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Resonance energy transfer: The unified theory revisited
Gareth J. Daniels, Robert D. Jenkins, David S. Bradshaw, and David L. Andrewsa)

School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom

~Received 4 March 2003; accepted 14 April 2003!

Resonance energy transfer~RET! is the principal mechanism for the intermolecular or
intramolecular redistribution of electronic energy following molecular excitation. In terms of
fundamental quantum interactions, the process is properly described in terms of a virtual photon
transit between the pre-excited donor and a lower energy~usually ground-state! acceptor. The
detailed quantum amplitude for RET is calculated by molecular quantum electrodynamical
techniques with the observable, the transfer rate, derivedvia application of the Fermi golden rule.
In the treatment reported here, recently devised state-sequence techniques and a novel calculational
protocol is applied to RET and shown to circumvent problems associated with the usual method.
The second-rank tensor describing virtual photon behavior evolves from a Green’s function solution
to the Helmholtz equation, and special functions are employed to realize the coupling tensor. The
method is used to derive a new result for energy transfer systems sensitive to both magnetic- and
electric-dipole transitions. The ensuing result is compared to that of pure electric-dipole–
electric-dipole coupling and is analyzed with regard to acceptable transfer separations. Systems are
proposed where the electric-dipole–magnetic-dipole term is the leading contribution to the overall
rate. © 2003 American Institute of Physics.@DOI: 10.1063/1.1579677#

I. INTRODUCTION

In numerous photosensitive systems, resonance energy
transfer~RET! mediates a redistribution of electronic energy
following UV/visible excitation. Fundamentally the same
mechanism effects the migration of excitation energy from
pre-excited donors to suitable acceptors across a host of
these chemically different systems—in which the constitu-
ents may comprise individual molecules, ions or chro-
mophore sites in biomolecular and other macromolecular as-
semblies. RET is a key phenomenon observed in natural
light-harvesting complexes, accounting for energy hopping
between chlorophyll molecules in the photosynthetic unit
~PSU!1–5—and thereby representing an essential component
of life chemistry. In such complex, naturally occurring sys-
tems, it has become possible to determine the detailed mo-
lecular structures. For example, studies on bacterial photo-
systems have elucidated the structures for reaction centers in
Rhodopseudomonas~Rps.! viridis,6 the peripheral light-
harvesting complex ofRps. acidophila,7,8 and the Fenna–
Matthews–Olson protein complex in the green sulphur bac-
terium Prosthecochloris aestuarii.9 In the case of higher
plants and algae there have also been notable successes
in determining the light-harvesting complexes and chloro-
phyll arrangement in Photosystem I.10–12 These investiga-
tions, amongst others, are proving useful forin vivo
investigations—and also for the informed development of
detailed molecular models for photobiology.

The structural elucidation of key components in many
photosynthetic systems has been timely for the development
of synthetic light-harvesting analogues. Modern pulsed laser
techniques have afforded a detailed characterization of the

energy hopping dynamics in several such systems designed
to mimic biological antenna complexes.13–15This area repre-
sents a benchmark for research into systems exhibiting RET,
and already a striking success has been reported in the cre-
ation of a complete artificial photosystem.16 At a lower level
of molecular complexity, relatively simple bichromophore,
donor–acceptor molecules provide environments within
which energy migration is readily observed; such molecules
have been the subject of a number of reviews.17–19 Notable
amongst more complex, multichromophore systems are
cyclodextrins20,21 and other multiporphyrin arrays.22–24Den-
drimers also feature prominently in recent research; these
highly branched macromolecules comprise chromophores
linked in fractal or other highly symmetric geometries25 and
much interest has focused upon energy transfer from their
dendritic constituents to photoactive cores.26 Dendrimers dis-
play a variety of photophysical effects resulting from in-
tramolecular resonance energy transfer, including photo-
isomerization,27,28 light-harvesting,29,30 and directed energy
transfer or funneling.31 The high symmetry of many such
multichromophore arrays offers new investigative routes and
recent research has demonstrated preferential channeling in-
volving exciton states.32

Although scrutiny of the role of resonance energy trans-
fer is most acute in connection with photosynthesis and en-
ergy harvesting, this by no means circumscribes other appli-
cations. For example, the popularly termed ‘‘spectroscopic
ruler’’ ~fluorescence resonance energy transfer, FRET33,34!,
which delivers information on intramolecular distances
based on application of the basic equations of RET, is now
routinely used as an adjunct in protein structure determina-
tion. RET is also observed in such diverse materials as levi-
tated microdroplets,35 lanthanide-doped lattices,36 conjugated
polymer chains37 and both interlayer and intralayer transfera!Electronic mail: d.l.andrews@uea.ac.uk
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in Langmuir–Blodgett~LB! films38–40—and it has recently
been linked with vibrational energy redistribution in water.41

A wealth of diverse information can be ascertained from
analysis of such processes; in LB-films alone, their study has
afforded new insights into interlayer structures,42,43 modified
transfer dynamics in restricted geometries,44,45 and both
substrate46,47 and micellar/surfactant effects.48 Against the
backdrop of intense research and development it is timely to
revisit the theory which describes this fundamental pairwise
~donor–acceptor! interaction.

Over subnanometer distances, donor–acceptor energy
transfer commonly displays a rate characterized by a nega-
tive exponential dependence on the pair separation. Attrib-
uted to anelectron exchangeinvolving wave function over-
lap, this mechanism was first formulated by Dexter in the
1950s to account for the phenomenon of sensitized
luminescence.49 In its connection with special cases of elec-
tronically associated multichromophore systems the ex-
change mechanism has more recently been the subject of
much discussion by Scholes, Ghiggino and co-workers.50–54

Our concern is with energy transfer between electronically
independent donor–acceptor moieties, beyond significant
wave function overlap. Until the late 1980s, when a resur-
gence of interest culminated in a fresh development of
theory, such RET was widely considered to proceed by one
of two distinct mechanisms. In the short-range~nanoscale
separation regime! a radiationlesstransfer mechanism exhib-
iting an inverse sixth power distance dependence was de-
duced by the eponymousFörster.55 In the long-range~pair
separations exceeding optical wavelengths! a radiative, pho-
ton emission-capture process yielding the familiar inverse
square law was thought to operate56—the latter mechanism
attested by the reabsorption of photons in optically thick
samples.57 In a unified theoryformulated by Andrews and
co-workers in a series of works58–60 the radiationless and
radiative mechanisms were identified as the short- and long-
range asymptotes of a single mechanism. Based on quantum
electrodynamics~QED!, and following ground-breaking
quantum mechanical work by Avery56 and Gomberoff and
Power,61 the unified theory establishes energy transfer as a
process mediated by the propagation ofvirtual photons, op-
tical quanta whose character becomes progressively ‘‘real’’
and energy conserving as their propagation distance~and
hence lifetime! increases.

It is the main purpose of this work to explore difficulties
and alternative calculational strategies in the quantum treat-
ment, and to extend the theory by full inclusion of magnetic-
dipole interactions. The analysis begins in Section II with a
synopsis of the development behind RET theory and its for-
mulation in the framework of molecular QED; RET is then
reappraised from a contemporary viewpoint utilizing a re-
cently formulated state-sequence technique. By developing
the quantum amplitude in terms of a Green’s function, it is
shown how different approaches to the ensuing calculations
can lead to divergences in the final results. In Sec. III the
standard residue theorem and boundary condition approach
to the Green’s function calculation is presented and decon-
structed. A new method is then introduced and shown to
obviate significant problems related to the residue theorem

technique. It is also shown that it is unnecessary to fully
restrict the results by classical arguments and that a single
equation can accommodate both mathematical and experi-
mental rigors. In Sec. IV, the new method is applied to RET
engaging both magnetic and electric transition dipoles. Simi-
lar problems to those noted in Sec. III are identified and a
means found for their circumvention. Finally, in Sec. V, the
overall rate of energy transfer including both magnetic and
electric effects is analyzed. Each term is examined and situ-
ations are discussed where electric–magnetic coupling pro-
vides the leading rate contribution.

II. THEORY

The fundamental process of RET, in a donor–acceptor
interaction-pair AB, may be represented by the simple
nonchemical equation;

Aa1B0 ——→
RET

A01Bb. ~2.1!

Here, superscripts denote donor and acceptor states, greek
letters indicating the relevant electronic excited states and 0
the ground state. Equation~2.1! does not depict a conven-
tional chemical reaction andonly illustrates electronic states
before and after RET. In the unified theory description, the
coupling of donor and acceptor transitions is mediated by the
propagation of a virtual photon. These messenger particles
cannot be directly detected; in this respect the virtual photon
assumes a role similar to that of virtual electronic states in-
volved in scattering processes.62 The virtual photon formula-
tion entails summation over all possible wave-vectors and
polarizations, just as virtual molecular states invoke a sum-
mation over energy levels. At relatively small interaction-
pair separations~those within normal Fo¨rster limits! photon
time of flight is short and a large uncertainty in the system
energy is present. However, as the interaction-pair separate
this uncertainty is reduced, effectively imposing on the vir-
tual photon an increasingly real character until~in the regime
of radiative transfer! virtual traits become indiscernible. In
principle even seemingly pure radiative photons retain some
virtual character associated with time-energy uncertainty. ‘‘In
a sense every photon is virtual, being emitted and then
sooner or later being absorbed.’’63 In the unified theory this
behavior is seamlessly accommodated into a single, very
simple but all-encompassing rate equation.59

A. Molecular QED formalism

Recent developments in the tools of molecular quantum
electrodynamics have led to a more accurate depiction of
virtual photon behavior. No process involving virtual states
can adequately be represented using energy level diagrams,
as is well known. However the time-ordered diagrams con-
ventionally adopted for such purposes, constructed from
world-line segments and departure/arrival conjunctions, fail
to meaningfully represent the virtual photon coupling of an
interaction-pair. The messenger has indefinite wave-vector,
for example, and in this alone the pictorial representation is
incorrect. Moreover the associated machinery becomes enor-
mously cumbersome when applied to more complex, intri-
cately coupled energy pooling systems.64 A very recently de-
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veloped hyperspace description of molecular QED
circumvents these and other problems—not only in connec-
tion with energy transfer and associated multiphoton pro-
cesses but also nonlinear optics—and it is this approach
which is adopted hereafter.65

In the hyperspace representation, every process is first
categorized in terms of the number of matter-radiation inter-
actions it entails; RET is described by the state-sequence
diagram of Fig. 1~see Ref. 65 for a full explanation!. Tracing
the lower pathway; the virtual photon~its presence in the
system symbolized byf! is created atA and annihilated atB.
The upper path depicts the case wheref is created atB and
annihilated atA ~see figure legend!, as is also consistent with
the time-energy uncertainty basis for conventional time or-
derings. As both paths lead to the same final, isoenergetic
state, calculation of the full RET quantum amplitude requires
their summation. Even though the lower pathway contribu-
tion becomes overwhelmingly dominant as interaction-pair
separation increases, the upper pathway can never be entirely
discounted. In this respect, to envisage the virtual photon
only departing fromA and arriving atB sanctions an unjus-
tified semantic prejudice—as it excludes the latter mecha-
nism. As RET is essentially the relocation of electronic ex-
citation energy within an interaction-pair,both time
orderings shown in Fig. 1 are involved. Although it is not our
concern here, the causality of energy transfer is also of con-
siderable interest,66,67 while other ongoing work is affording
a detailed quantification of the relative contributions of each
path to the overall rate result.68

In Fig. 1 all states are represented by system-state boxes
which exemplify products of matter and radiation states. A
general stateur k

m& may be represented as

ur k
m&5)

j
uj r k

m
&uradr

k
m&[umatr

k
m&uradr

k
m&[umatr

k
m;radr

k
m&,

~2.2!

where k is the number of steps across the state-sequence
diagram, andm is a state label.63 The state of~2.2! follows
the detailed notation introduced in Ref. 65 and is used here
in this elementary case to introduce concepts which prove to
greatly simplify calculations involved in higher-order cases.
The matter constituent of~2.2! entails a product of the rel-

evant electronic statesj r k
m

of all participating speciesj. The

energy ofur k
m&, Er

k
m, comprises a sum of radiation and matter

energies—the latter a sum of contributions from all partici-
pant species,Er

k
m

j
. Using the notation of~2.2! the isoener-

getic initial and final states, now denoted byur 0
1& and ur 2

1&
respectively, can be written as

ur 0
1&5uAaB0;0~p,l!& ~2.3!

and

ur 2
1&5uA0Bb;0~p,l!&. ~2.4!

Note that the photon occupation number of the radiation state
is zero; the virtual photon with integration-variable wave-
vector p and polarizationl is not present in the initial or
final system-states since both are of effectively infinite life-
time and thus have no energy uncertainty. Given thatEr

0
1

5Ea
A1E0

B andEr
2
15E0

A1Eb
B , the important energy identity

Ea0
A 5Eb0

B 5\ck ~2.5!

follows, where \ck is the total transferred energy and
Er

k
m(r

k
m)8

j
5Er

k
m

j
2E(r

k
m)8

j
. Returning to Fig. 1, the lower route,

where virtual photon creation occurs atA, produces a virtual
system-state characterized by a state-sequence box represent-
ing the ket ur 1

1&5uA0B0;1(p,l)& and energyEr
1
15E0

A1E0
B

1\cp. Similarly the upper path, where virtual photon cre-
ation occurs atB, elicits the state-sequence box representing
the ket ur 1

2&5uAaBb;1(p,l)& and energy Er
1
25Ea

A1Eb
B

1\cp.
As the total number of matter-radiation interactions in

RET is 2, the quantum amplitude,M f i , is calculated from
the second term of an expansion in time-dependent perturba-
tion theory. Explicitly

M f i5 (
m51

2
^r 2

1uH intur 1
m&^r 1

muH intur 0
1&

Er
0
12Er

1
m

~2.6!

which introduces the interaction HamiltonianH int given by

H int52«0
21(

j
m~j!•d'~Rj! ~2.7!

in the electric-dipole approximation. Present in expression
~2.7! are two operators; the electric-dipole moment operator

m(j) operating on molecular statesuj r k
m
& and the transverse

electric field displacement operatord'(Rj) operating on
uradr

k
m&. The latter, evaluated for the position ofj (Rj), is

usually written as the mode expansion

d'~Rj!5 i(
p,l

S «0\cp

2V D
1
2
$e(l)~p!a(l)~p!eip•Rj

2ē(l)~p!a†~l!~ p!e2 ip•Rj%, ~2.8!

wheree(l)(p) is the polarization vector of a virtual photonf
with wave-vectorp and polarizationl, ē(l)(p) being its
complex conjugate;a(l)(p) anda†(l)(p) respectively are an-
nihilation and creation operators forf, andV is an arbitrary
quantization volume. The vacuum form ofd'(Rj) used for

FIG. 1. State-sequence diagram for resonance energy transfer, donorA is
represented by the circle on the left of each box,B the circle on the right.
Shaded circles show a ground state species in the excited state; other circles
represent a species;f depicts a virtual photon.
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present purposes does not directly engage media effects,
their inclusion here obscuring the key emergent issues.
Nonetheless it should be noted that extensive effort has been
undertaken to develop a theory encompassing the electronic
effects of any intervening medium.69–72 A straightforward
prescriptive approach to the modification required by this
formulation is described elsewhere73 and may easily be ap-
plied to the results obtained below.

Recognizing the states and energies introduced earlier,
for electric-dipole–electric-dipole~e–e! resonance energy
transferM f i

e–e , ~2.6! becomes;

M f i
e–e5

^r 2
1uH intur 1

1&^r 1
1uH intur 0

1&

~Er
0
12Er

1
1!

1
^r 2

1uH intur 1
2&^r 1

2uH intur 0
1&

~Er
0
12Er

1
2!

, ~2.9!

where the first and second terms embody the upper and
lower paths of Fig. 1, respectively. By the application of Eqs.
~2.5!, ~2.7!, and~2.8!, on ~2.9!,

M f i
e–e5~2«0V!21(

p,l
pēi

(l)~p!ej
(l)~p!

3H m i
0a(A)m j

b0(B)eip"R

k2p
1

m j
0a(A)m i

b0(B)e2 ip•R

2k2p J .

~2.10!

In the new notationm(r k
m)8r k

m(j)5^j (r k
m)8um(j)uj r k

m
& is a tran-

sition dipole moment andR5RB2RA the intermolecular
separation vector. Also the convention of summation over
repeated Cartesian indices is implemented.

The wave-vector and polarization summations which
need to be implemented in~2.10! can be achieved following
the techniques of Craig and Thirunamachandran.74 Extending
the boundaries of the quantization volume we recognize that
each lattice point inp-space represents a realizablep-vector
and the wave-vector sum may be converted to an integral as
V→`

1

V (
p

⇒
lim V→`

E d3p

~2p!3
. ~2.11!

The polarization sum is tackled by using the sum rule

l ial j a5d i j , ~2.12!

where l ia is the cosine of the angle between an axis in the
laboratory frame~denoted by roman letters! and one in an
independent frame~greek letters!. Choosing the orthogonal
frame sete(1)(p), e(2)(p) and p as the independent frame
gives

ei
(1)~p!ēj

(1)~p!1ei
(2)~p!ēj

(2)~p!1 p̂i p̂k5d i j , ~2.13!

so that the polarization sum can be expressed as

(
l

ei
(l)~p!ēj

(l)~p!5d i j 2 p̂i p̂ j . ~2.14!

Implementing~2.11! and ~2.14!, M f i
e–e is rewritten as

M f i
e–e5

m i
0a(A)m j

b0(B)

2«0
E p~d i j 2 p̂i p̂ j !

3H eip•R

k2p
1

e-ip•R

2k2pJ d3p

~2p!3
. ~2.15!

Converting this integral to spherical coordinates,
d3p⇒ p2 dpdV and with

2E p̂i p̂ je
6 ip"RdV5

1

p2
¹i¹jE e6 ip"R dV, ~2.16!

a change of variables allows~2.15! to be expressed as

M f i
e–e5

m i
0a(A)m j

b0(B)

4p2«0

~2¹2d i j 1¹i¹j !E
0

2pE
21

1 E
0

` p

4p

3 H eip•R

k2p
1

e2 ip•R

2k2pJ dp d~cosu!df. ~2.17!

Performing the angular integration gives

M f i
e–e5

m i
0a(A)m j

b0(B)

2p2«0

~2¹2d i j 1¹i¹j !G~k,R!, ~2.18!

introducing the Green’s functionG(k,R) defined by

G~k,R!5E
2`

` sinpR

2R H 1

k2p
1

1

2k2pJ dp. ~2.19!

Various methods may be employed to resolve~2.19!, and the
following section reappraises the traditional~contour integra-
tion! methodology, highlighting its shortcomings and intro-
ducing a new method offering a solution to associated prob-
lems.

It is well known that G(k,R) satisfies the Helmholtz
equation

2~¹21k2!Gk5d~R!, ~2.20!

whereGk5G(k,R) and, as such, represents a link between
classical and quantum thinking on wave propagation.75 Upon
first inspection, the Helmholtz equation delivers harmonic,
R-dependent solutions to the wave equation with the virtual
photon wave-vectorp adopting the role of the Helmholtz
Fourier variable. However this conclusion relies upon the
conceit of imposing the outgoing-wave~Sommerfeld radia-
tion! boundary condition which ensures that the solution rep-
resents a physically realizable source, i.e., from initial con-
ditions effectively localized in a finite region of space.76 In
both classical and semiclassical descriptions, envisaging a
wavefront emanating from the donor offers a conceptually
pleasing view of RET.77 In QED however it is only the lower
path of Fig. 1~representing only one component of the quan-
tum amplitude! that fits this model; it does not represent the
behavior of the upper path. In the following it is shown that
enforcing the Sommerfeld condition imposes a superfluous
constraint and limitation on the QED form of the result.

III. ANALYSIS OF THE RET GREEN’S FUNCTION

We now present a juxtaposition of methods for solving
Eq. ~2.19!. Previously tackled by use of the residue theorem
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and proving considerably problematic, here we introduce a
new method based on the use of special functions which
satisfactorily deals with the emergent issues.

A. Contour integration method

The solution of the Green’s function~2.19!, which ex-
hibits poles atp56k, is traditionally performed using the
residue theorem. The choice of contour has been the subject
of much discussion~vide infra!. Conventionally two obvious
choices present themselves:~i! to integrate using semicircles
closed to infinity in the upper or lower complex planes, see
Fig. 2; ~ii ! alternatively to shift the poles infinitesimally up or
down and integrate along the real axis. Initial investigations
by Craig and Thirunamachandran,78 performed the integra-
tion on an anticlockwise contourC2 closed in the upper com-
plex plane. This identified the principal value as

G~k,R!52
p coskR

R
. ~3.1!

Note that using clockwise contourC1 closed in the lower
complex plane yields an identical result. Taking the radiative
limit ( kR@1) of ~3.1!, reveals an unverifiable cos2 kR oscil-
lation in the rate. Subsequent work by Andrews and Sher-
borne investigated the merits of all four possible integration
contours illustrated in Fig. 2.58 Closure ofC3 andC4 in the
upper complex plane gives further solutions which are com-
plex conjugates of each other. The now generally accepted
result, as chosen in Ref. 58, is that associated withC4,

G~k,R!52
p

R
eikR, ~3.2!

which satisfies the outgoing wave condition~though note
that results from bothC3 andC4 equally give correct behav-
ior of the observable, which goes as the modulus squared of
the quantum amplitude result!. Equation~3.2! is the Green’s
function associated with a classical outgoing wave
disturbance.77

Completion of the vector calculus in~2.18! on ~3.2! re-
sults in an expression for the complete RET quantum ampli-
tude expressible as

M f i
e2e5m i

0a(A)Vi j ~k,R!m j
b0(B) , ~3.3!

in which the dipole–dipole interaction is cast in terms of an
intermolecular transfer tensorVi j (k,R). Explicitly this
index-symmetric, fully retarded tensor is

Vi j ~k,R!5
eikR

4p«0R3
$~12 ikR!~d i j 23R̂i R̂j !

2k2R2~d i j 2R̂i R̂j !%, ~3.4!

encompassing radiationless and radiative limits as its short-
and long-range asymptotes, respectively. In the short-range
~near-zone!, this coupling tensor displays anR23 distance
dependence, though the terms linear and quadratic inkR in-
creasingly modify the behavior asR increases. The term
‘‘near-zone’’ in practice indicates intermolecular distances
below R'100 Å ~i.e., small compared to the characteristic
optical distancek21) where the radiationless limit of energy
transfer dominates. AsR increases, retardation effects be-
come more prominent and in the long-range limit, (kR
@1), Eq. ~3.4! is dominated by theR21 term, bringing the
radiative mechanism to the fore. These are key features of
the unified theory.

The transfer tensorVi j (k,R) can be decomposed into
real and imaginary parts so that

Vi j ~k,R!5s i j 1 it i j . ~3.5!

The real part, derived fromC2, is given by

s i j 5~4p«0R3!21$~coskR1kRsinkR!~d i j 23R̂i R̂j !

2k2R2 coskR~d i j 2R̂i R̂j !%. ~3.6!

This is the result reported by Craig and Thirunamachandran
which holds for the near-zone regime.74 The imaginary part
is revealed by the use ofC4,

t i j 5~4p«0R3!21$~sinkR2kRcoskR!~d i j 23R̂i R̂j !

2k2R2 sinkR~d i j 2R̂i R̂j !%. ~3.7!

The addition of~3.7! to ~3.6! through~3.5! extends the result
to all post-overlap distances. Note that Ref. 58 displays an
incorrect form of~3.7!.

Work by Andrews and Juzeliun̄as79 added credence to
the choice of contour above, deriving an identical result
through inclusion of imaginary addenda in the form of the
interaction Hamiltonian~2.7!. The addenda effectively shift
the poles away from the real axis so that a closed integration
contour along the real axis necessarily encloses a pole in
either the upper or lower imaginary plane. By choosing the
anticlockwise, upper plane semicircle,~3.2! arises. Math-
ematically, however, there is no justification~only adoption
of the outgoing wave condition! to preclude a clockwise
semicircle which encloses the lower plane pole. In this re-
spect, all results ultimately derived from the residue theorem
reflect essentially classical ideas. This issue will be fully ad-
dressed in the following section where the quantum electro-
dynamical description of RET is rewritten, properly account-
ing for its key quantum mechanical effects.

FIG. 2. Contours available for solution of the Green’s function. All here are
anticlockwise and closed in the upper imaginary plane.
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B. New method

An alternative method for solving the integral of~2.19!
entails a substitution expressing the result in terms of special
functions. This technique avoids the use of contour integra-
tion in the complex plane which, as seen above, not only
produces multiple answers but also has drawbacks in higher-
order problems involving more than one virtual photon
~where it can initially yield integrands without even
symmetry!.80 As the new method can be applied to any inte-
grand arising from a state-sequence diagram path, it proves a
more durable alternative.

The Green’s function~2.19! can be expressed as a sum
of two integrals with the limitsp5@0,̀ #

G~k,R!5E
0

` sinpR

R~k2p!
dp1E

0

` sinpR

R~2k2p!
dp. ~3.8!

Making the substitutionst5pR2kR in the first integral and
s5pR1kR in the second gives

G~k,R!52
1

R S E
2kR

` sin~kR1t !

t
dt1E

kR

` sin~2kR1s!

s
dsD .

~3.9!

Expansion of the numerators enables the integrands to be
written solely as a function of the dummy variables, thus

G~k,R!52
1

R S sinkRE
2kR

` cost

t
dt1coskRE

2kR

` sint

t
dt

2sin~kR!E
kR

` coss

s
ds1cos~kR!E

kR

` sins

s
dsD .

~3.10!

These integrals are expressible in terms of the cosine integral
Ci(x) and the shifted sine integral si(x). These special func-
tions, oscillatory with convergent amplitude, are defined
as81,82

Ci~x!52E
x

` cosu

u
du, ~3.11!

and

si~x!52E
x

` sinu

u
du. ~3.12!

Note that asx→`, Ci(x)5si(x)→0. Substituting~3.11! and
~3.12! into Eq. ~3.10! gives the requisite Green’s function
expressed as

G~k,R!52
sinkR

R
@ Ci~kR!2Ci~2kR!#

1
coskR

R
@si~kR!1si~2kR!#. ~3.13!

Noting that the shifted sine integral has the series
expansion81

si~x!52
p

2
1 (

a50

`
~21!ax2a11

~2a11!! ~2a11!
, uxu,`, ~3.14!

it follows that

si~x!1si~2x!52p. ~3.15!

Similarly, the cosine integral is also expressible in series
form as

Ci~x!5g1 ln x1 (
a51

`
~21!ax2a

~2a!!2a
uargxu<p, x,`,

~3.16!

whereg is Euler’s constant, indicating that81,83

Ci~2x6 i0 !2Ci~x!5 ln~21!56 ip, ~3.17!

where the infinite summations andg conveniently cancel and
the logarithm of a negative real number is taken as the
Cauchy principal value. Inserting Eqs.~3.15! and~3.17! into
~3.13! yields

G~k,R!52
p

R
e7 ikR, ~3.18!

which embraces the accepted result of~3.2! and also its com-
plex conjugate, discarded in previous analyses.

The crux of this is that the outgoing wave approximation
represents an untenable prejudice towards results of classical
form—a device widely used by previous authors to bring a
quantum model into line. The structure of~3.4! shows that
the product of the donor transition moment and the interac-
tion tensor,m i

0a(A)Vi j (k,R), suggests a classical outgoing
wave-vector field—though it is equally legitimate to regard
the quantum amplitude as cast in terms of a product of the
interaction tensor with the acceptor transition moment,
Vi j (k,R)m j

b0(B) . However,m i
0a(A)Vi j (k,R) represents a field

which only approaches a transverse nature with respect toR
in the long range (kR@1). In any other separation regime—
and especially in the near-zone (kR!1), the field has com-
ponents both transverse and longitudinal, as defined with re-
spect toR. One needs to recall that the virtual photon field
~2.8! is precisely transverse with respect to the propagation
vector p—serving to emphasize that those photons are not
confined to propagate directly fromA to B.

After performing the necessary vector calculus a new,
complete, form for the coupling tensor is given by

Vi j
6~k,R!5

e7 ikR

4p«0R3
$~16 ikR!~d i j 23R̂i R̂j !

2k2R2~d i j 2R̂i R̂j !%. ~3.19!

Commonly the negative sign is taken in~3.19!, however both
choices of sign are perfectly acceptable. It follows from
~3.19! that its imaginary part

t i j
65~4p«0R3!21$7~sinkR2kRcoskR!~d i j 23R̂i R̂j !

6k2R2 sinkR~d i j 2R̂i R̂j !%, ~3.20!

displays the ambiguity in sign, whereas the real part of
Vi j

6(k,R) is identical to that given in~3.6!. In passing we
also note that the near-zone behavior of~3.19! mirrors that of
Coulomb’s law for an instantaneous interaction between
transition electric dipoles, i.e., followingR23. The ambigu-
ities in the quantitiesm i

0a(A)Vi j
6(k,R) and Vi j

6(k,R)m j
b0(B)

signify thatVi j
6(k,R) describes both incoming and outgoing
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waves—accommodating both state sequences~time order-
ings! as a correct quantum description should. It is important
not to lose sight of the fact thatVi j

6(k,R) is part of a quan-
tum amplitude, a convenient construct but not a measurable.
So long as the observable offers an accurate model of experi-
mental data, then ambiguity at the quantum amplitude level
is perfectly acceptable. This point is discussed further in
Sec. V.

IV. ENERGY TRANSFER INVOLVING
MAGNETIC-DIPOLE INTERACTIONS

The above discussion has focused on cases where the
transitions of both donor and acceptor moieties are electric-
dipole in character. However, magnetic-dipole interactions
also need to be addressed. Their effect, usually observed only
indirectly in interactions involving chiral species such as op-
tical rotation,84 circular dichroism85 and circular differential
scattering86 is weak, and energy transfer processes are usu-
ally dominated by electric-dipole contributions. Here we de-
velop the theory behind these interactions in light of the
advances of Sec. III, and we offer circumstances where such
interaction may dominate.

To examine the effects of magnetic-dipole interactions in
resonance energy transfer we expand the interaction Hamil-
tonian introduced in Eq.~2.6! to include terms accommodat-
ing couplings of the donor and acceptor transitions with both
electric and magnetic fields. Equation~2.7! is now

H int52 (
j5A,B

$«0
21m~j!•d'~Rj!1m~j!•b~Rj!%, ~4.1!

which exhibits both the magnetic-dipole operatorm~j! and
the magnetic field operatorb(Rj). The latter operator may
again be expressed as a mode expansion—cf.~2.8!,

b~Rj!5 i(
p,l

S \k

2«0cVD
1
2
$b(l)~p!a(l)~p!eip"Rj

2b̄(l)~p!a†~l!~ p!eip"Rj%, ~4.2!

whereb(l)(p) is the polarization vector in the direction of
the magnetic field vector andb̄(l)(p) its complex conjugate.
The incorporation of magnetic interactions intoH int in-
creases the number of contributions to the quantum ampli-
tude of RET. Alongside the pure electric-dipole–electric-
dipole effect quantified by Eq.~3.3!, both electric-dipole–
magnetic-dipole (e–m) and magnetic-dipole–magnetic-
dipole (m–m) couplings are included.

A slight modification of Fig. 1 accommodates the inclu-
sion of magnetic-dipole interactions. Previously, connections
between system-states indicated an application of theH int

given by ~2.7!, which only accounted for electric-dipole in-
teractions. Here each interconnection must also entertain a
magnetic-dipole interaction. As such the solid line paths in
Fig. 3 represent the electric dipole coupling and the dotted
line paths the magnetic counterpart. Contributions involving
magnetic-dipole transitions both in the donor and the accep-
tor give negligible amplitude contributions and so can be
discarded. As a result the cross-terms are the leading correc-
tions accounting for magnetic-dipole influence.

Applying similar methods to those employed in the pre-
ceding section, the cross-term paths, which comprise a mix-
ture of solid and dotted lines, are quantified by the quantum
amplitudes M f i

e–m1M f i
m–e ; we have two terms, the first

where electric-dipole interactions occur at the donor and
magnetic at the acceptor, and a second illustrating the con-
verse. Explicitly

M f i
e2m1M f i

m–e5
2 ik

2p2«0c
« i jk R̂k$m i

0a(A)mj
b0(B)

1mj
0a(A)m i

b0(B)%G8~k,R!, ~4.3!

where the transition magnetic moment is given by

m(r k
m)8r k

m(j)5^j (r k
m)8um(j)uj r k

m
& and a new Green’s function,

G8(k,R) is

G8~k,R!5E
0

` 1

k22p2 S p2 cospR

R
2

p sinpR

R2 D dp.

~4.4!

The derivation of~4.3! utilizes a new polarization sum cast
in terms of« i jk , the third-rank, antisymmetric Levi–Civita
tensor,

(
l

ei
(l)~p!b̄l

(l)~p!5« jkl p̂k~d i l 2 p̂i p̂l !5« i jk p̂k , ~4.5!

as follows from b̄(l)(p)5p̂3ē(l)(p) and « jkl p̂kp̂l5p̂3p̂
50. Also the identity

1

4pE p̂ke
6 ip•RdV57 iS cospR

pR
2

sinpR

p2R2 D R̂k ~4.6!

is used. Again, as in Sec. III, there are different methods of
resolving the Green’s function~4.4!. Craig and Thirunama-
chandran used an integration contour identical to their solu-
tion of ~2.19!, offering74

G8~k,R!5
p

2R
~kRcoskR1k2R2 sinkR! ~4.7!

which delivers the imaginary part of the total, all-space so-
lution. This result was also derived in comprehensive RET
work by Scholeset al., which also included quadrupolar
effects.50 Each of the integration contours enumerated by An-
drews and Sherborne can in fact be used to solve~4.4!; how-

FIG. 3. Modified version of Fig. 1, solid and dotted lines depict electric and
magnetic interactions, respectively.

2270 J. Chem. Phys., Vol. 119, No. 4, 22 July 2003 Daniels et al.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

139.222.115.136 On: Wed, 12 Nov 2014 18:09:05



ever employing the new special functions method expedites
an all-encompassing result by expressing~4.4! as

G8~k,R!5
1

2E0

`S 1

2k2p
1

1

k2pD S p cospR

R
2

sinpR

R2 D dp.

~4.8!

The sine part of the integral is simply2R21G(k,R), with its
solution given by~3.18!, thus

G8~k,R!5
p

2R2
e7 ikR1

1

2R S E
0

`p cospR

k2p
dp

1E
0

`p cospR

2k2p
dpD . ~4.9!

Making identical substitutions to those employed for~3.9!
allows conversion to special functions as before; here, how-
ever, the process is not as straightforward. The Green’s func-
tion is expressible as a sum of four integrals, thus

G8~k,R!5
p

2R2
e7 ikR2

1

2R2 H E2kR

`

cos~ t1kR!dt

1kRE
2kR

` cos~ t1kR!

t
dt1E

kR

`

cos~s2kR!ds

2kRE
kR

` cos~s2kR!

s
dsJ ~4.10!

with the second and fourth integrals performed as before.
However the first and third terms exhibit nonconvergent am-
plitudes of oscillation obviating the use of special functions.
Explicitly the first and third integrals produce

E
2kR

`

cos~ t1kR!dt1E
kR

`

cos~s2kR!ds

5cos~kR!H E
0

`

cost dt1E
0

`

coss dsJ , ~4.11!

which are solved by introducing a divergent exponential
prefactor to each (e2ugut ande2ugus, respectively!. Using the
general formula

E
0

`

e2ax cosbxdx5
a

a21b2
~4.12!

it can be verified that

lim
g→0

cos~kR!H E
0

`

e2ugut cost dt1E
0

`

e2uguscoss dsJ 50.

~4.13!

Consequently,

G8~k,R!5
p

2R2
e7 ikR2

k

2R
$cos~kR!@Ci~kR!2Ci~2kR!#

1sin~kR!@si~2kR!1si~kR!#% ~4.14!

and, noting~3.15! and ~3.17!, the evaluation can be com-
pleted to yield

G8~k,R!5
pe7 ikR

2R2
~16 ikR! ~4.15!

~associated with the use of contoursC3 and C4). Using
~4.15!, the quantum amplitude can be written as

M f i
e2m1M f i

m–e5H m i
0a(A)

mj
b0(B)

c
1

mj
0a(A)

c
m i

b0(B)J Ui j
6~k,R!

~4.16!

which features the fully retarded electric-dipole–magnetic-
dipole interaction tensor, expressed as

Ui j
6~k,R!5r i j

61 iq i j , ~4.17!

echoing~3.5!. As stated previously, Ref. 74 gives only the
imaginary part, explicitly

q i j 5
« i jk

4p«0

R̂k

R3
~2kRcoskR2k2R2 sinkR!, ~4.18!

whereas our method reveals an additional real part

r i j
65

« i jk

4p«0

R̂k

R3
~7kRsinkR6k2R2 coskR!. ~4.19!

Adding ~4.18! and ~4.19! gives the total expression for
Ui j

6(k,R) as the following second-rank, antisymmetric ten-
sor:

Ui j
6~k,R!5

e7 ikR

4p«0
« i jk

R̂k

R3
~2 ikR6k2R2!. ~4.20!

To expedite the comparisons undertaken in the following
section, bothUi j

6(k,R) and Vi j
6(k,R) are cast in the same

units, as withm andm/c @c has been included in other ver-
sions of the coupling tensorUi j

6(k,R) in some previous
analyses#. Also note that there is noR23 term in ~4.20! in-
dicating that, in the near-zone limit, any electric-dipole inter-
actions will overwhelmingly dominate. Furthermore~4.20!
affords insight into why static electric- and magnetic-dipoles
do not interact; in the static limit ofk50, ~4.20! is zero.

V. RATE EQUATIONS AND DISCUSSION

An observable for the process of resonance energy trans-
fer ~in this case a rate,G! is calculated by use of the Fermi
golden rule,87

G5
2p

\
uM f i u2r f , ~5.1!

wherer f is the density of acceptor final states. The overall
transfer quantum amplitudeM f i ,

M f i5M f i
e2e1M f i

e–m1M f i
m2e1M f i

m–m , ~5.2!

thus comprises a sum of the contributions from electric and
magnetic interactions.

A. Selection rules

First we note that, in order for all the terms in~5.2! to
contribute, it is necessary that the donor decay transition
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u0&←ua& is both electric-dipole and magnetic-dipole allowed.
This is a criterion that is invariably satisfied whenA is chiral
but is not met whenA is centrosymmetric. For donor mol-
ecules which are neither chiral nor centrosymmetric, each
case is determined by the symmetry of the transition. Similar
remarks apply to the excitation transitionub&←u0& in the ac-
ceptor moleculeB. Thus it is possible for situations to arise
where the selection rules dictate that only one of the compo-
nents in~5.2! is nonzero. Although purely magnetic energy
transfer is generally a negligible contributor, its quantum am-
plitude, the fourth term in~5.2!, can result in significant in-
terference terms—especially with the purely electric quan-
tum amplitude, the first term.88 However in the analysis
which follows, systems will be envisaged in which this spe-
cific interference is precluded.

B. Rotationally averaged rates

Disregarding this fourth term in the quantum amplitude,
we have a maximum of nine rate contributions to be ad-
dressed. First, assuming that both the donor and acceptor
transitions are electric-dipole allowed, the pure electric-
dipole–electric-dipole contribution is given by

M f i
e–eM̄ f i

e–e5umAu2umBu2A~k,R!, ~5.3!

after appropriate second-rank rotational averaging methods
have been applied.89 Equation~5.3! introduces the shorthand
notationum0a(A)u[umAu, umb0(B)u[umBu. Also present is the
e–e excitation transfer functionA(k,R) given by;

A~k,R!5Vi j
6~k,R!V̄i j

6~k,R!

5
2

~4p«0R3!2
~31k2R21k4R4!, ~5.4!

a scalar field characterizing thee–e unified mechanism~note
the short-rangeR26 and long-rangeR22 dependencies—vide
infra!. Importantly,A(k,R) carries no ambiguity in sign. The
new technique not only correctly describes the proper quan-
tum behavior of RET but also delivers a physically unam-
biguous and observable description of the rate.

Four quantum interference terms in~5.1! are the prod-
ucts M f i

e–eM̄ f i
e–m and M f i

e–eM̄ f i
m–e and their complex conju-

gates. The contribution from each of these terms disappears
as each contains eitherVi j

6(k,R)Ū i j
6(k,R) or its complex

conjugate, leading to the tensor contractions« i jkd i j R̂k and
« i jk R̂i R̂j R̂k , each of which is zero. That this quantum inter-
ference term is null indicates that the two types of energy
transfer (e–e and e–m) described above do not mix on a
quantum level. Henceforth we may think of the rate poten-
tially comprising contributions from puree–e, pure e–m,
or purem–e transfer, and this proves fruitful for the ensuing
discussion.

The rate contributions emerging from the electric-
dipole–magnetic-dipole terms, again after second-rank aver-
aging, are given by

uM f i
e–m1M f i

m–eu25
B~k,R!

9c2
$umAu2umBu2

1umBu2umAu222RumA
•m̄Auum̄B

•mBu%,

~5.5!

whereum0a(A)u[umAu, umb0(B)u[umBu. In a similar manner
to ~5.3! these contributions are dictated by a new scalar field
dependent onk andR, the e–m excitation transfer function
B(k,R) explicitly written as

B~k,R!5Ui j
6~k,R!Ū i j

6~k,R!

52Ui j
6~k,R!Ū j i

6~k,R!

5
2

~4p«0R3!2
~k2R21k4R4!. ~5.6!

In contrast to itse–e analogue,B(k,R) lacks anR26 term—
meaning that, in the near-zone where coupling is strongest,
electric-magnetic interactions offer only a small correction if
e–e coupling is allowed. Comparison of~5.3! and ~5.5!
highlights major differences between the overall rate contri-
butions associated with the two mechanisms. A typical tran-
sition dipole moment is of the order of 1D, two or three
orders of magnitudes larger thanumju/c when umju51mB .
Thus each substitution ofumju with umju/c, essentially the
replacement of a dipole interaction with a magnetic one, re-
duces the overall rate contribution ofe–m terms by a factor
of between 100 and 1000, even before taking into account
the comparative forms ofA(k,R) andB(k,R). For the latter
comparison, however, it is interesting to measure the two
transfer functions against each other over appropriate dis-
tance regimes. Assuming absorption of light at 700 nm, giv-
ing k593106 m21, the responses ofA(k,R) and B(k,R)
over distances between 1 nm and 10mm are plotted in Fig. 4.

From Fig. 4 it can be seen that the functionsA(k,R) and
B(k,R) converge in the long-range limitkR@1. Applying
this to ~5.3! and ~5.6! reveals that

FIG. 4. Log–log plot illustrating values forASR andBSR, over appropriate
transfer distancesR: k593106 m21.
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ALR~k,R!5BLR~k,R!5
2k4

~4p«0R!2
, ~5.7!

where the superscript LR indicates the long-range limit. Nec-
essarily, long-range inverse square law behavior emerges;
Eq. ~5.7! indicates that it is only the comparative strengths of
umju andumju/c which are important in determining the rela-
tive significance ofe–e and e–m (m–e) coupling in the
wave zone. Conversely in the short-range limit (kR!1) the
e–e transfer function is given by

ASR~k,R!5
6

~4p«0R3!2
, ~5.8!

and thee–m analogue is

BSR~k,R!5
2k2

~4p«0R2!2
. ~5.9!

The ratio ofASR to BSR over a short-range regime is 3/k2 R2

which, between 10 Å and 100 Å varies from;104 to ;102

~again usingk593106 m21). This further reinforcese–e
dominance for Fo¨rster-zone transfer—even before taking
into account the relative magnitudes ofumju and umju/c.

C. Ordered systems

As has been established above, if the donor and acceptor
species involved in energy transfer undergo one-photon tran-
sitions which are both magnetic- and electric-dipole allowed,
thee–m andm–e energy transfer mechanisms are generally
of little consequence as thee–e term dominates—the other
terms offering, at best, a small adjustment to the overall rate
for fluid media. However, ordered systems can be envisaged
in which the mutual orientation of the transfer pair itself
forbids e–e transfer, irrespective of the selection rules.

Concentrating on the short-range results, the rate of en-
ergy transfer can be expressed in terms of an orientation
factor k as commonly reported in the literature.90,91 Assum-
ing real transition electric-dipole moments,

uM f i
e–eM̄ f i

e–eu25
umAu2umBu2k2

16p2«0
2R6

, ~5.10!

where

k5cosu23 cosf cosg. ~5.11!

The orientation factor is expressed by three angles—u the
angle betweenumAu and umBu, and f and g the angles be-
tweenR̂ and umAu and umBu, respectively. It is obvious that,
when the vectors involved form an orthogonal triad,k ~and
hence the rate contribution ofe–e transfer! is zero. It has
however been shown that, in certain spirane-based systems,
vibrational effects can break the symmetry and hence facili-
tate energy transfer.92 Then,e–e transfer still dominates the
rate, as shown by the picosecond measurements reported in
Ref. 92. Nonetheless, where such vibrational symmetry-
lowering is absent, energy transfer may still proceed through
a coupling described by the leading electric–magnetic inter-
ference contributions, which follow from~4.16! and ~4.20!.

Expressing the result in terms of vector triple products, in the
short-range the rate counterpart to~5.10! is as follows:

uM f i
e–m1M f i

m–eu25
k2

4p2c2«0
2R4

$R̂"~mA3mB!

1R̂"~mA3mB!%2. ~5.12!

If, for example,within each species~A or B! the magnetic-
and electric-dipole transition moments are collinear, then, if
the transition dipoles and intermolecular vector form an or-
thogonal triad, we automatically preclude puree–e transfer
leaving ~5.12! as the leading term. Thus

uM f i
e–m1M f i

m–eu25
k2umAu2umBu2

4p2«0
2R4

~CA1CB!2, ~5.13!

whereCjumju5umju/c andQ is the angle betweenR̂ and the
normal to both themAmB plane andmBmA plane. The result
~5.13! shows that it is possible to elicit a response for energy
transfer driven by electric–magnetic coupling whene–e
transfer is forbidden. Such geometric interaction-pair control
might, for example, be achieved in a suitably nonsymmetric
bichromophore system or a layered Langmuir–Blodgett film.

To conclude we note that, compared to the usual
electric–electric coupling mechanism, energy transfer medi-
ated by electric–magnetic coupling is extremely weak, being
associated with rates several orders of magnitude smaller.
However, in systems wheree–e coupling is precluded~ei-
ther by selection rules or by geometric arrangement! it is
possible to envisage experiments based on ultrasensitive
fluorescence detection that will, for the first time, enable the
direct detection ofe–m mechanisms.
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