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Distinctive optical forces and torques arise between nanoparticles irradiated by intense laser radiation. These
forces, associated with a pairwise process of stimulated scattering, prove to enable the possibility of producing
significant modifications to both the form and magnitude of interparticle forces, with additional contributions
arising in the case of dipolar materials. Moreover, such forces have the capacity to generate unusual patterns of
nanoscale response, entirely controlled by the input beam characteristics—principally the optical frequency,
intensity, and polarization. Based on quantum electrodynamical theory, a general result is secured for the
laser-induced force under arbitrary conditions, incorporating both static and dynamic coupling mechanisms.
Specific features of the results are identified for pairs of particles with prolate cylindrical symmetry, e.g.,
carbon nanotubes, where it is shown that the laser-induced forces and torques are sensitive functions of the pair
spacing and orientation, and the laser beam geometry; significantly, they can be either repulsive or attractive
according to conditions. For nanoparticles trapped in a Laguerre-Gaussian laser beam the results also reveal
additional and highly distinctive torques that suggest further possibilities for nanomanipulation with light. The
paper concludes with a discussion on several potential applications of such forces.
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I. INTRODUCTION

In the early years of laser development, new possibilities
began to emerge for the practical utilization of optomechani-
cal forces to manipulate small particles, largely owing to the
pioneering work of Ashkin �1�. The field evolved rapidly and
by the mid-1980s it had led to the invention of optical twee-
zers �2�, a technique which has since become a mainstream
tool for the optical trapping and manipulation �3–6� of a
diverse range of particles, from living cells down to single
atoms. More recently, alongside burgeoning biological appli-
cations, there has been a growing recognition of the potential
for other distinctive nanotechnological applications of laser-
induced forces. The activity in this area has seen a huge
increase in its range, with the latest advances leading to ap-
plications such as microviscometry �7,8�. There is also con-
siderable interest in the deployment of exquisite new beam
structures for laser light �9,10�. Notably, the use of “twisted”
Laguerre-Gaussian �LG� beams in optical tweezers can pro-
duce effects that have become known as “optical spanners,”
that can not only trap particles but also rotate them—a result
of angular momentum transfer �11,12�. Indeed it has been
shown that a superposition of LG beams can simultaneously
trap numerous particles in a three-dimensional array and, ad-
ditionally, control their rotations �13,14�.

Optical trapping and manipulation is generally based on
particles experiencing a radiative attraction towards a high-
intensity region of a laser beam. The motion of two or more
particles, subject to these optomechanical forces within the
beam, is also influenced by interparticle forces. The funda-
mental character of such forces is very well known and, for
particles separated beyond the region of wave-function over-
lap, derives from dipole interactions, dispersion forces, etc.
Quantum mechanics provides the framework for their de-
tailed evaluation. However, it has recently emerged �15�

from studies based on quantum electrodynamics �QED�—a
theory that designedly addresses the quantum interactions of
matter with radiation—that the throughput of intense laser
light can significantly modify the form and magnitude of
interparticle coupling forces. As detailed in this paper, the
mechanism for these optically induced pair interactions is
one of stimulated scattering. Thus, entirely distinct and sepa-
rable from the optomechanical interactions involved in opti-
cal tweezers, laser-induced interparticle forces and torques
are capable of generating interesting patterns of particle mo-
tion determined by the intensity, polarization, and other fea-
tures of the laser input.

First identified in a definitive treatment by Thirunama-
chandran �16�, the concept of laser-induced coupling forces
has received attention from several theory research groups
�17–22�, was cited in a prominent futurology of chemistry
�23� and has been made the subject of experimental investi-
gation �24,25�. It is noteworthy that, since its original postu-
lation, the threshold levels of intensity necessary to induce
significant forces �typically megawatts per square centime-
ter� have become routinely available—for example by focus-
ing the output of a standard titanium:sapphire femtosecond
laser. Accordingly, the potential significance of the subject
has soared in importance, and applications to the optical con-
trol of Bose-Einstein condensates have already been envis-
aged �26–30�. In this paper we use a quantum electrodynami-
cal approach to determine complete and general results for
optically induced forces between chemically identical par-
ticles, also applying the results to a number of systems of
current interest.

In Sec. II a general expression is first derived for particles
of arbitrary shape and electronic characteristics. This is fol-
lowed by a detailed analysis of two systems which differ in
the angular disposition of individual particles against the in-
coming laser light; specifically, where parallel particles of
cylindrical symmetry are disposed at a variable angle to the
electric field vector of the incident light �Sec. III A�, and
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where the particles can tumble freely with respect to the field
vector �Sec. III B�. A nanoparticle pair irradiated by LG
beam �or any other beam endowed with “orbital” angular
momentum� can give rise to additional angular features. Em-
ploying a recently completed QED formulation of the corre-
sponding interaction with matter �31�, Sec. IV presents an
analysis that leads to an expression for the torque operating
between nanoparticles irradiated with such “twisted” radia-
tion. Section V addresses the applications of laser-induced
forces, including carbon nanotubes, nanoelectromechanical
systems, and Bose-Einstein condensates. The paper con-
cludes with a summary.

II. GENERAL DERIVATION

The framework of QED �32�—in which both radiation
and matter are treated quantum mechanically—provides a
highly satisfactory theory for the study of optically induced
nanoparticle interactions. Using the Power-Zienau-Woolley
approach �33�, the full Hamiltonian H, for a pair of particles
A and B is given by

H = �
�=A,B

Hmol��� + �
�=A,B

Hint��� + Hrad, �2.1�

where Hmol
� is the multipolar Hamiltonian for particle � and

Hrad denotes the radiation field. The operator Hint
� represents

the interaction of the field with � and, in the electric-dipole
approximation, is given by

Hint
� = − �0

−1�
�

���� · d��R�� , �2.2�

with ���� and R�, respectively, denoting the electric-dipole
moment operator and the position vector of a dielectric nano-
particle labeled �. Note that, in any case where the nanopar-
ticles comprise individual, electronically distinct components
such as color centers, chromophores, or molecules, ���� is to
be interpreted as an effective dipole operator—comprising
the sum of dipole operators for each of the constituent units.
This is justified on the basis that the dipole operator entails a
sum over all charges, and in such a case these are attributable
to individual units. Returning to Eq. �2.2�, the operator
d��R�� represents the transverse electric displacement field,
expressible in a mode expansion involving summations over
all wave vectors p and polarizations �,

d��R�� = i�
p,�

��cp�0

2V
�1/2

�e����p�a����p�ei�p·R�� − ē����p�

�a†����p�e−i�p·R��� . �2.3�

Here e����p� is the polarization unit vector �ē����p� being its
complex conjugate, the admission of complex polarizations
allowing for circular or elliptical as well as plane polariza-
tion�, V is an arbitrary quantization volume, and
a����p� , a†����p� are, respectively, the photon annihilation
and creation operators for a radiation mode �p ,��.

To secure a general result for the force between the pair of
particles a suitable starting point is to derive an expression
for the energy shift �E. The latter can be obtained by the

application of perturbation theory, and the leading terms are
as follows:

�E = Re��
r

�i	Hint	r
�r	Hint	i

�Ei − Er�

+ �
t,s,r

�i	Hint	t
�t	Hint	s
�s	Hint	r
�r	Hint	i

�Ei − Et��Ei − Es��Ei − Er�

� , �2.4�

where 	i
 is the unperturbed state in which both particles are
in their electronic ground state, 	r
 , 	s
, and 	t
 are virtual
states, and En is the energy of state 	n
. The last signifies one
of the basis states for the perturbative development, express-
ible in the form

	n
 = 	moln
	radn
 � 	moln;radn
 , �2.5�

with 	moln
 and 	radn
 defining the status of all particles and
radiation states, respectively. In Eq. �2.4�, each operation of
Hint on the state to its right effects a transition to the state on
its left—physically this must signify the annihilation or cre-
ation of a photon, as follows from Eqs. �2.2� and �2.3�.

One interaction that is determined by second-order pertur-
bation theory—the first term of Eq. �2.4�–is the coupling of
two static �permanent� dipoles, which in the QED formula-
tion involves the creation of a virtual photon at one particle
and its annihilation at the other �Fig. 1�a��. Another familiar
form of interaction is responsible for the dispersion energy;
this entails four photon-particle coupling events through the
creation and annihilation of two virtual photons �32� �Fig.
1�b��. Here �E is accordingly determined by fourth-order
perturbation theory and emerges from the second term of Eq.
�2.4�. In the present context, however, it is more important to
note that this fourth-order term also accommodates a form of
interaction that can only arise through coupling with
throughput radiation, the focus of the work that follows. The
detailed representation of this mechanism using the Feynman
diagrammatic method necessitates the construction of 96
time-ordered diagrams, four of which are shown in Figs. 2
and 3. In general this laser-induced interaction involves
�Eind contributions of two kinds: in one, the annihilation of a
“real” input photon at one particle and the stimulated emis-

FIG. 1. �a� One of two Feynman diagrams for the coupling of
two static dipole moments: 0 denotes the ground state. In the other
diagram the virtual photon propagates from B to A. �b� One of 12
Feynman diagrams �32� used as a calculational aid in determination
of the dispersion energy; � and � are virtual excited states for
particles A and B, respectively.
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sion of an equivalent “real” photon at the other is effected
through virtual photon mediation between the two particles
�Fig. 2�—this is a dynamic form of coupling, so called be-
cause a real and finite amount of energy is conveyed between
the two particles. In the other contribution to �Eind, the pho-
ton creation and annihilation events both occur at the same
particle, again with interparticle coupling mediated by a vir-
tual photon �Fig. 3�—which represents a static form of cou-
pling, with no net conveyance of energy between the par-
ticles. In each case the particles and throughput radiation
suffer no overall change in state. Here, a real photon denotes
a quantum of electromagnetic radiation with a long lifetime
and commonly termed real characteristics—although physi-
cally, there is a sense in which all photons are virtual in
character �34�.

Although the construction of a complete set of Feynman
graphs can expedite the development of a result for the laser-
induced energy shift, a more recently devised state-sequence
method �35� proves to offer considerable advantages. Spe-
cifically, all 96 time orderings are accommodated in just four
state-sequence diagrams—which also offer a more direct cal-
culational route to the result �see the Appendix�. Two ex-
amples are shown in Figs. 4 and 5. The explicit result for
�Eind follows insertion of Eqs. �2.2� and �2.3� into the sec-
ond term of Eq. �2.4�, recognizing that ���� and d��R��
operate on 	matn
 and 	radn
, respectively—the latter through

the following relationships a����p�	n�p ,��
=�n	�n−1��p ,��

and a†����p�	n�p ,��
=�n+1	n+1�p ,��
. Therefore, by the
same perturbation method as used in previous work �36�, the
following concise result emerges;

�Eind = �n�ck

�0V
�Re
ei

�	�ēl
�	��ij

A�k�Vjk�k,R��kl
B �k�exp�ik · R�

+
1

2
ei

�	�ēl
�	�Vjk�0,R���ijl

A �k�
k
B + 
k

A�ijl
B �k��� . �2.6�

Here, use is made of the implied summation convention for
repeated Cartesian tensor indices; 
k

� is a static �permanent�
dipole moment and, as defined below, �ij

� �k� is the dynamic
polarizability tensor, and �ijk

� �k� is a linear electro-optic hy-
perpolarizability tensor �37�. Also in Eq. �2.6� k and �ck
denote the input wave vector and photon energy, respec-

FIG. 2. Two typical Feynman diagrams �each with 23 further
permutations� for calculation of dynamic contributions to the laser-
induced interaction energy.

FIG. 3. Two Feynman diagrams �each with 23 further permuta-
tions� for calculation of static contributions to the laser-induced
interaction energy.

FIG. 4. One of two state-sequence diagrams for calculation of
the dynamic contributions to the laser-induced interaction, associ-
ated with the annihilation of an input photon at A and creation of an
output photon at B. Each of the 24 continuous channels across the
diagram from left to right corresponds to a distinct Feynman graph.
Key: k, real photon; p, virtual photon; open circles, particle in
ground state �where particle A is a circle on the left side of the box
and B is on the right�; gray circles, particle in virtual excited state;
solid lines, real photon annihilation at A; dashed lines, virtual pho-
ton coupling event at A; closed-spaced dotted lines, virtual photon
coupling at B; wide-spaced dotted lines, real photon creation at B.

FIG. 5. One of two state-sequence diagrams for calculation of
the static contributions to the laser-induced interaction, associated
with both the annihilation of an input photon and the creation of an
output photon at A. For key, see caption of Fig. 4, but here the
wide-spaced dotted lines indicate real photon creation at A.
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tively, and Vjk signifies the fully retarded resonance electric-
dipole–electric-dipole interaction tensor of the general form
�38�

Vij�k,R� =
eikR

4��0R3 ��1 − ikR���ij − 3R̂iR̂j�

− �kR�2��ij − R̂iR̂j�� , �2.7�

which is dependent on the interparticle displacement vector
R�RB−RA. Returning to the optical response tensors, these
are explicitly given by the following:

�ij
� �k� = �

s
� 
i

is
 j
si

Esi − �ck − i
s
+


 j
is
i

si

Esi + �ck − i
s
� �2.8�

and

�ijk
� �k� = �

s,t
� 
i

0t
 j
ts
k

s0

�Et0 − �ck − i
t��Es0 − �ck − i
s�

+

i

0t
k
ts
 j

s0

�Et0 − �ck − i
t��Es0 − i
s�

+

 j

0t
i
ts
k

s0

�Et0 − i
t��Es0 − �ck − i
s�

+

k

0t
i
ts
 j

s0

�Et0 + �ck − i
t��Es0 − i
s�

+

 j

0t
k
ts
i

s0

�Et0 − i
t��Es0 + �ck − i
s�

+

k

0t
 j
ts
i

s0

�Et0 + �ck − i
t��Es0 + �ck − i
s�
� , �2.9�

respectively, where �xy = �x	�	y
 , Exy =Ex−Ey, and 
s ,
t are
damping factors.

Returning to Eq. �2.6� it is to be noted that, by simple
index symmetry arguments, the first term accommodates
contributions in which the roles of A and B in the dynamic
mechanism interchange �see the Appendix�, whereas the sub-
sequent terms differentiate the roles of A and B in the static
mechanism. The result is thus cast in a form that allows
consideration of cases where A and B are either identical or
dissimilar. Next, from Eq. �2.6� the laser-induced force Find
=−��Eind /�R emerges as follows:

Fm = � I

8��0
2cR4�„2 Re�ei

�	�ēl
�	��ij

A�k��kl
B�k��

��− k3R3�cos kR sin�k · R�k̂m + sin kRcos�k · R�R̂m�
��� jk − R̂jR̂k� − k2R2�cos kR cos�k · R��2� jkR̂m + �mjR̂k

+ �mkR̂j − 6R̂jR̂kR̂m� − k̂msin kR sin�k · R��� jk − 3R̂jR̂k��
+ kR�3 sin kR cos�k · R��� jkR̂m + �mjR̂k + �mkR̂j

− 5R̂jR̂kR̂m� + k̂mcos kR sin�k · R��� jk − 3R̂jR̂k��
+ 3 cos kRcos�k · R��� jkR̂m + �mjR̂k + �mkR̂j

− 5R̂jR̂kR̂m�� + 3 Re�ei
�	�ēl

�	���ijl
A �k�
k

B + �ijl
B �k�
k

A��
��� jkR̂m + �mjR̂k + �mkR̂j − 5R̂jR̂kR̂m�… , �2.10�

where I=n�c2k /V is the input irradiance. One of the key
developments departing from the classical result �19� is the
inclusion in Eq. �2.10� of terms associated with the static
coupling mechanism, as well as the dynamic terms. Also of
significance is that, when Eq. �2.10� is applied to specific
cases, it reduces to the dynamic term in the classical repre-
sentation. The full QED expression is more general, in the
following respects: �i� the polarizability is allowed to be an-
isotropic and dynamic, in the sense that its frequency depen-
dence is explicit; �ii� the input wave vector can have arbitrary
orientations with respect to the interparticle displacement
vector; and �iii� the input radiation is also polarized arbi-
trarily. In passing we note that, although a general expression
identical to Eq. �2.10� could in principle have been deter-
mined with the employment of classical electrodynamics,
QED proves more directly amenable for this calculation—
and it offers additional insights into the underlying physics.

Before proceeding further, the inclusion and significance
of static terms deserves comment. Whereas particles that
possess a permanent static moment � necessarily admit non-
zero components of the � tensor, the presence of nonzero �
components is not a sufficient condition for the existence of
�. Specifically, for a nonzero � it is necessary that an axial
vector possesses one or more components that transform un-
der the totally symmetric representation of the appropriate
point group, whereas for the � tensor the less restrictive
condition is that any one or more of the irreducible weights
spanning the interval �0,3�, resulting from decomposition of
the reducible tensor, transforms under the appropriate totally

symmetric representation. In particles of 6̄m2 �D3h� symme-
try, for example, a � tensor is allowed whereas a static dipole
is not—for a full tabulation of the possibilities, see Appendix
6 in Ref. �39�. This feature is particularly significant in con-
nection with forces between dissimilar particles, only one of
which is polar, since in this case the static coupling mecha-
nism has a level of significance similar to the dynamic
mechanism. In the case of coupling between two polar par-
ticles, �-� electrostatic interactions, i.e., coupling of two
static �permanent� dipoles, will of course greatly outweigh
both �-� and �-� interactions.

III. NANOPARTICLES OF CYLINDRICAL SYMMETRY

A. Parallel particles

The first system to be examined in detail is a pair of
nonpolar nanoparticles of cylindrical symmetry, aligned in
parallel along the X axis of a laboratory frame, both perpen-
dicular to R—the latter identified with the Z axis. Plane-
polarized throughput radiation is defined through the angles
� and � made by its e vector against R in the XZ plane, and
the particle axis in the XY plane, respectively �Fig. 6�. Only
the first term of Eq. �2.6� needs to be considered which, by
expressing the polarization unit vector in the cylindrical form
e=sin � cos �i+sin � sin �j+cos �k, and defining the whole
system in terms of the laboratory frame, gives
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�Eind = � I

�0c
�Re��

J,K
sin2� cos2� �ZJ

A VJK�KZ
B

− sin2� sin � cos � �ZJ
A VJK�KY

B

− sin � cos � cos � �ZJ
A VJK�KX

B

− sin2� sin � cos � �YJ
A VJK�KZ

B + sin2� sin2�

� �YJ
A VJK�KY

B + sin � cos � sin � �YJ
A VJK�KX

B

− sin � cos � cos � �XJ
A VJK�KZ

B

+ sin � cos � sin � �XJ
A VJK�KY

B

+ cos2� �XJ
A VJK�KX

B �cos�k · R� , �3.1�

where the k and R dependence are henceforth suppressed
and the indices I , J, and K are in the laboratory frame. Em-
ploying the explicit form of the VJK tensor—i.e., the expres-

sion of �2.7�, also identifying the unit vector R̂ as pointing in
the Z direction—and, for each cylindrical particle �40� �YY
=�ZZ=�� and �XX=��, Eq. �3.1� is written as

�Eind = � I

4��0
2c
�����

2 sin2� sin2� + ��
2cos2��

�� cos kR

R3 +
k sin kR

R2 −
k2cos kR

R
�

− 2��
2 sin2� cos2�� cos kR

R3 +
k sin kR

R2 ��cos�k · R� .

�3.2�

Here, the superscripts A and B are omitted as the two par-
ticles are identical. The laser-induced force is determined as
before and emerges as

Fz = � I

4��0
2cR4�„���

2 sin2��1 − 3 cos2�� + ��
2cos2��

��3R̂zcos kR cos�k · R� + kR�3R̂zsin kR cos�k · R�

+ k̂zcos kR sin�k · R�� − k2R2�R̂zcos kR cos�k · R�

− k̂zsin kR sin�k · R��� − ���
2 sin2� sin2� + ��

2cos2��

��k2R2R̂zcos kR cos�k · R� + k3R3�R̂zsin kR cos�k · R�

+ k̂zcos kR sin�k · R���… . �3.3�

The leading term of Eq. �3.3�, Fz
0, in the short-range region

�kR�1�, is found by taking the leading terms in the Taylor
series expansions of sin kR , cos kR , sin�k ·R�, and
cos�k ·R� to give

Fz
0 = � 3IR̂z

4��0
2cR4����

2 sin2��1 − 3 cos2�� + ��
2cos2�� .

�3.4�

The case where the two nanoparticles have spherical sym-
metry can be represented by imposing the conditions that ��

and �� are replaced by ��1/3�ii and also �=0. In the short
range the corresponding result is given by

Fz
0 = � 3�2IR̂z

4��0
2cR4��1 − 3 sin2�� . �3.5�

On isotropically averaging the system with respect to the
incoming light, the force of Eq. �3.5� becomes solely attrac-
tive and is written as

�Fz
0
 = −

3�2IR̂z

4��0
2cR4 , �3.6�

an outcome whose unequivocal sign illustrates why the laser-
induced force is often termed an optical binding force
�19,21�.

Finally, and for completeness, the case of identical cylin-
drical particles with static dipole moments can be enter-
tained, generating additional terms to the equation for the
laser-induced force, Eq. �3.3�. The second term of Eq. �2.6�
is written as

�Eind = � I

2�0c
�Re��

J,K
sin2� cos2 � �ZJZ

A VJK�0,R�
K
B

− sin2� sin � cos � �ZJY
A VJK�0,R�
K

B

− sin � cos � cos � �ZJX
A VJK�0,R�
K

B − sin2� sin �

� cos � �YJZ
A VJK�0,R�
K

B

+ sin2� sin2� �YJY
A VJK�0,R�
K

B + sin � cos �

� sin � �YJX
A VJK�0,R�
K

B

− sin � cos � cos � �XJZ
A VJK�0,R�
K

B + sin �

� cos � sin � �XJY
A VJK�0,R�
K

B

+ cos2� �XJX
A VJK�0,R�
K

B + A ↔ B� , �3.7�

where A↔B denotes the interchange of particles A and B.
Next we identify that, for each cylindrical particle, the static
dipole moment �to be designated 
�� points in the X

FIG. 6. Geometry of a system of parallel cylindrical particles
irradiated in a fixed direction, here illustrated with nanotubes.
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direction; also only �XXX=�� , �YYX=�ZZX=��1
, �YXY

=�ZXZ=��2
, and �XYY =�XZZ=��3

are nonzero. Thus, with
the explicit form of the VJK, Eq. �3.7� gives

�Eind = � I
�

4��0
2cR3����2

sin2� + ��cos2�� . �3.8�

Again, the superscripts A and B can be omitted at this stage.
Thus, the complete expression for the polar cylindrical pair
is given by the sum of this result and Eq. �3.3�. In the short-
range region, this is determined as

Fz
0 = � 3IR̂z

4��0
2cR4����

2 sin2��1 − 3 cos2�� + ��
2cos2�

+ 
����2
sin2� + ��cos2��� . �3.9�

Although, as observed earlier, the force represented by Eq.
�3.9� will necessarily represent only a correction to a sub-
stantially larger dipole-dipole force, it is in principle measur-
able through its intensity dependence.

B. Tumbling pair

A second case of interest concerning a pair of cylindrical
nanoparticles is where the pair freely tumbles in the field of
the input radiation, the two particles having arbitrary mutual
orientation. Here the angle between the long axis of each
particle and the R vector �the Z direction of the laboratory
frame� is defined as ��—see Fig. 7�a�. Furthermore, �AB is
the angle between the long-axis projections of particles A
and B on the plane perpendicular to R, and the X direction of
the system frame is chosen such that the long axis of particle
A resides in the XZ plane—see Fig. 7�b�. To secure a result
for the cylindrical pair that is isotropically averaged with
respect to the incoming light, a phased-average method �17�
is required to account for the phase factor exp�ik ·R� in Eq.
�2.6�—a feature that reflects the creation and annihilation of

real photons at differing positions, i.e., one at A and the other
at B. Hence, with nonpolar particles, we obtain from the first
term of Eq. �2.6�

�Eind = � I

�0c
�Re�1

3
j0�kR��IJ

A VJK�KI
B −

3

2
j2�kR�

��−
1

3
R̂I�IJ

A VJK�KL
B R̂L +

1

9
�IJ

A VJK�KI
B �� , �3.10�

using the identities eiēl=1 and eik̂i=0. Here, jn�kR� are
spherical Bessel function,

j0�kR� =
sin kR

kR
, j2�kR� = �− 1

kR
+

3

k3R3�sin kR −
3 cos kR

k2R2 .

�3.11�

From Eq. �3.10�, by contracting �IJ
A and �KI

B with the explicit
form of the VJK tensor and defining the resulting equation in
terms of �� and ��—achieved by referring the polarizability
to the laboratory frame—we arrive at

�Eind = � Ik3

8��0
2c
����1 − � cos2�A����

2cos2�AB�1 − � cos2�B� + ����sin2�AB� + ����sin2�AB�1 − � cos2�B� + ��
2 cos2�AB

− ��
2�2cos �AB sin �A sin �B cos �A cos �B − 2��

2�1 − � sin2�A��1 − � sin2�B��

�� sin2kR

k3R3 +
2 sin kR cos kR

k4R4 +
cos2kR

k5R5 −
sin2kR

k5R5 −
sin kR cos kR

k6R6 �

FIG. 7. Geometry of a pair of particles with fixed, arbitrary
mutual orientation.
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− ��1 − � cos2�A����
2cos2�AB�1 − � cos2�B� + ����sin2�AB� + ����sin2�AB�1 − � cos2�B�

+ ��
2 cos2�AB − ��

2�2cos �AB sin �Asin �B cos �A cos �B�� sin kR cos kR

k2R2 +
cos2kR

k3R3 −
sin kR cos kR

k4R4 �
+ ���

2�2cos �ABsin �A sin �B cos �A cos �B − 2��
2�1 − � sin2�A��1 − � sin2�B��

��3 sin2kR

k5R5 −
sin2kR

k3R3 −
3 cos2kR

k5R5 +
3 sin kR cos kR

k6R6 −
4 sin kR cos kR

k4R4 �
− ��

2�2cos �AB sin �Asin �B cos �A cos �B�−
sin kR cos kR

k2R2 −
3 cos2kR

k3R3 +
3 sin kR cos kR

k4R4 �� , �3.12�

where �= ��� −��� /��. The laser-induced force of the tumbling pair system is then

Fz = � Ik3R̂z

8��0
2c
�� cos2kR − sin2kR

kR2 ��1 − � cos2�A����
2cos2�AB�1 − � cos2�B� + ����sin2�AB� + ����sin2�AB�1 − � cos2�B�

+ ��
2 cos2�AB� −

sin kR cos kR

k2R3 �6��1 − � cos2�A����
2cos2�AB�1 − � cos2�B� + ����sin2�AB� + ����sin2�AB

��1 − � cos2�B� + ��
2 cos2�AB� − 8��

2�2cos �AB sin �Asin �B cos �A cos �B�

+
sin2kR − cos2kR

k3R4 �6��1 − � cos2�A����
2cos2�AB�1 − � cos2�B� + ����sin2�AB�

+ ����sin2�AB�1 − � cos2�B� + ��
2 cos2�AB� − 14��

2�2cos �ABsin �Asin �B cos �Acos �B

+ 4��
2�1 − � sin2�A��1 − �sin2�B�� +

sin kR cos kR

k4R5 �16��1 − � cos2�A����
2cos2�AB�1 − � cos2�B�

+ ����sin2�AB� + ����sin2�AB�1 − � cos2�B� + ��
2 cos2�AB�

− 48��
2�2cos �AB sin �A sin �B cos �A cos �B + 32��

2�1 − � sin2�A��1 − � sin2�B��

+ � cos2kR − sin2kR

k5R6 −
sin kR cos kR

k6R7 ��6��1 − � cos2�A����
2cos2�AB�1 − � cos2�B� + ���� sin2�AB�

+ ���� sin2�AB�1 − � cos2�B� + ��
2 cos2�AB� − 24��

2�2cos �AB sin �A sin �B cos �A cos �B

+ 24��
2�1 − � sin2�A��1 − � sin2�B��� . �3.13�

The short-range asymptote Fz
0 is found by taking the leading terms in the Taylor series expansions of sin kR and cos kR, giving

Fz
0 = � IR̂z

8��0
2cR4�„4��1 − � cos2�A����

2cos2�AB�1 − � cos2�B� + ����sin2�AB� + ����sin2�AB�1 − � cos2�B� + ��
2 cos2�AB�

− 10��
2�2cos �AB sin �A sin �B cos �A cos �B + 4��

2�1 − � sin2�A��1 − � sin2�B�… . �3.14�

In the tumbling-pair system under consideration, it is of further interest to determine an expression for the torque � between

the two cylindrical particles with respect to �AB, as given by �= �−��Eind /��AB�R̂. Specifically, with ��=90°,

� = � Ik3R̂

8��0
2c
���−

sin kR cos kR

k2R2 +
sin2kR − cos2kR

k3R3 ���
2�2sin 2�AB +

sin kR cos kR

k4R4 �3��
2�2sin 2�AB − 4��

2 � + � cos2kR − sin2kR

k5R5

−
sin kR cos kR

k6R6 ����
2�2sin 2�AB − 4��

2 �� . �3.15�

In the short-range region the result �0, signifying the leading term in the expansion of Eq. �3.15� emerges in the following
explicit form:
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�0 = � IR̂

8��0
2cR3���� − ���2sin 2�AB. �3.16�

This result is consistent with an energetically optimized orthogonal orientation of the particles’ long axes for �����, i.e., �0

is positive for angles �AB between 0° and 90°, 180° and 270°, and negative for 90°–180°, 270°–360°, the sign, physically,
denoting repulsion and attraction between the pair, respectively. The result �3.16� also satisfies the necessary condition �0

=0 for spherical particles, i.e., where �� =��=�.
For completeness a pair of cylindrical particles with static dipole moments is now accommodated by deriving the appro-

priate additional terms to Eq. �3.13�. Again, isotropic averaging is implemented but, in this case, the phase-averaged method
is not required as both creation and annihilation of real photons occur at either particle A or B. Therefore, using a standard
averaging method on the second term of Eq. �2.6� we find

�Eind = � I

6�0c
�Re�VJK�0,R���IJI

A �k�
K
B + �IJI

B �k�
K
A�� . �3.17�

By contracting the hyperpolarizabilities and the static dipole moments with the explicit form of VJK and casting the result in
terms of �� , ��1

, ��2
, and ��3

, Eq. �3.17� gives

�Eind = � I
�

24��0
2cR3����� + 2��2��cos �AB sin �A sin �B − 2 cos �A cos �B� + ���1

+ ��2
+ ��3�

��cos �AB sin �A sin �B�sin2�AB + cos2�B� − 2 sin2�Bcos �A cos �B� + ��� − ��1
− ��3��cos �AB sin �A sin �B cos2�B

− 2sin2�B cos �A cos �B� + ���sin2�B − ��1
− ��3�sin2�AB cos �AB sin �Asin �B + ��2

�cos �AB sin �A sin �B�cos2�AB

+ sin2�B� − 2 cos �A�cos3�B + cos �B�� + ���cos3�AB sin �A sin3�B − 2 cos �A cos3�B�� . �3.18�

The complete result for the laser-induced force in the described system, a polar particle pair, is found by summing the distance
derivatives of Eqs. �3.18� and �3.13�. In the short-range region, the result is

Fz
0 = � IR̂z

8��0
2cR4�„4��1 − � cos2�A����

2cos2�AB�1 − � cos2�B� + ����sin2�AB� + ����sin2�AB�1 − � cos2�B� + ��
2 cos2�AB�

− 10��
2�2sin �A sin �B cos �Acos �B cos �AB + 4��

2�1 − � sin2�A��1 − � sin2�B� + 
����� + 2��2��cos �ABsin �A sin �B

− 2 cos �A cos �B� + ���1
+ ��2

+ ��3��cos �AB sin �A sin �B�sin2�AB + cos2�B� − 2 sin2�B cos �A cos �B� + ��� − ��1

− ��3��cos �ABsin �A sin �B cos2�B − 2 sin2�B cos �A cos �B� + ���sin2�B − ��1
− ��3�sin2�AB cos �AB sin �A sin �B

+ ��2
�cos �ABsin �A sin �B�cos2�AB + sin2�B� − 2 cos �A�cos3�B + cos �B�� + ���cos3�AB sin �A sin3�B

− 2 cos �A cos3�B��… . �3.19�

IV. PARTICLES IN AN OPTICAL VORTEX

A. General torque expression

It is well known that circularly polarized light comprises
photons with spin angular momentum, and the equations de-
rived in previous sections for optically induced forces are
sufficiently general to admit this possibility. At this juncture,
it appears that there is nothing particularly notable in the
corresponding results that would justify the specific experi-
mental deployment of circular polarization. Recently, how-
ever, optical beams with a distinctive type of angular mo-
mentum have become the subject of considerable interest.
These optically engineered twisted beams �optical vortices�
are endowed with what has become known as orbital angular
momentum �41,42�. Here, the wave-front surface of the elec-
tromagnetic fields assumes helical form, while the intensity

profile is typically annular with zero intensity at the beam
center �where the phase is undefined�. The most widely stud-
ied case of a twisted optical beam comprises Laguerre-
Gaussian modes characterized by two integers l and p. Here
the former number l is known as the winding number or
topological charge and signifies that each photon carries or-
bital angular momentum of magnitude l�, while �p+1� de-
notes the number of radial nodes. With the appropriate quan-
tum field representation now established �31,43�, it is
possible to formulate the involvement of twisted beams in
laser-induced interparticle forces, and to identify some dis-
tinctive features that emerge.

Figure 8 illustrates two nanoparticles A and B optically
trapped in a LG beam with p=0, i.e., an optical vortex with
one radial node at the beam center. Both particles are equi-
distant from the beam center, and attention focuses on their
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laser-induced interaction. Under these conditions, it is inter-
esting to determine an expression for the torque between the
species, with respect to the beam axis �̂ �−Y in the system
frame; cf. Sec. III B in which � is defined with respect to a
different angle�. Once again the starting point is the determi-
nation of �Eind, expedited by defining a system with the
positions of A and B set in cylindrical coordinates. For sim-
plicity, both particles are confined to a particular � value—
the distance of the particles from the beam center, r, is also
fixed, while the azimuthal displacement angle ��=�B−�A is
variable. The fourth-order perturbation method of Sec. II is
again applied to the system with the aid of Figs. 2 and 3, now
interpreting the input and output real photons as LG modes.
The latter feature requires that the mode expansion of the
field operator d��R�� within Hint is modified, from Eq. �2.3�,
for LG photons and is accordingly redefined as �31�

d��r� = i �
k,	,l,p

��ck�0

2AlpV
�1/2

���	��k�̂�alp
�	��k�̂�f lp�r�exp�i�k�

− l��� − �̄�	��k�̂�alp
†�	��k�̂�f lp�r�exp�− i�k� − l���� .

�4.1�

Here k�̂ is the wave vector, ��	��k�̂� is a polarization unit

vector normal to �̂ ��̄�	��k�̂� being its complex conjugate�,
alp

†�	��k�̂� and alp
�	��k�̂� denote creation and annihilation opera-

tors respectively �acting on a twisted-state mode
	n�k ,	 , l , p�
 conventionally, i.e., as defined in Sec. II�, and
Alp are normalization constants. Additionally, the radial func-
tion f lp�r� is given by

f lp�r� =
Cp

	l	

�0
��2r

�0
�	l	

exp�− r2

�0
2 �Lp

	l	�2r2

�0
2 � , �4.2�

where Cp
	l	 is a further normalization constant, �0 defines the

Gaussian beam waist at z=0, and Lp
	l	 is a generalized La-

guerre polynomial.
Although the mode expansion �4.1� is taken over a com-

plete set—one that is especially suited for throughput LG
radiation—it is not well suited for virtual photons with vari-
able directions of propagation, and its use in representing
their interactions would lead to unnecessary complications.
Therefore, for particle–virtual-photon coupling, the mode ex-
pansion �2.3� is retained at the appropriate positions in the
second term of Eq. �2.4�, while at the remaining positions the
real photon coupling employs the LG mode expansion �4.1�.
Following a similar approach as in the Appendix, we arrive
at

�Eind = � If lp
2 �r�

�0cAlp
�Re��i

�	��̄l
�	��ij

A�k�Vjk�k,R��kl
B �k�exp�l���

+
1

2
�i

�	��̄l
�	�Vjk�0,R���ijl

A �k�
k
B + 
k

A�ijl
B �k��� �4.3�

The inclusion of the phase factor exp�l��� in the first term
of Eq. �4.3� is consistent with twisted beams, i.e., light that
exhibits features associated with an orbital angular momen-
tum L of eigenvalue l�. From Eq. �4.3�, using R=�2r�1
−cos ���1/2 and for conciseness suppressing the f lp and �ij

dependence, the general expression for the laser-induced

torque �= �−��Eind /����k̂ emerges as

� = � Ik3f lp
2 k̂

8��0
2cAlp

��2 Re��i
�	��̄l

�	��ij
A�kl

B��− �� jk − R̂jR̂k�sin��2kr�1 − cos ���1/2�sin ��

2�1 − cos ���
�cos�l���

−
cos��2kr�1 − cos ���1/2�

�2kr�1 − cos ���3/2
��� jk − R̂jR̂k�l sin�l����1 − cos ��� + �� jk − 2R̂jR̂k�sin �� cos�l����

+ ��� jk − 3R̂jR̂k�sin��2kr�1 − cos ���1/2�
2k2r2�1 − cos ���2 +

�� jk − 3R̂jR̂k�cos��2kr�1 − cos ���1/2�
2�2k3r3�1 − cos ���5/2 ��l sin�l����1 − cos ���

+
3

2
cos�l���sin ���� + 3 Re��i

�	��̄l
�	���ijl

A 
k
B + �ijl

B 
k
A�� �� jk − 3R̂jR̂k�sin ��

4�2k3r3�1 − cos ���5/2
. �4.4�

FIG. 8. Geometry of nanoparticle pair in a Laguerre-Gaussian
beam.
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B. Spherical nanoparticles

A system that it is of particular interest, now to be exam-
ined in more detail, is where spherical nanoparticles are
trapped in an annular intensity region as in Fig. 8. With an
irradiating LG beam, the laser-induced energy shift for the
system is determined by expressing the polarization unit vec-
tor in simplified cylindrical coordinates �again see Fig. 6�.
Defining the system in terms of the laboratory frame, with
�=0 and �=sin �i+cos �k, and 
k

�=0 for spherical nanopar-
ticles, Eq. �4.3� gives

�Eind = � If lp
2

2�0cAlp
�Re��

J,K
sin2� �ZJ

A VJK�KZ
B

− sin � cos � ��ZJ
A VJK�KX

B + �XJ
A VJK�KZ

B �

+ cos2� �XJ
A VJK�KX

B + A ↔ B�cos�l��� . �4.5�

Taking the explicit form of the VJK tensor and recognizing
that �XX=�YY =�ZZ=� for a spherical pair, Eq. �4.5� is re-
written as

�Eind = � If lp
2 �2

4��0
2cAlp

���1 − 3 sin2��� cos kR

R3 +
k sin kR

R2 �
−

k2cos2� cos kR

R
�cos�l��� , �4.6�

leading to the following expression for the laser-induced
torque:

� = � Ik3f lp
2 �2k̂

4��0
2cAlp

�
��−

sin��2kr�1 − cos ���1/2�
2�1 − cos ���

cos2� sin �� cos�l���

−
cos��2kr�1 − cos ���1/2�

2�2kr�1 − cos ���3/2
�2l cos2� sin�l����1

− cos ��� + ��1 − 3 sin2�� + cos2��sin �� cos�l����

+ � �1 − 3 sin2��sin��2kr�1 − cos ���1/2�
2k2r2�1 − cos ���2

+
�1 − 3 sin2��cos��2kr�1 − cos ���1/2�

2�2k3r3�1 − cos ���5/2 �
��l sin�l����1 − cos ��� +

3

2
cos�l���sin ���� .

�4.7�

In the short-range region �kr�1� Eq. �4.7� becomes

�0 =
If lp

2 �2�1 − 3 sin2��k̂

8�2��0
2r3cAlp�1 − cos ���5/2�l sin�l���

��1 − cos ��� +
3

2
cos�l���sin ��� . �4.8�

On inspection of Eqs. �4.7� and �4.8� it is apparent that, in
comparison to conventional Gaussian laser light �l=0, for
example� additional contributions to the interparticle torque
will be observed with a LG beam �l�0�. In the short-range
region, and for three different values of l, graphs detailing
the change in magnitude of �0 with �� are exhibited in Figs.
9�a�–9�c�. Although the rise of �0 toward infinity as �� ap-
proaches 0 ° �or equivalently 360 °� is prominent on these
diagrams, it is an artifice corresponding to the nonphysical
case of particle overlap. Of greater interest is the physically
significant observation that there are �2l−1� nodes, i.e., an-
gular positions where �0=0, of which it may be ascertained
that �l−1� correspond to maxima and l to minima in �Eind.
The latter energy minima signify values of �� for which the
nanoparticle pair is mutually trapped—the detailed angular
disposition of these is the subject of ongoing research. The
above findings illustrate that the laser-induced mechanisms
operative here differ significantly from those of established
“optical spanner” methods—not least because, here, there is
no involvement of any orbital angular momentum transfer
from the laser beam. Further distinctions can be identified in
comparison to dynamic holographic optical tweezer schemes
�44�, including the fact that trapped particles do not circulate
around the annular high-intensity region of the twisted beam.

FIG. 9. Graphs of the magnitude of �0 against �� for a nano-
particle pair in a LG beam with l= �a� 0, �b� 4, and �c� 20.
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V. APPLICATIONS

A. Carbon nanotubes

Recently, results have been secured for the van der Waals
interactions between a pair of carbon nanotubes �45�—a ma-
terial currently the subject of intense research due to its
unique nanostructures and remarkable combination of con-
ductive, steric, and mechanical properties �46�. Under suit-
able conditions the laser-induced interactions between nano-
tubes, as determined from the results in Sec. III, prove to be
of significantly greater magnitude. With nanotubes of length
200 nm and radius 0.4 nm, also setting R=2 nm and I=1
�1016W m−2, values for the laser-induced force range from
micronewtons to nanonewtons, depending on the nanotube
orientations �15�. As these results exceed by many orders of
magnitude the van der Waals forces at a similar distance,
there are potentially important applications. Carbon nano-
tubes are excellent candidates for implementation as compo-
nents in nanoelectromechanical switches �47,48�, devices
that have the potential to enable new technology in sensing,
actuation, and computing. Operating at the nanometer scale,
the electrostatic Coulombic forces associated with the opera-
tion of such devices are comparable with chemical binding
forces, and since van der Waals interactions play an impor-
tant role, laser-induced interactions may potentially prove to
be another major influencing factor—but one that offers the
possibility of experimental control. Other tubular particles
for which the results of Sec. III could be applied are the
increasing number of noncarbon nanotubes, including those
composed of boron nitride �49,50� and the theoretically pro-
posed boron nanotubes �51,52�, which have only very re-
cently been synthesized �53�. The natural light-harvesting
systems in the chromosomes of the green bacteria Chloro-
flexus aurantiacus �54,55�—systems that are composed of
cylindrical aggregates consisting of a large number of bacte-
riochlorophyll molecules—and the artificial light harvesters
of carbocyanine dye molecules �56� that self-assemble into
tubular aggregates, may also prove amenable to the applica-
tion of our results.

B. Dielectric microparticles

As developed above, the equations for optomechanical
forces are cast in terms of dielectric properties—
polarizability and hyperpolarizability, etc. For particles of
micrometer size where it is more appropriate to express re-
sults in terms of bulk susceptibilities, the necessary conver-
sions are readily effected by use of the Lorentz local-field
tensor �57�. Formally, such corrections arise within the QED
formalism through �complex� refractive index modifications
to the electromagnetic field expansions �58�. Developing
these media corrections also permits laser-induced forces be-
tween particles in a host medium to be addressed—particles
suspended in a liquid for example—without compromising
the rigor of the QED development. Here, modifications to the
character of the virtual photon coupling through a refractive
and dissipative medium lead to a modified form of the re-
tarded resonance coupling tensor—see Ref. �59� for details.
It is noteworthy that, although the scale of laser-induced
compression is very small in the microscopic systems de-

fined earlier, in a solid that is sufficiently transparent to the
laser pulse, this compression would be scaled up by the large
number of particle pairs and could result in a detectable com-
pression. Since such a force exists only while the laser pulse
is present, application of a laser pulse train would produce a
cycle of compression and expansion with a period equal to
that of the laser pulse interval. However, it needs to be borne
in mind that, at an irradiance of 1�1016 W m−2, there will
be a significant radiation pressure if the material is not 100%
transparent. Such levels of intensity can produce a radiation
pressure alone of about 50 atm, depending on the surface
reflectivity.

C. Bose-Einstein condensates

In theoretical studies, laser-induced interactions have al-
ready been used to engineer the mesoscopic properties of
weakly interacting Bose-Einstein condensates �BECs�. Usu-
ally the condensate is stabilized by the presence of a har-
monic trap which counters the repulsive mean-field energy—
itself a composite of zero-point and short-range dispersion
energies—but through a laser-induced interaction method it
is possible for the BEC to be self-trapped. This is achieved
by directing a triad of laser beams in such a way as to ex-
clude the short-range �R−3� component of the dipole-dipole
interaction—which does not allow for such self-binding.
This in turn leads to the long-range �R−1� attractive potential
balancing the repulsive mean-field energy and, hence, a har-
monic trap is no longer required to support the condensate
�26–30�. It is possible for the mean-field energy to be attrac-
tive in nature—for example, in BECs composed of 7Li
atoms—and, in this instance, the condensate undergoes a
typical cycle of growth and collapse until a stationary state is
reached �60�. For such BECs to be sustained the occupation
number, i.e., the number of atoms in the condensate, must
not exceed a limiting value; the latter is determined by the
balance between the competing forces �61� and can be ma-
nipulated by a laser-induced force. Consequently a control of
the maximum number of atoms in the condensate is
possible—also, potentially, its rate of growth. Thus the pros-
pect emerges of enhancing the dynamics of a coherent Ra-
man photoassociation process �also known as superchemis-
try� exploiting its dependence on the number of particles in
the product mode �62�, and the possibility of control over the
interparticle interactions �63�. Although this type of chemis-
try has not yet been experimentally observed, partial success
has been reported in an experiment to create molecular con-
densates by photoassociation �64�.1 Molecular BEC systems
are expected to be directly amenable to the laser-induced
concepts discussed in this paper.

D. Other applications

In conclusion we observe that other areas of application
may be identified for the principles that we have described.
One is the possible application of laser-induced opto-

1Note, molecular condensates have been successfully observed by
using Feshbash resonance techniques �65�.
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mechanical forces between suspended particles in the trans-
port of microfluids, a context associated with increasingly
important techniques for mixing and pumping extremely
small volumes in laboratory-on-a-chip and associated de-
vices �66,67�. An application of potential high-resolution
spectroscopic interest is the identification of intensity-
dependent molecular vibrational frequencies, a feature that
may arise through laser-induced modifications to the inter-
atomic force fields associated with vibrational modes. Work
on this is currently under way.

VI. SUMMARY

Under intense laser radiation, optically induced forces and
torques between nanoparticles occur by pairwise processes
of stimulated photon scattering. By a quantum electrody-
namical analysis, it is possible to identify the quantized na-
ture of the fundamental particle interactions with the
throughput radiation, and also in the electromagnetic cou-
pling between particles. The application of these methods in
this paper has enabled determination of a general expression
for the laser-induced force—incorporating not only terms as-
sociated with the dynamic form of coupling, but also a less
well-known, static form. Additionally, detailed equations
have been derived for nanoparticle systems of both cylindri-
cal and spherical symmetries. The results clearly illustrate
that pairwise optomechanical forces may be either positive
or negative, according to conditions—and an explanation is
given for why the latter, often termed “optical binding”
forces, prevail in the case of randomly configured, spherical
nanoparticles. It is further shown that, on replacing conven-
tional laser light with a LG optical vortex beam, i.e., one
endowed with orbital angular momentum, additional torque
features arise. Together, such laser-induced interactions differ
significantly from those involved in established optical twee-
zer methods. The prospect of optically influencing the forces

and torques between nanoparticles suggest its future imple-
mentation in a variety of future applications.
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APPENDIX

To clarify the procedure by which Eq. �2.6� is derived
from the second term of Eq. �2.4� it is helpful to utilize the
state-sequence diagrams of Figs. 4 and 5—a calculational aid
that has several key advantages over the more familiar time-
ordered diagrams of Figs. 2 and 3. In these illustrations the
circles to the left and right of each box delineate particles A
and B, respectively, with an empty circle representing a
ground state and a gray-filled circle a virtual state. Also, p
denotes the presence of a virtual photon of mode �p ,�� and
the symbol k symbolizes a real photon with wave vector k.
Each box in the state-sequence diagram is linked to a refer-
ence position �m ,k�, where m and k are the vertex and step
number, respectively, and a matter-photon interaction event
is denoted by a connector between boxes. In a single state-
sequence diagram �either Fig. 4 or 5� each of the 24 quantum
channels can be traced from the initial to the final state, and
corresponds to one member of a complete set of 24 time-
ordered diagrams whose construction would otherwise be re-
quired. Taking Fig. 4 as an example, for which all states and
their associated energies are given by Table I, the analysis of
one specific quantum channel can be illustrated for the case
	i
→ 	r1

1
→ 	r2
1
→ 	r3

1
→ 	i
, signified by the lowest pathway.
The one-photon parts of �E �each bracket in the numerator
of Eq. �2.4�� may be determined by inserting Eq. �2.2� and
then Eq. �2.3� into the second term of Eq. �2.4� to yield

�r	Hint	i
 = �A�,B0;n − 1,0	− �0
−1���A� · d��RA�

+ ��B� · d��RB��	A0,B0;n,0
 = − �0
−1�A�	��A�	A0


��n − 1�k,	�	d��RA�	n�k,	�


= − i�n�ck

2�0V
�1/2

ei
�	�
i

�0exp�i�k · RA�� , �A1�

�s	Hint	r
 = �A0,B0;n − 1,1	− �0
−1���A� · d��RA�

+ ��B� · d��RB��	A�,B0;n − 1,0

= − �0

−1�A0	��A�	A�
�1�p,��	d��RA�	0�p,��


= i�
p,�

� �cp

2�0V
�1/2

ēj
���
 j

0�exp�− i�p · RA�� , �A2�

�t	Hint	s
 = �A0,B�;n − 1,0	− �0
−1���A� · d��RA�

+ ��B� · d��RB��	A0,B0;n − 1,1

= − �0

−1�B�	��B�	B0
�0�p,��	d��RB�	1�p,��


= − i�
p,�

� �cp

2�0V
�1/2

ek
���
k

�0exp�i�p · RB�� , �A3�

TABLE I. All states and their associated energies associated
with the states sequences exhibited in Fig. 2.

System state
	rk

m
 Ket
Energy

Erk
m

	i
 	A0 ,B0 ;n�k ,	� ,0�p ,��
 EA
0 +EB

0 +n�ck

	r1
1
 	A� ,B0 ;n−1�k ,	� ,0�p ,��
 EA

�+EB
0 + �n−1��ck

	r1
2
 	A� ,B0 ;n�k ,	� ,1�p ,��
 EA

�+EB
0 +n�ck+�cp

	r1
3
 	A0 ,B� ;n�k ,	� ,1�p ,��
 EA

0 +EB
�+n�ck+�cp

	r1
4
 	A0 ,B� ;n+1�k ,	� ,0�p ,��
 EA

0 +EB
�+ �n+1��ck

	r2
1
 	A0 ,B0 ;n−1�k ,	� ,1�p ,��
 EA

0 +EB
0 + �n−1��ck+�cp

	r2
2
 	A� ,B� ;n−1�k ,	� ,1�p ,��
 EA

�+EB
�+ �n−1��ck+�cp

	r2
3
 	A� ,B� ;n�k ,	� ,0�p ,��
 EA

�+EB
�+n�ck

	r2
4
 	A� ,B� ;n+1�k ,	� ,1�p ,��
 EA

�+EB
�+ �n+1��ck+�cp

	r2
5
 	A0 ,B0 ;n+1�k ,	� ,1�p ,��
 EA

0 +EB
0 + �n+1��ck+�cp

	r3
1
 	A0 ,B� ;n−1�k ,	� ,0�p ,��
 EA

0 +EB
�+ �n−1��ck

	r3
2
 	A0 ,B� ;n�k ,	� ,1�p ,��
 EA

0 +EB
�+n�ck+�cp

	r3
3
 	A� ,B0 ;n�k ,	� ,1�p ,��
 EA

�+EB
0 +n�ck+�cp

	r3
4
 	A� ,B0 ;n+1�k ,	� ,0�p ,��
 EA

�+EB
0 + �n+1��ck
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�i	Hint	t
 = �A0,B0;n,0	− �0
−1���A� · d��RA�

+ ��B� · d��RB��	A0,B�;n − 1,0

= − �0

−1�B0	��B�	B�
�n�k,	�	d��RB�	n − 1�k,	�


= i�n�ck

2�0V
�1/2

ēl
�	�
l

0�exp�− i�k · RB�� , �A4�

where ���� and d��R�� operate on 	matn
 and 	radn
, respec-

tively, using the mode expansions given in Sec. II. Also,
summation over all virtual photon wave vectors p and polar-
izations � is necessarily entailed but the corresponding real
photon variables, i.e., k and 	, are fixed to a single value.
The denominator of Eq. �2.4�, in this case, is ��EA

�0−�ck�
���ck−�cp��EB

�0−�ck��−1 where EA
�0 is shorthand for EA

�

−EA
0 , for example. By repeating this process for the other 23

quantum channels, summing all the results, and simplifying,
the second term of Eq. �2.4� becomes

�E = �n�ck

2�0V
�Re
ei

�	�ēl
�	�exp�− i�k · R����

p,�

p

2�0
� ēj

���ek
���exp�i�p · R��

k − p
+

ēk
���ej

���exp�− i�p · R��

− k − p
��� 
i

0�
 j
�0
k

0�
l
�0

�EA
�0 − �ck��EB

�0 − �ck�

+

 j

0�
i
�0
k

0�
l
�0

�EA
�0 + �ck��EB

�0 − �ck� +

i

0�
 j
�0
l

0�
k
�0

�EA
�0 − �ck��EB

�0 + �ck� +

 j

0�
i
�0
l

0�
k
�0

�EA
�0 + �ck��EB

�0 + �ck��� , �A5�

with the identities 
i
0�=−
i

�0, etc. The first expression in
square brackets of Eq. �A5� is resolved �37� to give Vij�k ,R�
of Eq. �2.7�, and the second is the product of −� with itself;
the explicit form of this polarizability is given by Eq. �2.8�.

Equation �2.6� emerges by repeating the procedure with ref-
erence to Fig. 5, also allowing for the interchange of A and
B. Finally a summation of all contributory quantum ampli-
tudes is effected.
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