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Summary 

We compute the joint entropy of d commuting automorphisms of a compact 
metrizable group. Let R d = Z [ u (  1 . . . . .  uf  1] be the ring of Laurent polynomials 
in d commuting variables, and M be an Ra-module. Then the dual group X M of M 
is compact, and multiplication on M by each of the d variables corresponds to an 
action a M of 7/d by automorphisms of Xu .  Every action of 7/d by automorphisms of 
a compact abelian group arises this way. I f f e  R d, our main formula shows that the 
topological entropy of ~R,/</> is given by 

1 1 
h(~Rd(y)) - - - -  l ogM(f )  = ~ . . .  ~ log l f (e  2~I'', . . . .  e2~i'd)ldt 1 . . .  dtd , 

0 0 

where M(f) is the Mahler measure off. This reduces to the classical result for toral 
automorphisms via Jensen's formula. While the entropy of a single automorphism 
of a compact group is always the logarithm of an algebraic integer, this no longer 
seems to hold for joint entropy of commuting automorphisms since values such as 
7((3)/4n 2 occur. If p is a non-principal prime ideal, we show h(CtR,ip ) = 0. Using an 
analogue of the Yuzvinskii-Thomas addition formula, we compute h(~u) for 
arbitrary Rd-modules M, and then the joint entropy for an action of 7/a on a (not 
necessarily abelian) compact group. 

Using a result of Boyd, we characterize those ~t M which have completely 
positive entropy in terms of the prime ideals associated to M, and show this 
condition implies that ct M is mixing of all orders. We also establish an analogue of 
Berg's theorem, proving that if ct M has finite entropy then Haar  measure is the 
unique measure of maximal entropy if and only if a M has completely positive 
entropy. Finally, we show that for expansive actions the growth rate of the number 
of periodic points equals the topological entropy. 

* The authors gratefully acknowledge support from NSF Grant DMS-8706284, the IBM 
Thomas J. Watson Research Center, the Milliman Endowment, and SERC Award B85318868 
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w Introduction 

The main purpose of this paper is to compute the joint topological entropy of d 
commuting automorphisms of a compact metrizable group. For a single auto- 
morphism this computation was carried out in a series of papers in the 1960's (cf. 
[LW, w culminating in Yuzvinskii's general result [-Yz2]. 

Recently, Kitchens and Schmidt [KS1] have established a general framework 
for the study of commuting automorphisms of compact groups. To describe this, 
suppose :t is an action of Z n by automorphisms of a compact abelian group X. Let 
R a = 7~[-Ud -+1 . . . . .  U~ 1 ] be the ring of Laurent polynomials in d commuting 
variables. In w we show how ct induces an Rd-module structure on the dual group 
M of X. Conversely, if M is an Rd-module, then there is a natural induced Zn-action 
eM on its compact dual XM. The interplay of the dynamical properties of c( M on the 
one hand, and the algebraic properties of M on the other, gives this point of view its 
particular interest. 

S u p p o s e f = f ( u l  . . . . .  ud)~R u, and let ~ = ( f )  be the principal ideal gener- 
ated by f Our main formula computes the topological entropy of the Zn-action 
corresponding to the Rn-module Rn/L We show in Theorem 3.1 that 

1 1 
h(~../~) = log M(f)  = S . . .  ~ logtf(e 2~'",  . . . .  e2"i'")latl . . .  a t . .  (1-1) 

0 0 

Here M(f) is the Mahler measure o f f  introduced by Mahler [Mhl] ,  [Mh2] in 
connection with inequalities for coefficients of polynomials in several variables. 
Smyth [Sm2] has computed the integral in (1-1) for some polynomials. For  
example, 

h(~R2/(1 + u + v ) )  - -  4n , = l ~ ~- 0.3230659472, 

where ( 3 )  is the Legendre symbol, and 

7((3) ..~ 0.2131391994 h ( ~  4~z2 = 

where ( is the Riemann zeta function. 
The formula (1-1) reduces via Jensen's formula to Yuzvinskii's result when 

d = l .  
We devote w to showing (1-1). The proof that h(~R,/~) >= log M(f)  uses a lower 

estimate for entropy involving 1-dimensional integrals that Lawton [Lw] has 
shown converge to log M(f). For  the opposite inequality another kind of estimate 
is used, yielding an upper bound for h(~R,/~) that is a Riemann sum approximation 
to the integral in (1-1). Since the integrand may not be continuous, a proof that 
these Riemann sums converge to the integral is required. This is supplied in Lemma 
3.5, where we show using perturbation arguments that the limit defining the Bowen 
entropy for a linear map is uniform on compact sets of linear maps. 

For a non-principal prime ideal p in Rd, we prove in Theorem 4.2 that 
h(eR,/p) = 0. In Appendix B we supply a proof of the "addition formula," which 
shows that if N is a submodule of M, then h(:(M) = h(:tN) + h(~M/N). If M is a 
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noetherian Rd-module, then by Lemma 4.3 there are submodules 

0 = M  0 c M  I C  . . . c M , _ l C M r = M  (1-2) 

with Mj/Mj_ 1 ~ Rd/pj, where p~ is a prime ideal. By the addition formula we then 
have 

h(~M) = ~, h(~R~/p,), j=l 

where each summand has been computed. We continue w with the calculation in 
Theorem 4.5 of h(ct) for a Z<action ~ on a (not necessarily abelian) compact group. 
Whether the set of values h(c0 for such actions is countable, or all of [0, ~ ] ,  is 
shown in Theorem 4.6 to be equivalent to a problem of Lehmer about algebraic 
integers that has been open for fifty years. 

A polynomial in Ra is called generalized cyclotomic if it can be written in the 
form c/'(u] 1 u~ 2 . . .  u,]"), where the n~ ~ Z and 4~(u) is a cyclotomic polynomial in one 
variable. A theorem of Boyd [Byl]  implies that h(~R,/O = 0 if and only i f f  is a 
monomial times a product of generalized cyclotomic polynomials. This and other 
examples and remarks are collected in w 

Our characterization of zero entropy is used in Theorem 6.5 to obtain a 
complete description of the Pinsker a-subalgebra for aM. In particular, c~ has 
completely positive entropy if and only if every prime ideal associated to M is 
principal but not generated by a generalized cyclotomic polynomial. In this case, a 
result of Kaminski [Km] shows that c~ M is mixing of all orders, providing a partial 
answer to a question raised by one of us [Scl, Problem 3.9]. We next give a more 
careful analysis of the properties of~ M that can be deduced from the prime ideals p~ 
occurring in a given filtration (1-2) of M. In particular, we show in Propostion 6.10 
that the minimal prime ideals associated to M must occur, and with the same 
multiplicity, in every filtration. Consequently, we obtain in Theorem 6.13 a 
computable sufficient condition for c~ M to have completely positive entropy. Our 
analysis also yields an analogue of Berg's theorem on the unique ergodicity of 
group automorphisms [Bg]. We prove in Theorem 6.14 that if h(~M) < oc, then 
Haar  measure on XM is the unique measure of maximal entropy if and only if 7~ 
has completely positive entropy. 

In certain situations the growth rate of the number of periodic points gives the 
topological entropy. Although examples show that this fails to hold in general, we 
show in Theorem 7.1 that it holds for all expansive actions. The proof uses the 
characterization of expansiveness of c~ M in terms of the varieties of the prime ideals 
associated to M given in [Sc2, Thm. 3.9]. 

We are grateful to David Boyd and Robert Warfield for many useful conversations. 

w Notations and conventions 

We describe here some of the notations and machinery used throughout this paper. 
The symbols Z, ~, and C denote the integers, reals, and complex numbers, 

respectively. Let q]- denote the additive circle group 1~/7/, and ~ = {z ~ C: Iz] = 1 } be 
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its multiplicative counterpart .  For  clarity, d-tuples will be denoted by boldface 
letters. If u = (ul ,  �9 �9 �9  Ud) and r = (rl,  �9 �9 �9 ra), we put u r = ul . . . .  [.12 . . .  u] ~. For  a 
scalar u, let u r denote (u r~, . . . .  u'"). 

d A rectangle in Z a is a set of the form Q = 1-It= 1 {bt . . . . .  bj + lj - 1}. Its girth is 
defined to be g(Q) = mini  <t<a lj. 

All groups that  we consider will be metrizable. A 7/a-action ~ on a group X is a 
h o m o m o r p h i s m  ~ of Z a to be the group of cont inuous (algebraic) au tomorph i sms  
of X. The image of n e Z  a under cc will be denoted by ~". If ~ is a Za-action and A: 
Z a ~ Z d is a homomorph i sm,  define the action c~ ~ by (~a), = c~A,. 

Let c~ be a Za-action on a compac t  abelian group X, and let M be the discrete 
dual group of X. Since X is metr izable and compact ,  it follows that  M is countable  
and discrete. If ej denotes the j th  s tandard  basis vector of Z a, then the auto- 
morphisms  ~e, correspond under duality to commut ing  au tomorph i sms  fit of M. If 
Rd denotes the ring Z [ u (  1 . . . . .  uf  1], then M becomes an Ra-module under the 
action u t. m = fit(m) for m ~ M. Conversely,  if M is a countable  Ra-module, then 
multiplication by each of the uj gives d commut ing  au tomorph i sms  of M. These 
t ransform to a Za-action ~U on the compac t  metrizable dual g roup  XM of M. 

Fo r  a 7/a-action ce on a compac t  group X, let h(c0 denote its topological  entropy. 
Since we have not found a satisfactory t rea tment  in the literature, we outline in 
Appendix A the steps needed to extend the theory of ent ropy to d > 1. This 
includes showing that  five ways to obtain h(~) agree. In particular,  h(c0 is the 
en t ropy  of ~ as a measure-preserving action of 7/~ on the Lebesgue space (X, ~x), 
where #x is normalized Haa r  measure.  The  general theory of measure-preserving 
Zd-actions has been developed by Conze [C],  to which we refer the reader for 
details and notation.  We shall use Rohlin 's  theory of measurable  parti t ions of a 
Lebesgue space. An excellent account  of this theory is contained in Parry 's  
book  [P].  

I f f e  Rd, then the Mahler  measure of f is defined as 

M ( f ) :  exp [ ~  log If(s)lds t , 

where ds is H a a r  measure  on ~d. This quant i ty  can be regarded as the geometric  
mean o f f  over the torus 5a. I f f  :t: 0, then 1 < M(f )  < oo. It  will be convenient  here 
to make  the convent ion that  M(0) = oo. 

w Entropy and Mahler measure 

L e t f ~ R d ,  and [ = ( f >  denote the principal ideal generated b y f  Then Ra/[  is an 
Rd-module. In this section we compute  the en t ropy  of the induced Zd-action ~R~/f. 
Recall our  convent ion that  M(0) = ~ .  

Theorem 3.1. I f f ~ R  d and [ = ( f ~ ,  then 

h ( ~ / O  = log M ( f ) ,  (3-1) 

where M(f )  is the Mahler  measure o f f  
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Proof  First assume that  d = 1. We will show that  (3-1) t ransforms via Jensen's 
formula to the classical ent ropy formula  for toral  and solenoidal automorphisms.  
We may  assume without  loss tha t f (u )  = cmu m + . . .  + q u  + c o, where c j ~ Z  and 
CmCo 4: O. Kitchens and Schmidt [KS1]  showed that  ~R,/f is i somorphic  to the 
au tomorph i sm of an m-dimensional solenoid determined by the compan ion  matr ix  
o f f  The ent ropy of such au tomorph isms  has been computed  by Yuzvinskii [Yz2] 
(see also [LW]  for a short  p roof  from a different viewpoint). Le t f (u)  factor over C 
as cm I]~"= t(u - 2j). Define log+x = max{0, logx} for x > 0. Yuzvinskii 's result is 
that  

h(~R,/O ---- log Icml + ~ log + 12jl �9 (3-2) 
j = l  

Jensen's formula [A, Thm. 5.3.1] implies 

l o g  + 12[ = j" log le z " "  - 21dt. (3-3) 

An elementary proof  of this is given in [Yn].  Hence 

" 2) dt h(~Rl/O = log ICml + ~ log j ~ l  (e2~'' -- 
l 

= j" log If(eZ"")ldt = log M ( f ) .  
l 

We now turn to the case d >__ 2. We will first obtain the lower bound 
h(c%/0 > log M(f)  by use of the separated set definition of en t ropy (cf. Appendix 
A), approx imat ion  of XR,/f from inside by 1-dimensional solenoids, a 1-dimen- 
sional approx imat ion  to M(f)  due to Boyd [By l ]  and Lawton  [Lw],  and the d = 1 
case already proved. We then establish the upper  bound h(~R,/~) < log M ( f )  by use 
of the volume definition of ent ropy and a Riemann sum approx imat ion  to the 
integral defining M(f).  

Let us first introduce an explicit metric p on Tz ' .  For  s, t ~ T, put  Is - tl = 
dist(s + 7/, t + 7/). For  x, y ~ T Z '  put  

p ( x , y ) =  ~ 2 - 1 i l l x ( j ) - y ( j ) ] ,  
j EZ ~ 

where IJl = I(Jl . . . . .  Ja)l = max{IJ l l  . . . . .  IJal}. The  following l emma relates 
coordinatewise distances to this metric. 

L e m m a  3.2. l f  e > 0, there is a 6 = 6d(~) and an integer b = ba(e) > 0 such that if  
p(x, y) > 6, then there is a j 6 Z  with IJl < b and Ix(j)  - y(j)[  > e. 

Proof  Let ~ J  ~z "2 -IJl = K < ~ .  Choose  bd(e) so that  ~ljl_>_ b,t,:) 2 -IJl < e, and put  
6a(g) = (K + 1)e. If Ix(j) - Y(j)I < e for all IJl < b~(e), then 

p(x,y)<e+ ~ 2 - 1 J l e < ( K +  1)e=aa(e).  [] 
lJl < bd(~) 
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We will use this result as follows. If e > 0, then L e m m a  3.2 shows that  there exists 
b > 0 and ~ > 0 such that, for every rectangle Q with sides of length lj, and for every 
(Q, 6)-separated set F ~ T Z" (cf. Appendix A), there exists a smaller rectangle Q' in 
Q with sides of length Ij - 2b such that  F is (Q', e)-separated in the max imum 
distance over the coordinates of Q'. Thus, in comput ing  hsep(C~), we can use the 
m a x i m u m  distance. 

Suppose t h a t f r  R d has the f o r m f ( u )  = ~ cjuJ. For  r r Z d define a polynomial  of  
one v a r i a b l e f ~  R 1 by 

f~(u) = f ( u  ~) : f ( b / r l ,  . . . .  bt TM) :- ~ cjHr'J. (3-4) 
j ~ Z  d 

The values off~ on 51 form a 1-dimensional slice through the values of f on ~d. As 
these slices become more  uniformly distributed, one would expect M( f )  to approx-  
imate M(f).  Boyd [By l ]  gave a precise formulat ion of this idea, and verified it for 
some special cases. Lawton  [Lw]  supplied an ingenious general p roof  for it. Put  

q(r) = min {[ml: m # O , m ' r  = O} . (3-5) 

Proposition 3.3 [Lawton] .  For every f s R d we have 

lim M(L ) = M ( f ) .  
q(r) ~. 

To explain the reason for this, let ~ be H a a r  measure  on the 1-dimensional 
subgroup  of Td obtained by projecting the line in Ed through r. Then 

.x.l  1 
N o w  /~r converges weakly to H a a r  measure on Td as q(r)--* oo. Hence if 
f ( e  2,m) # 0 for t r  T d, it is immediate  that  M(f~) --* M(f) .  Possible zeros o f f ( e  2~it) 
introduce logari thmic singularities in the integrand. Lawton  handles this p rob lem 
by obtaining an estimate on the measure  of the set where If(e2~it)[ is small that  
depends only on the number  of non-zero coefficients, and by employing the fact 
that  f~ has the same number  of non-zero coefficients if q(r) is sufficiently large. 

We call r r yd primitive if the greatest  c o m m o n  divisor of its entries is 1. 
Fix a primitive r C Z  d, and define ~//r; ~-~ --* ~-Zd by (@rX)(j) = s  for ~ T  ~. 

Since r is primitive, it follows that  ~b r is injective. To  simplify notat ion,  let (X, c~) 
= (XR,/f, ~gd/~) and ( - ~  ~r) = (XR,/f,, ~R,/f),), where ~ is the ideal generated byf~ in 

R1. We claim that  ~O,(X,) ~ X. For  if ~ r  r and r . n  = n, then 

y~ q(q,,:~) (n + j) = 2 cr~(" + r.j)  = 0 
j z Z  d j e Z  d 

by (3-4). 
For  n >= 1 let r ,  =(1,  n ,n  2 . . . . .  rid-l). Note  that  r .  is primitive, and that  

q ( r . )  = n - ,  ~ with n (cf. (3-5) and [Byl ,  p. 118]). Let 

Q,,,, = {0, 1 . . . . .  n - l }  a - '  x {0, 1 . . . . .  m - 1 } .  
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Then the map  j ~--* r, .j gives a bijection o f  Q,,~ to {0, 1 . . . . .  I Q . , , . [ -  1}. Let b 1 (5) 
be determined by L e m m a  3.2, and set Q.,~ = {bl(e) . . . . .  [Q,,,.[ - 1 - bl(e)}. Fix 
0 > 0. Let 6~(e) be determined by L e m m a  3.2, so that  6~(e) ~ 0 as e ~ 0. By the 
definition of h~ep(~r.) (cf. Appendix A), there exists an e > 0 such that, for all 
sufficiently large n, there exists an mo(~, 0, n) > n such that  if m > m o there exists 
a ((~ . . . .  61(~))-separated set f ~ )(~ such that  

If[  > exp [IQ,,,,[(h~p(~r.) - 0)]  . 

Suppose that ~ and ~ are distinct points in 15, and let x = qJ~.(~), y = ~,r.(37). Then 

there is an i~ Q,,,, with p(~, if, ~ ,y)  -~ - > 6~(e), where ~"r. denotes the ith power  of ~,.. 

By L e m m a  3.2, there exists a j  with 0 < j < I Q,,ml such that  Ix(j) - )7(j)l > e,. There 
is a unique k ~ Q,,,. with r , .  k = j ,  so Ix(k) - y(k)l > e, and p(akx, ~ky) > 5. Hence 
@,,(f) = X is a (Q . . . .  e)-separated set for c~ with the same cardinality as F. Thus, for 
m > mo(e, n, 0), 

. . . . .  1 
- - - l o g s Q  (5, ~) > ........ tnt~r ) - 0 ) .  
I ( L . , , I  ~  = I Q , . , , I  " 

Now the girth 9 ( O , , m ) ~  oe 

h(~r. ) = log M(f,.) --* log M ( f )  
taking the lim sup as n tends 

as n ~  ~ ,  and I(~,,,~l/IQ.,ml ~ 1 as n--,  oo. Also, 
by the first part  of the p roof  and Proposi t ion 3.3. By 
to infinity we see that 

s(e, ~) => log M ( f )  - 0 

for every 0 > 0. Hence h(~) > log M(f ) ,  complet ing the proof  of the lower bound. 
We now turn to the proof  of the upper  bound h (~ )<  log M(f) .  We first 

t ransform f into a form more  convenient  for our analysis. If f ( u ) =  ~ cjuJ and 
A ~ GL(d,  7/), let fA(u) = ~ cjuAj. Then aR,/<fA) is conjugate to ~ , / f ,  where as in w 
the action ~a is defined by (~A).= ~A.. NOW h(o~ A) = h (~) ,  and an easy calculation 
using the fact that  A preserves H a a r  measure on T n shows that  M ( f  a) = M(f) .  
Fur thermore ,  both  the action and its en t ropy are unaffected by m u l t i p l y i n g f b y  a 
monomial .  

Thus  by applying an appropr ia te  A ~ GL(d,  2~) and multiplying by a monomial ,  
we can arrange that  f has the form 

f ( u l  . . . .  , ud) = qu ~ + f o - l ( u l  . . . .  , Ud-1)U~ -1  + . . .  + fo(U, . . . . .  Ud-1) , 
(3-6) 

where q 4= 0 is integral, f k ~ Z [ U l , . . . ,  u a - t ] ,  and fo  4= 0. I f f i s  in this form and 
f =  y '  cjui, then there is a p > 0 such that 

{ j ~ Z d : c j 4 : 0 }  c ( { 0  . . . . .  p - -  1} d-1 X { 0 , . . . , D - -  1})w{Ded} .  (3-7). 

A major  difficulty with higher dimensional  Markov  shifts is the so-called 
extension problem, namely whether a collection xj of  values for j in a subset of ~d 
can be extended to an allowed point  in the M a r k o v  shift. In full generality this 
p rob lem is undecidable, and even in this algebraic setting it is not  trivial (for 
a discussion of this, see [KS2]).  One  use of the t ransformat ion o f f  to the form 
(3-6) is that a special case of  the extension problem can be readily solved. 
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Lemma 3.4. Suppose that f e Rd has the form (3-6), and let S denote 7/d- 1 • {0 . . . . .  
D -  1}. Then the homomorphism XR,/y ~ ~s given by coordinate restriction is 
surjective. 

Proof If x(j)~ ql- is arbitrary for j~S ,  we must  show that x can be extended to a 
point of Xg,/f. If fi = (Ul . . . . .  Ud- 1), write fk(U) = ~i~Z" ' ck(i)fi I" By (3-6), any 
extension of x to Z ~- 1 x {D} must satisfy, for i~ ~d-  1, 

D - 1  

qx(i,D) = - ~ ~ ck(m)x(i + m, k). (3-8) 
k = 0  m e Z a  1 

Hence such an extension is possible, and for every i ~ 2~ n - 1 there are q choices for 
x(i, D). Repeating this procedure extends x to 7/a- 1 x {0, 1 . . . .  }. To extend x to 
2rd- 1 • { _ 1 } we must  find values x(i, - 1), i ~ Z n-  1, so that 

D - 1  

co(m)x(i + m, - 1) = - ~, ~ ck(m)x(i + m, k - 1) - qx(i, D - 1). 
m 6 71d-1 k = l  m ~ Z a - I  

(3-9) 

Since R~ is an integral domain andfo + 0, the homomorph i sm /~d- 1 ~ /~d- 1 dual 
to multiplication by fo on R a is surjective, so the extension exists. Repeated 
application of this argument  extends x to a point in XR,/f. [] 

Let Y, denote the set of points in XR,/r which have period n in each of the first 
d -  1 coordinates. Then Y, is a closed ~gjv invar iant  subgroup. The following 
remarks will show that there is a constant  a > 0 independent of  n such that, for 
every m > 0, the projection of  II, onto the coordinates 

{0 . . . . .  n - - a m - -  1} a-1 x {0 . . . . .  m - -  1} 

coincides with the projection of  XR,/f onto these coordinates. This justifies our  
replacement of  XR,/f by Y., and OtR./f by an au tomorphism A of the finite- 
dimensional torus Y. induced by the shift in the last coordinate. 

Let n be a positive integer, which should be considered very large compared 
to p. Put  Q/n=(Z/nZ) d-l,  Q/.,o=Q/. x {0 . . . . .  D - 1 } ,  and put  ~.  = ~Q,", 
T., D = TQ, .... If  we identify Q/.,o with 

{ 0  . . . . .  n - 1 }  • { 0  . . . . .  O - 

then Lemma 3.4 shows that the homomorph i sm r XR. / f~T. ,  D given by 
~0(x) = XlQr is surjective. Thus if v = V.,D is normalized Haar  measure on T.,D, 
then ~o*(#) = v. 

We shall assume from now on t h a t f ~  R d has the form (3-6), and that p is given 
by (3-7). To simplify notation, we shall also assume that q = 1 in (3-6). The changes 
needed for [ql > 1 are indicated at the end of the proof. 

There is a homomorph i sm A: 2-., D ~ T.,D given by 

~ y ( i , k +  1) i f 0 < k ~ < D - 2 ,  

(Ay)(i,k)= ~ ~ 1  
- ~ Q ( m ) y ( i + m , j )  i f k = D -  1 . 

L j = 0  m e { 0  . . . . .  p -  1} ~-1 
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The relationship between A and ~ is that  the orbit of a point  y E -O-., D under A and 
extension o fy  to XR,/f given by Lemma 3.4 must agree on the interior of a rectangle 
in the following sense. Let 

(~.,,. = {0 . . . . .  n - 1 - pro} a-1 x {0 . . . . .  m - I } ,  

and suppose (i, k)~O_..,,.. I f y ~ 7 . , o ,  and x is any point in XR,/f with tp(x) = y, then 
x(i, k) = (Aky) (i mod  n, 0). This observation is the basis of  our  proof  for the upper 
bound. 

Now fix an ez > 0. Using the proof  of  Lemma 3.2, let ~ = (2 a + 1)-le~,  and 
b = ba(~ ). If  

Q., , .= {b . . . . .  n -  1 - p r o - b }  d - '  x {b . . . . .  m -  l - b } ,  
then 

{x~XR./ f:  Ix(j)l < e, jE(~.,m} c ~ ~ - J B ( ~ ; 1 ) =  D~,.~(~,~I) . 
J EQn.m 

For  y~-ll-.,D, put Ilylloo =max{ ly ( j ) [ :  JeQ/.,D}. By our  observation from the 
previous paragraph,  we have 

go-l{yETn,b: IlAJyll~ < e, o < j < m} c {XEXRn/ f :  [X(j)I < ~,J~O_~n,rn} " 

1 
Thus to obtain an upper bound for - I(~,,,,~ log/t(D~..,(~, ~)) ,  it suffices to obtain 

one for 

1 
I~g, I "~ ,,,' l ~ 1 7 6  IIAJyII~ < e' 0 ~ j  < m} . (3-10) 

Fix a sequence re(n) ~ ~ so that m(n)/log n ---, oo and m(n)/n ~ 0 as n ~ oo. 
Then g(O-..,m~.~)~ 00, and IO_.,r.~.jl/lQI/.,,.~.)[ ~ 1, so in (3-10) we can replace (~.,., 
with Q/.,mln). 

We shall estimate the measure in (3-10) as follows. I f C .  = CQ,., then A induces a 
linear map  on C0. We will decompose C0 into an or thogonal  direct sum of D- 
dimensional A-invariant subspaces indexed by Q/.. By adding up the volume 
decrease from the intersection in (3-10) over these subspaces we obtain a Riemann 
sum approximat ion to log M(f), from which the upper bound will follow. 

Use the same symbol A for the linear map A" C 0 ~  C0 induced by the 
homomorph i sm A of q]-.,o. Let II ' II | be the sup norm on C ~ and let v~ be Haar  
measure on CO normalized so the unit cube has measure 1. Then 

v{y~-~. ,o:  ltA~yll~ < e, 0 < j  < m} = ( v ~ { z e C ~  JlAJzl[~ < e, 0 < j  < m}) 1/2 , 
(3-11) 

where the square root  is necessary since passing to complex vector spaces squares 
volumes. 

For  l < j  < d let Pi act on C,  by (Pjz)( i )= z(i + e jmodn) ,  and put 
P = (P1 . . . . .  Pa- 1). Then the matrix of  A with respect to the s tandard basis on 
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C~ is 

0 I 0 ... 0 l 0 0 I .-. 0 

o o b ..: ) 
- A ( P )  - ~ ( P )  - A ( P )  . . . .  ~ - I ( P )  

Fix a primitive nth root  of unity e) = e 2'~i/". For  k E Q/, define a vector v k e C, by 

vk(j) = mj.k/,,/]Q/,} forjeQ/, .  The set {Vk: keQ/,}  forms an or thonormal  basis for 
C,. Also, Pj(Vk) = ok''vk, SO the Vk are simultaneous eigenvectors for the Pj. 

Let W k = (CVk) D, equipped with the euclidean metric. Then C, ~ is the ortho- 
gonal direct sum of the Wk. Furthermore,  each Wk is an A-invariant D-dimensional 
complex subspace of CO, and the matrix of A with respect to the standard basis on 
W k is 

I 0 1 0 ..- 0 
0 0 1 ... 0 

A k = A [ w  k = .. , 

0 0 0 ... 1 
_fo(~k) _/,(ink) --L(o)k) . . . .  fD_ ,(~ok) 

where ~ok = (o)~,, . . . .  ink,_,) for k e Q/,. 
For  k e Q/, let v k be Haar  measure on Wk, normalized so the unit cube has 

measure 1. Since the Vk are or thonormal ,  the normalizations agree so that v c is the 
product  of the Vk. It is here that or thogonal i ty  of the Wk plays an essential role. 

= in C .  Denote the unit ball in Wk by Bk, and put B ,  OkBk. Let B~(e) be the z-ball " D 
for [1' I1~. Since each coordinate of Vk has modulus n -(e-  1)/2, and there are n a- 
vectors, it follows that B~(e,) ~ en -(~ ~)B,. Hence 

m ( n ) -  1 

{z~C,D:IIAJz]I~ <e,O<=j<m(n)} = 0 A-JB~(e) 
j = o  

/ re(n) - 1 \ 
~ e ,  (a-l)  (~) { (") A d J B k ) ,  

k ~ Q . \  j = o  

so by (3-11), 

logv{y67,,,O: IIAJyll~ < e, 0 < j  < m(n)} 
IQ.,.(.,I 

, 1  ( 1 )) 
< l o g v c  en - ( d - t )  @ ("] A i J B k  
= IQn,m(n)t 2 k~Ol. j=o 

1 1 / . , ( . )  - 1 "~ loge -1 + (a-  i)DIQ~.llog, + - -  ~e m(.) l o g ~  ~0o ACJSk ; 2m(n)lQ/,I 21Q/,[ k ,. 

= o  - ~  + 2Z~.l k b..(.,(Ak) , 
/n 

(3-12) 
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where the summands  of the last line are defined by the summands  in the previous 
line. 

The last line of(3-12) contains a Riemann sum approximat ion.  In order to prove 
this converges to the integral defining log M(f),  we require the following uniformity 
result about  the ent ropy of linear maps  on C ~ In what  follows, if T~ C ~ • o, then 
h(T) denotes the Bowen entropy of T(cf. [Bw] or [W, Ch. 7, 8]). The unit cube in C ~) 
is the usual fundamental  domain  for the lattice (Z + iZ) ~ 

L e m m a  3.5. Let B be the unit ball in C D Jor the euclidean norm, and # be Haar 
measure on C D normalized so the unit cube has measure 1. For T e  C ~ • o put 

- 

D 

h(T) = ~ log + I;~kl 2 = 2 ~ loglzr(e2~i')ldt,  
k=l 

where T has eiyenvalues 2 k counted with multiplicity and characteristic polynomial 
ZT. Then 
(i) h(T) and each b,,(T) are continuous in T. 

(ii) bin(T) ~ h(T) uniformly on compact subsets o f  C D• D 

Proof  (i) Fix T ~ C  ~ •176 and m > 1. To  prove continuity of b,, at T, let e > 0. 
Choose 0 < 1 so (2Dim)logO -1 < e. There is a ne ighborhood q / o f  T s u c h  that, if 
T E ~ , t h e n  lIT j -7~JIJ  < 1 - 0 f o r 0 < j < m .  Hence 

( m ( ~ l )  m-1 m-1 
0 T - J B  = 0 T-J(OB) = ~ T - J B .  

\ j = 0  j=0 j=0 

Since contracting a set by a factor of 0 multiplies its measure  by 0 2~ we obtain, by 
taking - (l/m) log p( ') ,  that 

2D log 0-1 
e + b,,(T) > + bin(T) > b,.(T) ( T ~ k ' ) .  

m 

The assumpt ion  ][ T J -  7"Jll < l - 0  is symmetric  in T and T, implying 
e + b,,(7") > bin(T) for T ~ q / a s  well, complet ing the p roof  of continuity of  b,, at T. 

Now b , , ( T ) ~ h ( T )  for every T 6 C  ~215176  [W, Thm. 8.14], so continuity of h 
follows from that of the b,, and par t  (ii). 

(ii) To  prove that  b , , ( T ) ~  h(T) uniformly on compact  subsets of C D • D, it 
suffices to show that, for fixed T a n d  e > 0, there is an mo and a ne ighborhood ~ of 
T such that, for every T6~// and every m_> m o, we have I b m ( T ) -  h(T)l < e. 
We do this by applying spectral theory to T to show that the estimates from 
[W,  Thm. 8.14] can be made uniform. 

Let the eigenvalues of T without multiplicity be {~k: - - r  =< k < s}, indexed so 
[ffk] ----< 1 for -- r __% k -< 0 and I~kl > 1 for 1 _< k <_ s. Denote  the multiplicity Of~k by 
N k. Let 7 > 0, whose value will be determined by several conditions and estimates. 
The first condit ion is that  the circles C k a round ffk of radius 7 be disjoint. Put 

1 
Ek = ER(T) = ~ i  . (~ ( ~ I -  T ) - '  d ( .  (3-13) 
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According to [Kt, w E k is the projection onto the generalized eigenspace V k of 
T for (k along the sum of the other generalized eigenspaces. Hence dim e Vk = Nk. 
Let II �9 II be the euclidean norm on C ~ Adapt this norm on each Vk to the dynamics 
of T by putting, for y ~ Vk, 

ilYllk= ~ tlT"ylt 
. = o  (lr + ~')~ " 

The spectral radius formula shows that this series converges geometrically. If Tk 
denotes T]v k, then we also have that qlTkyllk < ({~k[ + 7)][Yllk for 0 4: y~  Vk. For 
subsets K and L ofC ~ we say K ~ L if the closure of K is contained in L. Let Bk be 
the unit ball in V k in the norm N'HR. Then 

(l~kl + Y)- I Bi ~ Tk- Z Bk . 

Put B,  = @~k= -rBk,  which is a bounded neighborhood of 0. Hence there is a 
0 >  1 so t h a t 0 - Z B ~ B , ~ 0 B .  

We now describe the effect on this situation of perturbing T slightly to T. Let 
1 

Ek(7") = ~ Sck((l -- T ) -  z d(. Since the inverse of a matrix is a rational function of 

its entries, Ek(T ) is analytic in T for 7" near T. In particular, there are exactly 
N k eigenvalues of T within Ci. Let IYk be the range of ER(T). Since Ek(T ) is close to 
Ek(T), by [Kt, w there exists Uk(T)~GL(D , C) such that 

Ek(T) = Uk(T) - I  Ek(T ) Ok(7"), 

UR(T) = I, and Uk(T ) is analytic for 7~ close to T. Carry over the N'Ilk norm on Vk 
to Vk using Uk(T). Let Bk denote the unit ball in V k under this norm, and put 

B ,  = @ k n k  . Let Tk = TVk" By continuity we have that (](kt "4- ),)-IB k ~ Tkl/~k 
a n d 0 - 1 B  ~ B ,  ~ OB. 

Let e > O. We will first show that bin(T) > h(T) - e for large enough m and 
close enough to T. Clearly 

. -1  ( + ) ( ) 
j=O k = -r k=l 

Hence, 

(~(71 ) 1 m - - 1  
_ _ l l o g #  T - J / ~ ,  => - l o g g ( / ~ , ) + - -  

m \ j = o  m m 
. ~  logldet  Tkl 2 , 
k=l 

(3-14) 

the determinant being squared since we are working over complex rather than real 
vector spaces. For k _-> 1 every eigenvalue of T~ lies inside Ck, and therefore 
has modulus > 1 provided that y is small enough. Since there are at most D 
other eigenvalues of I", each having modulus < 1 + y, we obtain that 

log lde t~ l  2 > h(] ?")-  2Dlog(1 + 30. 
k=l 

(3-15) 
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Since 0-1 B c /~ , ,  it follows that 
m - 1  m - 1  

0-1 N ~;~-JB : ~ T-JB,  . 
/ = o  / = o  

As in part (i) we get, by using (3-1,;) and (3-15), that 

1 / , , , -  1 ) 
2D lOg0m ~- br,,(T) >=- ml~ t ,0o T-'//~ 

> ( l - 1 )  h ( ~ ' ) - l  l ~  2D + Y)" 

Thus, for sufficiently small 7, it will follow that b,,(T) > h(27) - e for all sufficiently 
large m and all T sufficiently close to T. 

We com.plete the proof of the lemma b~ obtaining the opposite inequality 
b,,(T) < h(T) + e. By the above, (l~'kl + ~))-'] Bk ~ T~J Bk. Hence 

" - '  ( __~)(1 ) (k__O ~ ) ('] ~-J/~,= +7 ) - ( " - , /~  @ ( l~kl+D-("- ' /~  . 
i = 0  k 

Thus 

f - J ~ ,  _->/4~,1(1 +7) -2 / '~ -"  (t~kl +y)-2,,k(, .- ,  
\ j = O  k = l  

Since/~, = OB, an argument as above shows that 

1 /,. - 1 "~ 2D log 0 
- -ml~  t j0o f-J/~*,] > -  m -+b~(T).  

Applying - (l/m) log p(. ) to (3-16) and using (3-17) shows that 

bm(~ ) 2Dlog0 < m - 1 ~ 2Nklog(l(k I + ~) __ l log#(/~,)  
m m k=l m 

(3-16) 

(3-17) 

m - 1  
+ 2D log(1 + 7) 

m 

< ~ 2NklOg(l~k[ + Y ) - - l l og (O -1n) + 2Olog(1 + y). 
k = l  m 

Since T has exactly N k eigenvalues within y of (k, all of modulus > 1, and the 
remaining eigenvalues have modulus < 1 + y, the sum ~,= ,  2Nklog(l(kt + ~) is 
arbitrarily close to h(7 ~) provided y is small enough. Hence for ~small enough, we 
will have bin(T) < h(T) + e for all sufficiently large m and all T sufficiently close 
toT. [] 

For s e 5  d- '  let 

A(s) = 
I 0 1 0 ... i 1 o o ! : i  . 

o 6 6 ..: 
-- fo (s) -- fl (s) -- f2 (s) . . . .  f a -  t (s) .J 
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the companion marix of its characteristic polynomialf(s,  u). Then A k = A ((Ok) , and 
the sum in the last line of (3-12) is a Riemann sum approximating the integral. 

1 
[. h(A(eZ~it))dt = [. S loglf(eZ~it, e2~iS)ldsdt= logM(f)  . (3-18) 

yd ~ ~d ~ y 

To complete the proof of the theorem, let 6 > 0. Since { A ( e 2 z i t ) :  t ~  q]-d- 1} is 
compact in C ~ • o, Lemma 3.5 and (3-18) imply that, for sufficiently large n, 

1 1 bm(.)(Ak)- ~ bm(.)(A(e2"ik/n)) 
2[Q/.I k ~O~. 21Q/.I k ~o,~ 

1 
< ~ J ,  h(A(eZ~i,))dt + ~5 = log M(f) + c~. (3-19) 

Using (A-4) and (3-11), it follows that 

so-.,m,.,(ea,a) < lQ"'m(")l ( __ m ~ ) .  ) : o t ) + l o g M ( f ) + 6  . (3-20) 

Since m(n)/n --* 0 we have that IQ,,mr162 ~ 1, and since (logn)/m(n) --> O, for 
large enough n the right hand side of (3-20) is less than logM(f )  + 26. Now 
9(Q,,mr ~ oo as n ~ oo, and Proposition A.2 implies that s(4e t, e) __< log M(f)  
+ 26. By letting ex ~ 0 and then 6 ~ 0 we conclude that h(c 0 =< log M(f). This 

completes the proof of the upper bound. 
Finally, we indicate the modifications necessary for the case where [ql > 1. The 

estimate (3-19) for the linear map q-  1 A gives an upper bound of log M (q- z f )  + 6. 
The Iq] possible choices in (3-8) contribute an additional term of loglql to the 
volume decrease, just as in Y'uzvinskii's calculation of entropy for solenoids [Yz2]. 
Since l o g t v l ( q - l f ) =  l o g M ( f ) - l o g l q l ,  we again obtain an upper bound of 
log M(f)  for h(c 0. [] 

w Entropy for general Z ~ actions 

In this section we compute the entropy of an arbitrary Za-action ct on a compact 
metrizable group X. We first show in Theorem 4.2 that if p is a prime ideal in 
R a that is not principal, then h(and/p) = 0, while if p = ( f )  is principal, then 
h(c~R,/p ) = log M ( f )  by Theorem 3.1. If X is abelian, and (X, c~) has the descending 
chain condition, then X has dual group M that is a noetherian Re-module. We 
show in Lemma 4.3 that M contains a finite chain of submodules with successive 
quotients each isomorphic to Rd modulo a prime ideal, so h(a) can be computed 
using the addition formula and Theorem 4.2. A general abelian X is an inverse limit 
of groups with the descending chain condition, hence h(a) is the limit of entropies of 
actions whose value has already been computed. A general compact group is built 
from a totally disconnected part, a product of algebraically simple connected Lie 
groups, and an abelian part. In Theorem 4.5 we describe how these pieces fit 
together, show how to compute the entropy of each, and obtain h(a) as the sum of 
these entropies. 
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Which real numbers can arise as h(c0? By Theorem 3.1 all the numbers log M(f) 
fo r f~  R a occur, and our analysis will show that if (X, ~) has the descending chain 
condition, then h(~) has this form. For general actions the problem is equivalent to 
another posed by Lehmer over fifty years ago, and still not solved. We show in 
Theorem 4.6 that the set of entropies of Zd-actions is either the countable set of 
logarithms of the Mahler measure of elements in R d, or all of [0, oo ], depending on 
the answer to Lehmer's problem. This generalizes Theorem 9.3 in [Ln3], where it is 
also shown that 7z  either has no ergodic automorphisms of finite entropy, or has 
ergodic automorphisms of every finite positive entropy, again depending on the 
answer to Lehmer's problem (we have added the necessary "ergodic" assumption 
to this statement, which was inadvertently omitted from the last sentence in 
[Ln3, Thin. 9.3]). 

We begin with a lemma needed a handle non-principal prime ideals. 

Lemma 4.1. Suppose p # 0 is a non-principal prime ideal in R d. For every f #  0 in p 
there is a g # 0 in p with no factor in common with f 

Proof  Suppose 0 # f ~  p, and let f~ . . . . .  f~ be the distinct irreducible factors o f f  
Put pj = ( f j ) ,  which is prime since R a is a unique factorization domain. Suppose 
every 0 # g ~ p has a factor in common wi th f  Then p c t01 w . . .  w p,, so by [AM, 
Prop. 1.11], p c pj for some j. Since any principal prime ideal is minimal, this 
implies that p = p j, i.e. that p is principal. This contradiction proves the lemma. [] 

Recall our convention that M(0) = oo. 

Theorem 4.2. Suppose p is a prime ideal in Ra. Then 

logM(.f) / fp  = ( f ) ,  
h(~ = 0 !f p is not principal. 

(4-1) 

Proof. If p = ( . [ ) ,  the result follows from Theorem 3.1. 

Suppose that p is not principal. By Lemma 4.1, there are f, 9 4:0 in p with 
no common factor. Let ~ = ( f ) ,  g = ( g ) ,  a = f + g = ( , s  R = R  d. Let 
q~: R/j  ~ R/~ be multiplication by g. Since f and g have no common factor, q~ is 
injective. The image of ~o is 

g(R/f) = g/~g = g/[ n g g ([ + g)/[ = a/~. 

Hence we obtain the exact sequence 

0--* R/~ L R/[ ~ R/a ~ O . 

Since h(eu/O = log M(f) < co, the addition formula yields that h(eR/,) = 0. Now 
a c p, and the projection R/a-- .  R/p has dual the inclusion Xg/p c XR/, which 
respects the actions. Hence h(ag/p) = O. [] 

For an action on a compact abelian group obeying the descending chain 
condition, the above results are sufficient to compute entropy. 

Lemma 4.3. Suppose M is a noetherian Ra-module. Then there is a chain of  R a- 

modules 

O = M o c M 1 C  . . . c M,_  l c Mr = M 
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such that Mj /Mj_  1 ~- Ra/pj(1 <= J < r), where each pj is a prime ideal. Hence 

h(O~M) = ~ h(ctRd/p,), 
j=l 

where each summand is computed accordin 9 to (4-1). 

Proof The existence of the chain {Mj} is proved in [Lg, VI, Cor. 4.8]. Use the 
addition formula repeatedly to obtain the formula for h(~M). [] 

Note that (XM, aM) satisfies the descending chain condition since M is noether- 
ian, and our proof shows that h(~u) = logM(g), where g is the product of the 
generators of the principal prime ideals occurring in the pj (by convention, g = l if 
none of the pj is principal). 

Theorem 4.4. Suppose that M is an arbitrary countable Rd-module. Then there is an 
increasin 9 chain {M j} of noetherian submodules with union M. Thus h(o~m) = limj~ 
h(~Mj), where each h(~Mj) is computed by Lemma 4.3. 

Proof The existence of the Mj is routine. Since XM~ ~- XM/M~., and M J- ,~ { 1}, the 
partitions into cosets of MJ- converge to the partition into points, so 
h(~Mj) ~ (~). [] 

Theorem 4.5. Let ~ be a Za-action on a compact metrizable 9roup X. I f  X ~ is the 
connected component of the identity and Z is the center of X ~ then 

h(~) = h(~x/xo ) + h(~xo/z ) + h(~tz) . (4-2) 

The first summand is either the logarithm of an integer or oo, the second is 0 or oo, 
and the third is computed by Theorem 4.4. 

Proof First observe that X ~ and Z are both ct-invariant, so (4-2) follows from the 
addition formula. 

Put Y = X / X  ~ a totally disconnected compact metrizable group. There is a 
sequence Y, of compact open normal subgroups of Y that decrease to {1 }. For a 
closed normal subgroup H of Y, let ~(H) denote the measurable partition of Y into 
left cosets of H. Yuzvinskii [Yzl, w has shown that ~((~,~= 1 H,)  = ~/~= 1 ~(H,), 
and that if H c K, then Hu(~(H)I~(K)) = log [K/H]. 

Let V = {jezd: j  < 0}, where < is lexicographic order, and put Po = P u {0}. 
For  a measurable partition ~ put ~v = Vj~P~i~. By [C, Thm. 2.2], 

hu(a, ~) = Hu(~VoJ~p). Thus 

j ePo J 

= log N  JY /N , 
j eP / i e P o  

which is the logarithm of an integer or oo. Since h(~r) = lim,~oo hu(et, ~(Y,)), the 
same holds for h(~r). 

Next consider C = X~ which is connected. By [Yzl, w X~ is center- 
less, and is a direct product I-I~I LI of algebraically simple connected Lie groups. 
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Furthermore, if n~7/d and i~ l ,  then c~(Li) = Lj for s o m e j ~ l ,  and this defines an 
action of 7/d on I. Since entropy adds over direct products, we may assume as in the 
proof of the addition formula that 7/d acts transitively on I. Fix io~l ,  and let 
L = Z i o .  If there is an n~7/\{0} with ~ ( L )  = L, then ~- is a direct product of 
automorphisms of simple Lie groups, and therefore has entropy 0 [Yzl,  ~4.2]. If 
d = 1, this shows that h(~c) = 0, while ifd > !, then h(ctc) = 0 since some element of 
the action has finite entropy [C, Thm. 2.3-1. If Zd acts freely on I, then ~c is 
isomorphic to the shift on L ~', and since L is infinite we have h(~c) = or. 

Finally, since Z is abelian, Z = X M for some countable Rd-module M, so h(~z) is 
computed via Theorem 4.4. [] 

The proof of the previous theorem shows that if (X, ~) satisfies the descending 
chain condition, then h(~)= log M(f) for some f e  R d. Whether any other real 
numbers occur as entropies is closely related to the following problem. 

Lehmer's problem. Is 1 a cluster point of  {M(f):  f s Z[u] } ? 

By Proposition 3.3, this is equivalent to determining whether 1 is a cluster point 
of {M(f) : f6  Rd}. This question was posed by Lehmer [Lh] over fifty years ago in 
connection with a method to factor large integers, and remains unsolved. The 
smallest known value >1 for a Mahler measure is that of a tenth degree 
polynomial discovered by Lehmer himself, whose measure is about 1.176280821. 
The problem has been the subject of a number of investigations. Boyd's survey 
[By2] gives an excellent account of this and related problems, and supplies 
supporting evidence for his fascinating conjecture that U ~ = I { M ( f ) : f s R a }  is a 
closed subset of ~, which would immediately give a negative answer to Lehmer's 
problem. 

Theorem 4.6. The set of  possible entropies of  7~d-actions on compact 9roups is 
[0, oo ] if the answer to Lehmer's problem is "yes", or is the countable set {log M(f): 

f ~  R d } if the answer is "no". 

Proof If log M(f)  can be arbitrarily small, then by taking countable products any 
positive real number can be obtained as the entropy of a 7/n-action. If not, then in 
the approximation in Theorem 4.4 of (X, 7) by quotients obeying the descending 
chain condition, each stage contributes either 0 or log M(f) for s o m e f e  R d to the 
entropy. If h(~) < ~ ,  then there can be only finitely many positive contributions, 
and h(~) has the form log M(g) for some g e Rd. [] 

w Examples and remarks 

This section contains examples of the foregoing results as well as some miscellan- 
eous remarks about them. 

Example 5.1. Let f(u, v) = 1 + u +  v~R2 ,  and f = ( f ) .  Then Xn2/f can be de- 
scribed as the set of all x ~ q] -z2 such that xi, j + xi + 1,j + x~,j + 1 = 0 for all i, j ~ 7/. 
This condition shows that every horizontal line of coordinates determines the next 
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line above it by a simple additive rule, reminiscent of the evolution of a cellular 
automat ion ,  except here the a lphabet  is T instead of a finite set. Smyth [Sm2] has 
explicitly computed  M(f )  with the result that  

3 x f 3 ~  ( 3 )  ln2 - 4rt 3x/-3 L(2, Z3) - .3230659472 h(O~Rz/r ) -= l o g M ( f )  - 4n . = 1 

where ( 3 )  is the Legendre symbol,  z3(n) is the non-trivial character  on Z/3, and 

L(2, Z) = Y,,~= 1 z(n)/n2 is the Dirichlet L-series. 
This polynomial  was a principal motivat ing example for this paper.  Here ~R2/~ is 

mixing [KS1, Thm. 11.2(4)], has a dense set of  periodic points [KSI ,  Thm. 7.2], but 
is not expansive since the variety of f contains the point  (e 2~I/3, e 4~i/3) in 5 2 [Sc2, 
Thm. 3.8], We show in the next section that  CZR2/t has completely positive entropy,  
and thus is mixing of all orders. We conjecture (cf. Conjecture 6.8) that  ~R2/~ is 
measure-theoret ical ly isomorphic  to a Bernoulli Zd-action. 

Example 5.2. Let p = (2, 1 + u + v), a maximal ,  non-principal  pr ime ideal in R 2. 
2e2 �9 Then XR~/p is i somorphic  to the set ofxe2~/:  with x~,~ + x~+ 1,~ + x~,/+ ~ = 0 for all 

i, j e Z. This action was studied by Ledrappier  [Ld],  who showed that  it is mixing 
but not 2-fold mixing. Since p is pr ime but not  principal, we have h(eR~/~,) = 0 by 
Theorem 3.1. This can also be seen directly by a familiar a rgument  from cellular 
au t oma ta  theory. 

Example 5.3. Smyth [Sm2] has computed  the measures  of several polynomials  in 
terms of the Dirichlet L-series of  the odd character  Z, of ~/,. A sampler  of his 

calculations is given in Table 1. In that  table p = (1 + x /5 ) /2  and Z5(2) = i. 

Table 1. Values of entropy for some principal ideals 

f ~ Rj h(OtR~/i) 
u + v  

u+v+_l  

u + v + w + _ l  

u+v+_k 

(u + v) 2 + 2 

(u + v) 2 _+ 3 

(u + v)(u + v + 1 ) -  1 

t l  2 - -  I) 2 - ~  hi/) -4- 3u -- v + 1 

0 

3x/3 L(2, Z3) 
4n 

7r 
27z 2 

loglkt, tk[ > 2 
1 2 
- log2  + - L(2, z4) 
2 g 
2 
- log3  + - - L ( 2 ,  Z3) 
3 rc 
2 53/4 
- logp  +- - - -Re{(p  a/2 + ip-3/2)L(2, Zs)} 
5 4g 

2togp 
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Example 5.4. Results of Boyd and Smyth provide a complete characterizat ion of 
those o f f e  Rd with h(~R,/i) = 0. An extended cyclotomic polynomial g ~ Rd is one of 
the form 9(u) = Ukq~(um), where cb(u) is a cyclotomic polynomial  in one variable, 
and k, me2~ d. Using deep results of Schinzel, Boyd [ B y l ]  proved that  M(f )  = 1 if 
and only if f is _ 1 times a product  of extended cyclotomic polynomials.  Smyth 
[ S m l ]  found a simpler and more  geometric proof. 

Remark 5.5. Iff(u)  = Zi ~z, cjuJ, let Z ( f )  = {j e 2U: c i 4: 0}. A face F of Z ( f )  is the 
intersection of E ( f )  with a support ing hyperplane of its convex hull. Each face F of 
S ( f )  determines a polynomial  jr(u) = ~ i  ~vciui" Smyth [Sml ,  Thm. 2] proved that  
M(f )  > M(fv) for every face F of S ( f ) ,  which he used in his inductive approach  to 
proving the result described in Example  5.4. Boyd [By2, w has exploited this to 
show, for example, that  if d = 2 and the convex hull of Z ( f )  has an odd number  of 
sides, then M( f )  > M(1 + u + v) --- 1.381356444. 

Smyth 's  inequality can be proven dynamically as follows. We may  suppose 
that  f e R  d has the form (3-6), and that  F = Z ( f ) c ~ ( ~ a - l •  {0}). Then 
fF = f0 e Ra_ 1. If x i is defined for j e H = 7/~ - 1 • {0, 1 . . . .  }, and is the restriction 
of a point  in XRd/f, then the possible extensions to j e 2U- 1 • { _ 1 } are governed 
by (3-9). Every such extension can be modified by the addit ion of an arbi trary 
element from XR~ ,/<yo>, i.e. by an extension of a point  whose jth coordinate  is 0 
for all j e l l .  F r o m  this it follows that  h(ctRd/f ) > h(%, ,/<Io>), and hence that 
M ( f )  > M(fo) = M(f~). 

Example 5.6. Let A be an n • n matrix over R = R a, and consider the R-module  
R"/AR". A generalization of our main  formula (3-1) is that  

h(%,/,4R,) = log M(det A ) .  (5-1) 

In order  to prove (5-1), first suppose that  det A = 0. Then R"/AR" contains an 
R-torsion-free element x, so that  %,/AR, has a factor %x of infinite entropy.  Hence 
h(O~R,/AR. ) ---- ~ = log M(0). 

Thus we assume for the remainder  of the proof  that  all matrices have non-zero 
determinant .  We next show that  if (5-1) holds for A and for B, then it holds for AB. 
Consider  the exact sequence 

0 ~ AR"/A(BR") --* R"/A(BR") --, R"/AR" ~ O. 

Since det A + 0, the m a p  A is injective on R", so that  

AR"/A(BR") _~ R"/BR" . 

Use of the addit ion formula then shows that 

h(O~R./ABR,, ) = h(O~R,,/AR. ) -Jr- h(O~R./BR, ) 

= log M (det A) + log M (det B) = log M (det AB), (5-2) 

establishing (5-1) for AB. 
Compu ta t i on  of the echelon form for A, considered as a matrix over the field of 

fractions of R, shows that  there is a non-zero f e  R such that  fA is a product  of 
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elementary matrices over R, each having the form 

I1 1 9 

1 

- 1  

0 1 
".�9 

1 0 

_ 
[ ~ 1 , or 1 1 . 

1 

Now (5-1) easily holds for each of the elementary matrices by (3-1), and hence for 
their product f A .  Thus 

h(~R./fAR, ) = log M(det(fA)) = n log M(f) + log M(det A) .  

Putting B = f / i n  (5-2) and using (3-1) shows that 

h(OtR./fAR. ) = h(O~R./fR. ) q- h(O~R./AR. ) 

= nlog M(f)  + h(O~R./AR, ) . 

Since M(f )  < ~ ,  these show that h(~R./AR. ) = log M(det A). E5 

E x a m p l e  5.7. Suppose f ( u ) e  Z[u] and y(v)e 7/[v] are both monic with constant 
term + I. Put a = ( f ( u ) ,  g(v)) .  Then X R d a  ~ T ' ,  where m = (degf) . (deg  g). Then 
7R~/a acts by commuting toral automorphisms. For  appropriate choices of f and g 
(e.g. f lu )  = u 2 - u - 1 and 9(v) = v 2 - 2v - 1), every element ~,~2/, for n 4= 0 of 
this action is Bernoulli�9 However h(~R~/~) = 0 since some element of the action has 
finite entropy I-C, Thm. 2�9149 

R e m a r k  5�9149 I f f~  R d, and e => 1, thenf~  Rd + e as well�9 However, M(f )  is independ- 
ent of e, since the extra variables integrate to 1. To see this dynamically, let 

= ~Rd/~dy" Then ~Rd ,./gd +.y is isomorphic to an action ~ of Z d • Z ~ o n  XZR]/Raf 
defined by 

(&(m, nl)x(k) = (~mx) (k + n) .  

Since the Z ~ part of this action is just a group shift, it is easy to see from, say, the 
volume definition of entropy that h(~) = h(c0. 

R e m a r k  5.9. It is perhaps interesting to note that M(f )  is actually the "L ~ norm of 
f on ~a�9 From [Rd, Ex. 3.5(d)] we have 

M ( f )  = l im IlfllLPlSd/. 
p'~0 

~6. Comple te ly  positive entropy and Berg's theorem 

Let M be an Ra-module, and ct u be the corresponding 7/d-action on XM.  In this 
section we identify the Pinsker a-subalgebra of 0t u,  and show that ~u has 
completely positive entropy if and only if all the prime ideals associated to M are 
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principal and non-cyclotomic. We investigate in more detail the quotients that 
arise in the various prime filtrations of M, and in particular show that the minimal 
prime ideals associated to M must occur, and with the same multiplicity, in every 
prime filtration of M. An example, however, shows that the quotients in a prime 
filtration, by themselves, are not sufficient to decide whether ~M has completely 
positive entropy. One application is to prove the analogue of a theorem of Berg, 
which states that if aM has finite entropy, then it has completely positive entropy if 
and only if Haar measure is the unique measure of maximal entropy. 

If ~ is a measure-preserving 27n-action on (X, #), then the Pinsker partition n(~) 
is the supremum of all finite measurable partitions ~ with h,(~, a) = 0. The action 
is said to have completely positive entropy if rc(~) is the trivial partition. This is 
equivalent to requiring hu(~, ~) > 0 for all non-trivial finite measurable partitions. 

Throughout this section we shorten Rd to R. If M is an R-module, we will 
determine 7t(c~M) and give a criterion for 7M to have completely positive entropy. 

A point x e X M is said to be c,M-periodic if x has finite orbit under ~M. 

Proposition 6.1. I f  M is a noetherian R-module, then the set of ~u-periodic points is 
dense in X M. 

Proof Since M is noetherian, a M satisfies the descending chain condition on closed 
subgroups. A fundamental result [KSI, Thm. 7.2] of Kitchens and Schmidt is that 
this implies the density of tiM-periodic points. [] 

If H is a closed subgroup of X, let ( (H)  denote the measurable partition of X into 
cosets of H. 

Proposition 6.2. Suppose X is a compact metrizable abelian group, and ct is a 77 d- 
action on X whose periodic points are dense. Then there is a closed ct-invariant 
subgroup H of X such that the Pinsker partition rc(~) is the coset partition ~(H). 

Proof Our argument generalizes Rohlin's for toral automorphisms [Rh, w 
Let A be a finite-index subgroup of Z d, and choose an integral matrix A with 
A(7/d) = A. Then x e X has a-stabilizer A if and only if x is fixed by the action aA 
defined by (TA)i = ~Ai. In this case, translation by x commutes with aA, so n(ct A) is 
invariant under this translation. Now n(ct A) = n(~t), so rt(ct) is invariant under a 
dense set of translations, hence all translations. This implies by [Rh, w or [Ln l  ] 
that there is a closed subgroup H of X such that rt(a) = r Since rt(ct) is ~- 
invariant, so is H. [] 

Call an ideal in R cyclotomic if it is the principal ideal generated by an extended 
cyclotomic polynomial as defined in Example 5.4. 

Definition 6.3. A prime ideal in R is null if it is either non-principal or cyclotomic. A 
prime ideal is positive if it is principal and not cyclotomic (this includes the 0 ideal). 
The set of null ideals is denoted by W and that of positive ideals by ~ .  

The terminology is suggested by Example 5.4, which shows that h(CtR/~) > 0 if 
and only if p is positive. 
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Definition 6.4. A pr ime ideal p in R is associated to the R-module  M if there is and  
element  m e M whose annih i la tor  is p. The set of pr ime ideals associated to M is 
denoted  by asc(M).  

Theorem 6.5. Let  M be a countable R-module. There is a unique submodule N of  M 
such that the Pinsker partition 7Z(aM) is the coset partition ~( N• ). Every prime ideal 
associated to N is null. Hence a M has entropy 0 if  and only if  all prime ideals 
associated to M are null, and a M has completely positive entropy if and only if  all 
prime ideals associated to M are positive. 

Proof  Consider  the collection rs of submodules  N o of M with h(aNo ) = 0, par t ia l ly  
ordered by inclusion. Then ~ is not  empty  since it contains  the 0 submodule.  If 
{ Nj} is a chain in ~ ,  and N ~  = U j N j ,  then h(aN~ ) = lim i h(aNj) = 0, showing that  
N~, e c( is an upper  bound  for the chain. By Zorn ' s  l emma c~ has a maximal  element  
N. Let N '  ~ c~. The add i t ion  m a p  N • N '  ~ N + N '  dualizes to show that  aN+ N, is 
a subsystem of a N • N,. Hence 

h(O~N+N, ) < h(aN• ) = h(a N x aN, ) = h(aN) + h(aN, ) = O, 

SO N + N '  e ~.  Max imal i ty  of N shows therefore that  N '  c N, proving uniqueness 
of N. 

By Propos i t ion  6.2, there is a submodule  P of M such tha t  lr(a~t) = ~(P• 
Then h(o:v) = h(a, X M / P  • = 0, so P ~ N. Conversely,  ~(N • <= n(aM) since 
h(c~N) = h(c~, X M / N  • = 0, so N c P. This proves n(7M) = ~(N• 

If p e a s c ( N ) ,  there is an n e N  with ann(n)  = p. Then Rn ~- R/p,  so 

h(aR/v) = h(aR, ) < h(O:N) = O, 

proving  p e ~4/'. 
If h(aM) = 0, then it(aM) = ~({1}), so N = M and a sc (M)  = a s c ( N )  c JV'. If 

a s c ( M )  c ~P, then every submodule  of the form Rm ( m e M )  is in ~.  Since ~ is 
closed under  module  addi t ion,  it follows that  N = M, so h(aN) = 0. 

Suppose  aM has complete ly  posit ive entropy,  and let p e asc(M).  Choose  m e M 
with p = ann(m).  Then h(TR/o) = h(alcm) > 0 since aR~ is a non- t r iv ia l  factor  o f e  M. 
Hence p e ~ ,  proving  a sc (M)  c ~ .  Conversely,  suppose  a sc (M)  c ~ ,  and  let N be 
the submodu le  of M given above. If N * {0}, then there is a 
p e a sc (N)  c a s c ( M )  c ~ ,  while by the above  a sc (N)  c ,A~', which is dis joint  from 
~ .  This con t rad ic t ion  forces N = {0}, so lr(aM) = ~(N • is trivial, proving a M has 
complete ly  posi t ive entropy.  []  

Corol lary  6.6. Suppose that X is a compact abelian group, that a is a 2d-action on X ,  
and that Y is an ct-invariant closed subgroup of  X.  I f  both a r and ~x/Y have completely 
positive entropy, then so does a. 

Proof  There  are R-modules  N ~ M so that  X = X M and Y = XN = X M / N  • The 
hypotheses  show that  asc(N)  c ~ and asc ( M / N )  c ~ .  By [ M t ,  Lemma 7.F] ,  

a sc (M)  c a s c ( N ) u  a s c ( M / N )  ~ ~ , 

so aM has comple te ly  posit ive en t ropy  by Theorem 6.5. [] 
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Completely positive entropy implies very strong mixing conditions. A measure 
preserving gd-action ~ on (X, p) is called mixing o f  order r if, for every collection of 
measurable sets Bo, B1 . . . . .  Br in X, we have 

p(B  o ~ ~k~B 1 n . . . O~k, Br) --* p(Bo)t t (B1)  . . . I~(Br) 

as m a x { [ k i -  kj[:i :l:j} --* ~ .  

Corollary 6.7. Let  M be a countable R-module. I f  all the prime ideals associated to M 
are positive, then ct M is mixin9 o f  all orders. 

Proof  This is immediate from Theorem 6.5 and the result of Kaminski [Km, 
Thm. 2] that completely positive entropy implies mixing of all orders. [] 

Note in particular that if p ~ ~,  Then M = RiP satisfies the hypotheses, so ~R/~, 
is mixing of all orders, proving a claim made in Example 5.1. For further results on 
the mixing properties implied by complete positivity of entropy, the reader is 
referred to Kaminski's paper. 

When d = l, ergodicity implies completely positive entropy, which in turn 
implies the automorphism is measurably isomorphic to a Bernoulli shift [Ln3].  
Since Bernoulli Zd-actions must have completely positive entropy, the appropriate 
conjecture for general d is the following. 

Conjecture 6.8. I f  a M has completely positive entropy, then it is measurably iso- 
morphic to a Bernoulli Zd-action. 

We now turn to a more detailed study of the filtrations used in Lemma 4.3 to 
compute h(ctM) for a noetherian R-module M. 

A prime filtration { M j }  of M is a chain of R-submodules 

0 = M o ~ M I ~ . . .  ~ M r - l c M r = M ,  (6-1) 

where M j / M j _ I  ~- R / p j  with pj a prime ideal of R(1 =<j =< r). A prime ideal p 
occurs in the filtration (6-1) if p = pj for some j, and occurs with multiplicity r if 
exactly r of the pj equal p. If M is noetherian, then M is a torsion R-module if and 
only if every prime ideal occurring in a filtration is non-zero. In this case the 
annihilating ideal a = {f~ R :f- M = 0} of M is non-zero. 

Proposition 6.9. Let  M be a noetherian R-module, and p be a prime ideal minimal 
over the annihilator o f  M. Then p occurs in every prime fil tration o f  M, and with the 
same multiplicity in each. 

Proof  If p is minimal over a = ann (M), then p E asc(M) [ Mt, Thm. 7.D]. If { Mj } 
is a prime filtration of M with M j / M j _ I  ~ R/p j ,  then asc(M) ~ {pj} [Mt,  Prop. 
7.6], showing p occurs at least once in every prime filtration of M. 

Invariance of multiplicity is based on showing that any pair of prime filtrations 
of M have a common refinement, and that the multiplicity of a minimal prime over 
a is preserved under refinement. 

Suppose we have two prime filtrations of M. By the Schreier refinement 
theorem for modules [Lg, IV, w Thm. 43, these filtrations have refinements with 
the same number of terms such that the quotients are isomorphic in pairs. An 
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application of Lemma 4.3 to each pair of isomorphic quotients shows we can 
further refine these filtrations to be prime. 

Let M i_l = Mi be part of a prime filtration of M, with MI/M~_I ~- R/q. 
Suppose this inclusion is refined to 

M i - 1  = No = Ni  c . . .  c Np_  1 = M i .  (6-2) 

Then N k / N  o ~- flk/q for an ideal a k in R. If N k / N  k_ t ~- g /qk  with qk prime, then 
qk =ann(Nk/Nk-a) .  We claim q = ql, while q~qk  for 2 ~  k-~p .  Since R/q 
is an integral domain, and a l / q  ~ O, the annihilator of al /q ,  considered as an 
R/q-module, is 0. This shows that q~ = q. Also, for 2 < k _< p we have 
qk = a n n ( N k / N k - x )  ~ Ok-1 ~2q. 

Suppose p is a minimal prime over a. If Mi/Mi-~ ~- R/p, then for any 
refinement (6-2), only the first quotient N~/No is isomorphic to R/p, while the 
others are isomorphic to R/% with %~p .  If M~/Mi_ ~ ~ R/q with q ~ p, then 
minimality of p shows that no quotient in (6-2) is isomorphic to R/p. Hence the 
multiplicity of p is invariant under refinement. [] 

Proposition 6.10. Suppose M is a noetherian R-module. Then every minimal associ- 
ated prime ideal of M occurs, and with the same multiplicity, in every prime filtration 
of M. In particular, if M is torsion, then this applies to every principal prime ideal 
associated to M. 

Proof The minimal associated prime ideals of M are exactly the minimal primes 
over ann(M) [Mt,  p. 51], and so Proposition 6.9 implies the first statement. 

If M is torsion, then ann(M) ~ 0, hence a principal prime ideal over ann(M) is 
automatically minimal, and Proposition 6.9 again applies. D 

Remark 6.11. Suppose M is noetherian, and that { M i }, {M)} are prime filtrations 
of M with quotients isomorphic to Rip i and R/p), respectively. Theorem 4.3 gives 
two ways to compute entropy, namely 

= Z = Z 

The previous proposition shows these are equal for trivial reasons. If M is torsion, 
then positive terms in each sum correspond to principal prime ideals by Theorem 
4.2, so by Proposition 6.10 the positive terms in the second sum are the same as 
those in the first after a possible rearrangement. If M is not torsion, then 0 is a 
minimal associated prime ideal, and thus at least one term in each sum is ~ .  [] 

It is possible to tell from the quotients of a prime filtration of M whether :t M has 
completely positive entropy? Unfortunately, the answer is "no," even when M is 
torsion. We are grateful to Paul Smith for help with the following example. 

Example 6.12. Let d = 2, R = R z , f ( u ) 6  7/[u] be irreducible and non-cyclotomic, 
#(v) = v - 1, and define ideals in R by 

Pl = < f ( u ) > ,  P z = < f ( u ) , o ( v ) > ,  al =<f (u ) , 9 ( v )2> ,  

b 1 = ( f ( u )  2, g(v)>, b z = ( f (u)Z, f (u)9(v)> . 
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Let M = R/p I and M' = R/b e. Consider the filtrations 

0 c 01 /P l  ~ P z / P l  C R i p  1 = M , 

0 c b l / b  2 c p2 /b2  ~ R / b  2 = M '  . 

It is elementary to check that the first quotients a~/px and b l / b  2 in each filtration 
are isomorphic to R/p 1, while all other quotients are isomorphic to R/p 2. Since pl 
and Pz are prime ideals, these are prime filtrations with term-wise isomorphic 
quotients. However, a s c ( M ) =  {p~} c ~ while a s c ( M ' ) =  {p~, P2} r ~ ,  so by 
Theorem 6.5 %t has completely positive entropy while ~u. does not. [] 

The following does give some relationship between a M having completely 
positive entropy and the quotients of a fixed prime filtration of M. 

Theorem 6.13. Suppose M is a torsion noetherian R-module. l f  ~u has completely 
positive entropy, and { Mj}  is a prime filtration of M, then the prime ideals minimal 
with respect to occurrin9 in { M j} must all be positive. Conversely, if{ Mr} is a prime 
filtration of M in which only positive prime ideals occur, then ct u has completely 
positive entropy. 

Proof Suppose first that M has completely positive entropy. Let { M j} be a prime 
filtration of M, with M f f M  r_ ~ ~- R/p r. Since 0r  c ~,,all  the associated 
prime ideals of M are minimal, hence occur in { Mj }. Now the minimal associated 
prime ideals of M are exactly the minimal prime ideals over ann(M), and every pj 
lies over ann(M). Thus the set of minimal elements in { p j} is just asc(M), and these 
are all positive. 

If {Mr} is a prime filtration with MffMj_~ ~- R/p r and p r ~  for all j, then 
asc(M) c {pj} c ~,  so ~M has completely positive entropy. [] 

We now turn to the question of unique ergodicity for ~U. In [ Bg], Berg showed 
that an ergodic automorphism of a compact group with finite entropy is uniquely 
ergodic, with Haar measure being the unique measure of maximal entropy. His 
proof uses Yuzvinskii's result that for group automorphisms ergodicity implies 
completely positive entropy, and then uses the latter condition. The appropriate 
version of Berg's theorem for general d is as follows. 

Theorem 6.14. Suppose that M is an R-module and h(~M) < ~ . Then Haar measure 
on XM is the unique measure of  maximal entropy if and only if ~U has completely 
positive entropy. 

Proof First suppose ~u has completely positive entropy. Using the theory of 
measure-preserving 7/n-action developed by Conze [C],  most of Berg's proof for 
unique ergodicity generalizes directly. The one exception is Lemma 2.3 of [Bg], 
whose proof depends on the total order of 7/. We will give a different proof that is 
valid for all d. 

If ~ is a measurable partition of a Lebesgue space X, and ~ is a measure- 
preserving 7/d-action on (X,/~), put ~ = Vj ~ ~d ~i ~ and ~- = ~/j < 0~ i~, where < 
is lexicographic order on 7/d. 
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L e m m a  6.15. Suppose ~ and q are measurable partitions of  X with finite entropy, and 
that ~ is a measure-preserving 7~d-action on (X,  ~). I f  

h~(~ v r/, ~) = h~(~, ~) + hu(~/, ~ ) ,  (6-3) 

and ~ has completely.positive entropy on ~ ,  then the partitions ~ and q, are 
independent. 

Proof  Pinsker 's  formula [C,  Eq. (19)] shows that  (6-3) holds if and only if 
H ( q l q ~ )  = H ( q l q ~  v ~,). This proves that  if (6-3) holds, then for any ( < ( we 
have h((  v q, ~) = h((, ~) + h(q, ~). 

For  k >  1 let ~k denote the Za-action defined by (~k)j=~ki .  Put  
Qk = {0, 1 . . . . .  k - 1} ~. Then 

h(~o, k v qo, k, o~k) = kah(~ v q, ~) = knh(~, a) + kah(q, a) 

= h(~ek, cr k) + h(tlek, o~ k) . 

Since ~ < ~r our  previous remark  shows that  

h(~ v (t/Qk) , Ct k) = h(~, :t k) + h(r/Q~, cr k) . 

Hence H ( ~ I ~ )  = H(~[~;(qek) ,~) .  Since Ak% 1 ~,-~ < r~(ct), which is trivial by as- 
sumption,  we have 

H(~I~/) > H ( ~ I ~  v ~/) = H ( ~ I ~ )  ~ H(~)  

as k ~ ~ .  Thus  ~ I t/. Now (6-3) implies via Pinsker 's  formula  that  

h(~Qk v ~/ek, a) = h(~e. ,  : )  + h(q~,, a) 

for every k, so our  a rgument  applies to show that  ~e~ _1_ ~ for k > 1. This proves  
that  ~ d_ q~. [] 

Having  estabilished L e m m a  6.15, the rest of the case when ~ has completely 
positive en t ropy  is carried out exactly as in [Bg] .  

Finally, suppose %t does not  have completely positive entropy.  By Theorem 6.5 
there is a non-zero submodule  N ~ M with h ( % )  = 0. Now X ~ m  is a subgroup of 
XM, and ~ / N  is a subsystem of ~ .  The addit ion formula shows that  %tin has the 
same ent ropy as ~M. Thus H a a r  measure  on X ~ m  is another  %t- invariant  measure  
of maximal  entropy,  so %t is not  uniquely ergodic. [] 

w Periodic points 

In this section we investigate the growth rate of the number  of periodic points for a 
7/a-action, and prove  that  for expansive Za-actions this growth rate coincides with 
the topological  entropy.  

If ~ is a 7/d-action on a compac t  group X, and A is a finite-index subgroup,  or  
lattice, in 7/d, then we put 

PA(~) = { x ~ X : ~ " x  = x for all n ~ A }  , 

the subgroup  of A-periodic points. Put  HAll = dist(0, A \{0} ) ,  and denote the 
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index of A in Z d by IZa/AI. We will be concerned with the growth rates 

1 1 
p-(ct)  = l i m i n f ~ l o g  PA(Ct)I, p+(e )  = lim s u p ~ l o g l e A ( ~ ) l  

I lAl]~co if- /A [IAII~ IZ ~At 

For  arbi t rary 2U-actions, little can be said about  the relationship between p• (ct) 
and h(ct). For  example,  if c~ is the identity action on an infinite group, then 
p• (ct) = oo, while h(ct) = 0. An example of the reverse inequality occurs for d = 1, 
X = Q, and ct dual to multiplication by 3/2. Then [PA(~)I = 1 for all A [LW,  w 
so that  p• = 0, while h(e) = log 3 by Theorem 3.1. Moreover ,  the equality of 
p - ( ~ )  and p+ (~) can involve delicate questions about  the diophant ine character  of 
the logari thms of algebraic numbers  (cf. [Ln4,  w 

A 2d-action ~ on X is called expansive if there is a ne ighborhood U of the 
identity 0 x of X such that  0 , ~  ~,en U = { 0 x }. Expansive actions have finite en t ropy 
since they possess finite generators. If X is abelian, and ct is an expansive ;z/d-action 
of X, then e has the descending chain condition [KS1,  Thm. 5.2] so that  X is 
noetherian, the subgroup PA(Ct) is finite for every lattice A c Z d (this follows 
directly from expansiveness, or see I-Sc2, Cor. 3.8]), and the periodic points for ct 
are dense in X [KS1,  Cor.  7.4]. 

If a is an ideal in Rd, denote its complex variety by 

V(o) = {z = (z I . . . . .  za )eCd:9(z )  = 0 for every g ~ a }  . 

F o r f ~ R  a, we put  V ( f )  = V ( ( f ) ) .  Call a prime ideal p expansive if 

v(p) c~ ~ d  = ~ . 

If M is an Ra-module, then ~M is expansive if and only ifM is noetherian and every 
prime ideal associated to M is expansive [Sc2, Thm. 3.9]. In particular, suppose 
thatfe R a has irreducible factorizationf= 9]' • . . . • 9~ r. Since asC(Rd/(f)) = 
{(9~ ) ..... (9,) }, and V(f) = ~= ~ V(gj), it follows that czR~/<I> is expansive if 
and only if V(f) c~ ~d = (3. 

By use of the separatcd sct definition of entropy (cf. Appendix A), it easily 
follows that for cxpansivc actions ~ we have that 

p - ( e )  < p+ (ct) < h(cQ. (7-1) 

The lack of equality in the above examples does not occur for expansive actions. 

T h e o r e m  7.1. Suppose 
expansive on X M. Then 

so that 

P-(CtM) = P+(eM) = h(eM) , 

that M is an Rd-module, and that the 7/d-action ct M is 

(7-2) 

- -  log [Pa(ct)[ = h(CtM) . 
1 

lim 
[]AH ~oo 17/d/A[ 

We shall prove  Theorem 7.1 by first establishing some prel iminary algebraic 
results, then handling the case when M is a pr imary  module,  and finally using the 
pr imary  decomposi t ion theorem to show (7-2) for a general module.  
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If A c / 7  d is a lattice, let 

b A = (n  n - l : n ~ A )  a Rd �9 

If {n~ . . . . .  nd} is an integral basis for A, then b A is also the ideal generated by the 
finite set { u " , -  1:1 < j  < d}. 

Lemma 7.2. Suppose that M is an Ra-module, and that A is a lattice in Z a. Then the 
dual group Of PA(~M) is isomorphic to M/bAM. Hence 

IPA(~U)I = IM/baMI . 
Proof Duality shows that 

Hence 

so that 

k e r ( ~ 4 -  I) • = ( u " -  1)M. 

[ ]" PA(~M) l = (~ k e r ( ~ t  -- I) = ~ (u" - -  1)M = bAM,  
n e A  n e A  

PA(~M) ̂  ~ M/PA(OtM) 1 = M / b A M .  [] 

Lemma 7.3. Suppose that f ~ R d, and that f vanishes on V(ba). Then f e ha. 

Proof Pick a complete set K c Z d of coset representatives for Zd/A. Note that 
V(ba) is a finite multiplicative subgroup of 5 d. Each monomial  ui, restricted to 
V(ba), gives a group character of V(ba), and an elementary argument shows that 
we may identify the character group of V(ba) with 

{uilVibAl:j~K} ~ V(ba) ~ . 

Let Z [ V(ba) ̂] be the integral group ring of V(ba) ̂, and consider the restriction 
^ 

map ~:Rd ~ 7/[ V(ba) ] given by 

~ ( ~  c iuJ)= ~ ci(uilv(~A)). 

Clearly ba c ker ~. 
Suppose that f ~  R a, and that fvanishes  on V(ba). I f f r  b A, t h e n f  = g (mod ha), 

where g = ~ , i~r  ci"J ~ 0. But then 0 = ~b( f )=  ~b(g) would give a non-trivial 
relation for the characters of V(b A), contradicting the linear independence of group 
characters. This shows that f ~  b a. [] 

The next result establishes a special case of Theorem 7.1. 

Proposition 7.4. Suppose that p is an expansive prime ideal in R#. Then 

p-  (O~Rdp) = p+ (OtRdp) = h(O~Rdp) . (7-3) 

Proof I fp  is not principal, then Theorem 4.2 shows that h(O~Rdp) = 0 ,  and hence by 
(7-1) all three quantities are 0. 

If p = ( f )  for some i r reduciblefe  Rd, t h e n f  4= 0 since we are assuming that p 
is expansive. For notational simplicity we shall consider only lattices of the form 
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A,  = nY_ d, but similar arguments apply for general A. Let P, = PA,, and b, = b A .  

By Lemma 7.2, 

]P,(CtR,/p)] = IRd/(P, b.) l  = IRd/( f ,  b , ) l .  

Let Q/, denote ( Z / n Z )  d. Then Ra/b . ~- ZQ:.. Multiplication by uj on Rd/b. thus 
corresponds to a linear map Aj of CQ:.. Let ~o = e 2~;/". As in the proof of Theorem 
3.1, the vectors v k ~ Co/, defined by vk(j) = o2J k for j ~ Q/,, form an orthogonal basis 
for CQ/", and are simultaneous eigenvectors for the Aj with eigenvalues given by 
Aj(Vk) = cok''vk. Thus the map (p: on Rd/b . given by multiplication by f corres- 
ponds to the linear map f (A~  . . . . .  Ad) on CO:., whose eigenvalue for the eigen- 
vector Vk is .#(o~ k' , . . . .  0) ka) = f ( o k ) .  It follows that 

] Pn(O~Rd/p)[ = I Rd/ ( f, b, ) l = I( Rd/b,)  / f "( Rd/b,)l  

= Idet(tp:)l = FI l/(cok)l �9 
k~Q/n 

Hence 
1 1 

lY-d/nZdl l~ - IQ/,I k ~ loglf(e2"ikl")l" (7-4) 
EQ:. 

Since ~g,/p is expansive, it follows from disjointness of V ( f )  and ~d that loglf(s)l is 
continuous for s ~ ~d. The right side of (7-4) is a Riemann sum approximation to 

loglf(s)lds = log M ( f ) =  h(ctR,/p ) , 
~a 

proving that the three quantities in (7-3) are equal. [] 
The next result shows that "commensurable" modules have the same entropy 

and growth rate of periodic points. 

Lemma 7.5. Let p be an expansive prime ideal in Rd, and a E R d \  p. I f  K and L are 
noetherian p-primary Rd-modules with aL ~ K c L, then p•177 and 
h(~r) = h(~L). 

Proof, Let M and N be p-primary Rd-modules with aN ~ M c N. Then 

]PA(~S)I = IN/bANI = IN/( M + bAN)I " I( M + bAN)/bAN[ 

= I ( N / M ) / b A ( N / M ) I . [ M / ( M  c~ bAN)[ (7-5) 

< IPA(o~N/~)I'IPA(~M)I , 

the last inequality following from bAM ~ M c~ baN. Since ( p, a )> ~ (-')q~ascIS/M) q, 
none of the prime ideals associated to N / M  is principal. By Theorem 6.5, we obtain 
that h(~N/M)= 0. It follows from (7-1) and (7-5) that P• < P• By the 
addition formula, we have that h(~N) = h(~N/M) + h(uM) = h(~M). 

Now assume that M = aN. The map N ~ M / b  a M given by multiplication by a 
followed by the quotient map is surjective, and its kernel contains baN. Hence 
I M/b  A M ] <= I N/PA N ], and (7-5) then gives 

1 
lim (log]N/b AN[ - log lm/bA M I) = 0 

IIAll~ ~ ~ 

Since multiplication by a is injective on N, we have that P• = P• 
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Appl ica t ions  of this, first with M = K and N = L, and then with M = aL and 
N = K, give that  h(c~K) = h(c~L) and  

P• <= P• < P• = P• " [] 

L e m m a  7.6. Let p be an expansive prime ideal in Rd, and M be a p-primary 
noetherian Re-module. Then p-  (c%) = p + (CtM) = h(eM). 

Proof F o r  noe ther ian  Rd-modules K c L, we have that  ann (L)  c ann(L/K),  and 
that  the radical  of ann (L)  equals  ~Q~,sc(L) q = c~asc(L). I t  follows that  
c~ a s c ( L ) c  m asc(L/K), and hence that  every pr ime ideal associa ted to L/K 

contains  a pr ime ideal associated to L. F r o m  this fact we may  induct ively choose a 
pr ime fi l t rat ion 

0 = M  o c M  l c ' ' ' c M , _ l  ~ M r = M  

with M~/Mj_I ~- R/p j  so that  pj = p for 1 __<j__< s, and  pj ~ p for s + 1 __<j _-< r, 
where s > l .  F o r  each j with s +  1 <=j<=r, choose gjEpj \p ,  and let 
g = gs+l " �9 �9 �9 " g,- Then gCp,  and  gM c Ms c M. Lemma 7.5 shows that  h(~Ms ) 
= h(C~M), and  that  p• (C~Ms) = P• This al lows us to assume that  s = r, and that  
p j =  p for 1 <=j<=r. 

If p is not  principal ,  then Theorem 4.2 and the add i t ion  formula  show that  
h(~M) = 0, and  we are done by (7-1). So we suppose  that  p = ( f ) ,  where 
V( f )  c~ ~5 d = ~ by expansiveness of  p. 

We claim that  bac~P = bAp. F o r  suppose  that  h e b A ~ p .  Then h = f . g  
for some g e R  d since p = ( f ) .  Now V(bA) C V ( h ) =  V ( f ) u V ( g ) ,  while 
V( f )  n ~d = ~ and V(ba) c 5 d. Thus V(ba) c V(#), so 9 vanishes on V(ba), and 
hence g e b A  by L e m m a  7.3. Thus  h = f ' g e b a p ,  as claimed. 

We next show that  M j t ~ b a M = b a M  j for 1 <=j<=r. If not, there is an 
x e (Mj  c~ b a M )  \ ba M r. Choose  k > j minimal  so that  x e b A Mk. Then there are 

x 1 . . . . .  x,  eMk and f l  . . . . .  f ,  e b  a with x -- ~,7=lfixl, and {Xl . . . . .  x,} r Mk_ x 
by minimal i ty  of k. Choose  z e M  k so that  the m a p  f~--*fz + MR_ 1 induces 
an i somorph i sm of Rn/p with MR/Mk-1.  Then there are g ieR  d with 
xi - glz = Y leMk-1  for 1 _< i _< n. Since {x 1 . . . . .  x,} r Mk_ 1, it follows that  
( g l , . . . , g , } r  while 

figi z = ~ f i ( x , -  y,)e Mk_ ~ 
i=l i = 1  

since x = ~ = x f l x i e M  j c Mk_l .  Hence 

f f)~flgiebAnP = bAP , 
i = 1  

n = m 
so there are h 1 . . . . .  h m ~ b  a and k x , . . . ,  kmep such that  ~i=~figl ~1=1 hlkl �9 
Thus  

X = ~ hl(kl2 ) + ~ fiYi~:bAMk_l , 
/ = 1  i = 1  

cont rad ic t ing  min imal i ty  of k. W e  conclude that  Mj  c~ b a M  = b a M j  for 1 _= j __< r. 
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It now follows from (7-5) that 

[PA(~M)[ = [M/bAM[ = [ (M, /M,_  ~ ) / b a ( M . / M  ~_ ~)['l M~_ ~/bAM~_ 1 [ 

. . . . .  ~I [PA(O:MdMj.,)[ = IPA(C%/p)I ~" 
j = l  

r Since h (c%)=  ~ j=x  h(ctM,/M, , ) =  rh(~R~,'~), the result now follows from Pro- 
position 7.4. [] 

Proof of  Theorem 7.1. Since c% is expansive, M is noetherian. Let a s c ( M ) =  
{Pl . . . . .  p,}, so that each pj is expansive [Sc2, Thm. 3.9]. By the primary 
decomposit ion theorem, there are submodules M~ . . . . .  M,  of M such that M / M j  
is p ;p r imary ,  and ~ = ~  mj  = {0}. It follows that the diagonal map 

n 

o : m  --* ( ~ ( M / M j )  = L 
J = l  

n is injective. The dual map XL = I l j =  ~ XM/M~ ~ XM is therefore surjective. Denote 
its kernel by Y. The addition formula shows that 

h(ctM/Mj) = h(~L) = h(eM) + h(~r) , 
j = l  

where :t r denotes the restriction of ct to Y. 
We claim that h(ctr) = 0. We first observe that if an Rd-module N is the sum (not 

necessarily direct) of a finite collection {Nk} of submodules, and if h(c~Nk ) = 0 for 
each k, then h(:ts) = 0. For  the addition map @k Nk -"+ Zk Nk = N is surjective, so 
that ct N is a subsystem of l-Ik aNk" Since h ( H  k aNk) = Y, kh(aN~) = 0, we obtain that 
h(c~N) = 0, as required. Now the dual of Yis L/O(M)  = [ @ ( M / M j ) ] / O ( M ) ,  so that 
our observation allows us to confine our  attention to a single summand. If pj is not  
principal, then any prime annihilator of an element in (0 . . . . .  a + Mj  . . . . .  O) 
+ O(M) contains pj, hence is not principal. If pj is principal, then such an 

annihilator contains pj + I l k  . j  Pk, and is again not principal since pj is a minimal 
non-zero prime and the Pk are distinct and non-zero. Thus the primes associated to 
each summand (0 . . . . .  a + M j . . . . .  0) + O( M)  are all non-principal, and Theorem 
4.2 combined with our observation show that h(ar) = 0. It follows from (7-1) that 
p- ( : t r )  = p+ (ctr) = h(~y) = 0, and hence from (7-5) that p-+ (c~L) = p-+ (:t~) and that 
h(c~L) -- h(~M). 

Now Lemma 7.6 shows that p-(~Mm~) = P+ (ctMmj) = h(ct~/M~). Since the limit 

1 
lim Iog l PA (CtM/M ) I 

exists for each j, both p -  and p § add over the direct products, so that 

p-(c~D = P-(%IM/M~I) = Y~ p-  (C~M/M) 
J 

= 2 P+(~M/Mj) -}- P+(O~(9(M/M,)) = P+(OtL)" 
J 
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C o m b i n i n g  t he se ,  a n d  n o t i n g  t h a t  e L is e x p a n s i v e  s i n c e  e a c h  au/M, is, w e  o b t a i n  t h a t  

h(o:M) = h(~tL) = ~. h(otM/M,) = p -  (O:L) 
J 

= P+(aL) = < h(~L) = h(~ 

c o n c l u d i n g  t h e  p r o o f .  [ ]  

Appendix A. Entropies for actions 

Let a be a 7/a-action on the compact  metrizable group X. It is useful to have a variety of ways to 
compute  the entropy of a. Here we show that five common methods coincide, and also prove a 
technical replacement for subadditivity needed in the proof  of  Theorem 3.t. We use the notat ion 
and development  in [ W ] ,  merelay sketching the changes required for our situation. 

Recall from w that i fQ = YIj=1 {bj . . . . .  bj + lj - 1} is a rectangle in Z a, the its girth g(Q) is 
min~ <j<a lj. Let p be a translation-invariant metric on X, and denote normalized Haar  measure 
on X by/~. 

I f~ an open cover of X, let N(ql) be the number  of elements in the smallest subcover of ~ 
Then l o g N ( ' )  is subadditive in the sense that logN(a# v ~ )  < l o g N ( ~ )  + logN(~-).  Put 

fl . . . . .  (ct) = sup lim . . . .  l o g N  ~-Joff 
4g g(Q)~or tQ[ \ jcO /] 

where the limit exists by subadditivity of log N(-) using a standard Folner argument. 
A set E c X is called (Q,e)-spanning for ~ if for every x EX there is a y~E such that 

p(TiX, 7Jy) < e for all j E Q. Let r0(e, 7) be the smallest cardinality of a (Q, e)-spanning set, and put 

1 
r(e, 7) = l imsup - -  logrq(e, ct), h~pa,(~) = lim r(e, 7) .  (A-l) 

g~Q>~ IQI ~ o  
Dually, F ~ X is (Q, O-separated for ct if for distinct x, y e F there is a j e Q such that p(~x, ~y) > e. 
Let so(e, ct) be the largest cardinality of a (Q, e)-separated set, and put 

1 
s(e, 7) = lim sup - -  log so(e ~), hsep(~ ) = lim s(~, 7) . (A-2) 

Let B(e) be the e-ball around the identity of X, and put DQ(e, :0 = ~ j ~ e 7  iB(e). Define 

1 
hvol(~) = lim lim sup -- log #(DQ (z, ~)). 

e~O g(Q)~  m 

Finally, let h,(~) be the measure-theoretic entropy of~ with respect to Haar measure, as developed 
in [C]. 

Theorem A.I. Let 7 be a ~e-aetion by automorphisms of a compact metrizable group. Then the five 
entropies above coincide. We denote their common value by h(7). 

Proof. Let q/~ be the open cover of all e-balls in X. The argument  of [W, Corollary 7.7.1] shows 

j ~ q  JeQ 

Since diam(a#,) = 2E--.0 as g ~ 0 ,  it follows that h . . . . .  (7) = h~va,(Ct ) = h~p(~). That 
hu(7 ) < h . . . . .  (7) follows from the variational principle for ga-actions [ E l  [Ms] .  If r is a finite 
measurable parti t ion of X into sets of diameter  < t, then as in [W, Thm. 8.11], 

- log#(De(e, 7)) < H . \  i 
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hence hvol(00 ~ hu(et). If E is a (Q, e)-separated set of cardinality so(z, ct), then the sets {xDo(s/2, ct): 
x e E }  are disjoint, so 

so(z , ct) < 1//l(Oo(e , ct)) (A-4) 

It follows that  h~p(~t) < h~ol(Ct), completing the prool: [] 
The reason for using lim sup's instead of limits to define h~p,,(e) and h~p(c0 is that  log ro(e, ct) 

and logsQ(e, c 0 need not  be subadditive over disjoint rectangles. The following result, needed in 
the proof  for the upper bound  par t  of Theorem 3.1, is a part ial  replacement for subadditivity. 

Proposition A.2. Suppose that for some rectangle Qo we have 

1 
- - -  logsoo(e , ct) < B . 
IOol 

Then r(4e, o:) <= s(4e, e) _-< B. 

Proof. For  a large rectangle Q, there is a A c Z a such that  the sets {Qo + k : k e A }  are disjoint, 
their union Q1 = Q, and  IQI I/IQI ~ 1 as g(Q) --, oo. Thus IQI/IAI --* IQ01 as g(O) ~ oo. By (A-3), 

S o ( 4 e , ~ t ) < S o ~ ( 4 e , ~ ) < N ( ~ c t i s # 2 ~ ) < H N (  V ~ - J Jk'2e) 
J t k e A  j e Q o + k  

= N V = - ' e 2 , ) l  <_ rQo(e, ~)lal < Soo(e, ~)IAI . 
j eQo  

Hence 

1 l~ ct) < IAI 1 
I Q ~  = 1 ~  log soo(e, ~) ~ ~ log SOo(e, ~) < B 

as g(Q)~ oo, which yields the result. [] 

Appendix B. The addition formula 

If ~ is a ~d-action on the compact  group X, and Y is an c~-invariant normal  subgroup  of X, let ar  
denote the restriction of c~ to Y, and Ctx/Y be the induced action on X/Y.  The addition formula for 
subgroups states 

h(ct) = h(ctx/r) + h(ctr) . (B-l) 

Since ~ can be regarded as a skew product  with base action Ctx/r and an affine fiber act ion whose 
au tomorph i sm part  is ~r, (B-l) will follow from a more general addi t ion formula for skew 
products  with affine fiber actions. When  d = 1, the addi t ion formula for subgroups was proven by 
Yuzvinskii [Yz l ] .  His arguments  were adapted  by Thomas  [T1 ] for skew products.  These papers 
contain  the ideas needed to handle  the case d > 1 as well, and essentially everything in this section 
is due to those authors.  

In order to describe the addi t ion formula for skew products,  suppose that  fl is a measure- 
preserving act ion of 7/a on  a Lebesgue space (f2, , / / ,  v), and that  ct is a 77a-action by au tomorph isms  
of a compact  metrizable group Y equipped with the Borel a-algebra and Haar  measure/~. We use 
multiplicative nota t ion  for Y. A cocycle a for/3 and ct is a measurable  map  a: Z a x I2 ~ Y such 
that  

a (m + n, co) = ccm(o'(n, co))" a(m, flnco) (B-2) 

for all m, n e Z a and co e O. This cocycle equat ion  provides the consistency to define the skew 
product  action fl x~c~ on (Q x Y, v x #) by 

(fl x,~)"(co, y) = ( fluco, (0~"y). a(n, co)). 

When  a - 1 r, we obta in  the direct product  act ion fl x c~. 
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Theorem B.1. (The addition formula). I f  fl is a measure-preserving /Td-action on ((2, v), ~ is an 
algebraic Zd-action on a compact group Y with Haar measure I~, and a: 7/~ x f2 ~ Y is a cocycle for fl 
and ~, then 

hv• x,~) = h~(/~) + h,,(e). (B-3) 

Corollary B.2. I f  ct is a 7/a-action on a compact group X ,  and Y is a closed, normal, ct-invariant 
subgroup of  X ,  then 

h(et) = h(ex/r) + h(er) �9 

Proof o f  the Corollary. Use a Borel cross-section to the natural quotient map X ~ X / Y  to 
construct a cocycle a:Tl d x (X /Y)  ~ Y such that ~ is measurable isomorphic to ex/r x ,c~ r. Apply 
the addition formula. [] 

Our proof of (B-3) recapitulates that of Yuzvinskii for d = 1, augmented by some improve- 
ments due to Thomas. We use the language and results of Rohlin's theory of measurable 
partitions. An excellent account of this is contained in Parry's book [P] ,  which the reader should 
consult for any unexplained notation or terminology. 

If ~ is a mesurable partition of Y and y e Y, let ~" y denote the right translate of the elements of 
by y. Let {era } be a sequence of finite measurable partitions of Y increasing to the partition of Y 

into points. For a rectangle Q in Z d and ~o s O, define 

r  V ~- i r  eQ, o,= V (~ icm). a( -- j, og). 

Standard entropy calculations show that 

1 
h~• • ~ ) =  h~(/~)+ lim l imsup,~T $ H,(r 

r a ~  9(Q)  "~ I ~ ' [  D 

1 
h~• • = h~(/~) + lim limsup ~ H ~ ( ~  o,)dv(~o). 

The addition formula holds trivially if h~(/~)= ~-~, so we wiU assume from now on that 
hv(fl) < ~ .  It therefore suffices to show that the fiber contributions on the right sides are equal, 
i.e. that translations on the fibers driven by the cocycle do not affect entropy. Yuzvinskii's idea is 
to show that there are certain basic groups for which "rigid" partitions exist so that this holds, and 
then build up a general compact group from basic groups using processes that preserve the 
addition formula. 

Definition B.3 (Yuzvinskii). A compact group Y with Haar measure It is rigid i f  there is a sequence 
{era} of  finite measurable partitions o f  Y and a constant K so that 

Hu( r162 y ) + H(~,, 'y[~,,) < K 

for  every m > 1 and y e Y. 

Say that "the addition formula holds for ~" if for every base action fl and every cocycle a we 
have (B-3). Say "the addition formula holds for Y" if it holds for every Z d action on Y. The 
importance of rigidity is the following key result. 

Lemma B.4. The addition formula holds for  all rigid groups. 

Proof. Let Y be rigid, and {r K be as in Def B.3. The same calculation as in [Yzl, Thm. 7.4] 
shows that 

I n , ( ~ )  - n~,(~.~,)l < ~ [nu(r ( - j ,~ ) )  + n~ (~ , , ' ~a (  - j, o~)l~,,)J 
j~Q 

< 2KIQI,  (B-4) 

where K does not depend on ~. Let ~ denote the Zd-action given by (~k). = ak.. Replace in the 
above ~ by cr k,/~ by/~k, and a by a suitable cocycle ak so that (/~ • = flk • ak. Then dividing 
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(B-4) by IQI, taking limsup0(Q)~ ~ and then lim,,~o, we obta in  that  

kdih~x~(fl x ct) - hv• fl x,ct)l < 2K . 

Since k is arbitrary,  the result follows. [] 
The  next lemma gives a rich supply of rigid groups. 

Lemma B.5. Totally disconnected compact groups, compact Lie groups, and solenoids are rigid. 

Proof  Rigidity for totally disconnected compact  groups and solenoids is shown in Theorems 7.2 
and 7.3 of [Yz l  ]. There is a minor  error in the proof  for the solenoid case, reproduced in IT1, 
Thm. 2.6]. The increasing sequence {q,} of par t i t ions constructed need not  converge to the 
part i t ion into points. For  example, using the nota t ions  from the proof  of Thm. 7.3 in [-Yzl ], let A 
= Y [ l / 2 ]  ^, l =  1, F , = ( 2 - " Z ) ,  p , : A ~ A / F , - T ,  k = 2  " - t  at stage n, m ( n ) = 2  ":1,  and q, 
= P,- 1 (~'m(,)), where ~, divides T into m equal intervals. For  n > I and every C~ r/,, we have Pt(C) 
= A/F 1 , so V,% 1 t/, 4: ~, contrary  to the claim. The proof  can be easily fixed by choosing k twice 

as large as needed at each stage, which forces diam(q,)  ~ 0. 
Thomas  IT1, Thm. 2.5] proved that  compact  Lie groups are rigid. [] 
The next three lemmas provide machinery to build up general compact  groups from rigid 

ones. They can be summarized by saying that  the addi t ion formula is preserved under  extensions, 
inverse limits, and direct products.  

Lemma B.6. Suppose ct is a Zn-action on X ,  and that Y is a closed, normal, ot-invariant subgroup of  
X. I f  the addition formula holds for Ctx/r and for cry, then it holds for ct. 

Proof Same as for d = 1 in [TI ,  w [] 

Lemma B.7. Suppose ct is a Zd-action on X ,  and that X = Yo ~ YI D Y2 D . . .  are ~-invariant 
closed subgroups with Y~+~ normal in Y~for i > O, and such that ( ~ = o  Y, = {1}. I f  the addition 
formula holds for each Otx/r., then it holds for  ~. 

Proof Same as for d = 1 in [T1,  w [] 

Lemma B.8. Suppose I is a finite or countable set, and that for every i ~ I there is a Y_a-action ct i on X i 
for which the addition formula holds. Then it also holds for the direct product action I]i~t cti on 

l~iEl Xi" 
Proof For  I finite this follows by induct ion from Lemma B.6. For  I = { 1, 2 . . . .  } apply Lemma 
B.7 with Y, = ]IF=,+1X~ and the finite product  case. [] 

Proof  of  the addition formula. We will build up a general 7/d-action from those obeying the 
addi t ion formula using extensions, inverse limits, and  skew products,  processes which preserve the 
formula. 

Suppose that  a is a s on the compact  group Y. Let yo denote  the connected 
componen t  of the identity. Then yo is closed, normal,  and ~-invariant.  Since Y~ yo is totally 
disconnected, hence rigid by Lemma B.5, the Lemmas B.4 and B.6 allow us to restrict ourselves to 
the case where Y is connected.  

Next suppose that  Y is connected and centerless. By [ Yz 1, w Y is a direct product  I-1~i Y~, 
where each Y~ is an algebraically simple Lie group. Fur thermore ,  if n ~  n and  i e l ,  then 
a*(Y~) = Yj for some jE1 .  Thus 7/n acts on 1. Decomposing I into corresponding equivalence 
classes and using Lemma B.8, we can assume this action is transitive on 1. Fix io ~ 1, and put  
A = {nEZd:~n(Yio) = Yio}. If A = {0}, then ~ is isomorphic to a group shift on  Yio, and a 
measurable  i somorphism off l  • with fl • a can be constructed exactly as in IT1, Thin. 3.2]. If 
A # {0}. then by a change of basis we can assume that  A is generated by r~e~ . . . . .  r~e~ for some 
l < - c < - d .  

Let O~ e 7/~ and Oa-~ ~ Z a-~ be the zero elements, and put  

~= ]-[ {="(~o):O _-< n _-< r , e ,  +... + r~e~} . 

Then Y is invar iant  under  ct i for every j ~ 7/~ • {0d-~ }, and the subgroups {ctk( Y): k ~ {0~ } • Z a- ~ } 
are independent .  By Lemma B.5, Y is rigid, so there are {~,,} and  K as in Definit ion B.3. Let 
Q = Q~ • Qd-~ be a product  of rectangles and  use the same nota t ion  as in the proof  of Lemma B.4. 
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Independence and a rigidity argument imply that 

IHu(~) - n~(~,,o)] < Z IHu(~ ~+k) - H.(~.~+~)] 

< IQe-cI'2KIQc[ = 2KIQI �9 

The proof for the centerless case is now completed as in Lemma B.4. 
If Y is connected, and Z is its center, then Y / Z  is connected and centerless [Yzl, w 1.31. By 

the above, we have reduced the problem to the case where Y is abelian. 
Let M = 17 be the dual group, which as in w is an R:module.  If Mo is the torsion submodule 

of M, then M / M  o is torsion-free, and it suffices by Lemma B.6 to consider the torsion and torsion- 
free cases separately. If M is torsion-free, then every finitely generated submodule F is free, so the 
addition formula holds for Y / F  • by an explicit isomorphism [T1, Thm. 3.2]. Since M is a 
countable increasing union of finitely generated submodules, the torsion-free case is completed by 
an appeal to Lemma B.7. Finally, suppose that M is a torsion module, and let F be a finitely 
generated submodule. Then Y / F  J- is a solenoid, so the addition formula holds here. Since M is the 
countable increasing union of finitely generated submodules, another appeal to Lemma B.7 
completes the proof. [] 
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