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Quantum electrodynamics furnishes a new type of representation for the characterisation of nonlinear 

optical processes.  The treatment elicits the detailed role and interplay of specific quantum channels, 

information that is not afforded by other methods.  Following an illustrative application to the case of 

Rayleigh scattering, the method is applied to second and third harmonic generation.  Derivations are 

given of parameters that quantify the various quantum channels and their interferences; the results are 

illustrated graphically.  With given examples, it is shown in some systems that optical nonlinearity 

owes its origin to an isolated channel, or a small group of channels.  
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1. Introduction 

Since the first utilisation of nonlinear materials for laser frequency conversion – and the discovery that 

many could be unexpectedly robust under the high intensities of laser light required – the field has 

developed and branched into strikingly diverse technological avenues.  New materials with 

increasingly optimised properties are often reported, particularly in connection with photoactive 

devices, optical sensors, telecommunications systems and optical data storage amongst others.  To 

inform the devising of new, specially tailored nonlinear optical materials for these and other 

applications, accurate methods are required for calculating the salient operating characteristics.1-7  With 

the development of a graph theoretic approach for such computations,8 it has become much more 

straightforward to identify and quantify the significance of discrete quantum channels, contributing to 

specific nonlinear optical effects.  The term quantum channel signifies a quantum mechanically distinct 

sequence of radiation-matter coupled states, connecting the initial and final optical states, each 

generating directly additive contributions to the material response tensor (e.g. hyperpolarisability).  The 
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method is based on the construction of a graph which, for any photon-based process, affords it a unique 

and complete representation.  Any such graph can be interpreted as a state-sequence network 

connecting the initial and final system states.  As calculational aids, these graphs have several key 

advantages over the more familiar (Feynman) time-ordered diagrams commonly employed: (i) the 

connectivity of different quantum channels is readily identifiable; (ii) salient parameters for states that 

feature in several channels need only be computed once; (iii) all time-orderings for a particular process 

are embedded in a single graph.  Based on these state-sequence diagrams, a very recent report9 offers a 

significantly clearer perspective (compared to earlier semiclassical work) on the photophysics 

underlying nonlinear optical response.   

 

In this paper we develop and illustrate application of the new methodology to the detailed 

characterisation of materials for laser frequency conversion.10,11  We also introduce a new illustrative 

tool to exhibit the relevance and degree of interference between the various quantum channels that 

contribute to frequency conversion.  These are features that have, until now, rarely been reported – but 

which can play a decisive role in determining optical characteristics.  Choosing a suitable model to 

illustrate the technique we show, using graphical representations, how quantum channels interfere both 

constructively and destructively; we demonstrate not only how such interferences can be identified, but 

also quantified according to process and frequency range.  Amongst other advantages, the immediacy 

and discriminatory power of these representations commends their possible use as guides to the 

accuracy of calculational approximations.   

 

 

2. Theoretical basis 

The correct description of any nonlinear optical medium under the influence of electromagnetic 

radiation properly requires the employment of quantum field theory.  Nonetheless there are two distinct 

approaches; often the matter is treated quantum mechanically and the radiation as a classical field 

(semiclassical theory, SCT); this has success in many applications but notably fails in others such as 

spontaneous emission (normal fluorescence, phosphorescence etc.).  Alternatively, quantum 

electrodynamics (QED) can be used.  QED describes both the matter and the radiation quantum 

mechanically; it has excellent agreement with experiment and is the only theory to fundamentally 
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support the concept of a photon.12   Since the quantum channels that mediate the production of optical 

harmonics are specifically determined by different sequences of photon creation and annihilation in the 

nonlinear medium, it is QED that is the theory of choice for the following development.  

 

For the systems discussed in this paper, it is sufficiently accurate to develop theory in terms of 

non-relativistic QED.  As a result, since intra-atomic Coulomb binding energies are much greater than 

the coupling to radiation, matter-photon interactions are treated by perturbation methods.13  The 

following Hamiltonian for non-relativistic QED is directly amenable to multipolar development: 

 

 
rad mat intH H H H   . (1) 

 

Eq. (1) comprises: (i) the radiation Hamiltonian, radH ; (ii) the matter Hamiltonian, 
matH  and; (iii) the 

interaction Hamiltonian, intH .  The quantum representation of the radiation field engenders the 

concept of vacuum fluctuations, the source of the zero-point energy associated with a vacuum.  

Detailed calculations show that such fluctuations are responsible for Casimir interactions and 

contributes to the Lamb shift, for example.14  Equally, with the promotion of the radiation field to 

operator status in QED, 
int 0H   even when no radiation is present; as such the theory successfully 

accounts for spontaneous emission, a result which SCT notably fails to deliver.  The rate, , of any 

optical or other electromagnetic interaction is found from Fermi’s Golden Rule15; 

 

  
22

FI I FM E E


     , (2) 

 

where  I FE E   is the Dirac delta function – which equals zero unless the initial energy, IE , equals 

the final energy, FE , and FIM  is the quantum amplitude coupling the initial and final states.  The latter 

is determined by time-dependent perturbation theory, generally cast as the following infinite series; 
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(3)

 

 

where I  and F  represent the initial and final system states, respectively; the virtual system states 

are denoted by R , S , T .... and 
IE  is the energy of the initial state.  Moreover, successive terms 

relate to processes of progressively higher photonic order; for example, a description of the three-

photon event of second harmonic generation (SHG) and four-photon event of third harmonic 

generation (THG) are determined from the third and fourth terms on the right-hand side of Eq. (3), 

respectively.  Processes cannot involve both three and four photons (for example) and, thus, no cross-

terms within Eq. (2) will occur in the QED case.  In contrast, the semiclassical description proves 

problematic at this juncture since apparently non-zero cross-terms remain which, in practice, have no 

physical significance.  Returning to Eq. (3), each operation of intH  on the state to its right effects 

transition to the state on its left; physically this signifies the annihilation or creation of a photon by the 

nonlinear medium.  The possible sequences in which such fundamental processes occur, as the 

radiation-matter system moves from its initial state to the final state, represent the various quantum 

channels of the given process.   

 

 For the expository purpose of this paper, simplified two-level systems are chosen for the 

nonlinear media.  Calculations thus invoke only data on the ground state, the single optically significant 

excited state and their coupling, not all states of the medium.  It should nonetheless be emphasised that 

adoption of the two-level approximation is a quite separate matter from the calculational procedures we 

describe; our methods are completely amenable to systems with any number of optically significant 

states.  As an illustrative example of the method the simplest elastic optical process, Rayleigh 

scattering (RS), will be examined first. This is followed by more detailed analysis of the successively 

more complex processes of SHG and THG.  The paper concludes with a discussion section. 
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3. Rayleigh scattering 

In QED terms, Rayleigh or elastic light scattering is a process involving two matter-photon 

interactions; the annihilation of an incoming photon and the creation of another.  Due to the time-

energy uncertainty principle, theory requires that this phenomenologically instantaneous event is cast in 

terms of the two co-present quantum channels of the state-sequence diagram of Fig. 1.  In one channel, 

the annihilation of a photon effects a transition to a virtual excited matter state, which relaxes back to 

the ground state with the creation (emission) of a further photon.  The emergent light has the same 

wave-vector magnitude (and energy) as the incoming photon.  The second quantum channel differs in 

the sequential creation of a photon and annihilation.  An expression for the polarisability tensor ij – 

which is proportional to the quantum amplitude of Rayleigh scattering – is derived from the second 

term of Eq. (3) and given by13,16: 

 

 
0 0 0 0

0 0

r r r r

i j j i

ij

r r rE E

   


 

 
     
   . (4) 

 

Here, the implied summation convention for repeated Cartesian tensor indices is used, 0 0r r   

denotes a transition dipole moment,   is the energy of an input photon and 0 0r rE E E , in which r 

represents the virtual matter state.  Furthermore, within Eq. (4), the first term corresponds to the upper 

quantum channel of Fig. 1 and the second term to the lower quantum channel.  Mathematically these 

two channels signify the following routes between quantum states; 

 

Channel 1  1 1 1

0 1 2r r r   , 

Channel 2  1 2 1

0 1 2r r r    , 

 

where 
l

kr  denotes a system state displayed on the relevant state-sequence diagram: k is the step 

number (0 being the initial state, represented on the left-hand side of the state-sequence diagram) and l 

the vertex number (in numerical order from top to base).  Eq. (4) involves a summation over all virtual 

states of the medium and hence allows the expression to be rewritten in the form17: 
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   ij ij ij TLA BG   . (5) 

 

Here, TLA denotes the two-level approximation and BG other background contributions.  For any 

approximately two-level system, the second term on the right-hand side of Eq. (5) is insignificant and 

need not be considered further – this is an approximation that is unnecessary in many systems but 

which simplifies the present exposition.  Therefore, setting  , 0r u  and 
0 0r uE E , Eq. (4) 

simplifies to:     

      

 
0 0 0 0

TLA (1) (2)

0 0

u u u u

i j i j

ij ij ij

u uE E

   
  

 
   

 
 . (6) 

 

Note here that the terms involving the static dipole moment, 00, cancel out exactly.  Moreover, the 

wavefunctions of the matter states 0  and u  are both assumed as either non-degenerate or a suitable 

linear combination of degenerate states, and hence are characterized by real functions; the expression 

0 0u u   then follows. 

 

 The rate equation (2) can be rewritten for the present application by splitting the quantum 

amplitude into two terms – the first term, 
(1)

FIM , corresponding to channel 1 and the second, 
(2)

FIM , 

to channel 2:  

 

       
2

1 2RS

TOT

2
FI FI f iM M E E


      . (7) 

 

In terms of polarisabilities, accounting for (1) (1)

FI ijM   and (2) (2)

FI ijM  , this expression is 

rewritten in the following simplified form: 

 

     
2

1 2RS

TOT ij ij     . (8) 
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We now identify a matrix of contribution ratios, nm , whose diagonal components represent the 

significance of single channels through the state-sequence diagram, and whose off-diagonal terms 

represent the quantum interference of differing channels – see Figs 2(a)-(c).  Normalising the relative 

values by reference to the total rate (of elastic scattering, in this instance), only the individual 

polarizability contributions are of importance as other factors cancel in the ratios.  Thus we secure the 

following expression, written in terms of (1) and (2) from which the three contribution ratios of 

Rayleigh scattering are generated; 

 

 
   

    

   

    

   

    
RS

2 2 2
1 2 1 2 1 2

n m n m n m
fi fi ij kl

nm

fi fi ij ij

M M

M M

   


   
  

  

  , (9) 

 

where n, m = 1 or 2, 
RS RS

21 12   and it is possible for the off-diagonal nm  to have either positive or a 

negative values, respectively signifying constructive or destructive quantum interference.  The validity 

of an apparent cancellation of Cartesian components in the last equality, in Eq. (9), is proven in 

Appendix A, where more detail is given on the derivation of the contribution ratio.  Generated from Eq. 

(9), the contribution ratios are given as follows: 

 

 

2

RS 0
11

02

u

u

E

E




 
  
 

 , (10) 

 

2

RS 0
22

02

u

u

E

E




 
  
 

  , (11) 

 
  

 
0 0RS

12 2

02

u u

u

E E

E

 


 
   . (12) 

 

The results of Eq. (9) are readily quantified for input photons of various frequencies in the 

energy range spanning the optical range between 2  10-18 J and 1  10-20 J (wavelength range 99.3 nm 

to 19.8 m), i.e. energies comparable to the given typical value of 0uE  = 8.15  10–19 J (243.7 nm).  

For present purposes photon energies are chosen not to match or very closely approach 0uE , thus 

precluding complex resonance absorption considerations.  To interpret the results, once the relevant 
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values are inserted into Eqs (10)-(12), a graphical representation is constructed (Fig. 3).  The main 

feature of the graph is that each line depicts the contribution due to the channel (or channels) illustrated 

by Figs 2 (a)-(c), i.e. lines [1,1], [2,2] and [1,2] relate to Eq. (10), (11) and (12) respectively.  From the 

analysis of Fig. 3, it is observed that contributor [1,1] always gives the greatest contribution to the total 

scattering, except for incoming photon wavelengths approaching 20 m; then all contributors are 

equivalent.  Note that the line [1,2] includes the result for 
RS

12  and 
RS

21 ; accordingly contributor [1,2] 

features a contribution twice the value of the two ‘diagonal’ contributions at high photonic 

wavelengths.  It is also observed that [1,2] is the only term that may have a negative value – but this is 

apparent only at photon energies greater than 
0uE .  The negative value signifies that there is destructive 

quantum interference between the two channels, i.e. a contribution that diminishes the efficiency of 

scattering.   

 

 

4. Second harmonic generation 

Second harmonic generation fundamentally involves three matter-photon interactions, in each of which 

two identical photons are annihilated and one frequency-doubled photon is created in the nonlinear 

medium.  For this process the total energy of the two incoming photons, 2  , is equivalent to the 

energy of the outgoing photon,  ; the mechanism is thus elastic.  A single state-sequence diagram 

accommodates all possible pathways by which this process can proceed; this is illustrated by Fig. 4, 

and the three possible quantum channels are defined in Table 1.  To determine the second-order 

hyperpolarisability of second harmonic generation, 
ijk , the third term of Eq. (3) is required.  The 

derivation that then follows is considerably simplified by the use of a very recently proposed 

procedure.9  The result is reported as the familiar summation; 

 

 
     

  

0 0 0 0
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0 0

0 0

2

,
2
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j k i
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E E E E

E E

     


   

  

 


 
    




 



 

(13)
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where s denotes a second virtual matter state.  Once again applying the two-level approximation, 

namely  , , 0r s u , Eq. (13) becomes17-20:       

 

         

0 0 0 0 0 0

TLA

0 0 0 0 0 0

(1) (2) (3)

2 2

.

u u u u u u

i j k j i k j k i

ijk

u u u u u u

ijk ijk ijk

d d d

E E E E E E

     


     

  

  
     

  

 

(14)

 

 

Here, 00uu d    is the static dipole displacement vector, i.e. the difference between the static dipole 

moments of the excited and ground matter states.  The three terms (1)

ijk , (2)

ijk  and (3)

ijk  

correspond to the channels 1, 2 and 3 (respectively); the latter are defined in Table 1.  Again, we 

characterise contribution ratios as relating to an individual channel (quadratically determined from one 

hyperpolarisability term) or the quantum interference of differing channels (multiplying different 

terms).  When the vectors d  and 0u  are parallel, such that 0ud  , then 

0 0 0 0 0 0 0 0 0u u u u u u u u u

i j k i j k j i k j k id d d            and the contribution ratio is independent of the 

Cartesian components ijk.  Hence the following simple expression, written in terms of (1), (2)and(3) 

that determines the six contribution ratios of SHG; 

 

 

 

( ) ( )
SHG

2
3

1

n m

nm

i

i

 






 
 
 


  , (15) 

 

where n, m  = 1, 2 or 3 and SHG SHG

nm mn  .  More intricate cases, in which d  and 0u  are not parallel, 

are considered and discussed in the concluding Section. 

 

For each of the expressions derived from Eq. (15), calculations are performed for photon input 

over the same wavelength range as previously for Rayleigh scattering, i.e. between 99.3 nm and 19.8 

m.  From an analysis of the corresponding graphical representation (Fig. 5) it is observed that at 

wavelengths greater than 20 m all contributions relating to a single channel contribute to an 

essentially equal amount, but the quantum interference of differing channels is approximately twice as 
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significant; as before, this is due to the SHG

nm  being incorporated in the SHG

mn  result where n  m.  In the 

region lower than 20 m, the positive value of contributor [1,1] increasingly dominates as the 

wavelength decreases; [2,2] also increases but less rapidly, and [1,2] descends rapidly into negative 

results.  Contributors [1,3], [2,3] and [3,3] are negligible and, hence, are not shown in Fig. 5.  To 

summarise, it is found that quantum interference, i.e. [1,2], effectively erodes the strongly increasing 

[1,1] contribution. 

 

 

5. Third harmonic generation 

Third harmonic generation entails the annihilation of three identical photons in a four matter-photon 

interaction process; again the process is elastic.  The third-order hyperpolarisability of third harmonic 

generation, ijkl , arises from the fourth term of Eq. (3).  To derive ijkl  the procedure of ref. 9 could 

again be employed but, given that the two-level approximation is again applied, it is expedient to use a 

calculational short-cut to the more complicated result.  Proven in detail elsewhere,21 this method 

employs a reformulation algorithm that operates with permanent electric dipole moments as follows; 

 

 00 00; 0uu uu   d    ;  (16) 

 

any transition dipole moment (here 0u  or 0u ) is left unchanged.22  For THG, the sequence from the 

initial state to the final state proceeds via the three intermediate matter states, r , s  and t , and is 

written 0 0r s t    .  With the two-level approximation each of these intermediate 

states is either 0  or u ; thus the possible sequences are 00000, 0u000, 00u00, 000u0, 0uu00, 0u0u0, 

00uu0, 0uuu0, where for example 0u0u0 represents 0 0 0 0u u u u    .  Every sequence that includes the 

segment 00 is discarded, following Eq. (16); which leaves 0u0u0 and 0uuu0.  Considering all channels 

through the state-sequence diagram of Fig. 6, the following eight-term expression is determined: 
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(17)

 

 

Here,    1 2

ijkl ijkl   relate to channel 1 (defined in Table 2); the only differences between the terms 

being the differing energies of the intermediate states.  Similarly    3 4

ijkl ijkl  ,    5 6

ijkl ijkl   and 

   7 8

ijkl ijkl   correspond to channels 2, 3 and 4 respectively.   

 

Following the procedure established in previous sections, the ten contribution ratios of THG 

are formed by considering the contributions relating either to a single channel or the quantum 

interference of differing channels.  These ratios are generated from the following expression; 

 

 
       

 

2 1 2 2 1 2

THG

2
8

1

( )( )
n n m m

nm

i

i

   




 



 


 
 
 


  , (18) 

 

where n, m = 1, 2, 3 or 4, and THGTHG

mnnm  .  Again taking d  and 0u  as parallel, it follows that 

0 0 0 0 0 0 0 0 0 0u u u u u u u u u u

i j k l i j k l j i k ld d            etc. and the ensuing results are independent of the 

Cartesian components ijkl.  In calculating results from Eq. (18), the previous typical values are again 

employed.  From analysis of Fig. 7, constructed to interpret the THG results, it is observed at photon 

energies descending from 990 nm, that contributors [1,1] and [1,2] are the dominant positive and 

negative contributions, respectively.  However at wavelengths below 570 nm, [1,3] and [2,2] prevail 

over [1,1].  Therefore, [1,1] is not always the greatest rate contributor as in the SHG case. 
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6. Discussion 

Previously we have assumed, purely for simplicity of exposition, that the key dipole moments (i.e. the 

transition moment 0u  and the static dipole displacement vector d  for one optically prominent 

excitation) are parallel.  Hence, all the numerators of Eqs (14) and (17) are directionally equivalent and 

none of the quantum channels can be excluded from the analysis (although the channels of negligible 

significance have been omitted from the relevant graphs).  Our methods are of course applicable to 

systems where the key dipole moments are not parallel – though the expressions that result require 

another level of exploration.  If, for example, we consider systems in which 0u  and d  are orthogonal 

then it is possible to isolate a single channel or small group of channels.  Through the application of 

such conditions, it can transpire that numerous quantum channels are precluded for certain 

hyperpolarisabilities.  First analysing SHG; if for example d  and 0u  are oriented in material-defined 

z- and x-directions, respectively, then channel 2 alone exists for the corresponding tensor 
zxx  – 

whereas (taking account of the j, k symmetry) 
)( zxx  will involve only channels 1 and 3.  The 

analogous results for THG are presented in Table 3.  In general, for various angles between 0u  and d , 

a significant reduction of quantum channels is apparent. 

 

 This paper has highlighted and corrected a number of observed misconceptions.  It is surprising 

to find that, in the context of describing nonlinear optical properties, a significant number of papers23-29 

continue the early practice of reporting material response in terms of static (hyper)polarizability values, 

defined solely by a scalar magnitude.  This misrepresents the tensor character and disregards the 

dispersion characteristics of the optical materials.  Our analysis, with its in-built capacity to distinguish 

between quantum contributions on the basis of both directional attributes and dispersion behaviour, 

forcefully demonstrates that: (i) there is in general more than one significant route between the initial 

state and the final state in nonlinear optical processes; (ii) not only do hyperpolarisabilities have highly 

significant dispersion characteristics, but the different quantum channels vary dramatically with 

differing photon wavelengths; (iii) in materials with suitable symmetry properties the tensor character 

of the hyperpolarisabilities leads to the possibility of selecting certain quantum channels.   
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 The method we have described represents a novel and highly efficient tool for both the 

calculation and visualisation of nonlinear features that are not commonly known.  Whereas this work 

has discussed nonlinear optical response in terms of individual scattering centres and photons, it is 

possible to adapt the equations to bridge the gap between microscopic (particle) and macroscopic 

(bulk) theories.  This will entail proper representation of the propagation characteristics of the laser 

input and harmonic output, as modified by the bulk characteristics of the medium through which they 

propagate, and the distinctive features associated with collective response of an ensemble of particles 

or scattering centres.  We are hopeful that the fundamental studies presented here will enhance the 

investigation of nonlinear optical materials, and potentially improve their design.   
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Appendix A 

 

From Eq. (2), for an m-photon process, the rate equation may be rewritten as11; 

 

        
1 1

2

... ...

2
m m

m m m

i i i i i ff s E E


      , (A1) 

 

where )(

...1

m

ii m
  is a generalised form of the (hyper)polarisability tensor, written in the main text as 

 

1 2

2

i i ij  ,  

1 3

3

...i i ijk   and  

1 4

4

...i i ijkl  ; also,  

1... m

m

i is  is the corresponding product of the photon 

polarisation unit vectors and  m
f  is given by:  
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    
1 12

( )
2

10

i 1
2

m

m
mm

j

ck
f n j

V





   
     

  
   . (A2) 

 

For example, the rate for Rayleigh scattering (m = 2) is found as; 

  

  
2

RS (2) (2)

TOT

2
c c i ff s E E


      , (A3) 

 

where c represents the m-Cartesian components, i.e. i, j.  The polarisability, 
c , may be expressed in 

terms of quantum channels, q, namely: 

 

  q

c c

q

    . (A4) 

 

Thus, Eq. (A3) is rewritten in the explicit form; 

 

    
2

RS (2) (2)

TOT

2 q

c c i f

c q

f s E E


      . (A5) 

 

Due to 
)2(

cs  being independent of q, Eq. (A5) is re-expressed as; 

 

    
2

RS (2) (2)

TOT

2 q

c c i f

c q

f s E E


       . (A6) 

 

Accounting for the summation over index-repeated Cartesian components and also the quantum 

channels, i.e. taking the summation over c and c' along with q and q', Eq. (A6) emerges as;  

 

          2 2 'RS (2) (2)

TOT ' '

' '

2 q q

c c c c i f

c c q q

f f s s E E


  
 

   
 

    . (A7) 
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The contribution ratio, i.e. the rate contribution divided by the total rate, is independent of all but the 

polarisability part of equation (A7), and is generally written as; 

 

 
   

   
RS

'

'

n m

nm q q

q q

 


 



  , (A8) 

 

where n and m = 1 or 2 (equivalently for q  and q ); thus Eq. (A8) leads to Eq. (9).  By examination of 

Eq. (6) it is apparent that the transition dipole moments are the only non-scalar factors (variables with 

Cartesian components).  As all dipole moments cancel out in the contribution ratios, the scalar form of 

Eq. (A8) emerges.  A scalar form for the contribution ratios of SHG and THG is also achieved if d  and 

0u  are parallel, as every hyperpolarisability numerator becomes identical. 
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Figure legends 

Fig. 1: State-sequence diagram signifying Rayleigh scattering.  The upper channel involves one 

photon (of energy  ) annihilation then one photon creation (with  ), the lower 

channel the converse order.  Here,    since the process is elastic, an empty circle 

represents a ground matter state and the filled circles a virtual intermediate state (denoted 

by r).  The step number, k, values are also presented on the figure. 

 

Fig. 2: State-sequence diagrams representing the contributors: (a) [1,1], (b) [2,2] and (c) [1,2].   

 

Fig. 3: Graphical representation of Rayleigh scattering.  This shows a change in the magnitude 

of contributors [1,1], [1,2] and [2,2] with varying input photon frequency. 

 

Fig. 4: State-sequence diagram signifying second harmonic generation.  Here, as Fig. 1 except 

2   and s denotes a second virtual intermediate state.  

 

Fig. 5: Graphical representation of second harmonic generation displaying contributors [1,1], 

[1,2] and [2,2].  The negligible contributors are omitted.    

 

Fig. 6: State-sequence diagram signifying third harmonic generation.  Here, as Fig. 4 except 

3   and t denotes a third virtual intermediate state. 

 

Fig. 7: Graphical representation of third harmonic generation displaying contributors [1,1], 

[1,2], [1,3], [2,2], [2,3] and [3,3].  The negligible contributors are omitted.    

 

Table 1: Three possible channels through the state-sequence diagram of SHG. 

 

Table 2: Four possible channels through the state-sequence diagram of THG. 

 

Table 3: For third harmonic generation, an example of channel isolation for a medium with an 

orthogonal transition dipole moment and dipole displacement vector. 
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Fig. 2(c) 
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Channel Perturbation sequence Mode occupancy 

1 r r r r0

1

1

1

2

1

3

1           ,       

2 r r r r0

1

1

1

2

2

3

1           ,        ,  

3 
1 2 2 1

0 1 2 3r r r r           , , , ,             

 

 

Table 1. 
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Channel Perturbation sequence Mode occupancy 

1 r r r r r0

1

1

1

2

1

3

1

4

1              , , ,           

2 r r r r r0

1

1

1

2

1

3

2

4

1              , , , ,              

3 
1 1 2 2 1

0 1 2 3 4r r r r r              , , , , , ,                 

4 
1 2 2 2 1

0 1 2 3 4r r r r r              , , , , , , , ,                    

 

 

Table 2. 
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Hyperpolarisability 

 

Channel 

 

xxxx  1, 3, 5, 7 

)(xzxz  4, 6 

xzzx  2 

xxzz  8 

)(xzzx  2, 8 

 

 

Table 3. 

 

 


