Screening a wide host-range, waste-water metagenomic library in tryptophan auxotrophs of Rhizobium leguminosarum and of Escherichia coli reveals different classes of cloned trp genes

Li, Youguo, Wexler, Margaret, Richardson, David J. ORCID: https://orcid.org/0000-0002-6847-1832, Bond, Philip L. and Johnston, Andrew W. B. (2005) Screening a wide host-range, waste-water metagenomic library in tryptophan auxotrophs of Rhizobium leguminosarum and of Escherichia coli reveals different classes of cloned trp genes. Environmental Microbiology, 7 (12). pp. 1927-1936. ISSN 1462-2920

Full text not available from this repository. (Request a copy)

Abstract

A metagenomic cosmid library was constructed, in which the insert DNA was derived from bacteria in a waste-water treatment plant and the vector was the wide host-range cosmid pLAFR3. The library was screened for clones that could correct defined tryptophan auxotrophs of the α-proteobacterium Rhizobium leguminosarum and of Escherichia coli. A total of 26 different cosmids that corrected at least one trp mutant in one or both of these species were obtained. Several cosmids corrected the auxotrophy of one or more R. leguminosarum trp mutants, but not the corresponding mutants in E. coli. Conversely, one cosmid corrected trpA, B, C, D and E mutants of E. coli but none of the trp mutants of R. leguminosarum. Two of the Trp+ cosmids were examined in more detail. One contained a trp operon that resembled that of the pathogen Chlamydophila caviae, containing the unusual kynU gene, which specifies kynureninase. The other, whose trp genes functioned in R. leguminosarum but not in E. coli, contained trpDCFBA in an operon that is likely co-transcribed with five other genes, most of which had no known link with tryptophan synthesis. The sequences of these TRP proteins, and the products of nine other genes encoded by this cosmid, failed to affiliate them with any known bacterial lineage. For one metagenomic cosmid, lac reporter fusions confirmed that its cloned trp genes were transcribed in R. leguminosarum, but not in E. coli. Thus, rhizobia, with their many σ-factors, may be well-suited hosts for metagenomic libraries, cloned in wide host-range vectors.

Item Type: Article
Faculty \ School: Faculty of Science > School of Biological Sciences
UEA Research Groups: Faculty of Science > Research Groups > Organisms and the Environment
Faculty of Science > Research Groups > Molecular Microbiology
Faculty of Science > Research Centres > Centre for Molecular and Structural Biochemistry
Depositing User: EPrints Services
Date Deposited: 01 Oct 2010 13:37
Last Modified: 09 Sep 2024 08:09
URI: https://ueaeprints.uea.ac.uk/id/eprint/1088
DOI: 10.1111/j.1462-2920.2005.00853.x

Actions (login required)

View Item View Item