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A B S T R A C T

The initiation of the symbiosis between rhizobial bacteria and legume
plants is governed by calcium oscillations within plant root hair cells.
Using techniques of non-linear time series analysis this work provides
evidence that the oscillations are chaotic in nature. An investigation to
determine whether the underlying chaotic system can be identified
from the oscillations is also described. Finally, a periodic model based
on current understanding of the system is presented.
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Part I

T H E S I S



1
I N T R O D U C T I O N

1.1 the legume symbiosis with rhizobial bacteria

1.1.1 Nitrogen Fixation

All protein based life requires Nitrogen but few organisms can fix
Nitrogen from the air.

The majority of the Nitrogen required by modern agriculture is pro-
duced industrially by the Haber-Bosch process which breaks the triple
bonds of N2 at temperatures greater than 600°C and pressures up to
500 atm. This energy intensive process combined with the transport
and application of the resulting fertilizer is estimated to consume 1%
of the worlds energy supply [51]. Only half of the Nitrogen applied as
fertilizer is taken up by crops with the excess either taken back into
the atmosphere or leached into water significantly increasing nitrate
levels in ecosystems [31].

Biological Nitrogen fixation provides the majority of the Nitrogen
required by non-agricultural plants [51]. It does this using sustainable
energy sources and does not raise the nitrate levels of the surrounding
environment. Fixed Nitrogen is needed to produce the biomass that
performs carbon sequestration implying that the natural systems that
fix Nitrogen are an important variable in a changing climate [46].

One naturally occurring Nitrogen fixing system exists as an outcome
of a symbiosis between rhizobial bacteria with legume plants. This
research focuses on the rhizobial/legume symbiosis, in particular, the
symbiosis between the model legume Medicago truncatula with the
bacteria Sinorhizobium meliloti.

1.1.2 Outline of the Legume/Rhizobia Symbiosis

The majority of plants do not form symbioses with Nitrogen fixing
bacteria and the root nodule symbiosis is restricted to four orders
within the Eurosid I clade of Angiosperms [62]. One of the best studied
symbioses involves legume plants such as Medicago truncatula and
bacteria collectively known as rhizobia.
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1.1 the legume symbiosis with rhizobial bacteria 12

The symbiosis of rhizobia and Medicago truncatula leads to a de-
velopmental change within the plant known as nodulation. Organs,
called nodules, are formed when rhizobia have penetrated root cortical
cells and are bound in membranes produced by the plant cells. Nitro-
gen fixation occurs within the controlled environment of the nodules.
Nodulation only takes place between specific species of bacteria and
specific species of legumes.

Nodulation, and the steps leading up to it, have been discussed in
several reviews [30, 104, 72, 91, 92]. It consists of the following events
with the approximate sequence:

Figure 1: Flavanoid molecules activate secretion of Nod factor.

Figure 2: Ca2+ spiking occurs in root hair cells within 10 minutes of Nod
factor recognition.
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Figure 3: Co-ordinated infection and organogenesis processes follow the
sensing of Ca2+ oscillations.

Figure 4: An infection thread forms within the root hair cell.

1. Flavanoid molecules, produced by the host plant root, activate
bacterial production and secretion of lipchito-oligosaccharide
Nod factors (Figure 1).

2. Nod factor, possibly binding to a receptor, is recognised by the
host plant causing intracellular signalling within a root hair cell.

3. Among the earliest events, occurring within 10 minutes, are
nuclear localised Ca2+ oscillations sometimes known as calcium
spiking. The Ca2+ oscillations occur within root hair cells (Figure
2).
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Figure 5: Rhizobia reach the nodule primordium.

4. The sensing of Ca2+ oscillations leads to gene expression and the
activation of co-ordinated infection and organogenesis processes
(Figure 3).

• Microtubules within the root hair cell begin to disintegrate.

• Root hair tip growth orientates towards the direction of the
Nod factor source.

• Root hair curling encapsulates rhizobia within a curl.

5. The root cell wall in the vicinity of the bacteria in a curl degrades.

6. An infection thread, constructed from root hair cell wall material,
forms within the root hair cell. The infection thread wall is
contiguous with the cell wall of the root hair (Figure 4).

7. Rhizobia enter the infection thread.

8. Rhizobia replicate as the infection thread grows and penetrates
the epidermal layer.

9. Rhizobia reach the nodule primordium, that has been formed
by cortical cells dividing, through infection thread growth (Fig-
ure 5). The bacteria are delivered by endocytosis of the infec-
tion thread membrane to the nodule primordium where they
form symbiosomes. Within symbiosomes they differentiate into
Nitrogen-fixing bacteriods.
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1.1.3 The Role of Ca2+ Oscillations

This thesis concentrates on the characterising and modelling of the
Ca2+ oscillations that occur in root hair cells during the symbiosis
between Medicago truncatula and Sinorhizobium meliloti.

There is genetic evidence to show that Ca2+ oscillations and Ca2+

signal transduction are essential for the symbiosis to take place. The
DMI1 gene (DOESN’T MAKE INFECTIONS) in M. truncatula, that
encodes a nuclear localised cation channel, is required for both nodu-
lation and Ca2+ oscillations [125, 95].

A Ca2+ and calmodulin-dependent kinase (CCaMK), encoded by
the gene DMI3, is essential for nodulation [71] and can induce nodules
when its autoinhibitory domain is removed [35]. The modified DMI3 is
also able to induce genes associated with symbiosis in a DMI1 mutant
that does not generate Ca2+ oscillations [35]. The CCaMK is nuclear
localised and a highly Ca2+ regulated protein making it a candidate
for decoding the Ca2+ oscillations and initiating downstream gene
transduction.

Symbiosis with Mycorrhizal Fungi

Abuscular mycorrhizal fungi take part in a symbiosis with the majority
of land plants obtaining carbon from the plants in return for nutrients,
such as phosphate, obtained from their large mycelial networks.

It has been shown that the mycorrhizal symbiosis and the N2 fixing
bacterial symbiosis share common signalling components involved
in Ca2+ oscillations [62]. DMI1 and DMI3 are required for both the
bacterial and mycorrhizae symbioses [2, 71]. Mycorrhizal fungus also
induces Ca2+ oscillations [65] and induces some of the same genes
as N2 fixing bacteria [53] downstream of the Ca2+ spiking. Since
plant symbioses with mycorrhizal fungi evolved around 300 million
years earlier than symbioses with rhizobia, it is hypothesised that
the rhizobial symbiosis recruited existing symbiotic pathways. Some
evidence of this can be seen in the SYMRK gene which is required for
both types of symbiosis [33] but has more complex structures in plants
that form root nodule symbiosis. This extra complexity is required
to form the root nodule symbiosis but not the mycorrhizal symbiosis
[78].

The Ca2+ spiking produced in response to mycorrhizal fungus tends
to oscillate at a higher significant frequencies when compared to Nod
factor induced Ca2+ oscillations [65]. However, because the analysis
was done on an unpurified chemical signal, that is not comparable
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to using purified Nod factor, it is cannot be determined if defining
features of the mycorrhizal Ca2+ spiking are due to the intensity of
stimulation or differences in the nature of activation. Nethertheless,
when taken together with genetic evidence these results show that
Ca2+ oscillations play a significant role in both symbioses.

1.2 calcium oscillations

1.2.1 The Measurement of Ca2+ Oscillations

Ca2+ concentration in a cell is not directly measurable and chemical
sensors are required to detect changes in Ca2+ concentration. The
most popular forms of Ca2+ sensors are excited by a laser and change
a characteristic of their fluorescence such as wavelength or amplitude
when bound to Ca2+. The earliest form of Ca2+ sensor used to detect
Nod factor induced Ca2+ spiking was the dye Fura-2 [24]. Later,
Oregon Green dyes [127] or Cameleon proteins [82] were employed.

Upon Ca2+ binding Fura-2 changes the wavelength at which it
absorbs UV light. The Oregon Green dye increases fluorescence up to
14× in the presence of Ca2+ with a wavelength in the visible spectrum
[48] which is less perturbing than UV to the cell under study. The
Cameleon protein can be added to the genome of plants and can
be targeted to different parts of the root hair cell [117]. The Ca2+

measurements analysed in this thesis were all obtained by measuring
with Oregon Green.

Dyes are normally microinjected into root hair cells resulting in an
exceptional addition of Ca2+ buffers to the system. In Chapter 4 we
investigate the effects of a Ca2+ probe on a mathematical model.

Ca2+ indicators are excited with a laser during experiments in order
to measure fluorescence. Unfortunately this excitation step results in a
proportion of the indicators being damaged which is observed as a
gradual fluorescence reduction over time known as photobleaching.
This can be partially accounted for by using a ratio of fluorescence
of Ca2+ bound indicator to Ca2+ unbound indicator based on the as-
sumption that both modes will photobleach at the same rate. However,
photobleaching can still be observed on most Ca2+ spiking traces and
methods to remove this experimental artifact using detrending are
discussed in Chapter 2.
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1.2.2 Observed Behaviour of Ca2+ Oscillations

Oscillations in the level of nuclear and cytosolic Ca2+ are observed
in root hair cells approximately 10 minutes after Nod factor addition
[24]. Using Fura-2 the peak perinuclear Ca2+ concentration has been
determined as between 433 and 669 nanomolar (nM). This drops to a
< 100nM minimum for basal Ca2+ levels in the cytosol.

When oscillations occur, the peak amplitude is more pronounced
at the nucleus. Spiking is less pronounced at the root-tip and the
pattern of oscillation is also less consistent. This trend can be seen as
measurements are taken further away from the nucleus.

After addition of high concentrations of synthesised Nod factor, a
Ca2+ influx is observed and depolarisation of a root hair cell occurs
within 2 minutes. Oscillations do not start until around 10 minutes
after the application of Nod factor [24]. However, because lower levels
of Nod factor induce Ca2+ oscillations without a Ca2+ influx [115, 83],
it is likely that oscillations occur before the Ca2+ influx provided
there is a steady increase in the levels of Nod factor produced by the
bacteria and perceived by the host plant.

1.2.3 Frequency, Number of Spikes and Gene Expression

The induction of early nodulation genes (ENOD11) can be used as
a marker for symbiotic development changes in the host plant [53].
ENOD11 genes are not induced throughout the root but only in a zone
of developing root hairs. This is in contrast to Ca2+ spiking which
occurs in root hairs throughout the root with younger hairs at the tip
of the root oscillating slower than older hairs further up the root [82].

One possible hypothesis is that the induction of genes depends on
the frequency of the Ca2+ oscillations. However, roughly halving the
frequency of the Ca2+ spikes results in slower induction of ENOD11

rather than failed gene induction [82]. This result is consistent with
gene induction being connected to the number of Ca2+ spikes, possibly
due to an integration of the Ca2+ concentration during oscillations. It
has been estimated that ≈ 36 spikes are required to induce ENOD11.

However, despite the frequency of Ca2+ oscillations not being sig-
nificant for the activation and deactivation of ENOD11, frequency or
shape may have a part to play in determining whether a symbiosis is
a mycorrhizal or a bacterial one [65].
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1.2.4 Required and Known Components

Figure 6: Minimal system required for Ca2+ oscillations with known and
hypothesised components.

A minimal hypothetical system required for Ca2+ oscillations would
comprise of a Ca2+ store containing a relatively high concentration
of Ca2+, a Ca2+ channel that releases ions from the store and a Ca2+

pump that actively transports ions across the concentration gradient
to refill the store. Although promising unpublished data exists, at the
time of writing there are no candidates for the roles of Ca2+ channel
or Ca2+ pump.

The modelling of Ca2+ oscillations in animal systems is a mature
field [113, 28]. However, critical differences exist which suggest that
Ca2+ oscillations in animals are generated by different mechanisms
to those found in plants. In animal systems, Ca2+ is released into the
cytosol from the endoplasmic reticulum or sarcoplasmic reticulum
[8]. In contrast, rhizobia induced Ca2+ oscillations in plants show
high concentrations of Ca2+ around the nucleus [24] and rely on
ion channels localised to the nuclear envelope [105, 18]. The majority
of models of Ca2+ oscillations in animal systems have a behaviour
dependent on the complex dynamics of the inositol-1,4,5-trisphosphate
receptor (IP3R) [113] for which no homologous proteins have been
found in plants [86].

The nuclear envelope is a known Ca2+ store that is contiguous with
the endoplasmic reticulum and maintains a free Ca2+ concentration
around 100× that of the nucleus and cytosol [98]. Ca2+ release is
observed during spiking in the perinuclear region of plant root hair
cells, so it is reasonable to suggest that the nuclear envelope is the
Ca2+ store in this system.
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Although no Ca2+ channel has yet been identified that takes part in
the symbiotic Ca2+ oscillations, the putative cation channel encoded
by DMI1 is essential for Ca2+ spiking to take place. It is unknown how
conductive this channel is for Ca2+, K+ or other cations. In Chapter 4,
DMI1 is modelled as a K+ channel which balances the electric field
across the membrane of the nuclear envelope to allow Ca2+ to flow.

1.3 overview of thesis

This thesis consists of three main chapters. Each chapter describes
a different analysis of the mechanism, or methods to investigate the
mechanism, underlying the Ca2+ oscillations that occur during the
early stages of symbiosis.

The first Chapter consists of a time series analysis of experimental
data. The Ca2+ oscillations give positive results in multiple established
tests for chaos. This is in contrast to Ca2+ oscillations that have been
investigated in other systems. A further investigation and discussion
of the time series techniques used on other systems is made.

The second Chapter consists of an empirical investigation into
whether differential equations, that exhibit chaos, can be recovered
from a single chaotic time series generated by the equations. The in-
vestigation is unable to demonstrate success with a realistically sized
chaotic system. However this Chapter may be of interest to other
researchers, as to our knowledge, several techniques are used together
and compared for the first time.

At the time of writing, no mathematical models for the symbiotic
Ca2+ spiking system have been published. The third Chapter describes
a periodic model for the Ca2+ oscillations. This model is fit to available
experimental data and analysed using techniques from nonlinear
dynamics.



2
D E T E C T I N G C H A O S I N C A L C I U M O S C I L L AT I O N S

2.1 overview

The chapter describes a nonlinear time series analysis of the Ca2+

oscillations that occur in M. Truncatula during the early stages of
symbiosis with nitrogen fixing bacteria. The results of the nonlinear
time series suggest, but do not prove, that the oscillations are chaotic.

The content of this chapter is taken from the paper Nonlinear Time Se-
ries Analysis Of Nodulation Factor Induced Calcium Oscillations: Evidence
for Deterministic Chaos? [42]. The methods section and the supplemen-
tal information have been moved nearer to the start of the report for
clarity. Some points and explanations have also been expanded.

2.2 abstract

Legume plants form beneficial symbiotic interactions with nitrogen fix-
ing bacteria (called rhizobia), with the rhizobia being accommodated
in unique structures on the roots of the host plant. The legume/rhizo-
bial symbiosis is responsible for a significant proportion of the global
biologically available nitrogen (Table 1). The initiation of this symbio-
sis is governed by a characteristic calcium oscillation within the plant
root hair cells and this signal is activated by the rhizobia. Recent anal-
yses on calcium time series data have suggested that stochastic effects
have a large role to play in defining the nature of the oscillations. The
use of multiple nonlinear time series techniques, however, suggests
an alternative interpretation, namely deterministic chaos. We provide
an extensive, nonlinear time series analysis on the nature of this cal-
cium oscillation response. We build up evidence through a series of
techniques that test for determinism, quantify linear and nonlinear
components, and measure the local divergence of the system. Chaos is
common in nature and it seems plausible that properties of chaotic dy-
namics might be exploited by biological systems to control processes
within the cell. Systems possessing chaotic control mechanisms are
more robust in the sense that the enhanced flexibility allows more
rapid response to environmental changes with less energetic costs. The
desired behaviour could be most efficiently targeted in this manner,

20
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Table 1: Annual transfer rates of Nitrogen from air to land [37].

Atmospheric 10× 106 tonnes

Industrial 36× 106 tonnes

Biological 140× 106 tonnes

supporting some intriguing speculations about nonlinear mechanisms
in biological signaling.

2.3 introduction

Calcium oscillations regulate a number of processes in plants, includ-
ing the establishment of the legume/rhizobial symbiosis. During this
interaction, bacteria (called rhizobia) invade the plant roots and are
accommodated in membrane bound compartments within plant cells
of a specialized organ on the root: the nodule. Within the nodule
the bacteria convert atmospheric dinitrogen into ammonia, a form of
nitrogen readily available to the plant. The availability of nitrogen is
one of the most limiting factors for plant growth and fixed nitrogen
from the legume/rhizobial symbiosis provides an essential nitrogen
source for agriculture and natural ecosystems.

The establishment of the legume/rhizobial symbiosis involves a
molecular communication between the plant and the bacteria, with
bacterially-derived Nod (nodulation) factor acting as a central signal
to the plant. Perception of Nod factor by legumes activates most of the
developmental processes associated with the formation of a nodule.
The Nod factor signal transduction pathway of legumes has been
well characterized and involves calcium oscillations, termed calcium
spiking. An example of calcium spiking is given in Figure 7. Receptor-
like kinases are involved in the perception of Nod factor and this leads
to induction of calcium spiking via cation channels, that appear to
regulate potassium movement and components of the nuclear-pore
complex [91]. This signal transduction pathway has also been shown
to function in the establishment of a second symbiotic interaction: the
mycorrhizal symbiosis. This interaction involves the colonization of
the plant root by mycorrhizal fungi that aid the plant in the uptake
of nutrients from the soil. Mycorrhizal fungi have been shown to
activate calcium oscillations, but with a different structure to Nod
factor induced calcium spiking [65]. This suggests that the symbiosis
signaling pathway can be differentially activated by both rhizobia and
mycorrhizal fungi.
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The nature of biological systems and the challenges inherent in ex-
perimentation often result in seemingly erratic time-series behaviour
with little apparent structure. Despite advances in signal processing
methodology, the extraction of information from such data remains a
challenge. Erratic behaviour is often thought to be the consequence
of noise or stochastic effects, but apparent randomness can also be
generated by a deterministic system operating in the chaotic regime. A
universally accepted definition of chaos is still outstanding, however,
a number of key features are held in common: A chaotic system is
deterministic, nonlinear, and highly sensitive to the initial conditions.
The exponential divergence of nearby trajectories implies that the pre-
dictability is limited to short time scales. Long term forecasts become
impossible despite the underlying deterministic nature. Unpredictable
systems are frequently handled with the methods of probability theory
and termed stochastic.

Sophisticated techniques exist for distinguishing between linear,
nonlinear, deterministic, stochastic and chaotic systems. However,
disentangling experimental noise, stochastic effects, and underlying
deterministic laws is non-trivial and the initial data derived from
biological processes are not often of sufficient quality to allow such
analyses. Experimental investigations into calcium (Ca2+) oscillations
have frequently been accompanied by mathematical modeling and a
wide range of models exist (see [113] for an excellent review of this
topic). Questions, however, remain as the mechanisms responsible for
the Ca2+ signal en- and decoding likely vary between organisms and
are not fully understood.

For example, intracellular Ca2+ oscillations and Ca2+ spikes have
been modeled with chaotic systems [13, 67, 39], although stochastic
descriptions have been proposed for some of the ion channels involved
[29]. Initial chaotic models were inspired by the bursting behaviour
observed in experiments on hepatocytes [20, 17, 36]. However, a later
theoretical study has shown that an example Ca2+ oscillatory sys-
tem can only be modeled deterministically at physiological Ca2+

concentrations when bursting is not taking place [68].
A recent study on Ca2+ oscillation data from hepatocytes, which

included bursting, led to the conclusion that calcium oscillations
were predominately stochastic in nature [97]. Time series data from
four cell types in mice and humans was used to show a rapidly
falling autocorrelation between Ca2+ spike intervals [119]. This was
interpreted as evidence that Ca2+ spikes are initiated stochastically.
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Further analysis revealed that the statistics of the interspike intervals
are in agreement with a stochastic model.

In plants, moreover, little is known about the secondary messen-
gers or calcium channels that may direct Nod factor induced calcium
spiking [92], also it is apparent that there are major differences in
the proteins that activate or perceive well-characterized animal sec-
ondary messengers such as inositol trisphosphate and cADPR [86].
Given these unknowns and differences, we are reluctant to bias our
analysis towards the models and conclusions drawn from animal
systems. Instead, a more appropriate approach to understand Nod
factor signaling is to analyse the experimentally obtained calcium
oscillations using methods from nonlinear time series analysis. Us-
ing a series of techniques, we demonstrate that Nod factor induced
Ca2+ oscillations generated within the legume M. truncatula are de-
terministic, nonlinear and show an exponential divergence that is
typical of chaotic systems. This observation suggested an alternative
explanation to a stochastic interpretation and prompted us to validate
our methodology using negative and positive controls. We generated
time series using the chaotic Lorenz system of differential equations
and the chaotic Haberichter model of Ca2+ oscillations. These models
were tested alongside our experimental data. We find that while both
these positive control data sets would be classified as chaotic using
many classical methods, they would be categorized as stochastic using
the methods employed in recently published time series analyses of
Ca2+ oscillations. Whereas stochastic modeling is often an effective ap-
proach, the extrapolation from a modeling convenience to the nature
of observed phenomena is not without risk and interesting phenom-
ena may be overseen and/or ascribed to random effects. We therefore
take a number of precautions to present as thorough an analysis as
possible of the experimental Ca2+ oscillations.

2.4 materials and methods

2.4.1 Time Series and Controls

We analysed time series data obtained from root hair cells of M. trun-
catula treated with 10-9M Nod factor from S. meliloti. The nature of the
Ca2+ oscillations is comparable whether the plant is treated directly
with Nod factor or with S. meliloti [126], but for ease of experimen-
tation in this study we have chosen to use isolated Nod factor. The
changes in Ca2+ levels were measured using the ratio of fluorescence
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from two dyes: Oregon Green that responds to calcium levels with
changes in its fluorescence and Texas Red that is not responsive to
calcium and provides a control for fluorescence changes unrelated
to calcium. These dyes were micro-injected into root hair cells and
fluorescence measured as described in [121]. The intensity of the flu-
orescence was measured in individual cells at five second intervals
for a period of at least 60 minutes. Examples of an unprocessed time
series and detrended time series are given in Figure 7.

Experimental time series from 9 cells, were analysed. After de-
trending by two methods, splitting some time series according to
stationarity tests and removing one EMD detrended time series due
to nonstationarity, we were left with a total of 21 Ca2+ spiking time
series labelled ‘Nod1 MA’, ’Nod1 EMD’, . . . , ‘Nod11 EMD’ (described
in Table 2 and shown in Appendix 1).

The comparison of the autocorrelation of interspike intervals used
two time series obtained from chaotic mathematical models as positive
controls. One of the positive controls was generated by a model of
Ca2+ spiking developed by Haberichter et al [39] and the other by
the well known chaotic Lorenz system [76]. Tests for determinism
used a time series generated with random numbers obtained from
http://www.randomnumbers.info/ as a negative control. As negative
controls for nonlinearity we produced two time series, an instance
of an autoregressive (AR) model, and a surrogate [112], from each
experimental time series (Figure 8). To see the effects of a time series
analysis on the type of system suggested by [119], a simple nonlinear
model with random interspike intervals was tested.

Autoregressive model

The first type of negative control we used is the result of an autore-
gressive (AR) model of the form:

xt = a1xt−1 + · · ·+ apxt−p + ε (2.1)

where xt is a value of the time series at time t and the model
consists of p terms. The value ε is a Gaussian term with a mean of
zero and a variance σ. An AR model is fitted to the experimental time
series by calculating the coefficients a1..p which give the best fit to the
experimental time series using the Yule Walker equations [16]. The
order p is specific to each time series and is chosen with the Akaike
Information Criterion [1]. A new time series is generated with ε equal
to the prediction variance of the fitted model.
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Surrogate time series

Another type of negative control is a time series with the same power
spectrum and amplitude distribution as the original time series [112].
A matching power spectrum ensures the negative control has the same
linear statistics as the experimental time series. A matching amplitude
distribution ensures the negative control has been subject to the same,
constant, possibly nonlinear, measurement function as the original
time series. Additionally, the phases of the Fourier transform of the
original time series are randomised so that the negative control, or
surrogate, does not have a deterministic nonlinear component.

The resulting surrogate is a linear Gaussian process with strong
similarity to the original time series. Surrogate time series are also
used in their more traditional role as described in a later section of
this analysis to perform Monte Carlo testing for nonlinearity.

Random Interspike Intervals

The following model was used to generate a synthetic time series as
a negative control. The model describes time series measurements
xt at time t. To generate the time series the model has a state S ∈
{spike, release}, the time since the last spike, τ, total spikes n, and a
set of interspike intervals that follow a normal distribution, {α}

n−1
i=1 ∼

N(µ,σ):

xt = xt−1 + k1 when S = spike (2.2)

xt = xt−1 + k2τ when S = release. (2.3)

The model produces a linear spike followed by an exponential decay.
The state changes from spike to release when xt exceeds a threshold
value. Stochasticity is introduced by changing the state from release
to spike when τ = αi. The shape of the spikes are controlled by the
constants k1 and k2 with k2 having a negative sign.

2.4.2 Detrending

Motion of the cell cytoplasm, known as cytoplasmic streaming, causes
relocalisation of the fluorescent dye and this coupled to photobleach-
ing causes noticeable Ca2+ independent changes in the overall fluo-
rescence. The ratio of the Ca2+ responsive dye, Oregon green, to the
non responsive dye, Texas red, reduces some of these non-specific
fluctuations, but does not remove all Ca2+ independent changes in
fluorescence. To remove these effects a moving average was taken and
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the result subtracted from the time series [16]. The number of points
in the moving average was particular to each trace and was set to
either 19 or 25 points. Changing the number of points gave control
over the type of features to be removed. The moving average is a
linear method and can obscure non-linearities within the signal. A
further danger arises in that human judgment of how many points
to include in the moving average may affect the final results. Because
of this potential for bias, the Nod factor induced spiking time series
were also separately detrended by Empirical Mode Decomposition
(EMD) [45]. This method of detrending deals more formally with the
nonlinearity of the time series and does not distort the shape of the
Ca2+ spikes [130], however like most automatic methods it is unable
to apply heuristic information and could fail to remove experimental
idiosyncrasies.

2.4.3 Time Delay Embedding

Phase Space

Many nonlinear techniques operate on a phase space representation of
a time series. Phase space is a higher dimensional representation than
the one-dimensional measurements that make up a time series. Each
point in phase space represents a state of the system being measured. A
trajectory through phase space represents the evolution of the system
through time. In some dynamical systems, the trajectories are attracted
to a structure in phase space known as the attractor. The attractors of
chaotic dynamical systems are termed ‘strange’, for example because
the attractors have a dimension which is given by a fraction rather
than an integer.

To see why a phase space representation is needed, we consider a
mathematical model of Ca2+ spiking. One of the simplest mathemati-
cal models for Ca2+ spiking is the one pool model [21]. In this model,
Ca2+ oscillations are specified using two equations, one for cytostolic
Ca2+ concentration ([Ca2+]cyt) and one for Ca2+ concentration in the
ER ([Ca2+]er). A single state in this model can be specified using two
measurements, [Ca2+]cyt and [Ca2+]er. As is common in experimental
results, there may only be one recorded observable, for example a
time series for [Ca2+]cyt. However, the properties of the true dynamics
for the one pool model can only be revealed when the time series is
embedded in at least 2 dimensions.

The technique of time delay embedding provides a method to
construct a phase space representation from a single time series. It
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does this by sliding a window, containing more than one measurement,
down the time series. Each instance of the window then represents a
point in phase space.

False Neighbours

To obtain an accurate representation of phase space from incomplete
data, the width of the window used in time delay embedding, is taken
to be more than twice the box counting dimension of the attractor
[110]. However, the dimensions of the attractor are not known. In
order to choose a window width, or more formally an embedding
dimension, the time series were embedded with different dimensions
and statistics run on each embedding to decide on the most suitable
dimension.

The false nearest neighbours algorithm [44] was used to suggest the
embedding dimension. The algorithm is based on the observation that
two trajectories in phase space, that are close to each other, will remain
close to each other one time step into the future. If two points in phase
space appear close to each other but then move far apart after moving
forward in time, they are known as false neighbours. False neighbours
can be caused by noise or by an incorrect embedding dimension. The
percentage of false nearest neighbours was graphed for embedding
dimension, m, where 2 6 m 6 10. The embedding dimension m = 6

was chosen after reviewing all the traces for a dip in the percentage of
false nearest neighbours.

Delay Time

A delay time of fifteen seconds for the embedding was suggested
by three different methods: mutual information [56], a drop in au-
tocorrelation to

(
1− 1

e

)
[107] and considering time window length

[66].

2.4.4 Stationarity

Nonlinear time series analysis treats data as if it has come from a
dynamical system consisting of variables, such as cytosolic Ca2+

concentration, and parameters such as rate constants. Variables have
different values over time whereas parameters are assumed to be fixed.
If a parameter changes over the course of a time series, it affects the
results of the analysis and the time series can be considered as being
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Figure 9: Example of a time series truncated for stationarity. a) The original
time series is given in red and the time series, after trunctation,
is given in blue. b) The cluster of p-values (y axis) that indicate
nonstationarity when the entire series is analysed. c) The results of
the stationarity test after truncation. The red line marks the p-value
0.05 which is used as a cutoff for clusters of non-stationary p-values.
When a p-value is calculated that is < 0.05 it is marked with a red
dot.
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non-stationary. A test for non-stationarity [60] was run on each time
series to see if any parameter changes could be detected.

The algorithm analyses nearest neighbours. A value D is calculated
for nearest neighbours in phase space:

D = txnn − tx , (2.4)

where tx is the time point that a point in phase space, x, was collected
and txnn is the time that the nearest neighbour to x in phase space
was collected. Strands of trajectories are collated where strands are
sets of pairs of points which have the same D. If 2 strands share the
same point then one of the strands is randomly deleted. The strands
are then analysed. The observed distribution of D is compared to
stationary system and a p-value is calculated that gives an estimate of
the probability that the time series is stationary.

We ran the test along various lengths of the time series. Whenever
there was evidence of a parameter change, given by a cluster of p-
values below 0.05 along a section of the time series, the series was
cropped before the section showing the parameter change. An example
stationary test is shown in Figure 9 where a section of a time series is
extracted based on the results of the test.

2.4.5 Detecting Determinism

Recurrence Quantification Analysis

A feature of deterministic systems is that they show approximately
repeating behaviour. Two nearby trajectories in phase space will re-
main close in a deterministic system, even if this is only for a short
time due to exponential divergence as described below. When working
with a time series, a lack of determinism will manifest itself as a rapid
reduction in repeating patterns.

Recurrence plots are able to clearly show patterns in data that are
missed by viewing the time series alone [22]. These plots are done on
a time delay embedded phase space. Where two parts of a time series
have neighbouring points in phase space, this is marked by a black
dot, or recurrence point, on a recurrence plot. The dots have an effect
of marking sections in the time series, that have similar shapes, with
diagonal lines.

We used recurrence plots to find approximately repeating patterns
in the fluorescence traces. However, interpreting a recurrence plot re-
quires a qualitative step, preferably by somebody who has experience
of finding determinism in this way. In order for recurrence plots to be
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useful to a wider range of researchers, a quantitative test is needed.
We applied a collection of statistical tests, that are run on a recurrence
plot, in order to class time series as deterministic [3].

The three tests for determinism use statistics on the number of
recurrence points, and the diagonal lines that they form, comparing
them to the null hypothesis that a random process generated the time
series. As the number of diagonal lines increases, the diagonal lines
get longer or a bigger proportion of recurrence points form diagonal
lines, the probability that a deterministic system generated the time
series increases. The first test operates on the average number of points
per diagonal line. The second test looks at the proportion of loose
recurrence points that don’t form diagonal lines. The third test takes
the ratio between the total number of recurrent points and the total
number of diagonal lines.

Kaplan-Glass Test

A more established test for determinism [58, 57] analyses the geometry
of the time series in phase space. Deterministic trajectories in phase
space will have similar orientations to each other. The phase space is
separated into an m dimensional grid. Every time a trajectory moves
through a box, j, in the grid, the vector from its box entry point to its
box exit point, v̂k,j, is constructed to have unit length. The average of
all the passes through each box ~Vj are calculated:

~Vj =
∑
k

v̂k,j/nj , (2.5)

where nj is the number of passes through box j. If trajectories are
moving in similar directions, ~Vj will preserve the unit length of each
v̂k,j added to it. For perfectly aligned trajectories, the length of ~Vj,
denoted |~V |, will tend towards 1.

The average values of |~V | for a given number of passes through a
box, n, generated by a random walk through phase space, is available
analytically. This value, R̄n has been shown, numerically, to closely
match the |~V | values for a random signal. To test for determinism,
plots of the mean of |~V |, denoted L̄n, against number of passes, n,
are compared to a plot of R̄n against n. Additionally, a single value
known as the determinism factor, Λ̄, can be calculated as a weighted
mean of |~V | and R̄n as follows:

Λ̄ =
1∑
j nj

∑
j

nj
(L̄nj)

2 − (R̄nj)
2

1− (R̄nj)
2

. (2.6)
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For a deterministic system Λ̄→ 1 and for a random walk through
phase space Λ̄→ 0.

2.4.6 Testing for Nonlinearity

Not all nonlinear time series are chaotic. However, in order for a time
series to be chaotic it must be nonlinear. Therefore showing nonlin-
earity is a prerequisite for evidence of chaos. A test for nonlinearity
is also a test for nonlinear determinism and analysing nonlinearity
reduces the need to run an explicit test for determinism.

Nonlinear Predictions on Surrogate Time Series

After assessing many different tests for nonlinearity, we found the
most robust method in the presence of noise to be a test that utilises a
non-linear predictor [56]. A non-linear predictor should make better
forcasts using a nonlinear time series than a linear time series with
random nonlinear effects. We used a conventional combination of
a locally constant predictor and numerically generated surrogates.
Some nonlinear features of the original series, that do not appear to
be due to a nonlinear measurement function, become randomised
in the surrogates [112]. The randomisation of nonlinear components
transforms the surrogates into linear time series with stochastic effects.
For a nonlinear time series, it is expected that the predictor will
perform better on the original series than the surrogates.

The nonlinear forecasting algorithm, based on the locally constant
predictor, operates on an embedded phase space where it uses points
in the phase space as a database to make predictions. A locally con-
stant predictor run over an experimental time series, usually required
over 400 datapoints to show an increase in the relative performance
compared to a group of surrogates. We speculate that this is because
the locally constant predictor requires a threshold number of points
in phase space in order to make useful predictions.

In this text, the locally constant predictor is known as the ‘zeroth’
predictor and using the predictor to test for nonlinearity with a set of
surrogate time series is known as the ‘zeroth surrogates test’.

2.4.7 Noise Titration

Nonlinear tests can be used to test for chaos in conjunction with a
technique known as a noise titration [101]. Additive Gaussian noise is
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applied to the time series under test to find the point where nonlinear-
ity cannot be detected. It has been demonstrated that the amount of
added noise has a relation to the Lyapunov exponent of the system
producing the time series. We use the surrogates test for nonlinearity
when performing noise titrations.

2.4.8 Exponential Divergence

Chaotic systems display a sensitivity to small changes in initial condi-
tions or previous states. A small perturbation ε will cause the system
to move through a trajectory in phase space that diverges rapidly
from the unperturbed trajectory. The sensitivity to perturbation or
initial error is quantified as an exponential increasing distance, eλ,
between the new trajectory and the original one in phase space. The
value λ is known as the maximal Lyapunov exponent. If λ > 0 the
trajectories are diverging, if λ = 0 the trajectories are parallel and if
λ < 0 the trajectories are converging. The sensitivity of chaotic systems
is characterised by maximal Lyapunov exponent being positive, λ > 0.

Direct Method

It is possible to measure the maximal Lyapunov exponent, λ, from
an existing time series even when there is no option of perturbing
the system. Some points are chosen from different parts of the time
series that are close to each other in phase space. Each point in the
neighbourhood will be on different trajectories. The natural log of the
average distance between the points is measured then plotted with
the natural log of the average distance of the trajectories at various
times in the future. Exponentially increasing distance over time, or
divergence, appears as a straight line on this plot. The linear trend
on the plot enables it to be analysed using linear techniques such as
correlation, to indicate if the divergence is indeed exponential, and
linear regression, to get a maximal value for λ from the time series.

Measuring the maximal Lyapunov exponent directly from a time
series is complicated by the presence of noise. With stochastic effects,
λ→∞ and this can distort the linear trend when analysing a system
that has exponential divergence. An even greater danger is that non-
chaotic systems can appear to have λ > 0.

The maximal Lyapunov exponent was calculated using a method
proposed by Rosenstein [107] suited to short time series of lengths in
the order of 1000 points.
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Indirect Method

A complementary technique for calculating Lyapunov exponents is
the indirect method. In this method, a nonlinear model is fitted to
the time series under test and then analysis is performed on the
model. However, the accuracy of the maximal Lyapunov exponent will
depend on how well the model fits the data. In order to get a good
fit to the data many models are fitted. A criterion is used to score
how well each model fits the data considering how many parameters
were required to produce the fit. In our tests we used the Bayesian
Information Criterion (BIC).

The nonlinear models were fitted using a neural network and have
the form [25]:

xn = f(xn−l, xn−2l, . . . , xn−dl) + ε . (2.7)

In the model above, l is the delay or lag, d is the dimension and ε
is a noise term. The models were fitted for various values of l and d.
The maximal Lyapunov exponent, λ, was calculated for each model
and the signs of the λ calculated for the best fitting models were
plotted and considered. An example for an experimental time series
and negative control are given in Figure 10 where the experimental
time series shows positive exponents as model fitting improves and
the negative control shows a weaker fit due to stochasticity and with
a majority of λ coming out negative.

2.5 results

In the following we describe the results of a number of nonlinear
time series analyses. In order to check whether a stream of data has
arisen from a chaotic system, a number of tests must be carried out.
Definitive answers are rare unless the system of underlying equations
or map is known. Plotting system observables as a function of them-
selves at an earlier time gives rise to the return map, which often
appears as a simple curve for deterministic systems. The shape of
such a curve strongly indicates the classification of the dynamics. This
technique is in fact a form of state space reconstruction, in which
typical deterministic trajectories should establish themselves upon a
low-dimensional attractor. A further test is for exponential divergence
and the calculation of Lyapunov exponents, which if positive indi-
cates chaos. These tests are sensitive to noise, which is always present,
especially in biological data, and hence rarely provide definitive an-
swers. One of the key steps for such analyses is proper embedding
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(a) Experimental Exponents

(b) AR Model Exponents

Figure 10: Examples of indirect Lyapunov exponents calculated for a) an
experimental time series b) an AR model used as a negative
control. The ’L’ values indicate the delay time or lag that was used
for particular models and the points are only plotted for the best
fitting model for each dimension and lag.
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and the determination of attractor dimensionality. Current approaches
for these steps work well for data within the order of 2% noise but
perform unreliably for noisy data sets. Thus, we are limited in the
application of such methods and as a result could not determine the
dimensionality reliably, and the return map computations did not
produce convincing results. However, as can be seen in Figure 11, the
attractor does appear to unfold well in three dimensions. Additionally,
a number of tests did provide useful results with a good confidence
level. The following sections describe the application of a number of
different tests, which taken together certainly do not prove that the
Ca2+ oscillations are chaotic but do provide evidence that the system
could be chaotic.

The results are described in two sections. The first section provides
accumulated evidence for chaotic behaviour in the Ca2+ time series
in M. truncatula. In the second section, additional tests allow a com-
parison to previous time series analyses that were performed on Ca2+

oscillations in animals.

2.5.1 Evidence of Chaos?

We analysed the Ca2+ oscillations by following the procedure illus-
trated in the flowchart of Figure 12. The full time series are used
and not just interspike times. The time series of Ca2+ concentration
were first detrended using two different techniques, Empirical Mode
Decomposition (EMD) and a moving average, examples of which are
shown in Figure 7. Using EMD does not distort the shape of the Ca2+

spikes and does not remove low frequency components of the exper-
imental signal. However, because the low frequency components of
the signal may not be significant, as an alternative to EMD we also
detrended the data using a moving average.

Each detrended Ca2+ spiking time series was tested for nonlinearity
using a nonlinear predictor and linear surrogates. If nonlinearity was
detected, a noise titration was used to test for chaos and the Lyapunov
exponent was calculated using a direct method. The direct method
calculates the maximal Lyapunov exponent and inspection of the
resulting divergence data can help one to discern if the divergence of
the system is due to chaotic or stochastic effects. An indirect method
was also used where multiple nonlinear models were fitted to the
experimental data and a maximal exponent calculated for each model.
The indirect method gave a selection of Lyapunov exponents and if
a clear majority of well fitting models had positive exponents then
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Detrend

Moving
Average EMD

Truncate until
stat ionary

Unprocessed traces

Nonlinear test with
surrogates

Noise t i trat ion with
surrogates

Indirect Lyapunov
Exponents

Direct Lyapunov
Exponents

6/10
nonlinear

11/11
nonlinear

10/11
chaotic

6/10 
chaotic

Moving Average EMD

Nonlinear
Noise reduction

10/11
chaotic

9/10 
chaotic

Figure 12: Flowchart of the tests run to gather evidence for chaos. A summary
of results on the left of the figure are after processing with a
moving average. The summary of results on the right are after
detrending with Empirical Mode Decomposition (EMD).
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we take this as evidence that the divergence is more likely due to
deterministic chaos rather than stochasticity (Figure 10).

Nonlinearity, Noise Titration and Lyapunov Exponents

Evidence of chaos was suggested in the majority of traces (16 out of
21) using a noise titration with the surrogates nonlinear test (Table 2).
Applied to linear autoregressive (AR) models fitted to the experimental
data, this test correctly identified forty true negatives and only two
false positives. In some cases, the results of the experimental time
series vary depending on the method of detrending, with some (4 out
of 10) EMD detrended time series failing the test for nonlinearity.

The nonlinear surrogates test exhibits a length dependence and so
the shorter time series failed (Table 2). The nonlinear predictability
was computed for a long time series that was steadily truncated to
provide a comparison of p-value against series length (Figure 13). The
p-values do not consistently indicate nonlinearity for times shorter
than 400 samples.

An indirect method for maximal Lyapunov exponent calculation
that fitted deterministic models to the Ca2+ time series, gave posi-
tive exponents for all experimental time series except for Nod3 and
Nod4. All negative controls correctly gave negative maximal Lyapunov
exponents.

Since the majority of the traces passed a test for nonlinearity the
system can be considered nonlinear, justifying the application of non-
linear noise reduction techniques. Once the experimental Ca2+ spiking
traces were noise-reduced, a direct Lyapunov calculation method was
performed. The logarithm of the divergence of neighbouring points in
phase space against time revealed a clear linear trend in the majority
of the time series, indicating exponential divergence. This is shown
in Figure 14. Taking an average gradient gave a Lyapunov exponent
of 0.014s−1 for time series detrended using a moving average and
0.013s−1 for time series detrended using EMD.

2.5.2 Tests for Comparison

Nonlinear System with Random Interspike Intervals

Properties of the autocorrelation of interspike intervals have been used
to support the idea of stochastic spike activation in four cell types
from mice and humans [119]. In order to compare our initial results,
which tend to support the case for determinism, with the stochastic
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Table 2: Stationary time series of Ca2+ concentration with lengths given by
the number of samples. The sample time is 5 seconds. The spikes
column indicates the number of spikes in the time series. P-values
are given for the null hypothesis that each nod factor time series
was generated by a linear process. The p-values are calculated by
running the zeroth surrogates test, which was also used for a noise
titration to get a limit for the noise that could be added without
destroying evidence of nonlinearity.

Time Series Detrending Length # Spikes Zeroth Noise Titration %

Nod1

MA 500 31 0.01 16

EMD 500 34 0.01 16

Nod2 MA 400 36 0.01 25

Nod3 MA 700 45 0.01 23

Nod4 EMD 600 46 0.02 20

Nod5

MA 480 30 0.01 20

EMD 741 46 0.01 12

Nod6

MA 339 14 0.01 0

EMD 359 15 0.20 0

Nod7

MA 1058 46 0.01 9

EMD 1170 50 0.01 11

Nod8

MA 1100 55 0.01 15

EMD 1029 47 0.01 0

Nod9

MA 409 15 0.01 1

EMD 260 9 0.83 0

Nod10

MA 400 22 0.01 20

EMD 520 30 0.01 16

Nod11 MA 440 46 0.04 24
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Figure 15: Autocorrelation of cycle times for a Nod Factor time series and
two positive controls based on chaotic mathematical models. The
X axis is the lag measured in number of samples (sample time
is 5 seconds). All time series show a rapid drop to within the
95% confidence interval for white noise which is marked with
horizontal dashed lines and represents no identifiably repeating
patterns.

hypothesis, the autocorrelation of the intervals between maxima was
calculated for two known chaotic differential equations and an experi-
mental Nod factor Ca2+ spiking time series. For a purely random time
series (white noise) the autocorrelation is close to zero. This is depicted
in Figure 15 in which horizontal dashed lines mark the approximate
95% confidence interval for white noise. This confidence interval is
calculated as ±1.96√

N
where N is the length of the series of interspike in-

tervals. Both the mathematical models and the experimental data show
a rapid drop in autocorrelation indicating that successive intervals
are not correlated. However, the mathematical models act as positive
controls revealing that the drop in autocorrelation is not necessarily
down to stochastic effects.

It must be pointed out that nonlinear time series analyses cannot
provide a definite answer regarding the nature of spike activation and
interspike times in the system. We considered a nonlinear deterministic
model for the spike waveforms, with randomly-chosen interspike
intervals. As expected, this signal clearly appears nonlinear; however,
it also appears chaotic using a noise titration. This demonstrates that
some conventional tests used to detect chaos are unable to discern
between purely chaotic systems and a carefully designed deterministic
spiking system with stochastic activation. For this reason we use a
number of different techniques with the goal of presenting as thorough
an analysis of the experimental Ca2+ oscillations as possible. A direct
Lyapunov calculation for the time series with stochastic interspike
times does not exhibit a clear exponential divergence. Figure 14 shows
the divergence to be of the form t

1
α , characteristic of a randomly
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perturbed deterministic system. The indirect method also indicates
that the majority of models fitted to the time series with stochastic
interspike intervals have a negative Lyapunov exponent.

Determinism

The results of determinism tests are somewhat subjective and were
therefore not used to support our conclusions. In contrast, the findings
from one such test have been used as evidence of stochasticity in
Ca2+ oscillations [97]. All traces obtained from our experiments pass
the three statistical tests for determinism proposed by Aparicio [3]
without the use of noise reduction. A negative control using random
numbers fails the three determinism tests.

We evaluated the Kaplan and Glass measure for determinism on the
Lorenz system and the Haberichter chaotic model of Ca2+ oscillations
[39], both with 10% noise added to mimic the noise estimated in the
experimental data. This method is based on a vector reconstruction of
the attractor over a grid of boxes. A determinism factor, Λ̄, is calculated
where Λ̄ = 1 indicates full determinism and Λ̄ = 0 indicates complete
randomness. The Lorenz time series had a determinism factor of
Λ̄ = 0.88, and Λ̄ = 0.78 for the chaotic spiking model. Both of these
time series would be classed stochastic using the criteria from other
studies which required Λ̄ > 0.9. The Ca2+ spiking time series in this
study have a low determinism factor, Λ̄ < 0.3. These results show the
limitations in using only one metric to characterize noisy data sets.

2.6 discussion

Chaos is common in nature. For instance, the gravitational three
body problem can exhibit deterministic chaos and numerous further
examples exist for which chaotic behaviour has been identified or sug-
gested, ranging from the solar system, weather, population dynamics,
to Brownian motion and diffusion [32]. An interesting example of
the potential relevance of chaotic flexibility has been discussed for
human heart beats. It has been suggested that normal heart behaviour
might be chaotic and can thus respond efficiently to perturbed con-
ditions, whereas diseased hearts are more stable in their frequencies
and less able to make necessary adjustments to stress [102]. However,
chaos may also be involved in the destabilisation of heart rhythms, as
quasiperiodicity and intermittency have been observed in the Ca2+

oscillations of cultured cardiomyocytes degenerating into chaos-like
behaviour that would be fatal in-vivo [11]. Whether or not biological



2.6 discussion 46

systems such as the heart or brain are really chaotic is still the subject
of much debate and on-going research.

Using a range of techniques from nonlinear time series analysis
we have gained some evidence suggesting that the Ca2+ spiking
in the root hair cells of M. truncatula might be chaotic. We first
demonstrated that the majority of the time series show the Ca2+

oscillations to be nonlinear. To check for false positives we also tested
linear models fit to the experimental data. The two false positives we
obtained show that the test for nonlinearity can be fallible in some
cases, should not be considered absolute, but nevertheless provides
evidence of nonlinearity. We then performed a test for chaos using
the noise titration technique. This test indicated that the majority
of the Ca2+ time series were nonlinear in the presence of additive
noise. This can be viewed as evidence of chaos [101]. Although the
majority (19 out of 21) of the negative controls were correctly identified,
the two false positives from the nonlinear test also passed the noise
titration. Furthermore, a synthetically produced time series consisting
of deterministic spikes separated by stochastic interspike intervals - a
model that has been proposed for Ca2+ oscillations in animal systems
- was also classed as chaotic by the noise titration method. Although
this model is largely deterministic and nonlinear, it is not chaotic.
This demonstrates that classification using the noise titration method
should be done with caution.

Using a combination of an indirect method to compute the probable
sign of Lyapunov exponents and a direct method to calculate the
magnitude and type of the divergence, evidence of chaos was revealed
in the Ca2+ oscillations and controls without any false positives. To
our knowledge, this particular combination of direct and indirect
methods of Lyapunov exponent calculation with the use of controls
has not been used before.

In animals, the hypothesis that Ca2+ oscillations, experimentally
obtained from hepatocytes, originated from a deterministic system
was rejected [97]. The conclusion that these oscillations are “preva-
lently stochastic” was reached because one of two time series failed
a nonlinear test, and the one that passed had a determinism score of
Λ̄ < 0.9 as provided by a Kaplan-Glass analysis. We have given two
examples of chaotic oscillations that fail to meet this criterion under
similar noise conditions to the experimental data being considered.
The noise present in our experimental data (around 10%), results in
some of the individual tests producing inconclusive answers, but the
combination of all results presents a stronger case which suggests
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that the oscillations in M. truncatula are produced by a nonlinear,
deterministic system.

In order to understand the fundamental nature of seemingly er-
ratic calcium oscillations, the question of randomness or chaos arises
and needs to be sufficiently addressed. To indisputably demonstrate
stochasticity as a main driving mechanism in calcium oscillations, de-
terminism must be eliminated. This is a non-trivial task for a number
of reasons. Fundamentally, given that noise is nearly always present
and the high demand on data quality and quantity for most non-linear
techniques to work robustly, this distinction between stochasticity,
noise, and low-dimensional chaos can rarely be achieved. Practically,
the choice of parameterisation is often known to be approximate and
deviations are called stochastic effects within the chosen framework
and reduced phase space. However, there now exists a wealth of ad-
vanced tools and approaches from time series analyses and dynamical
systems theory, which can be employed to shed light on the nature
of experimental data and offer possible interpretations. In accepting
randomness too readily, the exciting discovery of a biological system
taking advantage of attributes of chaotic motion would be missed and
some of its most interesting features labeled as chance occurrences.

A number of properties of dissipative chaotic systems make them
suitable for Ca2+ signaling. First, and perhaps counterintuitively, a
theoretical study on Ca2+ oscillations has shown that both the sen-
sitivity to parameter perturbations and the capacity to attune to a
forcing frequency do not depend on the oscillations being chaotic or
regular [96]. This means that, despite the sensitive dependence on
initial conditions, chaotic systems can be equally robust and flexible
as regular systems in a highly variable biological environment. While
these statements are based upon evidence from a particular model,
they can be generalized.

In non-conservative systems, chaotic trajectories are restricted to
lie upon either strange attractors or chaotic saddles. These two cases
represent sustained or transient chaos, respectively. The saddles are hy-
perbolic, and as such they are structurally stable and deform smoothly
with parameters. Moreover, it has been shown that the transient time
spent tracing a chaotic saddle changes slowly with increasing levels
of noise [69]. The case of sustained chaos is similar: strange attractors
typically retain their shape regardless of small parameter perturbation
(except at crisis values). Thus the trajectories that trace the attractors
also maintain their characteristic shape in noisy environments. The
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consequence is that the patterns made by system observables — here
the oscillating Ca2+ level — can be robust despite fluctuations.

These qualities are advantageous to the symbiosis signaling pathway
under study, which has been shown to take part in two important
symbioses that are evolutionary separated by hundreds of millions
of years [65]. Each symbiosis leads to a different Ca2+ oscillation
signature despite the use of common components. The existence of
the multiple steady states excludes the possibility that the signaling
pathway is a stationary, linear process.

The possibility that the system jumps from one attractor to another
in response to different input signals would have important impli-
cations, but the capacity for dual signal generation could also be a
sign that the system is controlling chaos, i.e. the two signals represent
subregions of a larger chaotic set. The control of chaotic motion, as
originally proposed [93], utilizes that the state of the system visits
any neighborhood of periodic orbits of every period. Tiny controlling
effects can then be adeptly used to direct the behaviour to any peri-
odic motion. The concept has been widely used in circuitry, lasers,
chemistry, low-energy orbit design, and even to direct the rhythms of
the heart. In the case of Ca2+ oscillations one candidate for the source
of the pertubations is Ca2+ influx [120]. The control algorithm is at-
tractive because of its efficiency, and could be used here to maintain
the periodicity of the oscillations, to synchronize spatially separate
components, or to specify one of the two signals.

It remains to be discovered whether chaos control is being harnessed
for the efficient tuning of the Ca2+ oscillations or if chaotic flexibil-
ity is an essential factor for signaling specificity. Discovering further
examples of nonlinearities and chaos within the cell would have im-
plications for the way we view the principles of signaling pathways.
One reason to suspect intracellular chaos is simply that it can be pro-
duced rather easily by relatively few strongly-interacting components,
and it is common in many natural systems. As has been shown for
noise, biological systems are capable of using common effects to its
advantage. Given that chaotic systems can indeed be robust, and that
chaos control enhances adaptability to environmental changes at less
energetic costs and with accurate targeting of desired behaviour, we
find this a fascinating speculation for biological signaling. It may come
as no surprise to learn that evolution could have beaten physicists
to the discovery that small perturbations can be efficiently used to
control chaotic systems [41, 116].



3
I D E N T I F Y I N G M O D E L S F R O M E X P E R I M E N TA L
D ATA

3.1 overview

This chapter looks at ways of analysing a chaotic time series to identify
the system that produced the time series. The investigation was done
using a set of known chaotic equations and attempts were made
to recover the equations from data they produced. It was hoped
that this investigation would lead to a method to identify unknown
components in the Ca2+ spiking system. However, despite suggesting
and benchmarking some useful techniques, this investigation was
not successful in producing a framework that could be applied to
experimental data.

3.2 introduction

As discussed in Section 1.2.4, the components in Medicago truncatula
root hairs that contribute to Ca2+ oscillations are not well under-
stood. Gaps in our knowledge about the system will translate to many
modelling iterations where different hypotheses are modelled and
then checked against the available experimental data. These Ca2+

time series contain information about the system that will guide the
modelling process. This chapter looks at methods to computationally
extract information from the time series to produce mathematical
models with minimal manual intervention.

3.2.1 System Identification

In this work, system identification is defined to be the automated or
semi-automated production of a mathematical model from a set of
experimental data. This problem has been investigated in separate
fields of research using various methods and sometimes using different
nomenclature.

One approach to system identification is the generation of linear
differential equations from a time series of variables [74]. The tech-
niques used for the generation of linear differential equations will

49
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not produce nonlinear differential equations without including prior
information about the physical system [74].

If no prior information is available, a Volterra-Wiener series can be
fitted to the data using an Orthogonal Algorithm proposed by Koren-
berg [64, 74, 129]. The Volterra-Wiener series, x0 → xN, is assumed
to have a memory κ, degree d, number of terms M and parameters
a0..M−1:

xn = a0 + a1xn−1 + · · ·+ aκxn−κ

+ aκ+1x
2
n−1 + aκ+2xn−1xn−2 + · · ·+ aκ+κxn−1xn−κ

+ · · ·+ a2κ+1x
2
n−2 + · · ·+ aM−1x

d
n−κ .

(3.1)

With a degree of 1, the Volterra-Wiener series corresponds to an AR
model (Section 2.4.1). A Volterra-Wiener series has the potential to
make good predictions but it is a “black box” model that gives little
insight into the physical components that make up a system.

In the field of genetic programming, the automatic production of
equations from data is given the name “symbolic regression”. Ge-
netic programming has successfully been used to recover differential
equations for simple and chaotic pendulum systems [111].

System biologists sometimes describe the problem of system iden-
tification as “network building” and work in this area has produced
equations in the form of nonlinear S-systems [61, 90]. An S-system is
a collection of equations with the following structure:

dXi

dt
= αi

n∏
j=1

X
gij
j −βi

n∏
j=1

X
hij
j , (3.2)

where n is the number of state variables (Xi...n) and αi, βi, gij and
hij are parameters. An S-system is flexible enough to describe a
gene network, but because the structure of the system is set prior to
system identification, fitting a model to experimental data is a tractable
parameter estimation problem.

There have also been successful attempts in system biology to infer
nonlinear ordinary differential equations (ODEs) [109, 47, 87, 88] from
experimental data.

For a system identification method to be used on the symbiotic
Ca2+ oscillations in Medicago truncatula, the method must support the
generation of multidimensional equations from time series describing
only a single variable. The complete system state cannot be used since
only time series of Ca2+ concentration are available. In fact, the vari-
ables that make up the system state are the subject of speculation. The
Ca2+ time series passes tests for chaos and so the system identification



3.2 introduction 51

method must also be able to produce nonlinear and chaotic system
equations. The aim of this research is to produce a mathematical
model of Ca2+ oscillations that will enhance our understanding of the
biological system being modelled. A system of nonlinear ODEs is the
best candidate for a model with a biological interpretation since the
majority of existing models for Ca2+ oscillations consist of nonlinear
ODEs. None of the studies previously mentioned meet all 3 of our
requirements. This encouraged us to investigate a different approach.
We suggest a general strategy for system identification inspired by
Sakamoto and Iba [109], break this strategy into subproblems and
investigate the subproblems with regard to chaotic systems.

3.2.2 Exploring Model Space

Figure 16: A rough sketch of how an automated system can be used to
generate a mathematical model for a poorly understood system.

A set of mathematical models that could be used to describe the
system can be thought of as a model space. The act of trying different
models to see if they are plausible can be thought of as exploring the
model space. If exploring model space is done by evaluating models
manually, the number of models attempted will be relatively small
i.e. only a small part of model space will be explored due to time
constraints. Although the models attempted by a human modeller
will likely be both parsimonious and plausible, the reduction in the
volume of model space being searched makes it less likely to find a
good model and reduces the probability of finding the best model that
meets specified criteria.

This chapter gives a piece by piece description of some methods
that could possibly be used to explore model space in an automated
way. A possible shortcoming of these approaches is that the models
generated in an automated approach may not be as sensible or as
plausible as those proposed by human experts. A great advantage is
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the throughput of automated methods which can examine hundreds
of models in the time required to analyse a single model by hand.

A rough outline of the methods is given in Figure 16. An algorithm
proposes a model which is then tested against experimental data.
Information on how well this model, and previous models, describe
the experimental data is then considered when proposing a new model.
Using such a strategy should result in model proposals that improve
with each iteration.

3.3 parameter estimation

A mathematical model based on Ordinary Differential Equations
(ODEs) contains variables that change over time and parameters which
are considered to be fixed values. In an intracellular model, typical
variables are the concentrations of proteins and ions, while parameters
can represent the values of rate constants and volumes.

Ideally all parameters should be measured from the system being
modelled. However, for the majority of intracellular systems, back-
ground knowledge is typically incomplete and parameters will have
to be estimated. Estimating parameters is a critical operation since
a model will have qualitatively different behaviour for alternative
parameter values. One way to estimate parameters is the ask the ques-
tion, "for this model, what are the parameter values (within realistic
ranges) that will give me a behaviour most similar to the available
experimental data ?"

Asking this question of the parameters also yields a useful measure
of how well a given model could possibly account for experimental
results. Parameter estimation has been used in such a way to pro-
pose the gene GIGANTEA as a component of the circadian clock in
Arabidopsis thaliana after parameter estimates with an existing model
failed to account for experimental data [75].

Although well established with many real world applications, pa-
rameter estimation is a research topic in its own right. Parameter
estimation on chaotic systems is more complex, as illustrated in sec-
tion 3.3.1, and requires novel algorithms with additional complications.
To our knowledge, parameter estimation on a chaotic model using
noisy intracellular experimental data has never been attempted. Be-
cause of this some numerical experiments were performed to assess
the suitability of chaotic parameter estimation as a way of assessing
models in an automated modelling system.
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Figure 17: Simulated experimental data produced by adding 20% noise to a
chaotic solution of the Lorenz equations.

Simulated experimental data was produced from the Lorenz system
of equations [76]:

ẋ1 = −λ1x1 + λ1x2 (3.3)

ẋ2 = −λ2x1 − x2 + x1x3 (3.4)

ẋ3 = −λ3x3 + x1x2 . (3.5)

Using the parameter values λ1 = 10, λ2 = 46 and λ3 = 2.67, the
equations were integrated to produce a time series. Twenty percent
Gaussian noise was then added to create a noisy chaotic time series
(Figure 17).

Parameter estimation algorithms were assessed by how accurately
they were able to recover the parameter values used to generate the
simulated experimental data.

3.3.1 Single Shooting

The single shooting algorithm is the most commonly used algorithm to
perform parameter estimation on non-chaotic systems. It is described
here as an introduction to parameter estimation and to illustrate the
algorithm’s shortcomings when working with chaotic data.
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The single shooting algorithm is a combination of a ‘cost’ or ‘fitness’
function with an optimiser.

Cost Function

The cost function produces a numeric value indicating how well
the model with a given vector of initial conditions and vector of
parameters fits some experimental data. In this text, the cost function
is assumed to give lower numeric values to indicate a good fit to the
data and higher numeric values to indicate a poor fit to the data.

For ease of implementation and low computing cost the single shoot-
ing methods described here rely on the least squares cost function.
A least squares estimate, CLS(x0,θ), for a vector of initial conditions,
x0, and a vector of parameters, θ, is the squared difference between a
model, xi+1 = f(xi,θ), observed through a measurement function, h,
and a time series of data, {z}Mi=0:

CLS(x0,θ) =

M−1∑
i=0

[zi+1 − h(f(xi,θ))]2 . (3.6)

Despite its wide use in the estimation of parameters for both linear
and nonlinear systems, least squares is not optimal when estimating
the parameters of a noisy nonlinear system [80]. However, as shown
below and in [84] the results are a good approximation when dealing
with nonlinear systems.

There has also been practical success for estimating the parameters
of oscillating systems in plants using a custom cost function based on
qualities of the experimental data such as period, phase, broadness
of peak and amplitude [75]. An advantage of this method is that it is
possible to make the cost function simpler to optimise and that the
cost of estimated parameter values close to the actual values are low
and vary smoothly. One disadvantage of a custom cost function is
that the cost function is dependent on the experimental data — for
instance successful results with the Lorenz equations will not be easily
translated to other systems since they depend on the custom cost
function. Another issue is that such a cost function requires trial and
error to design correctly which increases the development time of a
parameter estimation method. Also, as shown in section 3.3.1 modern
global optimisers are able to make good parameter estimates despite
issues with least squares.
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Figure 18: As the number of dimensions, A, of parameter space increases the
number of points required for an exhaustive search is xA where x
is the number of parameter values checked in each dimension.

Optimisers

A system with a number of parameters, A, can be thought of as
having an A dimensional parameter space. Each point in the parameter
space will have a cost, C, associated with it which can be calculated
using a cost function. Estimating parameter values can be thought
of as exploring parameter space to find a set of parameters θmin that
have the lowest cost. A section of parameter space for the simulated
experimental data generated from the Lorenz system is shown in
Figure 19.

This problem as described above is a global optimisation problem
and is best performed by an optimisation algorithm. It is not realistic
to exhaustively search parameter space as the number of parameters
increases > 3 (Figure 18).

Global optimisation is non-trivial because it is not possible to know
if a set of parameters on a local minimum, θlocal, are globally minimum.
Information about the gradients of the parameter space are typically
used by a class of optimisers that are deterministic. These deterministic
optimisers give reproducible results and will always take the same
route through parameter space to an estimated set of parameters that
will be on a local minimum. Another class of optimisers, known as
stochastic optimisers, don’t usually use gradients and have random
elements in their operation which leads to unrepeatable and varying
solutions. Stochastic optimisers have been inspired by examples in
nature such as birds swarming [43] or evolution [10] or have designed
around heuristic behaviour [106]. Generally, stochastic optimisers
don’t even guarantee that the parameters chosen even lie on a local
minimum of the cost function.
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Although not highly regarded in some circles, it has been shown
that stochastic global optimisers outperform deterministic optimisers
on nonlinear parameter estimation problems. The Stochastic Ranking
Evolutionary Strategy (known as SRES and described in [108]) has
been shown to make particularly good parameter estimates [84].

The SRES algorithm was used during this study and found to per-
form well in the majority of cases. However, it was found that, for
some optimisation problems, the SRES algorithm was not as robust
or as scalable as a particle swarm algorithm. Because of this, a parti-
cle swarm optimiser is used in some parts of this investigation. The
particle swarm implementation was developed from a description
by He et al. [43]. A modification was made where the initial param-
eter values were obtained from deterministic Sobol sampling [103]
which generates a more even sampling of parameter space when com-
pared to using a uniform random distribution. The modified particle
swarm optimiser is shown in Algorithm 1. It was found that the Sobol
modification improved the performance of the algorithm for larger
dimensional problems.

The Single Shooting Algorithm

A form of the simple shooting algorithm is given in Algorithm 2 for
an arbitrary cost function, denoted C, and an arbitrary optimiser.

Since single shooting is searching for both initial conditions, xb, and
parameter values, θb, the search space is higher dimensional, and
possibly more complex, than parameter space alone. An example of
this is shown in Figures 20 and 21 which also illustrate a problem with
using single shooting on chaotic systems. Because chaotic systems
are sensitive to initial conditions (as described in section 2.4.8), a
small change in the initial conditions will result in a large change
to the cost function. This sensitivity to initial conditions is not just a
practical problem and makes precise estimation of initial conditions
theoretically impossible with the limited precision of floating point
numbers in digital computers [54].

It is impossible to accurately estimate initial conditions and hence
the true values of the parameters of chaotic system using single shoot-
ing. However, it is sometimes feasible to find a trajectory that shadows
the experimental data for hundreds of datapoints (Figure 22).
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Algorithm 1 Particle Swarm Optimiser
Require: Ne, the number of elements in a particle
Require: Np, the number of particles to use
Require: Ng, the number of generations to run

vi, the velocity of particle i
Create particles, {P}

Np
i=1, by Sobol sampling

r ∈ R3×Ne , random numbers 0 < rij < 1
for i = 1→ Np do

for j = 1→ Ne do
vij ← 0.2r1jPij

end for
end for
Oi, the objective function value of particle i
Obi , the best objective function value of particle i
Pbi , the particle position where Obi was obtained
Ob, the global best objective function value
Pb, the particle position where Ob was obtained
inertia← 0.9
for g = 1→ Ng do

for i = 1→ Np do
Calculate Oi
if Oi < Ob then

Pb ← Pi
Ob ← Oi

end if
if Oi < Obi then

Pbi ← Pi
Obi ← Oi

end if
for j = 1→ Ne do
vij ← inertia× vij + 2r2j(Pbij − Pij) + 2r3j(P

b
j − Pij)

end for
Pi ← Pi + vi

end for
inertia← inertia − (0.9− 0.4)/Ng

end for
Return Pb
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Algorithm 2 Single Shooting
1: for i = 1→M do
2: Initialise best parameters θb and best initial conditions xb
3: Optimiser selects parameters θi and initial conditions x0i
4: if C(x0i,θi) < C(xb,θb) then
5: xb ← x0i
6: θb ← θi

7: end if
8: Update optimiser with C(x0i,θi)
9: end for

10: Return xb and θb

3.3.2 Bayesian Filters

An alternative to shooting methods for estimating the parameters of
chaotic systems was suggested by Sitz et al. [118] who described an
application of the Unscented Kalman Filter (UKF). The UKF can be
thought of as a type of Bayesian filter that makes a series of predictions
over a time series. The filter updates its knowledge from actual time
series measurements which should result in more accurate predictions
as the filter moves along the time series (Figure 23).

Most Bayesian filters assume a state space model for the time series,

xt+1 = f(xt,θ) +ϕ (3.7)

yt+1 = h(xt+1) + η (3.8)

where xt is a vector describing the state of the system at time point
t, f is a function corresponding to the model of the system, θ are the
parameters of the model, ϕ is a system noise term, yt is a prediction
of a scalar time series measurement, h is a measurement function and
η is additive noise. Actual time series measurements are denoted here
as zt where {z}Mt=0.

Algorithm 3 Using a Bayesian filter to make time series predictions
Require: estimated x0

1: for t = 0→M− 1 do
2: xt+1 ← f(xt,θ) +ϕ

3: yt+1 ← h(xt+1) + η

4: update xt+1 using zt+1
5: end for

The critical step in Algorithm 3 that distinguishes between different
types of Bayesian filters is the update on line 4 and its use of the time
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Figure 22: A fit of the Lorenz equations to the simulated experimental data
using the SRES optimiser with unknown initial conditions. The
simulated experimental data is given in gray and the fitted model
in black.

series measurements zt+1 to improve knowledge about the internal
state xt+1.

Algorithm 4 Using a Bayesian filter to estimate parameters
Require: estimated x0, θ0

for t = 1→M− 1 do
xt+1 ← f(xt,θt) +ϕ

yt+1 ← h(xt+1) + η

update xt+1 and θt+1 using zt+1
end for

Bayesian filters can be modified to estimate parameters by making
a small change as shown in Algorithm 4. This method changes the
update step so that zt+1 is used to improve knowledge about both the
state, xt+1, and the parameters θt+1. This is trivial to do in practice by
making θt+1 part of the state vector xt+1 i.e. treating the parameters
as variables.
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Figure 23: Cartoon of the operation of a Bayesian filter with filter steps given
in black and a time series in blue. The filter makes a prediction
and then updates its knowledge about the state of the system
from a measurement. This updated state is then used to make a
potentially improved prediction for the next data point.

Unscented Kalman Filter

The Unscented Kalman filter (UKF) has been proposed as a parameter
estimation algorithm for nonlinear and chaotic systems [128, 118, 124].
This filter approximates the distribution of xt as a Gaussian. This
Gaussian distribution is propagated from xt to xt+1 by only consider-
ing the mean and covariance. The mean and covariance of xt+1 and
yt+1 are estimated using an Unscented transform. This transform
deterministically samples an n-dimensional random variable using
2n+ 1 weighted points known as sigma points [55].

An overview of the UKF has been given in a presentation by Merwe
and Wan [81] labelled as Algorithm 2.1. It is reproduced here with
additional comments. Some equations have been modified slightly for
the special case, matching the situation of the symbiotic Ca2+ spiking
system, where the time series measurements are scalar rather than
vectorial.

An expected value for the initial state is set from prior information,

x̂0 = x0 . (3.9)

An initial state covariance matrix, P0, for an n dimensional variable is
initialised as,

P0 = ϕ2In , (3.10)
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where In is an n× n identity matrix and ϕ is a vector containing
system noise standard deviations for each variable in the system (from
Equation 3.7).

When analysing a time series, {z}Mt=0, the following steps are applied
to the time points t = 1 . . .M. First the matrix of sigma points, χ, that
is used to sample the covariance, is calculated:

χt−1 =
[
x̂t−1, x̂t−1 + γ

√
Pt−1, x̂t−1 − γ

√
Pt−1

]
, (3.11)

where each column in the matrix χ specifies a system state, xi,t−1, that
will used as a sigma point to sample the next system state, xi,t. γ is a
scalar defined as:

γ =
√
n+ λ (3.12)

λ = α2(n+ κ) −n . (3.13)

α is a controlling constant that determines the spread of sigma points
around the mean and κ is a scaling parameter.

The sigma points are transformed through the nonlinear function
representing the model of the system (from Equation 3.7),

χ∗i,t|t−1 = f(χi,t−1,θ) , (3.14)

where i = 0 . . . 2n, is the index of the sigma point being calculated. A
weighted average of the transformed points, x̄t, is then calculated:

x̄t =

2n∑
i=0

W
(m)
i χ∗i,t|t−1 . (3.15)

W
(m)
i is the weighting to use for point i,

W
(m)
0 = λ

n+λ (3.16)

W
(m)
i = 1

2(n+λ) where i = 1 . . . 2n . (3.17)

Having calculated the weighted average, the covariance, P̄t, can be
estimated:

P̄t =

2n∑
i=0

W
(c)
i

[
χ∗i,t|t−1 − x̄t

] [
χ∗i,t|t−1 − x̄t

]T
+ Rv . (3.18)

The alternative weight, W(c)
i , is given as:

W
(c)
0 = λ

n+λ + (α2 + 1) (3.19)

W
(c)
i = W

(m)
i where i = 1 . . . 2n . (3.20)

Rv is the system noise covariance matrix:

Rv = ϕϕT . (3.21)
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The sigma points are then recalculated to take into account system
noise,

χt|t−1 =
[
x̄t, x̄t + γ

√
P̄t, x̄t − γ

√
P̄t
]

, (3.22)

and are then transformed through the measurement function (Equa-
tion 3.8):

Yi,t|t−1 = h(χi,t|t−1) . (3.23)

A weighted average, ȳt, is then calculated to give an estimate for the
time series measurement at time t:

ȳt =

2n∑
i=0

W
(m)
i Yi,t|t−1 . (3.24)

This estimate is used to update the innovation variance [55]:

Pȳt,ȳt = η2 +

2n∑
i=0

W
(c)
i

[
Yi,t|t−1 − ȳt

] [
Yi,t|t−1 − ȳt

]T , (3.25)

where η is the measurement noise introduced in Equation 3.8 which
could be replaced with a covariance matrix if vectorial measurements
were being considered.

A cross correlation matrix is also calculated at this stage:

Pxt,yt =

2n∑
i=0

W
(c)
i

[
χi,t|t−1 − x̄t

] [
Yi,t|t−1 − ȳt

]T . (3.26)

Information from the actual time series measurement, zt, can then be
incorporated into the filter:

Kt = Pxt,ytP
−1
ȳt,ȳt (3.27)

x̂t = x̄t + Kt(zt − ȳt) . (3.28)

To prepare for the next cycle an update is made to the state covariance:

Pt = P̄t − KtPȳt,ȳtK
T
t . (3.29)

At this point x̂t and Pt have been calculated and the cycle starting at
Equation 3.11 can repeat.

The UKF is able to make predictions that closely fit the simulated
experimental data based on the Lorenz system even when parameter
values are unknown (Figure 24). The parameter values themselves are
also accurately estimated in the process (Figure 25). These observations
with the Lorenz system have been made before [118, 124]. However,
there has been no mention that the promising results are dependent
on carefully chosen values for the system noise ϕ, the initial state
x0 and the initial estimate of parameter values θ0. In our experience,
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Figure 24: A fit of the Lorenz equations to the simulated experimental data
using an Unscented Kalman Filter. The simulated experimental
data is given in gray and the fitted model in black.

when initial conditions or system noise are not chosen appropriately
the UKF may not converge when making time series predictions or
may encounter numerical errors when taking matrix square roots.

The lack of robustness experienced with the unmodified UKF makes
it unsuitable for use as an unsupervised parameter estimator on
automatically produced mathematical models. However, the UKF can
be made more robust by performing multiple runs of the filter with ϕ,
x0 and θ0 under the control of an optimiser as shown in algorithm 5.
We found that a particle swarm optimiser of the type described by He
et al. [43], and shown in Algorithm 1, found usable UKF settings after
10 iterations using only 10 particles. Figures 24 and 25 were produced
with UKF settings that had been calculated using a particle swarm
optimiser.

Particle Filter

Particle filters offer an alternative to the Unscented Kalman filter that
do not assume Gaussian distributions and can handle non-Gaussian
errors such as the residuals produced by a model that does not com-
pletely describe the behaviour of experimental data. We found that
particle filters were more robust than the UKF and did not require



3.3 parameter estimation 67

l1

7
9

11

l2

40
60

Time (s)

l3

2 4 6 8

1.
6

2.
4

Figure 25: Predicted parameter values during a run of the Unscented Kalman
Filter shown as blue lines (l1 = λ1, l2 = λ2, l3 = λ3). The actual value
of the parameters used to generate the simulated experimental
data are given as black dotted lines.

Algorithm 5 Optimised Unscented Kalman Filter
Initialise minimum cost: Cb
Initialise best: ϕb, x0b,θb
for i = 1→ Nruns do

Obtain ϕ , x0 and θ0 from optimiser.
Run Unscented Kalman filter to get cost C
if C < Cb then
ϕb, x0b,θb ← ϕ, x0,θ0

end if
Update optimiser with C

end for
Run filter with ϕb, x0b,θb
Return final filter estimate of parameters, θM
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restarting with different setups to get the filter to closely track the
data.

What follows is a description of the resample move particle filter [34]
which was found to perform better than a conventional condensation
particle filter [49] for parameter estimation.

Particle filters conventionally work with a time series which is as-
sumed to be generated by the state space model described by equations
3.7 and 3.8. Since the equations we are working with are determinis-
tic, we used a particle filter based on a simpler model which has no
process noise:

xt = f(xt−1,θj) (3.30)

zt = h(xt, ε) . (3.31)

A conventional use for a particle filter is to estimate p(xt|z0:t,θ) by
importance sampling over a set of particles {x(k)

t }
Np
k=1. Each particle

contains a hypothesised state of the system i.e. the values of the
variables. Particle filters can be made to estimate the parameters of a
model, θ, using the particles {x(k)

t ,θ(k)}
Np
k=1 to get p(xt,θ|z0:t).

The resample move particle filter is described in Algorithm 6. It
uses weighted particles to get an estimate of E[xt] and E[θ]. In order
to keep the particles relevant, they are resampled on every iteration to
remove particles with low weights.

An effect known as "sample impoverishment" occurs when particles
cluster around a very small area of state space. In order to combat this,
a move step is used by the particle filter where each particle is taken
through a Monte Carlo Markov Chain (MCMC) transition in order to
explore state space more fully. We used slice sampling as an MCMC
step. Slice sampling doesn’t rely on a carefully chosen control parame-
ter, unlike some alternatives such as the Metroplis-Hastings algorithm,
making it more convenient for automated parameter estimation.

Parameter estimates performed with a resample-move particle filter
are not as stable or accurate as those obtained from an Unscented
Kalman filter (Figure 26). However, the particle filter still tracks the
input signal despite having imprecise values for the model parameters
(Figure 28).
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Algorithm 6 Resample-move particle filter

Require: randomly initialised particles {x(k)
0 ,θ(k)}

Np
k=1

Require: uniform particle weights {α(k)}
Np
k=1 ←−

1
Np

1: for t = 1→M do
2: for k = 1→ Np do
3: Use the state space model to calculate p(zt|x

(k)
t−1,θ(k))

4: Perform an MCMC transition on x(k)
t−1 using p(zt|x

(k)
t−1,θ(k))

5: α(k) ← α(k) × p(zt|x(k)
t−1,θ(k))

6: x(k)
t ← f(x(k)

t−1,θ(k))

7: end for
8: αΣ ←

∑Np
k=1 α

(k)

9: Normalise weights: {α(k)}
Np
k=1 ← {α(k)}

Np
k=1 ÷αΣ

10: Make a prediction: E [xt+1] =
∑Np
k=1 α

(k)f(x(k)
t ,θ(k))

11: Replace particles that have small weights with higher weighted
particles

12: end for

Time
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Figure 26: Predicted parameter values during a run of a resample-move
particle filter shown as blue lines (l1 = λ1, l2 = λ2, l3 = λ3). The
actual value of the parameters used to generate the simulated
experimental data are given as black dotted lines.
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3.4 model evaluation

3.4.1 Evaluating Models by Prediction Performance

A resample-move particle filter is able to make reasonable predictions
of chaotic time series measurements even though it fails to make
accurate estimates of the model parameters (Figure 28). A question
that arises from this is whether the structure of the model, that is being
fitted to the time series, is being exploited to make the predictions. If
the model does have a significant effect, and the range of the parameter
estimates made by the particle filter in Figure 26 suggests it does, then
a particle filter could conceivably be used to evaluate a model by
quantifying its prediction performance for some experimental data.
Ideally, a good model should give accurate predictions and the most
suitable model should give the best predictions.

To see if prediction performance could be used to evaluate mod-
els, we investigated whether the Lorenz equations score better than
alternatives for the simulated experimental data shown in Figure 17.
To select alternative equations, a genetic programming mutation op-
erator [100] was used on the original Lorenz equations. Even heavily
mutated equations scored as well as, or better than, the equations
that were used to generate the time series (Figure 28). This behaviour
makes particle filter prediction performance an unsuitable criterion
for evaluating models.

3.4.2 Evaluating Models after Fitting

Algorithm 7 Fitting models using a UKF

Require: a training set of data {z}Mt=0

Require: a testing set of data {w}Mt=0

estimate θ from {z}Mt=0

predict {yt+1}
M−1
t=0 from {w}Mt=0 using θ

return
∑M
t=1(yt −wt)

2

Of the parameter estimation methods considered, the Unscented
Kalman Filter (UKF) described in section 3.3.2 estimates parameters
the most accurately. A set of parameters can be estimated, using a UKF,
from a training set of simulated experimental data. These parameter
values are then fixed and used on testing sets of simulated experimen-
tal data to make predictions. The accuracy of the predictions obtained
for the testing sets gives a score to how well a given model fits the
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Figure 28: Fitness values for mutated models of the Lorenz equations ob-
tained using the prediction performance of a resample-move parti-
cle filter. A lower fitness score indicates more accurate predictions
and a more suitable model. The fitness score was calculated as
− log(p(D|Hj)) where D is the simulated experimental data and
{H}100j=1 are the models being considered.

available data (Algorithm 7). This method differs from the particle
filter method described in section 3.4.1 in that accurate parameter esti-
mates are being made and that training (estimating parameters) and
testing (scoring) are done over different time series. It is expected that
this approach will reduce the possibility of overfitting — a potential
cause of which could be parameter fluctuations.

The UKF fitting was tested as a model evaluation score using the
same technique that was applied to the particle filter in section 3.4.1.
Out of 180 mutants, 2 sets of equations performed better than the
Lorenz set of equations on the simulated experimental data. The two
false positives rule out the possibility of using the UKF to identify
a definitive model from experimental data. However, this method
could be used to find a small set of viable models from a larger set of
candidate models.



3.5 model generation 73

3.5 model generation

Previous sections in this chapter described methods of evaluating
how well a particular model fits a times series of experimental data.
This section describes methods of generating and optimising multiple
models to propose suitable candidates to explain the data.

3.5.1 Genetic Programming

Genetic Programming (GP) is a technique which breeds structures,
representing equations or computer programs, and optimises them
to reach a specified goal. Here we consider the use of GP to generate
equations which are represented as trees (Figure 29).

+

−

∗

λ1 x1

∗

λ1 x2

Figure 29: Equation 3.3, ẋ1 = −λ1x1 + λ1x2 , represented as a tree for use in
genetic programming

Usually, GP works on a population of trees and selectively applies
the operations of mutation and crossover to the population based on
the results of evaluating a fitness function. The mutation operator
takes part of a tree and replaces it with a new subtree recognising
the constraint that the result must be a valid tree. The crossover
operator takes two existing trees and combines them to create new
trees. Equations that have a better fitness have a higher probability of
being chosen for crossover.

Many variations exist for the different algorithms that make up a
GP framework. Here, we keep to the widely used algorithms shown
in Table 3.

Exploring Model Space

The production and evaluation of potential models can be thought
of as an exploration of a model space. Unlike the parameter space
described in section 3.3.1, this model space does not have obviously
quantifiable dimensions. In order to gauge the difficulty of exploring
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Algorithm 8 Edit distance between trees a and b — e(a,b)
1: t(x) is the total number of nodes in tree x
2: if t(a) = 0 then
3: Return t(b)
4: end if
5: if t(b) = 0 then
6: Return t(a)

7: end if
8: if a and b are identical then
9: Return 0

10: end if
11: m← number of elements in top level of a
12: n← number of elements in top level of b
13: create matrix Mm+1×n+1 = 0

14: for i = 1→ m do
15: Mi,0 ←Mi−1,0 + t(ai−1)

16: end for
17: for i = 1→ n do
18: M0,i ←M0,i−1 + t(bi−1)

19: end for
20: for i = 1→ m do
21: for j = 1→ n do
22: set the delete cost D← t(ai−1)

23: set the insert cost I← t(bj−1)

24: set the substitution cost S← e(ai−1,bj−1)
25: Mi,j ← min

(
Mi−1,j +D,Mi,j−1 + I,Mi−1,j−1 + S

)
26: end for
27: end for
28: Return Mm,n
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Table 3: Algorithms used to perform GP on the Lorenz equations.

Algorithm Description

Ramped half-and-half Initialise half the population with full trees,
that have all leaves at a maximum depth, and
half the population with trees that have been
grown to have more asymmetrical shapes.

Tournament Selection Select x individuals from the population at
random. The single fittest of those individuals
takes part in crossover.

Subtree Crossover Select a crossover point in each parent tree
and swap the subtrees rooted at the crossover
point.

Point Mutation Mutate a randomly selected point in a tree
with a randomly generated subtree.

the model space with GP, a test was performed with a mock fitness
function.

The mock fitness function calculates the edit distance between each
differential equation in a generated model and the Lorenz system of
equations. The algorithm used to calculate the edit distance between
2 single equations is given in Algorithm 8. This fitness is cheap to
calculate and is a well behaved in the sense that models which have
a similar structure to the Lorenz equations will have a small edit
distance and will therefore have a higher probability of being selected
by the GP algorithms. The goal of the GP system using the mock
fitness function is recovery of the Lorenz equations.

GP was performed 50 times with the mock fitness function to quan-
tify the effects of population and the number of generations on reach-
ing the goal of recovering the Lorenz equations (Figure 30). The num-
ber of generations did not impact the quality of the final result. For
instance, the results after 500 generations are no better than the ones
after 20 generations. The results are dependent on population size and
improve until the population exceeds 10000 equations. However, even
large populations do not guarantee that the original equations will be
recovered.

In the unlikely event that a fitness function based on parameter
estimation and model fitting will behave as consistently as the mock
fitness function, the results suggest that a population of at least 10000

will be needed over 20 generations to recreate a set of equations
from simulated test data. This large population would result in a
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total of 200000 evaluations of a fitness function. Taking an estimate
of 10 CPU minutes to calculate the parameters for a single set of
chaotic equations, the recovery of the Lorenz system from a time
series would take 198 CPU weeks. The large CPU requirement of even
this optimistic estimate would require more time than is currently
available to UK researchers through the national computing grid. As
suggested in Figure 30 such a large undertaking may not give the
correct answer in the majority of cases.

3.5.2 Inductive Process Modelling

The numerical experiment performed in section 3.5.1 illustrates the
difficulty in exploring a large model space. It is possible to reduce the
model space by constraining the GP system to only consider equations
with the correct units of measurement [59, 5]. Another way, that greatly
reduces model space, is to only examine models that are regarded
viable by an expert on the system being considered.

Inductive process modelling (IPM) [70, 14] is a machine learning
technique which combines parts of an ODE system, or processes, into
alternative sets of equations. These induced equations can then be
ranked based on their fit to experimental data. For example, when
analysing Ca2+ oscillations in animal systems the following processes
could be considered [113]:

• The leak of Ca2+ into the cell.

• The pumping of Ca2+ out of the cell.

• The release of Ca2+ from the ER into the cytosol.

• The transport of Ca2+ into the ER by sarco-/endoplasmic reticu-
lum Ca2+ ATPase.

• The buffering of Ca2+ by cytosolic proteins.

• The sensitivity of IP3R channels to Ca2+ induced Ca2+ release.

Each of these processes could be modelled with one or more al-
ternative sets of equations. For instance the Ca2+ ATPases could be
modelled using a Hill function or simplified to a linear term. Some
processes could be optional in a model, for example few ODE mod-
els of Ca2+ oscillations take into account the buffering of Ca2+ to
cytosolic proteins.

An inductive process modelling system combines permutations of
these processes to produce a space of models that is typically small
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enough for each model to be assessed. An example of this is given by
Bridewell et al. [14] for the Ross Sea ecosystem where processes are
combined to produce a total of 1024 models. Despite being a far more
complex model structure than the 3 parameter Lorenz equations, this
number of model evaluations is a tenth of that produced in a single
generation of genetic programming as considered in section 3.5.1.

We evaluated IPM on a non-chaotic Ca2+ oscillating system. The
One Pool model [21] was used to generate a noiseless time series
for cytosolic Ca2+ concentration. Using the processes and alternative
equations given in Table 1 of the review by Schuster et al. [113] we
specified background knowledge about the system.

For example, Vin the rate of influx of Ca2+ into the cytosol could
be modelled as a constant flux across the plasma membrane, v0, plus
an IP3 mediated release, v1β. As an alternative Vin could be set to 0:

Vin = [v0 + v1β]
∨
0 (3.32)

The
∨

denotes that Vin could be set to either of the two terms.
Using the same notation, the alternatives for other rate laws from

[113] can be stated:

Vout = kCcyt (3.33)

Vrel =

[
kfCer +βVM3

C2er

K2R +C2er

C4cyt

K4A +C4cyt

]
∨k0 + k1R

(
C2cyt

K21 +C2cyt

)3 (Cer −Ccyt)


∨[(

kleak + kch
C2cyt

K21 +C2cyt

)
(Cer −Ccyt)

]
(3.34)

Vserca =

[
VM2

C2cyt

K22 +C2cyt

]∨
[kpumpCcyt] (3.35)

Vrec = k3(1− R) (3.36)

Vdes = k−3CcytR (3.37)

Vb = k+(B0 −B)Ccyt − k−B (3.38)

Similarly, the alternative differential equations for Ca2+ oscillations
are:

dCcyt

dt
= [Vin − Vout + Vrel − Vserca − Vb]∨

[Vin − Vout + Vrel − Vserca] (3.39)

dCer

dt
= ρer(Vserca − Vrel) (3.40)
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[
dB

dt
= Vb

]∨
∅ (3.41)[

dR

dt
= Vrec − Vdes

]∨
∅ (3.42)

Where ∅ denotes that, for some models, the differential equation is not
present and the variable it describes is not in the system.

These alternative sets of equations generated 96 models in total.
Unviable models, which used variables which did not have a dif-
ferential equation term, were removed. Redundant models, which
contained a differential equation for a variable that wasn’t used else-
where, were also removed. This left 24 possible models, three of which
are described in literature [21, 73, 77].

Figure 31: A fitted model (black) to noiseless data generated by the one pool
model (gray). Hypotheses were generated by inductive process
modelling using [113] as domain knowledge. Each potential model
was fitted to the data using single shooting with a particle swarm
optimiser. The fit shown is for the best scoring model which
contains equations identical to the One Pool Model.

Each model was fitted to the simulated experimental data using the
single shooting method with a particle swarm optimiser containing
10000 particles run over 20 generations. Models were evaluated using
the Akaike information criterion (AIC) [1] that takes into account
the number of parameters in each model as well as the square of
the residuals of the fit. Of the 24 models evaluated, the best scoring
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model was the One Pool model (Figure 31). This successful recovery
of the equations is possible given the small number of candidate
models produced by IPM and the relative ease of fitting to noiseless
non-chaotic data.

3.6 scaling up to a larger model

The numerical experiments run in section 3.4.2 and section 3.5.2 sug-
gest that it is possible to identify a small group of models that could
be used to explain a time series of chaotic data. However, the only
chaotic system considered has been the Lorenz set of equations which
requires only 3 parameters to be fitted. Existing chaotic models of
intracellular Ca2+ oscillations have more than 10 parameters and so it
is necessary to investigate if the technique described in section 3.4.2
can be scaled up to a more complex system of equations.

We considered the chaotic Ca2+ model proposed by Haberichter
et al. [39] containing 3 variables and with 14 parameters set to un-
known values. Simulated experimental data was generated by inte-
grating the model with 20% additive noise. The original equations
were mutated 100 times and the fitness calculated using the sum of
squares between the UKF predictions and a test set of simulated ex-
perimental data. A scatter plot of the results is shown in Figure 32.
A total of 12 mutants had a better fitness than the original equations
suggesting that parameter fitting and model evaluation is problematic
with realistic chaotic models of Ca2+ spiking.

3.7 discussion

This chapter describes the investigation into whether automated meth-
ods could be used to suggest viable models for a chaotic Ca2+ spiking
system using two general procedures shown in Figure 16 — model
proposal and model fitting. Even though fewer techniques have been
developed for model proposal, this subproblem was the most sur-
mountable and Section 3.5.2 demonstrated the successful recovery
of the equations describing a periodic spiking system. Unfortunately,
the other problem of fitting a set of equations to chaotic data was
much harder to solve. Only a simple chaotic model with few parame-
ters could be fit to simulated experimental data well enough for the
equations to be identified.

The shortcomings in parameter estimation suggest that any further
research into chaotic systems identification with regards to the Ca2+
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Figure 32: Fitness values for mutated models of the Haberichter chaotic Ca2+

spiking model obtained using the prediction performance of a
Unscented Kalman filter. A lower fitness score indicates more
accurate predictions and a more suitable model. The fitness score
was calculated as a sum of the squares of the residuals.

spiking data should concentrate on improving performance on models
with over 10 parameters. There is plenty of scope for continuing the in-
vestigation as the parameter estimation algorithms considered are not
comprehensive. One notable omission is an investigation into using the
multiple shooting algorithm [4]. This algorithm has been successfully
used on the Lorenz system of equations but no publically available
implementations exist. The optimisation algorithm is complex, in ei-
ther its deterministic [12] or Bayesian forms [85]. Building a multiple
shooting implementation would be time consuming with no certainty
of success on a chaotic system with a larger number of parameters.
A greatly simplified version of the multiple shooting algorithm was
developed during this investigation that used a hybrid optimiser [106]
consisting of an evolutionary strategy [108] and a nonlinear interior
point method [89]. This simpler multiple shooting algorithm did not
estimate parameters as accurately as the UKF (Table 4). A fit produced
by the simplified multiple shooting algorithm to the Lorenz equations
is shown in Figure 33.



3.7 discussion 82

Figure 33: Fit (black) to simulated experimental data (gray) using a multiple
shooting algorithm. The algorithm had a segment size of 15 sample
points and used an SRES optimiser for 100 generations followed
by a nonlinear interior point optimisation to find a local minima.
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Another candidate technique is the ensemble Kalman filter [27]
which has been successfully used to estimate the state of real chaotic
systems such as hurricane vortices [19]. However, using this technique
on the Lorenz system of equations proved to be time consuming with
parameter estimation taking around 24 hours with an ensemble size of
10000. The parameter estimates made by the ensemble Kalman filter
were less accurate than those produced by the UKF (Table 4).

Table 4: The mean normalised standard error (MNSE) of algorithms used
for parameter estimation. The normalised standard error for each

parameter estimate is calculated as
√

(e−a)2

a2
where e is the estimated

parameter value and a the actual parameter value.

Algorithm Optimisers MNSE

PF (Condensation) [49] — Fail

Single Shooting SRES [108] 0.60

PF (Gilks) [34] — 0.51

Single Shooting Particle Swarm [43] 0.41

Multiple Shooting [4] SRES[108]/interior point[89] 0.34

Ensemble KF [27] — 0.31

Unscented KF [55] — 0.05

Because the investigation failed to distinguish a suitable parameter
estimation algorithm, there was no comparison of methods that could
be used to score a potential model. Simply using the least squares fit
of a model to measure its suitability to describe given data does not
take into account model parsimony. Because more complex models
are able to fit a larger variety of data, scoring with the square of the
residuals can result in large and unrealistic models being identified
and also leads to the possibility of overfitting. Several techniques exist
that are able to satisfactorily capture the trade-off between model com-
plexity and accuracy when scoring a model. A widely used example
is the Akaike Information Criterion used in Section 3.5.2. However,
alternatives such as the Bayesian Information Criteria [114] and the
Minimum Description Length [40] could also be used as a scoring
scheme.

Genetic Programming (GP) didn’t appear a suitable technique for
model generation as demonstrated in Section 3.5.1. However, GP is
a wide area of research and the investigation described here only
analysed one combination of widely used GP ingredients. The most
significant problem with GP was that it generated a large proportion
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of unviable models resulting in an inefficient use of the expensive
model evaluation step. Some variations of GP address this problem
by only generating equations with the correct dimensions [94], or
speeding up model evaluation in young populations of equations [6].
These, more efficient, techniques were not investigated because the
published improvements in efficiency were insignificant compared to
the performance of Inductive Process Modelling (IPM). The success of
IPM in identifying a periodic model, with an almost optimal number of
model evaluations, suggest it as is a very promising model generation
technique despite its meager use in the field of systems biology.

3.8 software used

A program written in C++ was used to generate the data for plots
of parameter space and parameter estimates. This program used the
LSODA [99] implementation provided by Heng Li at the Wellcome
Trust Sanger Institute to integrate time series. The Unscented Kalman
filter and condensation particle filter implementations from the DYSII
Dynamic Systems Library were provided by L.M Murray at CMIS,
CSIRO in Perth, and the Stochastic Ranking Evolutionary Strategy
implemented in libSRES [52] was used for parameter estimation. A
particle swarm optimizer, a resample move particle filter and multiple
shooting were implemented from descriptions given in literature. The
multiple shooting parameter estimator used a hybrid optimiser that
included a nonlinear interior point optimiser implemented by the
OPT++ library provided by J.C Meza at Sandia National Laboratories.
An overview of the parameter estimation software is given in the
Appendices (Chapter 3).

The investigation into Genetic programming was implemented in
ANSI Common Lisp running on the Steel Bank Common Lisp envi-
ronment. Inductive Process Modelling was implemented as a python
program that generated C++ libraries for use by the parameter estima-
tion program described above. The investigation into Model mutation
was also implemented in a python program that generated C++ li-
braries for use with the parameter estimation methods.
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M O D E L S O F C A L C I U M S P I K I N G

4.1 overview

This chapter describes a periodic model for the Ca2+ spiking con-
sisting of two differential equations. In order to produce the model,
assumptions have to be made about unknown components. At the
end of the chapter these assumptions and alternative possibilities are
discussed.

4.2 introduction

Chapter 3 discussed possible methods for automatically generating
a model from chaotic experimental data. However, in this chapter
a more conventional modelling approach is used. As discussed in
Section 1.2.4, not much is known about the components that make up
the oscillating system. However, by making parsimonious assumptions,
this approach produces a good fit to a single Ca2+ spike (Figure 37)
and suggests a mechanism in which the cation channel, DMI1, is
essential for Ca2+ spiking.

We start by modelling the Ca2+ oscillations within the nucleus
of plant root hair cells during symbiosis. The nuclear envelope is
assumed to be a store of Ca2+ with a high concentration difference
forcing Ca2+ out of the envelope and into the nucleus when Ca2+

channels open (Figure 40). The model is mostly electrical in nature
and membrane potential plays a significant role in the modelled Ca2+

oscillations.
Mathematically the proposed model is similar to a basic model of

oscillating action potential in a pancreatic β cell [9] which has been
relocated to the nucleus of a plant root hair cell. In the model discussed
here, the role of the K+channel is performed by DMI1 which balances
membrane potential so that Ca2+ can be released from the nuclear
envelope.

The model contains a hypothesised voltage gated Ca2+ channel.
Evidence for the existence of such channels has been found in plant
nuclei [38] but they have not been linked to symbiotic Ca2+ spiking.
To keep the model simple and specific, DMI1 is modelled as a Ca2+

85
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activated K+ channel rather than a cation channel with unknown
activator. This decision is consistent with homology modelling of a
pea ortholog of DMI1 that suggested possible K+ selectivity in the
channel region and potential Ca2+ binding pockets in a gating ring
region of the protein complex [23].

K+ Ca++ Ca++

Voltaged gated 
Ca++ channel

Ca++ activated 
K+ channel

Ca++ pump

Nucleus

Nuclear Envelope

+ + ++ +++ + + + ++

- - - - - - - - - -

K+ chemical
 gradient

Ca++ chemical gradient

Figure 34: The components described by the simple model of nuclear Ca2+

spiking.

4.3 simple model

In the model equations, lowercase letters are variables and parameters
are denoted by uppercase or Greek letters. Ion channels are assumed
to be ohmic, i = gvd, where i is the current through the channel, g
is the conductivity of the channel and vd is the potential difference
across the channel. Conductances are given for the whole nucleus and
not per unit area.

The components of the model can be seen in Figure 34 and an
electrical view of the model is given in Figure 35.

The model consists of two ordinary differential equations that cap-
ture the behaviour of a Ca2+ channel, a K+ channel and a Ca2+ pump
on the nuclear envelope. The change in the voltage across the nuclear
membrane, v, is described by,

dv

dt
=

1

Cm
(i1 − i2) . (4.1)

The change in concentration of free Ca2+ within the nucleus, c, can
be written as,

dc

dt
= Eps(αi1 − µc) , (4.2)
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K+

channel

Ca2+

channel pump

v

+

-

c

i2 i1

Cm

Figure 35: The simple model viewed as an electrical circuit. The dotted line
indicates the location of the membrane of the nuclear envelope.

where i1 is the Ca2+ current through the voltage gated Ca2+ chan-
nel and i2 is the K+ current through the Ca2+ activated K+ channel —
both with units fA. Cm is the capacitance of the nuclear envelope, Eps
is the proportion of free Ca2+ to buffered Ca2+ in the nucleus, µ is a
pump rate and α is a value to convert from Ca2+ current to Ca2+ flux.

In a first approximation, the active transport of Ca2+ into the nu-
clear envelope is assumed to be electroneutral and does not directly
contribute to membrane potential. A possible mechanism could be
the countertransport of cations from the envelope into the nucleus so
there is not net transport of charge.

The voltage gated Ca2+ channel is a hypothesised component of the
system. The channel has a normalised voltage dependent conductance,
f(v), described by a Hodgkin-Huxley gate model [50]. There is an
assumption of two activation gates per channel and the activation of
the channel has a voltage dependence approximated by (Figure 36):

f(v) =

 1

1+ exp
(
−v−VmlKml

)
2 . (4.3)

The current through the channel is dependent on the potential differ-
ence across the membrane and the resting voltage produced by the
higher concentration of Ca2+ within the nuclear envelope,

i1 = Gcf(v)(Eca − v) . (4.4)

The Ca2+ activated K+ channel is assumed to cooperatively bind
Ca2+ with two Ca2+ binding sites. The conductivity of the K+ channel
is described by a Hill function,

i2 = Gk
c2

c2 +K2
(Ek + v) . (4.5)
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Figure 36: Voltage versus conductance (in pS) of the voltage gated calcium
channel and the resulting Ca2+ current that flows through the
channel assuming a 55 mV resting potential for Ca2+.

4.3.1 Parameters

Many parameter values in the model are unknown. We therefore
estimated some parameters by fitting the model to the Ca2+ spike
shown in Figure 37. A single shooting algorithm using a particle
swarm optimiser with 10000 particles was used. The parameter values
obtained are given in Table 5.

4.3.2 Overview of a Spike

The model spontaneously oscillates through a range of biologically
relevant initial conditions (c = 40nM→ 1µM, v = −50mV→ 50mV)
indicating that it describes a fully activated system. To analyse a single
spike we consider the initial conditions c = 0.23µM and v = −27mV.

A phase portrait of the system, Figure 38a, shows that the chosen
initial conditions lie at a lower voltage than the v nullcline (shown in
blue). At t = 0 s → t = 1.5 s there is an rapid increase in the voltage
across the membrane (v) brought about by a small Ca2+ leak current
through the voltage gated channel (i1). Despite the low conductance of
the voltage gated channel, i1 is driven by the combination of voltage
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Table 5: Parameter values used in the simple model with their sources. The
source ‘Fit’ indicates the parameter value was obtained by fitting the
model to a Ca2+ spike

.

Description Value Units Source

Vn Volume of nucleus 160 µm3 [15]

Cm Capacitance of nuclear envelope 5.1 pF [38]

F Faraday constant 1014 fC · µmol−1

α Conversion of Ca2+ current to Ca2+

flux
0.03239 µM · fC−1 1

2FVn

Eps Scaling factor relating total Ca2+

changes to changes in free Ca2+
0.001 [15]

Gc Total max conductance of voltage
gated Ca2+ channels

2864 pS Fit

Vml Half maximal activation of voltage
gated Ca2+ channel

50.0 mV Fit

Kml Constant in scaling function for volt-
age gated Ca2+ channel

14.7 mV Fit

Gk Total max conductance of Ca2+ acti-
vated K+ channels

302 pS Fit

K Constant in hill function for Ca2+

activated K+ channel
0.953 µM Fit

µ Pump rate into the nuclear envelope 24.9 s−1 Fit

Eca Resting potential of Ca2+ 55 mV [98]

Ek Resting potential of K+ 17.7 mV Fit
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Figure 37: The simple model (black) fitted to a time series of a single Nod
factor induced Ca2+ spike (gray).

across the membrane and the concentration gradient of Ca2+. When
t = 1.5 s→ t = 10 s the trajectory of the system closely follows the v
nullcline with v still increasing but at a slower rate. On the v nullcline
the membrane voltage doesn’t change as the effects i1 and the K+

current (i2) balance. However, in this region of phase space the Ca2+

in the nucleus (c) is decreasing as more Ca2+ is being pumped than is
leaking through the voltage gated channel.

After some time the trajectory of the system diverges from the
v nullcline and v begins to increase at a faster rate, Figure 39a. At
t ≈ 31 s the trajectory crosses the c nullcline shown in green. Crossing
the c nullcline indicates that more Ca2+ is released by the voltage
gated channel than is being pumped out of the nucleus (αi1 > µc,
Figure 39b). This region of phase space lies at the start of a Ca2+

spike and is an area of positive feedback. The flow of i1 raises v which
increases the conductance of the voltage gated channel. This increased
conductance results in a greater i1. Because the K+ channel is Ca2+

activated and c is increasing relatively slowly, i2 is not large enough
to balance the membrane voltage changes due to i1.

An increasing v only results in a larger i1 until v ≈ 40mV (Figure
36). If v > 40mV the membrane voltage becomes significant enough
to overwhelm any increased conductance of the voltage gated channel.
At v = 55mV the effects due to concentration gradient and membrane
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(a)

K+ Ca++ Ca++

Voltaged gated 
Ca++ channelCa++ activated 

K+ channel

Ca++ pump

Nucleus

Nuclear Envelope

+ + ++ +++ + + + ++
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K+ chemical
 gradient

Ca++ chemical gradient

Time: 10 secs slow motion

(b)

Figure 38: The simple model at t = 10 s . (a) Trajectory of the model through
phase space with the v nullcline shown in blue. Circles are plotted
every 0.1 seconds. (b) Cartoon of the system showing Ca2+ and
K+ currents as arrows with line width proportional to log of the
current.
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Figure 39: The simple model at t = 31 s . (a) Trajectory of the model through
phase space with the v nullcline shown in blue and the Ca2+

nullcline shown in green. Circles are plotted every 0.1 seconds. (b)
Cartoon of the system showing Ca2+ and K+ currents as arrows
with line width proportional to log of the current.
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Figure 40: The simple model at t = 32 s . (a) Trajectory of the model through
phase space with the v nullcline shown in blue and the Ca2+

nullcline shown in green. Circles are plotted every 0.1 seconds. (b)
Cartoon of the system showing Ca2+ and K+ currents as arrows
with line width proportional to log of the current.
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voltage are in balance and Ca2+ will not flow — even through a
perfectly conducting channel. This behaviour of the voltage gated
channel at higher voltages brings an end to the region of positive
feedback (t = 31 s → t ≈ 32 s shown in Figure 40a). The rapid rise
in v comes to an end when the trajectory hits the v nullcline. The v
nullcline marks the point where the Ca2+ activated K+ channel is
conducting enough to decrease v. In this area of phase space reducing
v is important to ensure that Ca2+ flow through the voltage gated
channel is still significant.

The region of phase space shown at t = 32 s is still at the start
of a Ca2+ spike and is critical for whether the system oscillates or
not. At some parameter values, the trajectory will hit the c nullcline
before the v nullcline resulting in a drop in c to a stable fixed point. A
physical interpretation of hitting the c nullcline before the v nullcline
is that the Ca2+ pump is pumping more Ca2+ out of the nucleus
than is flowing through the voltage gated channel which prevents a
significant activation of the K+ channel, does not decrease v and kills
the resulting Ca2+ spike.

When t = 32 s → t ≈ 41 s the trajectory of the system through
phase space follows the v nullcline with increasing c and a slowly
decaying v (Figure 41a). This region covers the steep rise in nuclear
Ca2+ observed during the upward part of a spike. The increasing
c improves the conductivity of the K+ channel so that the voltage
effects of i2 slightly dominate the change in v due to i1. At t ≈ 41 s the
trajectory leaves the v nullcline and v rapidly decreases which reduces
the conductivity of the voltage gated Ca2+ channel (Figure 41b).

Closing of the voltage gated Ca2+ channel causes the trajectory
to cross the c nullcline (Figure 42a) and the Ca2+ pump becomes
the dominant effect. Crossing the c nullcline marks the peak of a
Ca2+ spike. Even though the K+ channel is highly conducting (Figure
42b) there is little movement of K+ due to the electric field across the
membrane. The trajectory then hits the v nullcline again as i2 ≈ i1 ≈ 0.

From t = 41.5 s → t = 80 s the trajectory follows the v nullcline
with a slightly increasing v (Figure 43a). This region of phase space
is the slow decay of a Ca2+ spike with the Ca2+ pump becoming the
dominant effect and a gradually decreasing c. At t > 80 the trajectory
follows the previous orbit around phase space and the periodic Ca2+

spikes continue.
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Figure 41: The simple model at t = 41 s . (a) Trajectory of the model through
phase space with the v nullcline shown in blue and the Ca2+

nullcline shown in green. Circles are plotted every 0.1 seconds. (b)
Cartoon of the system showing Ca2+ and K+ currents as arrows
with line width proportional to log of the current.
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Figure 42: The simple model at t = 41.5 s . (a) Trajectory of the model through
phase space with the v nullcline shown in blue and the Ca2+

nullcline shown in green. Circles are plotted every 0.1 seconds. (b)
Cartoon of the system showing Ca2+ and K+ currents as arrows
with line width proportional to log of the current.
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Figure 43: The simple model at t = 80 s . (a) Trajectory of the model through
phase space with the v nullcline shown in blue and the Ca2+

nullcline shown in green. Circles are plotted every 0.1 seconds. (b)
Cartoon of the system showing Ca2+ and K+ currents as arrows
with line width proportional to log of the current.
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4.4 modelling ca
2+

probes and buffers

Now that a periodic spiking model exists, modifications can be made
to investigate experimental and physiological effects. The concentra-
tion of Ca2+ buffers in the nucleus and the concentration of the dye
or probe used to measure Ca2+ are two potential influences on Ca2+

spiking. Each of these sources of Ca2+ buffering could be modelled
using similar equations to the ones used by Marhl et al. [77]. However,
because the rate constants, k− and k+, are not known for the Ca2+

probe or nuclear Ca2+ binding proteins, we use dissociation constants,
kd = k−

k+
, and a fast buffer approximation.

Consider kb the dissociation constant for a Ca2+ buffering protein
with a total concentration btot, of which a concentration, b, is bound
to Ca2+,

kb =
(btot − b)c

b
(4.6)

b =
btotc

kb + c
, (4.7)

where c is the concentration of free Ca2+. From equation 4.7, the
rate of change of occupied buffer with respect to free calcium can be
obtained,

db

dc
=

kbbtot

(kb + c)2
. (4.8)

Using the same process, p, the concentration of Ca2+ probe bound to
Ca2+ can be written in terms of its total concentration ptot and its
dissociation constant, kp,

dp

dc
=

kpptot

(kp + c)2
. (4.9)

The effects of Ca2+ probe and nuclear Ca2+ buffering proteins are
then incorporated into Equation 4.2,

dc

dt

(
1+

dp

dc
+
db

dc

)
= αi1 − µc . (4.10)

The nature of the Ca2+ buffers in the nucleus is not known. However,
as an approximation for kb the dissociation constant of the ubiquitous
Ca2+ binding protein calmodulin is used [63]. The addition of Ca2+

buffering requires the unknown parameters to be re-estimated as
shown in Table 6. Most values are similar with the notable exception
of the resting potential for K+, Ek, which has dropped from 17.7mV
to 8.8mV.

Due to an inflexibility in the parameter estimation implementation,
the buffered model was fitted using c rather than p. Comparing
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Table 6: Parameter values used in the buffered model with their sources. The
source ‘Fit’ indicates the parameter value was obtained by fitting the
model to a Ca2+ spike

.

Description Value Units Source

kb Dissociation constant of Ca2+ buffer-
ing proteins in the nucleus

1.0 µM [63]

kp Dissociation constant of Ca2+ probe
when situated in the nucleus

0.32 µM [123]

btot Concentration of Ca2+ buffering pro-
teins in the nucleus

943 µM Fit

ptot Concentration of Ca2+ probe 544 µM Fit

Gc Total max conductance of voltage
gated Ca2+ channels

2872 pS Fit

Vml Half maximal activation of voltage
gated Ca2+ channel

50.0 mV Fit

Kml Constant in scaling function for volt-
age gated Ca2+ channel

13.2 mV Fit

Gk Total max conductance of Ca2+ acti-
vated K+ channels

278 pS Fit

K Constant in Hill function for Ca2+

activated K+ channel
0.879 µM Fit

µ Pump rate into the nuclear envelope 22.2 s−1 Fit

Ek Resting potential of K+ 8.8 mV Fit

normalised time series for c and p (Figure 44) suggests that fitting to
c is not strictly correct and that parameter values will be different if it
is recognised that the time series record the response of a Ca2+ probe
rather than actual Ca2+ concentration.

4.4.1 Sensitivity Analysis

In order to understand the importance of Ca2+ buffers and measure
the significance of parameter changes on the model, a local sensitivity
analysis was conducted. This technique perturbs the values of param-
eters and measures the effects of the perturbation on the integrated
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Table 7: Normalised output values, to one decimal place, for the effects on
baseline, amplitude and period of Ca2+ spikes when perturbing
parameter values. The output values were calculated using equation
4.11.

baseline amplitude period

Vml -4.4 -3.3 2.6

Gk -0.5 -0.7 0.3

Kkc 0.9 1.0 -0.6

Gca 0.6 0.7 -0.3

µ -0.1 0.0 -1.0

Ek -0.8 0.1 0.5

Kml 4.6 -0.4 -3.4

ptot 0.0 -0.0 0.2

btot 0.0 -0.1 0.7

output. The sensitivity analysis was carried out using a normalised
centred difference approximation [131],

Sij =

Oi(pj +∆pj) −Oi(pj −∆pj)

Oi
2∆pj

pj

, (4.11)

where pj is the j-th parameter which is perturbed, ∆pj = 0.001× pj,
to produce model output O which can have multiple components
indexed as Oi.

Conventionally, Oi is the squared difference in the i-th sample of the
integrated time series. However, because the Ca2+ spiking model is
oscillating, comparing time series data points may overemphasise the
significance of changes to frequency or phase. This is a shortcoming
that is similar to using least squares for parameter estimation as
discussed in Section 3.3.1. As alternative model outputs, we measured
the basal Ca2+ concentration, the maximal Ca2+ concentration and
the period between Ca2+ spikes.

The model is particularly sensitive to changes in the voltage gated
Ca2+ channel with the parameters Vml, the half maximal activation
voltage, and Kml, the scaling function constant being the most sensitive
parameters in the model (Table 7). The model is not sensitive to the
concentration of Ca2+ probe, ptot, suggesting that small changes in
dye concentrations will not significantly effect Ca2+ spiking. However,
because the order of the magnitude of ptot differences is not known
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when performing experiments, the concentration of Ca2+ dye could
still be a cause of experimental variability.

4.5 calcium induced calcium release

The model described in Section 4.3 releases Ca2+ in response to voltage
changes across the membrane of the nuclear envelope. Even though
the model is not spatial, it is possible to determine some of qualities
that a spatial form of the model would have. Voltage changes move
rapidly across membranes and this suggests that all voltage gated
channels would release Ca2+ at roughly the same time.

Using a nuclear localised Ca2+ indicator and confocal imagery,
Sieberer et al. [117] have shown that Ca2+ is released in the form of
puffs into the nucleoplasm. The puffs do not occur simultaneously
and different locations release Ca2+ as far as 5 seconds apart. Section
4.6 discusses a way in which non-uniform release could be possible
with voltage activated Ca2+ channels. However, a less contentious
way of modelling this behaviour is with an activator that diffuses to
fire Ca2+ channels at different time points.

A well known activator in animal systems is Ca2+ itself which
operates through a positive feedback process known as Calcium In-
duced Calcium Release (CICR). Channels release Ca2+ which diffuses
to nearby channels and activates them causing further Ca2+ release.
CICR can be incorporated into Equation 4.4 by augmenting the volt-
age gated Ca2+ channel with Ca2+ activation in the form of a Hill
function,

i1 = Gcf(v)
c2

c2 +K2cicr
(Eca − v) (4.12)

Starting with the parameter values given in Table 5, some modifica-
tions were made. First, the effects of the CICR term were removed
by setting Kcicr to 0µM. Then spontaneous spiking was disabled by
raising Kml to 17mV. The effects of CICR were enabled by setting
Kcicr to 0.1µM. With CICR enabled in this way, spontaneous spiking
is restored (Figure 45).

4.6 discussion

This chapter describes deterministic models of 2 dimensions that are
built on assumptions and attempt to capture the qualities of a more
complex system. It is worth examining the assumptions, to see how
rational they are, and to suggest alternatives.
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Figure 45: Ca2+ spikes generated by the model given in Equation 4.12 with
CICR enabled (blue). With CICR removed spiking does not persist
(green).

Taking the volume of the nucleus to be 160 fL (Table 5), leads to an
estimated 9635 calcium ions in the nucleus at a basal Ca2+ concen-
tration of 100nMol. Using a rough estimate that uncertainties due to
low copy number are of the order of 1√

N
, where N is the number of

particles, gives a 1% stochastic fluctuation. This indicates that deter-
ministic dynamics will still be significant enough that modelling with
differential equations is a valid approach to contribute to the under-
standing of nuclear Ca2+ spiking. However, it would be instructive to
do a stochastic simulation to see how the model behaves around the
critical fixed point that effects the initiation of a Ca2+ spike (Figure
40).

In the current models, the Ca2+ pump does not contribute directly
to the inner nuclear membrane potential. An electrogenic Ca2+ pump
would contribute directly to changes in the membrane potential by
producing a net charge transport. This alteration to the models would
reduce the required conductivity of the K+ channels that currently
provide a balance. The K+ channels are already modelled with a
small conductance, 302pS for the whole nucleus. The Ca2+ pump
is modelled as an exponential term that increases Ca2+ transport
without limits as the free Ca2+ concentration increases. Converting
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this pump equation to a Hill function to model co-operative binding
and a saturation of pumping rate could attenuate the effects of an
electrogenic transport on membrane potential.

The voltage gated Ca2+ channel is a hypothesised channel whose
very existence can be doubted. The dynamics of the channel described
by Equation 4.3 are therefore arbitrary. The channel is essential for the
described models though for 2 reasons. Genetically, DMI1 is required
for Ca2+ spiking and a reasonable assumption is that the transport
of alternative cations indicate a need to balance membrane potential.
A mechanism must release Ca2+ from the nuclear envelope and also
cause the Ca2+ channel to close at the peak of a spike. A voltage
mechanism is a parsimonious premise to make since alternatives, such
channels closing due to Ca2+ inhibition, add additional assumptions
and parameters to the model.

An intracellular membrane potential, a voltage across the ER, has
been modelled as part of Ca2+ oscillations in animal systems [77]. In
the animal model, electroneutrality was considered along with anion,
cation and free buffer concentrations. The animal model was more
encompassing than the ones described in this analysis. It would be
instructive to see if a similar approach would work with symbiotic
Ca2+ spiking.

Another obvious simplification of the models here is the lack of
an active transport for K+. Although the K+ current required to
balance membrane potential is small enough not to affect nuclear K+

concentration, the active transport of K+ back into the nucleus may
affect membrane potential. However, because the transporters for K+

are not known, their inclusion would only complicate the model.
The models described here predict a concentration gradient of K+

between the nuclear envelope and the nucleus. Compared to Ca2+,
relatively little is known about the role of K+ within the nucleus,
or even the cytosol, of plant cells. Cells keep a high internal K+

concentration and intracellular indicators for this ion would be of little
use. However, in animal systems there are suggestion that there is a
K+ gradient across the membrane of the nuclear envelope because
a voltage and Ca2+ activated K+ channel has been isolated from
pancreatic acinar cells [122]. Knowing that K+ plays a major role
in symbiotic Ca2+ oscillations and not being able to measure the
behaviour of K+ during the oscillations will probably be a continuing
difficulty in modelling the symbiotic Ca2+ spiking system.

Voltage induced Ca2+ release may suggest simultaneous Ca2+ re-
lease from all channels on a membrane. Sluggish release of Ca2+
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has been observed, however, in images of nuclear Ca2+ spiking [117].
A likely explanation is another release mechanism such as CICR is
involved. An alternative interpretation is that voltage gated channels
on the inner nuclear membrane have a non-uniform voltage response
with some channels activating at different voltages to others. The
voltage gated model analysed in Section 4.4.1 is particularly sensitive
to Vml and Kml — the parameters that describe how Ca2+ transport
through the voltage gated channel is affected by membrane voltage. A
more radical explanation is that no Ca2+ is released in the nucleus at
all and that the observed Ca2+ puffs in [117] have arrived from the
cytosol after travelling through nuclear pores which may modulate
the transport of Ca2+ [79]

4.7 software used

Exploratory analysis on candidate models was performed using XP-
PAUT [26]. The integrated data from XPPAUT was used to animate
SVG drawings using a Python program. The output of the Python
program was converted into an animated film and still images (Figures
38 to 43). Parameter estimation was done using the particle swarm
optimiser described in Chapter 3, Algorithm 1. Phase space plots were
produced by a program written in R that used the odesolve library
to integrate the models. Sensitivity analysis was also performed by
a program written in R using a description of the local sensitivity
algorithm given in [131].



5
C O N C L U D I N G R E M A R K S

5.1 concluding remarks

At the time of writing no mathematical models of perinuclear Ca2+

spiking in plants have been published. However, Brière et al. [15]
have developed a model of Ca2+ release after mechanical stimulation
of plant nuclei. The absence of models is probably due, in part, to
the lack of knowledge on individual components. Not knowing the
critical components in an oscillating system with a chaotic signature
is a modelling challenge but it is also an opportunity to contribute to
the work being done in biology labs to understand symbiotic Ca2+

spiking.
This work has used three different computational approaches that

attempted to extract information about the symbiotic Ca2+ spiking
that occurs in Medicago truncatula during a symbiosis with nitrogen
fixing bacteria. The first approach was a nonlinear time series analysis,
that although not conclusive, suggests that irregularities in the Ca2+

oscillations are not predominately stochastic in nature and that the
states of the system could orbit a chaotic attractor. Although this could
be seen as a labelling exercise it is still part of a wider attempt to
understand the system being studied. The time series analysis has im-
plications for models of the Ca2+ spiking. The modelling described in
this work has been deterministic. However, if the alternative approach
of developing a stochastic model is taken, the resulting model could
be analysed to see if it produced time series with the same nonlinear
characteristics as the experimental data.

The second approach was to build models computationally by fitting
to time series. It was shown that it is possible to search for viable mod-
els using Inductive Process Modelling but that a selection of available
parameter estimation techniques were unable to identify parameters
accurately enough for model discrimination. Although not usable on
a chaotic system, the framework discussed could have applications in
other areas of systems biology as shown by a successful demonstration
with a periodically oscillating Ca2+ model. This systems identification
approach was the least successful at improving our understanding
of symbiotic Ca2+ spikes. However, it also has the most potential

106
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since it allows hypotheses to be made about components and then
have those hypotheses scored with regards to how well they explain
experimental data and how parsimonious they make the resulting
models. Nonlinear time series analysis doesn’t allow determination
of individual components while manual modelling does not usually
incorporate a step to score one set of assumptions in comparison to
another.

When modelling the symbiotic Ca2+ spiking system using con-
ventional techniques only a relatively small number of models and
assumptions can be examined. Without an exhaustive search of model
space this could been seen as an insurmountable problem. One hope-
ful comparison can be to the One Pool model of Ca2+ oscillations in
animal systems [21]. At the time the One Pool model was developed,
the Ca2+ store and the behaviour of the IP3 receptor had not been
fully characterised. This led to the development of a model that used
parsimonious assumptions to fill in missing details and proposed
a mechanism for Ca2+ spiking that is noticeably close to the one
recognised in animal systems today. This in no way suggests that the
predictions made by the models in Chapter 4 will be as accurate of
those produced by the One Pool model. However, the history of the
One Pool model demonstrates that models that rely on hypothesised
Ca2+ channels may have potential utility.

Possible future work could follow the analysis done for this thesis.
One course of action is to investigate the use of Inductive Process
Modelling (IPM) on other biological systems. Currently, a periodic
model, based on the simplest of assumptions, fits well to a single Nod
Factor induced Ca2+ spike. It is unlikely that applying IPM to the
experimental data would suggest an alternative model. However one
possible application for IPM is to look at the Ca2+ oscillations that
occur in animal systems which have many competing models which
have not been fit to experimental data.

Since only a periodic model exists for Nod Factor spiking in M.
truncatula, it would be interesting to see if a viable chaotic model
can be found. There are two main approaches that could be taken.
The first is to add variables to the current models to investigate if a
mechanism can be identified that induces chaos in a system of ODEs.
The alternative is to model the system spatially to see if the behaviour
of the Ca2+ oscillations could be the result of spatial chaos.

If a chaotic model can be established for the system, it would
be natural to use this model to suggest a parameter that can be
analysed for bifurcations. This could be performed mathematically
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and possibly experimentally. Finding a parameter of the biological
system that can be used to take the Ca2+ spikes from periodic to
chaotic behaviour would convincingly demonstrate that the system
is chaotic. An experiment of this type has shown that population
dynamics can be chaotic [7].



Part II

A P P E N D I C E S



1
N O D FA C T O R T R A C E S

1.1 overview

This appendix contains plots of the experimental data analysed in
Chapter 2. The time series Nod1 is plotted in the main text in Chapter
2 as Figure 7.
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2
I N D U C T I V E P R O C E S S M O D E L L I N G

Below is a listing in Python that captures the Equations 3.32 to 3.42

in Chapter 3. It uses an inductive modelling library that defines
the classes DAE, CFunction, Variable and Parameter. These defined
classes have overloaded operators + - / * | that allow equation and
modelling objects to be built using an equation-like syntax.

The | operator indicates equation alternatives and is equivalent to
the

∨
operator in Section 3.5.2.

from inductive_modelling import *

class Hill(CFunction) :

name = "hill"

class Power(CFunction) :

name = "pow"

class Schuster(DAE) :

"""

Minimal models taken from table 1 of

Modelling of simple and complex calcium oscillations

Stefan Schuster et al

European Journal Biochemistry 269, 1333-1355, 2002

96 alternative models of which 24 are valid

"""

Ca_cyt = Variable(0, 2.0, 1.0)

Ca_er = Variable(0, 2.0, 1.0)

B = Variable(0, 1000, 500)

R = Variable(0, 1.0, 0.5)

# Parameters common to all models

rho_er = Parameter(0.9,5,1)

# Parameters from Dupont and Goldbeter converted to seconds

k_f = Parameter(0,0.05,0.017)

k = Parameter(0,0.5,0.17)

v0 = Parameter(0.01,0.1,0.08)

v1 = Parameter(0.01,0.1,0.08)

beta = Parameter(0,0.5,0.1)

VM2 = Parameter(0,1.0,0.83)

K_2 = Parameter(0.4,2,1)

VM3 = Parameter(1,20,6.8)

K_R = Parameter(1,3,2)

K_A = Parameter(0.4,1,0.5)

# Parameters from Li and Rinzel
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k0 = Parameter(0,0.1,0.02)

k1 = Parameter(10,50,40)

K_a = Parameter(0,1,0.4)

k_3 = Parameter(0,1,0.2)

k__3 = Parameter(0,1,0.5)

# Parameters from Marhl et al

k_leak = Parameter(1,20,10)

k_ch = Parameter(0,1,0.6)

K_1 = Parameter(1,10,5)

k_pump = Parameter(1,100,76)

k_plus = Parameter(0,1,0.1)

B_0 = Parameter(100,1000,600)

k_ = Parameter(0,1,0.5)

# Rate laws

Vin = v0 + v1 * beta | 0

Vout = k * Ca_cyt

Vrel = k_f * Ca_er + beta * VM3 * Hill(Ca_er, K_R, 2) * Hill(Ca_cyt, K_A, 4) | \

(k0 + k1 * R * Power(Hill(Ca_cyt, K_a, 1),3)) * (Ca_er - Ca_cyt) | \

(k_leak + k_ch * Hill(Ca_cyt, K_1, 2)) * (Ca_er - Ca_cyt)

Vserca = VM2 * Hill(Ca_cyt, K_2, 2) | \

k_pump * Ca_cyt

Vrec = k_3 * (1 - R)

Vdes = k__3 * Ca_cyt * R

Vb = k_plus * (B_0 - B) * Ca_cyt - k_ * B

# Differential equations

d = {}

d[Ca_cyt] = Vin - Vout + Vrel - Vserca - Vb | \

Vin - Vout + Vrel - Vserca

d[Ca_er] = rho_er * (Vserca - Vrel)

d[B] = Vb | None

d[R] = Vrec - Vdes | None

eq_system = Schuster()

These definitions are processed and used to generate multiple C++
header files, each defining a system of equations. An example header
file is shown below with line breaks added for clarity.

#ifndef AUTO_MODEL_H

# define AUTO_MODEL_H

#include "simple_model.h"

class AutoModel : public SimpleModel

{

public:

enum Var_name { Ca_cyt , Ca_er , VAR_END };

enum Param_name { K_R , k , K_2 , v0 , v1 , beta , K_A ,

rho_er , VM2 , VM3 , k_f , PARAM_END };

AutoModel() :
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SimpleModel("AutoModel", VAR_END, PARAM_END)

{

SimpleModel::add_var(Ca_cyt,"Ca_cyt",0,2.0,1.0);

SimpleModel::add_var(Ca_er,"Ca_er",0,2.0,1.0);

SimpleModel::add_param(K_R,"K_R",1,3,2);

SimpleModel::add_param(k,"k",0,0.5,0.17);

SimpleModel::add_param(K_2,"K_2",0.4,2,1);

SimpleModel::add_param(v0,"v0",0.01,0.1,0.08);

SimpleModel::add_param(v1,"v1",0.01,0.1,0.08);

SimpleModel::add_param(beta,"beta",0,0.5,0.1);

SimpleModel::add_param(K_A,"K_A",0.4,1,0.5);

SimpleModel::add_param(rho_er,"rho_er",0.9,5,1);

SimpleModel::add_param(VM2,"VM2",0,1.0,0.83);

SimpleModel::add_param(VM3,"VM3",1,20,6.8);

SimpleModel::add_param(k_f,"k_f",0,0.05,0.017);

}

~AutoModel() {}

vector<double> system(const vector<double>& v, const vector<double>& p)

{

vector<double> d(VAR_END);

double Vin = p[v0] + p[v1] * p[beta];

double Vout = p[k] * v[Ca_cyt];

double Vserca = p[VM2] * hill(v[Ca_cyt],p[K_2],2);

double Vrel = p[k_f] * v[Ca_er] + ( ( p[beta] * p[VM3] ) * hill(v[Ca_er],p[K_R],2) )

* hill(v[Ca_cyt],p[K_A],4);

d[Ca_cyt] = Vin - Vout + Vrel - Vserca;

d[Ca_er] = p[rho_er] * ( Vserca - Vrel );

return d;

}

};

#endif /* ifndef AUTO_MODEL_H */



3
S Y S T E M I D E N T I F I C AT I O N P R O G R A M

This Chapter gives Unified Modelling Language (UML) diagrams for
the significant classes in the C++ program used to perform parameter
estimation. The program evolved as new parameter estimation tech-
niques were investigated. Nevertheless, the program was structured
using pure virtual classes that define an interface that new added al-
gorithms must follow. A simple example of such an interface is shown
in Figure 54, where different integration algorithms can be used for
generating a time series.

Integrator

- name_

+ Integrator()
+ integrate1step()
+ name()
+ ~Integrator()

DysiiIntegrator

- tolerance_

+ DysiiIntegrator()
+ integrate1step()

LsodaIntegrator

- relative_tolerance_
- absolute_tolerance_

+ LsodaIntegrator()
+ integrate1step()
+ system()

RK4Integrator

 

+ RK4Integrator()
+ integrate1step()

Figure 54: UML diagram of the integrators available for parameter estima-
tion.

The type of integrator being used is specified in a configuration file
following the inversion of control principle:

integrator:

{

type = "rk4";

};

This configuration entry causes the creation of an integrator that
uses a 4th order Runge Kutta algorithm. This integrator is then used
by the rest of the program through the interface described by the
pure virtual class Integrator. Following the same principles, the
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algorithms used by the parameter estimator can be configured in a
single file which can be saved with results.

An example configuration file, showing parameter estimation using
multiple shooting, is shown below:

general:

{

seed = 1;

model = "lorenz";

estimation_log = "sres_qnips_estimate.log";

integration_log = "sres_qnips_integrate.log";

};

time_series:

{

file = "input/lorenz.trace";

field = 2;

variable = "x1";

sample_time = 0.02;

noise = 2.0;

};

parameter_estimator:

{

algorithm = "multiple_shooting";

segment_size = 15;

log_file = "sres_qnips_ms.log";

optimiser:

{

algorithm = "hybrid";

first_optimiser:

{

algorithm = "SRES";

generations = 100;

allow_parents = false;

selected_parents = 30;

children_from_selected = 200;

using_constraints = false;

};
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second_optimiser:

{

algorithm = "QNIPS";

merit_function = "ArgaezTapia";

output_file = "optpp.out";

max_iterations = 150000;

max_backtracks = 200;

max_function_evaluations = 10000000;

};

};

};

integrator:

{

type = "lsoda";

relative_tolerance = 1e-2;

absolute_tolerance = 0.0;

};

The main interfaces and classes that are created by the configuration
files are shown in the UML diagrams that follow.
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Optimiser

 

+ least_squares_terms()
+ optimise()
+ ~Optimiser()

Optpp

- algo_
- output_file_
- max_iterations_
- max_backtracks_
- max_function_evaluations_
- merit_function_
- least_squares_terms_
- callbacks_
- initial_state_
- s_optpp

+ Optpp()
+ least_squares_terms()
+ optimise()
+ ~Optpp()
- create_constraints()
- fdnips()
- dhnips()
- qnips()
- setup_nips_minimiser()
- objective()
- least_squares()
- constraints()
- initialiser()
- initialise_constraints()
- static_objective()
- static_least_squares()
- static_initialiser()
- static_initialise_constraints()
- static_constraints()

PSO::Optimiser

- num_generations_
- num_particles_

+ Optimiser()
+ ~Optimiser()
+ optimise()
- run_pso()
- objective_fn()

SobolOptimiser

- num_samples_
- report_count_
- target_fitness_

+ SobolOptimiser()
+ optimise()

SRESOptimiser

- num_generations_
- is_repeatable_
- allow_parents_
- selected_parents_
- children_from_selected_
- with_constraints_

+ SRESOptimiser()
+ ~SRESOptimiser()
+ optimise()

Figure 56: UML diagram of available optimisation algorithms.
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OptimiserCallbacks

 

+ initialise()
+ state_size()
+ num_constraints()
+ bounds()
+ fitness()
+ report_best()
+ least_squares()
+ improve()
+ ~OptimiserCallbacks()

BatchUKF_Params::Callbacks

- model_
- state_
- filter_runner_
- log_
- sobol_
- lower_bounds_
- upper_bounds_

+ Callbacks()
+ initialise()
+ state_size()
+ num_constraints()
+ bounds()
+ fitness()
+ report_best()
+ ~Callbacks()
+ log_headings()
+ run_filter()
- extract_parts()

MultipleShooting::Callbacks

- model_
- integrator_
- cost_fn_
- ts_
- segment_size_
- log_
- layout_
- sobol_
- best_fitness_

+ Callbacks()
+ ~Callbacks()
+ initialise()
+ state_size()
+ num_constraints()
+ bounds()
+ fitness()
+ least_squares()
+ report_best()
+ integrate1step()
+ log_headings()
+ variables()
+ parameters()
+ nodes()
+ delta()
+ best_fitness()

SingleShooting::Callbacks

- model_
- integrator_
- cost_fn_
- min_constraint_
- max_constraint_
- ts_
- log_
- used_params_
- dual_
- sobol_
- best_fitness_

+ Callbacks()
+ ~Callbacks()
+ initialise()
+ state_size()
+ num_constraints()
+ bounds()
+ fitness()
+ report_best()
+ log_headings()
+ variables()
+ parameters()
+ check_constraints()
+ integrate1step()
+ best_fitness()

Figure 57: UML diagram of classes that connect an optimiser to the optimi-
sation problem of performing parameter estimation.
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angiosperm Flowering plant.

autoinhibitory domain A domain of a protein that can inhibit
other domains of the same protein.

bursting Rapid nonperiodic Ca2+ oscillations.

calmodulin A ubiquitous Ca2+ binding protein.

cation A positively charged ion.

clade A single common ancestor and all the decendents of that
ancestor.

cortical cells Cells that lie in a layer between the surface cells of
a plant root and the conducting tissues further in.

endocytosis The entry of foreign bodies into the interior of a cell
that remain isolated from the inside of the cell by cell wall
material.

endoplasmic reticulum A membrane network within eukary-
otic cells.

epidermal layer The outermost layer of cells in a plant root.

flavanoid A class of organic compound.

haber-bosch process An industrial process for removing Nitro-
gen from the air and fixing it as ammonia.

legume family A family of plants that mostly produce seed pods.

medicago truncatula A legume (common name Barrel Medic) used as
a model plant for the study of legumes.

mycelial The branched filaments of fungi.

nuclear envelope The two membrane layers, and the space be-
tween them, that separate the nucleus from the cytosol.

nuclear pore Large protein complex that transports components
through the nuclear envelope.

ode Ordinary Differential Equation
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organogenesis The formation of tissues produced from undiffer-
entiated cells that become differentiated.

primordium A tissue in its earliest stages of development.

sarcoplasmic reticulum A membrane network within muscle
cells.

sres Stochastic Ranking Evolutionary Strategy

ukf Unscented Kalman Filter

uml Unified Modeling Language

uv Ultraviolet
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