London force and energy transportation between interfacial surfaces

Bradshaw, David, Leeder, Jamie, Rodriguez, Justo and Andrews, David L. (2008) London force and energy transportation between interfacial surfaces. In: Physical Chemistry of Interfaces and Nanomaterials V, 2008-08-11.

Full text not available from this repository. (Request a copy)

Abstract

With appropriately selected optical frequencies, pulses of radiation propagating through a system of chemically distinct and organized components can produce areas of spatially selective excitation. This paper focuses on a system in which there are two absorptive components, each one represented by surface adsorbates arrayed on a pair of juxtaposed interfaces. The adsorbates are chosen to be chemically distinct from the material of the underlying surface. On promotion of any adsorbate molecule to an electronic excited state, its local electronic environment is duly modified, and its London interaction with nearest neighbor molecules becomes accommodated to the new potential energy landscape. If the absorbed energy then transfers to a neighboring adsorbate of another species, so that the latter acquires the excitation, the local electronic environment changes and compensating motion can be expected to occur. Physically, this is achieved through a mechanism of photon absorption and emission by molecular pairs, and by the engagement of resonance transfer of energy between them. This paper presents a detailed analysis of the possibility of optically effecting such modifications to the London force between neutral adsorbates, based on quantum electrodynamics (QED). Thus, a precise link is established between the transfer of excitation and ensuing mechanical effects.

Item Type: Conference or Workshop Item (Paper)
Faculty \ School: Faculty of Science > School of Chemistry
Related URLs:
Depositing User: Rachel Smith
Date Deposited: 27 Oct 2010 09:28
Last Modified: 22 Apr 2020 09:02
URI: https://ueaeprints.uea.ac.uk/id/eprint/10740
DOI: 10.1117/12.796083

Actions (login required)

View Item View Item