INTERTWINING AND SUPERCUSPIDAL
TYPES FOR P-ADIC CLASSICAL GROUPSt

S.STEVENS

Introduction

Let F' be a non-archimedean local field of residual characteristic p # 2,
with a (possibly trivial) galois involution ~ with fixed field Fy. Let
V be an N-dimensional F-vector space, equipped with a nondegener-
ate e-hermitian form A and let ~ also denote the adjoint involution on
A = EndgV induced by h. Let o be the involution on G = AutpV ~
GL(N, F) given by & — z~*, for z € G. We put ¥ = {1,0} C AutG
and set G = G=, a unitary group defined over Fj, (symplectic or or-
thogonal if F' = Fy).

Let m be an irreducible supercuspidal representation of G. Following
the strategy of Bushnell and Kutzko [4] for the classification of the
representations of G, we would like to construct a [G, |g-type, that
is a pair (J,\) consisting of a compact subgroup J of G and an ir-
reducible representation A of J such that 7 is the unique irreducible
representation (upto equivalence) of G which contains A by restriction.
We construct such types starting from types for G which are fixed by
Y and the main tool for transferring from G to G is Glauberman’s
correspondence ([7]). This gives us a correspondence g between the
equivalence classes of irreducible representations p of a pro-p subgroup
K of G which are fixed by ¥ and the equivalence classes of irreducible
representations of K=. The lemma (2.4) which allows us to make use
of this correspondence relates to the intertwining: for g € G, the inter-
twining space Hom sxnx (%, p) has dimension coprime to p if and only if
the intertwining space Hom yx=~x=(%g(p), g(p)) has dimension coprime
to p. In particular, if p = x is a character then the intertwining of g(x)

is Ie(g(x)) = Iz(x) N G.

However, we cannot use Glauberman’s correspondence directly for types
(J,\) for G, since J is not a pro-p subgroup, so we must delve into the
construction process for such types ([3, §§2,3,5]). The first step is a
simple stratum and the transfer for these (including their intertwin-
ing) is described in [15]. In particular, there is a field extension E/F
associated to such a stratum.

The crucial step is the construction of simple characters (3, §3.2]).
These are certain arithmetically defined characters 6 of a pro-p sub-
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group H' of G. If the simple stratum used in the construction of 6 is
skew (“contained” in Lie G) then H! is fixed by ¥ and we may consider
the (non-empty) set of simple characters fixed by 3. Then we define the
simple characters for G to be the Glauberman transfers of these char-
acters (in fact, just their restrictions). Using the intertwining lemma
and a theorem on the decomposition of double cosets ([15, (1.1)]), we
may calculate the intertwining of these characters (3.7).

There is another pro-p group J!' D H'! and the next step is to show
that there is a unique irreducible representation 7 of J! containing 6.
Moreover, if 6 is fixed by X then so is 77 so we may consider the Glauber-
man transfer g(n). In fact this is the unique irreducible representation
of J' N G containing g(f). Lemma (2.4) applies again and thus we
calculate the intertwining of g(n).

The final stage in the construction is only considered in a special case,
which we describe below.

While in G the simple strata are sufficient to give all supercuspidal
representations, this is certainly no longer the case for the group G.
Indeed, there are compact tori in G of the form N;(FE;) x Ni(FE»),
where, for 1 = 1,2, E; is a field extension of F' with a galois involution
which restricts to ~ on F' and has fixed field E; o, and Ny denotes the
elements e of norm Ng, /g, ,e equal to 1.

To take account of this, in [15, §3.2] the notion of a semisimple stra-
tum is introduced — this is a sum of simple strata which are “sufficiently
different” from each other. Here we extend this to define semisimple
characters for G, which are in bijection with products of simple char-
acters for smaller GL(N;, F'), > N; = N. The process described above
for simple characters works equally well in this semisimple case and we
obtain a representation g(n) of J! N G, together with its intertwining.

Finally, we suppose that the field extension E; associated to each simple
stratum from which our semisimple stratum is built is maximal — that
is, Y.[E; : F] = N. In this case the intertwining of n_ = g(n) is
contained in J_ = J N G and, since J_/J' N G is a product of cyclic
groups, n— admits a finite number of extensions to a representation x_
of J_. Then the induced representation 7 = Ind 5"7 k_ is irreducible
supercuspidal and (J_,k_) is a [G, w|g-type.

We now give a brief summary of the contents of each chapter. In §1
we introduce the notations and give some definitions. The intertwining
lemma for Glauberman’s correspondence is given in §2. In §3 we define
simple and semisimple characters for G and calculate their intertwining
and in §4 we construct the representation 7 and its transfer to G. In §5
we construct types and supercuspidal representations of G in the case
of a maximal compact torus. We finish with a few remarks concerning
possible further work. Finally, in §6, we show that any simple character
fixed by X does in fact come from a skew simple stratum.
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Although the methods used here are somewhat different, I was partly
inspired by the work of L.Morris (see [13], [12], for example). Super-
cuspidal representations have also been constructed in the tame case in
[1], [10], [16], and in the general case in [9]. This paper generalizes the
constructions of [9].

The results here for simple characters formed part of my PhD thesis.
I would like to thank my supervisor, Colin Bushnell, for starting me
on the project and for his support and encouragement. The use of
Glauberman’s correspondence, in particular with regard to intertwin-
ing, was suggested to me by Guy Henniart.

1. Preliminaries

Let F' be a non-archimedean local field, o its ring of integers, pr the
maximal ideal of 0, kr = 0F/pr the residue class field and gr = pf F =
card kr. We assume throughout that the residual characteristic p is not
2.

Suppose that F' comes equipped with a galois involution ~, with fixed
field Fp; we allow the possibility that F' = Fy. Then we denote by og,
o, ko, go = p’® the objects for F, analogous to those above for F. We
also fix a uniformizer 7z of F' such that Tr = 7 (the sign depending
on whether F'/Fj is ramified or not).

Let 1y be a character of the additive group of Fjy, with conductor p,.
Then we put ¥r = 9 o trp/p,; since p # 2, F/Fy is at worst tamely
ramified so ¥ r is a character of the additive group of F' with conductor

pPF.

Let V be an N-dimensional F-vector space and put A = Endp (V) ~
M(N, F) so that G = Autz(V) may be identified with GL(N, F). Let
4 be the character of A given by ¥4 = ¢p otry/p. Let h be a
nondegenerate e-hermitian form on V' and let ~ be the adjoint involution
on A associated to h; this extends the involution on F' (for F' embedded
diagonally in A). We also denote by o the involution on G given by
z — T~ ! and by ¥ the subgroup of AutG consisting of ¢ and the
identity. Note that the action of o on Lie G ~ A, via the differential, is
given by =z — —x.

We put G = G” = {g € G : h(gv,gw) = h(v,w)} for all v,w € V}, a
unitary group over Fy (possibly symplectic or orthogonal). We also put
A=A ={zcA:z2+7=0}~LieGand A, ={z € A:z =7};
since F' is not of characteristic 2 we have A = A_ @& A, and, moreover,
this decomposition is orthogonal with respect to the pairing induced by
tro = trp g, o tra/Fp since, forz € A_, y € A, we have

tro(zy) = tro(zy) = tro(ZTy) = tro(—yz) = —tro(zy).

For S any subset of A, we write S_ (or sometimes S™) for SN A_ and
Sy for SN A4. If S is an op-lattice fixed by the involution then we
have § = S_ @ S, since the residual characteristic of F' is not 2.
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Recall from [5, (2.1)] that an op-lattice sequence in V is a function A
from Z to the set of op-lattices in V such that

(1) n > m implies A(n) C A(m);

(#7) there exists a positive integer ¢ = e(A) (the op-period of A) such
that A(n+e) = prpA(n), for all n € Z.

An op-lattice sequence A is called strict if A(n) # A(n + 1), for all
n € L.

A lattice sequence A gives rise to a filtration on A by
a, =a,(A) ={z € A:zA(m) CA(m+n),m e Z}, nel
This then gives rise to a “valuation” 4 on A by
va(z) =sup{n € Z:x €a,}, forzx € A,

with the understanding that v4 (0) = oo.

From a lattice sequence A we obtain a compact open subgroup U =
U(A) = ag(A)* of G, equipped with a filtration

Up=Un(A) =1+an(A), neZn>0.

This is also the Moy-Prasad filtration associated to a certain rational
point in the building of GL(N, F). We define the normalizer of the
filtration to be

A(A) = (| Na(U:),

r>0

where Nz denotes normalizer.

For L an op-lattice in V, we define the dual lattice L# by
L#* ={veV:h(v,L) Cpr}.

Then L# can be identified with Hom,,(L,pr) by the nondegeneracy
of h and we have L## = L. For A an op-lattice sequence, define the
dual sequence A# by

We say that A is self-dual if there exists d € Z such that A#(n) =
A(n+d), for all n € Z. In this case, the filtration a,, on A induced by A
satisfies @, = a,,, for n € Z. In particular, the groups U, U,, n > 1, are
fixed by ¥ and we put P = U”, a compact open subgroup of G, and
P, = UZ, for n > 1, a filtration on P. Further, by [13, (2.13)(c)] we

have a bijection a;; — P, given by the Cayley map z — (1+%)(1—%)~1.

(1.1) LEMMA. Let A be an op-lattice sequence in V and let m,n € Z
satisfy 2n > m > n > 1.
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(1) The map © — 1 + x induces an isomorphism of abelian groups
an/0m=Un/Up.

(#3) If A is self-dual then the map © — 1+ x induces an isomorphism
of abelian groups a;, /a, =P,/ Pn,.

Let S be an op-lattice in A, hence an og-lattice in A. We define the
op-lattice

S*={a € A:trg(aS) C po}
={acA: tI‘A/F(aS) Cpr},

since F' is at worst tamely ramified over Fy. If S is also stable under
the involution, we can define

(S_)* ={a € A_ : tro(aS_) C po} = (8*)_

since the direct sum S = S_ @ S is orthogonal with respect to try.

We recall from [5, (2.10)] that, if A is an op-lattice sequence in V with
associated filtration a,,, then we have a} = a;_,,.

Let “hat” ~ denote the Pontrjagin dual. Then we have the following:
(1.2) LEMMA. Let A be an op-lattice sequence in V and let m,n € Z

satisfy 2n > m >n > 1.
(1) There is a R(A)-equivariant isomorphism of abelian groups

c‘l—m/al—n - (Un/Um)A
b+ 1—n wb
where Py(u) = Yr(tra/p(b(u —1))) for u € Un,.

(23) If A is self-dual then there is a P-equivariant isomorphism of abelian
groups

(0 _p)/(a1 ) = (Pn/Pa)
b+ (ar,) = by

where 1, (p) = Yo(tro(b(p—1))) forp € P,. Moreover, forb e (a;_,,),

1, s the restriction to P, of .

We now recall some definitions from [3], keeping the language of [5]

(1.3) DEFINITION ([3, (1.5)], [5, (3.1)]). A stratum in A is a 4-tuple
[A,n,r,b] consisting of a lattice sequence A in V, n € Z, r € R with
r < n, and an element b € a_,(A). We say that two strata [A,n,r, b;],
i =1,2, are equivalent if by = by (mod a_,(A)).

Let [A,n,r,b] be a stratum in A and suppose that the integers r,n
satisfy

(1.4) n>r>[5] >0,
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where [z] is the greatest integer less than or equal to z. By (1.2)(i), an
equivalence class of strata [A,n,r, b] corresponds to the character 1)y of

Urt1 (A)/Un-i-l (A)

(1.5) DEFINITION ([3, (1.5.5)]). Let [A,n,r, 5] be a stratum in A. It is
pure if

() the algebra E = F[f] is a field;

(i7) A is an og-lattice sequence;

(i41) va(B) = —n.

If [A,n,r, ] is a pure stratum, we put, for k € Z, ng(8,A) = {z €
ao(A) : Bz — zfB € ax}, an op-lattice in A. Then we define ko(3,A) to
be the least integer k such that ngy1(8, A) is contained in B Nag + a4,
where B is the A-centralizer of 3; we understand that if F[3] = F then
ko(B,A) = —oo. If F[B] # F then ko(B,A) is an integer greater than or
equal to —n, with equality if and only if £ is minimal (see [3, (1.4.14)]).

(1.6) DEFINITION ([3, (1.5.5)]). A pure stratum [A,n,r, 5] is called
simple if r < —ko(B8, A).

We now consider the situation for our group G.

(1.7) DEFINITION. A stratum [A,n,r,b] in A is called skew if b+b =0
and A is self-dual.

Again, if(1.4) is satisfied then, by (1.2)(ii), an equivalence class of skew
strata [A,n,r,b] corresponds to the character ¢, of Pr1(A)/Pnt1(A).

We finish this section with some technical results concerning simple
strata.

(1.8) LEMMA. Let A be an op-lattice sequence in V and let {y : t € Z}

be a sequence of elements of R(A) which converges to a non-zero element
v in A. Then v € R(A).

Proof. Let v = vp(y) < +oo and let T € 7Z be such that yp = v
(mod a,11). Let £ = v —yp € a,41; then v = yp(1 + vp'z) €
R(A)UL(A) = R(A). O

(1.9) PROPOSITION. Let {[A,n,r,v:] : t € Z} be a sequence of equiva-
lent simple strata such that v converges to somey € A. Then [A,n,r, 7]
1s a stmple stratum.

Proof. Let ®,(X) € F[X] be the characteristic polynomial of v and
let P,(X) be its minimal polynomial, which is irreducible. Let ®(X) €
F[X] be the characteristic polynomial of ; then we certainly have
limy o0 @4(X) = B(X).

Let F' be an algebraic closure of F. Then the set of roots of ®;(X)
in F, for all ¢t € Z, is bounded. Hence the set of coefficients (in F) of
Pi,(X), t € Z, is also bounded and {P;(X) : t € Z} has a convergent
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subsequence. Let P(X) € F[X] be the limit of this subsequence; in
particular we have P(y) = 0.

If P(X) factorizes into coprime factors then, by Hensel’s Lemma, P;(X)
factorizes for P;(X) sufficiently close to P(X), which is absurd. Hence
P(X) =T1II(X)™, for some II(X) € F[X] irreducible, m € N.

Now we show II(y) = 0. For suppose not, then II(7y) is nilpotent. But
II(7:) € R(A) converges to II(7y) so, by(1.8), II(y) is a nilpotent element
of R(A), which is absurd.

In particular, F[y] is a field, whose non-zero elements normalize A by
(1.8) so [A,n,r,v| is a pure stratum. Then, since F[y] is of degree
less than or equal to that of F[vq], [A,n,r,~] is in fact simple, by [3,
(2.4.1)(1)]. O

We now give the skew analogue of [3, (2.4.1)]. In particular, this will
allow us to conclude that, for a skew simple stratum, the groups deter-
mined by the stratum are invariant under X.

(1.10) PROPOSITION. Let [A,n,r, B8] be a pure stratum with A self-dual
and B+ 8 € a_,.. Then there exists a skew simple stratum [A,n,r, 7]
equivalent to [A,n,r, ).

Proof. By [3, (2.4.1)(i)], there exists a simple stratum [A, n, r, vy equiv-
alent to [A,n,r, B]. Then yo+7, € a_, and [A,n,r, —7,] is also a simple
stratum equivalent to [A,n,r, 3].

We find, by induction, simple strata [A, n,r,v;] equivalent to [A,n,r, 5]
such that v4 +7%, € a;—, and v — Y441 € a;—.. Granting this, we let
v be the limit of the v;, as t — oo, v € B+ a_,. Then [A,n,r,v] is
simple, by (1.9), equivalent to [A,n,r, 3] and skew, as required.

We have found 7y so assume we have 7; as required, for some ¢ > 0.
Let E = Flvy]|, B = Ca(E), b, = a, N B, for n € Z, and let s be a
tame corestriction relative to E/F' (see [3, (1.3.3)]). We will also write
A,, when we think of A as an og-lattice sequence. The simple strata
[A,n,7 —t,v] and [A,n,r — t,—7,| are equivalent so, by [3, (2.4.1)(ii)]
and since 2 € o}, there exists ; € E such that s(y +7,) = —26,
(mod al—r—i—t)-

We put by = —(7:+7,); then the stratum [A,,,7—¢,7—t—1,5(b;)] in
B is equivalent to the stratum [A,.,r —t,7 —t — 1, §;], which is either
simple or equivalent to the null stratum [A,,,r —t,7 —t — 1,0]. In
the latter case, by [3, (2.2.1)], there exists u € U;(A) such that the
skew stratum [A,n,r —t — 1,~; + bs] is equivalent to the simple stratum
[A,n, 7 —t — 1,uyu™!] so we put Y41 = uypu™t, with ko(ye1,A) =
ko(7y¢, A). In the former case, by [3, (2.2.8)], the skew stratum [A, n,r —
t — 1, + b is equivalent to a simple stratum [A,n,7 —t — 1, v:11];
moreover, ko(vi+1,A) = ko(y,A), since ko(d¢, Ao,) = —oo. In both
cases we have that [A, n,r, vy,y1] is simple, as required. O

(1.11) COROLLARY (cf. [3, (2.2.8)]). Let [A,n,7, 5] be a skew simple
stratum in A. Let B be the A-centralizer of E = F|[B] and b,, = a,, N B.
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Letb € a”,. and let s be a tame corestriction on A relative to E/F. Sup-
pose that the stratum [A, ,r,7—1,5(b)| is equivalent to a simple stratum

in B. Then [A,n,r — 1,8 + b] is equivalent to a skew simple stratum
[A7 n,r — 17 Bl] and? moreover, kO (/317 A) = max {kO(ﬁa A)’ kO (C, AOE )}

Proof. By [3, (2.2.8)], the skew stratum [A, n,r—1, 5+b] is equivalent to
a simple stratum [A,n,7—1, Bo]. Hence 81 +/3; € a;_, and(1.10) implies
that [A, n,r—1, Bp] is equivalent to a skew simple stratum [A, n,r—1, 51].
The final assertion follows from [3, (2.2.8)]. O

We remark that (1.10) (and hence also (1.11)) is easily generalizable to
the situation of a group I' of automorphisms of G of order coprime to
pand G = GF.

2. The principal lemma

We now take a digression and consider Glauberman’s correspondence
of characters (see [7]). The notation in the first part of this section is
independent of that in the remainder of this paper. For the exposition
of Glauberman’s results, we follow [2].

Let H be a finite group and I'" a soluble subgroup of AutH such that
|H|, |T'| are relatively prime. We can thus form I'H = I' semi-direct
product G. We denote the centralizer of I' in H by H'.

We write Irr (H) for the set of equivalence classes of irreducible repre-
sentations of H and use a similar notation for other groups. The group
[ acts on Irr (H); we denote the set of fixed points by Trr (H)T.

We have the following result of Glauberman, whose formulation is taken
from [11]:

(2.1) THEOREM. There is a uniquely determined bijection
g=gry:Irr (H)Y = Trr (HY)

with the following properties:

(i) if T is an l-group, for some prime number I, and p € Irr (H)' then
g(p) occurs in p|gr with multiplicity incongruent to 0 modulo [;

(12) if A is a normal subgroup of T’ then

gr,H = 9gr/A,HA ©CgAH-

In fact, in case (¢), one has that g(p) occurs in p|gr with multiplicity
congruent to +1 (mod [), by [7, Corollary 6].

In this situation we also have the following results, from [8]:
(2.2) THEOREM ([8, Theorem A]). Let K be a I'-stable subgroup of H.
Let p € Irr (H)'', 0 € Irr (K)T.
r
(i) If p ~ Ind %o then g(p) ~ Ind Erg(0).
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(i1) If plx ~ o then g(p)|kr ~ g(o).

(2.3) LEMMA ([8, (2.3)]). Suppose T is an l-group, for | a prime num-
ber. Let K be a I'-stable subgroup of H. Let p € Irr (H)Y, o € Irr (K)*.
Then o occurs in p|x with multiplicity incongruent to 0 (mod ) if
and only if g(o) occurs in g(p)|xr with multiplicity incongruent to 0
(mod 1).

In the situation of(2.3), suppose that g(p) occurs in p with multiplicity
congruent to € (mod ) and g(o) occurs in ¢ with multiplicity congruent
to  (mod l). Then, if o occurs in p|g with multiplicity r (mod 1),
the proof of [8, (2.3)] in fact shows that g(c) occurs in g(p)|xr with
multiplicity enr (mod ).

We now return to the situation of §1 and apply the results concerning
Glauberman’s correspondence (in particular(2.3)) to the intertwining of
representations of pro-p subgroups of G = GL(N, F). Firstly though,
observe that Glauberman’s correspondence can be applied to represen-
tations of pro-p subgroups of G by taking the quotient by a (small
enough) normal compact open subgroup. We will apply all the above
results to this situation without further comment.

For + = 1,2, let p; be a representation of a subgroup H; of G. For
g € G, the intertwining space I,(p1, p2) is defined to be

Ig(pl, p2) = Hom 9HNH, (gpla p2)a

where 9H; = gHyg~! and 9p; is the representation z — p;(g~'zg) of

9H,. We put Iz(p1,p2) = {g € G : I(p1,p2) # 0} and say that g
intertwines p1 with po if g € I5(p1, p2)-

(2.4) PRINCIPAL LEMMA. Let T' be a finite soluble subgroup of AutG.
Suppose also that T is an l-group, | # p a prime number. Fori=1,2,
let H; be T-stable pro-p subgroups of G and let p; € Irr (H;)T. Let
g€ G:=GT. Then

dim c(I, (p1, p2)) £ 0 (mod )
— dimc(I,(g(p), g(p2))) 0 (mod ).

Proof. Let S be the set of triples (o, m1,m2) consisting of an (equiv-
alence class of) irreducible representation o of YH; N Hy and the mul-
tiplicity my (respectively ms) with which o occurs in (the restriction
of) 901 (respectively p2). The contribution of the triple (o, m1,m2) to
the intertwining space I;(p1, p2) has dimension mimq. Let S; be the
subset of S consisting of those triples with mims #Z 0 (mod ).

The group T" acts on S; since 9H; N Hy, 9, and py are each fixed by
I'. Let O be an orbit for this action; if O is not just one triple then
it has the form {(¢7,mi,m3) : v € I'/Stabr(c)}, where Stabr(o) =
{y €T : 0~ ¢7}. In particular, card O = [", for some r € N, and the
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contribution of O to the intertwining space has dimension ["mymgy = 0
(mod ).

Let ST = {(0j,m, m})} be the fixed points of S; for the action of T.
Then we have

dim ¢ (Z4(p1, p2)) Z’mlm2 (mod ).

Similarly, let T be the set of triples (7,7m1,n2) consisting of an (equiv-
alence class of) irreducible representation 7 of 9H] N Hi and the mul-
tiplicity m (respectively ms) with which 7 occurs in (the restriction
of) 9g(p1) (respectively g(p2)). Let Tj = {(7x,n¥,n%)} be the subset
consisting of those triples with niny Z 0 (mod [). Then, as above, we
have

dimc(Iy(g(p1),9(p2))) = ) nin§  (mod ).

By (2.3), Glauberman’s correspondence gives a bijection S| < Tj
and, using the remark following (2.3), we can examine how this bi-
jection affects the multiplicities. For ¢ = 1,2, let ¢, = +1 be such
that g(p;) occurs in p; with multiplicity congruent to ¢; (mod ). For
(aj,ml,mQ) € ST, let n; = £1 be such that g(o;) occurs in o; with
mult1phc1ty congruent to n; (mod ). Then, if (g(aj),n{,ng) e T, we
have n] = ¢;n;m] (mod [), for i = 1,2. In particular,

Jpnd = o Uy JoJd
E ningy = E €171 €27 My = €162 E mim3  (mod ),

J J
and the lemma follows. O

(2.5) COROLLARY. With notation as in(2.4), suppose p; = x; are char-
acters, i = 1,2. Then I4(x1,x2) # 0 if and only if I4(g(x1),9(x2)) # 0.

We will, in particular, apply (2.4) and (2.5) to the case I' = 3, where ¥
is as in §2.

3. Characters and intertwining

3.1. Simple characters in G

We begin by recalling the definitions of the orders §, J from [3, (3.1)].
Throughout this section [A,n,0, 5] will be a simple stratum in A. We
also assume that A is a strict lattice sequence; this restriction is due to
the fact that the results of [3, §3] are only available in this case, although
it seems likely that they will remain valid in the general case. We set
r = —ko(B,A) and let {a; : t € Z} be the filtration on A associated to
A. We write Bg for the centralizer of § in A, dropping the subscript
when the meaning is clear, and put b; = bg; = a; N Bg.
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We define $ and J inductively on r. If 8 is minimal over F' we put

(3.1) { H(B) = H(B,A) = bg + a[z)41;

J(B) =3I(B,A) =bg + i1y,

Otherwise, suppose that 7 < n and let [A,n,r,v] be a simple stratum
equivalent to [A,n,r, 8], which exists by [3, (2.4.1)]; then we put

{ HB) =H(B,A) =bg +9(7,A) Najzyyy;

(32) 3(8) = 3(B,A) = b + 31, A) Ness).

Note that this inductive definition is independent of the choice of
such that [A,n,r,7] is a simple stratum equivalent to [A,n,r,3]. We
also have filtrations on $(8) and J(53) given by

H'(B)=9H(B)Nay } for ¢ > 0.
J(B) =3I(B) Na

We define two families of compact open pro-p subgroups of G by

HY(B) = HY(B,A) = H(B,A) N Uy(A) } i rs 0
JH(B) = JH(B,A) = J(B,A) N U,(A) T

We may now recall the definition of the sets C(A, m, 3) of simple char-
acters associated to the simple stratum [A,n, 0, 3].

(3.3) DEFINITION ([3, (3.2.1)]). Let 8 be minimal over F, E = F[3].
For 0 < m < n—1, let C(A,m,B) denote the set of characters 6 of
H™*1(3) such that

(%) 9|Hm+1(ﬂ)ﬂU[%]+1(A) = Yg;

(i7) 9|HW+1(B)mBg factors through det p, : By — E*.

(3.4) DEFINITION ([3, (3.2.3)]). Suppose r < n and let [A,n,r,v] be
a simple stratum equivalent to the pure stratum [A,n,r, 5]. Then, for
0 <m <r—1,let C(A,m,[) denote the set of characters § of H™1(p3)
such that

(7) 9|Hm+1(ﬂ)mB; factors through det p,;

(#7) 0 is normalized by &(A) N Bj;

(¢77) if m’ = max {m, [5]}, the restriction 6| ym 11 (g is of the form o¢).
for some 6y € C(A,m/,7), c = — 7.

In the latter case, for m > r we set C(A,m, ) = C(A,m, ).

For § € C(A, m, B), we write I5(6) for the intertwining set I5(6, ). For
0 <m < r—1, we also set m,, = m,(B,A) = ar_p, Nn_,(B,A) +

I=(p).
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(3.5) THEOREM ([3, (3.3.2)]). Let [A,n,0,[] be a simple stratum in A,
r=—ko(B,A). Let 0 <m <r—1and § € C(A,m,). Then

I5(0) = (1 + mp)Bg (1 +my,).

3.2. Simple characters in G

Recall that ¢ is the involution of G given by z +— Z ' and ¥ = {1,0} C
AutG. We now look at the situation in our unitary group G = G™.
We consider again a simple stratum [A,n,0, 3] with A a strict lattice
sequence and continue with the notation of the previous section.

(3.6) LEMMA. Let [A,n,0, ] be a skew simple stratum in A. Then the
groups H*(B,A) and J*(B,A), t > 0, are fized by .

Proof. This follows by induction along r = —ko(5,A), since in the
definitions of $(5,A), J(B,A) ((3.1), (3.2)) we may choose the simple
stratum [A, n,r,7] to be skew, by (1.10). O

From now on, we suppose that the stratum [A,n, 0, 3] is skew. Hence
3. acts on the set of equivalence classes of irreducible representations of
H*(B,A). For 0 <m <n—1, we put C¥>(A,m,8) = {6 € C(A,m,p) :
6° = 0}. Note that this set is non-empty since card C(A,m,[3) is a
power of p, by [3, (3.3.21)].

We define two families of compact open subgroups of G by

t —
H_(B,A)—Ht(ﬁ,A)ﬂG} fOI‘tZO.
JL(B,A) =JHB,A) NG

Then, since H (8,A) = H(3,A)®, H(3,A) is a pro-p subgroup of G
and p # 2 = card X, we have Glauberman’s correspondence g (see(2.1))
between the set of equivalence classes of irreducible representations of
H'(B8,A) fixed by ¥ and the set of equivalence classes of irreducible
representations of H? (3, A).

We put C_(A,m,B) = {g() : § € C¥(A,m,B)} and call an element
of C_(A,m, ) a simple character for G. Note here that, since 6 is a
character, g() is just the restriction of 6.

REMARK. We could also have defined the simple characters for G di-
rectly, analogously to the definitions (3.3), (3.4) for G. These two
definitions coincide (see [14, §6.2]).

For 0 <m <r—1,let Q,, = Qm (B, A) denote thelgroup (1+m,, (B, A))N
G, where My, = My (B, A) = ap_m NN_p + JUZ1(B) as in (3.5).

(3.7) THEOREM. Let [A,n,0,8] be a skew simple stratum in A, 0 <
m<r—1and0_€C_(A,m,B). Then

IG(G—) = Qm : B,B nG- Qm
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Proof. Let 6 € C*(A,m,3) be such that §_ = g(6). Then, by (2.5),
Ig(0-) = 15(0)NG = (1+my) B (1+my) NG, by(3.5), and this will
decompose as required if we can show that (1+m,,), By, ¥ satisfy the

conditions of [15, (1.3)]. The only condition which is not automatic is
that, for b € B}, we have

(1+mp)b(1+my) N By = ((14my) N BZ)b((1+my,) N BE).
However, we have bg ,, C m,, C a,, so, for b € BE, we have

(14 bg,m)b(1+bgm) C (1 +mpy,)b(1+m,)NB
C(1l+am)b(l+an)NB
=(1+ bﬁ,m)b(l + bg,m),

by [3, (1.6.1)]. O
3.3. Semisimple characters in G

We now extend the results of the previous sections to semisimple strata,
whose definition we now recall (see [15, §3.2]).

Let [A,n,r, 3] be a stratum in A and put e = e(A), the op-period of A.
Set g = (n,e) and consider yg = 7T7;1/ 93¢/9. We define the characteristic
polynomial ¢g(X) of the stratum to be the reduction modulo p of the
characteristic polynomial of yg € A (which lies in 0p[X]).

Let V;, i = 1,2, be subspaces of V such that V = V; @ V5. Let 1* denote
the projection V' — V* with kernel V7, j # i, and put A¥ = 1*-A-17, for
i,j = 1,2. We identify A% = Hom p(V7?,V?) and abbreviate A% = A°.

‘We use the notation
All A12
A= ( A21 A22> .

If S is an op-lattice in A, we set S¥ = LN AY. We also put M =
A'@ A%, M = M*, a Levi subgroup of G, N, = 1+ A2, N; = 1+ A%
and P, = M N,, P, = MN;.

For i = 1,2, let A* be a lattice sequence in V; and put A = A § A2, a
lattice sequence in V of period e = lcm (eq,e3). Let B; € A* and put
n; = —va:(B;). Then we put 8 = 1 ® B2 and n = e-max {ny /ey, na/es}
so that vp(8) = —n. Thus we obtain a stratum [A,n,r, 3] in A, for any
0<r<n-—1.

(3.8) DEFINITION. A stratum [A,n,r, 3] as above is called split if
(i) B1 € A(AY);
(7i) either my/e; > ma/es or else all the following conditions hold:
(a) n1/e1 =ngy/es,
(b) B2 € R(A?),
(c) ged (pp,,p,) = 1.
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(3.9) DEFINITION.  (Inductive on the dimension of V.) A stratum
[A,n,r, (] is called semisimple if either it is a simple stratum and A is
strict or it is split as above and [A%, n;,r;, 5;] is a semisimple stratum,
for i = 1,2, where r; = [re;/e].

Let [A,n,0, 3] be a semisimple stratum as above and let {a; : i € Z} be
the filtration on A associated to A. We define the op-orders $ = H(5,A)
and J = J(B,A) inductively on the dimension of V. If [A,n,0,0] is a
simple stratum then $) and J are as defined in (3.1), (3.2). Otherwise,

we put
(B1,AY)  af?,,
H(B,A) = (a[%]ﬂ H(B2,A?) |
Y(B.A) = J(B1, A1) a[l@]
J(ﬂa )_ a?@] 3(52,A2) .

For t > 0, we put $H*(8,A) = H(B8,A) Na; and J*(B,A) = J(B,A) Na,
and also define the groups H'*(3,A) = H(B,A) N Ue(A), JHB,A) =
J(B,A) N Ug(A). We often write J(58,A) in place of J°(3,A). Note
that, since a,+1(A) N A" = e, jep+1(AY), we have HFL(B,A) N A* =

Gl for ¢ = 1,2, and likewise for J, so that H*1(B,A)N M =
AU (3, A1) x HI2141 gy, A7),

(3.10) LEMMA. For [3] <t < n—1, J(B,A) normalizes 13 on Upy1(A).

Proof. The case of a simple stratum is a special case of [3, (3.3.1)] and
the general case follows by induction since, for z € a;4; and putting
x = 22 _, xi; with z;; = 1'z17 € AY, we have g(1 + z) = ¢g, (1 +
Z11)YPp, (1 + x22). u

For 0 < m < n — 1, we would now like to define (inductively) a set of
semisimple characters C(A, m, 3) of the group H™1(3, A). If [A,n, 0, 5]
is a simple stratum then this is just the set of simple characters ((3.3),
(3.4)). Otherwise, we put m; = ["<%] and assume we have defined the
sets C(A*,m;, 3;), for i = 1,2.

(3.11) DEFINITION. Let [A,n,0,3] be a semisimple stratum as above.
For 0 < m < n—1, let C(A,m,fB) denote the set of characters 6 of
H = H™(,A) such that

(8) Olrnv g, (8) = V85

(#4) Writing 0| grp = 61 ® 02, we have 6; € C(A*,[™<£], B;), for i = 1, 2.

(3.12) LEMMA. Let [A,n,0,5] be a semisimple stratum as above and
fiem e Z, 0 <m < n—1. Let 0; € C(A*,[],8;), for i = 1,2,
and put m' = max{m,[5]}. Then there exists a unique character 0
of H = H™(B,A) such that 0|y = 61 ® 02 and Olu,....(r) = V8-
Moreover, 0 is normalized by J (B, \).
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Proof. We proceed by induction on the dimension of V. In the case
of a simple stratum, the first statement is empty while the second is
[3, (3.3.1)]. So assume [A,n,0,] is split semisimple; in particular,
we assume that ; is normalized by J(B3;,A?), for i = 1,2. As H =
HNM-U,41(A), uniqueness is clear so we need only prove existence
of such a character 6.

Put 0 = 61 ® 03, a character of HN M. Now HNM C J(B,A), so
H N M normalizes the character 1z of Uy,s41(A), by (3.10). Moreover,
Ou and g agree on Up, 1 N M so we define 6 by

O(uh) = ¥g(u)br(h), for u € Uy 41(A), h € HN M.

For j € J(B,A), h € Upry1, we have 0(jhj~1) = 6(h) by (3.10).
Similarly, we have that H normalizes ¢¥g on J (%3] ,A) so that, for
. ntl e g 17 —
heH,;jelJl 5 1(B, ), we have 0(jhj~) = g(jhj th~1)0(h) =
6(h). Hence, to prove that J(5,A) normalizes 0, we need only show

that J(8, A) N M normalizes 0| gnns = Opr, which is true by induction.
0

Note that we also have
O(hthhu) = HM(hM), for h; € HﬂNl, hy € HﬂM, h, € HﬁNu,
since H N N; C kerg and likewise for H N IV,,.

Lemma (3.12) says that we have a bijection

(3.13) C(A,m, B) «— C(A',[™e1], B1) x C(A?%,[™e2], B).

[ e

(3.14) THEOREM. Let [A,n,0, 3] be a semisimple stratum in A and let
6 € C(A,0,8). Then
I5(0) = J'B*J',

where B C M is the centralizer of B in A.

Proof. We proceed by induction on the dimension of V', the simple case
being (3.5). We have Ié(a) C Ié(’l,/),@|U[%]+1(A)) C U[nT—H]MU[nT—H], by
[15, (3.9)]. Now, by(3.12), J! normalizes § and Upzgr) C J' so we have
I5(0) = J'In(0)J'. But In(6) C J'B*J', by induction, so the result
follows. O

3.4. Semisimple characters in G

We return once more to the group G = @2, with the notation of the
previous sections.

(3.15) DEFINITION. A semisimple stratum [A,n,r, 5] is called skew if
(inductive definition, on the dimension) either [A, n,r, (] is a skew sim-
ple stratum in the sense of (1.7) or V = V; L V5 and each [A%, n;, 74, Bi]
is a skew semisimple stratum, ¢ = 1,2, where r; = [re;/e].
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From now on, we suppose [A,n,0, 3] a skew semisimple stratum. The
orders $(5,A), J(B,A) are fixed by the involution ~, since this is true
in the skew simple case and a}? = a?', for ¢ € Z. Hence the groups
HY(B,A) and J*(B,A), t > 0, are fixed by ¥ and, for 0 < m < n — 1,
we put CZ(A,m,B) = {0 € C(A,m, ) : §° = 0}. From (3.13) we have a
bijection

C(A,m, B) — CH(AL, [721], Br) x C¥ (A%, ["£2], B2).
We define compact open subgroups of G by H! (3,A) = HY(8,A) NG,
JE(B,A) = JH(B,A) NG, for t > 0. As before, we have Glauberman’s
correspondence g between the set of equivalence classes of irreducible
representations of H*(3, A) fixed by ¥ and the set of equivalence classes
of irreducible representations of H® (3, A).

We put C_(A,m,B) = {g(0) : § € C*(A,m,B)}. Then we have a
bijection

C—(Aama B) — C—(Ala [mel]aﬂl) X C—(AZa [me2]aﬂ2)'

[ e

As in the simple case, we also have C_(A,m,) = {0|H:n+1 : 0 €
C(A,m,B)}.

(3.16) THEOREM. Let [A,n,0,[3] be a skew semisimple stratum in A
and let _ € C_(A,0,8). Then

Ic(0_)=J'-BnG-J,
where B C M 1is the centralizer of 5 in A.

Proof. Let 6 € C*(A,0,8) be such that §_ = g(f). We proceed by
induction on the dimension of V', the simple case being (3.7). We have
16(6-) © T6(5 |Pi3141(A) © Pass (M 0 G)Paga, by [15, (3.15)]
Now, by (3.12), J! normalizes 6 so that J! normalizes §_. Then
Plap) C J! so we have Ig(0) = J1Iyng(0_)JL. But Iyng(6-) C
J! -BNG-JL, by induction, so the result follows. O

4. Heisenberg representations

Let [A,n,0, 5] be a skew semisimple stratum and let §_ € C_(A,0, 5).
We would now like to obtain all irreducible representations of J! (3, A)
containing the character §_ of H!(B,A). Since J(B,A) is a pro-p

subgroup of é’, we are able to proceed as above via Glauberman’s cor-
respondence. We remark the the results for G hold regardless of the
skewness of the stratum.

(4.1) PROPOSITION. Let 8 € C(A,0,8). Then the pairing

ko : (4,5') — 0([5,5')), 4,5 € J(B,N),



INTERTWINING AND SUPERCUSPIDAL TYPES 17

induces a nondegenerate alternating bilinear form J'/H?.

Proof. We proceed by induction on dim V', the simple case being given
by [3, (3.4.1)]. As in the proof of [3, (3.4.1)], we need only show that,
for z € 1,

d(l+z1+y)=1 VeI < zech

the implication < being clear, since J™*! normalizes 6.

We certainly have the implication = for z € J' N M, by the induction

hypothesis, so we suppose that z € J' N 42! = a[zﬁ ] satisfies the
2

right hand side (the case z € J' N A'? will follow symmetrically). For
y € 31N A2 we have [1 + 2,1+ y] C U,(A) so

1=0(14z,14+y]) = ¢Ys(l+2zy —yz) = Yr otry, r(Bzy — Byz)
=¢rotra p(z(ys — By))-

Now the map y — y8 — By = yB2 — By sends a?&] onto a1_2[%], by
[5, (3.7) Lemma 1], so we have wA(acal_z[%]) =1, thatisz € (a1_2[%])* =
afsq =91 DA% O

As usual, we write B for the centralizer of # in A. Note that we have
B CM.

(4.2) COrROLLARY (cf. [3, (5.1.1)]). Let 8 € C(A,0,8). Then there
exists a unique irreducible representationn of J* (8, A) which contains 6.

Moreover, n|g1(g.4) s a multiple of 8, dimn = (J*(8,A) : H'(8,A))=
and I5(n) = J'B*JL

Now let § € C*(A,0,8) and let 5 be the unique irreducible representa-
tion of J1(8,A) containing §. Then 77 is an irreducible representation
of J1(B,A) containing §7 = # so n° ~ n by uniqueness. Let n_ = g(n)
be the irreducible representation of J!(83,A) corresponding to 7 via
Glauberman’s correspondence. It contains §_ = g(6) by (2.3), since 7
contains 6 with multiplicity dim »n, which is odd. Moreover, n_|z1 is a

multiple of §_, since J (8,A) C I(0-).

REMARK. For J!/H?! considered as a kp-vector space, o is a linear
map which preserves the bilinear form ky. The space J'/H! then de-
composes into orthogonal eigenspaces and the +1-eigenspace is precisely
J /H!. In particular, the restriction of kg to J! /H! is nondegenerate
and we deduce that n_ is the unique irreducible representation of J!
containing 6_.

In order to obtain information on the intertwining of the representation
7_, we need more precise information on the intertwining spaces for 7.

Recall that for p a representation of a subgroup K of G, the intertwining
space I4(p|K) = I4(p, p) is defined to be

I4(p|K) = Hom sgnx (%p; p),
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with the notations of §2.

(4.3) ProPOSITION (cf. [3, (5.1.8)]). Let 6 € C(A,0,53) and let n be
the representation of J*(B3,A) given by (4.2). Then, for g € G, we have

1 ifge JBXJ1,
dim ¢ (Z,(n]J")) =
me(Zy(nl ") { 0 otherwise.
Proof. As in the proof of [3, (5.1.8)], and since I(f) = J'B*J*, the
proposition will follow if we can show that, for y € BX, JlyJ! is the
union of (J! : H') distinct (H', H') double cosets (where (J! : H') is
the group index). This will, in turn, follow from:

(4.4) LEMMA (cf. [3, (5.1.10)]). Fory € B> we have (J! : J'N(J1)¥) =
(H!: H' N (HY)Y).

Proof. We write J' = 1+j, H' = 1+ b. In the simple case, by [3,
(3.1.16)], we have an exact sequence

0— by —j -2 h* -5 by — 0,

where b; = a; N B, for ¢« = 0,1, ag is the map A — A given by = —
Bz — xf and s is a tame corestriction on A (see [3, (1.3)]). Suppose
now we are in the semisimple case. Then we have

b = H(B, AT Aty
B 32_1[%] 57)(52aA2)* '

Moreover, by [5, (3.7) Lemma 1] ag induces a bijection a’

[
that is between j'2 and h*'? (and likewise for a®'). Hence, by induction,

we have an exact sequence

2 12
S, —ats,
np1y 7 G(ap

0— by —j —2 b* =25 by — 0,

where s is a tame corestriction on A given by

ain a2\ _ [ S1 (a11) 0
S - I
az Q22 0 s2(az2)
for s1, s, tame corestrictions on A!, A2 respectively.

For y € B*, the map ag also induces a bijection between j'2 N (j2)¥
and h*2 N (h*'?)¥. Hence, as above (and as in the proof of [3, (5.1.10)]
in the simple case) we have an exact sequence

0— by +b6Y —j+7i¥ -5 5" + (5*)Y = by + bY — 0.

The lemma now follows exactly as in [3, (5.1.10)]. O



INTERTWINING AND SUPERCUSPIDAL TYPES 19

This also completes the proof of (4.3). O
We may now apply (2.4) to obtain the intertwining of 7_

(4.5) PROPOSITION. With notation as above, we have Ig(n_) = J* -
BNG-JL.

Proof. Let g € J'BXJ'NG. Since dim ¢(I,(n|J')) = 1, by(2.4) we have
g€ lg(n-)solg(n-) > J'B*J'NG D JL-BNG-JL. But, since n_|g
is a multiple of §_, we also have Ig(n_) C Ig(f_) = JL -BNG-J*,
by (3.7), so there is equality, as required. O

5. Mazimal tor:

We now consider the extensions of the representation n_ of J! to a rep-
resentation k_ of J_. For any such extension, the pair (J_, x_) will be
a type and Ind (J;_ k_ will be an irreducible supercuspidal representation
(see (5.2)). Observe that we cannot use Glauberman’s correspondence

for this stage since J is not a pro-p group (more precisely, because 2
divides (J : J1)).

We continue with the notation of the previous section; in particular,
[A,n,0, ] is a skew semisimple stratum.

(5.1) DEFINITION. A simple stratum [A,n,r, 3] is called mazimal if
F[f] is a maximal subfield of A. We extend this definition to semisimple
strata inductively, as usual.

From now on we suppose that [A, n,0, 3] is a maximal skew semisimple
stratum. This implies that the centralizer BgNG of B in G is a compact
maximal torus in G: if we write By = [[; E;* with E; an extension of F,
then each Ej; is stable under the involution ~, with fixed field F; g # E;,
and we have Bg N G = [[, N1(E;) where N1(E;) = {e € E : ee = 1}
is the norm-1 group of the extension E;/E; (. We write k;, k; o for the
residue fields of E;, E; o respectively.

We have J_ = (BgNG)JL so that J_/JL =[], Ni(k;), where Ny (k;) is
the norm-1 group of the extension k;/k;o. Each group Ni(k;) is cyclic,
of order 2 if E;/E;  is ramified, order card k; o + 1 otherwise.

Let 0_ € C_(A,0,53) and let n— be the (unique) irreducible representa-
tion of J! containing #_, given by (4.2). The group J_ normalizes 7_
and J_/J! is a product of cyclic groups so there exists an extension of
71— to a representation k_ of J_. Moreover, every extension of n_ is

of the form x_ ® x, for x a character of J_ obtained by inflation from
J_JJL.

(5.2) THEOREM. Let [A,n,0, 5] be a mazimal skew semisimple stratum
in A, 0_ € C_(A,0,8) and n_ the unique irreducible representation of
JY containing O_. Let k_ be any extension of n_ to a representation of
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JY. Then m = Ind S’i Kk_ 1s an irreducible supercuspidal representation
of G and (J_,k_) is a [G, T|g-type.

Proof. We have Ig(k_) C Ig(n-) = JX -BgNG-J: = J_. The first
assertion now follows from e.g. [6, (1.5)], while the second is a direct
consequence, by [4, (5.4)]. O

REMARKS. 1. The method described above to construct supercuspi-
dal representations essentially starts from a sequence of simple strata
[A;,n;, 0, B;] of decreasing level. It should be straightforward to allow
the final strata to be of level 0, though we do not pursue the matter
here.

2. We have constructed supercuspidal representations starting from
split strata. In [5, §6], there is also the notion of “relatively split”
strata, where a derived stratum [®8,n,n — 1, s(b)] is split. It should be
possible to use the results there to repeat the above constructions in
this case also.

3. It is possible to do much of the above construction in the more
general setting of §2, that is I' C AutG is an l-group, [ # p, and
G = GT. Indeed, the essential tools (2.4) and [15, (1.3)] are given in
this generality (see also the remark following (1.11)).

6. Skew simple characters in G

In this technical section we examine the simple characters 6 in G which
are fixed by the involution ¢ and show that we may choose the stratum
defining 6 to be skew. In particular, this implies that we have considered
all such characters in §3. The techniques used here rely heavily on the
results from [3, §3.5].

Let [A,n,m, (] be a simple stratum, with A a strict lattice sequence,
and let 8 € C(A,m, ). Let E = F[], B=C4(FE) and b,, = a,(A)N B,
as usual, and write A,, when we are thinking of A as an og-lattice
sequence. By [3, (3.3.17)], the G-normalizer of @ is

Neg(0) = R(Aog)(1 + mpm),

where m,,, = a,_, ﬂn_m+3[%1](ﬂ). In particular, the unique maximal

compact subgroup of Ng(6) is *Ng(0) = U(A,, ) (1 + myy,).

Let L C V be an op-lattice stabilized by Ny (#). Then L is an og-
lattice since 05 C °Ng(f). Consider the strict og-lattice sequence
Ar(n) = p%L and put ar, = ag(Az). Then ar N B is a maximal o0p-
order in B and by C ar,NB since U(A, ) normalizes Ar. Hence ag C ay,.
In particular, ag C Stab L.

This is true for all lattices stabilized by *Ng(6) so we have

ap = (") Stab L,
L
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where the intersection is taken over all lattices stabilized by *Ng(6).
In particular, ag is determined by °Ng(6), hence by 6. Then, since A
is strict, A is also determined by 6. Moreover, the integers n,m are
also determined by 6, since n = min{k € N : Ug(A) C kerf} and
m =max{k € Z,k > 0: Ug41(A) D H}, where H is the subgroup on
which 6 is defined.

(6.1) LEMMA. Let [A,n,m,[] be a simple stratum, with A a strict
lattice sequence, and let 8 € C(A,m,[3). Suppose that 6 is fized by o.
Then A is self-dual.

Proof. We also have that [A#,n,m,—f] is a simple stratum and 6 =
6° € C(A#,m,—B). But § determines A so we have A = A¥, as re-
quired. O

We require one more preliminary lemma.

(6.2) LEMMA. Let [A,n,m, ] be a skew simple stratum in A and let

6 be a simple character in C¥(A,m,). Then there exists a simple
character 0y € CE(A,m — 1,8) which restricts to § on H™1(B3, A).

Proof. Consider the set of 8’ € C(A,m — 1, 3) which restricts to . By
[3, (3.3.21)], this set has cardinality a power of p. But ¥ acts on it and,
since p # 2, there is a fixed point. O

We may now state the main result of this section.

(6.3) THEOREM. Let [A,n,m, 3] be a simple stratum, with A a strict
lattice sequence, and let § € C(A,m,[). Suppose that 0 is fized by

o. Then there exists a skew simple stratum [A,n,m,v] such that 6 €
C(A,m,7).

Proof. By (6.1), we already have that A is self-dual. We proceed by
induction along ko(83,A) so we assume first that 8 is minimal.

If m > [3] then g =0 =67 = @b_g so we have 8+ 3 € a_,,. Then, by
(1.10), there exists a skew stratum [A, n, m, 7] equivalent to [A, n,m, 5]
and § = ¢, € C(A,m,~) as required.

Assume now m < [2]. We have HIZ1+1(3,A) = Uin141(A); the restric-
tion of 6 to this group is g, while the restriction of 67 is w_E. Then,
since  is fixed by o, we have 8+ € a_[z]. By(1.10), there exists a skew
simple stratum [A,n, [%],7] equivalent to [A,n,[3], 3] and v is minimal
by [3, (2.1.4)]. By [3, (3.1.9)], we have H™*!(y,A) = H™*1(3, A) and,
furthermore, we have that |Ujny1(A) = g = 9.

To conclude that § € C(A,m, ) we need only show that 8|U™+* (A, )
factors through the determinant, or, equivalently by [3, (2.4.11)], that
it is intertwined by all of Bf. But the intertwining of the equivalent
simple strata [A,n,[5],7] and [A,n,[3], 5] is

U[nTJrl]()\)]—?;< U["TH]()\) = U[nTJrl](ﬂ)Bf;< U["TH](ﬁ),



22 S.STEVENS

by [3, (1.5.8)]. But this is precisely the intertwining of 6, by [3, (3.3.2)],
50 O|U™ (A, ;) is indeed intertwined by all of BX, as required.

We now assume ko(5,A) = —r > —n. We will first reduce to the case
m = r — 1 so we suppose m < r — 1 and that we have the result for
m' > m In particular we have that [A,n,m + 1, 3] is a simple stratum.
The restriction 6 = 0| grm+2 () is a simple character in C(A, m+1, 3) fixed
by ¥ so, by induction, we have a skew simple stratum [A,n,m + 1,4’]
with 6 € C(A,m+1,7'). By [3, (3.5.9)], we have H™1(8) = H™ (')

Let 0; € C¥(A,m,~") be such that ;|gm+2 = 0|gm+2. In particular,
we have 6 = 611 for some b € a_;_,, and, since 6, #; are both fixed
by ¥, ¢y = ¢_z on H™*!. Hence ¢, 5 = 1, on H™! and we may

assume b € A_. Let s be a tame corestriction on A relaive to F Y]/ F;
then, as in the proof of [3, (3.5.9)], we have s(b) € F[y'] + by _m.
Hence [AOFH,],m + 1,m, s(b)] is simple. Then by (1.11), there exists a
skew simple stratum [A,n, m,~y| equivalent to [A,n,m,y + b]. By [3,
(3.3.20)], we have 6 = 614, € C(A, m,~) as required.

Thus we assume m = r — 1. Let [A,n,m + 1,£] be a simple stratum
equivalent to [A,n,m + 1,]. Then 0 = O gmi2 € CE(A,m + 1,§)
so, by induction, there exists a skew simple stratum [A,n,r, &’'] with
6 € C(A,m+ 1,£). By [3, (3.5.9)], we have H™1(8) = H™1(¢) =
H™t1(¢") and we may alter ¢ to assume that C(A,m, &) = C(A,m,&").

Let ¢ € CZ(A,m,&') be such that ¢|gmi2 = 6. Let b € a_,_1 be such
that 8 = ¢p; as in the previous case, since 0, ¢ are both fixed by X,
we may assume b € A_. Let s, s’ be tame corestrictions on A relative
to F[{]/F, F[{']/F respectively. By [3, (3.5.13)], [A g, m + 1,m, 5(b)]
is equivalent to a simple stratum. Let Z be the G-intertwining of 6 and
put R = (ZNag) + ai/a;. Then, as in [3, (3.5.14)], we have

R ={z €bgo/be1:xs(b)

= s(b)z (mod bg _n,)}
={z e b&’,O/bgl,l ( )=s /

(b)z (mod ber,—m)}-

Since [Appe, m + 1,m,s(b)] is equivalent to a simple stratum, R is a
semisimple kr-algebra, by [3, (2.4.13)], and hence [Ap[er, m+1,m, s'(b)]
is also equivalent to a simple stratum. Then, by (1.11), [A, n,m, & + b]
is equivalent to a skew simple stratum [A,n,m,~| and 6 € C(A,m,~)
by [3, (3.3.20)]. O

Since here we rely only on the results of [3, §3.5], together with (1.10)
and (1.11), the above results will remain valid in the situation of an
l-group T acting on G, G = G* (see the remark following (1.11)).
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