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A general expression for the energy of interparticle interaction induced by an arbitrary mode of light is
determined using quantum electrodynamics, and it is shown that the Casimir-Polder potential is included
within this quantum result. Equations are also derived for the corresponding coupling induced by multimode
number states of light, and the dependence of the pair energy on the Poynting vector and polarization state is
determined. Attention is then focused on the interactions between particles trapped in counterpropagating
coherent beams, both with and without interference, and it is shown that the results afford insights into the
multiparticle structures that can be optically fabricated with counterpropagating input. Brief consideration is
also given to the effect of squeezing the optical coherent state. Extending previous studies of optical binding in
Laguerre-Gaussian beams, results are given for the case of particles trapped at radially different locations
within the beam structure. Finally, consideration is given to interparticle interactions induced by broadband
light, and it is shown how the length of optically fabricated particle chains can be controlled by the use of
wavelength filters.
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I. INTRODUCTION

Electromagnetic fields induce interparticle forces by gen-
erating static and dynamic polarizations. The best-known ex-
ample of such interactions is the Casimir-Polder potential,
which can be considered the consequence of an electric po-
larization induced in the interacting particles by vacuum field
fluctuations �1,2�. Another, less familiar, example of such
phenomena, also predicted using quantum electrodynamics
�QED� �3�, is an energy shift generated as a consequence of
the polarization induced in particles by coherent states of
light. The latter phenomenon, first experimentally observed
by trapping particle pairs in optical tweezers �4� and now
usually known as “optical binding,” is currently the focus of
a range of experimental and theoretical investigations
�5–30�. The nature of the optical state in an optical trap is
important not only for the organization of particles by gradi-
ent forces, but also to expedite determination of the form of
optically induced interparticle interactions. Laboratory obser-
vations are often, for instance, effected in the standing waves
of counterpropagating beams, in order to circumvent any ef-
fects due to optical pressure; particles trapped by gradient
forces are then organized within the maxima of irradiance by
optical binding forces �12,20�. Another strategy that is em-
ployed is to increase the coherence length of the beams, to
avoid the interference between the counterpropagating opti-
cal fields; consequently optical binding is observed to play a
more important role in particle organization �15�. It has also
been shown that particles trapped in the intensity rings of
Laguerre-Gaussian light can be organized within these rings
by optical binding forces �21�. Particularly relevant to our
present study, a recently developed optical trap fabricated
using a white light �supercontinuum� source has permitted
interactions to be studied without interference between the
particle backscatter field and the beam field, such that it
proves possible for particles to be entirely organized along
the propagation direction of these beams by the optical bind-
ing forces �19,30�. Recognizing the importance of such fac-

tors, it is timely to undertake a detailed analysis of the effects
of these and other optical states on the optically induced
interparticle interaction; this is the subject of the paper that
follows.

First, in Sec. II, an expression for the interparticle inter-
action induced by an arbitrary single mode of monochro-
matic light is determined using QED, and its relationship
with the Casimir-Polder potential is established. Next, in
Sec. III, equations for the interaction induced by multimode
number states of light are derived for various Poynting vec-
tor and polarization conditions. The characteristics of the in-
teraction in coherent counterpropagating beams are analyzed
in Sec. IV, and the effect on the interaction of squeezing the
coherent state is briefly discussed. In Sec. V, we extend pre-
vious QED studies of interparticle interaction in Laguerre-
Gaussian beams, to consider particles trapped in different
radial locations of the beam. Lastly, in Sec. VI, an analytical
result is derived for the form of an optical binding interaction
induced by broadband light, and it is shown how the length
of optically fabricated particle chains can be controlled by
judicious filtering of the optical input.

II. INTERPARTICLE INTERACTION INDUCED
BY A SINGLE MODE OF LIGHT

Here, a QED representation cast in terms of induced mo-
ments �31� is used to derive a general expression for the
interparticle potential energy induced by an arbitrarily off-
resonant mode of light with a discrete wavelength. The re-
sults derived with this method in this and the following sec-
tions apply specifically to Rayleigh particles, but they can be
extended to larger particles by summing over the optical re-
sponse of small domains, at different locations within each
particle �26,27�. To begin, the electrical polarization of a par-
ticle, �, with position vector r��� and electric susceptibility
����, subject to a transverse electric displacement whose field
operator is d��r����, is written as
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Pi
ind��� = �ij

���dj
��r���� , �1�

where the convention of implied summation over repeated
indices is used; here also, the operator d��r���� is given by
the following mode expansion:

d��r���� = − i�
p,�

��cp�0

2V
�1/2

��e����p�a����p�eip·r���
− ē����p�a†����p�eip·r���

� ,

�2�

where a����p� and a†����p� denote the photon annihilation and
creation operators, respectively, for the radiation mode
�p ,��; e����p� is the corresponding polarization vector, and
ē����p� is its conjugate; V is an arbitrary quantization volume.
The energy operator, for an interaction between particles A
and B separated by a displacement vector R, is given by

�E = Re�Pi
ind�A�Vij�k,R�P̄j

ind�B�� , �3�

featuring a retarded interaction tensor whose explicit form is
as follows:

Vij�k,R� =
eikR

4	�0R3��1 − ikR��1 − 3
RiRj

R2 �
− �kR�2�1 −

RiRj

R2 �	 . �4�

The time-averaged expectation value �av� of the energy in
Eq. �3� for an arbitrary optical input mode 
X�, of wave vec-
tor k and polarization 
, is

��E�av =
�c2k

V

�0�ik
�A�� jl

�B�

c
ReVij�k,R�

���X
a�
��k�a�
�†�k�
X�ek�k,
�ēl�k,
�e−ik·�RB−RA�

+ �X
a�
�†�k�a�
��k�
X�ēk�k,
�el�k,
�eik·�RB−RA��� .

�5�

Using the commutation rule a�
��k�a�
�†�k�=a�
�†�k�a�
��k�
+1, and expressing the energy shift in terms of the average
mode occupation number �X
a�
�†�k�a�
��k�
X�= �n�av, within
the volume V, we write

��E�av =
�c2k�n�av

V

�0�ik
�A�� jl

�B�

c
ReVij�k,R��

� �ek�k,
�ēl�k,
�e−ik·R + ēk�k,
�el�k,
�eik·R�

+
�c2k

V

�0�ik
�A�� jl

�B�

c
Re�ei�k,
�ēj�k,
�e−ik·R� , �6�

where �c2k�n�av /V is the mean irradiance of the input. The
first term in �6�, proportional to this irradiance, is the opti-
cally induced interparticle potential for any type of single-
mode optical state. The second term is independent of a
mode occupation number; on summing over Poynting vec-
tors it signifies the Casimir-Polder potential �1�.

When multimode states are to be considered, it is neces-
sary to effect a summation over the salient modes, where
necessary taking into account the interference between these
modes to determine particle organization. Such interference
generates gradient forces which are generally much larger
than the optical binding forces. The former forces are, for
instance, generally important for the organization of particles
in counterpropagating beams �26,27�. The degree of interfer-
ence in multimode states is limited by the uncertainty in
phase, ��, of each constituent mode—where the phase is
�=k ·R−ckt+�, and � is defined through a�
��k�
X�
= 
X
exp�i��
X�. For each occupied mode 
X�, the phase un-
certainty is related to the corresponding uncertainty in the
occupation number �n through the relation
�n� cos � / �sin ��1 /2 �32�. An optical coherent state,
which is a state of minimum uncertainty, satisfies the equal-
ity in the previous relation, and a superposition of several
such laser fields generates interference. In contrast, the su-
perposition of number states cannot generate interference,
and in consequence optical binding alone determines particle
organization. The detail of the interparticle interaction in
multimode number states is considered in the following sec-
tion.

III. INTERPARTICLE INTERACTION INDUCED BY
MULTIMODE NUMBER STATES OF LIGHT

We now consider the interparticle interactions induced by
high-repetition-rate pulses of multimode light, e.g., high-
power solid-state Nd:glass lasers �33�. The state vector for
the radiation can be written in terms of multimode number
states of the general form 
n1,2. . .m�= 
n1�
n2�¯ 
nm�, where

n1�, 
n2� , . . ., and 
nm� are the kets associated with each mode
and the time dependence of each mode occupancy is left
implicit. Since �n1,2. . .m
a†�np�a�nq�
n1,2. . .m�=np�pq, we can
treat the interaction of each mode with the particles individu-
ally �34,35�. To begin, we consider the condition in which
the polarizations of all modes are identical and the beam
axes collinear �both in copropagating and counterpropagat-
ing cases�. In any such case, each mode generates a potential
of the same form, and the energy shift is identical to that
derived in Eq. �6� with the term �c2k�n� /V replaced by the
irradiance of the beam.

Another configuration that can be realized is where a con-
dition of random orientations applies to the Poynting vectors.
To address such a case, it is first helpful to perform an aver-
age over laser polarizations. The energy shift that results
from summing over the polarization of all laser modes can
be expressed as

��E� =
I�0�ik

�A�� jl
�B�

c
��ij − k̂ik̂ j�Re�Vkl�k,R��cos�k · R� , �7�

where I is the irradiance of the nonpolarized beam. For ran-
domly oriented Poynting vectors, we then need to write a
sum over all possible wave vectors as a continuum integral
�32�:

JUSTO RODRÍGUEZ AND DAVID L. ANDREWS PHYSICAL REVIEW A 79, 022106 �2009�

022106-2



�
k

�¯� ⇒� �¯�k2dk d�
V

�2	�3 . �8�

The integration over the solid angle � can then be solved by
using in Eq. �7� the following relation:

1

4	
� ��ij − kikj�e−ik·Rd�

= ��ij − R̂iR̂j�
sin�kR�

kR
+ ��ij − R̂iR̂j�� cos�kR�

k2R2 −
sin�kR�

k3R3 �;

�9�

the interparticle interaction energy then emerges as

��E� = −
�c

4	R3 � ��n�k���c2k3

�2	�3 	�ik
�A�� jl

�B�

� �kR sin�2kR� + 2 cos�2kR� − 5
sin�2kR�

kR

−
6 cos�2kR�

k2R2 +
3 sin�2kR�

k3R3 �dk , �10�

where the term in square brackets is the spectral irradiance of
the light per unit solid angle in the wave-vector interval
�k ,k+dk�. The above expression has striking similarities to
the Casimir-Polder potential �1� associated with vacuum field
fluctuations; the integrand of �10� differs only from the inte-
grand in Casimir-Polder result by the factor 2�n�k��. We now
turn to the interaction induced by coherent counterpropagat-
ing fields.

IV. INTERPARTICLE INTERACTION INDUCED BY
COHERENT COUNTERPROPAGATING FIELDS

Let us now consider the interparticle interaction induced
by coherent counterpropagating fields. For the system con-
sidered in this section, the directions of the polarization vec-
tor and the propagation direction of the optical fields irradi-
ating the particles define the x and z axes, respectively �i.e.,
one beam has its Poynting vector along the direction of the z
axis, k, and the other one in the opposite direction, −k; both
beams have their polarization along the x axis�. In this coor-
dinate system, we first determine the local rotationally aver-
aged electric polarization of a molecule, �. When this mol-
ecule is subjected to the transverse electric displacement field
operators dx

��+��rz
���� and dx

��−��rz
���� �the sign in the super-

scripts designating co- or counterpropagation with respect to
k�, the mean electric polarization is first written as

Px
ind��� = �����dx

��+��rz
���� + dx

��−��rz
����� , �11�

where ���� is the isotropic electric susceptibility; and
dx

�����rz
���� is given by

dx
�����rz

���� = − i��ck�0

2V
�1/2

��a��k�eik��rz
���−ct� − a†��k�eik��rz

���+ct�� ,

�12�

where a��k� and a†��k� denote the photon annihilation and

creation operators for the radiation modes k and −k, respec-
tively �we omit the polarization in the notation of these op-
erators, since they can be distinguished by the Poynting vec-
tor�. Also in �12�, V is an arbitrary quantization volume; the
scalar rz

��� is the projection on the z axis of the position of the
particle �, and k is the modulus of the wave vector. The time
dependence plays an important role in the calculations ef-
fected in this section, and we consider this role can be illus-
trated most clearly when the time dependence is explicit in
the displacement operator; consequently, in Eq. �12� the uni-

tary transformation Û=expi�a†��k�a��k�+1 /2�kct� has
been used to transfer the time dependence from the states of
the radiation to the operators �34�.

The expectation value of the energy shift, given by Eq.
�3�, can be determined by introducing the coherent state

��+��
��−�� to describe the state of the radiation field, where

��+�� represents the state of the mode k and 
��−�� the state of
the mode −k. The expectation value of the interparticle in-
teraction potential energy, if there is a slight shift ��k be-
tween the modulus of the wave vector of the counterpropa-
gating beams, can be expressed as follows;

��E� = ��k,− k�2Vxx„k,�r�A� − r�B��…��ck�0

V
�

� ����+�
a†�k�a�k�
��+��cos�k�rz
�A� − rz

�B���

+ ���−�
a†�− k�a�− k�
��−��cos�k�rz
�A� − rz

�B���

+
1

2
����−�
a†�− k�
��−�����+�
a�k�
��+��

+ ���−�
a�− k�
��−�����+�
a†�k�
��+���

�cos�k�rz
�A� + rz

�B�� � �kt�� , �13�

where the terms involving a product of two annihilation or
two creation operators have been discarded since they are
rapidly oscillating and their time average is zero. This inter-
particle interaction potential, which has previously been de-
termined for a field described by number states �31�, is
evaluated here using the commutation relation
a��k�a†��k�=a†��k�a��k�+1, and the following eigen-
value equations for the coherent states involved:
a�k�
��+��=��+�
��+��, a�−k�
��−��=��−�
��−��, ���+�
a†�k�
= ���+�
�̄�+�, ���−�
a†�−k�= ���−�
�̄�−�. The positive and
negative propagation components of the classical fields
for the mode k, for instance, correspond to
i��ck�0 /2V�1/2��+�eik�+rz−ct� and −i��ck�0 /2V�1/2�̄�+�eik�−rz+ct�,
respectively �32,36�. The last term in Eq. �13�, with the fac-
tor cos�k�rz

�A�+rz
�B����kt�, is only present when �k=0; oth-

erwise its time average is zero. It is worth noting that, if the
radiation field is described by number states this term again
disappears; i.e., a degree of coherence is necessary for the
simultaneous interaction with the two modes not to vanish.

The interparticle interaction can finally be written as fol-
lows:
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��E� = �2I�0��A���B�

c
�Vxx„k,�r�A� − r�B��…g , �14�

where g=cos�k�rz
�A�−rz

�B��� when �k�0 and no interference
is present, and g=2 cos krz

�A� cos krz
�B� when �k=0 and a

standing wave is formed; the irradiance I for any of the coun-
terpropagating beams is given by ��+��̄�+��c2k /V. Since the
fields of the two counterpropagating beams are assumed
identical or very similar, we have also set ��−�=��+�. We now
study the energy surfaces generated by this form of interac-
tion. Figure 1 illustrates the result for particles trapped in the
standing wave of counterpropagating plane waves �when
�k=0�; in Fig. 1�a�, the two particles are trapped by gradient
forces in the same maximum of irradiance of the interference
pattern; in Figs. 1�b�–1�d�, the two particles are trapped in
two different maxima separated by 	 /k, 2	 /k, and 3	 /k,
respectively. The minimum in the position �Rx ,Ry ,Rz�

= �6 /k ,0 ,0�, which can be observed in Fig. 1�a�, is respon-
sible for transverse optical binding; the minima in the posi-
tions �0,0 ,	 /k�, �0,0 ,2	 /k�, and �0,0 ,3	 /k� that can be
observed in Figs. 2–4 are all contributions to the formations
of chains of particles along the propagation direction of the
field �longitudinal optical binding�. Figure 2 shows a contour
map of this optically induced interparticle potential energy in
the case where �k�0, and consequently there is no interfer-
ence. The contour map is drawn for a plane perpendicular to
the polarization of the field, where multiparticle structures
are expected to be located. As has been discussed in detail
previously �37�, this energy landscape can be responsible for

FIG. 2. �Color online� Optically induced interparticle energy
surfaces on the �x ,y� plane, R= �Rx ,Ry ,Rz�. The scale is in
I��A���B�k3 / �4	c� units.

FIG. 3. �Color online� Transverse section of the waist of a
Laguerre-Gaussian beam with two particles trapped in two different
rings.

FIG. 1. �Color online� Contour maps of the optically induced
interparticle interaction potential for two particles trapped in
maxima of irradiance of the standing wave formed by counter-
propagating optical plane waves of identical wavelength and irradi-
ance against kRx=k�rx

�A�−rx
�B�� and kRy =k�ry

�A�−ry
�B��. In �a�, par-

ticles are trapped in the same plane of maximum irradiance, and in
�b�–�d� they are trapped in different maxima of irradiance separated
by 	 /k, 2	 /k, and 3	 /k, respectively. Energy units are
I��A���B�k3 / �4	c�.

FIG. 4. �Color online� Contour map of the optically induced pair
potential for two particles trapped in the two rings at the waist of a
LG beam with p=1, l=1, and for k�0= �a� 10, �b� 20, �c� 30, and
�d� 40. The maximum of irradiance where the particle A is present
is at r1=0.47k�0 from the beam center, and for the particle B is at
r2=1.51k�0. Angles �A and �B are as shown in Fig. 1. In the scale
of the figure �a� black signifies −1.06�10−4, white 1.00�10−4; �b�
black −2.43�10−5, white 1.04�10−5; �c� black −6.22�10−6, white
6.37�10−6; �d� black −2.47�10−6, white 2.33�10−6. Energy units
are �C2

1�2�0
�A��0

�B�k5 / �4	�.
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the formation of longitudinal or transverse particle chains,
and many other planar structures.

It is also worth considering the effect on this interaction

of squeezing a coherent state. These states Ŝ���
�� are gen-

erated by the operation of the squeeze operator, Ŝ���
=exp(�̄a�
��k�2−��a†�
��k��2� /2), on a coherent state 
��
�34,35�; here, �=sei� is the complex squeeze parameter. The
mean photon number in the resulting mode can be shown to
be �n�= 
�
2+sinh2 s. Since the optically induced interparticle
interaction is proportional to this number, the interaction in-
creases sharply with the magnitude of the squeeze parameter
s. In the following section we consider the optically induced
interaction between particles trapped in Laguerre-Gaussian
beams.

V. INTERPARTICLE INTERACTION IN LAGUERRE-
GAUSSIAN BEAMS

Let us now consider the interaction between particles
trapped in Laguerre-Gaussian �LG� beams. We denote this
coherent state as 
��k ,
 , l��; the operations of the annihila-
tion and creation operators on 
��k ,
 , l�� and ���k ,
 , l�
,
respectively, are as follows:

a�
��k�
��k,
,l�� = 
��r,z�
exp�i��r,z��
��k,
,l�� ,

�15�

���k,
,l�
a†�
��k� = ���k,
,l�
exp�− i��r,z��
��r,z�
 ,
�16�

where the eigenvalue in �15� is related to the positive propa-
gation term of the classical field �36� and, from the complex
amplitude of the field of a LG beam �38�, we write 
��r ,z�

and ��r ,z� within the paraxial approximation as follows:

��ck�0

2V
�1/2


��z,r�
 =
Cp


l


w�z�
� �2r

w�z�
�
l


exp� − r2

w2�z�
�Lp


l
� 2r2

w2�z�
� ,

�17�

��z,r,�� = −
kr2z

2�z2 + zR
2�

− l� + �2p + l + 1�arctan� z

zR
� .

�18�

Here, Cp

l
 is the normalization constant; w�z�=w0

�1+z2 /zR
2 is

the radius of the beam at z, where w0 is the Gaussian beam
waist at z=0; Lp


l
�x� is the generalized Laguerre polynomial
of order p and argument x; ��2p+ l+1�arctan�z /zR�� is known
as the Gouy phase and 2zR is the Rayleigh range, a measure
of z over which collimation is sustained. The location of a
particle � in the beam is then expressed using the same pa-
rameters with � as a subscript, �z� ,r� ,���. Although a number
state formulation for the interaction of particles with
Laguerre-Gaussian beams has been developed �39�, we adopt
the one discussed above, since with this formulation the in-
teraction of particles in different locations of the beam struc-
ture can be easily considered.

Let us now consider a system comprising two spherical
particles A and B trapped by gradient forces in the waist of a

beam of this type. We consider the case of particles located
in different rings to extend previous results on optical bind-
ing in a single annulus �40�. Particle A is in the first ring, the
one of maximum irradiance and radius r1, and particle B is in
the second ring r2. The location of the particles can then be
specified by the parameters �zA ,rA ,�A�= �0,r1 ,�A� and
�zB ,rB ,�B�= �0,r2 ,�B�, as is shown in Fig. 3. The expectation
value of the optically induced interparticle interaction poten-
tial may then be determined as in previous sections, and
written as

��E� = ��ck�0

2V
��0�0

�A��0
�B�
��0,r1�

��0,r2�


4	cR3

� Re„expi���0,r2,�B� − ��0,r1,�A���…

� � �
i=x,y

�1 − 3�Ri/R�2��cos kR + kR sin kR�

− �1 − �Ri/R�2�k2R2 cos kR�� , �19�

where �0
�A� and �0�B� are the susceptibilities of particles

A and B; the Cartesian components of the particle displace-
ment vectors are given by Rx=r2 sin �B−r1 sin �A,
Ry =r2 cos �B−r1 cos �A, and R=�Rx

2+Ry
2.

The spatial distribution of the potential energy �19�, for a
beam with a field defined by the LG parameters p=1 and l
=1, is illustrated in Figs. 4 and 5 for various field polariza-
tion conditions. The positioning of the potential energy
maxima and minima determine the form of patterning in the
optically configured potential energy surface. The energy
minima, in particular, will determine the optimum locations
for distributing optically trapped particles. The variation with
�A and �B of features in the potential energy landscape, ex-
hibited in Figs 4 and 5, is independent of k and w0 for any
fixed value of kw0. For example, increasing k �equivalent to
reducing the wavelength� by a factor of n, whilst also reduc-

FIG. 5. Optically induced interparticle potential energy �E plot-
ted against 
�B−�A
 for two particles trapped in the two annuli of a
LG beam with p=1, l=1, and k�0=20 for the solid line, 30 for the
dotted line, and 40 for the dashed line. Angles �A and �B are as
shown in Fig. 3. The maxima of irradiance where the particles are
present are as shown in Fig. 2. Energy units are
�C2

1�2��0
�A��0

�B�k5 / �4	�. The graph equally applies to circularly and
radically polarized beams.
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ing w0 by the same factor, does not change the appearance of
the landscape. However, the absolute energy values are a
sensitive function of k through an overall proportionality to
k5; small changes in this parameter can thus produce signifi-
cant increases in the magnitude of the binding energies—
notice the units for the energy scales in these figures. For
these figures we have chosen values of kw0 that will satisfy
the paraxial approximation. We now focus in more detail on
the results.

Figure 4 shows contour maps of the interparticle interac-
tion potential induced by a LG beam that is linearly polar-
ized along the y axis, for different values of kw0. A general
feature that may be observed is a pattern of four sequences of
alternating minima and maxima, centred at �	 ,	�, �0, 0�,
�	 ,0�, and �0,	�. In these sequences, the number of maxima
and minima increases with kw0, in agreement with the linear
increase of the ring perimeter with this parameter, and the
oscillatory dependence of the interparticle potential on the
relative displacement vector. Since the perimeter of the ring
where particle B is present is significantly larger than the one
where A resides, these sequences extended over a large range
of �B and a small range of �A.

Figure 5 shows the potential induced by a beam of the
same wave-front topology as in Fig. 4, when the beam is
either circularly or radially polarized; both polarizations lead
to the same result, again exhibited for different values of
kw0. A number of potential energy minima and maxima of
varying magnitudes, as a function of 
�B−�A
, can be ob-
served; the number of minima increases in approximately
linear proportion to kw0, and the individual features are in
general distributed uniformly on 
�B−�A
. These potential en-
ergy surfaces show that, by manipulating the parameter kw0,
the arrangement of particles on the individual rings of LG
beams may be controlled.

VI. INTERPARTICLE INTERACTION INDUCED
BY BROADBAND RADIATION

In this section, we consider the optically induced potential
induced by broadband light. It is well known that a broad
white-light continuum can be generated from mode-locked
laser light by means of supercontinuum generation �41�. The
highly incoherent light resulting from this process has been
used for the fabrication of optical traps with marked struc-
tural differences from those produced by monochromatic
light �28�. Due to the small coherence length of the con-
tinuum radiation, such traps circumvent any problems due to
interference between counterpropagating beams, or interfer-
ence between the backscatter and beam fields �28,29�, each
of which may influence particle organization in studies using
narrow bandwidth radiation. In these traps, the organization
of particles along the Poynting vector proves attributable to
optical binding—an optically induced form of particle cou-
pling generally studied with monochromatic radiation �26�.

For simplicity, the analysis addresses a single direction of
beam throughput; an extension to counterpropagating beams
is perfectly straightforward. The direction of polarization of
the linearly polarized input is designated the x axis, and the
Poynting vector the z axis. To begin, the induced electric

polarization of a Rayleigh particle � with electric suscepti-
bility �����k�=�����k ,−k� for a mode with wave-vector modu-
lus k is written as �35�

Px
�ind,���k� = − i��ck�0

2V
�1/2

������k�a�k�ei�krz
���−ckt�

− �����− k�a†�k�e−i�krz
���−ckt�� , �20�

where V is an arbitrary quantization volume; the scalar rz
��� is

the projection on the z axis of the position of the particle �; �
is the permittivity of the medium within which the particles
are supported; �����−k�=�����−k ,k�. The time average �av� of
the energy shift operator for the optically induced interaction
between particles A and B can be written using the QED
method cast in terms of induced dipoles as follows �31�

�Eav = �
k

Re�Px
�ind,A��k�Vxx�k,R�Px

�ind,B��k���av, �21�

where R= �rx
�B�−rx

�A� ,ry
�B�−ry

�A� ,rz
�B�−rz

�A�� is the interparticle
vector between the particles A and B. Inserting Eq. �20� in
�21�, and using the commutation relation a†�k�a�k�
−a�k�a†�k�=1, the energy shift can be expressed as

�Eav = Re��
k
��cka†�k�a�k�

2V
�

��0���A��k���B��− k�eik�rz
�A�−rz

�B��

+ ��A��− k���B��k�eik�rz
�B�−rz

�A���	Vxx�k,R� , �22�

where we have neglected the Casimir-Polder potential
�which is relatively insignificant over the distances usually
associated with optical binding�, as shown in Sec. I. The
discrete sum over k is now replaced with the following con-
tinuum integral �35�:

�
k

a†�k�a�k�f�k� →� a†���a���f��/c�d� , �23�

where a��� and a†��� denote the continuum photon annihi-
lation and creation operators, respectively, at frequency �;
f�k� is an arbitrary function of k. The expectation value of
the energy shift for the continuum state 
x�� is accordingly
expressed as

��Eav� = Re� �0

2c
� S���Vxx��/c,R�

� ���A������B��− ��ei���rz
�A�−rz

�B��/c�

+ ��A��− ����B����e−i���rz
�A�−rz

�B��/c��	d� , �24�

where the spectral irradiance of the source is given by

S��� = � c���x�
a†���a���
x��
V

� . �25�

Equation �24� is applicable to optical states with any phase
uncertainty and to multimode states, where the occupation
number may change in space. In the following section it is
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shown how the application of this result affords a method for
the fabrication of moldable particle arrays using continuum
light.

Moldable particle arrays

Recent research has shown that particle arrays whose for-
mation is optically induced can be micromanipulated with
precision by a secondary field �42�. Here, a method by means
of which optically fabricated arrays can be molded using
continuum light is described. For convenience the spectral
irradiance of the light is assumed to have Lorentzian form:

S��� =
K

��0 − ��2 + �2 , �26�

where �0 determines the center frequency; the parameter K
determines the maximum, and � the width of the function.
For simplicity, each of the interacting pair of particles A and
B is assumed to comprise centers �molecules� whose optical
response is dominated by the ground state, 
0�, and one ex-
cited state, 
r�, and consequently the particle susceptibilities
are given by

��A���� = ��B���� =
2N

3�

�r0
2 
�r0
2

�0��r0
2 − �2�

, �27�

where N is the number of optical centers per particle; ��r0 is
the difference of energy between the states 
0� and 
r�; �r0

= �r
�
0� is the transition moment associated with the elec-
tronic transition 
r�→ 
0�. To avoid absorption and any atten-
dant thermal effects �which might change optical properties�,
and to observe the dependence of the interparticle potential
energy surfaces on spectrally different forms of irradiance,
part of the light can be filtered. Experimentally, this is expe-
dited by the use of long-pass filters, whose effect on the
spectral irradiance is illustrated in Fig. 6. Under these con-
ditions, the interparticle potential energy for each particle
pair can be written as follows:

��Eav� = Re�4KN2
�r0
4�r0
2

9c�2�0

��
0

�1 1

��r0
2 − �2�2

Vxx��/c,R�
��0 − ��2 + �2

�cos���rz
�A� − rz

�B��
c

�d�	 . �28�

The integral can then be evaluated numerically. It is now
possible to explore the effect of choosing different spectral
intervals by using pass filters with different wavelength char-
acteristics �hence different values of �1�. The graphs in Fig.
7 show the optically induced interparticle potential along the
Poynting vector of the beam for different values of �1. Hav-
ing regard to the ordinate axis values, this figure reveals that,
by increasing the region of the spectrum interacting with the
particles �i.e., by a positive shift in �1�, the magnitude of the
energy shift is significantly increased in the first three
graphs; this is a simple consequence of the corresponding
increase in irradiance. More significantly, the sequences of
minima within each such curve form a series in which each
is separated from the next by about the same distance, a
condition that favors the formation of particle chains �20�.
With a change of �1, the locations of all the minima in every
graph are displaced in a positive or negative sense in identi-
cal proportion. This suggests that any variation in the posi-
tion of the first minimum is indicative of a corresponding
change in the length of particle chains along the Poynting
vector. The graph in Fig. 8 illustrates the dependence of the
location of the first potential energy minimum as a function
of �1, revealing that optically induced chains may be con-
trollably extended or contracted by filtering appropriate fre-
quency regions of the continuum input radiation.

VII. CONCLUSION

A quantum electrodynamical analysis of the optically in-
duced interparticle potential has been performed with a focus

FIG. 6. Spectral irradiance of light, with Lorentzian spectrum,
transmitted through a long-wavelength pass filter.

FIG. 7. Optically induced interparticle potential given by Eq.
�28� for �0=10�, �r0=20�, and �1= �a� 5�, �b� 8�, �c� 12�, and �d�
15�. The units of energy and distance are 400KN2
�r0
4 / �c�o�2�
and c /�, respectively. The Poynting vector is along the z axis and
the polarization is along the x axis.
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on the differences produced by various types of optical field.
Specifically, number states, coherent states, squeezed coher-
ent states, Laguerre-Gaussian �twisted or vortex� beams, and
broadband light have been analyzed. Among other results it
has been shown, for example, that a variety of particle chains
and other structures can be fabricated in counterpropagating
beams; that the organization of particles in the rings of
Laguerre-Gaussian beams can be directly controlled by vary-
ing the product of the wave number and the spot size at the
beam waist; that the length of particle chains can be con-
trolled by tailoring broadband light with wavelength cutoff
filters. Such results exhibit the rich scope for optical fabrica-

tion and management of diverse types of particle structures,
solely using the properties of states of light. Further studies
of optical manipulation with broadband light are the subject
of ongoing research.

It is important to place the results in a proper context of
their potential experimental realization. In principle, the
lower the magnitudes of the optical property tensors and the
masses of the optically trapped particles, the higher the prob-
ability that noise and thermal energy might diminish these
interactions. In consequence, optical binding forces are in-
deed more easily observable for microparticles than for
nanoparticles, and the phenomenon has a significantly lower
probability for detection between molecules. However, ob-
servations of optical binding are generally performed using
optically trapped species with an extremely low translational
temperature, and the observed structures are remarkably
stable—to the extent that forced perturbations can be used to
ascertain restoring forces through a study of the oscillatory
motions centered on local potential energy minima �15�.
Given that there has been significant success when trapping
single atoms in optical traps �43�, there are good reasons to
suppose that very small particles will display the interactions
we have described, in suitably cooled systems.

ACKNOWLEDGMENTS

We gratefully acknowledge comments from Luciana C.
Dávila Romero, David S. Bradshaw, and Jamie M. Leeder.

�1� E. A. Power and T. Thirunamachandran, Phys. Rev. A 51,
3660 �1995�.

�2� P. W. Milonni, The Quantum Vacuum: An Introduction to
Quantum Electrodynamics �Academic, San Diego, 1994�.

�3� T. Thirunamachandran, Mol. Phys. 40, 393 �1980�.
�4� M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, Phys.

Rev. Lett. 63, 1233 �1989�.
�5� P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 64,

035422 �2001�.
�6� S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, Phys. Rev.

Lett. 89, 283901 �2002�.
�7� J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, Phys. Rev. B 72,

085130 �2005�.
�8� M. Guillon, O. Moine, and B. Stout, Phys. Rev. Lett. 96,

143902 �2006�.
�9� N. K. Metzger, E. M. Wright, and K. Dholakia, New J. Phys.

8, 139 �2006�.
�10� N. K. Metzger, E. M. Wright, W. Sibbett, and K. Dholakia,

Opt. Express 14, 3677 �2006�.
�11� T. Cizmar, V. Kollarova, Z. Bouchal, and P. Zemánek, New J.

Phys. 8, 43 �2006�.
�12� V. Karásek, K. Dholakia, and P. Zemanek, Appl. Phys. B: La-

sers Opt. 84, 149 �2006�.
�13� F. Chen, G. L. Klimchitskaya, V. M. Mostepanenko, and U.

Mohideen, Opt. Express 15, 4823 �2007�.
�14� J. Rodríguez, L. C. Dávila Romero, and D. L. Andrews, J.

Nanophotonics 1, 019503 �2007�.
�15� N. K. Metzger, R. F. Marchington, M. Mazilu, R. L. Smith, K.

Dholakia, and E. M. Wright, Phys. Rev. Lett. 98, 068102
�2007�.

�16� R. G. Crisp and D. L. Andrews, Proc. SPIE 6483, 648304
�2007�.

�17� S. Ahlawat, R. Dasgupta, and P. K. Gupta, Proc. SPIE 6535,
65350W �2007�.

�18� V. Karásek and P. Zemánek, J. Opt. A, Pure Appl. Opt. 9, S215
�2007�.

�19� D. M. Gherardi, A. E. Carruthers, T. Cizmar, E. M. Wright,
and K. Dholakia, Appl. Phys. Lett. 93, 041110 �2008�.

�20� J. Rodríguez, Opt. Lett. 33, 2197 �2008�.
�21� J. Rodríguez and D. L. Andrews, Opt. Lett. 33, 2464 �2008�.
�22� J. Rodríguez, L. C. Dávila Romero, and D. L. Andrews, Proc.

SPIE 6905, 69050H �2008�.
�23� L. C. Dávila Romero, J. Rodríguez, and D. L. Andrews, Proc.

SPIE 6988, 69880L �2008�.
�24� L. C. Dávila Romero, J. Rodríguez and D. L. Andrews, Opt.

Commun. 281, 865 �2008�.
�25� L. C. Dávila Romero and D. L. Andrews, in Structured Light

and its Applications, edited by D. L. Andrews �Academic, Bur-
lington MA, 2008�, pp. 79–105.

�26� M. Guillon and B. Stout, Phys. Rev. A 77, 023806 �2008�.
�27� M. Kawano, J. T. Blakely, R. Gordon, and D. Sinton, Opt.

Express 16, 9306 �2008�.

FIG. 8. Position of the first energy minimum of the potential
interaction energy illustrated in Fig. 7 as a function of �1, repre-
senting pass filters with different wavelength characteristics �see
text, and Fig. 6�. The units of distance and frequency are c /� and �,
respectively

JUSTO RODRÍGUEZ AND DAVID L. ANDREWS PHYSICAL REVIEW A 79, 022106 �2009�

022106-8



�28� M. Li and J. Arlt, Opt. Commun. 281, 135 �2008�.
�29� R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-

Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia,
Opt. Express 16, 3712 �2008�.

�30� V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-
Chávez, and K. Dholakia, Phys. Rev. Lett. 101, 143601
�2008�.

�31� A. Salam, Phys. Rev. A 73, 013406 �2006�.
�32� D. P. Craig and T. Thirunamachandran, Molecular Quantum

Electrodynamics: An Introduction to Radiation Molecule Inter-
actions �Dover, Mineola, NY, 1998�.

�33� M. A. Henesian and S. N. Dixit, Proc. SPIE 1870, 2 �1993�.
�34� S. M. Barnett and P. M. Radmore, Methods in Theoretical

Quantum Optics �Oxford University Press, Oxford, 1997�.
�35� R. Loudon, The Quantum Theory of Light �Oxford University

Press, New York, 2000�.
�36� A. D. Bandrauk, Quantum and Semiclassical Electrodynamics:

Molecules in Laser Fields �Marcel Dekker, New York, 1994�,
pp. 1–70.

�37� J. Rodríguez, L. C. Dávila Romero, and D. L. Andrews, Phys.
Rev. A 78, 043805 �2008�.

�38� G. Nienhuis, Structured Light and Its Applications: An Intro-
duction to Phase-Structured Beams and Nanoscale Optical
Forces �Academic, Burlington MA, 2008�, pp. 19–60.

�39� L. C. Dávila Romero, D. L. Andrews, and M. Babiker, J. Opt.
B: Quantum Semiclassical Opt. 4, S66 �2002�.

�40� D. S. Bradshaw and D. L. Andrews, Opt. Lett. 30, 3039
�2005�.

�41� R. R. Alfano, The Supercontinuum Laser Source �Springer,
New York, 1989�.

�42� D. L. Andrews and J. Rodríguez, Opt. Lett. 33, 1830 �2008�.
�43� D. Meschede and A. Rauschenbeutel, Adv. At., Mol., Opt.

Phys. 53, 75 �2006�.

INFLUENCE OF THE STATE OF LIGHT ON THE … PHYSICAL REVIEW A 79, 022106 �2009�

022106-9


