηη(0, τ)η

2/2 + ψPηηη(0, τ)η
3/6 +

O(η4). Substituting these expansions into (4.83), we obtain xd = x0 + Gη,

where x0 is given by

x0 = −ζ̂
( ν
k3

)1/2 ψOη(0, τ)

ψPηη(0, τ)
, (4.84)

which is the point at which the dividing streamline meets the wall. Addi-

tionally, the gradient of the dividing streamline at the wall is given by 1/G,

where

G = −ζ̂
( ν
k3

)1/2 1

3ψPηη(0, τ)

[
ψOηη(0, τ) −

ψOη(0, τ)ψPηηη(0, τ)

ψPηη(0, τ)

]
. (4.85)

We recall that only the oblique function ψO(η, τ) is dependent upon the

time-dependent function β̂(τ) = bM + bO cos τ , where the oscillatory compo-

nent oscillates with the same frequency as a(τ) = 1 + ∆ cos τ . For the most

part, in this section, the dividing streamline is considered for β̂(τ) = 0, but

the effect of β̂(τ) 6= 0 is also discussed.

In order to analyse x0, we illustrate the primary and oblique wall shear

components ψPηη(0, τ) and ψOη(0, τ) in figure 4.18 for σ = 1 and ∆ = 0.5, 0.85

and ∆ = 1.2 over a single time period. Figure 4.18(a) shows that as ∆ in-

creases, ψPηη(0, τ) develops zeros and becomes negative at some point during

the time period. Numerical trials indicate that when ∆ < 0.785 there are

no zeros in ψPηη(0, τ). The zeros in ψPηη(0, τ), which occur in the case when

∆ = 0.85, are surprising as a(τ), illustrated in figure 4.3 for ∆ = 0.85 does

not have any zeros and the primary flow does not reverse. Therefore, the

zeros occurring in the primary wall shear component and a(τ) are indepen-

dent. We note that the oblique wall shear component, illustrated in figure

4.18(b), is positive everywhere for the selected values of ∆ above.
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When ∆ = 0.5, both ψPηη(0, τ) > 0 and ψOη(0, τ) > 0, implying that as τ

increases, the attachment point x0, given in (4.84), is negative and oscillates

between two bounding values. This is illustrated in figure 4.19(a) for σ = 1

and ∆ = 0.5 over one time period.

We now consider the behaviour of the dividing streamline xd, which is

given in (4.83), far from the wall. We note that for β̂ = 0, the oblique

function
∫ η
0
ψO(z, τ)dz → η2/2 as η → ∞ over the time period. Additionally,

as ψPηη(0, τ) > 0, a local minimum in ψP occurs at η = 0 and as η → ∞,

ψP (η, τ) → aη − α̂. Since a(τ) > 0 for ∆ = 0.5, ψP (η, τ) is positive as

η → ∞. Hence, the dividing streamline is negative and oscillates between

two bounding values. This behaviour is illustrated in figure 4.20, where the

dividing streamline is plotted for σ = 1, ∆ = 0.5 and β̂ = 0 over a single

time period.

The gradient of the dividing streamline at the wall 1/G, where G is given

in (4.85) is also considered. In figure 4.19(c), we illustrate the gradient 1/G

for σ = 1 and ∆ = 0.5. We note that the gradient over a period of 2π sweeps

between two bounding values.

Due to the zeros that occur in the primary wall shear component for

∆ = 0.85 and ∆ = 1.2, which can be seen in figure 4.18, the attachment

point x0 and the dividing streamline xd behave differently to those described

above for ∆ = 0.5. We note in each case, ψOη(0, τ) > 0 over the cycle. When

ψPηη(0, τ) > 0, x0 is negative. As we progress through the time period and

the zero in ψPηη(0, τ) is approached, x0 tends to negative infinity before reap-

pearing at positive infinity. Similarly, when ψPηη(0, τ) < 0, the attachment

point x0 is positive and tends to positive infinity before reappearing at nega-

tive infinity. The attachment point x0 is illustrated for σ = 1 and ∆ = 1.2 in

figure 4.19(b). The gradient with the wall for the same parameters is shown

in figure 4.19(d).

The dividing streamline xd, given in (4.83), is now discussed at a fixed

time τ for both ψPηη(0, τ) < 0 and ψPηη(0, τ) > 0. When ψPηη(0, τ) < 0,

ψP (η, τ) has a local maximum at η = 0 and as η → ∞, ψP (η, τ) → aη − α̂.
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Figure 4.18: (a) The primary wall shear component ψPηη(0, τ) and (b) the

oblique wall shear component ψOη(0, τ), both for β̂(τ) = 0, σ = 1 and
∆ = 0.5 (solid line), ∆ = 0.85 (dashed lines) and ∆ = 1.2 (dotted lines).

If a(τ) < 0, ψP (η, τ) is negative and the dividing streamline xd is to the

right of x0, similar to the dividing streamline discussed above for σ = 1 and

∆ = 0.5. If a(τ) > 0, ψP (η∗1, τ) = 0 at η = η∗1, as illustrated in figure 4.21(a)

for σ = 1 and ∆ = 1.2. To consider how the dividing streamline behaves

close to η = η∗1, we perform a local analysis about η = η∗1. Differentiating

the streamfunction (4.82), we obtain the velocity components u = (νk)1/2u∗

and v = (νk)1/2v∗, where u∗ and v∗ are given by

u∗ = XψPη(η, τ) +
ζ̂

k
ψO(η, τ), (4.86)

v∗ = −ψP (η, τ), (4.87)

whereX =
(
k
ν

)1/2
x. The vertical velocity component (4.87) suggests that the

stagnation points occur when ψP (η, τ) = 0, i.e. when η = 0 and η = η∗1. At
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Figure 4.19: (a) The attachment point x0 over a single time period for σ = 1
and ∆ = 0.5. (b) The attachment point x0 for σ = 1 and ∆ = 1.2. (c) The
gradient of the dividing streamline at the wall over a single time period for
σ = 1 and ∆ = 0.5. (d) The gradient of the dividing streamline at the wall

for σ = 1 and ∆ = 1.2. In each case, ζ̂ = ν = k = 1.

η = 0, ψPηη(0, τ) < 0 and as η increases, ψP (η, τ) decreases, so the dividing

streamline xd, given in (4.83), increases. The second stagnation point, η = η∗1

corresponds to the point located at (X1, η
∗
1), for example. To determine this

nature of the stagnation point, we write N = η − η∗1 and X̂ = X − X1 and

the velocity components (4.86) and (4.87) are rewritten as

u∗ = (X̂ +X1)ψPη(N + η∗1, τ) +
ζ̂

k
ψO(N + η∗1, τ), (4.88)

v∗ = −ψP (N + η∗1, τ). (4.89)

Expanding (4.88) and (4.89) using a Taylor’s series, we find

u∗ =
[
(X̂ +X1)

(
ψPη(η

∗
1 , τ) +NψPηη(η

∗
1, τ)

)]
(4.90)

+
ζ̂

k

[
ψO(η∗1, τ) +NψOη(η

∗
1, τ)

]
+O(N2),

v∗ = −
[
ψP (η∗1, τ) +NψPη(η

∗
1, τ)

]
+O(N2). (4.91)

Upon linearising and using the properties X1ψPη(η
∗
1, τ)+

bζ
k
ψO(η∗1, τ) = 0 and
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Figure 4.20: The instantaneous streamlines for ζ̂ = ν = k = 1, β̂ = 0, σ = 1
and ∆ = 0.5 over a period of 2π in equally spaced intervals of π/4, beginning
at 2π.
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ψP (η∗1 , τ) = 0, we obtain

u∗ = X̂ψPη(η
∗
1, τ) +N

[
X1ψPηη(η

∗
1, τ) +

ζ̂

k
ψOη(η

∗
1, τ)

]
, (4.92)

v∗ = −NψPη(η
∗
1, τ). (4.93)

We express the velocity components as u∗ = dX
ds

and v∗ = dη
ds

, where s

represents a parameter along the streamline. Therefore, (4.92) and (4.93)

become

dX̂

ds
= AX̂ +BN,

dN

ds
= −AN, (4.94)

where A = ψPη(η
∗
1, τ) and B = X1ψPηη(η

∗
1, τ) +

bζ
k
ψOη(η

∗
1, τ). Using standard

techniques for analysing equilibrium points, we express the system (4.94) in

matrix form, to find

d

ds



X̂

N



 =



A B

0 −A







X̂

N



 , (4.95)

where the eigenvalues of the system are given by −A and A. As the de-

terminant of the matrix is negative, this suggests that η∗1 is a saddle point.

The first eigenvector represents the horizontal streamline through η∗1 and the

second eigenvector represents the streamline

η =
−2A

B
(X −X1) + η∗1, (4.96)

which is the dividing streamline through η∗1, with gradient −2A/B. The

horizontal position of this stagnation point can be calculated numerically by

setting the horizontal velocity component (4.86) equal to zero and evaluating

at (X1, η
∗
1), to give X1 = − bζ

k
ψO(η∗1, τ)/ψPη(η

∗
1 , τ). An example of this flow

structure can be seen in figure 4.21(b), for σ = 1, ∆ = 1.2 and β̂ = 0 at

τ = 11π/4, where x0 = 4.043, X1 = −21.776 and η∗1 = 2.475 for ζ̂ = k = 1.

Having discussed the dividing streamline xd, when ψPηη(0, τ) < 0, we now

consider the streamline pattern when xd at a fixed time τ when ψPηη(0, τ) > 0.

As mentioned above, when ψPηη(0, τ) > 0, the attachment point x0, given

in (4.84) is negative, as ψOη(0, τ) > 0 over the time period. There exists a

minimum at η = 0 and as η → ∞, ψP (η, τ) → aη − α̂. Similar to the case
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Figure 4.21: (a) The primary function ψP (η, τ) for σ = 1, ∆ = 1.2 at
τ = 11π/4, illustrating the two stagnation points at η = 0 and η = η∗1, which
are represented by the solid dots. (b) The corresponding dividing streamline
xd. At τ = 11π/4, the vertical distance of the horizontal streamline from
the wall is η∗1 = 2.475, the horizontal position of the stagnation point is

X1 = −21.776 and the attachment point is x0 = 4.04 where ζ̂ = k = 1.

when ψPηη(0, τ) < 0, a(τ) can either be positive or negative. If a(τ) > 0,

the dividing streamline has one stagnation point at η = 0 and as η increases,

ψP (η, τ) is positive. So, the dividing streamline is negative and oscillates

between two limits. If a(τ) < 0, there will be two stagnation points, one at

η = 0 and another at η = η∗2. The stagnation point η = η∗2 behaves similarly

to η∗1, which was discussed for the case when ψPηη(0, τ) < 0. Therefore,

η = η∗2 is a saddle point with a horizontal streamline and a streamline with

gradient −2A/B, through the stagnation point.

In figure 4.22, the instantaneous streamlines for σ = 1 and ∆ = 1.2

are illustrated over a period of 2π, in equally spaced intervals. It can be

seen that over one time period the horizontal streamline appears and then

disappears. To consider the behaviour of the horizontal streamline over one



4.5 The structure of the near-wall flow 103

 0

 2

 4

 6

 8

 10

−40 −20  0  20  40

x

η

(a)

 0

 2

 4

 6

 8

 10

−40 −20  0  20  40

x

η

(b)

 0

 2

 4

 6

 8

 10

−40 −20  0  20  40

x

η

(c)

 0

 2

 4

 6

 8

 10

−40 −20  0  20  40

x

η

(d)

 0

 2

 4

 6

 8

 10

−40 −20  0  20  40

x

η

(e)

 0

 2

 4

 6

 8

 10

−40 −20  0  20  40

x

η

(f)

 0

 2

 4

 6

 8

 10

−40 −20  0  20  40

x

η

(g)

 0

 2

 4

 6

 8

 10

−40 −20  0  20  40

x

η

(h)

Figure 4.22: The instantaneous streamlines for ζ̂ = ν = k = 1, β̂ = 0, σ = 1
and ∆ = 1.2 over a period of 2π in equally spaced intervals of π/4, beginning
at 2π.
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Figure 4.23: (a) The vertical location of the horizontal streamline for σ = 1
and ∆ = 0.8 (bottom curve), ∆ = 0.85 (middle curve) and ∆ = 0.95 (top
curve). (b) The vertical location of the horizontal streamline for σ = 1 and
∆ = 1.2

time period, we illustrate the zero of ψP , which we denote η∗, for σ = 1 and

∆ = 0.8, 0.85, 0.95 in figure 4.23(a). We observe that for ∆ = 0.8, the zero

appears at τ = 8.95 and then disappears at τ = 9.27. For ∆ = 0.85, it can

be seen that one zero appears at τ = 8.76, with a second zero appearing at

τ = 9.455 before both disappear at τ = 9.46. This behaviour is illustrated

more clearly for ∆ = 0.95, where the first zero appears at τ = 8.56, the

second appears at τ = 9.63 and then both disappear at τ = 9.71.

In figure 4.23(b), the zeros are illustrated for σ = 1 and ∆ = 1.2. We

notice in this case there are two distinct time intervals over the period when

a zero is present. At τ = 8.33, the zero appears from the wall before moving

up to infinity. This time corresponds to the zero of a(τ) = 1+∆ cos τ , which
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occurs at τ = cos−1(1/∆) = 8.84. However, in the second time interval, the

first zero appears from the wall at τ = 9.79 and the second zero descends

from infinity at τ = cos−1(1/∆) = 10.01. The two zeros collide and disappear

at τ = 10.06.

 0

 2

 4

 6

 8

 10

−200 −150 −100 −50  0  50  100  150  200

x

η

Figure 4.24: The instantaneous streamlines for ∆ = 0.95 and σ = 1 at
τ = 9.66, illustrating a triple-layered structure, where ν = k = ζ̂ = 1.

Having given some numerical examples of the behaviour of the horizontal

streamlines, we now discuss the flow structure over one time period for σ = 1.

When ∆ < 0.785, the structure of the instantaneous streamlines are single-

layered with the dividing streamline approaching from infinity and meeting

the wall at an angle. When 0.785 < ∆ < 0.835, a horizontal streamline

appears once over the cycle. This causes the flow to develop a double-layered

structure, where the layer near the wall is separated from the upper region

by the horizontal streamline. The horizontal streamline then moves back to

the wall and the flow returns to a single-layered flow. For 0.835 < ∆ < 1,

a similar structure to the previous case occurs, with a horizontal streamline

moving up from the wall. However, as the first horizontal streamline moves

down towards the wall, a second horizontal streamline appears from the wall,

causing the flow to develop triple-layered structure. Figure 4.24, illustrates

the instantaneous streamlines for σ = 1 and ∆ = 0.95 at τ = 9.66, where the

triple-layered structure is present. When these two horizontal streamlines

meet, the structure again returns to a single-layered flow.

When ∆ > 1, there are two distinct regions within the time period where
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the flow becomes multi-layered. In the first instance, one horizontal stream-

line emerges from the wall, creating a double-layered structure. This case is

unlike those described above, as the horizontal streamline moves up to infin-

ity instead of returning to the wall. At the second time interval, a horizontal

streamline appears from the wall, creating a double-layered structure. As

this horizontal streamline moves away from the wall, a horizontal streamline

moves down from infinity creating a triple-layered structure, similar to the

one illustrated in figure 4.24. When these horizontal streamlines collide, the

flow returns to a single-layered flow.

We now consider the instantaneous streamlines for an amplitude above

the critical value ∆c. In figures 4.25, 4.26 and 4.27, we illustrate the in-

stantaneous streamlines for σ = 40 and choose ∆ = 20, which corresponds

to a value above the critical amplitude ∆c(σ), given in section 4.1. Using

the method presented in section 4.3.1, the finite-time singularity is given by

τs = 18.443. Figure 4.28 illustrates the zeros of ψPηη(0, τ) for σ = 40 and

∆ = 20. It can be seen that as τ → τ−s , the zero, which descends from in-

finity, does not meet the zero that appears from the wall and instead moves

up to infinity. We also illustrate the orthogonal velocity profile as τ → τ−s in

figure 4.29(a) and we can see that as τ → τ−s , the minimum which develops

in the orthogonal velocity component decreases, i.e. the region of flow re-

versal gets bigger and the distance required to satisfy the far-field boundary

condition increases.

The above analysis has been presented for β̂ = 0. We now discuss the

streamline pattern when β̂ 6= 0. We recall that the time-dependent function

β̂(τ) = bM + bO cos τ . We note that the vertical location of the horizontal

streamline is solely dependent upon the primary problem. However, the

horizontal position of the stagnation point on the horizontal streamline is

affected.

For the parameters σ = 1 and ∆ = 0.5, we illustrate the oblique wall

shear component ψOη(0, τ) in figure 4.30 for bO = 0 and bM = 0, 0.94, 1.54.

When bM > 0.94, the oblique wall shear component becomes negative over
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Figure 4.25: The instantaneous streamlines as τ → τs at intervals of τ = π/2,

for β̂ = 0, ∆ = 20 and σ = 40, beginning at τ = π/2, where ζ̂ = ν = k = 1.
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Figure 4.26: The streamlines as τ → τs at intervals of τ = π/2 beginning at

τ = 9π/2 for β̂ = 0, ∆ = 20 and σ = 40, where ζ̂ = ν = k = 1. This figure
is a continuation of figure 4.25.
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Figure 4.27: The streamlines as τ → τ−s , for σ = 40 and ∆ = 20 at (a)
τ = 18.0, (b) τ = 18.1, (c) τ = 18.2, (d) τ = 18.3, where τs = 18.443 and

ζ̂ = ν = k = 1. This figure is a continuation of figure 4.26.
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Figure 4.28: The vertical location of the horizontal streamlines for σ = 40
and ∆ = 20.

a certain period of the cycle. As ψPηη(0, τ) > 0 over the whole period, when

ψOη(0, τ) < 0, the attachment point x0, given in (4.84), becomes positive.

Additionally, when bM > 1.54, ψOη(0, τ) < 0 everywhere over the time pe-

riod. Therefore, the attachment point x0, is positive over the entire time

period. These results are illustrated in figure 4.32(a), where x0 is plotted as

a function of τ for bO = 0 and bM = 0, 0.94, 1.54. Similarly, figure 4.30 shows

the oblique wall shear component for bM = 0 and bO = 0, 0.9, 1.5. When

bO > 0.9, ψOη(0, τ) is negative for some portion of the time period. So as

with the case described above, when ψOη(0, τ) < 0, the attachment point

becomes positive and can be seen in figure 4.32(b), where x0 is illustrated

over a single time period. We note that there exist two values over the time

period that give the same value of x0, irrespective of bO.

A similar analysis can be applied when σ = 1 and ∆ = 1.2. In figure

4.31(a), the oblique wall shear component is illustrated for σ = 1, ∆ = 1.2,

bO = 0 and bM = 0, 0.78, 1.5. When bM > 0.78, ψOη(0, τ) is negative over

a short interval of the time period. As ψPηη(0, τ) > 0 in this time interval,

the attachment point x0, becomes positive. When bM > 4.5, the oblique wall

shear component is negative everywhere over the time period. Therefore, the

attachment point x0 behaves similarly to that in figure 4.19(b) for ∆ = 1.2,

but is reflected in the y-axis, i.e. the sign of x0 changes. In figure 4.31(b),

the oblique wall shear component is plotted for σ = 1, ∆ = 1.2, bM = 0

and for bO = 0, 0.77, 1.5. Similar to the discussion above, when bO > 0.77,
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Figure 4.29: (a) The primary velocity profile as τ → τs for σ = 40 and
∆ = 20, working from right to left at τ = 18.0, 18.1, 18.2, 18.3. (b) The

oblique velocity profile for β̂ = 0 at the same times approaching the finite-
time singularity τs = 18.443.

the oblique wall shear component becomes negative for some time during the

time period. During this time interval, ψPηη(0, τ) > 0 and the attachment

point x0 is positive. Therefore, as ∆ increases, the values of bM and bO, which

cause ψOη(0, τ) < 0, decrease.

Finally, we consider how the far-field dividing streamline changes as β̂

changes, when the flow is single-layered. To do so, we choose a point in the

far-field ηN = 50 and the corresponding point on the dividing streamline xN

is given by

xN = −ζ̂
( ν
k3

)1/2
∫ ηN

0
ψO(z, τ)dz

ψP (ηN , τ)
. (4.97)

In figure 4.32(c) we plot xN for σ = 1, ∆ = 0.5, bO = 0 and bM = 0, 0.94, 1.54,

which are the same values of bM that were chosen when considering the

attachment point x0 above. Upon increasing bM , xN is shifted in the positive
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Figure 4.30: (a) The oblique wall shear stress component ψOη(0, τ) for σ = 1,
∆ = 0.5, bO = 0 and bM = 0 (solid line), bM = 0.94 (dotted lines) and
bM = 1.54 (dashed lines). (b) The oblique wall shear stress component
ψOη(0, τ) for σ = 1, ∆ = 0.5, bM = 0 and bO = 0 (solid line), bO = 0.9
(dotted lines) and bO = 1.5 (dashed lines).
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Figure 4.31: (a) The oblique wall shear stress component ψOη(0, τ) for σ = 1,
∆ = 1.2, bO = 0 and bM = 0 (solid line), bM = 0.78, (dotted lines) and bM =
1.5 (dashed lines). (b) The oblique wall shear stress component ψOη(0, τ) for
σ = 1, ∆ = 1.2, bM = 0 and bO = 0 (solid line), bO = 0.77 (dotted lines) and
bO = 1.5 (dashed lines).

direction and behaves similarly to that of the steady case discussed in chapter

3, where bM acts as a horizontal shift. Similarly, we consider β̂ as a purely

oscillatory function, i.e. bM = 0 and figure 4.32(d) illustrates xN for bO =

0, 0.9.1.5. As bO is increased, the dividing streamline simply oscillates about

its mean position. We note that in both the cases, when bM 6= 0 and bO 6= 0

that the horizontal velocity component β̂ affects the dividing streamline in

the far-field and close to the wall differently.

When the flow structure is multi-layered, the time-dependent horizontal

velocity component β̂ affects the horizontal position of the stagnation point

on the horizontal streamline. In chapter 5, a large frequency asymptotic

analysis is performed and the effect of β̂ on the streamlines when the flow is
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Figure 4.32: (a) The attachment point x0 for σ = 1, ∆ = 0.5, bO = 0

and, from bottom to top, bM = 0, 0.94, 1.54, where ζ̂ = ν = k = 1. (b)
The attachment point for σ = 1, ∆ = 0.5, bM = 0 and bO = 0 (solid line),
bO = 0.9 (dotted line) and bO = 1.5 (dashed lines). (c) A point in the far-field
xN for σ = 1, ∆ = 0.5, bO = 0 and from bottom to top bM = 0, 0.94, 1.54.
(d) A point in the far-field xN for σ = 1, ∆ = 0.5, bM = 0 and bO = 0 (solid
line), bO = 0.9 (dotted line) and bO = 1.5 (dashed lines).

multi-layered is discussed.
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4.6 Summary

In this chapter, a two-dimensional unsteady oblique stagnation-point flow

travelling towards a fixed wall has been considered. In the far-field, the

flow is the sum of three separate flows. The first is an unsteady orthogonal

stagnation-point flow with a mean component and an oscillatory component,

dependent upon a relative amplitude parameter ∆ and a dimensionless fre-

quency parameter σ. Superimposed onto this is a shear flow with constant

vorticity and a time-dependent horizontal velocity component.

At the wall, a similarity solution, which is an exact solution of the Navier-

Stokes equations, is introduced consisting of two components, the first repre-

senting the orthogonal stagnation-point flow and the second representing the

shear and horizontal velocity components. Two partial differential equations

are obtained and solved numerically for a range of parameters ∆ and σ using

a Crank-Nicolson finite-difference method, whose numerical calculations are

initiated with asymptotic solutions for small time.

The flow has been investigated for different values of the relative ampli-

tude parameter ∆. When ∆ < ∆1, where ∆1 < ∆2 < 1, the flow struc-

ture is at its simplest. The far-field dividing streamline approaches the wall

obliquely and near the wall, due to the viscosity, it bends towards the wall at

an angle closer to the normal and meets the wall at a stagnation point. Over

a single time period, the dividing streamline, the attachment point and the

angle with the wall oscillate between two bounding values. As ∆ increases,

the structure of the flow becomes more complex. When ∆1 < ∆ < ∆2, a hor-

izontal streamline appears from the wall, creating a double-layered structure

in the flow. There is one layer at the wall, which is separated from the upper

region by a horizontal streamline. This horizontal streamline returns to the

wall after a short time and the flow returns to a single-layered structure.

When ∆2 < ∆ < 1, again a horizontal streamline appears from the wall. As

this horizontal streamline returns to the wall, a second horizontal streamline

appears, causing the flow to develop a triple-layered structure. When these
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two horizontal streamlines collide, the flow again returns to a simple single-

layered flow. When ∆ > 1, in each time period, there are two time intervals

in which the horizontal streamlines are present. The first of these inter-

vals exhibits single and double-layered structures. However, different to the

cases described above, the horizontal streamline that appears from the wall

moves up to infinity. The second time interval exhibits all three structures.

The first horizontal streamline moves up from wall, creating a double-layered

structure. When the second horizontal streamline moves down from infin-

ity, a triple-layered structure develops before the two horizontal streamlines

collide, returning the flow to a single-layered structure.

Streamline patterns were plotted for various parameter values. For the

simplest case when ∆ < ∆1, it was observed that the time-dependent hor-

izontal velocity component affects the instantaneous streamlines far from

the wall and close to the wall differently. Far from the wall, over a single

period, the horizontal velocity component simply shifted the streamline pat-

tern about its mean position. In contrast, close to the wall, over a one time

period, increasing the horizontal velocity component affects the attachment

point and the gradient of the dividing streamline differently, depending on

the time interval chosen. For other values of the amplitude, due to the whole

range of different behaviour close to the wall, the streamline pattern is much

more complicated.

When the relative amplitude ∆ becomes large, the existence of time pe-

riodic solutions must be considered. For the orthogonal problem, Merchant

and Davis (1989) showed that for a fixed dimensionless frequency, there exists

a critical relative amplitude, above this, the orthogonal solution breaks down

at a finite-time singularity. In this chapter, this analysis was extended to in-

clude the other components of the far-field flow. We found that the oblique

solution, as it has a coupling with the orthogonal equation, also breaks down

at the same finite-time singularity.

The next chapter follows on from the work in this chapter but the orthog-

onal and oblique equations are considered in the limit σ → ∞, where the



4.6 Summary 115

relative amplitude is close to the critical value. The double and triple-layered

structures described above are still present within this limit and are consid-

ered further using the asymptotic method which was previously discussed in

chapter 2.

We note that a concise study of the work within this chapter can be found

in Tooke et al. (2010).



Chapter 5

Unsteady oblique

stagnation-point flow in the

large frequency limit

5.1 Introduction

This chapter follows on immediately from chapter 4, where an unsteady

two-dimensional oblique stagnation-point flow travelling towards a fixed wall

was discussed. The flow in the far-field comprises of a two-dimensional

stagnation-point flow, dependent on the relative amplitude parameter ∆ and

the dimensionless frequency parameter σ, a shear flow with constant vorticity

and a time-dependent horizontal velocity component. A similarity solution

was found close to the wall, from which two equations were derived. The

first describes an orthogonal stagnation-point flow and is denoted the pri-

mary equation. The second represents the shear flow and the horizontal

velocity component, which we denote the oblique equation.

In chapter 4, the primary and oblique equations were solved numerically

for a range of values of the parameters σ and ∆. For certain values of the rela-

tive amplitude and the dimensionless frequency parameter, the flow structure

becomes double or triple-layered. This is due to interior stagnation points

appearing in the flow, each with a horizontal streamline passing through it.

116
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In chapter 2, when only the primary problem was analysed, it was found

that as σ → ∞, a critical amplitude ∆c arises, such that for ∆ > ∆c, solutions

break down at a finite-time singularity. In this limit, the flow structure

exhibits a Stokes layer at the wall and a steady streaming layer matching the

Stokes layer to that of the far-field flow. In the present chapter, we solve the

oblique equation close to the critical amplitude and obtain solutions in the

Stokes and the steady streaming layers.

We conclude with a discussion on the instantaneous streamlines in the

Stokes and the steady streaming layers, confirming the multi-layered struc-

ture which was present in chapter 4. Additionally, a particle path analysis

in the steady streaming layer is performed.

5.2 Problem formulation

In chapter 4, the streamfunction in the far-field, describing the unsteady

oblique stagnation-point flow, initially stated in (4.3), is given by

ψ = a(t)kxy +
1

2
ζ̂y2 − β̂(t)ζ̂

(ν
k

)1/2

y, (5.1)

as y → ∞. The first term is an unsteady orthogonal stagnation-point flow

with strength k and a(t) = 1 + ∆ cosωt. The second term is a shear flow

with constant vorticity with constant vorticity −ζ̂ < 0 and the third is a

time-dependent horizontal velocity, dependent upon an arbitrary function

β̂(t). A sketch of the dividing streamline, ψ = 0, is illustrated in figure 4.1.

As the far-field solution (5.1) does not satisfy the no-slip condition, close to

the wall we write

ψ(x, η, τ) = (νk)1/2xψP (η, τ) + ζ̂
(ν
k

)∫ η

0

ψO(z, τ)dz, (5.2)

where η = (k/ν)1/2y and τ = ωt. The first component represents the orthog-

onal stagnation-point flow and is denoted ψP (η, τ), the primary component.

The second term in (5.2) represents the shear flow and the time-dependent

horizontal velocity component and is denoted ψO(η, τ), the oblique compo-

nent. The equations for ψP (η, τ) and ψO(η, τ) have previously been derived
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in section 4.2 and are given by

σψP ητ +
(
ψP η

)2 − ψPψP ηη = σ∆ sin τ + (1 + ∆ cos τ)2 + ψP ηηη , (5.3)

σψOτ + ψP ηψO − ψPψOη = −σβ̂τ + α̂− (1 + ∆ cos τ)β̂ + ψOηη, (5.4)

with primary boundary conditions

ψP (0, τ) = 0, ψP η(0, τ) = 0 on η = 0, (5.5)

ψP (η, τ) → (1 + ∆ cos τ)η − α̂ as η → ∞, (5.6)

and subsidiary boundary conditions

ψO(0, τ) = 0, on η = 0, (5.7)

ψO(η, τ) → η − β̂ as η → ∞, (5.8)

where α̂ = limη→∞(aη − ψP ) and σ = ω/k is the Strouhal number. For

convenience, we choose the scalings ψP = ∆1/2ψ̂P , ψO = ∆−1/2ψ̂O and α̂ =

∆1/2α̃, with η = ∆−1/2η̂ and β̂ = ∆−1/2β̃. Additionally, the parameters

ǫ̂ = 1/∆ and Ω = σ/∆ are introduced, where ǫ̂ is a small parameter. The

equations (5.3) and (5.4) in terms of the new variables become

Ωψ̂P
bητ +

(
ψ̂P

bη

)2

− ψ̂P ψ̂P
bηbη = −Ω sin τ + (ǫ̂+ cos τ)2 + ψ̂P

bηbηbη, (5.9)

Ωψ̂Oτ + ψ̂P
bηψ̂O − ψ̂P ψ̂O

bη = −Ωβ̃τ + α̃− (ǫ̂+ cos τ)β̃ + ψ̂O
bηbη, (5.10)

with the primary flow boundary conditions

ψ̂P (0, τ) = 0, ψ̂P
bη(0, τ) = 0 on η̂ = 0, (5.11)

ψ̂P (η̂, τ) → (cos τ + ǫ̂ )η̂ − α̃ as η̂ → ∞, (5.12)

and the subsidiary flow boundary conditions

ψ̂O(0, τ) = 0 on η̂ = 0, (5.13)

ψ̂O(η̂, τ) → η̂ − β̃ as η̂ → ∞. (5.14)

As we wish to solve equations (5.9) and (5.10) asymptotically, an ex-

pansion for ǫ̂ is required in terms of Ω, which has previously been found in

chapter 2 and is given by ǫ̂ = a0Ω
−1+a1Ω

−2. The constant a0 can be thought
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of as the boundary between the solutions existing and breaking down at a

finite-time singularity and a1 is the correction term. The time-dependent

function α̃(τ) is found from solving the primary equation (5.9), which is dis-

cussed in section 5.3 and is written α̃ = Ω−1/2α0 + O(Ω−3/2). Additionally,

we choose the magnitude of the horizontal velocity component β̂ to be the

same size as the mean component in the far-field orthogonal flow a(τ), i.e.

β̂ ∼ O(1). Therefore, it follows that β̃ = Ω1/2β0(τ)+Ω−1/2β1(τ)+O
(
Ω−3/2

)
.

In section 5.5, we comment on other possible magnitudes of β̂.

Due to the coupling of ψ̂P and ψ̂O in equation (5.10), we begin by sum-

marising the primary solution, which was previously solved in chapter 2,

before seeking a solution to the oblique equation (5.10).

5.3 Summary of primary flow

In this section, the primary flow is summarised by describing the necessary

methods and results that are required to solve the oblique equation (5.10),

with a more detailed account found in section 2.4.

At the wall, there exists a Stokes layer of thickness O(Ω−1/2) with variable

ξ = Ω1/2η̂, where ξ = O(1). Solving equation (5.9) in the Stokes layer, we

find

ψ̂P ∼ Ω−1/2

[
ξ cos τ − cos

(
τ − π

4

)]
(5.15)

+Ω−3/2

[
13

4
√

2
− 3

4
ξ − 1

2
√

2
cos
(
2τ +

π

4

)]
+O(Ω−5/2),

as ξ → ∞. As equation (5.15) does not, at first order, satisfy the far-

field boundary condition ψ̂Pξ
(ξ, τ) → Ω−1/2 cos τ + Ω−3/2a0 + O

(
Ω−5/2

)
as

ξ → ∞, a steady streaming layer is introduced to match the Stokes layer

solution to that of the far-field. To allow for correct matching, we introduce

the variable ζ = Ω−1/2η̂, where ζ = O(1). After solving (5.9) in the steady

streaming layer, we find

ψ̂P = Ω1/2ζ cos τ + Ω−1/2

[
f0(ζ) − cos

(
τ − π

4

)]
+O(Ω−3/2), (5.16)
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where f0(ζ) is the numerical solution to

f ′′′
0 − f ′2

0 + f0f
′′
0 + a2

0 = 0, (5.17)

with boundary conditions

f0(0) = 0, f ′
0(0) = −3

4
, f0(ζ) → a0ζ − C as ζ → ∞, (5.18)

where the constant C is found numerically by solving equation (5.17) using

a fourth-order Runge-Kutta technique and a finite-difference technique.

To solve the oblique equation (5.10), the asymptotic expansion for α̃ is

required. By matching the steady streaming layer solution (5.16) with the

primary far-field boundary condition ψ̂P (η̂, τ) → (ǫ̂+ cos τ)η̂− α̃ as η̂ → ∞,

we find α̃(τ) = Ω−1/2α0 +O(Ω−3/2), where α0 = cos
(
τ − π

4

)
+ C.

Having summarised the main results of the primary equation (5.9), in the

subsequent section we solve the oblique equation (5.10).

5.4 The oblique equation

In this section, we solve the oblique equation (5.10) in the limit Ω → ∞,

with ǫ̂ ∼ O(Ω−1). The structure of the solution is similar to that of the

primary solution, with a Stokes layer closest to the wall. Due to this solution

not satisfying the far-field boundary condition, a steady streaming layer is

introduced, matching the Stokes layer and the far-field flow.

5.4.1 Stokes layer

Similar to the primary equation (5.9), the dominating terms in (5.10) are

the unsteady and the viscous terms, Ωψ̂Oτ ∼ ψ̂Obηbη
implying the scaling η̂ ∼

Ω−1/2. Therefore, we have a Stokes layer of thickness O(Ω−1/2) with variable

ξ = Ω1/2η̂, where ξ = O(1). We rescale the oblique equation (5.10) in terms

of the Stokes layer variable ξ with β̃(τ) = Ω1/2β0(τ)+Ω−1/2β1(τ)+O(Ω−3/2)

and α̃ = Ω−1/2α0 + O(Ω−3/2), which were initially stated in section 5.2, to
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give

Ωψ̂Oτ + Ω1/2
(
ψ̂Oψ̂P ξ − ψ̂P ψ̂Oξ

)
= −Ω3/2

(
β0τ + Ω−1β1τ + Ω−2β2τ

)
(5.19)

+ Ω−1/2α0 − Ω1/2(cos τ + a0Ω
−1 + a1Ω

−2)(β0 + Ω−1β1)

+ Ωψ̂Oξξ +O(Ω−3/2),

with the wall boundary condition

ψ̂O(0, τ) = 0, on ξ = 0. (5.20)

We pose the asymptotic expansion

ψ̂O = Ω1/2ΨO0
(ξ, τ) + Ω−1/2ΨO1

(ξ, τ)) +O(Ω−3/2), (5.21)

and recall the primary expansion

ψ̂P = Ω−1/2ΨP0
(ξ, τ) + Ω−3/2ΨP1

(ξ, τ) +O(Ω−5/2). (5.22)

Substituting these expansions into (5.19), the leading, first and second order

equations are given by

ΨO0τ − ΨO0ξξ = −β0τ , (5.23)

ΨO1τ − ΨO1ξξ = ΨP0
ΨO0ξ − ΨP0ξΨO0

− β1τ − β0 cos τ, (5.24)

ΨO2τ − ΨO2ξξ = ΨP0
ΨO1ξ + ΨP1

ΨO0ξ − ΨP0ξΨO1
− ΨP1ξΨO0

(5.25)

−β2τ + α0 − a0β0 − β1 cos τ,

with boundary conditions on the wall

ΨO0
(0, τ) = 0, ΨO1

(0, τ) = 0, ΨO2
(0, τ) = 0. (5.26)

We express βi = βMi + βOi cos (τ + φ) for i ≥ 0, where βMi is the mean

component and βOi is the oscillatory component with an arbitrary phase

difference φ. To solve equations (5.23) - (5.25), we use the boundary condition

on the wall (5.26) and note that ΨOi
(ξ, τ) are periodic and bounded, i.e.

ΨOi
(ξ, τ) does not have exponentially large solutions. Therefore, the leading
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and first order solutions are given by

ΨO0
(ξ, τ) = bξ + βO0

[
e−ξ/

√
2 cos

(
τ + φ− ξ√

2

)
− cos (τ + φ)

]
, (5.27)

ΨO1
(ξ, τ) = cξ +

3
√

2βO0
4

cos
(
φ+

π

4

)
− 1

4
βO0

√
2e−ξ

√
2 sin

(
φ+

π

4

)
(5.28)

−1

2
βO0 e

−ξ/
√

2

[
sin

(
ξ√
2

+ φ

)
+ 3 sin

(
ξ√
2
− φ

)

+ cos

(
ξ√
2
− φ

)]
+

1

2
βO0 ξe

−ξ/
√

2

[
sin

(
φ− ξ√

2
+
π

4

)

− sin

(
2τ − ξ√

2
+ φ+

π

4

)]

+
1

2
βO0 e

−ξ sin
(
ξ − 2τ − φ

)
− 1

2
βO0 e

−ξ/
√

2 sin

(
ξ√
2
− 2τ − φ

)

−1

2
βO0 ξe

ξ/
√

2 sin

(
2τ − ξ√

2
+ φ+

π

4

)

+βO1

[
e−ξ/

√
2 cos

(
ξ√
2
− τ − φ

)
− cos (τ + φ)

]

−βM0
[
e−ξ/

√
2 sin

(
ξ√
2
− τ

)
+ sin τ

]

+b

[
3ξ

4
e−ξ/

√
2 sin

(
ξ√
2
− τ

)
− e−ξ/

√
2 cos

(
τ − ξ/

√
2 +

π

4

)

+ cos
(
τ +

π

4

)
+

1

4
ξ2e−ξ/

√
2 sin

(
τ − ξ/

√
2 +

π

4

)]
,

ΨO2
(ξ, τ) =

(
a0β

M
0 − C

) ξ2

2
+

11
√

2b

16
ξ2 + dξ + T (ξ, τ), (5.29)

where b, c and d are constants and T (ξ, τ) is a function containing time-

dependent and exponentially decaying terms.

At the top of the Stokes layer, we find

ψ̂O ∼ Ω1/2
[
bξ − βO0 cos (τ + φ)

]
(5.30)

+Ω−1/2

[
cξ +

3
√

2βO0
4

cos
(
φ+

π

4

)

−βM0 sin τ − βO1 cos (τ + φ) + b cos
(
τ +

π

4

)]

+Ω−3/2

[
(
a0β

M
0 − C

) ξ2

2
+

11
√

2b

16
ξ2 + dξ + T (ξ, τ)

]
+O(Ω−5/2),
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as ξ → ∞. As equation (5.30) does not satisfy the far-field boundary

condition ψ̂O →
(
βM0 − βO0 cos (τ + φ)

)
+ Ω−1/2

(
ξ − βM1 − βO1 cos (τ + φ)

)
,

a steady streaming layer solution is introduced to match to the far-field flow.

When matching the Stokes layer to the steady streaming layer the constants

b, c and d are found.

5.4.2 Steady streaming layer

In this section, we seek a solution to (5.10) in the steady streaming layer,

which matches the solution in the Stokes layer to the far-field flow. From

the primary problem, the steady streaming layer has thickness O(Ω1/2) with

steady streaming layer variable ζ = Ω−1/2η̂, where ζ = O(1). Also, as

before, β̃(τ) = Ω1/2β0 +Ω−1/2β1 +O(Ω−3/2) and α̃(τ) = Ω−1/2α0 +O(Ω−3/2).

Rewriting the oblique equation (5.10) in terms of the steady streaming layer

variable ζ , we obtain

Ωψ̂Oτ + Ω−1/2
(
ψ̂Oψ̂P ζ − ψ̂P ψ̂Oζ

)
= −Ω3/2(β0τ + Ω−1β1τ + Ω−2β2τ ) (5.31)

+ Ω−1/2α0 − Ω1/2(cos τ + a0Ω
−1 + a1Ω

−2)(β0 + Ω−1β1)

+ Ω−1ψ̂Oζζ +O(Ω−3/2),

with the matching condition to the far-field flow given by

ψ̂O → Ω1/2(ζ − β0) − Ω−1/2β1 +O(Ω−3/2) as ζ → ∞, (5.32)

where βi = βMi + βOi cos (τ + φ) for i ≥ 0.

Rewriting the dominant terms in the Stokes layer, which are given in

(5.30), in terms of ζ suggests we write

ψ̂O = Ω3/2
(
H0(ζ, τ) + h0(ζ)

)
+ Ω1/2

(
H1(ζ, τ) + h1(ζ)

)
(5.33)

+Ω−1/2
(
H2(ζ, τ) + h2(ζ)

)
,

where the functions Hi(ζ, τ) have a zero time-average and hi(ζ) are the mean

components, where i ≥ 0. Upon substituting oblique expansion (5.33) and

the primary steady streaming layer solution (5.16) into equation (5.31), we
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obtain

H0τ = 0, (5.34)

H1τ = ζ(H0ζ + h0ζ) cos τ − (H0 + h0) cos τ + βO0 sin (τ + φ) , (5.35)

H2τ = ζ(H1ζ + h1ζ) cos τ +
[
f0 − cos

(
τ − π

4

)]
(H0ζ + h0ζ) (5.36)

−(H1 + h1) cos τ − f0ζ(H0 + h0) + βO1 sin (τ + φ)

−βM0 cos τ − βO0 cos τ cos (τ + φ) +H0ζζ + h0ζζ .

Upon integrating (5.34) and (5.35) with respect to τ and taking a time-

average to obtain the function of integration, we find

H0(ζ, τ) = 0, (5.37)

H1(ζ, τ) = −βO0 cos (τ + φ) + (ζh′0 − h0) sin τ, (5.38)

where the prime denotes differentiation with respect to ζ . Taking a time-

average of equation (5.36), we obtain

h′′0 + f0h0 − h0f
′′
0 = 0. (5.39)

To find the boundary conditions on ζ = 0, we match the steady streaming

layer expansion (5.33) to the Stokes layer. The Stokes layer solution in terms

of ζ , is given by

ψ̂O = Ω3/2bζ + Ω1/2

[
cζ + (a0β

M
0 − C)

ζ2

2
− 11

√
2b

16
ζ2 (5.40)

−βO0 cos (τ + φ)

]
+ Ω−1/2

[
3
√

2βO0
4

cos
(
φ+

π

4

)
+ dζ − βM0 sin τ

−βO1 cos (τ + φ) + b cos
(
τ +

π

4

) ]
+O(Ω−3/2).

Therefore, matching (5.40) with the steady streaming layer expansion (5.33),

we find h0(ζ) → bζ as ζ → 0. Similarly, matching the steady streaming layer

to the far-field boundary condition (5.32), we find h0(ζ) → 0 as ζ → ∞.

Hence, the boundary conditions for equation (5.39) are given by

h0(0) = 0, h0(ζ) → 0 as ζ → ∞. (5.41)

Numerical solutions of equation (5.39) along with the boundary conditions

(5.41) suggest h0(ζ) = 0. To illustrate that there are no eigensolutions to

equation (5.39), an analytic solution is obtained.



5.4 The oblique equation 125

One solution to equation (5.39) is given by h0(ζ) = f ′′
0 (ζ), where f0(ζ) is

given in equation (5.17). To seek the second solution we use the method of

reduction of order and write h0(ζ) = f ′′
0 (ζ)U(ζ), to obtain

h0(ζ) = AF (ζ) +Bf ′′
0 (ζ). (5.42)

where

F (ζ) = f ′′
0 (ζ)

∫ ζ

0

[
f ′′

0 (ζ̄)
]−2

e−
R ζ̄
0
f0(s)dsdζ̄ . (5.43)

Applying the boundary conditions h0(0) = 0 and h′0(0) = b, we find A =

bf ′′
0 (0) and B = 0. Therefore, we obtain the solution h0 = bf ′′

0 (0)F (ζ).

Following Glauert (1956), it can be shown that F (ζ) → κ1ζ + κ2 as ζ → ∞,

where κ1 and κ2 are dependent upon a0 and are obtained numerically. Thus,

to satisfy the far-field boundary condition h0(ζ) → 0 as ζ → ∞, the only

possibility is b = 0 as f ′′
0 (0) 6= 0 and it follows that the only solution to

equation (5.39) is h0(ζ) = 0.

The steady streaming layer solution can now be expressed as

ψ̂O = Ω1/2
[
(h1(ζ) − βO0 cos (τ + φ)

]
+ Ω−1/2

[
− βO1 cos (τ + φ) (5.44)

−βM0 sin τ + (ζh′1(ζ) − h1(ζ)) sin τ + h2(ζ)
]
+O(Ω−3/2).

To obtain the equation for h1(ζ), we collect terms of O(Ω−1/2) in equation

(5.31), to find

H3τ = −(H1 + h1)f
′
0 − (H2 + h2) cos τ + ζ cos τ(H ′

2 + h′2) (5.45)

+
[
f0 − cos

(
τ − π

4

)]
(H ′

1 + h′1) + βO2 sin (τ + φ) + α0

−a0

(
βM0 + βO0 cos (τ + φ)

)

− cos τ
(
βM1 + βO1 cos (τ + φ)

)
+H ′′

1 + h′′1.

We substitute α0 = cos
(
τ − π

4

)
+ C, H1(ζ, τ) which is given in (5.38) and

H2(ζ, τ) = (ζh′1−h1) sin τ−βO1 cos (τ + φ)−βM0 sin τ into (5.45). After taking

a time-average over one time period, we obtain

h′′1 + f0h
′
1 − h1f

′
0 = a0β

M
0 − C. (5.46)
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The constant C = limζ→∞(a0ζ− f0) and is found by solving the equation for

f0(ζ), given in (5.17). Similarly, to obtain the equation for h2(ζ), we collect

terms of size O(Ω−3/2) in equation (5.31) and take a time-average, to find

h′′2 + f0h
′
2 − f ′

0h2 = f ′
1h1 − f1h

′
1 + a0β

M
1 + a1β

M
0 −D. (5.47)

The constant D = limζ→∞(a1ζ − f1), which is calculated by solving equation

(2.54).

We proceed by solving the numerical equations (5.46) and (5.47), but first,

the boundary conditions on ζ = 0 and as ζ → ∞ are needed. To find the

boundary conditions at ζ = 0, we match the Stokes layer (5.40) to the steady

streaming layer expansion (5.33), to obtain h1 → cζ + (a0β
M
0 − C) ζ

2

2
and

h2 → 3βO
0

4
cos
(
φ+ π

4

)
+dζ+O(ζ2) as ζ → 0. To obtain the constants c and d,

it is necessary to find the small ζ expansions for h1(ζ) and h2(ζ). As these are

dependent upon the primary functions f0(ζ) and f1(ζ), we initially find the

small ζ expansion for f0(ζ). We express f0(ζ) = −3
4
ζ + C1ζ2

2
+O(ζ3), having

used the boundary conditions f0(0) = 0 and f ′
0(0) = −3

4
. The constant C1 is

obtained by substituting this expansion into the equation for f0(ζ), given by

(5.17) and equating coefficients. Hence, we find

f0(ζ) = −3

4
ζ +

f ′′
0 (0)ζ2

2
+O(ζ3). (5.48)

By repeating this process, we find

f1(ζ) =
13

4
√

2
+
f ′′

1 (0)ζ2

2
+O(ζ3), (5.49)

h1(ζ) = h′1(0)ζ + (a0β0 − C)
ζ2

2
+O(ζ3), (5.50)

h2(ζ) =
3βO0
4

cos
(
φ+

π

4

)
+ h′2(0)ζ + (a0β0 − C)

ζ2

2
+O(ζ3). (5.51)

Therefore, we find c = h′1(0) and d = h′2(0) and the boundary conditions at

ζ = 0 are given by

h1(0) = 0, h′1(0) = c, h2(0) =
3βO0
4

cos
(
φ+

π

4

)
, h′2(0) = d. (5.52)

The far-field boundary conditions are given by

h1(ζ) → ζ − βM0 , h2(ζ) → −βM1 as ζ → ∞, (5.53)
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which are obtained by matching to the steady streaming layer solution to the

far-field boundary condition (5.32).

To find the analytic solution for h1(ζ), whose equation is given by (5.46),

we note that the homogenous solution satisfying the new boundary conditions

at ζ = 0, h1(0) = 0 and h′1(0) = δ, is given by h1 = λF , where F (ζ) is given

by (5.43). At ζ = 0, we find δ = λF ′(0) = λ/f ′′
0 (0). As discussed above,

F (ζ) → κ1ζ + κ2 as ζ → ∞, so to satisfy the far-field boundary condition

h′1(ζ) → 1 as ζ → ∞, we find κ1 = 1/(δf ′′
0 (0)).

Combining the homogeneous solution with the particular solution, we

obtain

h1 =
F (ζ)

κ1
+

(
C − a0β

M
0

a2
0

)(
f ′

0(ζ) +
3f ′′

0 (ζ)

4f ′′
0 (0)

)
, (5.54)

where F (ζ) is given by (5.43) and from h1(ζ),

c =
1

κ1f ′′
0 (0)

+

(
C − a0β

M
0

a2
0

)(
f ′′

0 (0) +
27

64f ′′
0 (0)

− 3a2
0

4f ′′
0 (0)

)
. (5.55)

For the example case of a0 = 1 and βM0 = 1, we compute κ1 = 2.257 and

using the relation given in (5.55), we find c = 0.893.

Having obtained the analytic solution for h1(ζ), we now solve h1(ζ) nu-

merically. To do so, we use a fourth order Runge-Kutta method with a

shooting technique. We begin by converting equation (5.46) into two first

order ones by writing h1 = z1 with f0 = y1 and f ′
0 = y2. It follows that

z′1 = z2, (5.56)

z′2 = z1y2 − z2y1 + a0β
M
0 − C, (5.57)

with boundary conditions

z1(0) = 0, z1(∞) = ζ − βM0 , (5.58)

where z2(0) is chosen, such that the condition z1(∞) is satisfied. The primary

functions y1, y2 and C have previously been found in chapter 2, for all values

of a0 > 0.6017. As the system (5.56) - (5.58) is reliant upon the primary

function f0(ζ), we find two solutions when 0.6017 < a0 < 0.75 and one
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Figure 5.1: (a) The oblique function h1(ζ) for, working from left to right,
βM0 = 4, 2, 0,−2,−4 and a0 = 1. (b) The oblique function h2(ζ) for, working
from left to right, βM0 = 4, 2, 0,−2,−4, a0 = 1 and a1 = −0.5.

solution when a0 > 0.75. Figure 5.1(a) illustrates the solutions to h1(ζ) for

a0 = 1 and βM0 = −4,−2, 0, 2, 4. It can be seen that as βM0 increases, a region

of flow reversal develops close to ζ = 0. Numerical trials have suggested that

as a0 decreases, the value of βM0 at which flow reversal occurs increases. Since

the results plotted in figure 5.1(a) are for equally spaced values of βM0 , the

behaviour of h1(ζ) for ζ ≫ 1 suggests that in the far-field, h1(ζ) and βM0

have a linear relationship. This is confirmed by the analytic solution (5.54).

For completeness, the equation for h2(ζ), given by (5.47), is solved nu-

merically using a similar method, although h2(ζ) has very little effect on

the steady streaming layer solution (5.44). Figure 5.1(b) illustrates the ve-

locity profiles for selected values of βM0 for a0 = 1, a1 = −0.5 and βM0 =

−4,−2, 0, 2, 4.

In this section, the solution of the oblique equation (5.10) has been found
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in the Stokes layer and a steady streaming layer. In the steady streaming

layer solution (5.44), the leading order steady component h1(ζ) has been

solved. It can be seen clearly in figure 5.1(a) that the value of βM0 , which is

the leading order mean horizontal velocity component, determines whether

flow reversal occurs and its extent.

Having found solutions in both the Stokes layer and the steady streaming

layer, in the next section we discuss the flow structure in both these layers

over one time period. Additionally, a particle path analysis is performed in

the steady streaming layer.

5.5 The structure of the near-wall flow

In chapter 4, where the primary and oblique equations were solved numeri-

cally, it was found that for certain parameters and over some time intervals of

the cycle, horizontal streamlines appear in the flow, creating a multi-layered

flow. In the present chapter, we have investigated the primary and oblique

problems for large frequency with ∆ ∼ O(σ1/2) and have found the prob-

lem is described in terms of a Stokes layer and a steady streaming layer.

In this section, the flow structure in both of these layers is discussed, with

comparisons being drawn to the numerical results in chapter 4.

The streamfunction, which is previously defined in equation (5.2), is writ-

ten in terms of the scalings ψP = ∆1/2ψ̂P , ψO = ∆−1/2ψ̂O with η = ∆−1/2η̂,

which were introduced in section 5.2, to give

ψ = (νk)1/2x∆1/2ψ̂P (η̂, τ) + ζ̂
(ν
k

)
∆−1

∫
bη

0

ψ̂O(z, τ)dz. (5.59)

To consider the flow structure in the Stokes layer, we differentiate the

streamfunction (5.59), to obtain the horizontal and vertical velocity compo-

nents

u = kx∆ψ̂Pbη
+ ζ̂

(ν
k

)1/2

∆−1/2ψ̂O, (5.60)

v = −(νk)1/2∆1/2ψ̂P . (5.61)
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Upon writing the velocity components (5.60) and (5.61) in terms of the Stokes

layer variable, ξ = Ω1/2η̂ and using the expansion

∆ =
Ω

a0
− a1

a2
0

+O(Ω−1), (5.62)

we obtain

u =
kx

a0

[
ΩΨP0ξ + ΨP1ξ −

a1

a0

ΨP0ξ +O
(
Ω−1

)]
+ (5.63)

ζ̂
(νa0

k

)1/2
[
ΨO0

+ Ω−1

(
a1

2a0
ΨO0

+ ΨO1

)
+O

(
Ω−2

)]
,

v = −
(
νk

a0

)1/2

ΨP0
+O

(
Ω−1

)
. (5.64)

Stagnation points occur when the velocity components u and v, given

in (5.63) and (5.64) are equal to zero. Considering the vertical velocity

component, ΨP0
(ξ, τ) = 0 when ξ = 0 and ξ = ξ0. To examine what effect

these zeros have on the flow structure, we begin by obtaining the dividing

streamline. To do so, we set (5.59) equal to zero and rewrite it in terms of

the Stokes layer variables, to give

xd = −ζ̂
(
νa3

0

k3

)1/2
1

Ω

∫ ξ
0

ΨO0
(z, τ)dz

ΨP0
(ξ, τ)

+O
(
Ω−2

)
. (5.65)

As ΨP0
(0, τ) = 0, ΨP0ξ(0, τ) = 0 and ΨO0

(0, τ) = 0, at the wall the de-

nominator is equal to zero. So, we take small ξ expansions of the primary

and oblique functions, ΨP0
(0, τ) = ΨP0ξξ(0, τ)ξ

2/2 + O (ξ3) and ΨO0
(0, τ) =

ΨO0ξ(0, τ)ξ +O (ξ2), to obtain the attachment point of the dividing stream-

line with the wall. We recall the primary leading order solution is given

by

ΨP0
(ξ, τ) = ξ cos τ − cos

(
τ − π

4

)
+ e−ξ/

√
2 cos

(
τ − ξ√

2
− π

4

)
(5.66)

and the oblique leading order solution is given in (5.27). Therefore, the

attachment point of the dividing streamline with the wall, is given by

x0 = ζ̂

(
νa3

0

k3

)1/2
βO0
Ω

cos
(
τ + φ+ π

4

)

cos
(
τ + π

4

) +O
(
Ω−2

)
. (5.67)

If the phase difference φ is an integer multiple of π, the time-dependent

horizontal velocity component β̂ is either exactly in phase or exactly out of
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phase with the primary function a(τ). When βO0 6= 0, if φ is an even multiple

of π, the attachment point is positive and is fixed over the time period.

Similarly, if φ is an odd multiple, the attachment point is negative and fixed

over the time period. For any other value of φ, the attachment point tends

to either positive or negative infinity as τ → π/4 and τ → 5π/4.

Having discussed the zero at ξ = 0, we now consider the zero at ξ = ξ0.

We find this zero only occurs when π/4 ≤ τ ≤ π/2 and 5π/4 ≤ τ ≤ 3π/2. In

figure 5.2, the first of these non-trivial zeros, ξ0 is illustrated. This zero causes

a horizontal streamline to appear in the flow, creating a double-layered flow.

As τ increases within these time intervals, the horizontal streamline moves up

through the Stokes layer and approaches infinity as τ → π
2
− and as τ → 3π

2

−
.

We now investigate the behaviour of the non-trivial zero ξ0 in the time

interval π/4 ≤ τ ≤ π/2. As stated above, a non-trivial zero ξ = ξ0, develops

within the Stokes layer solution at τ = π/4. To consider the flow structure

around this time, we expand the primary and oblique leading order solutions

in the Stokes layer, by writing τ = π
4
+ T̂ where |T̂ | ≪ 1. Initially considering

the primary solution, we find

ΨP0
=

[
ξ√
2
− 1 + e−ξ/

√
2 cos

(
ξ√
2

)]
(5.68)

+T̂

[
− ξ√

2
+ e−ξ/

√
2 sin

(
ξ√
2

)]
+O(T̂ 2).

The first squared bracketed term only has a zero at ξ = 0. Balancing the

leading and first order terms in (5.68), we find the zero ξ = ξ0 appears when

ξ0 = 3
√

2T̂ , (5.69)

for small T̂ > 0. Similarly, for small T̂ , the oblique Stokes layer solution

becomes

ΨO0
= βO0

[
e−ξ/

√
2 cos

(
π

4
+ φ− ξ√

2

)
− cos

(π
4

+ φ
)]

(5.70)

+T̂

[
sin
(π

4
+ φ
)
− e−ξ/

√
2 sin

(
π

4
+ φ− ξ√

2

)]
+O(T̂ 2).

On the horizontal streamline, a stagnation point is present. To consider

the horizontal position of this stagnation point, we set the horizontal velocity
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component (5.63) equal to zero and obtain

x|ξ=ξ0 = −ζ̂
(
νa3

0

k3

)1/2
1

Ω

ΨO0
(ξ0, τ)

ΨP0ξ(ξ0, τ)
+O

(
Ω−2

)
. (5.71)

Evaluating the primary and oblique leading order solutions about (5.69), we

find

ΨP0ξ

∣∣∣
ξ=ξ0

∼ 3√
2
T̂ 2, ΨO0

∣∣∣
ξ=ξ0

∼ 3
√

2T̂ βO0 sin φ. (5.72)

Substituting the leading order expansions (5.72) into (5.71), we obtain

x|ξ=ξ0 ∼ −ζ̂
(
νa3

0

k3

)1/2

2βO0 sinφΩ−1T̂−1, (5.73)

for small T̂ . Therefore, the horizontal streamline emerges from the wall at

τ = π/4 and moves up through the Stokes layer, with the stagnation point on

the horizontal streamline moving in from either positive or negative infinity,

depending on the parameters, βO0 and φ.

 0
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Figure 5.2: The numerically calculated non-trivial zero ξ0, in the Stokes layer,
which is represented by the solid line, alongside the asymptotic predictions
of the behaviour of the zeros ξ0, close to π/4 and π/2, which are represented
by the dotted lines.

To investigate the behaviour of the zero ξ0 close to τ = π/2, we let

τ = π
2
+ T̃ , where |T̃ | ≪ 1. Hence, the primary leading order equation (5.66),

becomes

ΨP0
= −ξ sin T̃ − cos

(π
4

+ T̃
)

+ e−ξ/
√

2 cos

(
π

4
+ T̃ − ξ√

2

)
. (5.74)
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Expanding for small T̃ , we obtain

ΨP0
= − 1√

2

[
1 + e−ξ/

√
2

(
cos

(
ξ√
2

)
+ sin

(
ξ√
2

))]
(5.75)

+T̃

[
−ξ +

1√
2

(
1 + e−ξ/

√
2

(
sin

(
ξ√
2

)
− cos

(
ξ√
2

)))]
+O(T̃ 2).

For a zero to occur in (5.75), we need ξ ∼ O(T̃−1). Therefore, we set ξ = ξ̃/T̃ ,

to give

ΨP0
∼ − 1√

2
− ξ̃. (5.76)

Therefore, as τ → π
2
−, the zero of ΨP0

occurs when

ξ0 = − 1√
2
T̃−1, (5.77)

as T̃ → 0−. This estimate is illustrated alongside the numerically computed

zero as τ → π
2
− in figure 5.2. As T̃ → 0−, the horizontal streamline moves

up through the Stokes layer and enters the steady streaming layer.

To consider the behaviour of the stagnation point on the horizontal stream-

line close to τ = π
2

in the Stokes layer, we evaluate the leading order primary

and oblique solutions in the present time zone and find

ΨP0ξ

∣∣∣
ξ=ξ0

∼ −T̃ , ΨO0

∣∣∣
ξ=ξ0

∼ βO0 sinφ. (5.78)

Substituting (5.78) into (5.71), we obtain

x|ξ=ξ0 ∼ ζ̂

(
νa3

0

k3

)1/2

βO0 sinφΩ−1T̃−1. (5.79)

Therefore, as the horizontal streamline moves up through the Stokes layer,

the stagnation point on the horizontal streamline moves towards either pos-

itive or negative infinity, depending upon βO0 and φ.

We now discuss how the horizontal streamline behaves as it enters the

steady streaming layer. We write the primary steady streaming solution

(5.16) in terms of the present time variable and find

ψ̂P = −Ω1/2ζ sin T̃ − Ω−1/2

√
2

(
cos T̃ − sin T̃

)
+ Ω−1/2f0 +O

(
Ω−3/2

)
. (5.80)
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Taking small T̃ expansions of (5.80), we find

ψ̂P = −Ω1/2ζT̃ + Ω−1/2

(
f0 −

1√
2

)
+ o

(
Ω−1/2

)
. (5.81)

To balance the first two terms, we choose T̃ = µΩ−1, where µ = O(1).

Therefore, (5.81) becomes

ψ̂P = −Ω−1/2

(
f0 − µζ − 1√

2

)
+O

(
Ω−3/2

)
. (5.82)

The bracketed term in (5.82), for large negative values of µ has a zero ζ0,

which is small in magnitude. Expanding (5.82) for small ζ , we obtain the

approximation

ζ0 ∼ − 1√
2
(
µ+ 3

4

) . (5.83)

As µ increases, the zero ζ0 increases and the horizontal streamline moves

upwards through the steady streaming layer. The numerical results suggest

that ζ0 → ∞ as µ → a−0 . We estimate ζ0 asymptotically, by seeking a large

ζ approximation of (5.82), where f ′
0 → a0 as ζ → ∞ and we find that

ζ0 ∼
d

a0 − µ
, where d =

1√
2

+ lim
ζ→∞

(a0ζ − f0) . (5.84)

Therefore, as µ → a−0 , ζ0 increases and the horizontal streamline moves up to

infinity. This occurs at τ ∼ τ̂ = π
2

+ a0Ω
−1. The critical time τ̂ , corresponds

to a zero developing in the primary function a(τ) = 1 + ∆ cos τ , which arises

at τ = π − cos−1
(

1
∆

)
. Expanding for large ∆, we obtain τ = π

2
+ 1

∆
∼ τ̂ ,

where ∆ ∼ Ω/a0. In figure 5.3, we plot on a log-log graph the asymptotic

prediction of the zeros ζ0, given in (5.84), with the numerically computed

zeros for a range of values of µ, showing excellent agreement.

To find the location of the stagnation point as the horizontal streamline

enters the steady streaming layer, we set the horizontal velocity component

(5.60) equal to zero and rewrite in terms of the steady streaming layer vari-

ables, to give

x|ζ=ζ0 = − ζ̂

Ω

(
νa3

0

k3

)1/2
h1(ζ0) − βO0 cos(τ + φ)

cos τ + Ω−1f ′
0(ζ0)

. (5.85)
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Figure 5.3: The asymptotic prediction of the behaviour of the zeros ζ0, along-
side the numerically calculated zeros, which are represented by the crosses,
showing excellent agreement.

Close to τ = π
2
, (5.85) is rewritten as

x|ζ=ζ0 ∼
ζ̂

Ω

(
νa3

0

k3

)1/2
h1(ζ0) + βO0 sinφ

T − Ω−1f ′
0(ζ0)

. (5.86)

This matches directly to the Stokes layer expansion (5.79) when T̃ → −∞,

where the small ζ0 approximation, given in (5.83), is used. To consider how

the stagnation point on the horizontal streamline behaves as the horizontal

streamline moves up to infinity, we recall that h1(ζ) → ζ−βM0 and f ′
0(ζ) → a0

as ζ → ∞. Using the scaling T̃ = µΩ−1 and the large ζ0 approximation, given

in (5.84), we find

x|ζ=ζ0 ∼ −ζ̂
(
νa3

0

k3

)1/2
d

(a0 − µ)2 . (5.87)

The constant d, given in (5.84), is plotted in figure 5.4. This figure illustrates

that for all possible values of a0, d is positive. Therefore, as µ → a−0 , which

corresponds to point when the horizontal streamline moves up to infinity, the

stagnation point on this streamline tends to negative infinity, irrespective of

the choice of β̂. This result agrees with the numerical results in chapter 4.

Extending the above analysis over a period of 2π, the streamline pattern

changes between a single and a double-layered structure. In the interval 0 ≤
τ ≤ π

4
, the streamline pattern is single-layered, with the dividing streamline

approaching the wall at an angle. When π
4
≤ τ ≤ τ̂ , the flow structure is

double-layered, with a horizontal streamline present within the fluid, which

moves upwards to infinity and vanishes at τ̂ . For τ̂ ≤ τ ≤ 5π
4

, the flow returns
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Figure 5.4: The constant d given in (5.84) plotted against a0, illustrating for
all values of a0, d is positive. The upper branch of the curve asymptotes to
a0 = 0.75.

to a single-layered structure. At τ = 5π
4

, a horizontal streamline develops in

the Stokes layer and behaves similarly to the case described above when

τ = π
4
. To observe how the horizontal streamline moves through the steady

streaming layer, we write τ = 3π
2

+ T̄ for |T̄ | ≪ 1 and the steady streaming

layer solution becomes

ψ̂P = Ω1/2ζT̄ + Ω−1/2

(
f0 −

T̄√
2

+
1√
2

)
+O(Ω−3/2). (5.88)

To gain a balance between the first and second terms, we write T̄ = µ̄Ω−1,

where µ̄ = O(1) is a constant. Therefore, we obtain

ψ̂P = Ω−1/2

(
f0 + µ̄ζ +

1√
2

)
+ o

(
Ω−1/2

)
. (5.89)

For a large positive µ̄, the bracketed term in (5.89) has no zeros and for

large negative values of µ̄ there is one zero. This zero corresponds to a

horizontal streamline entering the steady streaming layer from the Stokes

layer. When µ̄ = −a+
0 , a second zero occurs in the bracketed term in (5.89).

This corresponds to a second horizontal streamline entering the flow from

infinity when µ̄ = −a+
0 , i.e. when τ = 3π

2
− a0Ω

−1, where ∆ = Ω/a0.

Therefore, the flow develops a triple-layered structure. As µ̄ increases, the

second horizontal streamline moves down from infinity. At some point, the

two streamlines collide and the flow returns to a single-layered structure for

the remainder of the period. These observations agree with the numerical

results obtained in section 4.5.
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Having considered the instantaneous streamlines in both the Stokes and

steady streaming layers, we now discuss the particle paths in the steady

streaming layer, as this layer occupies the larger part of the region at the

wall. To begin, we rewrite the velocity components (5.60) and (5.61), in

terms of the steady streaming layer variables, to give

u = kxΩ−1/2

(
Ω

a0
− a1

a2
0

)
ψ̂Pζ

+ ζ̂
(νa0

k

)1/2

Ω−1/2

(
1 +

a1

2Ωa0

)
ψ̂O, (5.90)

v = −
(
νk

a0

)1/2

Ω1/2

(
1 − a1

2Ωa0

)
ψ̂P . (5.91)

Substituting the primary and oblique solutions (5.16) and (5.44) into (5.90)

and (5.91), we obtain

u = kx

(
Ω

a0

− a1

a2
0

)[
cos τ + Ω−1f ′

0 +O
(
Ω−2

) ]
(5.92)

+ζ̂
(νa0

k

)1/2
(

1 +
a1

2Ωa0

)[
h1 − βO0 cos (τ + φ) +O

(
Ω−1

) ]
,

v = −
(
νk

a0

)1/2

Ω

(
1 − a1

2Ωa0

)[
ζ cos τ + Ω−1

(
f0 (5.93)

− cos
(
τ − π

4

))
+O

(
Ω−2

) ]
.

Initially we discuss the steady terms in the steady streaming layer. Later,

the time-dependent terms are included and the particle paths are sought to

consider what effect the time-dependence has on the steady streamlines.

To consider the flow structure of the steady components, we note that

the vertical velocity (5.93) is equal to zero when f0(ζ) = 0. This occurs

when ζ = 0, which corresponds to a stagnation point at the bottom of the

steady streaming layer. In addition to this, we find a second zero at ζ = ζ∗,

which corresponds to an interior stagnation point in the steady streaming

layer, through which a horizontal streamline exists, causing the flow to have

a double-layered structure. The steady streamline pattern is illustrated in

figure 5.5 for a0 = 0.6017 and a0 = 1, when the vorticity ζ̂ = 0, i.e. solely

the primary flow is considered.

When ζ̂ 6= 0, the flow is made up of both primary and oblique com-

ponents. The dividing streamline is no longer orthogonal and the stream-

lines now approach the wall at an oblique gradient of −2a(τ)k/ζ̂ , where
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Figure 5.5: The orthogonal steady streamlines in the steady streaming layer
for (a) a0 = 0.6017 and (b) a0 = 1. In both cases ν = k = 1 and the solid
dots represent the stagnation points.

a(τ) = 1 + ∆ cos τ . Figure 5.6 illustrates the streamlines for a0 = 1 and

βM0 = 1.2, 1.4442, 1.5, 1.582, 1.8. We note that there are two dividing stream-

lines, the first is the dividing streamline in the far-field, which divides the

streamlines either travelling to the right or the left and the second is the

dividing streamline which intersects with the bottom of the steady stream-

ing layer. In figure 5.6, it can be seen that upon increasing βM0 causes the

streamlines in the far-field shift to the right and below the horizontal stream-

line at ζ = ζ∗, the direction of the flow along the streamlines changes. Also,

it can be seen that the gradient of the dividing streamline changes as βM0

increases. We note there are two critical values of βM0 . The first, where the

dividing streamline goes through both stagnation points, ζ = 0 and ζ = ζ∗,

when βM0 = 1.4442, is illustrated in figure 5.6(b). The second is where both

of the stagnation points are at x = 0, which occurs when βM0 = 1.582 and

can be seen in figure 5.6(d).

To consider the behaviour of the stagnation point along the horizontal

streamline, we set the horizontal velocity component (5.92) equal to zero

and find

x∗ = −ζ̂
(
νa3

0

k3

)1/2
h1(ζ

∗)

f ′
0(ζ

∗)
+O

(
Ω−1

)
, (5.94)

where x∗ is the location of the stagnation point and ζ̂ , k and ν are constants.

The horizontal location x∗ is obtained numerically for different values of βM0 .

A linear relationship between x∗ and βM0 is observed and as βM0 is increased

x∗ moves to the right, which is illustrated in figure 5.7 for a0 = 1. This is
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Figure 5.6: The mean components of the steady streaming layer illustrated
for a0 = 1 and (a) βM0 = 1.2, (b) βM0 = 1.4442, (c) βM0 = 1.5, (d) βM0 = 1.582,

(e) βM0 = 1.8. In each case ζ̂ = ν = k = 1.

confirmed by the analytic solution found for h1(ζ), given in (5.54), where

h1(ζ) has a linear dependence upon βM0 .

We now consider the time-dependent terms as well as the steady terms

in velocity components (5.92) and (5.93). The particle paths are computed

as the solution of the differential system

u =
dx

dt
, v =

dy

dt
, (5.95)

where u and v are given in (5.92) and (5.93). We recall that τ = σkt and

using the relation for σ in terms of Ω, which was initially given in (2.144),
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Figure 5.7: The leading order mean component of the time-dependent func-
tion, βM0 plotted against x∗, the horizontal position of the stagnation-point

for ζ̂ = ν = k = a0 = 1.

we find

τ =

(
Ω2

a0

− Ωa1

a2
0

)
kt+O (1) . (5.96)

We rewrite the velocity components (5.92) and (5.93) in terms of the di-

mensional variables x, y and t and upon introducing the small parameter

δ = Ω−1, we obtain

dx

dt
= kx

(
1

a0δ
− a1

a2
0

)
cos

[(
1

a0δ2
− a1

a2
0δ

)
kt

]
+
kx

a0
f ′

0 (5.97)

+ζ̂
(νa0

k

)1/2
[
h1 − βO0 cos

((
1

a0δ2
− a1

a2
0δ

)
kt+ φ

)]
+O (δ) ,

dy

dt
= −ky

(
1

a0δ
− a1

a2
0

)
cos

[(
1

δ2a0

− a1

δa2
0

)
kt

]
(5.98)

−
(
νk

a0

)1/2 [
f0 − cos

((
1

a0δ2
− a1

a2
0δ

)
kt− π

4

)]
+O (δ) .

As the right hand sides of (5.97) and (5.98) involve both steady terms and

unsteady terms with high frequency oscillations, the particle paths are ex-

pected to operate on two distinct time scales. Therefore, we introduce the

new slow and fast time variables t̄ and T , which are given by

t̄ =
kt

a0

and T =

(
1

δ2a0

− a1

δa0

)
kt. (5.99)

Since the right hand side of (5.98) is independent of x, we begin by solving

this equation. As the variables x(t̄, T ) and y(t̄, T ) are dependent upon both
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the time scales, it follows that

d

dt
=

k

a0

∂

∂t̄
+ k

(
1

δ2a0
− a1

δa2
0

)
∂

∂T
. (5.100)

By rewriting (5.98) in terms of the new time scales, we obtain

k

a0
δ2yt̄ + k

(
1

a0
− δa1

a2
0

)
yT = −kyδ

(
1

a0
− δa1

a2
0

)
cosT (5.101)

− δ2

(
νk

a0

)1/2 [
f0 − cos

(
T − π

4

)]
+O

(
δ3
)
.

The dominant balance in equation (5.101) is yT = −δy cosT , which gives the

solution

y(t̄, T ) = Ŷ E, where E = e−δ sinT . (5.102)

Substituting (5.102) into equation (5.101), gives

δ2E
k

a0
Ŷt̄ + E

(
1

a0
− δa1

a2
0

)
ŶT = (5.103)

− δ2

(
νk

a0

)1/2 [
f0(EŶ ) − cos

(
T − π

4

)]
+O

(
δ3
)
.

We pose the asymptotic expansion Ŷ (t̄, T ) = Y0(t̄, T )+δY1(t̄, T )+δ2Y2(t̄, T )+

O(δ3), giving at leading and first order, Y0 = Ỹ0(t̄) and Y1 = Ỹ1(t̄). At second

order, we find

Y2T = −Ỹ0t̄ −
(νa0

k

)1/2 [
f0(Ỹ0) − cos

(
T − π

4

)]
. (5.104)

Integrating this with respect to T , we obtain

Y2 = −
[
Ỹ0t̄ +

(νa0

k

)1/2

f0(Ỹ0)

]
T +

(νa0

k

)1/2

sin
(
T − π

4

)
+ Ỹ2 (t̄) , (5.105)

where Ỹ2 (t̄) is a function of integration. Following the standard method for

multiple scales, to avoid the growth of the secular term in (5.105), we require

Ỹ0t̄ = −
(νa0

k

)1/2

f0(Ỹ0). (5.106)

We now consider the particle path for x, whose equation is given by (5.97).

Rewriting (5.97) in terms of the two time scales given in (5.100), we find

k

a0
δ2xt̄ +

(
1

a0
− δa1

a2
0

)
xT = kxδ

(
1

a0
− δa1

a2
0

)
cosT + δ2 k

a0
xf ′

0 (5.107)

+ δ2ζ̂
(νa0

k

)1/2 [
h1 − βO0 cos (T + φ)

]
+O(δ3).
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Similar to equation (5.101), the dominant balance in equation (5.107) is

xT = −δx cos T , giving

x(t̄, T ) = X̂Ê, where Ê = eδ sinT . (5.108)

Upon substituting (5.108) into (5.107), we find

δ2Ê
k

a0
X̂t̄ + Ê

(
1

a0
− δa1

a2
0

)
X̂T = δ2

[
Ê
k

a0
X̂f ′

0(EŶ ) (5.109)

+ ζ̂
(νa0

k

)1/2 (
h1(EŶ ) − βO0 cos (T + φ)

)]
+O

(
δ3
)
.

Equation (5.109) suggests the asymptotic expansion X̂(t̄, T ) = X0(t̄, T ) +

δX1(t̄, T ) + δ2X2(t̄, T ) + O(δ3). It follows that at leading and first order,

X0 = X̃0(t̄) and X1 = X̃1(t̄) and at second order

X2T = −X̃0t̄ + X̃0f
′
0(Ỹ0) + ζ̂

(
νa3

0

k3

)1/2 (
h1(Ỹ0) − βO0 cos (T + φ)

)
. (5.110)

Upon integrating (5.110) with respect to T , we obtain

X2 =

[
−X̃0t̄ + X̃0f

′
0(Ỹ0) + ζ̂

(
νa3

0

k3

)1/2

h1(Ỹ0)

]
T (5.111)

−ζ̂
(
νa3

0

k3

)1/2

βO0 sin (T + φ) + X̃2(t̄),

where X̃2(t̄) is a function of integration. To avoid the secular term in (5.111)

growing, we let

X̃0t̄ = X̃0f
′
0(Ỹ0) + ζ̂

(
νa3

0

k3

)1/2

h1(Ỹ0). (5.112)

Equations (5.106) and (5.112) are solved numerically, using a second order

Runge-Kutta method. Different particle paths are found, by choosing differ-

ent initial conditions, X̃0(t̄ = 0) and Ỹ0(t̄ = 0). The functions f0 and h1 have

been solved numerically earlier in this chapter for each value of a0 > 0.6017.

To obtain values for f0(Ỹ0) and h1(Ỹ0) at a given value of Ỹ0, a linear interpo-

lation is performed. Once the solutions X̃0(t̄) and Ỹ0(t̄) have been computed,

they are combined with the oscillatory component E = e−δ sinT to give the

leading order particle paths x = E−1X̃0 and y = EỸ0. In figure 5.8(a),

we illustrate X̃0(t̄) and Ỹ0(t̄) for a0 = 1 and βM0 = 1.2. We notice that the
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Figure 5.8: (a) The streamlines that correspond to the streamlines of steady
components in the steady streaming layer for a0 = 1 and βM0 = 1.2 with

ζ̂ = ν = k = 1. (b) The particle paths for the same parameters where the
oscillation amplitude is Ω = 100.

streamlines in this figure correspond to the streamlines of steady components

in the steady streaming layer seen in figure 5.6(a). Figure 5.8(b) illustrates

the particle paths for the same parameters with δ = 0.01, which corresponds

to an oscillation amplitude of Ω = 100. Therefore, the small oscillations

simply cause the particle paths to oscillate about their mean position.

To conclude this section, we consider the effect of the oblique components

on the wall shear stress, which is defined as S = µuy|y=0 = µψyy|y=0. Using

the streamfunction (5.59), which is written in terms of the scaled variables

introduced in section 5.2, we find the wall shear stress is given by

S = µ

(
k3

ν

)1/2

∆3/2ψ̂P
bηbη + µζ̂ψ̂O

bη

∣∣∣∣
bη=0

. (5.113)
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Expressing (5.113) in terms of the Stokes layer variables, we obtain

S = µ

(
k3

νa3
0

)1/2

x

[
Ω2ΨP0ξξ + Ω

(
ΨP1ξξ −

a1

2a0

ΨP0ξξ

)
+ O (1)

]
(5.114)

+ζ̂
[
ΩΨO0ξ + ΨO1ξ +O

(
Ω−1

) ]
∣∣∣∣∣
ξ=0

.

Upon substituting the Stokes layer components in (5.114) and evaluating at

ξ = 0, we find the wall shear stress is given by

S = µ

(
k3

νa3
0

)1/2

x

[
Ω2 cos

(
τ +

π

4

)
(5.115)

+Ω

(
1

2
√

2
+ sin

(
2τ +

π

4

)(
1 − 1√

2

))
+O (1)

]

+µζ̂

[
ΩβO0 sin

(
τ + φ− π

4

)
+ c− 1

2
βO0 sin

(
φ+

π

4

)

−
(

1 − 1√
2

)
sin
(
2τ +

π

4
+ φ
)
− βM0 sin

(
τ +

π

4

)

−βO1 cos
(
τ +

π

4
+ φ
)

+O(Ω−1)

]
.

Taking a time-average over one time period, we obtain the mean wall shear

stress

S̄ = µ

(
k3

νa3
0

)1/2

x

[
Ω

2
√

2
+O (1)

]
(5.116)

+µζ̂

[
c− 1

2
βO0 sin

(
φ+

π

4

)
+O

(
Ω−1

)]
,

where S̄ is the average value and c is a constant which is given in (5.55).

In both the wall shear stress and the mean wall shear stress, the dominant

contribution comes from the orthogonal component of the flow. We note that

although the component proportional to βO0 in (5.116) is only dependent upon

the time-dependent horizontal velocity component, this term arises due to the

coupling of the orthogonal and oblique components. Additionally, the mean

wall shear stress term cζ̂ describes the interaction between the orthogonal

stagnation-point flow and the shear flow, as c is dependent upon orthogonal

parameters. In the absence of an orthogonal flow, i.e. ψ̂P = 0, equation

(5.10) becomes

Ωψ̂Oτ − ψ̂O
bηbη = −Ωβ̃τ , (5.117)
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with the boundary conditions ψ̂O(0, τ) = 0 and ψ̂O(η̂, τ) → η̂−βO0 cos(τ +φ)

as η̂ → ∞, where βM0 = 0. Upon solving equation (5.117), we find

ψ̂O = η̂ + Ω1/2βO0

[
e−Ω1/2

bη/
√

2 cos

(
τ − Ω1/2η̂√

2
+ φ

)
− cos (τ + φ)

]
. (5.118)

The wall shear stress in this case is given by S = µζ̂, which is the wall shear

stress imposed by the shear flow.

In the current analysis, we have assumed that the horizontal velocity

component β̂ ∼ O(1), which corresponds to β̂ being of the same order of

magnitude as the mean component in a(τ) = 1 + ∆ cos τ . However, other

magnitudes of β̂ could have been chosen. A weaker time-dependent horizontal

velocity could be considered by setting βM0 and βO0 equal to zero. Also, we

could have chosen a stronger horizontal velocity and considered the problem

where β̂ is of the same order of magnitude as the oscillatory component in

a(τ), i.e. β̂ ∼ O(∆). This corresponds to choosing

β̃ = Ω3/2
(
βM0 + βO0 cos(τ + φ)

)
(5.119)

+Ω1/2
(
βM1 + βO1 cos(τ + φ)

)
+O(Ω−1/2).

Using this new expansion for β̃, an asymptotic analysis similar to the one

used previously is performed. We find the Stokes layer expansion is now given

by ψO ∼ O(Ω3/2), where the leading and first order equations are the same

as those given in (5.23) and (5.24). Additionally, the steady streaming layer

ψO ∼ O(Ω5/2). We note that both of these layers are Ω times that of those

discussed above. In solving the oblique equation in the steady streaming

layer, the equation for h1 is given by

h′′1 + f0h
′
1 − f ′

0h1 = a0β
M
0 , (5.120)

with boundary conditions

h1(0) = 0, h′1(0) = c, h1 → −βM0 as ζ → ∞. (5.121)

We note this is not the same as the equation for h1 given in (5.46), as the

primary constant C = limζ→∞(a0ζ − f0) is unaffected by the choice of β̃
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and appears at higher order. The analytic solution to equation (5.120) is

obtained in a similar way to that in section 5.4.2 and has the solution

h1 = −β
M
0

a0

(
f ′

0(ζ) +
3f ′′

0 (ζ)

4f ′′
0 (0)

)
, (5.122)

where

c = −β
M
0

a0

(
f ′′

0 (0) +
27

64f ′′
0 (0)

− 3a2
0

4f ′′
0 (0)

)
. (5.123)

This solution is of interest as the constant c appears in the mean wall shear

stress.

To obtain the wall shear stress, we substitute the new oblique Stokes layer

expansion into (5.113) and find

S = µ

(
k3

νa3
0

)1/2

x

[
Ω2ΨP0ξξ + Ω

(
ΨP1ξξ −

a1

2a0

ΨP0ξξ

)
+O (1)

]
(5.124)

+ζ̂
[
Ω2ΨO0ξ + ΩΨO1ξ +O (1)

]∣∣∣∣∣
ξ=0

.

Substituting the Stokes layer solutions into (5.124) and upon taking a time-

average over one time period, we obtain the mean wall shear stress

S̄ = µ

(
k3

νa3
0

)1/2

x
Ω

2
√

2
+ µζ̂Ω

[
c− 1

2
βO0 sin

(
φ+

π

4

)]
+O(1). (5.125)

Therefore, we find that increasing the magnitude of the horizontal velocity

component β̂, causes the oblique component to appear at the same order as

the primary component in both the wall shear stress and the mean wall shear

stress, unlike that when β̂ ∼ O(1).

The point at which the mean shear stress is equal to zero, is given by

xs = −2
√

2ζ̂

[
c− 1

2
βO0 sin

(
φ+

π

4

)]
. (5.126)

The point of zero mean wall shear stress xs, can be shifted either upstream

or downstream depending on the values of a0, β
M
0 , βO0 and φ. In figure 5.9,

we illustrate the constant c/βM0 against a0. For all values of a0, c/β
M
0 is

always negative. Therefore, in the case when βO0 = 0, the point of zero mean

wall shear stress is positive and as βM0 increases, xs is shifted in a positive

direction.
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Figure 5.9: The constant c
βM
0

, given in (5.123), plotted against a0. The lower

branch of the curve asymptotes to a0 = 0.75.

5.6 Summary

This chapter is a continuation of chapter 4, but now focuses on a large fre-

quency asymptotic analysis of a two-dimensional unsteady stagnation-point

flow, travelling obliquely towards a fixed wall. As in chapter 4, the flow

in the far-field is made up of an unsteady orthogonal stagnation-point flow,

including both a mean component and an oscillatory component, which is

dependent upon a relative amplitude parameter ∆, and a dimensionless fre-

quency parameter σ. Added to this is a shear flow with constant vorticity

and a time-dependent horizontal velocity component.

As initially discussed in chapter 2, for a given dimensionless frequency,

a critical relative amplitude occurs, above which the orthogonal and oblique

solutions break down at a finite-time singularity. We have performed an

asymptotic analysis for large parameters close to the critical value, through

which we found that the problem exhibits a double-layer structure. At the

wall, a Stokes layer is present and due to a mean velocity persisting to the top

of the Stokes layer, a steady streaming layer is introduced to match between

the Stokes layer and the far-field flow.

Over a single time period, the flow structure is particularly complicated as

a multi-layered structure appears twice. In the first time interval, a horizontal

streamline appears at the Stokes layer, creating a double-layered structure.

This streamline then moves up through the steady streaming layer, until it
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disappears to infinity and the flow returns to a single-layered structure. At

the second time interval, like that of the first, a horizontal streamline emerges

from the Stokes layer and moves upwards into the steady streaming layer.

A second horizontal streamline moves down from infinity, creating a triple-

layered structure. At some time in the interval, the two horizontal streamlines

collide and the streamline pattern returns to a single-layered structure.

When the structure of the streamlines is single-layered, the horizontal

velocity component simply shifts the instantaneous streamlines in the far-

field and the attachment point with the wall to the right. When the flow

has a double or triple-layered structure, the location of the stagnation point

on the horizontal streamline emerges from either positive or negative infinity.

As the streamline moves up to infinity, the stagnation point tends to negative

infinity regardless of the horizontal velocity.

When considering the mean wall shear stress, for which we have chosen

a horizontal velocity of the same order of magnitude as that of the mean

component of the unsteady orthogonal stagnation-point flow, the contribu-

tion for the oblique components appear at a higher order than the orthogonal

components. However, choosing the horizontal velocity component to be the

same order of magnitude as the large oscillatory component of the orthogonal

flow, we find that the oblique component appears at the same order as the

orthogonal component in the mean wall shear stress. In this case, the loca-

tion of zero mean wall shear stress can be moved upstream or downstream

by altering the parameters.

The particle paths within the steady streaming layer were considered

using the method of multiple scales. It was observed that the particle paths

have small amplitude rapid oscillations, which simply cause the particles to

oscillate about their mean position.

A brief summary of the work within this chapter can be found in Tooke

et al. (2010).



Chapter 6

Conclusion

6.1 Concluding remarks

This thesis has focused on orthogonal and oblique stagnation-point flows. In

each case, the problem comprised an orthogonal equation with a secondary

equation, which is coupled with the orthogonal equation and describes the

additional components of the problem.

In chapter 2, an unsteady orthogonal stagnation-point flow travelling to-

wards an oscillating wall was considered. This problem was previously ad-

dressed by Hazel and Pedley (1998) in reference to a simplified model of

an arterial end-to-side anastomosis, which is illustrated in figure 1.1. Hazel

and Pedley considered the problem for a large dimensionless frequency pa-

rameter, but chose a relative amplitude parameter to prevent flow reversal

occurring. The orthogonal problem was addressed by many authors, includ-

ing Merchant and Davis (1989). They showed that for a large dimensionless

frequency, there exists a critical relative amplitude, above which solutions

do not exist. Blyth and Hall (2003) extended this analysis and found that

solutions above the critical amplitude break down at a finite-time singular-

ity. Therefore, we performed an asymptotic analysis for a large dimensionless

frequency close to the critical amplitude, which allows for flow reversal. The

solutions exhibit a double layer structure, where the thickness of the layers

is dependent upon the relative sizes of the mean and oscillatory components

149
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of the far-field orthogonal flow. In the case where the oscillatory component

is dominant in the far-field, the solution exhibits a Stokes layer at the wall

with a steady streaming layer matching between the Stokes layer and the

far-field flow. The wall shear stress was calculated and we found that for a

large dimensionless frequency parameter, the oscillatory components of the

flow do not effect the mean wall shear stress. This agreed with the results

obtained by Hazel and Pedley (1998). Therefore, even though the asymptotic

structure has changed, the effect of the oscillatory components on the mean

wall shear stress has not.

In chapter 2, we followed Hazel and Pedley (1998) by considering an oscil-

lating stagnation-point flow travelling towards an oscillating wall. However,

in the subsequent chapters, stagnation-point flows were discussed travelling

towards fixed walls. By a simple change of frame of reference, it is easy to

switch between frames, with only the pressure term being affected.

Chapter 3 considered a two-dimensional stagnation-point flow where the

streamlines approach a fixed wall obliquely. The problem is comprised of

three separate flows, a Hiemenz stagnation-point flow, a shear flow with

constant vorticity and a uniform stream. As the streamlines approach the

wall, the viscosity caused the dividing streamline to turn in towards the wall

and meet the wall at an angle closer to the normal. We ascertained that

increasing the uniform stream in the far-field, simply shifted the streamlines

and the attachment point of the dividing streamline with the wall to the

right, without affecting the structure of the streamlines.

As an extension to chapter 3, chapter 4 considered an oblique unsteady

two-dimensional stagnation-point flow. Like that in chapter 2, in the far-field,

there is a orthogonal stagnation-point flow, which is dependent upon a dimen-

sionless frequency and a relative amplitude parameter. Superimposed onto

this is a shear flow with constant vorticity and a time-dependent horizontal

velocity component. The problem can be described as two coupled equations

and solved numerically using a Crank-Nicolson finite-difference technique.

Over a single time period, the flow structure is dependent upon the
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relative amplitude parameter. For a fixed dimensionless frequency, when

∆ < ∆1, where ∆1 < ∆2 < 1, the streamline pattern is at its simplest. The

dividing streamline approaches the wall obliquely and its gradient oscillates

between two bounding values. When ∆1 < ∆ < ∆2, a horizontal streamline

appears from the wall, creating a double-layered structure in the flow for a

short time interval. The layer at the wall is separated from the remaining

flow by a horizontal streamline through a stagnation point. As the horizontal

streamline returns to the wall, the flow returns to a single-layered flow. When

∆2 < ∆ < 1, a horizontal streamline appears at the wall and moves into the

fluid. As the first horizontal streamline is moving back towards the wall,

a second horizontal streamline appears from the wall. This creates a triple-

layered structure in the flow for a short time, before the two streamlines meet

and the flow returns to a single-layered structure. When ∆ > 1, there are

two time intervals over the period in which the horizontal streamline appear

within the flow. At the first time interval, a horizontal streamline appears in

the flow before moving up and disappearing at infinity. In the second case,

the horizontal streamline appears from the wall and after a short time, a sec-

ond horizontal streamline moves down from infinity creating a triple-layered

structure. When these two horizontal streamlines collide, the flow returns to

a single-layered flow.

When ∆ > 1, there exists a critical relative amplitude parameter ∆s(σ),

such that when ∆ > ∆s, the orthogonal and oblique solutions breakdown at

a finite-time singularity. In the large frequency limit, which was discussed

in chapter 5, an exact expression was found for the relationship between ∆s

and σ.

The particle paths within the steady streaming layer were obtained using

the method of multiple scales. It was found that the particle paths follow the

streamlines that correspond to the steady components of the steady stream-

ing layer solution, with the particles performing small rapid oscillations about

their mean position.

If the magnitude of the horizontal velocity component is the same order
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as the oscillatory component of the unsteady orthogonal stagnation-point

flow, the location of the zero mean wall shear stress can be shifted upstream

or downstream dependent upon the parameters chosen.

6.2 Further work

As discussed in the introduction, the stagnation-point flows considered in this

thesis can have applications to blood flow, specifically as simplified models

of an end-to-side anastomosis, which is a surgical graft performed to bypass

a blocked artery, for example. To allow for more accurate models to be

calculated, we discuss some of those simplifications.

Hazel and Pedley (1998), who considered this application provide physi-

ological values for all the required parameters. In particular, they calculate

the dimensionless amplitude parameter to be ∆ = 0.6, which does not allow

for any flow reversal to occur. Due to the pulsatile nature of the heart, there

are two alternating cycles called systole and diastole. During systole, the

blood is pumped from the heart, whereas during diastole, the period when

the heart is resting, the flow is either stationary or reversed in some arteries,

such as the external carotid or the femoral artery (Ku (1997)). Hazel and

Pedley (1998) have previously discussed the three-dimensional orthogonal

stagnation-point flow, but like that of the two-dimensional case, as discussed

above, they chose a relative amplitude parameter that does not allow for flow

reversal. Hence, an obvious extension is to consider the orthogonal problem

in the three dimensional case, for a relative amplitude parameter, which will

allow flow reversal to occur.

Hazel and Pedley (1998) found the frequency parameter σ ≈ 0.62. Heil

and Hazel (2003) investigated an oscillating two-dimensional stagnation-

point flow similar to that of Hazel and Pedley. Their application was to

consider how the flow close to a stagnation point in an end-to-side anasto-

mosis behaves and they focussed on the parameter range 0.04 < σ < 0.4.

Therefore, the analysis performed in chapter 4, where an unsteady oblique
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stagnation-point flow was considered, can be applied to an end-to-side anas-

tomosis for these parameters. Also, if physiological parameters can be ob-

tained for the oblique problem, the optimum angle at which the streamlines

approach the wall, which may improve the graft’s longevity could be inves-

tigated.

Ojha et al. (1990), are among many who have found that there is a link

between low wall shear stress and intimal hyperplasia, which is the thick-

ening of the inner layer of an artery. This thickening of the arterial wall

causes changes in the geometry of the vessel wall, which can no longer be

considered flat. Therefore, a more physical assumption would be to consider

the wall with either a bump or dip on its surface. In addition, the effect

of surface curvature could take be taken into account like that of Sanchez-

Sanz and Blyth (2007) who considered an unsteady axisymmetric orthogonal

stagnation-point flow approaching a cylinder.

In this thesis, only two-dimensional problems have been considered. Both

Riley (1993) and Weidman and Putkaradze (2003) investigated axisymmetric

problems. Riley considered the flow travelling towards a cylinder orthogo-

nally, while Weidman and Putkaradze considered a steady axisymmetric flow

travelling obliquely towards a cylinder. Therefore, the oblique analysis per-

formed in chapters 4 and 5 can be extended to consider an axisymmetric

oblique unsteady stagnation-point flow travelling towards an cylinder.

Even though blood is non-Newtonian, Perktold et al. (1991) stated that

in large arteries there was very little difference in the flow characteristics

between non-Newtonian and Newtonian fluids. However, Gijsen et al. (1999)

later suggested that the effect of shear thinning and the viscoelasticity of

the blood is important in the carotid artery. Therefore, as an extension, the

orthogonal and oblique problems could be considered in a non-Newtonian

fluid, where comparisons could be drawn with the analysis and results within

this thesis.



Appendix A

Asymptotic solution of F0(ζ)

about a0 ≈ 0.75

In this appendix, we obtain the asymptotic solution of F̂0(ζ̂) close to a0 ≈
0.75. This equation was initially derived in chapter 2 and from the numerical

results obtained in section 2.6.3, it can be seen that the velocity profiles

exhibit a region of flow reversal close to ζ̂ = 0 as a0 → 0.75. By seeking the

asymptotic solution close to a0 ≈ 0.75, we confirm this behaviour.

The equation for F̂0, which was previously derived in equation (2.132), is

given by

F̂ ′′′
0 − f̂ ′

0F̂
′
0 + f̂0F̂

′′
0 =

1 − f̂ ′
0

2
, (A.1)

with boundary conditions

F̂0(0) = 0, F̂ ′
0(0) =

1

2
, F̂ ′

0(ζ̂) → 0 as ζ̂ → ∞. (A.2)

Similar to the analysis used when obtaining the primary asymptotic solu-

tion in section 2.4.4, we introduce the parameter λ = 3
4a0

and write λ = 1+ ǫ

where 0 < ǫ≪ 1. We note that λ = 1 is equivalent to a0 = 0.75.

We begin by considering the solution close to ζ̂ = 0. Unlike the primary

problem, where f̂ ′′
0 (0) ∼ ǫ1/2 as ǫ → 0, the numerical results for the sub-

sidiary problem, obtained in section 2.6.3, show that F̂ ′′
0 (0) ∼ ǫ−1 as ǫ → 0.

This relationship is illustrated in figure A.1. This relation, along with the
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boundary conditions at ζ̂ = 0, suggests the scaling F̂0 = δ2G with variable

Y = ζ̂/δ2. The parameter δ = (2ǫ)1/2 was found when obtaining the primary

asymptotic solution in section 2.4.4.
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Figure A.1: The numerical results for the subsidiary problem illustrating a
linear relationship between F̂ ′′

0 (0) and ǫ.

We recall the primary asymptotic solution close to ζ̂ = 0, which as pre-

viously stated in equation (2.75), is given by

f̂0 = −sin(χ)

δ
+
δ

2

[
B(sin(χ) − χ cos(χ)) (A.3)

+ cos(χ)

∫ χ

0

ln(tan (χ̄/2))dχ̄− sin(χ) ln(tan(χ/2))

]
+ · · · ,

where χ = δζ̂. In the limit Y → 0, we can approximate equation (A.3) as

f̂0 = −δ2Y − δ4Y

2
+ · · · . (A.4)

Upon substituting (A.4) and the subsidiary scalings into equation (A.1),

we obtain

G
Y Y Y

+ δ4
(
G

Y
− Y G

Y Y
− 1
)

+O(δ6) = 0. (A.5)

Equation (A.5) suggests we expand G = G0 + O(δ4) and at leading order,

we find G0Y Y Y
= 0. Integrating this three times and applying the boundary

conditions at Y = 0, we find G0(Y ) = AY 2

2
+ Y

2
, where A is an arbitrary

constant. Therefore,

F̂0 =
δ2

2

(
AY 2 + Y

)
. (A.6)

We shall denote this the region 1a solution, which is within region 1 of the

primary solution. Figure A.3 illustrates the structure of the layers in both

the primary and subsidiary problems.
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As (A.6) does not satisfy the boundary condition at infinity, F̂ ′ → 0 as

ζ̂ → ∞, we introduce another region, within the region 1 primary solution.

Similar to the results found in figure A.1, it appears that F̂0(ζ̂) ∼ ǫ−2 as

ζ̂ → ∞. Therefore, we let F̂0 = 1
δ4
H(χ) with χ = δζ̂, where this variable

was initially introduced when obtaining the primary asymptotic solution in

region 1. Upon substituting the primary solution (A.3) and the subsidiary

scalings into the subsidiary equation (A.1), we find

δ2Hχχχ + cos(χ)Hχ − sin(χ)Hχχ = δ3

(
1 + cosχ

2

)
. (A.7)

This expansion suggests we write H = H0 +O(δ2) and we solve the leading

order equation, cos(χ)H0χ − sin(χ)H0χχ = 0, to obtain

H0(χ) = C cos(χ) +D. (A.8)

This is denoted the region 1b solution. Therefore, the primary region 1

solution spans the subsidiary regions 1a and 1b. The constants C and D are

found via matching to the region 1a solution. We let χ→ 0 and approximate

(A.8) as the power series, H0(χ) ∼ C + D − Cχ2

2
+ O(χ4). In the matching

region, the region 1a and 1b leading order solutions are given by

F̂0 =
Aχ2

2δ4
+
χ

2δ
, (A.9)

F̂0 =
1

δ4

(
C +D − Cχ2

2

)
. (A.10)

From these, we can see that A = −C and C +D = 0. Therefore, the region

1b solution is given by

F̂0 =
A

δ4

(
1 − cos(χ)

)
. (A.11)

In section 2.4.4, it was found that the leading order primary solution in

region 1, f̂ ′
0 = − cosχ, is unable to satisfy the far-field boundary condition

f̂ ′
0 → 1 as χ → ∞. Due to the subsidiary equation being dependent upon

the primary equation, the solution (A.11) also breaks down when χ = π,

i.e. ζ̂ = π/δ. As with the primary problem, to allow for matching with the

far-field boundary condition F̂ ′
0 → 0 as χ→ ∞, another region is introduced,
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centred on ζ̂ = π/δ, which we denote region 2. We recall, for the primary

problem, we write f̂0 = Z+N(Z) with |N ′(Z)| ≪ 1 and Z = ζ̂− π
δ
. Similarly,

the far-field boundary condition F̂ ′
0 → 0 as ζ̂ → ∞, along with the region 1b

expansion F̂0 = H0/δ
4, suggests we write

F̂0 =
1

δ4
(B + a(Z)) , (A.12)

where |a′(Z)| ≪ 1 and B is an arbitrary constant, which is found through

matching to the region 1b solution. Substituting these scalings into the sub-

sidiary equation (A.1), gives

a′′′ − (1 +N ′)a′ + (Z +N)a′′ = −N
′

2
. (A.13)

After neglecting the quadratic terms in a and N, we obtain

a′′′ − a′ + Za′′ = −N
′

2
. (A.14)

Upon choosing a(Z) = −N(Z)
2

, we retrieve equation (2.77), where the function

N(Z) has a solution in the form of a parabolic cylinder function, N ′(Z) =

−Γ(3)δ2

2
√

2π
e−Z

2/4D−3(Z). To find the constant B, we match this solution to the

region 1b solution (A.11) about χ = π. We find B = 2A and the region 2

solution is given by

F̂0 =
2A

δ4
+

Γ(3)

4δ2
√

2π

∫
bζ−π

δ

e−
bZ2/4D−3(Ẑ)dẐ. (A.15)

The constant A is obtained numerically using the relation δ2F̂ ′′
0 (0) = A. As

δ → 0, A→ −0.4. In figure A.2 the region 1a, 1b and 2 leading order asymp-

totic solutions are plotted for ǫ = 0.001 alongside the numerical solution for

the same parameter showing excellent agreement. Therefore, we have ob-

tained the analytic solution for F0(ζ) close to a0 = 0.75 and confirmed the

numerical results and the behaviour of the velocity profiles as a0 → 0.75 in

section 2.6.3.
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Figure A.2: The region 1, 2 and 3 asymptotic solutions, represented by the
solid line, the dotted lines and the dashed lines for ǫ = 0.001, where δ =
(2ǫ)1/2, alongside the numerical solution for the same parameter, represented
by the crosses.

Region 1a

Region 1b

Region 2 Region 2

Region 1

Primary structure Subsidiary structure

Figure A.3: An illustration of the primary and subsidiary regions.



Appendix B

Change of frame of reference

The problem discussed in chapter 4, described a two-dimensional unsteady

stagnation-point flow travelling obliquely towards a fixed wall. In this ap-

pendix, we show by a simple change of frame of reference that this problem

is equivalent to a two-dimensional unsteady stagnation-point flow, travelling

towards an oscillating wall.

The streamfunction in the far-field, initially stated in equation (5.1), is

given by

ψ = a(t)kxy +
1

2
ζ̂y2 − β̂(t)ζ̂

(ν
k

)1/2

y. (B.1)

Using the properties u = ψy and v = −ψx, the velocity components are

expressed as

u = a(t)kx+ ζ̂y − β̂(t)ζ̂
(ν
k

)1/2

, (B.2)

v = −a(t)ky, (B.3)

with boundary conditions at the wall given by

u = 0, v = 0 on y = 0, (B.4)

where the stagnation point is located at x = β̂ζ̂(ν/k)1/2/(ak).

To consider this problem approaching an oscillating wall, similar to the

change of frame of reference in chapter 2, we write

x̂ = x− β̂(t)ζ̂
(
ν
k

)1/2

ak
and û = u− d

dt

(
β̂(t)ζ̂

(
ν
k

)1/2

ak

)
, (B.5)
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with no change to the vertical length and velocity scale ŷ and v̂ = v. There-

fore, the far-field velocity boundary conditions can be rewritten as

û = a(t)kx̂+ ζ̂ ŷ − B, (B.6)

v̂ = −a(t)kŷ, (B.7)

with boundary conditions on the wall

û = −B, v̂ = 0 on ŷ = 0, (B.8)

where

B = ζ̂
(ν
k

)1/2 d

dt

(
β̂(t)

)
. (B.9)

Having performed this change of frame of reference, the problem given by

(B.6) - (B.8) now describes a two-dimensional stagnation-point flow, travel-

ling obliquely towards an oscillating wall. Therefore, problems of this nature

can either be solved approaching an oscillating or a fixed wall.
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