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Abstract 

From 2006 to 2009, over 2,500 measurements of the sea surface fugacity of CO2 (fCO2) in the 

Scotia Sea were collected from a new Centre for observation of Air Sea Interactions and 

fluXes (CASIX) underway fCO2 instrument onboard RRS James Clark Ross. This novel fCO2 

timeseries contributes to alleviating the paucity of fCO2 data in the Southern Ocean. A key 

component of this work was a 1,400 km repeat transect, occupied in austral spring 2006, 

summer 2008 and autumn 2009. An at-sea intercomparison was conducted to determine the 

accuracy and suitability of the CASIX instrument for oceanic fCO2 measurements and 

contributions to global databases. The first deep carbonate measurements of the Scotia Sea 

were made in summer 2008. A distinct Winter Water layer was observed and used to provide 

sea surface carbonate parameters for the preceding winter (2007), completing the seasonal 

dataset. Upper Circumpolar Deep Water represented a voluminous reservoir of dissolved 

inorganic carbon (DIC) and nitrate in the Antarctic Circumpolar Current (ACC), outcropping 

at the Southern ACC Front and the Southern Boundary. As a result, low pH and carbonate ion 

concentrations in sub-surface waters forced a large seasonal amplitude in aragonite saturation, 

which may hasten the onset of ocean acidification in the Scotia Sea. 

A strong relationship existed between sea ice, ice edge phytoplankton blooms and fCO2. 

Moderate sea ice advance and early retreat set up conditions most favourable for bloom 

development and biological carbon uptake. Residual seasonal deficits in DIC during the 

summer thaw indicated that calcium carbonate precipitation had taken place in the sea ice 

brines. Combined with biological carbon uptake, this ‘sea ice carbon pump’ created substantial 

fCO2 undersaturation in the meltwaters. An ‘island mass effect’ and extensive diatom blooms 

downstream of South Georgia created a strong summertime sink for atmospheric CO2 of 15.1 

± 5.7 mmol m-2 d-1. Substantial seasonal depletion in DIC promoted the uptake of 1.3 ± 0.5 Tg 

C from the atmosphere during summer 2008, which was the strongest region of biological 

carbon uptake to date in ice-free waters of the Southern Ocean. On an annual basis, the Scotia 

Sea from 62.6° to 49.5°S represented a large sink for atmospheric CO2 of 6.2 ± 2.1 mmol m-2 

d-1. The data presented here firmly establish the Scotia Sea as a ‘mosaic’ of archetypal 

Southern Ocean environments. The region can be considered as a natural mesocosm in order 

to infer future distributions of air-sea CO2 fluxes, pH and aragonite undersaturation for the 

contemporary and future Southern Ocean.  
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1. Introduction 

1.1. Context 

Human (anthropogenic) activity is rapidly changing the concentration of certain gases in the 

atmosphere, such as carbon dioxide (CO2), chlorofluorocarbons, methane and nitrous oxide. 

Prior to the Industrial Revolution in the 18th century, atmospheric concentrations of CO2 

fluctuated naturally between 180 ppm (parts per million or µmol mol-1) during glacial periods 

and 300 ppm during interglacial periods, for at least the last 650,000 years (Siegenthaler et al., 

2005). However, since this time there has been significant anthropogenic perturbation to this 

natural cycle. Combustion of fossil fuels, cement manufacturing and changes in land use have 

led to an unprecedented increase in the concentration of atmospheric CO2 to about 388 ppm 

today (Dr. Pieter Tans, NOAA/ESRL (www.cmdl.noaa.gov/gmd/ccgg/trends)). Of the 340-

420 Pg C (Pg = 1015 g) emitted to the atmosphere during this period it is estimated that only 

45% has remained in the atmosphere (IPCC, 2007). The remainder has been removed by the 

oceanic biosphere, through the physical and biological carbon pumps (section 1.5.4) and the 

terrestrial biosphere, therefore mitigating the atmospheric increase and associated global 

warming.  

A leading motivation to understand the marine carbon cycle is the importance of the oceans as 

a dynamic reservoir that regulates the concentration of CO2 in the atmosphere. Oceanic uptake 

of CO2 acts as a buffer to the increasing atmospheric CO2 concentrations as most of the CO2 

that diffuses into the oceans reacts with the seawater to form a series of inorganic carbon 

species (section 1.5.2). Global ocean carbon observations indicated that since the 

industrialisation of 1800 the oceans have absorbed 48% of the anthropogenic CO2 emissions 

(Sabine et al., 2004). Recently, studies have indicated a reduction in oceanic CO2 uptake 

(Sabine et al., 2004; Canadell et al., 2007; Le Quéré et al., 2007), however contradicting 

results highlight the difficulty in forecasting future changes to the climatically dynamic carbon 

cycle (Zickfeld et al., 2007; Law et al., 2008; Zickfeld et al., 2008).  

Although the oceanic uptake of CO2 will dampen the extent of global warming, the effect of 

increased CO2 on ocean chemistry is leading to ocean acidification (Caldeira and Wickett, 

2003; Feely et al., 2004; Orr et al., 2005). The evolution of the oceanic carbon sink and how it 
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will evolve in the future are important issues concerning climate change and ocean 

acidification.   

In the early 1980s it was established that the Southern Ocean had a larger influence on 

atmospheric CO2 concentrations compared to other ocean basins (Sarmiento and Toggweiler, 

1984; Siegenthaler and Wenk, 1984). This is a consequence of the distinct interleaving between 

the surface and the deep ocean at high latitudes, through water mass ventilation and formation, 

imprinting the biogeochemical traits of high latitude surface waters on the deep ocean 

(Sarmiento and Gruber, 2006). The unique circulation of the Antarctic Circumpolar Current 

(ACC) is a pivotal component of this surface-to-deep ocean framework, exchanging heat, 

momentum and carbon between the atmosphere and the deep ocean and forming a link between 

the major ocean basins. Sea ice dynamics drive the overturning circulation through deep and 

bottom water formation (Sarmiento et al., 1998) and mixing and upwelling, over complex 

seafloor topography, enhances ventilation of water masses in the ACC (Naveira Garabato et al., 

2007). Accompanied by low temperatures and wind-driven deep mixing, these processes 

facilitate the physical uptake (section 1.5.4.2) and removal of atmospheric CO2 to the deep sea, 

which is the dominant mechanism for uptake of anthropogenic CO2 (Watson and Orr, 2003).  

Observing the long-term trends of oceanic CO2 is crucial to monitor the evolution of the 

global oceanic carbon sink. Repeat sections and time series stations have proven to be 

essential components to this research issue, e.g., three of the Joint Global Ocean Flux Study 

(JGOFS) time-series stations (BATS (Bates et al., 1996), HOT (Feely et al., 2002; Feely et al., 

2006) and KERFIX (Jeandel et al., 1998)) and voluntary observing ship routes (Schuster and 

Watson, 2007). Several different methods (ocean observations, ocean models and atmospheric 

inversions) have estimated the global oceanic carbon uptake as around 2 Pg C yr-1 (Le Quéré 

and Metzl, 2003; Takahashi et al., 2009).  

To date, numerous investigations have generated extensive databases of air and sea surface 

partial pressure of CO2 (pCO2) measurements over the global ocean (IOCCP, 2007; Takahashi 

et al., 2009). Using an interpolation method, the computed climatological distribution of the 

air-sea pCO2 difference (∆pCO2) showed that the Southern Ocean (62-50°S) acted as a sink of 

0.06 Pg C yr-1 for the reference year 2000 (Takahashi et al., 2009). This is an order of 

magnitude less than the 0.60 Pg C yr-1 predicted for the reference year 1995 (Takahashi et al., 

2002). This decrease from 24% to 4% of the global CO2 sink is dominated by increased data 
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coverage in the sea ice region, where summer biological carbon uptake is heavily counteracted 

by winter CO2 release through deep water upwelling (Takahashi et al., 2009). This highlights 

the complexities of the Southern Ocean, in terms of constraining the CO2 sink with 

comparatively sparse observations compared to other ocean basins, e.g., North Atlantic 

(Schuster and Watson, 2007) and the North Pacific (Midorikawa et al., 2005), and the 

influence of sea ice, upwelling and biological processes.  

It is firmly established that the Southern Ocean hosts the formation and mixing of the densest 

waters of the oceanic overturning circulation, which is linked to the climatically vulnerable 

deep ocean ventilation and CO2 uptake (Watson and Orr, 2003; Naveira Garabato et al., 2007; 

Meredith at al., 2008). An improved understanding of the contemporary marine carbon cycle 

of the Southern Ocean is critical to better constrain the uptake of anthropogenic CO2 

(Takahashi et al., 2009), and transport of carbon to the deep ocean, and to better predict the 

effects of future CO2 emissions on marine organisms (Royal Society, 2005). 

 

From low productivity waters of the ACC flowing in from Drake Passage to areas of high 

productivity associated with sea ice retreat (Korb et al., 2005; Smith and Comiso, 2008), 

hydrographic fronts (Comiso et al., 1993; Tynan et al., 1998; Strass et al., 2002; Ward et al., 

2002; Holm-Hansen et al., 2004b; Shim et al., 2006) and submarine arcs and islands (Moore 

and Abbot, 2000; Strass et al., 2002; Holm-Hansen et al., 2004b; Korb and Whitehouse, 2004; 

Korb et al., 2004; Korb et al., 2008; Dulaiova et al., 2009; Ardelan et al;., 2010), the Scotia 

Sea is a mosaic of archetypal Southern Ocean environments. The region is important for the 

mixing of deep water masses of the ACC with recently ventilated waters from the Weddell 

Sea (Hoppema et al. 1995; Hoppema et al., 1998; Stoll et al., 1999; Naveira Garabato et al., 

2007) that become incorporated into the global ocean overturning circulation (Carmack and 

Foster, 1975; Naveira Garabato et al., 2002a). Carbon-rich deep waters upwell within the ACC 

and are transported south- and northwards before sinking close to the Antarctic continent, as 

dense bottom waters, or north of the Polar Front, as intermediate waters (Speer et al., 2000).  

The region around South Georgia is one of the most biologically active in the Southern Ocean, 

as the enhanced phytoplankton biomass supports a rich and valuable fisheries (Atkinson et al., 

2001). Frequented by the UK research fleet, the Scotia Sea is an ideal ‘mesocosm’ to 

investigate the myriad of processes that affect the contemporary marine carbon cycle of the 

Southern Ocean, in the context of dynamic physical regimes and valuable biological 
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environments. Previous international research efforts, e.g., Geochemical Ocean Section Study 

(GEOSECS), JGOFS and the World Ocean Circulation Experiment (WOCE) have improved 

the understanding of the processes that influence the uptake of atmospheric CO2 in the ocean 

(Craig, 1972; Craig, 1974; Wallace, 2001). Following on from these,  two UK research 

endeavours are the CARBON-OPS project: www.bodc.ac.uk/carbon-ops/ and the British 

Antarctic Survey (BAS) Discovery-2010 programme: 

http://www.antarctica.ac.uk/bas_research/our_research/previous_research/gsac/discovery_202

0.php.  

The operational UK air-sea carbon flux observation capability, CARBON-OPS, mission was 

to collect surface water pCO2 measurements in waters frequented by ships of the UK research 

fleet (Hardman-Mountford et al., 2008). Integral to this was the development of autonomous 

pCO2 instruments, commissioned by the Centre for observation of Air-Sea Interactions and 

fluXes (CASIX), Plymouth Marine Laboratory and Dartcom (section 2.5.4). The objective of 

the Discovery-2010 programme was to understand the seasonal structure and function of 

different food webs, in contrasting regions of productivity, and to infer the effects on the 

transfer of CO2 from the atmosphere to the deep ocean. This was to be realised through high 

frequency surface sampling and deep hydrographic stations along a 1,400 km transect across 

the Scotia Sea (section 2.3). The transect was occupied in austral spring (November-

December) 2006, summer (January-February) 2008 and autumn (March-April) 2009. Winter 

(September) 2007 conditions were inferred from parameters measured within the Winter 

Water during summer (2008). The transect traversed through numerous archetypal Southern 

Ocean environments: sea ice, meltwaters, hydrographic fronts, high-nutrient low-chlorophyll 

(HNLC) waters, open ocean regimes of the ACC and intense phytoplankton blooms. 

 

In October 2006, a new CASIX underway pCO2 system was installed on the BAS research 

vessel RRS James Clark Ross, integrating carbon measurements into the Discovery-2010 

programme (Fig. 2.2). Since then, sea surface pCO2 has been measured on 20 cruises in the 

Scotia Sea region from 2006-2009 (Table 2.1), establishing a new seasonal timeseries. The 

first deep carbonate measurements of the Scotia Sea were made during the second occupation 

of the transect. The combination of sea surface pCO2 data and deep carbonate vertical profiles 

presented a unique opportunity to investigate the marine carbon cycle of the Scotia Sea from a 

seasonal and inter-annual perspective.  
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1.2. The Southern Ocean 

1.2.1. Antarctic Circumpolar Current 

The Southern Ocean is characterised by a unique circulation dominated by the Antarctic 

Circumpolar Current (ACC). The ACC flows continuously around the Antarctic continent for 

about 25,000 km with a volume flow in the order of 130-140 Sv through Drake Passage (1 Sv 

= 106 m3 s-1) (Rintoul et al., 2001). This unbounded flow allows the transfer of heat, dissolved 

constituents and plankton around Antarctica and between the three major ocean basins 

(Nowlin and Klinck, 1986). The eastward flow of the ACC is dynamically linked to the global 

overturning circulation, through the movement of the major water masses in the ACC (Fig. 

1.1).  

 

 

Figure. 1.1. Meridional overturning circulation in the Southern Ocean (Speer et al., 2000). Key 

water masses are identified: Sub-Antarctic Mode Water (SAMW), Antarctic Intermediate 

Water (AAIW), Upper Circumpolar Deep Water (UCDW), North Atlantic Deep Water 

(NADW), Lower Circumpolar Deep Water (LCDW) and Antarctic Bottom Water (AABW). 

1.2.2. Water masses 

Global ocean circulation is governed by the vertical and horizontal movement of large water 

masses. Individual water masses can be identified and traced throughout the global ocean by 

distinct characteristics, such as temperature and salinity, retained from surface conditions 
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present at the source at the time of formation. Upper water masses are usually composed of 

water from the mixed layer and water above the permanent thermocline. Antarctic Surface 

Water (AASW) has a surface temperature < 5 °C and a sub-surface potential temperature 

minimum (θmin) of about 2 °C as a result of the winter mixed layer not being thermally eroded 

during the summer. The dominant water mass in the Southern Ocean is Circumpolar Deep 

Water (CDW) that occupies mid-levels of the ACC. CDW is formed from North Atlantic 

Deep Water (NADW), a dense water mass produced close to the northern limits of the Atlantic 

that flows along the ocean basin into the Southern Ocean. CDW can be distinguished into two 

main types; Upper Circumpolar Deep Water (UCDW), corresponding to a potential 

temperature maximum (θmax) and an oxygen minimum, and Lower Circumpolar Deep Water 

(LCDW), corresponding to a salinity maximum. Many of the sloping isopycnals associated 

with the strong flow of the ACC reach shallower depths in the south (about 60°S) and provide 

a mechanism for UCDW and LCDW to reach the surface (Rintoul et al., 2001). This provides 

a pathway for the nutrient-rich deep water to enter the euphotic zone (section 1.4.1). 

 

The poleward transport and shoaling of CDW is an important component of the overturning 

circulation in the Southern Ocean (Fig. 1.1). As UCDW upwells it is entrained into the AASW 

through vertical mixing. These surface waters are transported north and east in the wind-

driven Ekman layer until it sinks again as Antarctic Intermediate Water (AAIW) north of the 

Polar Front (Speer et al., 2000). Upwelled LCDW continues to flow south towards the 

Antarctic continent where the water properties become influenced by ocean-atmosphere-ice 

processes. Here the dense Antarctic Bottom Water (AABW) is formed, as the water sinks out 

of the upper ocean due to increased density from sea ice formation and wind-driven cooling 

(Gill, 1973; Carmack and Foster, 1975; Weiss et al., 1979). AABW is the most widespread of 

all water masses as it has been found in all three major ocean basins. These water mass 

interactions set up a north-south circulation pattern that consists of two opposing, rotating 

cells: deep water is imported into the Southern Ocean from the north and intermediate and 

bottom water is exported out of the Southern Ocean (Speer et al., 2000). A detailed discussion 

of the hydrographic and biogeochemical traits of some of the principle water masses is 

presented in Chapter 4.  
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1.2.3. Fronts 

The transport of the ACC is not uniform over the latitudes but is concentrated into several 

circumpolar jets or fronts, which are seen as increased gradients in the sloping isopycnal 

surfaces. The fronts are often defined by near surface criteria such as temperature, salinity, 

oxygen and concentrations of nutrients. The surface expression may not always be above the 

sub-surface current, which is the important part of the front in terms of transport and 

delimiting biogeochemical zones. 

 

Figure. 1.2. The Southern Ocean and average circumpolar extent of the hydrographic fronts, 

from north to south, the sub-Antarctic Front, the Polar Front, the Southern Antarctic 

Circumpolar Front and the Southern Boundary adapted from Orsi et al. (1999). The 

boundaries of the Antarctic Circumpolar Current are the Polar Front and the Southern 

Boundary. 

There are many different definitions of the ACC fronts based on different water mass 

characteristics and the spatial and temporal variability in the surface expressions due to the 

meandering nature of the fronts. Early hydrographic sections identified a band of converging 
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water in the Southern Ocean, which was called the Antarctic Convergence (Deacon, 1982). 

Based on Ekman drifts in the upper ocean and wind speed data, a second feature was 

identified to the south of the wind stress maximum, called the Antarctic Divergence ( Deacon, 

1982; Rintoul et al., 2001). More recently, the convergence was classified as the Polar Front, 

forming a band of converging water called the Polar Frontal Zone (PFZ), separating sub-

Antarctic waters to the north from Antarctic waters to the south (Whitworth and Nowlin, 

1987). The PF is a circumpolar jet with velocities in the order of 0.5-1.0 m s-1 (Belkin and 

Gordon, 1996). It is identified by the northern terminus of a 2 °C temperature minimum layer 

at 100-300 m depth.  

Further south, the southern ACC front (SACCF) is identified by the limit of a θmax > 1.8 °C 

deeper than 500 m and salinity greater than 34.73 along a salinity maximum deeper than 800 

m (Orsi et al., 1995). A third front is the Southern Boundary of the ACC (SB), replacing the 

older term of the Antarctic Divergence (Orsi et al., 1995). The oceanic region from the PF to 

the SB is the Antarctic Zone (AAZ) (Pollard et al., 2002). In the Atlantic sector, the SB lies 

just north of the Weddell-Scotia Confluence (WSC), and band of weakly stratified, relatively 

homogenous water that extends from the tip of the Antarctic Peninsula to about 30°E 

(Patterson and Sievers, 1980; Whitworth et al., 1994) and separates the eastward-flowing ACC 

to the north and the Weddell Gyre to the south (Orsi et al., 1995).  

This SB is characterised by the southern terminus of UCDW. Closest to Antarctica is the 

narrow, wind-driven Antarctic Coastal Current that flows westwards around the continent. 

These definitions provide a guide for the identification of the Southern Ocean fronts, however 

as the fronts meander, fragment and coalesce the characteristics are likely to exhibit 

longitudinal and temporal variations (Sokolov and Rintoul, 2007). The vertical hydrographic 

and biogeochemical characteristics of the principle fronts is presented in Chapter 4. 

 

1.2.4. Geographical zonation 

1.2.4.1. Southern Ocean sectors 

The Southern Ocean (defined here as the area south of the Polar Front) can be divided into 

several geographic sectors defined by longitude (Arrigo et al., 1998); the Atlantic Ocean 

sector (60°W-20°E), the Indian Ocean sector (20-90°E) and the Pacific Ocean sector (90-
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160°E). In the Atlantic sector, two smaller oceanic regions are the Scotia Sea (60-50°S 60-

24°W) and the Weddell Sea (65-60°S 60°W-30°E). Regions of the open ocean in all sectors 

can be defined on the basis of sea ice coverage (Arrigo et al., 1998). The marginal ice zone 

(MIZ) refers to the region between the ice edge and the ice free open ocean (Chapter 5). The 

seasonal ice zone (SIZ) is the region bound by the latitudinal limits of maximum and 

minimum sea ice extent (Chapter 7). 

1.2.4.2. The Scotia Sea  

The Scotia Sea is a relatively small ocean basin in the Atlantic sector of the Southern Ocean 

(Fig. 1.3). 

 

Figure. 1.3. The Scotia Sea showing the average locations of the hydrographic fronts, from 

north to south: the sub-Antarctic Front (SAF), the Polar Front (PF), the Southern ACC Front 

(SACCF) and the Southern Boundary (SB) adapted from Meredith et al. (2003a). Some 

important topographic features are identified: Maurice Ewing Bank (MEB), the North East 

Georgia Rise (NEGR), the North West Georgia Rise (NWGR), North Scotia Ridge (NSR) and 

the South Scotia Ridge (SSR). The 1000, 2000 and 3000 m isobaths are marked. 
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The northern, southern and eastern extents of the basin are bound by rugged bathymetry, 

which has been implicated in the biological and physical characteristics of this region. 

Running from the north to the south east of the basin is the Scotia Ridge, a submarine arc 

extending from Tierra del Fuego, at the southern tip of South America, to the Antarctic 

Peninsula with land mass protrusions at South Georgia, on the North Scotia Ridge (NSR), and 

the South Orkney Islands on the South Scotia Ridge (SSR).  

To the west, the Scotia Sea is open to Drake Passage where the ACC fronts are at their 

narrowest meridional extension that spread out upon the westerly passage across the basin. 

The flow of the PF and SACCF is strongly constrained by the bathymetry of the NSR (Thorpe 

et al., 2002; Meredith et al., 2003a; Meredith et al., 2003b; Smith et al., 2010) (Fig. 1.7), 

further discussed in Chapter 6. 

1.2.4.3. The Weddell Sea 

The Weddell Sea, south of the WSC in the Atlantic sector, is dominated by a cyclonic gyre, 

bound to the west and south by the Antarctic continent but open to the north and east for 

interaction with waters of the ACC (Fig. 1.3). The action of the prevailing winds and the 

resulting gyre leads to diverging flow and significant upwelling. The Weddell Sea is an 

important region for ventilation of deep waters and is generally regarded as the principal 

source of AABW (Gill, 1973; Carmack and Foster, 1975). CDW from the ACC is advected 

into the gyre to the east and is locally referred to as Warm Deep Water (WDW), which can be 

distinguished by maxima in temperature, salinity, nutrients and dissolved inorganic carbon 

(Deacon, 1979; Whitworth and Nowlin, 1987; Gouretski and Danilov, 1993; Hoppema et al., 

1997; Schröder and Fahrbach, 1999). The geochemical properties of the deep and bottom 

waters can be used as tracers to investigate carbon uptake through the MOC in the Southern 

Ocean (Weiss et al., 1979; Hoppema et al., 1998; Naveira Garabato et al., 2002a). 

Deep and bottom water formation occurs over the Antarctic continental shelf, which leads to 

large modifications to the CDW injected into the gyre through ocean-ice-atmosphere 

interactions (Schröder and Fahrbach, 1999). The newly ventilated deep and bottom waters 

overspill the South Scotia Ridge and flow through the WSC into the Scotia Sea to become 

incorporated into the deep current of the South Atlantic (Locarnini et al., 1993; Orsi et al., 

1999; Naveira Garabato et al., 2002a; Meredith et al., 2008). These processes transport carbon 
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into the deep ocean and signify the role of the Weddell Sea in the ventilation of the global 

ocean. 

1.3. Mixed layer processes 

The mixed layer, or mixing layer, refers to waters of the upper ocean with relatively low 

vertical density gradients (Brainerd and Gregg, 1995). The homogeneity of the mixed layer is 

due to turbulence within the upper water column as a result of wind stress and heat loss at the 

sea surface (Donlon and Robinson, 1997). The depth of the mixed layer is influential for a 

range of factors, including sea surface temperature, gas exchange, nutrient supply and light 

availability. Beneath the mixed layer the temperature decreases rapidly with depth to form a 

permanent thermocline. During the winter reduced sea surface temperatures and rough sea 

states cause a deepening of the mixed layer, even down to the permanent thermocline. With 

the onset of spring, increasing sea surface temperatures and calmer conditions allow the water 

column to become stratified forming a shallow surface layer and capping off the remnant of 

the winter mixed layer beneath. These processes lead to the characteristic potential 

temperature profiles of the AASW, with the distinct θmin of the Winter Water beneath the 

summer mixed layer (Fig. 4.2).  

Deepening of the mixed layer occurs when turbulence erodes the stratification that was 

initially present at the base of the mixed layer. Mixing processes tend towards a more 

homogenous water column and can be distinguished by the different magnitudes of the 

processes, from slow molecular diffusion to rapid turbulent mixing. Turbulent mixing acts on 

the bulk water at a faster rate compared to molecular diffusion, and is the dominant mixing 

process in the oceans. Turbulence is associated with several factors ranging from waves, wind-

driven surface currents (Chen et al., 1994) and the influence of undulating bathymetry to 

density-driven convection currents (Donlon and Robinson, 1997) and eddies. The strength of 

the turbulence and degree of stratification will affect the extent to which the mixed layer is 

eroded and deepened.  

In high latitude oceans two principal processes increase the density of surface waters: the 

rejection of saline brines during sea ice formation and cooling from cold winds blowing over 

the sea surface (Foster, 1972). As the density of surface water is increased the system becomes 

gravitationally unstable and the water sinks out of the upper layers, transporting dissolved 

constituents into the underlying water column (Rysgaard et al., 2007).  
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1.4. Marine productivity  

1.4.1. Elements of life 

All oceanic organisms are composed of the major elements carbon (C), hydrogen (H), nitrogen 

(N), oxygen (O) and phosphorous (P), and silicon (Si) in some species (Falkowski et al., 

2003). The free-floating phytoplankton are the dominant primary producers in the ocean that 

utilise light to synthesise organic compounds from CO2 during photosynthesis. Solar energy 

drives photosynthesis using the dominant photosynthetic pigment chlorophyll-a. Respiration is 

the reverse process where organic compounds are metabolised to release energy, forming CO2 

as a by-product. Photosynthesis can only be carried out during periods of daylight whereas 

respiration continues both day and night.  

Phytoplankton have certain minimum requirements of these elements (nutrients) in order to 

form organic matter. Nitrogen is usually sourced from dissolved nitrate (NO3
-), nitrite (NO2

-), 

or ammonia (NH3); phosphorous is sourced from either dissolved organic phosphorous or 

from one of the inorganic species, such as orthophosphate (PO4
3-). Certain phytoplankton 

groups such as diatoms require silicon, which is obtained from a variety of dissolved silicate 

compounds, such as silicic acid (Si(OH)4). Micronutrient (trace element) requirements include 

iron (Fe), manganese (Mn), cobalt (Co) and copper (Cu), which are essential to life processes 

but exist in seawater in trace quantities. Iron is an essential element for phytoplankton in the 

electron transfer reactions of the photosynthetic pathways (Strzepek and Harrison, 2004) and 

the action of nitrate reductase enzymes (Lalli and Parsons, 1997). The concentrations of all of 

these elements in seawater depend on the rate of photosynthesis, respiration, decomposition, 

advection, upwelling and atmospheric deposition.  

Sea surface concentrations of nitrate (Fig. 1.4) and phosphate in the Southern Ocean are higher 

compared to surface waters of the rest of the global ocean. There is a similar pattern for the 

distribution of silicate (Fig. 1.5). This can be accounted for by consideration of the meridional 

overturning circulation patterns (section 1.2.2). The structure of fronts and upwelling of CDW 

and deep vertical mixing in the ACC brings high nutrient concentrations to the surface waters, 

southwards of 60°S. As the Ekman transport moves these waters northwards, nitrate and 

silicate are utilised by organisms in the upper ocean, setting up northward gradients of these 

nutrients in the AASW.  
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Figure. 1.4. Map of the annual mean nitrate (µmol kg-1) concentration in the upper water 

column (50 m) of the Southern Ocean based on the WOCE Southern Ocean Atlas 1998 

(Conkright et al., 2002). The distribution of phosphate is predominantly the same as for 

nitrate, but at 1/16th of the concentration based on the Redfield ratio (Redfield, 1963), so is not 

presented. 

 

The vertical distributions of nitrate, phosphate and silicate across the ACC are presented and 

discussed in Chapter 4.     
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Figure. 1.5. Map of the annual mean silicate (µmol kg-1) concentration in the upper water 

column (50 m) of the Southern Ocean based on the WOCE Southern Ocean Atlas 1998 

(Conkright, 2002). 

 

1.4.2. Phytoplankton productivity and distribution 

Primary production is the net biological carbon uptake by phytoplankton, determined from the 

gross primary production (photosynthesis) corrected for respiration. Rates of primary 

production are useful tools in predicting the biogenic flux of organic carbon into the deep 

ocean. Regions of low primary production are efficient in recycling organic matter and 

therefore contribute to a low carbon export out of the upper ocean (Sarmiento and Gruber, 
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2006). Current estimates of annual primary production in the Southern Ocean have varied 

widely from close to zero to 170 g C m-2, in open ocean and coastal regions, respectively 

(Wefer and Fischer, 1991; Arrigo et al., 1998; Priddle et al., 1998).  

1.4.3. Limits to growth 

1.4.3.1. High-nutrient low-chlorophyll (HNLC) conditions 

Oceanic regions where essential nutrients are present in high concentrations, usually have 

associated high productivity, and are termed eutrophic. Waters that have low concentrations of 

one or more of the essential macronutrients and low primary production are termed 

oligotrophic. A paradox situation arises in regions of high concentrations of macronutrients 

where primary productivity is too low to deplete them at the end of the growing season. These 

regions are referred as high-nutrient low-chlorophyll (HNLC) waters (Martin et al., 1990; de 

Baar, 1994; Johnson et al., 1997; Boyd et al., 1999; Boyd et al., 2001).  

 

The Southern Ocean is the largest HNLC region due to the persistence of high levels of 

macronutrients (Figs. 1.4 and 1.5) and large areas of relatively low phytoplankton biomass. 

This consideration is particularly important due to the formation of deep water masses in the 

Southern Ocean (section 1.2) and, therefore, the surface nutrient distributions are strongly 

influential in determining the chemical properties of the deep ocean. Several hypotheses have 

been proposed to explain the HNLC conditions of the Southern Ocean: deficits in trace 

elements such as dissolved iron (Martin, 1990), insufficient light for phytoplankton growth 

(Sakshaug et al., 1991; Tranter, 1982) and grazing pressure from zooplankton (Dubischar and 

Bathmann, 1997), which are discussed below. The effects of temperature are also considered.  

 

1.4.3.2. Iron 

The hypothesis that iron is a limiting micronutrient in HNLC regions has been well established 

through numerous natural and artificial iron enrichment experiments (de Baar et al., 1995; 

Boyd et al., 2000; Gervais and Riebesell, 2002; Boyd et al., 2004; Coale et al., 2004; de Baar 

et al., 2005; Boyd et al., 2007). A wider implication of iron fertilisation is the increased 

efficiency of the biological (organic carbon) pump and enhanced uptake of atmospheric CO2 

(Watson et al., 2000; Boyd et al., 2004; Bakker et al., 2007; Jouandet et al., 2008). 
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Iron is a reactive micronutrient and is rapidly removed from the ocean by biological utilisation 

and chemical scavenging by sinking particles (Sarmiento and Gruber, 2006). The sources of 

iron to surface waters of the Southern Ocean are atmospheric deposition of dust particles 

(Duce and Tindale, 1991; Johnson, 2001), upwelling and turbulent diffusion (Hoppema et al., 

2003; Blain et al., 2007), the interaction of water masses with sediments and advection 

(Nolting et al., 1991; Johnson et al., 1999; Sanudo-Wilhelmy et al., 2002; Dulaiova et al., 

2009; Ardelan et al., 2010), melting sea ice, (de Baar et al., 1990; Martin, 1990; Löscher et al., 

1997; Sedwick and DiTullio, 1997; Lannuzel et al., 2008), icebergs (Smith et al., 2007; 

Geibert et al., 2010) and a minor contribution from hydrothermal vents (Jickells et al., 2005; 

Tagliabue et al., 2010).  

As atmospheric dust deposition has been reported as the governing factor in surface iron 

concentrations, the low levels of iron in the Southern Ocean are therefore explained by the low 

dust inputs (Duce and Tindale, 1991; Jickells et al, 2005; Meskhidze et al., 2007). This is 

largely a result of the westerly winds circulating over the Southern Ocean having little 

interaction with the land masses of South America, Africa and Australia and suggests that 

oceanic sources of iron are dominant in the Southern Ocean. The vertical distribution of iron 

in the ocean is typical to that of other nutrients, with relatively low concentrations in the upper 

ocean and high concentrations in deep waters (Sarmiento and Gruber, 2006). Increasing 

concentrations with depth means that upwelling and vertical mixing in the Southern Ocean 

will supply iron to the surface waters. However, the ratio of iron to nitrate in upwelled waters 

is usually insufficient to fulfil the biological requirements due to the low solubility and short 

lifetime of the bio-available iron (Jickells et al., 2005).  

1.4.3.3. Light 

Organic matter production is predominantly due to photosynthesis, which requires sunlight. If 

the light supply is inadequate for photosynthesis, then respiration will be the dominant process 

and there will be no biological carbon uptake. Therefore, phytoplankton productivity is limited 

to the upper ocean (euphotic zone) where there is sufficient light for photosynthesis. During 

the polar autumn and winter, the sun is either absent or low on the horizon resulting in low 

irradiance and light limitation to phytoplankton (van Oijen et al., 2004). Stormy conditions, 

typical of high latitudes during the winter, inhibit light penetration through the formation of 

deep mixed layers. Sea ice cover, in winter, and phytoplankton self-shading during the 
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growing season, also act to inhibit light penetration in these regions. These factors would lead 

to light limitation (Aumont and Bopp, 2006; Mitchell et al., 1991), although it is unlikely to be 

the dominant limiting factor (Boyd et al., 2007). 

1.4.3.4. Grazing 

Zooplankton grazing in the upper ocean has a direct effect on phytoplankton concentrations. 

Metal enrichment experiments in the Scotia and Weddell Seas suggested that in late spring and 

summer grazing was a dominant control of phytoplankton communities (Buma et al., 1991). 

This hypothesis was further examined by monitoring the in situ affect of copepod and salp 

populations in a phytoplankton bloom (Dubischar and Bathmann, 1997). When conditions 

favoured rapid phytoplankton growth there was a time lag in the response of the slower-

growing zooplankton. Hence, zooplankton only acted to reduce the population of 

phytoplankton after bloom conditions had already been attained. Therefore, with the exception 

of salp blooms and krill swarms, zooplankton generally have a minor grazing impact on 

Southern Ocean phytoplankton (Atkinson et al., 2001 and references cited therein). An 

outcome of phytoplankton ingestion is the production of faecal pellets (particulate organic 

carbon), which sink out of the upper ocean and contribute to the flux of organic carbon to the 

deep ocean (section 1.5.4.1). 

 

1.4.3.5. Temperature 

Temperature is a controlling factor on phytoplankton growth as photosynthetic rates increase 

exponentially with increasing temperature, within a certain range to which cells are adapted 

(Reay et al., 2001). It would seem reasonable to predict that rates of primary production in the 

Southern Ocean would increase along the temperature gradients in this region. However, high 

chlorophyll-a concentrations have been detected across a wide range of surface seawater 

temperatures (Smith and Nelson, 1986; Kang et al., 2001; Korb et al., 2005), suggesting that 

temperature is not a principle limiting factor on phytoplankton biomass (Arrigo and van 

Dijken, 2004).  

1.4.3.6. Co-limitation between potential factors 

Iron has been shown to be the principle limiting factor for phytoplankton biomass in the 

Southern Ocean, however co-limitation between iron and light, and sometimes silicate (for 
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diatoms) and grazing, is likely. The iron hypothesis states that low iron concentrations lead to 

a shift towards smaller phytoplankton cells to increase the surface area to volume ratio and 

reduce the iron stress (Morel et al., 1991; Fennel et al., 2003). Phytoplankton of smaller cell 

sizes and reduced growth rates are more easily grazed by zooplankton (Timmermans et al., 

2001). The involvement of iron in the photosynthesis pathway means that iron requirement is 

a function of light availability (Raven et al., 1990; Sunda et al., 1997; Boyd et al., 1999; 

Maldonado et al., 1999). It is therefore likely phytoplankton communities limited by one 

factor become stressed when another factor becomes limiting.  

1.4.4. Exceptions to HNLC conditions 

1.4.4.1. Productive waters of the Southern Ocean 

 

Figure. 1.6. Sea surface chlorophyll-a (mg m-3) composite (1997-2007) during austral summer 

from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean colour satellite 

(http://oceancolor.gsfc.nasa.gov/SeaWiFS/). 

 

Alleviation of the HNLC conditions occurs by removal of one of the limiting factors. In the 

broad HNLC belt of the Southern Ocean, high productivity occurs within the vicinity of fronts 

(Bathmann et al., 1997; Boyd et al., 1995; Strass et al., 2002), at the sea ice edge and in the 
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wake of icebergs (Smith and Nelson, 1985; Korb et al., 2005; Smith et al., 2007) and in the 

wake of islands and submerged topographic features (Comiso et al., 1993; Moore and Abbot, 

2000; Strass et al., 2002; Holm-Hansen et al., 2005; Tyrell et al., 2005; Blain et al., 2007; 

Pollard et al., 2007; Sokolov and Rintoul, 2007; Korb et al., 2008). Investigation into these 

areas helps to understand the processes that act to alleviate the HNLC conditions and promote 

phytoplankton productivity (Fig. 1.6).  

1.4.4.2. Frontal zones 

Enhanced chlorophyll-a concentrations have been associated with frontal mixing zones (Strass 

et al., 2002; Smetacek et al., 1997; Moore et al., 1999b). Fronts are associated with sloping 

isopycnals, upwelling and eddy mixing, which provide pathways for nutrients to be mixed into 

the surface waters (Moore and Abbott, 2002; Naveira Garabato et al., 2002b; Pollard et al., 

2002; Strass et al., 2002; Hoppema et al., 2003) and often advected downstream (de Baar et 

al., 1995; Moore et al., 1999b; Daly et al., 2001; Hewes et al., 2008).  

 

Correlations between dissolved iron and chlorophyll-a concentrations have been used to 

explain increases in primary production at the ACC fronts in the Scotia Sea due to advected 

iron enriched water masses within the frontal jet (Boyd et al., 1995; de Baar et al., 1995; 

Löscher et al., 1997; van Leeuwe et al., 1997; Pollard et al., 2002; Strass et al., 2002) and the 

uplifting isopycnals bringing nutrient-rich UCDW into the upper ocean (Löscher et al., 1997; 

Tynan, 1998; Pollard et al., 2002; Hoppema et al., 2003). Phytoplankton blooms observed at 

6°W in the region of the PF coincided with elevated iron concentrations (up to 4 nM), which 

are likely to be sourced from South Georgia and the North Scotia Ridge (de Baar et al., 1995; 

Korb et al., 2004). Sediment trap data have indicated that primary production at the major 

fronts facilitates increased export of POC through the organic carbon pump (Wefer and 

Fischer, 1991).  

1.4.4.3. Sea ice  

Sea ice in the Southern Ocean exerts a major influence on phytoplankton productivity. 

Retreating ice edges, polynyas and icebergs are common sites of elevated phytoplankton 

biomass (Smith and Nelson, 1986; Moore et al., 1999b; Kang et al., 2001; Korb et al., 2005; 

Smith et al., 2007) due to factors including the production of a meltwater stratified surface 

layer (Smith and Nelson, 1985; Holm-Hansen and Mitchell, 1991; Sakshaug et al., 1991; 
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Lancelot et al., 1993), release of ice algae that acts as an inoculum (Smith and Nelson, 1985; 

Ackley and Sullivan, 1994) and the release of bioavailable iron (de Baar et al., 1990; Martin, 

1990; Sedwick and DiTullio, 1997; Lannuzel et al., 2008). However, blooms are not 

systematically found at retreating ice edges during austral spring and summer (Boyd et al., 

1995; Bakker et al., 1997; Bathmann, 1998). The occurrence of ice edge blooms in the Scotia 

Sea is discussed in Chapter 5 (section 5.5) and Chapter 7 (section 7.14). 

1.4.4.4. Islands 

Extensive phytoplankton blooms in the Southern Ocean are often associated with topographic 

features such as islands and seamounts (Moore et al., 1999b; Moore and Abbot, 2000; Comiso 

et al., 1993; Korb et al., 2004; Holm-Hansen et al., 2005; Tyrell et al., 2005; Blain et al., 2007; 

Pollard et al., 2007; Sokolov and Rintoul, 2007). These are sites of natural iron fertilisation 

where there is permanent interaction between water masses and the land, such as the 

upwelling and advection of waters in the ACC that have been in contact with shallow 

topography (de Baar et al., 1995; Loscher et al., 1997; Bucciarelli et al., 2001 ; Hoppema et 

al., 2003; Coale et al., 2004; Blain et al., 2007).  

In addition to effects on downstream chlorophyll-a concentrations, the bathymetry around 

South Georgia (Thorpe et al., 2002; Meredith et al., 2003a; Meredith et al., 2003b; Meredith et 

al., 2005), Kerguelen (Park and Gamberoni, 1995) and the Crozet islands (Pollard and Read, 

2001) has substantial effects on the circulation of the region. This is generally called the 

‘island mass effect’. Previous investigations into Southern Ocean island blooms have 

confirmed natural iron fertilisation downstream of the Crozet islands (Planquette et al., 2007; 

Pollard et al., 2007) and Kerguelen (Blain et al., 2007; Bucciarelli et al., 2001) and substantial 

biological carbon uptake within the blooms that form (Bakker et al., 2007; Jouandet et al., 

2008). 

 

The island of South Georgia is situated on the NSR within the AAZ of the Scotia Sea, between 

the PF to the north and the SACCF to the south (section 1.2.4.2). The high-speed fronts and 

the wider, slower moving waters of the ACC are perturbed in the vicinity of South Georgia, 

due to the underlying bathymetry (Thorpe et al., 2002; Meredith et al., 2003a; Meredith et al., 

2003b; Smith et al., 2010) (Fig. 1.7). Waters of the PF approaching the western face of South 

Georgia are deflected northwards due to the influence of the NSR, before returning to an 
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easterly course. Similarly, the southwestern approach of the SACCF is directed along the shelf 

edge to the east, after which it continues in an easterly course. Waters off the northwest shelf 

of South Georgia become enclosed in an area of weaker circulation and have longer residence 

times compared to the faster flowing waters within the PF and the SACCF (Thorpe et al., 

2002).  

 

 

Figure 1.7. The island mass effect around South Georgia (SG) demonstrated using flow 

patterns from the FRAM model (Trathan et al., 1997) and drifter buoy data (Meredith et al., 

2003a), adapted from Korb et al. 2004. The locations of the Maurice Ewing Bank (MEB), 

Northwest Georgia Rise (NWGR), the Northeast Georgia Rise (NEGR) and Shag Rocks (SR) 

are indicated. Bathymetry depths up to 500 m (dark grey) and depths up to 2,500 m (light 

grey). 

Large and intense phytoplankton blooms regularly occur for 4 to 6 months in the wake of 

South Georgia (Atkinson et al., 2001; Korb and Whitehouse, 2004; Korb et al., 2004; 

Whitehouse et al., 2008). The circulation features of the PF and SACCF promote 

macronutrient resupply and iron enrichment to the surface waters by the upwelling of CDW or 

from sub-surface waters in contact with shelf sediments (Holm-Hansen et al., 2005). 

Mechanisms for potential iron enrichment to the surface waters include inputs from the 
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SACCF (Thorpe et al., 2002; Meredith et al., 2003b), circulation over elevated bathymetry 

such as the Northwest Georgia Rise and upwelling of deeper water from the ACC (Meredith et 

al., 2003a; Ward et al., 2002; Whitehouse et al., 2008).  

The enhanced productivity downstream of South Georgia, contrasting with upstream HNLC 

conditions (Korb and Whitehouse, 2004), in conjunction with physiological assessments of the 

phytoplankton communities (Holeton et al., 2005; Korb et al., 2008), provides strong evidence 

for iron fertilisation (Moore and Abbott, 2002; Korb et al., 2004). In comparison to the 

biological carbon uptake associated with the Kerguelen and Crozet blooms, a first assessment 

of the affect of the extensive phytoplankton blooms downstream of South Georgia on the 

marine carbon cycle of the Scotia Sea is presented in Chapter 6.   

1.5. The marine carbon cycle 

1.5.1. The contemporary marine carbon cycle 

The marine carbon cycle is a dynamic and complex component of the global carbon cycle. It is 

vital to have a clear understanding of the marine carbon cycle in order to better predict how 

the cycling of carbon will respond to increasing atmospheric levels of CO2 and climatic 

changes. The global oceans represent the largest reservoir of carbon (~38,000 Pg C, Fig. 1.8) 

and therefore exert a dominant control on atmospheric CO2 levels over timescales of millennia 

(Zeebe and Wolf-Gladrow, 2001). 

During the pre-Industrial period (prior to the year 1800) no direct carbon measurements were 

made and hence the ocean carbon cycle at this time has been inferred from indirect 

geochemical evidence with reference to present day carbon cycle dynamics. During at least the 

last 11,000 years the concentration of CO2 in the atmosphere has been relatively stable with 

inter-annual variations in the order of 20 ppm (Joos and Prentice, 2004). As the global ocean 

overturning circulation operates on timescales of about 1,000 years and CO2 air-sea exchange 

has timescales of about 1 year (Broecker and Peng, 1982), the ocean must have been in a 

dynamic steady state with the atmosphere during the pre-Industrial period (Fig. 1.8). Pre-

industrial sea surface pCO2 is estimated to have comparable spatial and temporal variability as 

the current oceanic pCO2 measurements with a flux across the air-sea interface of about 70 Pg 

C yr-1 (Sarmiento and Gruber, 2006). Model estimates propose that prior to 1800, oceans in 
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the northern hemisphere were a sink for atmospheric CO2, whereas the Southern Ocean was a 

net source of CO2 to the atmosphere (Sarmiento and Gruber, 2006).  

 

Figure 1.8. The global carbon cycle (IPCC, 2007) adapted from Sarmiento and Gruber (2002). 

Black arrows and values indicate natural carbon fluxes (Pg C yr-1) and reservoirs (Pg C) and 

red arrows and values show the anthropogenic imprint. 

Increases in atmospheric CO2 since the Industrial Revolution have driven the ocean to uptake 

CO2 from the atmosphere, steering surface seawater towards thermodynamic equilibrium with 

the atmospheric pCO2 (Fig. 1.8). The results of numerous investigations show that the role of 

the contemporary ocean in the global carbon cycle is now a net sink for CO2 of 1.5-2.0 Pg C 

yr-1 (Takahashi et al., 2009, and references cited therein).  

1.5.2. The carbon dioxide system in seawater 

The carbon dioxide system in seawater is one of the most important chemical equilibria in the 

ocean, and can be described using four variables: the fugacity of CO2 (fCO2), dissolved 

inorganic carbon (DIC), total alkalinity (TA) and pH. These parameters can be determined by 

direct or indirect methods that differ in both the accuracy and precision of data collection 
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(Millero, 1995). Knowledge of any two of the four parameters is sufficient to determine the 

other two to get a full appreciation of the whole carbon dioxide system.  

Exchange of CO2 between the atmosphere and surface ocean takes place until the pCO2 in the 

seawater and overlying air is in thermodynamic equilibrium. The amount of dissolved 

(aqueous) CO2 is proportional to the pCO2 exerted by seawater. The fCO2 is determined from 

pCO2 and the CO2 equation of state to account for the non-ideal nature of CO2 in the gas phase 

(section 2.5.5). The fCO2 is generally about 1% lower than pCO2 (Zeebe and Wolf-Gladrow, 

2001). The difference in fCO2 in the surface ocean and overlying marine air (∆fCO2) is used 

with wind speed and the gas transfer velocity to calculate the flux of CO2 across the air-sea 

interface. The flux calculation process and different gas transfer velocity formulations are 

discussed in section 2.15.    

 

When CO2 dissolves in seawater it becomes hydrated (CO2(aq)) and then forms carbonic acid 

(H2CO3) from the reaction with seawater. Most of the carbonic acid rapidly dissociates to 

produce bicarbonate (HCO3
-) and a hydrogen ion (H+) and again to produce carbonate (CO3

2-) 

and another H+. Free H+ can then react with carbonate to yield more bicarbonate. As a result, 

enhanced CO2 uptake in the ocean increases the concentrations of H2CO3, HCO3
-, H+, 

decreases the concentration of CO3
2- with a net effect of lowering the pH.  

 

)()( 22
0 aqCOgCO K→←         Equation 1.1. 

)()()( 3222 aqCOHlOHaqCO →←+      Equation 1.2. 

)()()( 332
1 aqHCOaqHaqCOH K −+ +→←      Equation 1.3. 

)()()( 2
33

2 aqCOaqHaqHCO K −+− +→←      Equation 1.4. 

 

The notations (g), (aq) and (l) indicate the state of the species, i.e. a gas, aqueous solution and 

a liquid, respectively.  
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The thermodynamics of the carbonate system have been thoroughly investigated and the 

equilibrium relationships between the various carbon dioxide species are well defined (DOE, 

2007): 

 

][ )(/ 220 gfCOCOK =        Equation 1.5. 

[ ][ ] [ ]231 /)()( COaqHCOaqHK −+=      Equation 1.6. 

[ ][ ] [ ])(/)()( 3
2
32 aqHCOaqCOaqHK −−+=      Equation 1.7. 

where K0 is the equilibrium constant for the solubility of CO2 and K1 and K2 are the first and 

second dissociation constants of carbonic acid. [CO2] represents the combined concentration 

of CO2(aq) and H2CO3(aq), which are not differentiated by the equilibrium constants. The 

square brackets represent the total stoichiometric concentrations of the species. The 

temperature dependency of the CO2 system reactions in seawater is very strong (Fig. 1.9). 

  

 

Figure 1.9. Plot of the CO2 solubility (K0, mol kg-1) and the equilibrium constants of the first 

(K1, mol kg-1) and second (K2, mol kg-1) mechanisms of the carbonic acid dissociation 

pathway as a function of temperature (Sarmiento and Gruber, 2006). 
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Dissolved inorganic carbon (DIC), or total CO2, exists in seawater in three major forms: 

bicarbonate (HCO3
-), carbonate (CO3

2-) and aqueous CO2 (CO2(aq)), which includes carbonic 

acid (H2CO3):  

 

[ ] [ ] [ ])()()( 2
2
33 aqCOaqCOaqHCODIC ++= −−     Equation 1.8. 

 

Due to the presence of the carbonate equilibria, dissolved CO2 gas is present in only small 

amounts in seawater. The bicarbonate and carbonate ions represent the greatest reservoir of 

DIC in seawater. At pH 8.2, about 88% of the carbon is HCO3
-, 11% is CO3

2- and about 0.5% 

is in the form of dissolved CO2. The analytical techniques for the determination of DIC are 

described in section 2.8.1. 

 

Total alkalinity (TA) is a description of the charge balance of seawater that measures the 

concentration of all bases that can be protonated during an acid titration to the carbonic acid 

endpoint (Millero, 2007):  
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Equation 1.9. 

The ellipses (...) represent additional minor acid or base species that are either unidentified or 

exist in trace amounts. For seawater, the most important bases are [HCO3
-], [CO3

2-] and 

[B(OH)4
-]. The analytical techniques for the determination of TA are described in section 

2.8.2. The concentrations of the major ions vary with salinity however, their relative 

proportions remain almost constant.  

The final parameter of the carbonate system is the total hydrogen ion concentration, reported 

as pH: 

 

[ ]+−= HpH 10log         Equation 1.10. 
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The definition of pH is complicated by the chemical properties and the ionic activity of 

seawater and therefore different pH scales were created. Three pH scales are commonly used, 

based on buffer solutions of artificial seawater (Hansson, 1973): free pH (pHF), total pH (pHT) 

and seawater pH (pHSWS):  

 

[ ]FF HpH +−= 10log         Equation 1.11. 

[ ] [ ]( )−+ +−= 410log HSOHpH FT        Equation 1.12. 

[ ] [ ] [ ]( )HFHSOHpH FSWS ++−= −+
410log      Equation 1.13. 

 

The total scale, pHT, is a measure of total [H+] and includes a contribution from hydrogen 

sulphate and will be used to discuss pH distributions in the Scotia Sea (Chapters 2 and 7). 

1.5.3. Distribution of carbon in the ocean 

The incentive to better understand the marine carbon cycle is the importance of the oceans in 

controlling the concentration of CO2 in the atmosphere, thus influencing the climate system. 

An initial consideration is the distribution of pCO2 in the sea surface as it is the air-sea 

interface that is the dynamic link between the atmospheric and oceanic reservoirs. Air-sea 

exchange of CO2 is a comparatively slow process, it takes about 6 months to equilibrate a 40 

m mixed layer (Zeebe and Wolf-Gladrow, 2001) and hence over- and undersaturation of fCO2 

can readily occur in seawater relative to the rather stable atmospheric CO2 content.  

The surface water pCO2 of the global oceans varies geographically and seasonally from about 

150 to 550 µatm, which is 50-60% above and below the current global mean atmospheric 

value of about 388 ppm (Dr. Pieter Tans, NOAA/ESRL 

(www.cmdl.noaa.gov/gmd/ccgg/trends)). Therefore, the direction of the air-sea CO2 flux is 

dominated by changes in oceanic pCO2. Global and regional air-sea CO2 fluxes were 

calculated for a nominal year 2000 (Fig. 1.10) to reveal an average annual global oceanic 

uptake of 1.42 Pg C yr-1 (Takahashi et al., 2009).  
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Figure 1.10. Global climatology of the mean annual air-sea CO2 flux (g C m-2 yr-1) based on 

interpolation of ∆pCO2 for the reference year 2000 (Takahashi et al., 2009). 

Global climatological air-sea CO2 fluxes calculated for austral summer in the reference year 

2000 show regions of strong CO2 uptake in the Southern Ocean, particularly in the Atlantic 

sector (Fig. 1.11a).  This indicates that these regions are net sinks for atmospheric CO2 and, 

given the time of year, this has been attributed predominantly to biological carbon uptake 

(Takahashi et al., 2009). This pattern is in marked contrast to the equatorial Pacific, where 

there is net outgassing of CO2 as a result of upwelling of sub-surface CO2 enriched waters and 

intense solar heating of the newly formed surface waters. Other net CO2 source regions 

include the tropical Atlantic and Indian oceans throughout the year. The high latitude oceans 

are regions of intense CO2 uptake during the summer through the action of the physical and 

organic carbon pumps (Fig. 1.11a).  
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Figure 1.11. Global climatology of the mean air-sea CO2 flux (g C m-2 month-1) in (a) 

February and (b) August based on interpolation of ∆pCO2 for the reference year 2000 

(Takahashi et al., 2009). 

During winter in the Southern Ocean, continued upwelling and deep vertical mixing entrains 

DIC-rich waters at the surface, with the net effect of eliminating this CO2 uptake. A 

circumpolar band of moderate source waters develops at about 60°S during austral winter (Fig. 

1.11b). This represents CO2 outgassing from supersaturated waters, especially beneath the 

seasonal sea ice cover. Poleward of the CO2 source band, sea ice is present for longer and the 
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CO2 flux is largely inhibited by the sea ice barrier and tends to zero. As the sea ice recedes 

during spring and summer, photosynthetic activity reduces the sea surface pCO2 and drives 

strong CO2 uptake in the seasonally ice-free waters (Chapters 5 and 7). 

 

The pCO2 of the mixed layer is in exchange with CO2 in the atmosphere and is largely 

controlled by changes in temperature, salinity, DIC and alkalinity. The efficiency of the ocean 

to absorb CO2 is related to how much CO2 can be converted to DIC. This is measured by a 

buffering capacity described by the Revelle Factor (RF) as given by Eqn. 1.14 (Revelle and 

Suess, 1957): 

 

( )DIC
DIC

pCO
pCO

RF δ

δ








= 2

2

        Equation 1.14. 

The Revelle Factor is defined as the ratio of the relative change in pCO2 (δpCO2/ pCO2) to the 

relative change in DIC (δDIC/ DIC) (Zeebe and Wolf-Gladrow, 2001). In the global ocean, 

Revelle Factors are governed by atmospheric CO2 concentrations and temperature and are 

typically between 8-15 (Broecker et al., 1979). Therefore, the relative change in pCO2 is larger 

than the relative change in DIC. Waters with low Revelle Factors are four times more efficient 

at taking up CO2 than waters with very high Revelle Factors. High latitude waters are 

characterised by high Revelle Factors in the order of 10-15 (Sabine et al., 2004), mainly due to 

the temperature dependency of solubility of CO2 (Eqn. 1.5) in seawater (Fig. 1.9).  

Processes affecting the carbonate system in the ocean are CO2 uptake and release (physical 

carbon pump), photosynthesis (organic carbon pump), respiration and the formation and 

dissolution of calcium carbonate minerals (carbonate pump) (Zeebe and Wolf-Gladrow, 2001). 

These processes produce an uneven distribution of DIC in the ocean and set the rates at which 

carbon moves between the oceanic and atmospheric reservoirs (Fig. 1.8). 

1.5.4. The oceanic carbon pumps 

1.5.4.1. The biological carbon pumps 

The biogenic production of organic matter and carbonate minerals in the upper ocean and their 

subsequent transport to depth are referred to as the biological carbon pumps (Fig. 1.1). The 
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photosynthetic fixation of CO2 by phytoplankton and the flux of particulate organic carbon 

(POC) to depth is referred to as the organic carbon pump (Eppley, 1972). This mechanism of 

biological carbon uptake utilises aqueous CO2 (CO2(aq), Eqn. 1.1) and generates a CO2 sink in 

the upper ocean. The efficiency of the organic carbon pump is largely controlled by the 

availability of light and important nutrients (section 1.4).  

 

 

 

Figure 1.12. Schematic of the physical (solution) pump, the organic carbon pump and the 

calcium carbonate (CaCO3) ‘counter’ carbon pump (Heinze et al., 1991), adapted from IPCC 

(2007). Abbreviations used: POC, particulate organic carbon. 

 

Calcification (Eqn. 1.15) and the subsequent transport of calcium carbonate (CaCO3) minerals 

to depth is referred to as the carbonate ‘counter’ pump. In contrast to the organic carbon pump, 

this mechanism utilises bicarbonate (HCO3
-, Eqn. 1.15) and releases CO2 in the upper ocean, 

reduces the alkalinity and acts as a potential source on short timescales (Elderfield, 2002).  

 

)()()()(2)( 2233
2 lOHaqCOsCaCOaqHCOaqCa ++→←+ −+    Equation 1.15. 

The CaCO3 formed is one of two crystalline forms, calcite or aragonite. The aragonite 

crystalline structure is thermodynamically less stable and is about 50% more soluble in 
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seawater compared to calcite (Mucci, 1983). Three groups of organisms dominate the 

carbonate pump in the open ocean through the formation of calcium carbonate exoskeletons: 

(1) coccolithophores are phytoplankton that produce an outer sphere of calcite plates, (2) 

foraminifera are heterotrophic zooplankton that secrete calcite shells and (3) pteropods are 

heterotrophic zooplankton that produce shells of the less stable CaCO3 phase aragonite. The 

pteropods are one of the major calcifyers in the Southern Ocean that contribute to the Southern 

Ocean biological pump and to the export flux of carbonates from the upper ocean to the deep 

sea (Fabry, 1990).  

       

The degree of saturation (Ω) of CaCO3 in the ocean is defined as the ratio of the ionic activity 

product of calcium (Ca2+(aq)) and carbonate (CO3
2-(aq)) over the stoichiometric solubility 

product (Ksp
CaCO3) for either calcite or aragonite:  

 

( ][ [ ] )
3

)()( 2
3

2

CaCO
spK

aqCOaqCa −+

=Ω       Equation 1.16. 

 

When the ocean is supersaturated with respect to CaCO3 (Ω > 1), the formation of calcareous 

material is favoured. Conversely, if the ocean becomes undersaturated with respect to CaCO3 

(Ω < 1), then dissolution of calcareous material can occur. Saturation states are typically low 

at high latitudes as the solubility of CaCO3 increases with decreasing temperature and 

increasing pressure. Oceanic surface waters are supersaturated with respect to calcite and 

aragonite. At decreasing temperatures and increasing pressure, the solubility of both carbonate 

mineral phases increases. In the water column, the depth at which seawater becomes 

undersaturated with respect to CaCO3 is called the carbonate saturation horizon. The large 

variations in the distribution of the carbonate saturation horizon are primarily a consequence 

of variations in the distribution of carbonate ions (Sarmiento and Gruber, 2006). 

 

As DIC is utilised during photosynthesis and calcification, the carbonate equilibria 

thermodynamically shift to produce free CO2 from the DIC pool (Eqns. 1.2-1.4). These 

reactions deplete DIC, utilise H+ and subsequently increase the pH in surface waters (Fig. 4.4). 

The sinking of cold, saline water provides a method of transport of POC and PIC from the 

surface waters to the deep ocean (Fig. 1.1), where DIC is returned to the marine carbon cycle 
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through remineralisation and dissolution at depth (Redfield et al., 1963). Remineralisation of 

organic matter reduces the concentration of carbonate, leading to the distribution of carbonate 

in the ocean being opposite to that of the macronutrients i.e. high in surface waters and low in 

the deep ocean (Sarmiento and Gruber, 2006). Combined with relatively slow ventilation, 

deep waters become DIC-rich and carbonate poor, relative to surface waters.  

Relative to the variability in DIC, alkalinity has much smaller variations (Fig. 6.9). The main 

processes controlling the distribution of alkalinity in the ocean are freshwater inputs (sea ice 

melt and precipitation), freshwater removal (sea ice formation and evaporation), the carbonate 

pump in the upper ocean and the dissolution of the carbonate minerals at depth (Lee et al., 

2006). As a result, alkalinity is typically lower in surface waters compared to deep waters. 

Identifying the processes that control the distribution of alkalinity is becoming increasingly 

important for understanding the effects of anthropogenic CO2 uptake on the ocean carbonate 

chemistry (Feely et al., 2004).  

 

The organic carbon pump can represent a mechanism of removal of carbon from the 

atmosphere, relative to timescales of anthropogenic perturbations. Under dynamic steady state 

conditions, the removal and transport of POC to deep waters is balanced by outgassing of CO2 

from upwelled waters. However, an increase in the organic carbon pump can represent a 

mechanism of carbon sequestration if the POC is exported out of the upper ocean, away from 

strong upwelling regions. Export of the particulate inorganic carbon (PIC) through the 

carbonate pump represents a mechanism of long-term carbon removal through dissolution and 

sedimentation at depth.  

1.5.4.2. The physical carbon pump 

The physical (solution) pump refers to the thermodynamic uptake of CO2 at the air-sea 

interface and the physical processes that transport it to the deep ocean (Watson and Orr, 2003). 

As surface seawater is transported to high latitudes it becomes cooled, which enhances the 

thermodynamic uptake of CO2 through the response of the equilibrium constants (K0, K1 and 

K2, section 1.5.2) to cooler water (Fig. 1.9). The physical pump acts as a sink of atmospheric 

CO2 through the juxtaposition of increased CO2 concentrations of the sinking water, which 

have been in contact with the present day atmosphere, and the lower CO2 concentrations of 

upwelled water, which were exposed to pre-Industrial levels of CO2 (Sabine et al., 2004). 
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1.6. Anthropogenic CO2 

Since the beginning of the Industrial Revolution the natural carbon cycle has undergone large 

perturbations through anthropogenic emissions of CO2 (IPCC, 2007). Oceanic uptake of CO2 

acts as a buffer to the increasing atmospheric CO2 concentrations through the reactions of the 

carbonate equilibria (section 1.5.2). Using global DIC measurements (Key et al., 2004) and a 

tracer-based separation technique, it is estimated that 118 ± 19 Pg of anthropogenic CO2 has 

accumulated in the ocean between 1800 and 1994 (Sabine et al., 2004). This uptake is not 

uniform throughout the global ocean and high inventories in the North Atlantic and in the 

Southern Ocean in the region of 50°S (Fig. 1.13) are attributed to water mass formation, 

transporting anthropogenic CO2 into the ocean interior (Fig. 1.9).  

 

Figure 1.13. Column inventory of anthropogenic CO2 in the global ocean (mol m-2) (Sabine et 

al., 2004). 

Based on the anthropogenic CO2 inventory estimates of Sabine et al. (2004), the average 

Revelle Factor (Eqn. 1.14) of the global ocean surface has increased by about one unit 

compared to pre-Industrial values. This indicates that CO2 uptake by the contemporary ocean 

is less efficient than the pre-Industrial ocean. A decrease in the buffering capacity of the 

oceans is accompanied by depletion in carbonate and decreased pH leading to ‘the other CO2 

problem’ of ocean acidification (Doney et al., 2009). 
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1.7. Ocean acidification  

Although oceanic uptake of anthropogenic CO2 will mitigate the extent of global warming, the 

direct effect of CO2 on ocean chemistry has significant impacts of marine ecosystems. 

Numerous investigations have indicated that oceanic anthropogenic CO2 uptake and the 

concomitant modifications to the carbonate system (section 1.5.2) have adverse consequences 

for calcifying organisms (Royal Society, 2005). Invasion of anthropogenic CO2 from the 

atmosphere increases the DIC through the production of bicarbonate (Eqn. 1.17), leading to a 

reduction in the carbonate ion concentration, decreased pH and a lowering of the calcium 

carbonate saturation state:   

−− →←++ 3
2
322 2HCOCOOHCO       Equation 1.17. 

If the sea surface fCO2 concentrations continue to increase alongside the atmospheric CO2 

increase, a doubling of the pre-Industrial atmospheric CO2 concentration will result in a 30% 

reduction in carbonate ion concentration in the surface ocean (Sabine et al., 2004). These 

changes on the ocean carbonate chemistry have already led to increased impacts of ocean 

acidification (Orr et al., 2005; Royal Society, 2005).  

 

Figure 1.14. The vertical distribution of anthropogenic CO2 (µmol kg-1) as a function of 

latitude along a north-south transect (insert map) in the Atlantic ocean (Sabine et al., 2004), 

adapted from Feely et al. (2004). The present day (red solid line) and pre-Industrial (red 

dashed line) saturation horizons for aragonite are shown.  
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The uptake of anthropogenic CO2 has resulted in the shoaling of the aragonite saturation 

horizon by several hundred meters (Feely et al., 2004). If present trends in anthropogenic CO2 

continue, then surface waters of the Southern Ocean will become undersaturated with respect 

to aragonite. This would first occur during the winter when sea surface fCO2 levels are highest 

due to cold temperatures (Fig. 1.9) and vertical mixing into the sub-surface waters supplied 

with upwelled DIC-rich CDW (section 1.2). These wintertime sea surface conditions are 

discussed for the Scotia Sea in Chapter 7.    

The effects of anthropogenic CO2 uptake on calcifying organisms are not well understood. 

Investigations into calcification under different CO2 conditions have indicated that the rate of 

calcification in numerous organisms is reduced under elevated CO2 levels (see summaries in 

Feely et al., (2004) and Fabry et al. (2008) and references therein). However, contradicting 

results suggest that uncertainties still exist in this area (Iglesias-Rodriguez et al., 2008). Based 

on the majority of the laboratory analyses (Riebesell et al., 2000) and mesocosm experiments 

(Engel et al., 2005), evidence suggests that the direct effects of increased seawater fCO2 

include a decrease in the marine rates of calcification in response to the subsequent reduction 

in carbonate ion concentration, calcium carbonate saturation state and pH (Riebesell et al., 

2000). In accordance with the carbonate reaction mechanism (Eqn. 1.11) this would reduce the 

production of natural CO2 from the ocean, with significant implications for the marine 

ecosystem (Royal Society, 2005).  

Uptake of anthropogenic CO2 has led to a reduction in average surface ocean pH by about 0.1 

units, corresponding to an increase in H+ of about 30% (Orr et al., 2005). Under the IPCC 

emission scenarios (Houghton, 2001), average surface ocean pH could decrease by 0.3-0.4 

units from the pre-Industrial values by the end of the century (Caldeira and Wickett, 2003). 

Combining predicted future changes to surface ocean carbonate chemistry, forced with the 

IPCC IS92a “business as usual” CO2 emission scenario (Orr et al., 2005), and global gridded 

DIC data (Key et al., 2004), the Southern Ocean south of about 60°S will become 

undersaturated with respect to aragonite by 2050 (Orr et al., 2005). The aragonite saturation 

horizon could shoal from its current average depth of about 730 m (Fig. 1.14) to the surface of 

the Southern Ocean (Fabry et al., 2008). It is predicted that Southern Ocean surface waters 

will reach aragonite undersaturation when seawater fCO2 reaches about 450-560 µatm (Fabry 

et al., 2008; McNeil and Matear, 2008).  
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Field and laboratory data are limited on the response of calcification in pteropods under 

conditions of high CO2 and decreased aragonite saturation state, although ongoing research 

hopes to address this (Bednarsek, in preparation). At present, a laboratory study has shown 

that high CO2 conditions and the subsequent decreasing aragonite saturation state promotes the 

dissolution of the thin aragonite shells (Feely et al., 2004; Orr et al., 2005). With the shoaling 

of the aragonite saturation horizon, pteropods in the Southern Ocean could become one of the 

first major planktonic calcifyers to be exposed to critically low concentrations of carbonate in 

surface waters.  

 

1.8. The Scotia Sea and the marine carbon cycle   

Furthering the understanding of the marine carbon cycle and the long-term removal of carbon 

is paramount in order to better predict the effects of future emissions on the marine 

ecosystems of the Southern Ocean. The difficulty of constraining the Southern Ocean CO2 

sink can only be alleviated by increased data coverage, with temporal requirements of autumn 

and winter data, and spatial requirements of the sea ice regions. Experimental evidence 

suggests that the effects of increased CO2 on ocean carbon chemistry is leading to ocean 

acidification (Riebesell et al., 2000; Engel et al., 2005). Limited investigations have been 

carried out to assess the in situ occurrence of ocean acidification in the oceanic environment, 

despite several studies that consider the future onset of ocean acidification in the Southern 

Ocean (Feely et al., 2004; Orr et al., 2005; McNeil and Matear, 2008).  

 

The contribution of the Scotia Sea to the overturning circulation and global uptake of CO2 is 

routed in the transport, mixing and ventilation of different water masses, from Drake Passage 

and the Weddell Sea, in the ACC (Carmack and Foster, 1975; Naveira Garabato et al., 2002a). 

Hydrographic sections have already evaluated the changing roles of the North Atlantic in the 

uptake and storage of carbon (Brown, 2008). Despite the numerous high resolution 

hydrographic data in the Scotia Sea (Naveira Garabato et al., 2002a; Naveira Garabato et al., 

2007; Meredith at al., 2008), the requirement for vertical distributions of carbon is yet to be 

fulfilled.  

Many questions regarding the role of sea ice in the carbon cycles of the polar oceans remain 

unsolved. The sea ice carbon pump hypothesis, derived from observations in Arctic sea ice, 

states that inorganic carbon is rejected in brines during sea ice formation and that dissolution 
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of carbonate minerals leads to enhanced CO2 uptake during ice melt (Rysgaard et al., 2007; 

Rysgaard et al., 2009). Carbonate minerals have been detected in Antarctic sea ice 

(Papadimitriou et al., 2007; Dieckmann et al., 2008), however the affect of carbonates on the 

marine carbon cycle in the Southern Ocean is still speculative.    

 

Regions of high productivity associated with receding sea ice (Korb et al., 2005; Smith and 

Comiso, 2008), hydrographic fronts (Comiso et al., 1993; Tynan et al., 1998; Strass et al., 

2002; Ward et al., 2002; Holm-Hansen et al., 2004b; Shim et al., 2006) and submarine arcs 

and islands (Moore and Abbot, 2000; Strass et al., 2002; Holm-Hansen et al., 2004b; Korb and 

Whitehouse, 2004; Korb et al., 2004; Korb et al., 2008; Dulaiova et al., 2009; Ardelan et al;., 

2010) establish the Scotia Sea as sustaining one of the most active biological carbon pumps. 

Natural iron fertilisation and biologically mediated carbon uptake has been identified in the 

intense phytoplankton blooms at the sub-Antarctic islands of Crozet (Bakker et al., 2007; 

Planquette et al., 2007) and Kerguelen (Blain et al., 2007; Jouandet et al., 2008). A similar 

‘island mass effect’ is observed at South Georgia as the circulation is tightly constrained by 

bathymetry (Thorpe et al., 2002; Meredith et al., 2003a; Meredith et al., 2003b; Smith et al., 

2010). Waters downstream of South Georgia are amongst the most productive in the Southern 

Ocean, where extensive blooms regularly occur (Atkinson et al., 2001; Korb and Whitehouse, 

2004; Korb et al., 2008; Whitehouse et al., 2008). As a result, this region is associated with 

strong carbon sinks in the Southern Ocean (Schlitzer et al., 2002; Takahashi et al., 2009), 

which has yet to be acutely quantified by in situ carbon measurements.  

 

This thesis attempts to address these issues. The Scotia Sea is a model ‘mesocosm’ to 

investigate the processes that affect the marine carbon cycle of the Southern Ocean. The sea 

surface pCO2 data and vertical carbonate chemistry data collected onboard RRS James Clark 

Ross from 2006-2009 are presented. The cross fertilisation of the Discovery-2010 and 

CARBON-OPS programmes enabled the collection of over 2,500 sea surface pCO2 

measurements across a mosaic of archetypal oceanic environments of the Southern Ocean 

(Fig. 8.1). This established a new surface water pCO2 timeseries to alleviate the paucity of 

pCO2 data in this region. The new CASIX underway pCO2 instrument is acutely tested during 

an at-sea intercomparison, subsequently launching an additional instrument into the oceanic 

pCO2 community (Chapter 3). Vertical carbonate chemistry profiles are presented alongside 

hydrographic data in order to identify the principle water masses, hydrographic fronts and the 
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contemporary carbonate characteristics of the Scotia Sea, from the surface to the deep ocean 

(Chapter 4). Passage through sea ice cover allowed a unique analysis of changes in the 

carbonate chemistry of Antarctic sea ice during the summer thaw (Chapter 5). In comparison 

to the substantial biological carbon uptake in the blooms downstream of the sub-Antarctic 

islands of Kerguelen and Crozet, a first assessment of the affect of the extensive South 

Georgia phytoplankton blooms on the marine carbon cycle of the Scotia Sea is presented 

(Chapter 6). The novel seasonal fCO2 data allowed an assessment of the controls on the marine 

carbon cycle from the transition from winter CO2 source to summer CO2 sink and provided an 

insight into how the annual marine carbon cycle of the Southern Ocean might respond to 

future climate change (Chapter 7).   
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2. Methodology 

2.1. Abstract  

In October 2006 a new Centre for observation of Air-Sea Interactions and fluXes (CASIX) 

underway partial pressure of carbon dioxide (pCO2) system was installed on the British 

Antarctic Survey (BAS) research and supply vessel, RRS James Clark Ross. From 2006 to 

2009, sea surface pCO2 data was collected on 14 research cruises in the Scotia Sea, Southern 

Ocean. A 1,400 km transect across the Scotia Sea was initiated in spring 2006, with repeat 

occupations in summer 2008 and autumn 2009 as part of the BAS Discovery-2010 

programme: integrating Southern Ocean ecosystems into the Earth System. During summer 

2008, the carbonate system was analysed through determination of dissolved inorganic carbon 

and total alkalinity, through which a suite of other carbonate parameters (pH, carbonate ion 

concentration and aragonite saturation) and seasonal biogeochemical changes could be 

calculated. The methodologies used for sample collection, analysis of carbonate data and 

acquisition of satellite data from 2006 to 2009 are presented. The methodology demonstrated 

that the carbonate data collected and analysed as part of this research are of comparable 

accuracy and precision to those described by international guidelines.  

 



 

 

61 
 

2.2. Introduction 

A 1,400 km transect across the Scotia Sea (Fig. 2.1) was occupied during cruise JR161 in 

spring (November-December) 2006, JR177 in summer (January-February) 2008 and JR200 in 

autumn (March-April) 2009 as part of the British Antarctic Survey (BAS) Scotia Sea 

FOODWEBS, a component project of the Discovery-2010 programme: integrating Southern 

Ocean ecosystems into the Earth System: 

http://www.antarctica.ac.uk/bas_research/our_research/previous_research/gsac/discovery_201

0.php.  

 

Figure 2.1. A schematic of the Scotia Sea showing the approximate location of the repeat 

transect (dashed line) and the extended transect (dotted line) from JR177. Some important 

topographic features are identified: Antarctic Peninsula (AP), South Orkney Islands (SOI), 

South Scotia Ridge (SSR), South Sandwich Islands (SSI), North Scotia Ridge (NSR), South 

Georgia (SG), Northwest Georgia Rise (NWGR), Northeast Georgia Rise (NEGR), Georgia 

Basin (GB), Maurice Ewing Bank (MEB) and the Falkland Islands (FI). Antarctic 

Circumpolar Current (ACC) fronts are shown schematically, adapted from Meredith et al. 

(2003a): the Southern Boundary (SB, Orsi et al., 1995), Southern ACC Front (SACCF, Thorpe 

et al., 2002) and the Polar Front (PF, Moore et al., 1999). Depth contours are at 1000, 2000 

and 3000 m (GEBCO, 2001). 
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In October 2006 a new Centre for observation of Air-Sea Interactions and fluXes (CASIX) 

underway partial pressure of carbon dioxide (pCO2) system was installed on the BAS research 

and supply vessel, RRS James Clark Ross (Fig. 2.2). Since then sea surface pCO2 data has 

been collected on 20 cruises in five sub-regions of the Southern Ocean (Table 2.1). Of these, 

14 cruises have taken place in the Scotia Sea: one pilot study, three core seasonal cruises and 

ten secondary cruises.  

 

Figure 2.2. The RRS James Clark Ross showing the outline of the CASIX underway pCO2 

system. 

The objective of the Discovery-2010 programme was to understand the seasonal structure and 

function of different food webs, in contrasting regions of productivity, and to infer the effects 

on the transfer of carbon dioxide (CO2) from the atmosphere to the deep ocean. This was 

realised through high frequency surface sampling and deep hydrographic stations. Sea surface 

pCO2 measurements were made during all three core seasonal cruises, from the CASIX 

underway pCO2 system (JR161, JR177 and JR200) and a University of East Anglia (UEA) 

underway pCO2 system (JR177). In the following chapter, the methodologies used for 

seawater sample collection, carbonate analyses and acquisition of satellite data from 2006 to 

2009 will be described. 
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Table 2.1. Cruises of RRS James Clark Ross in the Southern Ocean from 2006 to 2009 with 

underway pCO2 data.  

Cruise Region(s) Year Dates Comments 

JR152/159 Scotia Sea 2006 2 Oct-20 Oct Pilot study 

JR161 Scotia Sea 2006 20 Oct-1 Dec Spring core cruise 

JR163/164 Scotia Sea 2006 5 Dec-2 Jan Secondary cruise 

JR157/166 Falkland Plateau 2007 4 Jan – 22 Jan  

JR158 Scotia Sea 

Antarctic Peninsula 

2007 22 Jan-22 Feb Secondary cruise 

JR165/170 Drake Passage 

Antarctic Peninsula 

2007 22 Feb-16 Apr  

JR167/168 Scotia Sea 2007 16 Apr-12 May Secondary cruise 

JR209 Falkland Plateau 2007 20 Oct-24 Oct  

JR184 Scotia Sea 2007 30 Oct-29 Nov Secondary cruise 

JR193/196 Scotia Sea 

Antarctic Peninsula 

2007 29 Nov-07 Dec Secondary cruise 

JR185 Scotia Sea 2007 18 Dec-21 Dec Secondary cruise 

JR177 Scotia Sea 2008 02 Jan-17 Feb Summer core cruise 

pCO2 intercomparison 

JR179 Drake Passage 

Antarctic Peninsula 

2008 22 Feb-11 Apr  

JR186 Scotia Sea 2008 11 Apr- 25 Apr Secondary cruise 

JR218 Falkland Plateau 2008 6 Nov-10 Nov  

JR187 Scotia Sea 2008 14 Nov-3 Dec Secondary cruise 

JR194/197 Antarctic Peninsula 

Scotia Sea 

2008 12 Dec-31 Dec Secondary cruise 

JR188 Scotia Sea 2009 31 Dec-7 Jan Secondary cruise 

JR224 Falkland Plateau 2009 11 Jan-19 Feb  

JR200 Scotia Sea 2009 11 Mar-17 Apr Autumn core cruise 
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2.3. Cruise descriptions 

2.3.1. Pilot study 

A pilot study was carried out during October 2006 (JR152/159) where the CASIX pCO2 

instrument was installed and tested onboard (Table 2.1).  

2.3.2. Core seasonal cruises 

The three core seasonal cruises provided the data that are the primary focus of this research, a 

contribution to the BAS Discovery-2010 programme (section 2.2). The programme involved 

deep hydrographic stations and high resolution underway sampling along a 1,400 km transect 

from the South Orkney Islands (SOI) to 49°S, which was occupied during austral spring 2006 

(JR161), summer 2008 (JR177) and autumn 2009 (JR200) (Fig. 2.1). During JR177, the 

transect was extended south of the SOI to the southern edge of the South Scotia Ridge (SSR) 

at about 63°S.  

For each cruise, the RRS James Clark Ross sailed southeast from the Falkland Islands (FI) to 

the SOI to begin the northward transect, passing to the west of South Georgia and up to the 

Polar Front (PF) before returning to the FI. Across the three seasons, the transects 

encompassed numerous archetypal Southern Ocean environments: the marginal ice zone 

(MIZ), from sea ice cover to regions of substantial sea ice melt, frontal systems, open ocean 

regimes and intense phytoplankton blooms. The Southern Boundary was identified at about 

59°S (Chapter 4), which marked the transition from the Weddell-Scotia Confluence (WSC) 

into waters of the Antarctic Circumpolar Current (ACC). The PF marked the northern limit of 

the ACC within the Antarctic Zone (AAZ) of the Scotia Sea.  

Hydrographic stations were occupied in regions of contrasting productivity after inspection of 

near-real time satellite chlorophyll-a images from the Natural Environment Research Council 

Earth Observation Data Acquisition and Analysis Service (NEODAAS). As the aim of the 

FOODWEBS project was to investigate the seasonality in the biological, chemical and 

physical oceanography, the core cruises were carried out during representative seasonal 

months to capture characteristic conditions of spring, summer and autumn (Table 2.1). 

Satellite data were valuable to study the advance and retreat of sea ice and the seasonal 

progression of phytoplankton blooms.  
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In addition to the new CASIX underway pCO2 system, an established UEA underway pCO2 

system was run in parallel during JR177 in order to conduct an at-sea pCO2 instrument 

intercomparison to determine the suitability of the CASIX instrument for oceanic pCO2 

measurements (Chapter 3). The carbonate system, from the surface to the deep ocean, was 

analysed during JR177 through determination of dissolved inorganic carbon and total 

alkalinity (Chapter 4). These were the first deep carbonate measurements of the Scotia Sea and 

are presented alongside vertical sections of the hydrographic parameters to identify the water 

masses and hydrographic fronts in the region. The corresponding distributions of the carbonate 

parameters were used to investigate the processes that govern the marine carbon cycle in the 

MIZ (Chapter 5) and in extensive phytoplankton blooms (Chapter 6). Samples collected at the 

depth of the potential temperature minimum, within the Winter Water (WW), during summer 

2008 (JR177) were used to determine surface biogeochemical conditions during the preceding 

winter (2007). This completed the seasonal dataset for the Scotia Sea and enabled an 

investigation into the variability of the marine carbon cycle in the context of seasonal 

biological and physical processes and future ocean acidification (Chapter 7).  

2.3.3. Secondary cruises 

The ten secondary cruises were conducted as part of other science programmes and logistic 

operations of the RRS James Clark Ross in the Scotia Sea and provided supplementary 

underway pCO2 data to those described above (Table 2.1). The sea surface pCO2 data are 

shown alongside the data collected from the core seasonal cruises to complement the major 

findings of this research (Chapter 8). 

2.4. Underway and station sampling 

Continuous measurements of temperature and salinity in surface water were made on all 

cruises (Table 2.1) using an underway oceanlogger with an intake 6.5 m below the surface. 

High resolution, vertical profiles of potential temperature and salinity (Fig. 4.2) were obtained 

during the downcast of a conductivity, temperature, depth (CTD) sensor (Seabird SBE9 +). All 

salinity values reported here are on the practical salinity scale.  

The summer mixed layer depth (MLD) is defined here as the depth where the potential density 

exceeds that measured at 10 m by 0.05 kg m-3 (Brainerd and Gregg, 1995). This definition was 

selected to provide a depth that is located between the active mixing layer and the seasonal 
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mixed layer. The winter mixed layer depth (WMLD), marking the remnant of the WW, is 

defined here as the depth of the potential temperature minimum (θmin). Mixed layer depths 

were calculated from 2 dbar profiles of potential temperature and salinity from the CTD 

deployment at each station. During JR177, 360 CTD samples and 60 underway samples were 

taken in total (Tables 2.2-2.3).  

 

Table 2.2. Hydrographic stations of the Weddell-Scotia Confluence (WSC) during cruise 

JR177: station number, classification, date, location and bottom depth. Station classification: 

Southern Boundary (SB). Samples is the total number of Niskins sampled from the CTD at the 

specified depths. For 10 depths (m): 5 10 30 50 80 120 160 200 400 600 and for 20 depths: 5 

10 20 30 40 50 60 80 100 120 140 160 180 200 400 600 800 1000 1500 2000. Notes: (1) 

changed deep samples to 2 × 1000 m and 1 × 1200 m; (2) Niskins 4 (2000 m), 5 (1500 m) and 

6 (1000 m) all had loose caps and were not sampled; (3) two casts were carried out due to a 

malfunction halfway through the first cast.  

CTD Date Start time Latitude Longitude Classification Depth Samples Note 

 2008 hh:mm °S °W  m   

02 04 Jan 07:50 60.498 48.193 Open water 1396 20 1 

05 08 Jan 09:07 60.208 44.408 Open water 5543 20 2 

08 09 Jan 13:41 60.431 44.593 Open water 999 10  

09 10 Jan 01:52 61.198 44.408 Meltwater 319 10  

10 10 Jan 09:54 61.665 44.053 Ice edge 570 10  

12 10 Jan 22:59 62.355 43.529 Sea ice 1238 10 3 

14 11 Jan 09:30 62.608 43.234 Sea ice 3075 10  

16 13 Jan 09:14 59.936 44.239 Open water 4784 10  

17 15 Jan 07:32 59.689 44.054 Open water 4172 20  

21 17 Jan 00:25 59.144 43.694 SB 3611 10  
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Table 2.3. Hydrographic stations of the Antarctic Zone (AAZ) during cruise JR177: station 

number, classification, date, location and bottom depth. Station classification: Southern 

Antarctic Circumpolar Current Front (SACCF), Antarctic Circumpolar Current (ACC), high-

nutrient low-chlorophyll (HNLC), North Scotia Ridge (NSR), South Georgia (SG). Samples as 

for Table 2.2. Notes: (1) a deep chlorophyll-a maximum was identified; (2) 5 m bottle was 

fired at 10 m due to rough weather; (3) Niskin 24 (5 m) was leaking and not sampled.  

CTD Date Start time Latitude Longitude Classification Depth Samples Note 

 2008 hh:mm °S °W  m   

25 19 Jan 07:02 58.023 42.985 SACCF 2831 20  

28 20 Jan 21:41 57.758 42.801 ACC 2904 10  

30 22 Jan 04:43 57.140 42.433 HNLC 3700 10  

33 22 Jan 15:57 56.843 42.257 HNLC 4248 20 1 

35 23 Jan 13:10 55.902 41.720 ACC 3595 10 2 

37 25 Jan 11:50 55.207 41.246 ACC bloom 3246 20  

41 28 Jan 20:11 54.913 41.173 ACC 3442 10 3 

42 29 Jan 10:31 54.591 40.997 ACC 3301 10  

43 29 Jan 15:09 54.216 40.813 NSR 2461 10  

44 29 Jan 19:06 53.897 40.645 NSR 1233 10  

46 30 Jan 11:18 53.155 40.276 NSR 4052 10  

48 01 Feb 07:24 52.857 40.097 NSR 3811 20  

51 02 Feb 21:28 52.727 40.147 SG bloom 405 10  

53 04 Feb 08:10 52.627 39.102 SG bloom 3750 20  

55 09 Feb 15:45 53.714 37.964 SG shelf 126 10  

58 11 Feb 17:45 53.567 34.962 SG shelf 3610 10  

59 11 Feb 21:50 53.691 35.258 SG shelf 3602 10  
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2.5. Atmospheric and seawater CO2  

2.5.1. The pCO2 principle and instruments 

The principle of measuring seawater pCO2 is based on the equilibration of a headspace with a 

continuous stream of seawater and subsequent determination of the CO2 mixing ratio (xCO2) 

in the sampled headspace air. The infra-red adsorption properties of CO2 are used to determine 

xCO2 in the sampled air. The determination of pCO2 is dependent on temperature, pressure 

and water vapour content. The partial pressure of an ideal gas is defined as the product of 

xCO2 and total pressure of the gas phase. To account for the non-ideal nature of CO2, the 

fugacity of CO2 (fCO2) should be used comparing to other parameters of the carbonate system 

(sections 2.8 and 2.12) (Zeebe and Wolf-Gladrow, 2001; DOE, 2007).  

Quasi-continuous measurements of the pCO2 in surface seawater and marine air were made 

using the new CASIX pCO2 instrument (2006-2009), developed at the Plymouth Marine 

Laboratory in collaboration with Dartcom, and a long-running UEA pCO2 instrument (summer 

2008) designed and built at the University of East Anglia. Sampling of marine air is very 

similar for both instruments and will be described first, followed by details of the individual 

instrument design and continuing with features common to both instruments and the pCO2 

calculation process. The accuracy and precision of both instruments is discussed in section 3.4. 

2.5.2. Atmospheric CO2  

To sample the marine air a ¼″ outer diameter Dekabon tubing air line was run to each 

instrument from the central bridge at 15 m height. The inlet was finished with a Whatman 1.0 

µm PTFE filter in order to remove solid particulates and a plastic funnel to ensure that any 

moisture that collects drips off the larger rim to prevent the comparatively narrow line from 

becoming frozen. The samples were pumped through the 90 m air lines before entering the 

cooling system of each instrument for analysis in the laboratory. It is important to record the 

relative wind speed and direction to confirm that the air being sampled is not contaminated by 

ship exhaust gases.   
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2.5.3. UEA underway pCO2 system 

The detailed design of the UEA underway pCO2 system has previously been described in 

Cooper et al. (1998) and changes incorporated between 2001 and 2007 are reported in 

Schuster and Watson (2007). Surface seawater from the underway supply is introduced at a 

rate of 4 L min-1 into a percolating, packed bed equilibrator (Fig. 2.3). The system is 

maintained at ambient atmospheric pressure through a coiled vent positioned in the top of the 

equilibrator. The air from the equilibrator head space is circulated through a dual channel, 

non-dispersive infra-red (IR) analyser, a LICOR 7000 (LICOR Inc., USA) to measure the 

xCO2 and water content simultaneously. The xCO2 is measured relative to a dry and CO2 free 

reference cell. The LICOR is calibrated using three secondary BOC gas standards of nominal 

CO2 concentrations of 250, 350 and 450 µmol mol-1 in artificial air (21% O2, 79% N2). All 

BOC gases were calibrated against certified, high precision, primary standards from the 

National Oceanic and Atmospheric Administration (NOAA) (Table 2.4). The mixing ratios of 

the calibration gases were selected to bracket the ‘natural’ range of seawater CO2.  

Samples from the equilibrator headspace and marine air are partially dried by passing through 

a cold trap at 2 °C, prior to analysis in the LICOR. Drying the air eliminates the possibility of 

condensation in the tubing and minimises the uncertainty related with water vapour 

contamination. Analyses of all parameters were carried out at a flow of 100 ml min-1 through 

the LICOR at a slight overpressure (‘flush’ conditions). A final analysis for each parameter 

was made at atmospheric pressure under ‘non-flush’ conditions. The flow and overpressure 

did not have a discernable effect on the CO2 and H2O measurements. 
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Figure 2.3. Main parts of the University of East Anglia (UEA) underway pCO2 system, (a) the 

LICOR 7000, sampling components and electronics unit and (b) the equilibrator and oxygen 

optode. 

The measurement routine begins by calibrating the system with one of the gas standards, with 

a priority order of analysis as 250, 450, 350 and then a 0 CO2 ppm in artificial air (21% O2, 

79% N2) standard. The CO2 and H2O content is determined every minute during a 30 minute 

cycle, with 29 minutes of continual flushing at a slight overpressure and 1 minute with non-

flush conditions at ambient pressure. Once a standard has been run, the system alternates 

between equilibrator headspace and marine air readings (3 × 32 minutes). The CO2 and H2O 

content is determined every minute during a 32 minute cycle, with 31 minutes of continual 

flushing at a slight overpressure and 1 minute with non-flush conditions at ambient pressure. 
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A second standard is then run and the analysis cycle repeats itself with a complete calibration 

of the instrument every 6 hours. All raw data are time stamped by a Garmin GPS module 

mounted on the starboard side of the ship. Ancillary data from the ship’s underway 

oceanlogger and meteorological station are added during the data processing. Gaps in the data 

are due to the seawater supply being turned off in ice or very shallow water, contamination 

from the ship exhaust gases, replacement of instrument components and pressure leak testing 

or calibrations. 

 

Figure 2.4. The software control screen for the UEA pCO2 system.  

2.5.4. CASIX underway pCO2 system 

The design and set-up of the new CASIX underway pCO2 system is based on some of the 

principles outlined in Cooper et al. (1998). Surface seawater from the ship’s underway supply 

is introduced at a rate of approximately 6 L min-1 into a non-vented, percolating, packed bed 

equilibrator (Fig. 2.5). The air from the equilibrator head space is circulated through a LICOR 

840, which is calibrated using two secondary BOC gas standards of approximately 250 and 
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450 µmol CO2 mol-1 in artificial air (21% O2, 79% N2). All BOC gases were calibrated against 

certified, high precision, primary standards from NOAA using a LICOR 6262 (Table 2.5). 

Nitrogen is used as the zero reference gas.  

 

Figure 2.5. Main parts of the CASIX underway pCO2 system, (a) the valve trays and 

electronics unit and (b) the equilibrator and oxygen optode.  

 

Samples from the equilibrator headspace and marine air were partially dried by passing 

through a Peltier condenser system, prior to analysis in the LICOR. Analyses of all parameters 

were carried out at a flow of 200 ml min-1 through the LICOR at a slight overpressure. The 

measurements are made in the following sequence: equilibrator headspace air, ancillary data 

acquisition, marine air and gas standards. The routine for sampling of equilibrator air was 2 

minutes of continual flushing and 2 minutes with non-flush conditions, repeated 4 times (4 × 4 

minutes), followed by 2 minutes of continual flushing and 2 minutes of LICOR rest, sample 

and vent (1 × 4 minutes). The routine for marine air sampling is 4 minutes of continual 
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flushing and 1 minute of LICOR rest, sample and vent with non-flush conditions at ambient 

pressure (1 × 5 minutes). One of the gas standards is then run with 2 minutes of continual 

flushing and 1 minute of LICOR rest, sample and vent (1 × 3 minutes). The cycle is repeated 

every 30 minutes, alternating between the two gas standards, with a priority order of analysis 

of the 250 and 450 standards and then the nitrogen. The instrument is fully calibrated every 90 

minutes. Ancillary data from the ship’s underway oceanlogger and meteorological station are 

integrated directly into the pCO2 output file. Gaps in the data as previously explained (section 

2.5.3).  

2.5.5. Determination of fCO2 

LICOR millivolt (mV) readings are converted into mole fraction mixing ratios using internal 

algorithms that are specific to each LICOR model. The raw xCO2 values in µmol mol-1 (parts 

per million, ppm) are corrected for the water vapour content (xH2O) in mmol mol-1 (parts per 

thousand, ppt) to account for the IR band broadening effects of water vapour: 

( )1000/1 2

2
2 OxH

xCO
xCO

raw

dry −
=       Equation 2.1. 

 

The dried xCO2 readings are corrected to account for drift in the LICOR by linear 

interpolation between the nearest gas standards xCO2, which are corrected to their calibrated 

values (section 2.6.1). The pCO2 is determined with the ambient pressure (P, atm) and is 

proportional to xCO2 . Air in the equilibrator headspace is assumed to be at 100% humidity, 

like air overlying the sea surface. Therefore, the pCO2 in the equilibrator headspace at 100% 

humidity must be reduced to account for the ‘apparent’ increased CO2 concentration as a result 

of the removal of the water vapour: 

( )OpHPxCOpCO drywetTeq 222 −=       Equation 2.2. 

where pH2O is the water vapour pressure in air overlying seawater of a given salinity at the 

temperature of equilibration (Teq, K) (Weiss and Price, 1980): 

 







−=

Teq
OpH

83.5306
32602.14exp981.02      Equation 2.3. 
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The pCO2 measured in the equilibrator is correct for the temperature of equilibration (Teq). 

For oceanographic research it is necessary to correct the pCO2 to the temporally co-located sea 

surface temperature (SST, K), representing the bulk temperature of the mixed layer (Takahashi 

et al., 1993):  

( ))(0423.0exp22 TeqSSTpCOpCO wetTeqwetSST −=    Equation 2.4. 

The fCO2 is determined from the pCO2 alongside the total pressure (P, atm), the first virial 

coefficient of CO2 (B, m3 mol-1), the cross virial coefficient (δ, m3 mol-1), the molar gas 

constant (R, J K-1 mol-1) and the temperature (T, K) as outlined in Zeebe and Wolf-Gladrow 

(2001) and DOE (2007): 








 +=
RT

B
PpCOfCO

δ2
exp22        Equation 2.5. 

 

The fugacity coefficient (the ratio of fugacity to partial pressure) is a function of temperature 

and composition of the gas phase and in most cases is very close to 1. From inspection of the 

calculation procedure (Eqns. 2.2-2.5), seawater fCO2 is highly dependent on temperature. 

Therefore, it is critical to have accurate temperature measurements both in the equilibrator, 

where the actual CO2 concentration is being measured, and at the sea surface. To minimise 

errors sourced from temperatures, it is important that the water in the equilibrator be as close 

to sea surface temperature as possible. This is achieved by using a high flow rate of seawater 

to reduce the extent to which the water is warmed (Table 3.1). This research uses sea surface 

temperatures as measured by the underway oceanlogger temperature sensor located in the hull 

of RRS James Clark Ross at 6.5 m depth (Fig. 2.2). Equilibrator temperature is the average of 

two platinum resistant thermometers placed in the upper and lower parts of the seawater 

stream in the equilibrator. A discussion of equilibrator and sea surface temperatures follows in 

sections 2.6.3 and 2.6.4, respectively.  
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2.6.  Instrument calibrations 

2.6.1. BOC gas standards  

For calibration of the BOC cylinders, high precision, primary standards from NOAA are used 

that cover the nominal mixing ratios of 250, 350 and 450 µmol CO2 mol-1 for the UEA 

instrument and 250 and 450 µmol CO2 mol-1 for the CASIX instrument. All tubing was 

flushed with nitrogen prior to the calibrations to ensure that all lines were fully dried. The 

calibration routine began and finished with the NOAA standards, running the series of BOC 

gas standards in between in ascending order of CO2 mixing ratios.  

The main cycle time for each gas was approximately 30 minutes to allow sufficient flushing of 

the lines and stabilisation of readings. Logging of data from the LICOR 7000 was every 

minute and for the LICOR 840 was every 10 seconds. The near-final 20 minutes worth of 

readings were used to calculate the mean and standard deviation for each BOC cylinder. The 

response of the LICOR was determined using linear regression of the absolute NOAA 

calibrated xCO2 values and the LICOR output xCO2 for the NOAA standards (Fig. 2.6). The 

resultant relationship was then applied to all raw xCO2 readings for each of the BOC gas 

standards to give a calibrated value, with associated standard deviation (Tables 2.4 and 2.5). 

 

Figure 2.6. Calibration curves for NOAA cylinders using a (a) LICOR 7000 and a (b) LICOR 

840. The response of the LICOR, based on absolute NOAA readings, was 0.99(xCO2raw) + 

0.25 and 1.11(xCO2raw) + 19.39 for the LICOR 7000 and 840, respectively.    
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Table 2.4. BOC gas calibration dates and xCO2 for UEA instrument standards used on JR177. 

Standard deviations are shown in parentheses.  

Cylinder ID Standard Date 1 xCO2 1 Date 2 xCO2 2 

   µmol mol-1  µmol mol-1 

25B16 250 20.06.07 249.12 (0.06) 01.08.08 248.85 (0.03) 

35B01 350 20.06.07 356.46 (0.04) 01.08.08 356.56 (0.04) 

45B16 450 10.08.07 457.36 (0.04) 01.08.08 457.11 (0.06) 

 

 

Table 2.5. BOC gas calibration date and xCO2 for CASIX instrument standards. Standard 

deviations are shown in parentheses.  

Cylinder ID Standard Date 1 xCO2 1 Date 2 xCO2 2 

   µmol mol-1  µmol mol-1 

111903 250 24.07.06 250.15 (0.13) 10.09.07 250.21 (0.33) 

150464 250 17.07.07 255.41 (0.30) - - 

129451 450 24.07.06 449.03 (0.08) 17.07.07 449.79 (0.15) 

143967 450 17.07.07 452.25 (0.15) - - 

 

2.6.2. LICOR accuracy and precision  

The response of the LICORs during the run of the NOAA cylinders is shown in a series of 

control charts, detailing the two sets of analyses for each NOAA standard, means and standard 

deviations (Figs. 2.7 and 2.8). Control charts are used to demonstrate whether the instrument 

measurement is ‘in control’ and if the data display unbiased, natural variability (DOE, 2007). 

Upper and lower control limits are determined as ± 3 standard deviations of the mean and they 

provide an indication of problematic data. Each NOAA cylinder was run twice during the 

calibration day, at the beginning and end and the LICOR xCO2 is plotted sequentially by 

analysis number to evaluate the stability of the LICOR over the calibration period.  
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Figure 2.7. Control chart of xCO2raw measured by the LICOR 7000 during 20 minutes (one 

value per minute) from the NOAA cylinders (a) first run 250 standard, (b) second run 250 

standard, (c) first run 350 standard, (d) second run 350 standard, (e) first run 450 standard and 

(f) second run 450 standard. First run refers to the set of analyses of NOAA standards at the 

start of the BOC cylinder calibration, and the second run to the set of analyses of NOAA 

standards at the end of the BOC calibration session. The black dashed line indicates the mean 

and grey dashed lines indicate upper and lower control limits (± 3 standard deviations of the 

mean).  

The charts reveal that all points are well within the control limits and therefore that the LICOR 

measurement is in control. The individual xCO2 readings for each run had little variation with 

values tightly fitting round the mean. This indicates that the LICOR 7000 measurements were 

continually stable over a range of xCO2 concentrations. The analyses show that the second run 

of each NOAA cylinder has a lower mean xCO2, still retaining little variability between 

successive xCO2 measurements. This decrease indicates the magnitude of the LICOR drift 

over a 10 hour period and highlights the necessity to run standard gases frequently, in order to 

calibrate the LICOR, during sampling. The accuracy of the LICOR, determined from the 



 

 

78 
 

maximum difference between the certified NOAA xCO2 values and the calibrated LICOR 

xCO2 values is 0.40 µmol mol-1. The precision for the xCO2 measurements (average standard 

deviation of the 6 NOAA runs) using the LICOR 7000 is determined as 0.04 µmol mol-1 (Fig. 

2.7). 

 

Figure 2.8. Control chart of xCO2raw measured by the LICOR 840 during 20 minutes (six 

values per minute) from the NOAA cylinders (a) first run 250 standard, (b) second run 250 

standard, (c) first run 450 standard and (d) second run 450 standard. First and second runs as 

for Figure 2.7. The black dashed line indicates the mean and grey dashed lines indicate upper 

and lower control limits (± 3 standard deviations of the mean).  

The charts reveal that all points are just within the control limits and therefore that the LICOR 

measurement is in control. Compared to the LICOR 7000, the individual xCO2 readings for 

each cylinder run showed more variation, which appeared to increase with increasing CO2 

concentration. The analyses show that the second run of each NOAA cylinder has a slightly 

lower mean xCO2, still retaining variability between successive xCO2 measurements. This 

indicates the magnitude of the LICOR drift over a 4 hour period and again reinforces the 

requirement of regular LICOR calibration. The accuracy of the LICOR 840, determined from 

the maximum difference between the certified NOAA xCO2 values and the calibrated LICOR 

xCO2 values is 1.28 µmol mol-1. The precision for the xCO2 measurements (average standard 

deviation of the 4 NOAA runs) is estimated as 0.23 µmol mol-1 (Fig. 2.8).  
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2.6.3. Equilibrator temperature  

The calibration of the UEA platinum resistant thermometers (Pt100) required both Pt100s to 

be held in a temperature calibration bath alongside a calibrated mercury (Hg) thermometer 

(accurate to 0.1 °C). The bath was set to different temperatures and the thermometers were 

allowed to reach a stable temperature over 30 minutes. Logging of the Pt100 data was every 

minute. For each set temperature, the final 10 minutes worth of readings were used to 

calculate the mean and standard deviation for each Pt100 at the given temperature. The 

response of the Pt100s was determined using linear regression of the absolute temperature 

from the Hg thermometer and the Pt100 voltage output (Fig. 2.9). The resultant offset was 

then applied to all voltage readings for each Pt100 sensor to give a calibrated temperature 

reading.  

 

 

Figure 2.9. Calibration curves for the (a) upper Pt100 temperature sensor and the (b) lower 

Pt100 temperature sensors on the UEA pCO2 instrument during JR177. The response of the 

sensors, based on absolute mercury (Hg) thermometer readings, was T = 0.98V + 1.4 and T = 

0.98V + 0.8 for the upper and lower sensors, respectively.   

Plots of the upper and lower Pt100 temperatures during the calibration are shown in a series of 

control charts (Figs. 2.10). The Pt100 sensor response is plotted sequentially by analysis 

number to evaluate the sensor stability over the calibration period. 
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Figure 2.10. Control charts of the raw temperature measured by the upper (a, c, e) and lower 

(b, d, f) Pt100 sensors of the UEA instrument at three set temperatures. The black dashed line 

indicates the mean and grey dashed lines indicate upper and lower control limits (± 3 standard 

deviations of the mean).  

The charts reveal that all points are within the control limits and that the temperature 

measurement is in control. The individual readings for both sensors had little variation with 

each of the values tightly fitting round the mean. This indicates that the Pt100 temperature 

measurements were stable over the selected range of set temperatures. The raw measurements 

(using the previous calibration) show a difference of about 0.5 °C between the two sensors, 

which is corrected for using the appropriate calibration equation (Fig. 2.9).  The accuracy of 

the Pt100s, determined from the maximum difference between the absolute mercury 

thermometer temperature and the calibrated Pt100 temperature, is 0.2 °C. The precision of the 

Pt100 measurements (average standard deviation of 6 Pt100 analyses) is determined as 0.1 °C 

(Fig. 2.10). The calibrations of the CASIX platinum resistant thermometers (PRTs) followed a 

similar method and were found to have a matching accuracy and precision of 0.2 °C and 0.1 

°C, respectively. 
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2.6.4. Sea surface temperature 

During cruise JR177, sea surface temperature data from the underway oceanlogger (6.5 m 

below surface) were compared to the potential temperature from the CTD Seabird SBE9+ 

sensor at hydrographic station 18, north of the SB (Fig. 2.1), where the CTD was suspended at 

5 m for 30 minutes. Logging of the underway temperature data was every 5 seconds and all 

data were used to calculate the accuracy and precision of the oceanlogger temperature sensor.  

 

Figure 2.11. Investigating the underway temperature (blue in (a)) data from the oceanlogger 

by (a) comparison with the CTD temperature (red), (b) control chart of underway temperature 

response during the 30 minute investigation. The black dashed line indicates the mean and the 

grey dashed lines indicate upper and lower control limits (± 3 standard deviations of the 

mean). The red outlined points (b) represent flagged data based on the control limit criteria. 

The control chart of the underway temperature reveals four data points that fall outside the 

control limits (Fig. 2.11b). These appear to occur at random times and show large deviations 

compared to all other data. Inspection of other oceanlogger parameters and discussion with 

onboard physicists did not reveal any technical or oceanographic reason to exclude the data. 

The outliers were attributed to natural fluctuations or noise in the electronics or calibration of 
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the sensor. Overall, the oceanlogger temperature sensor was in control during the investigation 

period with 99% of the data falling within the control limits. Despite the inclusion of the 

outlier values, the accuracy of the oceanlogger temperature sensor, determined from the 

maximum difference between the CTD potential temperature and the corrected underway 

temperature is 0.14 °C. The precision for the temperature measurements (average standard 

deviation during 30 minutes) is determined as 0.02 °C (Fig. 2.11). 

 

Figure 2.12. (a) downcast and upcast 6 m CTD potential temperature (°C, red) and 

oceanlogger sea surface temperature (°C, blue) and (b) the difference between the CTD 

temperature and the oceanlogger temperature (°C) for hydrographic stations 1-37 during 

JR177.  

The mean offset of the underway temperature was determined as -0.37 °C from the difference 

between the CTD temperature (taken as absolute, checked against high precision SBE35 

temperature sensor) and the oceanlogger temperature for CTD 18 (Fig. 2.11a). To investigate 

the nature of the temperature offset, CTD and underway temperature were compared for 

hydrographic stations 1-37 (Fig. 2.12a). Spanning 26 days of the cruise and a temperature 

range from -2 °C to 3 °C, the offset was independent of temperature and had no drift over time 
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(Fig. 2.12b). A correction of +0.37 °C was applied to all raw temperature readings to give 

calibrated underway temperature datasets for the Antarctic season 2007/08 (October 2007-

May 2008). The same comparison was carried during JR161 and JR200 where offsets of -0.40 

and +0.003 °C were applied to give calibrated underway temperature datasets for the Antarctic 

seasons of 2006/07 and 2008/09, respectively. 

 

2.7. Seawater sampling 

Samples for dissolved inorganic carbon (DIC) and total alkalinity (TA) analysis were collected 

according to the Standard Operating Procedures for oceanic CO2 measurements (DOE, 2007). 

Vertical profile samples were taken from the 24 × 10 L Niskin bottles mounted onto the CTD 

rosette on the upcast of the CTD during cruise JR177 (Tables 2.2 and 2.3). Seawater was 

collected from the Niskin, using Tygon tubing that had been soaked in seawater, into pre-

cleaned 250 ml or 500 ml borosilicate glass bottles. Each sample bottle was rinsed with Niskin 

water and the bottles were filled bottom-up at a slow rate to minimise the formation of bubbles 

and were allowed to overflow by at least one bottle volume. The tube was drawn out slowly 

and bottle sealed with a ground glass stopper that had been rinsed with Niskin water.  

A small volume was extracted to create a head space of 1% of the bottle volume and 0.02% 

vol/vol saturated mercuric chloride (HgCl2) solution was immediately added to fix the sample 

and prevent further biological activity that would otherwise alter the composition of organic 

and inorganic carbon. The bottle was re-sealed with the glass stopper, greased in Apiezon L 

(silicon) grease, shaken to disperse the HgCl2 and stored in a dark location at ambient 

temperature for shipment to the UK. Underway samples were collected following the same 

technique, using Tygon tubing connected to the ship’s seawater supply on a bypass from the 

pCO2 instruments. Replicate samples were taken where possible, both from the same source at 

the same time or different sources at the same time. 
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2.8. Seawater analysis 

Seawater analyses for DIC and TA were carried out using a VINDTA (Versatile INstrument 

for the Determination of Titration Alkalinity, Marianda, Kiel, Germany). VINDTA 

instruments were originally designed for the determination of titration (total) alkalinity, 

however later models combined this with analysis for DIC (Fig. 2.13). The whole system was 

maintained at 25 °C by a continual flow of temperature controlled water through the water 

jackets of the glassware. A Certified Reference Material (CRM) was analysed in duplicate for 

DIC and TA at the beginning and end of each sample analysis day to monitor the accuracy of 

the analysis (DOE, 2007). Seawater samples were analysed in duplicate where possible 

(approximately 70% of samples). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13. (page 85) The VINDTA instrument, detailing principle components for the 

analysis of total alkalinity (TA) and dissolved inorganic carbon (DIC). The electrodes are both 

connected to the Titrino and acid for TA analysis is added by the Metrohm piston burette (not 

shown). Various level sensors are not shown.   
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2.8.1. Dissolved inorganic carbon 

The concentration of DIC was determined using the principles of coulometric analysis 

(Johnson et al., 1987). The analysis was conducted with a VINDTA interfaced with a 

coulometer (model 5100, UIC, USA) (Fig. 2.13). To begin DIC analysis a background count is 

first determined by running a nitrogen carrier gas (O2- and CO2-free) through the extraction 

system and into the coulometer cell. The background level is determined as the number of 

counts detected in one minute from the nitrogen purging the system. Seawater is extracted 

from the sample bottle, held in a thermostat bath at 25°C, until the calibrated pipette is filled 

and hence the volume of sample could be accurately determined. The sample is then dispensed 

into a borosilicate glass stripping chamber where it is acidified with phosphoric acid (1.5 ml, 

8.5%) to convert all dissolved inorganic carbon species to gaseous CO2. The solution is purged 

with nitrogen to strip out the CO2 and the gas stream is passed through a Peltier cooler and a 

drier column (magnesium perchlorate) to remove any water vapour. The gas is then bubbled 

into the main coulometer cell. The cell consists of a glass beaker with a smaller, side arm 

extension, connected by a glass frit (Fig. 2.14).  

 

Figure 2.14. Schematic of the coulometer cell for the determination of dissolved inorganic 

carbon (DIC) detailing the reactions that take place at each electrode. The nitrogen carrier gas 

enters the coulometer cell through the tubing connection labelled VINDTA.    
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The main beaker is setup with a platinum cathode immersed in a solution of water, 

ethanolamine, and tetraethylammonium bromide in dimethyl sulfoxide, with a 

thymolphthalein indicator (100 ml). The side arm of the cell contains a silver anode suspended 

in a saturated solution of saturated potassium iodide, dimethyl sulfoxide (about 20 ml) and 

potassium iodide (KI) crystals (about 2 ml). The cell is positioned in the coulometer light path 

to maximise transmittance. A current is then applied across the cell and the amount of CO2 in 

the carrier gas stream is determined by reaction with ethanolamine to form 

hydroxyethylcarbonic acid (Eqn. 2.6): 

+− +→+ HNHCOOCHHONHCHHOCO 222222 )()(     Equation 2.6. 

The reaction is followed by monitoring the pH of the solution through transmittance of the 

thymolphthalein indicator at about 610 nm. The coulometer maintains maximum transmittance 

by liberating hydroxide ions at the cathode, by the electrolysis of water (Eqn. 2.7), and 

dissolving the silver anode to produce an electron (Eqn. 2.8) to generate current within the cell 

(Fig. 2.13): 

−− +→+ OHgHeOH )(
2

1
22       Equation 2.7. 

−+ +→ eAgsAg )(         Equation 2.8. 

The hydroxide ions produced at the cathode titrate with the acid formed in the cathode 

solution (Eqn. 2.7). The coulometer ‘interprets’ the titration reaction as counts, based on the 

current, under Faraday’s Law. The final coulometer value is achieved when the coulometer 

sample counts per unit time reach the value of the background level, marking the titration end-

point. At the beginning of each day of analysis, the coulometer was primed with a series of six 

‘test’ seawater samples until the analysis time and instrument response had stabilised.  

Analyses were conducted as either a series of underway samples or one full CTD station per 

day to maintain internal consistency. A CRM from batches 76 or 81 (DOE, 2007) was 

analysed in duplicate at the beginning and end of each day, corresponding to two CRM bottles 

per CTD cast and per 20 underway samples. The CRM replicate analyses provided an 

assessment of instrument accuracy and precision each day and over the course of whole 

analysis period. Upon completion of the daily analysis, the cell and frit were cleaned with 



 

 

88 
 

acetone and deionised water under a slight pressure and dried overnight at 60°C. The drying 

agent, magnesium perchlorate (Mg(ClO4)2, Fig. 2.12), was replaced daily to minimise water 

vapour passing into the cell and introducing noise to the count signal. A correction of 1.0002 

is made to each final DIC measurement to account for the dilution of the seawater by the 

addition of 0.02% saturated mercuric chloride solution.    

A total of 53 CRM bottles were analysed for DIC in duplicate. Plots of the CRM responses 

during the analysis period are shown in a series of control charts, detailing the individual 

analyses, means and standard deviations for each bottle (Figs. 2.15 and 2.16). Individual CRM 

analyses are plotted sequentially to evaluate the stability of the DIC measurement process for 

CRM batch 76 (Fig. 2.16a) and batch 81 (Fig. 2.16b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15. (page 89) Control charts of CRM response during DIC analysis, showing (a) 

batch 76 in-bottle replicates, (b) batch 81 in-bottle replicates, (c) batch 76 bottle standard 

deviations, (d) batch 81 bottle standard deviations, (e) batch 76 corrected replicates, (f) batch 

81 corrected replicates, (g) batch 76 corrected bottle standard deviations and (h) batch 81 

corrected bottle standard deviations. Upper and lower control limits as for Fig. 2.7. Red 

outlined points (a-d) represent flagged data based on the control limit criteria. 
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Both sets of charts reveal data points that fall very close to the control limits. These 

correspond to three individual CRM bottles that showed considerable deviations compared to 

all other bottle data (Fig. 2.15c-d). Inspection of laboratory notebooks and instrument output 

revealed that each of the bottles were run first on a given analysis day after a short break and 

suggest that the instrument may have still been in a stabilising period. As the flagged data 

originated from one bottle on three separate days, it was decided that the data should be 

removed from further analysis as the second CRM analysed on each of the days performed 

well within the control limits. The ‘corrected’ CRM values can now be used with confidence 

to evaluate the accuracy of the DIC measurements, determined from the maximum difference 

between the certified DIC values and the corrected VINDTA measured DIC values as 2.4 

µmol kg-1. 

 

 

Figure 2.16. Control chart of the corrected DIC difference (∆DIC) between in-bottle replicates 

for (a) batch 76 (b) batch 81. The black dashed line indicates the mean and the grey dashed 

line indicates the upper control limit (3.267 × mean) as outlined in DOE (2007). 

The absolute differences (∆DIC) of the corrected duplicate CRM (in-bottle) analyses can be 

investigated to evaluate the precision of the measurement process (Fig. 2.16). The average 

difference is related to the short term standard deviation, which is an indication of the 

precision or repeatability of the technique. The chart shows that the measurement precision 

was in control at all times as all differences were below the upper control limit. Compared to 

batch 76, batch 81 appeared to be more variable, however no bias was evident.  
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The precision (repeatability) of the instrument is determined from the standard deviation of the 

mean DIC value (stdR), estimated from the difference (d) of 50 (k) within-bottle duplicate 

measurements (Eqn. 2.9):  
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R         Equation 2.9. 

The precision for the DIC measurements is estimated as 1.5 µmol kg-1, which corresponds to 

the desired precision of 0.07% for this method (DOE, 2007). The corrected CRM DIC values 

gave a standard response of the instrument per gram of carbon that is used to determine the 

sample DIC concentrations. This is achieved by interpolating between the average in-bottle 

CRM DIC, from the beginning and end of each day, and calculating the corresponding sample 

DIC.  

2.8.2. Total alkalinity 

Analysis for TA was carried out by potentiometric titration with hydrochloric acid to the 

carbonic acid end point (Dickson, 1981) using a VINDTA instrument (Fig. 2.13). The 

instrument setup comprises a temperature regulated sample delivery system, an open titration 

cell and an automated burette. The cell and sample tubing are rinsed with sodium chloride 

solution (0.7 M) and then with a small volume of the sample to be analysed. Seawater is then 

extracted from the sample bottle, which is held in a thermostat bath at 25°C, until the 

calibrated pipette is filled and hence the volume of sample can be accurately determined. The 

sample is then dispensed into the thermostatted titration cell assembled with a glass working 

electrode, a reference pH electrode, acid injection tube and an earth rod.  

A Metrohm (model 719 S, Metrohm, Switzerland) piston burette is used to deliver fixed 

aliquots of hydrochloric acid (0.15 ml, 0.1 M) into the cell. The electrodes follow the titration 

by continually measuring the electromotive force (e.m.f) of the solution. When the difference 

between two successive measurements is less than 0.1 mV the next aliquot of acid is added, up 

to a total volume of 4.20 ml. The titration curve of e.m.f as a function of acid volume has two 

points of inflection that correspond to the protonation of firstly carbonate and secondly 

bicarbonate ions. The acid utilised up to the second point is equivalent to the titration 
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alkalinity or total alkalinity. TA is determined from a curve fitting approach and a Gran 

function, which are optimised with best-fit coefficients to calculate the final TA.  

At the beginning of each day of sample analysis, the titration cell is flushed with at least two 

‘test’ seawater samples. Samples are run as for DIC analysis, either underway samples or one 

full CTD station, and a CRM bottle is analysed in duplicate at the beginning and end of each 

analysis day. The CRM analyses give a standard titration curve that is used to determine the 

TA of the samples. In addition, the CRM replicate analyses provided an assessment of 

instrument accuracy and precision each day and over the course of whole analysis period. A 

correction of 1.0002 is made to each final total alkalinity measurement to account for the 

dilution of the seawater by the addition of 0.02% saturated mercuric chloride solution. 

A total of 53 CRM bottles were analysed for TA in duplicate. As for DIC, individual CRM 

analyses are plotted sequentially by day of analysis to evaluate the stability of the 

measurement process for batch 76 (Fig. 2.17a, c, e, g) and batch 81 (Fig. 2.17b, d, f, h). Both 

charts reveal data points that fall very close to the control limits. These correspond to five and 

four analyses from batches 76 and 81, respectively (Fig. 2.17a-d). These included the same 

three flagged bottles from the DIC analyses and further suggest that after an idle period the 

instrument was still stabilising, or some acid diffuses out of the dispenser or possibly that the 

bottles were suspect, resulting in outliers in both DIC and TA analyses.  

 

 

 

 

 

Figure 2.17. (page 93) Control charts of CRM response during TA analysis, showing (a) batch 

76 replicates, (b) batch 81 replicates, (c) batch 76 bottle standard deviations, (d) batch 81 

bottle standard deviations, (e) batch 76 corrected replicates, (f) batch 81 corrected replicates, 

(g) batch 76 corrected bottle standard deviations and (h) batch 81 corrected bottle standard 

deviations. Upper and lower control limits as for Fig. 2.7. Red outlined points (a-d) represent 

flagged data based on the control limit criteria. 
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Figure 2.18. Hydrochloric acid concentration factor during the analysis using (a) CRM batch 

76 and (b) CRM batch 81. The vertical grey dashed line indicates the change over from acid 

batch 1 to 2 (day 78-79).  

The mean acid concentration factor (Fig 2.18) was calculated for each analysis day, from the 

two CRM bottles, to replicate the certified alkalinity. A distinct break-point in concentration 

factor marks the change over to a new batch of hydrochloric acid, upon utilisation of the first 

batch (Fig. 2.18b). A slight increasing trend can be observed in both sets of acid concentration 

factors over time. The concentration factors exhibit little variation on a day-to-day basis. Such 

a trend was observed in alkalinity analyses conducted on the same apparatus in 2004 (Brown, 

2008).  

These factors were used in the calculation of the ‘raw’ alkalinities (Fig. 2.17a-b) where no 

such trend is identified in the control chart. A possible explanation is that throughout the 

analysis period, the amount of acid decreases with each successive titration, which increases 

the volume of the headspace in the acid stock bottle. Any evaporation in the stock bottle 

would result in the acid becoming more concentrated over time. A second explanation could 

be algal growth and/or dirt within the sample delivery tubing system or pipette. This would 

result in less sample being dispensed into the cell and hence less acid required, which would 

imply a more concentrated acid to reach the end point. Finally, any disruptions to the 

automated sampling procedure, such as pinched tubing, samples running dry, condensation 

tripping the pipette fill would lead to insufficient sample volume and apparent increasing acid 

concentrations. Thorough flushing of the system prior to analysis and the use of deionised 

water reduced the possibility of algal build up. Inspection of laboratory notebooks and 
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instrument output didn’t reveal any hard- or software disruptions that had not already been 

observed and accounted for. 

 

Figure 2.19. Control charts of the corrected replicate TA difference (∆TA) for (a) batch 76 (b) 

batch 81. Upper control limit as for Fig. 2.16.  

From the minor trends in the acid concentration it is not possible to use a mean acid 

concentration factor for the calculation of alkalinity. Therefore, the daily mean concentration 

factor was determined from the 2 × 2 CRM analyses that gave the certified alkalinity value for 

the certain CRM batch. As for the DIC analyses, the flagged data originated from one bottle 

on different days and therefore the data was discarded and the remaining replicate used as the 

standard. The ‘corrected’ CRM values can now be used in confidence to evaluate the accuracy 

and precision of the TA measurements.  

The accuracy of the instrument, determined from the maximum difference between the 

certified TA values and the corrected VINDTA measured TA values is 2.6 µmol kg-1. The 

control chart of the absolute differences (∆TA) shows that the measurement precision was in 

control at all times. Similarly to the DIC analyses, batch 81 measurements appeared to be 

more variable, however no bias was evident. The precision of the instrument, using Equation 

2.4, is estimated as 1.0 µmol kg-1, which is better than the desired precision of 1.5 µmol kg-1 

for this method (DOE, 2007). 
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2.9. Carbonate chemistry property-property comparisons 

Marine inorganic chemistry data are often normalised to constant salinity to investigate the 

influence of freshwater. The traditional salinity normalisation involves correction of measured 

TA, with in situ salinity (S), to a reference salinity (Sref) (Friis et al., 2003): 

ref
S S

S

TA
TA ⋅=0         Equation 2.10. 

Typically, the Sref is the mean salinity of the reference data, which is determined as 34 from 

the average salinity of the WW for all hydrographic stations during JR177 (Tables 2.2 and 

2.3). All surface alkalinity data showed a strong salinity dependence (Fig. 2.20a). The data are 

coloured according to location of collection to observe any latitudinal variations. Linear 

regression analysis yields the following relationship and associated correlation coefficient (r):  

2699.59 += STA   r(160) = 0.81, p < 0.01   Equation 2.11. 

The null hypothesis is rejected and the relationship between TA and salinity is statistically 

significant with a 99% confidence level. Using the traditional technique (Eqn. 2.10), salinity 

normalised alkalinity (TA34) shows a much reduced salinity dependence, however a slight 

reversed trend can be observed:   

25781.80
34 +−= STA   r(160) = -0.24, p < 0.01   Equation 2.12. 

The detectable salinity dependence of the normalised alkalinity (TA0
34) indicated that there is 

a problem with the traditional technique for this dataset (Fig. 2.20b). The change in sign of the 

gradient implies that this technique is over-correcting the alkalinity measurements. The 

correlation coefficient shows that this technique still yields a statistically significant 

relationship, at 99% confidence, and hence is not a suitable salinity normalisation tool for the 

data. To improve this correction, a second equation accounts for a non-zero freshwater 

endmember i.e. a positive alkalinity at zero salinity (TA0 > 0) (Friis et al., 2003): 

0
0

34 34 TA
S

TATA
TA +⋅







 −=        Equation 2.13. 
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Linear regression analysis of the TA34 data shows no salinity dependence (Fig. 2.20c), where 

r(160) = -0.02, p > 0.01, and no statistically significant relationship is present between the 

normalised TA and salinity. Therefore, Eqn. 2.13 is a suitable salinity normalisation technique 

for the JR177 data set.  

 

Figure 2.20. The dependence on salinity of (a) alkalinity (TA), (b) normalised alkalinity using 

the traditional approach (TA034) and (c) normalised alkalinity accounting for a non-zero 

endmember (TA34) for all surface samples collected during cruise JR177. 
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The TA endmember (TA0) at zero salinity (Eqn. 2.13) was calculated as 269 µmol kg-1. This 

relationship takes into account the main processes that affect alkalinity that involve a non-zero 

endmember, such as sea ice melt, calcium carbonate dissolution and precipitation and 

upwelling (Friis et al., 2003). This was repeated for the DIC data, where a value of 966 µmol 

kg-1 was determined for DIC0. DIC and TA values reported in the text are not salinity 

normalized, unless stated. 

A series of de-ionised water samples were analysed to determine an analysis ‘blank’ for DIC 

and TA at zero salinity. Average values for TA0_de-ionised and DIC0_de-ionised of 74 ± 11 and 36 ± 

3 µmol kg-1 (n = 6), respectively, indicate that the TA0 and DIC0 do not result from the 

analytical technique (discussed further in section 5.3.3).      

 

Figure 2.21. The relationship of (a) measured alkalinity (TA) and (b) normalised alkalinity 

accounting for a non-zero endmember (Eqn. 2.13, TA34) to temperature for all surface samples 

collected during cruise JR177. 
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Measured TA showed a slight dependence on temperature (Fig. 2.21a) and when normalised 

(Eqn. 2.13), the correlation was slightly reversed (Fig. 2.21b). The data show that temperature 

is not a major variable in determining normalised surface water alkalinity. From the 

comparison of the two approaches, Equation 2.13 will be used to normalise the inorganic 

carbon data of JR177 (Chapters 5, 6 and 7).  

2.10. Vertical DIC deficits 

Depth-integrated DIC deficits were calculated from vertical DIC profiles relative to the 

concentration of DIC at 100 m depth (Eqn. 2.14). Vertical integration to 100 m depth was 

selected as mixed layers were shallower than 100 m across the Scotia Sea (Tables 5.3 and 6.2), 

and winter mixed layers were deeper than 100 m (Tables 5.2 and 6.3) and for consistency with 

numerous other inorganic carbon studies in the Southern Ocean (Table 6.6). The vertical 

deficits at depths (z) between the discrete DIC samples were linearly interpolated at 1 m 

resolution. 

( ) ( ) ( )∫ ∆=Σ∆
z

dzzzDICzDIC
0

ρ        Equation 2.14. 

2.11. Seasonal biogeochemical deficits  

The seasonal depletion in DIC, TA and macronutrients was determined from the difference 

between concentrations in the WW and the average concentration within the summer mixed 

layer (Jennings et al., 1984). The total seasonal DIC depletion (∆DICseasonal) can be expressed 

as a sum of contributing processes:  

residualCaCOCorgsalinityseasonal DICDICDICDICDIC ∆+∆+∆+∆=∆
3

  Equation 2.15. 

Changes in DIC due to changes in salinity are estimated from the difference between the 

measured and salinity normalised DIC deficit i.e. ∆DICseasonal – (∆DICseasonal)34. Based on the 

accuracy of the DIC measurements, a composite error of 4.8 µmol kg-1 is associated with the 

salinity term. Modifications in DIC due to processes that change organic carbon, such as 

photosynthesis and respiration (∆DICCorg), have been estimated from salinity normalised 

nitrate deficits. Different phytoplankton species are likely to have different nutrient uptake 

ratios. It has been previously reported that utilization of carbon and nitrate per mole of 
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phosphate is much lower for diatoms than for Phaeocystis antarctica, for example (Arrigo et 

al., 1998). Studies carried out in the Ross Sea showed that carbon:phosphorous (C:P) and 

carbon:nitrogen (C:N) uptake ratios for diatom dominated blooms were 80.5 and 7.8, 

respectively (Sweeney et al., 2000).  A comparison of carbon to nitrogen and phosphate 

depletion showed that C:N ratios were more homogeneous than C:P ratios, therefore 

indicating that N was a better proxy for the biological utilisation of carbon than P (Sweeney et 

al., 2000).  

Table 2.6. Changes in dissolved inorganic carbon (∆DIC) and alkalinity (∆TA), on a molar 

basis, as a result of the formation of organic matter (Corg) through the organic carbon pump 

and the production of calcium carbonate (CaCO3) through the carbonate pump (Zeebe and 

Wolf-Gladrow, 2001) (section 1.5.4.1), adapted from Sarmiento and Gruber (2006). Changes 

in TA due to organic matter production were determined from the nitrogen-carbon 

stoichiometry of Anderson and Sarmiento (1994).   

Parameter 
Production of organic 

matter (Corg) 
Production of calcium 
carbonate (CaCO3) 

∆DIC -1.00 -1.00 

∆TA +0.14 -2.00 

 

As discussed in section 1.5.4.1, the organic carbon and carbonate pumps affect DIC and 

alkalinity by different proportions (Table 2.6). The residual difference in alkalinity, corrected 

for salinity and organic matter production, is used as an indicator of calcium carbonate 

processes based on the 2:1 ratio of changes in TA and DIC due to CaCO3 processes (Table 

2.6). The accuracy of the TA data yields a composite error of 3.7 µmol kg-1 for the calcium 

carbonate term. The residual change in DIC accounts for the remaining seasonal change and is 

the result of processes including CO2 air-sea exchange, advection and upwelling and the 

associated error is the sum of that for each of the terms in Equation 2.15. 

 

2.12.  Other carbonate chemistry parameters 

DIC and TA, complimented with temperature, salinity, pressure and macronutrient 

concentrations from all discrete samples, were used to calculate the remaining carbonate 

chemistry parameters, including fCO2, total pH (pHT), carbonate ion (CO3
2-) concentration and 
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aragonite saturation state (Ωaragonite). This was done using the CO2Sys programme (Lewis 

and Wallace, 1998) with thermodynamic dissociation constants for K1 and K2 (Eqns. 1.6 and 

1.7) by Mehrbach et al. (1973) and the re-fit by Dickson and Millero (1987). These 

dissociation constants were selected from results of model comparisons in the literature 

(Körtzinger et al., 2000; Sarmiento and Gruber 2006, and references cited therein).  

2.13. Satellite data 

2.13.1. Satellite products used 2006-2009 

Satellite data (Table 2.7) have been an essential component in interpreting the seasonal 

variability in carbonate chemistry as observed by in situ data. The superior spatial coverage 

assisted in hydrographic station selection and allowed the core cruise observations to be put 

into context. The superior temporal coverage put the cruise observations into a seasonal 

perspective and allowed interannual variability to be explored (Chapter 7). As with most 

remotely sensed techniques, satellite data have associated caveats that need consideration.  

Table 2.7. Satellite data used during this research.  

Sensor Parameter Data type and source Coverage 

SeaWiFS Chlorophyll-a 8 day, 9 km level 3 mapped 
http://oceancolor.gsfc.nasa.gov 

1997-2007 

MODIS Chlorophyll-a Daily, 4 km level 3 mapped 
http://oceancolor.gsfc.nasa.gov 

2004-2010 

SeaWiFS/
MODIS 

Chlorophyll-a 8 day, 9 km level 3 mapped 
http://oceancolor.gsfc.nasa.gov 

2004-2007 

Merged Sea surface 
temperature 

Daily, 4 km  
http://ghrsst-
pp.metoffice.com/pages/latest_analysis/ostia.h
tml 

2006-2010 

Altimeters Absolute 
dynamic height  

http://www.aviso.oceanobs.com/en/data/produ
cts/index.html 

2001-2010 

QuikSCAT Wind speed Twice daily, 0.25° 
http://podaac.jpl.nasa.gov 

1999-2009 

Merged Sea ice Daily, 4 km  
http://ghrsst-
pp.metoffice.com/pages/latest_analysis/ostia.h
tml 

2006-2010 
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2.13.2. Ocean colour data 

Ocean colour satellite data were obtained from NASA using the Sea-viewing Wide Field-of-

view Sensor (SeaWiFS) and the MODerate resolution Imaging Spectroradiometer (MODIS). 

Ocean colour data were downloaded by ftp from http://oceancolor.gsfc.nasa.gov as 8 day, 

level 3 mapped data (Table 2.7). SeaWiFS derived chlorophyll-a concentrations (Feldman and 

McClain, 2006b; O'Reilly et al., 1998) had been processed using the standard OC4v5.1 

algorithm at 9 km (1/12°) resolution. MODIS derived chlorophyll-a concentrations (Feldman 

and McClain, 2006a; O'Reilly et al., 1998) were processed using the standard  OC3v1.1 

algorithm at 4 km (1/24°) resolution.  

The SeaWiFS/MODIS merged product is a compound chlorophyll-a concentration as derived 

by both sensors. Inconsistencies could arise with the use of different sensors, however a 

previous investigation revealed a consistent agreement between the SeaWiFS and MODIS 

estimates (Venables, 2007). Therefore, the merged product can be used in confidence and any 

variability introduced by using data from two sensors is compensated by the increased spatial 

coverage from swaths of both satellites. SeaWiFS provided chlorophyll-a data until 2007 and 

MODIS provided chlorophyll-a and sea surface temperature data until 2010. The 8 day 

composite images were used to determine the time of initiation and termination of the 

phytoplankton blooms (Chapter 7). The progression of the blooms could be more easily 

tracked using the 8 day composites than daily images due to the greater spatial coverage for 

each region whilst maintaining practical temporal resolution.  

Satellite chlorophyll-a images may not give a true indication of upper ocean biomass as the 

chlorophyll-a concentration is derived from the water-leaving irradiance that has penetrated a 

few meters of the sea surface. Regions of deep mixed layers can often hold high depth 

integrated biomass (Holm-Hansen et al., 2004a; Holm-Hansen et al., 2005; Whitehouse et al., 

2008) and deep chlorophyll-a maxima (DCM) can develop (discussed in Chapters 4 and 6). 

The Southern Ocean has been previously identified as a region where satellite derived 

chlorophyll-a estimates differ from in situ shipboard measurements (O'Reilly et al., 1998; 

Moore et al., 1999b; Gregg and Casey, 2004; Korb et al., 2004;). Around South Georgia, this 

difference was described by a linear relationship (Korb et al., 2004): 

[ ] [ ] 30.028.0 +−=− situinSeaWiFS achlachl   R2 = 0.61  Equation 2.16.  
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This correlation is due, in part, to SeaWiFS underestimating high chlorophyll-a concentrations 

or the use of 8 day composite images that may cause some loss of resolution in intensity due to 

short temporal shifts (< 8 days) in chlorophyll-a.  

2.13.3. Sea surface temperature 

Sea surface temperature (SST) data were supplied from http://ghrsst-

pp.metoffice.com/pages/latest_analysis/ostia.html, through the Group for High-Resolution Sea 

Surface Temperature (GHRSST) (Stark et al., 2007). The main caveat with remotely sensed 

SST data is that clouds have similar thermal properties and can therefore be difficult to 

distinguish. Data values that appeared outside the expected range for surface seawater at the 

specified time of year were searched for and removed, however some may remain, which 

needs to be considered when interpreting the data.  

Satellite derived SST is more precisely a measurement of the skin temperature, the water 

temperature at the air-sea interface. The thermal skin effect refers to the strong gradient that 

can exist across the top millimetre of the ocean’s surface, relative to the underlying bulk water 

of the mixed layer. The thermal skin effect influences the solubility of CO2 at the sea surface, 

which in turn affects the air-sea flux of CO2 (Robertson and Watson, 1992; Robinson et al., 

1984). Large differences between the skin temperature and that of the bulk water can occur 

through solar heating during the day and cooling during the night. At high wind speeds, 

increased turbulence means that the skin and mixed layer temperatures become the same 

(Donlon and Robinson, 1997). For this research, the mixed layer temperature during winter 

2007 is estimated from the satellite derived skin temperature.  

2.13.4. Absolute dynamic height  

Satellite altimetry data products were produced by Ssalto/Duacs and distributed by Aviso 

through http://www.aviso.oceanobs.com/en/data/products/index.html, with support from 

CNES (Rio and Hernandez, 2004) (Table 2.7). The data are a composite from several 

altimeters: Topex/Poseidon, ERS1/2, Jason-1/2, Envisat and the reference geoid and mean 

geostrophic currents to create the intercalibrated absolute dynamic topography product. The 

data then undergo a series of manipulations to produce the final product, mapped absolute 

dynamic topography. 
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2.13.5. Wind speed 

The SeaWinds microwave scatterometer on QuikSCAT measured the backscatter from the 

ocean surface in order to derive surface ocean wind vectors. The data were downloaded from 

http://podaac.jpl.nasa.gov at a resolution of 0.25° latitude at 10 m height (Table 2.7). The 

specification of QuikSCAT was to measure winds between 3 and 30 m s-1 with an associated 

accuracy of 2 m s-1.  Cloud cover does not inhibit microwaves therefore giving complete data 

coverage from every swath. 

2.13.6. Sea ice cover 

Daily sea ice concentration data at 4 km resolution from 2006 to 2009 were obtained through 

the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) service, a component 

of the Group for High-Resolution Sea Surface Temperature (GHRSST) at http://ghrsst-

pp.metoffice.com/pages/latest_analysis/ostia.html (Stark et al., 2007). Visual observations of 

sea ice type and coverage were made from the bridge of RRS James Clark Ross as part of the 

daily position report filed by the Captain during all cruises (Table 2.1).  

 

 
Figure 2.22. Sea ice during JR177 showing (a) consolidated ice pack and leads between 

stations 12 and 14, (b) smaller ice plates at station 10, (c) a dark layer of sea ice algae between 

stations 10 and 9 and (d) sporadic ice floes in the meltwaters at station 9. 
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In addition to the satellite data and shipboard observations, digital photographs were made 

during cruise JR177 to create a field key to aid interpretation of data in the sea ice region (Fig. 

2.22). Each image was selected to capture the contrasting sea ice environments of the 

Weddell-Scotia Confluence (WSC) in summer 2008. The transition area between open ice-free 

waters to ice-covered waters is referred to as the marginal ice zone (MIZ), encompassing 

stations 14, 12, 10 and 9 in the WSC (Fig. 2.22 and Table 2.2) during cruise JR177 (Chapter 

5). The ‘brown ice’ observed between stations 10 and 9 (Fig. 2.22c) is indicative of the 

presence of diatoms in sea ice (Horner et al., 1992). The ice edge is defined here as the 

position where consolidated sea ice was first encountered (station 10) on the JR177 transect 

(Fig. 2.22b). The seasonal ice zone (SIZ) is defined here as the region between the annual 

maximum and minimum sea ice extent (Chapter 7).  

2.14. Winter sea surface data 

Sea surface biogeochemical parameters (DIC, TA and macronutrients) during winter were 

determined from the concentration of each parameter at the depth of the potential temperature 

minimum (θmin) during summer 2008 (section 2.3.2). This is based on the assumption that the 

θmin represents the WW, in the remnant of the winter mixed layer, with physical and chemical 

characteristics that were present at the sea surface during the antecedent winter (2007). This 

technique has previously been used for seasonal carbon research in the Southern Ocean, 

assuming that horizontal and vertical mixing processes are minimal (Jennings et al., 1984; 

Minas and Minas, 1992; Rubin et al., 1998; Pondaven et al., 2000; Ishii et al., 2002; Jouandet 

et al., 2008).  

The timing of mid-winter is defined here as the time of the year when the sea surface 

temperature was lowest and the mixed layer was deepest, after Shim et al. (2006) and Jouandet 

et al. (2008). To determine the winter maximum, sea surface temperature (SST) data from 

GHRSST (section 2.13.3) were used to create a SST climatology from 2006 to 2009 for each 

hydrographic station occupied on the transect. Daily SST in the research area was lowest in 

September and, with reference to satellite data (section 2.13.6), this corresponded with the 

seasonal cover of sea ice. Therefore, based on the θmin during summer 2008, the WW is taken 

to represent the Antarctic Surface Water (AASW) of September 2007 and the starting day was 

set to 8 September, based on timings of the summer 2008 transect (Table 7.1). This generated 

a dataset of AASW parameters during winter 2007 (Chapter 7).  
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Oxygen utilisation in the Scotia Sea (60-54°S 52°W) in December 2001 suggested that the 

properties of the winter mixed layer in this region are well preserved by the following summer 

(Shim et al., 2006). Analysis into the validity of this technique is discussed in section 5.3.7. 

2.15. Air-sea CO2 flux  

The flux of CO2 across the air-sea interface (F, mmol m-2 d-1) is proportional to the 

concentration gradient of fCO2 (∆fCO2) between the sea surface and the overlying air (Liss 

and Slater, 1974): 

( )airseafCOKkF −∆= 20         Equation 2.17.  

The solubility of CO2 in seawater (K0, mol kg-1 atm-1) was calculated using the equation from 

Weiss (1974). The coefficient of proportionality is the gas transfer velocity (k, m s-1), which 

parameterises the kinetics of gas exchange. Several empirical relationships have been 

proposed to relate gas transfer velocities to wind speed. Large differences (up to factor two or 

three) exist between the relationships, in part due to the gas transfer velocity being dependent 

on the roughness of the sea surface, which is not governed by instantaneous wind speed alone 

(Sarmiento and Gruber, 2006).  

Three gas transfer velocity formulations are commonly used to derive the CO2 air-sea flux 

from wind speeds at 10 m height (U10) and the ∆fCO2, which will now be discussed. The Liss 

and Merlivat (1986) parameterisation (hereinafter, LM86) was deduced from wind tunnel 

experiments using sulphur hexafluoride (SF6), normalised with lake measurements. Three 

wind speed regimes were identified: smooth surface (Eqn. 2.18), rough surface (Eqn. 2.19) 

and breaking waves (Eqn. 2.20) (Liss and Merlivat, 1986):  
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The Schmidt number (Sc) is a dimensionless number defined as the ratio of momentum 

diffusivity, or viscosity (ν), and mass diffusivity (D) (Liss and Merlivat, 1986): 

D
Sc

ν=           Equation 2.21.  

The Schmidt number for CO2 is dependent on the salinity and temperature and for seawater at 

20 °C it is determined as 660 (Liss and Merlivat, 1986). For freshwater at 20 °C, the Schmidt 

number for CO2 is 600 (Liss and Merlivat, 1986). The Wanninkhof (1992) parameterisation 

(hereinafter, W92) uses a quadratic relationship between the gas transfer coefficient and the 

wind speed, as established from the global inventory of natural and bomb carbon-14 (14C) in 

the oceans.  

Two relationships were suggested, one for short term wind speeds from shipboard 

anemometers and scatterometers (Eqn. 2.22) and one for long term averages of the wind speed 

(Eqn. 2.23) (Wanninkhof, 1992) using the Schmidt number for seawater:  
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Uk         Equation 2.22.  
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Uk         Equation 2.23.  

The Nightingale et al. (2000) parameterisation (hereinafter, N00) was deduced from in situ 

dual tracer measurements, with SF6 and helium (3He), at sea. The relationship assumes a 

second order polynomial relationship between the gas transfer velocity and wind speed 

(Nightingale et al., 2000) using the Schmidt number for freshwater: 
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+= Sc
UUk        Equation 2.24.  

Comparisons of the three commonly used gas transfer velocity formulations showed that the 

global mean gas transfer velocity determined by the N00 relationship was intermediate 

between the LM86 relationship, on the low end, and the W92 relationship at the high end 

(Sarmiento and Gruber, 2006). More recent work, using bomb radiocarbon (14CO2) released 

during the 1960s bomb tests as a constraint on air-sea CO2 exchange, stressed the necessity for 
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the gas transfer velocity formulations to be consistent with the radiocarbon budget (Sweeney 

et al., 2007). The closest match between the bomb radiocarbon global average gas transfer 

velocity was achieved by the Nightingale et al. (2000) parameterisation (Fig. 2.23).  

 

 

Figure 2.23. Gas transfer velocity (k, cm hr-1) as a function of wind speed (U10, m s-1) for the 

Wanninkhof (1992) short-term wind relationship (black dotted line), the Sweeney et al. (2007) 

short-term wind relationship developed from 14CO2 inventory (red dash-dot line), the 

Nightingale et al. (2000) relationship (blue dashed line) and the Liss and Merlivat (1986) 

short-term wind speed relationship (green line). 

In light of these literature reviews, fluxes will be calculated with in situ and seasonally 

averaged wind speeds from QuikSCAT (section 2.13.5) and the Nightingale et al. (2000) 

relationship. Seasonal wind speeds were calculated by taking the average of the wind speed 

(measured twice daily) at the position of each ∆fCO2 value along the transect. A discussion of 

fluxes using in situ and seasonally averaged is presented in Chapter 7 (section 7.9.1). 
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2.17. Macronutrients 

Analyses for macronutrients were carried out by M. J. Whitehouse (BAS) as part of 

Discovery-2010. Underway samples from the non-toxic seawater and CTD water bottle 

samples were filtered through a mixed ester membrane (Whatman, pore size 0.45 µm), and the 

filtrate was analysed colorimetrically for dissolved silicate (SiO4), phosphate (PO4), and 

nitrate (NO3) with a segmented-flow analyser (Technicon, Whitehouse, 1997). Analyses for 

nitrate included nitrite (NO2), which is not considered separately as its concentration had little 

variation and was typically < 1% of total NO3 + NO2.  

2.18. Iron 

Analyses for dissolved iron (dFe) were carried out by M. C. Nielsdóttir (National 

Oceanography Centre, Southampton) as part of the Discovery-2010 cruises JR161 and JR177. 

Underway surface water collection for dFe analyses was carried out with a torpedo tow fish 

positioned at ca. 3 m depth whilst steaming at 10-12 knots under ice free conditions, and at 4-

5 knots when ice was present. The water was pumped using a peristaltic pump (Watson 

Marlow) into a clean container and filtered using 0.2 µm cartridge filters (Sartorius, Sartobran 

150). Samples for dFe were analysed using an automated Fe(III) flow injection 

chemiluminescence method (Nielsdóttir et al. 2009).  

 

 2.19. Chlorophyll-a 

Analyses for chlorophyll-a were carried out by R. E. Korb (BAS) as part of Discovery-2010. 

Underway samples were collected from the non-toxic seawater supply approximately every 

hour as the ship was in transit. Underway and CTD samples were filtered through glass fibre 

filters (Whatman GF/F) under low (< 70 mm Hg) vacuum pressure and immediately frozen 

and stored at -20 °C until analysis onboard. The samples on the filters were then extracted in 

acetone (10 ml, 90%) in the dark for 24 hours (Parsons et al., 1984). Fluorescence of the 

extract was measured before and after acidification with 1.2 M HCl on a TD-700 Turner 

fluorometer. The instrument was calibrated against commercially prepared chlorophyll-a 

standards (Sigma).  
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2.20. Summary 

From 2006 to 2009, sea surface pCO2 data was collected on 14 research cruises in the Scotia 

Sea, Southern Ocean. This has been possible due to the installation of a new CASIX underway 

pCO2 instrument onboard RRS James Clark Ross in October 2006. An at-sea pCO2 instrument 

intercomparison was carried out during JR177, comparing the new CASIX system to a long 

running system from UEA (Chapter 3). The concentration of the dissolved inorganic carbon 

and total alkalinity from the sea surface water and from vertical profiles was measured during 

summer 2008 (Chapter 4). This was the first deep carbonate chemistry section in the Scotia 

Sea, which enabled a detailed investigation of the seasonal variability of the marine carbon 

cycle and its forcing by biological and physical processes (Chapters 5, 6 and 7). These 

measurements have contributed to alleviating the comparatively sparse surface water pCO2 

data in the Southern Ocean (Takahashi et al., 2009). The outcomes of the methodology 

demonstrated that the carbonate data collected and analysed as part of this research are of 

comparable accuracy and precision (Table 2.8) to those described by international guidelines 

(DOE, 2007).   

Table 2.8. Accuracy and precision of numerous parameters as determined from the analyses 

detailed above or estimated from calculations using other carbonate parameters (Millero, 

1995; Millero, 2007). *The accuracy is the composite error of the input parameters. 

Instrument Parameter Method Unit Accuracy Precision  

LICOR 7000 xCO2 infrared detection µmol mol-1 0.40 0.04 

LICOR 840 xCO2 infrared detection µmol mol-1 1.28 0.23 

Pt100/ PRT temperature thermostat bath °C 0.20 0.10 

Oceanlogger temperature at-sea comparison °C 0.14 0.02 

VINDTA DIC coulometry µmol kg-1 2.4 1.5 

VINDTA TA potentiometry µmol kg-1 2.6 1.0 

CO2Sys fCO2 f(DIC,TA) µatm 5.7* - 

CO2Sys pHT f(DIC,TA) - 0.0062* - 
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3. An at-sea pCO2 instrument intercomparison 

3.1. Abstract 

The performance of a new CASIX (Centre for observation of Air-Sea Interactions and fluXes) 

underway instrument for the measurement of the partial pressure of carbon dioxide (pCO2) is 

described and compared to that of a second established pCO2 instrument. Two 

intercomparison experiments were conducted onboard RRS James Clark Ross in the Scotia 

Sea during austral summer 2008. During the first experiment, on 8-10 January, stable 

atmospheric mixing ratios of CO2 (xCO2) permitted a comparison of the xCO2 measurements 

in marine air. Both instruments showed considerable agreement for atmospheric xCO2, with a 

mean difference of 0.17 ± 0.20 µmol mol-1. The accuracy of both data sets was determined as 

better than 0.30 µmol mol-1 by comparison to data from Jubany station (62.23°S 58.67°W) on 

the Antarctic Peninsula. 

A second intercomparison experiment was carried out during 21-23 January as the sea surface 

pCO2 remained stable, providing good conditions for assessing the accuracy and precision of 

the CASIX seawater pCO2 measurements. At this time, the difference between the two 

instruments was largest and hence the accuracy is taken as a ‘worst’ case scenario. Both 

instruments displayed near identical trends in the small scale pCO2 fluctuations indicating 

similar response times and acute detection. The accuracy of the CASIX seawater pCO2 

measurements, determined from the mean difference in sea surface pCO2 between the two 

instruments, is better than 7 µatm. The precision, determined from the standard deviation of 

the mean pCO2 value, is 3 µatm.  

In contrast, fluctuating sea surface pCO2 conditions observed during the first experiment 

presented an opportunity to test the response of both instruments along a pCO2 gradient. Much 

larger differences (up to 12 µatm) occurred when the pCO2 gradient was maximum (over 13 

µatm hr-1). This has been attributed to the large spatial variability of surface water pCO2, 

which is captured slightly differently by instruments of different designs. The at-sea 

intercomparison conducted onboard RRS James Clark Ross indicates the capability of the 
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CASIX instrument for underway sea surface pCO2. Suggestions for modifications to the 

instrument and the raw data are made to improve the accuracy and stability of the pCO2 data.   

 

3.2. Introduction 

The ocean is one of the largest natural reservoirs of carbon (Fig. 1.8) and the future rates of the 

oceanic CO2 uptake are largely unknown (Sarmiento and Gruber, 2006). The significance of 

the difference in the partial pressure of CO2 (∆pCO2) in oceanic CO2 uptake has led to 

numerous international investigations into the spatio-temporal variability of pCO2 in the 

global ocean. The Geochemical Ocean Section Study (GEOSECS) in the 1970s established the 

first collection of inorganic carbon measurements in the global ocean (Craig, 1972; Craig, 

1974), which was followed by the Joint Global Ocean Flux Study (JGOFS) in the 1980s and 

the World Ocean Circulation Experiment (WOCE) in the 1990s (Wallace, 2001). The 

principle outcome of such research efforts was the generation of extensive databases of carbon 

parameters, that cover all major ocean basins throughout the different seasons (Key et al., 

2004; Takahashi et al., 2009; Key et al., 2010). The continuation of this work is paramount for 

more accurate estimations of the uptake of carbon dioxide by the ocean.     

As part of the UK contribution, the CARBON-OPS project was established to provide a 

“supply chain” of pCO2 data, commencing with the collection of automated measurements of 

surface water pCO2 in waters frequented by ships of the UK research fleet (Hardman-

Mountford et al., 2008). All data are sent in near-real-time to the British Oceanographic Data 

Centre (www.bodc.ac.uk/carbon-ops/) for processing and quality control and are finally 

supplied externally for oceanographic research, model validation and policy making. An 

integral part of this work was the development of autonomous underway pCO2 instruments, 

commissioned by the Centre for observation of Air-Sea Interactions and fluXes (CASIX) and 

carried out by Plymouth Marine Laboratory and Dartcom. For international pCO2 databases it 

is essential that the pCO2 data, collected from different instruments, is comparable and several 

efforts have been made to address this issue and establish international guidelines for data 

collection (Körtzinger et al., 1996; Körtzinger et al., 2000; DOE, 2007). In the following 

chapter, data from two intercomparison experiments that were carried out at sea to test the 

performance of the new CASIX underway pCO2 instrument are presented and discussed. The 

objective of this work is to quantify the accuracy and precision of the CASIX pCO2 instrument 

by running a University of East Anglia (UEA) pCO2 instrument in parallel.  



 

 

113 
 

3.3. The pCO2 instrument intercomparison 

The intercomparison experiments were carried out in the Scotia Sea on board RRS James 

Clark Ross during cruise JR177 in January and February 2008 (Table 2.1). Two periods were 

selected from the 49 day cruise in regions of contrasting hydrological conditions that were 

about 5° of latitude apart (Fig. 3.1).  

 

 

Figure 3.1. A schematic of the Scotia Sea showing the approximate location of the transect 

(dashed line) during JR177. The locations of the intercomparison experiments are shown (red 

boxes). Some important topographic features are identified: Antarctic Peninsula (AP), South 

Orkney Islands (SOI), South Scotia Ridge (SSR), South Sandwich Islands (SSI), North Scotia 

Ridge (NSR), South Georgia (SG), Northwest Georgia Rise (NWGR), Northeast Georgia Rise 

(NEGR), Georgia Basin (GB), Maurice Ewing Bank (MEB) and the Falkland Islands (FI). 

Antarctic Circumpolar Current (ACC) fronts shown schematically, adapted from Meredith et 

al. (2003a): the Southern Boundary (SB, Orsi et al., 1995), Southern ACC Front (SACCF, 

Thorpe et al., 2002) and the Polar Front (PF, Moore et al., 1999). Depth contours are at 1000, 

2000 and 3000 m (GEBCO, 2001). 
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During 8-10 January (48 hours), work was carried out on two proximal hydrographic stations 

close to the sea ice, in the vicinity of the South Orkney Islands (Fig. 3.1). At this time, 

atmospheric CO2 mixing ratios (xCO2) were very stable and provided a good opportunity to 

compare the instruments response. During this passage the RRS James Clark Ross went 

through sections of fully open water, melting sea ice and waters with sea ice cover. This 

provided an interesting scenario of fluctuating oceanic conditions across a strong pCO2 

gradient (Fig. 3.2). The second period, 21-23 January (48 hours), was selected as both 

instruments showed a relatively constant but large difference in stable sea surface pCO2. 

Compared to the rest of the cruise data, the second intercomparison period represented a 

‘worst case’ scenario, in that the largest difference between the two instruments was observed 

for 48 hours in steady sea surface conditions. 

 

Figure 3.2. The temporal distribution of the partial pressure of CO2 (pCO2, µatm) for the 

atmosphere and surface ocean for the UEA and CASIX pCO2 instrument during cruise JR177. 

The two periods selected for the intercomparison experiments are highlighted (red boxes).  



 

 

115 
 

3.4. The pCO2 instruments  

Numerous designs of underway pCO2 instruments have been reported in the literature (e.g., 

Takahashi, 1961; Weiss, 1981; Poisson et al., 1993; Cooper et al., 1998; Schuster and Watson, 

2007). To ensure the acquisition of accurate and comparable datasets, international 

intercomparison experiments have been conducted (Körtzinger et al.,1996; Körtzinger et al., 

2000). In absence of certified references, intercomparisons are the only way to assess the 

accuracy and precision of underway pCO2 instruments. Seven pCO2 instruments were run in 

parallel with identical seawater supplies and calibration gases on RV Meteor in June 1996 

(Körtzinger et al., 2000). Sea surface conditions ranged from stable to fluctuating with a range 

of over 100 µatm. Two systems consistently ran with a difference between 0.0-1.2 µatm and 

were treated as a ‘reference’. An overall uncertainty for the other systems was determined as 5 

µatm. Differences up to 10 µatm between well designed and accurately calibrated instruments 

occasionally occurred, particularly in regions of rapid pCO2 changes. 

The principle of measuring the pCO2 in seawater is based on the equilibration of CO2 in a 

continuous stream of seawater and a headspace, which is sampled to determine the xCO2 in 

surface seawater (section 2.5). Different designs of equilibrator discussed in the literature can 

be grouped into three categories based on the principle design feature: the shower type; the 

bubble type and the laminar flow type (Körtzinger et al., 1996, and reference cited therein). 

The UEA and CASIX systems included a bubble type equilibrator, but of different designs, 

and used a non-dispersive infra-red analyser, a LICOR (LICOR Inc., USA), but of different 

models. To ensure validity of the experiment, both pCO2 systems were run under comparable 

conditions where possible.  

Marine boundary air was sampled from the forward bridge on RRS James Clark Ross (Fig. 

2.2) by two separate, parallel air lines that connected individually to each instrument. Both 

instruments were located in close proximity in the same laboratory, with the equilibrators 

being situated side by side and run simultaneously from the same water supply. A consistent, 

but separate, set of calibration gases of known CO2 concentrations in artificial air were used 

for each instrument (section 2.6.1). The principle features and operation of both instruments 

have been previously described (section 2.5) and are now summarised (Table 3.1).  
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Table 3.1. The principal features of the University of East Anglia (UEA) and Centre for 

observation of Air-Sea Interactions and fluXes (CASIX) underway pCO2 instruments. 

Feature UEA CASIX  

LICOR gas analyser 7000 840 

Calibration gases 250, 350, 450 µmol mol-1 250, 450 µmol mol-1 

Drier Cool box Peltier condenser 

Equilibrator Bubble type Bubble type 

Vented Yes No 

Water flow rate 4 L min-1 6 L min-1 

Seawater time lag 116 seconds 120 seconds 

 

3.5. Atmospheric xCO2 

3.5.1. Shipboard atmospheric xCO2 

Although atmospheric xCO2 data are not the immediate focus of this research, they allow an 

initial inspection of factors that are potential sources of error in the seawater pCO2 

measurements. Following preliminary observations of the raw data signals, the xCO2 in dry 

and calibrated marine air is examined to give a suitable indication of the performance of the 

instruments due to the relative stability of atmospheric CO2 measurements. Time synchronized 

atmospheric xCO2 data from both instruments for the intercomparison periods was about 382 

µmol mol-1 (Figs. 3.3 and 3.4).  

In initial inspection of the CASIX raw xCO2 in dry marine air from both intercomparison 

periods revealed variations that close followed variations in ambient pressure. This signal was 

absent from the UEA data and showed a pressure dependence of the CASIX raw data. This 

was attributed to internal algorithms of the CASIX LICOR 840 that did not adjust the data to 

ambient pressure (Eqn. 3.1), creating a more noisy raw data signal in comparison to the UEA 

LICOR 7000 signal. In addition, the absence of a vent on the CASIX equilibrator could allow 

conditions of over- and under pressure to be created in the equilibrator headspace. This would 

add a further degree of noise to the raw data and present a risk of headspace air exchange with 

laboratory air.      
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During the first intercomparison experiment (8-10 January) the UEA and CASIX data show 

similar trends in fine scale fluctuations with a slight decrease after about 18 hours, indicating a 

good, reliable response of both LICORs (Fig. 3.3). At this time, the average values for 

atmospheric xCO2 were 381.90 ± 0.41 µmol mol-1 for the UEA instrument and 382.07 ± 0.45 

µmol mol-1 for the CASIX instrument. This gives an average difference, ∆xCO2 (CASIX-

UEA) of 0.17 ± 0.20 µmol mol-1. Similar fine scale trends were observed in atmospheric xCO2 

during the second intercomparison exercise (Fig. 3.4). Both instruments measured an abrupt 

increase of about 1 µmol mol-1 after the first 24 hours, indicative of a new air mass being 

sampled. The average values for atmospheric xCO2 for this second period were 381.79 ± 0.63 

and 382.36 ± 0.75 µmol mol-1 for the UEA and CASIX instruments, respectively. The average 

difference was 0.57 ± 0.31 µmol mol-1.  

The positive sign of the ∆xCO2 indicated that on average the CASIX instrument was tending 

to measure higher relative to the UEA instrument. However, the large, positive standard 

deviations showed that there is no systematic difference between the two data sets and that the 

natural variability of xCO2 in marine boundary air is picked up by both instruments, with 

either instrument measuring slightly higher than the other at any given time. The increased 

difference observed during the second experiment is likely to result from the fluctuating xCO2 

and the response time of the individual instruments. In addition, the lower precision of the 

CASIX LICOR 840 (Table 2.7) is likely to lead to a more ‘noisy’ xCO2 profiles compared to 

that of the UEA LICOR 7000. 
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Figure 3.3. Mixing ratios of CO2 (part per million, ppm, or µmol mol-1) in air (a) raw 

measurements (xCO2 raw, µmol mol-1), (b) dry calibrated measurements (xCO2 dry cal, µmol 

mol-1) and (c) the difference (CASIX-UEA) in dry calibrated measurements (∆xCO2, µmol 

mol-1) for the UEA (solid line) and CASIX (dashed line) instruments during the first 

intercomparison period 8-10 January. 
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Figure 3.4. Mixing ratios of CO2 (part per million, ppm, or µmol mol-1) in air (a) raw 

measurements (xCO2 raw, µmol mol-1), (b) dry calibrated measurements (xCO2 dry cal, µmol 

mol-1and (c) the difference (CASIX-UEA) in dry calibrated measurements (∆xCO2, µmol mol-

1) for the UEA (solid line) and CASIX (dashed line) instruments during the second 

intercomparison period 21-23 January. 
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3.5.2. Station atmospheric xCO2 

In order to provide a reference for the atmospheric xCO2 measurements, several atmospheric 

stations were located in the wider Scotia Sea region (Fig. 3.5, insert map): Tierra del Fuego 

(54.87ºS 68.48ºW), Jubany (62.23°S 58.67°W), Palmer (64.77°S 64.05°W) and Halley Bay 

(75.60°S 25.32°W).  From 2006 to 2007, all stations showed analogous trends in atmospheric 

xCO2 (Fig. 3.5) and would therefore be suitable references for the instrument intercomparison.  

 

Figure 3.5. Mixing ratios of CO2 (part per million, ppm, or µmol mol-1) in air (xCO2, µmol 

mol-1) during 2006 and 2007 for atmospheric sampling stations in the Scotia Sea region: 

Halley Bay (blue), Palmer (yellow), Tierra del Fuego (green) and Jubany (red). Insert map 

shows the location of each of the stations. 
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Data from Tierra del Fuego showed a more enhanced seasonal signal, which can be ascribed to 

the effect of photosynthesis on the CO2 concentrations during austral spring and summer in the 

more vegetated region. With respect to the location of the RRS James Clark Ross during the 

intercomparison periods (Fig. 3.1), Tierra del Fuego and Jubany stations were selected as the 

best references for the atmospheric CO2 measurements. Tierra del Fuego station is situated on 

the island of Tierra del Fuego, at the southern tip of Argentina (Fig. 3.5, insert map). The 

sampling station is a ground-based platform at a height of 20 m and samples are taken as 

flasks and analysed using non-dispersive infra-red (NDIR) for research conducted as part of 

the NOAA Global Monitoring Division (NOAA/GMD). Measurements are made at weekly 

intervals, which are then averaged for each month to give monthly means (Thoning et al., 

1989). Calibration is done with a series of reference standards with high accuracy and 

precision, estimated as 0.20 and 0.10 µmol mol-1, respectively (Thoning et al., 1989).  

Jubany station is situated on King George Island, in the South Shetland archipelago, north of 

the Antarctic Peninsula. The sampling station is a ground-based platform at a height of 15 m 

located within a glaciated, marine type environment under influence of strong westerly winds. 

Samples are made continuously from an air line and analysed using NDIR for the International 

Centre for Earth Sciences (CNR-ICES), Italy, and Direcion Nacional del Antartico – Istituto 

Antartico Argentino (DNA-IAA), Argentina. Hourly data are reported as a mean from xCO2 

measurements made every minute, with an associated accuracy and precision of 0.10 and 0.05 

µmol mol-1, respectively (Ciattaglia, 1999). Calibration is done with a series of World 

Meteorological Organisation gas standards.  

3.5.3. Atmospheric xCO2 back trajectories 

To further establish a suitable reference for the shipboard atmospheric xCO2 measurements, 

the back trajectories of the sampled air masses from Tierra del Fuego and Jubany stations and 

the RRS James Clark Ross were investigated. To trace the origins of the air sampled during 

the first intercomparison experiment, 72 hour back trajectory analysis was carried out (Fig. 

3.6) using the HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model and 

NCEP/ NCAR reanalysis data (Draxier and Hess, 1998).  

The first intercomparison period was selected for air mass trajectory analysis as the stable 

atmospheric xCO2 measurements make this period ideal for reliable atmospheric comparisons 

(Fig. 3.3b). The 72 hour back trajectories beginning at 00:00 hours on the 9 January revealed 
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that all sampling platforms were measuring air from the west in the Drake Passage region. By 

00:00 hours on 10 January the trajectories had shifted, with Tierra del Fuego station sampling 

air overlying the Antarctic Peninsula whereas Jubany station and the RRS James Clark Ross 

were measuring air from the northern Scotia Sea (Fig. 3.6). Based on the back trajectories and 

location of the RRS James Clark Ross during the first intercomparison experiment, Jubany 

station is selected as the most appropriate reference for atmospheric xCO2 measurements for 

further data comparisons.   

 

Figure 3.6. HYSPLITT 72 hour back trajectory analysis beginning 00:00 hours on 9 January 

(dashed lines) and 00:00 hours 10 January (solid lines) 2008 for the RRS James Clark Ross 

(blue), Jubany station (red) and Tierra del Fuego station (green). The box shows an 

enlargement of the cruise track (Fig. 3.1) around the South Orkney Islands (SOI) during the 

first intercomparison experiment. 

3.5.4. Atmospheric xCO2 intercomparison 

Back trajectories from Jubany station and the RRS James Clark Ross show a shift in air mass 

source from the west to a more northerly direction by the beginning of the 10 January (Fig. 

3.6). This can be seen in all three xCO2 profiles (Fig. 3.7a) as a slight shift in CO2 content 

relative to the previous 24 hours. Similar trends were observed during the second experiment, 
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however the shift in xCO2, after the first 24 hours, was distinctly larger (Fig. 3.7b). This 

feature precludes a detailed analysis of atmospheric data as more stable conditions are 

required to get a realistic accuracy estimate.  

 

Figure 3.7. Mixing ratios of CO2 (xCO2 dry cal, µmol mol-1) in air during (a) 8-10 January and 

(b) 21-23 January for the UEA (pale blue line) and CASIX (dark blue line) instruments and 

Jubany station (red line) (Ciattaglia, 1999). The precision of each instrument is represented by 

the dashed lines: Jubany (0.05 µmol mol-1), UEA (0.04 µmol mol-1) and CASIX (0.23 µmol 

mol-1). 

From the stable atmospheric values during the first intercomparison experiment, average xCO2 

for Jubany was higher than that from both instruments by 0.10-0.30 µmol mol-1 (Table 3.2). 

Therefore, the xCO2 measurements from both instruments are accurate to within 0.30 µmol 

mol-1.    
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Table 3.2. The average CO2 mixing ratio (xCO2, µmol mol-1) in dry air from the UEA and 

CASIX underway pCO2 instrument is compared to that from Jubany station (Ciattaglia et al., 

1999) for the duration of the two intercomparison periods. The values shown are the averages 

of all data within each intercomparison period with the standard deviation in parentheses. 

Year Date Jubany xCO2 CASIX xCO2 UEA xCO2 

  µmol mol-1 µmol mol-1 µmol mol-1 

2008 8-10 Jan 382.17 (0.37) 382.07 (0.45) 381.90 (0.41) 

2008 21-23 Jan 382.71 (0.43) 382.36 (0.75) 381.79 (0.63) 

 

3.6. Seawater pCO2 

The calculation of pCO2 in seawater requires additional parameters including temperature (in 

the equilibrator and at the sea surface) and the pressure of the equilibrated air (section 2.5.5). 

Equilibrator temperature was measured by platinum resistant thermometers in the upper and 

lower parts of the seawater stream. These were calibrated during the cruise to ensure accurate 

readings and have an accuracy of 0.2 °C and precision of 0.1 °C (Table 2.7). Comparisons of 

sea surface and equilibrator temperature for the UEA and CASIX instruments showed that the 

seawater warmed by 0.74 ± 0.12 °C and 0.78 ± 0.11 °C, respectively. The difference is 

accounted for by the time lag between seawater at the inlet and reaching the instruments. This 

was 116 and 120 seconds for the UEA and CASIX instruments, respectively (Table 3.1). Both 

instruments used ambient pressure as measured by the meteorological unit on the ship. With 

these variables accounted for, the seawater pCO2 measurements from both instruments can be 

compared with the understanding that any differences observed are introduced by either the 

equilibrator, LICOR or measurement cycle (hard- and software).   

Time synchronized seawater pCO2 data from both instruments is plotted alongside 

atmospheric pCO2 for both intercomparison periods (Fig. 3.8). During 8-10 January, both 

profiles show that surface water pCO2 was initially at about 360 µatm, which decreased 

rapidly to just above 260 µatm within the last 12 hours (Fig. 3.8a). This swift reduction of 

surface water pCO2 was the result of a phytoplankton bloom at the ice edge as the ship passed 

ice free water into the ice covered waters over the South Scotia Ridge (Fig. 3.1). 



 

 

125 
 

 

Figure 3.8. Atmospheric and seawater partial pressure of CO2 (pCO2, ppm) during (a) 8-10 

January and (b) 21-23 January for the UEA (pale blue lines) and CASIX (dark blue lines) 

instruments. Calculated seawater pCO2, f(DIC,TA), with error bars representing the accuracy 

of ± 6 µatm (Table 2.8) (red filled circles). 
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Upon the rapid decrease in surface water pCO2, a slight deviation in the profiles was observed 

(Fig. 3.8a). To investigate this further the rate of change of surface water pCO2 (∆pCO2/ ∆t) 

was calculated from the UEA data and superimposed to the ∆pCO2 (CASIX-UEA) profile 

(Fig. 3.9). For the first ‘stable’ 36 hours, the hourly averages show a mean difference of 1 ± 2 

µatm indicating no systematic difference between the two instruments. Both instruments 

measured to within 1 µatm of each other even across a slight pCO2 gradient of about 3 µatm 

hr-1. During the final 12 hours, the pCO2 gradient increased up to 13 µatm hr-1 , which 

corresponded to a maximum difference between the instruments of 12 µatm and an average 

pCO2 difference of 8 ± 3 µatm. The increased offset under a strong pCO2 gradient is due to the 

internal time responses of the different instruments, which is consistent with results from 

previous at-sea pCO2 intercomparisons (Körtzinger et al., 1996; Körtzinger et al., 2000). 

 

Figure 3.9. The difference in seawater pCO2 (∆pCO2, µatm, black line) between the two 

instruments (CASIX-UEA) and pCO2 gradient (∆pCO2/ ∆t, µatm hr-1, grey line) during 8-10 

January.  

The discrete sea water samples collected from the underway supply showed calculated pCO2 

that fell slightly below and above that measured by the instruments, in the stable and strong 

gradient periods. With no systematic offset between the samples and consideration of the 
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errors involved the discrete samples (Table 2.7), both instruments are measuring seawater 

pCO2 accurately. 

During the second intercomparison experiment, sea surface pCO2 for both instruments was 

stable for the 48 hour period (Fig. 3.8b). As for the atmospheric xCO2 data for the first 

intercomparison experiment, this scenario is good for determining the accuracy and precision 

of the CASIX measurements. Control charts (Chapter 2) are used to demonstrate whether the 

instrument measurement is ‘in control’ and if the data display unbiased, natural variability 

(DOE, 2007). Upper and lower control limits are determined as ± 3 standard deviations of the 

mean and they provide an indication of problematic data. For both instruments, the pCO2 data 

fall between the upper and lower control limits and display similar natural variability that is 

independent of each instrument (Fig. 3.10).  

 

Figure 3.10. Control charts of the seawater partial pressure of CO2 (pCO2, µatm) during 21-23 

January for (a) the UEA instrument and (b) the CASIX instrument. The black dashed line 

indicates the mean and grey dashed lines indicate upper and lower control limits (± 3 standard 

deviations of the mean).   
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Based on the behaviour of the control charts, the accuracy of the CASIX instrument (Fig. 

3.10b), determined as the average offset compared to the UEA instrument (Fig. 3.10a) during 

21-23 January, is 7 µatm. The precision of the CASIX seawater pCO2 measurements (standard 

deviation) is 3 µatm.     

Table 3.3. Details of the accuracy and precision (repeatability) of the mixing ratio of CO2 

(xCO2, µmol mol-1) and partial pressure of CO2 (pCO2, µatm) as determined by investigations 

of the instruments during the at-sea intercomparison. Adapted from Table 2.7 and updated. 

*Based on an international at-sea intercomparison (Körtzinger et al., 2000). 

Instrument Parameter Method Unit Accuracy Precision  

UEA xCO2 NOAA infrared detection µmol mol-1 0.40 0.04 

CASIX xCO2 NOAA infrared detection µmol mol-1 1.28 0.23 

UEA pCO2 seawater infrared detection µatm 5* 2 

CASIX pCO2 seawater infrared detection µatm 7 3 

 

3.7. Conclusion  
 
The at-sea pCO2 instrument intercomparison conducted onboard RRS James Clark Ross 

summer 2008 indicates the capability of the CASIX instrument for underway sea surface 

pCO2 measurements. The results demonstrated that a good agreement of data from different 

pCO2 instruments can be achieved at sea. The CASIX instrument was acutely tested and found 

to be of fast response and suitable accuracy (7 µatm) and precision (3 µatm) for the 

measurement of underway atmospheric and sea surface pCO2. Large differences between the 

two instruments of 12 µatm occurred when along a strong pCO2 gradient of over 13 µatm hr-1. 

This has been attributed to the large spatial variability of surface water pCO2, which was 

captured differently by each instrument.  

 

Other notable differences between the two xCO2 and pCO2 data sets were attributed to the 

model of LICOR used, equilibrator design and the use of different calibration gases. The use 

of the LICOR 840 in the CASIX system ultimately affects the final accuracy of the pCO2 data. 

In the absence of a vent, the CASIX bubble-type equilibrator was found to operate at a slight 
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over-pressure compared to ambient conditions. Separate series of gas standards were likely to 

have introduced a source of error when the raw data sets are calibrated and compared. 

Suggestions for modifications to the instrument and the raw data are made to improve the 

accuracy and stability of the pCO2 data. From this work, recommendations on future use of the 

CASIX instrument are as follows: 

 

1. A pressure correction (Eqn. 3.1) should be applied to adjust the raw data (xCO2 raw) to 

pressure of 1 atmosphere (P0) using the equilibrator pressure (Peq):  

Peq

P
xCOxCO rawcorr

0
22 ⋅=       Equation 3.1. 

2. Add a vent to the equilibrator to measure at ambient conditions. 

3. Change LICOR 840 to a model of increased accuracy, e.g., LICOR 7000. 
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4. Contemporary carbonate chemistry of the Scotia Sea 
 

4.1. Abstract 

Deep carbonate measurements collected across the Scotia Sea during summer 2008 are 

examined alongside hydrographic data to investigate the distribution of inorganic carbon in 

relation to the water masses and fronts of the Antarctic Circumpolar Current (ACC). Antarctic 

Surface Water (AASW) was characterised by distinct summer minima in dissolved inorganic 

carbon (DIC) and total alkalinity (TA) and was saturated with respect to the calcium carbonate 

mineral aragonite across the whole Scotia Sea. AASW was further distinguished by a potential 

temperature (θ) minimum (θmin) at 50-100 m depth, south of 58°S, and at 100-200 m depth, 

north of 58°S. Upper Circumpolar Deep Water (UCDW) dominated the ACC with a warm 

core (θ > 1.8 °C) from 500-1000 m depth that extended from 58.0-52.5°S. This water mass 

was rich in DIC and nitrate. Within the same latitudinal limits, Lower Circumpolar Deep 

Water (LCDW) occupied the deeper depth range (1000-2000 m) and was distinctly saline, 

enriched with alkalinity (> 2360 µmol kg-1) and undersaturated with respect to aragonite.  

The southward extent of the UCDW core of θ > 1.8 °C and shallower AASW θmin at 58°S 

marked the location of the Southern ACC Front (SACCF). The terminus of UCDW and 

shoaling of isohalines at 59°S identified the location of the Southern Boundary (SB) of the 

ACC and transition into the weakly stratified waters of the Weddell-Scotia Confluence 

(WSC). In the southern WSC, Warm Deep Water (WDW) was observed flowing out of the 

northwestern limb of the Weddell Gyre and intruding onto the South Scotia Ridge. The WDW 

was relatively silicate-rich (> 109 µmol kg-1), with similar carbonate characteristics to LCDW, 

and is implicated in the thermal erosion of the winter mixed layer (Chapter 5).  

Meanders in the SACCF were accompanied by protrusions of cooler, salty water that eroded 

the UCDW in the northern ACC and in the Georgia Basin (GB). The shoaling isohalines at the 

SB and the SACCF, in the ACC and GB, provided a mechanism for the DIC-rich UCDW to 

upwell to the upper ocean. From summer biological carbon uptake to winter DIC enrichment 

and aragonite undersaturation, these two fronts greatly influence the upper ocean carbonate 

chemistry of the Scotia Sea on seasonal timescales.  
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4.2. Introduction 

The unbounded flow of the Antarctic Circumpolar Current (ACC) transfers heat, dissolved 

constituents and plankton around Antarctica and between the three major ocean basins 

(Rintoul and Sokolov, 2001) and is dynamically linked to the Meridional Overturning 

Circulation (MOC) through the vertical movement of deep water masses (Naveira Garabato et 

al., 2002a). The Scotia Sea (Fig. 4.1) is a relatively small but deep ocean basin that forms a 

transition zone with waters flowing northwards, out of the Weddell Sea, to join the deep 

currents of the Atlantic (Locarnini et al., 1993; Naveira Garabato et al., 2002a; Meredith at al., 

2008). Deep water masses that enter the Scotia Sea in the ACC from Drake Passage undergo 

intense modification (Whitworth and Nowlin, 1987). The large scale upwelling and formation 

of deep and intermediate waters in the Southern Ocean implies a close coupling between 

surface and deep waters. As much of the deep water has been recently ventilated, the 

distribution of deep waters in the ACC is highly relevant to the marine carbon cycle of the 

Southern Ocean.  

The dominant water mass is Circumpolar Deep Water (CDW), which occupies mid-levels of 

the ACC beneath the Antarctic Surface Water (AASW) (Reid et al., 1977; Whitworth and 

Nowlin, 1987). The denser component, Lower Circumpolar Deep Water (LCDW), is 

distinguished by a salinity maximum, which is derived from North Atlantic Deep Water 

infiltrating the ACC in the Atlantic sector (Whitworth and Nowlin, 1987). The less dense and 

older fraction is Upper Circumpolar Deep Water (UCDW), which is characterised by potential 

temperature (θmax) and nutrient maxima from source waters in the Indian and Pacific oceans 

(Callahan, 1972). During its passage across the Scotia Sea, CDW becomes cooler and fresher, 

which has been attributed to interaction with Weddell Sea waters and intense ventilation in the 

Weddell-Scotia Confluence (WSC), a boundary between the ACC to the north and the 

Weddell Sea to the south (Whitworth et al., 1994). The broad layer of warm, saline and 

nutrient-rich CDW shoals to the south with the uplifting isopycnals at the Southern Boundary 

(SB)  (Sievers and Nowlin, 1984; Orsi et al., 1995; Pollard et al., 2002).  
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Figure 4.1. A schematic of the Scotia Sea showing the approximate location of the repeat 

transect (dashed line) and the extended transect (dotted line) from JR177. Some important 

topographic features are identified: Antarctic Peninsula (AP), South Orkney Islands (SOI), 

South Scotia Ridge (SSR), South Sandwich Islands (SSI), North Scotia Ridge (NSR), South 

Georgia (SG), Northwest Georgia Rise (NWGR), Northeast Georgia Rise (NEGR), Georgia 

Basin (GB), Maurice Ewing Bank (MEB) and the Falkland Islands (FI). Antarctic 

Circumpolar Current (ACC) fronts shown schematically, adapted from Meredith et al. 

(2003a): the Southern Boundary (SB, Orsi et al., 1995), Southern ACC Front (SACCF, Thorpe 

et al., 2002) and the Polar Front (PF, Moore et al., 1999). Depth contours are at 1000, 2000 

and 3000 m (GEBCO, 2001). 

The SB marks the southern terminus of UCDW, as this water mass outcrops to mix with the 

AASW where it is transported north and east in the wind-driven Ekman layer. The poleward 

transport and shoaling of CDW is an important component of the MOC as the northeast 

component eventually sinks as Antarctic Intermediate Water (AAIW) north of the Polar Front 

(PF). AAIW formation has been associated with drawing down anthropogenic carbon dioxide 

(CO2) into the ocean interior (Caldeira and Duffy, 2000; Sabine et al., 2004). The SB has been 
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regularly observed as a site of enhanced marine productivity during the spring and summer 

(Jacques and Panouse, 1991; Comiso et al., 1993; Helbling et al., 1993; Tynan, 1998; Holm-

Hansen and Hewes, 2004b; Hewes et al., 2008) with the potential for carbon utilisation 

through the biological pumps. In contrast, despite an upwelled UCDW providing an iron 

supply, winter sea ice cover, net remineralisation and unfavourable light conditions allow DIC 

enrichment in the winter mixed layer (Hoppema et al., 2003), which lowers the pH and 

saturation state of aragonite in the AASW (McNeil and Matear, 2008). Aragonite 

undersaturation augments the dissolution of aragonitic exoskeletons of certain marine 

organisms that contribute to the biological pumps in the Scotia Sea (Feely et al., 2004; Orr et 

al., 2005; Royal Society, 2005; Fabry et al., 2008). 

The Scotia Sea provides a transition zone for recently ventilated deep waters from the Weddell 

Sea and upwelled CDW within the ACC to flow northwards (Patterson and Sievers, 1980; 

Orsi et al., 1999; Naveira Garabato et al., 2002a). It is important to gain an insight into the 

carbonate chemistry distributions across the Scotia Sea, from the sea surface to the deep 

waters. A 1,400 km transect from the South Orkney Islands to the Polar Front was occupied 

during spring (November-December) 2006, summer (January-February) 2008 and autumn 

(March-April) 2009 as part of Scotia Sea FOODWEBS, a component project of the British 

Antarctic Survey Discovery-2010 programme:  

http://www.antarctica.ac.uk//bas_research/our_research/previous_research/gsac/discovery_20

20.php.  

The objective of the project was to understand the seasonal structure and function of different 

food webs and to infer the effects on the transfer of CO2 from the atmosphere to the deep 

ocean. This was to be realised through high frequency surface sampling and deep 

hydrographic stations. Sea surface fugacity of CO2 (fCO2) measurements were made during 

the three core cruises (section 2.3.2), from a Centre for observation of Air-Sea Interactions and 

fluXes (CASIX) underway CO2 system (2006, 2008 and 2009) and a University of East 

Anglia (UEA) underway CO2 system (2008) (Chapters 2 and 3). The first deep carbonate 

measurements of the Scotia Sea were made during summer 2008 and are presented alongside 

vertical sections of the hydrographic parameters. The distributions of potential temperature 

and salinity are used to identify the different water masses and locate the hydrographic fronts 

in the region. The corresponding distributions of the carbonate parameters (Table 4.1) are used 
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to infer the transport of carbon across the ACC in the context of seasonal processes and future 

ocean acidification (Chapters 5, 6 and 7).  

4.3. Scotia Sea vertical section data 

4.3.1. Antarctic Surface Water 

As regularly observed, Antarctic Surface Water (AASW) was characterised by a relatively 

warm, fresh and well mixed surface layer in the upper 200 m (Park et al., 1998; Meredith et 

al., 2003b). Typical surface temperatures during austral summer were around 1-4 °C, north of 

59°S, and between seawater freezing point and -1 °C, south of 59°S (Fig. 4.2). A feature of the 

AASW was a pronounced sub-surface potential temperature minimum (θmin) of the Winter 

Water (WW), as a result of the winter mixed layer not being thermally eroded during the 

summer. The depth of the θmin varied from 50-100 m south of 60°S to 100-200 m in the central 

ACC. AASW is further distinguished by minima in DIC, alkalinity and macronutrients (Figs. 

4.3 and 4.5). This corresponded to relatively high total pH (pHT) and aragonite saturation 

states in excess of 1.8 (Fig. 4.4). The transition from the summer mixed layer to the WW was 

marked by a strong seasonal thermocline and halocline. This was reflected in the distribution 

of TA and concentration of DIC and carbonate ions as a strong gradient from the base of the 

summer mixed layer to the WW.  

4.3.2. Circumpolar Deep Water 

North of 59°S, potential temperature varied from minima (θmin ≤ 1.0 °C) in the WW to 

maxima > 1.5 °C in a core of θmax at 300-800 m depth (Fig. 4.2). This was accompanied by 

maxima in nitrate and phosphate concentrations (Fig. 4.5), confirming the location of UCDW 

up to 52.5°S. Silicate concentrations showed a uniform increase with depth across the Scotia 

Sea and, in contrast to nitrate and phosphate, a strong north south gradient in AASW and 

UCDW (Fig. 4.6). Concentrations of DIC and alkalinity were wide ranging but showed 

notable increases with depth (Fig. 4.3). Maximum aragonite saturation states were 1.2 (Fig. 

4.4). Beneath the UCDW, salinity increased to a core of Smax at 1000-1600 m depth, with 

similar latitudinal extension (Fig. 4.2). This identified the denser LCDW. Across the Scotia 

Sea, DIC and TA increased with depth and reached maxima in the AAZ within the LCDW. 

Concentrations of DIC and alkalinity of 2257-2261 and 2362-2367 µmol kg-1, respectively, 
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can be attributed to LCDW (Table 4.1). From 55-58°S, LCDW is undersaturated with respect 

to aragonite below 1500 m (Fig. 4.4).  

4.3.3. The ACC fronts 

A strong surface temperature gradient was observed in the AASW between stations 21 and 25 

(Fig. 4.2). Below 500 m, the UCDW θmax ≥ 1.8 °C abruptly decreased at about 58°S near 

station 25. South of 58°S, the AASW θmin became notably cooler (≤ 0 °C) and shoaled to 

about 150 m. These features marked the location of the SACCF. Alkalinity showed a deep 

horizontal gradient across the SACCF boundary. Concentrations of nitrate and phosphate 

decreased across the SACCF at all depths (Fig. 4.5). In contrast, concentrations of silicate 

increased as the 80 µmol kg-1 contour shoaled from 700 m in the UCDW, over the NSR, to 

less than 100 m in the AASW. The high concentrations of DIC and alkalinity associated with 

the LCDW were strongly reduced at depth.  

 

The complete absence of UCDW south of about 59°S (station 21) defined the northern limit of 

the WSC and the Southern Boundary (SB) of the ACC. The SB separated cold, fresh upper 

ocean waters to the south (stations 14-21) from the oceanic waters of the ACC (stations 21-

53), in the Antarctic Zone (AAZ). The upper ocean (0-400 m) of the WSC was weakly 

stratified compared to the distinct vertical temperature and salinity characteristics of the CDW 

in the ACC, supporting early classifications of this sub-region (Patterson and Sievers, 1980).  

 

The Polar Front (PF) is a strong, circumpolar jet that represents the northern limit of the AAZ 

and the Scotia Sea (Pollard et al., 2002). Sea surface temperature, salinity and contours of 

dynamic height identified the surface expression of the PF at 49-50°S 40°W during summer 

2008 (Chapter 6). However, occupation of the transect did not permit hydrographic stations 

north of about 52.5°S to be carried out, precluding a vertical identification of the PF at this 

time.  
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4.3.4. Warm Deep Water 

South of the South Scotia Ridge (SSR), an incursion of warmer and more saline water was 

observed at 300-800 m depth at station 14 (Fig. 4.2). This is Warm Deep Water (WDW) from 

the Weddell Gyre and is a cooler, fresher variety of LCDW that was advected into the gyre to 

the east (Orsi et al., 1993) and is accordingly DIC-rich. The WDW observed at station 14 had 

an average DIC content of 2260-2261 µmol kg-1, which is very similar to earlier reports of 

2266 ± 3 µmol kg-1 measured in WDW in the Weddell Gyre during December and January 

1993 (Hoppema et al., 1999). In addition, the WDW was comparatively silicate rich, which 

has been previously observed and attributed to the interaction of WDW with bottom waters 

overlying sediments in the Weddell Sea (Weiss et al., 1979). 

 

Intrusions of WDW below ice covered AASW can provide sufficient heat to melt the sea ice 

and enrich the winter mixed layer with CO2 (Weiss et al., 1979; Takahashi et al., 1993; 

Hoppema et al., 1999; Stoll et al., 1999; Bakker et al., 2008). The effect of seasonal sea ice 

melt and potential affects of WDW on the marine carbon cycle of the WSC is discussed in 

Chapter 5. The WDW observed at station 14 provided further evidence of a pathway for 

deeper waters with origins in the Weddell Sea to overspill the SSR and mix with the CDW of 

the ACC (Locarnini et al., 1993; Naveira Garabato et al., 2002a). This observation supports 

the notion that the WSC is a transition zone between DIC-rich waters flowing out of the 

Weddell Sea to waters of the ACC (Orsi et al., 1993; Whitworth et al., 1994).  

4.3.5. Water masses, fronts and biogeochemistry of the Scotia Sea 

A result of the interaction of Weddell Sea and ACC waters is that the CDW outflowing the 

Scotia Sea in the Georgia Basin (GB) to the north is cooler and fresher compared to the CDW 

that enters from Drake Passage to the west (Naveira Garabato 2002a). Pathways for CDW to 

enter the GB are either by flowing over the western NSR in the PF or by passing to the east of 

the island of South Georgia within the SACCF along the eastern flank of the NSR (Fig. 4.1), 

before retroflecting to the northeast (Thorpe et al., 2002). The frontal paths are strongly 

constrained by the bathymetry of the NSR (Smith et al., 2010) (Fig. 1.7). The CDW 

transported into the GB by the SACCF is slightly cooler and fresher compared to that found at 

the PF (Naveira Garabato et al., 2002a). Vertical distributions of potential temperature and 

salinity (Fig. 4.2) in the lower GB (stations 46, 48, 51 and 53) suggest that the CDW was 
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transported in within the meandering SACCF that loops anticyclonically around South 

Georgia (Fig. 4.1).  

 

The interaction of CDW with the NSR and SACCF with the eastern NSR has been proposed 

as a likely mechanism of macronutrient and iron supply to upper waters of the GB (Korb and 

Whitehouse, 2004; Korb et al., 2008; Whitehouse et al., 2008). Stations over the NSR and 

lower GB revealed a highly stratified water column, with warm surface waters (> 3.5 °C) 

overlying the nutrient rich UCDW. These waters supported enhanced phytoplankton biomass, 

where chlorophyll-a concentrations in the upper 60 m typically exceeded 5 mg m-3 (Fig. 4.6). 

This corresponded to large depletions in DIC, nitrate and phosphate and increases in pHT and 

the saturation state of aragonite (Figs. 4.3-4.5). Substantial silicate depletion was observed in 

the upper water column, north of 56°S where concentrations were reduced to < 1 µmol kg-1 in 

the GB (Fig. 4.6), in accordance with high diatom abundance in summer 2008 (Korb et al., 

2010).  

The warm, nutrient-rich core of UCDW resided directly below the AASW in the GB (Figs. 4.2 

and 4.4) with nitrate concentrations greater than 33 µmol kg-1, in agreement with observations 

at this location in April-May 2003 (Smith et al., 2010). The upward sloping isohalines and 

isotherms corresponded to increased macronutrient concentrations, especially silicate, in the 

sub-surface waters of the GB. These distributions suggest that nutrients are supplied to the 

surface waters in order to sustain the phytoplankton blooms in this region. The effect of the 

South Georgia blooms on the marine carbon cycle of the Scotia Sea, and evidence for natural 

iron fertilisation, is discussed in Chapter 6.     

The meandering path of the SACCF was also observed between stations 35 and 37 as cooler 

and more saline water was entrained at the surface, eroding the thermal structure of the 

UCDW (Fig. 4.2). Isohalines have stronger slopes at the fronts, which can be seen at stations 

21 (SB), 25 (SACCF), 35-37 (SACCF meander) and 51-53 (SACCF meander). These features 

provided a mechanism for nutrient-rich deep water to enter the euphotic zone with the 

potential to support high levels of primary production during the growing season. This has 

been implicated in the elevated phytoplankton biomass and nutrient depletion observed in the 

AASW at the above named stations during summer 2008 (Figs. 4.5-4.6).  
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Oppositely, sea ice cover (in the WSC), net remineralisation and enhanced vertical mixing 

during winter could lead to DIC enrichment of the mixed layer at these locations. The 

distributions of DIC and TA in the upper 600 m tended to follow the isohalines that shoaled 

towards stations 21 and 25. Similarly, projections of DIC-rich water from below the AASW 

were observed at the SACCF meanders at stations 37 and particularly in the GB, stations 48, 

51 and 53. This could provide a pathway for DIC-rich sub-surface waters to enter the winter 

mixed layer. As a result, water of low pHT and lower saturation states of aragonite can 

penetrate the AASW along the shoaling isohalines through increased vertical mixing during 

the winter (Fig. 4.2 and 4.4). The affect of shoaling isohalines and upwelled DIC-rich CDW 

on sea surface carbonate chemistry from winter to autumn is discussed in Chapter 7. 

Table 4.1. Definitions of the principle water masses of the Scotia Sea as distinguished in the 

vertical distributions of potential temperature and salinity (Fig. 4.1). Macronutrient and 

carbonate chemistry distributions observed during summer 2008 are added.       

 AASW UCDW LCDW WDW 

θ (°C) θmin 

100-200 m 

1.6 < θmax < 3.2 

500 m 

0.2 < θ < 1.9 0.2 < θmax < 0.6 

500 m 

Salinity (S) 
 

34.00 < S < 34.71 

 

Smax > 34.73 

1000-1500 m 

Smax < 34.69 

800 m 

     

References 

 

Callahan (1972) 

Naveira Garabato et 

al. (2002a) 

Reid et al. (1977) 

Whitworth and 

Nowlin (1987) 

Orsi et al. (1993) 

Orsi et al. (1995) 

Nitrate (µmol kg-1) 13.8-36.4 31.2-36.1 33.5-33.6 31.1-31.5 

Silicate (µmol kg-1) 0.0-100.6 49.7-94.2 100.8-109.4 109.8-117.0 

DIC (µmol kg-1) 2084-2252 2239-2263 2257-2261 2260-2261 

TA (µmol kg-1) 2237-2350 2329-2356 2362-2367 2352-2357 

Ωaragonite 1.0-2.3 ≤ 1.2 ≤ 1.0 1.1 
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4.3.6. Deep chlorophyll-a maxima 

In the central Scotia Sea, chlorophyll-a profiles at stations 30 and 33 revealed deep 

chlorophyll-a maxima (DCM) at 60-80 m depth (Fig. 4.6), a feature not uncommon to this 

region (Holm-Hansen et al., 2004a; Holm-Hansen et al., 2005). Despite the high macronutrient 

concentrations (Fig. 4.5), the water column above the DCM had the lowest concentration of 

chlorophyll-a observed in summer 2008. These characteristics exemplify high-nutrient low-

chlorophyll (HNLC) conditions. The location of the DCM coincided with a deepening of the 

2200 µmol kg-1 contour of DIC from about 50 m across the WSC and southern AAZ to 200 m 

close to South Georgia (Fig. 4.3). This suggests that despite surface HNLC conditions, some 

biological carbon uptake in the mid-Scotia Sea could result in the presence of DCM. This has 

implications in using satellites that only ‘see’ the surface as tools to distinguish HNLC waters, 

which may lead to an underestimation of the biological utilisation of DIC during the summer 

(Chapter 6).  

4.3.7. Vertical section profiles 

 

 

 

 

 

 

 

Figure 4.2. (page 140) Vertical distribution of potential temperature (θ) and salinity across the 

Scotia Sea in summer 2008. Hydrographic station positions (triangles) are shown. Principle 

water masses are identified, based on the definitions of Naveira Garabato et al. (2002a) and 

Meredith et al. (2003b): Antarctic Surface Water (AASW), Upper Circumpolar Deep Water 

(UCDW), Lower Circumpolar Deep Water (LCDW) and Warm Deep Water (WDW). The 

location of the Southern Boundary (SB) and Southern Antarctic Circumpolar Current Front 

(SACCF) are indicated, according to the definitions of Orsi et al. (1995). Key bathymetric 

features are the South Scotia Ridge (SSR), South Orkney Islands (SOI), the North Scotia 

Ridge (NSR) and the Georgia Basin (GB). The latitudinal limits of the Weddell-Scotia 

Confluence (WSC) and the Antarctic zone (AAZ) are shown. 
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Figure 4.3. Vertical distribution of dissolved inorganic carbon (DIC, µmol kg-1) and total 

alkalinity (TA, µmol kg-1) across the Scotia Sea in summer 2008. Sample locations (crosses) 

and hydrographic station positions (triangles) are shown. Water masses, fronts, bathymetric 

features and hydrographic regions as in Fig. 4.2. 
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Figure 4.4. Vertical distribution of total pH (pHT) and aragonite saturation state (Ωaragonite) 

across the Scotia Sea in summer 2008. Sample locations (crosses) and hydrographic station 

positions (triangles) are shown. Water masses, fronts, bathymetric features and hydrographic 

regions as in Fig. 4.2. 
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Figure 4.5. Vertical distribution of nitrate (NO3
-, µmol kg-1) and phosphate (PO4

3-, µmol kg-1) 

across the Scotia Sea in summer 2008. Sample locations (crosses) and hydrographic station 

positions (triangles) are shown. Water masses, fronts, bathymetric features and hydrographic 

regions as in Fig. 4.2.  
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Figure 4.6. Vertical distribution of chlorophyll-a (chl-a, mg m-3) and silicate (SiO4
4-, µmol kg-

1) across the Scotia Sea in summer 2008. Sample locations (crosses) and hydrographic station 

positions (triangles) are shown. Water masses, fronts, bathymetric features and hydrographic 

regions as in Fig. 4.2. 
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4.4. Conclusion 

Deep vertical sections of hydrographic and carbonate parameters across the Scotia Sea during 

summer 2008 are presented and discussed. The major water masses and fronts were identified. 

The corresponding distributions of carbonate chemistry parameters inform on the processes 

that affect the distribution of carbon across the ACC. AASW was characterised by distinct 

minima for all parameters and was saturated with respect to aragonite across the Scotia Sea. 

Warm UCDW was rich in DIC and nitrate and had a large range in silicate concentrations due 

to the latitudinal gradient present at this depth range. Salty LCDW was distinctly enriched 

with alkalinity and was undersaturated with respect to aragonite. WDW was observed in the 

southern WSC and was found to be relatively silicate-rich, with similar characteristics to 

LCDW. 

At depth, the ACC transports high concentrations of DIC, nitrate, phosphate and alkalinity 

within the CDW around the Southern Ocean. The sloping isohalines at the SB and the SACCF 

provide a mechanism for CDW to reach the upper ocean. During the summer, the upwelled 

CDW at the SB mixed with AASW and was transported north and east in the wind-driven 

Ekman layer where it became notably warmer and fresher. The nutrient-rich water enhanced 

phytoplankton activity at upwelling sites of the SB, SACCF and SACCF meanders in the 

central ACC and the GB. This was accompanied by a reduction in DIC and macronutrients. In 

contrast, the absence of photosynthetic activity during winter would lead to DIC enrichment in 

the winter mixed layer through increased vertical mixing of the AASW into the DIC-rich sub-

surface water. This would lead to low pHT waters entering the upper ocean and a reduction in 

the saturation state of aragonite in the winter AASW. This suggests the potential for large 

seasonal (winter-summer) variability in sea surface carbonate chemistry, which has 

implications for calcareous organisms and the onset of ocean acidification in the Scotia Sea.    

The hydrographic data presented in Chapter 4 can be summarised schematically (Fig. 4.7) to 

provide a basis for interpretation of the marine carbon cycle during summer in the Weddell-

Scotia Confluence (Chapter 5), the Antarctic Zone (Chapter 6) and from a seasonal 

perspective across the whole Scotia Sea (Chapter 7). 
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Figure 4.7. Schematic of the fronts and zones of the Scotia Sea based on the vertical 

distributions of potential temperature (θ, °C) and salinity (S) during summer 2008, adapted 

from Pollard et al. (2002). Frontal boundaries based on definitions from Orsi et al. (1995) and 

Belkin and Gordon (1996). Antarctic Surface Water (AASW), Upper Circumpolar Deep 

Water (UCDW), Lower Circumpolar Deep Water (LCDW) and Warm Deep Water (WDW) 

characteristics from Reid et al. (1977), Whitworth and Nowlin (1987), Naveira Garabato et al. 

(2002a) and Meredith et al. (2003b). Antarctic Zone and Weddell-Scotia Confluence as 

described in Whitworth et al. (1994) and Pollard et al. (2002).   
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5. Rapid changes in surface water carbonate chemistry 

during Antarctic sea ice melt  

5.1. Abstract 

The effect of sea ice melt on the carbonate chemistry of surface waters in the Weddell-Scotia 

Confluence, Southern Ocean, was investigated during January 2008. Contrasting 

concentrations of dissolved inorganic carbon (DIC), total alkalinity (TA) and the fugacity of 

carbon dioxide (fCO2) were observed at and around the receding sea ice edge. The 

precipitation of carbonates such as ikaite (CaCO3.6H2O) in sea ice brine has the net effect of 

decreasing DIC and TA and increasing the fCO2 in the brine. Deficits in DIC up to 12 ± 3 

µmol kg-1 in the marginal ice zone (MIZ) are consistent with the release of DIC-poor brines to 

surface waters during sea ice melt. Biological utilisation of carbon was the dominant process 

and accounted for 41 ± 1 µmol kg-1 of the summer DIC deficit. The data suggest that the 

combined effects of biological carbon uptake and the precipitation of carbonates created 

substantial CO2 undersaturation of 95 µatm in the MIZ during summer sea ice melt. Further 

work is required to improve the understanding of ikaite chemistry in Antarctic sea ice and its 

importance for the sea ice carbon pump. 
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5.2. Introduction 

The Southern Ocean greatly influences the climate system through the biological and physical 

pumps that facilitate the uptake of atmospheric carbon dioxide (CO2) and transport of carbon 

to the deep ocean (Heinze et al., 1991). Marginal ice zones (MIZ) form the boundary from 

dense sea ice cover to the open ocean and show large spatial and temporal variability in sea 

surface CO2 (Bakker et al., 1997; Gibson and Trull, 1999; Hoppema et al., 1999; Hoppema et 

al., 2000; Alvarez et al., 2002; Bellerby et al., 2004; Shim et al., 2006). The significance of sea 

ice regions in the oceanic carbon cycle has been demonstrated by a dramatic revision of the 

Southern Ocean (50-62°S) CO2 sink estimate, from -0.34 Pg C yr-1 to -0.06 Pg C yr-1 in the 

reference years 1995 and 2000, respectively (Takahashi et al., 2009). This trend has been 

governed by increased data coverage that highlights the dominance of winter CO2 release, as a 

result of upwelling and respiration, over CO2 uptake upon seasonal sea ice melt.  

The eastward-flowing Antarctic Circumpolar Current (ACC) transports heat and dissolved 

constituents around the Antarctic continent (Rintoul and Sokolov, 2001). The dominant water 

mass in the ACC is Circumpolar Deep Water (CDW), a broad layer of warm, saline and 

nutrient-rich water, which shoals to the south with the uplifting isopycnals at the Southern 

Boundary (SB)  (Sievers and Nowlin, 1984; Orsi et al., 1995; Pollard et al., 2002).  

The Weddell Sea is dominated by a cyclonic gyre, bounded to the west and south by the 

Antarctic continent but, open to the north and east for interaction with waters of the ACC. 

CDW is advected into the eastern side of the gyre and can be identified by maxima in 

temperature, salinity and nutrients within the gyre (Deacon, 1979; Whitworth and Nowlin, 

1987; Gouretski and Danilov, 1993; Schroder and Fahrbach, 1999). A substantial part of the 

ocean is ventilated in the Weddell Gyre as a result of the formation of deep and bottom waters 

due to strong atmosphere-ice-ocean interactions (Gill, 1973; Carmack and Foster, 1975). Early 

studies largely regarded this region as a source of CO2 due to the upwelling of the CO2-rich 

deep water (Deacon, 1979; Weiss et al., 1979; Takahashi et al., 1993). Since then, several 

investigations into the carbonate chemistry of the Weddell Gyre have shown this area to be a 

net sink for atmospheric CO2 (Hoppema et al., 1995; Hoppema et al., 1999; Stoll et al., 1999; 

Hoppema et al., 2000; Stoll et al., 2002; Bakker et al., 2008).  
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In the western Atlantic sector of the Southern Ocean, the SB lies just north of the Weddell-

Scotia Confluence, which extends from the Antarctic Peninsula to about 20°W (Patterson and 

Sievers, 1980; Whitworth et al., 1994), separating the Weddell Sea to the south from the ACC 

in the Scotia Sea to the north (Orsi et al., 1995). The Weddell-Scotia Confluence provides a 

transition zone where the recently ventilated waters flow out of the Weddell Sea and into the 

Scotia Sea (Patterson and Sievers, 1980; Orsi et al., 1999; Naveira Garabato et al., 2002a). 

Therefore, it is important to improve the understanding of the ocean carbonate chemistry of 

the Weddell-Scotia Confluence and its contribution to the Southern Ocean carbon cycle.   

Increased biomass and productivity are regularly observed in MIZs (Smith and Nelson, 1986; 

Moore et al., 1999b; Kang et al., 2001; Korb et al., 2005) due to factors including water-

column stability (Smith and Nelson, 1985; Holm-Hansen and Mitchell, 1991; Sakshaug et al., 

1991; Lancelot et al., 1993), seeding by ice algae (Smith and Nelson, 1985; Ackley and 

Sullivan, 1994) and the release of bioavailable iron (de Baar et al., 1990; Martin, 1990; 

Sedwick and DiTullio, 1997). Additional supplies of iron into surface waters of the Weddell-

Scotia Confluence could originate from upwelling within the ACC (Hoppema et al., 2003; 

Blain et al., 2007) and advection from waters flowing out from the tip of the Antarctic 

Peninsula (Nolting et al., 1991; Sanudo-Wilhelmy et al., 2002; Dulaiova et al., 2009). These 

processes have been implicated in the enhanced productivity and ecological diversity 

associated with the Weddell-Scotia Confluence (Jacques and Panouse, 1991; Comiso et al., 

1993; Helbling et al., 1993; Tynan, 1998; Holm-Hansen and Hewes, 2004; Hewes et al., 

2008).  

Field and laboratory studies have shown that ikaite, a hydrous calcium carbonate mineral 

(CaCO3.6H2O), precipitates out within brines during sea ice formation (Marion, 2001; 

Papadimitriou et al., 2004; Delille et al., 2007; Papadimitriou et al., 2007; Rysgaard et al., 

2007; Dieckmann et al., 2008):  

)()(6.)(5)(2)( 22323
2 aqCOsOHCaCOlOHaqHCOaqCa +↔++ −+   Equation 5.1. 

 

The net effect of ikaite precipitation in brine is to reduce the concentration of DIC and total 

alkalinity (TA), whilst increasing the fCO2 (Eqn. 5.1). Any brine rejected during winter or 

released during ice melt transfers these inorganic carbon characteristics to the underlying 

water. One implication of these processes is that during sea ice growth, the winter mixed layer 
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becomes isolated from the atmosphere (Klatt et al., 2002), allowing levels of fCO2 to reach 

supersaturation beneath the sea ice. During sea ice melt in spring and summer, any remaining 

CaCO3 minerals within the ice are thought to be released into the water column where they re-

enter the carbon cycle through dissolution. According to Eqn. 5.1, this would increase TA and 

DIC and reduce fCO2 of the water. 

The activity of ice algae also leads to changes in the carbonate system of the brine and the 

water at the ice-sea interface (Gleitz et al., 1995; Gleitz et al., 1996; Gibson and Trull, 1999; 

Krembs and Engel, 2001; Meiners et al., 2009). During summer, increased light levels 

promote photosynthesis, reducing DIC and the fCO2 of the brine. As the ice melts, these 

carbonate characteristics are transferred to the surrounding water, becoming superimposed on 

effects from carbonate mineral chemistry.  

The sea ice carbonate chemistry processes have been described as a ‘sea ice CO2 pump’, 

assuming dissolution of ikaite in the summer promotes atmospheric CO2 uptake and that DIC- 

and TA-poor, but CO2-rich brines are transported out of the surface waters during the winter 

(Rysgaard et al., 2007). The MIZs of the Southern Ocean are of great interest due to the effects 

of enhanced biological activity and, more recently, calcium carbonate chemistry on the 

oceanic carbon cycle. However, few data exist to investigate and quantify the carbonate 

chemistry processes in melting polar sea ice and to infer the implications of the sea ice carbon 

pump for the global carbon cycle. In this paper, we present direct measurements of fCO2, DIC 

and TA from waters at and around the receding ice edge. The distribution of upper ocean 

carbonate chemistry in the Weddell-Scotia Confluence during austral summer is evaluated 

within the context of physical and biological controls, including (1) the influence of sea ice 

cover; (2) the effect of recent sea ice melt and an ice edge bloom; (3) the influence of the 

Southern Boundary.  

5.3. Methods 

5.3.1. Underway and station sampling 

Data were collected in the Weddell-Scotia Confluence during cruise JR177 on the RRS James 

Clark Ross in January 2008 (Fig. 5.1). The ship reached the South Orkney Islands on 8 

January 2008 and made two transects in the Weddell-Scotia Confluence, southward and 

northward, passing the ice edge overlying the South Orkney shelf at station 5 (Table 5.1, Fig. 
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5.2). The southward transect ended in the sea ice at station 1 (62.61°S 43.24°W), over the 

break of the South Orkney shelf on 11 January. Between stations 1 and 6 the ship sailed 

through waters with partial sea ice cover, melting sea ice and areas of open water. The ship 

left the MIZ on 13 January and continued northward to the Southern Boundary (SB) at station 

13 (59.14°S 43.69°W) on 17 January.  

 

Figure 5.1. Map of the Weddell-Scotia Confluence region. The boxed area shows the research 

site, see Fig. 5.2 for further details. The dashed line represents the Southern Boundary (SB) at 

the time of sampling with the dynamic height for the front selected after comparison with the 

hydrographic section. The absolute dynamic height topography data were produced by 

Ssalto/Duacs and distributed by Aviso (http://www.aviso.oceanobs.com) with support from 

the Centre National d’Etudes Spatiales (CNES). Depth contours are at 1000 and 2000 m 

(GEBCO, 2001). 
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Table 5.1. Station number, classification, date, location (°S °W) and bottom depth (m) for all 

hydrographic stations in the Weddell-Scotia Confluence.  

Station Classification Date Latitude Longitude Bottom depth 

  2008 °S °W m 

9 Open water 8 Jan 60.208 44.408 5543 

8 Open water 9 Jan 60.431 44.593 999 

6 Meltwater 10 Jan 61.198 44.408 319 

5 Ice edge 10 Jan 61.665 44.053 570 

3 Sea ice 11 Jan 62.355 43.529 1238 

1 Sea ice 11 Jan 62.608 43.234 3075 

10 Open water 13 Jan 59.936 44.239 4784 

11 Open water 15 Jan 59.689 44.054 4172 

13 Southern Boundary 17 Jan 59.144 43.694 3611 

 

Continuous measurements of temperature and salinity in surface water were made using 

seawater from the non-toxic underway supply (bow intake 6.5 m below the surface). High 

resolution, vertical profiles of potential temperature and salinity were obtained during the 

downcast using a conductivity, temperature, depth (CTD) sensor (Seabird SBE9+). An offset 

in sea surface temperature (0.37 °C) was detected between the ship’s oceanlogger temperature 

sensor and the CTD surface temperature (section 2.4.6), which has been applied to the 

underway temperature dataset. All salinity values are reported on the practical salinity scale. 

The summer mixed layer depth (MLD) is defined here as the depth where the potential density 

exceeds that measured at 10 m by 0.05 kg m-3 (Brainerd and Gregg, 1995). This definition was 

selected to provide a depth that is located between the active mixing layer and the seasonal 

mixed layer. Mixed layer depths were calculated from 2 dbar profiles of the potential 

temperature and salinity from the CTD deployment at each station. The winter mixed layer, 

marking the remnant of the Winter Water (WW), is defined here as the depth of the potential 

temperature minimum (θmin). For all stations, the WW layer was identified by a well defined 

θmin at depths in the range of 60 - 100 m. 
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5.3.2.  Fugacity of CO2 in surface seawater and the atmosphere 

Quasi-continuous measurements of the fugacity of CO2 (fCO2) in surface water were made 

using an underway fCO2 system and seawater from the underway supply (Schuster and 

Watson, 2007). Atmospheric samples were taken from an air inlet located forward at 15 m 

height on the ship’s bridge. Mixing ratios of CO2 and moisture in the equilibrator headspace 

and the outside air were determined by circulation through a non-dispersive infra-red analyser 

(LICOR 7000). The LICOR was calibrated using three secondary gas standards of known CO2 

concentrations of 249.1 ± 0.2, 356.5 ± 0.2 and 457.4 ± 0.2 µmol CO2 mol-1 in an air mixture 

(21% O2, 79% N2). All gases underwent pre- and post-cruise calibration against certified, high 

precision, primary standards from the National Oceanic and Atmospheric Administration 

(NOAA). Samples from the equilibrator headspace and marine air were partially dried by 

being passing through an electric cool box at about 2 °C, prior to analysis in the LICOR. The 

fCO2 for equilibrated water samples and the air was computed from the partly dried mixing 

ratios and ambient barometric pressure and then corrected for seawater vapour pressure 

(assuming saturation at the sea surface) (section 2.5.5). 

Two platinum resistant thermometers positioned in the upper and lower part of the seawater 

stream determined the temperature of the water in the equilibrator. Warming of the seawater 

between the intake and the equilibrator was on average 0.8 °C (σ = 0.1 °C; n = 250). Sea 

surface fCO2 data were corrected to sea surface temperature to account for this warming 

(Takahashi et al., 1993). The difference in fCO2 between the seawater and overlying air 

(∆fCO2(w-a)) was calculated continuously during the cruise. The time lag between sampling 

and the seawater reaching the equilibrator was 116 seconds, which has been corrected for. Sea 

surface fCO2 from the underway supply was co-located to the CTD casts by interpolation to 

the time of the 5 m sample from the upcast of the CTD. Gaps in the data are due to the 

seawater supply being turned off in thick ice cover or contamination from the ship exhaust 

gases. The accuracy of the marine air fCO2 data was determined as 0.6 µatm from comparisons 

with atmospheric data from Jubany Station, South Shetland Islands (62.23°S 58.67°W)  

(Ciattaglia et al., 1999). The precision of the fCO2 data is 2.0 µatm (Table 3.3).  
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5.3.3. Carbonate system 

Underway samples for sea surface dissolved inorganic carbon (DIC) and total alkalinity (TA) 

analysis were collected from the underway seawater supply. Vertical profile samples were 

taken from the 24 × 10 L Niskin bottles mounted onto the CTD rosette at 5, 10, 30, 50, 80, 

120, 160 and 200 m depth on the upcast of the CTD. Seawater (250 or 500 ml) was collected 

in borosilicate glass bottles and a small volume was extracted to create a head space. Saturated 

aqueous mercuric chloride was immediately added (0.02% vol/vol) and the bottle was sealed, 

shaken and stored in a dark location at ambient temperature for shipment to the UK.  

The DIC concentration was determined by coulometric analysis (Johnson et al., 1987) and TA 

analyses were carried out by potentiometric titration with hydrochloric acid (Dickson, 1981) 

using a VINDTA instrument from April to May 2008. Duplicate analyses were made for each 

500 ml bottle. Two bottles of certified reference material (CRM) from batches 76 or 81 (DOE, 

2007) were analysed in duplicate per CTD cast and per 10 samples from the underway supply. 

DIC and TA values were corrected to account for the dilution of the seawater by the addition 

of mercuric chloride solution. The accuracy for the DIC and alkalinity measurements is 

determined as 2 µmol kg-1 (n = 96) from the average difference between certified and 

calculated values for each CRM analysis. The precision for the DIC and alkalinity 

measurements is estimated as better than 2 µmol kg-1 (n = 96) based on the average difference 

between duplicate CRM bottle analyses. DIC and TA from all sea surface samples were used 

to calculate fCO2, f(DIC,TA), using the CO2Sys programme (Lewis and Wallace, 1998) with 

thermodynamic dissociation constants for K1 and K2 by Mehrbach et al. (1973) and the re-fit 

by Dickson and Millero (1987). 

All surface alkalinity samples showed strong salinity dependence with a positive intercept of 

269 µmol kg-1 (TA0) at zero salinity. To correct for dilution or concentration effects, TA data 

were normalised to salinity 34.3, the average salinity of the WW for all stations in the 

Weddell-Scotia Confluence, using Eqn. 5.2 to account for the non-zero end-member (Friis et 

al., 2003): 

 

0
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This was repeated for the DIC data, where a value of 966 µmol kg-1 was determined for DIC0. 

A series of de-ionised water samples were analysed to determine a ‘blank’ for DIC and TA at 

zero salinity. Average values for TA0_de-ionised and DIC0_de-ionised of 74 ± 11 and 36 ± 3 µmol kg-

1 (n = 6), respectively, indicate that the TA0 and DIC0 determined for the Weddell-Scotia 

Confluence samples do not result from the analytical technique but from natural sources, 

which could include dissolution of carbonate minerals during the analysis and bacterial 

degradation. DIC and TA measurements reported in the text are not salinity normalized unless 

stated.      

5.3.4. Macronutrients 

Underway samples from the underway seawater supply and CTD water bottle samples were 

filtered through a mixed ester membrane (Whatman, pore size 0.45 µm), and the filtrate was 

analysed colorimetrically for dissolved silicate (SiO4
4-), phosphate (PO4

3-), and nitrate (NO3
-) 

with a segmented-flow analyser (Technicon, Whitehouse, 1997). Analyses for nitrate included 

nitrite (NO2), which is not considered separately as its concentration had little variation and 

was typically < 1% of total NO3 + NO2. Nutrient data were normalised to salinity 34.3 using a 

direct normalisation procedure by multiplication with 34.3 and division by the in situ salinity. 

Nutrient concentrations reported in the text are not salinity normalized unless stated. 

5.3.5. Chlorophyll-a 

Underway samples for sea surface chlorophyll-a were collected from the non-toxic seawater 

supply approximately every hour as the ship was in transit. Water samples were filtered 

through glass fibre filters (Whatman GF/F) under low (< 70 mm Hg) vacuum pressure and 

immediately frozen and stored at -20 °C until analysis onboard. The samples on the filters 

were then extracted in acetone (10 ml, 90%) in the dark for 24 hours (Parsons et al., 1984). 

Fluorescence of the extract was measured before and after acidification with 1.2 M HCl on a 

TD-700 Turner fluorometer. The instrument was calibrated against commercially prepared 

chlorophyll-a standards (Sigma).  
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5.3.6. Sea ice 

Visual observations of sea ice coverage were made from the vessel’s bridge as part of the daily 

position report filed by the Captain. The observations included primary ice types present, the 

sea ice coverage and meteorological conditions and were supported by digital photographs 

taken at each station (Fig. 2.22). Daily sea ice concentration data at 4 km resolution were 

obtained through the Operational SST and Sea Ice Analysis (OSTIA) service, a component of 

the Group for High-Resolution Sea Surface Temperature (GHRSST) at http://ghrsst-

pp.metoffice.com/pages/latest_analysis/ostia.html (Stark et al., 2007). The transition area 

between open ice-free waters to ice-covered waters is referred to as the marginal ice zone 

(MIZ), encompassing stations 1, 3, 5 and 6 during the present study. The ice edge is defined 

here as the position where consolidated sea ice was first encountered (station 5) on the 

southern transect.  

5.3.7. Seasonal biogeochemical deficits 

The seasonal depletion in DIC, alkalinity and nutrients was determined for each station from 

the difference between the average concentration in the summer mixed layer and the 

concentration at the depth of the θmin, in the WW (Jennings et al., 1984). The biogeochemical 

properties of the WW have previously been used as proxies for conditions present in Southern 

Ocean surface waters during the preceding winter (e.g., Minas and Minas, 1992; Ishii et al., 

1998; Rubin et al., 1998; Pondaven et al., 2000; Ishii et al., 2002).  

The validity of this method for the Weddell-Scotia Confluence data is discussed below. For 

the sea ice stations (1-6), values for the θmin were between -1.60 and -1.70 °C (Table 5.2). 

Satellite derived sea ice cover indicated that the break-up of the sea ice (last day when ice 

cover was ≥ 90%) occurred in early December, 4 weeks prior to sampling. Therefore, top-

down warming was very recent and any erosion of the winter mixed layer was attributed to 

vertical mixing of warmer waters below the thermocline. To estimate any bottom-up 

influences, the value of the θmin was compared to the temperature at the base of the 

thermocline, assuming an end member winter mixed layer temperature of -1.70 °C and that the 

specific heat capacity of seawater was constant. For the range of θmin values, mixing from 

deeper waters from winter to summer is estimated at 4-7%. This could lead to a slight over 
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estimation in winter DIC and TA as highlighted during a comparable seasonal study in the 

Indian sector of the Southern Ocean (Jouandet et al., 2008). 

The total DIC deficit (∆DICdeficit) can be expressed as a sum of contributing processes, 

represented by the following:  

 

∆DICdeficit = ∆DICsalinity + ∆DICCorg + ∆DICCaCO3
 + ∆DICresidual   Equation 5.3 

 

Deficits in DIC due to salinity changes are determined from the difference between the 

measured and salinity normalised DIC deficit. A composite error of 2 µmol kg-1 is associated 

with the ∆DICsalinity term. Modifications in DIC due to abundance of organic matter through 

photosynthesis and respiration (∆DICCorg) have been estimated from normalised nitrate deficits 

(Sweeney et al., 2000), assuming a carbon to nitrogen uptake ratio of 117:16 moles (Anderson 

and Sarmiento, 1994). Comparisons to phosphate utilization by Redfield stoichiometry 

(Redfield et al., 1963) indicate uncertainties in ∆DICCorg of 1 to 9 µmol kg-1. The deficit in 

alkalinity, corrected for salinity and organic matter effects, indicates carbonate mineral (ikaite) 

precipitation or dissolution based on 2:1 changes in TA and DIC (Zeebe and Wolf-Gladrow, 

2001). A composite error of 3 µmol kg-1 accompanies the carbonate term. The residual term 

accounts for the remaining seasonal deficit as a result of processes including CO2 air-sea 

exchange, surface advection and slight vertical mixing (see above). The associated error is the 

sum of that for each term in Eqn. 5.3.   
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5.4. Results 

 

Figure. 5.2. The research area showing (a) ∆fCO2(water-air) (µatm) and (b) sea surface salinity 

along the two transects and the station locations. The marginal ice zone (MIZ), south of the 

South Orkney Islands, includes stations 1, 3, 5 and 6. Depth contours are at 1000 and 2000 m 

(GEBCO, 2001).  

5.4.1. Hydrography 

Surface waters (0-20 dbar) showed a strong northward gradient in potential temperature from 

about -1.4 °C beneath the sea ice to greater than 1.0 °C at about 59°S (Fig. 5.3b). Surface 

salinity showed a similar trend, increasing from values close to 33.5 beneath the sea ice to 

values above 33.8 at 59°S (Fig. 5.3a). A notable exception to this trend was the distinct 

reduction in salinity in the region of substantial sea ice melt to the south of the South Orkney 

Islands, at and around station 6 (Table 5.3, Fig. 5.2b).  

A distinct WW layer could be observed for all stations, with an average potential temperature 

minimum (θmin) of -1.55 ± 0.12 °C and a winter mixed layer depth of 79 ± 15 m (n = 9, Table 

5.2). Potential temperature of the WW predominantly followed the increasing northward trend 

of summer mixed layer potential temperature. In comparison, WW salinity was much more 

variable, from the most saline WW beneath the sea ice decreasing to the freshest water in the 
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region of substantial ice melt. North of the MIZ, WW salinity increased from values close to 

34.2 over the South Orkney shelf up to about 34.3 at 59°S.  

Table 5.2. Winter mixed layer depth (WMLD, m), temperature (°C), salinity, silicate (SiO4, 

µmol kg-1), phosphate (PO4, µmol kg-1), nitrate (NO3, µmol kg-1), dissolved inorganic carbon 

(DIC, µmol kg-1) and total alkalinity (TA, µmol kg-1) of the winter mixed layer (representing 

the WW) for all stations in the Weddell-Scotia Confluence from 62.61°S (station 1) to 59.14°S 

(station 13). The absolute value for each station is shown measured from 1 bottle at the depth 

of the potential temperature minimum (θmin). Stations 6 and 13 have interpolated nutrient 

concentrations from proximal stations 8 and 11, respectively. 

Station WMLD θmin Salinity SiO4 PO4 NO3 DIC TA 

 m °C  µmol kg-1 µmol kg-1 µmol kg-1 µmol kg-1 µmol kg-1 

1 61 -1.65 34.33 82.8 1.96 28.3 2224 2328 

3  57 -1.60 34.28 84.6 1.97 29.6 2224 2332 

5  69 -1.70 34.24 80.3 1.94 31.0 2222 2325 

6 67 -1.63 34.14 78.0 1.81 29.5 2214 2325 

8 71 -1.56 34.24 84.4 1.93 29.0 2218 2326 

9 87 -1.56 34.20 80.8 1.94 28.8 2213 2326 

10 91 -1.46 34.30 84.4 2.02 28.8 2220 2333 

11 97 -1.35 34.30 83.5 2.02 31.2 2223 2332 

13 93 -1.39 34.25 83.2 1.99 31.6 2222 2330 

 

5.4.2. Macronutrients 

Surface silicate (hereinafter SiO4) concentrations were generally high (≥ 70 µmol kg-1) 

throughout the Weddell-Scotia Confluence (Table 5.3). The SiO4 concentration showed a 

slight decreasing gradient for stations 1-6 in the MIZ and a more homogenous distribution 

north of the MIZ (stations 8-13). Surface nitrate (hereinafter NO3) and phosphate (hereinafter 

PO4) concentrations showed general decreasing northward trends with average values of 24.3 

and 1.56 µmol kg-1, respectively. Compared to sea ice stations 1, 3 and 5, large depletion of all 

three macronutrients had occurred in the region of extensive ice melt at station 6. Average 

WW concentrations for SiO4, NO3 and PO4 were 82.4, 30.1 and 1.95 µmol kg-1, respectively, 

with lower values at station 6 (Table 5.2). Concentrations of NO3 and PO4 are similar to WW 

values measured further north in the Scotia Sea and higher concentrations of SiO4 are 
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consistent with the major gradient that exists for this macronutrient in this region (Whitehouse 

et al., 2008).  

Table 5.3. Mixed layer depth (MLD, m), temperature (°C), salinity, silicate (SiO4, µmol kg-1), 

phosphate (PO4, µmol kg-1) and nitrate (NO3, µmol kg-1) of the summer mixed layer for all 

stations in the Weddell-Scotia Confluence from 62.61°S (station 1) to 59.14°S (station 13). 

The mean value for each station is shown (from values measured at n bottle depths up to the 

MLD) with the standard deviation (for stations where n > 2) and the difference (for stations 

where n = 2) in brackets. Stations 6 and 13 have interpolated nutrient concentrations from 

proximal stations 8 and 11, respectively. 

Station n MLD Temperature Salinity SiO4 PO4 NO3 

  m °C  µmol kg-1 µmol kg-1 µmol kg-1 

1 2 23 -1.40 (0.02) 33.54 (0.02) 80.5 (0.2) 1.82 (0.00) 27.1 (0.2) 

3  2 25 -1.41 (0.00) 33.60 (0.00) 71.7 (0.2) 1.73 (0.01) 26.4 (0.1) 

5  2 19 -0.76 (0.00) 33.57 (0.00) 69.5 (0.1) 1.62 (0.00) 25.6 (0.2) 

6 2 17 -0.65 (0.02) 33.23 (0.23) 66.0 (0.1) 1.42 (0.01) 23.4 (0.2) 

8 2 23 -0.63 (0.01) 33.35 (0.00) 73.4 (0.3) 1.58 (0.01) 24.4 (0.5) 

9 3 29 -0.01 (0.11) 33.64 (0.01) 74.3 (0.2) 1.60 (0.01) 24.1 (0.2) 

10 3 33 0.64 (0.06) 33.70 (0.02) 74.9 (0.1) 1.44 (0.03) 23.2 (0.1) 

11 2 17 0.94 (0.01) 33.71 (0.00) 73.0 (0.2) 1.48 (0.02) 22.8 (0.2) 

13 2 29 1.09 (0.01) 33.85 (0.00) 71.0 (0.3) 1.34 (0.01) 22.4 (0.0) 

 

5.4.3. Chlorophyll-a and phytoplankton species distribution 

Chlorophyll-a concentrations ([chl-a]) varied between 1.85 and 2.84 mg m-3 (Fig. 5.3f) in the 

open waters of the Weddell-Scotia Confluence, south of 59°S to about 60°S (stations 10-13). 

A summer maximum in chlorophyll-a of 3.51 mg m-3 was observed in the melt waters at and 

around station 6, signifying the presence of a phytoplankton bloom (defined here as [chl-a] ≥ 

2.0 mg m-3). Chlorophyll-a concentrations sharply decreased to a minimum of 0.21 mg m-3 

beneath the sea ice at station 1. For the MIZ (stations 1-6), the phytoplankton community was 

dominated by naked, heterotrophic dinoflagellates with diatoms accounting for between 21 

and 46% of the total cell abundance (Korb et al., 2010). North of the South Orkney Islands to 

59°S (stations 8-13) the community consisted of a mixture of dinoflagellates and cryptophytes, 

with less than 20% diatoms (Korb et al., 2010). 
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Table 5.4. Dissolved inorganic carbon (DIC, µmol kg-1), total alkalinity (TA, µmol kg-1), 

salinity normalised DIC (DIC34.4, µmol kg-1) and salinity normalised TA (TA34.3, µmol kg-1) of 

the summer mixed layer and surface water fCO2 measured (µatm), fCO2 calculated (as f(DIC,TA), 

µatm) and chlorophyll-a (chl-a, mg m-3) for all stations in the Weddell-Scotia Confluence from 

62.61°S (station 1) to 59.14°S (station 13). The mean value for DIC, DIC34.3, TA and TA34.3 is 

shown (from values measured at n bottle depths up to the depth of the mixed layer) with the 

standard deviation (for stations where n > 2) and the difference (for stations where n = 2) in 

brackets.  

Station n DIC TA DIC34.3 TA34.3 fCO2 measured fCO2 calculated Chl-a 

  µmol kg-1 µmol kg-1 µatm mg m-3 

1 2 2169 (7) 2286 (7) 2196 (6) 2332 (7) 377 357 0.21 

3 2 2166 (1) 2280 (2) 2191 (1) 2322 (2) 375 359 0.24 

5 2 2159 (1) 2273 (5) 2185 (1) 2316 (5) 336 378 1.14 

6 2 2105 (2) 2252 (28) 2142 (7) 2315 (15) 294 314 3.51 

8 2 2140 (0) 2265 (1) 2173 (0) 2321 (1) 345 343 0.96 

9 3 2156 (3) 2289 (2) 2180 (3) 2328 (2) 352 339 0.60 

10 3 2152 (7) 2293 (8) 2174 (7) 2329 (8) 340 355 1.85 

11 2 2169 (1) 2290 (14) 2190 (1) 2325 (14) 334 406 2.84 

13 2 2161 (8) 2299 (4) 2177 (8) 2326 (4) 332 346 2.06 

 

 

 

 

 

Figure 5.3. (page 162) The latitudinal distribution of sea surface (a) salinity, (b) temperature 

(SST, °C),  (c) fCO2 measured (lines, µatm) and fCO2 calculated (crosses, µatm), (d) dissolved 

inorganic carbon (DIC, µmol kg-1), (e) total alkalinity (TA, µmol kg-1), and (f) chlorophyll-a 

(chl-a, mg m-3) for the southward (solid line, filled circles) and northward (dashed line, open 

circles) transects across the Weddell-Scotia Confluence. The data show values for station and 

underway samples. Calculated seawater fCO2 , f(DIC,TA), has an accuracy of ± 6 µatm (Table 

2.8). 
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5.4.4. Carbonate chemistry 

Contrasting concentrations of fCO2, DIC and TA were observed at and around the sea ice edge 

and within the frontal waters of the SB (Fig. 5.3c-e). The fCO2 varied from supersaturation 

with ∆fCO2 of 14 µatm in waters beneath the sea ice to strong undersaturation with ∆fCO2 of -

95 µatm in the region of substantial ice melt (Fig. 5.2). Calculated fCO2 generally showed a 

close agreement to measured fCO2, apart from a positive offset due to higher calculated fCO2 

values from the ice edge to the meltwater region (Fig. 5.3c).  

The concentration of sea surface DIC showed similar patterns and predominantly followed the 

trend of the fCO2 observations (Fig. 5.3d). The highest concentration of DIC, TA and the 

highest value of fCO2 were measured beneath the sea ice close to station 1 (Table 5.4). 

Relative to all other MIZ stations, DIC, TA and fCO2 reached distinct summer minima in the 

region of extensive ice melt (Fig. 5.3). Sea surface normalised DIC (DIC34.3) predominantly 

followed the trend in DIC concentrations, decreasing from values greater than 2190 µmol kg-1 

beneath the sea ice to values around 2180 µmol kg-1 at the SB (Table 5.4). An exception to this 

gradual decreasing trend was at station 6, where a substantial reduction in DIC34.3 of up to 40 

µmol kg-1 was observed, relative to the average DIC34.3 in the summer mixed layer at all other 

stations. Sea surface normalised TA (TA34.3) showed a similar variation, with the highest 

values of about 2332 µmol kg-1 in the area of greater sea ice coverage and the lowest values in 

the region of extensive sea ice melt (stations 5 and 6).  

Across the Weddell-Scotia Confluence, WW DIC was relatively homogenous with average 

concentrations of about 2220 µmol kg-1 (Table 5.2). Alkalinity showed more variation, with 

distinct low values at MIZ stations in and near the area of greatest sea ice melt. There was an 

overall northward increase in TA34.3 of the WW. 

 

5.5. Sea surface carbonate chemistry during summer ice melt 

The processes affecting carbonate chemistry in waters at and around the ice edge will be 

investigated by comparing surface water fCO2, DIC and TA measured at the contrasting sites 

in the MIZ. To the south of the South Orkney Islands (stations 1-3), the sea surface was 

characterised by large plates of consolidated sea ice as well as regions where the ice pack had 

begun to break up (Fig. 2.22). Macronutrient concentrations were the highest (Table 5.3) and 
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chlorophyll-a reached the lowest concentration of 0.21 mg m-3 (Table 5.4) for whole Weddell-

Scotia Confluence. Surface temperatures in excess of the freezing point of seawater and 

reduced salinity, compared to station 5 at the ice edge, indicate that slight sea ice melt had 

occurred (Fig. 5.4). Effects of sea ice melt were most pronounced at station 6 (Fig. 5.2b), 

where the site was largely open water with sporadic ice floes. Substantial sea ice melt had 

stabilized the upper water column by forming a warm and shallow meltwater lens at the 

surface (Fig. 5.4), which supported elevated chlorophyll-a (Fig. 5.3f). This corresponded to a 

rapid reduction in sea surface DIC by 53 µmol kg-1 and fCO2 by 55 µatm, compared to all 

other stations, driving a strong CO2 undersaturation of 74 µatm at station 6 (Fig. 5.2a). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. (page 165) Vertical profiles of upper water column (a, d, g) potential temperature 

(θ, solid line, °C) and salinity (dashed line), (b, e, h) dissolved inorganic carbon (DIC, black 

solid line, µmol kg-1), total alkalinity (TA, black dashed line, µmol kg-1), salinity normalised 

DIC (grey solid line, µmol kg-1), salinity normalised TA (grey dashed line, µmol kg-1) and (c, 

f, i) nitrate (NO3, solid line, µmol kg-1), phosphate (PO4, dashed line, µmol kg-1) and silicate 
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(SiO4, dot-dash line, µmol kg-1), in meltwaters (station 6), at the ice edge (station 5) and 

beneath the sea ice (station 11). 
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Melting sea ice forms shallow mixed layers with favourable light conditions that promote the 

development of phytoplankton blooms in the meltwaters (Smith and Nelson, 1986; Lancelot et 

al., 1993). Blooms associated with the receding ice edge have been previously observed in the 

MIZ of the Weddell-Scotia Confluence region (Buma et al., 1992; Lancelot et al., 1993; Kang 

et al., 2001; Korb et al., 2005). The bloom in the meltwaters at station 6 could be partially 

sustained by natural iron enrichment from melting sea ice (Löscher et al., 1997; Lannuzel et 

al., 2007; Lannuzel et al., 2008), vertical mixing over shallow topography (Table 5.1), 

upwelling in the ACC (Hoppema et al., 2003; Blain et al., 2007) or advection from the 

Antarctic Peninsula region (Nolting et al., 1991; Sanudo-Wilhelmy et al., 2002; Dulaiova et 

al., 2009). Recent evidence strongly suggests that iron is advected into the Scotia Sea from the 

South Shetland Islands and the Antarctic Peninsula, supporting phytoplankton growth in this 

downstream region (Ardelan et al., 2010). It has been inferred that it is the interaction between 

iron and light that limits the initiation and maintenance of blooms in the MIZ (Korb et al., 

2005, and references therein).  

In addition, diatoms in sea ice can act as an inoculum and seed the formation of phytoplankton 

blooms when released upon sea ice melt (Smith and Nelson, 1985; Ackley and Sullivan, 

1994). Diatom activity reduces the concentrations of macronutrients and DIC in the sea ice 

brine. These chemical signatures are transferred to the surrounding water as the sea ice melts. 

It is likely that a combination of these processes stimulated the formation and growth of the 

bloom in the meltwaters of the Weddell-Scotia Confluence and contributed to the reductions 

in DIC and macronutrient concentrations within the shallow mixed layer (Figs. 5.3 and 5.4).  

Changes in concentrations of macronutrients were compared to DIC34.3 to investigate whether 

biological utilization of nutrients had occurred (Fig. 5.5a-c). Nitrate and phosphate showed 

similar decreasing concentrations with decreasing DIC34.3, which suggests nutrient depletion 

as a result of phytoplankton growth. The C:N ratio of 112:16 is very similar to that determined 

from phytoplankton decomposition analyses, C:N:P of 106:16:1 (Redfield et al., 1963), and to 

that calculated by examination of spatial changes in nutrient concentrations, C:N:P of 

117:16:1  (Anderson and Sarmiento, 1994). The ratio of the change in DIC34.3 with respect to 

phosphate (48) is much smaller than that predicted by either nutrient utilization ratio. The 

decreasing concentration of silicate indicates the activity of the diatoms observed in this 

region (Korb et al., 2010). Despite the bloom being dominated by naked dinoflagellates, with 

little photosynthetic ability, it is predicted that the few diatoms present would account for the 
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majority of the photosynthetic activity and carbon utilisation. Based on the DIC34.3, TA34.3 and 

nutrient deficits, photosynthesis had reduced nutrients and DIC by approximate Redfield 

ratios. Deviations from predicted nutrient depletion ratios may be due to other processes, 

including sea ice carbonate chemistry, which will now be investigated. 

 

Figure 5.5. Average summer mixed layer (stations 1, 3, 5 and 6) and underway salinity 

normalised DIC (DIC34.3, µmol kg-1) as a function of salinity normalised (a) nitrate (NO3 34.3, 

µmol kg-1), (b) phosphate (PO4 34.3, µmol kg-1), (c) silicate (SiO4 34.3, µmol kg-1) and (d) salinity 

normalised total alkalinity (TA34.3, µmol kg-1) as a function of DIC34.3 (µmol kg-1). The 

theoretical trends (d, insert) show the variation of DIC34.3 and TA34.3 with respect to certain 

biogeochemical processes, adapted from Zeebe and Wolf-Gladrow (2001). The trend lines 

represent the best fit from linear regression, excluding station 6. 
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A relationship between ∆DIC34.3 and ∆TA34.3 of 1:2 is indicative of ikaite (CaCO3.6H2O) 

precipitation (Eqn. 5.1). Values of DIC34.3 and TA34.3 for the MIZ stations (1-6) group together 

in a decreasing trend close to 1:2, with the exception of station 6 (Fig. 5.5d). During sea ice 

formation and growth, precipitation of ikaite creates DIC- and TA-poor and fCO2-rich brines. 

Any brine remaining in channels and pockets within the sea ice matrix is released into the 

underlying water during sea ice melt, which would have the net effect of reducing TA34.3 and 

DIC34.3 (2:1) at the surface. Using salinity as a proxy for ice melt (Fig. 5.2b), in conjunction 

with in situ and satellite observations, sea ice melt was evident to some degree at all stations in 

the MIZ during summer 2008. We put forward the hypothesis that ikaite precipitation had 

occurred in the sea ice brines of the Weddell-Scotia Confluence during the preceding winter 

and the resultant DIC- and TA-poor brines were released into the underlying water as the ice 

melted, transferring the inorganic carbon characteristics into the summer mixed layer. The 

absence of calcifying phytoplankton in this region (Korb et al., 2010) supports the proposed 

mechanism of the observed depletion in DIC and TA at the sea surface.   

An outlier to the principle trend is station 6 in the meltwaters supporting a phytoplankton 

bloom. Although not numerically dominant within the bloom, diatoms had rapidly reduced 

DIC34.3 by 35 µmol kg-1 at the sea surface, compared to ice edge station 5. Based on the 

DIC34.3 and nutrient distributions for the MIZ stations (Fig. 5.5), biological carbon uptake had 

further reduced the DIC signature from the released brine, driving a strong undersaturation in 

fCO2 at the sea surface. 

A notable feature in sea surface fCO2 was the higher calculated fCO2 values along the strong 

fCO2 gradient that existed from the ice edge to the meltwater region (Fig. 5.3c). This suggests 

that samples from this location had either enriched DIC or depleted TA, or both, upon 

analysis. DIC increases occur from dissolution of carbonates, CO2 uptake and remineralisation 

of organic matter (Fig. 5.5d). Alkalinity deficits result from carbonate mineral precipitation 

and remineralisation of organic matter. With respect to the high DIC0 (section 5.3.3), it is 

proposed that there is an additional source of DIC in the sea ice, such as bacterial degradation 

or the presence of labile organic matter. In the region of very recent ice melt, prior to 

biological assimilation, the ‘extra’ DIC would contribute to the observed fCO2 offset. 
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5.6. Seasonal changes in carbonate chemistry 

The depth of the winter mixed layer and temperature of the WW increased northwards from 

waters beneath sea ice to waters proximal to the ACC at 59°S (Table 5.2). Away from the 

region of greatest sea ice melt, WW salinity and concentrations of macronutrients, DIC and 

TA had little variation. North of the MIZ, the phytoplankton community was made up of 

cryptophytes and naked dinoflagellates (Korb et al., 2010), with the cryptophytes accounting 

for the elevated concentrations of chlorophyll-a north of the South Orkney Islands (Fig. 5.3f). 

This corresponded to the undersaturation in sea surface fCO2 observed approaching the SB 

(north of station 10) and supports the idea of the frontal waters as an area of high productivity. 

In contrast, WW values of DIC and DIC34.3 are relatively constant for nearly all stations and 

hence processes that affect DIC concentrations, either at the surface during the winter or 

through advection and slight vertical mixing in the winter mixed layer during the summer 

(section 5.3.7), act uniformly across the Weddell-Scotia Confluence.   

The seasonal change in carbonate chemistry can be explored by comparing DIC34.3 and TA34.3 

at depth intervals from the surface to below the winter mixed layer (Fig. 5.6). Trends in 

DIC34.3 and TA34.3 in the summer mixed layer for stations located in the MIZ were explained 

previously (section 5.5). Stations north of the MIZ, showed comparatively reduced DIC in the 

summer mixed layer at a narrow range of TA34.3 of less than 10 µmol kg-1. With the exception 

of station 11, surface TA34.3 and DIC34.3 for stations north of the MIZ tended to follow a 2:1 

trend, but from a different starting point compared to the MIZ stations (Fig. 5.6a). As WW 

DIC34.3 and TA34.3 for all stations are quite similar (Fig. 5.6c), the greater DIC34.3 deficit 

observed north of the MIZ is attributed to the greater photosynthetic activity that had occurred 

in the northern Weddell-Scotia Confluence, compared to the MIZ, by the summer.  
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Figure 5.6. Salinity normalised total alkalinity (TA34.3, µmol kg-1) as a function of salinity 

normalised dissolved inorganic carbon (DIC34.3, µmol kg-1) for all marginal ice zone (MIZ) 

stations (stations 1-6, filled circles) and stations north of the MIZ (stations 8-13, open circles) 

within (a) the summer mixed layer, (b) the transition between the summer and winter mixed 

layers, (c) the Winter Water at the θmin and (d) below the θmin to 200 m depth. The grey lines 

(a) are hypothetical trend lines with a 2:1 slope. 

Below the summer mixed layer, there was a gradual increase in DIC34.3 and TA34.3 throughout 

the water column for all stations (Fig. 5.6b). Values of TA34.3 remained relatively constant 

compared to DIC34.3 at all depths. This pattern indicates the influence of biological carbon 

uptake on summer DIC concentrations (Fig. 5.5d) across the Weddell-Scotia Confluence.  

Similarly to surface biogeochemical distributions, the principal exception to the WW trends 

was station 6, where salinity and the concentrations of macronutrients and DIC were the 

lowest observed for the whole Weddell-Scotia Confluence (Table 5.2). Vertical profiles at 

station 6 show a deflection below the winter mixed layer, at about 130 m, of relatively cold, 

fresh water (Fig. 5.4a). This corresponds to reduced DIC and macronutrient concentrations 
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compared to station 5 (Fig. 5.4d-f). This could be a result of the deep penetration of brines 

where biological activity has amplified the reduction in DIC. As station 6 is located over 

shallow topography, the interaction of water masses and bathymetry (Table 5.1) could enhance 

vertical mixing and potentially erode the winter mixed layer from below. These results 

highlight the potential for overestimation of hydrographic and biogeochemical parameters in 

the WW, however this effect is estimated to be small (section 5.3.7). 

To further investigate the processes that affect the sea surface carbonate chemistry across the 

Weddell-Scotia Confluence during the summer, the seasonal depletion of inorganic carbon 

was determined for all stations, as detailed in section 5.3.7 (Table 5.5).   

Table 5.5. The inorganic carbon budget for all stations from 62.61°S (station 1) to 59.14°S 

(station 13) as determined by Eqn. 5.3.    

Station ∆DICdeficit ∆DICsalinity ∆DICCorg ∆DICCaCO3
 ∆DICresidual 

 µmol kg-1 µmol kg-1 µmol kg-1 µmol kg-1 µmol kg-1 

1 -54 ± 2 -28 ± 2 -4 ± 6 2 ± 3 -24 ± 7 

3  -57 ± 2 -24 ± 2 -19 ± 5 -7 ± 3 -7 ± 6 

5  -63 ± 2 -24 ± 2 -36 ± 2 -8 ± 3 5 ± 5 

6 -109 ± 2 -31 ± 2 -41 ± 1 -12 ± 3 -25 ± 4 

8 -80 ± 2 -32 ± 2 -29 ± 8 -6 ± 3 -13 ± 9 

9 -61 ± 2 -20 ± 2 -31 ± 5 -4 ± 3 -6 ± 6 

10 -67 ± 2 -21 ± 2 -59 ± 6 -6 ± 3 19 ± 7 

11 -54 ± 2 -21 ± 2 -59 ± 1 -8 ± 3 34 ± 4 

13 -60 ± 2 -14 ± 2 -66 ± 9 -8 ± 3 28 ± 10 

Changes in salinity as a result of freshwater input accounted for between 14 and 32 ± 2 µmol 

kg-1 of the seasonal change for all stations (Table 5.5), highlighting the influence of sea ice 

melt on the carbonate chemistry of the Southern Ocean. The seasonal depletion in DIC due to 

the photosynthetic production of organic carbon showed a general northward increase, with 

prominent utilisation of DIC at and around the receding ice edge and at the SB. This is in 

agreement with previous accounts of enhanced biological activity at these locations (Comiso 

et al., 1993; Helbling et al., 1993; Holm-Hansen and Hewes, 2004; Hewes et al., 2008). 

Surface waters for the whole region showed TA34.3 and DIC34.3 deficits characteristic of ikaite 

precipitation (Figs. 5.5d and 5.6). For most stations this was strongly correlated to salinity, 
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which suggests that continual sea ice melt and release of DIC- and TA-poor brines into the 

surface acts to rapidly change the carbonate chemistry of the Weddell-Scotia Confluence 

during summer sea ice melt. This was exemplified where the greatest extent of sea ice melt 

had occurred and an ice edge bloom had developed. Upper ocean distributions of DIC and TA 

showed a general decrease from waters beneath sea ice to the region of substantial sea ice melt 

and enhanced biological activity (Fig. 5.3). This culminated with the largest DIC deficits due 

to photosynthetic production of organic carbon and carbonate processes of 41 ± 1 and 12 ± 3 

µmol kg-1, respectively, and was accompanied by a strong drawdown of CO2 (Fig. 5.2a). 

Following the same hypothesis, carbonate minerals in melting Nordic sea ice have been 

proposed to enhance the uptake of CO2 during summer sea ice melt (Rysgaard et al., 2009).   

The residual DIC changes are the result of other processes not previously assessed, such as 

CO2 exchange. Large, positive residuals north of the MIZ (Table 5.5) and ∆fCO2 of about -30 

µatm (Fig. 5.2a) suggest a sustained input of DIC through CO2 uptake from the atmosphere. 

Based on in situ fCO2, ∆fCO2 and DIC measurements and Revelle factors between 13 and 15 

(Revelle and Suess, 1957), atmospheric CO2 uptake would act to increase DIC by 15-16 µmol 

kg-1 at stations 11 and 13. This could, in part, account for the residual DIC concentrations at 

the SB where longer duration, but lower magnitude, CO2 uptake from the atmosphere is likely 

to occur in comparison with the larger, more transient sink of the MIZ. The large residuals 

could also imply limitations to the seasonal deficit technique, as previously discussed (section 

5.3.7).  

5.7. Comparison to a surface water CO2 climatology  

The CO2 sink of -0.06 Pg C yr-1, between 62-52°S in the reference year 2000, is a result of an 

average ∆fCO2 of -5 µatm, ranging from -15 µatm in January to 12 µatm in September 

(Takahashi et al., 2009). Data from the Weddell-Scotia Confluence (62.6-59.1°S) show that 

the region was dominated by CO2 undersaturation at the sea surface, with an average ∆fCO2 of 

-25 µatm (range from -95 to 14 µatm, Fig. 5.2a) during summer 2008. The potential CO2 

source of 14 µatm observed beneath the sea ice cover near station 1 is very similar to the 

∆fCO2 maximum from the climatology (12 µatm). The strong undersaturation of fCO2 in the 

region of substantial sea ice melt far exceeded that of the climatology, by up to 80 µatm. In 

reference to the climatological ∆fCO2 maximum of about 12 µatm, it is hypothesised that the 
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Weddell-Scotia Confluence is a region of CO2 uptake of greater than 0.06 Pg C yr-1. However, 

investigations into the function of Antarctic sea ice as a permeable ‘barrier’ to CO2 exchange 

may require these estimates to be re-evaluated (Semiletov et al., 2004; Nomura et al., 2006).    

 

5.8. Conclusion  

The precipitation of carbonates such as ikaite in sea ice has the net effect of decreasing DIC 

and alkalinity and increasing the fCO2 in the sea ice brine. Deficits in salinity normalised DIC 

and alkalinity observed in the summer mixed layer of the Weddell-Scotia Confluence are 

consistent with the release of brines from melting sea ice, where ikaite precipitation has taken 

place. Across the marginal ice zone, ikaite precipitation accounted for up 12 ± 3 µmol kg-1, or 

13%, of the summer DIC deficit and was strongly correlated to the amount of sea ice melt that 

had taken place. Photosynthetic production of organic carbon had the largest effect on summer 

DIC concentrations, resulting in deficits of 41 ± 1 µmol kg-1 at the receding ice edge and 66 ± 

9 µmol kg-1 at the Southern Boundary. The effects of biological carbon uptake became 

superimposed on those of the sea ice carbonate chemistry, rapidly reducing fCO2 compared to 

waters beneath the sea ice. These processes created substantial CO2 undersaturation of 95 µatm 

in the marginal ice zone during the summer.  

The ‘sea ice CO2 pump’ hypothesis suggests that the dissolution of calcium carbonate 

minerals in meltwater during the summer promotes CO2 uptake from the atmosphere. The 

carbonate chemistry data for the marginal ice zone of the Weddell-Scotia Confluence suggest 

that it is the transfer of DIC- and TA-poor brines into the surface water during ice melt, in the 

presence of phytoplankton blooms, that drive a strong sink for CO2 during the summer. 

Further work should be directed at improving the understanding of sea ice carbonate chemistry 

and its role in the sea ice carbon pump of the polar oceans.  
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6. South Georgia: extensive island blooms and 

substantial biological carbon uptake   
 

6.1. Abstract 

The influence of the island mass effect of South Georgia on the marine carbon cycle of the 

Scotia Sea was investigated during January and February 2008. South Georgia (54-55°S 36-

38°W) is located on the North Scotia Ridge, between the Polar Front to the north and the 

Southern Antarctic Circumpolar Current Front (SACCF) to the south. Surface waters upstream 

(south) of the island were characterised by high-nutrient low-chlorophyll (HNLC) conditions, 

with chlorophyll-a concentrations less than 0.2 mg m-3. The fugacity of carbon dioxide (fCO2) 

was slightly supersaturated and this region represented a CO2 source of 2.6 ± 0.9 mmol m-2 

day-1 during summer 2008.  

An extensive diatom bloom with chlorophyll-a concentrations greater than 11.0 mg m-3 

developed in the Georgia Basin (GB), downstream of South Georgia, in November 2007 and 

persisted for three months. The seasonal depletion in DIC was 98 ± 5 µmol kg-1 and the 

∆fCO2(sea-air) was -96 ± 35µatm in the core of the bloom. These conditions created a strong 

sink for atmospheric CO2 of -15.1 ± 5.7 mmol m-2 day-1, which corresponded to a total 

biological carbon uptake of 1.3 ± 0.5 Tg C (1 Tg = 1012 g) during summer 2008. The deficit of 

DIC in the upper 100 m downstream (4.6 ± 0.8 mol m-2) of South Georgia was over twice that 

of the upstream (2.2 ± 0.3 mol m-2) HNLC waters. The DIC deficit in HNLC waters suggested 

that this region is more productive than indicated by satellite observations. In comparison to 

the island blooms of Kerguelen and Crozet, the South Georgia bloom is likely to be naturally 

iron fertilised. The DIC deficit of the South Georgia bloom in summer 2008 firmly established 

the bloom as the strongest region to date for biological carbon uptake in non-ice covered 

waters of the Southern Ocean. 
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6.2. Introduction  

In contrast to the high-nutrient low-chlorophyll (HNLC) waters of much of the Southern 

Ocean, enhanced phytoplankton concentrations are regularly observed downstream of 

bathymetric features (Moore and Abbot, 2000; Blain et al., 2001; Holm-Hansen et al., 2005; 

Pollard et al., 2007; Sokolov and Rintoul, 2007). The blooms associated with the sub-

Antarctic islands of Crozet (45.5-47.0°S 49.0-53.0°E) and Kerguelen (48.5-49.7°S 68.5-

70.5°E) are sustained through natural iron fertilisation (Bucciarelli et al., 2001; Blain et al., 

2007; Planquette et al., 2007) and create regions of substantial biological carbon uptake 

(Bakker et al., 2007; Jouandet et al., 2008). Similarly to Crozet and Kerguelen, large diatom-

dominated phytoplankton blooms are recurrent features downstream of the island of South 

Georgia where chlorophyll-a concentrations often exceed 10 mg m-3 for four months or more 

(Korb and Whitehouse, 2004; Korb et al., 2004; Korb et al., 2010).  

In order to sustain the vast blooms downstream of South Georgia, a supply of iron is required 

(Holeton et al., 2005), alleviating the otherwise high-nutrient low-chlorophyll conditions 

(section 1.4.4.1). Possible sources include the North Scotia Ridge (NSR), the Northwest 

Georgia Rise (NWGR), South Georgia and the interaction of the Southern Antarctic 

Circumpolar Current Front (SACCF) with surrounding bathymetric features (Ward et al., 

2002; Meredith et al., 2003a; Meredith et al., 2003b; Korb et al., 2008; Whitehouse et al., 

2008) (Fig. 6.1). In addition to iron, silicate could limit diatom growth in the northern AAZ 

due to the decreasing northward concentration gradient in this macronutrient that exists across 

the Scotia Sea (Boyd, 2002; Whitehouse et al., 2008). The South Georgia bloom is considered 

to be a region of important CO2 uptake (Schlitzer, 2002; Takahashi et al., 2009) in the 

Southern Ocean however this remains unquantified.  

 

This research investigates the effect of the South Georgia bloom on the marine carbon cycle of 

the Scotia Sea, with respect to seasonal changes in dissolved inorganic carbon (DIC) and air-

sea CO2 exchange. It is hypothesised that higher biological carbon uptake and a stronger CO2 

sink will exist in the bloom waters (downstream), compared to HNLC waters (upstream) in the 

central Antarctic Circumpolar Current (ACC) (Fig. 6.2). The results will be compared to 

similar carbon work carried out for the sub-Antarctic islands of Crozet and Kerguelen, both in 

the Indian sector of the Southern Ocean (Bakker et al., 2007; Jouandet et al., 2008).  
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Figure 6.1. A schematic of the Scotia Sea showing the approximate location of the JR177 

transect (see Fig. 6.3 for more detail) across the Antarctic Zone (dashed line). Some important 

topographic features are identified: Antarctic Peninsula (AP), South Scotia Ridge (SSR), 

South Orkney Islands (SOI), South Sandwich Islands (SSI), North Scotia Ridge (NSR), South 

Georgia (SG), Northwest Georgia Rise (NWGR), Northeast Georgia Rise (NEGR), Georgia 

Basin (GB), Maurice Ewing Bank (MEB) and the Falkland Islands (FI). Antarctic 

Circumpolar Current (ACC) fronts shown schematically, adapted from Meredith et al. 

(2003a): the Southern Boundary (SB, Orsi et al., 1995), Southern ACC Front (SACCF, Thorpe 

et al., 2002) and the Polar Front (PF, Moore et al., 1999). Depth contours are at 1000, 2000 

and 3000 m (GEBCO, 2001).  

The ship entered the Antarctic Zone (AAZ) and the Antarctic Circumpolar Current (ACC) on 

17 January 2008 after crossing the Southern Boundary (SB) at 59°S (Fig. 6.1). From here, a 

northward transect was made, which encompassed the SACCF at 58°S and reached the most 

northerly point in the Georgia Basin (GB) at station 53 (52.63°S 39.10°W) on 4 February (Fig. 

6.3, Table 6.1). Satellite derived chlorophyll-a revealed an area of ocean in the central ACC 

that supported low levels of chlorophyll-a ([chl-a] ≤ 0.2 mg m-3) throughout the cruise. In 

relation to concentrations of nitrate and phosphate, this region was defined as having high-
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nutrient low-chlorophyll (HNLC) conditions, forming an unproductive band from 57.5°S to 

56.0°S (Fig. 6.2).  

 

Figure 6.2. A cruise composite (1 January – 17 February 2008) of MODIS chlorophyll-a (mg 

m-3) and contours of dynamic height (dyn cm). The approximate location of the transect (see 

Fig. 6.3 for more detail) across the Antarctic Zone (AAZ) is shown (dashed line). Depth 

contours are at 1000 and 2000 m (GEBCO, 2001).  

In contrast, a huge phytoplankton bloom was identified downstream, of South Georgia in the 

GB, referred to here as the South Georgia bloom. A smaller bloom was identified to the south 

of the NSR at about 55°S and is referred to as the ACC bloom. Thus, four sub-regions along 

the transect are identified: HNLC (stations 30 and 33), ACC bloom (station 37), NSR (stations 

43, 44, 46 and 48) and the South Georgia bloom (stations 51 and 53) in the GB, where HNLC 

and GB stations represent the principle unproductive and productive regions, respectfully, 

with a continuum of productivity in between. The SB and SACCF were identified using 

vertical profiles of hydrographic data (Chapter 4) and sea surface dynamic height (Fig. 6.2). 
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Figure 6.3. A schematic of the Antarctic Zone (AAZ) of the Scotia Sea showing the location 

of the hydrographic stations (Table 6.1). Topographic features and bathymetry as in Figure 

6.1.  
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Table 6.1. Station number, classification, date, location (°S, °W) and bottom depth (m) for all 

hydrographic stations in the Antarctic Zone (AAZ). Abbreviations used: Southern Boundary 

(SB), Southern Antarctic Circumpolar Current Front (SACCF), Antarctic Circumpolar Current 

(ACC), high-nutrient low-chlorophyll (HNLC), North Scotia Ridge (NSR), South Georgia 

(SG). 

Station Region Date Latitude Longitude Bottom depth Sub-region 

  2008 °S °W m  

21 SB 17 Jan 59.144 43.694 3611   

25 SACCF 19 Jan 58.023 42.985 2831  

28 SACCF 20 Jan 57.758 42.801 2904  

30 HNLC 22 Jan 57.140 42.433 3700 HNLC 

33 HNLC 22 Jan 56.843 42.257 4248 HNLC 

35 ACC 23 Jan 55.902 41.720 3595  

37 ACC  25 Jan 55.207 41.246 3246 ACC bloom 

41 ACC 28 Jan 54.913 41.173 3442  

42 ACC 29 Jan 54.591 40.997 3301  

43 NSR 29 Jan 54.216 40.813 2461 NSR 

44 NSR 29 Jan 53.897 40.645 1233 NSR 

46 NSR 30 Jan 53.155 40.276 4052 NSR 

48 GB 01 Feb 52.857 40.097 3811 NSR 

51 GB 02 Feb 52.727 40.147 405 SG bloom 

53 GB 04 Feb 52.627 39.102 3750 SG bloom 
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6.3. Hydrography 

Surface waters showed a strong northward gradient in temperature from about 1.09 °C at the 

SB (station 21) to 4.02 °C in the GB at stations 51 and 53 (Fig. 6.4a). Surface salinity showed 

an opposing trend, decreasing from values greater than 34 in the south (stations 21, 23 and 25) 

to values close to 33.8 in the NSR-GB region. With the exception of waters in the GB, there 

was a general deepening of the MLD across the AAZ, with the deepest mixed layers around 

70 m to the south of the NSR (Table 6.2). A distinct Winter Water (WW) layer could be 

observed in the Antarctic Surface Water (AASW) across the AAZ (Fig. 4.2), with an average 

potential temperature minimum (θmin) of -0.02 ± 0.47 °C and a winter mixed layer depth of 

113 ± 22 m (n = 16, Table 6.3). The value of the θmin increased northwards, until station 44 

over the NSR, where it steadily decreased by over 0.80 °C, reaching -0.29 °C at station 53. 

This corresponded to an increase in the salinity of the WW from station 44 to 53, deviating 

from the otherwise northward decrease.  

6.4. Circulation 

Maps of sea surface dynamic height can inform on the location, structure and variability of the 

ACC fronts (Sokolov and Rintoul, 2007). Upon inspection of sea surface dynamic height, the 

transect was parallel to the contours until about 58°S where the contours tightened and 

intercepted the transect, marking the surface expression of the SACCF (Fig. 6.2). Further 

north, the contour patterns indicate that stations 35-37, at about 55.5°S, are located close to a 

meander in the SACCF to the east and an encroaching meander of the Polar Front (PF) to the 

west. Comparing MODIS chlorophyll-a and sea surface dynamic height shows a strong link to 

the bathymetry of the region (Figs. 6.1). A diversion in the dynamic height contours is 

apparent at about 55°S 40°W, southwest of South Georgia. This has been previously observed 

by diverging drifter trajectories at this location (Korb et al., 2008). Waters flowing to the east 

in the SACCF followed NSR and retroflected behind South Georgia passing either directly 

into the GB or first via circulation around the NWGR (Meredith et al., 2003a; Thorpe et al., 

2002). The anticyclonic circulation near the NWGR is shown by a de-linearity and spacing out 

of the contours. Currents flowing to the northwest are strongly governed by the bathymetry 

(Arhan et al., 2002; Smith et al., 2010), as the contours tighten close to Maurice Ewing Bank 

(MEB), identifying the location of the PF, before spreading out into the cyclonic circulation of 
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the GB. The observations of sea surface dynamic height in the vicinity of the NSR supported 

modelled flow patterns (Trathan et al., 1997) for this region (Fig. 1.7). 

6.5. Macronutrients 

Near-surface (0-50 m) silicate (hereinafter SiO4) concentrations showed a strong northward 

gradient, decreasing by 70 µmol kg-1 from the SB to the GB (Table 6.2). The distributions of 

near-surface nitrate (hereinafter NO3) and phosphate (hereinafter PO4) had a more variable 

decrease across the AAZ. Distinct depletion of all three macronutrients was observed in 

regions of elevated chlorophyll-a in the northern ACC, over the NSR and in the GB (Fig. 6.2). 

Average WW concentrations for silicate, nitrate and phosphate were 47.9, 28.9 and 1.96 µmol 

kg-1, respectively (n = 16, Table 6.3). These values are similar to winter and pre-bloom surface 

values measured previously in this region (Whitehouse et al., 2008).  

 

6.6. Iron 

Moderate concentrations of dissolved iron (dFe), 0.20-0.40 nM, were observed in the vicinity 

of the SACCF up to 57°S (Fig. 6.4e). The lowest concentrations, < 0.01 nM, were observed 

over the NSR. High concentrations (≥ 0.50 nM) were observed between the NSR and the GB, 

reaching a summer time maximum for dFe of 1.17 nM in the lower GB. 

 

 

 

 

 

 

 

Figure 6.4. (page 182) The latitudinal distribution of sea surface (a) salinity (red line) and 

temperature (SST, °C, blue line), (b) fugacity of CO2 (fCO2, µatm), (c) dissolved inorganic 

carbon (DIC, µmol kg-1), (d) total alkalinity (TA, µmol kg-1, solid line), (e) iron (nM) and (f) 

chlorophyll-a (chl-a, mg m-3) across the Antarctic Zone during summer 2008. The 

approximate location of the Southern Boundary (SB), Southern ACC Front (SACCF), high-

nutrient low-chlorophyll (HNLC) waters, the North Scotia Ridge (NSR) and the Georgia 

Basin (GB) are indicated.  
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Table 6.2. Mixed layer depth (MLD, m), temperature (°C), salinity, silicate (SiO4, µmol kg-1), 

phosphate (PO4, µmol kg-1) and nitrate (NO3, µmol kg-1) of the summer mixed layer for all 

stations in the AAZ from 59.14°S (station 21) to 52.63°S (station 53). The mean value for 

each station is shown (from values measured at n bottle depths up to the MLD) with the 

standard deviation (for stations where n > 2) and the difference (for stations where n = 2) in 

brackets. Stations 21, 28, 33, 41, 43, 44, 46 and 51 have interpolated nutrient concentrations 

from proximal stations with the same classification. The summer mixed layer depth (MLD) is 

defined as the depth where the potential density exceeds that measured at 10 m by 0.05 kg m-3 

(Brainerd and Gregg, 1995).  

Station n MLD Temperature Salinity SiO4 PO4 NO3 

  m °C  µmol kg-1 µmol kg-1 µmol kg-1 

21 2 29 1.09 (0.01) 33.85 (0.00) 71.0 (0.3) 1.34 (0.01) 22.4 (0.0) 

23 2 53 1.82 (0.10) 34.08 (0.00) 60.5 (0.3) 1.56 (0.01) 23.1 (0.1) 

25 5 47 1.68 (0.18) 34.01 (0.00) 63.7 (0.9) 1.63 (0.07) 22.5 (1.1) 

28 3 47 2.43 (0.01) 33.99 (0.00) 46.9 (0.8) 1.50 (0.02) 24.0 (0.5) 

30 4 55 2.62 (0.06) 33.89 (0.00) 30.4 (0.3) 1.64 (0.01) 23.5 (0.3) 

33 6 57 2.56 (0.53) 34.33 (0.01) 34.3 (0.3) 1.49 (0.01) 24.8 (0.2) 

35 4 67 2.91 (0.01) 33.87 (0.00) 16.5 (0.2) 1.61(0.01) 23.0 (0.1) 

37 7 61 3.18 (0.07) 33.83 (0.00) 3.5 (0.2) 1.26 (0.02) 19.7 (0.3) 

41 4 71 3.04 (0.08) 33.87 (0.00) 12.5 (0.3) 1.33 (0.01) 22.8 (0.1) 

42 3 63 3.36 (0.01) 33.87 (0.00) 4.6 (0.5) 1.39 (0.01) 20.8 (0.1) 

43 3 65 3.47 (0.07) 33.84 (0.00) 3.2 (1.0) 1.69 (0.04) 19.2 (0.5) 

44 3 65 3.46 (0.08) 33.84 (0.00) 3.7 (0.7) 1.18 (0.04) 19.2 (0.4) 

46 3 69 3.59 (0.02) 33.85 (0.00) 19.5 (0.8) 0.64 (0.03) 14.6 (0.1) 

48 6 67 3.30 (0.08) 33.82 (0.01) 12.8 (0.9) 1.12 (0.02) 17.6 (0.1) 

51 3 33 3.96 (0.21) 33.83 (0.00) 6.3 (1.0) 0.97 (0.10) 15.3 (0.8) 

53 3 21 4.02 (0.04) 33.81 (0.00) 0.0 (0.0) 0.93 (0.04) 13.6 (0.2) 
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Table 6.3. Winter mixed layer depth (WMLD, m), temperature (°C), salinity, silicate (SiO4, 

µmol kg-1), phosphate (PO4, µmol kg-1), nitrate (NO3, µmol kg-1), dissolved inorganic carbon 

(DIC, µmol kg-1) and total alkalinity (TA, µmol kg-1) of the winter mixed layer (representing 

the WW) for all stations in the AAZ from 59.14°S (station 21) to 52.63°S (station 53). The 

absolute value for each station is shown measured from 1 bottle at the depth of the potential 

temperature minimum (θmin). Stations 21, 28, 33, 41, 43, 44, 46 and 51 have interpolated 

nutrient concentrations from proximal stations with the same classification. 

Station WMLD θmin Salinity SiO4 PO4 NO3 DIC TA 

 m °C  µmol kg-1 µmol kg-1 µmol kg-1 µmol kg-1 µmol kg-1 

21 93 -1.39 34.25 83.2 1.99 31.6 2222 2330 

23 99 -0.35 34.33 79.3 1.99 29.9 2224 2331 

25 77 -0.28 34.24 73.1 2.01 28.2 2205 2325 

28 101 -0.16 34.20 63.7 2.06 31.7 2208 2321 

30 101 -0.22 34.07 59.5 2.07 29.1 2191 2307 

33 101 0.11 34.05 52.1 1.97 30.0 2191 2305 

35 99 0.14 33.95 29.4 2.03 28.6 2185 2301 

37 97 -0.18 33.95 28.7 1.87 27.5 2165 2296 

41 125 0.32 34.01 27.0 1.83 28.4 2175 2293 

42 107 0.12 33.95 31.3 1.94 28.8 2178 2294 

43 167 0.49 34.04 33.5 2.20 28.8 2175 2303 

44 133 0.53 34.00 27.1 1.66 26.4 2171 2299 

46 135 0.37 34.03 45.9 1.76 28.9 2185 2301 

48 119 0.37 34.02 42.0 2.08 30.8 2194 2297 

51 121 0.17 34.01 51.7 1.94 27.8 2193 2289 

53 131 -0.29 34.05 47.8 1.93 26.9 2190 2287 
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6.7. Satellite and shipboard chlorophyll-a  

 

Figure 6.5. Monthly composites of MODIS chlorophyll-a (mg m-3) for the Scotia Sea during 

summer (December 2007-February 2008) and early autumn (March 2008). Depth contours are 

at 1000 and 2000 m (GEBCO, 2001). 
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MODIS provided large-scale coverage of the surface chlorophyll-a concentrations of the 

Scotia Sea, before, during and after JR177 in austral summer 2008 (Fig. 6.5). Low 

chlorophyll-a concentrations (< 0.20 mg m-3) persisted for much of the AAZ from October to 

March. This was confirmed by shipboard observations, where chlorophyll-a concentrations 

were 0.16 mg m-3 between stations 30 and 33 on 22 January. Satellite images from October to 

December 2007 showed the development of extensive phytoplankton blooms over the NSR 

and in the GB. The surface expression of the bloom over the NSR had largely dispersed to the 

northwest and northeast by January 2008, leaving an intense patch to the south of the NSR in 

the ACC.  

In contrast, the South Georgia bloom reached maximum intensity by January 2008 and 

gradually extended to the north and east, along the contours of the SACCF and PF (Fig. 6.2) 

before declining in March. The RRS James Clark Ross reached the GB in early February, 

shortly after the maximum extent of the bloom. Shipboard observations revealed a summer 

chlorophyll-a maximum of 11.14 mg m-3 in the lower GB. From inspection of satellite 

chlorophyll-a, the duration of the South Georgia bloom was estimated at 90 ± 14 days, 

concurring with estimates for summer bloom duration of 82-122 days by Ward et al. (2002). 

The uncertainty was determined subjectively, based on the presence of a smaller bloom for 

part of October 2007 and February 2008. 

The vertical distribution of chlorophyll-a up to 120 m showed that concentrations were 

typically lower than 1 mg m-3 throughout the upper water column from 59°S to 55°S, 

representing a true HNLC belt at the surface in the ACC (Fig. 4.6). An exception to this, were 

subsurface peaks of chlorophyll-a at about 70 m, close to 55°S, between stations 30 and 33. 

Enhanced concentrations were observed in the near surface waters of the phytoplankton 

patches in the ACC, over the NSR and in the GB.  

 

6.8. Phytoplankton species distribution 

Two main phytoplankton clusters were identified in the southern and northern regions of the 

AAZ (Korb et al., 2010). From the SB to the SACCF, the species composition was dominated 

by naked, heterotrophic dinoflagellates with very few diatoms. In waters north of the SACCF 

to the NSR and the GB, the community shifted to one dominated by diatoms, with the greatest 
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abundance to the northwest of South Georgia. Diatom dominated phytoplankton communities 

have consistently been found around South Georgia during austral summer (Korb et al., 2008).  

Table 6.4. Dissolved inorganic carbon (DIC, µmol kg-1), total alkalinity (TA, µmol kg-1), 

salinity normalised DIC (DIC34, µmol kg-1) and salinity normalised TA (TA34, µmol kg-1) of 

the summer mixed layer and surface water fCO2 (µatm) and chlorophyll-a (chl-a, mg m-3) for 

all stations in the AAZ from 59.14°S (station 21) to 52.63°S (station 53). The mean value for 

DIC, DIC34, TA and TA34 is shown (from values measured at n bottle depths up to the depth of 

the mixed layer) with the standard deviation (for stations where n > 2) and the difference (for 

stations where n = 2) in brackets.  

Station n DIC TA DIC34 TA34 fCO2 Chl-a 

  µmol kg-1 µmol kg-1 µmol kg-1 µmol kg-1 µatm mg m-3 

21 2 2161 (8) 2299 (4) 2177 (8) 2326 (4) 332 2.06 

23 2 2176 (0) 2315 (8) 2184 (0) 2328 (8) 360 0.86 

25 5 2166 (7) 2311 (2) 2177 (7) 2328 (2) 345 0.62 

28 3 2166 (2) 2309 (1) 2177 (2) 2327 (1) 386 0.16 

30 4 2155 (1) 2295 (4) 2158 (1) 2301 (4) 379 0.16 

33 6 2159 (5) 2298 (4) 2162 (5) 2303 (4) 382 0.16 

35 4 2142 (4) 2295 (3) 2147 (4) 2303 (3) 371 0.63 

37 7 2120 (7) 2293 (2) 2126 (7) 2303 (2) 320 1.93 

41 4 2144 (1) 2290 (0) 2148 (1) 2298 (0) 348 0.49 

42 3 2125 (2) 2288 (1) 2129 (2) 2296 (1) 335 1.18 

43 3 2121 (6) 2292 (2) 2126 (6) 2302 (2) 320 1.51 

44 3 2127 (7) 2297 (6) 2133 (7) 2307 (6) 319 1.62 

46 3 2109 (2) 2298 (0) 2114 (2) 2307 (0) 298 5.37 

48 6 2124 (2) 2288 (2) 2130 (2) 2298 (2) 297 2.28 

51 3 2098 (2) 2277 (6) 2104 (2) 2287 (6) 289 7.68 

53 3 2090 (6) 2301 (1) 2097 (6) 2313 (1) 255 11.14 
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Figure 6.6. Maps of the (a) ∆fCO2 (µatm) and (b) dissolved inorganic carbon (DIC, µmol kg-1) 

along the transect. The location of the hydrographic stations (Table 6.1) are shown (b). 

Bathymetry as in Figure 6.1.  
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6.9. The carbon dioxide system 

From 58°S to 56°S, sea surface fCO2 concentrations formed a band of moderate 

supersaturation near station 33, where ∆fCO2 was about 20 µatm (Fig. 6.6). Waters of the GB 

had strong levels of undersaturation with a summer minimum of ∆fCO2 reaching -121 µatm, 

between stations 51 and 53. The concentration of sea surface DIC predominantly followed the 

trend of fCO2, decreasing by nearly 100 µmol kg-1 across the AAZ (Fig. 6.4c). The distribution 

of sea surface alkalinity showed a general decreasing trend to the north with large variability 

close to the SB and in the GB (Fig. 6.4d). Concentrations of DIC and alkalinity reached 

summer maxima of 2176 and 2314 µmol kg-1, respectively, close to the SACCF.  

Sea surface normalised DIC (DIC34) followed the trend in DIC concentrations (Table 6.4). 

Upon normalisation, the variation in TA (TA34) across the AAZ was largely reduced. 

Exceptions were stations 21 to 28 near the SACCF and stations 51 and 53 in the GB. WW 

DIC (Table 6.3) showed a northward decrease of up to 50 µmol kg-1, up to the NSR. From the 

NSR and into the GB, DIC increased to values close to 2190 µmol kg-1 at stations 51 and 53. 

WW TA also showed a strong northward gradient, decreasing from values close to 2330 µmol 

kg-1 at the SB to less than 2290 µmol kg-1 in the GB. The higher DIC concentration at the more 

southerly stations is consistent with the previously observed latitudinal gradient in DIC 

(Bakker et al., 1999; Jabaud-Jan et al., 2004; Shim et al., 2006; Jouandet et al., 2008).  

 

6.10. DIC deficits and air-sea CO2 fluxes 

The DIC deficit increased from 2.2 ± 0.3 mol m-2 in the HNLC waters (upstream) to 4.6 ± 0.8 

mol m-2 in the core of the bloom (downstream) in the GB (Table 6.5). Summation of the DIC 

deficit in each of the four sub-regions (HNLC, ACC, NSR and GB) provides a total DIC 

deficit of 9.7 ± 0.9 Tg C for the AAZ of the Scotia Sea during summer 2008.   

 

Fluxes at atmospheric pressure with seasonally averaged wind speeds from QuikSCAT 

(section 2.15) were calculated using the Nightingale et al. (2000) relationship for short term 

winds. Seasonal wind speed averages were calculated by taking an average of the wind speed 

(measured twice daily) at the position of each ∆fCO2 value along the transect. The use of 

seasonal winds gave more representative CO2 fluxes on seasonal timescales and hence present 
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a more realistic picture of CO2 exchange for the duration of the bloom (90 days). A discussion 

of fluxes using in situ and seasonally averaged is presented in Chapter 7 (section 7.10.1).  

 

During summer 2008, the upstream HNLC waters represented an oceanic source of CO2 2.6 ± 

0.9 mmol m-2 day-1 (Table 6.5). The ACC bloom region 2° north of the HNLC waters was a 

strong sink for atmospheric CO2 of -10.3 ± 0.0 mmol m-2 day-1. The strongest summer CO2 

uptake of -15.1 ± 5.7 mmol m-2 day-1 occurred in the GB. 

 

Figure 6.7. Vertical profiles of upper water column (a, b, c, d) dissolved inorganic carbon 

(DIC, µmol kg-1) and (e, f, g, h) potential temperature (θ, °C) for HNLC stations 30 and 33 (a 

and e), ACC station 37 (b and f), North Scotia Ridge (NSR) stations 43, 44, 46 and 48 (c and 

g) and Georgia Basin (GB) stations 51 and 53 (d and h).  
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Table 6.5. The coverage (km2), duration (days), mixed layer depth (MLD, m), depth integrated 

chlorophyll-a ([chl-a]100 m) over 100 m (mg m-2), dissolved inorganic carbon in the summer 

mixed layer (DICsummer, µmol kg-1), DIC in the Winter Water (DICwinter, µmol kg-1), seasonal 

change in DIC (∆DIC, µmol kg-1), DIC deficit integrated over 100 m (mol m-2), total DIC 

deficit (Tg C), ∆fCO2(sea-air) (µatm), CO2 flux (mmol m-2 d-1) , CO2 flux (mol m-2) and total 

flux (Tg C) for the high-nutrient low-chlorophyll (HNLC) stations 30 and 33 (n = 2), Antarctic 

Circumpolar Current (ACC) station 37 (n = 1), North Scotia Ridge stations 43, 44, 46 and 48 

(n = 4) and the Georgia Basin (GB) stations 51 and 53 (n = 2). The mean value is presented 

from all data in each region with the standard deviation in parentheses. Fluxes were calculated 

using seasonally averaged QuikSCAT winds, by taking an average of the wind speed 

(measured twice daily) at the position of each ∆fCO2 value, and the Nightingale et al. (2000) 

relationship. Tg C is 1012 g C.  

 HNLC ACC NSR GB Total 

Latitude -58.0/-55.5 -55.5/-54.5 -54.5/-53.5 -53.5/-51.5 
 

Longitude -45.0/-37.0 -44.0/-40.0 -40.0/-35.0 -42.0/-37.0  

Area (103 km2) 124 28 36 80 268 

Time (days) 90 (14) 90 (14) 90 (14) 90 (14)  

MLD (m) 56 (2) 61 (0) 67 (2) 27 (12)  

[chl-a]100 m (mg m-2) 11.6 (0.5) 84.9 (0.0) 123.9 (69.8) 215.0 (29.2)  

DICsummer (µmol kg-1) 2157 (5) 2120 (0) 2120 (8) 2094 (8)  

DICwinter (µmol kg-1) 2191 (0) 2165 (0) 2181 (10) 2192 (3)  

∆DIC (µmol kg-1) -34 (5) -45 (0) -61 (15) -98 (5)  

DIC deficit (mol m-2) 2.2 (0.3) 2.4 (0.0)  2.8 (0.3) 4.6 (0.8)  

Total DIC deficit (Tg C) 3.2 (0.4) 0.8 (0.0) 1.2 (0.1) 4.4 (0.8) 9.7 (0.9) 

∆fCO2 (µatm) 16 (5) -61 (0) -59 (12) -96 (35)  

CO2 flux (mmol m-2 d-1) 2.6 (0.9) -10.3 (0.0) -9.2 (1.8) -15.1 (5.7)  

CO2 flux (mol m-2) 0.23 (0.1) -0.9 (0.1) -0.8 (0.2) -1.4 (0.6)  

Total CO2 flux (Tg C) 0.3 (0.1) -0.3 (0.0) -0.4 (0.1) -1.3 (0.5) -1.7 (0.5) 
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6.11. HNLC waters upstream of South Georgia 

Satellite measurements of chlorophyll-a have greatly improved the understanding of 

phytoplankton dynamics by enhancing the spatial and temporal coverage of data that already 

existed from shipboard surveys (Korb et al., 2004). Monthly MODIS composite images from 

October 2007 to March 2008 indicated low phytoplankton activity at stations 30 and 33 in the 

central ACC (Figs. 6.2 and 6.4f). However, shipboard data collected along this part of the 

transect in January 2008 revealed deep chlorophyll-a maxima (DCM) at both stations at about 

70 m (Fig. 4.6). This is not an uncommon occurrence in open waters of the ACC (Holm-

Hansen, 2004a; Holm-Hansen et al., 2005; Whitehouse et al., 2008). Depth integrated 

chlorophyll-a to 100 m at these stations was 11.6 ± 0.5 mg m-2, showing that these stations 

held a small standing stock of phytoplankton (Table 6.5). Compared to the Winter Water, all 

three macronutrients had been reduced in the upper water column, with depletions in silicate 

of 20-30 µmol kg-1 (Tables 6.2 and 6.3). This is consistent with observations of increased 

diatom abundance north of the SB (Korb et al., 2010). The presence of phytoplankton in this 

region had reduced summer DIC concentrations by 34 ± 5 µmol kg-1 and created a sizable DIC 

deficit of 2.2 mol m-2 by January (Table 6.5). Sea surface fCO2 did not reflect this modest 

phytoplankton activity as surface water warming counteracted the biological carbon uptake 

(Fig. 6.6a).  

 

However, based on surface distributions of fCO2, DIC, macronutrients and chlorophyll-a this 

region represented unproductive waters compared to the northern ACC, NSR and the GB. The 

standing stocks of chlorophyll-a were the lowest observed for the whole AAZ. Henceforth, the 

relatively unproductive site in the central ACC was classified as HNLC waters (stations 30 

and 33) and the most productive sites in the core of the South Georgia bloom (stations 51 and 

53), with a continuum of phytoplankton activity in between, especially in the northern ACC 

(station 37) and over the NSR (stations 43, 44, 46 and 48). Low, but persistent, phytoplankton 

activity in moderate mixed layer depths of 55-57 m appeared unproductive by satellite 

detection (Fig. 6.2). It has been suggested that satellite chlorophyll-a concentrations 

underestimate sea surface chlorophyll-a and marine productivity in this region (Schlitzer, 

2002; Korb and Whitehouse, 2004).     
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Figure 6.8. Potential temperature (θ, °C) as a function of salinity for the 16 hydrographic 

stations in the Antarctic Zone (blue). Highlighted profiles (red) indicate station groups (a) 

Georgia Basin (GB) stations 51 and 53, (b)North Scotia Ridge (NSR) stations 43, 44, 46 and 

48, (c) ACC station 37 and (d) HNLC stations 30 and 33. The temperature-salinity profile for 

the Southern Boundary (station 21) is highlighted in black to indicate the transition into waters 

of the Weddell-Scotia Confluence. Identified water masses (a) are Antarctic Surface Water 

(AASW), Upper Circumpolar Deep Water (UCDW), Lower Circumpolar Deep Water 

(LCDW) and Winter Water (WW) after Meredith et al. (2003b) and Naveira Garabato et al. 

(2002a).    
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6.12. Phytoplankton blooms of the ACC 

In contrast to the HNLC waters, satellite and shipboard surface chlorophyll-a concentrations 

identified elevated phytoplankton biomass in the northern ACC on 25 January (station 37) 

(Figs. 6.2 and 6.4f). Chlorophyll-a concentrations approached bloom conditions at 1.93 mg m-

3 with a subsequent decrease in all three macronutrients, most notably silicate by over 30 µmol 

kg-1 compared to the HNLC stations (Table 6.2). This was accompanied by a reduction in 

mixed layer DIC by over 30 µmol kg-1 and surface water fCO2 by nearly 60 µatm (Table 6.4), 

despite an increase in sea surface temperature of up to 0.59 °C (Table 6.2). These conditions 

created a patch of CO2 undersaturation (Fig. 6.6a) and a strong sink of atmospheric CO2 of -

10.3 ± 0.0 mmol m-2 day-1 (Table 6.5). 

 

Station 37 is located just south of the NSR, with a meander in the SACCF to the east and 

detrainment from a PF jet approaching from the west (Fig. 6.2). The influence of the SACCF 

can be seen in the potential temperature-salinity profile as compared to waters over the NSR, 

cooler, more saline water mixed within the UCDW, below the θmin (Fig. 6.8c). The close 

proximity to frontal waters on either side could provide a source of nutrients and iron to the 

surface and influence the carbonate characteristics at this location, through biological 

utilization of DIC and/ or advection. It is hypothesised that this enhancement of production 

was due to localised iron enrichment, from either atmospheric or oceanic origin, where 

concentrations of dFe were 0.05 nM (Fig. 6.4e). Potential source regions of aeolian iron-rich 

dust are the arid and semi-arid areas of Patagonia, South America (Fung et al., 2000). 

Comparisons of aerosol optical depth, chlorophyll-a and simulated dust deposition revealed a 

strong correlation between aeolian derived iron and phytoplankton productivity in surface 

waters of the ACC (40-60°S) downwind from Patagonia (Erickson et al., 2003). However, 

atmospheric inputs are estimated to be small in the Southern Ocean (Jickells et al., 2005), 

although few data currently exist in this region. Oceanic sources are most likely and include 

advection (Nolting et al., 1991; Johnson et al., 1999; Sanudo-Wilhelmy et al., 2002; Dulaiova 

et al., 2009; Ardelan et al., 2010) and mesoscale frontal dynamics (Naveira Garabato et al., 

2002b; Strass et al., 2002). 
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Figure 6.9. Hydrographic station (5 m sample) and underway sea surface normalised alkalinity 

(TA34, µmol kg-1) as a function of sea surface normalised dissolved inorganic carbon (DIC34, 

µmol kg-1) collected during cruise JR177 for (a) all samples, coloured according to latitude, 

(b) samples in the Weddell-Scotia Confluence and (c) samples from the Antarctic Zone. Key 

hydrographic stations are identified. The theoretical trends (b, insert) show the variation of 

DIC34 and TA34 with respect to certain biogeochemical processes, adapted from Zeebe and 

Wolf-Gladrow (2001).  
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6.13. The South Georgia bloom 

The marine carbon cycle varied considerably upstream, in the HNLC waters, and downstream 

of South Georgia, in the GB, during summer 2008 (Figs. 6.4-6.7). Extensive phytoplankton 

blooms covered the GB and biological carbon uptake reduced DIC and fCO2, creating a 

substantial sink for atmospheric CO2 (Table 6.5). Inspection of temperature-salinity profiles 

(Fig. 6.8) indicated the presence of the same water masses at HNLC stations (30 and 33) and 

at South Georgia bloom stations (51 and 53), with comparable winter mixed layer 

characteristics (Table 6.3). Stations 30 and 33 were therefore selected as suitable unproductive 

sites in order to investigate the effects of the South Georgia bloom on the marine carbon cycle 

of the Scotia Sea.  

The circulation features of the PF and SACCF in the vicinity of the NSR are governed by the 

bathymetry and in turn greatly influence the structure of the phytoplankton bloom in the GB 

(Figs. 6.1 and 6.2). The South Georgia bloom was initiated in October 2007 and reached 

maximum intensity in January 2008 (Fig. 6.5). The most intense patch of chlorophyll-a was 

confined to the GB where shipboard measurements indicated a summer maximum of 11.14 mg 

m-3 (Table 6.4), which is of comparable magnitude to South Georgia blooms in austral 

summer 2000, 2002, 2003, 2005 (Holm-Hansen et al., 2004b; Korb et al., 2004; Korb et al., 

2008). Bloom duration (90 days) is likely to influenced by, among other factors, water column 

stability, which is largely controlled by circulation features of the GB and the long residence 

time of water at this location (Brandon et al., 2000; Meredith et al., 2005). Warm sea surface 

temperatures (Fig. 6.4a) and shallow mixed layers (Table 6.2) increased the water column 

stability in the GB and promoted phytoplankton activity.  

Previous studies in the South Georgia bloom during three austral summers (2002, 2003 and 

2005) found that the euphotic depths were equal to or deeper than the MLD, indicating that 

light is not usually limiting for phytoplankton growth in this region during the summer (Korb 

et al., 2008). Chlorophyll-a concentrations were high in the upper water column across the GB 

(Fig. 4.6), with a high standing stock of chlorophyll-a of 215.0 ± 29 mg m-2 in the top 100 m 

(Table 6.5). Comparable phytoplankton stocks of 295.0 ± 50 mg m-2 were measured in the 

upper 100 m of the GB in summer 2003 (Korb et al., 2005). Silicate had become completely 

exhausted in the mixed layer (Table 6.2), consistent with the presence of a diatom dominated 

bloom (Korb et al., 2010).    
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A distinct latitudinal trend can be observed for salinity normalised DIC (DIC34), where 

concentrations were highest in the south (Fig. 6.9a). The lowest DIC34 values occurred at 

around 53°S, downstream of South Georgia in the GB. The distribution in TA34 shows that a 

range of values were observed at all latitudes in contrasting regions. Data collected in the 

Weddell-Scotia Confluence (WSC) are included for comparison (Fig. 6.9b) and are discussed 

in Chapter 5.  

Summer biological carbon uptake in the South Georgia bloom had reduced winter DIC by 98 

± 5 µmol kg-1, representing a factor three increase in the seasonal DIC depletion compared to 

the HNLC waters (Table 6.5). This was accompanied by substantial CO2 undersaturation of 96 

± 35 µatm (Fig. 6.6a). Comparisons of DIC deficits and air-sea CO2 fluxes in upstream and 

downstream waters gives a further indication of the effect of South Georgia bloom on the 

marine carbon cycle of the Scotia Sea. Although the HNLC region was an oceanic CO2 source 

of 2.6 ± 0.9 mmol m-2 day-1, a DIC deficit of 2.2 ± 0.3 mol m-2 existed in the upper 100 m 

through modest biological activity (section 6.11). The DIC deficit increased two-fold to 4.6 ± 

0.8 mol m-2 in waters downstream of South Georgia, creating the largest summertime CO2 sink 

of -15.1 ± 5.7 mmol m-2 day-1. Air-sea exchange resupplied the summer mixed layer with 1.4 

± 0.6 mol m-2 of atmospheric CO2 in the core of the South Georgia bloom over the 90 day 

duration. This corresponded to 30% of the DIC deficit that had been created during the 

summer. This resupply of DIC is higher than the 23-24% determined for the bloom 

downstream of the Crozet islands (Bakker et al., 2007), highlighting the strength of the South 

Georgia bloom in atmospheric CO2 uptake.  

Previous shipboard campaigns (Korb et al., 2008; Whitehouse et al., 2008) and satellite 

chlorophyll-a data (Korb et al., 2004) indicated that the South Georgia bloom is a recurrent 

feature and hence, based on this research, a total of 1.3 ± 0.5 Tg C is transferred from the 

atmosphere to the ocean each summer. However, the DIC deficit observed in early February 

(Table 6.1) is likely to persist after decay of the bloom, which was determined to occur in 

March from inspection of satellite derived chlorophyll-a concentrations (Fig. 6.5). Further 

oceanic uptake of atmospheric CO2 would take place in the ensuing DIC deficit, thereby 

enhancing the seasonal biological carbon uptake (determined above) downstream of South 

Georgia.         
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Elevated concentrations of dFe, up to 1.17 nM, in surface waters of the bloom, compared to 

the rest of the AAZ, provided further evidence for natural iron fertilisation downstream of 

South Georgia (Fig. 6.4e). As surface waters were depleted in silicate, continuation of the 

diatom bloom was only possible by nutrient replenishment or a shift in community structure to 

non-siliceous species. If seeding by iron and/ or silicate is a key factor then sources included 

upwelled waters of the ACC flowing over the NSR, interaction of the SACCF with other 

bathymetric features and run-off from South Georgia (Korb and Whitehouse, 2004; Korb et 

al., 2004; Ward et al., 2002; Whitehouse et al., 2008).  

Bathymetric features such as the NWGR have been implicated in enhanced meandering and 

eddy shedding of the SACCF, advecting nutrients across the frontal boundary and retaining 

circulating waters in the GB for several months (Thorpe et al., 2002). The long residence times 

of water over the GB would allow iron to be supplied to the upper ocean prior to the growing 

season. The spatial and temporal dynamics of the bloom indicated that iron enrichment from 

Patagonian dust deposition is not a major control on enhanced biological productivity 

downstream of South Georgia (Meskhidze et al., 2007) and the oceanic iron sources and 

dominant. However, the limited data in this region highlight the importance of detailed iron 

measurements in the vicinity of South Georgia (ongoing investigation).  

6.14. Southern Ocean blooms and CO2 uptake 

6.14.1. Island blooms  

The impact of Southern Ocean island blooms on the marine carbon cycle can be examined by 

comparing waters within the bloom and waters remote from it (Bakker et al., 2007; Jouandet 

et al., 2008; section 6.13). Enhanced marine productivity and biological carbon uptake has 

been observed downstream of the sub-Antarctic islands of Crozet (45.5-47.0°S 49.0-53.0°E) 

and Kerguelen (48.5-49.7°S 68.5-70.5°E) during austral spring and summer (Bakker et al., 

2007; Jouandet et al., 2008) (Fig. 6.10).  
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Figure 6.10. Area (km2), mixed layer depth (MLD, m), seasonal change in dissolved inorganic 

carbon (∆DIC, µmol kg-1), DIC deficit (mol m-2), ∆fCO2(sea-air) (µatm) and the CO2 flux 

(mmol m-2 d-1) for (a) core bloom and (b) high-nutrient low-chlorophyll (HNLC) regions at 

South Georgia (this research), Kerguelen Island (Jouandet et al., 2008) and the Crozet islands 

(Bakker et al., 2007). DIC deficit is the average summer deficit in DIC for the upper 100 m 

(South Georgia and Crozet) and relative to the temperature minimum (Kerguelen). 

The contrasting upstream, HNLC waters for the three islands showed summer depletion in 

DIC, which has been attributed to low but persistent marine productivity in sub-surface waters 

(Bakker et al., 2007; section 6.11). This highlighted the limitation of using satellite derived 

surface chlorophyll-a alone as an indicator for productivity and associated biological carbon 

uptake. Despite summer reductions in DIC, sea surface fCO2 was close to the atmospheric 
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value for each of the unproductive sites and HNLC waters upstream of South Georgia and 

Kerguelen were slight sources of CO2 of 2.6-2.7 mmol m-2 day-1 (Fig. 6.10b). 

Compared to the blooms associated with Crozet and Kerguelen, biological carbon uptake in 

the South Georgia bloom utilised up to 40 µmol kg-1 more DIC during the summer, creating 

the largest DIC deficit of 4.6 ± 0.8 mol m-2 (Fig. 6.10a). The DIC deficit appeared to increase 

with decreasing latitude. Subsequently, the fCO2 undersaturation in the South Georgia bloom 

is greater by 76 and 40% compared to Crozet and Kerguelen blooms, respectively.  

The spatial and temporal characteristics of the South Georgia bloom is similar to that observed 

at Kerguelen (Blain et al., 2007) and evidence suggests that it is also sustained by an iron 

supply, which becomes rapidly exhausted by the resident diatom community (Korb et al., 

2008; Korb et al., 2010). With the greatest spatial coverage (80,000 km2), combined with long 

duration (90 ± 14 days), the South Georgia bloom created the largest summer DIC deficit of 

4.4 ± 0.8 Tg C, in comparison to the blooms of Kerguelen (2.4 ± 1.0 Tg C) and Crozet (2.7 ± 

0.1 Tg C), and subsequently removed 1.3 ± 0.5 Tg C from the atmosphere. 

6.14.2. A Southern Ocean perspective 

In the context of other blooms in the Southern Ocean, only the Ross Sea (Bates et al., 1998; 

Sweeney et al., 2000) had a greater seasonal DIC deficit compared to South Georgia to date 

(Table 6.6). It must be noted, however, that DIC deficits determined at the height of the 

growing season (January-February) are expected to be larger than those measured at the 

beginning (October) and at the end (March). Data in Table 6.6 and timeseries studies 

(Sweeney et al., 2000) show this to be largely true.      

 

 

Table 6.6. (page 201) The location, year, month, mixed layer depth (MLD, m), ∆fCO2(sea-air) 

(µatm) and DIC deficit (mol m-2) for a selection of phytoplankton blooms in the Southern 

Ocean. Method for determination of DIC deficit: 1DIC deficit in the upper 100 m, 2DIC deficit 

relative to the temperature minimum, 3DIC deficit in the summer mixed layer, 4net community 

production, 5from nitrate deficits relative to the temperature minimum. No data is represented 

by -. 
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Location Year Month MLD ∆fCO2 DIC deficit Reference 

   m µatm mol m-2  

Weddell Sea 

(60°S 0°W) 

1972 Jan 60/110 - 1.75 Jennings et al. (1984) 

Pacific sector 

(48-62°S 65°E) 

1992 Feb-Mar - - 2.54 Minas and Minas (1992) 

Polar Front 

(47-60°S 6°W) 

1992 Nov 80 -21 1.44 Bakker et al. (1997) 

Seasonal ice zone 

(63-69°S 30-150°E)  

1993 Feb-Mar 40/60 - 0.9/3.73 Ishii et al. (1998) 

Casey Bay 

(69°S 40°E) 

1993 Feb - - 1.7/2.83 Ishii et al. (1998) 

Prydz Bay 

(70°S 70-80°E) 

1993 Feb-Mar 5 -250 1.3/4.03 Ishii et al. (1998) 

Gibson and Trull (1999) 

Pacific sector 

(67-70°S 110-170°E) 

1994 

1995 

Sept-Mar 25/65 -1/-18 0.8-2.84 Rubin et al. (1998) 

Ross Sea 

(74-78°S 163-187°E) 

1994 

1995 

Oct-Feb 10/80 -80/-150 1.2/10.81 Bates et al. (1998) 

Sweeney et al. (2000) 

Marginal ice zone 

(64-65°S 140°W) 

1994 

1995 

Dec-Jan 10/20 -35 0.3/2.52 Ishii et al. (2002) 

Scotia Sea 

(57-60°S 52°W) 

2001 Dec 30/70 -8/-13 1.0/1.24 Shim et al. (2006) 

Weddell Sea  

(54-66°S 17-23°E) 

2003 Jan - - 2.02 Geibert et al. (2010) 

Crozet islands 

(45-47°S 49-53°E) 

2004 Nov-Dec 22/85 -55 3.41 Bakker et al. (2007) 

Kerguelen Island 

(50-52°S 70-74°E) 

2005 Jan-Feb 70 -71 4.42 Jouandet et al. (2008) 

Weddell Sea 

(63-70°S 16-46°W) 

2005 Mar - - 1.1/2.32 Hoppema et al. (2007) 

South Georgia 

(52-54°S 38-42°W) 

2008 Feb 27 -96 4.61 this research 
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6.15. Conclusion 

The impact of the South Georgia phytoplankton bloom on the marine carbon cycle of the 

Scotia Sea has been investigated during summer 2008. Shipboard and satellite surface 

chlorophyll-a concentrations were used to determine the location of stations within the core of 

the bloom and stations that represented HNLC waters. Data collected during cruise JR177 

illustrated some of the limitations of using satellite chlorophyll-a as an indicator of marine 

productivity. The ‘unproductive’ HNLC stations held a small standing stock of chlorophyll-a 

and had a summer DIC deficit of 2.2 ± 0.3 mol m-2. This suggests that HNLC waters of the 

ACC are more productive than perceived, as suggested by Bakker et al. (2007). 

Extensive diatom blooms covered the GB by summer and are closely constrained by the 

bathymetry of the region. DIC deficits in the upper 100 m doubled from 2.2 ± 0.3 mol m-2 

upstream to 4.6 ± 0.8 mol m-2 downstream of the South Georgia. The substantial biological 

carbon uptake created an oceanic sink for atmospheric CO2 of 15.1 ± 5.7 mmol m-2 d-1, 

corresponding to a total transfer of 1.3 ± 0.5 Tg C from the atmosphere to the upper ocean 

during summer 2008.  

Sea surface distributions of iron across the AAZ provided evidence for natural iron 

fertilisation downstream of South Georgia. This scenario is very similar to the naturally iron 

fertilised blooms of the sub-Antarctic islands of Kerguelen and Crozet. Despite smaller in situ 

CO2 sinks due to slighter wind speeds, the South Georgia bloom was the strongest island 

bloom, ascribed to the largest bloom extent of 80,000 km2 and long duration of 90 days. 

Across the entire bloom, the summertime DIC deficit in the upper ocean was 4.4 ± 0.8 Tg C, 

which superseded the blooms of Kerguelen (2.4 ± 1.0 Tg C) and Crozet (2.7 ± 0.1 Tg C).  

For a total DIC deficit of 9.7 ± 0.9 Tg C along the Scotia Sea transect from 58.0-51.5°S, CO2 

uptake resupplied the upper ocean with 1.7 ± 0.5 Tg C. This emphasized the significance of 

the South Georgia bloom in the marine carbon cycle of this region, which accounted for 76% 

of the total uptake of atmospheric CO2 in the Scotia Sea during summer 2008. In a Southern 

Ocean context, the summertime DIC deficit of the South Georgia bloom is the largest reported 

to date in non-ice covered waters of the Southern Ocean. A thorough investigation of natural 

iron enrichment is essential to fully understand the controls on phytoplankton biomass and 

biological carbon uptake in the complex environment of the Scotia Sea.  
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7. Seasonal variability in sea ice, blooms and carbonate 

chemistry: the role of the Scotia Sea in CO2 uptake 

and ocean acidification  

7.1. Abstract 

Seasonal variations in the marine carbon cycle were investigated during austral spring 2006, 

summer 2008 and autumn 2009 along a 1,400 km transect in the Scotia Sea. Sea surface 

conditions present during the winter (2007) were inferred from parameters measured at the 

depth of the potential temperature minimum, within the Winter Water, during the summer 

(2008) occupation of the transect. The transect traversed through archetypal Southern Ocean 

environments: sea ice, hydrographic fronts, high-nutrient low-chlorophyll (HNLC) waters, 

waters of the Antarctic Circumpolar Current (ACC) and intense phytoplankton blooms 

downstream of islands and over submarine ridges. The first full seasonal cycle of sea surface 

fCO2 for the Scotia Sea is presented. The marine carbon cycle of the Southern Ocean in 

autumn is particularly unknown (Stoll et al., 1999) and the autumn data collected during this 

research help to address this issue. The novel seasonal fCO2 data allowed an assessment of the 

controls on the transition from winter CO2 source to summer CO2 sink and provided an insight 

into how the annual marine carbon cycle of the Southern Ocean might respond to future 

climate change.    

Satellite derived chlorophyll-a and sea ice cover were used alongside in situ physical and 

biogeochemical observations to examine the processes that govern the seasonal variations in 

the marine carbon cycle. Maximum sea ice cover extended from 63° to 57°S during winter 

2007 and thus defined the seasonal ice zone (SIZ) of the Scotia Sea. A strong correlation was 

observed between sea ice, ice edge phytoplankton blooms and subsequent undersaturation in 

sea surface fugacity of CO2 (fCO2). Moderate sea ice advance in winter and retreat by early 

spring set up conditions most favourable for phytoplankton blooms in the SIZ, transferring 

1.01 ± 0.72 Tg C from the atmosphere to the ocean during the three month lifetime of a bloom 

in spring and summer 2006-2007. Oppositely, the weaker bloom that followed the ‘icy’ winter 

of 2007 removed less than 0.01 ± 0.17 Tg C from the atmosphere with termination of the 

bloom after one month. Prior to bloom development, the SIZ acted as a potential strong CO2 



 

 

204 
 

source region due to the supersaturation of fCO2 beneath the sea ice. During the spring thaw, 

initial break-up of the sea ice allowed strong CO2 outgassing of up to 6.0 ± 2.7 mmol m-2 d-1. 

The Southern ACC Front and the Southern Boundary became transient CO2 sinks with the SIZ 

blooms that ‘tracked’ the southward retreating sea ice.  

The HNLC waters were a steady CO2 source of over 2.0-2.3 mmol m-2 d-1, due to seasonal 

warming from summer to autumn. Downstream of the island of South Georgia, extensive 

phytoplankton blooms developed each year and extended across the Georgia Basin (GB), 

reaching maximum strength in summer. This corresponded to substantial fCO2 undersaturation 

and created the strongest seasonal sink for atmospheric CO2 in the Scotia Sea of 12.0 ± 4.2 

mmol m-2 d-1 during summer. The effect of the Scotia Sea blooms dominated the summertime 

air-sea CO2 flux to create a net CO2 sink of 5.7 ± 1.4 mmol m-2 d-1. 

By the winter, the Scotia Sea was transformed into a CO2 source of 2.9 ± 1.0 mmol m-2 d-1 due 

to increased vertical mixing and upwelling, bringing Circumpolar Deep Water rich in 

dissolved inorganic carbon to the surface. Concomitant low pH and carbonate ion 

concentrations, particularly south of 59°S and in the GB make these regions vulnerable to 

wintertime aragonite undersaturation, possibly by 2030-2040. Below the thermocline in the 

GB, the water column was undersaturated with respect to aragonite, presenting conditions of 

early ocean acidification to calcifyers south of the Polar Front. 

The Scotia Sea from 62.6° to 49.5°S is a strong sink for atmospheric CO2 of 6.2 ± 2.1 mmol 

CO2 m-2 d-1 using seasonally averaged wind speeds and the Nightingale et al. (2000) 

parameterisation. The South Georgia bloom is a predictable element of this CO2 sink, 

transferring an average of 1.01 ± 0.41 Tg C from the atmosphere to the upper ocean each 

summer. The large inter-annual variability in the SIZ appears to impose constraints on the CO2 

sink. Future climate change is likely to affect the sea ice-CO2 relationship and the annual sinks 

of the SIZ could diminish. These observations emphasize the need to address seasonal 

variability in assessing the contribution of the Southern Ocean to the oceanic control of 

atmospheric CO2. The mosaic patterns in sea surface carbonate chemistry of the Scotia Sea 

create a natural mesocosm to infer the effects of seasonal variability on the distributions of air-

sea CO2 fluxes, pH and aragonite undersaturation for the contemporary and future Southern 

Ocean.  
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7.2.  Introduction  

The Southern Ocean is a complex region of physical, chemical and biological processes that 

have a large influence on the global marine carbon cycle but, compared to other ocean basins, 

remains relatively undersampled (Takahashi et al., 2009). The Scotia Sea, between the 

Weddell Sea to the south and the Polar Front (PF) to the north, epitomises the diverse 

environments of the Southern Ocean with the seasonal advance and retreat of sea ice, 

meandering hydrographic fronts, high-nutrient low-chlorophyll (HNLC) waters and waters of 

the Antarctic Circumpolar Current (ACC) in open ocean regimes, downstream of islands and 

over submarine ridges. The region is recognised as being important for the mixing of the deep 

water masses in the ACC (Naveira Garabato et al., 2002a) and as supporting valuable fisheries 

(Atkinson et al., 2001).  

 

In contrast to the low productivity waters of the ACC entering the Scotia Sea from Drake 

Passage, areas of high productivity are regularly observed in spring and summer at the 

receding ice edge (Smith and Nelson, 1986; Kang et al., 2001; Korb et al., 2005), in frontal 

regions (Jacques and Panouse, 1991; Comiso et al., 1993; Helbling et al., 1993; Tynan, 1998; 

Holm-Hansen and Hewes, 2004; Hewes et al., 2008) and downstream of bathymetric features 

(Moore and Abbot, 2000; Blain et al., 2001; Holm-Hansen et al., 2005; Pollard et al., 2007; 

Sokolov and Rintoul, 2007). Through the action of the biological carbon pumps, substantial 

carbon uptake in surface waters occurred across the Scotia Sea (Chapter 4), particularly in the 

marginal ice zone (Chapter 5) and downstream of South Georgia (Chapter 6) in summer 2008. 

Sea ice cover, vertical mixing and upwelling of Circumpolar Deep Water present contrasting 

conditions in the upper ocean (Chapter 4) during winter, generating large seasonal changes in 

sea surface pH and aragonite saturation. Aragonite undersaturation poses considerable threats 

to calcifying species, such as pteropods, which are the major aragonite producers in the 

Southern Ocean (Honjo, 2004; Hunt and Hosie, 2006). Aragonite undersaturation in seawater 

augments the dissolution of aragonite concretions and reduces the ability of marine organisms 

to secrete aragonite during the construction of exoskeletons (Feely et al., 2004; Orr et al., 

2005; Fabry et al., 2008).  
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With numerous crossings from October to May each year by RRS James Clark Ross, the 

Scotia Sea is an ideal ‘mesocosm’ to examine the contemporary marine carbon cycle across 

characteristic Southern Ocean regimes. This research investigates the seasonal cycling of 

inorganic carbon, air-sea CO2 fluxes, pH and aragonite saturation, in waters with sea ice cover, 

HNLC conditions, extensive phytoplankton blooms and the frontal waters of the Southern 

Boundary (SB), the Southern ACC Front (SACCF) and the PF (Fig. 7.1). The Scotia Sea is 

established as a ‘mosaic’ of carbonate chemistry and the contribution to the Southern Ocean 

carbon cycle is determined and projections of future ocean acidification are made. 

The 1,400 km transect across the Scotia Sea extended from 61.0°S at the South Orkney Islands 

to 49.5°S at the northern limit of the Antarctic Circumpolar Current (ACC) and the Antarctic 

Zone (AAZ). The transect was initiated by RRS James Clark Ross during the spring cruise 

JR161 (Table 7.1) in October-November 2006 from the South Orkney Islands (Fig. 7.1). The 

transect was repeated, and extended south to 62.6°S in the Weddell-Scotia Confluence (WSC) 

in January-February 2008, during the summer cruise JR177. The final occupation of the 

transect was conducted in March-April 2009, during the autumn cruise JR200. 

Table 7.1. The core seasonal cruises of the Scotia Sea. Data from each season is presented in 

colour, as specified in the colour code, to enable easy identification in the Figures. Start and 

end dates refer to the initial and final sea surface datum. *Winter start and end dates are based 

on summer JR177 station dates, back-dated to winter 2007, as no cruise took place.   

Season Cruise Year Colour code Start date End date Hydrographic stations 

Spring JR161 2006 Green 20 Oct 01 Dec 59 

Winter - 2007 Blue 08 Sept* 04 Oct* 24 

Summer JR177 2008 Yellow 02 Jan 17 Feb 59 

Autumn JR200 2009 Red 11 Mar 17 Apr 50 

 

The lowest sea surface temperatures and deepest mixed layers occurred annually in September 

(section 2.14). Carbonate parameters measured from samples collected in the Winter Water 

(WW), at the depth of the potential temperature minimum, during summer 2008 were used as 

proxies for the preceding winter i.e. sea surface conditions along the transect during 

September (winter) 2007. The dates of the JR177 WW samples were used to derive ‘start’ and 
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‘end’ dates for the winter season: the first station (5, Table 2.2) on 8 January corresponded to 

the first WW data on 8 September 2007 and the final station (53, Table 2.3) on 4 February 

2008 corresponded to the final WW data on 4 October 2007. The winter data completed the 

seasonal data set for Scotia Sea from 2006 to 2009. Each cruise is used to ‘represent’ 

conditions typical to a given season, specified here as winter (June, July, August), spring 

(September, October, November), summer (December, January, February) and autumn 

(March, April, May). 

 

Figure 7.1. A schematic of the Scotia Sea showing the approximate location of the repeat 

transect (dashed line) and the extended transect (dotted line) from JR177. Some important 

topographic features are identified: Antarctic Peninsula (AP), South Orkney Islands (SOI), 

South Scotia Ridge (SSR), South Sandwich Islands (SSI), North Scotia Ridge (NSR), South 

Georgia (SG), Northwest Georgia Rise (NWGR), Northeast Georgia Rise (NEGR), Georgia 

Basin (GB), Maurice Ewing Bank (MEB) and the Falkland Islands (FI). Antarctic 

Circumpolar Current (ACC) fronts shown schematically, adapted from Meredith et al. 

(2003a): the Southern Boundary (SB, Orsi et al., 1995), Southern ACC Front (SACCF, Thorpe 

et al., 2002) and the Polar Front (PF, Moore et al., 1999). Depth contours are at 1000, 2000 

and 3000 m (GEBCO, 2001). 
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Each cruise began from the Falkland Islands, where the ship sailed south in the direction of the 

South Orkney Islands to begin the northward transect, eventually passing to the northwest of 

South Georgia, up to the PF before returning back to the Falkland Islands (Fig. 7.1). During 

the seasonal cruises the ship sailed through ice covered waters, regions of substantial sea ice 

melt, frontal systems, open ocean regimes and intense phytoplankton blooms. Yearly 

composites of satellite chlorophyll-a (section 7.6.1) revealed an area of ocean in the central 

ACC that supported low levels of chlorophyll-a, < 0.2 mg m-3, for most of the year. In relation 

to concentrations of nitrate and phosphate, this region is defined as having HNLC conditions, 

forming an unproductive band from 57.5°S to 56.0°S along the transect throughout the 

research period. In contrast, a large area of elevated chlorophyll-a was identified that persisted 

for up to eight months and extended across most of the Georgia Basin (GB) each year. This 

annual biological event is referred to as the South Georgia bloom (Chapter 6), forming a 

productive region north of the North Scotia Ridge (NSR) at 53.0-50.5°S along the transect.  

The SB, SACCF and the PF were identified using vertical profiles of hydrographic data 

(Chapter 4) and sea surface dynamic height (Chapter 6) during summer cruise JR177. The SB 

was crossed at about 59°S and marks the transition from the WSC into waters of the ACC and 

the AAZ. The PF marks the northern limit of the AAZ, which is taken here as the northern 

limit of the Scotia Sea. Eight sub-regions of the Scotia Sea have thus been distinguished, 

defined by latitude along the transect: the Weddell-Scotia Confluence (62.6-59.5°S), the 

Southern Boundary (59.5-58.5°S), the Southern ACC Front (58.5-57.5°S), high-nutrient low-

chlorophyll waters (57.5-56.0°S), the ACC (56.0-55.0°S), the North Scotia Ridge (55.0-

53.0°S), the Georgia Basin (53.0-50.5°S) and the Polar Front (50.5-49.5°S). The data for each 

parameter in each region are commonly expressed as a mean, with accompanying standard 

deviation, of all the data within the specified latitudinal limits.  

7.3. Hydrography 

7.3.1. Winter 2007 

The vertical location of the fronts was determined from potential temperature (θ) and salinity 

(S) profiles from the summer occupation of the transect (Chapter 4). Hydrographic properties 

of the WW layer are used as a proxy of surface conditions during the preceding winter. The 

WW properties are taken from the depth of the potential temperature minimum (θmin), which 
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showed a northward gradient (Fig. 7.2b). The average θmin, south of 59°S, was -1.55 ± 0.12 °C 

(n = 9), compared to the warmer, but more variable, average of 0.05 ± 0.31 °C (n = 10), north 

of 59°S to 50°S. Exceptions to this general trend were waters north of the NSR, where the 

value of the θmin decreased to -0.29 °C in the central GB. Satellite SST data (section 2.13.3) 

showed the same general trend, with average winter SST of -1.77 ± 0.02 °C (n = 9), south of 

59°S, and -0.93 ± 0.71 °C (n = 10), north of 59°S. The higher in situ temperatures of the WW 

compared to satellite derived sea surface temperature are likely to be due to bottom-up 

warming slightly eroding the θmin along the thermocline, as discussed previously (section 

5.3.7). Salinity decreased northwards, from the most saline waters, representing seasonal 

maxima of > 34.3, in the southern WSC to comparatively fresh waters (S < 33.9) north of 58°S 

(Fig. 7.2c). Across the Scotia Sea, a seasonal deepening of the mixed layer is indicative of 

increased vertical mixing in winter, up to depths of 130 m in the vicinity of South Georgia 

(Fig. 7.2f).  

7.3.2. Spring 2006 

Surface waters showed a strong northward gradient in sea surface temperature across the 

Scotia Sea with abrupt increases at the SACCF, the NSR and the PF (Fig. 7.2b). Close to the 

South Orkney Islands sea surface salinity had a large range from about 33.7 to over 34.1 (Fig. 

7.2c). Salinity showed a general northward decrease with an abrupt freshening to the north of 

58.5°S. Across the WSC and up to the SACCF, mixed layer depths ranged between 40 m and 

80 m (Fig. 7.2f). The deepest mixed layers (> 120 m) were observed in the central ACC at 

about 55°S.  

7.3.3. Summer 2008 

Surface waters continued to warm from winter with a strong northward gradient and abrupt 

increases in temperature at the SB, the GB and the PF (Fig. 7.2b). Across the WSC, surface 

salinity showed a general northward increase (Fig. 7.2c). A notable exception to this trend was 

a sharp reduction in salinity to a seasonal minimum of < 33.4 over the South Scotia Ridge 

(SSR). Across the AAZ, salinity gradually decreased to 33.6 in the central part of the GB, 

where maximum seasonal freshening had occurred. Mixed layer depths ranged from about 20 

m, south of 60°S and in the GB, to the deepest mixed layers close to 70 m over the NSR (Fig. 

7.2f). 
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7.3.4. Autumn 2009 

The warmest sea surface temperatures occurred during autumn, retaining a strong northward 

gradient from 0.5-1.0 °C over the SSR to over 7.0 °C close to the PF at 50°S (Fig. 7.2b). 

Surface salinity was largely non-trending and variable up to 57°S where it abruptly decreased 

(Fig. 7.2c). A seasonal minimum in sea surface salinity was observed across the AAZ before 

increasing in the GB. Mixed layer depths were very variable, ranging between 40 m and 80 m 

across the Scotia Sea (Fig. 7.2f). Although no distinct latitudinal trend was observed, the 

shallowest and deepest mixed layers were measured near the SB and the PF, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. (page 211) The latitudinal distribution of sea surface (a) ∆fCO2(sea-air) (µatm),  

(b) temperature (°C), (c) salinity, (d) iron (nM), (e) chlorophyll-a (chl-a, mg m-3) and (f) 

mixed layer depth (MLD, m) during winter 2007 (blue), spring 2006 (green), summer 2008 

(yellow) and autumn 2009 (red). The approximate location of the South Orkney Islands (SOI), 

Southern Boundary (SB), Southern ACC Front (SACCF), high-nutrient low-chlorophyll 

(HNLC) waters, the North Scotia Ridge (NSR), the Georgia Basin (GB) and the Polar Front 

(PF) are indicated. The latitudinal limits of the Weddell-Scotia Confluence (WSC) and the 

Antarctic zone (AAZ) are shown. 
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Figure 7.3. The latitudinal distribution of sea surface concentrations of (a) nitrate ([NO3
-], 

µmol kg-1), (b) phosphate ([PO4
3-], µmol kg-1) and (c) silicate ([SiO4

4-], µmol kg-1) during 

winter 2007 (blue), spring 2006 (green), summer 2008 (yellow) and autumn 2009 (red). The 

approximate locations of bathymetry, fronts and hydrographic regions as in Figure 7.2. 

7.4. Macronutrients 

7.4.1. Winter 2007 

Nitrate concentrations [NO3
-] displayed large variability across the Scotia Sea (Fig. 7.3a). 

Elevated concentrations (≥ 30 µmol kg-1) were measured near the SB, the SACCF and at the 

NSR-GB boundary (53°S). In contrast, phosphate concentrations ([PO4
3-]) were relatively 

homogenous at about 2.0 µmol kg-1 with localised increases over the NSR and in the lower GB 

(Fig. 7.3b). Silicate concentrations [SiO4
4-] across the WSC were 82.4 ± 2.3 µmol kg-1, which 

decreased sharply across the SB to form a decreasing gradient reaching about 30 µmol kg-1 at 

55°S (Fig. 7.3c). Similarly to [NO3
-] and [PO4

3-], [SiO4
4-] increased over the NSR and into the 
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central GB. These values are similar to winter values previously measured in the Scotia Sea 

(Whitehouse et al., 2008). 

7.4.2. Summer 2008 

Sea surface [NO3
-] decreased across the Scotia Sea from 24-26 µmol kg-1 in the WSC to about 

12 µmol kg-1 at the NSR-GB boundary (Fig. 7.3a). The [PO4
3-] followed a similar trend, 

decreasing from 1.3-1.6 µmol kg-1 in the WSC to a 0.5 µmol kg-1 over the NSR (Fig. 7.3b). 

Similarly, [SiO4
4-] decreased from high concentrations of 70-80 µmol kg-1 in the WSC to less 

than 1 µmol kg-1 in the GB (Fig. 7.3c). The concentration of all macronutrients reached 

seasonal minima in the NSR and GB regions. 

7.5. Iron 

7.5.1. Spring 2006 

Surface concentrations of dissolved iron (dFe) showed a springtime maximum of 1.41 nM 

between 60°S to the SB at 59°S (Fig. 7.2d). Moderate concentrations of iron of 0.20-0.30 nM 

were observed at 57°S and in the lower GB at 53-52°S. The lowest concentrations, < 0.02 nM, 

were observed over the NSR. 

7.5.2. Summer 2008 

Elevated concentrations of iron, up to 0.67 nM, were observed between the South Orkney 

Islands and the SB (Fig. 7.2d). Concentrations remained moderately high at 0.20-0.40 nM in 

the vicinity of the SACCF up to 57°S. The lowest concentrations, < 0.01 nM, were observed 

over the NSR. High concentrations, > 0.50 nM, were observed north of 53°S reaching a 

summer time maximum of 1.17 nM in the lower GB. 
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7.6. Chlorophyll-a 

 

7.6.1. Annual satellite chlorophyll-a  

 

Figure 7.4. Yearly (January-December) composites of satellite chlorophyll-a (mg m-3) for the 

Scotia Sea during 2006 (SeaWiFS/MODIS merged product), 2007 (SeaWiFS), 2008 (MODIS) 

and 2009 (MODIS). Depth contours are at 1000 and 2000 m (GEBCO, 2001) and for 

subsequent satellite images. 

The SeaWiFS and MODIS satellites provided large-scale coverage of surface chlorophyll-a 

concentrations (section 2.13.2) in the Scotia Sea from 2006 to 2009 (Fig. 7.4). The satellite 

images revealed that the phytoplankton bloom to the northwest of South Georgia is a distinct 

biological feature, occurring on an annual basis with similar magnitude and duration. The core 

of the bloom (chlorophyll-a ≥ 2 mg m-3) is largely confined within the GB, constrained by the 

NSR to the south, the MEB to the northwest, the Northeast Georgia Rise (NEGR) to the east 

and the Northwest Georgia Rise (NWGR) to the southeast (Fig. 7.1). Analysis of satellite 

chlorophyll-a during austral summer 2008 revealed a strong correlation to sea surface dynamic 
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height, illustrating the effect of the PF and SACCF on chlorophyll-a distributions in this 

region (Chapter 6). The surface expression of the PF was identified by a tightening of the 

contours of dynamic height along the eastern edge of MEB, before spreading out into the 

cyclonic circulation of the GB (Fig. 6.2). Similarly, the SACCF was identified following the 

edge of the NSR to the east, entering the GB behind South Georgia.  

The satellite composite (2006-2009) images revealed the influence of the fronts on the 

structure of the South Georgia bloom as detrainment of elevated chlorophyll-a is observed to 

the north, along the PF at about 50°S, and to the east along the main path of the SACCF, 

looping around the NEGR (Fig. 7.4). This was most distinct in 2009, where a large portion of 

the bloom had been transported out of the GB along the meandering path of the PF and mixed 

with waters of the SACCF.  

Elevated chlorophyll-a is also regularly observed south of about 57°S in the ACC, extending 

west-east across large parts of the Scotia Sea in some years. This is most pronounced 

downstream of the Antarctic Peninsula, over the SSR and within the waters of the SACCF and 

SB. These biological features show considerable inter-annual variability with large blooms 

across the ACC during 2006 and 2007 compared to the smaller blooms in the vicinity of the 

SB during 2008 and 2009. Other areas of enhanced chlorophyll-a are the shallow waters 

overlying the Falkland Island shelf and to the east in the waters around the South Sandwich 

Islands, in close proximity to the SB.  

7.6.2. Seasonal satellite and shipboard chlorophyll-a  

During summer 2005-2006 a bloom covered much of the GB, with advection within the PF 

and the SACCF to the east (Fig. 7.5). A second bloom developed in the ACC, within the 

SACCF and the SB, downstream of the Antarctic Peninsula. By autumn 2006, the ACC bloom 

had largely disappeared except for a small patch at about 60°S 50°W. The South Georgia 

bloom became concentrated to the east and west of the GB with little frontal advection. Much 

of the ACC maintained HNLC conditions. Sea ice and cloud cover obscured most of the sea 

surface from space during the winter months. By spring, a bloom developed at about 59°S that 

covered a large part of the AAZ with chlorophyll-a concentrations of at least 2.0 mg m-3. 

Shipboard chlorophyll-a confirmed moderate concentrations of 0.5-1.0 mg m-3 north of the 

South Orkney Islands, which increased to about 1.8 mg m-3 at the SB and up to 7.9 mg m-3 
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close to the SACCF during November 2006 (Fig. 7.2e). Satellite data indicated that waters 

downstream of South Georgia had low levels of chlorophyll-a (< 0.5 mg m-3). However, 

shipboard chlorophyll-a measurements displayed a gradual increase over the NSR and across 

the GB to about 3.7 mg m-3 at the PF. The northern AAZ retained HNLC conditions, as 

suggested by both satellite and shipboard concentrations, of less than 0.2 mg m-3.   

 

Figure 7.5. Seasonal composites of satellite chlorophyll-a (SeaWiFS/MODIS merged product) 

for the Scotia Sea during summer (December 2005-February 2006), autumn (March-May 

2006), winter (June-August 2006) and spring (September-November 2006).  

During summer 2006-2007 an intense bloom had developed in the GB, which became 

incorporated in the mesoscale features of the cyclonic circulation of the GB and the PF and 

SACCF (Fig. 7.6). The ACC bloom, from the preceding spring, peaked and persisted 

throughout the summer with latitudinal coverage from 54-60°S. Similarly, the South Georgia 

bloom maintained intensity, but less surface coverage compared to summer 2005-2006. Both 

blooms had substantially weakened by Autumn 2007. The Scotia Sea had persistent HNLC 
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conditions, in contrast to 2006 where the comparatively larger summer bloom had endured 

through to the autumn. As before, sea ice and cloud cover obscured most of the sea surface 

from space during the winter months. During spring 2007, a bloom had developed in the GB 

with plumes of enhanced chlorophyll-a following the frontal boundaries. By the end of the 

spring, a few localised patches of elevated chlorophyll-a were observed in the ACC.  

  

 

Figure 7.6. Seasonal composites of satellite chlorophyll-a (SeaWiFS) for the Scotia Sea during 

summer (December 2006-February 2007), autumn (March-May 2007), winter (June-August 

2007) and spring (September-November 2007).  

Low chlorophyll-a concentrations (< 0.2 mg m-3) persisted for much of the WSC and the AAZ 

during summer 2007-2008 and autumn 2008 (Fig. 7.7). Shipboard chlorophyll-a 

measurements detected elevated concentrations up to 3.5 mg m-3 in waters overlying the SSR 

(Fig. 7.2e) that were obscured by cloud in the satellite image. The South Georgia bloom 

became initiated in summer and intensified to cover most of the GB. Shipboard observations 

revealed chlorophyll-a concentrations of 11.1 mg m-3 in the lower GB. The bloom gradually 



 

 

218 
 

extended to the north and east of the GB, along the contours of the PF and the SACCF. During 

autumn, most of the ACC had HNLC conditions. The remnants of the larger summer bloom 

downstream of South Georgia persisted until the onset of winter. In the following spring, a 

bloom developed at about 59°S that extended from 50 to 30°W along the contours and 

meanders of the SACCF. The South Georgia bloom also became seeded at this time.  

 

Figure 7.7. Seasonal composites of satellite chlorophyll-a (MODIS) for the Scotia Sea during 

summer (December 2007-February 2008), autumn (March-May 2008), winter (June-August 

2008) and spring (September-November 2008).  

The seasonal patterns in satellite chlorophyll-a during 2009 (Fig. 7.8) were very similar to 

those of 2008. HNLC conditions persisted across the northern part of the AAZ during the 

previous spring and summer. The slightly weaker South Georgia bloom that had developed in 

spring 2008 had increased in magnitude and spatial coverage, developing an intense patch 

over the northern shelf of the NSR. The ACC blooms during previous spring had dispersed 

and left a patchy chlorophyll-a distribution across the AAZ. Similarly to autumn 2006 and 
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2008, the remnants of the larger summer South Georgia bloom persisted throughout the 

autumn, especially over the NSR. The ACC waters of the AAZ had returned to typical HNLC 

conditions. By the following spring, substantial detrainment of the South Georgia bloom to the 

north and east within the PF and SACCF was detectable. Areas of elevated chlorophyll-a 

persisted in sporadic patches in the southern ACC. 

 

Figure 7.8. Seasonal composites of satellite chlorophyll-a (MODIS) for the Scotia Sea during 

summer (December 2008-February 2009), autumn (March-May 2009), winter (June-August 

2009) and spring (September-November 2009).  

The seasonal coverage and duration during each year, from 2006 to 2009, of the major blooms 

of the Scotia Sea are summarised in Tables 7.2 and 7.3.  
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Table 7.2. The seasonal coverage (km2) and duration (days) of the ACC blooms from 2006 to 

2009. A phytoplankton bloom is defined here as surface chlorophyll-a concentrations 

exceeding 2 mg m-3. No bloom was detected during the winter months June, July and August 

throughout the 2006-2009 research period. Each seasonal bloom is ranked in terms of area and 

duration (where a rank 1 is for both the largest area and longest duration). The relative 

‘strength’ of each seasonal bloom is determined as a product of area and duration ranking. The 

four strongest blooms are highlighted in bold.      

Season Year Latitude Longitude Area Duration 
Rank 

product 

  °S °W 
103 
km2 

Rank days Rank 103 km2 days 

Summer  2005/2006 -59.5/-58.5 -49.5/-44.5 32 4 89 1 4 

Autumn 2006 -59.5/-58.3 -51.5/-48.0 27 5 52 5 25 

Spring 2006 -59.5/-57.5 -46.0/-40.5 70 2 45 6 12 

Summer 2006/2007 -60.5/-57.5 -47.5/-36.0 220 1 87 2 2 

Autumn 2007 -59.0/-59.5 -43.0/-42.0 3 8 8 11 88 

Spring 2007 -58.0/-57.5 -45.0/-44.5 2 9 32 7 63 

Summer 2007/2008 -59.5/-59.0 -44.0/-43.5 2 9 31 8 72 

Autumn 2008 -58.5/-58.0 -44.0/-43.5 2 9 12 10 90 

Spring 2008 -58.5/-58.0 -48.0/-36.0 39 3 71 3 9 

Summer 2008/2009 -58.5/-58.0 -37.0/-35.0 7 7 70 4 28 

Autumn 2009 -59.5/-59.0 -45.0/-44.5 2 9 23 9 81 

Spring  2009 -58.5/-58.0 -53.0/-49.0 13 6 45 6 36 
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Table 7.3. The seasonal coverage (km2) and duration (days) of the South Georgia bloom from 

2006 to 2009. A phytoplankton bloom is defined here as surface chlorophyll-a concentrations 

exceeding 2 mg m-3.No bloom was detected during the winter months June, July and August 

throughout the 2006-2009 research period. Area and duration rankings as for Table 7.2.    

Season Year Latitude Longitude Area Duration 
Rank 

product 

  °S °W 
103 
km2 

Rank days Rank 103 km2 days 

Summer 2005/2006 -52.0/-50.0 -40.5/-35.0 85 2 87 3 6 

Autumn 2006 -53.0/-50.2 -41.5/-38.5 64 4 45 8 32 

Spring 2006 -51.0/-50.5 -38.7/-38.0 3 12 29 11 132 

Summer 2006/2007 -51.5/-50.0 -40.0/-35.5 52 5 86 4 20 

Autumn 2007 -52.0/-51.0 -40.5/-39.5 8 11 9 12 132 

Spring 2007 -52.0/-50.3 -40.0/-37.5 33 6 61 7 42 

Summer 2007/2008 -53.5/-51.5 -42.0/-37.0 80 3 90 1 3 

Autumn 2008 -52.5/-51.7 -41.5/-39.5 12 9 74 5 45 

Spring 2008 -53.0/-52.0 -35.5/-34.0 11 10 70 6 60 

Summer 2008/2009 -53.5/-51.2 -41.0/-36.0 87 1 89 2 2 

Autumn 2009 -53.5/-52.5 -40.0/-36.5 26 7 36 10 70 

Spring 2009 -52.0/-51.0 -40.0/-38.0 15 8 38 9 72 

 

7.7. Sea ice  

7.7.1. Sea ice: seasonal patterns and inter-annual variability 

Satellite derived sea ice cover from 2006 to 2009 (section 2.13.6) showed the seasonal 

advance and retreat of the sea ice across the Scotia Sea (Figs. 7.9-7.11). Sea ice extent is 

defined here as the area enclosed by the ocean-ice edges, after Gloersen and Campbell (1991). 

During winter (June-August) and early spring (September-October), sea ice extended across 

the WSC and the southern part of the AAZ, up to the SACCF at about 58°S. By the end of 
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spring (November), sea ice was absent in the AAZ and had ≥ 70% coverage across the WSC. 

During summer (December-February), the whole Scotia Sea was ice free until the end of 

Autumn (May) where sea ice began to extend into the southern WSC and advance into the 

AAZ by the following winter.  

From 2006-2009, inter-annual variability in the timing of the sea ice advance and retreat and 

maximum coverage was observed. The maximum extent of the sea ice, defined here as the 

northward limit of the sea ice cover where ice is present for the whole month, occurred in 

September 2007 (Fig. 7.10). At this time, sea ice extended from the southern WSC and into 

the southern part of the AAZ at 57°S (Table 7.4). This defines the latitudinal limits of the 

seasonal ice zone (SIZ) of the Scotia Sea for the 2006 to 2009 research period. During summer 

2007-2008, partial sea ice cover (≤ 40%) was present over the southern WSC (Fig. 7.10). By 

February 2008, the whole Scotia Sea became ice free, which was 2-3 months later than in 

2006-2007 (Fig. 7.9) and 2008-2009 (Fig. 7.11). Sea ice advance began at least 1-2 months 

early in 2008 (April) and had reached ≥ 80% coverage in the WSC by the end of May. This 

resulted in 2007-2008 being a relatively ‘icy’ period (Fig. 7.10). Oppositely, sea ice was only 

present in the WSC (up to 60°S) for the following winter-spring (2008) and had completely 

retreated by November. This led to 2008-2009 being a relatively ice free period (Fig. 7.11).  

 

 

 

 

 

Figure 7.9. (page 223) Monthly averages of satellite derived sea ice cover (%) for the Scotia 

Sea from June 2006 to May 2007.  

Figure 7.10. (page 224) Monthly averages of satellite derived sea ice cover (%) for the Scotia 

Sea from June 2007 to May 2008.  

Figure 7.11. (page 225) Monthly averages of satellite derived sea ice cover (%) for the Scotia 

Sea from June 2008 to May 2009.  
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Table 7.4. Summary of the seasonal advance and retreat of the sea ice and the initiation, 

duration and termination of the principle phytoplankton blooms of the Scotia Sea from 2006 to 

2009. No data is represented by -. Abbreviations: SIZ, seasonal ice zone; GB, Georgia Basin. 

Bloom rank products as determined in Tables 7.2 and 7.3, where a ranking of 1 indicates the 

strongest bloom in terms of coverage and duration.     

Season Sea ice SIZ bloom South Georgia bloom 

Summer 2005 -

Autumn 2006 
- 

Dec 05 – May 06 

63-58°S, 60-40°W 

bloom rank: 4 

Dec 05 – May 06 

covered most of GB 

bloom rank: 6 

Winter 2006 -

Autumn 2007 

maximum extent Aug 06 

extent to 58°S 

Jan 07 – Apr 07 ice free 

Oct 06 – Feb 07 

63-57°S, 50-30°W 

bloom rank: 2 

Dec 06 – Feb 07 

covered part of GB 

bloom rank: 20 

Winter 2007 -

Autumn 2008 

maximum extent Sept 07 

extent to 57°S 

Feb 08 – Mar 08 ice free 

Sept 07 – Oct 07 

60-58°S, 45-40°W 

bloom rank: 63 

Sept 07 – Apr 08 

covered most of GB 

bloom rank: 3 

Winter 2008 -

Autumn 2009 

maximum extent Jul 08 

extent to 60°S 

Jan 09 – May 09 ice free 

Sept 08 – Feb 09 

60-58°S, 50-30°W 

bloom rank: 9 

Oct 08 – May 09 

covered most of GB 

bloom rank: 2 

 

From satellite data from 2006-2009, the general seasonal trends in sea ice and sea surface 

chlorophyll-a for the Scotia Sea are summarised as follows (Table 7.4): 

• Winter: maximum sea ice cover up to 57°S (limit of the SIZ), no blooms 

• Spring: ice retreat in the AAZ, initiation of SIZ blooms and sometimes the South 

Georgia bloom 

• Summer: minimum sea ice cover, decaying SIZ blooms, strong South Georgia bloom 

(based on ranks, the strongest South Georgia blooms all occurred in the summer)  

• Autumn: ice advance in the WSC, SIZ blooms usually absent, decaying South Georgia 

bloom 
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7.8. Atmospheric CO2   

The average CO2 mixing ratio (xCO2) in dry air from the CASIX underway pCO2 instrument 

is compared to that from Jubany station (Ciattaglia et al., 1999) for the duration of the seasonal 

cruises (Table 7.5). Jubany station (62.23°S 58.67°W) is situated on King George Island, in 

the South Shetland archipelago, north of the Antarctic Peninsula and was previously selected 

as the most appropriate station for atmospheric xCO2 comparisons (section 3.5). A large 

variation in atmospheric pressure was measured during each cruise, with generally higher 

pressures during summer. This will affect the ∆fCO2, and in turn the air-sea flux of CO2, but 

with similar pressure variations throughout the year the effects on the data will not be 

seasonally biased. Intermittent periods of both calm, high pressure and storms are frequent 

features of Southern Ocean atmospheric and oceanic research.     

Table 7.5. Seasonal cruise details, sampling period and atmospheric mixing ratio of CO2 

(xCO2) from the shipboard instrument and Jubany station. Atmospheric xCO2 values are an 

average of all data within the cruise period with the standard deviation in parentheses. No data 

is represented by -. 

Season Cruise Year Period Shipboard xCO2 Jubany xCO2  

    µmol mol-1 µmol mol-1  

Spring JR161 2006 20 Oct – 1 Dec 380.4 (0.7) 380.2 (0.4)  

Winter - 2007 8 Sept – 4 Oct - 382.6 (0.5)  

Summer JR177 2008 2 Jan – 17 Feb 382.4 (0.5) 382.2 (0.6)  

Autumn JR200 2009 11 Mar – 17 Apr 385.3 (0.6) 383.9 (0.2)  

 

7.9. Sea surface fCO2   

7.9.1. Seasonal data 

The distribution of surface water fCO2 along the transect was inferred from the quasi-

continuous underway measurements of fCO2 during spring, summer and autumn (Fig. 7.2a). 

Surface water fCO2 during the winter was calculated from dissolved inorganic carbon (DIC) 

and total alkalinity (TA) in the Winter Water during summer 2008, using the CO2Sys 

programme (section 2.12). With respect to atmospheric CO2 concentrations determined from 
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shipboard measurements for spring 2006, summer 2008 and autumn 2009 and Jubany station 

measurements for winter 2007 (Table 7.5), the difference in fCO2 between the sea surface and 

overlying air (∆fCO2(sea-air)) was determined for each season (Fig. 7.12).   

 

 

Figure 7.12. Distribution in ∆fCO2(sea-air) (µatm) across the Scotia Sea from spring 2006, 

winter 2007, summer 2008 and autumn 2009. Winter ∆fCO2 is determined from the difference 

in fCO2(sea), calculated from DIC and TA values in the Winter Water during summer 2008 

(f(DIC,TA)), and fCO2(air) as measured at Jubany station during September 2007. Bathymetry 

as for Figure 7.4. 
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7.9.2. Winter 2007 

South of the SACCF, at about 58°S, the sea surface was supersaturated with respect to 

atmospheric CO2 with an average ∆fCO2 of 21 ± 9 µatm (n = 10) (Fig. 7.12). North of the 

SACCF, surface water fCO2 was on average undersaturated as ∆fCO2 decreased to -5 ± 14 

µatm (n = 10). An exception to this general trend was in the GB, where the sea surface 

reached an annual maximum of CO2 saturation of 60 ± 30 µatm (n = 4) (Fig. 7.2a).  

7.9.3. Spring 2006 

During spring, waters in the vicinity of the South Orkney Islands had strong CO2 

supersaturation of over 60 µatm (Fig. 7.12). North of 60°S, surface seawater reached 

equilibrium concentrations in the region of the SB at about 59°S. The level of CO2 saturation 

continued to decrease across the SACCF, reaching strong undersaturation, as low as -82 µatm, 

between 58°S and 57°S (Fig. 7.2a). For the remainder of the transect, surface waters were 

close to saturation levels with respect to atmospheric CO2.  

7.9.4. Summer 2008 

Surface water fCO2 rapidly decreased from near-saturation in the southern WSC to strong 

undersaturation (∆fCO2 less than -100 µatm) over SSR at about 61°S (Figs. 7.2a and 7.12). 

The level of undersaturation weakened, to about -50 µatm, close to the South Orkney Islands 

and continued to be reduced across the SB, reaching equilibrium concentrations in the vicinity 

of the SACCF. From 58°S to 56°S, the sea surface formed a band of moderate supersaturation, 

where ∆fCO2 was about 20 µatm. Waters of the GB had strong levels of undersaturation with 

an annual minimum of ∆fCO2 at nearly -120 µatm.  

7.9.5. Autumn 2009 

From 61°S to 59°S, the sea surface had moderate CO2 saturation with ∆fCO2 of -36 µatm just 

south of the SB (Fig. 7.2a). North of the SB, fCO2 increased by up to 50 µatm to levels of 

variable supersaturation across the SACCF. Over the NSR, ∆fCO2 rapidly decreased to strong 

undersaturation of -68 µatm, close to 53°S (Fig. 7.12). For the remainder of the transect, 

∆fCO2 was more variable but remained at undersaturation in the GB, increasing to more 

saturation levels on approach to the PF.  
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7.10. Air-sea CO2 flux 

7.10.1. Seasonal air-sea CO2 fluxes and winds  

Fluxes at atmospheric pressure with wind speeds from QuikSCAT (section 2.15) and in situ 

fCO2 measurements were calculated using the Nightingale (Nightingale et al., 2000) 

relationship for short term winds (Fig. 7.13). The effect of the wind speed product used, i.e. in 

situ winds measured at the time of sampling (Fig. 7.13b) or seasonal wind speed averages 

(Fig. 7.13c) can be seen on the magnitude of the fluxes, in either direction, although the trends 

remained largely unaltered. Seasonal wind speed averages were calculated by taking an 

average of the wind speed (measured twice daily) at the position of each ∆fCO2 value along 

the transect for each season.  

Using in situ winds represented a ‘snap-shot’ of the CO2 fluxes, which captured intense fluxes 

that resulted from extreme wind events (annual range 1.2-17.3 m s-1) that occurred during the 

period of data collection. Using seasonal winds (annual range 7.9-10.4 m s-1) the CO2 fluxes 

were more representative of each season and hence presented a more realistic picture of annual 

CO2 exchange when using a single cruise to represent a whole season. A discussion of fluxes 

using in situ winds will be carried out initially to present a qualitative analysis of the natural 

range of CO2 uptake and release that occurred at the time of the seasonal sampling. Fluxes 

calculated using seasonal winds will be used to provide a quantitative analysis of the annual 

CO2 flux of the Scotia Sea (Tables 7.6 and 7.9).    

 

 

 

 

Figure 7.13. (page 231) The latitudinal distribution of (a) ∆fCO2(sea-air) (µatm), (b) CO2 flux 

(mmol m-2 d-1) using in situ QuikSCAT winds and (c) CO2 flux (mmol m-2 d-1) using 

seasonally averaged QuikSCAT winds during winter (blue), spring (green), summer (yellow) 

and autumn (red). The approximate locations of bathymetry, fronts and hydrographic regions 

as in Figure 7.2. The latitudinal limits of the seasonal ice zone (SIZ) are now shown (section 

7.7.1).  
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7.10.2. Winter 2007 

Across the SIZ the upper ocean was a potential moderate source of CO2 of 5.0 mmol m-2 d-1, 

which was largely inhibited due to sea ice cover (Fig. 7.13b). North of the SACCF, the sea 

surface had negligible CO2 uptake or release beyond the SIZ. A small sink of 5.5 mmol m-2 d-1 

was created over the NSR with the occurrence of very high in situ wind speeds (> 15 m s-1). 

The situation swiftly shifted with high winds and an annual maximum of ∆fCO2 (Fig. 7.13a) 

creating a strong CO2 source of 32.2 mmol m-2 d-1 in the lower GB.  

Table 7.6. Average air-sea flux of CO2 (mmol m-2 d-1) for the eight hydrographic regions 

along the transect using the Nightingale et al. (2000) relationship with in situ atmospheric 

pressure and seasonally averaged winds from QuikSCAT (Fig. 7.13c). As no field campaign 

was conducted during the winter, ∆fCO2sea-air is determined from DIC and TA measured in 

the Winter Water during summer 2008 (fCO2sea as f(DIC,TA)) and fCO2air based on Jubany 

data (Chapter 3). The standard deviation, of the mean of all data, in each region is in 

parentheses. Negative fluxes indicate oceanic uptake of CO2. No data is represented by -. 

Season WSC SB SACCF HNLC ACC NSR GB PF 

Winter 
0 

(0.0) 

0 

(0.0) 

0 

(0.0) 

-0.1 

(0.5) 

-3.4 

(3.8) 

0.7 

(3.3) 

16.2 

(4.1) 

- 

- 

Spring 
6.0 

(2.7) 

-1.1 

(2.9) 

-11.6 

(1.2) 

-9.2 

(4.1) 

2.2 

(1.2) 

2.7 

(1.3) 

0.6 

(1.5) 

-2.3 

(1.2) 

Summer 
-6.2 

(3.8) 

-4.6 

(1.7) 

-1.2 

(1.7) 

2.3 

(1.0) 

-5.0 

(4.7) 

-6.9 

(3.5) 

-12.0 

(4.2) 

-4.5 

(1.2) 

Autumn 
-2.4 

(1.5) 

-3.0 

(2.9) 

1.9 

(0.8) 

2.0 

(1.6) 

-3.0 

(0.8) 

-3.4 

(1.6) 

-9.6 

(2.3) 

-4.4 

(2.1) 

 

7.10.3. Spring 2006 

High in situ wind speeds (> 10 m s-1) and a large positive ∆fCO2 over the South Orkney 

Islands (Fig. 7.13a) created a strong CO2 source of up to 14.0 mmol m-2 d-1 (Fig. 7.13b). 

Equilibrium concentrations of surface water CO2 at the SB and lower in situ wind speeds 

allowed negligible exchange of CO2 between the ocean and atmosphere. In contrast, waters 

north of the SACCF presented conditions of strong CO2 undersaturation and this region 

represented the strongest in situ CO2 sink during spring 2006 of -28.7 mmol m-2 d-1. The rest 
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of the AAZ varied between small source and sink areas, with enhanced CO2 uptake of nearly 

10.0 mmol m-2 d-1 at the PF.  

7.10.4. Summer 2008 

In the presence of high in situ wind speeds (≥10 m s-1), the large undersaturation in the WSC 

promoted strong CO2 uptake in the order of -29.8 mmol m-2 d-1 (Fig. 7.13b). Across the 

remainder of the SIZ, increased in situ wind speeds and ∆fCO2 culminated in the release of up 

to 8.8 mmol m-2 d-1 of CO2 in the HNLC waters. Substantial CO2 sinks of 30.2 and 34.0 mmol 

m-2 d-1 were found to the south of the NSR and in the lower GB, respectively, representing the 

greatest annual CO2 uptake along the transect.   

7.10.5. Autumn 2009 

The combination of high in situ wind speeds (≥ 10 m s-1) and small ∆fCO2 followed by low, 

steady in situ winds (≤ 4 m s-1) and large ∆fCO2 presented a situation of negligible air-sea CO2 

flux across the SIZ in autumn (Fig. 7.13b). The largest autumnal flux was in the HNLC region, 

as a temporal peak in wind speeds allowed the slightly CO2 supersaturated seawater to outgas 

at a rate of 4.9 mmol m-2 d-1. The remnant of the summer CO2 sink persisted at -29.9 mmol m-2 

d-1 in the lower GB. The degree of CO2 uptake decreased in line with the increasing ∆fCO2 up 

to the PF.   

7.11. Carbonate chemistry 

7.11.1. Seasonal carbonate chemistry measurements  

During summer 2008, underway fCO2 measurements and surface water DIC and TA 

measurements were made. Total pH (pHT), carbonate ion concentration ([CO3
2-]) and 

aragonite saturation (Ωaragonite) were calculated from the DIC and TA measurements using 

the CO2Sys programme (section 2.12). Sea surface fCO2, pHT, [CO3
2-] and Ωaragonite during 

winter 2007 were determined from measurements of DIC and TA in the Winter Water during 

the summer 2008.  
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7.11.2. Winter 2007 

Winter DIC had little variation across the WSC and up to the SACCF, with an average 

concentration of 2221 ± 3 µmol kg-1 (n = 10) (Fig. 7.14a). Concentrations decreased to the 

north, reaching a minimum concentration of 2165 µmol kg-1 at 55°S. Over the NSR, DIC 

increased to 2190 µmol kg-1 in the lower GB. Alkalinity had a strong northward gradient 

across the whole Scotia Sea, decreasing from values of 2329 ± 3 µmol kg-1, south of the 

SACCF, to a winter minimum of 2287 µmol kg-1 in the GB (Fig. 7.14b). Winter surface pHT, 

[CO3
2-] and Ωaragonite all showed similar, increasing trends from the southern WSC to 55°S 

(Fig. 7.14c-e). All three parameters peaked at about 55°S, with values for pHT, [CO3
2-] and 

Ωaragonite of 8.09, 98 µmol kg-1 and 1.5, respectively. Over the NSR and into the GB, pHT 

decreased to 7.98 where [CO3
2-] were reduced by nearly 20 µmol kg-1 and Ωaragonite fell 

below 1.2.  

7.11.3. Summer2008 

The concentration of DIC predominantly followed the trend of ∆fCO2 (Figs. 7.2a and 7.14a). 

The distribution of sea surface measured and salinity normalised TA was more variable, with 

large differences in the SIZ (Fig. 7.14b). In the southern WSC, DIC and alkalinity declined 

rapidly, which has been previously described (Chapter 5). Concentrations of DIC and 

alkalinity reached summer maxima of 2176 and 2314 µmol kg-1, respectively, close to the 

SACCF. Across the remainder of the AAZ, DIC decreased by nearly 100 µmol kg-1, to a 

seasonal minimum of 2084 µmol kg-1 in the GB. The [CO3
2-] increased from 87 µmol kg-1 in 

the south to 153 µmol kg-1 in the GB (Fig. 7.14c). The distribution of pHT was quite variable 

but showed a northward increase to 8.23 in the GB (Fig. 7.14d). The Ωaragonite traced the 

distribution of [CO3
2-] from saturation states of 1.3 in the south to 2.3 in the north (Fig. 7.13e).  

Figure 7.14. (page 235) The latitudinal distribution of (a) dissolved inorganic carbon (DIC, 

µmol kg-1, solid line) and salinity normalised DIC (dashed line), (b) total alkalinity (TA, µmol 

kg-1, solid line) and salinity normalised TA (dashed line), (c) carbonate ion concentration 

([CO3
2-], µmol kg-1), (d) total pH (pHT) and (e) aragonite saturation state (Ωaragonite) during 

winter (blue) and summer (yellow). The approximate locations of bathymetry, fronts and 

hydrographic regions as in Figure 7.13. 
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7.11.4. Seasonal amplitudes 

From the latitudinal distribution of the sea surface carbonate parameters during winter 2007 

and summer 2008 (Fig. 7.14), seasonal amplitudes were determined as the differences between 

winter (maxima) and summer (minima) (Fig. 7.15). Across the WSC, the seasonal cycles in 

DIC and TA were dictated by the large reduction in summer concentrations to the south of the 

South Orkney Islands (Fig. 7.14a-b). Similarly, the substantial summer DIC deficit in the GB 

(section 6.13) compared to high winter DIC values resulted in an amplified seasonal signal 

(Fig. 7.15a).  

Largely following the winter and summer trends in TA, the amplitudes in pHT, [CO3
2-] and 

Ωaragonite showed a northward decrease and strong decline over the NSR and into the GB 

(Fig. 7.15c-e). This was the result of two distinct seasonal features: 1. persistent low pHT, 

[CO3
2-] and Ωaragonite values south of 59°S during winter and summer and 2. very low pHT, 

[CO3
2-] and Ωaragonite values in the GB during winter, which can be observed in the vertical 

profiles through the summer and winter mixed layers on the Antarctic Surface Water (AASW) 

(Fig. 4.4).   

 

 

 

 

 

 

 

 

 

 

Figure 7.15. (page 237) The latitudinal distribution of the seasonal differences (winter - 

summer) of (a) dissolved inorganic carbon (DIC, red solid line) and normalised DIC (grey 

dashed line) (µmol kg-1), (b) total alkalinity (TA, red solid line) and normalised TA (grey 

dashed line) (µmol kg-1), (c) carbonate ion concentration ([CO3
2-], µmol kg-1), (d) total pH 

(pHT), and (e) aragonite saturation state (Ωaragonite). The approximate locations of 

bathymetry, fronts and hydrographic regions as in Figure 7.13. 
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Tables 7.7 and 7.8. (pages 239 and 240) Averages of sea surface (5 m) temperature (SST, °C), 

salinity, mixed layer depth (MLD, m), nitrate (NO3
-, µmol kg-1), phosphate (PO4

3-, µmol kg-1), 

silicate (SiO4
4-, µmol kg-1), dissolved iron (dFe, nM), chlorophyll-a (chl-a, mg m-3), fCO2 

(µatm), dissolved inorganic carbon (DIC, µmol kg-1 ) and total alkalinity (TA, µmol kg-1) for 

the eight sub-regions of the Scotia Sea, as defined by latitude along the transect: the Weddell-

Scotia Confluence (62.6-59.5°S), the Southern Boundary (59.5-58.5°S), the Southern ACC 

Front (58.5-57.5°S), high-nutrient low-chlorophyll waters (57.5-56.0°S), the ACC (56.0-

55.0°S), the North Scotia Ridge (55.0-53.0°S), the Georgia Basin (53.0-50.5°S) and the Polar 

Front (50.5-49.5°S). The data represent the seasonal averages of all measurements made 

within each sub-region during winter (Wi), spring (Sp), summer (Su) and autumn (Au). The 

standard deviation, of the mean of all data, for each parameter in each region is in parentheses. 

Winter fCO2 values were calculated from DIC and TA measurements in the Winter Water 

during summer 2008. 
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Region SST Salinity MLD NO3
- PO4

3- SiO4
4- dFe Chl-a fCO2 DIC TA 

Season °C  m µmol kg-1 µmol kg-1 µmol kg-1 nM mg m-3 µatm µmol kg-1 µmol kg-1 

WSC            

Wi -1.43 (0.40) 34.26 (0.06) 82 (17) 30.1 (1.2) 1.96 (0.06) 82.1 (2.3) - - 392 (9) 2221 (3) 2329 (3) 

Sp -1.30 (0.18) 33.99 (0.08) 66 (14) - - - 0.48 (0.33) 0.8 (0.2) 398 (13) - - 

Su 0.44 (0.87) 33.63 (0.23) 23 (7) 24.5 (1.8) 1.61 (0.17) 71.8 (5.4) 0.16 (0.19) 1.5 (0.8) 324 (26) 2156 (17) 2280 (19) 

Au 1.49 (0.33) 34.01 (0.05) 58 (14) - - - - - 367 (7) - - 

SB            

Wi -0.87 (0.74) 34.29 (0.05) 91 (9) 30.7 (1.2) 1.99 (0.00) 81.3 (2.8) - - 394 (4) 2223 (2) 2331 (1) 

Sp -0.93 (0.14) 33.95 (0.06) 69 (0) - - - 0.23 (0.09) 1.2 (0.4) 357 (17) - - 

Su 1.36 (0.33) 33.92 (0.09) 38 (13) 22.5 (0.5) 1.58 (0.26) 63.8 (6.1) 0.04 (0.03) 1.9 (0.5) 334 (12) 2166 (9) 2305 (8) 

Au 1.77 (0.25) 34.03 (0.09) 50 (17) - - - - - 367 (16) - - 

SACCF            

Wi -0.22 (0.09) 34.24 (0.00) 103 (29) 30.0 (2.5) 2.03 (0.04) 68.4 (6.6) - - 368 (13) 2206 (2) 2323 (3) 

Sp -0.38 (0.15) 33.76 (0.03) 59 (0) - - - - 7.3 (0.0) 296 (6) - - 

Su 1.97 (0.19) 34.02 (0.02) 47 (6) 22.6 (0.9) 1.64 (0.17) 61.4 (7) 0.16 (0.10) 0.5 (0.2) 364 (13) 2164 (3) 2307 (8) 

Au 2.38 (0.09) 34.20 (0.03) 63 (15) - - - - - 394 (5) - - 

HNLC            

Wi -0.06 (0.23) 34.06 (0.01) 105 (29) 29.5 (0.6) 2.02 (0.07) 50.8 (1.8) - - 370 (3) 2191 (0) 2306 (1) 

Sp -0.16 (0.43) 33.79 (0.04) 49 (8) - - - 0.20 (0.15) 3.4 (2.9) 310 (25) - - 

Su 2.72 (0.16) 33.90 (0.02) 60 (9) 24.2 (0.7) 1.64 (0.18) 32.1 (8.2) 0.25 (0.13) 0.2 (0.0) 385 (6) 2153 (10) 2294 (11) 

Au 2.89 (0.48) 34.04 (0.13) 56 (12) - - - - - 389 (10) - - 
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Region SST Salinity MLD NO3
- PO4

3- SiO4
4- dFe Chl-a fCO2 DIC TA 

Season °C  m µmol kg-1 µmol kg-1 µmol kg-1 nM mg m-3 µatm µmol kg-1 µmol kg-1 

ACC            

Wi -1.02 (0.23) 33.95 (0.00) 111 (12) 28.1 (0.7) 1.95 (0.11) 29.1 (0.5) - - 353 (20) 2175 (14) 2299 (4) 

Sp 1.50 (0.32) 33.89 (0.03) 110 (9) - - - 0.05 (0.02) 0.3 (0.1) 380 (8) - - 

Su 3.13 (0.16) 33.84 (0.02) 65 (3) 21.1 (3.0) 1.39 (0.14) 11.6 (7.5) 0.05 (0.04) 1.2 (0.5) 346 (28) 2128 (11) 2287 (9) 

Au 4.26 (0.21) 33.75 (0.02) 66 (4) - - - - - 361 (3) - - 

NSR            

Wi 0.37 (0.16) 34.00 (0.03) 136 (21) 28.2 (1.1) 1.88 (0.21) 33.0 (7.8) - - 374 (16) 2177 (5) 2298 (4) 

Sp 1.65 (0.39) 33.90 (0.03) 97 (34) - - - 0.06 (0.06) 0.6 (0.5) 387 (9) - - 

Su 3.37 (0.22) 33.83 (0.01) 66 (3) 18.4 (3.3) 1.17 (0.38) 9.9 (7.7) 0.05 (0.04) 2.6 (1.7) 327 (24) 2121 (13) 2290 (1) 

Au 4.30 (0.16) 33.76 (0.02) 58 (11) - - - - - 363 (9) - - 

GB            

Wi 0.08 (0.34) 34.03 (0.02) 124 (9) 28.5 (2.1) 1.98 (0.08) 47.2 (4.9) - - 444 (13) 2193 (2) 2291 (5) 

Sp 1.83 (0.21) 33.89 (0.01) 88 (19) - - - 0.14 (0.05) 1.9 (0.9) 372 (9) - - 

Su 3.99 (0.64) 33.76 (0.07) 41 (18) 15.7 (1.7) 1.25 (0.30) 7.0 (5.1) 0.34 (0.26) 4.0 (2.2) 291 (27) 2107 (12) 2284 (4) 

Au 4.17 (0.89) 33.74 (0.04) 65 (9) - - - - - 331 (13) - - 

PF            

Wi - - - - - - - - - - - 

Sp 4.33 (0.50) 33.90 (0.02) 62 (7) - - - 0.06 (0.02) 1.7 (0.9) 361 (7) - - 

Su 5.35 (0.28) 33.73 (0.08) - 17.0 (0.0) 1.52 (0.01) 4.4 (0.4) - - 336 (8) 2115 (2) 2283 (3) 

Au 5.69 (1.73) 33.78 (0.06) 71 (16) - - - - - 360 (12) - - 



 

 

 

7.12. Seasonal variations in sea surface fCO2: a regional comparison 

The eight hydrographic regions showed distinct seasonal patterns in seasonally averaged sea 

surface fCO2 (Fig. 7.16). With sea ice present, usually until the summer (Table 7.4), sea 

surface fCO2 in the WSC during winter and spring was supersaturated and represented a 

region of potential strong CO2 outgassing with the removal of the sea ice cover. Similarly, ice 

covered surface waters at the SB were supersaturated with respect to atmospheric CO2 during 

winter.  

The development of ice edge blooms in the SIZ during the spring and summer thaw was 

accompanied by strong undersaturation in surface fCO2 (Table 7.7 and Chapter 5). This could 

be observed in the four sub-regions that formed the SIZ: the WSC, the SB, the SACCF and 

part of the HNLC waters. The effects of southward sea ice retreat were first observed in the 

HNLC and SACCF regions, where the near-equilibrium concentrations of CO2 in surface 

waters were transformed into seasonal minima during the spring. This pattern was repeated for 

the two southerly regions of the SIZ (the SB and the WSC) upon passing of the ice edge in 

summer.  

By autumn, the four sub-regions of the SIZ were approaching pre-melt, pre-bloom conditions, 

with slight over saturation in the HNLC and SACCF regions from seasonal warming and 

slight undersaturation in the SB and WSC regions from declining blooms. With the exception 

of a decrease in fCO2 due to the spring SIZ bloom, CO2 saturation of the HNLC region 

increased from winter to autumn with a seasonal warming of 2.95 °C (Table 7.7). As the 

HNLC region partially overlaps with the SIZ it is often exposed to retreating sea ice, if the 

maximum sea ice extent is north of 57.5°S (Table 7.4). Therefore, ice edge blooms and 

associated CO2 uptake are likely to be recurrent features of the otherwise HNLC region.  

 

In the absence of strong photosynthetic activity and sea ice cover, surface water fCO2 

increased in the ACC and NSR regions with warming of 1.28 and 2.52 °C, respectively, 

during winter and spring (Table 7.8). By the summer, surface waters of the ACC and NSR 

were transformed into regions of CO2 undersaturation that continued into the autumn, 

although slightly counteracted by seasonal warming. The GB displayed the largest seasonal 

variability in sea surface fCO2. Strong supersaturation during winter rapidly changed through 

spring and into the summer, where development of the South Georgia bloom depleted surface 



 

 

 

water macronutrients and DIC, driving strong CO2 undersaturation (Table 7.8). This bloom 

had maximum extent and intensity during the summer (Table 7.3), which was probably 

supported by enhanced iron concentrations compared to the spring (Table 7.8). Sea surface 

fCO2 at the PF followed a very similar trend to that at the SB, remaining undersaturated from 

spring to summer. 

 

 

 

 

 



 

 

 

 

Figure 7.16. Seasonal variation in sea surface fCO2 (µatm) for the Weddell-Scotia Confluence 

(WSC), Southern Boundary (SB), the Southern ACC Front (SACCF), high-nutrient low-

chlorophyll (HNLC) waters, the ACC, the North Scotia Ridge (NSR), the Georgia Basin (GB) 

and the Polar Front (PF). Points represent the averages of all data in each sub-region for winter 

2007, spring 2006, summer 2008 and autumn 2009. Error bars are the standard deviation of 

data. The average fCO2(air) for 2006-2009 is shown (black dashed line).  

7.13. Seasonal variations in sea surface fCO2: property correlations 



 

 

 

Across the Scotia Sea, the variation of sea surface fCO2 and temperature for each season can 

be broadly described by three separate trends (Fig. 7.17a):  

1. High fCO2 beneath the cold, ice covered waters (winter and spring) rapidly 

decreases with a slight increase in temperature upon ice melt.  

2. Increasing temperature from -1.00 to 3.00 °C corresponds to a strong increase in 

fCO2 of 100-150 µatm from the region of ice melt to the HNLC waters. 

3. From the HNLC region to the GB, the high fCO2 is swiftly reduced through 

photosynthetic activity despite a slight increase in temperature. 

 

 

 

 

 

 

 

Figure 7.17. (page 245) Sea surface fCO2 (µatm) as a function of sea surface (a) temperature 

(°C), (b) salinity, (c) nitrate concentration (µmol kg-1), (d) phosphate concentration (µmol kg-

1), (d) iron concentration and (e) chlorophyll-a concentration (chl-a, mg m-3) in winter 2007 

(blue), spring 2006 (green), summer 2008 (yellow) and autumn 2009 (red). The average 

fCO2(air) for 2006-2009 is shown for reference (black dashed line).   

Figure 7.18. (page 246) The latitudinal distribution of sea surface fCO2 (µatm) and sea surface 

fCO2 normalised to an average annual sea surface temperature of 2 °C (fCO2 T=2, µatm) during 

(a) winter 2007 fCO2 (blue) and fCO2 T=2 (grey), (b) spring 2006 fCO2 (green) and fCO2 T=2 

(grey), (c) summer 2008 fCO2 (yellow) and fCO2 T=2 (grey) and (d) autumn 2009 fCO2 (red) 

and fCO2 T=2 (grey). The average fCO2(air) for 2006-2009 is shown for reference (black dashed 

line). The approximate locations of bathymetry, fronts and hydrographic regions as in Figure 

7.13.    



 

 

 

 



 

 

 

 

 



 

 

 

Exceptions to the three general trends are within the GB during winter and the warm waters of 

the PF where fCO2 begins to slightly increase (spring and autumn). The effect of temperature 

can be further explored by comparison of fCO2 at in situ temperature to fCO2 normalised to 

average annual sea surface temperature along the transect of 2.00 °C (fCO2 T=2) (Fig. 7.18). 

The large undersaturation in the SIZ during spring and summer in fCO2 T=2 indicates the 

dominance of biological carbon uptake in this region (Fig. 7.18b-c). This is confirmed by 

elevated chlorophyll-a concentrations and reduced nutrient concentrations in the SIZ by the 

summer (Figs. 7.2e and 7.3). The similarity between fCO2 and fCO2 T=2 in the HNLC waters 

verifies the significance of seasonal warming on the fCO2 in the absence of large amounts of 

photosynthesis (Fig. 7.18b-d). The effect of biological carbon uptake in the South Georgia 

bloom is slightly counteracted by seasonal warming, as the difference between fCO2 and fCO2 

T=2 increases from spring to autumn (Fig. 7.18c-d). 

The apparent correlation of fCO2 and salinity is a result of the high fCO2, saline waters 

beneath sea ice juxtaposed to low fCO2, fresh waters at the receding ice edge (Fig. 7.17b). Sea 

surface fCO2 decreased to below 300 µatm in the cold, fresh meltwaters in spring and summer 

(Fig. 7.17a-b). The greatest amount of sea ice melt had occurred by the summer, where fCO2 

was rapidly reduced by over 100 µatm, accompanied by an increase in chlorophyll-a to about 

4 mg m-3 just north of the ice edge in the WSC (Fig. 7.2). The correlation between decreasing 

nitrate and phosphate concentrations, from winter to summer, and increasing phytoplankton 

biomass, indicated by chlorophyll-a content from spring to summer, with low fCO2 is very 

strong (Fig. 7.17c-d). High winter macronutrient concentrations are utilised with increasing 

phytoplankton biomass through spring and summer, reducing fCO2.  

High concentrations of dFe were observed in surface waters between the SB and the South 

Orkney Islands from spring to summer (Fig. 7.2d), which corresponded to decreasing fCO2 

throughout the growing season (Fig. 7.17e). The generally higher iron concentrations in the 

fresher waters could include contributions from the melting sea ice. An inter-correlation 

between elevated iron concentrations, increased chlorophyll-a and reduced fCO2 was evident 

across the Scotia Sea (Fig. 7.17e-f).   

The large reduction in fCO2 compared to summertime surface water chlorophyll-a content 

(Fig. 7.17f) could, in part, be due to the action of sea ice algae at the base of the ice floe 

(Gibson and Trull, 1999). The measured chlorophyll-a content in waters beneath sea ice is 



 

 

 

likely to be an underestimation of phytoplankton biomass, as it does not include sea ice algae. 

The effect of ice algae probably contributes to the fCO2-chlorophyll-a relationship of the SIZ 

of the Scotia Sea, in comparison to similar studies (Gibson and Trull, 1999; Bakker et al., 

2008). Photosynthesis in surface waters beneath sea ice, and the development of blooms upon 

ice melt, prevent the large-scale release of CO2 from the otherwise supersaturated waters that 

form during winter deep mixing and become capped by the ice (section 7.10.2), as shown in 

the Weddell Sea (Bakker et al., 2008) and WSC (Chapter 5). These trends establish the 

dominance of biological processes on the distribution of sea surface fCO2 during spring and 

summer in the SIZ, discussed further in the following section. 

7.14. Sea ice, blooms and CO2 

One principal area of elevated chlorophyll-a in the Scotia Sea was the SIZ, defined as the 

ocean north of the Weddell Sea to 57°S from maximum ice extent in winter 2007 (section 

7.7.1). Four years of satellite chlorophyll-a data show that the SIZ blooms experience large 

inter-annual variability, with areal coverage ranging from 2 to 220 × 103 km2 during the 

summer season in different years (Table 7.2). This result supports previous work where large 

inter-annual variability in marine productivity was observed from 1997 to 2005 across the 

Southern Ocean SIZ (Smith and Comiso, 2008). However, the general trend of stronger 

blooms in the summer and weaker blooms in the autumn was evident in all years (Figs. 7.5-

7.8), as indicated by a ranking system based on bloom area and duration (Table 7.2). This 

variation tests the assumption of using a cruise in a single year to represent characteristic 

conditions of a given season (section 7.2). Although inter-annual variability in total sea ice 

cover, northward extent and ice edge blooms was observed from 2006 to 2009 (Table 7.4), the 

strong seasonal signal of the physical and biological processes associated with the winter 

advance and the spring-summer retreat of the sea ice had a dominant effect on the upper ocean 

waters of the SIZ (Fig. 7.2).  

The distribution of sea surface fCO2 in the WSC shows high values during the winter and 

spring and very low values during the summer (Fig. 7.16). From the comparison of satellite 

chlorophyll-a, sea ice and sea surface temperature data it can be concluded that the WSC was 

under sea ice during winter 2007 (Tables 7.4 and 7.7). Therefore, the WW carbonate 

parameters provide a good proxy for surface carbonate distributions beneath sea ice. The 

effect of sea ice cover is reflected in the relatively constant latitudinal distribution of sea 



 

 

 

surface temperature, salinity, fCO2, DIC and TA across the WSC in winter 2007 (Figs. 7.2 and 

7.14). The coldest temperatures and highest salinity are consistent with advancing sea ice in 

August and September 2007 (Fig. 7.2). The seasonal deepening of the mixed layer (Fig. 7.2d) 

from autumn to winter, as a result of brine rejection during sea ice formation and increased 

wind speeds, leads to the entrainment of sub-surface waters and enrichment of DIC in the 

winter mixed layer. Winter DIC and TA showed homogeneity across the WSC with high 

concentrations of 2221 ± 3 and 2329 ± 3 µmol kg-1, respectively, supporting the hypothesis of 

the rejection of carbonate-rich, saline brines upon and during sea ice formation (Rysgaard et 

al., 2007). Relatively constant winter mixed layer DIC was also observed in the SIZ south of 

Australia, where concentrations lay in a narrow range of 2182-2184 µmol kg-1 (Ishii et al., 

2002). These processes bring about the winter conditions of cold, salty, nutrient-rich surface 

waters that are saturated in CO2 (Fig. 7.12). 

The increase in average fCO2 in the WSC from winter to 398 µatm in early spring is consistent 

with trends observed in climatological fCO2 in the SIZ, where increases up to 410 µatm 

(Takahashi et al., 2009) and to about 350 µatm at Prydz Bay, east Antarctica, were observed 

by early spring (Gibson and Trull, 1999). These seasonal increases suggest that throughout the 

winter the seawater carbonate chemistry is increasingly affected by deep vertical mixing into 

sub-surface waters supplied by upwelled CDW, increased respiration, remineralisation of 

organic matter and brine rejection (Nomura et al., 2006; Rysgaard et al., 2007). Beneath the 

growing ice sheet, the winter mixed layer becomes isolated from the atmosphere (Klatt et al., 

2002), allowing fCO2 to reach supersaturation. 

The low light levels and shading from sea ice largely inhibited photosynthetic activity in the 

underlying water column, which was evident by the high concentrations of macronutrients 

(Table 7.7). At this time, the majority of the WSC acted as a potential winter source of CO2 as 

indicated by positive ∆fCO2 (Fig. 7.12), as previously observed in the sea ice regions of the 

Weddell Sea (Bakker et al., 1997; Bellerby et al., 2004; Bakker et al., 2008). However, sea ice 

cover would have largely inhibited any CO2 flux out of the ocean, although recent work has 

suggested that CO2 diffusion through the sea ice matrix can result in a small flux (Semiletov et 

al., 2004; Nomura et al., 2006).  



 

 

 

 

Figure 7.19. The latitudinal distribution of average monthly sea ice cover (%) for all stations 

along the transect in the SIZ (Figs. 7.9-7.11) in (a) September 2007 (blue), (b) November 2006 

(green), (c) January 2008 (yellow) and (d) March 2009 (red). Data are also shown for the other 

two months (light and dark grey) in each season to evaluate the evolution of the sea ice cover 

(Stark et al., 2007).  

Across the four sub-regions of the SIZ (WSC, SB, SACCF, HNLC) the southward retreating 

sea ice and subsequent bloom development was accompanied by strong fCO2 undersaturation 

first at the SACCF-HNLC boundary and then in the WSC in the spring and summer, 

respectively (Fig. 7.12). The high macronutrient concentrations of the winter-spring period 

became largely reduced in the spring and summer SIZ blooms (Figs. 7.2d and 7.3). A distinct 

seasonal feature in sea surface fCO2 occurred in spring, where waters of under- and 

supersaturation were found in close proximity (Fig. 7.12). The ice edge was located at around 

59°S (Fig. 7.19b), where waters exhibited strong supersaturation of fCO2 (Figs. 7.12).  



 

 

 

Breaking up and melting of the sea ice near the South Orkney Islands allowed immediate 

outgassing of the winter CO2 ‘reserve’, especially where high wind speeds enhanced the air-

sea CO2 flux to 6.0 ± 2.7 mmol m-2 d-1 (Table 7.6 and Fig. 7.13c). In contrast, waters north of 

the ice edge (SB and SACCF) were a strong sink of atmospheric CO2 up to 11.6 ± 1.2 mmol 

m-2 d-1 due to the extensive SIZ bloom of spring 2006 (Fig. 7.5). Surface waters were 

characterised by warm, fresh and shallow mixed layers that supported the large phytoplankton 

bloom (Fig. 7.2). The seasonal cruise JR161 intercepted the SIZ bloom in November 2006, 

which was the fourth strongest bloom (product rank of 12) in the SIZ from 2006-2009 (Table 

7.2). Therefore the degree of DIC depletion and fCO2 undersaturation attributed to ‘spring’ 

conditions from the JR161 dataset is likely to be greater than average spring conditions but 

still contributes to a realistic inter-seasonal discussion. 

Sea ice seasonally covers large areas of the Southern Ocean and could represent a major 

source of bioavailable iron to support phytoplankton blooms upon ice melt (Sedwick et al., 

2000). However, the persistent high sea surface iron concentrations between the SB and the 

South Orkney Islands from spring to summer (Fig. 7.2d) suggest that iron supply is not 

dominated by seasonal processes, such as sea ice retreat, and is therefore predominantly from 

other oceanic sources (section 1.4.3.2). These include the South Orkney Islands, the SSR (Fig. 

7.1) or advection from waters that have passed over the shelf of the west Antarctic Peninsula 

(Dulaiova et al., 2009; Nolting et al., 1991; Sanudo-Wilhelmy et al., 2002; Ardelan et al., 

2010) in addition to upwelling and advection within the ACC (Hoppema et al., 2003). The 

generally higher dFe concentrations during spring 2006 (≥ 1.4 nM) near the ice edge could, 

however, include contributions from the recently melted sea ice (Lannuzel et al., 2007; 

Lannuzel et al., 2008). This region was still beneath sea ice cover and as the fCO2 remained at 

saturation levels with iron concentrations 0.5-1.5 nM, this suggests that light was limiting to 

phytoplankton growth during the spring (Boyd et al., 1999). Supersaturated fCO2 at the lowest 

dFe concentrations in spring suggest iron and light co-limitation beneath ice covered waters of 

the WSC (Fig. 7.17e). By the summer with increased light and the absence of sea ice, sea 

surface fCO2 had decreased by 50-100 µatm in the blooms across a similar range of iron 

concentrations.  

The spring and summer thaw continued to expose the shallow and fresh surface waters (Fig. 

7.2) to increased light levels and any iron present could act to seed the shallow mixed layer 

and promote phytoplankton growth. These processes are likely to contribute to the enhanced 



 

 

 

chlorophyll-a that was observed from spring to summer in the SIZ of the Scotia Sea from 

2006-2009 (Fig. 7.4). These biological events signify the start of the growing season and 

contribute to the observed reduction in sea surface fCO2 and DIC (Figs. 7.2a and 7.14a). The 

transition from CO2 saturated ice covered waters to CO2 undersaturation during and upon ice 

melt was observed during spring 2006 (above) and summer 2008 (Chapter 5), which was 

ascribed to strong biological carbon uptake with a contribution from calcium carbonate 

processes in sea ice (Chapter 5).     

The processes involved in water column stability and the seeding of phytoplankton 

communities occurred in similar patterns throughout the growing season and subsequently 

resulted in strong fCO2 undersaturation that ‘tracked’ the southward retreating ice edge (Figs. 

7.2). By autumn, the SIZ blooms had largely diminished and sea surface fCO2 in the WSC had 

begun to return towards pre-bloom saturation values (Figs. 7.5-7.8 and 7.16). This has been 

attributed to low light levels instigating a limitation to phytoplankton growth, as iron supply 

within the upwelled UCDW, or from advection, was maintained (Hoppema et al., 2003; van 

Oijen et al., 2004). Autumnal light limitation, seasonal warming and reduced CO2 uptake was 

most pronounced for the four southern sub-regions of the Scotia Sea (WSC, SB, SACCF, 

HNLC) (Fig. 7.16). 

7.15. Transient CO2 sinks across the ACC fronts 

Large variability in seasonally averaged sea surface fCO2 was observed at the SACCF, 

whereas the SB and PF were less variable and had remarkably similar trends with moderate 

undersaturation spring to autumn (Fig. 7.16). The SACCF separated more saline waters 

beneath the sea ice to the south from fresher waters to the north as its location was close to the 

upper limit of the SIZ at 57°S (Fig. 7.2c). High concentrations of DIC and TA were observed 

at the SB during the winter (Table 7.7) and have been attributed to the shoaling isohalines at 

this location, promoting upwelling of UCDW into the sub-surface water (Chapter 4).  

During most of the winter, the SB and SACCF were beneath sea ice allowing DIC enrichment 

and supersaturation of fCO2, due to vertical mixing and inhibited outgassing (section 7.12). 

Sea ice melt produced large scale freshening, firstly at the SACCF during spring and then at 

the SB during summer (Fig. 7.2c). Mixed layer depths became shallower by about 40-60 m at 

both fronts (Table 7.7). The receding ice edge (Fig. 7.19), increased light levels and enhanced 

iron concentrations stimulated the growth of phytoplankton blooms that swiftly reduced fCO2 



 

 

 

in the stratified surface waters (Fig. 7.2). The southward retreating sea ice had distinct effects 

on the phytoplankton activity and subsequently on the carbonate chemistry at both southern 

fronts. Depletion in DIC and TA between 20-50 µmol kg-1 from winter to summer at the SB 

and SACCF (Table 7.6 and Fig. 7.14) are due biological utilisation (DIC only), dilution by 

melting sea ice (mainly TA) and a small contribution from released brines where CaCO3 

precipitation has taken place (Chapter 5).  

The effect on the seasonal fCO2 distributions was largest at the SACCF, where sea ice had 

departed by October and a large, longer-lasting bloom had reduced sea surface fCO2 by more 

than 50 µatm (Figs. 7.2 and 7.19). The SACCF was located in the centre of the SIZ bloom 

(Fig. 7.4) and represented the strongest fCO2 undersaturation (Fig. 7.12) and CO2 sink of -11.6 

± 1.2 mmol m-2 d-1 during spring 2006 (Fig. 7.13c and Table 7.6). This contributed to the 

observation of higher fCO2 from winter to spring, where sea ice is present for longer, at the SB 

compared to the SACCF (Fig. 7.16).  

Through the summer and into the autumn, sea surface temperatures and salinity increased in 

the SB and SACCF frontal regions due to seasonal warming and the absence of sea ice (Fig. 

7.2b-c). The transformation of the SB to a moderate CO2 sink of 4.6 ± 1.7 mmol m-2 d-1 by the 

summer (Fig. 7.13c and Table 7.6) is largely the result of biological carbon uptake despite 

surface warming of over 2°C (Table 7.7). The later initiation of the blooms at the SB usually 

means that they persist well into the summer, transforming the CO2 saturated waters to a 

region of CO2 undersaturation. Oppositely, the rapid increase in fCO2, by up to 50 µatm, from 

spring to summer at the SACCF is due to the decaying bloom for a similar rate of surface 

water warming (Table 7.7). Upwelling of UCDW into sub-surface waters in the region of the 

SB and SACCF (Fig. 4.2) provides a sufficient iron flux into the upper ocean to support 

moderate production (de Barr et al., 1995; Hoppema et al., 2003; Blain et al., 2007). However, 

the main entrainment of upwelled UCDW occurs during the wind-driven deep mixing 

associated with autumn and winter conditions (Hoppema et al., 2003), which restricts the 

ability of the blooms to develop as light becomes limiting. Furthermore, transport within the 

Ekman layer (Fig. 1.1) removes up to 25% of the upwelled iron from the ACC before it can be 

utilised by phytoplankton (Hoppema et al., 2003). Therefore, phytoplankton biomass and the 

organic carbon pump are reduced through the autumn at the SB and SACCF (Figs. 7.5-7.8), 

allowing sea surface fCO2 to reach saturation levels (Fig. 7.16) prior to the arrival of sea ice in 

the winter (Fig. 7.19).      



 

 

 

Beyond the influence of sea ice, the PF had a smaller seasonal range in sea surface 

temperature, salinity and mixed layer depth compared to the SB and SACCF (Fig. 7.2 and 

Table 7.6). During each season, the surface expression of the PF could be identified by a sharp 

increase in temperature (Fig. 7.2b). This usually coincided with increases in salinity (Fig. 7.2c) 

and concentrations of macronutrients (Fig. 7.3). Seawater fCO2 was undersaturated with 

respect to the atmosphere from spring to autumn (Fig. 7.16); a feature observed in spring 1992 

in the presence of diatoms (Bakker et al., 1997). Relative to the SACCF, the SB and PF 

become the important sites for biological carbon uptake during the summer and autumn, 

representing sinks for atmospheric CO2 of about 4 mmol m-2 d-1 (Fig. 7.13c and Table 7.6).  

In contrast to the SB and SACCF, the waters of the PF have been found to be iron-rich and 

support phytoplankton blooms for longer, leading to persistent seasonal CO2 undersaturation 

(Fig. 7.16) (de Baar et al., 1995; Smetacek et al., 1997; Bracher et al., 1999). With summer 

reductions in fCO2, DIC and increases in chlorophyll-a, it is hypothesised that the PF is an area 

of annual uptake of atmospheric CO2 between 2.3 and 4.5 mmol m-2 d-1 (Fig. 7.13c and Table 

7.6) as a result of organic matter production through photosynthesis. This supports earlier 

observations of circumpolar enhanced export of particulate organic carbon (section 1.5.4.1) 

from diatom blooms in the PF region in the Atlantic (Rutgers van der Loeff, et al., 1997; 

Tremblay et al., 2002) and Pacific (Daly et al., 2001) sectors of the Southern Ocean. Increased 

water temperature, by over 1 °C from spring to summer (Table 7.8), would act to strongly 

compensate the biological decrease of fCO2 (Fig. 7.18), however this is difficult to assess due 

to the meandering nature of the PF.      

7.16. High-nutrient low-chlorophyll and CO2 source waters 

The HNLC waters showed relative seasonal homogeneity in sea surface fCO2 with a general 

increase from winter to autumn (Fig. 7.16). The fCO2 was close to saturation with respect to 

the atmosphere throughout the year with the distinct exception of spring. The large springtime 

variation is attributed to the SIZ blooms that often extended into the ‘HNLC’ latitude band, 

subsequently reducing the fCO2. This was observed in the chlorophyll-a concentrations, which 

increased to 3.4 mg m-3 in spring 2006 (Fig. 7.2e and Table 7.7). However, by the summer the 

high chlorophyll-a concentrations had dissipated to less than 0.2 mg m-3 and were retained for 

the majority of the year, confirming the region as having HNLC conditions (Fig. 7.4 and Table 

7.7).       



 

 

 

Sea surface temperature increased by about 3 °C from winter to autumn, corresponding to an 

increase in fCO2 by nearly 50 µatm (Table 7.7). In the absence of counteracting biological 

processes, this lead to a thermodynamically driven fCO2 supersaturation in the central ACC 

(Fig. 7.12). However, a decrease in DIC up to 40 µmol kg-1 from winter to summer (Fig. 

7.14a) indicated that biological carbon utilisation had occurred from the SIZ bloom that 

intruded the HNLC waters during the spring (section 7.12) and the standing stock of 

phytoplankton that remained in the upper ocean by the summer (section 6.11). Despite this, 

seasonal warming had a dominant effect on fCO2 concentrations (Fig. 7.18). Similarly to the 

SACCF, initial CO2 uptake at the start of the growing season evolved into an efflux of CO2 of 

2.3 ± 1.0 mmol m-2 d-1, driven by summer warming (Fig. 7.13c and Table 7.6).  

7.17. The South Georgia bloom and annual CO2 uptake 

The GB region showed the greatest range in sea surface fCO2 with a seasonal difference of 

nearly 150 µatm (Fig. 7.16). The highest fCO2 values of 444 ± 13 µatm occurred during winter 

(Table 7.8), making the region an especially strong source of CO2 of 16.2 ± 4.1 mmol m-2 d-1 

(Fig. 7.13c and Table 7.6). Salty surface waters combined with strong winds and surface 

cooling, produced deep mixed layers down to 120 m (Fig. 7.2f). From relatively low fCO2 

values during the autumn, these processes encouraged deep vertical mixing into sub-surface 

waters, which are supplied with DIC from upwelled UCDW (Chapter 4) with the influence of 

the SACCF in the GB (section 6.4). The DIC-rich sub-surface waters became entrained into 

the winter mixed layer with an ensuing increase in DIC (and DIC34) to values close to 2190 

µmol kg-1 (Fig. 7.14a), leading to increased sea surface fCO2 by over 100 µatm by the winter 

(Fig. 7.16). Evidence of deep vertical mixing was observed over the NSR and into the GB, as 

wintertime enrichment of silicate, nitrate, and phosphate raised surface concentrations to 47.2, 

28.5 and 2.0 µmol kg-1, respectively (Table 7.8), alongside the supersaturated fCO2.  

With the onset of spring, water temperatures had warmed by nearly 1.75 °C and a notable 

freshening had taken place, reducing salinity by 0.14 units (Table 7.8). The upper ocean had 

become stratified with mixed layers of 88 ± 19 m. With increased light levels throughout the 

spring, the warmer and more stable water column presented conditions that encourage 

phytoplankton growth. Initiation of the South Georgia bloom in spring or early summer (Table 

7.4) transformed the winter fCO2 supersaturation (Fig. 7.12) with incremental decreases of 

about 70 µatm from the winter to spring and spring to summer (Fig. 7.16). Increased 



 

 

 

chlorophyll-a, over 5 mg m-3, in the GB coincided with surface water iron concentrations 

exceeding 1.0 nM (Figs. 7.2d-e and 7.17e-f). Inspection of sea surface conditions and 

circulation patterns downstream of South Georgia, in relation to other Southern Ocean islands, 

provides evidence for natural iron fertilisation (sections 6.13 and 6.14). 

Continual warming and freshening of the sea surface, from glacial melt from South Georgia 

and sporadic precipitation events, occurred throughout the summer and into early autumn (Fig. 

7.2 and Table 7.8). The water column maintained stratification with a shallowing of the mixed 

layer to 20-50 m. By the summer, the South Georgia bloom reached maximum extent and 

spread across the GB (Figs. 7.5-7.8). Based on the area and duration bloom ranks, the 

strongest South Georgia blooms always occurred during the summer months December-

February (Table 7.3). Elevated chlorophyll-a concentrations of 2-12 mg m-3 corresponded to 

exceptionally undersaturated seawater fCO2 between 250 and 300 µatm (Figs. 7.2 and 7.17e). 

The presence of diatoms in the bloom (Korb et al., 2010) was evident on the complete 

depletion of silicate in surface waters of the GB (Fig. 7.3c and Table 7.8).  

The ∆fCO2 and DIC reached annual minima for this region of -120 µatm and 2084 µmol kg-1, 

respectively, in the core of the bloom (Fig. 7.12 and Table 7.8). These sea surface carbonate 

features turned the GB into the strongest seasonal sink for atmospheric CO2 in the Scotia Sea 

of 12.0 ± 4.2 mmol m-2 d-1 (Fig. 7.13c and Table 7.6). This air-sea CO2 flux (geographical 

limits, 53.0-50.5°S, average summer 2006-2009) in the GB was dominated by the CO2 uptake 

of 15.1 ± 5.7 mmol m-2 d-1 in the South Georgia bloom (biological limits, 53.5-51.5°S, 

summer 2008) (Table 6.5). The strong sink for atmospheric CO2 persisted into the autumn, 

although sea surface fCO2 had increased on average by 40 µatm (Fig. 7.16) to weaken the sink 

to 9.6 ± 2.3 mmol m-2 d-1 (Fig. 7.13c and Table 7.6).   

7.18. The role of the Scotia Sea in the marine carbon cycle  

7.18.1. Annual source or sink of CO2? 

For each seasonal transect, instantaneous CO2 fluxes were determined for every sea surface 

fCO2 measurement with seasonally averaged wind speeds from QuikSCAT (Fig. 7.13c). The 

seasonal and annual flux of CO2 for the Scotia Sea has been estimated by averaging the 

appropriate short term fluxes weighted for the latitudinal limit for each region (Table 7.9). Sea 

ice coverage, absence of photosynthetic activity and deep vertical mixing created a wintertime 



 

 

 

CO2 source of 2.9 ± 1.0 mmol m-2 d-1 along the transect in the Scotia Sea (Table 7.9). This 

would be dramatically enhanced if CO2 exchange through the sea ice, assumed here to be 

negligible, takes place. The combination of the intense South Georgia bloom, the SIZ blooms 

at the receding ice edge and enhanced biological activity at the SB, SACCF and PF largely 

counteracted seasonal warming to create a strong oceanic CO2 sink of 5.7 ± 1.4 mmol m-2 d-1 

in the summer. The spring and autumn seasonal fluxes represent ‘transitional’ values between 

the annual maximum and minimum air-sea CO2 fluxes of winter and summer, respectively. 

Finally, the seasonal analysis of the marine carbon cycle shows that the ocean along the 

transect from 62.6-49.5°S is an annual CO2 sink of 6.2 ± 2.1 mmol m-2 d-1. The relatively large 

standard deviation in the CO2 fluxes reflects the variability and mosaic nature of the marine 

carbon cycle of the Scotia Sea.  

  

 



 

 

 

Table 7.9. Seasonal and annual air-sea CO2 fluxes (mmol m-2 d-1) for the eight sub-regions of 

the Scotia Sea. Flux calculations as in Table 7.6. The annual regional flux is calculated from 

the average of the winter, spring, summer and autumn fluxes (equal weighting to each season) 

for each region weighted by latitude along the transect (13.1° latitude). Fluxes marked with * 

are assumed to be 0 due to sea ice cover. As no winter data exists for the PF a flux of 0 is 

estimated (**) based on comparable flux trends with the NSR and ACC regions. Standard 

deviation as for Table 7.6, in parentheses. Negative fluxes indicate oceanic uptake of CO2.  

Region Latitude Air-sea CO2 flux 

 °S mmol m-2 d-1 

 Limits Total Winter Spring Summer Autumn Annual 

WSC -62.6/-59.5 3.1 0* 6.0 (2.7) -6.2 (3.8) -2.4 (1.5) -2.6 (4.9) 

SB -59.5/-58.5 1.0 0* -1.1 (2.9) -4.6 (1.7) -3.0 (2.9) -8.7 (4.4) 

SACCF -58.5/-57.5 1.0 0* -11.6 (1.2) -1.2 (1.7) 1.9 (0.8) -10.9 (2.2) 

HNLC -57.5/-56.0 1.5 -0.1 (0.5) -9.2 (4.1) 2.3 (1.0) 2.0 (1.6) -5.0 (4.5) 

ACC -56.0/-55.0 1.0 -3.4 (3.8) 2.2 (1.2) -5.0 (4.7) -3.0 (0.8) -9.2 (6.2) 

NSR -55.0/-53.0 2.0 0.7 (3.3) 2.7 (1.3) -6.9 (3.5) -3.4 (1.6) -6.9 (5.2) 

GB -53.0/-50.5 2.5 16.2 (4.1) 0.6 (1.5) -12.0 (4.2) -9.6 (2.3) -4.8 (6.5) 

PF -50.5/-49.5 1.0 0** -2.3 (1.2) -4.5 (1.2) -4.4 (2.1) -11.2 (2.7) 

        

Transect -62.6/-49.5 13.1 2.9 (1.0) -0.1 (0.9) -5.7 (1.4) -3.3 (0.7) -6.2 (2.1) 

A likely caveat is that the potentially strong CO2 source waters beneath sea ice are liable to 

outgas to a certain extent upon immediate breaking and melting of the sea ice, before 

phytoplankton activity begins to reduce the fCO2 (section 7.12). This scenario was 

encountered in spring 2006, where the ice edge was close to the South Orkney Islands (Fig. 

7.19) and, just south of the SIZ bloom, waters were supersaturated in fCO2 (Fig. 7.12). As the 

South Orkney Islands are within the WSC region, averaging of the data per sub-region implied 

that the whole region was a strong CO2 source, despite the fact that at least half of the sea 

surface area was beneath sea ice (Fig. 7.19). This would lead to an overestimation of CO2 

released from the WSC region during spring (Tables 7.8-7.9). However, investigations have 



 

 

 

shown that sea ice may be semi-permeable to CO2 and some gas exchange may occur 

(Semiletov et al., 2004; Nomura et al., 2006) and it is also likely that leads and patches of open 

water would exist in the sea ice, prior to passage of the ice edge. Therefore, it is believed that 

any possible overestimation of the WSC region CO2 flux, based on CO2 source data north of 

the South Orkney Islands, is small.      

7.18.2. Inter-annual variability and the future  

Satellite derived chlorophyll-a concentrations from 2006 to 2009 showed the annual 

occurrence of mesoscale phytoplankton blooms in the SIZ and downstream of South Georgia 

(Figs. 7.5-7.8). These biological features represented vast areas of CO2 undersaturation (Fig. 

7.12) that created strong CO2 sinks on seasonal timescales and have an important effect on the 

annual CO2 flux of the Scotia Sea (Table 7.9). The SIZ blooms were initiated during spring at 

the receding ice edge, generally persisted through the summer and decayed by early autumn 

(Table 7.4). Large inter-annual variability existed in the month of bloom termination, ranging 

from October to May. A second variable is surface area, as some SIZ blooms covered the 

whole SIZ (63-57°S) and some just extended across 2° of latitude (Table 7.2). The South 

Georgia bloom was initiated during spring, had maximum coverage and intensity during 

summer and decayed by autumn (Table 7.4). Slight variation in the South Georgia bloom 

existed as initiation occurred in early summer in one year and in other the bloom had decayed 

by the end of the summer (Table 7.3). However, in all years the bloom occupied most of the 

GB and peaked in the summer (highest bloom ranks) with notable advection in the SACCF 

and PF, evident from the patterns of chlorophyll-a that lead out of the GB to the east (Fig. 7.4). 

 

The seasonal CO2 fluxes showed strong CO2 uptake (a) to the north of the retreating sea ice 

(including the SACCF) in spring, (b) in the south of the SIZ (including the SB) in summer, 

tracking the ice edge, and (c) in the GB up to the PF in summer and autumn (Fig. 7.13c). 

However, biological features such as blooms are not confined within the limits of the sub-

regions and have been shown to extend across the regional boundaries (section 7.16). In order 

to investigate this, the effects of the principle blooms of the SIZ and GB on oceanic CO2 

uptake were analysed by consideration of the area and duration of the bloom, irrespective of 

geographical limits (Tables 7.10 and 7.11). These ‘biological’ limits better capture the true 

biological effect on the marine carbon cycle during each season. As satellite chlorophyll-a data 

existed for each season for each year, inter-annual variability in bloom initiation, duration and 



 

 

 

coverage can be investigated (Table 7.4) and its effects on the seasonal carbon cycle in the 

Scotia Sea can be explored.   

Table 7.10. The average seasonal coverage (km2), duration (days), ∆fCO2(sea-air) (µatm) and 

CO2 flux (mmol m-2 d-1) for the seasonal ice zone blooms ([chl-a] ≥ 2.0 mg m-3) from 2006 to 

2009. The ∆fCO2 and flux values are averages of all data (n) along the transect during spring 

2006 (n = 13), summer 2008 (n = 26) and autumn 2009 (n = 12), within the average latitudinal 

limits. Air-sea CO2 fluxes were calculated using seasonally averaged wind speeds with the 

Nightingale et al. (2000) relationship. Total flux (Tg C, where Tg is 1012 g C) is calculated 

using the tabulated averages for area, duration and flux in a given season. Standard deviation 

is shown in parentheses. Negative fluxes indicate oceanic uptake of CO2. 

Season Latitude Longitude Area Duration ∆fCO2 Flux Total flux 

 °S °W 103 km2 days µatm mmol m-2 d-1 Tg C 

Spring -58.6/-57.8 -48.0/-42.5 31 (31) 48 (16) -40 (23) -7.3 (4.3) -0.13 (0.16) 

Summer -59.5/-58.3 -44.5/-39.8 65 (104) 69 (27) -31 (13) -4.4 (1.9) -0.24 (0.41) 

Autumn -59.3/-58.6 -45.9/-44.5 8 (12) 24 (20) -12 (16) -2.2 (2.9) -0.01 (0.01) 

Total       -0.38 (0.44) 

   

Sea ice is an important component of the global climate system, where the extent, defined here 

as the area between the ice-ocean edges, is one of the major aspects (Gloersen and Campbell 

1991). The sea ice extent affects the amount of light absorbed by the upper ocean, the organic 

carbon pump and the ocean-atmosphere exchange of heat, moisture and CO2. As a result, the 

SIZ was a highly dynamic region, where large inter-annual variability in sea ice extent was 

accompanied by variations in phytoplankton blooms (as shown by high standard deviations 

relative to the seasonal means, Table 7.10), supporting previous observations (Smith and 

Comiso, 2008).  

 

The years 2007 and 2008 represented maximum and minimum sea ice extent, respectively, 

both with weak and patchy blooms in the SIZ after ice melt (Table 7.4). This demonstrated the 

influence of sea ice on the biological activity of the Scotia Sea and accounted for the large 



 

 

 

variations in average bloom features in spring and summer (Table 7.10). In contrast, 2006 

represented a year of moderate sea ice cover that reached a northward maximum of 58°S in 

August (Fig. 7.9). Sea ice retreat began in September, exposing a large part of the SIZ to 

increased light levels, elevated dFe concentrations and a meltwater stabilised water column 

(Fig. 7.2). Subsequently, a large bloom was seeded by October 2006 (Figs. 7.5-7.6), which 

developed into the strongest bloom (rank 2, Table 7.2) with substantial biological carbon 

uptake (section 7.14) in the SIZ during the research period.  

Despite the inter-annual variability, the bloom cycle of initiation, growth and decay occurred 

to some magnitude each year in the SIZ. The Scotia Sea data revealed a strong correlation 

between sea ice and biological activity (section 7.14); both of which are intrinsically linked to 

the carbonate chemistry of this region (Chapter 5). The presence of stronger jets in the ACC 

can often be observed in the SIZ as elevated chlorophyll-a was advected across the Scotia Sea 

by the SB and SACCF (Fig. 7.4). Aided by frontal transport and continual phytoplankton 

growth, the SIZ blooms often increased in areal coverage and duration into the summer. This 

contributed to a huge spatial uptake of CO2 in the summer. For an average bloom coverage of 

65,000 km2 and average duration of 69 days, 0.24 ± 0.41 Tg C was transferred from the 

atmosphere to the upper ocean of the SIZ in the summer.  

The average concentration of the entire Antarctic sea ice cover in December (1997-2006) (Fig. 

7.20) corresponded with the observed inter-annual variability in the sea ice of the Scotia Sea, 

with a decadal variation in cover ranging from 55 to 65% (Smith and Comiso, 2008). The 

large inter-annual variability associated with the SIZ blooms, particularly during the summer, 

suggested that as much as 1.01 ± 0.72 Tg C was transferred from the atmosphere to the upper 

ocean of the SIZ for the substantial bloom of 2006/2007 that covered 220,000 km2 and 

persisted for 87 days (Table 7.2). This gigantic CO2 sink in the SIZ followed a winter of 

moderate sea ice extent in August and retreat by September (Table 7.4). Oppositely, the weak 

bloom of summer 2007/2008 removed as little as 0.01 ± 0.17 Tg C from the atmosphere over 

an area of about 2 km2 for 31 days. This followed the ‘icy’ winter of 2007, where sea ice 

covered the whole SIZ and began a relatively late retreat.  



 

 

 

 

Figure 7.20. Mean Antarctic sea ice concentration (%) in December from 1997 to 2006 from 

the Special Sensor Microwave Imager (SSM/I) on the Defence Meteorological Satellite 

Program (DMSP) (Smith and Comiso, 2008).  

These considerable variations in total CO2 uptake, with differences of two orders of 

magnitude, further highlight the relationship between sea ice, phytoplankton and carbonate 

chemistry and show the vulnerability of the SIZ CO2 sink to changes in sea ice and 

phytoplankton dynamics. Extreme wind events (up to 14 m s-1) and grazing pressure have 

been determined as the major controls on ice edge blooms in the Weddell Sea during spring 

and summer (Lancelot et al., 1993). In contrast, wind speeds in the WSC, during spring and 

summer, were such that water stratification was maintained, encouraging phytoplankton 

growth, alongside substantial CO2 uptake. The effect of zooplankton grazing was not 

examined. As for other Arctic and Antarctic sea ice studies, the inter-annual variability of the 

SIZ blooms of the Scotia Sea was closely correlated with the time of sea ice retreat (Wu, et al., 

2007; Smith et al., 2008). Trends in sea ice concentration from 1997 to 2006 showed a decline 

in sea ice coverage by about 2% per decade (Fig. 7.20) (Smith and Comiso, 2008). Based on 

the results presented here, such a trend could weaken the SIZ blooms and subsequent 

biological carbon uptake of the Scotia Sea in the future (Montes-Hugo et al., 2009). 

The largest and most intense South Georgia bloom was initiated in September 2007 and 

persisted for eight months before decaying in April 2008 (Table 7.4). During this time the 



 

 

 

bloom extended across the whole GB with distinct advection of elevated chlorophyll-a within 

the SACCF and the PF (Fig. 7.7). The bloom during summer 2006/2007 was the weakest 

summer bloom over the four years (rank 20, Table 7.3), covering the northern part of the GB. 

Despite some degree of inter-annual variability, the seasonal initiation, growth and termination 

of the South Georgia bloom was the dominant signal. The bloom always reached maximum 

coverage and duration during summer (based on the highest bloom ranks), with relative inter-

annual consistency (Tables 7.3). Therefore, average areal coverage and duration of the South 

Georgia bloom combined with fCO2 measurements of summer 2008 (JR177) yields a 

representative estimate of 0.84 ± 0.38 Tg C transferred from the atmosphere to the upper 

ocean each summer (Table 7.11).  

Table 7.11. The average seasonal coverage (km2), duration (days), ∆fCO2(sea-air) (µatm) and 

CO2 flux (mmol m-2 d-1) for the South Georgia bloom ([chl-a] ≥ 2.0 mg m-3) from 2006 to 

2009. The ∆fCO2 and flux values are averages of all data (n) along the transect during spring 

2006 (n = 7), summer 2008 (n = 26) and autumn 2009 (n = 52) within the average latitudinal 

limits. Air-sea CO2 fluxes were calculated using seasonally averaged wind speeds with the 

Nightingale et al. (2000) relationship. Total flux (Tg C, where Tg is 1012 g C) is calculated 

using the tabulated averages for area, duration and flux in a given season. Standard deviation 

is shown in parentheses. Negative fluxes indicate oceanic uptake of CO2. 

Season Latitude Longitude Area Duration ∆fCO2 Flux Total flux 

 °S °W 103 km2 days µatm mmol m-2 d-1 Tg C 

Spring  -52.0/-51.0 -38.6/-36.9 16 (13) 50 (19) -25 (9) -4.4 (1.6) -0.04 (0.04) 

Summer -52.6/-50.6 -40.7/-35.9 76 (16) 88 (2) -67 (27) -10.4 (4.2) -0.84 (0.38) 

Autumn  -52.8/-51.4 -40.9/-38.5 27 (25) 41 (27) -50  (14) -9.3 (2.5) -0.13 (0.15) 

Total       -1.01 (0.41) 

The technique of ‘biological’ limits was employed to quantify the biological effect on the 

marine carbon cycle of the GB during summer 2008 (Chapter 6). At this time, the South 

Georgia bloom was the strongest summer bloom observed during the 2006-2009 research 

period, which was intercepted by the RRS James Clark Ross on cruise JR177 in early 

February 2008 (Table 7.1). The extensive bloom created a strong oceanic CO2 sink of -15.1 ± 

5.7 mmol m-2 day-1, transferring 1.30 ± 0.45 Tg C from the atmosphere to the ocean during 



 

 

 

summer 2008 (section 6.13). This indicated that the South Georgia bloom of summer 

2007/2008 (Fig. 7.7) removed 0.30 Tg more carbon from the atmosphere than the average 1.01 

± 0.41 Tg C that was transferred from atmosphere from spring to autumn each year (Table 

7.11). This further emphasizes the nature of inter-annual variability in the marine carbon cycle 

of the Scotia Sea.  

The summation of the average sink fluxes of the Scotia Sea blooms during spring, summer and 

autumn was 1.39 ± 0.56 Tg C for a total average bloom area of 75 × 103 km2 (Tables 7.10 and 

7.11). Compared to the climatological estimate of the annual Southern Ocean sink flux of 0.06 

Pg C (Takahashi et al., 2009) over 30.6 × 106 km2, the blooms of the Scotia Sea accounted for 

over 2% of the total Southern Ocean CO2 sink at only 0.2% of the areal coverage of the entire 

Southern Ocean. 

7.19. Ocean acidification  

7.19.1. The Scotia Sea and ocean acidification 

Across the Scotia Sea, the action of the organic carbon pump in the SIZ and South Georgia 

blooms (sections 7.14 and 7.17) depleted the mixed layer DIC, giving the AASW concomitant 

high concentrations of carbonate ions ([CO3
2-]) and increased pHT (Figs. 4.4 and 7.21). The 

[CO3
2-] and aragonite saturation states reached summer maxima of 153 µmol kg-1 and 2.3, 

respectively, in the NSR-GB region (Fig. 7.14c-e). The elevated [CO3
2-] during the summer 

suggest that AASW is seasonally saturated with respect to aragonite. 



 

 

 

 

Figure 7.21. Vertical profiles of upper water column (a) potential temperature (θ, °C), (b) 

dissolved inorganic carbon (DIC, µmol kg-1), (c) total pH (pHT) and (d) aragonite saturation 

state (Ωaragonite) for Georgia Basin (GB) stations 51 and 53. The depth of the θmin of the 

Winter Water is marked by the horizontal grey line and the limit of aragonite undersaturation 

(Ωaragonite < 1) is marked by a vertical red line in (d). 

Increased vertical mixing during winter facilitated the ventilation and entrainment of sub-

surface waters within the winter mixed layer where shoaling isohalines in the GB, at the 

SACCF and SB and frontal meanders provided a pathway for UCDW to upwell (Chapter 4). 

This was particularly evident in the regions of the SB, SACCF and in the GB (Fig. 4.2). 

Subsequently, wintertime surface water [CO3
2-], pHT and aragonite saturation states south of 

59°S are reduced with a relatively homogeneity (Fig. 7.14c-e).  

Aragonite saturation states are generally lowest at high latitudes due to increased solubility of 

CO2, and hence elevated DIC concentrations, and increased solubility of carbonate minerals 

with decreasing temperature (section 1.5.2). Low saturation states (Ωaragonite < 1.3) were 

observed south of 59°S during summer and winter, with corresponding small seasonal 



 

 

 

amplitudes (Figs 7.14e and 7.15e). These waters are beneath sea ice cover during winter and 

early spring and are close to the upwelling region of the SB (sections 4.2 and 7.12). Both of 

these factors contribute to DIC enrichment, carbonate depletion and low aragonite saturation 

states at the surface south of 59°S throughout the year. 

Cold, saline and deep winter mixed layers in the GB were enriched in DIC, leading to fCO2 

supersaturation at the sea surface (Figs. 7.2 and 7.14). From the depth of the WW, a strong 

gradient in DIC existed into the surface waters (Fig. 7.21b). As UCDW is DIC-rich (Table 

4.1), the upward movement of this water mass led to DIC enrichment below the thermocline at 

about 200 m depth. This was accompanied by a lowering of the pHT and saturation state for 

aragonite from the base of the WW layer to about 200 m (Fig. 7.21c-d). Below 200 m, the 

water column was undersaturated with respect to aragonite. As a result of deep winter mixing 

to 100-200 m (Fig. 7.2f), winter AASW in the GB became relatively carbonate-poor (< 80 

µmol kg-1) and acidic with a aragonite saturation states less than 1.2 (Fig. 7.14). These 

processes contributed to the large seasonal amplitude in all sea surface carbonate parameters 

in the GB (Fig. 7.15) and increased the risk of ocean acidification, from bottom-up influences, 

in the northern Scotia Sea. 

7.19.2. Ocean acidification in the Southern Ocean 

In agreement with the Scotia Sea data (Fig. 7.14), empirical reconstructions of Southern Ocean 

data revealed a [CO3
2-] minima, close to 90 µmol kg-1, south of 60°S during the winter and 

maximum [CO3
2-], up to 125 µmol kg-1, between 55-50°S during the summer (McNeil and 

Matear, 2008). This also agrees with a basin scale average for surface [CO3
2-] of 105 µmol kg-

1 for the entire Southern Ocean (Orr et al., 2005). However, winter minima in [CO3
2-] and pHT 

of 79 µmol kg-1 and 7.98, respectively, were observed in the Scotia Sea in the GB. This is 

lower compared to the empirical data that indicate wintertime [CO3
2-] of 125 µmol kg-1 and 

pHT of 8.07 at the same latitude (McNeil and Matear, 2008).  



 

 

 

 

Figure 7.22. Observations and future predictions of sea surface acidification in the Southern 

Ocean, adapted from McNeil and Matear (2008). (a) fCO2 (µatm) in air, IPCC IS92a emission 

scenario (black), and water (south of 60°S) from the CSIRO ocean carbon model (blue). 

Predictions of surface water (b) pH and (c) carbonate concentrations ([CO3
2-], µmol kg-1) for 

atmospheric CO2 equilibrium (red) and CO2 disequilibrium (blue) conditions using the IPCC 

IS92a scenario. Observations from 1995 (b and c) are represented by box whisker plots 

(McNeil and Matear, 2008). Observations from the Scotia Sea for winter 2007 (b and c) are 

the average south of 60°S (cross) and the minimum from 55-50°S (filled circle). The [CO3
2-] 

that yields aragonite undersaturation is shown by a grey horizontal line in (c).   

The strong summertime gradient in [CO3
2-] from 85 to 140 µmol kg-1 across the Scotia Sea 

and small seasonal amplitudes south of 59°S suggests that the region to the south of the SB 

will experience year-round aragonite undersaturation before 2040 (Fig. 7.22b-c). The large 

seasonal amplitudes in [CO3
2-] and pHT of 60 µmol kg-1 and 0.2, respectively (Fig. 7.15c-d), 

extreme wintertime minima observed in the GB and undersaturation in the water column (Fig. 

7.14c-d) suggest that calcifying organisms such as pteropods in this region may face 

wintertime aragonite undersaturation by 2030 (Fig. 7.22b-c), earlier than previous predictions 



 

 

 

(McNeil and Matear, 2008; Orr et al., 2005). Such regions that experience substantial seasonal 

variability in surface water carbonate chemistry could be used as natural ‘mesocosms’ to 

investigate the response of calcifying organisms to future aragonite undersaturation. The 

degree of seasonal variability reported here has significant implications for future ocean 

acidification in the Scotia Sea. 

7.20. Conclusion 

Seasonal analysis of the marine carbon cycle of the Scotia Sea reveals the complexities and 

variations across diverse hydrographical and biogeochemical regions that exist in the Southern 

Ocean. The combination of satellite data over the 2006-2009 research period and in situ 

physical, chemical and biological observations during spring 2006, summer 2008 and autumn 

2009 along a 1,400 km transect have enabled a detailed investigation into the processes that 

lead to seasonal and inter-annual variations in surface water carbonate chemistry. Wintertime 

(2007) conditions were inferred from parameters measured within the Winter Water during 

summer 2008. The transect encompassed several archetypal Southern Ocean regimes: sea ice, 

hydrographic fronts, HNLC waters and waters of the ACC in the open ocean, downstream of 

islands and over submarine ridges. In reference to the large seasonality observed within the 

sub-regions, implications for the future carbonate chemistry of the Scotia Sea have been 

described.   

 

Four years of satellite derived chlorophyll-a and sea ice cover showed a general trend from 

maximum sea ice extent and no blooms in winter to widespread sea ice retreat and large 

blooms in summer. Maximum sea ice cover extended from 63° to 57°S during winter 2007 

and defined the seasonal ice zone (SIZ) of the Scotia Sea. A strong correlation was observed 

between sea ice, ice edge phytoplankton blooms and subsequent undersaturation in fCO2. The 

blooms of the SIZ exhibited large inter-annual variability in surface area and duration, 

supporting earlier observations (Smith and Comiso, 2008). Moderate sea ice advance and early 

retreat in winter and spring 2006 set up favourable conditions for phytoplankton bloom 

development in the SIZ. Prior to bloom development, break-up and melting of the sea ice 

revealed waters supersaturated with fCO2 that outgassed at a rate of 6.0 ± 2.7 mmol m
-2 d-1. 

However, the action of the biological pumps and sea ice carbonate processes rapidly 

transformed the fCO2 supersaturated waters to substantial fCO2 undersaturation. During the 

three month lifetime of the bloom in spring and summer 2006-2007, 1.01 ± 0.72 Tg C was 



 

 

 

transferred from the atmosphere to the ocean making this the strongest SIZ bloom during the 

research period. In contrast, following the ‘icy’ winter and late spring thaw of 2007, a weak 

bloom removed substantially less CO2 (0.01 ± 0.17 Tg C) from the atmosphere.  

 

The Southern Boundary (SB), Southern Antarctic Circumpolar Current Front (SACCF) and 

the Polar Front (PF) were transient CO2 sinks during different seasons. The SACCF and the 

SB became strong CO2 sinks (up to 11.6 ± 1.2 mmol m-2 d-1) with the SIZ blooms that 

‘tracked’ the southward retreating sea ice. The PF remained a CO2 sink of 2.3-4.5 mmol m-2 d-

1 from spring to autumn due to the ongoing phytoplankton activity in this region. In contrast, 

the HNLC waters of the central Scotia Sea were a consistent source of CO2 of 2.0-2.3 mmol 

m-2 d-1 from summer to autumn due to seasonal warming. 

Downstream of the island of South Georgia, extensive phytoplankton blooms developed each 

year and extended across the Georgia Basin (GB), reaching maximum strength every summer. 

These are recurrent features that created substantial and persistent undersaturation in sea 

surface fCO2 up to -120 µatm to form the strongest seasonal sink for atmospheric CO2 in the 

Scotia Sea of 12.0 ± 4.2 mmol m-2 d-1. Through the action of the biological carbon pumps in 

the GB, the SIZ and at the three ACC fronts, the Scotia Sea transect was a summertime sink 

for atmospheric CO2 of 5.7 ± 1.4 mmol m-2 d-1.  

By wintertime, the Scotia Sea was transformed into a CO2 source 2.9 ± 1.0 mmol m-2 d-1 as 

sea ice growth, deep vertical mixing and little photosynthesis lead to enrichment of DIC and 

fCO2 in the upper ocean. Waters near the SB, SACCF and in the GB were regions of strong 

wintertime fCO2 supersaturation due to localised deep mixing and upwelling of DIC-rich 

CDW, with low concentrations of carbonate ([CO3
2-]), into the sub-surface. The consistently 

low pHT and [CO3
2-] (south of 59°S) and large seasonal amplitude in pHT and [CO3

2-] (in the 

GB) indicated that these regions are particularly vulnerable to future sea surface aragonite 

undersaturation, possibly by 2030-2040. Waters beneath the thermocline in the GB were 

undersaturated with respect to aragonite. This scenario presents conditions of ocean 

acidification to calcifyers south of the Polar Front in the contemporary Scotia Sea. 

The Scotia Sea from 62.6° to 49.5°S is an annual sink for atmospheric CO2 of 6.2 ± 2.1 mmol 

m-2 d-1 using seasonally averaged wind speeds and the Nightingale et al. (2000) CO2 flux 

relationship. The South Georgia bloom is a resilient and predictable element of this CO2 sink, 



 

 

 

transferring an average of 1.01 ± 0.41 Tg C from the atmosphere to the upper ocean from 

spring to autumn each year. The Scotia Sea blooms during spring, summer and autumn 

accounted for over 2% of the total Southern Ocean CO2 sink (Takahashi et al., 2009). 

The inter-annual variability in the SIZ blooms imposed large constraints on the CO2 sink, 

transferring anywhere between 1.01 ± 0.72 Tg C and 0.01 ± 0.17 Tg C from the atmosphere to 

the upper ocean. Future climate change is likely to affect the sea ice-CO2 relationship and the 

variable CO2 sinks of the current SIZ could diminish through reduced sea ice coverage. The 

mosaic distribution and substantial seasonal amplitudes in sea surface carbonate chemistry of 

the Scotia Sea create a natural mesocosm to better understand and predict how future climatic 

changes may affect the distributions of air-sea CO2 fluxes, pH and aragonite undersaturation 

for the contemporary and future Southern Ocean.   

 

 

 

 



 

 

 

8. Conclusions and future work 

8.1. Conclusions  

The objective of this research was to investigate the marine carbon cycle of the Scotia Sea, 

Southern Ocean. The British Antarctic Survey (BAS) vessel RRS James Clark Ross typically 

spends 8 months in the Scotia Sea region and, with the installation of the new CASIX 

underway pCO2 instrument in 2006, has generated a sea surface fCO2 data set of over 2,500 

measurements to date (Fig. 8.1). This work established a new surface water fCO2 timeseries, a 

contribution to alleviating the paucity of fCO2 data in this region (Takahashi et al., 2009).  

An important component of this data set was the initiation of a 1,400 km transect across the 

Scotia Sea in austral spring 2006 and subsequent occupations in summer 2008 and autumn 

2009. Sea surface fCO2 measurements were made by the CASIX system (2006, 2008 and 

2009) and a UEA system (2008). The CASIX instrument was acutely tested during an at-sea 

pCO2 instrument intercomparison in summer 2008 (Chapter 3). Results demonstrated that the 

fCO2 data generated by the CASIX instrument are of similar accuracy (7 µatm) and precision 

(3 µatm) to those obtained for sea surface fCO2 measurements by other systems (Körtzinger et 

al., 2000), subsequently introducing an additional instrument into the oceanic pCO2 

community. Offsets between the CASIX and UEA CO2 data sets were attributed differences in 

the instrument design and a series of recommendations were outlined in order to improve the 

accuracy of the CASIX seawater fCO2 measurements.   



 

 

 

 

Figure. 8.1 Sea surface fCO2 measurements collected in the Scotia Sea in 2006-2009. (a) the 

location of the fCO2 measurements for the 14 cruises in the Scotia Sea (Table 2.1) and (b) the 

∆fCO2 (sea-air) (µatm) along the transect during seasonal cruises JR161, JR177 and JR200 and 

secondary cruises JR163/164, JR184, JR185, JR194/197 and JR188. The Falkland Islands 

(FI), South Orkney Islands (SOI) and South Georgia (SG) are identified. Data are coloured 

according to month. Depth contours in (a) are at 1000, 2000 and 3000 m (GEBCO, 2001). 

 



 

 

 

The first deep carbonate measurements of the Scotia Sea were made in summer 2008 (Chapter 

4) and are presented alongside hydrographic data in order to identify the principle water 

masses, hydrographic fronts and contemporary carbonate characteristics of the Scotia Sea. 

Antarctic Surface Water (AASW) was characterised by distinct summer minima in dissolved 

inorganic carbon (DIC) and total alkalinity (TA) and was supersaturated with respect to 

aragonite. The depth of the potential temperature minimum (θmin) represented the remnant of 

the Winter Water (WW) and were used to infer the carbonate chemistry of AASW during the 

preceding winter (2007). Warm Upper Circumpolar Deep Water (UCDW) represented a 

voluminous reservoir of DIC in the ACC. Salty Lower Circumpolar Deep Water (LCDW) was 

distinctly enriched with alkalinity and was undersaturated with respect to aragonite. Warm 

Deep Water (WDW) was observed flowing out of the Weddell Sea, identified by a warm, 

saline core infiltrating the southern Weddell-Scotia Confluence (WSC). 

Shoaling isohalines were observed throughout the water column upon intersection of the 

Southern ACC Front (SACCF) at 58°S and the Southern Boundary (SB) of the ACC at 59°S. 

Meanders in the SACCF were encountered in the central ACC (56-55°S) and in the Georgia 

Basin (GB), north of 53°S. Upwelling of DIC and nutrient rich UCDW at these locations 

contributed to (1) summertime enhanced phytoplankton biomass and net DIC depletion in the 

AASW and (2) enrichment of sub-surface waters that behaved as a supply of DIC-rich, 

carbonate-poor and low pH waters through increased vertical mixing during winter.  

Contrasting concentrations of sea surface fCO2, DIC and TA were observed in the marginal 

ice zone (MIZ) allowing a unique analysis the carbonate chemistry of Antarctic sea ice during 

the summer thaw (Chapter 5). The precipitation of carbonate minerals such as ikaite 

(CaCO3.6H2O) in sea ice brines have the net effect of decreasing DIC and TA, and increasing 

the fCO2. Deficits in salinity normalised DIC and TA in the summer mixed layer of the MIZ 

were consistent with the release of brines from melting sea ice, where ikaite precipitation had 

taken place. Across the MIZ, ikaite precipitation accounted for up 12 ± 3 µmol kg-1, or 13%, 

of the summer DIC deficit. Biological assimilation of carbon had the largest effect on summer 

DIC concentrations, resulting in deficits of 41 ± 1 µmol kg-1 at the receding ice edge.  

 

The combined effects of biological carbon uptake and sea ice carbonate chemistry constituted 

a sea ice CO2 pump and created substantial fCO2 undersaturation of 95 µatm in the MIZ during 

summer. The original ‘sea ice CO2 pump’ hypothesis proposed that the dissolution of 



 

 

 

carbonate minerals in meltwater leads promotes CO2 uptake from the atmosphere (Rysgaard et 

al., 2007; Rysgaard et al., 2009). The carbonate chemistry data for the Scotia Sea suggest that 

it is the transfer of DIC- and TA-poor brines into the surface water during ice melt, in the 

presence of phytoplankton blooms, that create a strong CO2 sink during the summer. This 

research complements the identification of ikaite minerals in Antarctic sea ice (Papadimitriou 

et al., 2007; Dieckmann et al., 2008) and further highlights that complex, and not fully 

understood, carbonate chemistry processes are taking place in Antarctic sea ice with strong 

implications for CO2 uptake in the polar oceans.  

Waters downstream of South Georgia are amongst the most productive in the Southern Ocean, 

where extensive phytoplankton blooms occur each year (Atkinson et al., 2001; Korb and 

Whitehouse, 2004; Korb et al., 2008; Whitehouse et al., 2008). Shipboard and satellite surface 

chlorophyll-a concentrations identified regions of elevated chlorophyll-a, greater than 10 mg 

m-3, in the core of the bloom that contrasted with upstream high-nutrient low-chlorophyll 

(HNLC) waters. The ‘unproductive’ HNLC waters held a small standing stock of chlorophyll-

a and had a summertime DIC deficit of 2.2 ± 0.3 mol m-2. This shows that HNLC waters of the 

ACC are more productive than commonly perceived, as suggested by Bakker et al. (2007), and 

illustrates some of the limitations in using satellite chlorophyll-a as an indicator of marine 

productivity. 

The summer DIC deficit in the upper 100 m was 4.6 ± 0.8 mol m-2 in the bloom where 

substantial biological carbon uptake created an oceanic sink for atmospheric CO2 of 15.1 ± 5.7 

mmol m-2 d-1. For the 90 day duration of the bloom that covered 80,000 km2 of the GB, a total 

of 1.3 ± 0.5 Tg C was transferred from the atmosphere to the ocean through air-sea exchange. 

Sea surface distributions of dissolved iron across the AAZ provided evidence for iron 

enrichment downstream of South Georgia. Natural iron fertilisation and biologically mediated 

carbon uptake has been identified in the blooms downstream of  sub-Antarctic islands of 

Crozet (Bakker et al., 2007) and Kerguelen (Jouandet et al., 2008). Compared to the spatial 

and temporal characteristics of the other island blooms, South Georgia was the strongest 

bloom, with a total summer DIC deficit of 4.4 ± 0.8 Tg C, almost twice that of the Kerguelen 

bloom. In a Southern Ocean context, the summertime DIC deficit of the South Georgia bloom 

was only superseded by blooms in the Ross Sea (Bates et al., 1998; Sweeney et al., 2000), 

firmly establishing the South Georgia bloom as the strongest region of biological carbon 

uptake in ice-free waters of the Southern Ocean.  



 

 

 

The novel fCO2 data obtained along the repeat transect in spring 2006, summer 2008 and 

autumn 2009 (Chapter 7) have established a new timeseries and will contribute valued 

autumnal data, a relatively undersampled season, to global fCO2 datasets (CDIAC). Satellite 

derived chlorophyll-a and sea ice cover were used alongside in situ physical and 

biogeochemical observations to investigate the marine carbon cycle during the transition from 

wintertime CO2 source to summertime CO2 sink. Maximum sea ice cover extended from 63° 

to 57°S during winter 2007 and defined the seasonal ice zone (SIZ) of the Scotia Sea. A strong 

correlation was observed between sea ice, ice edge phytoplankton blooms and fCO2 

undersaturation, with distinct inter-annual variability. Moderate sea ice advance and early 

retreat set up conditions most favourable for phytoplankton bloom development. Early break-

up and melting of the sea ice revealed waters supersaturated with fCO2 that outgassed at a rate 

of 6.0 ± 2.7 mmol m
-2 d-1. The action of the biological pumps and sea ice carbonate processes 

rapidly transformed the fCO2 supersaturated waters to substantial fCO2 undersaturation. 

During the three month lifetime of the SIZ bloom in spring and summer 2006-2007, 1.01 ± 

0.72 Tg C was transferred from the atmosphere to the ocean making this the strongest SIZ 

bloom during the research period. 

The upwelled nutrient-rich CDW at the SACCF and the SB transformed the regions into 

transient CO2 sinks (up to 11.6 ± 1.2 mmol m-2 d-1) with the SIZ blooms that ‘tracked’ the 

southward retreating sea ice during the spring and summer thaw. The PF remained a CO2 sink 

of 2.3-4.5 mmol m-2 d-1 due to a continuum of phytoplankton activity from spring to autumn. 

In contrast, the HNLC waters of the central ACC were a source of CO2 of 2.0-2.3 mmol m-2 d-

1 from summer to autumn due to seasonal warming. The substantial CO2 undersaturation of 

the South Georgia bloom created an average summertime CO2 sink of 12.0 ± 4.2 mmol m-2 d-1 

across the GB. Through the action of the biological carbon pumps in the GB, the SIZ and at 

the three ACC fronts, the Scotia Sea was a summertime sink for atmospheric CO2 of 5.7 ± 1.4 

mmol m-2 d-1.  

By wintertime, the Scotia Sea was transformed into a CO2 source of 2.9 ± 1.0 mmol m-2 d-1. 

This was due to sea ice cover, little photosynthesis and upwelled CDW supplying the sub-

surface water at the SACCF and SB with DIC. As a result, low pH and carbonate ion 

concentrations south of 59°S and in the GB drive strong seasonal amplitudes in aragonite 

saturation. These data re-enforce the empirical estimates of McNeil and Matear (2008) and 



 

 

 

give a first prediction, based on localised in situ observations, of the onset of sea surface 

aragonite undersaturation in the Scotia Sea by 2030-2040. Waters beneath the thermocline in 

the GB were undersaturated with respect to aragonite, presenting conditions of ocean 

acidification to calcifyers south of the Polar Front. 

The Scotia Sea from 62.6° to 49.5°S is an annual oceanic CO2 sink of 6.2 ± 2.1 mmol m-2 d-1. 

The South Georgia bloom is a resilient and predictable component of this CO2 sink, 

transferring an average of 1.01 ± 0.41 Tg C from the atmosphere to the upper ocean during 

spring, summer and autumn each year. The Scotia Sea blooms accounted for over 2% of the 

current estimate for the total Southern Ocean CO2 sink (Takahashi et al., 2009). The large 

inter-annual variability in the SIZ blooms imposed constraints on the CO2 sink. Future climate 

change is likely to affect the sea ice-CO2 relationship and the CO2 sinks of the current SIZ 

could diminish. The distribution and substantial seasonal amplitudes in sea surface carbonate 

chemistry presented in this thesis show that the Scotia Sea is a ‘mosaic’ of Southern Ocean 

environments. The region can be considered as a natural mesocosm to better understand and 

predict how future climatic changes may affect the distributions of air-sea CO2 fluxes, pH and 

aragonite undersaturation for the contemporary and future Southern Ocean.  

8.2. Future work 

The data presented in this thesis have added to our understanding of the role of the Southern 

Ocean in the global carbon cycle. With regular passages across Drake Passage, into sea ice, 

around South Georgia and up to the Polar Front, the RRS James Clark Ross is an ideal 

platform for carrying out CO2 measurements to maintain observations of the dynamic 

Southern Ocean carbon cycle (Fig. 8.1). This should be done by continuation of the sea 

surface fCO2 measurements on future cruises, to vastly improve the temporal coverage, and 

repeating the deep section transect with DIC and TA measurements in 5-10 years time to 

enable decadal changes to be evaluated (Bates et al., 1996; Jeandel et al., 1998; Feely et al., 

2002; Feely et al., 2006; Metzl et al., 2009). This will allow a more thorough assessment of 

inter-annual variability. 

This research highlighted interesting, and not fully understood, carbonate chemistry processes 

in Antarctic sea ice. To further investigate the influence of Antarctic sea ice carbonate 

chemistry on the marine carbon cycle, several time series that span the advance and retreat of 

the sea ice should be established. This could be carried out through shipboard analyses, but a 



 

 

 

land or sea ice based campaign would provide optimal access and remove some logistical 

constraints of shipboard work. Ice coring and brine extraction in different ice types should 

complement the surface water analyses alongside high resolution, vertical hydrographic 

sampling in the upper ocean. Separation techniques should be implemented and optimised in 

order to identify the nature of any carbonate minerals present (Dieckmann et al., 2008). Small 

scale flux towers positioned over the ice sheet would complement the suite of oceanic 

parameters to investigate the potential for CO2 exchange through sea ice (Semiletov et al., 

2004; Nomura et al., 2006). The BAS research base, Rothera on the western Antarctic 

Peninsula would provide an ideal fieldwork site. As part of the BAS long term monitoring, the 

Rothera Oceanographic and Biological Time Series (RaTS) was established in 1997, carrying 

out station work every 5-7 days in Ryder Bay, northern Marguerite Bay (Clarke et al., 2008). 

The acquisition of carbonate chemistry parameters would neatly fit in with the work already 

carried out as part of RaTS.  

Evidence suggested that the extensive South Georgia bloom is naturally iron fertilised 

(currently under investigation). The bloom had an estimated duration of 90 days, of which the 

RRS James Clark Ross was present for 5 days and carried out 3 hydrographic stations. 

Dedicated shipboard surveys from bloom initiation (October) to maximum extent (December) 

would better capture the scale of carbon uptake at different stages of the bloom development. 

The shipboard surveys should combine high frequency underway and station sampling, 

including autumn and winter repeat sections, across regions of low, moderate and high 

chlorophyll-a concentrations as determined from real time satellite images. Incorporation of 

winter sampling would validate the assumptions of using the temperature minimum as an 

indicator for Winter Water conditions, of which this and many seasonal carbon studies are 

based upon. The proposed reduction in aragonite saturation and effects on calcifying 

organisms should be tested at numerous localities, by in situ multi-depth netting and shipboard 

incubations to better predict effects of future ocean acidification to calcifyers in the Scotia 

Sea.     



 

 

 

Glossary 

AABW Antarctic Bottom Water  

AAIW Antarctic Intermediate Water  

AASW Antarctic Surface Water  

AAZ Antarctic Zone  

ACC Antarctic Circumpolar Current  

BAS British Antarctic Survey  

BATS Bermuda Atlantic Time-series Study  

CARBON-OPS An operational UK air-sea carbon flux observation capability  

CASIX Centre for observation of Air Sea Interactions and fluXes  

CDIAC Carbon Data Information and Analysis Centre  

CDW Circumpolar Deep Water  

CRM Certified Reference Material  

CTD Conductivity, temperature, depth  

DCM Deep chlorophyll-a maxima  

DIC Dissolved inorganic carbon  

DOC Dissolved organic carbon  

DOE Department of Energy  

FI Falkland Islands  

GB Georgia Basin  



 

 

 

GEBCO General Bathymetric Chart of the Oceans  

HNLC High-nutrient low-chlorophyll  

HOT Hawaiian Ocean Time-series  

IPCC Intergovernmental Panel on Climate Change  

JGOFS Joint Global Ocean Flux Study  

JR# Cruise number # on RRS James Clark Ross  

KERFIX Kerguelen Fixed Station  

LCDW Lower Circumpolar Deep Water  

MOC Meridional overturning circulation  

MODIS MODerate resolution Imaging Spectroradiometer  

NADW North Atlantic Deep Water  

NEGR Northeast Georgia Rise  

NOAA National Oceanic and Atmospheric Administration  

NSR North Scotia Ridge  

NWGR Northwest Georgia Rise  

MEB Maurice Ewing Bank  

MIZ Marginal ice zone  

MLD Mixed layer depth  

PF Polar Front  

PFZ Polar Frontal Zone  

PIC Particulate inorganic carbon  



 

 

 

POC Particulate organic carbon  

SACCF Southern Antarctic Circumpolar Current Front  

SB Southern Boundary  

SeaWiFS Sea-viewing Wide Field-of-view Sensor  

SG South Georgia  

SIZ Seasonal ice zone  

SOI South Orkney Islands  

SR Shag Rocks  

SSI South Sandwich Islands  

SSR South Scotia Ridge  

SST Sea surface temperature  

TA Total Alkalinity  

UCDW Upper Circumpolar Deep Water  

UEA University of East Anglia  

VINDTA Versatile Instrument for the Determination of Titration Alkalinity  

WDW Warm Deep Water  

WOCE World Ocean Circulation Experiment   

WSC Weddell-Scotia Confluence  

WW Winter Water  
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