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Abstract

On an elliptic curve of the form

C : U3 + V 3 = m,

with a cube-free integer m, we study an integer sequence arising from the

multiples of a rational point of infinite order. Given such a rational point R,

say, under chord and tangent additions, write, for n ∈ N,

R + ... + R
︸ ︷︷ ︸

n terms

=: nR =

(
Un

Wn

,
Vn

Wn

)

,

where Un, Vn,Wn ∈ Z such that gcd(UnVn,Wn) = 1.

This thesis is devoted to investigating some properties of the sequence

(Wn) of the denominators. This is a divisibility sequence; that is, Wm | Wn

whenever m | n. Our task here is to examine a conjecture on the number of

prime terms in (Wn), well known as the Primality conjecture. We will prove

that there is a uniform lower bound on n beyond such that all terms Wn

have at least two distinct prime factors. In some cases, the bound is as low

as n = 2.
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Chapter 1

Introduction

The topic of prime appearance in elliptic divisibility sequences (see below and

Section 4.3 for more details) was suggested by Chudnovsky and Chudnovsky

in [6]. They considered the likelihood of primes in such sequences, hoping

that elliptic divisibility sequences might be a source of large primes. The

following examples are quoted from their paper to support this idea. To

state them precisely, we shall introduce the following notations: Given an

elliptic curve in short Weierstrass form

E : y2 = x3 + ax + b

with a, b ∈ Z, and a non-torsion point P ∈ E(Q), for any n ∈ N, we can

write, by the shape of the equation of E,

nP =

(
An

B2
n

,
Cn

B3
n

)

,

where An, Bn, Cn ∈ Z with gcd(AnCn, Bn) = 1. The integer sequence (Bn)

is usually known as an elliptic divisibility sequence associated to E and P .
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Example 1.0.1.

E : y2 = x3 + 26, P = [−1, 5]

The term B29 is a prime with 285 decimal digits.

E : y2 = x3 + 15, P = [1, 4]

The term B41 is a prime with 509 decimal digits.

The Chudnovskys examined the possibilities for prime values of the se-

quences (Bn) when n ran out to 100. Einsiedler, Everest and Ward extended

these computations by letting n run out to 500 in [9] and found that there

are no more primes. More recent examples of large primes are given below:

1. (Bŕıd Nı́ Fhlathúın, 1999)

E : y2 + y = x3 − x, P = [0, 0]

The term B409 is a prime with 1857 decimal digits.

2. (Everest, 2006) With the same sequence, the term B1291 is a prime with

18498 decimal digits.

3. (Everest, 2007)

E : y2 + xy + y = x3 + x2 − 125615x + 61201397, P = [7107, 594946]

The term B3719 is a prime with 26774 decimal digits.

In [9], Einsiedler, Everest and Ward considered prime appearance in ellip-

tic divisibility sequences and gave a suggestion from a heuristic argument and

some calculations that for fixed E and P the elliptic divisibility sequences

should contain only finitely many prime terms. More explicitly, Everest,
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Miller and Stephens [11], have proved, using a strong form of Siegel’s Theo-

rem, the finiteness of prime terms in the sequences under a certain additional

hypothesis on the generating point of the sequence. This hypothesis is con-

cerned with an isogeny (see Section 4.5) between two elliptic curves.

Theorem 1.0.2. (Theorem 1.3, [11]) Let σ : E → E ′ be an isogeny.

Suppose Q ∈ E ′(Q) is the image of a rational point on E under σ, and write

nQ =

(
an

b2
n

,
cn

b3
n

)

. Then the terms bn are primes for only finitely many n.

In this article, they studied, moreover, the same question for a twist of the

affine cubic Fermat’s curve,

C : U3 + V 3 = m,

with a non-zero integer m. They showed again using Siegel’s Theorem that

there are only finitely many rational points on C that have prime power

denominators.

Our purpose here is to examine the problem of prime appearance for

divisibility sequences obtained from the multiples of rational points on C.

Given a non-torsion point R ∈ C(Q), write, in lowest terms,

nR =

(
Un

Wn

,
Vn

Wn

)

.

We aim to provide a uniform lower bound beyond which all terms Wn have

at least two coprime divisors.

In Section 5.1, we will prove an affirmative answer under the extra hy-

pothesis as in Theorem 1.0.2 on an elliptic curve of the form

E : Y 2 = X3 − 432m2.
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This curve corresponds to the curve C under a bi-rational transformation,

given by

X =
223m

U + V
, Y =

2232m(U − V )

U + V
,

U =
2232m + Y

6X
, V =

2232m − Y

6X
.

Consequently, we have

(
Un

Wn

,
Vn

Wn

)

= nR =

(
2232mB3

n + Cn

6AnBn

,
2232mB3

n − Cn

6AnBn

)

,

where nP =

(
An

B2
n

,
Cn

B3
n

)

are written in lowest terms.

Our first main result states the following (see the proof in Theorem 5.1.2,

Ch. 5).

Theorem 1.0.3. Let C be an elliptic curve as defined above with m ∈ Z cube-

free, and R ∈ C(Q) a non-torsion point. Suppose P ∈ E(Q) corresponds to

R by the bi-rational transformation. Under the assumption that P is the

image of a rational point under an isogeny, Wn is divisible by at least two

distinct primes for all n > 2.

The second part of this thesis is motivated by the idea to eliminating

the isogeny condition from the first result. Consider both coordinates of nR

again, we have

Un

Wn

=
2232mB3

n + Cn

6AnBn

Vn

Wn

=
2232mB3

n − Cn

6AnBn

.
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As we will show in the proof of Theorem 1.0.3, any cancellation of the frac-

tions on the right-hand side is coprime to Bn. Our idea is that once we have

that:

(i) there exists a uniform bound on the index n such that Bn > 1; in

other words, nP are integral for only finitely many n, and

(ii) 6An can escape from any cancellation,

and we will also get the uniform bound as in (i) beyond which Wn is com-

posite.

Siegel [25] provided a classical theorem about the finiteness of the num-

ber of integral points on an elliptic curve. This means in particular that the

number of integral multiples of an integral point is finite. We want to use

explicit formulations of that fact in (i). More history about integral points

on elliptic curves follows. Lang pursued the idea of Siegel and conjectured

that the number of S-integral points on a quasi-minimal form of an elliptic

curve over a number field K should be bounded solely in terms of the rank of

the Mordell-Weil group E(K) (see [19], p.140). Hindry and Silverman (The-

orem 9.1, [14]) proved a uniform analogue of this version of Lang’s conjecture

provided that the Szpiro ratio of an elliptic curve E defined over a number

field K, defined by

σE/K =
log Norm(∆)

log Norm(N)

where ∆ and N represent the discriminant and the conductor of the curve E,

respectively, is bounded. Furthermore, Silverman [26] asserted for an elliptic

curve with integral j-invariant - or with at most a fixed number of primes

dividing the denominator of the j-invariant - a uniform bound for the number
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of S-integral points exists without the restriction on the Szpiro ratio.

Recently, Ingram (Theorem 1, [15]) made the idea above more precise.

He not only proved that the number of integral multiples of a non-torsion

point, say P , is finite, but also provided a bound on the size of the second

largest index n such that nP is integral in terms of some quantity M(P ) =

lcm(r(P ), p) , where p is a prime and r(P ) is the order of the point P in the

quotient E(Qp)/E0(Qp) of finite index. In particular, Theorem 2 of [15] gives

an explicit result for the family of congruent number curves,

EN : y2 = x3 − N2x,

where N is a square-free integer. Using Ingram’s techniques yields similar

results for the Mordell curve E, as shown in Section 5.2. Subsequently, we

will obtain the second main result without the isogeny condition, however,

it does require some restrictions on P and m.

Theorem 1.0.4. Let R be a non-torsion rational point on C : U3 + V 3 = m

corresponding to a non-torsion rational point P on E : Y 2 = X3 − 432m2.

Write, in lowest terms, nR =

(
Un

Wn

,
Vn

Wn

)

. Suppose that

gcd(A1,m) = 1 if P =

(
A1

B2
1

,
C1

B3
1

)

is non-integral, or

gcd(A1, 3m) = 1 and 2P, 3P are non-integral if P = (A1, C1) is integral.

Then there is at most one value of n > 1 such that Wn is prime unless either

m ≡ ±2 mod 9 and m has a prime factor congruent to 1 mod 6, or

m ≡ 0 mod 9 and m has a prime factor congruent to 1 mod 6,

in such cases, the result holds for all m > 3739071625384.
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1.1 Chapter Layout

In Chapters 2 and 3, we collect basic algebraic and geometric concepts that

are required for introducing the definition and properties of elliptic curves in

Chapter 4. Moreover, Chapter 2 also consists some facts used to prove the

results in Chapter 5.

The definitions of the keywords such as elliptic curves, elliptic divisibility

sequences, isogenies, and related topics used for the proofs of main theorems

can be found in Chapter 4.

Chapter 5 consists of the proofs of Theorems 1.0.3 and 1.0.4, and a series

of Lemmas.

1.2 Future works

It can be concluded from above that the question on the prime appearance

in (Wn) has been answered under the isogeny assumption in the first main

Theorem. The second result answered this question without the isogeny

condition, but with restrictions on the integer m and the point P .

For our future plans, we aim to study the following open problems:

(1) refine the result in the second main theorem by minimizing the bound

of m and then proving the result for every case of m,

(2) study the possibility to prove the uniform Primality conjecture on

(Wn) in general without any restriction,

(3) prove a result on the number of semi-primes (numbers with only two

prime factors) in (Wn) instead.

7



Chapter 2

Preliminaries

This chapter gives a short introduction of basic materials that are needed for

the sequel. We start by giving the definition of Diophantine equations and

some results on their integral solutions.

2.1 Diophantine equations

A Diophantine equation is a polynomial equation whose coefficients are inte-

gers or rational numbers. It is interesting to consider the rational or integral

solutions of such an equation. The problem of providing an algorithm to solve

given a Diophantine equation, or even, finding all solutions if they exist, has

a long history. In the 2nd ICM (Paris 1900), Hilbert posed his 23 mathe-

matical problems. The 10th of these questions asked about the existence of

an algorithm determining whether a Diophantine equation in any number of

unknowns with integral coefficients is solvable in integers or not. This has

been answered by Davis, Putman, Robinson and Matiyasevič (1950-1970):

8



no such algorithm exists for integral solutions. However, this problem is un-

solved for rational solutions.

The following theorem gives an answer to the question on the number of

integral solutions for certain class of Diophantine equations.

Theorem 2.1.1. (Siegel’s Theorem) Suppose F ∈ Z[X,Y ] is a cubic

polynomial which is non-singular. Then the equation

F (X,Y ) = 0

has at most a finite number of solutions with x, y ∈ Z.

Being non-singular means there is no point (a, b) ∈ C2 such that

F (a, b) = 0,
∂F

∂x
(a, b) = 0,

∂F

∂y
(a, b) = 0.

A simple case of Siegel’s Theorem is given below.

Proposition 2.1.2. All integral solutions of

x3 + y3 = m,

with m ∈ Z \ {0}, satisfy |x| , |y| ≤ 2

√
m

3
.

Proof. Factorizing the left-hand side gives

(x + y)(x2 − xy + y2) = x3 + y3 = m,

so that (x2 − xy + y2) | m. Hence

m ≥ |x2 − xy + y2| =

∣
∣
∣
∣

(

x − y

2

)2

+
3y2

4

∣
∣
∣
∣
.

9



Since both
(

x − y

2

)2

,
3y2

4
≥ 0, it follows that

3y2

4
≤ |m|, so |y| ≤ 2

√
|m|
3

.

Similarly, we have

∣
∣
∣
∣

(

y − x

2

)2

+
3x2

4

∣
∣
∣
∣
≤ |m|. This implies |x| ≤ 2

√
|m|
3

.

Contrary to Siegel’s result, a well-known Diophantine equation, named

the Pythagoreon equation,

x2 + y2 = z2,

produces infinitely many positive integral solutions (see Theorem 5.5, [23]).

Next we will present a special type of Diophantine equation. Given a

homogeneous, irreducible polynomial F (X,Y ) ∈ Z[X,Y ] of degree n ≥ 3,

and a fixed k ∈ Z, the Diophantine equation

F (X,Y ) = k (2.1)

is called a Thue equation, named after A. Thue, who proved the famous

Theorem on the integral solutions of this equation in 1909 [32]:

Theorem 2.1.3. The number of integral solutions to the equation (2.1) is

finite.

Unfortunately, Thue’s proof is ineffective in the sense that it does not yield

an effective method for finding the explicit solutions. Baker improved this by

providing an upper bound for the size of solutions of Thue equations in [1].

However, this bound is too large to apply in special cases. Later, Bombieri

and Schmidt [4] gave a better bound for the primitive solutions (x, y) ∈ Z2

(i.e. x and y are coprime). They showed that there exists an absolute

constant c such that for all n ≥ c, a Thue equation has at most 215 · n1+ω(k)

10



primitive solutions, where (x, y) and (−x,−y) are regarded as the same, and

ω(k) denotes the number of prime factors of k. Other improved results may

be obtained by others for certain Thue equations. For example: the equation

x4 − 4x2y2 + y4 = −47

has been solved by Stroeker and Tzanakis [30]. They showed that only inte-

gral solutions of this equation are given by (x, y) = (±2,±3), and (±3,±2).

Bilu and Hanrot [3] provided a method to solve some Thue equations of high

degrees in practicable time. They showed the finiteness of all solutions of

certain concrete Thue equations of degrees 19 and 33.

2.2 Divisibility sequences

In this section, we give the definition of divisibility sequences.

An integer sequence (An) is called a divisibility sequence if

Am | An whenever m | n.

Example 2.2.1. Examples of divisibility sequences:

(1) The Fibonacci sequence (Fn) is given by

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ....

Each term of the Fibonacci sequence is obtained by adding the two previous

terms together; that is,

Fn = Fn−1 + Fn−2,

11



where n ≥ 3 and F1 = F2 = 1. It can be proved by induction on k =
n

m
,

for any integers m | n that this sequence satisfies the divisibility property.

Indeed, it satisfies the stronger property (see [36]),

gcd(Fr, Fs) = Fgcd(r,s).

(2) The Mersenne sequence (Mn) is of the form

Mn = 2n − 1.

It can be proved that (Mn) also satisfies the strong divisibility property,

gcd(Mr,Ms) = Mgcd(r,s).

(3) The Lucas sequence (Un) is defined by

Un =
αn − βn

α − β
,

where α and β are conjugate quadratic integers; that is, they are roots of an

irreducible polynomial of the form x2 + Ax + B with A,B ∈ Z. Theorem VI

of [5] says that the sequence (Un) satisfies the strong divisibility property.

We can see that the Fibonacci sequence satisfies a linear recurrence relation.

Moreover, other divisibility sequences in Example 2.2.1 also satisfy a linear

recurrence relation. The Mersenne sequence satisfies the relation

Mn+2 = 3Mn+1 − 2Mn, for all n > 1,

and the general Lucas sequence satisfies the relation

Un+2 = (α + β)Un+1 − αβUn, for all n > 1.

Furthermore, there are the divisibility sequences that satisfy a non-linear

recurrence relation. An important example is an elliptic divisibility sequence.

The details will be explained in section 4.3.

12



2.3 Fundamental facts

This section consists of a summary of definitions and results, which are nec-

essary for the proofs in the sequel.

2.3.1 Resultants of polynomials

Let us start by considering an example of a system of two polynomials in one

variable:

f(x) = 3x2 − 5x + 2,

g(x) = x3 − 2x2 + 2x − 1.

We want to find a necessary and sufficient condition for the existence of a

common solution of the system.

f(x) = 0

g(x) = 0.
(2.2)

If f(x) and g(x) have a common solution in C, they must have a common

linear factor, say D(x). Let

F (x) =
f(x)

D(x)
and G(x) =

g(x)

D(x)
.

Then

F (x) = −A1x − A0

G(x) = B2x
2 + B1x + B0

for some Ai, Bi ∈ Z. Note that the signs in F (x) are chosen for suitability

later. Since

f(x)

F (x)
=

g(x)

G(x)
= D(x)

13



implies

f(x)G(x) = g(x)F (x),

we must have

(3x2 − 5x + 2)(B2x
2 + B1x + B0) − (x3 − 2x2 + 2x − 1)(−A1x − A0) = 0.

Comparing the coefficients gives a system of linear equations in 3+2 variables:

B2, B1, B0, A1, A0 as follows

3B2 + A1 = 0

− 5B2 + 3B1 − 2A1 + A0 = 0

2B2 − 5B1 + 3B0 + 2A1 − 2A0 = 0

2B1 − 5B0 − A1 + 2A0 = 0

2B0 − A0 = 0.

In order for the system (2.2) to have a common solution, the corresponding

linear system must have a non-trivial solution. This happens if and only if

the relevant coefficient matrix is non-invertible; that is its determinant equals

to zero: ∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

3 0 0 1 0

−5 3 0 −2 1

2 −5 3 2 −2

0 2 −5 −1 2

0 0 2 0 −1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.
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This means the determinant of its transpose matrix does also equal to zero,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

3 −5 2 0 0

0 3 −5 2 0

0 0 3 −5 2

1 −2 2 −1 0

0 1 −2 2 −1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.

This idea leads to the definition of the resultant in a polynomial ring.

Definition 2.3.1. Given any pair of polynomials in one variable:

f(x) =
n∑

k=0

akx
k and g(x) =

m∑

k=0

bkx
k,

where ai, bj are elements in a field k, the (Sylvester) resultant of f and g,

denoted by R(f, g), is defined as the determinant

R(f, g) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

an an−1 · · · a1 a0

an · · · a2 a1 a0

. . . . . . . . . . . . . . .

an an−1 · · · a1 a0

bm bm−1 · · · b1 b0

bm · · · b2 b1 b0

. . . . . . . . . . . . . . .

bm bm−1 · · · b1 b0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

where the blank spaces are equal to zeros.

Theorem 2.3.2. Given f(x) and g(x) as above, then the system

15



f(x) = 0

g(x) = 0

has a common solution if and only if R(f, g) = 0.

Proof. See Proposition 8, Ch.3, [7].

For a polynomial system in two variables, we can regard it as a system of

polynomials in one variable whose coefficients are the polynomials in another

variable. For example:

Example 2.3.3. Let

f(x, y) = xy2 − xy − x − 1,

g(x, y) = x2 + xy.

Rearranging them to be polynomials in x with coefficients as polynomials in

y, we get

f(x, y) = (y2 − y − 1)x − 1,

g(x, y) = x2 + xy,

then the resultant of f and g with respect to x, denoted by Rx(f, g), is

Rx(f, g) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y2 − y − 1 −1 0

0 y2 − y − 1 −1

1 y 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= y3−y2−y+1 = (y+1)(y−1)2.

On the other hand, if we consider f(x, y) and g(x, y) as polynomials in

y with coefficients as polynomials in x, then the resultant of f and g with

16



respect to y is

Ry(f, g) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x −x −x − 1

x2 x 0

0 x2 x

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= x5 − x3 = x3(x2 − 1).

Moreover, the resultant can be expressed as a product of the zeros of f and

g.

Theorem 2.3.4. Given

f(x) = an

∏n
i=1 (x − xi) and g(x) = bm

∏m
j=1 (x − yj),

then

R(f, g) = am
n bn

m

∏n
i=1

∏m
j=1 (xi − yj).

The proof can be found in [33]. From this, it is obvious that R(f, g) = 0 if and

only if f(x) and g(x) have a common solution. The elementary properties of

the resultant follows from Theorem 2.3.4 above.

Proposition 2.3.5. With f(x) and g(x) as defined in 2.3.4,

(i) R(f, g) = (−1)mnR(g, f) (the symmetry property),

(ii) R(f, gh) = R(f, g)R(f, h) (the multiplicative property).

Theorem 2.3.6. For any pair of polynomials f(x) and g(x) of degrees m and

n, respectively, there exist polynomials p, q ∈ k[x] of degrees m−1 and n−1,

respectively, whose coefficients are integer polynomials in the coefficients of

f and g, such that

R(f, g) = pf + qg.
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Proof. See Proposition 9, Ch.3, [7]

Theorem 2.3.6 assures us that the greatest common divisor of f and g must

divide their resultant. We will use this fact several times in the proof of our

results.

2.3.2 Newton polygons of polynomials

In this part we will explore a tool that helps us to extract information about

the roots of a given polynomial. The construction of such tool requires the

fundamental concepts of p-adic fields.

Fix a prime number p. For each x ∈ Q \ {0}, write

x = pn a

b
, with gcd(ab, p) = 1.

Define the p-adic valuation of x to be vp(x) = n. For convenience, set vp(0) =

+∞ (as 0 can be divisible by any power of p). Then for all x, y ∈ Q, the

valuation satisfies

vp(xy) = vp(x) + vp(y), and vp(x + y) ≥ min{vp(x), vp(y)}.

We then define the p-adic absolute value of x ∈ Q to be

|x|p = p−vp(x) with |0|p = 0.

Then | · |p satisfies

(i) |x|p = 0 iff x = 0,

(ii) |xy|p = |x|p|y|p for all x, y ∈ Q ,

(iii) |x + y|p ≤ max{|x|p, |y|p} for all x, y ∈ Q.

That is, | · |p is a non-archimedean absolute value on Q. Moreover,
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(iv) |1|p = 1,

(v) | − x|p = |x|p,

(vi) if |xn|p = 1, then |x|p = 1 for all x ∈ Q.

Notice that when x is divisible by a very large power of p, the valuation vp(x)

is also large, and then the absolute value |x|p is small. So the p-adic absolute

value indicates how large a power of p divides x.

Definition 2.3.7. A sequence (xn) in a field k is called a Cauchy sequence

if for all ε > 0, there is N such that for all m,n > N, |xm − xn| < ε.

A sequence (xn) converges to x ∈ k if for all ε > 0, there is N such that for

all n > N, |xx − x| < ε.

We note that every convergent sequence is a Cauchy sequence. The converse

may not true in general. Any field k with the absolute value | · | is said to

be complete with respect to | · | if every Cauchy sequence of elements in k is

convergent.

Definition 2.3.8. A field K with ‖·‖ is the completion of k, | · | if

(i) there is an inclusion π : k → K respecting the absolute values,

(ii) the image π(k) is dense in K,

i.e. for all x ∈ K, and ε > 0, B(x, ε) ∩ π(k) 6= ∅,

(iii) K, ‖·‖ is complete.

For an example, R is the completion of Q with respect to the ordinary abso-

lute value. The completion of Q with respect to the p-adic absolute value is

called Qp, and the p-adic absolute value | · |p extends to Qp.

Definition 2.3.9. Any field k is called algebraically closed if every polyno-

mial with coefficients in k has a root in k.
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Qp is not algebraically closed since x2 − p has no root in Qp, whereas C is

algebraically closed.

Definition 2.3.10. An extension L of a field k is a field L containing k.

An extension L can be considered as a vector space over k. The degree of

the extension is the dimension of L over k. If L is an extension of k, then an

element α ∈ L is called algebraic over k if it is a root of a nonzero polynomial

with coefficients in k. L is called an algebraic extension over k if every element

in L is algebraic over k.

Definition 2.3.11. An extension k̄ is called the algebraic closure of k if k̄ is

algebraically closed and every α ∈ k̄ is algebraic over k.

C is the algebraic closure of R of degree 2, while Q̄p is the algebraic closure

of Qp of infinite degree.

Notice that Q̄p is not complete. The completion of Q̄p is called Cp, which

is complete respecting to the p-adic absolute value. Proposition 5.7.8 of [13]

asserts that Cp is algebraically closed.

Now we are in position to define the Newton polygon, the tool that we

mentioned above, for polynomials over Cp. Let

f(X) = a0 + a1X + ... + anX
n

with a0 6= 0 and an 6= 0. Consider the points in R2

(0, vp(a0)), (1, vp(a1)), (2, vp(a2)), ..., (n, vp(an)),

where we omit the points with ai = 0. We call these points the Newton

points. The Newton polygon of f(X) is the lower boundary of the convex hull
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of the set of the Newton points in R2 by rotating a vertical line through the

point (0, vp(a0)) counter-clockwise until it meets one of the point (i, vp(ai))

and then continue rotating the remaining part of that line until it reaches the

point (n, vp(an)) eventually. A vertex of the Newton polygon is a point where

the slope changes. The slope of the segment joining the vertices (i, vp(ai))

and (j, vp(aj)) is
vp(aj) − vp(ai)

j − i
, and the length of the slope is j − i.

Example 2.3.12. Let F (X) = 1 + 9X + 1
27

X2 + 1
9
X4 + 81X5 + 9x6 and

p = 3. Then the Newton points are

(0, 0), (1, 2), (2,−3), (4,−2), (5, 4), (6, 2).

The Newton polygon of F (X) with p = 3 is

5 6

5

4

3

2

1

  0

−1

−2

−3

−4

1 2 3 4

Figure 2.1: Newton Polygon of F (X)

It is natural to ask how the Newton polygon gives information about

the roots of f(X). The answer can be found in the following Theorem (see
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Theorem 6.4.7 [13], for the proof).

Theorem 2.3.13. Suppose m1,m2, ...,mr are the slopes of the segments of

the Newton polygon with m1 ≤ m2 ≤ · · · ≤ mr, and l1, l2, ..., lr are the

corresponding lengths. Then, for each 1 ≤ i ≤ r, f(X) has exactly li roots

in Cp (counting multiplicities) of absolute value pmi.

Example 2.3.14. The slopes of all segments of the Newton polygon in Figure

2.3.12 are −3
2
, 1

2
and 2, respectively. It can be concluded from Theorem 2.3.13

that there are 2 roots in Cp of absolute value 3−
3

2 , 2 roots of absolute value

3
1

2 , and 2 roots of absolute value 32.
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Chapter 3

Curves

As elliptic curves are also geometric objects, this chapter is devoted to give a

short introduction to geometric background which are used to define elliptic

curves in Chapter 4.

Throughout this chapter, k will denote an arbitrary field, k∗ the set of

non-zero elements of k, and k̄ is a fixed algebraic closure of k.

3.1 Varieties

3.1.1 Affine varieties

Definition 3.1.1. Affine n-space (over k), denoted by An(k), is the set of

n-tuples of elements in k when n is any positive integer; that is

An(k) = {(x1, ..., xn) : xi ∈ k}.

In particular, if we consider affine n-space over k̄, then we define the set of

k-rational points of An(k̄) as
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{(x1, ..., xn) ∈ An(k̄) : all xi ∈ k}.

Definition 3.1.2. Given f1, ..., fs polynomials in k̄[x1, ..., xn], an (affine)

algebraic set defined by f1, ..., fs, written V (f1, ..., fs), is the set of all zeros

of fi for every i; that is

{(a1, ..., an) ∈ An(k̄) : fi(a1, ..., an) = 0, for all 1 ≤ i ≤ s}.

For any affine algebraic set V ⊂ An(k̄), let

I(V ) = {f ∈ k̄[x1, ..., xn] : f(P ) = 0 for all P ∈ V }.

Then I(V ) is an ideal of k̄[x1, ..., xn] (Lemma 6, Ch.1, [7]), and it is called

the ideal of V.

By the Hilbert Basis Theorem, I(V ) is finitely generated. An algebraic

set is said to be defined over k, denoted by V/k, if I(V ) is generated by

polynomials in k[x1, ..., xn]. If V is defined over k, the set of k-rational points

of V is the set of n-tuples in V whose coordinates are all k-rational points

in An(k̄).

Now we have the map

affine algebraic sets −→ ideals

V −→ I(V ).
(3.1)

For any two algebraic sets V ⊂ W , I(V ) ⊃ I(W ).

Conversely, given an ideal I of k̄[x1, ..., xn], define

V (I) = {(a1, ..., an) ∈ An(k̄) : f(a1, ..., an) = 0 for all f ∈ I}.

Since I is finitely generated, write I = 〈f1, ..., fs〉. Note that if f1, ..., fs and

g1, ..., gr are bases of I then V (f1, ..., fs) = V (g1, ..., gr) (Proposition 4, Ch.1,
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[7]). We can see that V (I) = V (f1, ..., fs) (Proposition 9, Ch.2, [7]). Then

the set V (I) is an algebraic set. We now have another map

ideals −→ affine algebraic sets

I −→ V (I)
(3.2)

If I ⊂ J , then V (I) ⊃ V (J). For any algebraic set V , V (I(V )) = V . The

maps (3.1) and (3.2) give the relation between the geometric objects (affine

algebraic sets) and the algebraic objects (ideals of k̄[x1, ..., xn]).

Definition 3.1.3. An algebraic set V ⊂ An(k̄) is said to be irreducible

if whenever V = V1 ∪ V2, where V1 and V2 are algebraic sets, then either

V1 = V or V2 = V . An irreducible algebraic set is called an affine variety.

For any algebraic set V , V is irreducible if and only if I(V ) is a prime ideal

(Proposition 3, Ch.4, [7]).

Remark 3.1.4. If F ∈ k[x1, ..., xn] is irreducible over k̄[x1, ..., xn], then

I = (F ) = F [x1, ..., xn]k̄[x1, ..., xn]

is a prime ideal in k̄[x1, ..., xn], so

V (I) = {P ∈ An(k̄) : f(P ) = 0 for all f ∈ I = (F )}

is an (affine) variety defined over k. For example, let

F (X,Y ) = Y 2 − X3 − X − 1 ∈ Q[X,Y ].

This polynomial is irreducible over C[X,Y ], so I = (F ) is a prime ideal in

C[X,Y ]. Thus V (I) is a variety defined over Q. Such a variety is called an

affine plane variety as n = 2.
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Given a nonempty variety V ⊂ An(k̄), then I(V ) is a prime ideal in

k̄[x1, ..., xn], so

k̄[V ] :=
k̄[x1, ..., xn]

I(V )

is an integral domain. We call k̄[V ] the coordinate ring of V. Let k̄(V ) denote

the quotient field of k̄[V ]. It is called the function field of V. Any element

of k̄(V ) is a rational function on V . For f ∈ k̄(V ) and P ∈ V , we say that

f is regular (or defined) at P if f = g/h for some g, h ∈ k̄[V ] and h(P ) 6= 0.

Denote k̄[V ]P by the set of rational functions on V that are regular at P .

We can see that k̄[V ]P forms a subring of k̄(V ) containing k̄[V ]:

k̄ ⊂ k̄[V ] ⊂ k̄[V ]P ⊂ k̄(V ).

The ring k̄[V ]P is called the local ring of V at P.

If K a finitely generated extension of k, the transcendence degree of K

over k is the smallest integer n such that K is algebraic over k(x1, ..., xn)

for some x1, ..., xn ∈ K, equivalently saying that n is the largest number of

elements of K which are algebraically independent over k. The transcendence

degree of k̄(V ) over k̄ is known as the dimension of V , written by dim(V ).

3.1.2 Projective varieties

A projective n-space (over k̄), denoted by Pn(k̄), is defined geometrically to be

the set of all lines through the origin in An+1(k̄). To define the line l through

the point (0, ..., 0) in An+1, it suffices to know only one point of l other than

(0, ..., 0). If (x0, ..., xn) is such a point then each point (λx0, ..., λxn) also lies

on l for λ ∈ k̄∗. Thus any point (x0, ..., xn) 6= (0, ..., 0) determines a unique
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such line, namely {(λx0, ..., λxn) : λ ∈ k̄}.

The above gives rise to the definition of Pn as the set of equivalent classes

of points in An+1 \ (0, ..., 0), where the equivalent relation is given by

(x0, ..., xn) ∼ (y0, ..., yn)

if and only if there exists λ ∈ k̄∗ such that xi = λyi for all i. The equiva-

lent class is denoted by [x0, ..., xn] and x0, ..., xn are called the homogeneous

coordinates. This means the projective n-space can be written as

Pn(k̄) = {[x0, ..., xn] : (x0, ..., xn) ∈ An+1 \ (0, ..., 0)}.

Remark 3.1.5. For 0 ≤ i ≤ n, let

Ui = {[x0, ..., xn] ∈ Pn : xi 6= 0}

be a subset of Pn. Then Ui is isomorphic to affine n-space An by, for example,

ψi : An −→ Ui ⊂ Pn,

(a1, ..., an) 7−→ [a1, ..., ai−1, 1, ai, ..., an]

and whose inverse

ψ−1
i : Ui −→ An

is given by

[a0, ..., an] 7−→
(

a0

ai

,
a1

ai

, ...,
ai−1

ai

,
ai+1

ai

, ...,
an

ai

)

.

Note that Pn =
⋃n

i=0 Ui, so we can say that Pn can be decomposed into a

disjoint union of n + 1 sets each of which looks like affine n-space.

A polynomial f ∈ k̄[X] = k̄[x0, ..., xn] is homogeneous of degree d if
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f(λx0, ..., λxn) = λdf(x0, ..., xn)

for all λ ∈ k̄. An ideal I ⊂ k̄[X] is homogeneous if it is generated by homo-

geneous polynomials. For any homogeneous ideal I, suppose I = 〈f1, ..., fs〉,

where f1, ..., fs are homogeneous. Let

V (I) = {P ∈ Pn(k̄) : f(P ) = 0 for all f ∈ I}.

A (projective) algebraic set is any set of the form V (I) for some a homoge-

neous ideal I. The (homogeneous) ideal of an algebraic set V is the set

I(V ) = {f ∈ k̄[X] : f is homogeneous and f(P ) = 0 for all P ∈ V }.

If k̄ is an infinite field, then I(V ) is a homogeneous ideal in k̄[X] (Proposition

4, Ch.8, [7]). A projective algebraic set is called a projective variety if its

homogeneous ideal I(V ) is a prime ideal in k̄[X].

Example 3.1.6. The polynomial F (X,Y, Z) = Y 2Z − X3 − XZ2 − Z3 ∈

Q[X,Y, Z] is irreducible over C[X,Y, Z], so I = (F ) is a prime ideal in

C[X,Y, Z]. Thus V (I) is a projective plane variety defined over Q.

Let V be a projective variety. The function field of V , denoted by k̄(V ),

can be described as the field of rational functions g/h such that:

(i) g and h are homogeneous polynomials of the same degree,

(ii) h /∈ I(V ),

(iii) two rational functions g/h and g′/h′ are identified if gh′−g′h ∈ I(V ).

For P ∈ V and f ∈ k̄(V ), we say that f is regular (or defined) at P if f can

be written as f = g/h with h(P ) 6= 0. Let

k̄[V ]P = {f ∈ k̄(V ) : f is regular at P}.

k̄[V ]P is a subring of k̄(V ), and it is called the local ring of V at P.
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3.2 Curves

An (algebraic) plane curve is a one-dimensional projective variety correspond-

ing to a homogeneous polynomial equation

F (X,Y, Z) = 0.

The degree of the curve is the maximum degree of each term X iY jZk. For

examples

the lines : aY + bX + cZ = 0;

the conics : aX2 + bXY + cY 2 + dXZ + eY Z + fZ2 = 0

are curves of degrees 1 and 2, respectively.

A point P on a curve C is said to be singular if

∂F

∂X
(P ) =

∂F

∂Y
(P ) =

∂F

∂Z
(P ) = 0.

Otherwise, P is non-singular. A curve C is non-singular or smooth if there

is no singular point on C. For a smooth curve C defined by a homogeneous

polynomial F , the genus of C is a non-negative integer defined algebraically

as

(deg(F ) − 1)(deg(F ) − 2)

2
.

So any line and conic have genus 0, while a smooth cubic has genus 1.

3.2.1 Maps between curves

In the statement of first main Theorem, we mentioned the isogeny as a map

between elliptic curves. In this section, we give the general definition of maps

between any two varieties.
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Let V1 ⊂ Pm and V2 ⊂ Pn be projective varieties. A map φ from V1 to V2

is called a rational map if it is of the form

φ = [f0, ..., fn] : V1 −→ V2

φ(P ) 7−→ [f0(P ), ..., fn(P )],

where f0, ..., fn ∈ k̄(V1) are defined for every point P ∈ V1 ⊂ Pm.

Given φ = [f0, ..., fn] : V1 → V2 a rational map, we say that φ is regular

(or defined) at P if there exists a function g ∈ k̄(V1) such that gfi is regular

at P for all i and at least one (gfi)(P ) 6= 0. If such a g exists, let

φ(P ) = [(gf0)(P ), ..., (gfn)(P )].

A rational map which is regular at every point of V1 is called a morphism.

Two varieties V1 and V2 are said to be isomorphic, written V1 ' V2, if there

are morphisms φ : V1 → V2 and ψ : V2 → V1 such that ψ ◦ φ and φ ◦ ψ are

identity maps on V1 and V2, respectively.

The following Theorems, proved in Ch.II, [28], culminate with a funda-

mental important definition of isogenies (see Chapter 4).

Theorem 3.2.1. Let C1 and C2 be curves and φ : C1 → C2 a rational

map. For every non-singular point P ∈ C1, the map φ is regular at P . In

particular, if C1 is a smooth curve then φ is a morphism.

Theorem 3.2.2. Let φ : C1 → C2 be a morphism between curves. Then φ

can be either constant or surjective.
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Chapter 4

Elliptic curves

This chapter gives the definition of elliptic curves in the first section. In the

next three sections, we give an introduction to the additive law on the set

of points on elliptic curves, including the definition of division polynomials

and elliptic divisibility sequences. The relevant topics that we will use for

the proofs in Chapter 5 are in the last five sections.

4.1 Definition

An elliptic curve is defined geometrically as a non-singular projective alge-

braic plane curve of genus 1 together with one specified base point O. Usually,

we consider the curve in an affine form. The elliptic curve E is said to be

defined over a field k, denoted by E/k, if E is defined over k and O ∈ E(k).

For most of this thesis, we will consider elliptic curves defined over Q. One
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can prove that E/Q is the locus of the points in x-y plane satisfying

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (4.1)

where ai, bi are constants in Q (see Proposition 3.1(a), Ch.III, [28]). The

form (4.1) will be referred to as the Weierstrass equation of E.

Example 4.1.1. Consider the cubic equation

u3 + v3 = 1.

Replacing u by
3x

y
and v by

y − 9

y
, we obtain the Weierstrass equation

y2 − 9y = x3 − 27.

Conversely, every smooth Weierstrass cubic curve as defined above is an

elliptic curve defined over Q with the base point as the point at infinity

O = [0, 1, 0] (see Proposition 3.1(c), [28]).

The equation (4.1) can be transformed further to a simpler form. As

char(Q) 6= 2, 3, completing the square gives

(y +
a1

2
x +

a3

2
)2 = x3 +

(

a2 +
a2

1

4

)

x2 +
(

a4 +
a1a3

2

)

x +

(
a2

3

4
+ a6

)

,

and then replacing y by 1
2
(y − a1x − a3) leads to

E : y2 = 4x3 + b2x
2 + 2b4x + b6,

where

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6.
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Define, moreover, the quantities as usual (see [28])

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = b2
2 − 24b4,

c6 = − b3
2 + 36b2b4 − 216b6,

∆ = − b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6,

j = c3
4/∆.

Changing (x, y) to

(
x − 3b2

36
,

y

108

)

yields

E : y2 = x3 − 27c4x − 54c6.

The quantity ∆ is called the discriminant of the Weierstrass equation, and

j is called the j-invariant of the elliptic curve E. We derive the following.

Proposition 4.1.2. Every elliptic curve defined over Q can be written in

short Weierstrass form

E : y2 = x3 + ax + b, (4.2)

with a, b ∈ Q.

As part of the definition of an elliptic curve, the equation (4.2) has to

be non-singular; that is, the cubic polynomial on the right-hand side must

have no repeated roots. This will occur if and only if the discriminant of

x3 + ax + b, which equals 4a3 + 27b2, is not zero.

Example 4.1.3. Transforming further the Weierstrass equations obtained

in Example 4.1.1, we get

y2 = x3 − 27

4
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by completing the square. Replaced x by
x

22
and y by

y

23
, the equation

becomes

y2 = x3 − 2433.

Any two Weierstrass equations of elliptic curves defined over Q are iso-

morphic if they differ only by change of variables (fixing the point at infinity)

of the form

x = u2x′ + r,

y = u3y′ + u2sx′ + t,

where u, r, s, t ∈ Q, u 6= 0. Substituting these to equation (4.1), we can see

that the change of coordinates preserves the j-invariant, i.e. j′ = j, while

u12∆′ = ∆. It can be concluded that if two elliptic curves are isomorphic

over Q then they have the same j-invariant. The converse may not true in

general. It will hold if the change of variables is defined over an algebraically

closed field (see Proposition 3.7, Ch.III, [18]).

For an elliptic curve in short Weierstrass equation (4.2), the discriminant

and the j-invariant are

∆ = −16(4a3 + 27b), and j = −1728(4a)3/∆.

The only change of variables preserving this form is

x = u2x′, and y = u3y′,

with u ∈ Q \ {0}.

Although the discriminant is not an invariant of an elliptic curve E, we

will define following a related quantity which is invariant in the isomorphism

class (over Q).
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Definition 4.1.4. A Weierstrass form of an elliptic curve defined over Q,

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

is said to be minimal if ai ∈ Z for all 1 ≤ i ≤ 6, and |∆| ∈ N is minimal

among all Weierstrass equations in the isomorphism class, respecting to the

change of variables over Q. Such ∆ is called the minimal discriminant, which

is invariant under the change of variables.

A Weierstrass form is minimal at a prime p if vp(ai) ≥ 0 for all i, and

vp(∆) is minimal among all such forms in the Q−isomorphism class. It can

be said that the Weierstrass form is minimal if it is minimal at all primes.

4.2 The group law

Given an elliptic curve E in short Weierstrass form (4.2), a point (x, y) on E

is called a rational point if both coordinates are rational numbers. Let E(Q)

denote the set of all rational points on E together with the point at infinity

O.

We will now define an operation on the set E(Q). Given P,Q ∈ E(Q), the

line joining P and Q (if P = Q, consider the tangent line at P ) has to meet

the curve at a third point of intersection, say R, on E, by Bezout’s Theorem

(see e.g. Theorem 10, §7, [7]). Define P + Q to be the point obtained by

reflecting the point R in the x-axis. The inverse of a point P , written −P , is

its reflection in the x-axis. This addition law gives the following properties

(see Proposition 2.2, Ch.III, [28] for the proof):

(i) If the points of intersection of E and a line L are P,Q,R (not neces-

sarily distinct), then
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(P + Q) + R = O.

Given points P,Q,R on E; then

(ii) P + O = P ; that is O is the identity of this addition.

(iii) P + (−P ) = O.

(iii) (commutative law) P + Q = Q + P .

(iv) (associative law) (P + Q) + R = P + (Q + R).

More explicitly, let P = (x1, y1), and Q = (x2, y2) be rational points on E.

Then the formulas for P + Q = (x3, y3) are given below.

If x1 6= x2, then

P + Q = (α2 − x1 − x2, α(x1 − x3) − y1) ,

where α =
y2 − y1

x2 − x1

.

If x1 = x2 and y1 = y2, then

2P = P + P = (α2 − 2x1, α(x1 − x3) − y1) ,

where α =
3x2

1 + a

2y1

.

If x1 = x2 and y1 = −y2, then Q = −P and P + Q is the point at infinity.

With the addition law above, the structure of the set E(Q) is known.

Theorem 4.2.1. (Mordell-Weil Theorem, [22]) Let E denote an el-

liptic curve defined over Q. Then E(Q) is a finitely generated abelian group

with respect to the geometric addition law above.

Arithmetic properties of elliptic curves begin with two classical results.

Siegel’s Theorem (Theorem 2.1.1) says that the set of integral points on an

elliptic curve is finite, and the Mordell-Weil Theorem tells more that the
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group of rational points on an elliptic curve is finitely generated.

For any n ∈ Z, the addition formulas above can generate the multiples of

a rational point P on E by setting

nP = P + ... + P
︸ ︷︷ ︸

n terms

for n > 0,

0P = O,

nP = (−n)(−P ) for n < 0.

We say that P is a torsion point if there exists n ∈ N such that nP = O, and

the order of a torsion point is the smallest n such that nP = O; otherwise if

there are no such n, P is called a non-torsion point. The n-torsion subgroup

of E, denoted by E[n], n 6= 0, is the set of points of order dividing n in E,

E[n] = {P ∈ E : nP = O}.

The torsion subgroup of E, written Etors, is the set of all points of finite order;

that is

Etors =
∞⋃

n=1

E[n].

Denote by Etors(Q) the set of torsion points in E(Q).

A consequence of the Mordell-Weil Theorem is that the abelian group

E(Q) of an elliptic curve E/Q can be written as

E(Q) ∼= Etors(Q) × Zr,

where the number r is a non-negative integer, called the rank of the elliptic

curve.
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4.2.1 Division polynomials

The multiplication of P by an integer can be described by rational functions

as follows. Given E an elliptic curve defined over Q in short Weierstrass

form,

E : y2 = x3 + ax + b,

with a, b ∈ Q, suppose P = (x, y) ∈ E(Q) is a non-torsion point. Then

nP =

(
φn(x, y)

ψ2
n(x, y)

,
ωn(x, y)

ψ3
n(x, y)

)

.

We call ψn the division polynomials associated to E and P . The division

polynomials satisfy the following identities

φn = xψ2
n − ψn+1ψn−1,

4yωn = ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1,

and satisfy the following recursion

ψm+nψm−n = ψm+1ψm−1ψ
2
n − ψn+1ψn−1ψ

2
m. (4.3)

The division polynomials can be calculated inductively as in [28] by the

following recursions:
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ψ0 = 0

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6ax2 + 12bx − a2,

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx − 8b2 − a3),

ψ2k+1 = ψk+2ψ
3
k − ψk−1ψ

3
k+1, for k ≥ 2,

ψ2kψ2 = ψk(ψk+2ψ
2
k−1 − ψk−2ψ

2
k+1), for k ≥ 3

ψ−k = − ψk, for k < 0.

Then ψn (respectively, yψn) is a polynomial in Z [a, b, x, y2] when n is odd

(respectively, n is even). Replacing y2 by x3 +ax+ b, we may regard them as

polynomials in Z [a, b, x], as is ψ2
n. It can be easily proved by induction that

ψ2
n = n2xn2−1 + lower order terms,

φn = xn2

+ lower order terms.

Remark 4.2.2. If we restrict our attention to an elliptic curve of the form

E : y2 = x3 + B,

then it can be proved by a straightforward induction that the resultant be-

tween φn and ψ2
n can be written in the form

R(φn, ψ
2
n) = (432B)d,

where d = 1
6
n2(n2 − 1). Furthermore, ψn, y−1ψn, x−1ψn, and (xy)−1ψn are

binary forms in x3 and B (over Z) of degrees n2−1
6

, n2−4
6

, n2−3
6

, and n2−6
6

when

3 - n odd, 3 - n even, 3 | n odd, and 3 | n even, respectively.
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4.3 Elliptic divisibility sequences

In this section, we give the definition of an elliptic divisibility sequence in two

ways, and indicate the connection between each type of elliptic divisibility

sequences and the division polynomials ψn.

4.3.1 EDS - from elliptic curves

The first one comes from the defining equation of an elliptic curve. Given an

elliptic curve E in short Weierstrass form,

E : y2 = x3 + ax + b,

with a, b ∈ Z, let P ∈ E(Q) be non-torsion. The shape of the equation forces

the expression of the point P to be in the form

P =

(
A

B2
,

C

B3

)

,

where A,B,C ∈ Z such that gcd(AC,B) = 1, and without loss of generality,

we may take B > 0. For any n ∈ N, write

nP =

(
An

B2
n

,
Cn

B3
n

)

,

in lowest terms. Lemma 3.12 of [17] proved the following property of the

sequence (Bn).

Theorem 4.3.1. If p is a prime divisor of Bn, then

ordp(Bnk) = ordp(Bn) + ordp(k).
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A direct consequence of this Theorem is that Bm | Bn whenever m | n.

This means (Bn) is a divisibility sequence. It is natural to call it an elliptic

divisibility sequence, abbreviated EDS, as it is derived from an elliptic curve.

Indeed, (Bn) satisfies the strong divisibility property,

gcd(Bm, Bm) = Bgcd(m,n)
.

Returning to the division polynomials in section 4.2.1, we now have

An

B2
n

= X(nP ) =
φn(P )

ψ2
n(P )

.

In general, |ψn(P )| may not be equal to Bn, as gcd(φn(P ), ψ2
n(P )) may not

be equal to 1, but it always true that Bn | |ψn(P )|. However, the extent of

the cancellation can be controlled by Lemma 3 of [15] as follows:

Lemma 4.3.2. Let E/Q be an elliptic curve and P ∈ E(Q) be a non-torsion

point. Let ψn(P ), and Bn be as defined above. Then for n ≥ 1,

log Bn ≤ log |ψn(P )| ≤ log Bn + n2M2 log |∆(E)|,

where M = M(P ) is the quantity as defined on page 6.

4.3.2 EDS - from Morgan Ward’s definition

In fact, the term elliptic divisibility sequence was initially used by Morgan

Ward (see [34]). In his sense, an integer sequence (hn)n≥0 is an elliptic divis-

ibility sequence if it satisfies the recurrence relation

hm+nhm−n = hm+1hm−1h
2
n − hn+1hn−1h

2
m (4.4)

41



for all m ≥ n ≥ 1. We will call this sequence a Ward-type elliptic divisibility

sequence, or Ward-type EDS, when we refer to it. The recurrence relation

(4.4) gives rise to two relations. Taking m = n + 1 in (4.4) gives the first

relation, while taking m = n + 2 and then replacing n by n − 1 gives the

second one,

h2n+1 = hn+2h
3
n − hn−1h

3
n+1 (4.5)

and

h2nhn = hn+2hnh
3
n−1 − hnhn−2h

2
n+1. (4.6)

According to Ward’s paper, a solution h = (hn) of (4.4) is said to be proper if

h0 = 0, h1 = 1, and h2h3 6= 0. Theorem 4.1 of [34] says that a proper solution

will be a Ward-type EDS if and only if h2, h3 and h4 are all integral with

h2 | h4 and the relations (4.5) and (4.6) are satisfied for all n. Thus we can

compute all other terms in the sequence (hn) from the initial values h0, ..., h4,

making the sequence uniquely determined by these 5 values.

There is a close connection between Ward-type EDS and the division

polynomials ψn. From the definition of the division polynomials, ψn is a

Ward-type EDS. Conversely, Ward also proved in [34] that if (hn) is a given

Ward-type EDS, then there is an elliptic curve E/Q : y2 = x3 + ax + b and

a non-torsion point P ∈ E(Q) such that

ψn(P ) = hn,

where ψn is the division polynomial associated to E and P .

In the next five secttions, we will explain the relavant topics that will be

used in some parts of the proof of our results in Chapter 5.
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4.4 Reduction modulo p

This topic will be used in the proof of Theorem 5.2.18, page 95.

Given a prime p and a rational number x, write

x = pn a

b
, where gcd(ab, p) = 1 and n ≥ 0,

define

rp(x) =







ab−1 (mod p) if n = 0,

0 if n > 0.

Then rp(x) ∈ Fp. This map gives a ring homomorphism

{x ∈ Z : |x|p ≤ 1} −→ Fp.

Extending this concept to an elliptic curve defined over Q, we may change

variables by (x, y) → (x/u2, y/u3) so that all coefficients of E are integers,

and the terms y2 and x3 have coefficient 1. We pass from E to a curve Ē by

reducing the coefficients of E modulo p. That is

Ē : y2 + rp(a1)xy + rp(a3)y = x3 + rp(a2)x
2 + rp(a4)x + rp(a6)

when E is in the form y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. This induces

a reduction map

E(Q) −→ Ē(Fp),

which is a group homomorphism. We call Ē the reduction of E modulo p.

The curve Ē may possibly be singular. Denote by Ēns the non-singular part

of Ē, i.e. the set of all non-singular points of Ē. Ēns is isomorphic to an

abelian group (see Theorems 2.30 and 2.31, [35]).
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Note that if one starts with an elliptic curve E in minimal form, then Ē

is unique up to the change of variables as in section 4.1. We say that E has

good reduction modulo p if Ē is non-singular, i.e. Ēns = Ē, and p is called a

prime of good reduction. One can see from the formulæ

∆̄ ≡ ∆ mod p,

where ∆̄ and ∆ are the discriminants of Ē and E, respectively, that Ē is

non-singular if and only if p - ∆. Otherwise, if Ē is singular, we say E has

bad reduction modulo p

Example 4.4.1. Consider E : y2 = x3 + 6x2 − 315x, which is a minimal

curve. Then

E → Ē : y2 = x2(x + 1) mod 2,

E → Ē : y2 = x3 mod 3,

E → Ē : y2 = x2(x + 1) mod 5,

E → Ē : y2 = x2(x + 6) mod 7,

so E has bad reduction modulo 2, 3, 5, and 7, and has good reduction at

other primes.

4.5 Isogenies

Here, we give the definition of an isogeny, which is an important ingredient

in the statement of the first main Theorem.

Let E and E ′ be two elliptic curves which are defined over Q. An isogeny

between E and E ′ is a non-trivial homomorphism,

φ : E → E ′,
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defined by rational functions on the coordinates of the points, which takes the

zero of E to the zero of E ′. The degree of the underlying rational functions

that define the isogeny is the degree of the isogeny. The curves E and E ′ are

said to be m-isogenous if there is an isogeny of degree m between them. One

basic example of an isogeny is the multiplication by m, given by P 7→ mP

for P ∈ E(Q), and the degree is m2. Note that an isogeny of degree 1 is an

isomorphism; that is, a change of variables.

Example 4.5.1. (1) An isogeny of degree 1 (isomorphism) between two

elliptic curves

E : y2 + y = x3 and E ′ : y2 = x3 + 11664

defined by

(x, y) 7−→ (2233x, 2233(2y + 1)).

(2) An isogeny of degree 3 between two elliptic curves

E : y2 = x3 + 16m2 and E ′ : y2 = x3 − 432m2

defined by

(x, y) 7−→ (x +
64m2

x2
,
y(y + 12m)(y − 12m)

(y + 4m)(y − 4m)
).

An important property of every isogeny φ : E → E ′ of degree m is that

there exists a dual isogeny

φ∗ : E ′ → E

such that the composite homomorphisms φφ∗ and φ∗φ are multiplications by

m on E and E ′ respectively.
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4.6 Heights on elliptic curves

In this section, we will introduce the notions of the Weil height and the

canonical height, which are an essential in the proof of Theorem 5.1.1, page

56.

Let
p

q
6= 0 be a rational number with gcd(p, q) = 1. Define

H

(
p

q

)

= max{|p|, |q|},

and

h

(
p

q

)

= log H

(
p

q

)

.

The function h is called the (logarithmic) height function. For any given

constant c, there are only finitely many rational numbers r with h(r) ≤ c.

This concept can be extended to rational points on elliptic curves defined

over Q. Let E/Q be an elliptic curve in short Weierstrass form

E : y2 = x3 + ax + b.

By a change of variables, we may assume that a, b ∈ Z. Given P = (x, y) ∈

E(Q), define

h(P ) = h(x) and h(O) = 0.

The height function on E(Q), usually called the Weil height, satisfies the

duplication formula

h(2P ) = 4h(P ) + O(1),

where the implied constant depends only on E but not on P . However, there

exists a function ĥ : E(Q) → R≥0 that has better properties. This function

is called the canonical height defined by
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ĥ(P ) = limN→∞
h([2N ]P )

4N
.

Theorem 7.12 [12] asserts that the limit on the right-hand side always exists.

The canonical height satisfies the following properties, taken from Theorem

7.13, [12], Theorem 9.3, Ch.VIII, [28], and Lemma 3.1, [29]:

(1) ĥ(P ) ≥ 0 for all P ∈ E(Q), with equality iff P has finite order.

(2) Given a constant c, there are only finitely many rational points P

with ĥ(P ) ≤ c.

(3) ĥ(nP ) = n2ĥ(P ) for all n ∈ Z and P ∈ E(Q).

(4) (parallelogram law)

ĥ(P + Q) + ĥ(P − Q) = 2ĥ(P ) + 2ĥ(Q)

for all P,Q ∈ E(Q).

(5) Suppose φ is an isogeny of degree d. Then for all P ,

ĥ(φ(P )) = dĥ(P ).

Silverman (Remark 1.2, [27]) gives an explicit upper and lower bound for the

difference between the Weil height and the canonical height.

Theorem 4.6.1. Given an elliptic curve in short Weierstrass form,

E/Q : y2 = x3 + ax + b,

then

−1
6
h(j) − 1

6
h(∆) − 2.14 ≤ h(Q) − ĥ(Q) ≤ 1

4
h(j) + 1

6
h(∆) + 1.946.

where ∆ = −16(4a3 + 27b2) and j = −(48)a3/∆.
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Note that Silverman’s heights are twice our heights so we have divided his

formulæ by 2. For the Mordell curve of the form E : Y 2 = X3 − 432m2,

better lower bounds of the canonical height are presented in [10] and [16].

Definition 4.6.2. The condition (†) is that every prime divisor of m, which

is greater than 3, is congruent to 5 modulo 6.

Theorem 4.6.3. (Lemma 4.3, [10]) Let P ∈ E(Q) be a non-torsion point.

Then

ĥ(P ) ≥ 1

27
log m − 0.0562,

unless m ≡ ±2 mod 9 and m does not satisfy (†), in which case

ĥ(P ) ≥ 1

27
log m − 0.1173.

Theorem 4.6.4. (Proposition 1, [16]) Given P ∈ E(Q)\{O} with m > 2

cube-free,

ĥ(P ) ≥







1
27

log m
2

+ 1
12

log 3 if m ≡ ±1,±3,±4 (mod 9),

1
12

log m
2

+ 3
16

log 3 if m ≡ ±2 (mod 9), and m satisfies (†),
1

108
log m

2
+ 1

48
log 3 if m ≡ ±2 (mod 9),

and m does not satisfy (†),
1
3
log m

2
− 1

4
log 3 if m ≡ 0 (mod 9), and m satisfies (†),

1
27

log m
2
− 1

36
log 3 if m ≡ 0 (mod 9),

and m does not satisfy (†),
(4.7)
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Moreover, A consequence of Corollary 2 of [16] also provides the lower

bound of the canonical height for integral points on the curve E as follows:

ĥ(P ) ≤ 1

2
log(X(P )) +

1

3
log 3. (4.8)

4.7 Elliptic functions

In this section, we will give a definition of an elliptic function over C and also

explore its properties. This topic helps us to prove the non-integrality of the

multiples of integral points on the Mordell curve E : Y 2 = X3 − 432m2 in

Theorem 5.2.5, page 71.

Given two complex numbers ω1, ω2, which are linearly independent over

R, then

Λ = {n1ω1 + n2ω2 : n1, n2 ∈ Z}

is called a lattice, the ωi are called the periods of the lattice, and the region

Π = {α1ω1 + α2ω2 : 0 ≤ αi < 1, i = 1, 2}

is called the fundamental parallelogram for Λ. We focus on the torus C/Λ.

A function on C/Λ can be considered as a function on C such that

f(z + u) = f(z)

for all z ∈ C and u ∈ Λ. Equivalently,

f(z + ωi) = f(z)

for all z ∈ C. Such function is called a doubly periodic function. We then

define an elliptic function to be a meromorphic doubly periodic function.
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An important example of elliptic functions is known as the Weierstrass ℘-

function defined by

℘(z) =
1

z2
+

∑

u∈Λ
u 6=0

(
1

(u − z)2
− 1

u2

)

.

The following properties of ℘(z) are quoted from Theorem 3.1, Ch.VI, [28].

(1) The sum defining ℘(z) converges absolutely and uniformly on every

compact subset of C − Λ.

(2) ℘(z) is meromorphic in C and has a double pole at each u ∈ Λ.

(3) ℘(−z) = ℘(z).

(4) ℘(z + u) = ℘(z) for all u ∈ Λ.

(5) every doubly periodic function is a rational function of ℘ and its

derivative ℘′.

Given the Weierstrass ℘-function for a lattice Λ, then

℘′(z)2 = 4℘(z)3 − 60G4℘(z) − 140G6,

where G2k =
∑

u∈Λ
u 6=0

u−2k. This series converges absolutely for all k > 1. If we

let

g2 = 60G4 and g3 = 140G6,

then the point (℘(z), ℘′(z)) lies on the curve

y2 = 4x3 − g2x − g3.

Proposition 3.6 [28] asserts that the discriminant ∆ = g3
2 − 27g2

3 is non-zero.

We now conclude from above that a complex torus yields an elliptic curve.

It can be said that a torus C/Λ is isomorphic to the complex points on an
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elliptic curve. In other words, let Λ be a lattice and E : y2 = 4x3 − g2x− g3;

then

Φ : C/Λ −→ E(C)

z + Λ 7−→
(

℘(z),
1

2
℘′(z)

)

, for z /∈ Λ

0 + Λ 7−→ ∞,

is a group isomorphism (Proposition 3.6, [28]).

4.8 Elliptic logarithms

To prove Theorem 5.2.5, in section 5.2, we require an upper bound and a

lower bound on a linear form in elliptic logarithms (see page 75 for more

details). In this section, we just give an introduction to the basic concept of

an elliptic logarithm.

From Section 4.7, we have the isomorphism

Φ : C/Λ −→ E(C).

For any P ∈ E(Q), write Φ(P ) = u for some u ∈ C/Λ. Let

Ψ : E(C) −→ C

Ψ(P ) = u

be the map inverse to Φ. We call u an elliptic logarithm of P. If u is chosen

in a fundamental parallelogram of the period lattice of E, it is the principal

value of the elliptic logarithm of P .

Fix a basis {P1, ..., Pr} for the torsion-free part of E(Q), then we can

write
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P = q1P1 + · · · + qrPr + T

for some integers q1, ..., qr and a torsion point T . Applying the map Ψ to

above yields

Ψ(P ) ≡ q1Ψ(P1) + · · · + qrΨ(Pr) + Ψ(T ) (mod Λ),

so that if {ω1, ω2} is a fixed basis of Λ, then we obtain a linear form in elliptic

logarithms Ψ(Pi) as

L(P ) := Ψ(P ) = q1Ψ(P1) + · · · + qrΨ(Pr) + Ψ(T ) + n1ω1 + n2ω2,

for some integers n1, and n2.
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Chapter 5

The Results

In this chapter, we will give the proofs of our main Theorems about prime

appearance in divisibility sequences derived from an elliptic curve of the form

C : U3 + V 3 = m, (5.1)

where m is a nonzero integer.

Remark 5.0.1. The curves

C1 : U3 + V 3 = m1 and C2 : U3 + V 3 = m2

are isomorphic (over Q) if m1/m2 is a cube, so from now on, we will assume

that m > 0 is a cube-free integer. This assumption implies U and V should

be coprime and UV 6= 0. Furthermore, we can assume that m > 2 as the

curves U3 + V 3 = m, when m = 1, 2, have no points of infinite order.

Given R ∈ C(Q), write, in lowest terms,

nR =

(
Un

Wn

,
Vn

Wn

)

.
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The sequence (Wn) is a divisibility sequence. The divisibility property (see

[10]) follows using the formal group of an elliptic curve as in Ch.VII of [28].

Moreover, the sequence (Wn) is a source of infinitely many prime numbers

in the sense that the term Wn always has a primitive divisor (i.e. a divisor

of Wn that is coprime to every nonzero term Wm with 0 ≤ m < n), for all

n > 1, proved by Everest, Ingram, and Stevens in [10]:

Theorem 5.0.2. (Theorem 1.1, [10]) With C and (Wn) defined as above,

for all n > 1, Wn has a primitive divisor.

Our principal aim is to study the stronger property of (Wn); that is, we

will find a uniform bound on the index n such that Wn is a prime. This

indicates that the number of prime terms of (Wn) is finite, so a strong form

of the uniform Primality conjecture will be given.

The proofs rely on some results on the elliptic divisibility sequence ob-

tained from the Mordell curve

E : Y 2 = X3 − 432m2, (5.2)

where P ∈ E(Q) corresponds to R ∈ C(Q) under the bi-rational transfor-

mation given by

X =
223m

U + V
, Y =

2232m(U − V )

U + V
,

U =
2232m + Y

6X
, V =

2232m − Y

6X
.

(5.3)
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Consequently, we have

(
Un

Wn

,
Vn

Wn

)

= nR =

(
2232mB3

n + Cn

6AnBn

,
2232mB3

n − Cn

6AnBn

)

,

where nP =

(
An

B2
n

,
Cn

B3
n

)

and gcd(AnCn, Bn) = 1.

In Section 5.1, we will show that, under some hypothesis on a rational

point P , there is an absolute constant N0 such that Bn > 2
1

3 3
1

2 m
1

6 for every

n > N0. Based on this result, we can bound uniformly the size of the index

n such that Wn is not a prime power. The hypothesis as mentioned above is

concerned with a 3-isogeny σ between the curve E and the elliptic curve of

the form

E ′ : y2 = x3 + 16m2, (5.4)

given by

X = σ(x) = x +
64m2

x2
,

and

Y = σ(y) =
y(y + 12m)(y − 12m)

(y + 4m)(y − 4m)
.

Section 5.2 will present the proof of the second main result without the

isogeny condition above. To prove this, we will look at the non-integrality of

the multiples of P instead, and find a uniform bound N1 for which Bn > 1

when n > N1 with at most one exception. Subsequently, we will get a uniform

bound for the size of the second largest n such that Wn is not a prime power.
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5.1 Primality Conjecture (with isogeny con-

dition)

Lemma 5.1.1. Let P and E be as above and suppose P is the image of a

rational point on E ′ under the isogeny σ. Then Bn > 2
1

3 3
1

2 m
1

6 for all n > 22.

Note The condition in the statement of Lemma is not infrequently met. For

example, the values m = 6, 7, 9, 12, 15, 20, 33, 34, 42, 69, 70, 75, 78, 84, 90, 105

all yield rank-1 curves whose generators satisfy the condition stated. The

following table shows a generator of E, say P , which is mapped from a

generator of E ′, say P ′, under the isogeny σ.

m P P ′

6 [28,80] [24, 120]
7 [57,405] [56,420]
9 [73,595] [72, 612]
12 [52, 280] [16, 80]
15 [49, 143] [40, 260]
20 [84, 648] [-16, 48]
33 [97, 665] [88, 836]
34 [273, 4455] [-16, 120]

m P P ′

42 [172, 2080] [168, 2184]
69 [553, 12925] [552, 12972]
70 [156, 1296] [140, 1680]
75 [601, 14651] [600, 14700]
78 [217, 2755] [208, 3016]
84 [148, 440] [112, 1232]
90 [364, 6688] [360, 6840]
105 [169, 253] [120, 1380]

Proof of Lemma 5.1.1. Let P ∈ E(Q) such that σ(P ′) = P , for some P ′ ∈

E ′(Q). Write

xn := x(nP ′) =
an

b2
n

,

with gcd(an, bn) = 1; then

An

B2
n

= X(nP ) = xn +
64m2

x2
n

=
a3

n + 64m2b6
n

a2
nb

2
n

. (5.5)
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We claim first that Bn > 2
1

3 3
1

2 m
1

6 , provided max{|an|, b2
n} > 2

10

3 3
1

2 m
7

6 .

Consider the fraction on the right-hand side of (5.5), let d = pr be a common

factor of (a3
n +64m2b6

n) and a2
nb

2
n, where p is a prime and r ∈ N is the highest

order of p dividing both terms. Since gcd(an, bn) = 1, either d | a2
n or d | b2

n.

If the latter occurs, then d | (a3
n +64m2b6

n) implies d | a3
n, which is impossible

as an and bn are coprime. Thus d can only come from the term a2
n, so that

d | a3
n. We have now that

d | (a3
n + 64m2b6

n), d | a3
n, and d - b6

n,

so pr = d | 64m2. Hence the greatest common divisor of numerator and

denominator of the fraction on the right-hand side of (5.5), say g, has to

divide 64m2 as well. If |an| > 2
10

3 3
1

2 m
7

6 , then

B2
n =

a2
nb

2
n

g
≥ a2

nb
2
n

64m2
> 2

2

3 31m
1

3 .

Therefore Bn > 2
1

3 3
1

2 m
1

6 . On the other hand, if b2
n > 2

10

3 3
1

2 m
7

6 , then

B2
n ≥ b2

n > 2
10

3 3
1

2 m
7

6

which plainly yields Bn > 2
1

3 3
1

2 m
1

6 with room to spare.

Next recall the difference between the Weil height and the canonical

height as in Theorem 4.6.1, stated here again for convenience,

−1

6
h(j) − 1

6
h(∆) − 2.14 ≤ h(Q) − ĥ(Q) ≤ 1

4
h(j) +

1

6
h(∆) + 1.946. (5.6)

Write h = ĥ(P ) and h′ = ĥ(P ′); then

h = ĥ(P ) = ĥ(σ(P ′)) = 3ĥ(P ′) = 3h′
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as σ is a 3-isogeny and by Property (5) of the canonical heights in Section

4.6. Applying the estimate (5.6) to the curve E ′ with ∆ = −16333m4, j = 0,

and Q = nP ′, we obtain

log max
{
|an|, b2

n

}
= h(nP ′) > h′n2 − 2

3
log m − 1

2
log 48 − 2.14. (5.7)

Moreover, the height bound in Theorem 4.6.3 makes

h′ =
h

3
>

1

81
log m − 0.039. (5.8)

for all m ≥ 0. Then (5.7) becomes

log max {|an|, b2
n} >

(
1

81
log m − 0.039

)

n2 − 2

3
log m − 1

2
log 48 − 2.14.

We aim to find the necessary condition that makes |an| > 2
10

3 3
1

2 m
7

6 assuming

firstly that |an| > b2
n. Thus the overall effect require is that

(
1

81
log m − 0.039

)

n2 − 2

3
log m − 1

2
log 48 − 2.14 > log(2

10

3 3
1

2 m
7

6 ). (5.9)

With a manipulation, (5.9) will be guaranteed for n > 12, but for all suffi-

ciently large m.

However, we need to verify the statement of Lemma 5.1.1 for all m, even

though we have to adjust the bound of n to be greater than 12. With some

calculations, we can see from (5.9) that if m > 353, then n > 22. For the

smaller values m ≤ 353, we will study further all curves that have rank

greater than 0, in Appendix A, to obtain the exact bound. Thus it can be

concluded that for all m, Bn > 2
1

3 3
1

2 m
1

6 if n > 22.
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If b2
n > |an|, we still want to find such condition to force b2

n > 2
10

3 3
1

2 m
7

6

and the resulting argument is the same.

We are now in a position to prove main Theorem by using the result from

Lemma 5.1.1 as a part of the proof.

Theorem 5.1.2. (Main Theorem I) Let C be an elliptic curve as in (5.1)

and R ∈ C(Q) a non-torsion point. Suppose P ∈ E(Q) corresponds to R

by the bi-rational transformation (5.3). Under the assumption that P is the

image of a rational point under σ, Wn is divisible by at least two distinct

primes for all n > 2.

Proof. The proof consists of two parts. The first one is a direct consequence

of Lemma 5.1.1 which will be used to show that the term Wn possesses at

least two coprime factors for all n > 22. In the second part, we prove this

for every n ≤ 22 case by case.

From the bi-rational transformation (5.3), we have

Un

Wn

=
2232mB3

n + Cn

6AnBn

, (5.10)

and also

Vn

Wn

=
2232mB3

n − Cn

6AnBn

, (5.11)

where nR =

(
Un

Wn

,
Vn

Wn

)

and nP =

(
An

B2
n

,
Cn

B3
n

)

are all written in lowest

terms.

Firstly, we consider the fractions on the right-hand side of (5.10). Let d =

pr be a common factor of (2232mB3
n +Cn) and 6AnBn with p a prime number

and r ∈ N the highest order of p dividing both terms. If d′ := gcd(d,Bn) 6= 1,
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then d′ | d | (2232mB3
n + Cn) implies d′ | Cn , which contradicts the fact that

Bn and Cn are coprime. Thus gcd(d,Bn) = 1, so that d comes from the term

6An. Notice, moreover, that any cancellation of the right-hand side of (5.10)

and (5.11) is the same. This is because they have the same denominators,

and the left-hand sides of both equations are in lowest terms. Hence d has

to divide both (2232mB3
n + Cn) and (2232mB3

n −Cn), so that d | 72m. Thus

the greatest common divisor of the fraction on the right-hand side of (5.10),

say g, also divides 72m.

As g | 6An and, especially,

G :=
g

gcd(g, 6)
| An,

we need to ensure
An

G
> 1 to guarantee that

An

G
and Bn both contribute

non-trivial coprime factors to Wn. Analyzing all possibilities of gcd(g, 6), we

get the following conclusions.

(i) If gcd(g, 6) = 6, then

G =
g

gcd(g, 6)
=

g

6
| 12m,

so in this case it is enough to prove that An > 12m to make
An

G
> 1.

(ii) If gcd(g, 6) = 3, then G =
g

3
| 24m, so in this case An > 24m is

required.

(iii) If gcd(g, 6) = 2, then G =
g

2
| 36m, so in this case An > 36m is

required.

(iv) If gcd(g, 6) = 1, then G = g | 72m, so in this case An > 72m

is required. Indeed, we need not treat the last case because Wn always

contains 6 as a divisor, even though
An

G
= 1. This means Wn has 2 and 3 as
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two coprime factors. Hence we require overall An > 36m to make sure that

An

G
> 1. Lemma 5.1.1 and the equation

C2
n = A3

n − 2433m2B6
n,

imply

A3
n > 432m2B6

n > 2433m2(2
1

3 3
1

2 m
1

6 )6 > 2636m3,

for all n > 22, so that An > 36m. This means Wn has at least two coprime

divisors for all n > 22.

Secondly, we will check the terms Wn for each n ≤ 22 to produce a sharp

lower bound on n. Since the sequence (Wn) satisfies the divisibility property,

it suffices to consider when n are all primes less than 22 and we group such

primes, other than 2 and 3, as n ≡ 1 (mod 3) and n ≡ 2 (mod 3).

Suppose R = (u, v) ∈ C(Q) is an integral point of infinite order (in the

case of rational points, we will see below that the proof can be generalized

from the case of integral points).

In case n = 2, the point 2R can be expressed in the form

2R =

(−2vu3 − v4

u3 − v3
,
u4 + 2v3u

u3 − v3

)

.

Suppose u − v = 1. Then

u3 − v3 = (u − v)(u2 + uv + v2) = 3u2 − 3u + 1.

Applying the Bateman-Horn conjecture [2] to the polynomial

f(u) := 3u2 − 3u + 1
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suggests that f(u) is prime for infinitely many positive integers u. It seems

likely that W2 is not composite. This leads us to study other powers of 2.

Consider the case when n = 4. Write

4R =

(
U4

W4

,
V4

W4

)

=

(
f4(u, v)

g4(u, v)
,
f ′

4(u, v)

g4(u, v)

)

,

where

f4(u, v)

g4(u, v)
=

−u16 + 8v3u13 + 32v6u10 + 28v9u7 + 10v12u4 + 4v15u

−u15 − 13v3u12 − 10v6u9 + 10v9u6 + 13v12u3 + v15
,

and

f ′
4(u, v)

g4(u, v)
=

v16 − 8u3v13 − 32u6v10 − 28u9v7 − 10u12v4 − 4u15v

−u15 − 13v3u12 − 10v6u9 + 10v9u6 + 13v12u3 + v15
.

We may consider the second coordinate, and factorize g4(u, v) as

g4,1(u, v) := v − u

g4,2(u, v) := u2 + uv + v2 ≡ (v − u)2 (mod 3)

g4,3(u, v) := u4 + 2u3v + 2uv3 + v4 ≡ (v − u)4 (mod 3)

g4,4(u, v) := u8−2u7v +4u6v2 +4u5v3−5u4v4 +4u3v5 +4u2v6−2uv7 +v8

≡ (v − u)8 (mod 3).

We claim that at least two of these factors can avoid being cancelled by the

numerator f ′
4(u, v). Choosing to consider g4,3 and g4,4, we can see that the

resultants between them and f ′
4 with respect to u and v are

Ru(f
′
4, g4,3) = 316v64 and Rv(f

′
4, g4,3) = 316u64,

respectively, and also

Ru(f
′
4, g4,4) = 332v128 and Rv(f

′
4, g4,3) = 332u128.

As u and v are coprime,

gcd(f ′
4(u, v), g4,3(u, v)) | 316 and gcd(f ′

4(u, v), g4,4(u, v)) | 332.
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Next we will show that both g4,3(u, v) and g4,4(u, v) are not equal any power

of 3. Suppose, for a contradiction, that g4,3(u, v) = 3k for some k > 1. Then

(v − u)4 ≡ g4,3(u, v) ≡ 0 (mod 3).

Hence u ≡ v (mod 3), so u3 ≡ v3 (mod 32). Replacing this in the expression

of g4,3(u, v), we get

0 ≡ u4 + 2u3v + 2u4 + u3v ≡ 3u3(u + v) (mod 32).

Then 3 | u or 3 | (u + v). Since u ≡ v (mod 3), the former implies 3 | v,

and the latter implies 3 | u and 3 | v which are contradictions as gcd(u, v) =

1. Thus the possibilities of k′s such that g4,3(u, v) = 3k are only 0 and 1.

Calculating by PARI/GP [31] shows that the only solutions (u, v) of the

equation g4,3(u, v) = 1 are (0,±1), (±1, 0), contradicting Remark 5.0.1; and

there are no solutions to g4,3(u, v) = 3.

A similar argument will be applied for the second factor g4,4(u, v). Suppose

g4,4(u, v) = 3k for some k > 2. As (v − u)8 ≡ g4,4(u, v) ≡ 0 (mod 3), we have

u ≡ v (mod 3), so that

u3 ≡ v3 (mod 33), 10u3 ≡ v3 (mod 33), or 19u3 ≡ v3 (mod 33).

Replacing each of these in the expression of g4,4, we find that there are no

solutions to g4,4(u, v) = 3k when k > 2. Thus it remains to solve the equations

g4,4(u, v) = 3k when 0 ≤ k ≤ 2. By computing with GP, the only solutions to

g4,4(u, v) = 1 are (0,±1), (±1, 0), (−1, 1), (1,−1), which is impossible; there

are no solutions to g4,4(u, v) = 3; and the solutions to g4,4(u, v) = 9 are

(−1,−1), (1, 1) only.
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We will prove moreover that the multiple g4,3(u, v)g4,4(u, v) can not be a

prime power. As above, g4,3 and g4,4 are not powers of 3, so write

g4,3(u, v) = 3mpm1

1 · · · pmr
r and g4,4(u, v) = 3nqn1

1 · · · qns
s ,

where p′is and q′js are primes, other than 3. Considering the resultant between

g4,3 and g4,4, we get gcd(g4,3(u, v), g4,4(u, v)) | 310. Thus there is at least one

prime pi which is not equal to any prime qj. This implies W4 is not a prime

power.

Case n = 3. The expression of 3R can be written as

3R =

(
u9 + 6u6v3 + 3u3v6 − v9

3uv(u6 + u3v3 + v6)
,
−u9 + 3u6v3 + 6u3v6 + v9

3uv(u6 + u3v3 + v6)

)

.

For convenience, let

f3(u, v) = −u9 + 3u6v3 + 6u3v6 + v9 and g3(u, v) = u6 + u3v3 + v6.

By the theory of resultants, we obtain

gcd(f3(u, v), g3(u, v)) | 39.

To complete the proof in this case, we have to prove that the denominator

g3(u, v) is not a power of 3. Suppose not, that is g3(u, v) = 3k for some k > 1.

Then (u − v)6 ≡ g3(u, v) ≡ 0 (mod 3). Thus u3 ≡ v3 (mod 32), and hence

0 ≡ u6 + u3v3 + v6 ≡ 3u6 (mod 32),

so 3 | u. This implies 3 | v which is impossible. For the remaining cases, the

only solutions to g3(u, v) = 1 are given by (u, v) = (0,±1), (±1, 0), (−1, 1), (1,−1),

and the only solutions to g3(u, v) = 3 are (−1,−1), (1, 1). Since gcd(u, v) = 1

and u and v are coprime to both f3(u, v) and g3(u, v), W3 possesses at least

two coprime divisors.
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Case n ≡ 1 (mod 3). The proof in this case proceeds exactly in the

same way as in the case n = 4, by the following steps.

(i) Write

nR =

(
Un

Wn

,
Vn

Wn

)

=

(
fn(u, v)

gn(u, v)
,
f ′

n(u, v)

gn(u, v)

)

,

and factor the denominator gn(u, v) as gn,1(u, v), gn,2(u, v), ..., gn,k(u, v), all

of which are homogeneous in u and v. By the theory of resultants, we have

found fortunately that for each n, gcd(f ′
n(u, v), gn,i(u, v)) divides a power of

3 for every i = 1, ..., k.

(ii) Pick two factors of gn, say gn,i(u, v) and gn,j(u, v), which can be proved

that both of them can not be any power of 3 by using the following facts:

gn,i(u, v) ≡ (u − v)degree(gn,i) ( mod 3),

gn,j(u, v) ≡ (u − v)degree(gn,j) ( mod 3).

(iii) Show that the multiple gn,ign,j is not a prime power, which is suffi-

cient to prove that the resultant between gn,i and gn,j is a power of 3.

Case n ≡ 2 (mod 3). In this case, the situation is much more compli-

cated. For all n, f ′
n(u, v) and gn(u, v) also behave like previous case in the

steps (i) and (iii). However, it is slightly different in step (ii). We need to

employ some facts about the Newton polygon on 3-adic fields to know about

the 3-adic valuation of gn,i. We will show how to do this for n = 5 (for other

n, the proofs will proceed in the same way). We have

g5,1(u, v) = u8 − 2u7v − 2u6v2 + u5v3 − 5u4v4 + u3v5 − 2u2v6 − 2uv7 + v8,

and
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g5,2(u, v) = u16+2u15v+6u14v2−2u13v3+11u12v4+21u11v5−11u10v6−u9v7+

27u8v8 − u7v9 − 11u6v10 + 21u5v11 + 11u4v12 − 2u3v13 + 6u2v14 + 2uv15 + v16.

As g5,i are homogeneous in u and v, we may replace U :=
u

v
in the expressions,

and then get corresponding polynomials in terms of U . We will find the

Newton polygons for g5,i(1 + X) instead, and explore their roots, where

g5,1(1 + X) = X8 + 6X7 + 12X6 + 3X5 − 30X4 − 63X3 − 63X2 − 36X − 9,

and

g5,2(1 + X) = X16 + 18X15 + 156X14 + 852X13 + 3261X12 + 9279X11 +

20394X10+35496X9+49617X8+55971X7+50814X6+36774X5+20871X4+

9072X3 + 2916X2 + 648X + 81.

The Newton polygons for g5,1 and g5,2 with p = 3, as shown in Figure 5.1 and

5.2 below, reveal that the slope of the only segment of each polygon is −1
4
.

By Theorem 2.3.13, all roots of g5,i(1 + X) (also for all of g11,i(1 + X) and

g17,i(1 + X)) have the 3-adic absolute values 3−
1

4 . Hence any root of g5,i(U)

is in the form

1 + a 3-adic number of absolute value 3−
1

4 .

If α is a root of g5,i(U), then

|U − α|3 = max{|U |3, |α|3} ≥ 3−
1

4 ,

so that

|g5,i(U)|3 =
∏

α

|U − α|3 ≥ (3−
1

4 )deg(g5,i),

where α ranges over all roots of g5,i(U). Thus the 3-adic valuation of g5,i(U)

is at most
deg(g5,i)

4
. It remains to solve the equations g5,i(u, v) = 3k with
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0 ≤ k ≤ deg(g5,i)

4
. We find that the only solutions to g5,1(u, v) = 30 are

(0,±1), (±1, 0), which contradicts the facts from Remark 5.0.1, and no solu-

tion to g5,1(u, v) = 3k for other k. Similarly, the only solutions to g5,2(u, v) =

1 are (0,±1), (±1, 0), (−1, 1), (1,−1); the solutions to g5,2(u, v) = 34 are

(−1,−1), (1, 1); and no solution to g5,2(u, v) = 3k for other k.

That is the proof of Theorem 5.1.2 when we consider only in the case of

integral points. In case of rational points, we write R =

(
u0

w0

,
v0

w0

)

∈ C(Q)

in lowest terms. The condition that m is cube-free implies u0 ane v0 are

coprime. Replacing u and v in the expressions of nR in previous cases by

u0

w0

, and
v0

w0

, respectively, we obtain

nR =

(
fn(u0, v0)

w0gn(u0, v0)
,

f ′
n(u0, v0)

w0gn(u0, v0)

)

,

and then proceed the proof for fn(u0, v0) and gn(u0, v0), so the conclusion

follows.

0

1

2

1 2 43 5 6 7 8

Figure 5.1: Newton polygon of g5,1(1 + X)
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0
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Figure 5.2: Newton polygon of g5,2(1 + X)

5.2 Primality Conjecture (without isogeny con-

dition)

As we have seen, applying the isogeny condition entails Lemma 5.1.1, and

subsequently Theorem 5.1.2. In this section, we will explore the possibilities

when this hypothesis is not assumed.

The connections between the curves

C : U3 + V 3 = m and Em : Y 2 = X3 − 432m2

is given via the bi-rational transformation (5.3) and we have

Un

Wn

=
2232mB3

n + Cn

6AnBn

.

Since any cancellation of the right-hand side comes from 6An only and

gcd(An, Bn) = 1, it implies that Wn has at least two coprime factors if

we can prove that Bn is always greater than 1, and 6An can avoid being
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cancelled eventually.

In the first part, we aim to prove that Bn > 1 for all n > N1, where N1

is a uniform constant. One application of Ingram’s result in [15] is follows:

Proposition 5.2.1. There exists an absolute constant N1 (independent of

m) such that Bn > 1 for all n > N1, except for at most one value of n.

Proof. From Theorem 1 of [15], with the notations used there, there is an

absolute constant C such that Bn > 1 for all n > CM(P )16, except for at

most one value of n, where the quantity M(P ) is related to the Tamagawa

number. Since the Mordell curve Em has integral j-invariant, along the same

lines as in [15], Em always has M(P ) ≤ 12. Hence an absolute bound for the

indices n such that Bn > 1 exists.

The key point of this section is to make the bound for the indices n such

that Bn > 1 explicit by following the proof of Theorem 2 of [15], which is

a special, but stronger, case of Theorem 1 of [15] for the congruent number

curves. Unfortunately, our result may not cover every P and m. Unlike the

results of the congruent number curves shown in [15], 2P and 3P may be

integral on our curve Em, e.g. when m = 7 with P = [84, 756], then

2P = [28, 28], 3P = [57,−405], and 4P = [1708,−70588].

However, the following Lemma guarantees that for any other prime multi-

pliers 3 < q ≤ 13, qP can not be integral. Note that any multiple of a

non-integral point is also non-integral. Thus we will initially focus on an

integral point P .
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Lemma 5.2.2. Given an integral point of infinite order P = (x, y) ∈ Em(Q)

such that gcd(x,m) = 1, the points 5P , 7P , 11P , and 13P are all non-

integral.

Proof. Write

nP =
φn(P )

ψ2
n(P )

=
φn(x3,m2)

ψ2
n(x3,m2)

.

The idea of the proof is that we will compute the resultants of φn(x3,m2) and

ψn(x3,m2), which are of the form 2A3BmC with A,B,C ∈ N. The condition

gcd(x,m) = 1 implies that the common factors of φn and ψn have to divide

2A3B. Thus our task is to solve the Thue equations

ψn(x3,m2) = ±2a3b,

where 0 ≤ a ≤ A and 0 ≤ b ≤ B. In Appendix B, we will show that the

possible values of a and b can be reduced to minimize the number of such

equations. Thus we will deal finally with only a small finite number of Thue

equations, and then solve them using PARI/GP [31] and MAGMA [20].

For n = 5, and 11, we will apply this argument directly, while for n = 7,

and 13, the general technique is the same, but the details differ slightly. The

process to establish all the possible values of a and b as well as all solutions

of the equations can be found in Appendix B.

However, to prove the non-integrality of the multiples of an integral point

on Em, we need the fact that 2P and 3P are non-integral.

Definition 5.2.3. The condition (∗) is that for an integral point P ∈ Em(Q),

2P, 3P are non-integral and gcd(X(P ), 3m) = 1
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From now on, we will work on this kind of integral point only.

Remark 5.2.4. If nP is integral, then n cannot be divisible by 2, 3, 5, 7, 11,

and 13, by the condition (∗) and Lemma 5.2.2; that is n ≥ 17.

Here is the result on the integrality of the multiples of P :

Theorem 5.2.5. Let P ∈ Em(Q) be an integral point of infinite order such

that gcd(X(P ), 3m) = 1. Suppose 2P , 3P are non-integral. Then there is at

most one value of n > 1 such that nP is integral, except when either

m ≡ ±2 mod 9 and m has a prime factor congruent to 1 mod 6, or

m ≡ 0 mod 9 and m has a prime factor congruent to 1 mod 6,

in such cases, the result always holds for all m > 3739071625384.

The proof of Theorem 5.2.5 relies upon the height bounds in Theorem

4.6.4, repeated here again,

ĥ(P ) ≥







1
27

log m
2

+ 1
12

log 3 if m ≡ ±1,±3,±4 (mod 9),

1
12

log m
2

+ 3
16

log 3 if m ≡ ±2 (mod 9), and m satisfies (†),
1

108
log m

2
+ 1

48
log 3 if m ≡ ±2 (mod 9),

and m does not satisfy (†),
1
3
log m

2
− 1

4
log 3 if m ≡ 0 (mod 9), and m satisfies (†),

1
27

log m
2
− 1

36
log 3 if m ≡ 0 (mod 9),

and m does not satisfy (†),
(5.12)

where the condition (†) as on page 48 means that every prime divisor of m,

which is greater than 3, is congruent to 5 modulo 6. We will refer to the

cases on the right-hand side of (5.12) as Cases I-V in the sequel. We can
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divide the proof into four main steps.

Step 1: Bounding the indices n such that nP is integral in terms of m:

Suppose nP is integral, n ≥ 2. Then

n ≤







max{4.608 × 1028, 2.653 × 1024(log m)
5

2}

max{4.608 × 1028, 1.769 × 1024(log m)
5

2}

max{1.253 × 1029, 5.305 × 1024(log m)
5

2}

max{4.608 × 1028, 2.652 × 1024(log m)
5

2}

max{4.608 × 1028, 3.535 × 1024(log m)
5

2},

for Cases I-V, respectively.

In order to prove these, we need to use David’s lower bound, in [8], on

linear forms in elliptic logarithms. On the other hand, we will provide an

upper bound on the linear forms in elliptic logarithms in Lemma 5.2.10 below.

Gathering these two bounds gives us the bounds on n depending only on m,

as desired.

Step 2: Exploring the relationship between two large multipliers of an integral

point: Suppose n1P and n2P are integral with 2 ≤ n1 < n2. Then

log n2 ≥







n2

1

27
log m − 1

3
log m + log ω1

2

n2

1

12
log m − 1

3
log m + log ω1

2

n2

1

108
log m − 1

3
log m + log ω1

2

n2

1

27
log m − 1

3
log m + log ω1

2
− 1

3
log 3 − 3

2
log 2

n2

1

48
log m − 1

3
log m + log ω1

2
− 1

3
log 3 − 3

2
log 2,
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where ω1 is the real period of E1.

Step 3: Finding an explicit upper bound on m.

In this step, we will combine two steps above and Lemma 5.2.2 by sub-

stituting n1 and n2 in the estimates from step 2 by

n1 ≥ 17, and

n2 ≤ the bounds in step 1.

With some calculations, we obtain

Case I: m ≤ 628,

Case II: m ≤ 16,

Case III: m ≤ 3739071625384,

Case IV: m ≤ 719,

Case V: m ≤ 161993.

Step 4: Computing all integral points on Em which satisfy the condition (∗)

when m ≤ 719. We will discuss about this step in Appendix C.

Remark 5.2.6. To explain how these four steps imply the proof of Theorem

5.2, we suppose first that there are at least two multipliers, n1, n2 > 1, of P

such that niP is integral (note that we omit the case when there is at most

one n such that nP is integral). Step 1 implies that if nP is integral; that is

Bn = 1, then n can be bounded above by some terms of m. In step 3, we can

see that m is bounded above exactly by an absolute constant, say C. This

means n is bounded by C as well. The remaining thing to do is to check all

integral points on the curves Em : Y 2 = X3 − 432m2 when m ≤ C. In the

cases III and IV, the bound of m is too large, so we will omit to work on

these cases.
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To follow the whole proof easier, we will separate to prove each step in

the following subsections.

5.2.1 Proof of Step 1

The proof of step 1 requires firstly an upper bound for the canonical heights

of integral points, which follows directly from the next Lemma.

Lemma 5.2.7. Suppose nP is integral, n ≥ 2. Then |X(P )| ≤ 6n2m
2

3 .

Proof. Postpone to the end of section.

Suppose nP is integral, for some n ≥ 2. Combining (4.8) and Lemma

5.2.7 yields

ĥ(P ) ≤ 1
2
log(X(P )) + 1

3
log 3 ≤ 1

2
log(6n2m

2

3 ) + 1
3
log 3,

so that

ĥ(P ) ≤ log n +
1

3
log m +

1

2
log 2 +

5

6
log 3 (5.13)

Secondly, the proof of step 1 also requires an upper bound and a lower

bound for linear forms in elliptic logarithms. Given an elliptic curve in short

Weierstrass form

E/Q : y2 = f(x),

and Q ∈ E(Q). Let ω be the real period of E. Consider the linear form

Ln,k(z, ω) = nz + kω,

where z is chosen to be the principal value of the elliptic logarithm of Q, and

k is chosen to make Ln,k(z, ω) the principal value of nQ. Lemma 10 of [15]
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is a special case of Theorem 2.1 of [8], giving us an explicit lower bound on

the value of such linear form.

Lemma 5.2.8. (Lemma 10, [15]) Given an elliptic curve E/Q, let ω and

ω′ be the real and complex periods of E, chosen such that τ = ω′/ω is in the

fundamental region

{
z ∈ C : |z| ≥ 1, Im(z) > 0, and |Re(z)| ≤ 1

2

}

of the action of SL2(Z) on the upper half plane. Given a non-torsion integral

point P , let z be the principal value of the elliptic logarithm of P , and let k

be chosen such that Ln,k(z, ω) = nz + kω is the principal value of the elliptic

logarithm of nP . Let B, V1 and V2 be positive real numbers chosen such that

log(V2) ≥ max

{

h(E),
3π

Im(τ)

}

,

log(V1) ≥ max

{

2ĥ(P ), h(E),
3π|z|2

|ω|2Im(τ)
, log(V2)

}

,

and

log(B) ≥ max{eh(E), log |n|, log |k|, log(V1)}.

Then either Ln,k(z, ω) = 0, or else

log |Ln,k(z, ω)| ≥ −C(log B + 1)(log log B + h(E) + 1)3 log V1 log V2,

where C is taken to be 4 × 1041 and e is approximately 2.718281828.

Note that Ln,k is non-vanishing if P is non-torsion.

Here, we will prove that for the Mordell curve Em, if nP is an integral

point, then Ln,k(z, ωm) is very small. The proof relies upon the estimate from

Lemma 8 of [15], which is as follows.
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Lemma 5.2.9. Let P ∈ Em(Q) be such that

X(P ) ≥ 2 max{|xT | : T ∈ E[2] \ {O}}.

If z is the principal value of the elliptic logarithm of P , then

−3

2
log 2 ≤ log |z| + 1

2
log |xP | ≤

3

2
log 2.

Lemma 5.2.10. Suppose nP is integral, n ≥ 2. Let z be the principal value

of the elliptic logarithm of P , and ωm be the real period of Em. Choose k

such that Ln,k = nz + kωm is the principal value of the elliptic logarithm of

nP . Then

log |Ln,k(z, ωm)| ≤







−n2

27
log m

−n2

12
log m

− n2

108
log m

−n2

27
log m + 3

2
log 2 + 1

3
log 3

−n2

48
log m + 3

2
log 2 + 1

3
log 3.

(5.14)

Proof. By Lemma 5.2.9, we have that if

XnP ≥ 2 max{|xT | : T ∈ E[2] \ {O}},

then

log |Ln,k(z, ωm)| ≤ 3

2
log 2 − 1

2
log |XnP |. (5.15)

We can see that 2 max{|xT | : T ∈ E[2] \ {O}} < 24m, so we will show firstly

that XnP is greater than 24m, and then we can employ the estimate (5.15)

to prove the bound (5.14).
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Suppose XnP ≤ 24m. Then, from (5.12) and (4.8),

1

2
log(24m) +

1

3
log 3 > ĥ(nP ) ≥







n2
(

1
27

log m
2

+ 1
12

log 3
)

n2
(

1
12

log m
2

+ 3
16

log 3
)

n2
(

1
108

log m
2

+ 1
48

log 3
)

n2
(

1
3
log m

2
− 1

4
log 3

)

n2
(

1
27

log m
2
− 1

36
log 3

)
.

Note that from Remark 5.2.4, the assumption n ≥ 2 can change to n ≥ 17.

We may assume m ≥ 6 for Cases I-III as there are no non-torsion points on

E when m ≤ 5, and assume m ≥ 9 for Cases IV-V as m ≡ 0 (mod 9). Then

n ≤ 4, 3, 9, 3, and 11, respectively, contradicting the fact that n ≥ 17. Thus

XnP > 24m, allowing us to deduce (5.15), so that

log |Ln,k(z, ωm)| ≤ −1
2
log |XnP | + 3

2
log 2 by (5.15)

≤ −ĥ(nP ) + 1
3
log 3 + 3

2
log 2 by (4.8)

≤







−n2
(

1
27

log m
2

+ 1
12

log 3
)

+ 3
2
log 2 + 1

3
log 3

−n2
(

1
12

log m
2

+ 3
16

log 3
)

+ 3
2
log 2 + 1

3
log 3

−n2
(

1
108

log m
2

+ 1
48

log 3
)

+ 3
2
log 2 + 1

3
log 3

−n2
(

1
3
log m

2
− 1

4
log 3

)
+ 3

2
log 2 + 1

3
log 3

−n2
(

1
27

log m
2
− 1

36
log 3

)
+ 3

2
log 2 + 1

3
log 3

by (5.12).

The different signs in Cases IV and V make for a different consideration.

Notice that

1
3
log m

2
− 1

4
log 3 ≥ 1

27
log m, for m ≥ 6

1
27

log m
2
− 1

36
log 3 ≥ 1

48
log m, for m ≥ 33
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(the cases m < 33 will be checked in Appendix C). Hence

log |Ln,k| ≤







−n2

27
log m − n2

(
− 1

27
log 2 + 1

12
log 3

)
+ 3

2
log 2 + 1

3
log 3

−n2

12
log m − n2

(
− 1

12
log 2 + 3

16
log 3

)
+ 3

2
log 2 + 1

3
log 3

− n2

108
log m − n2

(
− 1

108
log 2 + 1

48
log 3

)
+ 3

2
log 2 + 1

3
log 3

−n2

27
log m + 3

2
log 2 + 1

3
log 3

−n2

48
log m + 3

2
log 2 + 1

3
log 3.

We can see that in Cases I-III, the sum of the last three terms is always

negative as n ≥ 17. Therefore the bound (5.14) follows.

We are now in position to find an upper bound on n such that nP is

integral, which can be expressed in terms of m.

Lemma 5.2.11. Suppose nP is integral, n ≥ 2. Then

n ≤







max{4.608 × 1028, 2.653 × 1024(log m)
5

2}

max{4.608 × 1028, 1.769 × 1024(log m)
5

2}

max{1.253 × 1029, 5.305 × 1024(log m)
5

2}

max{4.608 × 1028, 1.816 × 1024(log m)
5

2}

max{4.608 × 1028, 2.421 × 1024(log m)
5

2}.

Proof. With the same notations used in Lemma 5.2.8, we have

log |Ln,k| ≥ −C(log B + 1)(log log B + h(E) + 1)3 log V1 log V2, (5.16)

where C = 4 × 1041. For the curve Em, τ =
1 +

√
3i

2
. As m ≥ 6,

h(Em) = log(4 · 432m2) > 11.038 >
3π

Im(τ)
.
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We set

log V2 = h(Em) = 2 log m + 6 log 2 + 3 log 3.

By (5.13) and the fact that |z| ≤ ωm

2
, we may take

log V1 = 3 log max{n,m} + 6 log 2 + 3 log 3.

As |nz + kωm| ≤
ωm

2
, we have |k| < n, and so we may take

log(B) = 3e log max{n,m} + 6e log 2 + 3e log 3.

Substituting all of them into (5.16) and then combining with (5.14), we get

n2

27
log m

n2

12
log m

n2

108
log m

n2

27
log m − 3

2
log 2 − 1

3
log 3

n2

48
log m − 3

2
log 2 − 1

3
log 3







≤ C(log B + 1)(log log B + h(Em) + 1)3·

log V1 log V2.

We separate our consideration in two cases. First, assuming that n > m, and

using the estimate log(log n + 2 log 2 + log 3) < log n for all n ≥ 6, we obtain

n2 ≤ F (log n), (5.17)

where

F (x) = C ′ (x + 2 log 2 + log 3 + 1
3e

) (
x + 2 log 2 + 4

3
log 3 + 2

3

)3

(x + 2 log 2 + log 3)
(
3 log 2 + 3

2
log 3 + x

)
,

for Cases I - III, and

F (x) = C ′{2135e
(
x + 2 log 2 + log 3 + 1

3e

) (
x + 2 log 2 + 4

3
log 3 + 2

3

)3
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(x + 2 log 2 + log 3)
(
3 log 2 + 3

2
log 3 + x

)
+ 3

2
log 2 + 1

3
log 3},

for Cases IV and V.

The constant C ′ varies in each case as
2138eC

log 6
,
2336eC

log 6
,
2338eC

log 6
,

27

log 9
, and

48

log 9
, respectively.

We know that (5.17) bounds n, but we require some tool to refine it.

Claim 5.2.12. (Claim 23, [15]) Let F (x) ∈ R[x] be a polynomial of degree

d. Suppose that for some W > 0 and every 0 ≤ k ≤ d,

W 2 > 2−kF (k)(log W ),

where F (k) denote the kth derivative of F . Then x2 > F (log x) for all x ≥ W.

It can be checked that if

W =







4.608 × 1028,

4.608 × 1028,

1.253 × 1029,

4.608 × 1028,

4.608 × 1028,

then W 2 > 2−kF (k)(log W ) for all 0 ≤ k ≤ 6. Hence Claim 5.2.12 implies

particularly that x2 > F (log x) for all x ≥ W. Therefore the bound (5.17)

implies that

n < 4.608 × 1028,

n < 4.608 × 1028,

n < 1.253 × 1029,

n < 4.608 × 1028,

n < 4.608 × 1028,
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for Cases I-V, respectively.

On the other hand, if n < m, then by the estimate

log(log m + 2 log 2 + log 3) < log m

again, we get

n2 ≤ C ′′ log(m)5G(log m),

where

G(x) = {(x + 2 log 2 + log 3 + 1)
(
x + 2 log 2 + 4

3
log 3 + 2

3

)3

(x + 2 log 2 + log 3)
(
2 log 2 + 3

2
log 3 + x

)
}/x6,

for Cases I-III, so that

G(log m) ≤ 493 for all m ≥ 6,

and

G(x) = {2 · 35 · e · C (x + 2 log 2 + log 3 + 1)
(
x + 2 log 2 + 4

3
log 3 + 2

3

)3

(x + 2 log 2 + log 3)
(
2 log 2 + 3

2
log 3 + x

)
+ 3

2
log 2 + 1

3
log 3}/x6,

for Cases IV-V, so that

G(log m) ≤ 1.221 × 1047 for all m ≥ 9.

The constants C ′′ are 2138eC, 2336eC, 2338eC, 27, and 48, respectively. Hence

n < 2.653 × 1024(log m)
5

2 ,

n < 1.769 × 1024(log m)
5

2 ,

n < 5.305 × 1024(log m)
5

2 ,

n < 1.816 × 1024(log m)
5

2 ,

n < 2.421 × 1024(log m)
5

2 ,
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Next, we will show the proof of Lemma 5.2.7, which relies on the following

two claims.

Claim 5.2.13. Given Q ∈ E[n] \ {O}, we have |X(Q)| ≤ 3n2m
2

3 .

Proof of Lemma 5.2.13. Appealing to the isomorphism

Em(C) −→ E1(C)

(X,Y ) 7−→ (Xm− 2

3 , Y m−1),

it suffices to prove the claim for m = 1, which we do by using another

isomorphism deduced from the study of elliptic functions. Let Λ = ω1Z[ω]

be the period lattice of E1, where ω =
1 +

√
−3

2
, and ω1 is the real period

of E1. Note that 0.88 < ω1 < 0.89, computed with PARI/GP. Consider the

Weierstrass ℘-function associated to E1

℘(z) =
1

z2
+

∑

u∈Λ
u 6=0

(
1

(u − z)2
− 1

u2

)

,

and we have

C/Λ −→ E1(C)

z 7−→
(

℘(z),
1

2
℘′(z)

)

is an isomorphism. Then |℘(z)| = |z|−2 + O(1) near z = 0, and we will

prove the claim by making this explicit. We may choose a representative

z = α1ω1 + α2ω2, where ω2 = ω1ω, of any class in C/Λ such that |αi| ≤
1

2
,

then z is in the region

Λ0 =

{

z ∈ C : |Re(z)| ≤ 3

4
ω1 and |Im(z)| ≤

√
3

4
ω1

}

.
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Claim I.1: |u − z| ≥
√

3

4
|u|, for all u ∈ Λ.

Proof. If |u| ≥
√

3|ω1|, then |z| ≤ |u|
2

, so that

|u − z| ≥ | |u| − |z| | = |u| − |z| ≥ |u| − |u|
2

=
|u|
2

>

√
3

4
|u|.

The lattice points left to consider are all points u such that |u| <
√

3|ω1|.

There are only 6 such lattice points: ω1, ω2, ω2 − ω1, −ω1, −ω2, ω1 − ω2. In

fact, it suffices to consider just 3 points, u = ω1, ω2, and ω2 − ω1, because

of the symmetry of the lattice. Each one satisfies |u| = |ω1|. Consider the

distance between u and the corresponding closest point z = α1ω1 + α2ω2 in

Λ0.

(i) If u = ω1, then z =
ω1

2
+

ω2

4
, and

|u − z|2 =
∣
∣
∣
ω1

2
− ω2

4

∣
∣
∣

2

=

((
1

2

)2

+

(
1

2

)(

−1

4

)

+

(

−1

4

)2
)

|ω1|2

=
3

16
|ω1|2 =

(√
3

4
|u|

)2

.

(ii) If u = ω2, then z =
ω1

4
+

ω2

2
, and

|u − z|2 =
∣
∣
∣−ω1

4
+

ω2

2

∣
∣
∣

2

=
3

16
|ω1|2 =

(√
3

4
|u|

)2

.

(iii) If u = −ω1 + ω2, then z = −ω1

2
+

ω2

2
, and

|u − z|2 =
∣
∣
∣−ω1

2
+

ω2

2

∣
∣
∣

2

=
1

4
|ω1|2 =

( |u|
2

)2

≥
(√

3

4
|u|

)2

.

This completes the proof of Claim I.1.
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Now, by Claim I.1,

∣
∣
∣
∣
∣
∣
∣

∑

u∈Λ
u 6=0

(
1

(u − z)2
− 1

u2

)

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

∑

u∈Λ
u 6=0

u2 − (u − z)2

u2(u − z)2

∣
∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣
∣

∑

u∈Λ
u 6=0

2uz

u2(u − z)2

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

∑

u∈Λ
u 6=0

z2

u2(u − z)2

∣
∣
∣
∣
∣
∣
∣

≤ 2|z|
∑

u∈Λ
u 6=0

16

3|u|3 + |z|2
∑

u∈Λ
u 6=0

16

3|u|4 .

For σ > 1, let

F (σ) :=
∑

u∈Λ
u 6=0

|u|−2σ.

Then

|℘(z)| ≤ |z|−2 +
32

3
F (3/2)|z| + 16

3
F (2)|z|2.

Next we will determine upper bounds for F (3/2) and F (2). Note that

F (σ) =
∑

u∈Λ
u 6=0

|u|−2σ = 6
∑

u∈Λ1

u 6=0

|u|−2σ = 6
∑

α>0,β≥0

|αω1 + βω2|−2σ,

where

Λ1 =
{

u ∈ Λ : |u| > 0, and 0 ≤ arg(u) <
π

3

}

,

and arg(u) is the principal argument of u. Since

|αω1 + βω2|2 = (αω1 + βω2)(αω1 + βω̄2) = ω2
1(α

2 + αβ + β2),
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we have

ω2σ
1

6
F (σ) =

∑

α>0,β≥0

1

(α2 + αβ + β2)σ
=

∑

α>0,β>0

1

(α2 + αβ + β2)σ
+ ζ(2σ)

= 3−σ +
∑

α,β≥0
(α,β) 6=(0,0)

1

((α + 1)2 + (α + 1)(β + 1) + (β + 1)2)σ
+ ζ(2σ).

If we denote by S the region

S =
{
(x, y) ∈ R2 : x2 + y2 ≥ 1, and 0 ≤ y < x

√
3
}
,

then
∑

α,β≥0
(α,β) 6=(0,0)

1

((α + 1)2 + (α + 1)(β + 1) + (β + 1)2)σ

≤ 2√
3

∫∫

S

1

(x2 + xy + y2)σ
dxdy

≤ 2√
3

∫ π
3

0

∫ ∞

1

(r2+r2 sin θ cos θ)−σrdrdθ.

Calculating the last integral values by Maple [21] leads

F (3/2) ≤ 17.539 and F (2) ≤ 15.832,

and hence

|℘(z)| ≤ |z|−2 +
32

3
F (3/2)|z| + 16

3
F (2)|z|2

≤ |z|−2 +
32

3
(17.539)

√
3

2
(0.89) +

16

3
(15.832)

3

4
(0.89)2

≤ |z|−2 + 194.359,

as |z| ≤
√

3
2
|ω1|. If z ∈ C/Λ is a point of order dividing n (other that O),

then |z| ≥ |ω1|
n

, so that
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|℘(z)| ≤ n2

(0.89)2
+ 194.359 ≤ 3n2,

for all n ≥ 11. For the cases n ≤ 10, we can check all explicit torsion points

of order n in E1(C), and then the proof of Lemma is completed.

Claim 5.2.14. Suppose nP is an integral point, and hn = ψn(P ). Then

|hn| ≤ 2n2−1.

Proof. To give a bound for hn, we will consider the order to which all primes

divide hn. Suppose there exists a prime p other than 2 and 3 such that

p | hn = ψn(P ). Then p also divides φn(P ) as nP is integral, and hence

p has to divide the resultant of φn and ψn, which equals (432B)d, where

B = −432m2 and d = 1
6
n2(n2 − 1), by Remark 4.2.2. As p 6= 2, 3, p | m.

Since φn(P ) is a monic binary form in x3 and B, it forces p | x, contradicting

the assumption that x and m are coprime. Thus no such p exists. It now

remains to think about when p = 2 or 3.

Refering to Remark 4.2.2 again, we have

ψn(P ) = ψn(x,m) = nx
n2

−1

2 + · · · ,

is also a binary form in x3 and B = −432m2. Since gcd(x, 3) = 1 and 3 - n,

hn is not divisible by 3, so ord3(hn) = 0.

For p = 2, we have either 2 | x or 2 - x. With the same reasons as above,

the latter would imply ord2(hn) = 0. Otherwise, from the initial values of

hn, we observe that

ord2(hn)







= n2 − 1 if 3 - n

≥ n2 − 1 if 3 | n.
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To verify these by induction for all n, we will use the formulas (4.5) and (4.6),

as detailed in Appendix B. Therefore the conclusion of Claim II arises.

Proof of Lemma 5.2.7. Suppose for a contradiction that |X(P )| > 6n2m
2

3 . If

Q ∈ E[n] \ {O}, then, by Claim 5.2.13,

|X(P ) − X(Q)| >
X(P )

2
.

Thus

|hn| ≥
(

X(P )

2

)n2
−1

2

,

as h2
n = n2

∏

Q∈E[n]\{O}
|X(P )−X(Q)| and E[n]\{O} consists of n2−1 points.

On the other hand, by Claim 5.2.14,

|hn| ≤ 2n2−1.

So that

23 ≥ X(P ) ≥ 6n2m
2

3 ,

and hence n < 1 as m ≥ 6, which is impossible. Thereby |X(P )| ≤ 6n2m
2

3 .

5.2.2 Proof of Step 2

We now come to step 2 of the proof of Lemma 5.1.1 to construct a relation

between n1 and n2 when n1P and n2P are integral points. The first two

claims below are essential to help us get there.

Claim 5.2.15. Suppose nP is an integral point, n ≥ 2. Then n is prime.
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Claim 5.2.16. Suppose nP is integral, and denote z and nz + kωm the

principal values of the elliptic logarithms of P and nP , respectively. If k = 0,

then n = 1.

We postpone the proofs of these two claims to the end of this section.

Lemma 5.2.17. Suppose n1P and n2P are integral with 2 ≤ n1 < n2. Then

log n2 ≥







n2

1

27
log m − 1

3
log m + log ω1

2

n2

1

12
log m − 1

3
log m + log ω1

2

n2

1

108
log m − 1

3
log m + log ω1

2

n2

1

27
log m − 1

3
log m + log ω1

2
− 3

2
log 2 − 1

3
log 3

n2

1

48
log m − 1

3
log m + log ω1

2
− 3

2
log 2 − 1

3
log 3,

(5.18)

where ω1 is the real period of E1.

Proof. By the triangle inequality and Lemma 5.2.10, we have

m− 1

3 ω1 ≤ ωm|n2k1 − n1k2|

≤ n2|n1z + k1ωm| + n1|n2z + k2ωm|

≤







n2m
−n2

1

27 + n1m
−n2

2

27

n2m
−n2

1

12 + n1m
−n2

2

12

n2m
− n2

1

108 + n1m
−n2

2

27

n2m
−n2

1

27 e
5

2
log 2+ 4

3
log 3 + n1m

−n2
2

48 e
3

2
log 2+ 1

3
log 3

n2m
−n2

1

48 e
5

2
log 2+ 4

3
log 3 + n1m

−n2
2

48 e
3

2
log 2+ 1

3
log 3

(5.19)

The inequality on the left-hand side requires |n2k1 −n1k2| 6= 0: suppose that

n2k1 = n1k2. From Claim 5.20, we know that n1 and n2 are prime. This

implies k1 6= 0, by Claim 5.2.16. Thus either n1 = n2 or n1 | |k1|. If the latter
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occurs, then n1 ≤ |k1|. Following as in the proof of Proposition 13 [15], we

have

2|k1| ≤
2

ωm

(|n1z + k1ωm| + |n1z|) ≤ n1 + 1,

as |z| ≤ ωm

2
and |n1z + k1ωm| ≤

ωm

2
. This induces

2n1 ≤ 2|k1| ≤ n1 + 1,

which is impossible as n1 ≥ 2. Thus n1 = n2.

We will give details of the proof for Case I only (the same process will be

applied for Cases II-V). The estimate (5.19) gives

m− 1

3 ω1

2
≤ n2m

−n2
1

27 or
m− 1

27 ω1

2
≤ n1m

−n2
2

27

In the latter case,

ω1

2
≤ n1m

−n2
2

27
+ 1

3 < n2m
−n2

2

27
+ 1

3 .

Taking the logarithm gives n2 ≤ 7, a contradiction. Hence

m− 1

3

ω1

2
≤ n2m

−n2
1

27 ,

so that

log n2 ≥
n2

1

27
log m − 1

3
log m + log

ω1

2
.

Proof of Claim 5.2.14. Suppose n is composite and let q be the smallest

prime dividing n. Write a =
n

q
; then nP = q(aP ) with q ≤ a. Then

the estimates (5.13) and (5.12) imply
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log q +
1

3
log m +

1

2
log 2 +

5

6
log 3 ≥ ĥ(aP ) = a2ĥ(P )

≥







a2
(

1
27

log m
2

+ 1
12

log 3
)

a2
(

1
12

log m
2

+ 3
16

log 3
)

a2
(

1
108

log m
2

+ 1
48

log 3
)

a2
(

1
3
log m

2
− 1

4
log 3

)

a2
(

1
27

log m
2
− 1

36
log 3

)

≥







q2
(

1
27

log m
2

+ 1
12

log 3
)

q2
(

1
12

log m
2

+ 3
16

log 3
)

q2
(

1
108

log m
2

+ 1
48

log 3
)

q2
(

1
3
log m

2
− 1

4
log 3

)

q2
(

1
27

log m
2
− 1

36
log 3

)
.

Again assuming m ≥ 6 in Cases I-III, and m ≥ 9 in Cases IV-V, then

q2 ≤







7.56 log q + 14.06

3.36 log q + 6.25

30.25 log q + 56.25

7.98 log q + 15.92

39.7 log q + 79.18.

(5.20)

Lemma 6 of [15] says that for any positive real numbers a, b, if

f(x) = x2 − a log x − b,

then f(x) ≥ 0 for x ≥ max{e, a + b}. Applying to (5.20), we get

q ≤ 21.62, 9.61, 86.5, 23.9, and 118.88.
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Indeed, q ≤ 5, 3, 11, 5, and 13, respectively, by checking the smaller values

q. These lead to contradictions as n cannot divisible by any prime less than

17.

Proof of Claim 5.2.15. From the proofs of Claim 25 and Lemma 12 of [15],

the elliptic logarithm z satisfies

− log |z| = − log

∣
∣
∣
∣

1

2

∫ ∞

X(P )

dt√
t3 − 432m2

∣
∣
∣
∣

≤ 3

2
log 2 +

1

2
log max{|X(P )|, 24m}. (5.21)

Moreover, by (5.14), we have

log n + log |z| = log |nz| ≤







−n2

27
log m

−n2

12
log m

− n2

108
log m

−n2

27
log m + 3

2
log 2 + 1

3
log 3

−n2

48
log m + 3

2
log 2 + 1

3
log 3

as k = 0. If |X(P )| ≥ 24m, then the estimate (5.21) and Lemma 5.2.7 give

− log |z| − log n ≤ 3
2
log 2 + 1

2
log(|X(P )|) − log n

≤ 3
2
log 2 + 1

2
log 6 + log n + 1

3
log m − log n

≤ 2 log 2 + 1
2
log 3 + 1

3
log m.
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Then

n2

27
log m

n2

12
log m

n2

108
log m

n2

27
log m − 3

2
log 2 − 1

3
log 3

n2

48
log m − 3

2
log 2 − 1

3
log 3







≤ − log |z| − log n

≤ 2 log 2 + 1
2
log 3 + 1

3
log m.

So that n ≤ 6, 4, 12, 7, and 9, respectively.

On the other hand, if |X(P )| < 24m, then

n2

27
log m

n2

12
log m

n2

108
log m

n2

27
log m − 3

2
log 2 − 1

3
log 3

n2

48
log m − 3

2
log 2 − 1

3
log 3







≤ − log |z| − log n

≤ 3

2
log 2 +

1

2
log 24m − log n,

which give n ≤ 5, 3, 8, 6, and 8, respectively. But n cannot divisible by 2, 3, 5,

and 7, so n = 1.

5.2.3 Proof of Step 3

We arrive now at the step in finding an explicit bound on m in each case by

substituting n1 and n2 in the estimate (5.18) from step 2 by

n1 ≥ 17, and

n2 ≤ the bounds in step 1.
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Case I: If n2 ≤ 4.608 × 1028 and n1 ≥ 17, then substituting them into the

estimate (5.18), we get

log 4.608 + 28 log 10 ≥ log n2 ≥
280

27
log m + log

ω1

2
,

With a manipulation, m ≤ 628.

On the other hand, if n2 ≤ 2.653 × 1024(log m)
5

2 and n1 ≥ 17, then, by

(5.18) again,

log 2.653 + 24 log 10 +
5

2
log log m ≥ log n2 ≥

280

27
log m + log

ω1

2
,

so that

280

27
log m − 5

2
log log m ≤ 24 log 10 + log 2.653 − log

ω1

2
.

Then m ≤ 376. Thus, in this case, m ≤ 628.

Case II: If n2 ≤ 4.608 × 1028 and n1 ≥ 17, then

log 4.608 + 28 log 10 ≥ log n2 ≥
95

4
log m + log

ω1

2
,

so m ≤ 16. If n2 ≤ 1.769 × 1024(log m)
5

2 and n1 ≥ 17, then

95

4
log m − 5

2
log log m ≤ 24 log 10 + log 1.769 − log

ω1

2
,

so m ≤ 11. Thus, in this case, m ≤ 16.

Case III: If n2 ≤ 1.253 × 1029 and n1 ≥ 17, then

log 1.253 + 29 log 10 ≥ log n2 ≥
253

108
log m + log

ω1

2
,

so m ≤ 3739071625384. If n2 ≤ 5.305 × 1024(log m)
5

2 and n1 ≥ 17, then

253

108
log m − 5

2
log log m ≤ 24 log 10 + log 5.305 − log

ω1

2
,
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so m ≤ 1794187182553. Thus, in this case, m ≤ 3739071625384.

Case IV: If n2 ≤ 4.608 × 1028 and n1 ≥ 17, then

log 4.608 + 28 log 10 ≥ log n2 ≥
280

27
log m + log

ω1

2
− 3

2
log 2 − 1

3
log 3,

so m ≤ 719. If n2 ≤ 1.816 × 1024(log m)
5

2 and n1 ≥ 17, then

280

27
log m − 5

2
log log m ≤ 24 log 10 + log 1.816 − log

ω1

2
+

3

2
log 2 +

1

3
log 3,

so m ≤ 417. Thus, in this case, m ≤ 719.

Case V: If n2 ≤ 4.608 × 1028 and n1 ≥ 17, then

log 4.608 + 28 log 10 ≥ log n2 ≥
273

48
log m + log

ω1

2
− 3

2
log 2 − 1

3
log 3,

so m ≤ 161993. If n2 ≤ 2.421 × 1024(log m)
5

2 and n1 ≥ 17, then

273

48
log m − 5

2
log log m ≤ 24 log 10 + log 2.421 − log

ω1

2
+

3

2
log 2 +

1

3
log 3,

so m ≤ 83262. Thus, in this case, m ≤ 161993.

In Cases III and V, we get massive bounds on m, so we will not work on

these Cases anymore. For other Cases, we will deal with the curves Em with

small values m ≤ 719 in Appendix C, and then the proof of Theorem 5.2.5

will be completed.

We now come to the final part of this section. Given a non-torsion point

R ∈ C(Q), suppose P is a non-torsion rational point on E corresponding to

R by the bi-rational transformation (5.3). This gives

Un

Wn

=
2232mB3

n + Cn

6AnBn

.
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From the proof of Theorem 5.1.2, we have that the greatest common divisor

g of the numerator and the denominator of the right-hand side comes from

the term 6An only; that is, g - Bn, and g | 72m.

If R corresponds to a non-integral point P =

(
A1

B2
1

,
C1

B3
1

)

, then Bn > 1

for all n ≥ 1. In this situation, proving that
6An

g
> 1 requires the condition

that gcd(A1,m) = 1.

If R corresponds to an integral point P = (A1, C1), then, by Theo-

rem 5.1.1, Bn > 1 for at most one exception under the assumption that

gcd(A1, 3m) = 1, and 2P , 3P are non-integral.

We can conclude the precise statement of the second main result as fol-

lows:

Theorem 5.2.18. (Main Theorem II) Given C an elliptic curve as in

(5.1) with m ∈ Z cube-free, let R be a rational point on C corresponding to a

rational point P on E. Write, in lowest terms, nR =

(
Un

Wn

,
Vn

Wn

)

. Suppose

that

gcd(A1,m) = 1 if P =

(
A1

B2
1

,
C1

B3
1

)

is non-integral, or

gcd(X(P ), 3m) = 1 and 2P, 3P are non-integral if P is integral.

Then there is at most one value of n > 1 such that Wn is a prime power

unless

m ≡ ±2 mod 9 and m has a prime factor congruent to 1 mod 6, or

m ≡ 0 mod 9 and m has a prime factor congruent to 1 mod 6,

in which cases, the result holds for m > 3739071625384.

Remark 5.2.19. If gcd(A1,m) = 1, then gcd(An,m) = 1 for all n.

Proof. Let p be arbitrary prime number. We aim to show that
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ordp(gcd(An,m)) = 0.

It is obvious when p - m. Otherwise, suppose p | m. Reducing

E : Y 2 = X3 − 2433m2

modulo p yields

Ē : y2 = x3,

which is singular at (0, 0). Let P =

(
A1

B2
1

,
C1

B3
1

)

∈ E(Q). Since gcd(A1,m) =

1 and p | m, so that p - A1. Then P maps to some point P̄ on Ē, other than

(0, 0), i.e. P maps to a non-singular point P̄ on Ē. We have the following

facts:

(i) Ēns is a group, and

(ii) the reduction mod p map is a homomorphism.

Thus the point nP =

(
An

B2
n

,
Cn

B3
n

)

maps to n(P̄ ) on Ēns. This means p - An;

that is ordp(gcd(An,m)) = 0.

Proof of Main Theorem II. After we can prove that Bn is guaranteed to be

greater than 1, for at most one exception, it remains to show that 6An can

avoid being cancelled. For convenience, write

G =
g

gcd(g, 6)
,

where g is as above; then G | g | 72m and G | An. This means our goal is

equivalent to showing that the term
An

G
is greater than 1. Since G | An and

gcd(An,m) = 1, it follows that gcd(G,m) = 1, so G | 72 = 2332. Notice that

the condition gcd(An,m) = 1 and the defining equation of E,

C2
n = A3

n − 432m2B6
n, (5.22)
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imply ord3(An) ≤ 1 for all n. Hence G | 24. It now requires An > 24 to

complete the proof. As m ≥ 6, we have, by the equation (5.22),

A3
n > 2433m2 > 243362,

and hence An > 24, as desired.
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Appendix A

Computation I

In order to complete the proof of Lemma 5.1.1, it remains to check the

statement for all cube-free integers m up to 353, as mentioned in the end of

the proof. In this part, we deal with the particular computations to find a

uniform bound, N0, on the indices n such that Bn > 2
1

3 3
1

2 m
1

6 for such m.

We start by computing ranks and generators of E : Y 2 = X3 − 432m2 by

MAGMA [20] and PARI/GP [31]. We consider the curves of rank greater

than 0 only. For rank-1 curves, we test the elliptic divisibility sequence (Bn)

arising from the generator for n = 1, ..., 22. A special treatment is required

for the curves of rank 2. There are two parts needed to find the bound

N0. We begin by finding the finite set of pairs (i, j), i, j ∈ Z, such that

the canonical height of each point iP + jQ is less than 40, where P and Q

represent the generators. Then we compute the elliptic divisibility sequence

(Bn) arising from each point iP + jQ, for n = 1, ..., 22. Now we get a bound,

say N ′
0, for the indices n from the points of canonical height less than 40. To

treat all cases, when h > 40, we return to the proof of Lemma 5.1.1 again.
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Replacing the estimate (5.8) by

h′ >
h

3
>

40

3
,

leading to

40

3
n2 − 2

3
log m − 1

2
log 48 − 2.14 > 2

10

3 3
1

2 m
7

6 .

Taking specific values for m such that Em has rank-2 gives another bound,

say N ′′
0 , for the indices n. Comparing N ′

0 and N ′′
0 , let

N0 = min{N ′
0, N

′′
0 }.

The following tables show the uniform bound N0 for all curves of rank 1 and

2 (there are no curves of higher rank appearing).

Note that when m = 337, the curve requires a special tool, because we

could not find its generator and rank using Magma. This problem was solved

by using the SAGE online programme [24].
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m N0

6 1
7 1
9 1
12 1
13 0
15 1
17 0
20 2
22 1
26 1
28 1
31 0
33 1
34 1
35 1
42 1
43 0
49 0
50 1
51 0
53 0
58 1
61 0
62 0
63 1
67 0
68 0
69 1

m N0

70 1
71 0
75 1
78 1
79 0
84 1
85 1
87 0
89 0
90 1
92 1
94 0
97 0
98 0
103 0
105 1
106 1
107 0
114 1
115 0
117 0
123 0
130 0
133 0
134 0
139 0
140 1
141 0

m N0

142 0
143 0
151 0
156 1
157 0
159 0
161 0
164 0
166 0
169 0
170 1
171 0
172 0
177 0
178 0
179 0
180 1
186 0
187 1
195 1
197 0
198 1
202 0
205 1
206 0
211 0
212 0
213 0

m N0

214 0
215 1
222 0
223 0
228 0
229 0
231 1
233 0
236 1
238 1
241 0
244 0
247 0
249 0
251 0
258 1
259 0
265 0
267 1
274 0
275 0
277 0
278 0
279 0
284 0
285 1
286 1
287 0

m N0

289 0
294 1
295 1
301 0
303 1
305 0
306 1
308 1
310 0
313 0
314 0
316 0
319 0
321 0
322 1
323 0
325 0
330 1
331 0
333 0
337 0
339 0
341 0
346 0
349 0

Table A.1: Rank-1 Curves
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m N0

19 1
30 1
37 0
65 1
86 1
91 0
110 1
124 1
126 1
127 0
132 1

m N0

153 1
163 0
182 1
183 1
201 1
203 1
209 1
210 1
217 1
218 1
219 1

m N0

246 1
254 1
271 0
273 1
282 1
309 0
335 1
342 1
345 1
348 1

Table A.2: Rank-2 Curves
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Appendix B

Proofs of Claim 5.2.14 and

Lemma 5.2.2

The purpose of this chapter is to complete the proofs of Claim 5.2.14 (p. 86)

and Lemma 5.2.2 (p. 74).

Claim 5.2.7: Suppose nP is an integral point, and hn = ψn(P ). Then

|hn| ≤ 2n2−1.

The first part will verify the expressions for ord2(hn) in Claim II of Lemma

5.2.7. Remind that in this Lemma, we suppose P = (x, y) is an integral point

such that 2P ans 3P are non-integral, and gcd(x, 3m) = 1. We claim that

when 2 | x,

ord2(hn)







= n2 − 1 if 3 - n

≥ n2 − 1 if 3 | n.

For n odd, write n = 2k + 1. We can divide all possibilities of n and k as

follows.
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If 3 | n, then

(i) k ≡ 1 (mod 3) and k is odd,

(ii) k ≡ 1 (mod 3) and k is even,

If 3 - n, then

(iii) k ≡ 0 (mod 3) and k is odd,

(iv) k ≡ 0 (mod 3) and k is even,

(v) k ≡ −1 (mod 3) and k is odd,

(vi) k ≡ −1 (mod 3) and k is even.

Then we use the formula (4.5),

hn = hk+2h
3
k − hk−1h

3
k+1,

to prove our claim.

For n even, write n = 2k. Then we use the formula (4.6),

h2hn = hk(hk+2h
2
k−1 − hk−2h

2
k+1),

instead for this case. All possibilities of n and k are described as follows.

If 3 | n, then 3 | k with

(vii) k is odd,

(viii) k is even.

If 3 - n, then 3 - k, so

(ix) k ≡ 1 (mod 3) and k is odd,

(x) k ≡ 1 (mod 3) and k is even,

(xi) k ≡ −1 (mod 3) and k is odd,

(xii) k ≡ −1 (mod 3) and k is even.

Note that since we consider ord2(hn) when 2 | x and gcd(x,m) = 1, from the

equation
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y2 = x3 − 432m2,

it follows that ord2(y) = 2 and ord2(x) ≥ 2.

Case (i): k ≡ 1 (mod 3) and k is odd imply 3 | k + 2 odd, 3 | k − 1 even,

3 - k + 1 even, so

ord2(hk+2h
3
k) = ord2(hk+2) + 3ord2(hk)

≥ (k + 2)2 − 1 + 3(k2 − 1)

= 4k2 + 4k,

and

ord2(hk−1h
3
k+1) = ord2(hk−1) + 3ord2(hk+1)

≥ (k − 1)2 − 3 + ord2(y) + 3((k + 1)2 − 3 + ord2(y))

= 4k2 + 4k − 8 + 4ord2(y) = 4k2 + 4k,

as ord2(y) = 2. Then

ord2(hn) ≥ 4k2 + 4k = (2k + 1)2 − 1 = n2 − 1.

Case (ii): k ≡ 1 (mod 3) and k is even imply 3 | k + 2 even, 3 | k − 1 odd,

3 - k + 1 odd, so

ord2(hk+2h
3
k) ≥ (k + 2)2 − 3 + ord2(y) + 3(k2 − 3 + ord2(y))

= 4k2 + 4k − 8 + 4ord2(y) = 4k2 + 4k,

and

ord2(hk−1h
3
k+1) ≥ (k − 1)2 − 1 + 3((k + 1)2 − 1))

= 4k2 + 4k.

Then
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ord2(hn) ≥ 4k2 + 4k = (2k + 1)2 − 1 = n2 − 1.

Case (iii): k ≡ 0 (mod 3) and k is odd imply 3 - k + 2 odd, 3 - k − 1 even,

3 - k + 1 even, so

ord2(hk+2h
3
k) ≥ (k + 2)2 − 1 + 3(k2 − 1)

= 4k2 + 4k,

and

ord2(hk−1h
3
k+1) = (k − 1)2 − 3 + ord2(y) + 3((k + 1)2 − 3 + ord2(y))

= 4k2 + 4k − 8 + 4ord2(y) = 4k2 + 4k,

Then

ord2(hn) = 4k2 + 4k = n2 − 1.

Case (iv): k ≡ 0 (mod 3) and k is even imply 3 - k + 2 even, 3 - k − 1 odd,

3 - k + 1 odd, so

ord2(hk+2h
3
k) ≥ (k + 2)2 − 3 + ord2(y) + 3(k2 − 3 + ord2(y))

= 4k2 + 4k − 8 + 4ord2(y) = 4k2 + 4k,

and

ord2(hk−1h
3
k+1) = (k − 1)2 − 1 + 3((k + 1)2 − 1))

= 4k2 + 4k.

Then

ord2(hn) = 4k2 + 4k = n2 − 1.
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Case (v): k ≡ −1 (mod 3) and k is odd imply 3 - k + 2 odd, 3 - k − 1 even,

3 | k + 1 even, so

ord2(hk+2h
3
k) = (k + 2)2 − 1 + 3(k2 − 1)

= 4k2 + 4k,

and

ord2(hk−1h
3
k+1) ≥ (k − 1)2 − 3 + ord2(y) + 3((k + 1)2 − 3 + ord2(y))

= 4k2 + 4k − 8 + 4ord2(y) = 4k2 + 4k,

Then

ord2(hn) = 4k2 + 4k = n2 − 1.

Case (vi): k ≡ −1 (mod 3) and k is even imply 3 - k + 2 even, 3 - k − 1

odd, 3 | k + 1 odd, so

ord2(hk+2h
3
k) = (k + 2)2 − 3 + ord2(y) + 3(k2 − 3 + ord2(y))

= 4k2 + 4k − 8 + 4ord2(y) = 4k2 + 4k,

and

ord2(hk−1h
3
k+1) ≥ (k − 1)2 − 1 + 3((k + 1)2 − 1))

= 4k2 + 4k.

Then

ord2(hn) ≥ 4k2 + 4k = n2 − 1.
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Case (vii): k ≡ 0 (mod 3) and k is odd imply 3 - k + 2 odd, 3 - k − 2 odd,

3 - k − 1 even, 3 - k + 1 even, so

ord2(hk+2h
2
k−1) = ord2(hk+2) + 2ord2(hk−1)

= (k + 2)2 − 1 + 2(k − 12 − 3 + ord2(y))

= 3k2 − 1 + 2ord2(y),

and

ord2(hk−2h
2
k+1) = ord2(hk−2) + 2ord2(hk+1)

= (k − 2)2 − 1 + 2((k + 1)2 − 3 + ord2(y))

= 3k2 − 1 + 2ord2(y),

Then

ord2(hn) = ord2(hk) − ord2(h2) + ord2(hk+2h
2
k−1 − hk−2h

2
k+1)

≥ k2 − 1 − 1 − ord2(y) + 3k2 − 1 + 2ord2(y)

= 4k2 − 3 + ord2(y) = n2 − 3 + ord2(y) = n2 − 1

as ord2(y) = 2.

Case (viii): k ≡ 0 (mod 3) and k is even imply 3 - k + 2 even, 3 - k − 2

even, 3 - k − 1 odd, 3 - k + 1 odd, so

ord2(hk+2h
2
k−1) = (k + 2)2 − 3 + ord2(y) + 2(k − 12 − 1)

= 3k2 + 1 + ord2(y),
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and

ord2(hk−2h
2
k+1) = (k − 2)2 − 3 + ord2(y) + 2((k + 1)2 − 1)

= 3k2 + 1 + ord2(y),

Then

ord2(hn) = ord2(hk) − ord2(h2) + ord2(hk+2h
2
k−1 − hk−2h

2
k+1)

≥ k2 − 3 + ord2(y) − 1 − ord2(y) + 3k2 + 1 + ord2(y)

= 4k2 − 3 + ord2(y) = n2 − 3 + ord2(y) = n2 − 1.

Case (ix): k ≡ 1 (mod 3) and k is odd imply 3 | k + 2 odd, 3 - k − 2 odd,

3 | k − 1 even, 3 - k + 1 even, so

ord2(hk+2h
2
k−1) ≥ (k + 2)2 − 1 + 2(k − 12 − 3 + ord2(y))

= 3k2 − 1 + 2ord2(y),

and

ord2(hk−2h
2
k+1) = (k − 2)2 − 1 + 2((k + 1)2 − 3 + ord2(y))

= 3k2 − 1 + 2ord2(y),

Then

ord2(hn) = ord2(hk) − ord2(h2) + ord2(hk+2h
2
k−1 − hk−2h

2
k+1)

= k2 − 1 − 1 − ord2(y) + 3k2 − 1 + 2ord2(y)

= 4k2 − 3 + ord2(y) = n2 − 3 + ord2(y) = n2 − 1.
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Case (x): k ≡ 1 (mod 3) and k is even imply 3 | k + 2 even, 3 - k − 2 even,

3 | k − 1 odd, 3 - k + 1 odd, so

ord2(hk+2h
2
k−1) ≥ (k + 2)2 − 3 + ord2(y) + 2(k − 12 − 1)

= 3k2 + 1 + ord2(y),

and

ord2(hk−2h
2
k+1) = (k − 2)2 − 3 + ord2(y) + 2((k + 1)2 − 1)

= 3k2 + 1 + ord2(y),

Then

ord2(hn) = ord2(hk) − ord2(h2) + ord2(hk+2h
2
k−1 − hk−2h

2
k+1)

= k2 − 3 + ord2(y) − 1 − ord2(y) + 3k2 + 1 + ord2(y)

= 4k2 − 3 + ord2(y) = n2 − 3 + ord2(y) = n2 − 1.

Case (xi): k ≡ −1 (mod 3) and k is odd imply 3 - k + 2 odd, 3 | k − 2 odd,

3 - k − 1 even, 3 | k + 1 even, so

ord2(hk+2h
2
k−1) = (k + 2)2 − 1 + 2((k − 1)2 − 3 + ord2(y))

= 3k2 − 1 + 2ord2(y),

and

ord2(hk−2h
2
k+1) ≥ (k − 2)2 − 1 + 2((k + 1)2 − 3 + ord2(y))

= 3k2 − 1 + 2ord2(y),

109



Then

ord2(hn) = ord2(hk) − ord2(h2) + ord2(hk+2h
2
k−1 − hk−2h

2
k+1)

= k2 − 1 − 1 − ord2(y) + 3k2 − 1 + 2ord2(y)

= 4k2 − 3 + ord2(y) = n2 − 3 + ord2(y) = n2 − 1.

Case (xii): k ≡ −1 (mod 3) and k is even imply 3 - k + 2 even, 3 | k − 2

even, 3 - k − 1 odd, 3 | k + 1 odd, so

ord2(hk+2h
2
k−1) = (k + 2)2 − 3 + ord2(y) + 2(k − 12 − 1)

= 3k2 + 1 + ord2(y),

and

ord2(hk−2h
2
k+1) ≥ (k − 2)2 − 3 + ord2(y) + 2((k + 1)2 − 1)

= 3k2 + 1 + ord2(y),

Then

ord2(hn) = ord2(hk) − ord2(h2) + ord2(hk+2h
2
k−1 − hk−2h

2
k+1)

= k2 − 3 + ord2(y) − 1 − ord2(y) + 3k2 + 1 + ord2(y)

= 4k2 − 3 + ord2(y) = n2 − 3 + ord2(y) = n2 − 1.

Next, we will show the rest of the proof of Lemma 5.2.2 (p. 74). Lemma

5.2.2: Given an integral point of infinite order P = (x, y) ∈ Em(Q) such

that gcd(x,m) = 1, the points 5P , 7P , 11P , and 13P are all non-integral.

We will give details of the proof of Lemma 5.2.2 for ψ5(x,m) only. Note

that for n = 7, 13, ψn(x,m) can be factorized. So we choose one of their
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factors, and then proceed the same argument.

Definition B.0.20. We define an admissible solution of the equation

ψn(x,m) = c

is a solution (x,m) satisfying the properties:

(i) m ≥ 6 ∈ Z, cube-free,

(ii) x, y ∈ Q and xy 6= 0, where y2 = x3 − 432m2.

Consider the resultant between φ5(x,m) and ψ5(x,m), which is

26003450m200.

From the assumption that gcd(x,m) = 1, we have that any common factor

of φ5 and ψ5 has to divide 26003450. So the result will be completed after we

can show that the solutions of the following equations

ψ5(x,m) = 5x12 − 164160m2x9 − 44789760m4x6 + 128994508800m6x3

−8916100448256m8 = 2a3b,

for 0 ≤ a ≤ 600 and 0 ≤ b ≤ 450, are all not admissible solutions.

Firstly, we will simplify all possible values of the exponents a. Let

f(x,m) := ψ5(x,m). We could have a = 0.

Suppose a > 0. Then 2 | x, write x = 2x1, so

f(x,m) = 212f1(x1,m),

where f1(x1,m) = 5x12
1 − 20520m2x9

1 − 699840m4x6
1 + 251942400m6x3

1 −

2176782336m8. This implies that a could be 12.

Suppose a > 12. Then 2 | x1, write x1 = 2x2, and

f1(x1,m) = 212f2(x2,m),
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where f2(x2,m) = 5x12
2 − 2565m2x9

2 − 10935m4x6
2 +492075m6x3

2 − 531441m8.

So a = 12 + 12 = 24.

Suppose a > 24. Then 2 | x2 and 2 | m, which is impossible as gcd(x,m) =

1. Thus we could have a = 0, 12, 24.

The argument to simplify the values of b is slightly different. We begin

by giving f(x,m) = ψ5(x,m) again. Suppose b > 0. Since gcd(x,m) = 1, we

omit the case 3 | x and 3 | m. If 3 - x and 3 | m, then 3 - ψ5(x,m), from the

expression of ψ5.

Now suppose 3 | x and 3 - m, then replacing x = 3x1 to ψ5(x,m) implies

f(x,m) = 312f1(x1,m)

with f1(x1,m) = 5x12
1 −6080m2x9

1−61440m4x6
1+6553600m6x3

1−16777216m8.

Then we have b = 12. Suppose b > 12. Substituting r :=
x3

1

m2
in f1(x1,m)

gives a non-monic polynomial in r,

F (r) = 5r4 − 6080r3 − 61440r2 + 6553600r − 16777216.

We can check that

(i) F (r) ≡ 2r4 + r3 + r + 2 (mod 3),

(ii) all roots of F (r) = 0 are 1 (mod 3) only.

Thus if F (r) is divisible by 3, then r = 1 + 3s for some s ∈ Z. We find that

F (1 + 3s) = 405s4 − 163620s3 − 716850s2 + 19237500s − 10291131

= 34G(s),

where G(s) = 5s4−2020s3−8850s2 +237500s−127051, so that b = 12+4 =

16. Repeating this approach again for G(s), we get

(i) G(s) ≡ 2s4 + 2s3 + 2s + 2 (mod 3),
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(ii) all roots of G(s) are 2 (mod 3) only.

If G(s) is divisible by 3, then s = 2 + 3t for some t ∈ Z, and

G(2 + 3t) = 405t4 − 53460t3 − 187650t2 + 534060t + 296469 = 32H(t),

where H(t) = 45t4−5940t3−20850t2+59340t+32941. Then b = 16+2 = 18.

We can check that H(t) is never divisible by 3 at all. Thus we can summarize

all possible values of b as 0, 12, 16, 18.

Finally, we will solve a finite number of equations of the form

ψ5(x,m) = ±2a3b,

with a, b as above. Since ψ5(x,m) is homogeneous in x3 and m2, we re-

place X = x3 and M = m2 in ψ5(x,m). Then the equations become Thue

equations. The following tables show all solutions (X,M) of Thue equations

obtained by computing with PARI/GP and MAGMA. We can see that all

solutions lead to non-admissible solutions. Note that the symbol [ ] in the

tables means there is no solutions in those cases.

For other n, the expressions for ψn(x,m), or ψn′(x,m), a factor of ψn(x,m),

are given below.

ψ7′(x,m) = x18 − 2634471m2x15 − 21237112m4x12 + 22039131371m6x9−

224313131191m8x6 + 234316m10x3 + 236318m12.

ψ11(x,m) = 11x60 − 263311121111m2x57 − 212361111713111991m4x54+

218310111587132031m6x51 + 2253137111143133291m8x48+

2303161115477188311m10x45 − 2363191124491526391m12x42+

242322112131130911m14x39 − 248325112614871m16x36−
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25632711153134539971m18x33 + 26033011215715577471m20x30−

2663331111714331601391m22x27 + 272337711111727312271m24x24−

27834051111131885231m26x21 + 285343111131168691m28x18−

2903461115270691m30x15 + 2963491118917731m32x12−

21023521122831m34x9 + 210835451112m36x6 + 2115357112m38x3 − 2120360m40.

ψ13′(x,m) = x72 − 28344791m2x69 − 213371330731m4x66+

220392811992331m6x63 + 22531313118720331m8x60+

230316111113531601491m10x57 − 2363181511881119778171m12x54−

242323512789132148111m14x51 + 252326128247670491m16x48−

25832719161110117014131m18x45 + 2623315317090012191m20x42−

2763344311911112611m22x39 + 272336431113144211271271m24x36−

279340431831249211511m26x33 + 284343712314313171328031m28x30−

2923455312033892311m30x27 + 2973501998062411m32x24+

2102353371471403611m34x21 − 21083545111175279771m36x18+

21153583371453171m38x15 − 212036120881391m40x12−

21283635146211m42x9 − 213236757491m44x6+

2139370591m46x3 + 2144372m48.
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b\a 0 12 24
0 [ ] [ ] [ ]
12 [ ] [ ] [ ]
16 [ ] [ ] [ ]

18

[ ] [ ] [-8640, -4]
[17280, -1]
[-17280, 1]
[8640, 4]

Table B.1: ψ5 = 2a3b

b\a 0 12 24
0 [ ] [ ] [ ]

12
[ ] [ ] [0, -1]

[0, 1]

16

[ ] [ ] [0, -3]
[8640, -2]
[-8640, -1]
[8640, 1]
[-8640, 2]

[0, 3]
18 [ ] [ ] [ ]

Table B.2: ψ5 = −2a3b
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b\a 0 18 36

0
[1, 0] [8, 0] [64, 0]
[-1, 0] [-8, 0] [-64, 0]

18

[27, 0] [216, 0] [1728, 0]
[-27, 0] [-216, 0] [-1728, 0]

[0, -1]
[0, 1]

24

[81, 0] [648, 0] [5184, 0]
[-81, 0] [-648, 0] [-5184, 0]

[0, -3]
[-1728, -1]
[1728, 1]

[0, 3]
27 [ ] [ ] [ ]

Table B.3: ψ7′ = 2a3b

b\a 0 18 36
0 [ ] [ ] [ ]
18 [ ] [ ] [ ]
24 [ ] [ ] [ ]

27

[ ] [ ] [-1728, -4]
[3456, -1]
[-3456, 1]
[1728, 4]

Table B.4: ψ7′ = −2a3b

b\a 0 60 120
0 [ ] [ ] [ ]
60 [ ] [ ] [ ]
80 [ ] [ ] [ ]
90 [ ] [ ] [ ]

Table B.5: ψ11 = 2a3b
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b\a 0 60 120
0 [ ] [ ] [ ]

60
[ ] [ ] [0, -1]

[0, 1]

80

[ ] [ ] [0, -3]
[-297, -1]
[297, 1]
[0, 3]

90

[ ] [ ] [-297, -4]
[594, -1]
[-594, 1]
[297, 4]

Table B.6: ψ11 = −2a3b

b\a 0 72 144

0
[1, 0] [1, 0] [1, 0]
[-1, 0] [-1, 0] [-1, 0]

72

[27, 0] [27, 0] [0, 1]
[-27, 0] [-27, 0] [0, -1]

[27, 0]
[-27, 0]

96

[81, 0] [81, 0] [81, 0]
[-81, 0] [-81, 0] [-81, 0]

[0, -3]
[-27, -1]
[27, 1]
[0, 3]

108

[ ] [ ] [-27, -4]
[54, -1]
[-54, 1]
[27, 4]

Table B.7: ψ13′ = 2a3b
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b\a 0 72 144
0 [ ] [ ] [ ]
72 [ ] [ ] [ ]
96 [ ] [ ] [ ]
108 [ ] [ ] [ ]

Table B.8: ψ13′ = −2a3b
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Appendix C

Computation II

In this chapter, we compute all non-torsion integral points on the curves

E : Y 2 = X3 − 432m2 with 6 ≤ m ≤ 719, cube-free which satisfy

(i) (X(P ), 3m) = 1, and

(ii) 2P and 3P are non-integral.

The following table presents all such integral points. We can see that all

curves with m in this table contain only one point. Thus the result of The-

orem 5.2.5 is true for these curves.
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m Integral Points
9 [73, 595]
15 [49, 143]
30 [241, 3689]
33 [97, 665]
69 [553, 12925]
75 [601, 14651]
78 [217, -2755]
105 [169, 253]
114 [313, 5005]
132 [1057, -34255]
195 [1561, 61541]
210 [361, -5291]
273 [337, -2465]
282 [2257, 107065]
285 [481, 8729]

m Integral Points
294 [2353, -113975]
345 [409, 4123]
348 [937, -27755]
357 [457, 6355]
399 [3193, -180235]
420 [1129, 36917]
429 [433, 1295]
435 [721, 17119]
450 [481, 4879]
555 [1489, 56287]
609 [673, 12025]
639 [5113, 365365]
645 [1729, 70633]
651 [793, -17765]
657 [5257, 380915]
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