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Optical binding is an optomechanical effect exhibited by systems of micro- and nanoparticles, suitably
irradiated with off-resonance laser light. Physically distinct from standing-wave and other forms of holographic
optical traps, the phenomenon arises as a result of an interparticle coupling with individual radiation modes,
leading to optically induced modifications to Casmir-Polder interactions. To better understand how this mecha-
nism leads to the observed assemblies and formation of patterns in nanoparticles, we develop a theory in terms
of optically induced energy landscapes exhibiting the three-dimensional form of the potential energy field. It is
shown in detail that the positioning and magnitude of local energy maxima and minima depend on the
configuration of each particle pair, with regards to the polarization and wave vector of the laser light. The
analysis reveals how the positioning of local minima determines the energetically most favorable locations for
the addition of a third particle to each equilibrium pair. It is also demonstrated how the result of such an
addition subtly modifies the energy landscape that will, in turn, determine the optimum location for further
particle additions. As such, this development represents a rigorous and general formulation of the theory,
paving the way toward full comprehension of nanoparticle assembly based on optical binding.
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I. INTRODUCTION

It was first observed by Ashkin �1� that the transverse
spatial gradient in the irradiance of a laser beam may be used
to accelerate and trap particles. This finding has inspired in-
vestigations and applications of optical manipulation to par-
ticles ranging from cold atoms to living cells �2–5�, and it
has led to the rapid development of optical tweezers, a tool
that has since been extensively developed for the manipula-
tion of mesoscopic particles �6�. In laser configurations al-
lowing more than one particle to be trapped, it also emerged
that optically modified interparticle interactions may be ob-
served. The influence of laser light on particle interactions
was demonstrated theoretically, using quantum electrody-
namics �7�, and the effects were first observed experimen-
tally through studies on pairs of micrometer-sized particles,
using optical tweezers �8�. The recognition of these forces
and determination of means for their control has opened up a
considerable diversity of methods for the fabrication of
micro- and nanoparticle arrays.

Optically induced interparticle interactions �usually
known as optical binding, although the forces are not neces-
sarily attractive in form� have been a particular focus in ex-
tensive recent investigations �9–27�. The phenomenon has
increasingly been advocated as a tool for optical manipula-
tion of particles, and many optically induced arrays and con-
figurations have been observed experimentally �25,27–29�.
Laboratory studies are commonly performed with counter-
propagating beams, where possible complications due to
light pressure are obviated and where particles, trapped by
gradient forces, are organized by optical binding forces in the
overlapped region of maximum beam irradiance �13�. In
other investigations, the traps are much larger in dimension
than the typical particle separations, and the observed par-
ticle organization is entirely attributable to the optical bind-
ing potentials �16�.

Classically, optical binding may be understood as an in-
teraction of individual particles with the electromagnetic
fields generated by light scattering and optical rectification
processes in other particles. A directly corresponding quan-
tum electrodynamical representation casts the mechanism in
terms of four photon events: the annihilation of an input
photon within one particle, mediation of the interaction be-
tween this and another particle through the propagation of
virtual photons �created at one particle, annihilated at the
other�, and the stimulated reemission of an input-mode pho-
ton in either of these particles. By either method, the inter-
particle potential can be generated and evaluated using per-
turbation theory �30�. Recent research has shown that the
potential energy oscillates with particle separation, generat-
ing complex patterns of maxima and minima that are capable
of supporting a variety of two-dimensional arrays �21–23�.

In the following, we briefly review the methodology for
these calculations, and we reveal new multiparticle features
exhibited by the potential. In Sec. II, an expression for the
optically induced pair potential, for an interaction between
particles of any shape, is derived using quantum electrody-
namics �QED�. Developed using the electric-dipole approxi-
mation, the potential significance of multipolar contributions
is also assessed. In Sec. III, by locating local energy minima,
we determine the geometric configurations that may arise for
two spherical particles in a plane wave. Section IV focuses
on the rolling form of the optically induced landscapes that
emerge. The analysis reveals how the positioning of local
minima determines the energetically most favorable loca-
tions for the addition of a third particle to each such pair. In
Sec. V, the analysis is then extended to three-particle sys-
tems. It is shown how successive modifications to the energy
landscape, resulting from each particle addition, determine
the optimum locations for subsequent particle additions. In
Sec. VI, we conclude with a consideration of optically con-
ferred interactions between molecular aggregates and the di-
electric effect of a host medium.
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II. OPTICALLY INDUCED PAIR POTENTIAL ENERGY:
QED

In previous work �9�, based on QED, it has been shown
that the origins of optical binding lie in a form of radiation-
induced coupling representing an extension to the usual
Casimir-Polder interactions, the latter signifying dispersion
interactions in a form which accommodate the effects of re-
tardation. In the absence of populated radiative modes,
Casimir-Polder interactions entail the pairwise exchange of
virtual photons �31�—i.e., two virtual photon creation events
and two corresponding annihilations. �The reader is referred
elsewhere �32� for a concise alternative QED representation,
also based on QED, but closer in spirit to the classical rep-
resentation.� When laser light is present, one or more radia-
tion modes have a nonzero occupation number and any pho-
ton from these modes may take the place of one virtual
photon, generating intensity-dependent additional terms. In
this section a concise summary of the ensuing calculation is
given.

The interactions of the electromagnetic field with func-
tionally identical particles �A ,B� are fundamentally based on
electric interactions with the radiation field, expressible as
follows �using the implied summation convention for re-
peated tensor and vector indices�:

Hint
� = − �0

−1 �
�=A,B

�i���di
��R��

− �0
−1 �

�=A,B
Qij���� jdi

��R�� − ¯ , �1�

R� being the position vector of a dielectric particle �, with
���� and Q��� the corresponding operators for the electric
dipole and electric quadrupole �E1 and E2, respectively�.
The potential involvement of coupling with the magnetic
field of the radiation is to be briefly discussed later in this
section. The second term in �1�, which for radiation in the uv
or visible range is typically smaller than the first by the order
of the fine structure constant �i.e., two to three orders of
magnitude smaller�, takes the lead in a series of higher-order
multipole corrections; for the present, only this leading cor-
rection is retained, with a view to the subsequent analysis.
The electric displacement vector field d� in �1� is itself ex-
pressible, using the Power-Zienau-Woolley approach, as a
mode expansion that is linear in the photon creation and
annihilation operators �30�.

For any two particles A and B, a suitable basis set for
calculating the optical coupling, induced by throughput ra-
diation, comprises products of the electronic states of each
particle and a number state for each mode of the radiation
field; the particle pair energies emerge as diagonal elements
of the perturbation matrix. It follows from above that the
leading contributor to optically induced coupling can be de-
scribed by four entangled E1 interactions: the annihilation
and creation events of one real and of one virtual photon. No
lower order that is diagonal in the basis set can serve to
causally couple the two particles and to engage throughput
radiation. Since each operation of the electromagnetic field
entails a photon creation or annihilation, the leading term in
the system energy is delivered by fourth-order perturbation

theory. After performing lengthy calculations and casting the
result in terms of physically measurable quantities, the fol-
lowing result emerges for the dominant term in the optically
induced shift in interparticle potential energy, produced by a
beam of irradiance I �33�:

�Eind�k,R� = � I

�0c
�ei

���ēl
��� Re��ij

A�k�Vjk�k,R��kl
B �k�

�exp�− ik · R� + �ij
B�k�Vjk�k,R��kl

A �k�

�exp�ik · R� +
1

2
Vjk�0,R���ijl

A �k��k
B

+ �k
A�ijl

B �k��	 , �2�

where R is the separation between the particles, RB−RA, ei
���

is the ith component of the laser polarization vector, �ij
� �k�


�ij
� �−k ;k� is the frequency-dependent polarizability and

�ijl
� �k�
�ijl

� �−k ;0 ,k� the corresponding electro-optic hyper-
polarizability of particle � �30�, and Vjk�k ,R� is the retarded
resonance dipole-dipole interaction tensor �35�,

Vij�k,R� =
exp�ikR�
4	�0R3 ��1 − ikR��
ij − 3R̂iR̂j�

− �kR�2�
ij − R̂iR̂j�� . �3�

No other contributions arise at this order �E14�. The calcula-
tion that leads to �3� involves a summation over radiative
modes for a virtual photon traveling in either direction be-
tween A and B; however, it is assumed that the real photon
annihilation and creation processes occur specifically at A
and B, respectively. The last two terms in Eq. �2� involve
static dipole moments � for each particle; each term relates
to a process in which both the annihilation and recreation of
the beam photons are colocated at the other particle. Clearly,
if both particles are centrosymmetric and nonpolar as will be
assumed in the following, then these terms vanish.

Before proceeding further we now address higher multi-
polar contributions to the induced energy shift �Eind�k ,R�.
The next highest-order contributions emerge when the sec-
ond term in Eq. �1�, the electric-quadrupole interaction
Hamiltonian, is considered as the coupling basis for any one
of the four photon events described previously. Introducing
the appropriate modification to the first two terms in Eq. �2�,
the additional �E13E2� contributions to the energy which re-
sult are given by

�Eind
�Q��k,R� = � I

�0c
�Re„ei

���ēl
����iVjk�k,R�km�Aimj

A �k��kl
B �k�

− �ij
A�k�Akml�B �k�� + �ij

A�k�Vjkm�k,R�Akml�B �k�

+ Aijm
A �k�Vjmk�k,R��kl

B �k��exp�− ik · R�… . �4�

Here, the term involving the dipole-dipole interaction tensor
Vjk�k ,R� arises from contributions where one of the real la-
ser photon interactions is accomplished by an electric-
quadrupole interaction. In the remainder of the above expres-
sion �4�, it is the virtual coupling photon that experiences one
quadrupole interaction, reflected in the involvement of the
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fully retarded resonance quadrupole-dipole interaction tensor
Vijk�k ,R�, given by �36�

Vijk�k,R� =
ieikR

4	�0

�R̂iR̂jR̂k − 
ijR̂k�� k3

R
+

ik2

R2 � + �
ijR̂k

+ 
ikR̂j + 
 jkR̂i − 5R̂iR̂jR̂k�� ik2

R2 +
3k

R3 +
i3

R4�� .

�5�

The frequency-dependent dipole-quadrupole polarizabilities
Aimk

� �k� and Aijk�� �k� for particle � are expressible as

Aimk
� �k� = �

s

�i

0s���Qmk
s0 ���

�Es0 − �ck�
+

Qmk
0s ����i

s0���
�Es0 + �ck� � , �6�

Aijk�� �k� = �
s

Qij

0s����k
s0���

�Es0 − �ck�
+

�k
0s���Qij

s0���
�Es0 + �ck� � . �7�

In passing we note that the energy contributions given by Eq.
�4� �whose symmetry conditions are to be discussed below�
are not of a form previously identified as the lowest-order
correction to the all-dipole result. In extensive studies of op-
tical binding forces by Salam �37�, generalized formulas
have been presented for the pair energy of particles with
electric polarizabilities of arbitrary multipole order. The as-
sumption has been that each excited state, featured in the
sum over states in the generalized polarizability equations,
connects with the ground state only through one particular
order of multipole. Hence the general form of those results is
an Em2En2 shift for arbitrary integers m and n. The expres-
sion obtained in Eq. �3.2� of Ref. �37� and given as the
lowest-order correction is therefore of E12E22 form; i.e., it is
the result calculated for a case involving two electric-
quadrupole events. However, symmetry permitting, expres-
sion �4� is the lowest-order correction to the energy because
it invokes only one quadrupole interaction.

The odd-parity rank-3 tensors A� and A�� vanish if the
particles are centrosymmetric. Specifically, the only nonzero
components of these tensors are those which transform under
the totally symmetric representation of the appropriate mo-
lecular point or space group �34�. Both tensors, on reduction
into irreducible parts, prove to carry weight-1, -2, and -3
contributions �by the rule of angular momentum addition for
the E1 and E2 transition moments which they each entail�.
Crucially, any dipolar particle �i.e., one whose static electric-
dipole moment is nonzero, requiring odd-parity weight-1
components to transform under the totally symmetric repre-
sentation� will also satisfy the symmetry criteria for odd-
parity weight-3 components to be allowed. For the same
symmetry reason, however, it proves that such particles will
also have nonzero �� tensors. Hence, the third and fourth
terms in Eq. �2� will also contribute, and since they have E14

form, they will certainly outweigh any contribution involv-
ing an electric quadrupole. For completeness, it is also im-
portant to note that the leading corrections produced by the
involvement of a magnetic-dipole interaction are of the same

order as the electric-quadrupole correction �34� and therefore
they, too, can be disregarded in the following study of the
optically induced interaction energy shift.

In the following sections we begin to focus discussion on
the optically induced potential directly expressed in terms of
molecular properties. It is to be borne in mind that, when
nanoparticles are considered, the magnitude of the potential
depends on bulk quantities; these are to be taken into ac-
count, together with the dielectric effect of the medium, in
Sec. VI.

III. GEOMETRIC CONFIGURATION OF PARTICLES
AND FIELDS

Previous studies of the optically induced interparticle po-
tential energy landscapes for spherical particles in a single
plane wave have revealed intricate features conducive to the
production of a variety of attractive and repulsive forces, and
torques, engendering the formation of several multiparticle
structures �21–23�. Here, we use a different parametrization
that is shown to reveal additional features in the potential
energy. The Cartesian coordinates are defined as shown in
Fig. 1; the Poynting vector is along the z axis and linear
polarization along the x axis. Applying Eq. �2� to N spherical
particles, the total energy shift may be written as

�E =
1

2�
�=1

N

�
��=1

����

N � 2I�2k3

4	�0
2c�kR������3���cos kR�����

+ kR����� sin kR�������1 − 3�R̂x
������2�

− �kR������2 cos kR�1 − �R̂x
������2��cos�kRz

������ , �8�

where R�����= �Rx
����� ,Ry

����� ,Rz
������ is the displacement vector

from particle � to particle ��, and R̂x
����� is the projection on

the x axis of a unit vector on the direction of R�����.
When considering cylindrically symmetric particles, vari-

ables corresponding to additional degrees of freedom need to
be introduced to describe the orientation of the particle axes;

FIG. 1. Two particles in a plane wave of polarization e and wave
vector k. The vector R denotes the displacement between the par-
ticles A and B, where A can be considered as located at the origin.
The x and z axes are defined along e and k, respectively.
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a suitable parametrization for the optically induced interac-
tion force between two nanotubes has been the subject of
previous studies �38�. Of course, even more degrees of free-
dom need to be included to describe completely anisotropic
particles. However, under equilibrium conditions when the
only external field is the one associated with the throughput
laser radiation, the largest polarizability component of every
particle is expected to be aligned with the polarization of the
beam, if the particles are well separated, so that they do not
exert a significant influence on each other’s individual orien-
tation. Under these conditions, only the diagonal �principal
axis� elements of the polarizability tensor, on the framework
illustrated in Fig. 1, need be considered in the summation of
Eq. �2�. Moreover, due to the orientation of the polarization
on the x axis, only one component contributes. Consequently,
the result for cylindrically symmetric particles is again deliv-
ered by Eq. �8�, where � is now to be interpreted as the
largest polarizability element, usually the one along the cy-
lindrical axis.

IV. OPTICALLY INDUCED LANDSCAPES

In most optical binding applications it is possible to re-
gard the laser irradiance as being essentially time invariant,
the characteristic time scale for intensity fluctuations being
small compared to those involved in the particle dynamics.
Even if pulsed radiation is used in an experiment, the pulse
repetition interval is in general sufficiently short, compared
to the particle diffusion times, that the input operates as be-
ing effectively constant in time. In such an environment, par-
ticles are individually displaced by gradient forces to the
neighboring maxima of irradiance in the beam structure,
known as optical traps, the latter being identifiable with the
beam axis in the simplest Gaussian profile case. The location
of any such optical trap signifies a relatively static environ-
ment, one that facilitates the resolution and measurement of
any optically induced pair forces. A further simplifying fac-
tor is that these traps are generally much larger in dimension
than the typical particle separations, and therefore the ap-
plied irradiance may also be taken to be approximately spa-
tially constant, making the optically induced interparticle po-
tential entirely separable from the gradient forces. It can also
be assumed that the separation of the particles is sufficiently
large—and the laser pulses intense enough—to justify ne-
glect of the Casimir-Polder potential with respect to its laser-
induced counterpart; this assumption is also expected to ap-
ply in most cases, when particle separations are of the order
of the laser wavelength. Under this combination of condi-
tions, applicable in the majority of experiments, the optically
induced interparticle potential operates to translate particles
towards separations that correspond to its own energy
minima.

An analysis of the spatial dependence of the optical bind-
ing forces reveals the arrangement of particles in an optical
trap. Assuming spherical particles, landscapes of the poten-
tial energy surfaces generated by the optically induced pair
forces can be exhibited as a function of the Cartesian com-
ponents of the separation vectors, Rx, Ry, and Rz, as shown in
Fig. 2. The distance scales on this and subsequent graphs are

normalized by plotting results against dimensionless vari-
ables scaled by k �whose value is 2	 times the inverse wave-
length of the applied radiation�. One of the interesting fea-
tures that is immediately evident in Fig. 2�a� is the sequence
of minima for particles on the z axis, responsible for longi-
tudinal optical binding. With increasing Ry, Figs. 2�b�–2�d�,
the maxima and minima generally exhibit an increase in ab-
solute energy, accompanied by a drift in a counterclockwise
direction towards the �y ,z� plane �signified by the vertical
axis�. Thus, particles trapped in any of the energy minima
will tend to fall into the �y ,z� plane.

It is apparent that these principles afford a tractable basis
for extension to a system of N spherical particles, irradiated
with a linearly polarized beam. In general, a determination of
the optically induced potential experienced by the whole as-
sembly requires the evaluation of Eq. �2� for N! / �N−2�! /2
particle pairs, obviously making an analysis of the system
significantly more complex when considering a large number
of particles. It is interesting and expedient to approach the
problem by considering the possibility of optically fabricat-
ing structures for the simplest case of three particles, a sys-
tem that represents the key prototype for developing generic
models of multiparticle complexity.

V. THREE OR MORE PARTICLES

The energetics associated with the arrangements of more
than two particles can now be explored by placing particles
in the minima of a suitable template that optimizes the pair
interactions. As shown by the analysis in the last section, the
landscape shown in Fig. 3 is one that is physically favored,
and it provides a sensible basis for determining the optically
induced potential energy resulting from placement of one or
more additional particles on the �y ,z� plane. We begin with
the contour maps of the energy surfaces of three interacting
particles, as a function of the Cartesian coordinates of one of
the particles, as shown in Fig. 4. A number of significant
potential energy minima may be observed for any of the

FIG. 2. Optically induced interparticle energy surfaces as a
function of the interparticle displacement vector R= �Rx ,Ry ,Rz� for
different values of kRx. The scale is in 2I�2k3 / �4	�0

2c� units. Field
polarization directed along the x axis, wave vector on the z axis.
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three surfaces considered, revealing a dramatic increase in
the number of stable, physically realistic arrays with increas-
ing number of particles. When the fixed displacement vector
is longitudinal to the direction of propagation of the particles
and its magnitude is kR=3 as in Fig. 4�a�, the most signifi-
cant minima are given by the sequence �0,3n ,0� for n
=2,3 ,4 , . . . with an energy that is inversely proportional to n;
the formation of a longitudinal chain is the most stable con-
figuration, as may also be observed in Fig. 4�b� when the
magnitude of this separation is kR=6. When the displace-
ment between the two fixed particles is transverse to the
propagation direction, as in Fig. 4�c�, for example, there is a
sequence of potential energy minima at approximately the
positions �0,3n ,3� for n=1,2 ,3 , . . .. with the lowest of them
for n=2; another significant minimum may be observed
close to the position �0,8,3�. When the fixed displacement
vector is given by �0,8.6,3�, as in Fig. 4�d�, there are two
important symmetrically equivalent stability points at ap-
proximately �0,2,3� and �0,7,0�.

When four particles are present, as in Fig. 5, a significant
reduction of the energy shift may be observed over the entire
surface; in this case, the most stable position for the fourth

particle is found for the longitudinal arrangement; another
important stable configuration is close to �0,8,3�. Although
the introduction of an additional particle in the system may
induce a readjustment of the fixed particles, and some of
these structures may be slightly different to those suggested
by the contour maps �requiring optimization of the potential
energy as a function of the interparticle displacement vec-
tors�, it is evident that variety of two-dimensional arrays may
be optically fabricated in a plane perpendicular to the polar-
ization of the laser beam.

VI. MOLECULAR AGGREGATES

To consider optical binding between molecular aggre-
gates, each of which is formed by p molecules or optical
centers, we need to entertain an effective polarizability in Eq.
�2�, given by the expression �34�

�ij
�
� = �

�

p

���
���Ii�

���Ij�
��� exp�ik · �R�� , �9�

where the I�i
��� are the cosine of the angles between the space-

fixed axis and the molecule-fixed axis. The relative position
of molecule � within the aggregate 
 is given by �R�. These
aggregates can be considered as mesoscopically disordered
material, within which local domains possess particular
structures. The optically induced potential takes the form

�Eind
total�k,RBA� = � I�2

�0c
�Re
Vxx�k,RBA�

���
�,��

p,p�

exp�ik · �R�,���exp�− ik · RBA�

+ �
�,��

p,p�

exp�− ik · �R�,���exp�ik · RBA��� ,

�10�

where

FIG. 3. Optically induced inter particle energy surface on the
�y ,z� plane of Fig. 1. The scale is in 2I�2k3 / �4	�0

2c� units. Polar-
ization and wave vector as in Fig. 2.

FIG. 4. Optically induced potential energy landscapes for three
identical interacting particles as a function of the vector positions of
one of them, when the other two are located at the origin and at �a�
�0,0,3�; �b� �0,0,6�; �c� �0,6,0�; �d� �0,8.6,3�. Scale in
2I�2k3 / �4	�0

2c� units. Black circular shapes represent local diver-
gences in energy shift in the proximity of the fixed particles. Polar-
ization and wave vector as in Fig. 2.

FIG. 5. Optically induced potential energy landscapes for four
identical interacting particles as a function of the vector positions of
one of them, when the other three are at �0, 0, 0�, �0, 0, 3�, and �0,
0, 6�. Scale in 2I�2k3 / �4	�0

2c� units. Polarization and wave vector
as in Fig. 2, black circular shapes as in Fig. 4.
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�
�,��

p,p�

exp��ik · R�,��� � �
�

p

1 + �
����

p

exp��ik · R�,���

� p + nonlinear term �11�

and �R�,��
�R�−�R�� The first term signifies a linear con-
tribution, present for particles of any size; it is significant
that it persists for large particles where �R�,�� is several
orders of magnitude larger than the optical wavelength �
�=2	 /k�, such as the case of microparticles �see, for ex-
ample, Ref. �14��. The second term of �11� contributes for
small particles where we have �R�,����; in this case, the
weighting factor is proportional to p�p−1�, as in the case of
nanoparticles. In the limiting case, using a similar analysis to
that given in Ref. �5�, the sum over molecules � in the sus-
ceptibility �ij

��� may be approximated by a continuous inte-
gral. With these assumptions, we can express the optically
induced potential between two spherical aggregates of radius
r as follows:

�E = � I�2�2

�0ck6��sin kr − kr cos kr�2 Re�Vxx�k,R��cos�kRy�


 �E0
�2

k6 �sin kr − kr cos kr�2, �12�

where � is the number density of molecules and � the iso-
tropic molecular polarizability. Representing the dependence
on � in this manner demonstrates that the effect of optical
binding, in aggregates comprising relatively few high-
volume particles, will be less acute than in other aggregates
of the same size, comprising a larger number of low-volume
species. In Fig. 6, where the optically induced potential en-
ergy is plotted against particle radius, a dramatic increase of

pair energy with the aggregate size parameter r can be ob-
served.

To complete the representation of a standard trapping en-
vironment, account can be taken of the dielectric influence of
any medium in which the particles are individually sus-
pended. It has previously been shown �15� that the relative
values of the refractive index between the particles and the
surrounding medium significantly influence optical binding
phenomena, modifying the positions of stability. With incor-
poration of the appropriate Lorenz field factors, the depen-
dence on kR changes to a dependence on n�ck�kR, where the
multiplier is the complex refractive index properties of the
medium supporting the particles. Most experiments are con-
ducted using wavelengths at which the system under study is
optically transparent, well away from any resonance. Then,
the dielectric effect of the medium is equivalent to a simple
scaling of the particle separations by the index n; i.e., the
results reported and exhibited here can be regarded as estab-
lishing the coordinates of potential energy minima on a scale
where all distance values are truly given by R /n.

VII. CONCLUSION

In this paper, the theory of optical binding has been de-
veloped in a form designed to help elucidate the assembly
and formation of patterns in micro- and nanoparticles. It has
been revealed how the location and magnitude of potential
energy maxima and minima depend on the local configura-
tion of each particle pair, with regards to the polarization and
wave vector of the laser light. The study has demonstrated
how templates, derived by analysis of the pair energy land-
scapes, can be used to determine the energetically most fa-
vorable locations for the addition of a third and subsequent
particles to each equilibrium pair.

To refine the analysis and to take it on to the next stage of
development, the next aim is the challenge of identifying and
calculating contributions associated with multiparticle pro-
cesses, involving the entangled near-field interactions of
more than two particles. Multiple processes of stimulated
scattering have also to be entertained, in order to fully un-
derstand the raft of mechanisms involved in the formation of
stable particle arrays. The full incorporation of such features
in a comprehensive analysis represents our objective and will
be subject of future work.
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