
IOP PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 085403 (10pp) doi:10.1088/0953-4075/42/8/085403

A retarded coupling approach to
intermolecular interactions
L C Dávila Romero1 and D L Andrews

School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK

E-mail: l.davila-romero@uea.ac.uk

Received 12 December 2008, in final form 12 March 2009
Published 9 April 2009
Online at stacks.iop.org/JPhysB/42/085403

Abstract
A wide range of physical phenomena such as optical binding and resonance energy transfer
involve electronic coupling between adjacent molecules. A quantum electrodynamical
description of these intermolecular interactions reveals the presence of retardation effects. The
clarity of the procedure associated with the construction of the quantum amplitudes and the
precision of the ensuing results for observable energies and rates are widely acknowledged.
However, the length and complexity of the derivations involved in such quantum
electrodynamical descriptions increase rapidly with the order of the process under study.
Whether through the use of time-ordering approaches, or the more expedient state-sequence
method, time-consuming calculations cannot usually be bypassed. A simple and succinct
method is now presented, which provides for a direct and still entirely rigorous determination
of the quantum electrodynamical amplitudes for processes of arbitrarily high order. Using the
approach, new results for optical binding in two- and three-particle systems are secured and
discussed.

1. Introduction

A wide range of physical phenomena involve electronic
coupling between adjacent molecules [1–7]. In connection
with optical binding, for example, the interactions of
neighbouring static electric and induced dipoles produce the
potential energy landscapes that determine local forces and
positions of equilibrium [8, 9], while the dynamic interactions
between transition dipoles are responsible for intermolecular
energy transfer [10–12]—the latter itself a process that
engenders modifications to the local force fields [13–15].
When off-resonant radiation propagates through a molecular
system it engages further pair interactions that are reflected in
optical binding forces [16, 17] and modifications to the rates
of energy transfer [18].

At a fundamental level, the theory of all such interactions
is deliverable on a quantum electrodynamical basis, some
of its main advantages over other methods being rigour and
the automatic inclusion of retardation effects [16, 19]. The
latter can prove surprisingly prominent, as for example in the
progression of resonance energy transfer from a radiationless
to a radiative character as the intermolecular distance increases
[10, 11]. The clarity of procedure associated with the
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construction of quantum electrodynamical amplitudes and
the precision of the ensuing results for observable energies
and rates are widely acknowledged. However, it is the
case that the complexity and length of these calculations
become progressively more daunting as the order of the
process increases. For example, calculation of the well-known
Casimir–Polder potential, which is of fourth order in electric
dipole interactions, requires the consideration of 24 different
time orderings, each associated with a Feynman graph and
each contributing differently to the result [20, 21]. Similar
or higher degrees of complexity arise in the calculation of
optical binding potentials, and a variety of other processes
involving molecular pairs [22, 23]. When three particles are
involved, the number of contributions escalates hugely, and
the algebra involved is not at all amenable to implementation
with conventional software [24].

One expedient means of tackling the problem
of calculational complexity of high-order intermolecular
interactions is a method based on state sequences rather
than time orderings [25]. A rigorous basis for the
associated diagrammatic constructions has been worked
out and the calculational procedures detailed; various
applications including the Casimir–Polder interaction have
recently been undertaken [21]. One advantage over the
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Feynman diagrammatic basis is that, for a given process, a
single state-sequence diagram concisely accommodates the
same information that would be cast in a complete set of
Feynman diagrams—in one typical case 720 time orderings
are built into a single, compact state-sequence graph. Another
advantage of the state-sequence representation is that it
identifies intermediate virtual states that are not apparent from
the Feynman approach. Yet, despite the advantages in setting
up and performing the necessary calculations, considerable
complexity cannot be circumvented—which is true whatever
traditional construct of theory is deployed.

Against this background, we report a new and rigorous
algorithm-based method that allows direct determination of
the quantum electrodynamical amplitudes for processes of
arbitrarily high order. No approximations are involved; the
ensuing results are precisely those that would also emerge from
the much lengthier methods of calculation outlined above.
The following account details the basis for the procedure
and the means of its implementation; applications to several
illustrative processes are also given, including resonance
energy transfer and its optical (laser-assisted) control, and
optical pair interactions. Using the approach, new results for
optical binding in two- and three-particle systems are secured
and discussed.

2. Theoretical description

Let us consider a molecular system formed by multiple centres.
Using the generic term ‘centres’, we mean to accommodate
systems composed of single molecules, as well as molecular
clusters, micro- or nano-particles; for succinctness, we will
refer to them as either molecules or centres, unless otherwise
stipulated. The centres are interacting through coupling with
electromagnetic fields, either assisted by throughput radiation
or, as in the case of static coupling or dispersion interactions,
through the electromagnetic vacuum, see below [26, 27]. The
centres, labelled ξ , are electronically distinct and neutral. The
closed system can be described by a Hamiltonian H written as a
sum of three terms: (i) the second-quantized Hamiltonian for
radiation field in vacuo, Hrad; (ii) a sum over all molecular
centres of the corresponding non-relativistic Hamiltonians,
Hmol(ξ ); (iii) a similar sum of the interaction Hamiltonians
that address the coupling between each centre and the radiation
field, Hint(ξ ) [20, 28]:

H = Hrad +
∑

ξ

Hmol(ξ) +
∑

ξ

Hint(ξ). (1)

Each of the latter interaction terms Hint(ξ ) can be expressed
as a sum of multipolar contributions. Using the convention of
implied summation over repeated indices, we have

Hint(ξ) = −ε−1
o μi(ξ)d⊥

i (Rξ ) − mi(ξ)bi(Rξ )

− ε−1
o Qij (ξ) · ∇j d

⊥
i (Rξ ) − · · · . (2)

where μi(ξ), mi(ξ) and Qij (ξ) are the electric-dipole,
magnetic-dipole and electric-quadrupole tensors, respectively.
The interaction Hamiltonian Hint(ξ ) also depends on the
transverse electric field operator, d⊥

i (Rξ ), and the magnetic
field operator, bi(Rξ ). In practice, the first term of (2),

representing electric-dipole interactions, often suffices. For
example, in systems where the radiative wavelengths involved
are much longer than the dimensions of the centres ξ , the field
strength may be considered as uniform and its gradient, with
which quadrupoles and higher multipoles engage, essentially
zero. However, for other processes such as optical activity,
it is necessary to include magnetic and higher -order electric
multipole contributions [20, 29]. In general, it is required to
consider only the form of coupling affected by the lowest order
of electric multipole that supports each inter-particle transition.
Moreover, a traceless form can be adopted for the quadrupole
and higher order multipoles, consistent with the divergence-
free character of the electric displacement field [30]. In this
work we shall limit our studies to the electric multipolar
interactions, referred to by the shorthand notation En for the
multipolar interaction of order n. If required, incorporation of
the magnetic counterparts Mn is straightforward.

Within the multipolar interaction framework, all
intermolecular interactions are mediated by the exchange of
transverse photons. The multipolar form can be derived
by use of the Power–Zienau–Woolley (PZW) canonical
transformation from the also well-known minimal coupling
representation [20, 28, 31]. Through the use of perturbation
theory, the generalized expression for the coupling between
two electric multipoles Em–En can simply be written as
[32, 33]

MEm−En
f i = E

(m)
Ai1...im

Vi1...imj1...jn
(κ, R)E

(n)
Bj1...jn

, (3)

where E
(m)
ξ is the transition multipole tensor of order m for

centre ξ . If three centres are involved, such as in [24, 34], the
coupling takes the form

M
Em−Ep−Eq

f i = E
(m)
Ai1...im

Vi1...imj1...jn
(κ, RBA)

×E
(p)

Bj1...jnk1...kp−n
Vk1...kp−nl1...jq

(κ, RCB)E
(q)

Cl1...lq
, (4)

where Rξξ ′ = Rξ−Rξ ′ . The coupling tensor, Vi1...imj1...jn
(κ, R),

quantifying the retarded interaction between two centres,
signifies the propensity for any Em emission and/or absorption
process at A to be electromagnetically registered at B and vice
versa. Its explicit result, which involves lengthy calculations
based on summing contributions of all time orderings (see for
example [12]), is

Vi1...imj1...jn
(κ, R) = (−1)

4πε0

m

∇i2 . . . ∇im∇j2 . . . ∇jn

× (−∇2δi1j1 + ∇i1∇j1

)eiκR

R
. (5)

The coupling tensor depends on κ , the magnitude of a
generalized wave vector defined according to the optical
process under study, and on R, the displacement vector
between the two centres linked by the coupling tensor.

The simplest case that may be considered is resonance
energy transfer, a process involving the dynamic interaction
between a centre A initially in an excited state α and a centre
B in its ground state [10, 11, 18]. The transfer of energy,
involving a coupling of electric-dipole transitions, results in
the decay of centre A to its ground state and the excitation of
centre B to an excited state β. From the general expression
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(4) it is readily verified that this E1–E1 dipole coupling [35]
is given by

ME1−E1
f i = μ

0α(A)
i Vij (κ, R)μ

β0(B)

j , (6)

where κ = EA
α0

/
h̄c. Here the coupling tensor takes the explicit

form

Vij (κ, R) = eiκR

4πε0R3

×{(1 − iκR)(δij − 3R̂iR̂j ) − (κR)2(δij − R̂iR̂j )}. (7)

A more detailed description of this process is given in
section 4.1. If quadrupole contributions are considered, say
in centre A, then the quantum amplitude for a mechanism
involving the E2–E1 coupling [36] is given by

ME2−E1
f i = Q

0α(A)
ij Vijk(κ, R)μ

β0(B)

k , (8)

involving a rank-3 retarded potential defined as

Vijk(κ, R) = −eiκR

4πε0R4
[(3 − 3iκR − κ2R2)(δij R̂k + δjkR̂i

+ δikR̂j − 5R̂iR̂j R̂k) − (κ2R2 − iκ3R3)(δij − R̂iR̂j )R̂k].

(9)

In the following sections, we shall focus discussion on electric-
dipole interactions noting, however, that the incorporation
of quadrupole and/or higher multipole interactions is
straightforward and intuitive.

Additional insight into the general structure of the results
that emerge from detailed QED calculations is afforded by
considering a mechanism whereby energy transfer between
two centres is influenced by coupling to a third particle, C.
In a process where the overall effect remains a transfer of
excitation from A to B, one of the three possible mechanisms
involving the third centre is given by the following result in
the case of E1–(E1)2–E1 coupling [24]:

M
E1−(E1)2−E1
f i = μ

0α(A)
i Vij (κ, RCA)α

00(C)
jk (−κ, κ)

×Vkl(κ, RBC)μ
β0(B)

l , (10)

where α
00(C)
jk (−κ, κ) is the polarizability tensor of the centre

C. An explicit expression of this polarizability tensor is given
in section 4, where it arises in the context of a more detailed
study of resonance energy transfer within the framework of
the retarded coupling method developed below.

From the examples shown in expressions (6), (8) and
(10) it can be recognized that the coupling expression
for different processes has a generic format involving the
contraction of transition multipole tensors E

(m)
ξ with a

coupling tensor Vi1...imj1...jn
(k, R). Although there are clearly

common features in the analysis of all the above processes,
each of the corresponding transition matrices involves a
separate derivation. For each individual process, calculation
entails either the use of Feynman graphs where all time
orderings of intervening interactions are considered [20], or
the state-sequence method [25] where such time orderings
are accommodated in state-sequence diagrams. Although the
latter method offers a more direct calculational route to the
result, both methods are taxing. Nevertheless, the examples
given in equations (6), (8) and (10) suggest the enticing

prospect of the development of a theoretical framework that
can embody and exploit the connection between all these
processes. For example, it can easily be seen that the transition
matrix of say M centres will involve (M−1) coupling tensors,
connecting with the molecular tensors of each centre. Thus, in
a two-centre process, such as in expressions (6) and (10), the
transition matrix Mf i has a structure in which two molecular
tensors, one for each centre A and B, are linked by a third, the
coupling tensor Vi1...imj1...jn

(k, R). In the case of a three-centre
process the transition matrix involves the molecular tensor for
each of the three centres, connected by the engagement of two
coupling tensors as shown in (8), and so on.

In the following section, we introduce a pragmatic
approach to finding an expression that can represent
the coupling of intermolecular interactions, based on the
molecular tensors of isolated molecules and their mutual
contractions with the coupling tensor (equation (7)).

3. Retarded coupling method

Equations (6), (8) and (10) are indicative and representative of
a general structure in terms of which the quantum amplitudes
for multi-centre interactions are cast. The multipole coupling
within a system comprising N particles can schematically be
represented as

Mf i = Rrad × Re

⎡
⎣χ̃

ξ1
{k1} ×

N∏
j=2

(
V{kj }{kj+1}

(
κ, Rξj+1 ξj

) × χ̃
ξj

{kj }
)⎤⎦ ,

(11)

where Rrad, defined below, is a scalar factor deriving from
the properties of the throughput radiation. Physically,
equation (11) signifies that each participant molecule,
engaging in the net interaction through its tensor χ̃ (also
defined below), thereby couples to the radiation field, and
to other molecules through the retarded potential. The set
{kj } represents a set of indices determined by the number of
photonic interactions in a particular centre. To find precise
expressions for each of the factors and tensors in (11), for any
specific intermolecular process, a few simple steps must be
followed. It suffices to base our analysis on any one of the
time-ordered diagrams (or state-sequence paths) describing it-
–bearing in mind that either representation is cast in terms
of energy non-conserving intermediate states. Thus, although
any such time ordering or state sequence can be selected as
a basis for the method described below, simplicity is retained
by use of the instance whose every stage adheres most closely
to energy conservation. (For example, in a scattering process,
that instance of time ordering would be the case where photon
absorption precedes photon creation.) Restricting our studies
to the electric-dipole approximation, we have the following.

(i) The number of interactions (due to virtual or real photons)
in each centre ξ determines the molecular tensor rank (in
the trivial case with only one interaction present, such a
tensor is of rank 1, i.e. the transition dipole moment vector
μ

ξ

i ).
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(ii) The radiative scalar factor, Rrad, takes the general form
[20]

Rrad = (−i)n
(h̄c)n/2(k1k2 . . . kn)

1/2(n1 n2 . . . nN)1/2

(2V εo)n/2

× exp

[
i
∑
i,ξ

k(ξ)

i · Rξ

]
, (12)

where it has been assumed that all photonic modes
involved in the optical process are different. In cases
where two or more interactions with photons of the same
mode occur, the degree of coherence of the radiative
quantum states, given by (ni)

1/2 for each interaction, must
be replaced accordingly. For example, if emission of
two photons of the same mode ni(ki , λi) occurs, then the
factor would be (ni(ni − 1))1/2 (see also [20]).

(iii) In its explicit and generic form, the χ̃ tensor for centre
ξ identifies with the more commonly known nonlinear
hyperpolarizability tensor χ

{α}{s}(ξ)

i1...in
contracted with the

polarization vectors of the real photonic modes involved
in the process:

χ̃
ξ1
{k1} = e

(λ1)
i1

(k1) . . . e
(λn)
ip

(kn)

×χ
{α}{s}(ξ)

i1...ip,ip+1...ip+n
(η1κ1, η2κ2, . . . , ηN−1κN−1). (13)

Similarities between the retarded coupling method and
the induced moment method [37, 38] can then be drawn.
The χ̃ tensor can be related to the same role played by an
nth-order-induced electric multipole moment as defined
in [39–43], exhibiting a mathematical isomorphism in
the results. Moreover, the ‘hyperpolarizability’ tensor
χ

{α}{s}(ξ)

i1...in
, in equation (13), is the same as is used in one-

centre interactions [20, 44]:

χ
{α}{s}(ξ)

i1...in
(η1κ1, η2κ2, . . . , ηN−1κN−1)

=
∑

π{α},{s}

{
μαn

msN−1
μαn−1

sN−1sN−2
. . . μα2

s2s1
μα1

s1n

}

×
{(

Ens1 − h̄η1cκ1
)(

Ens2 − h̄η1cκ1 − h̄η2cκ2
)
. . .

×
(

EnsN−1 −
N−1∑
p=1

h̄ηpcκp

)}−1

. (14)

However, care must be taken when constructing this tensor
for processes involving multi-centre physics. As for
single-centre systems, all real photons interacting directly
with centre ξ must be considered—but in addition, all
other real photons interacting with centres ξ ′, different
from ξ , also contribute to the molecular tensor χ

{α}{s}(ξ)

i1...in
.

In other words, all real photons engaged in the overall
interaction are represented in the construction of each
molecular tensor. The energy denominator factors, for the
molecular tensor in (14), also require careful construction.
For each centre ξ , it is possible to define an effective
wave-vector magnitude κi , in terms of the magnitudes of
the wave vectors of real photons interacting with other
centres ξ ′, and their molecular transition energies, E

(ξ ′)
mn ,

such that

κ
(ξ)

i =
∑
ξ ′

[
E

(ξ ′)
mn

h̄c
+

∑
s

(ξ ′)ηsks

]
. (15)

(iv) The retarded potential tensor is given by the usual
expression (5), V{kj }{kj+1}(κ, Rξj+1 ξj

), where its parametric
dependence is on the effective wave-vector magnitude κ

as given by (15), while Rξj+1 ξj
is the separation of the two

centres linked by the retarded potential.

4. Examples and applications

In this section we review several currently well-studied
intermolecular interactions, and we consider them within our
new approach. The expression for the transition matrix in
each case is obtained by use of the method described in the
previous section alone, and compared to previous results. In
the following, attention is first focused upon resonance energy
transfer (RET), then the considerably more complex case of
a laser-assisted counterpart to RET, and thirdly the influence
of a third body on such optical phenomena. We then study
cases of optical binding for two and three particles. The latter,
three-particle case, here entertained in detail for the first time,
serves as a tool to demonstrate the validity and expediency of
the multipole coupling method.

4.1. Resonance energy transfer

Resonance energy transfer [1, 18, 20] is a spontaneous process
which can be appropriately described within the quantum
electrodynamical framework. It involves the migration of
energy from an electronically excited donor, say centre A,
to a nearby acceptor, B, residing in its ground state. Generally,
centre A is electronically distinct from centre B. Succinctly,
the initial and final states of the process are given by

|initial〉 = ∣∣EA
α ,EB

0

〉
,

|final〉 = ∣∣EA
0 , EB

β

〉
,

(16)

where the energy transferred from donor A to acceptor B is
given by EA

α0 = EB
β0. The interaction invokes the exchange of

a virtual photon. Using the method set forth in section 3, and
by inspection of the relevant time-ordered diagram, figure 1,
we can readily determine an expression for the quantum
probability amplitude MRET connecting the initial and final
quantum states of the system. Since there is no throughput
radiation, it can easily be seen that the radiative factor in
expression (11) is trivial and equals unity. In each of the
centres, A and B, only one photon event occurs; therefore
the quantum amplitude MRET simply involves the transition
dipoles for each centre, connected by the retarded potential
tensor:

MRET = μ
0α(A)
i Vij

(
EA

α0

h̄c
; R

)
μ

β0(B)

j . (17)

In this case, the most elementary intermolecular interaction,
the coupling method is straightforward. It must be brought
to attention that the interaction potential in expression (17)
depends on the magnitude of an effective wave vector κ .
Following the instructions in section 3, this magnitude is

4
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A  B

p ,

0

0

A B

0

0

(a) (b)

λ

β

αα

κ

κ
β

Figure 1. One of two time-ordered diagrams representing RET
between two centres A and B; α and β indicate the respective
excited states. The verticals denote world lines of the two particles,
wavy lines outside them denote real (laser) photons and those inside
denote virtual photons; time progresses upwards. The
corresponding ground state is represented by 0: (a) traditional
representation, the label (p, λ) indicating the transfer of a virtual
photon; (b) process from the coupling method point of view, a
simple contraction of two one-centre molecular tensors with a
retarded potential linkage between them. The label κ indicates the
effective wave vector defined as κ = EA

α0/h̄c.

determined by the difference in energy between the initial
and intermediate molecular states of both centres A and B:

h̄cκ ≡ ∣∣(EA
0 + EB

0

) − (
EA

α + EB
0

)∣∣ = EA
α0

≡ ∣∣(EA
α + EB

β

) − (
EA

α + EB
0

)∣∣ = EB
β0. (18)

4.2. Laser-assisted resonance energy transfer

The process of laser-assisted resonance energy transfer
(LARET) represents a development of RET, whereby the
energy transfer is assisted by an auxiliary laser beam. The
mechanism for the engagement of the throughput radiation
entails additional photon events occurring at the donor and
acceptor centres (see figure 2). The same net energy is
transferred from one centre to the other as in RET. Defining
the laser input as comprising n photons with wave vector k
and polarization λ, the initial and final states of the system can
be written as

|initial〉 = ∣∣EA
α ,EB

0 ; n(k, λ)
〉
,

|final〉 = ∣∣EA
0 , EB

β ; n(k, λ)
〉
,

(19)

where only the radiation state of the auxiliary beam, |n(k, λ)〉,
is explicitly represented. Here, the radiative factor (12) takes
the simple form

Rrad = − nh̄ck

2V εo

exp[−ik · R]. (20)

Since LARET involves two real photon interactions in addition
to the virtual photon coupling, two possibilities arise: in one
case (labelled LARET(1) below) each centre undergoes two
interactions—one with a real photon and the other a virtual
photon; therefore, the molecular tensors in the transition
matrix are two generalized polarizability tensors, these being
linked through the retarded potential tensor Vjk . Again, two

Α Β

p,
0

0

Α Β

p,
0

0

λ

β

α
α

λ

β

(a) (b)

Figure 2. LARET process: in mechanism (a) the auxiliary beam
interacts with both A and B and in mechanism (b) the auxiliary
beam interacts with only one of the centres. In each case there are
24 different contributions and mirrored counterparts.

different possibilities emerge; the throughput radiation can
result in the absorption of a real photon at centre A and the
emission of a real photon of the same mode at B, or vice versa.
These two instances are reflected in the two contributions to
the matrix element shown below:

MLARET(1) = − nh̄ck

2V εo

×
[
e
(λ1)
i (k)α

0α(A)
ij

(
−k − EA

α0

h̄c
; k

)
Vjk

(
k +

EA
α0

h̄c
; R

)

×α
β0(B)

kl

(
−k; k +

EA
α0

h̄c

)
ē
(λ1)
l (k) exp(−ik · R)

+ ē
(λ1)
i (k)α

0α(A)
ij

(
k − EA

α0

h̄c
;−k

)
Vjk

(
−k +

EA
α0

h̄c
; R

)

×α
β0(B)

kl

(
k;−k +

EA
α0

h̄c

)
e
(λ1)
l (k) exp(ik · R)

]
. (21)

The result, in agreement with [45], involves the generalized
polarizability defined by

α
mn(ξ)

ij (±k2;±k1) =
∑

s

[
μ

ms(ξ)

i μ
sn(ξ)

j

E
(ξ)
sn ∓ h̄ck2

+
μ

ms(ξ)

j μ
sn(ξ)

i

E
(ξ)
sn ∓ h̄ck1

]
,

(22)

as in [20] (p 113). In its application to the LARET process,
however, the above tensor depends on the magnitude of

effective wave vectors ±k and ±(
k − EA

α0
h̄c

)
.

To complete the description of LARET additional terms,
based on static intermolecular interactions, must also be
addressed. These LARET(2) contributions arise from a
mechanism where both the photon events concerning the
auxiliary beam occur at the same centre (the two centres
still being coupled by a virtual photon). In the electric-
dipole approximation, this mechanism effectively involves
the contraction of a transition dipole in, say, centre A,
μ0α

i , with a transition hyperpolarizability tensor at centre B,

β
β0(B)

ij l

(−k,
EA

α0
h̄c

, k
)
, again linked through the retarded potential

tensor, Vij

(EA
α0

h̄c
; R

)
; the other possibility is that the roles of

A and B are reversed. The total static contribution to the
transition amplitude is then

MLARET(2) = nh̄ck

2εoV

[
ē
(λ1)
i (k)β

β0(B)

ij l

(
−k,

EA
α0

h̄c
, k

)
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×Vjk

(
EA

α0

h̄c
; R

)
μ

0α(A)
k e

(λ1)
l (k) + ē

(λ1)
i (k)

×β
0α(A)
ij l

(
−k,−EA

α0

h̄c
, k

)
Vjk

(
EA

α0

h̄c
; R

)
μ

β0(B)

k e
(λ1)
l (k)

]
,

(23)

where the tensor β
f i(ξ)

ij l is defined in its usual form [18]:

β
mn(ξ)

jkl (k3, k2, k1)

=
{∑

s,r

μ
ms(ξ)

j μ
sr(ξ)

k μ
rn(ξ)

l(
E

(ξ)
sn − h̄ck2 − h̄ck1

)(
E

(ξ)
rn − h̄ck1

)
+

μ
ms(ξ)

j μ
sr(ξ)

l μ
rn(ξ)

k(
E

(ξ)
sn − h̄ck2 − h̄ck1

)(
E

(ξ)
rn − h̄ck2

)
+

μ
ms(ξ)

k μ
sr(ξ)

j μ
rn(ξ)

l(
E

(ξ)
sn − h̄ck3 − h̄ck1

)(
E

(ξ)
rn − h̄ck1

)
+

μ
ms(ξ)

k μ
sr(ξ)

l μ
rn(ξ)

j(
E

(ξ)
sn − h̄ck3 − h̄ck1

)(
E

(ξ)
rn − h̄ck3

)
+

μ
ms(ξ)

l μ
sr(ξ)

j μ
rn(ξ)

k(
E

(ξ)
sn − h̄ck3 − h̄ck2

)(
E

(ξ)
rn − h̄ck2

)
+

μ
ms(ξ)

l μ
sr(ξ)

k μ
rn(ξ)

j(
E

(ξ)
sn − h̄ck3 − h̄ck2

)(
E

(ξ)
rn − h̄ck3

)
}

. (24)

The contributions given by expressions (21) and (23) are
in accordance with previous work, based on the traditional
methods [18, 45]. Figure 3 shows a particular time-ordered
diagram for each type of contribution, one dynamic and
the other static. In figure 3(a) it can be seen that in the
dynamic case the contribution to the transition matrix for
LARET involves the contraction of the radiative tensor with
two polarizability tensors, α

ξ

ij (κ, κ ′), one for each centre.
These are linked via the retarded coupling tensor Vjk(κ, R).
Similarly, from figure 3(b), it can be interpreted that the static
case involves the contraction of the radiative tensor with a
hyperpolarizability tensor in one centre, which in turn is linked
to a static transition dipole μrs

k via the retarded coupling tensor
Vjk(κ, R).

4.3. RET in the vicinity of a third centre

Here, the effects on the rate of RET between a pair of
centres, A and B, due to the presence of a third centre, C,
are analysed [24]. If such a third-party centre C is polar, its
presence may result in a significant variation of the transfer
rate. Furthermore, the presence of such a body can effectively
switch on the RET process in cases where such energy transfer
is forbidden due to orientational effects, or on symmetry
grounds. In general, the initial and final molecular states for
this system are

|initial〉 = ∣∣EA
α ,EB

0 , EC
0

〉
,

|final〉 = ∣∣EA
0 , EB

β ,EC
0

〉
.

(25)

The electromagnetic coupling between the three species
is solely mediated by virtual photons. Apart from the

A B 

k,

k,

0

A B

k 

k

0

0

(a) (b)

λ

α

κ

κ

β

β

λ

α

κ

κ

Figure 3. (a) Here the process contribution can be clearly seen to
involve a product of two polarizability tensors, one consisting of the
absorption of a photon of energy h̄ck and the emission of a photon
of energy h̄cκ = h̄ck + EA

α0. (b) As in the previous figure, the static
contribution can be seen to involve the product of the static dipole
moment with the hyperpolarizability tensor.

conventional operation of RET which does not involve C, there
are now three possible mechanisms associated with three-
centre RET. Each one has either centre A, B or C acting
as an electronic bridge between the remaining two. As a
consequence of the time–energy uncertainty principle, there
are 72 possible time orderings associated with this process.
Even if the state-sequence method is used, where all time
orderings can be depicted in a single diagram, the calculational
expense is considerable (for more details of this approach see
[24]). Nevertheless, inspecting figure 4 and using the coupling
method outlined in section 3, the transition matrix for the three-
body RET process can be obtained much more directly and
straightforwardly. Using the algorithm described in section 3,
the result emerges as follows:

μ
00(C)
i Vij (0; RAC)α

0α(A)
jk

(
−EA

α0

h̄c
, 0

)
Vkl

(
EA

α0

h̄c
; RBA

)
μ

β0(B)

l

+ μ
0α(A)
i Vij

(
EA

α0

h̄c
; RBA

)
α

β0(B)

jk

(
0,

EA
α0

h̄c

)
Vkl(0; RCB)μ

00(C)
l

+ μ
0α(A)
i Vij

(
EA

α0

h̄c
; RCA

)
α

00(C)
jk

(
−EA

α0

h̄c
, +

EA
α0

h̄c

)

×Vkl

(
EA

α0

h̄c
; RBC

)
μ

β0(B)

l . (26)

As with cases studied previously, care must be taken
when considering the effective wave vectors κi in both
the polarizability tensor α

(ξ)

jk (κ1, κ2) and the coupling tensor
Vkl(κ3, Rξξ ′). In this respect each of the three mechanisms
must be regarded separately. This example reflects the
advantages that the coupling method presents, where by simple
inspection of only one time-ordered diagram for each of
the mechanisms involved in the optical process, a complete
expression for the transition matrix can be obtained.

4.4. Optical binding: two-, three- and N-body cases

Optical binding is an optomechanical effect exhibited by
systems of micro- and nano-particles, suitably irradiated with
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Figure 4. Third body influence to RET. (a), (b) and (c) each depict
one of the possible 24 time-ordered contributions for each
mechanism: (a) static dipole of C interacts with donor A; (b) static
dipole of C interacts with donor B;(c) static dipole of C acts as
bridging species between the donor and acceptor.

off-resonance laser light [22, 46, 47]. Physically distinct
from standing-wave and other forms of holographic optical
trap, the phenomenon arises as a result of an inter-particle
coupling with individual radiation modes, leading to optically
induced modifications to Casmir–Polder interactions. These
optically induced inter-particle interactions give rise to forces
and torques (usually described as optical binding, although
the forces are not necessarily attractive in form) and they have
been of a particular focus in recent extensive investigations
(see for example [2, 39–41, 48–52] and references therein).
The phenomenon has increasingly been advocated as a tool for
optical manipulation and configuration of particles, and many
optically induced arrays have been observed experimentally
[52–54].

The description of optical binding within molecular QED
is mathematically similar to that given for LARET. Starting
with two centres, A and B, in the presence of a laser beam, the
‘initial’ and ‘final’ states of the system can be written as

|initial〉 = ∣∣EA
0 , EB

0 ; n(k, λ)
〉
,

|final〉 = ∣∣EA
0 , EB

0 ; n(k, λ)
〉
.

(27)

Here the equivalence of the two system state vectors signifies
that diagonal elements of the transition matrix are to be
derived—including non-trivial correction terms that arise from
a coupling of off-diagonal matrix elements. The result is,
therefore, to be interpreted as an energy (shift). As can
be seen from expression (27), the particles A and B are

(a)
A B 

r
0

0

0

0
r

(b)
A B 

r

0

0

0

0

r

' '

Figure 5. Two typical Feynman diagrams (each with 23 further
permutations) for the calculation of dynamic contributions to the
laser-induced interaction energy. Adapted from [46]. The static
contribution, not shown here, corresponds to the real photon being
scattered at one centre only (see figure 3(b)).

generally considered to be in their lowest energy state, i.e. their
ground state, and remain in these states beyond any interaction
with the highly intense throughput radiation. Four possible
mechanisms must be considered, as shown in figure 5. These
are as follows: (a) the case where a photon absorption event
occurs in centre A, and a photon emission event, of the same
mode, occurs at centre B; (b) the second mechanism comprises
the mirror case where the roles of A and B are exchanged;
(c) and (d) the cases which involve the static form of
contribution. Based on the coupling method described in
section 3, the resulting energy shift between the interacting
centres due to all four mechanisms is

�E(k, R) =
(

I

ε0c

)
e
(λ)
i ē

(λ)
l Re

{
αA

ij (−k, k)Vjk(k, R)

×αB
kl(−k, k) exp(−ik · R) + αB

ij (−k, k)Vjk(k, R)

×αA
kl(−k, k) exp(ik · R) +

1

2
Vjk(0, R)

[
βA

ijl(−k, 0, k)μB
k

+ μA
k βB

ijl(−k, 0, k)
]}

, (28)

in accordance with previous results [18, 40, 41]. From
expression (28) it can be observed that the energy shift for
optical binding is in a certain sense simply a particular case of
the LARET result, in which EA

α0 = EB
β0 ≡ 0, i.e. the molecular

states α and β are replaced by the ground state [47, 50, 51].
Based on the analysis of expression (28), assuming two

spherical particles, the spatial dependence of the optical energy
reveals richly detailed potential energy landscapes, which
can be exhibited as a function of the separation vector R.
It is apparent that these principles afford a tractable basis for
extension to a system of N spherical particles, irradiated with
a linearly polarized beam. In general, the determination of the
optically induced potential experienced by the whole assembly
requires the evaluation of equation (28) for 1

2N(N − 1)

particle pairs (obviously making depictions of the system
significantly more complex when considering a large number
of particles).

Beyond the particle pair approximation for an N-particle
system, further contributions to the optically induced energy
shift could be calculated from first principles based on either
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Figure 6. Optical binding for three particles. Here we show one of
the 720 possible time-ordered diagrams.

the time-ordered diagrams or the state-sequence method. A
system involving N particles would entertain N ! mechanisms,
each involving (2N)! time-ordered diagrams—for example,
in the case of a three-particle system this would involve
consideration of six different mechanisms each involving 720
time orderings, figure 6 being one of the possible orderings.
Fortunately the coupling method offers a straightforward
answer to such a problem. This method can deliver a result
for a system with an unspecified number of particles, N. The
energy shift for such a system can readily be identified as the
sum of all possible contributions of the general form

�E{ξ1,...ξN } = nh̄ck

2V εo

e
(λ)
i0

(k)ē
(λ)
iN

(k)

×α
(ξ1)

i0i1
(−k; k)

N−1∏
p=1

[
Vipip+1

(
k, Rξpξp+1

)
α

(ξp+1)

ip+1ip+2
(−k; k)

]
× exp

(−i k · RξN ξ1

)
. (29)

Here, the set of superscript labels {ξ1, . . . , ξN } indicates that
all possible permutations of ξ i must be taken into account.

In particular, for the simplest case of a three-centre system,
first studied in [8], we have contributions of the form

�E{A,B,C} = nh̄ck

2V εo

e
(λ)
i0

(k)ē
(λ)
iN

(k)

×α
(A)
i0i1

(−k; k)Vi1i2(k, RBA)α
(B)
i2i3

(−k; k)Vi3i4(k, RCB)

×α
(C)
i4i5

(−k; k) exp(−ik · RCA). (30)

Accommodating the other five permutations of {A,B,C}, the
net results are as follows:

�E = nh̄ck

2V εo

e
(λ)
i0

(k)ē
(λ)
iN

(k)

× [
α

(A)
i0i1

(−k; k)Vi1i2(k, RBA)α
(B)
i2i3

(−k; k)Vi3i4(k, RCB)

×α
(C)
i4i5

(−k; k) cos( k · RCA) + α
(A)
i0i1

(−k; k)Vi1i2(k, RBA)

×α
(C)
i2i3

(−k; k)Vi3i4(k, RCB)α
(B)
i4i5

(−k; k) cos(k · RBA)

+ α
(B)
i0i1

(−k; k)Vi1i2(k, RBA)α
(A)
i2i3

(−k; k)Vi3i4(k, RCB)

×α
(C)
i4i5

(−k; k) cos( k · RCB)
]
. (31)

Expression (31) perfectly illustrates the advantages that use
of the propagator method offers, where a result for the
energy shift can be effortlessly obtained from a seemingly

complicated process that would otherwise be calculationally
costly.

Finally, it is worth observing how to extend the results
to larger particles. Experimentally, optical binding is
generally encountered between nano-particles, optical centres
or molecular aggregates formed by a certain number of
molecules, p. To consider such systems we need to only
entertain an effective polarizability given by

χ
(ζ)

ij =
p∑
ξ

α
(ξ)
λμ I

(ξ)

iλ I
(ξ)

jμ exp(ik · �Rξ ), (32)

where the I
(ξ)

λi are the cosines of the angles between the
particle-fixed and molecule-fixed axes. The relative position
of each molecule ξ within a particular aggregate ζ is given by
�Rξ . Such aggregates can be considered as mesoscopically
disordered materials, within which local domains possess
particular structures. For a more detailed analysis see [8].

5. Discussion

The different and varied intermolecular processes reviewed
in section 4 clearly show the advantages that the retarded
coupling method represents. It is a concise approach to the
analysis and study of a host of optical processes. Not only
are time-consuming calculations circumvented, but also it is
possible to draw mathematical connections and similarities
between different processes, such as the case with LARET
and optical binding.

In this work we have restricted consideration to the
electric-dipole approximation. Nevertheless, extending
the coupling method to incorporate higher order multipole
coupling should be straightforward. Processes where the
intermolecular interactions involve more than one virtual
photon, such as the case of the Casimir–Polder dispersion
interactions [21], need further consideration. The basis for
such interactions can still be regarded as described by the
general expression (11); however, the retarded potential tensor
given by (5) is no longer applicable, because it does not
allow for any temporal cross-over between two virtual photons
(see [21]). If a suitable bridging potential tensor were to
be determined, then the extension of the retarded coupling
approach to include dispersion interaction processes should
be possible. This represents rich ground for future work.
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