Statins inhibit proliferation and induce apoptosis in Barrett's esophageal adenocarcinoma cells

Ogunwobi, Olorunseun O. and Beales, Ian L. P. (2008) Statins inhibit proliferation and induce apoptosis in Barrett's esophageal adenocarcinoma cells. American Journal of Gastroenterology, 103 (4). pp. 825-837. ISSN 1572-0241

Full text not available from this repository. (Request a copy)

Abstract

OBJECTIVES: The incidence and mortality rates from esophageal adenocarcinoma (EAC) are rapidly increasing in the western world. Chemoprevention is being advocated to reduce the burden of disease. Statins are used clinically to treat hypercholesterolemia, and have an excellent safety profile. Statins reduce the intracellular availability of several biosynthetic intermediates important in intracellular signaling. We hypothesized that statins may effect EAC proliferation or apoptosis. METHODS: The OE33 and BIC-1 EAC cell lines and simvastatin, lovastatin, and pravastatin were studied. Proliferation was quantified by thiazoyl blue colormetric and bromodeoxyuridine incorporation assays. Apoptosis was determined using assays for intracellular nucleosomes and caspase-3 activity. Detection of phosphorylated kinases, affinity precipitation, immunoblotting, and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to determine the effects on intracellular signaling. RESULTS: All three statins reduced viable cell number and inhibited proliferation in a similar dose-dependent manner. Statins induced apoptosis and enhanced the antiproliferative effect of NS-398, a selective cyclooxygenase (COX)-2 inhibitor. The effects were dependent on farnesylation, but not geranylgeranylation, of intracellular targets, and statins reduced serum-stimulated Ras activity. Simvastatin inhibited activation of extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) but not c-Jun NH2-terminal kinase or p38 mitogen-activated protein (MAP) kinase. Statin treatment increased messenger RNA (mRNA) and protein expression of the proapoptotic proteins Bax and Bad, but protein levels of the antiapoptotic proteins B-cell lymphoma (Bcl)-2 and Bcl-XL were unchanged. CONCLUSIONS: Statins inhibit proliferation and induce apoptosis in EAC cells via inhibition of Ras farnesylation and inhibition of the ERK and Akt signaling pathways. Statins may have some potential as chemopreventative and adjuvant chemotherapeutic agents in EAC.

Item Type: Article
Faculty \ School: Faculty of Medicine and Health Sciences > Norwich Medical School
UEA Research Groups: Faculty of Medicine and Health Sciences > Research Groups > Gastroenterology and Gut Biology
Depositing User: EPrints Services
Date Deposited: 25 Nov 2010 11:10
Last Modified: 30 Jan 2023 11:30
URI: https://ueaeprints.uea.ac.uk/id/eprint/13366
DOI: 10.1111/j.1572-0241.2007.01773.x

Actions (login required)

View Item View Item