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ABSTRACT 

 
Consideration is given to methods of manipulating optically fabricated particle arrays using broadband radiation and a 
superposition of optical fields.  Specifically, the changes that the optical binding energy experiences, when part of the 
spectrum of this light is filtered, are analyzed.  It is then shown that these optically induced arrays can be reordered by 
the introduction of additional fields with transverse Poynting vectors.  Subsequently, it is shown how pairs of particles 
can be reordered on a surface by modifying the form of the optical binding interaction.  Finally, the effect of particle size 
on these methods is briefly discussed. 
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1. INTRODUCTION 
 
In the presence of intense optical fields, inter-particle interactions are induced that are fundamentally similar to the 
Casimir-Polder potential [1, 2].  This phenomenon, now usually called optical binding, was originally predicted from 
calculations based on quantum electrodynamics (QED) [3] and almost a decade later it was first observed experimentally 
[4].  It is currently a subject of significant experimental and theoretical interest [1, 2, 5-29], particularly in connection 
with the capacity to produce particle structures.  The arrays of Rayleigh particles that can be formed in plane-waves have 
been subject of several recent studies [1, 2, 21-23].  It has also been shown that particle arrays in such optical traps may 
be molded by irradiating with secondary optical fields [19]. 
 
Optical binding is clearly observed in super-continuum laser fields, circumventing the problems that can otherwise 
arise with coherent monochromatic radiation, due to interference in the optical trap [20, 28].  The continuum 
nature of light has also been theoretically shown to find applications in the fabrication of mouldable particle arrays [1].  
Here we extend these studies and explore a variety of means for modifying the optical binding potential energy 
landscapes, by superimposing these highly incoherent optical fields.  Specifically, we begin by extending previous 
optical binding studies to exhibit the effect of filtering part of the broadband radiation, on the energy surface responsible 
for the formation of two-dimensional arrays.  Subsequently, it is shown how the energy surface is modified by means of 
secondary laser fields with transverse Poynting vectors, and the dependence in form of such a surface on the polarization 
of the secondary field is explored.  Techniques for the manipulation of particles laying on flat surfaces are also 
investigated.  Finally, the effect of particle size on these manipulation techniques is briefly discussed in the conclusions. 
 
 
2. OPTICAL BINDING IN BROADBAND SPECTRUM LASER FIELDS 
 
By reducing or increasing the filtered region of a broadband spectrum light using long-wavelength pass filters (i.e. by 
changing 1ω  as shown in Fig. 1) optically induced particle chains formed along the Poynting vector of an optical field 
may be expanded and contracted.  Here we consider the effect of this spectrum alteration on the optical binding energy 
surface determining two-dimensional arrays of spherical particles. We begin by writing the binding energy, derived 
using the electric dipole approximation, in a continuum state of light { }x  [1]: 
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where the interacting particles are Rayleigh spheres with electric susceptibility ( ) ( )( ) ( ) ,  k k kξ ξχ χ= − .  The optical 
field is assumed to be a plane-wave propagating along the y-axis and with polarization along the z-axis.  The elements of 
the coupling tensor are; 
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where n is the refractive index of the medium and, again in (1); 
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( )a ω , and ( )†a ω  being the photon continuum annihilation and creation operators, respectively [31]; V  is an arbitrary 

quantization volume. 
 
We now determine the energy surface, with some assumptions on the state of the system.  First, for convenience the 
spectral irradiance of the light is assumed to have Lorentzian form:  
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where 0ω  determines the spectral position of maximum irradiance; the parameter K  determines the intensity of the light 
and γ  the bandwidth.  For simplicity, each of the interacting particles, A and B, is assumed to comprise centres whose 
essentially two-level optical response is dominated by the ground state, 0 , and one excited state, r .  Consequently the 
particle susceptibilities are given by: 
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where N is the number of optical centers per particle; 0rωh  is the difference between the energy of the states 0  and r ; 

0 0r rμ μ=  is the transition electric dipole moment associated with the electronic transition 0r → .  To preclude 
absorption and any attendant thermal effects (which might change optical properties), and in order to observe the 
dependence of the inter-particle potential energy surfaces on spectrally different forms of irradiance, part of the light is 
filtered.  Experimentally, this is expedited by the use of long-pass filters, whose effect on the spectral irradiance is 
illustrated in Fig. 1.  Under these conditions, and assuming the particles are optically trapped in vacuum, the inter-
particle potential energy for each particle pair can be written as follows: 
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The integral can be evaluated numerically.  It is now possible to explore the effect of choosing different spectral intervals 
by using pass filters with different wavelength characteristics (hence different values of 1ω ).   
 
 

 
 

Figure 1. Spectral irradiance of light, with Lorentzian spectrum, transmitted through a long-wavelength pass filter, see equation (4). 
 

 
Figure 2. Optical binding energy surface, along the Poynting vector of the beam (y axis), given by equation (11) for 0 3ω γ= , 

0 10rω γ= , and (a) 1 6ω γ=  (b) 1 5ω γ=  (c) 1 4ω γ=  (d) 1 3ω γ= . The units of energy and distance are ( )42 0 2100 /r
oKN cμ ε h

 
and 

( )/c γ , respectively. 
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The graphs in Fig. 2 show the optical binding energy surface on an xy-plane, transverse to the polarization of the field, 
for different values of 1ω .  As has been proven in a previous investigation [22], particles are trapped on this plane and 
organized within it by optical binding forces.  These contour maps reveal that by reducing the region of the spectrum 
interacting with the particles (i.e. by reducing 1ω ), the minima on the energy surface becomes more similar to the one 
induced by a single frequency light [22].  This is as might be anticipated, due to the fact that the spectrum becomes less 
broad.  Also with this change of 1ω , the energy minima along the y-axis and along the x-axis are displaced, increasing 
the achievable length of stable particle arrays transverse and longitudinal to the Poynting vector.  The graphs reveal that 
any array of Rayleigh particles formed by optical binding may be controllably extended or contracted by filtering 
appropriate frequency regions of the continuum input radiation. 
 
 
3. OPTICAL BINDING WITH A SECONDARY BROADBAND FIELD 
 
A recurrent motif in studies of optical binding is the use of counter-propagating laser beams.  This is a device to ensure 
that beam radiation pressure cancels out, such that the formation of particle arrays is determined by their individual and 
collective interactions with the electromagnetic fields [7].  Here, we consider one such laser set-up, supplemented by the 
addition of a secondary laser throughput designed to modify the total field the particles experience.  Fig. 3 illustrates the 
wave-vector and polarization vector geometry, also defining parameters for establishing orientations relative to the inter-
particle displacement vector.  A similar set-up has been the subject of recent studies [19], but it is now shown that the 
orientation of polarization in the secondary field plays a crucial role in the morphology of the created particle arrays.  
Two counter-propagating beams (primary beams k1 and - k1, the standard configuration) are located on the y-axis, each 
having the same polarization in the z direction.  These beams are intersected orthogonally by secondary fields, k2 and 
- k2, propagating along the x-axis.  Two cases are independently considered in this section: in one of them, the 
polarization vector E2 is on the z-axis, and in the second case it is disposed along the x-axis.  The net field the particles 
experience, in the region where the lasers cross, can then be adapted by controlling the relative irradiance of the primary 
and secondary beams.  As will be shown, the resulting optical perturbation of the particles determines the way they are 
arranged. 
 
When, as in Fig. 3, four plane-waves are taken into account, the following expression emerges for the optical binding 
energy in vacuum; 
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Here ( )pS ω  and ( )sS ω  are the spectral irradiances of the primary and secondary counter-propagating beam pairs, 
respectively; these spectra are assumed to be of Lorentz form with identical width, γ , and position of the maxima, 0ω , 
but with different intensities quantified by the parameters pK , for the primary beam pair, and sK  for the secondary pair; 
also ( )( ) ( )21 cosn z yC n R R kR= −  and ( )(1 ) cosn xD nM kR= − , where ( )2

xM R R=  when E2 is parallel to the y-axis  
and ( )2

zM R R=  when E2 is parallel to the z-axis; the susceptibilities are real and again given by equation (5).  Finally, 

xR , yR  and zR  are the elements of the vector position R  of one particle respect to the other, and the magnitude of the 
vector is ( ) ( ) ( )

1
2 22 2

x y zR R R R⎡ ⎤= + +⎢ ⎥⎣ ⎦
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Figure 3. Laser set-up. Particles are trapped in a primary pair of counter-propagating optical fields, (E1, k1) and (E1, -k1), and the 

particle array is modified by increasing the irradiance of the secondary pair of fields, (E2, k2) and (E2, -k2).  The polarization vectors in 
gray represent two cases considered; in one case, E2 is parallel to the z-axis and in the second it is parallel to the y-axis. 

 
 
The effect of increasing the magnitude of the irradiance of the secondary beams, with E2 along the y-axis, is exhibited in 
Fig. 4, where the contour maps (a), (b), (c), and (d) show the surface of the optical binding energy on the xy-axis for 

/ 0.2s pK K = , / 0.4s pK K = , / 0.6s pK K = , and / 0.8s pK K = , respectively. In Fig. 4 (a), the irradiance of the primary 
beam pair dominates, and the potential surface is similar to the one observed when there is no secondary field, as in Fig. 
2 (a).  Through a progressive increase in irradiance of the secondary field, Fig. 4 (b), (c), and (d), the first potential well 
along the y-axis becomes deeper and the energy minimum moves to the near-field zone. Consequently if a particle pair is 
initially bound by the first energy minimum along the y-axis and the irradiance of the secondary field is increased, the 
particle pair is attracted to the near-field zone.  Along the x-axis, no significant change is observed in the potential energy 
surface. 
 

 
Figure 4. Contour map of the optical binding energy on the xy-plane when E2 is parallel to the y-axis (See set-up in Fig. 3).  For the 

Lorentzian spectra we use 0 3ω γ= , 0 10rω γ= , 1 6ω γ=  and (a) / 0.2s pK K =  (b) / 0.4s pK K =  (c) / 0.6s pK K =  (d) 

/ 0.8s pK K = . The units of energy and distance are ( )42 0 2100 /r
p oK N cμ ε h

 
and ( )/c γ , respectively. 
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Figure 5. Contour map of the optical binding energy on the xy-plane when E2 is parallel to the z-axis (See set-up in Fig. 3). For the 
Lorentzian spectra we use 0 3ω γ= , 0 10rω γ= , 1 6ω γ= , and (a) / 0.25s pK K =  (b) / 0.5s pK K =  (c) / 0.75s pK K =  (d) 

/ 1s pK K = . The units of energy and distance are ( )42 0 2100 /r
p oK N cμ ε h

 
and ( )/c γ , respectively. 

 
Very different changes to the energy surface are observed when E2 is parallel to the z-axis.  In this case, with increasing 
irradiance of the secondary optical field, Fig. 5 (a), (b), (c), and (d), the first energy minimum along the y-axis is 
displaced to an off-axial position.  When / 1s pK K = , Fig. 5 (d), the energy minimum becomes equidistant from the x- 

and y- axes, and the surface has an axis of symmetry along ( )ˆ ˆx y+ . The position of the second energy minimum along 
the y-axis and the minima along the x-axis are not changed significantly, but there is change in form of the potential 
wells.  As a consequence of these changes, if a pair of particles is initially positioned along the y-axis, bound by the first 
minima, the pair is partially rotated upon increasing the irradiance of the secondary field, conserving the initial 
separation.  If a particle is bound by either of the other two above-mentioned energy minima, it does not suffer any 
change in position.  A set-up for the manipulation of particles on a flat surface with optical fields is to be considered in 
the following section. 
 
 
4. OPTICAL BINDING ON A DIELECTRIC SURFACE 
 
There has been much recent interest in the optical manipulation of particles laying on a surface [32-37].  Non-contact 
methods are greatly to be favoured for nanoscale particle assembly and surface modifications, obviating contact forces 
and possible chemical interactions.  Here, we consider the possibility of using optical binding for such a purpose.  To this 
end we use a set-up that permits this type of manipulation without the presence of optical pressure.  The set-up is shown 
in Fig. 6; it consists of two beams, mirror images of each other, irradiating a surface on which there are two Rayleigh 
particles; the surface is oriented with its normal vector along the z-axis.  The input polarization vectors form an angle θ  
with the x-axis and the associated Poynting vectors each form an angle φ  with the y-axis.  Under these conditions, the 
optical binding energy for a pair of particles can be expressed as follows; 
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where ( )sin sin ,cos ,sin cosθ φ θ θ φ=e , and the elements of the tensor ( , )ωV R  are defined in equation (2); ( )S ω  is the 
total irradiance that the particles experience; the susceptibilities are again given by equation (5); In the following 
calculations the system is assumed to be in vacuum.  By modifying the two angles, the structures of stable particle arrays 
on the flat surface are modified. 

 
Figure 6. Geometry of two beams, being mirror images of each other, for the manipulations of particles on a surface. The Poynting 

vectors lay on the xz-plane, and the beams are reflected. 
 
Fig. 7 shows the optical binding energy in the near-field zone. In this region, the inter-particle potential is inversely 
proportional to the cube of the particle separation, and consequently it rapidly diminishes in magnitude with any increase 
in this distance.  The beams here point towards the flat surface, 90φ = , and an attractive force in the direction of the 
polarization is generated.  By passively rotating the polarization (i.e. by changing θ ) a particle pair or chain can be 
rotated.  When the polarizations are perpendicular to the surface, the interaction in the near-field zone becomes repulsive 
in all directions. 
 

 
Figure 7. Contour map of the optical binding energy in the near-field zone on the yz-plane for 90φ = . The energy surface rotates with 

the value of θ . For the Lorentzian spectrum 0 3ω γ= , 0 10rω γ=  and 1 6ω γ= . The units of energy and distance are 

( )42 0 2100 /r
oKN cμ ε h

 
and ( )/c γ , respectively. 
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Figure 8. Contour map of the optical binding energy on the  xy-plane for 90θ =  and (a) 30φ =  (b) 40φ =  (c) 50φ =  (d) 60φ = .  

For the Lorentzian spectrum we use 0 3ω γ= , 0 10rω γ=  and 1 6ω γ= . The units of energy and distance are ( )42 0 2100 /r
oKN cμ ε h

 
and ( )/c γ , respectively. 

 

 
Figure 9. Contour map of the optical binding energy on the  xy-plane for 0φ =  and (a) 60θ =  (b) 40θ =  (c) 20θ =  (d) 0θ = . For 

the Lorentzian spectrum 0 3ω γ= , 0 10rω γ=  and 1 6ω γ= . The units of energy and distance are ( )42 0 2100 /r
oKN cμ ε h

 
and ( )/c γ , 

respectively. 
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Fig. 8 illustrates the effect of moving the Poynting vector from the x-axis towards the z-axis on the particle arrays in the 
setting illustrated in Fig. 6.  In this rotation of the Poynting vector, an effect similar to the one observed in Fig. 4 is 
exhibited.  The potential well of the first stable array along the y-axis becomes deeper, and the position of its minimum 
moves to the near-field zone.  Although there are other changes in the form of the concavity along the x-axis, the position 
of the energy minimum does not change significantly. 
 

Fig. 9 shows the effect of rotating the polarization of the beams from the z-axis to the x-axis while the Poynting vector is 
along the y-axis.  During this rotation, the energy maximum on the x-axis moves from the near-field zone in Fig. 9 (a) to 
around ( )( )/ ,0,0c nγ=R  in Fig. 9 (d).  Also with this polarization rotation, the separation between a particle pair 
bound by the energy minimum on ( )( )1.5 / ,0,0c nγ=R  is increased.  If a particle is initially trapped by the near-field 
attractive potential along the x-axis in Fig. 9 (d), and the polarization is rotated towards the z-axis, the particle may 
eventually escape to the energy minimum along the first y-axis – or the one along the x-axis – since initially the attractive 
near-field potential along the x-axis becomes completely repulsive when the polarization is parallel to the z-axis. 
 
 
5. CONCLUSIONS 
 
A comprehensive analysis has been effected of various techniques for the manipulation of Rayleigh particle arrays using 
optical binding in broadband light.  Three methods have been demonstrated to passively reorder particles arrays in a 
diversity of forms.  One of the methods involves filtering the broadband spectrum of the light, allowing a modification in 
size of the particle array.  A second method uses radiation with transverse Poynting vectors; we have shown that with 
suitable orientation of the polarization, particle chains may be collapsed or rotated.  In a third method, a pair of beams is 
used to rotate, separate and attract particle pairs laying on a flat surface. 
 
When analysing the effect of the particle size on the optical binding, it has been shown that the potential energy surfaces 
are continuously modified from the one for Rayleigh particles, to an energy surface where the only significantly stable 
pair array is two particles, separated by about the diameter of the spheres, disposed along the Poynting vector of the 
radiation [38].  It is expected that in this continuous transformation of the surface there is a range of particle size in 
which many of the effects described here may be observed.  However, when particles are of around the size of the 
average wavelength or higher, the modification of the surface under the conditions considered here needs to be studied 
further.  Moreover, if one considers particles on a metal surface, it can be anticipated that the engagement of surface 
plasmons will exert a considerable influence on the manifestation of optical binding.  The effect of particle size and the 
arrays formed by multi-particle systems are subjects of ongoing investigation. 
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