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Abstract

On an elliptic curve of the form
C:U3+V3=m,

with a cube-free integer m, we study an integer sequence arising from the
multiples of a rational point of infinite order. Given such a rational point R,

say, under chord and tangent additions, write, for n € N,

u, V,

n terms

where U, V,,, W,, € Z such that ged(U,, V,,,W,,) = 1.

This thesis is devoted to investigating some properties of the sequence
(W,,) of the denominators. This is a divisibility sequence; that is, W,, | W,
whenever m | n. Our task here is to examine a conjecture on the number of
prime terms in (W,,), well known as the Primality conjecture. We will prove
that there is a uniform lower bound on n beyond such that all terms W,
have at least two distinct prime factors. In some cases, the bound is as low

as n = 2.
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Chapter 1

Introduction

The topic of prime appearance in elliptic divisibility sequences (see below and
Section 4.3 for more details) was suggested by Chudnovsky and Chudnovsky
in [6]. They considered the likelihood of primes in such sequences, hoping
that elliptic divisibility sequences might be a source of large primes. The
following examples are quoted from their paper to support this idea. To
state them precisely, we shall introduce the following notations: Given an

elliptic curve in short Weierstrass form
E:y?=234+ar+0b

with a,b € Z, and a non-torsion point P € E(Q), for any n € N, we can

write, by the shape of the equation of F,

A, Cy
= (55

where A,, B, C,, € Z with ged(A,C,, B,) = 1. The integer sequence (B,,)

is usually known as an elliptic divisibility sequence associated to £ and P.



Example 1.0.1.
E:y*=2°+26, P=[-1,5

The term Bsyg is a prime with 285 decimal digits.
E:y*=2%+15 P=[1,4]
The term By is a prime with 509 decimal digits.

The Chudnovskys examined the possibilities for prime values of the se-
quences (B,,) when n ran out to 100. Einsiedler, Everest and Ward extended
these computations by letting n run out to 500 in [9] and found that there

are no more primes. More recent examples of large primes are given below:

1. (Brid Ni Fhlathuin, 1999)
E:y*+y=a®—x, P=10,0]

The term Bygg is a prime with 1857 decimal digits.

2. (Everest, 2006) With the same sequence, the term Bjgg; is a prime with
18498 decimal digits.

3. (Everest, 2007)

E:y*+ay+y =23+ 2% — 1256152 + 61201397, P = [7107, 594946]

The term Bsryg is a prime with 26774 decimal digits.

In [9], Einsiedler, Everest and Ward considered prime appearance in ellip-
tic divisibility sequences and gave a suggestion from a heuristic argument and
some calculations that for fixed E and P the elliptic divisibility sequences

should contain only finitely many prime terms. More explicitly, Everest,



Miller and Stephens [11], have proved, using a strong form of Siegel’s Theo-
rem, the finiteness of prime terms in the sequences under a certain additional
hypothesis on the generating point of the sequence. This hypothesis is con-

cerned with an isogeny (see Section 4.5) between two elliptic curves.

Theorem 1.0.2. (THEOREM 1.3, [11]) Let 0 : E — E’ be an isogeny.
Suppose Q) € E'(Q) is the image of a rational point on E under o, and write

ap Cp _ _
n@ = (b_Q’ b_3) Then the terms b, are primes for only finitely many n.

In this article, they studied, moreover, the same question for a twist of the

affine cubic Fermat’s curve,
C:U3+V3=m,

with a non-zero integer m. They showed again using Siegel’s Theorem that
there are only finitely many rational points on C that have prime power
denominators.

Our purpose here is to examine the problem of prime appearance for
divisibility sequences obtained from the multiples of rational points on C.

Given a non-torsion point R € C(Q), write, in lowest terms,

Ui Va

We aim to provide a uniform lower bound beyond which all terms W,, have
at least two coprime divisors.
In Section 5.1, we will prove an affirmative answer under the extra hy-

pothesis as in Theorem 1.0.2 on an elliptic curve of the form

E:Y?=X3—432m>



This curve corresponds to the curve C' under a bi-rational transformation,

given by
2 292 _
X:23m’ Y:23m(U V)’
U+V U+Vv
2232m +Y 2232m - Y
V="%x V"= ex

Consequently, we have

Un o\ _ o (28mBl+C, 2°8mBi—C,
wow, ) T 6A. B, ' GA. B, ’

A, C,
B B}
Our first main result states the following (see the proof in Theorem 5.1.2,

Ch. 5).

where nP = < ) are written in lowest terms.

Theorem 1.0.3. Let C be an elliptic curve as defined above with m € Z cube-
free, and R € C(Q) a non-torsion point. Suppose P € E(Q) corresponds to
R by the bi-rational transformation. Under the assumption that P is the
image of a rational point under an isogeny, W, s divisible by at least two

distinct primes for all n > 2.

The second part of this thesis is motivated by the idea to eliminating
the isogeny condition from the first result. Consider both coordinates of nR
again, we have

U,  223mB3+C,
w, 6A, B,

V,  223¥mB:-C,
w, 6A,,B,




As we will show in the proof of Theorem 1.0.3, any cancellation of the frac-
tions on the right-hand side is coprime to B,,. Our idea is that once we have
that:

(i) there exists a uniform bound on the index n such that B, > 1; in
other words, nP are integral for only finitely many n, and

(ii) 6A,, can escape from any cancellation,
and we will also get the uniform bound as in (i) beyond which W, is com-
posite.

Siegel [25] provided a classical theorem about the finiteness of the num-
ber of integral points on an elliptic curve. This means in particular that the
number of integral multiples of an integral point is finite. We want to use
explicit formulations of that fact in (i). More history about integral points
on elliptic curves follows. Lang pursued the idea of Siegel and conjectured
that the number of S-integral points on a quasi-minimal form of an elliptic
curve over a number field K should be bounded solely in terms of the rank of
the Mordell-Weil group E(K) (see [19], p.140). Hindry and Silverman (The-
orem 9.1, [14]) proved a uniform analogue of this version of Lang’s conjecture

provided that the Szpiro ratio of an elliptic curve E defined over a number

field K, defined by

~ log Norm(A)
OB/K = log Norm(V)
where A and N represent the discriminant and the conductor of the curve F,
respectively, is bounded. Furthermore, Silverman [26] asserted for an elliptic

curve with integral j-invariant - or with at most a fixed number of primes

dividing the denominator of the j-invariant - a uniform bound for the number



of S-integral points exists without the restriction on the Szpiro ratio.
Recently, Ingram (Theorem 1, [15]) made the idea above more precise.
He not only proved that the number of integral multiples of a non-torsion
point, say P, is finite, but also provided a bound on the size of the second
largest index n such that nP is integral in terms of some quantity M (P) =
lem(r(P),p) , where p is a prime and r(P) is the order of the point P in the
quotient E(Q,)/Ey(Q,) of finite index. In particular, Theorem 2 of [15] gives

an explicit result for the family of congruent number curves,
Ey :y? =% — N%x,

where N is a square-free integer. Using Ingram’s techniques yields similar
results for the Mordell curve E, as shown in Section 5.2. Subsequently, we
will obtain the second main result without the isogeny condition, however,

it does require some restrictions on P and m.

Theorem 1.0.4. Let R be a non-torsion rational point on C : U3 +V3 =m

corresponding to a non-torsion rational point P on E : Y? = X3 — 432m?2.
Un Vo
W, W,

. A Oy
gcd(Al,m) =1 ZfP = (B—%,B_%

gcd(Ay,3m) =1 and 2P, 3P are non-integral if P = (A1, Cy) is integral.

Write, in lowest terms, nR = ( . Suppose that

) 1s mon-integral, or

Then there is at most one value of n > 1 such that W, is prime unless either
m = 42 mod 9 and m has a prime factor congruent to 1 mod 6, or
m =0 mod 9 and m has a prime factor congruent to 1 mod 6,

in such cases, the result holds for all m > 3739071625384.



1.1 Chapter Layout

In Chapters 2 and 3, we collect basic algebraic and geometric concepts that
are required for introducing the definition and properties of elliptic curves in
Chapter 4. Moreover, Chapter 2 also consists some facts used to prove the
results in Chapter 5.

The definitions of the keywords such as elliptic curves, elliptic divisibility
sequences, isogenies, and related topics used for the proofs of main theorems
can be found in Chapter 4.

Chapter 5 consists of the proofs of Theorems 1.0.3 and 1.0.4, and a series

of Lemmas.

1.2 Future works

It can be concluded from above that the question on the prime appearance
in (W,) has been answered under the isogeny assumption in the first main
Theorem. The second result answered this question without the isogeny
condition, but with restrictions on the integer m and the point P.

For our future plans, we aim to study the following open problems:

(1) refine the result in the second main theorem by minimizing the bound
of m and then proving the result for every case of m,

(2) study the possibility to prove the uniform Primality conjecture on
(W,) in general without any restriction,

(3) prove a result on the number of semi-primes (numbers with only two

prime factors) in (1V,) instead.



Chapter 2

Preliminaries

This chapter gives a short introduction of basic materials that are needed for
the sequel. We start by giving the definition of Diophantine equations and

some results on their integral solutions.

2.1 Diophantine equations

A Diophantine equation is a polynomial equation whose coefficients are inte-
gers or rational numbers. It is interesting to consider the rational or integral
solutions of such an equation. The problem of providing an algorithm to solve
given a Diophantine equation, or even, finding all solutions if they exist, has
a long history. In the 2nd ICM (Paris 1900), Hilbert posed his 23 mathe-
matical problems. The 10th of these questions asked about the existence of
an algorithm determining whether a Diophantine equation in any number of
unknowns with integral coefficients is solvable in integers or not. This has

been answered by Davis, Putman, Robinson and Matiyasevi¢ (1950-1970):



no such algorithm exists for integral solutions. However, this problem is un-
solved for rational solutions.
The following theorem gives an answer to the question on the number of

integral solutions for certain class of Diophantine equations.

Theorem 2.1.1. (SIEGEL’S THEOREM) Suppose F € Z[X,Y] is a cubic

polynomial which is non-singular. Then the equation
F(X,Y)=0
has at most a finite number of solutions with x,y € Z.

Being non-singular means there is no point (a,b) € C? such that

oF OF
F(a,b) =0, %(a, b) =0, a—y(a,b) = 0.

A simple case of Siegel’s Theorem is given below.
Proposition 2.1.2. All integral solutions of
23+ =m,

with m € Z \ {0}, satisfy |z|, |y| < 24/ %

Proof. Factorizing the left-hand side gives
(z+y)(@* —ay+y°) =2° +y° =m,

so that (22 — zy + y*) | m. Hence

2

2 3
(ZE—y> +i.

> 2 _ 2] —
m > |2° — zy + y?| 5 1




2 3y 3y?
Since both (ac — %) : % > 0, it follows that % < |ml, so |y| < 24/

3
(_£>2+3_w2
Y79 4

Contrary to Siegel’s result, a well-known Diophantine equation, named

< |m/. This implies || < 2,/ O

Similarly, we have T

the Pythagoreon equation,
2?4 y? = 22

produces infinitely many positive integral solutions (see Theorem 5.5, [23]).
Next we will present a special type of Diophantine equation. Given a
homogeneous, irreducible polynomial F(X,Y) € Z[X,Y] of degree n > 3,

and a fixed k € Z, the Diophantine equation

FX,Y) =k (2.1)

is called a Thue equation, named after A. Thue, who proved the famous

Theorem on the integral solutions of this equation in 1909 [32]:

Theorem 2.1.3. The number of integral solutions to the equation (2.1) is

finite.

Unfortunately, Thue’s proof is ineffective in the sense that it does not yield
an effective method for finding the explicit solutions. Baker improved this by
providing an upper bound for the size of solutions of Thue equations in [1].
However, this bound is too large to apply in special cases. Later, Bombieri
and Schmidt [4] gave a better bound for the primitive solutions (z,y) € Z?
(i.e. z and y are coprime). They showed that there exists an absolute

constant ¢ such that for all n > ¢, a Thue equation has at most 215 - n'+«®)

10



primitive solutions, where (z,y) and (—x, —y) are regarded as the same, and
w(k) denotes the number of prime factors of k. Other improved results may

be obtained by others for certain Thue equations. For example: the equation
ot — da?y? +yt = —47

has been solved by Stroeker and Tzanakis [30]. They showed that only inte-
gral solutions of this equation are given by (x,y) = (£2,£3), and (£3, £2).
Bilu and Hanrot [3] provided a method to solve some Thue equations of high
degrees in practicable time. They showed the finiteness of all solutions of

certain concrete Thue equations of degrees 19 and 33.

2.2 Divisibility sequences

In this section, we give the definition of divisibility sequences.

An integer sequence (A,) is called a divisibility sequence if
A | A, whenever m | n.

Example 2.2.1. Examples of divisibility sequences:

(1) The Fibonacci sequence (F,,) is given by
1,1,2,3,5,8,13,21, 34, 55,89, 144, ...

Each term of the Fibonacci sequence is obtained by adding the two previous
terms together; that is,

Fn:Fn—1+Fn—27

11



where n > 3 and F| = F, = 1. It can be proved by induction on £ = Q,
m

for any integers m | n that this sequence satisfies the divisibility property.

Indeed, it satisfies the stronger property (see [36]),
ged(F, Fy) = Fyed(r,s)-
(2) The Mersenne sequence (M,,) is of the form
M, =27 —1.
It can be proved that (M,,) also satisfies the strong divisibility property,
ged(M,, M) = Mgea(r,s)-

(3) The Lucas sequence (U,,) is defined by

_an_ﬁn
_—a_ﬁ ,

where o and (3 are conjugate quadratic integers; that is, they are roots of an

Un

irreducible polynomial of the form 2% + Az 4+ B with A, B € Z. Theorem VI

of [5] says that the sequence (U,) satisfies the strong divisibility property.

We can see that the Fibonacci sequence satisfies a linear recurrence relation.
Moreover, other divisibility sequences in Example 2.2.1 also satisfy a linear

recurrence relation. The Mersenne sequence satisfies the relation
Mo =3M, 1 —2M,, foralln >1,
and the general Lucas sequence satisfies the relation
Upio = (a+ B)Upyq — afU,, for all n > 1.

Furthermore, there are the divisibility sequences that satisfy a non-linear
recurrence relation. An important example is an elliptic divisibility sequence.

The details will be explained in section 4.3.

12



2.3 Fundamental facts

This section consists of a summary of definitions and results, which are nec-

essary for the proofs in the sequel.

2.3.1 Resultants of polynomials

Let us start by considering an example of a system of two polynomials in one

variable:
f(x) = 32? — b + 2,

g(z) =23 — 222 + 22 — 1.
We want to find a necessary and sufficient condition for the existence of a

common solution of the system.

(2.2)

If f(x) and g(z) have a common solution in C, they must have a common

linear factor, say D(z). Let

f@
D()

F(z) =
Then
F(x) = —-Az — A
G(x) = Bya® 4 Bix + By
for some A;, B; € Z. Note that the signs in F'(z) are chosen for suitability

later. Since




implies

we must have
(322 — 5z + 2)(Bea® + Biz + By) — (¢* — 22% 4 2z — 1)(— A1z — Ap) = 0.

Comparing the coefficients gives a system of linear equations in 342 variables:

Bsy, By, By, Ay, Ag as follows

3B, + A =0

— 5By + 3B - 24 + A =0
2By, — 5By + 3By + 2A; — 24, =0
2By — 5By — A1 + 24, =0

2By - 4 =0

In order for the system (2.2) to have a common solution, the corresponding
linear system must have a non-trivial solution. This happens if and only if
the relevant coefficient matrix is non-invertible; that is its determinant equals

to zero:
3 0 0 1 0

-5 3 0 =2 1

14



This means the determinant of its transpose matrix does also equal to zero,

This idea leads to the definition of the resultant in a polynomial ring.
Definition 2.3.1. Given any pair of polynomials in one variable:
f@)= aa® and  g(x) =3 bt
k=0

k=0

where a;,b; are elements in a field k, the (Sylvester) resultant of f and g,

denoted by R(f,g), is defined as the determinant

ap Qp—1 - 3] o
Qp, (05} aq Qo
ap  Gp-1 " a1 Qo
R(f.g) =
by b1 by b
by, -+ by b bo
bm bm—l bl bO

where the blank spaces are equal to zeros.
Theorem 2.3.2. Given f(z) and g(z) as above, then the system

15



has a common solution if and only if R(f,g) = 0.
Proof. See Proposition 8, Ch.3, [7]. O

For a polynomial system in two variables, we can regard it as a system of
polynomials in one variable whose coefficients are the polynomials in another

variable. For example:

Example 2.3.3. Let

flayy) = oy —zy—a—1,
glz,y) = 2* +ay.
Rearranging them to be polynomials in x with coefficients as polynomials in

1y, we get
flzy) = ¥ —y—1z—1,
g(z,y) = 2*+ay,

then the resultant of f and g with respect to x, denoted by R, (f,g), is

y?—y—1 -1 0
R.(f,g9) = 0 v —y—1 —1 =y =y’ —y+1=(y+1)(y—1)>~
1 Y 0

On the other hand, if we consider f(z,y) and g(x,y) as polynomials in

y with coefficients as polynomials in x, then the resultant of f and g with

16



respect to y is

r —x —x—1
Ry(f,g) =22 =z 0 :$5—$3:$3(932—1)-
0 a2 x

Moreover, the resultant can be expressed as a product of the zeros of f and

g.

Theorem 2.3.4. Given

f@) =an ]l (x—wi)  and  g(x) = b [T}2, (z — ),

then

R(f,g) = ayby, TIZ TT7% (2 — ).

The proof can be found in [33]. From this, it is obvious that R(f, g) = 0 if and
only if f(z) and g(x) have a common solution. The elementary properties of

the resultant follows from Theorem 2.3.4 above.

Proposition 2.3.5. With f(x) and g(x) as defined in 2.3.4,

(i) R(f,g) = (=1)""R(g, f) (the symmetry property),

(i1) R(f,gh) = R(f,g)R(f,h) (the multiplicative property).

Theorem 2.3.6. For any pair of polynomials f(x) and g(x) of degrees m and
n, respectively, there exist polynomials p,q € k[z]| of degrees m —1 and n—1,
respectively, whose coefficients are integer polynomials in the coefficients of

f and g, such that

R(f,9) =pf +qy.

17



Proof. See Proposition 9, Ch.3, [7] O

Theorem 2.3.6 assures us that the greatest common divisor of f and g must
divide their resultant. We will use this fact several times in the proof of our

results.

2.3.2 Newton polygons of polynomials

In this part we will explore a tool that helps us to extract information about
the roots of a given polynomial. The construction of such tool requires the
fundamental concepts of p-adic fields.

Fix a prime number p. For each z € Q \ {0}, write

x=p"-, with ged(ab, p) = 1.

Sal RS

Define the p-adic valuation of xto be v,(x) = n. For convenience, set v,(0) =
+o00 (as 0 can be divisible by any power of p). Then for all z,y € Q, the

valuation satisfies

vp(xy) = vp(x) + v,(y), and v,(x +y) > min{v,(z), v,(y) }-
We then define the p-adic absolute value of v € QQ to be
|z, = p~»®  with |0[, = 0.
Then | - |, satisfies
i) |z|, =0iff z =0,
(i) |zyl, = |z|ply|, for all z,y € Q

(i) | + ylp < max{|zly, lyl,} for all 2,y € Q.

That is, | - |, is a non-archimedean absolute value on Q. Moreover,

18



(iv) [1], = 1,

(V) [ =zlp = |2[p,

(vi) if |2™], = 1, then |z|, =1 for all x € Q.
Notice that when x is divisible by a very large power of p, the valuation v,(x)
is also large, and then the absolute value |z, is small. So the p-adic absolute

value indicates how large a power of p divides .

Definition 2.3.7. A sequence (z,) in a field & is called a Cauchy sequence
if for all € > 0, there is N such that for all m,n > N, |z, — x,| < e.
A sequence (x,) converges to x € k if for all € > 0, there is N such that for

alln > N, |z, — x| <e.

We note that every convergent sequence is a Cauchy sequence. The converse

may not true in general. Any field & with the absolute value | - | is said to
be complete with respect to | - | if every Cauchy sequence of elements in k is
convergent.

Definition 2.3.8. A field K with ||-|| is the completion of k, | - | if
(i) there is an inclusion 7 : k — K respecting the absolute values,
(ii) the image 7 (k) is dense in K,

ie. forall x € K, and € > 0, B(z,e) N7w(k) # 0,

(iii) K, ||-|| is complete.

For an example, R is the completion of Q with respect to the ordinary abso-
lute value. The completion of Q@ with respect to the p-adic absolute value is

called Q,, and the p-adic absolute value | - |, extends to Q,.

Definition 2.3.9. Any field k is called algebraically closed if every polyno-

mial with coefficients in k has a root in k.

19



Q, is not algebraically closed since 2? — p has no root in Q,, whereas C is

algebraically closed.
Definition 2.3.10. An extension L of a field k is a field L containing k.

An extension L can be considered as a vector space over k. The degree of
the extension is the dimension of L over k. If L is an extension of k, then an
element o € L is called algebraic over kif it is a root of a nonzero polynomial
with coefficients in k. L is called an algebraic extension over kif every element

in L is algebraic over k.

Definition 2.3.11. An extension k is called the algebraic closure of k if k is

algebraically closed and every o € k is algebraic over k.

C is the algebraic closure of R of degree 2, while Q, is the algebraic closure
of Q, of infinite degree.

Notice that Q, is not complete. The completion of Q, is called C,, which
is complete respecting to the p-adic absolute value. Proposition 5.7.8 of [13]

asserts that C, is algebraically closed.
Now we are in position to define the Newton polygon, the tool that we
mentioned above, for polynomials over C,. Let
f(X)=ao+au X+ ...+ a, X"
with ag # 0 and a, # 0. Consider the points in R?
(0, vpla0)): (L vp(ar)), (2, 0p(a)), s (. 0y a0)),

where we omit the points with a; = 0. We call these points the Newton

points. The Newton polygon of f(X) is the lower boundary of the convex hull

20



of the set of the Newton points in R? by rotating a vertical line through the
point (0, v,(ag)) counter-clockwise until it meets one of the point (i,v,(a;))
and then continue rotating the remaining part of that line until it reaches the
point (n,v,(a,)) eventually. A vertex of the Newton polygon is a point where

the slope changes. The slope of the segment joining the vertices (i,v,(a;))
vp(a;) — vp(ai)
j—i
Example 2.3.12. Let F(X) = 149X + £X? + { X* + 81X° + 92° and

and (7, v,(a;)) is , and the length of the slope is j — i.

p = 3. Then the Newton points are
(Oa 0)7 (17 2)7 (27 _3)7 (47 _2)7 (5’ 4)’ (67 2)

The Newton polygon of F/(X) with p =3 is

A

Y

Figure 2.1: Newton Polygon of F/(X)

It is natural to ask how the Newton polygon gives information about

the roots of f(X). The answer can be found in the following Theorem (see
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Theorem 6.4.7 [13], for the proof).

Theorem 2.3.13. Suppose my, ma,...,m, are the slopes of the segments of
the Newton polygon with my < mo < -+ < m,, and ly,ls,....1, are the
corresponding lengths. Then, for each 1 < i < r, f(X) has exactly l; roots

in C, (counting multiplicities) of absolute value p™:.

Example 2.3.14. The slopes of all segments of the Newton polygon in Figure
2.3.12 are —%, % and 2, respectively. It can be concluded from Theorem 2.3.13

that there are 2 roots in C, of absolute value 3’%, 2 roots of absolute value

3%, and 2 roots of absolute value 32.
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Chapter 3

Curves

As elliptic curves are also geometric objects, this chapter is devoted to give a
short introduction to geometric background which are used to define elliptic
curves in Chapter 4.

Throughout this chapter, & will denote an arbitrary field, &* the set of

non-zero elements of k, and k is a fixed algebraic closure of k.

3.1 Varieties

3.1.1 Affine varieties

Definition 3.1.1. Affine n-space (over k), denoted by A™(k), is the set of

n-tuples of elements in k£ when n is any positive integer; that is
A™M(k) ={(z1,...,xp) 1 x; € k}.

In particular, if we consider affine n-space over k, then we define the set of

k-rational points of A™(k) as
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{(z1,...,x,) € A"(k) : all z; € k}.

Definition 3.1.2. Given fi, ..., f, polynomials in k[zy,...,z,], an (affine)
algebraic set defined by fi, ..., fs, written V(f1,..., fs), is the set of all zeros

of f; for every i; that is

{(a1,...,a,) € A™(k) : fi(ay,...,a,) =0, for all 1 <i < s}.

For any affine algebraic set V' C A"™(k), let

IV)=A{f € klz1,...,2z,): f(P)=0for all P € V}.

Then I(V) is an ideal of k[zy, ..., 2,] (Lemma 6, Ch.1, [7]), and it is called
the ideal of V.

By the Hilbert Basis Theorem, I(V') is finitely generated. An algebraic
set is said to be defined over k, denoted by V/k, if I(V) is generated by
polynomials in k[z1, ..., z,]. If V is defined over k, the set of k-rational points

of V' is the set of n-tuples in V' whose coordinates are all k-rational points

in A™(k).

Now we have the map

affine algebraic sets — ideals

(3.1)
vV — I(V).

For any two algebraic sets V.C W, I(V) D I(W).

Conversely, given an ideal I of k[z1, ..., x,], define

V(I)=A{(a,...,a,) € A"(k) : f(a1,...,a,) =0 for all f & I}.

Since [ is finitely generated, write I = (fi, ..., fs). Note that if fi,..., fs and

g1, .-, gr are bases of I then V' (f1,..., fs) =V (g1, ..., g») (Proposition 4, Ch.1,
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[7]). We can see that V/(I) = V(fi,..., fs) (Proposition 9, Ch.2, [7]). Then

the set V(1) is an algebraic set. We now have another map

ideals —— affine algebraic sets
(3.2)

I — V()

If I C J, then V(I) D V(J). For any algebraic set V', V(I(V)) = V. The
maps (3.1) and (3.2) give the relation between the geometric objects (affine

algebraic sets) and the algebraic objects (ideals of k[xy, ..., z,]).

Definition 3.1.3. An algebraic set V' C A"(k) is said to be irreducible
if whenever V' = Vi U V,, where Vi and V5 are algebraic sets, then either

Vi =V or Vo, = V. An irreducible algebraic set is called an affine variety.

For any algebraic set V', V is irreducible if and only if 7(V') is a prime ideal
(Proposition 3, Ch.4, [7]).

Remark 3.1.4. If F € k[zy, ..., x,] is irreducible over k|1, ..., z,], then
I =(F)=Flry,...,xv,)klxy, ..., 2]
is a prime ideal in k[xy, ..., 7,], s0
V(I)={P e A™k): f(P)=0forall feI=(F)}
is an (affine) variety defined over k. For example, let

FX,Y)=Y2—-X3—- X —-1€Q[X,Y]

This polynomial is irreducible over C[X, Y], so I = (F') is a prime ideal in
C[X,Y]. Thus V(I) is a variety defined over Q. Such a variety is called an

affine plane variety as n = 2.
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Given a nonempty variety V. C A"(k), then I(V) is a prime ideal in

klxy1, ..., Ty], SO

is an integral domain. We call k[V] the coordinate ring of V. Let k(V) denote
the quotient field of k[V]. It is called the function field of V. Any element
of k(V) is a rational function on V. For f € k(V) and P € V, we say that
f is reqular (or defined) at P if f = g/h for some g, h € k[V] and h(P) # 0.
Denote k[V]p by the set of rational functions on V that are regular at P.

We can see that k[V]p forms a subring of (V) containing k[V]:

The ring k[V]p is called the local ring of V at P.

If K a finitely generated extension of k, the transcendence degree of K
over k is the smallest integer n such that K is algebraic over k(xy,...,z,)
for some z1, ...,x, € K, equivalently saying that n is the largest number of
elements of K which are algebraically independent over k. The transcendence

degree of k(V') over k is known as the dimension of V, written by dim(V/).

3.1.2 Projective varieties

A projective n-space (over k), denoted by P"(k), is defined geometrically to be
the set of all lines through the origin in A"*!(k). To define the line [ through
the point (0, ...,0) in A™™! it suffices to know only one point of [ other than

(0,...,0). If (zo, ..., ) is such a point then each point (Axy, ..., Ax,,) also lies

on [ for A € k*. Thus any point (g, ..., x,) # (0, ...,0) determines a unique
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such line, namely {(Azo, ..., \z,,) : A € k}.
The above gives rise to the definition of P" as the set of equivalent classes

of points in A"\ (0, ...,0), where the equivalent relation is given by

(‘r07 7'xn) ~ (3/07 7yn)

if and only if there exists A € k* such that z; = \y; for all i. The equiva-
lent class is denoted by [z, ..., z,,| and xo, ..., z,, are called the homogeneous

coordinates. This means the projective n-space can be written as
P(k) = {[z0, .., Tn]  (T0y ., Tn) € AN (0, ...,0)}.
Remark 3.1.5. For 0 <17 < n, let
Ui =A{lxo,...,xn] € P": x; #£ 0}
be a subset of P". Then U, is isomorphic to affine n-space A" by, for example,
v A" — U; C P,

(a1, ..y @p) — [a1, .y a1, 1, a4, .y ap

and whose inverse

Yt U — A"
is given by
ag a1 Qi—1 Qiq1 ap,
(g, ..., an] — | =2, =, . 2= 2 )
a; aj Q; a; a;

Note that P" = J;_, U;, so we can say that P" can be decomposed into a

disjoint union of n + 1 sets each of which looks like affine n-space.

A polynomial f € k[X] = k[xo, ..., x,,] is homogeneous of degree d if
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fxg, ..., Axy) = Mef(xg, ..., )

for all A € k. An ideal I C k[X] is homogeneous if it is generated by homo-
geneous polynomials. For any homogeneous ideal I, suppose I = (fi, ..., fs),

where f1, ..., fs are homogeneous. Let
V(I)={PeP'k): f(P)=0forall feI}.

A (projective) algebraic set is any set of the form V() for some a homoge-

neous ideal I. The (homogeneous) ideal of an algebraic set V' is the set
I(V) = {f € k[X] : f is homogeneous and f(P) =0 for all P € V}.

If k is an infinite field, then I(V) is a homogeneous ideal in k[X] (Proposition
4, Ch.8, [7]). A projective algebraic set is called a projective variety if its

homogeneous ideal I(V) is a prime ideal in k[X].

Example 3.1.6. The polynomial F(X,Y,Z) = Y?Z — X3 - X7% - 73 ¢
Q[X.,Y, Z] is irreducible over C[X,Y,Z], so I = (F) is a prime ideal in

C[X,Y, Z]. Thus V(I) is a projective plane variety defined over Q.

Let V be a projective variety. The function field of V, denoted by k(V),
can be described as the field of rational functions g/h such that:

(i) g and h are homogeneous polynomials of the same degree,

(i) h ¢ 1(V),

(iii) two rational functions g/h and ¢'/h" are identified if gh’' —g'h € I(V).
For P € V and f € k(V), we say that f is regular (or defined) at Pif f can
be written as f = g/h with h(P) # 0. Let

EV]p = {f € k(V) : f is regular at P}.

E[V]p is a subring of k(V), and it is called the local ring of V at P.
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3.2 Curves

An (algebraic) plane curveis a one-dimensional projective variety correspond-

ing to a homogeneous polynomial equation
F(X,Y,Z)=0.

The degree of the curve is the maximum degree of each term X?Y7Z*. For
examples

the lines : aY +bX 4+ ¢Z = 0;

the conics : aX? +bXY + Y2 +dXZ +eYZ + fZ? =0
are curves of degrees 1 and 2, respectively.

A point P on a curve C' is said to be singular if

OF OF OF
ax F) =3y (P) = 5,(P)=0.

Otherwise, P is non-singular. A curve C' is non-singular or smooth if there
is no singular point on C. For a smooth curve C' defined by a homogeneous
polynomial F'; the genus of C' is a non-negative integer defined algebraically
as

(deg(F) — 1)(deg(F) —2)
> :

So any line and conic have genus 0, while a smooth cubic has genus 1.

3.2.1 Maps between curves

In the statement of first main Theorem, we mentioned the isogeny as a map
between elliptic curves. In this section, we give the general definition of maps

between any two varieties.
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Let Vi C P™ and V5 C P" be projective varieties. A map ¢ from V; to Vs

is called a rational map if it is of the form

(b == [f(), 7fn] . Vi — %
¢(P) — [fO(P)vafn(P>]a

where fo, ..., fo € k(V1) are defined for every point P € V; C P™.
Given ¢ = [fo, ..., fn] : Vi — V4 a rational map, we say that ¢ is regular
(or defined) at P if there exists a function g € k(V}) such that gf; is regular

at P for all i and at least one (gf;)(P) # 0. If such a g exists, let

¢(P) = [(9/0)(P), -, (9.fn) (P)].

A rational map which is regular at every point of V; is called a morphism.
Two varieties Vi and V5 are said to be isomorphic, written V; ~ V5, if there
are morphisms ¢ : V; — V5 and ¢ : V5 — Vj such that 1 o ¢ and ¢ o v are
identity maps on V; and V5, respectively.

The following Theorems, proved in Ch.II, [28], culminate with a funda-

mental important definition of isogenies (see Chapter 4).

Theorem 3.2.1. Let Cy and Cs5 be curves and ¢ : C; — Cy a rational
map. For every non-singular point P € C4, the map ¢ is reqular at P. In

particular, if Cy is a smooth curve then ¢ is a morphism.

Theorem 3.2.2. Let ¢ : C7 — Cy be a morphism between curves. Then ¢

can be either constant or surjective.
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Chapter 4

Elliptic curves

This chapter gives the definition of elliptic curves in the first section. In the
next three sections, we give an introduction to the additive law on the set
of points on elliptic curves, including the definition of division polynomials
and elliptic divisibility sequences. The relevant topics that we will use for

the proofs in Chapter 5 are in the last five sections.

4.1 Definition

An elliptic curve is defined geometrically as a non-singular projective alge-
braic plane curve of genus 1 together with one specified base point O. Usually,
we consider the curve in an affine form. The elliptic curve E is said to be
defined over a field k, denoted by E/k, if E is defined over k and O € E(k).

For most of this thesis, we will consider elliptic curves defined over Q. One
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can prove that E/Q is the locus of the points in z-y plane satisfying
By’ + aiwy + azy = 2° + asr’ + asx + ag, (4.1)

where a;, b; are constants in Q (see Proposition 3.1(a), Ch.III, [28]). The

form (4.1) will be referred to as the Weierstrass equation of E.
Example 4.1.1. Consider the cubic equation
ud + 03 = 1.
. 3x y—9 . . .
Replacing v by — and v by =——, we obtain the Weierstrass equation
Y Y
y? — 9y = a® — 27.

Conversely, every smooth Weierstrass cubic curve as defined above is an
elliptic curve defined over @Q with the base point as the point at infinity
O = [0,1,0] (see Proposition 3.1(c), [28]).

The equation (4.1) can be transformed further to a simpler form. As

char(Q) # 2,3, completing the square gives

a a a2 a1a a2
(y+51x+53)2:x3+(a2+f)x2+<a4+%>x+ (ZB+Q6>,

and then replacing y by %(y — a1z — ag) leads to
E :y? = 423 4 box® + 2bs7 + bg,

where
bg = CZ% + 4(12,
by = 2a4 + ayas,

b6 = Cl% + 4&6.
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Define, moreover, the quantities as usual (see [28])

bs = alag + 4asas — ayazaq + asai — a3,
cy = b3 — 24by,
6 = — b+ 36babs — 216bg,
A = —b3bg — 8b3 — 2702 + 9bybybe,
j = c/A.
Changing (x,y) to (Qj ;6%27 HyS) yields

E :y* =23 — 27c,x — Sdc.

The quantity A is called the discriminant of the Weierstrass equation, and

J is called the j-invariant of the elliptic curve E. We derive the following.

Proposition 4.1.2. Fvery elliptic curve defined over Q can be written in

short Weierstrass form

E:y* =2 +ax +0, (4.2)

with a,b € Q.

As part of the definition of an elliptic curve, the equation (4.2) has to
be non-singular; that is, the cubic polynomial on the right-hand side must
have no repeated roots. This will occur if and only if the discriminant of

2% + ax + b, which equals 4a® 4 2702, is not zero.

Example 4.1.3. Transforming further the Weierstrass equations obtained

in Example 4.1.1, we get



x
by completing the square. Replaced = by 72 and y by J the equation

2 937

becomes
y2 — 1’3 _ 2433.

Any two Weierstrass equations of elliptic curves defined over Q are iso-
morphic if they differ only by change of variables (fixing the point at infinity)
of the form

r = ulx' +r,

y = udy +ust’ +t,
where u,r, s,t € Q,u # 0. Substituting these to equation (4.1), we can see
that the change of coordinates preserves the j-invariant, i.e. j' = j, while
u2A’ = A. Tt can be concluded that if two elliptic curves are isomorphic
over Q then they have the same j-invariant. The converse may not true in
general. It will hold if the change of variables is defined over an algebraically
closed field (see Proposition 3.7, Ch.III, [18]).

For an elliptic curve in short Weierstrass equation (4.2), the discriminant

and the j-invariant are
A = —16(4a® + 27b), and j = —1728(4a)3/A.

The only change of variables preserving this form is

x =u?2’, and y = vy,

with u € Q \ {0}.
Although the discriminant is not an invariant of an elliptic curve E, we
will define following a related quantity which is invariant in the isomorphism

class (over Q).
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Definition 4.1.4. A Weierstrass form of an elliptic curve defined over Q,
y? + a1y + azy = 2° + aw? + agx + ag,

is said to be minimal if a; € Z for all 1 < i < 6, and |A| € N is minimal
among all Weierstrass equations in the isomorphism class, respecting to the
change of variables over Q. Such A is called the minimal discriminant, which
is invariant under the change of variables.

A Weierstrass form is minimal at a prime p if v,(a;) > 0 for all ¢, and
vp(A) is minimal among all such forms in the Q—isomorphism class. It can

be said that the Weierstrass form is minimal if it is minimal at all primes.

4.2 The group law

Given an elliptic curve E in short Weierstrass form (4.2), a point (z,y) on E
is called a rational point if both coordinates are rational numbers. Let E(Q)
denote the set of all rational points on E together with the point at infinity
0.

We will now define an operation on the set E(Q). Given P,Q € E(Q), the
line joining P and @ (if P = @, consider the tangent line at P) has to meet
the curve at a third point of intersection, say R, on F, by Bezout’s Theorem
(see e.g. Theorem 10, §7, [7]). Define P + @ to be the point obtained by
reflecting the point R in the x-axis. The inverse of a point P, written —P, is
its reflection in the x-axis. This addition law gives the following properties
(see Proposition 2.2, Ch.III, [28] for the proof):

(i) If the points of intersection of £ and a line L are P,Q, R (not neces-

sarily distinct), then
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(P+Q)+R=0.

Given points P,@Q, R on E; then

ii) P+ O = P; that is O is the identity of this addition.

(

(ili) P+ (—P) = 0.

(iii) (commutative law) P+ Q = Q + P.

(iv) (associative law) (P+ Q)+ R =P+ (Q + R).
More explicitly, let P = (z1,91), and @ = (z2,y2) be rational points on E.
Then the formulas for P+ @ = (x3,y3) are given below.

If x1 # x4, then

P+Q:(a2—x1—l’2, Oé(xl_x3)_y1)>

Y2 — 1
$2—$1.

where o« =

If 1 = x5 and y; = y9, then

2P =P+ P = (a® —2x1, afxy — x3) — 1),

322 +a
2
If 1 = 29 and y; = —yo, then ) = —P and P + @ is the point at infinity.

where o =

With the addition law above, the structure of the set E(Q) is known.

Theorem 4.2.1. (MORDELL-WEIL THEOREM, [22]) Let E denote an el-
liptic curve defined over Q. Then E(Q) is a finitely generated abelian group

with respect to the geometric addition law above.

Arithmetic properties of elliptic curves begin with two classical results.
Siegel’s Theorem (Theorem 2.1.1) says that the set of integral points on an

elliptic curve is finite, and the Mordell-Weil Theorem tells more that the
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group of rational points on an elliptic curve is finitely generated.
For any n € Z, the addition formulas above can generate the multiples of

a rational point P on E by setting

nP = P+ ..+ P forn>0,
———
n terms
0P = O,

nP = (—n)(—P) for n < 0.
We say that P is a torsion point if there exists n € N such that nP = O, and
the order of a torsion point is the smallest n such that nP = O; otherwise if

there are no such n, P is called a non-torsion point. The n-torsion subgroup

of E, denoted by E[n], n # 0, is the set of points of order dividing n in FE,
Eln] = {P € E:nP = O}.

The torsion subgroup of E, written Ei..s, is the set of all points of finite order;

that is

Buors = | ) Eln.
n=1

Denote by Eiors(Q) the set of torsion points in E(Q).
A consequence of the Mordell-Weil Theorem is that the abelian group

E(Q) of an elliptic curve F/Q can be written as

E(Q) = Eios(Q) x Z7,

where the number r is a non-negative integer, called the rank of the elliptic

curve.
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4.2.1 Division polynomials

The multiplication of P by an integer can be described by rational functions
as follows. Given F an elliptic curve defined over Q in short Weierstrass

form,
E:y?=23+av+0,

with a,b € Q, suppose P = (x,y) € E(Q) is a non-torsion point. Then

wp= (G )

We call ¢, the diwvision polynomials associated to £ and P. The division

polynomials satisfy the following identities

¢n = Wﬂi _wn+1¢n—1a
dyw, = ¢n+2¢g—1 - ¢n—2¢121+17

and satisfy the following recursion

¢m+n¢m—n = ¢m+1¢m—1¢721 - ¢n+1¢n—1¢gq,' (43)

The division polynomials can be calculated inductively as in [28] by the

following recursions:
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Yo =0

v =1,

Yo = 2y,

3 = 3a* + 6ax? + 12bx — d?,

Yy = 4y(a® + Sax? + 20023 — 5a*x? — dabxr — 8b* — a?),
Yok = Ur2Vy — Yrathiyy, for k> 2,

Yorths = Up(Urpoti_y — Yp_oi,,), for k >3
Yo = —y, for k <O.

Then 1), (respectively, yi,) is a polynomial in Z [a, b, z,3?] when n is odd
(respectively, n is even). Replacing y? by x3 + ax + b, we may regard them as

polynomials in Z [a, b, x], as is 2. Tt can be easily proved by induction that

2
P2 = n?z™ ! 4 lower order terms,

2
¢, = x"™ + lower order terms.

Remark 4.2.2. If we restrict our attention to an elliptic curve of the form
E:y* =23+ B,

then it can be proved by a straightforward induction that the resultant be-

tween ¢, and 1?2 can be written in the form
R(¢n,9?) = (432B),

where d = ¢n*(n* — 1). Furthermore, v, y~'¢,, x4, and (xy) ‘4, are
21 n2—4 n32-3

e T when

and

binary forms in 2® and B (over Z) of degrees “ "26—6

3 1t nodd,3 1 neven, 3| nodd, and 3 | n even, respectively.
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4.3 Elliptic divisibility sequences

In this section, we give the definition of an elliptic divisibility sequence in two
ways, and indicate the connection between each type of elliptic divisibility

sequences and the division polynomials 1),.

4.3.1 EDS - from elliptic curves

The first one comes from the defining equation of an elliptic curve. Given an

elliptic curve E in short Weierstrass form,
E:y* =234+ ax + b,

with a,b € Z, let P € E(Q) be non-torsion. The shape of the equation forces

the expression of the point P to be in the form

A C
P = (§7 ﬁ) )
where A, B, C' € Z such that ged(AC, B) = 1, and without loss of generality,

we may take B > 0. For any n € N, write

An C’I’Z
= <BT%’ B_z) ’

in lowest terms. Lemma 3.12 of [17] proved the following property of the

sequence (B,,).

Theorem 4.3.1. If p is a prime divisor of B,,, then
ordy(Bpy) = ordy,(By,) + ord,(k).
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A direct consequence of this Theorem is that B,, | B, whenever m | n.
This means (B,,) is a divisibility sequence. It is natural to call it an elliptic
divisibility sequence, abbreviated FDS, as it is derived from an elliptic curve.

Indeed, (B,) satisfies the strong divisibility property,

ng(Bm7 Bm) = Bgcd(m’n)'

Returning to the division polynomials in section 4.2.1, we now have

_ 6u(P)
U2(P)

In general, |4, (P)| may not be equal to B, as gcd(¢,(P),¥?2(P)) may not

An

be equal to 1, but it always true that B, | |1, (P)|. However, the extent of

the cancellation can be controlled by Lemma 3 of [15] as follows:

Lemma 4.3.2. Let E/Q be an elliptic curve and P € E(Q) be a non-torsion
point. Let ¥, (P), and B,, be as defined above. Then for n > 1,

log B,, < log |1, (P)| < log B, + n*M?log |A(F)|,

where M = M(P) is the quantity as defined on page 6.

4.3.2 EDS - from Morgan Ward’s definition

In fact, the term elliptic divisibility sequence was initially used by Morgan
Ward (see [34]). In his sense, an integer sequence (hy,),>o is an elliptic divis-

ibility sequence if it satisfies the recurrence relation

hm+nhm—n = hm+1hm—1h72—L - hn+1hn—1h72n (44)
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for all m > n > 1. We will call this sequence a Ward-type elliptic divisibility
sequence, or Ward-type EDS, when we refer to it. The recurrence relation
(4.4) gives rise to two relations. Taking m = n + 1 in (4.4) gives the first
relation, while taking m = n + 2 and then replacing n by n — 1 gives the

second one,

h2n+1 - hn+2hi - hn—lhi+1 (45)

and

honhn = hpsahnh® = hyhp_oh2, . (4.6)

According to Ward’s paper, a solution h = (h,,) of (4.4) is said to be proper if
ho = 0,hy = 1, and hohs # 0. Theorem 4.1 of [34] says that a proper solution
will be a Ward-type EDS if and only if hy, hg and hy are all integral with
ho | hy and the relations (4.5) and (4.6) are satisfied for all n. Thus we can
compute all other terms in the sequence (h,,) from the initial values hy, ..., hq,
making the sequence uniquely determined by these 5 values.

There is a close connection between Ward-type EDS and the division
polynomials v,,. From the definition of the division polynomials, v, is a
Ward-type EDS. Conversely, Ward also proved in [34] that if (h,) is a given
Ward-type EDS, then there is an elliptic curve F/Q : y? = 23 4+ ax + b and

a non-torsion point P € E(Q) such that

where 1, is the division polynomial associated to £ and P.

In the next five secttions, we will explain the relavant topics that will be

used in some parts of the proof of our results in Chapter 5.
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4.4 Reduction modulo p

This topic will be used in the proof of Theorem 5.2.18, page 95.

Given a prime p and a rational number z, write

'

xT=0p %, where ged(ab,p) =1 and n > 0,

define

@) ab™! (mod p) if n =0,
rp(z) =
0 it n > 0.

Then r,(z) € F,. This map gives a ring homomorphism
{r €eZ:|z|, <1} — F,.

Extending this concept to an elliptic curve defined over Q, we may change
variables by (z,y) — (x/u? y/u®) so that all coefficients of E are integers,
and the terms y? and 2% have coefficient 1. We pass from E to a curve E by

reducing the coefficients of £ modulo p. That is
E:y? +rp(a)ry +rp(az)y = 2% + rp(az)2® + rp(as)r + rp(ag)

when E is in the form 3% + a2y + asy = 2% + a22? + asx + ag. This induces

a reduction map

which is a group homomorphism. We call E the reduction of E modulo p.
The curve E may possibly be singular. Denote by E,,, the non-singular part
of E, i.e. the set of all non-singular points of E. E, is isomorphic to an

abelian group (see Theorems 2.30 and 2.31, [35]).
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Note that if one starts with an elliptic curve F in minimal form, then E
is unique up to the change of variables as in section 4.1. We say that E has
good reduction modulo p if E is non-singular, i.e. E,s = E, and p is called a

prime of good reduction. One can see from the formulee
A = A mod p,

where A and A are the discriminants of F and E, respectively, that E is
non-singular if and only if p { A. Otherwise, if E is singular, we say E has

bad reduction modulo p

Example 4.4.1. Consider E : y? = 2 + 622 — 315z, which is a minimal

curve. Then

E — E:y?>=2%x+1) mod 2,
E — E:y*>=2%mod 3,
E — E:y?>=2%x+1) mod 5,

E — E:y*=2%(z+6) mod?7,
so E has bad reduction modulo 2,3,5, and 7, and has good reduction at

other primes.

4.5 Isogenies

Here, we give the definition of an isogeny, which is an important ingredient
in the statement of the first main Theorem.
Let £ and E’ be two elliptic curves which are defined over Q. An isogeny

between E and E’ is a non-trivial homomorphism,
¢ E— FE,
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defined by rational functions on the coordinates of the points, which takes the
zero of E to the zero of E’. The degree of the underlying rational functions
that define the isogeny is the degree of the isogeny. The curves E and E’ are
said to be m-isogenous if there is an isogeny of degree m between them. One
basic example of an isogeny is the multiplication by m, given by P — mP
for P € E(Q), and the degree is m?. Note that an isogeny of degree 1 is an

isomorphism; that is, a change of variables.

Example 4.5.1. (1) An isogeny of degree 1 (isomorphism) between two

elliptic curves
E:y?’+y=2% and E' :y* = 2%+ 11664
defined by
(z,y) — (223%2,2233(2y + 1)).
2) An isogeny of degree 3 between two elliptic curves
(
E:y?=234+16m? and E':y? = 23 — 432m?

defined by

64m? y(y + 12m)(y — 12m)
- (y+4m)(y —4m)

).

(w.9) — (@ + >

An important property of every isogeny ¢ : E — E’ of degree m is that
there exists a dual isogeny
¢o* B — FE

such that the composite homomorphisms ¢¢* and ¢*¢ are multiplications by

m on E and E’ respectively.
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4.6 Heights on elliptic curves

In this section, we will introduce the notions of the Weil height and the
canonical height, which are an essential in the proof of Theorem 5.1.1, page
56.

Let £ # 0 be a rational number with ged(p, g) = 1. Define
q

H (z) — max{|pl, ql}.

(2) ().

The function h is called the (logarithmic) height function. For any given

and

constant ¢, there are only finitely many rational numbers r with h(r) < c.
This concept can be extended to rational points on elliptic curves defined

over Q. Let £/Q be an elliptic curve in short Weierstrass form
E:y?=234+ax+0.

By a change of variables, we may assume that a,b € Z. Given P = (z,y) €

E(Q), define
h(P) = h(z) and h(O) = 0.
The height function on E(Q), usually called the Weil height, satisfies the
duplication formula
h(2P) = 4h(P) + O(1),

where the implied constant depends only on E but not on P. However, there
exists a function h : F (Q) — Rs( that has better properties. This function

is called the canonical height defined by
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S h([2¥1P)
h(P) = limy oo = 57—

Theorem 7.12 [12] asserts that the limit on the right-hand side always exists.
The canonical height satisfies the following properties, taken from Theorem

7.13, [12], Theorem 9.3, Ch.VIII, [28], and Lemma 3.1, [29]:
(1

) h(P) > 0 for all P € E(Q), with equality iff P has finite order.
(2) Given a constant ¢, there are only finitely many rational points P

with h(P) <c¢
(3) h(nP) = n®h(P) for all n € Z and P € E(Q).

(4) (parallelogram law)
h(P+ Q)+ h(P — Q) = 2h(P) + 2h(Q)

for all P,Q € E(Q).

(5) Suppose ¢ is an isogeny of degree d. Then for all P,

Silverman (Remark 1.2, [27]) gives an explicit upper and lower bound for the

difference between the Weil height and the canonical height.

Theorem 4.6.1. Given an elliptic curve in short Weierstrass form,
E/Q:y? =23+ ax +0,

then

—1R(j) = Lh(A) — 2.14 < h(Q) — h(Q) <

: 3 h(j) + h(A) + 1.946.

N

where A = —16(4a® + 27b%) and j = —(48)a®/A.
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Note that Silverman’s heights are twice our heights so we have divided his
formulae by 2. For the Mordell curve of the form E : Y? = X3 — 432m?,

better lower bounds of the canonical height are presented in [10] and [16].

Definition 4.6.2. The condition (}) is that every prime divisor of m, which

is greater than 3, is congruent to 5 modulo 6.

Theorem 4.6.3. (LEMMA 4.3, [10]) Let P € E(Q) be a non-torsion point.
Then

~ 1
h(P) > 77 logm — 0.0562,

unless m = £2 mod 9 and m does not satisfy (1), in which case

~

1
> — — 0. .
h(P) > o logm — 0.1173

Theorem 4.6.4. (PROPOSITION 1, [16]) Given P € E(Q)\{O} with m > 2

cube-free,
5 log 2 + log3  if m = =£1,43,44 (mod 9),
SlogZ + 2log3 if m=+£2 (mod9), and m satisfies (1),
s log 2+ Llog3 if m = £2 (mod 9),
h(P) > and m does not satisfy (1),

slogZ — 2log3  if m=0 (mod9), and m satisfies (1),

m

5 log 2 — £ log3 if m=0 (mod9),

and m does not satisfy (1),
(4.7)
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Moreover, A consequence of Corollary 2 of [16] also provides the lower

bound of the canonical height for integral points on the curve E as follows:

log(X(P)) + ! log 3. (4.8)

h(P) < .

N | —

4.7 Elliptic functions

In this section, we will give a definition of an elliptic function over C and also
explore its properties. This topic helps us to prove the non-integrality of the
multiples of integral points on the Mordell curve £ : Y? = X3 — 432m? in
Theorem 5.2.5, page 71.

Given two complex numbers wq, ws, which are linearly independent over

R, then
A = {njwy + nows : ny,ny € Z}
is called a lattice, the w; are called the periods of the lattice, and the region
II={ow +awy:0<a; < 1,0 =1,2}

is called the fundamental parallelogram for A. We focus on the torus C/A.

A function on C/A can be considered as a function on C such that
fz+u) = [(2)

for all z € C and v € A. Equivalently,
[z +w) = f(z)

for all z € C. Such function is called a doubly periodic function. We then

define an elliptic function to be a meromorphic doubly periodic function.
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An important example of elliptic functions is known as the Weierstrass -
function defined by
1 1 1
Mﬁ%(ww)'
The following properties of p(z) are quoted from Theorem 3.1, Ch.VI, [28].
(1) The sum defining p(z) converges absolutely and uniformly on every
compact subset of C — A.

2) p(z) is meromorphic in C and has a double pole at each u € A.

o
p(=2) = p(2).
o

(z+u) = p(z) for all u € A.

(2)
(3)
(4)
(5) every doubly periodic function is a rational function of p and its
derivative ¢'.

Given the Weierstrass gp-function for a lattice A, then
¢ (2)* = 4p(2)3 — 60G4p(2) — 140G,

where Gy, = Zu’zk . This series converges absolutely for all £ > 1. If we

u€EA
u#£0
let

g = 60G4 and gs = 140G6,
then the point (p(2), /(2)) lies on the curve
y? = 4a® — gow — gs.

Proposition 3.6 [28] asserts that the discriminant A = g3 — 27¢32 is non-zero.
We now conclude from above that a complex torus yields an elliptic curve.

It can be said that a torus C/A is isomorphic to the complex points on an
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elliptic curve. In other words, let A be a lattice and E : y? = 42 — gox — g3;

then
®:C/AN — E(C)
24+ A — (gg(z), %p’(z)) , for z ¢ A
0+A +—— o0,

is a group isomorphism (Proposition 3.6, [28]).

4.8 Elliptic logarithms

To prove Theorem 5.2.5, in section 5.2, we require an upper bound and a
lower bound on a linear form in elliptic logarithms (see page 75 for more
details). In this section, we just give an introduction to the basic concept of
an elliptic logarithm.

From Section 4.7, we have the isomorphism

o :C/A — E(C).
For any P € E(Q), write ®(P) = u for some u € C/A. Let

vV:EC) — C

U(P) = u

be the map inverse to ®. We call u an elliptic logarithm of P. If u is chosen
in a fundamental parallelogram of the period lattice of F, it is the principal
value of the elliptic logarithm of P.

Fix a basis {P, ..., P,} for the torsion-free part of E(Q), then we can

write
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P=qP 4+ +¢P+T

for some integers ¢, ..., ¢, and a torsion point 7. Applying the map ¥ to

above yields
UV(P)=qV(P)+ -+ q¢¥Y(P)+ ¥(T) (mod A),

so that if {wy, ws} is a fixed basis of A, then we obtain a linear form in elliptic

logarithms ¥ (P;) as
L(P) =V (P)=q¥(P)+ -+ ¢¥(FP)+ Y(T) + nw + nows,

for some integers ny, and ns.
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Chapter 5

The Results

In this chapter, we will give the proofs of our main Theorems about prime

appearance in divisibility sequences derived from an elliptic curve of the form
C:U*+V3=m, (5.1)

where m is a nonzero integer.
Remark 5.0.1. The curves
Cy:U>4+V3=myand Cy: U3+ V3 =my

are isomorphic (over Q) if my/ms is a cube, so from now on, we will assume
that m > 0 is a cube-free integer. This assumption implies U and V' should
be coprime and UV # 0. Furthermore, we can assume that m > 2 as the

curves U3 4 V3 = m, when m = 1,2, have no points of infinite order.

Given R € C(Q), write, in lowest terms,

U, V,
R=(—2 ).
= (i)
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The sequence (W) is a divisibility sequence. The divisibility property (see
[10]) follows using the formal group of an elliptic curve as in Ch.VII of [28].
Moreover, the sequence (W,,) is a source of infinitely many prime numbers
in the sense that the term W, always has a primitive divisor (i.e. a divisor
of W, that is coprime to every nonzero term W,, with 0 < m < n), for all

n > 1, proved by Everest, Ingram, and Stevens in [10]:

Theorem 5.0.2. (THEOREM 1.1, [10]) With C and (W,,) defined as above,

for alln > 1, W, has a primitive divisor.

Our principal aim is to study the stronger property of (W,,); that is, we
will find a uniform bound on the index n such that W, is a prime. This
indicates that the number of prime terms of (1¥,) is finite, so a strong form
of the uniform Primality conjecture will be given.

The proofs rely on some results on the elliptic divisibility sequence ob-

tained from the Mordell curve

E:Y?*=X?—432m? (5.2)

where P € E(Q) corresponds to R € C(Q) under the bi-rational transfor-

mation given by

2 292 _
X:23m’ Y:23m(U V)’
U+V U+V
(5.3)
223°m+Y 2232m —-Y
U= 6X V= 6X
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Consequently, we have

Un Va\_ o (23mBl+C, 28mBl - C,
w.ow, ) T 6A B, ' GA B, )

A, Oy
B2’ B3
In Section 5.1, we will show that, under some hypothesis on a rational

where nP = ( ) and ged(A,Cy, B,) = 1.

point P, there is an absolute constant Ny such that B,, > 2532ms for every
n > Ny. Based on this result, we can bound uniformly the size of the index
n such that W,, is not a prime power. The hypothesis as mentioned above is

concerned with a 3-isogeny o between the curve E and the elliptic curve of

the form
B y? =2® +16m?, (5.4)
given by
64m?
X=o0(x)=x+ o
and

y(y + 12m)(y — 12m)
(y + 4m)(y — 4m)

Y=oy =

Section 5.2 will present the proof of the second main result without the
isogeny condition above. To prove this, we will look at the non-integrality of
the multiples of P instead, and find a uniform bound N;j for which B, > 1
when n > N; with at most one exception. Subsequently, we will get a uniform

bound for the size of the second largest n such that W, is not a prime power.

95



5.1 Primality Conjecture (with isogeny con-
dition)

Lemma 5.1.1. Let P and E be as above and suppose P is the image of a

rational point on E' under the isogeny o. Then B, > 2832m6 for alln > 22.

Note The condition in the statement of Lemma is not infrequently met. For
example, the values m = 6,7,9,12, 15,20, 33, 34,42,69, 70,75, 78,84, 90, 105
all yield rank-1 curves whose generators satisfy the condition stated. The
following table shows a generator of E, say P, which is mapped from a

generator of E’, say P’, under the isogeny o.

m P P’ m P P’

6 | [28,80] | [24,120] | | 42 | [172, 2080] | [168, 2184]
7| [57,405] | [56,420] 69 | [553, 12925] | [552, 12972
9 | [735595] | [72,612] 70 | [156, 1296] | [140, 1680]
12 | [52,280] | [16, 80] 75 | [601, 14651] | [600, 14700]
15 | [49, 143] | [40, 260] | | 78 | [217, 2755] | [208, 3016]
20 | [84, 648] | [-16, 48] 84 | [148,440] | [112, 1232]
33 | [97, 665] [88, 836] 90 | [364, 6688] | [360, 6840]
34 | [273, 4455] | [-16, 120] 105 (169, 253] [120, 1380]

Proof of Lemma 5.1.1. Let P € E(Q) such that o(P’) = P, for some P’ €
E'(Q). Write

T, = z(nP') = —

with ged(ay, b,) = 1; then

Ap 64m?  ad + 64m?8
EzX(nP):xn—l— o= o :

n n

o6



We claim first that B, > 2332ms, provided max{|a,|,b2} > 2% 32ms.
Consider the fraction on the right-hand side of (5.5), let d = p” be a common
factor of (a3 +64m?b¢) and a?b?, where p is a prime and 7 € N is the highest
order of p dividing both terms. Since ged(ay,b,) = 1, either d | a2 or d | b2.
If the latter occurs, then d | (a3 +64m?b¢) implies d | a3, which is impossible

as a, and b, are coprime. Thus d can only come from the term a2, so that

d | a3. We have now that
d| (a® 4+ 64m?8), d | a3, and d {08,

so p" = d | 64m?. Hence the greatest common divisor of numerator and
denominator of the fraction on the right-hand side of (5.5), say g, has to
divide 64m? as well. If |a,| > 25 32ms, then

BQ — aib%z aib%
" g — 64m?
Therefore B,, > 2532mé. On the other hand, if b2 > 2§3%m%, then

> 233ims3.

=
IS
ol
oI~

B> 12 >2%3wm

which plainly yields B,, > 2532ms with room to spare.
Next recall the difference between the Weil height and the canonical

height as in Theorem 4.6.1, stated here again for convenience,

1

—h() - éh(A) —2.14 < h(Q) — h(Q) < ~h(j) + éh(A) +1.946. (5.6)

Write h = h(P) and i/ = h(P'); then
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as o is a 3-isogeny and by Property (5) of the canonical heights in Section
4.6. Applying the estimate (5.6) to the curve £’ with A = —16333m?, j =0,

and @Q = nP’, we obtain
2 / 1,2 2 1
log max {|a,|, b2} = h(nP") > h'n* — 3 logm — 5 log48 —2.14.  (5.7)
Moreover, the height bound in Theorem 4.6.3 makes

1
> —logm — 0.039. (5.8)

h
h/:—
3 81

for all m > 0. Then (5.7) becomes
log max {|a,|, b2} > (—logm 0. 039) n? — glogm - —log48 —2.14.

We aim to find the necessary condition that makes |a,| > 2% 32m assuming

firstly that |a,| > b2. Thus the overall effect require is that

(8—logm 0. 039) n® — glogm - —log48 —2.14 > log(2 ?OB%m%). (5.9)

With a manipulation, (5.9) will be guaranteed for n > 12, but for all suffi-
ciently large m.

However, we need to verify the statement of Lemma 5.1.1 for all m, even
though we have to adjust the bound of n to be greater than 12. With some
calculations, we can see from (5.9) that if m > 353, then n > 22. For the
smaller values m < 353, we will study further all curves that have rank
greater than 0, in Appendix A, to obtain the exact bound. Thus it can be

concluded that for all m, B, > 2533ms if n > 22.
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If b2 > |a,|, we still want to find such condition to force b2 > 2% 32m

(SR

and the resulting argument is the same. O

We are now in a position to prove main Theorem by using the result from

Lemma 5.1.1 as a part of the proof.

Theorem 5.1.2. (MAIN THEOREM 1) Let C be an elliptic curve as in (5.1)
and R € C(Q) a non-torsion point. Suppose P € E(Q) corresponds to R
by the bi-rational transformation (5.3). Under the assumption that P is the
image of a rational point under o, W, is divisible by at least two distinct

primes for all n > 2.

Proof. The proof consists of two parts. The first one is a direct consequence
of Lemma 5.1.1 which will be used to show that the term W,, possesses at
least two coprime factors for all n > 22. In the second part, we prove this
for every n < 22 case by case.

From the bi-rational transformation (5.3), we have

_223*mB} 4 C,

Un
W GAD , (5.10)
and also
292, PR3
Vo _ 28mB, = Cu (5.11)

W 6A,B,

U, Vp A, C, . .
where nR = (Wn’ Wn) and nP = (B—%, B_f) are all written in lowest
terms.

Firstly, we consider the fractions on the right-hand side of (5.10). Let d =

p" be a common factor of (223*mB2 +C,,) and 6A, B,, with p a prime number

and r € N the highest order of p dividing both terms. If d’ := ged(d, B,,) # 1,
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then d' | d | (223*mB2 + C,,) implies d’ | C,, , which contradicts the fact that
B, and C,, are coprime. Thus ged(d, B,,) = 1, so that d comes from the term
6A,,. Notice, moreover, that any cancellation of the right-hand side of (5.10)
and (5.11) is the same. This is because they have the same denominators,
and the left-hand sides of both equations are in lowest terms. Hence d has
to divide both (223*°mB2? + C,) and (223°mB2 — C,,), so that d | 72m. Thus
the greatest common divisor of the fraction on the right-hand side of (5.10),
say ¢, also divides 72m.

As g | 64, and, especially,

g
G.=——|A,,
gﬁm@‘

A, A, )
we need to ensure rel > 1 to guarantee that rel and B, both contribute
non-trivial coprime factors to W,,. Analyzing all possibilities of ged(g, 6), we
get the following conclusions.

(i) If ged(g,6) = 6, then

g g
G=—2 7919
ged(g, 6) 6‘ "

Ay,
so in this case it is enough to prove that A, > 12m to make rel > 1.
(i) If ged(g,6) = 3, then G = % | 24m, so in this case A, > 24m is

required.

(iii) If ged(g,6) = 2, then G =

| 36m, so in this case A, > 36m is
required.

(iv) If ged(g,6) = 1, then G = g | 72m, so in this case A, > T2m
is required. Indeed, we need not treat the last case because W, always
contains 6 as a divisor, even though ﬁ = 1. This means W,, has 2 and 3 as

G
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two coprime factors. Hence we require overall A,, > 36m to make sure that

6” > 1. Lemma 5.1.1 and the equation

C? = A3 —2433m2 B8
imply
A3 > 432m2BS > 2433m2(2332ms)8 > 2636m3,

for all n > 22, so that A, > 36m. This means W, has at least two coprime

divisors for all n > 22.

Secondly, we will check the terms W, for each n < 22 to produce a sharp
lower bound on n. Since the sequence (W,,) satisfies the divisibility property,
it suffices to consider when n are all primes less than 22 and we group such
primes, other than 2 and 3, as n = 1 (mod 3) and n = 2 (mod 3).

Suppose R = (u,v) € C(Q) is an integral point of infinite order (in the
case of rational points, we will see below that the proof can be generalized
from the case of integral points).

In case n = 2, the point 2R can be expressed in the form

o003 4 4 3
2R:( 2uu’ — v u—i-QUU).

B _ 13 W — 3
Suppose © — v = 1. Then
ud — v = (u—v)(u? + uv + v?) = 3u® — 3u + 1.
Applying the Bateman-Horn conjecture [2] to the polynomial

flu) :==3u*—3u+1
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suggests that f(u) is prime for infinitely many positive integers u. It seems
likely that W5 is not composite. This leads us to study other powers of 2.

Consider the case when n = 4. Write
AR — <ﬂ E) _ (f4<uav) fl/l(uav))
W, Wy 94(% U) 7 g4(u, U) 7

fa(u,v)  —ul® + 8vdut? + 3205u!® + 28v%u” + 1002t + 4vPu

gs(u,v)  —u'® — 13v3ul2 — 1005u0 + 10v9ub + 130123 + v15

where

and

filu,v) 0" =8P — 32uP0"0 — 28u 0" — 10u?v? — du'dy
ga(u,v)  —ul® — 13v3ul2 — 1005 + 100%uS + 1301203 + v15”

We may consider the second coordinate, and factorize g4(u,v) as

ga1(u,v) ' =v—u

gaa(u,v) :=u?* +uv+v* = (v —u)? (mod 3)

gaz(u,v) = u* + 2uPv 4 2uv® + v* = (v — w)* (mod 3)

gra(u,v) = u® —2u"v + 4ubv? + 4udv® — Sutv? + 4udv® + 4P — 2uv” 408

= (v —u)® (mod 3).
We claim that at least two of these factors can avoid being cancelled by the
numerator fj(u,v). Choosing to consider g43 and g44, we can see that the

resultants between them and f] with respect to u and v are
Ry(f1:943) = 3% and  Ry(fi, g43) = 3'"%u®,
respectively, and also
Ru(fl, 914) = 332012 and  R,(f], gus) = 332!,
As u and v are coprime,

gcd(fi(u,v),g473(u,v)) | 3% and ng(féi(u7U)>g4,4(u7v)) | 3%,
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Next we will show that both g4 3(u,v) and g4 4(u, v) are not equal any power

of 3. Suppose, for a contradiction, that gy 3(u,v) = 3* for some k > 1. Then
(v —u)* = ga3(u,v) =0 (mod 3).

Hence u = v (mod 3), so u® = v* (mod 3?). Replacing this in the expression

of ga3(u,v), we get
0= u' + 2udv + 2u* + udv = 3u(u +v) (mod 3?).

Then 3 | wor 3 | (u+v). Since u = v (mod 3), the former implies 3 | v,
and the latter implies 3 | w and 3 | v which are contradictions as ged(u,v) =
1. Thus the possibilities of k’s such that gs3(u,v) = 3* are only 0 and 1.
Calculating by PARI/GP [31] shows that the only solutions (u,v) of the
equation gy 3(u,v) = 1 are (0,+£1), (£1,0), contradicting Remark 5.0.1; and
there are no solutions to g4 3(u,v) = 3.

A similar argument will be applied for the second factor g4 4(u, v). Suppose
gaa(u,v) = 3% for some k > 2. As (v —u)® = gs4(u,v) =0 (mod 3), we have

u = v (mod 3), so that
u3 = v3 (mod 3%), 10u® = v3 (mod 3%), or 19u? = v3 (mod 3?).

Replacing each of these in the expression of g4 4, we find that there are no
solutions to g4 4(u,v) = 3¥ when k > 2. Thus it remains to solve the equations
ga.4(u,v) = 3¥ when 0 < k < 2. By computing with GP, the only solutions to
gsa(u,v) =1 are (0,%1), (£1,0),(—1,1), (1, —1), which is impossible; there
are no solutions to gs4(u,v) = 3; and the solutions to gy4(u,v) = 9 are

(—1,—1),(1,1) only.
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We will prove moreover that the multiple g4 3(u, v)gs4(u,v) can not be a

prime power. As above, g3 and g4 4 are not powers of 3, so write
gaz(u,v) = 3"p" - p" and gya(u,v) = 3"¢" - - - gl

where p;s and ¢;s are primes, other than 3. Considering the resultant between
ga3 and gy 4, we get ged(gas(u,v), gaa(u,v)) | 3'° Thus there is at least one
prime p; which is not equal to any prime ¢;. This implies W, is not a prime
power.

Case n = 3. The expression of 3R can be written as

3R — uw? 4 6ubv® + 3udv® —v? —u? + 3ubvd + 6ulv’ 4+ v?
B Buv(ub + udvd +08) 7 Buw(ub 4 udvd + 0vF)

For convenience, let
f3(u,v) = —u? 4+ 3ubv® + 6u0® + 07 and g3(u,v) = ub + udv® + 5.

By the theory of resultants, we obtain

ged(fs(u, v), g3(u, v)) | 3°.

To complete the proof in this case, we have to prove that the denominator
gs(u,v) is not a power of 3. Suppose not, that is g3(u,v) = 3* for some k > 1.
Then (u —v)® = g3(u,v) =0 (mod 3). Thus u® = v* (mod 3?), and hence
0= b+ udv3 + v = 3u® (mod 3?),

s0 3 | u. This implies 3 | v which is impossible. For the remaining cases, the
only solutions to g3(u,v) = 1 are given by (u,v) = (0,+£1), (£1,0),(—1,1), (1, -1),
and the only solutions to gs(u,v) = 3 are (—1,—1), (1,1). Since ged(u,v) =1

and u and v are coprime to both f3(u,v) and gs(u,v), W5 possesses at least

two coprime divisors.
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Case n = 1 (mod 3). The proof in this case proceeds exactly in the

same way as in the case n = 4, by the following steps.

= () = G o)

and factor the denominator g,(u,v) as gn1(u,v), gn2(u,v), ..., gni(u,v), all

(i) Write

of which are homogeneous in v and v. By the theory of resultants, we have
found fortunately that for each n, ged(f! (u,v), gni(u,v)) divides a power of
3 forevery 1 =1,..., k.

(ii) Pick two factors of g, say ¢,.;(u,v) and g, ;j(u, v), which can be proved

that both of them can not be any power of 3 by using the following facts:

Gni(u,v) = (u — v)degreeloni)  (mod 3),

Gnj(u,v) = (u— v)degree(gn’j) ( mod 3).

(ili) Show that the multiple g, g, ; is not a prime power, which is suffi-
cient to prove that the resultant between g, ; and g, ; is a power of 3.

Case n = 2 (mod 3). In this case, the situation is much more compli-
cated. For all n, f/(u,v) and g,(u,v) also behave like previous case in the
steps (i) and (iii). However, it is slightly different in step (ii). We need to
employ some facts about the Newton polygon on 3-adic fields to know about
the 3-adic valuation of g, ;. We will show how to do this for n = 5 (for other

n, the proofs will proceed in the same way). We have
gs.1(u,v) = u® — 2u"v — 2u®0? + uSvd — Hutvt + udv® — 2008 — 2u” + V8,

and
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gs.2(u,v) = u'®+2uBv46utv? —2u3v3+ 11020 +21u0® — 110 %0 — w07+

27udv® — u"v? — 114500 + 21 w20 + 11u*o'? — 200! + 6uv™® + 2uw™® + 16,

u

As g5 ; are homogeneous in u and v, we may replace U := — in the expressions,
v

and then get corresponding polynomials in terms of U. We will find the

Newton polygons for gs,;(1 4+ X) instead, and explore their roots, where
gs1(1+X)=X8+6X"+ 12X +3X° —30X* — 63X°% — 63X% — 36X — 9,

and

gso(l + X) = X1 + 18X 4 156 X1 + 852X 4 3261X12 4+ 9279X 1! +
20394 X 10435496 X 2449617 X8 455971 X "+ 50814 X6+ 36774 X5+20871 X4+
9072X3 + 2916 X2 + 648X + 81.

The Newton polygons for g5 ; and g5 » with p = 3, as shown in Figure 5.1 and
5.2 below, reveal that the slope of the only segment of each polygon is —i.
By Theorem 2.3.13, all roots of g5,;(1 + X) (also for all of g11,(1 + X) and
g17.:(1 + X)) have the 3-adic absolute values 37%. Hence any root of g5 ;(U)

is in the form
1 + a 3-adic number of absolute value 371,
If v is a root of g;5,;(U), then

U = als = max{|Uls, |als} = 374,

so that
|95,:(U |3—H|U—Oé|3 ~)deglon.),
where a ranges over all roots of g57i(U ). Thus the 3-adic valuation of g5 ;(U)
d i : : :
is at most %. It remains to solve the equations gs;(u,v) = 3% with
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d i .
0 < k< %. We find that the only solutions to gsi(u,v) = 3° are

(0,+£1), (£1,0), which contradicts the facts from Remark 5.0.1, and no solu-
tion to gs1(u,v) = 3* for other k. Similarly, the only solutions to gs»(u,v) =
1 are (0,%£1),(£1,0),(=1,1),(1,—1); the solutions to gs2(u,v) = 3* are
(—=1,—-1),(1,1); and no solution to gs2(u,v) = 3* for other k.

That is the proof of Theorem 5.1.2 when we consider only in the case of

Uy v
integral points. In case of rational points, we write R = <—0, —0) € C(Q)
Wo Wo

in lowest terms. The condition that m is cube-free implies uy ane vy are

coprime. Replacing v and v in the expressions of nR in previous cases by

Uo Vo . .
—, and —, respectively, we obtain

Wy Wo
nR — ( fn(u()av()) ffl(uoﬂlo) ) 7

wan(u07 Uo) 7 wﬂgn(U07 Uo)

and then proceed the proof for f,(ug,vo) and g,(ug,v), so the conclusion

follows. O

Figure 5.1: Newton polygon of g51(1 + X)
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7 8 9 10 11 12 13 14 15 16

Figure 5.2: Newton polygon of g52(1 + X)

5.2 Primality Conjecture (without isogeny con-

dition)

As we have seen, applying the isogeny condition entails Lemma 5.1.1, and

subsequently Theorem 5.1.2. In this section, we will explore the possibilities

when this hypothesis is not assumed.

The connections between the curves

C:U4+V3=m and E,,:Y?=X>—432m?
is given via the bi-rational transformation (5.3) and we have

U, 2°3*mB+ C,

W, 6A,,B,

Since any cancellation of the right-hand side comes from 6A4, only and
ged(Ay, B,) = 1, it implies that W, has at least two coprime factors if

we can prove that B, is always greater than 1, and 64, can avoid being
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cancelled eventually.
In the first part, we aim to prove that B, > 1 for all n > N;, where N;

is a uniform constant. One application of Ingram’s result in [15] is follows:

Proposition 5.2.1. There exists an absolute constant Ny (independent of

m) such that B, > 1 for all n > Ny, except for at most one value of n.

Proof. From Theorem 1 of [15], with the notations used there, there is an
absolute constant C' such that B, > 1 for all n > CM(P)', except for at
most one value of n, where the quantity M (P) is related to the Tamagawa
number. Since the Mordell curve F,, has integral j-invariant, along the same
lines as in [15], E,, always has M (P) < 12. Hence an absolute bound for the

indices n such that B,, > 1 exists. O

The key point of this section is to make the bound for the indices n such
that B, > 1 explicit by following the proof of Theorem 2 of [15], which is
a special, but stronger, case of Theorem 1 of [15] for the congruent number
curves. Unfortunately, our result may not cover every P and m. Unlike the
results of the congruent number curves shown in [15], 2P and 3P may be

integral on our curve FE,,, e.g. when m = 7 with P = [84, 756], then
2P = [28,28], 3P = [57, —405], and 4P = [1708, —70588].

However, the following Lemma guarantees that for any other prime multi-
pliers 3 < ¢ < 13, ¢P can not be integral. Note that any multiple of a
non-integral point is also non-integral. Thus we will initially focus on an

integral point P.
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Lemma 5.2.2. Given an integral point of infinite order P = (x,y) € E,,(Q)
such that ged(z,m) = 1, the points 5P, TP, 11P, and 13P are all non-

integral.

Proof. Write

_ 0u(P) _ dula®m?)
GE(P) G2 )

The idea of the proof is that we will compute the resultants of ¢, (23, m?) and

nP

U (2®, m?), which are of the form 243%m¢ with A, B, C' € N. The condition
ged(x,m) = 1 implies that the common factors of ¢,, and 1), have to divide

2438 Thus our task is to solve the Thue equations
U (2, m?) = £223°,

where 0 < a < A and 0 < b < B. In Appendix B, we will show that the
possible values of a and b can be reduced to minimize the number of such
equations. Thus we will deal finally with only a small finite number of Thue
equations, and then solve them using PARI/GP [31] and MAGMA [20].
For n =5, and 11, we will apply this argument directly, while for n = 7,
and 13, the general technique is the same, but the details differ slightly. The
process to establish all the possible values of a and b as well as all solutions

of the equations can be found in Appendix B. O

However, to prove the non-integrality of the multiples of an integral point

on F,,, we need the fact that 2P and 3P are non-integral.
Definition 5.2.3. The condition (x) is that for an integral point P € E,,(Q),

2P, 3P are non-integral and ged(X(P),3m) =1
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From now on, we will work on this kind of integral point only.

Remark 5.2.4. If nP is integral, then n cannot be divisible by 2,3,5,7, 11,

and 13, by the condition (*) and Lemma 5.2.2; that is n > 17.
Here is the result on the integrality of the multiples of P:

Theorem 5.2.5. Let P € E,,(Q) be an integral point of infinite order such
that ged(X (P),3m) = 1. Suppose 2P, 3P are non-integral. Then there is at
most one value of n > 1 such that nP is integral, except when either

m = 42 mod 9 and m has a prime factor congruent to 1 mod 6, or

m =0 mod 9 and m has a prime factor congruent to 1 mod 6,

in such cases, the result always holds for all m > 3739071625384.

The proof of Theorem 5.2.5 relies upon the height bounds in Theorem

4.6.4, repeated here again,

5 log 2 + Llog3 if m = £1,+3,+4 (mod 9),
5logZ 4+ 2log3 if m = =£2 (mod 9), and m satisfies (1),

o5 log 2 + - log 3 if = +2 (mod 9),

h(P) > and m does not satisfy (f),
slog 2 — 1log3 if m =0 (mod 9), and m satisfies (1),
5-log 2 — =-log3 if m =0 (mod 9),

and m does not satisfy (1),

(5.12)
where the condition () as on page 48 means that every prime divisor of m,
which is greater than 3, is congruent to 5 modulo 6. We will refer to the

cases on the right-hand side of (5.12) as Cases I-V in the sequel. We can
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divide the proof into four main steps.
Step 1: Bounding the indices n such that nP is integral in terms of m:

Suppose nP is integral, n > 2. Then

max{4.608 x 102, 2.653 x 10%(logm)2

Njot

max{4.608 x 10%, 1.769 x 10**(log m

[NJle

max{4.608 x 102, 2.652 x 102*(logm)?

(logm)>}
(logm)2}
n < max{1.253 x 10%, 5.305 x 10**(logm)3}
(logm)2}
(logm)2}

max{4.608 x 102, 3.535 x 102*(logm)?2 },

for Cases I-V, respectively.

In order to prove these, we need to use David’s lower bound, in [§8], on
linear forms in elliptic logarithms. On the other hand, we will provide an
upper bound on the linear forms in elliptic logarithms in Lemma 5.2.10 below.
Gathering these two bounds gives us the bounds on n depending only on m,
as desired.

Step 2: Exploring the relationship between two large multipliers of an integral

point: Suppose ni1 P and ns P are integral with 2 < n; < n,. Then

n? 1 w
o5 logm — 3 logm + log %t
n? 1 w
13 logm — 3 logm + log <
logng > %logm—%logm%—log“’—;

Z—ilogm— élogm—l—log% — %10g3— %10g2

i logm — Llogm +log %9 — 41og3 — 3 log 2,
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where w; is the real period of Ej.
Step 3: Finding an explicit upper bound on m.
In this step, we will combine two steps above and Lemma 5.2.2 by sub-

stituting n; and ns in the estimates from step 2 by

ny > 17, and

ne < the bounds in step 1.

With some calculations, we obtain

Case I:  m <628,

Case II. m < 16,

Case III: m < 3739071625384,
Case IV: m < 719,

Case V:  m < 161993.

Step 4: Computing all integral points on E,, which satisfy the condition (x)

when m < 719. We will discuss about this step in Appendix C.

Remark 5.2.6. To explain how these four steps imply the proof of Theorem
5.2, we suppose first that there are at least two multipliers, ny,ny > 1, of P
such that n; P is integral (note that we omit the case when there is at most
one n such that nP is integral). Step 1 implies that if nP is integral; that is
B,, = 1, then n can be bounded above by some terms of m. In step 3, we can
see that m is bounded above exactly by an absolute constant, say C'. This
means n is bounded by C' as well. The remaining thing to do is to check all
integral points on the curves E,, : Y2 = X3 — 432m? when m < C. In the
cases IIT and IV, the bound of m is too large, so we will omit to work on

these cases.
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To follow the whole proof easier, we will separate to prove each step in

the following subsections.

5.2.1 Proof of Step 1

The proof of step 1 requires firstly an upper bound for the canonical heights

of integral points, which follows directly from the next Lemma.
Lemma 5.2.7. Suppose nP is integral, n > 2. Then | X (P)| < 6n*m53.
Proof. Postpone to the end of section. O

Suppose nP is integral, for some n > 2. Combining (4.8) and Lemma

5.2.7 yields

h(P) < $1log(X(P)) + 3 log3 < %1og(6n2m%) + 3 log 3,

N =

so that

~

1 1
h(P) <logn + glogm + 3 log2 + %logS (5.13)

Secondly, the proof of step 1 also requires an upper bound and a lower
bound for linear forms in elliptic logarithms. Given an elliptic curve in short

Weierstrass form
E/Q:y* = f(2),
and @ € E(Q). Let w be the real period of E. Consider the linear form
Lyy(z,w) =nz+ kw,

where 2z is chosen to be the principal value of the elliptic logarithm of (), and

k is chosen to make L, ;(z,w) the principal value of n@). Lemma 10 of [15]

74



is a special case of Theorem 2.1 of [8], giving us an explicit lower bound on

the value of such linear form.

Lemma 5.2.8. (LEMMA 10, [15]) Given an elliptic curve E/Q, let w and
W' be the real and complex periods of E, chosen such that T = w'/w is in the

fundamental region
{ze€C:|z| >1, Im(z) >0, and |Re(z)| < 1}

of the action of SLy(Z) on the upper half plane. Given a non-torsion integral
point P, let z be the principal value of the elliptic logarithm of P, and let k
be chosen such that Ly ;(z,w) = nz + kw is the principal value of the elliptic

logarithm of nP. Let B,V, and V5 be positive real numbers chosen such that

log(V3) > max {h(E), %(TT)} |

log(Vy) > max {Qh(P), h(E), -
and
log(B) > max{eh(E),log |n|,log |k|,log(V7)}.
Then either L, ;(z,w) =0, or else
log | Ly x(z,w)| > —C(log B + 1)(loglog B + h(E) + 1) log V; log V4,
where C is taken to be 4 x 104 and e is approzimately 2.718281828.

Note that L, ;, is non-vanishing if P is non-torsion.
Here, we will prove that for the Mordell curve F,,, if nP is an integral
point, then Ly, x(z,wy,) is very small. The proof relies upon the estimate from

Lemma 8 of [15], which is as follows.
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Lemma 5.2.9. Let P € E,,(Q) be such that
X(P) > 2max{|zr|: T € E[2) \ {O}}.
If z is the principal value of the elliptic logarithm of P, then
3 1 3
—§log2 <log|z| + ilog\xp\ < §log2.

Lemma 5.2.10. Suppose nP is integral, n > 2. Let z be the principal value
of the elliptic logarithm of P, and w,, be the real period of E,,. Choose k
such that Ly = nz + kwy, is the principal value of the elliptic logarithm of
nP. Then

log [ Lk (2,wm)| <4 =2 1ogm (5.14)

—g—ilogm—i- %logZ—i— %log?)

n? 3 1
| — 5 logm + 5log2 + 5 log 3.

Proof. By Lemma 5.2.9, we have that if
Xop > 2max{|zr| : T € E[2] \ {O}},
then

3 1
log | Ly (2, wim)| < 3 log2 — §log | Xop|. (5.15)

We can see that 2max{|zr|: T € E[2]\ {O}} < 24m, so we will show firstly
that X, p is greater than 24m, and then we can employ the estimate (5.15)

to prove the bound (5.14).
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Suppose X, p < 24m. Then, from (5.12) and (4.8),

(

1 1 - (

5 log(24m) + 3 log3 > h(nP) > q n?(;log 2 + Llog3)
(
(

Note that from Remark 5.2.4, the assumption n > 2 can change to n > 17.
We may assume m > 6 for Cases I-III as there are no non-torsion points on
E when m < 5, and assume m > 9 for Cases IV-V as m =0 (mod 9). Then
n <4,3,9,3, and 11, respectively, contradicting the fact that n > 17. Thus

X,p > 24m, allowing us to deduce (5.15), so that

log |Lnx(z,wm)| < —%log|an| + %1og2 by (5.15)
< —ﬁ(np) Llog3+ 2log2 by (4.8)
—n? (3 log 2 + $51og 3) + 2log 2 + 3 log 3

2

(
(
—n* (
(
(

—n log —1—1610g3) glog2+%log3

—
‘»—x w|"‘

log % + —10g3) + %log2+ %10g3

|
3

8

W= =
o

2

—n? (5log 2 — Tlog3) + 3log2 + 1 log3

n2

log 2 — +log3) + 2log2 + 1log3

<

by (5.12).
The different signs in Cases IV and V make for a different consideration.

Notice that

1log— — —log3 > = logm, for m > 6

log— — —log3 > = logm, for m > 33
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(the cases m < 33 will be checked in Appendix C). Hence

—2logm — n? (—5- log2 + £ log 3) + 3log2 + 5 log3
—2logm —n* (=35 log2 + 2 log3) + 3log2 + 3 log 3
g Lyl <4 —22 logm — n? (—1i5 log 2 + 55 log3) + 31log2 + 3 log 3

~2 logm + 3log2 + Llog3

n? 3 1
—i5 logm + 5 log2 + 3 log 3.

\

We can see that in Cases I-III, the sum of the last three terms is always

negative as n > 17. Therefore the bound (5.14) follows. 4

We are now in position to find an upper bound on n such that nP is

integral, which can be expressed in terms of m.

Lemma 5.2.11. Suppose nP is integral, n > 2. Then

max{4.608 x 102, 2.653 x 1024(logm)3

Njot

max{4.608 x 10, 1.769 x 10?*(log m

5

|

max{4.608 x 10%®, 1.816 x 10**(logm

(logm)2}
(logm)2}
n < ¢ max{1.253 x 102, 5.305 x 102*(logm)?2}
(logm)2}
(logm)2}

max{4.608 x 102, 2.421 x 10**(logm)2 }.

Proof. With the same notations used in Lemma 5.2.8, we have

log |L, x| > —C(log B + 1)(loglog B + h(E) +1)*log V; log Vo, (5.16)

1 .
+ \/gz. Asm > 6,
2
3
Im(7)

where C' = 4 x 10*!. For the curve E,,, 7 =

h(E,,) = log(4 - 432m?) > 11.038 >
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We set
log Vo = h(E,,) = 2logm + 6log 2 + 3log 3.
By (5.13) and the fact that |z| < %n, we may take
log Vi = 3logmax{n,m} + 6log 2 + 3log 3.
As |nz + kwy,| < %n, we have |k| < n, and so we may take
log(B) = 3elogmax{n, m} + 6elog 2 + 3elog 3.

Substituting all of them into (5.16) and then combining with (5.14), we get

2
n
5= logm

’1‘—; logm
, < C(log B + 1)(loglog B + h(E,,) + 1)3-

108 logm

) log Vi log V5.
5= logm — %10g2— %log?)

n? 3 1
= logm — Slog2 — S log3

We separate our consideration in two cases. First, assuming that n > m, and

using the estimate log(logn + 2log 2 4 log 3) < logn for all n > 6, we obtain
n* < F(logn), (5.17)

where
F(z)=C" (z+2log2 +log3 + é) (z+2log2 + slog 3+ %)3
(z + 2log 2 + log 3) (3log 2 + 2log 3 + z)
for Cases I - III, and

F(z) = C'{2'3% (2 + 2log2 + log 3 + 5-) (z + 2log 2 + § log 3 + %)3
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(z +2log 2 +log 3) (3log 2 + 2log 3 + ) + 3log2 + 3 log 3},

for Cases IV and V.
2138eC 2335 233%eC 27

d
log6 * log6 ~ log6 ’log9’an

The constant C’ varies in each case as

——, respectively.
log 9 P Y

We know that (5.17) bounds n, but we require some tool to refine it.

Claim 5.2.12. (CramM 23, [15]) Let F'(z) € R[z] be a polynomial of degree

d. Suppose that for some W > 0 and every 0 < k < d,
W2 > 27k F®) (log W),
where F®) denote the kth derivative of F. Then 22 > F(log ) for all # > W.
It can be checked that if
(1,608 x 10%,
4.608 x 10%,

W =< 1.253 x 10%,
4.608 x 1025,

[ 4.608 x 10%%,
then W2 > 27%F®) (log W) for all 0 < k < 6. Hence Claim 5.2.12 implies
particularly that 22 > F(logx) for all x > W. Therefore the bound (5.17)

implies that

n < 4.608 x 10%,
n < 4.608 x 1028,
n < 1.253 x 10%,
n < 4.608 x 1028,
n < 4.608 x 10%8,
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for Cases I-V, respectively.

On the other hand, if n < m, then by the estimate
log(logm + 2log 2 + log 3) < logm
again, we get
n? < C"log(m)5G(logm),
where

G(z) ={(z +2log2 +log3 +1) (x4 2log2 + 3log3 + %)3

(z + 2log 2 +log 3) (2log 2 + 2log 3 + z) } /a5,
for Cases I-111, so that
G(logm) < 493 for all m > 6,
and

G(z)={2-3-¢-C (v +2log2+1log3 +1) (v + 2log2 + 2 log 3 + 2)°

(z + 2log 2 + log 3) (2log 2 + 2 log 3 + z) + 3log2 + £ log 3} /",
for Cases IV-V, so that
G(logm) < 1.221 x 107 for all m > 9.
The constants C" are 213%eC, 233%(C, 233%¢C, 27, and 48, respectively. Hence

n < 2.653 x 10%(logm)3,

[Slfey

n < 1.769 x 10**(logm

Y

Njot

nojan

n < 1.816 x 10**(logm

?

( )

( )
n < 5.305 x 10**(logm)?,

( )
n < 2.421 x 102 (logm)?,
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0

Next, we will show the proof of Lemma 5.2.7, which relies on the following

two claims.
Claim 5.2.13. Given Q € E[n] \ {0}, we have |X(Q)| < 3n2m5.

Proof of Lemma 5.2.13. Appealing to the isomorphism

E(C) — E4(C)
(X,Y) — (Xm™3,Ym™),

it suffices to prove the claim for m = 1, which we do by using another

isomorphism deduced from the study of elliptic functions. Let A = w;Z[w]
14++v-3
2
of Fy. Note that 0.88 < w; < 0.89, computed with PARI/GP. Consider the

be the period lattice of E;, where w = , and wy is the real period

Weierstrass p-function associated to £

=3+ 2 (o m)

u€EA
u#£0

and we have
C/A — E1(C)

1
z — <p(z),§p’(z)>
is an isomorphism. Then |p(z2)| = |2|72 + O(1) near z = 0, and we will
prove the claim by making this explicit. We may choose a representative
1
z = qw; + Qawsy, where wy = wyw, of any class in C/A such that |a;| < 3

then z is in the region

Ay = {z € C: |Re(2)] < Zwl and [Im(2)] < ?M} |
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Claim I.1: |u — z| > ?M, for alluw € A.

Proof. Tf |u| > /3wy , then |z]| < M, so that
2
ul _ u] _ V3

— 2> — 2l [ =ul = 2] > Ju] - =2 =2 > L2
w2l 2 | ful = [2l | = Jul = |2l 2 Jul - 5 = 21> Yo

The lattice points left to consider are all points u such that |u| < v/3|w;|.
There are only 6 such lattice points: wy, wy, wy — wy, —wy, —Ws, Wi — wsy. In
fact, it suffices to consider just 3 points, u = wy, wy, and wy — wq, because
of the symmetry of the lattice. Each one satisfies |u| = |w;|. Consider the
distance between u and the corresponding closest point z = ajw; + asws in

Ao.
%)

(i) If u = wy, then z = %+Z’ and

o3l - (0 Q) ()

(ii) If u = we, then z = % + %, and

2
o= |2+ 2 = e = (P
42 T 4 ‘
(iii) If w = —w; + wy, then z = —% + %, and
w o wyl?2 1 lul\? V3 ’
L2 a2 (2 S 2
fu=2| ‘ 2 P2l =gl <2>—<4’“‘>
This completes the proof of Claim I.1. O
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Now, by Claim I.1,

uF0 u#0

IN
g
™)
—
SN
I
N
aF
)
-+
IS
[\
:N
¥
[\

16 e 16
< 2[¢] Z 3[ul® +12] Z 3[uft”
u€EA

u€EA
u#£0 u#£0

For o > 1, let

F(o):= E |u|72‘7.
uEN
u#£0

Then
32 16
9()] < 172 + RG] + S F@)1sf

Next we will determine upper bounds for F'(3/2) and F(2). Note that

Fo) =3[l =63 |u[ =6 3 law + fuw| >,

u€EA u€EN| a>0,4>0
u#0 u#0

where

A = {uEA:]u| > 0,and 0 < arg(u) <

2y

wl

and arg(u) is the principal argument of u. Since

]awl + ﬁw2]2 = (awl + 6&)2)(0&&)1 -+ BCJQ) = w%(oﬂ + Oéﬁ + ﬂ2>,
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we have

wE 1 - 1
TS 2 @y o @ran ey )

- 1
=37+ ) i ernETnTE i T

a,3>0

(a,8)7#(0,0)

If we denote by S the region
S = {(:r;,y) ER?: 2?2 + 9% > 1, and0§y<x\/§},

then

1
Z (a+1)2+(a+1)(B+1)+(B+1)2)°

a,620
(a,8)7#(0,0)

<i// 1 dxd
=Bl @ ey

2 /s /OO s o . _
< — re+r<sinf cos ) “rdrdf.
V3 .Jo Jr ( )

Calculating the last integral values by Maple [21] leads
F(3/2) < 17.539 and F(2) < 15.832,
and hence

32 16
()] < 2724+ S G/l + 5 F(2))2

32 3 16 3
<22+ 3(17.539)§(0.89) + 5 (15.832)7(0.89)”

< Jz|7% + 194.359,

as |z| < ‘/7§|w1|. If z € C/A is a point of order dividing n (other that O),

then |z] > “‘;—1‘, so that
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2

nt
194.359 < 3n?
for all n > 11. For the cases n < 10, we can check all explicit torsion points

of order n in E;(C), and then the proof of Lemma is completed. O
Claim 5.2.14. Suppose nP is an integral point, and h,, = ¢,,(P). Then
|| < 2771

Proof. To give a bound for h,,, we will consider the order to which all primes
divide h,. Suppose there exists a prime p other than 2 and 3 such that
p | hn = ¥n(P). Then p also divides ¢,(P) as nP is integral, and hence
p has to divide the resultant of ¢, and 1,, which equals (432B)¢, where
B = —432m? and d = in*(n* — 1), by Remark 4.2.2. As p # 2,3, p | m.
Since ¢,(P) is a monic binary form in z* and B, it forces p | x, contradicting
the assumption that = and m are coprime. Thus no such p exists. It now
remains to think about when p = 2 or 3.

Refering to Remark 4.2.2 again, we have

24

wn(P) :7%(33,777/) =nx 2 T,
is also a binary form in 2% and B = —432m?. Since ged(z,3) = 1 and 3 1 n,
hy, is not divisible by 3, so ords(h,) = 0.

For p = 2, we have either 2 | x or 2 1 z. With the same reasons as above,
the latter would imply ords(h,) = 0. Otherwise, from the initial values of
h,, we observe that

=n?—1 if3tn

Ordg(hn)
>n?—1 if3|n.
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To verify these by induction for all n, we will use the formulas (4.5) and (4.6),

as detailed in Appendix B. Therefore the conclusion of Claim II arises. [

Proof of Lemma 5.2.7. Suppose for a contradiction that | X (P)| > 6n2ms3. If
Q € En|\ {O}, then, by Claim 5.2.13,

Thus
X(P)\ =
i 2 (5572) 7
2
as h2 = n? H | X (P)—X(Q)| and E[n]\ {O} consists of n* — 1 points.
QeE[N\{O}
On the other hand, by Claim 5.2.14,
|| < 2771,

So that

23> X(P) > 6n2ms,

and hence n < 1 as m > 6, which is impossible. Thereby | X (P)| < 6n2ms3.

0

5.2.2 Proof of Step 2

We now come to step 2 of the proof of Lemma 5.1.1 to construct a relation
between n; and ny when ny P and noP are integral points. The first two

claims below are essential to help us get there.

Claim 5.2.15. Suppose nP is an integral point, n > 2. Then n is prime.
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Claim 5.2.16. Suppose nP is integral, and denote z and nz + kw,, the
principal values of the elliptic logarithms of P and nP, respectively. If k = 0,

then n = 1.
We postpone the proofs of these two claims to the end of this section.

Lemma 5.2.17. Suppose n1 P and ny P are integral with 2 < ny; < ng. Then

n? 1 w
5 logm — 3 logm + log 4
n2 w
13 logm — %logm—l—log?l
log ng > %logm — 3 logm + log % (5.18)

Z’—ilogm— %logm—i-log% — glogQ— %log?)

tlogm — Llogm +log % — 3log2 — Llog3,

where wy is the real period of E;.

Proof. By the triangle inequality and Lemma 5.2.10, we have

m_%wl S wm|n2k’1 — nlk’g‘

< nglniz + kywm| + ni|nez + kown|

( _n? _n3
NoMm™ 27 +nym= 27

M _r2
NoMm™ 12 + nym = 12 (519)
_" ,ﬁ
< Q ngm T8 +nym 2
_n 2 log2+21og3 _n3 2log 241 log3
NoMm~ 27 e2 °8“T398° 4 nym~ W e2 98573598

log 2+% log 3

2
4 ny 3
log 243 log 3 nym- % e2

2
_M 5
Nom 48 e2

The inequality on the left-hand side requires |noky — nqks| # 0: suppose that
noki = niks. From Claim 5.20, we know that n; and n, are prime. This

implies k; # 0, by Claim 5.2.16. Thus either ny = ny or ny | |ky|. If the latter
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occurs, then ny < |ky|. Following as in the proof of Proposition 13 [15], we

have

2
2|k’1| S w_(|nlz + klwm| + |TL12J|) S ni+ 1’

m

as |z| < %n and |1z + kywy,| < %n This induces
2711 S 2|k‘1| S ni + 1,

which is impossible as n; > 2. Thus n; = no.
We will give details of the proof for Case I only (the same process will be

applied for Cases II-V). The estimate (5.19) gives

_1 _1
m~ 3w _n? m~ 27w, _n3
<nom 2T or <

2 2
In the latter case,

2 2
w1 _np 1 _me 1
— <nym 73 <ngm” 27 t3.

2
Taking the logarithm gives ny < 7, a contradiction. Hence

_1w1 _ni
m 3— < nom~ 27
2 = 12 9

so that

2

1
logng > %logm— glogm—l—log %

O

Proof of Claim 5.2.14. Suppose n is composite and let ¢ be the smallest
prime dividing n. Write a = ﬁ; then nP = ¢(aP) with ¢ < a. Then
q

the estimates (5.13) and (5.12) imply
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1 1 5 . -
logq+ 3logm + S log2+ log3 > h(aP) = a*h(P)

v
IS
[N
~—~~ A~ —~ —~
|H
<}
o
|3
+
|~
—
=}
o2
w
~

v
Qw
~—~~ I~ —~ —~
S|~
oo
[a—
=}
o
w[3
_|_
gl
—
o
09
w
~—

\

Again assuming m > 6 in Cases [-I1I, and m > 9 in Cases IV-V, then

( 7.5610g g + 14.06

3.36log q + 6.25

q> << 30.25log q + 56.25 (5.20)
7.98log q + 15.92

[ 39.7loggq + 79.18.

Lemma 6 of [15] says that for any positive real numbers a, b, if
f(x) =2*> —alogx — b,
then f(z) > 0 for z > max{e,a + b}. Applying to (5.20), we get

g < 21.62, 9.61, 86.5, 23.9, and 118.88.
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Indeed, ¢ < 5,3,11,5, and 13, respectively, by checking the smaller values

q. These lead to contradictions as n cannot divisible by any prime less than

17. U

Proof of Claim 5.2.15. From the proofs of Claim 25 and Lemma 12 of [15],

the elliptic logarithm z satisfies

1 [~ dt
2 /X(p) Vi3 — 432m?
3 1
< 3 log 2 + 3 log max{| X (P)[,24m}. (5.21)

Moreover, by (5.14), we have

logn +log|z| =log|nz| < ¢ —Zlogm

n? 3 1
—5-logm + Slog2 + 3 log3

n? 3 1
—45 logm + Slog2 + 3 log 3

\

as k = 0. If | X (P)| > 24m, then the estimate (5.21) and Lemma 5.2.7 give

—log|z| —logn < 3log2+ 3log(|X(P)|) —logn

IN

2log 2+ 31og6 +logn + 3 logm — logn
< 2log2 + 3 log 3 + 3 logm.
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Then

2
n
5-logm

TZ2
15 logm
- < —log|z| — logn

103 logm

, X X < 2log2+ 3log3 + 3 logm.
5-logm — 5 log2 — 3 log 3

Z—;logm— %logZ— %log?)

So that n <6,4,12,7, and 9, respectively.

On the other hand, if | X (P)| < 24m, then

2
n
5= logm

,',LZ
slem | 1
2 < —log|z| — logn

108 logm

3 1
) , ) §§log2+§10g24m—logn,
5= logm — 5log2 — 2 log 3

Z—;logm— %10g2— %log?) )

which give n < 5,3, 8,6, and 8, respectively. But n cannot divisible by 2, 3, 5,

and 7, son = 1. O

5.2.3 Proof of Step 3

We arrive now at the step in finding an explicit bound on m in each case by

substituting n; and ny in the estimate (5.18) from step 2 by

ny > 17, and

ne < the bounds in step 1.
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Case I: If ny < 4.608 x 10?® and n; > 17, then substituting them into the

estimate (5.18), we get
280
log 4.608 4 281og 10 > logny > =7 log m + log %,

With a manipulation, m < 628.
On the other hand, if n, < 2.653 x 10%*(logm)2 and n, > 17, then, by

(5.18) again,

5 280
log 2.653 + 2410g 10 + - loglogm. > logny > Z—logm + log %
so that
280 5
S logm — - loglogm < 241og 10 + log 2.653 — log %

Then m < 376. Thus, in this case, m < 628.

Case II: If ny < 4.608 x 10?® and n; > 17, then

95
log 4.608 + 281og 10 > logny > 7 logm + log %,
som < 16. If ny < 1.769 x 1024(logm)g and n, > 17, then

95 5
7T logm — 5 loglogm < 241log 10 + log 1.769 — log %,

so m < 11. Thus, in this case, m < 16.

Case III: If ny, < 1.253 x 10* and ny > 17, then
253
log 1.253 4+ 291og 10 > logngy > 108 logm + log %,

so m < 3739071625384. If ny < 5.305 x 1024(logm)? and n; > 17, then

253 ) w1
—1 — —logl < 241og 10 + log 5. — log —
108 ogm 5 oglogm < 0g 10 + log 5.305 — log 5
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so m < 1794187182553. Thus, in this case, m < 3739071625384.

Case IV: If ny < 4.608 x 10?® and n; > 17, then
280 3 1
log 4.608 4 281og 10 > logny > 2—710gm+10g% — §log2 — glogS,

som < 719. If ny < 1.816 x 10**(log m)g and ny > 17, then

280 5 3 1
2—710gm— §loglogm < 241og 10 + log 1.816 —log% + 510g2+ glog?),

so m < 417. Thus, in this case, m < 719.

Case V: If ny < 4.608 x 10%® and n; > 17, then
273 3 1
log 4.608 4 281og 10 > logny > 4—810gm+10g% — §1og2 — glog3,

so m < 161993. If ny < 2.421 x 102*(logm)? and ny > 17, then

273 5 3 1
Elogm — iloglogm < 241log 10 4 log 2.421 — log% + 510g2 + §10g3,

so m < 83262. Thus, in this case, m < 161993.

In Cases III and V, we get massive bounds on m, so we will not work on
these Cases anymore. For other Cases, we will deal with the curves E,, with
small values m < 719 in Appendix C, and then the proof of Theorem 5.2.5

will be completed.

We now come to the final part of this section. Given a non-torsion point
R € C(Q), suppose P is a non-torsion rational point on E corresponding to

R by the bi-rational transformation (5.3). This gives

U, 223*mB3+C,

W, 6A,,B,
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From the proof of Theorem 5.1.2, we have that the greatest common divisor
g of the numerator and the denominator of the right-hand side comes from

the term 6A4,, only; that is, g1 B,, and g | 72m.
A Oy

If R corresponds to a non-integral point P = | —, —=
Bi" By

), then B, > 1

for all n > 1. In this situation, proving that 7” > 1 requires the condition
that ged(Ay,m) = 1.

If R corresponds to an integral point P = (A;,C}), then, by Theo-
rem 5.1.1, B, > 1 for at most one exception under the assumption that
ged(Aq,3m) = 1, and 2P, 3P are non-integral.

We can conclude the precise statement of the second main result as fol-

lows:

Theorem 5.2.18. (MAIN THEOREM II) Given C an elliptic curve as in

(5.1) with m € Z cube-free, let R be a rational point on C corresponding to a

Un Vo ) Suppose

rational point P on E. Write, in lowest terms, nR = | —, —
P (Wn W,

that
. A Cy
ng(A1,m>:1 ZfP: (B—%’B_%

ged(X (P),3m) =1 and 2P,3P are non-integral if P is integral.

) 1s non-integral, or

Then there is at most one value of n > 1 such that W, is a prime power
unless

m =42 mod 9 and m has a prime factor congruent to 1 mod 6, or

m =0 mod 9 and m has a prime factor congruent to 1 mod 6,

in which cases, the result holds for m > 3739071625384.
Remark 5.2.19. If ged(A;,m) = 1, then ged(A,,,m) =1 for all n.

Proof. Let p be arbitrary prime number. We aim to show that
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ord,(ged(A4,,, m)) = 0.
It is obvious when p t m. Otherwise, suppose p | m. Reducing
E:Y?=X3-213m?
modulo p yields
E:y? =23,

A C .
3_%7 B_i”) € FE(Q). Since ged(A;,m) =

1 and p | m, so that p{ A;. Then P maps to some point P on E, other than

which is singular at (0,0). Let P = (

(0,0), i.e. P maps to a non-singular point P on E. We have the following

facts:

(i) Eys is a group, and

(ii) the reduction mod p map is a homomorphism.
A, C,
B2 B}
that is ord,(gcd(A,, m)) = 0. O

Thus the point nP = ( ) maps to n(P) on E,,. This means p{ Ay;

Proof of Main Theorem II. After we can prove that B, is guaranteed to be
greater than 1, for at most one exception, it remains to show that 6A4,, can
avoid being cancelled. For convenience, write

g
G=—2
ged(g, 6)

where ¢ is as above; then G | g | 72m and G | A,. This means our goal is
An

equivalent to showing that the term rel is greater than 1. Since G | A, and

ged(A,,m) = 1, it follows that ged(G,m) = 1, so G | 72 = 233%. Notice that

the condition ged(A,, m) = 1 and the defining equation of F,

C? = A® — 432m*BS, (5.22)
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imply ords(A4,) < 1 for all n. Hence G | 24. It now requires A, > 24 to

complete the proof. As m > 6, we have, by the equation (5.22),
A3 > 2133m? > 213362,

and hence A,, > 24, as desired. O
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Appendix A

Computation I

In order to complete the proof of Lemma 5.1.1, it remains to check the
statement for all cube-free integers m up to 353, as mentioned in the end of
the proof. In this part, we deal with the particular computations to find a
uniform bound, Ny, on the indices n such that B, > 2532ms for such m.
We start by computing ranks and generators of F : Y? = X3 — 432m? by
MAGMA [20] and PARI/GP [31]. We consider the curves of rank greater
than 0 only. For rank-1 curves, we test the elliptic divisibility sequence (B,,)
arising from the generator for n = 1,...,22. A special treatment is required
for the curves of rank 2. There are two parts needed to find the bound
No. We begin by finding the finite set of pairs (,j), i,7 € Z, such that
the canonical height of each point iP + j(Q is less than 40, where P and @)
represent the generators. Then we compute the elliptic divisibility sequence
(B,,) arising from each point iP + j@Q, for n = 1, ...,22. Now we get a bound,
say IV(, for the indices n from the points of canonical height less than 40. To

treat all cases, when h > 40, we return to the proof of Lemma 5.1.1 again.
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Replacing the estimate (5.8) by

h 40
h>—=>—
3 3’
leading to
4 2 1 101
Eonz -3 log m — §log48 —2.14 > 2% 32ms.

Taking specific values for m such that FE,, has rank-2 gives another bound,

say N{, for the indices n. Comparing Nj and NJ, let
No = min{Nj, N{'}.

The following tables show the uniform bound Ny for all curves of rank 1 and
2 (there are no curves of higher rank appearing).

Note that when m = 337, the curve requires a special tool, because we
could not find its generator and rank using Magma. This problem was solved

by using the SAGE online programme [24].
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m NO m NO m NO m NO m NO
6 | 1 70 | 1 1421 0 2141 0 289 |1 0
711 7110 1431 0 215 | 1 294 | 1
9 | 1 71 1511 0 2221 0 295 | 1
121 1 78 | 1 156 | 1 2231 0 301 0
131 0 7910 157 0 228 1 0 303 | 1
15] 1 84 | 1 159 | 0 2291 0 305 | 0
171 0 8 | 1 161 | O 231 ] 1 306 | 1
20| 2 87 1 0 164 | 0 2331 0 308 | 1
2211 89 | 0 166 | O 236 | 1 310 | O
26 | 1 90 | 1 169 | 0 238 | 1 3131 0
281 1 92 | 1 170 | 1 2411 0 3141 0
311 0 94 1 0 1711 0 2441 0 316 | 0O
33| 1 97 1 0 1721 0 2471 0 3191 0
341 1 98 | 0 1771 0 249 1 0 3211 0
35| 1 103 | O 178 | O 2511 0 322 | 1
42 1 1 105 | 1 1791 0 258 | 1 3231 0
431 0 106 | 1 180 | 1 2591 0 3251 0
491 0 107 | O 186 | 0 265 | 0O 330 | 1
50 | 1 114 | 1 187 | 1 267 | 1 3311 0
51| O 115 0 195 | 1 2741 0 3331 0
53| 0 117 0 197 0 2751 0 3371 0
58 | 1 123 | 0 198 | 1 2771 0 3391 0
61| O 130 | O 202 0O 278 1 0 3411 0O
62| 0 133 | 0 205 | 1 27191 0 346 | O
63| 1 134 0O 206 | O 284 | 0 349 | 0
67| 0 139 | 0 2111 O 285 | 1

68| 0 140 | 1 2121 0 286 | 1

69 | 1 1411 0 2131 0 2871 0

Table A.1: Rank-1 Curves
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19
30
37
65
86
91
110
124
126
127
132

b—‘O)—‘b—‘HO}—‘)—‘OH}—‘OZ

=

m
153
163
182
183
201
203
209
210
217
218
219

i i e e e e e e e e S I =

Table A.2: Rank-2 Curves
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282
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335
342
345
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Appendix B

Proofs of Claim 5.2.14 and

Lemma 5.2.2

The purpose of this chapter is to complete the proofs of Claim 5.2.14 (p. 86)
and Lemma 5.2.2 (p. 74).

Claim 5.2.7: Suppose nP is an integral point, and h,, = ¢,,(P). Then
|| < 2771

The first part will verify the expressions for ordy(h,,) in Claim II of Lemma
5.2.7. Remind that in this Lemma, we suppose P = (z,y) is an integral point
such that 2P ans 3P are non-integral, and ged(z,3m) = 1. We claim that

when 2 | x,

=n>—1 if3fn
ordy(hy,)
>n?—1 if 3| n.

For n odd, write n = 2k + 1. We can divide all possibilities of n and k as

follows.
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If 3 | n, then
(i) k=1 (mod 3) and k is odd,
(ii) k=1 (mod 3) and k is even,
If 31 n, then
(ili) £ =0 (mod 3) and k is odd,
(iv) £ =0 (mod 3) and k is even,
(v) k= —1 (mod 3) and k is odd,
(vi) k= —1 (mod 3) and k is even.

Then we use the formula (4.5),
hi = higohi — hi—1hi

to prove our claim.

For n even, write n = 2k. Then we use the formula (4.6),
hohy, = hi(hygohi_ — hi—ohi ),

instead for this case. All possibilities of n and k are described as follows.
If 3 | n, then 3 | k with

(vii) k is odd,

(viil) k is even.
If 34 n, then 31k, so

(ix) k=1 (mod 3) and k is odd,

(x) k=1 (mod 3) and k is even,
(xi) k = —1 (mod 3) and k is odd,
(xii) k = —1 (mod 3) and k is even.

Note that since we consider ords(h,,) when 2 | z and ged(xz, m) = 1, from the

equation
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y? = o3 — 432m?,

it follows that ords(y) = 2 and ords(z) > 2.
Case (i): k=1 (mod 3) and k is odd imply 3 | £+ 2 odd, 3 | k — 1 even,

31k +1 even, so

ordg(thhi) = Ord2<hk+2) + 301‘d2<hk)
> (k+2)? = 1+3(k* - 1)
= 4k? + 4k,

and

ordg(hk,lhiﬂ) = ordg(hk,l) -+ 30rd2(hk+1)
> (k—1)*> — 3+ ordy(y) + 3((k + 1)* — 3+ orda(y))
= 4k% + 4k — 8 + dorda(y) = 4k% + 4k,

as ords(y) = 2. Then

ordg(hy) > 4k* + 4k = 2k +1)> =1 =n? — 1.

Case (ii): k=1 (mod 3) and k is even imply 3 | k+ 2 even, 3 | kK — 1 odd,
31k+1odd, so

ordg(hgsohy) > (k+2)? — 3 + ordy(y) + 3(k* — 3 + orda(y))
— 42 4 4k — 8 + dordy(y) = 4K2 + 4k,

and
ord2(hk_1h%+1) >(k—12—-1+3((k+1)2-1))

= 4k> + Ak.
Then
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ordy(hy) > 4k* + 4k = 2k +1)> =1 =n? — 1.
Case (iii): £ =0 (mod 3) and k is odd imply 31k + 2 odd, 31k — 1 even,

31k +1 even, so

Ordg(thrth) Z (k + 2)2 -1+ 3(l€2 — 1)
= 4k? + 4k,

and

ordy(hg_1hi,,) = (k—1)*> =3+ orda(y) + 3((k + 1) — 3 + orda(y))
= 4k* + 4k — 8 + dordy(y) = 4k* + 4k,

Then
ordy(h,,) = 4k* + 4k =n? — 1.
Case (iv): £ =0 (mod 3) and k is even imply 31k + 2 even, 31k — 1 odd,

31k+1odd, so

ordg(hgsohy) > (k+2)? — 3+ ordy(y) + 3(k* — 3 + orda(y))
— 42 + 4k — 8 + dorda(y) = 4k2 + 4k,

and
ordy(hg_1hi,,) =(k—12—=1+3((k+1)*—-1))

= 4k% + Ak.

Then

ordy(h,,) = 4k* + 4k =n? — 1.
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Case (v): k= —1 (mod 3) and k is odd imply 31k + 2 odd, 31k — 1 even,

3| k+1 even, so

Ordg(thrQh%) = (k + 2)2 -1+ 3(k2 — 1)
= 4k? + 4k,

and

orda(hg_1hi 1) > (k—1)* =3+ orde(y) + 3((k +1)* — 3+ orda(y))
— 42 4 4k — 8 + dordy(y) = 4K2 + 4k,

Then
ordy(h,,) = 4k* + 4k = n? — 1.
Case (vi): k = —1 (mod 3) and k is even imply 31 k + 2 even, 3tk — 1

odd, 3 | k+ 1 odd, so

Ordz(hk+2hz) = (k + 2)2 -3+ OI'dQ(?J) + 3(k2 -3+ OI‘dQ(fJ))
= 4k* + 4k — 8 + dordy(y) = 4k? + 4k,

and
Ofdg(hk_lh?,;_i_l) 2 (k — 1)2 —1 + 3((kf —+ 1)2 — 1))

= 4k* + 4k.

Then

ordy(hy,) > 4k?* + 4k = n? — 1.
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Case (vii): £ =0 (mod 3) and k is odd imply 31k + 2 odd, 31k — 2 odd,
31k —1even, 31k + 1 even, so

OI‘dQ(thrghi_l) = Ordz(hk+2) -+ 201"(?12(}7,]6,1)
= (k+2)? = 1+2(k— 1% =3+ ordy(y))
= 3k? — 1 + 2o0rds(y),

and
Ordg(hk_gthrl) = Ordg(hk_g) + 20rd2(hk+1)
=(k—2)>—=1+2((k+1)* =3+ ordy(y))
= 3k* — 1 + 2ordy(y),
Then

OI‘dQ(hn) = Ord2<hk) — Ol"dg(hQ) + ordg(hk+2hz_1 — hk—Qh%-i-l)
> k*—1—1—ordy(y) + 3k* — 1 + 2ordy(y)

= 4k* — 3+ ordy(y) = n* — 3 + ordy(y) =n? — 1

as ords(y) = 2.
Case (viii): £ = 0 (mod 3) and k is even imply 3 1 k + 2 even, 3 { k — 2
even, 31k —1o0dd, 31k + 1 odd, so

ordg(hyi2h? ) = (k+2)? — 3+ ordy(y) +2(k — 1 — 1)

= 3k%* + 1 + ordsy(y),
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and

orde(hx—2hi. ) = (k—2)* =3+ ords(y) +2((k +1)* — 1)
=3k* + 1+ orda(y),

Then

ords(hy,) = ords(hy) — ords(ho) + orda(hesahy_ — he—ohi ;)
> k* — 3+ ordy(y) — 1 — ordy(y) + 3k% + 1 + orda(y)

= 4k* — 3 + ordy(y) = n? — 3 + ordy(y) = n? — 1.

Case (ix): k=1 (mod 3) and k is odd imply 3 | £k 4+ 2 odd, 31 k — 2 odd,

3| k—1even, 3{k+1 even, so

ordy(hpyoh? ) > (k+2)2 — 14 2(k —1* — 3 + ordy(y))
= 3k% — 1 + 2ords(y),

and

Ordg(hk_gh%Jrl) = (]C — 2)2 -1+ 2((1{3 + ].)2 -3+ ordQ(y))
= 3k? — 1 + 2ordy(y),

Then

OI‘dQ(hn) = Ord2<hk) — OIdQ(hQ) + Ordg(hk_;,_ghzil — hk_gh%Jrl)
=k*—1—1—ordy(y) + 3k* — 1 + 2ordy(y)

= 4k* — 3 + ordy(y) = n* — 3 + ordy(y) = n? — 1.
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Case (x): k=1 (mod 3) and k is even imply 3 | £+ 2 even, 31k — 2 even,
3|k—1o0dd,31k+ 1 0dd, so

ordy(hyyoh? ) > (k+2)% =34 ordy(y) +2(k — 17 — 1)
= 3k% + 1 + orda(y),

and

ordy(hg—ohi,,) = (k—2)* =34 orda(y) +2((k+1)* — 1)
= 3k%* + 1 + ordy(y),

Then

ordy(hy,) = ords(hi) — orda(he) 4 orda(hgiohy_ — hie—ahi )
= k* — 3 + ordy(y) — 1 — ordy(y) + 3k* + 1 + orda(y)

= 4k? — 3+ ordy(y) = n® — 3+ ordy(y) = n* — 1.

Case (xi): k= —1 (mod 3) and k is odd imply 31 k+2 odd, 3 | k£ — 2 odd,

3tk —1even, 3| k—+1even, so

ordg(hyiohi ) = (k+2)>—1+2((k—1)> — 3+ orda(y))
= 3k* — 1 4 2o0rds(y),

and

Ordg(hk_ghi+1) > (k—2)2—1+2((k+1)*> =3+ ordy(y))
= 3k* — 1 + 2ords(y),
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Then

ords(hy,) = ords(hy) — orde(he) + ords(hyiohi_ — hi—2hi, ;)
=k*—1—1—ordy(y) + 3k* — 1 + 2ordy(y)

= 4k* — 3 + ordy(y) = n® — 3 + ordy(y) = n? — 1.

Case (xii): £ = —1 (mod 3) and k is even imply 31k + 2 even, 3 | k — 2

even, 31k —1o0dd, 3 | k+ 1 odd, so

ordg(hyi2h? ) = (k+2)? — 3+ ordy(y) +2(k — 17 — 1)

= 3k + 1 + ordy(y),
and

Ordg(hk_th+1> Z (k} — 2)2 -3+ Ord2<y> + 2((l{7 + 1)2 — ].)

= 3k% + 1 + orda(y),
Then

OI‘dQ(hn> = Ord2<hk) — Ol"dg(hg) + OI‘dQ(h}H_thil — hk_ghiJrl)
= k* — 3 +ordy(y) — 1 — ordy(y) + 3k* + 1 + ords(y)
= 4k* — 3 + ordy(y) = n? — 3 + ordy(y) = n* — 1.

Next, we will show the rest of the proof of Lemma 5.2.2 (p. 74). Lemma
5.2.2: Given an integral point of infinite order P = (z,y) € E,,(Q) such
that ged(z,m) = 1, the points 5P, 7P, 11P, and 13P are all non-integral.

We will give details of the proof of Lemma 5.2.2 for ¢5(x, m) only. Note

that for n = 7,13, ¥,(x,m) can be factorized. So we choose one of their
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factors, and then proceed the same argument.

Definition B.0.20. We define an admissible solution of the equation

Un(x,m) = c
is a solution (z,m) satisfying the properties:
(i) m > 6 € Z, cube-free,

(i) z,y € Q and zy # 0, where y* = 23 — 432m?.

Consider the resultant between ¢5(z, m) and 15(x, m), which is

2600 3450m200 .

From the assumption that ged(x,m) = 1, we have that any common factor
of ¢5 and 15 has to divide 26093459, So the result will be completed after we
can show that the solutions of the following equations

Ys(x,m) = 5x'? — 164160m2x° — 44789760m*2® + 128994508800m° x>

—8916100448256m® = 223°,

for 0 < a <600 and 0 < b < 450, are all not admissible solutions.

Firstly, we will simplify all possible values of the exponents a. Let
f(z,m) = 5(x, m). We could have a = 0.

Suppose a > 0. Then 2 | z, write x = 224, so
f(l‘7m) = 212f1(x1,m),
where fi(z1,m) = 5z}? — 20520m%z] — 699840m*z$ + 251942400mSx3 —
2176782336m8. This implies that a could be 12.
Suppose a > 12. Then 2 | 2y, write x; = 2x9, and
fl(mlv m) = 212f2(l‘2, m)?
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where fo(z2,m) = 5xd? — 2565m2z) — 10935m*x§ + 492075mbx3 — 531441m?®.
Soa=12+12 = 24.

Suppose a > 24. Then 2 | x2 and 2 | m, which is impossible as ged(z, m) =
1. Thus we could have a = 0,12, 24.

The argument to simplify the values of b is slightly different. We begin
by giving f(z,m) = ¥5(x,m) again. Suppose b > 0. Since ged(z,m) = 1, we
omit the case 3 | x and 3 | m. If 31z and 3 | m, then 3 1 ¢5(z, m), from the
expression of 5.

Now suppose 3 | x and 31 m, then replacing x = 3z to ¥5(xz, m) implies
f({E, m) = 312f1(:L‘1, m)

with fi(z1,m) = 5212 —6080m?z{ —61440m* 28 +6553600mS 23 —16777216m8.
3

Then we have b = 12. Suppose b > 12. Substituting r := x_12 in fi(xg,m)
m

gives a non-monic polynomial in 7,
F(r) = 5rt — 6080r3 — 61440r? + 6553600r — 16777216.

We can check that
i) F(r)=2r*+7r*+r+2 (mod 3),
(i) all roots of F'(r) = 0 are 1 (mod 3) only.

Thus if F(r) is divisible by 3, then r = 1 + 3s for some s € Z. We find that
F(l +3s) = 405s* — 163620s® — 71685052 + 192375005 — 10291131
= 31G(s),
where G(s) = 5s* —2020s® — 88505 + 2375005 — 127051, so that b = 12+4 =

16. Repeating this approach again for G(s), we get
(i) G(s) = 2s* + 2s® + 25 + 2 (mod 3),
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(ii) all roots of G(s) are 2 (mod 3) only.

If G(s) is divisible by 3, then s = 2 + 3¢ for some ¢ € Z, and
G(2 + 3t) = 405t* — 53460t> — 187650t% + 534060t + 296469 = 32H (t),

where H (t) = 45t* —5940¢3 — 2085012 + 59340t 4 32941. Then b = 16+2 = 18.
We can check that H(t) is never divisible by 3 at all. Thus we can summarize
all possible values of b as 0,12, 16, 18.

Finally, we will solve a finite number of equations of the form
sz, m) = £293°,

with a,b as above. Since t¥5(x,m) is homogeneous in z* and m?, we re-
place X = 2* and M = m? in ¢5(x,m). Then the equations become Thue
equations. The following tables show all solutions (X, M) of Thue equations
obtained by computing with PARI/GP and MAGMA. We can see that all
solutions lead to non-admissible solutions. Note that the symbol [ ] in the

tables means there is no solutions in those cases.

For other n, the expressions for ¢, (z, m), or ¥, (xz,m), a factor of 1, (x, m),
are given below.
brr(w,m) = 218 — 253447021 — 2123711 2m 512 4 2203913137 029 —

22431313119177181’6 + 234316772,105(}3 + 23631877?,12.

P11 (x,m) = 11250 — 26331112111 m 2257 — 21235111171311199 m a5+
21831011158713203 mOSx5! + 22°313711114313329 mBx 18+
2303161115477188311m 10245 — 236319112449152639 m 212+
21232211213113091 m 239 — 24832511261487 m 10230 —
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2°63271115313453997 m 18233 + 260339112157 557747 m?0 230 —
266333111171433160139'm*2 2™ + 27233771 111172731 227 m? 2 —
2783105111113188523 m 0221 + 28531311113116869' m 811 —
2903161115270691m 30215 + 296319111891 7731 m 3212 —

1029521 129091,.,34,..9 108954511 12,.,36,.6 115957112,..38..3 _ 5120960, 40
2+923°211°283 " m>*x” + 2*7°3°*5 11*m>°2® 4+ 2-°3°"11*m°°z 24935 m Y.

Urz(x,m) = 2™ — 2838479 'm?2% — 21337133073 'm* 50+
22039281199233'm 8% 4- 22°3131311872033 mB x50+
23031611111353'60149'm! 025" — 236318151'881'1977817'm 2254 —
24232351978913214811 m 2> + 2°232612824767049"m 6145 —
2583271916111011 701413 m 8% 4 262331531709001219 m 20 42 —
2763344311911112611'm 2223 4 2723%643111314421127127 m>* 236 —
27931043183124921151'm?6233 + 28134371231431317'32803'm 8230 —
29231553120338923 1m0 227 + 2973591998062411m32 2?4+
210235337147140361 'm0t — 210835451 1117527977 m 618 +
211535833714531 7' m3821% — 21203612088139'm 012 —
21283635146211712421]9 _ 213236757491771441’6—}-

2139370591m46x3 + 2144372m48.
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Pal012] 24
0 | []][] []
12 | []][] []
16 | []]|[] []

LIS

18 17280, 1]

18640, 4]

Table B.1: 15 = 293

PNal 012 24
B
0, -1
12 0, 1]
[T (1] [0,-3]
8640, -2]
[-8640, -1]
16 8640, 1]
[-8640, 2]
[0, 3]
18 [ [][[] []

Table B.2: 15 = —223°

115




b\a 0 18 36
0 1, 0] 8, 0] (64, 0]
-1,0] | [8,0] -64, 0]
27, 0] | [216, 0] | [1728, 0]
18 [-27, 0] | [-216, 0] | [-1728, 0]
[O) _1]
[0, 1]
[81, 0] | [648, 0] | [5184, 0]
[-81, 0] | [-648, 0] | [-5184, 0]
[0? '3]
24 L1728, -1]
(1728, 1]
[0, 3]
27 [] [] []
Table B.3: 1) = 223
b\a| 0 |18 36
0 [ []|[] []
18 | []][] []
24 | [] ][] []
(1] (] [{;j;gﬁ]
27 [-3456, 1]
(1728, 4]

Table B.4: 1) = —243

b\a

0

120

0

60

80

90

]
]
]
]

6
[
[
[
[

PR RS PR PR e

]
[]
[]
]

Table B.5: 1)y = 223°
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Ba 060 120
T
0, -1

60 [O, 1]
H[]{%ﬁh

%0 207, 1]
[0, 3]

(1] [] [[5299; -14]]

20 594, 1]
207, 4]

Table B.6: 1y, = —203

b\a 0

144

1, 0]
['17 0]

72

0, 1]
[07 '1]
27, 0]
27, 0]

96

[81, 0]
-81, 0]
[O’ '3]
['277 ‘1]
27, 1]
[0, 3]

108

[27, 4]
[54, -1]
[-54, 1]
27, 4]

Table B.7: 91y = 203
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]

0|72 |144

]

b\a

108

Table B.&: ¢13/ = _2a3b
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Appendix C

Computation II

In this chapter, we compute all non-torsion integral points on the curves
E :Y? = X3 —432m? with 6 < m < 719, cube-free which satisfy

(i) (X(P),3m) =1, and

(ii) 2P and 3P are non-integral.
The following table presents all such integral points. We can see that all
curves with m in this table contain only one point. Thus the result of The-

orem 5.2.5 is true for these curves.
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m | Integral Points
9 [73, 595]
15 [49, 143]
30 [241, 3689]
33 [97, 665]
69 (553, 12925]
75 (601, 14651]
78 (217, -2755]
105 [169, 253]
114 (313, 5005]
132 | [1057, -34255]
195 | [1561, 61541]
210 (361, -5291]
273 (337, -2465]
282 | [2257, 107065
285 [481, 8729

Integral Points

294
345
348
357
399
420
429
435
450
959
609
639
645
651
657

2353, -113975]
409, 4123]
937, -27755)
[457, 6355]
3193, -180235]
[1129, 36917]
433, 1295]
[721, 17119)]
481, 4879]
1489, 56287]
673, 12025]
5113, 365365]
(1729, 70633]
[793, -17765)
5257, 380915]
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