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ABSTRACT
It has been argued that diapycnal mixing has a strongly stabilizing role in the global thermohaline circulation (THC).
Negative feedback between THC transport and low-latitude buoyancy distribution is present in theory based on thermo-
cline scaling, but is absent from Stommel’s classical model. Here, it is demonstrated that these two models can be viewed
as opposite limits of a single theory. Stommel’s model represents unlimited diapycnal mixing, whereas the thermocline
scaling represents weak mixing. The latter limit is more applicable to the modern ocean, and previous studies suggest
that it is associated with a more stable THC. A new box model, which can operate near either limit, is developed to
enable explicit analysis of the transient behaviour. The model is perturbed from equilibrium with an increase in surface
freshwater forcing, and initially behaves as if the only feedbacks are those present in Stommel’s model. The response
is buffered by any upper ocean horizontal mixing, then by propagation of salinity anomalies, each of which are stabi-
lizing mechanisms. However, negative feedback associated with limited diapycnal mixing only prevents thermohaline
catastrophe in a modest parameter domain. This is because the time-scale associated with vertical advective-diffusive
balance is much longer than the time required for the THC to change mode. The model is then tuned to allow equilibrium
THC transport to be independent of the rate of mixing. The equilibrium surface salinity difference controls the classical
THC-transport/salinity positive feedback, whereas the equilibrium interior density difference controls the mean-flow
negative feedback. When mixing is strong, unrealistic vertical homogenization occurs, causing a convergence in surface
and interior meridional gradients. This reduces positive feedback, and increases stability, in the tuned model. There-
fore, Stommel’s model appears to overestimate, rather than underestimate, THC stability to high-frequency changes in
forcing.

1. Introduction

Stommel (1961) used a simple box model (hereafter Stommel’s
model) to argue that a bifurcation structure is intrinsic to thermo-
haline circulation (THC) in a body of water if buoyancy forcing
due to surface heat and freshwater exchange are of the opposite
sign and have different time-scales. The significance of this was
appreciated much later, when ice- and marine-core records (e.g.
Dansgaard et al., 1993) and GCMs (e.g. Bryan, 1986) provided
evidence for abrupt and dramatic transitions in the meridional
overturning circulation (MOC), which comprises the global THC
as well as overturning that is directly driven by wind. These tran-
sitions are typically associated with an increase in freshwater flux
to high latitudes, either from ice-melt or from atmospheric forc-
ing. The decrease in salinity at high latitudes causes a decrease in
meridional pressure gradient and therefore THC transport, thus
reducing the transport of saline water from low to high latitudes.
For a large change in forcing, this positive feedback mechanism,
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first identified in Stommel’s model, may yield a non-linear re-
sponse resulting in ‘thermohaline catastrophe’, with a reversed
haline-driven overturning. This reversed circulation can remain
stable under the initial conditions because of the different ways
in which oceanic surface temperature and salinity are forced.
The heat flux is closely related to the temperature difference
at the air–sea interface, whereas the freshwater flux does not
directly depend on ocean salinity. Therefore, the dependence of
the equilibrium meridional salinity difference on the rate of over-
turning is greater than that of the equilibrium meridional temper-
ature difference, and weak overturning favours a haline-driven
circulation.

Despite the insights it provides, the simplifications in
Stommel’s model remove processes that are fundamental to the
THC. One of the most important limitations is the absence of an
appropriate parametrization for the effect of diapycnal mixing.
Theory and GCM simulations (e.g. Bryan, 1987; Gnandesikan,
1999; Nilsson et al., 2003) suggest a weak non-linear equilib-
rium dependence of THC transport on meridional density gra-
dient rather than the linear relationship in Stommel’s model.
The effect of such a parametrization at equilibrium has been
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investigated with conceptual models (Park, 1999, hereafter P99;
Nilsson and Walin, 2001, hereafter NW01) and stability of the
thermally driven THC is increased in these studies compared
with Stommel’s model. This may suggest that the probability of
thermohaline catastrophe is less than previously believed. How-
ever, there has been an absence of studies into the transient state
with models incorporating diapycnal mixing. This is an impor-
tant omission, considering that the primary motivation for study-
ing the THC is anticipating its response to anthropogenic climate
change. Furthermore, existing models make assumptions that
are unlikely to be valid in the transient state, such as vertical
advective-diffusive balance (P99) or that the high-latitude ocean
and the deep low-latitude ocean can together be considered a
single reservoir (NW01).

Here, a three-box single-hemisphere model is developed with
the goal of starting to fill this gap in understanding. There
is strong evidence that circulation driven by interhemispheric
gradients is important (e.g. Rooth, 1982; Rahmstorf, 1996;
Marotzke and Klinger, 2000), and that symmetric cells in each
hemisphere are unstable to asymmetric perturbations (Bryan,
1986; Vellinga, 1996; Weijer and Dijkstra, 2001; Nilsson et al.,
2004). Conceptual models that have helped to explain this ex-
hibit dynamics that are explicitly excluded when considering one
hemisphere in isolation. Nevertheless, simple one-hemisphere
models have proven valuable in understanding aspects of the
THC, and we proceed with such a model for the sake of sim-
plicity. Further details of the choice of model are explained in
Section 2. Thermally driven equilibria are analysed in Section 3,
and the model’s response to changes in freshwater forcing is
examined in Section 4. In Section 5, the results are placed in
the context of previous work, including GCM studies, and their
significance is discussed.

2. Choosing a model

2.1. Geostrophy, thermohaline circulation transport
and diapycnal mixing

Theoretical and GCM-based evidence (e.g. Wright et al., 1995;
Marotzke, 1997; Park and Bryan, 2000) suggests a linear equilib-
rium relationship between meridional and zonal density differ-
ences. Combined with geostrophy, this provides a linear relation-
ship between twice-depth-integrated meridional density differ-
ence and THC transport. There is further evidence from GCM
studies (Hughes and Weaver, 1994; Rahmstorf, 1996; Thorpe
et al., 2001) linearly relating the rate of overturning to merid-
ional density differences between the high-latitude North At-
lantic and the subtropical South Atlantic, rather than the equa-
tor (indicating support for an interhemispheric flow). Of these
studies, only Hughes and Weaver (1994) used the twice-depth-
integrated density difference; Rahmstorf (1996) used the deep
density difference, and Thorpe et al. (2001) used the once-depth-
integrated density gradient. How quickly the ocean adjusts to an

equilibrium relationship between meridional and zonal gradi-
ents, in response to perturbations, depends on the time required
to propagate anomalies. Various studies suggest as little as sev-
eral months within a hemisphere (e.g. Kawase, 1987; Johnson
and Marshall, 2002) or as much as several decades (McDermott,
1996; Marotzke and Klinger, 2000). However, the relationship
between meridional gradients and overturning transport appears
to remain valid in the transient state in at least one GCM (Thorpe
et al., 2001).

A linear relationship between zonal and meridional density
differences would imply that the maximum in the thermoha-
line overturning streamfunction, ψ , in a rectilinear basin, can be
written

ψ = L
∫ 0

z0

V dz, (1)

where

V (z) = cρg

ρ0 f L


 ∫ z

−h
ρmer dZ − 1

h

∫ 0

−h

∫ 0

−h
ρmer dZ dZ


.

Here, z0 is the level of no motion [V (z0) = 0], g is acceleration
due to gravity, ρ 0 and f are representative values for density and
the Coriolis parameter, respectively, h is the depth of the ocean,
cρ is a dimensionless coefficient relating zonal and meridional
density difference and incorporating basin geometry, L is the
horizontal scale of the basin, and ρmer is the meridional density
difference as a function of depth. The second term arises because
it is necessary to obtain zero net top-to-bottom volume transport
in order to conserve volume in an enclosed basin, if it is assumed
that basin-integrated wind-driven meridional flow is zero. If
ρmer ≥ 0 in the domain −h ≤ z ≤ 0, and ρmer > 0 in at least part
of this domain, exactly one level of no motion is obtained.

There are several approximations available to simplify this to
a form suitable for box models. Consider a two-layer ocean with
ρmer = �ρ above the pycnocline depth, H, and ρmer = 0 below
this level. Equation (1) becomes

ψ = CH �ρH 2, CH = cρg

ρ0 f

(
1 − H

2h

)2

. (2)

Studies in which Stommel’s model is applied to the global ocean
usually extend the surface density difference throughout the wa-
ter column. This can be represented here by stating H = h and
�ρ = ρ s = the surface density difference. However, the THC
coefficient must then be scaled to yield reasonable ψ for reason-
able ρ s

ψ = Chρs, Ch = H ∗

h

cρgh2

4ρ0 f
= constant, (3)

where H ∗/h is an estimate of the proportion of the water column
over which the meridional density difference exists in the ocean.
Because of the lack of vertical partitioning in Stommel’s model,
the low-latitude ocean is kept vertically homogeneous despite
the addition of buoyancy from the above and density at depth.
For this to be applicable in the ocean, an energy source would
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be required to flux buoyancy to the deep low-latitude ocean to
balance the upward buoyancy flux associated with overturning.
A process by which this can occur is diapycnal mixing. [Wind-
driven upwelling of dense water in the Southern Ocean (e.g.
Toggweiler and Samuels, 1998) and geothermal heating of the
deep ocean (Adcroft et al., 2001) are also likely to contribute,
but these are neglected here.] It is implicit in Stommel’s model
that this energy source is never less than the energy required to
keep the low-latitude ocean homogeneous, which is not the case
in the modern ocean.

In the classical ‘thermocline scaling’ (Bryan and Cox, 1967;
Welander, 1971; Bryan, 1987), the more reasonable approxima-
tion of negligible velocity below the thermocline is made. This is
equivalent to stating that mixing is sufficiently weak that there is
a shallow pycnocline (i.e. H � h). Therefore, CH is insensitive
to H:

ψ = CH �ρH 2, CH = cρg

ρ0 f
= constant. (4)

The vertical advective-diffusive balance, assuming spatially uni-
form diffusivity (Munk, 1966), is then

ψ̄/A = w̄ = κ̄/H̄ , (5)

where A is the basin’s surface area, w is upwelling velocity, κ is
diapycnal diffusivity, and overbars indicate equilibrium values
for time-dependent parameters (κ is a time-dependent parameter
if it depends on density structure, which is not the case in this
study). Simultaneous solution of eq. (4) with eq. (5) yields

ψ̄ = C1/3
H A2/3κ̄2/3�ρ

1/3
. (6)

P99 replaced eq. (3) in Stommel’s model with eq. (6) and ap-
plied the latter equation when considering small perturbations
from equilibrium, using constant κ . Stable thermally driven so-
lutions existed within a greater parameter domain, leading to
the argument that greater salinity forcing is required to initi-
ate thermohaline catastrophe than in Stommel’s model. NW01
used a two-layer model with isopycnal coordinates (dense low-
latitude water in the same box as high-latitude water) and intro-
duced a fixed energy source (κ ∼ �ρ−1), as well as alternative
parametrizations, to the advective-diffusive balance. If energy
consumed in mixing was kept constant, rather than the rate of
mixing itself, the THC was strengthened by a weaker surface
meridional density gradient in their model as well as in a GCM
(Nilsson et al., 2003). This led to stable thermally driven equi-
libria for any parameter values.

The P99 and NW01 models provide insights into the equi-
librium THC, but are not well suited to investigation of the
transient state without modification. The P99 model assumes
vertical advective-diffusive balance; because the time-scale of
this process in the low-latitude abyssal ocean is of the order of
a millennium (Munk, 1966), such an assumption is only valid at
equilibrium. The structure of the NW01 model means that any

changes in high-latitude density forcing are diluted through the
deep low-latitude ocean (i.e. most of the global ocean), which
is again valid only at equilibrium. One way of resolving these
problems would be to subdivide the isopycnal dense layer in the
NW01 model into a high-latitude region and low-latitude deep
region. This requires the use of isopycnal coordinates, with the
lowest possible resolution, where individual layer densities are
varying. A parametrization is then required to conserve mass,
and it has been shown that the stability of the system depends to
first order on the choice of parametrization (Oliver, 2003). For
this reason, a depth-coordinate model, containing an alternative
simplification of eq. (1), is developed here.

2.2. A three-box model

Figure 1 is a schematic diagram of the model used in this study.
Three boxes represent (1) the low-latitude mixed layer, (2) the
high-latitude ocean and (3) low-latitude pycnocline water and
the deep ocean. Due to thermohaline overturning, ψ , water de-
parts the low-latitude ocean from box 1, passes through box 2,
returns in box 3, and upwells to complete the loop. The structure
is thus far similar to one-half of the two-hemisphere Joyce (1991)
model, or the oceanic part of the Nakamura et al. (1994) and Rivin
and Tziperman (1997) models. However, we wish to introduce
diapycnal mixing. This necessitates the exclusion of pycnocline
water from box 1, so that mixing controls the flux of buoyancy
from the mixed layer into the pycnocline, which is the most
dynamically active region in a one-hemisphere THC. There-
fore, even before diapycnal mixing is introduced, our model is
not directly comparable with those employed by Joyce (1991),
Nakamura et al. (1994) and Rivin and Tziperman (1997). Di-
apycnal mixing is represented by a vertical exchange flux, K =
κ A1/h, where A1 is the surface area of the low-latitude boxes.

Fig 1. Schematic diagram of the three-box model. THC transport is
denoted by ψ , vertical and horizontal exchange by K and �,
respectively, atmospheric freshwater transport by F, and zigzag lines
indicate air–sea heat exchange.
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Fig 2. Depth profiles for an idealized ocean (solid) and its representation in the model (dashed) of (a) meridional density difference, ρmer, (b)
meridional velocity, V , (c) a measure of meridional density transport, |V | × ρmer, and (d) contribution of vertically local density difference to ψ (i.e.
the difference between ψ obtained from the density profile in a and the value of ψ which would be obtained if vertically local ρmer were zero). The
quantities in (b), (c) and (d) are derived from eq. (1).

The ocean depth h is chosen as the scale depth because the model
implicitly assumes that water crossing the interface is instanta-
neously well mixed throughout the ocean. (It is assumed that δ

� h, where δ is the depth of the surface layer.) A similar ap-
proach to diapycnal mixing was employed by Gargett and Ferron
(1996), although they also considered double-diffusion, and by
Shaffer and Olsen (2001). Additionally, there is a prescribed sur-
face horizontal volume exchange, �, representing wind-driven
circulation. There is evidence from another box model study
(Shaffer and Olsen, 2001) that such horizontal mixing stabilizes
the thermally driven THC. Note that the structure of the model
presumes a thermally driven THC. Therefore, we investigate
whether thermohaline catastrophe occurs, but not the evolution
of the resulting haline-driven circulation or the existence and
stability of haline-driven solutions.

It has been noted before that any surface density gradient must
be communicated to greater depths if a substantial overturning is
to be maintained (Munk and Wunsch, 1998). Equation (1) shows
that ψ is insensitive to ρmer near the surface. In the thermocline
scaling also, the quadratic dependence of ψ on H means that
deeper pycnocline water is more dynamically active. Therefore,
a simplifying approximation can be applied that ψ depends only
on the density difference between boxes 2 and 3, ρ d:

ψ = Chρd, Ch = cρgh2

4ρ0 f
= constant. (7)

[Note that eq. (7) differs from eq. (3) only in that the mean
subsurface density difference is applied, and therefore the fac-
tor of H ∗/h is not required.] Consistent with the thermocline
scaling, the dynamically active low-latitude region contains the
pycnocline.

Employing a dynamically inactive surface box may appear
inconsistent with the assumption that the source of the poleward
limb of the overturning cell is box 1 rather than box 3. However,
the depth range over which the majority of poleward volume
flux occurs is different from the depth range of the meridional

density gradient that drives the THC. Figure 2 shows that, on
applying eq. (1) exactly to both an idealized meridional density
difference profile and to the representation of that profile in the
model, much of the poleward volume and buoyancy transport
occurs near the surface, even though the THC primarily depends
on density gradients in the ocean interior. Nevertheless, zero
thermohaline volume transport from box 3 to box 2 is not en-
tirely justified, but it is assumed because it facilitates analytical
solution and interpretation of the model.

The terms Tn, Sn and ρ n indicate temperature, salinity and
density, respectively, in box n. Subscripts are introduced such
that, for example, T s = T 1 − T 2, T d = T 3 − T 2 and T v =
T 1 − T 3. (For ρ s, ρ d and ρ v, the sign is reversed, so that each of
these terms would be positive for the modern ocean.) Instanta-
neous temperature restoring is assumed for the boxes in contact
with the atmosphere, so that these boxes have fixed tempera-
ture: Ṫ1 = Ṫ2 = 0. The virtual salt flux approximation is applied
for the fixed freshwater flux, F; there is an equatorward atmo-
spheric salt transport rather than a poleward atmospheric fresh-
water transport. The equations for the evolution of temperature
and salinity are

V3Ṫ3 = K Tv − ψTd, (8)

V1 Ṡ1 = S0 F − (ψ + K )Sv − �Ss, (9)

V2 Ṡ2 = (ψ + �)Ss − S0 F, (10)

V3 Ṡ3 = K Sv − ψSd, (11)

where, for example, Ṫn denotes the time derivative of Tn, and S0

is a representative ocean salinity. A linear equation of state is
used to determine density

ρ − ρ0 = −a(T − T0) + b(S − S0), (12)

where a is the thermal expansion coefficient and b is the haline
contraction coefficient.

Tellus 57A (2005), 4



680 K. I . C . OLIVER ET AL.

Table 1. Fixed parameters in the model

Parameter Value

A1 2 × 1014 m2

A2 1 × 1013 m2

a 0.15 kg m−3 ◦C−1

b 0.8 kg m−3

Ch 30 × 106 m6 kg−1 s−1

δ 200 m
h 4000 m
S0 35
T 1 20◦C
T 2 0◦C

Fixed parameters, used later for numerical solution of the
model, are introduced in Table 1. A2 and T 2 are chosen to repre-
sent the regions of downwelling in the northern North Atlantic.
Choosing the area of the North Atlantic basin for A1 would be
inappropriate because it is unlikely that the greater proportion
of upwelling and diapycnal mixing occurs in this basin. Instead,
A1 represents the majority of the global ocean, which is the
area over which the canonical diffusivity of 1 cm2 s−1 (Munk,
1966) would need to act to balance upward transport. This can
be rationalized in terms of residence times. The implied mean
upwelling velocity in the model is ψ/A1; if A1 is too small,
then the upwelling rate is too large and the residence time of
water in box 3 is too small. Therefore, unreasonably high diapy-
cnal mixing would be needed to give a reasonable exchange flux
between boxes 1 and 3 and therefore a reasonable equilibrium
solution. The depths δ and h are 200 and 4000 m, respectively, so
V 1/V 2 = 1. High-latitude downwelling regions (represented by
box 2) contribute a small proportion of the global ocean area,
whereas the low-latitude ocean in rapid communication with
the atmosphere (box 1) occupies a narrow layer. Equal volumes
provide analytical simplicity, in the absence of evidence that a
different ratio of volumes would be preferable. An equal volume
for box 3 would not be reasonable; this is prescribed to be 19
times greater than that of each of the other boxes. The value of the
THC coefficient applicable in this model, Ch, is chosen to yield
a THC of ∼16 Sv when the deep temperature difference is 4◦C
and the deep salinity difference is 0.1. Although it is described
as a fixed parameter, it is modified in Section 4.3.

3. Equilibrium solution

3.1. Thermohaline circulation dependence on surface
meridional density difference

Because many studies determine THC transport as a function of
surface meridional density difference, it is useful to begin with
this derivation. First, from the definitions of ρ s, ρ v and ρ d

ρs = ρv + ρd. (13)

At equilibrium, the buoyancy that box 3 gains through diapyc-
nal mixing is balanced by buoyancy lost through thermohaline
overturning:

K ρ̄v = ψ̄ρ̄d (14)

(overbars indicate equilibrium values for time-dependent vari-
ables). Eliminating ρ v and ρ d from eqs. (7), (13) and (14), the
quadratic equation

ψ̄2 + K ψ̄ − K Ch ρ̄s = 0, (15)

with the positive root

ψ̄ = K

2

[
−1 +

(
1 + 4Ch ρ̄s

K

)1/2
]

, (16)

is obtained.
Using eqs. (7), (13) and (14) again, the result is obtained that

Ch ρ̄s

K
= ψ̄

K

(
ψ̄

K
+ 1

)
= ρ̄v

ρ̄d

(
ρ̄v

ρ̄d
+ 1

)
. (17)

In the modern ocean, the mean density of subsurface water
is closer to that of high-latitude water than low-latitude surface
water. If 2ρ̄v/ρ̄d � 1, an approximation (similar to H � h in
the thermocline scaling) can be made:

ψ̄ ≈ (K Ch ρ̄s)
1/2. (18)

The relationship between ρ̄s and ψ̄ is less than linear because
the residence time of water in the deep box is dependent on ψ̄ .
More buoyancy can be stored in the deep ocean, due to diapycnal
mixing, when ψ̄ is smaller. This acts to increase the deep den-
sity gradient and therefore ψ̄ , a negative feedback mechanism.
A similar redistribution of low-latitude buoyancy also provides
the negative feedback in the classical thermocline scaling, al-
though in isopycnal coordinates this is expressed as an increase
in pycnocline depth rather than a decrease in subsurface density.

The power laws are 1/2 for surface density difference, and 1/2
for diapycnal mixing also, rather than 1/3 and 2/3, respectively,
in the thermocline scaling eq. (6). (Note, however, that ρ̄s is not
entirely equivalent to �ρ in the thermocline scaling.) The power
laws from our model would be obtained in the thermocline scal-
ing if ψ in eq. (4) were proportional to H rather than H 2. This
is equivalent to using the once-depth-integrated meridional den-
sity difference rather than the twice-depth-integrated difference.
There is GCM evidence in support for such an approach (Thorpe
et al., 2001), which has been employed previously in box models
(Joyce, 1991; Lyle, 1997). Nevertheless, we attribute the discrep-
ancy between our model and the classical scaling to a weakness
in our model. In two depth-coordinate boxes, the depth of pene-
tration of buoyancy is not resolved. Therefore, the dependence of
ψ on the location, as opposed to the quantity, of subsurface low-
latitude buoyancy is not diagnosed. As a result, the equilibrium
THC transport in the model presented here might be consid-
ered slightly too dependent on ρ̄s and not dependent enough on
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K. However, this is only a quantitative discrepancy, and the non-
linear dependence on ρ̄s results from a similar negative feedback
mechanism that is present in the thermocline scaling.

In the unlikely limit of strong mixing, 4ρ̄v/ρ̄d � 1, the ap-
proximation (1 + x)n ≈ 1 + nx can be applied and the solution
is obtained:

ψ̄ ≈ Ch ρ̄s. (19)

This simply states that if low-latitude diapycnal mixing is
sufficiently intense, it ceases to be rate-limiting in the THC,
the low-latitude ocean is homogenized, and Stommel’s model
applies.

3.2. Equilibria and stability dependent on surface
buoyancy forcing

The model is now solved with the prescribed (time-independent)
input parameters. At equilibrium, we have from eq. (10) that
(ψ̄ + �)S̄s = S0 F . Therefore, the poleward buoyancy transport,
(ψ̄ + �)ρ̄s, is given by

(ψ̄ + �)ρ̄s = a(ψ̄ + �)Ts − bS0 F . (20)

Substituting for ρ̄s in eq. (15) yields a cubic equation in ψ̄ :

ψ̄3 + (K + �)ψ̄2 − K (ChaTs − �)ψ̄
+ K Ch(bS0 F − aTs�) = 0.

(21)

Note that T s is a fixed parameter. With fixed parameters as de-
fined in Table 1, ChaT s = 90 Sv; therefore, it is highly unlikely
that the linear coefficient is non-negative. Because the cubic and
linear coefficients have opposite signs, there is an extreme in
the function given by the left-hand side of eq. (21) either side
of ψ̄ = 0. There are therefore up to two real positive roots (any
negative roots are meaningless).

Figure 3 is a plot of these roots in ψ̄–F space for � = 0 and for
large � (5 Sv), for two values of K: 2 and 5 Sv. The stability of
the thermally driven equilibria is not indicated because, unlike in
Stommel’s model, the greater positive equilibrium is not always
stable (no cases of a stable smaller equilibrium have been found,
however). Approximations for the limit of stable solutions, for
large and small K, respectively, are derived in Appendix A. The
maximum freshwater forcing sustainable in a stable thermally
driven equilibrium THC, F max, dependent on K and �, is plot-
ted in Fig. 4. The existence of stable solutions is favoured both
by large K and large �. The primary effect of increasing K is to
increase ψ̄ . This increases negative feedback due to removal of
anomalies by the mean flow. Increasing � directly increases this
feedback, independent of the effect it has on ψ̄ . The stabiliza-
tion by stronger diapycnal and horizontal mixing is consistent
with that obtained by Shaffer and Olsen (2001). Like Shaffer
and Olsen, we find that horizontal mixing alone can sustain a
thermally driven overturning with vanishing diapycnal mixing
(eq. A10). However, the resulting overturning transport is very
small.

Fig 3. Dependence of ψ̄ on F for � = 0 (thin lines) and � = 5 Sv
(thick lines), and for K = 5 Sv (solid lines) and K = 2 Sv (dashed
lines) in the model. Thermally driven equilibria are plotted, regardless
of stability.

Fig 4. Contour plot of maximum freshwater forcing sustainable in a
stable thermally driven THC, F max (Sv), dependent on K and �, in the
model. In the shaded region, stability is limited by eq. (A4): �1�2 ≥ 0.
In the unshaded region, stability is limited by eq. (A3): �1 + �2 ≤ 0.

In Appendix A it is shown that, provided V 3 � V 2, neither in-
stability nor oscillatory behaviour can be introduced by buoyancy
storage in the deep ocean. However, in the absence of horizontal
mixing, any stable positive equilibrium is a spiral point, indicat-
ing that internal oscillations are possible. Such oscillations do
not exist in Stommel’s model (Cessi, 1994; Ruddick and Zhang,
1996), due in part to its symmetry, which prohibits a phase
lag in the response. By introducing a vertical dimension, this
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Fig 5. Evolution of the model with K = 5 Sv, � = 0. F is increased from 0.2 to 0.28 Sv at t = 0. S1 (solid), S2 (dashed) and S3 (dot-dashed) are
plotted in (a). A different scale is used to plot S3 (dot-dashed) in (b); T 3 (solid) is also plotted. ψ (solid) is plotted in (c). The dashed line in (c)
shows the evolution of ψ in an identical run except that � = 5 Sv. The dot-dashed line in (c) shows the evolution of ψ for the ‘2K’ experiment
described in Section 4.3 [K = 10 Sv; Ch (≈18 m6 kg−1 s−1) tuned to yield unchanged ψ̄ ; � = 0; other terms as described above].

symmetry is removed here; further consequences of this are ex-
plored in Section 4.2. Horizontal mixing, but not diapycnal mix-
ing, tends to suppress oscillations, whereas an increased merid-
ional salinity difference tends to enhance them.

4. Transient behaviour

4.1. Response to a change in freshwater forcing

We wish to understand how the inclusion of limited diapycnal
mixing affects the modelled ocean’s response to changes in at-

mospheric forcing, such as those that may be occurring due to
anthropogenic climate change. As a simple starting point, we
present an example model run where the model is perturbed
from equilibrium by an increase in freshwater forcing. In addi-
tion to the fixed parameters in Table 1, we use K = 5 Sv, � =
0. Initial F is 0.2 Sv, but this is increased by �F = 0.08 Sv to
0.28 Sv at t = 0 yr.

The evolution of the model parameters is plotted in Fig. 5.
The immediate response is for the salinity of the two boxes in
contact with the surface to rapidly diverge, resulting in a decrease
in ψ , because the properties of the deep box hardly change on
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this short time-scale. Positive feedback between high-latitude
salinity and THC transport (similar to that in Stommel’s model)
enhances this change. At the same time, the properties of the
deep ocean are slowly evolving. The inflow of cold water from
box 2 becomes weaker, but the input of warm water from box 1
has not changed, resulting in heat storage in box 3. The amount
of salt storage in the deep ocean is also changing. The salinity of
the inflow to box 3 from box 2 is decreasing. Although box 3 also
receives water from box 1, which is increasing in salinity, ψ >

K , so the effect of the box 2 source is more important. The deep
ocean is a large reservoir, so the effect on S3 is small. However,
because freshwater (more accurately virtual salt) is conserved,
a decrease in salinity of the deep ocean is associated with an
increase in salinity of the surface ocean. Perturbations to box 1
are communicated to box 2 relatively rapidly; therefore, the effect
of this is to increase ρ d, and therefore ψ . Buoyancy storage, in
the form of heat, in the deep ocean also tends to increase ψ .
Thus, a ‘recovery phase’ commences in which the THC tends
towards a new equilibrium. The recovery phase is accelerated by
the positive feedback between S2 and ψ , similarly to the initial
phase.

This behaviour is representative of runs in which thermohaline
catastrophe does not occur (i.e. runs in which ρ d does not change
sign). Figure 6a shows the maximum amplitude response of the
THC for a range of values of initial F and �F. Where changes to
the THC remain subcritical, the maximum amplitude response
is greater than the equilibrium response by a factor of 3–4 typ-
ically for positive �F (slightly less for negative �F). It is not
surprising, therefore, that thermohaline catastrophe can occur
even when the final freshwater forcing is less than F max. Ther-
mohaline catastrophe is favoured by large �F, so that the critical
final freshwater forcing is much weaker if the initial forcing is
also weak. If such a result is transferable to the ocean, it sug-
gests that thermohaline catastrophe could occur whether or not
the present state is near the stability limit, even without consider-

Fig 6. Maximum amplitude of change in THC transport (Sv) in response to a change in freshwater forcing from F to F + �F , for: (a) K = 5 Sv,
� = 0; (b) K = 5 Sv, � = 5 Sv; (c) same as (a) but with a very large deep box. Shading indicates that the maximum amplitude response is more than
a factor of 3 greater than the equilibrium response; this is absent from (c) because a true equilibrium is not reached. The uncontoured region
indicates that thermohaline catastrophe occurs. The thick lines indicate the threshold of �F in eq. (25), above which thermohaline catastrophe would
be predicted by the simplified model.

ing the high-frequency variability in forcing that is absent from
this study.

The experiment in Fig. 5 was repeated but with non-zero hor-
izontal mixing (� = 5 Sv). The behaviour is similar, but the
response of ψ , plotted as a dashed line in Fig. 5, is dampened.
This is because the salinity anomalies in boxes 1 and 2, of oppo-
site signs, are communicated to one another by horizontal mix-
ing (not shown), acting as a negative feedback. Figure 6b shows
that non-zero � also diminishes the possibility of thermohaline
catastrophe.

4.2. What initiates the recovery phase?

The THC in the model decreases rapidly in response to an in-
cremental increase in freshwater forcing, even for a subcritical
change. It has been argued (Johnson and Marshall, 2002) that
the effect of buoyancy transport to the deep ocean by diapycnal
mixing can be ignored on this time-scale, because the density
of the deep ocean changes slowly. It is also worth noting that,
because (ψ̄ + K )T̄ v = ψ̄ T̄ s and (ψ̄ + K )S̄v = ψ̄ S̄s, the initial
perturbations in oceanic heat and salt fluxes into boxes 1 and 2 are
nearly symmetric (see Fig. 5). The only asymmetry in response
to a small perturbation is caused by a perturbation in ψ while
K remains constant. We therefore consider the consequences of
introducing a simplification by which the properties of box 3 do
not change and the evolution of S1 is equal and opposite to the
evolution of S2. This simplified model is not intended to be phys-
ically plausible, but to provide a basis from which the behaviour
of the unsimplified model can be understood.

In the simplified model we have Ṡs = −2Ṡ2:

V2 Ṡs = 2S0 F − 2(ψ + �)Ss, (22)

If the freshwater forcing is suddenly increased by �F, perturbing
the model from equilibrium, then eq. (22) can be rewritten in
terms of then mean, S̄s, and perturbation, S′

s in S s
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V2 Ṡs = 2S0�F − 2(ψ̄ + �)S′
s − 2S̄sψ

′ − 2ψ ′S′
s

= 2S0�F − [2(ψ̄ + �) − ChbS̄s]S′
s

+ Chb(S′
s)

2,
(23)

where ψ ′ = −ChS′
d = −(1/2)ChS′

s has been used because Ṡ3 and
Ṫ3 are zero in the simplified model. The non-linear term is re-
tained because finite amplitude changes are under consideration.
The linear terms contain negative feedback due to the mean flow,
and the familiar meridional-salinity-difference/THC-transport
positive feedback. Equation (23) is similar to Stommel’s
model at the limit of instantaneous temperature restoring and
with a fixed freshwater flux (extended from Marotzke, 1990):

V2 Ṡs = 2S0�F − 2
(
ψ̄ − ChbS̄s

)
S′

s + 2Chb(S′
s)

2, (24)

where eqs. (3) and (7) indicate a greater value of Ch in our model
than in Stommel’s model. With � = 0, eqs. (23) and (24) differ
only in that the coefficients in the positive feedback and non-
linear terms take different values. Therefore, the feedbacks that
are present in the simplified model are those present in Stommel’s
model.

The simplified model, eq. (23), is numerically integrated (with
K = 5 Sv, � = 0, F = 0.2 Sv, �F = 0.08 Sv) and compared
with the unsimplified model in Fig. 7. As would be expected,
the approximation exhibits no recovery phase and fails in long
integrations. However, it performs well on decadal time-scales,
and therefore offers insights into the short-term response in the
unsimplified model containing diapycnal mixing.

The second-order term always acts to increase S s and decrease
ψ , causing increased damping if �F is negative (Fig. 6). It also
provides the mechanism for thermohaline catastrophe with pos-

Fig 7. Evolution of (a) S′
s and (b) ψ ′ in simplifications of the model. Repeated for the standard run (solid), the simplified model eq. (23) (dashed)

and the standard run with a very large deep box (dot-dashed).

itive �F; once the second-order term becomes important, high-
latitude density will decrease increasingly rapidly. This will not
occur if equilibrium (in the simplified model) is reached while the
second-order term is still small. Because, with positive �F, Ṡs

is positive for both zero and infinite �S′
s, such an equilibrium

can only be reached if eq. (23) has two real negative roots when
the left-hand side is zero. This is not the case, and the simplified
model predicts thermohaline catastrophe, if

8ChbS0�F >
[
2(ψ̄ + �) − ChbS̄s

]2
. (25)

This predicted threshold is plotted in Fig. 6a. The minimum
value of �F required for thermohaline catastrophe is signifi-
cantly greater than that predicted by eq. (25). A reasonable hy-
pothesis is that the model is stabilized by buoyancy storage in
the deep ocean, due to diapycnal mixing. The hypothesis can
be tested by removing this mechanism. This is achieved by re-
peating the standard integration with a very large deep box (V 3

increased by a factor of 109), so that heat and salt may still be
stored in the deep ocean, but without changing the properties of
box 3. Figure 7 shows that Ṡs changes sign in such a run at a
very similar point as it does when box 3 has its standard volume.
Figure 6c shows a repeat of the suite plotted in Fig. 6a, but with
a very large deep box. The parameter domain in which thermo-
haline catastrophe occurs is slightly increased, but the simplified
model still underestimates critical �F.

Therefore, much of the stabilization is provided by an alter-
native mechanism, associated with the asymmetric responses of
boxes 1 and 2 (a symmetric response and no change to the prop-
erties of box 3 were the two simplifications made in eq. 23). In
response to an increase in freshwater forcing, the boxes initially
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respond nearly symmetrically. Because ψ decreases, but K re-
mains constant, the fresh inflow becomes greater than the saline
inflow to box 2, causing S s to become slightly greater than that
predicted by the simplified model after several decades (Fig. 7).
This is a small effect. Of greater importance is that the source of
water to box 2 (namely box 1) is increasing in salinity, whereas
the salinity of the source of water to box 1 (box 3 only, because
� = 0 in this example) is barely changing. Therefore, when Ṡ2

changes sign, Ṡ1 initially remains positive. As a result, the mean
salinity of the boxes in contact with the atmosphere increases in
response to an increase in F. This response is physically reason-
able because additional freshwater in the high-latitude ocean is
communicated to the deep ocean more rapidly than the additional
salt in the low-latitude ocean. The asymmetric response of boxes
1 and 2 tends to increase the density of box 2 relative to box 3 (for
positive �F), and therefore tends to increase ψ . It is therefore
a stabilizing process. This mechanism has similarities with the
non-linear oscillatory mechanism found by Griffies and Tziper-
man (1995) and Rivin and Tziperman (1997) in box models with
vertical partitioning, although in their studies the surface density
gradient is the primary dynamic control and the time-scale of the
oscillation is not influenced by advective-diffusive balance.

The time-scale over which the above process acts is governed
by the time-scale over which the salinities of boxes 1 and 2 di-
verge. Integration of eq. (23) without the non-linear term, and for
F =0, so S̄s = 0, gives exponential decay with an e-folding time-
scale of V2/2(ψ̄ + �) ≈ 40 yr. A comparable time-scale for the
evolution of deep ocean density is estimated at ∼300 yr (see
Fig. 5). This separation of time-scales explains the limited role
of diapycnal mixing. For larger values of initial F, so that the neg-
ative and positive linear feedbacks nearly cancel, the e-folding
time-scale associated with eq. (23) is significantly lengthened.
This explains the greater importance of diapycnal mixing, and
diminished role of the propagation of salinity anomalies, in this
part of the parameter domain.

4.3. Dependence of feedback on diapycnal mixing

Quantification of the diapycnal mixing that ultimately maintains
meridional overturning is typically attempted on the basis of
an assumed rate of overturning (e.g. Munk and Wunsch, 1998).
It follows that the quantity represented here by ψ̄ (overturn-
ing streamfunction) is better known for the modern ocean than
the quantity represented by K (exchange flux due to diapycnal
mixing). If the model is tuned to obtain the same value of ψ̄

with a different K under the same forcing, any modification to
the behaviour is therefore of interest. This is only possible by
compensating for changes to K by tuning Ch. Equation (21) can
thus be rearranged to yield Ch for known K, ψ̄, �, and surface
buoyancy forcing:

Ch = ψ̄ + K

K

[
ψ̄(ψ̄ + �)

aTs(ψ̄ + �) − bS0 F

]
. (26)

We begin by considering the effect of this tuning on the sim-
plified model (23), which approximates the initial response of
the model well near the weak mixing limit. The linear stability
criterion of this model is that

2(ψ̄ + �) ≥ ChbS̄s, (27)

where the left-hand side is the negative feedback and the right-
hand side is the positive feedback. If � = 0, then eqs. (7) and
(27) yield

2(aT̄ d − bS̄d) ≥ bS̄s. (28)

The deep meridional density difference is compared with the ha-
line contribution to the surface meridional density difference
to establish stability. Because surface gradients are typically
stronger than deep gradients, this is a stringent stability test.
Interestingly, eq. (28) is equivalent to the criterion obtained by
Nilsson et al. (2004) at the limit of weak mixing (their eq. 29),
in an interhemispheric extension of NW01. They found that the
‘thermocline-depth adjustment’ stabilizing feedback was weak
in response to asymmetric interhemispheric perturbations in their
model; our results suggest that this is true also of intrahemi-
spheric perturbations. Additionally, from eqs. (13) and (14)

Ts

T̄ d
= S̄s

S̄d
= ψ̄

K
+ 1. (29)

Increasing diapycnal mixing (reducing ψ̄/K ) in the tuned model
decreases the contrast between surface and deep gradients at
equilibrium, by acting to vertically homogenize the ocean, and
thus increases stability.

The behaviour can also be rationalized in terms of the pos-
itive feedback term. If ψ̄ is fixed, the left-hand side (negative
feedback term) of eq. (27) is also fixed; changes in T̄ d and S̄d

are compensated by changes in Ch . S̄s (obtained by setting the
left-hand side of eq. 10 equal to zero) is also independent of
K. However, eq. (26) yields Ch ∼ 1/K if K � ψ̄ . If mixing is
increased, the decrease in Ch decreases the right-hand side of
eq. (27), stabilizing the model. An example of this is plotted in
Fig. 5 for the experiment ‘2K’: K = 10 Sv, Ch (≈ 18 × 106 m6

kg−1 s−1) as derived from eq. (26) without changing ψ̄ , and all
other parameters identical to the experiment described in Section
4.1 (� = 0, F = 0.2 Sv, �F = 0.08 Sv).

The above analysis neglects inaccuracies in the assumptions
made in eq. (23). Any decrease in the time-scale associated with
buoyancy storage in the deep ocean, caused by enhanced diapy-
cnal mixing, will increase the stabilization at large K. The effect
of more rapid removal of salinity anomalies from box 1 to box 3,
resulting from an increase in K, has the opposite sign. However,
the predicted qualitative effect of modifying K (and tuning Ch

so ψ̄ does not vary) on model stability is borne out in the weak
mixing domain by the ensemble of model runs in Fig. 8a. The
integration described above was repeated for a range of values
of K between 0.1 and 10 Sv, and for a range of F + �F between
0 and 0.6 Sv (initial F is 0.2 Sv in each case). Because tuning
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Fig 8. Maximum amplitude of change in THC transport (Sv) in response to a change in freshwater forcing from 0.2 Sv to F + �F , in the ranges (a)
0.1 ≤ K ≤ 10 Sv and (b) 0.1 ≤ K ≤ 400 Sv. � = 0, and Ch is tuned to yield ψ̄ (for initial F) that is independent of K. The uncontoured region
indicates that thermohaline catastrophe occurs. Shading indicates that the maximum amplitude response is more than a factor of 3 greater than the
equilibrium response in (a), and more than a factor of 1.1 greater than the equilibrium response in (b). In (b), thick vertical lines distinguish between
weak mixing (K < 17.5 Sv), intermediate mixing (17.5 Sv ≤ K ≤ 140 Sv) and strong mixing (K > 140 Sv).

the model provides a stronger positive feedback when mixing
is weaker, the THC is less stable as a result. For very weak
mixing, the initial equilibrium is unstable, so a significant de-
crease in freshwater forcing is required to prevent thermohaline
catastrophe.

We now consider the limit at which Stommel’s model implic-
itly operates: K � 4ψ̄ . The simplification Ṡs = −2Ṡ2, made in
Section 4.2, is not valid at this limit, because mixing is rapid and
the low-latitude ocean is homogenized. Instead, if V1 + V3 �
V2, ṠS = Ṡd ≈ −Ṡ2. This is because symmetric changes in the
freshwater content of the high- and low-latitude oceans result in
a much greater change in salinity in the high-latitude ocean, if
the low-latitude reservoir is much larger than the high-latitude
reservoir. Therefore, in this limit, eq. (23) is replaced by

V2 Ṡs = S0�F − [(ψ̄ + �) − ChbS̄s]S′
s + Chb(S′

s)
2. (30)

Although we use different volumes for high and low latitudes,
unlike most studies based on Stommel’s model, the only dif-
ference between eqs. (24) and (30), with � = 0, is a factor of
2 throughout the right-hand side. Therefore, the stability crite-
ria and critical �F in our model at the strong mixing limit are
identical to those in Stommel’s model.

The linear stability criterion is ψ + � ≥ ChbS̄s, so the left-
hand sides of eqs. (27) and (28) are reduced by a factor of 2. This
reduction in negative feedback, caused by the instantaneous di-
lution of box 1 salinity anomalies by diapycnal mixing, might
suggest an even more stringent stability condition. However, be-
cause Sd = S s and T d = T s we can rewrite the criterion as

aT̄ s ≥ 2bS̄s. (31)

Vertical homogenization means that, at this limit, the ratio of
surface to interior meridional gradients, proportional to the ratio
of positive to negative feedback terms, is decreased to 1. This can
also be interpreted in terms of Ch. Equation (26) shows that the
value of Ch (required to yield the same value of ψ̄) is insensitive
to K at this limit. However, Ch is much lower than that required

when K � ψ̄ , so the linear positive feedback term is greatly
reduced in the strong mixing limit.

Figure 8b is a repeat of Fig. 8a, but for a range of K between
0 and 400 Sv, to show the transition in stability characteristics
between the extreme states of weak mixing and strong mixing.
With reference to eqs. (16) and (17), we consider that the model
starts to approach the weak mixing limit when ψ̄/K > 1 and
starts to approach the strong mixing limit when 8ψ̄/K < 1. In
Fig. 8b, this yields the approximate domains K < 17.5 Sv for
weak mixing, 17.5 ≤ K ≤ 140 Sv for intermediate mixing, and
K > 140 Sv for strong mixing (i.e. Stommel’s model). Near the
limit provided by Stommel’s model, there is no significant recov-
ery phase. This is to be expected, because in Stommel’s model
itself, the maximum response is identical to the equilibrium re-
sponse. The THC is slightly more stable in the intermediate mix-
ing domain than it is in the strong mixing domain, because of
a decrease in negative feedback as mixing becomes stronger. In
both the strong and intermediate domains, stability is highly in-
sensitive to K. However, the THC is considerably less stable in
the weak mixing domain. This is because the destabilizing in-
crease in the difference between surface and interior meridional
gradients, when mixing is weak, overwhelms the stabilizing pro-
cesses discussed in Section 4.2.

The condition K ≥ ψ̄ (i.e. ρ̄d ≥ ρ̄v) is not a plausible rep-
resentation of the modern ocean. Therefore, the ratio of posi-
tive feedback to negative feedback is underestimated in models
(such as Stommel’s) that assume unlimited mixing but provide
a reasonable rate of overturning. As a result, the stability of the
THC to rapid changes in forcing appears to be overestimated in
Stommel’s model, and not underestimated as previous studies
have suggested.

5. Discussion

Stommel’s model and the thermocline scaling law (e.g. Bryan,
1987) represent the strong and weak mixing limits, respectively,
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of a single one-hemisphere theory for thermohaline flow, the
central assumption of which is that zonal and meridional veloc-
ities are linearly related. The simple model presented here can
operate anywhere between the limits, although at the weak mix-
ing limit the predicted non-linear power laws differ slightly from
the thermocline scaling. Other studies (P99; NW01) have pro-
vided arguments to suggest that the THC is much more stable at
the weak mixing limit than is at the strong mixing limit. Mixing
is rate limiting at equilibrium when it is weak, but not when it is
sufficient to keep the low-latitude ocean homogeneous. There-
fore, the equilibrium dependence of overturning on buoyancy
forcing is weaker when mixing is weak. However, diapycnal
mixing can only affect the THC by modifying pressure gradi-
ents in the ocean interior. If diapycnal mixing is to provide a
stabilizing role in the THC, then it must provide a negative feed-
back to changes in buoyancy forcing within the time-scale that
these changes take effect in the ocean. Observations of changes
over several decades in dense water in the Nordic Seas and the
North Atlantic (Dickson et al., 2002) show that a time-scale for
such externally forced changes of ∼40 yr, as provided by the
model presented here, is reasonable.

Limited diapycnal mixing does contribute to a negative feed-
back in the model presented here, as it does in the thermocline
scaling. Buoyancy accumulates in the low-latitude subsurface
ocean in response to a weakening of the THC because the dense
inflow can no longer balance the buoyancy input due to mixing.
However, the process is one of vertical advective-diffusive bal-
ance and the time-scale is of several centuries, comparable to
the residence time of water in the deep ocean. This explains why
the evolution of the model on a decadal time-scale can be ap-
proximated solely in terms of the feedback mechanisms present
in Stommel’s model. Diapycnal mixing prevents thermohaline
catastrophe within a small parameter domain only.

Nevertheless, the behaviour of the model diverges from that
of Stommel’s model before diapycnal mixing contributes signif-
icantly, and the thermally driven THC is stabilized as a result.
The mechanism is the removal of any additional freshwater in-
put at high latitudes to the deep ocean. The deep ocean is a
large reservoir, so the effect on salinity there is small. However,
the associated increase in salinity of the rapidly communicating
high-latitude and surface low-latitude ocean becomes significant
within 100 yr. Because the dynamical role of the high-latitude
density in the THC is much greater than that of the low-latitude
surface density (which plays no direct dynamical role in the
model), the build up of salinity in these boxes initiates a ‘recov-
ery phase’ in the THC, and in doing so can prevent thermohaline
catastrophe. Positive feedback between high-latitude salinity and
THC transport, similar to Stommel’s classical mechanism, con-
tributes to the recovery as well as the initial phase. Over a longer
time-scale, the magnitude of the recovery phase, as well as the
net change in THC transport, is controlled by the advective-
diffusive balance between diapycnal mixing and thermohaline
overturning.

As with any box model, we must consider the consequences of
several simplifying assumptions. We have found that the volume
of the deep reservoir must be much larger than that of the other
boxes to obtain the correct time-scale for diapycnal mixing, but
we have made an arbitrary assumption of V 1 = V 2. The ratio
V 1/V 2 affects the separation between the two time-scales for
salinity signals and diapycnal mixing. The surface low-latitude
box, from which the high salinity signal is transmitted to high
latitudes, is very narrow (200 m), which is necessary to allow
density in that box to be dynamically inactive. As a result, the
positive salinity anomaly is concentrated, and therefore requires
less time to become significant. If the volume of this box is sig-
nificantly increased, without changing the volume of the other
boxes, the onset of the recovery phase occurs later (not shown),
potentially providing more opportunity for thermohaline catas-
trophe to occur. This is not associated with a significant change
in the diapycnal mixing time-scale. A further simplification is
the use of instantaneous temperature restoring, and no coupling
with the atmosphere/cryosphere. The case with Newtonian tem-
perature restoring was considered in Oliver (2003). The domain
of stable solutions is reduced in this case, but slow restoring tends
to stabilize the model’s response to changes in forcing through
negative feedback between high-latitude temperature and over-
turning strength. However, these are small effects if reasonable
restoring time-scales are used.

Potentially, a more important assumption is the nature of the
mechanism by which buoyancy is fluxed to the deep ocean. The
roles of wind driven upwelling of dense water in the Southern
Ocean, and of geothermal heating, cannot be incorporated into
this model without removing the analytical simplicity. The use of
depth coordinates slightly reduces the equilibrium dependence
of THC transport on mixing and increases the dependence on
density difference, relative to the thermocline scaling. Diffusiv-
ity that is independent of stratification was also assumed. NW01
applied a more justifiable assumption of constant energy avail-
able for mixing, and found that the equilibrium dependence on
density difference changes sign. This cannot be applied here be-
cause of the diabatic flow from box 2 to box 3. However, the
primary purpose of this study is to improve understanding of the
transient response, which is likely to be of much larger magni-
tude than the equilibrium response. The separation of time-scales
necessary for the two-phase response, not present in the P99 or
NW01 models, is associated with the relative size of the deep
ocean reservoir and is unlikely to be removed by using a different
parametrization for mixing.

There is equivocal support for the robustness of the time-
scale separation from GCMs of differing complexity, forced by
increasing high-latitude freshwater input that is imposed either
directly or as a result of increased CO2 levels. In a GCM inte-
gration with fixed mixing, forced by a doubling CO2 over 70 yr,
Manabe and Stouffer (1999) found a subcritical decline of about
50% in the MOC ∼150 yr after the CO2 increase begins, fol-
lowed by a recovery to near initial levels after 500 yr. (A direct
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freshwater discharge experiment led to no recovery within 500
yr; this does not conflict with our results because the response
was supercritical in that integration.) Imposing an incremental
threefold increase in high-latitude freshwater input to a GCM
with κ ∼ N−1 (buoyancy frequency, N, is proportional to the
square root of vertical density gradient), Otterå et al. (2003) and
Otterå et al. (2004) obtained a 30% decline in overturning over
∼50 yr. The MOC then recovered to near initial values after
150 yr (the end of the integration), although an upward trend in
MOC transport in a control simulation suggests the magnitude
of this recovery is exaggerated. Differences between the two
studies could have many causes, but in both cases the two-phase
response in the rate of overturning, proposed here, is present.
Determining the cause of the recovery phase in a GCM is less
straightforward than in a box model. Manabe and Stouffer (1999)
attributed the slow recovery to warming of the deep low-latitude
ocean, amplified by a non-linear equation of state (a linear equa-
tion of state was applied here), caused by a reduced flow of cold
water. The box model predicts this, but also predicts that the early
stages of the recovery would be associated with a build up of salt
near the surface at low latitudes, which either did not exist or
was not noted in the Manabe and Stouffer study. In a more rapid
recovery, Otterå et al. (2004) cited the role of diapycnal mixing,
northward transport of saline waters (there was a low-latitude
positive salinity anomaly extending to ∼600 m near the end of
their integration), and the maintenance of a near-constant wind-
driven poleward flow of Atlantic water between the Faroe Islands
and Scotland. All of these mechanisms are consistent with our
results, but we would not predict a large contribution from diapy-
cnal mixing. It could be argued that a large contribution would
be expected because the GCM study employed stratification-
dependent mixing, whereas mixing is constant here. Otterå et al.
(2004) estimated that the rate of diapycnal upwelling increased
by a maximum of 1 Sv in their experiment (the total recovery
was ∼6 Sv, including any underlying drift). The NW01 model
suggests that, for mixing to cause an increase in the rate overturn-
ing (by the process of increasing subsurface buoyancy storage),
the rate of upwelling across isopycnals must exceed the rate of
overturning. Therefore, 1 Sv is an upper limit on the possible con-
tribution of increased diapycnal mixing to the recovery phase in
their study.

The model presented here is more stable when mixing is strong
than when mixing is weak, even if the model is tuned to yield
the same THC transport in each case. The reason is that strong
mixing favours a strong THC, which can only be compensated
by reducing the coefficient relating meridional density differ-
ence to THC transport, and therefore positive feedback. This
suggests that Stommel’s model overestimates stability, contrary
to the predictions of the P99 and NW01 models. A stabilizing
adjustment that can made in the NW01 model, but not here, is
that of a constant energy source for diapycnal mixing. However,
both P99 and NW01 obtained strong stabilization without this
process. The negative feedback that they propose can only be

strongly stabilizing in response to changes in forcing that occur
on a similar, or longer, time-scale than of vertical advective-
diffusive balance. More importantly, employing limited diapy-
cnal mixing increases the sensitivity of the THC to changes on
a shorter time-scale, increasing the probability of thermohaline
catastrophe.
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Appendix A: Linear stability

The linear stability of the system is derived here. The combina-
tion of eqs. (9) and (10) can be rewritten

V2 Ṡs = 2S̄F − (2ψ + 2� + K )Ss + (ψ + K )Sd, (A1)

if V 1 = V 2 and using Sv = S s − Sd. If, for example, Sd is broken
down into S̄d and S′

d, which is a small perturbation from S̄d so
that terms containing S′

d
2 can be ignored, eq. (A1) can be written

V2 Ṡs = −(2ψ̄ + 2� + K )S′
s − (2S̄s − S̄d)ψ ′ + (ψ̄ + K )S′

d

= −(2ψ̄ + 2� + K )S′
s − Ch S̄s(2ψ̄ + K )

ψ̄ + K
aT ′

d

+
[
ψ̄ + K + ChbS̄s(2ψ̄ + K )

ψ̄ + K

]
S′

d.

Here, the results that the right-hand side of eq. (A1) is zero at
equilibrium, ψ ′ = Ch(aT ′

d − bS′
d) and S̄d/S̄s = K/(ψ̄ + K ),

have been used.
If a similar process is used to derive Ṡd and Ṫd, the first-order

response of the model to perturbations is fully described by

V2




Ṡs

Ṡd

Ṫd


 =




x11 x12 x13

x21 x22 x23

x31 x32 x33







S′
s

S′
d

T ′
d


 , (A2)

with

x11 ≡ −(2ψ̄ + 2� + K ),

x12 ≡ ψ̄ + K + ChbS̄s(2ψ̄ + K )

ψ̄ + K
,

x13 ≡ − ChaS̄s(2ψ̄ + K )

ψ̄ + K
,

x21 ≡ −(ψ̄ + �) + V2

V3
(K ),

x22 ≡ ChbS̄s − V2

V3

(
ψ̄ + K − ChbS̄s K

ψ̄ + K

)
,

x23 ≡ −ChaS̄s − V2

V3

(
ChaS̄s K

ψ̄ + K

)
,
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x31 ≡ 0,

x32 ≡ V2

V3

(
ChbTs K

ψ̄ + K

)
,

x33 ≡ − V2

V3

(
ψ̄ + K + ChaTs K

ψ̄ + K

)
.

The Lyapunov test for stability is that there must be no eigen-
values with a positive real part, which would represent a growth
term. The equations for the eigenvalues (�1, �2 and �3) are too
long to be transcribed here. However, in the limit V 2/V 3 →
0, two eigenvalues tend towards the eigenvalues in a 2 × 2
matrix with the last row and column removed (i.e. assuming
Ṫd = 0; T ′

d = 0). The model operates near this limit because
V 2/V 3 = 1/19. We thus first consider the stability of the sim-
plified system. In a 2 × 2 matrix, both eigenvalues have negative
real parts if the sum of the leading diagonal (i.e. �1 + �2) is
negative and the determinant (�1�2) is positive. These yield,
respectively,

2ψ̄ + K + 2� ≥ ChbS̄s, (A3)

and

(ψ̄ + �)(ψ̄ + K )2

K (2ψ̄ + K + �)
≥ ChbS̄s. (A4)

Neither of these conditions are trivially satisfied. The former
condition limits stability if

ψ̄3 − 2K ψ̄2 − 3K 2ψ̄ − K 3 + �[ψ̄2 − 2K (ψ̄ + K + �)] > 0.

(A5)

When � = 0, this leads to ψ̄/K >∼ 3. It is expected that K is
of the order of 5 Sv and ψ̄ is of the order of 16 Sv, so neither
condition can be ignored; the former condition limits stability at
small K and the latter condition limits stability at large K.

Stability limits can be obtained by substituting eqs. (A3) or
(A4) into eq. (15) to yield ψ min, the minimum thermally driven
THC transport that is stable, and solving simultaneously with
eq. (21) to obtain F max, the freshwater forcing limit. Using
eq. (A3) for small K, we have

ψ̄2
min + 3K ψ̄min − K (ChaTs − K − 2�) = 0, (A6)

and

Fmax = 1

ChbS0

[(
2 − �

K

)
ψ̄2

min + (K + �)ψ̄min + �ChaTs

]
.

(A7)

Using eq. (A4) for large K we have

3ψ̄3
min + (5K + 2�)ψ̄2

min − K (2ChaTs − 2K − 3�)ψ̄min

− K [(K + �)ChaTs − �K ] = 0, (A8)

and

Fmax = 1

3ChbS0

[ (
2 − �

K

)
ψ̄2

min + (ChaTs + 2K )ψ̄min

+ �K + (2� − K )ChaTs

]
. (A9)

Figure 4 shows F max, dependent on K and �. Both diapyc-
nal and horizontal mixing tend to increase F max throughout the
domain. Equations (A7) and (A9) apply in different parts of the
domain. With vanishing K in the domain considered, eq. (A7)
applies. Assuming � � K and � � ψ̄ , simultaneous solution
with eq. (10) at steady state yields

Fmax ≈ 2�2

ChbSo
. (A10)

Horizontal mixing is powerfully stabilizing at this limit. How-
ever, the resulting overturning, given by eq. (18), would be very
weak because both K and ρ̄s would be small.

The equilibrium is a spiral point, and oscillations can occur,
if the eigenvalues have an imaginary part. This is the case if
(�1 + �2)2 − 4�1�2 < 0, which leads to

ψ̄� − ChbS̄s

(
ψ̄ + K + K 2

ψ̄ + �

)
< 0. (A11)

When � = 0 and F > 0, the equilibrium is always a spiral
point. Horizontal mixing tends to suppress oscillations, whereas
greater freshwater forcing tends to increase the probability of
their existence.

Because cubic equations have either one or three real roots and
�1 and �2 are either both real or both complex when V 2/V 3 is
small, �3 is real. This indicates that oscillations are unlikely to
be introduced to the system by slow changes to the properties of
the deep ocean. The determinant of the 3 × 3 matrix (�1�2�3)
must not be positive in a stable system. Using �1�2 as the
determinant of the 2 × 2 matrix, it can be deduced that

�1�2�3 = − V2

V3

[ (
ψ̄ + K + ChaTs K

ψ̄ + K

)
�1�2

+ C2
h aTsbS̄s K (K + �)

ψ̄ + K

]
. (A12)

It is readily apparent that �1�2 > 0 ⇒ �3 < 0 (assuming that
F ≥ 0). Therefore, when V 2/V 3 is small, the limit of system
stability is not affected by changes in box 3. With V 2/V 3 =
1/19, instability associated with changes in the deep ocean has
not been observed in long integrations.
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