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Abstract. We obtain exact formulas for central values of triple product L-

functions averaged over newforms of weight 2 and prime level. We apply these

formulas to non-vanishing problems. This paper uses a period formula for the
triple product L-function proved by Gross and Kudla.
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1. Introduction

Let f , g and h be normalized holomorphic modular forms which are eigenfunc-
tions for the Hecke operators. Associated to such a triple is the triple product
L-function

L(s, f ⊗ g ⊗ h) =
∏
p

Lp(s, f ⊗ g ⊗ h)

defined by an Euler product of degree 8 which converges for <s� 0 (see Section 2
for the definition of the local factors). An integral representation for L(s, f ⊗g⊗h)
was first obtained by Garrett [Gar87] using an Eisenstein series on Sp(6). Garrett
treated the case that f , g and h are all of full level and have the same weight. His
method was generalized further by Piatetski-Shapiro and Rallis [PSR87] using an
adelic approach. The integral representation yields the meromorphic continuation
of L(s, f ⊗ g ⊗ h) to the complex plane as well as a functional equation.

Naturally the central value of L(s, f ⊗ g ⊗ h) is of considerable interest. In this
paper we consider the case when f , g and h are of weight two and of the same prime
level N . Let F2(N) denote the set of such forms. We obtain (see Section 4) exact
formulas for the average of L(2, f ⊗ g ⊗ h) (the central value of L(s, f ⊗ g ⊗ h))
weighted by Hecke eigenvalues as one varies across the set F2(N) while keeping
none, one or two of the forms fixed. One of the main results is given by,
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Theorem 1.1. Let N be prime. Then for any h ∈ F2(N),

4πN
∑

f,g∈F2(N)

L(2, f ⊗ g ⊗ h)

(f, f)(g, g)

equals

(
1− 24

N − 1

)
(h, h) +


0; N ≡ 1 mod 12

6
√

3L(1, h)L(1, h⊗ χ−3); N ≡ 5 mod 12

4L(1, h)L(1, h⊗ χ−4); N ≡ 7 mod 12

6
√

3L(1, h)L(1, h⊗ χ−3) + 4L(1, h)L(1, h⊗ χ−4); N ≡ 11 mod 12.

In this theorem ( , ) denotes the Petersson inner product normalized as in Section
2 below. We note an interesting feature of this result is the appearance of central
values of smaller L-functions on the right hand side.

In Section 5 we obtain some consequences of this formula on the non-vanishing
of L(2, f ⊗ g ⊗ h). For example two corollaries of this theorem are,

Corollary 1.2. Let N > 25 be prime. For h ∈ F2(N),

#{(f, g) ∈ F2(N)×F2(N) : L(2, f ⊗ g ⊗ h) 6= 0} �ε N
3/4−ε.

Corollary 1.3. Let p be prime and let P be a place in Q above p. Let N be prime
such that N ≡ 1 mod 12 and p - (N − 25). Then for any h ∈ F2(N), there exist
f, g ∈ F2(N) such that

Lalg(2, f ⊗ g ⊗ h) 6≡ 0 mod P.

The point of departure for this paper is a period formula for L(2, f⊗g⊗h) due to
Gross and Kudla. Beginning with the work of Harris and Kudla [HK91] the central
value of L(s, f ⊗ g ⊗ h) has been linked to certain period integrals involving f , g
and h or their Jacquet-Langlands transfers to multiplicative groups of quaternion
algebras. In the case of squarefree level and weight two the work of Gross and Kudla
[GK92] made this link precise by providing an exact formula for L(2, f ⊗ g ⊗ h) in
terms of the period integral (which in this case is a finite sum) on the multiplicative
group of a certain quaternion algebra. More precisely let D denote the quaternion
algebra over Q which is ramified at N and ∞. We fix a maximal order R in D
and let S = {I1, . . . , In} denote a (finite) set of representatives for the equivalence
classes of left R-ideals in D. The Jacquet-Langlands correspondence assigns to each
f ∈ F2(N) a function f ′ on S. The formula of Gross-Kudla (recalled in Theorem
3.1 below) yields,

4πN
L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)
=

(
n∑
i=1

w2
i f
′(Ii)g

′(Ii)h
′(Ii)

)2

for any f, g, h ∈ F2(N); here wi = #R×i /2 where Ri denotes the right order
associated to the ideal Ii. The question of computing the average for the central
value of the triple product L-function is thus turned into one about functions on
the finite set S. We carry out this analysis in Section 4.

The results of this paper could also have been obtained via the relative trace
formula. In a previous work [FW09] we obtained exact formulas for averages of
central values of twisted quadratic base change L-functions associated to Hilbert
modular forms. In that paper we used an adelic relative trace formula together with
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a period formula due to Waldspurger [Wal85]. In [FW09, Section 1.2.3] the relative
trace formula approach was recast in more classical terms for the case of modular
forms of weight two and prime level. This present paper can also be viewed as
a classical version of a relative trace formula; in this case one would construct a
relative trace formula by integrating the automorphic kernel for D× ×D× against
a fixed automorphic form on D×.

The restriction in this paper to the case of prime level and weight 2 is for simplic-
ity, in particular we do not need to deal with oldforms. The identity of Gross and
Kudla has been further generalized by Böcherer and Schulze-Pillot [BSP96] to more
general levels and weights, Watson [Wat02] and finally Ichino [Ich08] who gives an
essentially complete treatment. One could treat more general levels and weights
(with certain restrictions on the weights of f , g and h relative to each other) using
the period formula from [BSP96] however it would perhaps be preferable to use the
adelic period formulas coming from [Ich08] and work with an adelic relative trace
formula. Furthermore in this way one could readily work over a general totally real
number field and treat the case of triple product L-functions attached to Hilbert
modular forms.

2. Modular forms and L-functions

We fix a prime N . We let M2(N) denote the space of modular forms of level N
and weight 2 and let S2(N) denote the subspace of cuspforms. The Petersson inner
product on S2(N) is normalized by,

(f1, f2) = 8π2

∫
Γ0(N)\H

f1(z)f2(z) dx dy.

We let F2(N) denote the set of normalized Hecke eigenforms in S2(N). The size of
F2(N) when N is prime (see for example [Mar05, Theorem 1]) is given by,

|F2(N)| =


N−1

12 − 1; N ≡ 1 mod 12
N−1

12 −
1
3 ; N ≡ 5 mod 12

N−1
12 −

1
2 ; N ≡ 7 mod 12

N−1
12 + 1

6 ; N ≡ 11 mod 12.

(1)

We now recall from [Gro87] Eichler’s work [Eic55b], [Eic55a] on modular forms
and quaternion algebras. Let D denote the quaternion division algebra over Q
which is ramified at N and ∞. We fix a maximal order R in D and take S =
{I1, . . . , In} to be a set of representatives for the equivalence classes of left R-ideals.
To each ideal Ii one associates the maximal right order

Ri = {x ∈ D : Iix ⊂ Ii} .

We set wi = #R×i /2.
For later use we recall Eichler’s mass formula [Gro87, (1.2)],

n∑
i=1

1

wi
=
N − 1

12
.(2)

In Table 1 below we recall from [Gro87, Table 1.3] the values for n and {wi}
depending on N . We assume N > 3.
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Table 1

N {wi} n

≡ 1 mod 12 {1, . . . , 1} N−1
12

≡ 5 mod 12 {3, 1, . . . , 1} N+7
12

≡ 7 mod 12 {2, 1, . . . , 1} N+5
12

≡ 11 mod 12 {3, 2, 1, . . . , 1} N+13
12

Let MD
2 (N) denote the space of complex valued functions on S with inner product

defined by,

〈g1, g2〉 =

n∑
i=1

wig1(Ii)g2(Ii).

For each i with 1 ≤ i ≤ n we set ei ∈ MD
2 (N) equal to the characteristic function

of Ii. We note that,
〈ei, ej〉 = δi,jwi.

We also define,

e =

n∑
i=1

1

wi
ei ∈MD

2 (N)

and note that,

(3) 〈e, e〉 =

n∑
i=1

1

wi
=
N − 1

12
,

by (2). Let SD2 (N) ⊂ MD
2 (N) denote the orthogonal complement of e in MD

2 (N),
i.e. SD2 (N) consists of those

n∑
i=1

aiei ∈MD
2 (N)

such that
n∑
i=1

ai = 0.

Let TN denote the Hecke algebra away from N . Then there is a natural action
of TN on SD2 (N) as a family of self dual and self-adjoint operators; see [Gro87,
Section 4]. The Jacquet-Langlands correspondence, which in this special case is
already proven in [Eic55b] and [Eic55a], yields an isomorphism between S2(N) and
SD2 (N) as modules over TN . Thus if

f =

∞∑
m=1

amq
m ∈ F2(N)

then there exists a non-zero f ′ ∈ SD2 (N), which is well defined up to scaling by
multiplicity one, such that

Tmf
′ = amf

′

for all Tm ∈ TN . For each f ∈ F2(N) we fix such an f ′ ∈ SD2 (N) normalized so
that 〈f ′, f ′〉 = 1 and when we write

f ′ =

n∑
i=1

λi(f)ei
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each λi(f) ∈ R. The existence of f ′ follows from the self dual and self-adjoint
properties of the Hecke algebra acting on SD2 (N); see [GK92, Proposition 10.2].
We note that f ′ is well defined up to multiplication by ±1.

We recall that by [Gro87, Proposition 4.4], for m ≥ 1 and i = 1, 2, . . . , n,

Tmei =

n∑
j=1

Bij(m)ej ,

where B(m) = (Bij(m)) is the Brandt matrix; see [Gro87, (1.5)]. As a direct result
of this and [Gro87, Proposition 2.7.1 and 2.7.6],

Tme = σ(m)Ne

where

σ(m)N =
∑

d|m,(d,N)=1

d.

By [Gro87, Proposition 1.9]

tr(B(m)) =
∑
s2≤4m

HN (4m− s2)

where HN (D) is defined below.
Let O−D be the order of discriminant −D, h(d) be the class number of binary

quadratic forms of discriminant d and

u(d) =


3; d = −3

2; d = −4

1; otherwise.

Then we define

H(D) =
∑

df2=−D

h(d)

u(d)

and finally

HN (D) =



0; N splits in O−D
H(D); N inert in O−D
1
2H(D); N ramified in O−D and N does not divide the conductor of O−D
HN (D/N2); N divides the conductor of O−D
N−1

24 ; D = 0.

By [Eic55a],

(4) tr(Tm|S2(N)) + σ(m)N = tr(B(m)) =
∑
s2≤4m

HN (4m− s2).

We take a normalized Hecke eigenform

f =

∞∑
m=1

amq
m ∈ F2(N).

We recall one defines the L-function of f by the Dirichlet series

L(s, f) =

∞∑
m=1

am
ms

.
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Let χ be a Dirichlet character, then one defines,

L(s, f ⊗ χ) =

∞∑
m=1

amχ(m)

ms
.

As is well known these L-functions satisfy an analytic continuation to C and, with
this normalization, a functional equation relating s to 2− s.

Suppose now f, g, h ∈ S2(N) are three (not necessarily distinct) normalized
Hecke eigenforms. We write

f =

∞∑
m=1

amq
m, g =

∞∑
m=1

bmq
m, h =

∞∑
m=1

cmq
m.

For each prime p 6= N we write

ap = αp,1 + αp,2, bp = βp,1 + βp,2, cp = γp,1 + γp,2

with

αp,1αp,2 = βp,1βp,2 = γp,1γp,2 = p.

We also note that,

aN , bN , cN ∈ {±1}.

The triple product L-function is defined by an Euler product

L(s, f ⊗ g ⊗ h) =
∏
p

Lp(s, f ⊗ g ⊗ h),

which converges for <s > 5/2, where for p 6= N ,

Lp(s, f ⊗ g ⊗ h) =

2∏
i=1

2∏
j=1

2∏
k=1

1

1− αp,iβp,jγp,kp−s
,

and at N ,

LN (s, f ⊗ g ⊗ h) =
1

1− aNbNcNN−s
1

(1− aNbNcNN1−s)2
.

We define,

L∞(s, f ⊗ g ⊗ h) = (2π)3−4sΓ(s)Γ(s− 1)3

and

Λ(s, f ⊗ g ⊗ h) = L(s, f ⊗ g ⊗ h)L∞(s, f ⊗ g ⊗ h).

Then ([GK92, Proposition 1.1] for this case) the function Λ(s, f ⊗ g ⊗ h) has an
analytic continuation to the whole complex plane and satisfies the functional equa-
tion

Λ(s, f ⊗ g ⊗ h) = εf,g,hN
10−5sΛ(4− s, f ⊗ g ⊗ h),

where

εf,g,h = aNbNcN .
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3. Period formulas

The main results of this paper are obtained from relations between central L-
values and period integrals obtained in [GK92] and [Gro87]. We now recall these
results.

Theorem 3.1. ([GK92, Corollary 11.3]) Let N be prime and let f, g, h ∈ F2(N).
Then,

4πN
L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)
=

(
n∑
i=1

w2
i λi(f)λi(g)λi(h)

)2

.

For a fundamental discriminant −d < 0, let χ−d denote the unique primitive
quadratic character of conductor d such that χ−d(−1) = −1.

We shall also need the following special cases of [Gro87, Corollary 11.6].

Theorem 3.2. Let N be a prime such that N ≡ 3 mod 4. Then there exists a
unique k with 1 ≤ k ≤ n such that wk = 2 and

2
L(1, f)L(1, f ⊗ χ−4)

(f, f)
= λk(f)2,

for any f ∈ F2(N).

Theorem 3.3. Let N be a prime such that N ≡ 2 mod 3. Then there exists a
unique k with 1 ≤ k ≤ n such that wk = 3 and

√
3
L(1, f)L(1, f ⊗ χ−3)

(f, f)
= λk(f)2,

for any f ∈ F2(N).

4. Averages of central L-values

In this section we apply the period formula of Gross and Kudla to the study of

L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)

as one varies over f, g, h ∈ F2(N). We begin with the average over one form.

Lemma 4.1. For N prime and g, h ∈ F2(N),

4πN
∑

f∈F2(N)

L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)
=

n∑
i=1

w3
i λi(g)2λi(h)2 − 12

N − 1
δg,h,

where δg,h equals 1 if g = h and 0 otherwise.

Proof. By Theorem 3.1 (Corollary 11.3 in [GK92]),

4πN
∑

f∈F2(N)

L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)
=

∑
f∈F2(N)

(
n∑
i=1

w2
i λi(f)λi(g)λi(h)

)2

.

As
n∑
i=1

w2
i λi(f)λi(g)λi(h) =

〈
f ′,

n∑
i=1

wiλi(g)λi(h)ei

〉
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and {f ′ : f ∈ F2(N)} ∪ {e/
√
〈e, e〉} is an orthonormal basis for MD

2 (N), we have∑
f∈F2(N)

(
n∑
i=1

w2
i λi(f)λi(g)λi(h)

)2

+
1

〈e, e〉

(
n∑
i=1

wiλi(g)λi(h)

)2

=

n∑
i=1

w3
i λi(g)2λi(h)2,

by Parseval’s identity. The lemma now follows from (3) and by observing that
n∑
i=1

wiλi(g)λi(h) = 〈g′, h′〉 = δg,h.

�

We now sum the previous formula over g weighted against a Hecke eigenvalue
am(g) to obtain the following theorem.

Theorem 4.2. Let N be prime with N = 11 or N > 13. Then for any h ∈ F2(N),

4πN
∑

f,g∈F2(N)

L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)
am(g)

equals
n∑
i=1

w2
iBii(m)λi(h)2 − 12σ(m)N

N − 1
− 12

N − 1
am(h).

Proof. By the previous lemma,

4πN
∑

f,g∈F2(N)

L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)
am(g) =

∑
g∈F2(N)

am(g)

n∑
i=1

w3
i λi(g)2λi(h)2−

∑
g∈F2(N)

12

N − 1
am(g)δg,h.

Clearly, ∑
g∈F2(N)

12

N − 1
am(g)δg,h =

12

N − 1
am(h),

provided F2(N) is nonempty. We have,∑
g∈F2(N)

am(g)

n∑
i=1

w3
i λi(g)2λi(h)2 =

n∑
i=1

w3
i λi(h)2

∑
g∈F2(N)

am(g)λi(g)2

=

n∑
i=1

wiλi(h)2
∑

g∈F2(N)

〈Tmg′, ei〉〈g′, ei〉.

Recalling that {g′ : g ∈ F2(N)} ∪ {e/
√
〈e, e〉} is an orthonormal basis of MD

2 (N)
we obtain, ∑

g∈F2(N)

〈Tmg′, ei〉〈g′, ei〉+
〈Tme, ei〉〈e, ei〉

〈e, e〉
= 〈Tmei, ei〉.

Hence ∑
g∈F2(N)

〈Tmg′, ei〉〈g′, ei〉 = wiBii(m)− 12σ(m)N
N − 1

.

Thus ∑
g∈F2(N)

am(g)

n∑
i=1

w3
i λi(g)2λi(h)2
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is equal to the sum of
n∑
i=1

w2
iBii(m)λi(h)2

and

−12σ(m)N
N − 1

n∑
i=1

wiλi(h)2 = −12σ(m)N
N − 1

.

�

We now specialize this theorem to m = 1 to get a more explicit formula in this
case.

Corollary 4.3. Let N be prime with N = 11 or N > 13. Then for any h ∈ F2(N),

4πN
∑

f,g∈F2(N)

L(2, f ⊗ g ⊗ h)

(f, f)(g, g)

equals

(
1− 24

N − 1

)
(h, h) +


0; N ≡ 1 mod 12

6
√

3L(1, h)L(1, h⊗ χ−3); N ≡ 5 mod 12

4L(1, h)L(1, h⊗ χ−4); N ≡ 7 mod 12

6
√

3L(1, h)L(1, h⊗ χ−3) + 4L(1, h)L(1, h⊗ χ−4); N ≡ 11 mod 12.

Proof. Setting m = 1 in Theorem 4.2 gives,

4πN
∑

f,g∈F2(N)

L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)
=

n∑
i=1

w2
i λi(h)2 − 24

N − 1
.

Now we note that
n∑
i=1

w2
i λi(h)2 =

n∑
i=1

(w2
i − wi)λi(h)2 +

n∑
i=1

wiλi(h)2 =

n∑
i=1

(w2
i − wi)λi(h)2 + 1.

Thus,

4πN
∑

f,g∈F2(N)

L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)
= 1− 24

N − 1
+

n∑
i=1

(w2
i − wi)λi(h)2.(5)

For the final term we note that the only terms which contribute are those for which
wi > 1. From Table 1 the only possibilities are wi ∈ {2, 3} and in these cases we
can interpret λi(h)2 as a special L-value associated to h by Theorems 3.2 and 3.3.
Finally multiplying both sides of the identity by (h, h) yields the corollary. �

We recall that for N prime |F2(N)| ∼ N
12 along with the bound

(f, f)� N(logN)2,

which follows from the Ramanujan conjecture proven by Deligne. These facts to-
gether with Corollary 4.3 and the convex bound for L(1, h)L(1, h⊗ χ) imply that,

1

|F2(N)|2
∑

f,g∈F2(N)

L(2, f ⊗ g ⊗ h)�ε N
ε,

which agrees with the Lindelöf conjecture on the average.
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Finally, we sum over all three forms against one Hecke eigenvalue. Let

R−d(m) = |{a ⊂ OQ(
√
−d) : Nm(a) = m}|.

Proposition 4.4. Let N be prime with N = 11 or N > 13. Then

4πN
∑

f,g,h∈F2(N)

L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)
am(h)

equals (
1− 24

N − 1

) ∑
s2≤4m

HN (4m− s2)− σ(m)N



+


0; N ≡ 1 mod 12

2R−3(m)− 8
N−1σ(m)N ; N ≡ 5 mod 12

R−4(m)− 6
N−1σ(m)N ; N ≡ 7 mod 12

2R−3(m) +R−4(m)− 14
N−1σ(m)N ; N ≡ 11 mod 12.

Proof. By Corollary 4.3 this equals∑
h∈F2(N)

(
1− 24

N − 1

)
am(h)

+
∑

h∈F2(N)

am(h)

(h, h)
×


0; N ≡ 1 mod 12

6
√

3L(1, h)L(1, h⊗ χ−3); N ≡ 5 mod 12

4L(1, h)L(1, h⊗ χ−4); N ≡ 7 mod 12

6
√

3L(1, h)L(1, h⊗ χ−3) + 4L(1, h)L(1, h⊗ χ−4); N ≡ 11 mod 12.

Which equals(
1− 24

N − 1

)
tr(Tm|S2(N))

+


0; N ≡ 1 mod 12

6
√

3
∑
h∈F2(N)

L(1,h)L(1,h⊗χ−3)
(h,h) am(h); N ≡ 5 mod 12

4
∑
h∈F2(N)

L(1,h)L(1,h⊗χ−4)
(h,h) am(h); N ≡ 7 mod 12

6
√

3
∑
h∈F2(N)

L(1,h)L(1,h⊗χ−3)
(h,h) am(h) + 4

∑
h∈F2(N)

L(1,h)L(1,h⊗χ−4)
(h,h) am(h); N ≡ 11 mod 12.

We now recall the following average value formulas which follow from [MR] where
we note that we have adjusted the formula so that (h, h) is normalized as in this
paper:

6
√

3
∑

h∈F2(N)

L(1, h)L(1, h⊗ χ−3)

(h, h)
am(h) =

2

3

(
3R−3(m)− 12

N − 1
σ(m)N

)
and

4
∑

h∈F2(N)

L(1, h)L(1, h⊗ χ−4)

(h, h)
am(h) =

1

2

(
2R−4(m)− 12

N − 1
σ(m)N

)
.

The result now follows by applying (4). �
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By [GK92, Corollary 11.2(b)] for f, g, h ∈ F2(N) and any σ ∈ Aut(C)

σ

(
4πN

L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)

)
= 4πN

L(2, fσ ⊗ gσ ⊗ hσ)

(fσ, fσ)(gσ, gσ)(hσ, hσ)
,

where fσ, gσ and hσ denote the modular forms obtained by applying σ to the
Fourier coefficients of f , g and h. Since fσ, gσ, hσ ∈ F2(N) we see that,

4πN
∑

f,g,h∈F2(N)

L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)

is fixed by every automorphism of C and hence is rational. By setting m = 1 in
Proposition 4.4 we can compute this rational number.

Corollary 4.5. For N prime,

4πN
∑

f,g,h∈F2(N)

L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)
=


N−25

12 ; N ≡ 1 mod 12
N−5

12 ; N ≡ 5 mod 12
(N−7)(N−13)

12(N−1) ; N ≡ 7 mod 12
N2+12N−229

12(N−1) ; N ≡ 11 mod 12.

(6)

Setting m = N and for simplicity restricting to N ≡ 1 mod 12 we see that,

Corollary 4.6. For N prime and N ≡ 1 mod 12,

4πN
∑

f,g,h∈F2(N)

L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)
aN (h) =

(
1− 24

N − 1

)(
1

2
h(−4N)− 1

)
.

5. Consequences of the average value formulas

The exact formulas in Section 4 can be used to obtain information on the non-
vanishing of L(2, f ⊗ g ⊗ h). Our first result is a direct consequence of Corollary
4.3 and the non-negativity of L(1, h)L(1, h⊗ χ−d).

Corollary 5.1. Let N > 25 be prime. For each h ∈ F2(N) there exist f, g ∈ F2(N)
such that L(2, f ⊗ g ⊗ h) 6= 0.

Using the convexity bound for L(2, f ⊗ g ⊗ h) together with Corollary 4.3 one
obtains

Corollary 5.2. Let N > 25 be prime. For h ∈ F2(N),

#{(f, g) ∈ F2(N)×F2(N) : L(2, f ⊗ g ⊗ h) 6= 0} �ε N
3/4−ε.

Proof. From Hoffstein and Lockhart [HL94],

1

(f, f)
� (logN)2

N
.

Applying this together with the non-negativity of L(1, h)L(1, h⊗χ−d) to Corollary
4.3 we have ∑

f,g∈F2(N)

L(2, f ⊗ g ⊗ h)� N2(logN)−6.

The corollary now follows from the convexity bound L(2, f ⊗ g ⊗ h) �ε N
5/4+ε

[IK04, (5.21)]. �
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We now define

Lalg(2, f ⊗ g ⊗ h) = 4πN
L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)
.

By [GK92, Corollary 11.2(b)], Lalg(2, f ⊗ g⊗ h) lies in the subfield of C generated
by the Fourier coefficients of f , g and h and hence is algebraic.

Corollary 5.3. Let p be prime and let P be a place in Q above p. Let N be prime
such that N ≡ 1 mod 12 and p - (N − 25). Then for any h ∈ F2(N), there exist
f, g ∈ F2(N) such that

Lalg(2, f ⊗ g ⊗ h) 6≡ 0 mod P.

Proof. We note from Corollary 4.3 that

4πN
∑

f,g∈F2(N)

L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)
=
N − 25

N − 1
.

The corollary is now immediate. �

6. Numerical verification

In this section we check our formulas with some numerical calculations. We note
that when N = 11, 17 or 19, |F2(N)| = 1. Thus the left hand side of (6) in Corollary
4.5 has only one term. The following values can be deduced from [GK92, Table
12.5] and the period formula (Theorem 3.1 which is Corollary 11.3 in [GK92]),

4πN
∑

f,g,h∈F2(N)

L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)
=


1
5 ; N = 11

1; N = 17
1
3 ; N = 19.

(7)

These values agree with Corollary 4.5.
We now consider the case that N = 37. In this case |F2(37)| = 2, n = 3

and wi = 1 for each i with 1 ≤ i ≤ 3. Furthermore if we enumerate the set
S = {I1, I2, I3} as in [GK92, Table 12.5] then there exists f1 ∈ F2(37) such that,

f ′1 =
1√
6

(2e1 − e2 − e3).

We also have,

e = e1 + e2 + e3.

If we write F2(37) = {f1, f2} then f ′2 is a unit vector in MD
2 (37) which is orthogonal

to f ′1 and e and hence can be taken to be

f ′2 =
1√
2

(e2 − e3).
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We now use Theorem 3.1 (Corollary 11.3 in [GK92]) to compute the relevant triple
product L-functions. We have,

4 · 37π
L(2, f1 ⊗ f1 ⊗ f1)

(f1, f1)(f1, f1)(f1, f1)
=

1

6

4 · 37π
L(2, f1 ⊗ f1 ⊗ f2)

(f1, f1)(f1, f1)(f2, f2)
= 0

4 · 37π
L(2, f1 ⊗ f2 ⊗ f2)

(f1, f1)(f2, f2)(f2, f2)
=

1

6

4 · 37π
L(2, f2 ⊗ f2 ⊗ f2)

(f2, f2)(f2, f2)(f2, f2)
= 0.

We have

4 · 37π
∑

f,g∈F2(37)

L(2, f ⊗ g ⊗ f1)

(f, f)(g, g)(f1, f1)
=

1

6
+ 2 · 0 +

1

6
+ 0 =

1

3

and

4 · 37π
∑

f,g∈F2(37)

L(2, f ⊗ g ⊗ f2)

(f, f)(g, g)(f2, f2)
= 0 + 2 · 1

6
+ 0 =

1

3
.

Hence,

4 · 37π
∑

f,g,h∈F2(37)

L(2, f ⊗ g ⊗ h)

(f, f)(g, g)(h, h)
=

1

6
+ 3 · 0 + 3 · 1

6
+ 0 =

2

3
.

As one can readily check, these values agree with Corollaries 4.3 and 4.5.
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[BSP96] S. Böcherer and R. Schulze-Pillot, On the central critical value of the triple product L-

function, Number theory (Paris, 1993–1994), London Math. Soc. Lecture Note Ser., vol.

235, Cambridge Univ. Press, Cambridge, 1996, pp. 1–46. MR MR1628792 (99j:11051)
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