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Abstract. Let (Σ, σ) be a Zd subshift of finite type. Under a strong irreducibility
condition (strong specification), we show that Aut(Σ) contains any finite group.

For Zd–subshifts of finite type without strong specification, examples show that
topological mixing is not sufficient to give any finite group in the automorphism

group in general: in particular, End(Σ) may be an abelian semigroup. For an

example of a topologically mixing Z2–subshift of finite type, the endomorphism
semigroup and automorphism group are computed explicitly. This subshift has

periodic–point permutations that do not extend to automorphisms.

1. Introduction

Let A be a finite set with |A| > 1, and for a finite set E ⊂ Zd let πE : AZ
d → AE

denote the restriction map, πE(x) = x|E , where AZ
d

is viewed as the space of maps
Z
d → A with the product topology. The group Zd acts on AZ

d

via the shift σ,
σn(x)m = xn+m. A closed non–empty σ–invariant subset Σ ⊂ AZd is a Zd–subshift

of finite type if there is a finite set E ⊂ Zd and a non–empty subset P ⊂ AE for
which

Σ = Σ(P,E) = {x ∈ AZ
d

| πE+n(x) ∈ P for every n ∈ Zd}. (1.1)

Let σ also denote the restriction of the Zd action σ to Σ (see Chapter 5 of the notes
[Sc] for a discussion of this definition, and examples). The problem of determining
for given data P and E whether Σ(P,E) is non–empty is excluded by our definition;
this question is known to be undecidable in general for d > 1, because of the
existence of Zd–subshifts of finite type without periodic points (see [B], [R]).

The endomorphism semi–group End(Σ) of the Zd–subshift of finite type Σ is de-
fined to be the semi–group of continuous surjective maps from Σ to Σ commuting
with the action σ. The automorphism group Aut(Σ) is the group of homeomor-
phisms of Σ commuting with σ. For Z–subshifts of finite type it is well–known that
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Aut(Σ) (and therefore End(Σ)) is very large: in particular, if Σ is a non–trivial
topologically mixing Z–subshift of finite type, then Aut(Σ) contains the free group
on two generators (Theorem 2.4 of [BLR]) and the direct sum of every countable
collection of finite groups (Theorem 2.3 of [BLR]). This kind of result was first
given by Curtis, Hedlund and Lyndon who showed that the automorphism group
of a full shift contains any finite group and contains a pair of involutions whose
product has infinite order (Theorems 6.13 and 20.1 in [H2]). The paper [H1]
contains a survey of their work.

The results below are an extension to the case of higher–dimensional subshifts
of finite type: the discussion before Theorem 2.3 is an analogue of the Curtis–
Hedlund–Lyndon theorem for the full shift on three symbols, and Theorem 2.3 is
analogous to a weak version of Theorem 2.3 in [BLR], where sufficiently mixing
subshifts of finite type are seen to behave like full shifts in this regard. Higher–
dimensional subshifts of finite type differ from the one–dimensional case in that
they may be topologically mixing without having strong specification. In Section
3 below we show that this allows some high–dimensional subshifts of finite type
to have very few automorphisms.

Under a strong irreducibility condition (defined in Section 2) on a Zd–subshift
of finite type, d > 1, namely strong specification, the automorphism group mimics
the Z case in that the automorphism group is very large.

In the one–dimensional case Lind has shown that the set of possible entropies
of automorphisms of a mixing subshift of finite type are dense in [0,∞) ([L]).
Examples show that topologically mixing Zd–subshifts of finite type that do not
have strong specification may have very few automorphisms, and may not have
a dense set of possible entropies of automorphisms. It is conjectured that for Zd

subshifts with strong specification, each automorphism has either zero or infinite
entropy.

It should be emphasised that the two kinds of subshifts of finite type discussed
here – those with strong specification, and a zero–entropy example – lie at opposite
ends of a spectrum of topological mixing properties, and we say nothing at all
about the many interesting shifts in the middle of this spectrum.

Some of the results in Section 3 are obtained in [KS] from a different viewpoint,
where the “rigidity” phenomenon in Ledrappier’s example (and generalizations
thereof), forcing topological conjugacies to be group homomorphisms, is exhibited
for maps between certain Markov subgroups of {0, 1}Z2

and the Ledrappier shift
(see Observation 4.1 in [KS]).

I am grateful to Mark Shereshevsky for pointing out an error in an earlier
version, and to him and Jeff Steif for several discussions related to the issues dealt
with in this note.



AUTOMORPHISMS OF Z
d SUBSHIFTS OF FINITE TYPE 3

2. Z
d
–subshifts with strong specification

For brevity we state and prove results in this section for the case d = 2; extension
to the case d > 2 is straightforward.

Let d denote the Euclidean metric on Z2. A Z
2–subshift of finite type Σ has

strong specification if there is a constant M such that for any sets R1, R2 ⊂ Z2

with d(R1, R2) ≥ M , and any words x1 ∈ πR1(Σ) and x2 ∈ πR2(Σ), there is an
element y ∈ Σ with πRi(y) = xi for i = 1, 2.

A Z
2–subshift of finite type Σ is topologically mixing if for any finite sets

R1, R2 ⊂ Z2 there is a constant M(R1, R2) such that for d(R1, R2) ≥M(R1, R2),
and for any words x1 ∈ πR1(Σ) and x2 ∈ πR2(Σ), there is an element y ∈ Σ with
πRi(y) = xi for i = 1, 2.

Notice that we may exhibit many periodic points in a subshift of finite type with
strong specification. Let R = [0, n]× [0,m] ∩ Z2, and choose x ∈ πR(Σ) (the shift
is certainly non–empty, since we may apply strong specification with R1 and R2 as
singletons). Extend x to x∗ ∈ π[0,n]×Z(Σ), and apply strong specification to find y
with π[0,n]×Z(y) = π[n+M,2n+M ]×Z(y) = x∗. Then the pattern π[0,n+M ]×Z(y) may
be concatenated to produce an element y∗ ∈ Σ which is σ(1,0)–periodic with period
(n+M). Now apply exactly the same argument to z = πZ×[0,m](y∗) to produce z∗

which is σ(1,0)–periodic with period (n+M), σ(0,1)–periodic with period (m+M),
and has πR(z∗) = x. We deduce that any finite word may be embedded in a
periodic point of some period boundedly larger than the original word.

Before continuing, we should make clear that strong specification is enjoyed by
many non–trivial subshifts of finite type.

Examples. The subshifts of finite type (1), (2) and (3) have strong specification;
(4) does not.

(1) [the full shift] Let E = {(0, 0)} and P = A. Then Σ(P,E) is the full
shift on |A| symbols, and this has strong specification with M = 1.

(2) [the golden mean] Let A = {0, 1}, and define Σ by the rule that a “1”
must be followed horizontally and vertically by a “0”. This has strong
specification with M = 2. It follows that it has positive entropy, though
the exact value of this entropy is not known.

(3) [burton–steif example] Let A = {−L,−L+ 1, . . . ,−2,−1, 1, 2, . . . , L−
1, L}, and define Σ by the rule that horizontally and vertically adjacent
positions must have the same sign unless they are both equal to ±1. This
subshift has strong specification with M = 3. Burton and Steif have shown
that this shift has exactly two ergodic measures of maximal entropy if L
is sufficiently large (see [BS], Theorem 1.17).

(4) [ledrappier’s example] Let A = {0, 1}, E = {(0, 0), (1, 0), (0, 1)}, and
P = {(x(0,0), x(1,0), x(0,1)) | x(0,0) + x(1,0) = x(0,1) mod 2}. If x ∈ Σ(P,E)

then x(0,0) + x(2n,0) = x(0,2n) for all n, so Σ(P,E) does not have strong
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specification. This example was introduced in [Le].

For brevity, let πn = π[0,n]×[0,n]. For any subshift Σ, the topological entropy is
defined to be

h(Σ) = lim
n→∞

1
n2

log |πn(Σ)|. (2.1)

If µ is a σ–invariant Borel probability on Σ, the metric entropy hµ(Σ) of Σ is
defined as follows. For x ∈ πR(Σ), let [x] = {y ∈ Σ | πR(y) = x} denote the
cylinder set in Σ defined by x. Then

hµ(Σ) = lim
n→∞

− 1
n2

∑
x∈πn(Σ)

µ([x]) logµ([x]). (2.2)

Both of the limits (2.1) and (2.2) exist by subadditivity, and the variational prin-
ciple for the pressure implies that

h(Σ) = sup
µ
hµ(Σ), (2.3)

where the supremum is taken over all invariant Borel probabilities (see [E]; a
shorter proof of the variational principle for Nd actions is given in [M]).

Let Fn(Σ) = {x ∈ Σ | σm(x) = x for all m ∈ nZ×nZ} denote the set of points
with period n both horizontally and vertically in Σ.

The following lemma is well–known; part (1) is in [BS] and part (2) is in [Sc].

Lemma 2.1. Let Σ be a subshift of finite type with strong specification.

(1) The topological entropy of Σ is positive.
(2) The growth rate of periodic points equals the entropy,

lim
n→∞

1
n2

log |Fn(Σ)| = h(Σ).

(3) Any weak limit of the sequence of uniform periodic point measures on sets
of periodic points Fn(Σ) is a measure of maximal entropy if it is shift–
invariant.

Proof. (1) Since |A| > 1, strong specification shows that there are words in Σ
which allow one of two symbols to be seen at each point in (M + 1)Z× (M + 1)Z.
It follows that

|πn(M+1)(Σ)| ≥ 2n
2
,

so h(Σ) ≥ 1
(M+1)2 log 2 > 0.

(2) It is clear that

|πn(Σ)| ≤ |Fn(Σ)| ≤ |π[−M,n+M ]×[−M,n+M ](Σ)|

≤ |πn(Σ)| × |A|4Mn+4M2
. (2.4)
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It follows that the growth rate of periodic points exists, and

lim
n→∞

1
n2

log |Fn(Σ)| = h(Σ).

(3) Let µn denote the uniform measure on Fn(Σ), and let µ denote the shift–
invariant weak limit as j →∞ of µnj .

We claim that µ is a maximal measure. Fix some n and consider finite words
x,y ∈ πn(Σ). Then |µ([x])− µ([y])| is equal to

lim
k→∞

1
|Fnk(Σ)|

∣∣|{z ∈ Fnk(Σ) | πn(z) = x}| − |{w ∈ Fnk(Σ) | πn(w) = y}|
∣∣.

Now by strong specification with constant M , it is clear that∣∣|{z ∈ Fnk(Σ) | πn(z) = x}| − |{w ∈ Fnk(Σ) | πn(w) = y}|
∣∣ ≤ |A|(nj+2M)2

,

so that |µ([x])− µ([y])| = 0. It follows that, for any fixed n,

− 1
n2

∑
x∈πn(Σ)

µ([x]) logµ([x]) =
1
n2

log |πn(Σ)|,

so that hµ(Σ) = h(Σ). �

If the subshift of finite type Σ has a unique measure of maximal entropy then
Lemma 2.1 implies that any invariant measure obtained as the weak limit of peri-
odic point measures is ergodic. In general this is not the case (see [BS]).

We now show that a subshift of finite type with strong specification has many
automorphisms. The method is exactly that originated by Hedlund and used in
[BLR], that of markers acting on data.

Definition 2.2. Let S ⊂ R ⊂ Z2 be subsets of Z2. A marker (for S ⊂ R) is a
word M ∈ πR\S(Σ) and a set D ⊂ {πS(x) | πR\S(x) = M} with the following
trivial overlaps property: if x ∈ Σ has πS(x) ∈ D and πR\S(x) = M , and there
is an n ∈ Z2\{(0, 0)} with π(R\S)+n(x) = πR\S(x), and πS+n(x) ∈ D, πS(x) ∈ D,
then R+ n ∩R = ∅.

Given a marker (M , D), the full symmetry group Sym(D) embeds into Aut(Σ):
for each τ ∈ Sym(D), define ατ ∈ Aut(Σ) as follows. If x ∈ Σ has π(R\S)+n(x) =
M and πS+n(x) = D ∈ D, then ατ (x) = y, where y is the unique element of Σ
with πZ2\(R+n)(y) = πZ2\(R+n)(x), π(R\S)+n(y) = M , and πS+n(y) = τ(D) ∈ D.
That is, the map ατ acts by applying τ to words from D (the data) that are
“marked” by M . The trivial overlaps property ensures that the data, markers and
the other parts of words are kept separated.

As an illustration, consider the full shift on three symbols, Σ = Σ(A,{(0,0)})

where A = {0, 1, 2}. Let R = [0, n] × [0, n] and S = [1, n − 1] × [1, n − 1]. Let
D = {0, 1}S and let M be the element of {0, 1, 2}R\S given by 2’s in every position.
The pair (M,D) form a marker for S ⊂ R, and the above construction embeds a
copy of the symmetry group on 2n

2
symbols into Aut(Σ).
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Theorem 2.3. If Σ is a Z2–subshift of finite type with strong specification, then
Aut(Σ) contains any finite group.

Proof. We will embed a symmetric group of arbitrary size into Aut(Σ). First
notice that Σ1 = πZ×{0}(Σ) is a one–dimensional mixing subshift of finite type.
By [BLR], Lemma 2.2, we may find in Σ1 a word M of length ` (how long will be
chosen later), with the property that M can only overlap itself trivially. Build a
marker M∗ in Σ as follows. In positions [−` − n,−n] × {0} and [` + n, n] × {0},
place the word M , where 2n + 1 < `. By strong specification, there is a number
L with the property that we may place further copies of the word M in positions
[−` − n,−n] × {±(kL + (k − 1))} and [` + n, n] × {±(kL + (k − 1))} for every
k = 1, 2, . . . . The partially–defined word so produced (call it M1) has the property
that M1 cannot overlap any translate by (a, b) of M1 for |a| ≤ ` and |b| ≥ L.

Enumerate the (finite) collection of translates (a, b) with |a| ≤ ` and |b| <
L in some order, (a1, b1), (a2, b2), . . . , (aj , bj). Consider (a1, b1): if the partial
word M1 translated by (a1, b1) can overlap M1, then add to M1 a further copy
of M in the position [` + n, n] × {0} + (a1, b1) if a ≥ 0, and in the position
[−`− n,−n]× {0}+ (a1, b1) if a < 0. Call the enlarged partial word so produced
M2. Apply the same process with (a2, b2) to M2 to produce M3 and so on. Let
M∗ = Mk+1 be the final partial word produced: M∗ then has the property that
the only translate of M∗ that is compatible with M∗ is a translate (a, b) with
|a| > `. That is, M∗ acts as a marker for the strip [−n, n]×Z. Now assume ` has
been chosen large enough to have n > L + r, where L is the strong specification
constant for Σ. It follows that we may find in the strip [−n, n]×Z marked by M∗

a square of side 2r− 1 with many (how many depending on r) allowed words with
fixed boundary. Any permutation of these words defines an element of Aut(Σ) by
applying that permutation whenever the marker M∗ is seen.

Thus, we may embed copies of Sym(N) with N arbitrarily large into Aut(Σ).�

3. A zero entropy example:

the Ledrappier shift

In this section we consider an example of a topologically mixing Z2–subshift
of finite type with zero entropy introduced as a measurable dynamical system by
Ledrappier ([Le]), and studied in that context in [W1], [Sh1].

Let
Σ = {x ∈ {0, 1}Z

2
| x(n,m+1) = x(n,m) + x(n+1,m)} (3.1)

in which the addition is performed mod 2, and let θ : Σ→ Σ be an endomorphism
of (Σ, σ).

It will be convenient to allow θ to be composed with the shift maps in either
domain or range without altering the notation; the maps below should therefore be
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understood modulo σ. Let G denote the group {0, 1}. By (3.1) we may without
loss of generality view θ as a map from GZ to GZ (the line of co–ordinates in
Σ given by the (1, 0) direction determines all the remaining positions (a, b) with
b ≥ 0; since θ is continuous it can only depend on finitely many positions with
negative coordinates in the (0, 1) direction, finally the commutation with the shift
allows us to view θ as a function on the (1, 0) line of co–ordinates). Moreover θ is
given by a surjective sliding code,

φ : GZ → G (3.2)

where
θ(x)k = φ(σ(k,0)(x)) (3.3)

for all k ∈ Z. Since θ is continuous, φ can only depend on finitely many coordinates,
so we may assume that φ is a map from GN to G for some N .

The condition that θ commute with σ(1,0) is implicit in the reduction to φ :
GN → G; the condition that θ commute with σ(0,1) is equivalent to requiring that

φ(a1 + a2, a2 + a3, . . . , aN + aN+1) = φ(a1, . . . , aN ) + φ(a2, . . . , aN+1) (3.4)

for every a1, . . . , aN+1 in G. Assume now that φ does depend on the first and last
variables (that is, choose N minimal given φ), and consider P (a2, . . . , aN+1) =
φ(a2, a3, . . . , aN+1) + φ(a2, a3, . . . , aN+1 + 1). By (3.4),

P (a1 + a2, a2 + a3, . . . , aN + aN+1) = P (a2, . . . , aN+1) (3.5)

for all a1, . . . , aN+1 in G. Applying the rule (3.5) repeatedly, we have

P (a1 + a2, a2 + a3, . . . , aN + aN+1) = P (a0 + a1 + a2, a1 + a3, . . . , aN−1 + aN+1)

= P (a−1 + a0 + a1 + a2, a0 + a2 + a3, . . . ,

aN−2 + aN−1 + aN + aN+1)

= . . . .

After N steps, we can choose the values of the introduced variables a−N , . . . , a1 to
deduce that P (a2, . . . , aN+1) = P (0, . . . , 0). It follows that φ(a2, a3, . . . , aN+1) +
φ(a2, a3, . . . , aN+1 + 1) is a constant; by minimality of N we deduce that

φ(a2, a3, . . . , aN+1 + 1) = φ(a2, a3, . . . , aN+1) + 1. (3.6)

The same argument may be applied to each variable in turn, the only difference
being that we may not assume that φ depends on the other variables until we
reach the first.

We have proved the following lemma.
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Lemma 3.1. If φ is a surjective sliding block code of the form (3.3) defining an
element of End(Σ) then

φ(a1, . . . , aN ) =
∑
j∈J

aj (3.7)

where {1, N} ⊂ J ⊂ {1, . . . , N}.

Lemma 3.1 also follows from Observation 4.1 in [KS], which shows that homeo-
morphisms commuting with the shift from any Markov subgroup of {0, 1}Z2

onto
Σ must preserve the group structures.

It follows that the endomorphisms of Σ are homomorphisms of the group struc-
ture of Σ. The dual of Σ is the module F2[x±1, y±1]/〈1+x+y〉 ∼= F2[x±1, (1+x)±1].
If θ is given by the block map φ = φJ then θ̂ is, up to multiplication by powers of
x and (1 + x), given by multiplication by hJ(x) =

∑
j∈J x

j .
We now turn to the problem of identifying the automorphisms of Σ. The endo-

morphism defined by the block map φ = φJ according to (3.7) will be invertible
if ∑

j∈J
aj+k = 0 for all k ∈ Z (3.8)

implies that some power of σ(0,1) applied to a gives the constant string

(. . . , 0, 0, 0, . . . ).

Theorem 3.2. The endomorphisms of Σ modulo the shift are identified with a
quotient of the semigroup Z[x] under multiplication; the automorphisms of Σ mod-
ulo the shift correspond to (the image of) polynomials of the form (1 + x)n. It
follows that Aut(Σ) ∼= {σn | n ∈ Z2} ∼= Z

2 is trivial.

Proof. The first assertion is contained in the remarks above. Let h be the poly-
nomial corresponding to the endomorphism; without loss of generality we may
assume that h has constant term 1.

I am grateful to Klaus Schmidt for showing me the following argument. Write
mh(g) = hg for multiplication by h on the module F2[x±1, y±1]/〈1 + x+ y〉. It is
clear that mh is injective if and only if h /∈ 〈1 + x+ y〉, so assume that. We claim
first that mh is bijective if and only if

V (〈h〉) ∩ V (〈1 + x+ y〉) = ∅, (3.9)

where the varieties are the sets of common zeros over k∗, where k is an algebraic
closure of F2. (We cannot include 0 as a permitted value for x or y because they
are invertible elements of the ring of Laurent polynomials).

To prove the claim, notice that (3.9) is equivalent by the Nullstellensatz to
having polynomials a and b with 1 = ah+b(1+x+y). It follows that (3.9) implies
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that mh is bijective; conversely, if mh is bijective then there is a polynomial a for
which ha− 1 ∈ 〈1 + x+ y〉.

We may therefore assume that if mh is bijective, then (3.9) holds. We claim
that this means that h(x, 1 + x) can only vanish on the point 1. If h(a, 1 + a) = 0
for some a 6= 1, then (3.9) is contradicted. It follows that h(x, 1+x) must be some
power of (1 + x).

That is, if h corresponds to an automorphism, then h(x, 1 +x) = (1 +x)n = yn

in the module, so the only automorphisms are the shifts themselves. �

Corollary 3.3. Any automorphism of Σ has entropy an integer multiple of log 2.

Remarks. (1) The set of points with period 3 under both σ(0,1) and σ(1,0) has
exactly four elements: it is clear that there is no automorphism of Σ extending
some permutations of these four points. This can also occur for Z–subshifts of
finite type (see [KRW]), though it is highly non–trivial to see there.

(2) The automorphism group is abelian in contrast to the case d = 1 (see [R1],[R2]).

4. Questions

We close with some questions about the entropy behaviour of automorphisms
of topologically mixing subshifts of finite type. Without the assumption of topo-
logical mixing, there are degenerate examples of the following form: let (Σ, σ) be
a Z–subshift of finite type, and define a Zd × Z–subshift of finite type (Σ∗, σ∗) by
Σ∗ = Σ, σ∗(0,1) = σ, and σ∗(n,0) = id. Then Aut(Σ∗) = Aut(Σ) so this Zd × Z–
subshift of finite type inherits the automorphism group of a Z–subshift of finite
type.
(1) Which topologically mixing Z2–subshift of finite type Σ have trivial automor-
phism group Aut(Σ) ∼= Z

2? Subshifts of finite type on different groups may have
trivial automorphism group (see [W2]).
(2) Is there a strong specification Z2–subshift of finite type with an automorphism
of finite positive entropy? (It is clear that without some specification property
stronger than mixing this has a trivial answer: the direct product of a full shift
with one of the topologically mixing zero entropy examples above has positive
entropy and has an automorphism of finite positive entropy.) See [Sh2] for some
interesting results in this direction. A very special case has been solved: in [W3]
it is shown that an ergodic group automorphism commuting with some Zd–action
by automorphisms with completely positive entropy must have infinite entropy if
d > 1. This shows, for instance, that a cellular automaton on the two–dimensional
full shift {0, 1}Z2

cannot have finite positive entropy if its block–map representation
is permutive on every coordinate in its support.
(3) Given ε > 0, is there a topologically mixing Z2–subshift of finite type with an
automorphism of entropy less than ε? Less than ε × h0, where h0 is the smaller
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of the entropies of the generators?
(4) If so, is there a single topologically mixing Z2–subshift of finite type Σ with
the property that Aut(Σ) has elements with arbitrarily small positive entropy?
(5) Given a finite group F , is there a zero entropy topologically mixing Zd–subshift
of finite type whose automorphism group contains an isomorphic copy of F?
(6) If so, is there a single zero entropy topologically mixing Zd–subshift of finite
type whose automorphism group contains any finite group?
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