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Abstract

Magnetars are highly magnetised, slowly rotating varieties of neutron star. They are violent objects observed
to emit bursts of radiation and, extremely rarely, giant flares powerful enough to outshine an entire galaxy.
The origin of this transient behaviour is thought to be an ultra-strong internal magnetic field which diffuses
outward toward the crust, driving starquakes there and displacing the footpoints of its external magnetic field
lines. The field lines undergo magnetic reconnection, relaxing to lower-energy configurations and emitting huge
bursts of radiation.

We build and present a numerical code to test this hypothesis by subjecting the magnetosphere of a fiducial
neutron star to some initial twist and evolving its response over time. We find that our code is well suited to
modelling the persistent twists that are expected to commonly occur in neutron star magnetospheres, but more
physics is required before we can simulate reconnection and bursting events.

We develop from scratch a bank of numerical techniques including multidimensional numerical integration in
curvilinear coordinate systems, high-accuracy first- and second-order finite differencing schemes, approximation
of 1D mathematical functions by Chebyshev series on arbitrary domains - not just the standard x ∈ [−1, 1] -
and approximations of 2D angular functions by vector spherical harmonic series. These techniques are quite
general and may find application in any numerical simulation.

All source material is made available through the following GitHub repository:

https://github.com/DanTickner/Neutron-star-magnetospheres
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1 Introduction

1.1 Physical background and motivation

Giant flares are extremely energetic and rare explosions in the night sky. Just three have been definitively
observed as of October 2025 (Mazets et al., 1979b, 1999; Hurley et al., 2005). They can briefly outshine an
entire galaxy, and may appear even brighter in the night sky than the full moon (Palmer et al., 2005). Despite
this, they are widely held to originate from neutron stars, stellar remnants typically around 10 km in size. In
particular, giant flares are thought to be caused by magnetars, young and slowly-rotating variants of neutron
star that are the most strongly magnetised objects currently known.

The magnetar scenario for giant flares was proposed by Duncan & Thompson (1992). They suggested that
the internal magnetic fields of magnetars are strong enough to cause starquakes, deforming the star’s solid crust
and twisting the external field in the magnetosphere. If the twist is large enough then an explosive release of
energy follows (Lynden-Bell & Boily, 1994), which is thought to be driven by magnetic reconnection (e.g.
Lyutikov, 2003).

The steady-state (i.e. time-independent) structure of a neutron star magnetosphere was first described
qualitatively by Goldreich & Julian (1969). An analytic form, the pulsar equation, was obtained by Michel
(1973) and Scharlemann & Wagoner (1973) but not solved until Contopoulos et al. (1999).

However, to test the Thompson-Duncan model and simulate bursting events, a steady-state solution does
not suffice. Spitkovsky (2006) was the first to obtain a time-dependent solution of a pulsar magnetosphere;
he did not simulate bursting events, but expressed hope that such models would follow in the future. In this
thesis, we attempt to develop a computer code which evolves a twisted neutron star magnetosphere over time.
The response of the system to these twists may then be compared to observational data from real bursts to
constrain the theory.

1.2 Goal of the project

We intend to test whether magnetic reconnection is a viable mechanism to reproduce magnetar bursts. Magnetic
reconnection manifests on small length scales, so for sufficient resolution our numerical domain will require a
large number of gridpoints. This necessitates a code which is both numerically efficient and stable. Spectral
methods are particularly suited to high-resolution models.

Bursting events are necessarily asymmetrical, so we will require a full 3D treatment of the magnetosphere.
However, the mathematics and hence computational efficiency dramatically simplify for the axisymmetric case
(where the azimuthal direction ϕ is neglected). Although we were able to develop a fully three-dimensional
mathematical model, timing constraints prevented our code from progressing past an axisymmetric version.
The mathematical results may appear overcomplicated given the scope of their application in the code, but let
us emphasise their necessity for future versions relaxing the axisymmetric restriction.

We will obtain a numerical code which can stably model a neutron star that is (a) stationary, (b) spun-up
to rotate at a constant arbitrary rate or (c) subject to a magnetospheric twist whose angular extent may be
controlled. We will conclude that our numerical method remains stable long enough for burst modelling to
be a viable application, serving as a suitable basis which may be expanded upon in the future. However, an
expansion to a fully three-dimensional version and a physical mechanism for magnetic reconnection remain
priorities before giant flares can be modelled.
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1.3 Thesis layout

The thesis is divided into four roughly self-contained Parts. It is not required to read the thesis linearly, but
the chosen layout follows a clear path from theory to code development to result.

• In Part I, we review the astrophysics of neutron stars and bursting events. We begin with a few calculations
to get a feel for their physical properties, many of which are among the most extreme in the Universe yet
can be understood from simple arguments. Then, we review the history of study of pulsars, the discovery
of giant flares and the prediction of, and evidence for, the magnetar model.

• In Part II, we discuss the development of our evolutionary model by a C++ code. We test the implemen-
tation of various mathematical methods from along the way, building up to a full model that we can have
confidence in.

• In Part III, we run the code for three physical models: a stationary magnetic dipole, a rotating dipole
(simulating a pulsar) and a stationary dipole subject to a magnetospheric twist (simulating a magnetar).
We discuss code performance for each simulation.

• Part IV comprises the Appendices. We provide technical information for readers interested in running the
code for themselves. This includes installation instructions and a qualitative overview of the evolutionary
procedure. We outline in detail original methods for performing numerical differentiation and integration.
We also elaborate on the well-known mathematical results that are used throughout the thesis.

The reader is invited to begin with the Summary in Chapter 19, where we present a brief overview
of the aims and outcomes of the project, the current theoretical understanding of neutron star bursts and an
analysis of the final simulations. We refer to the relevant sections as we go, aiding navigation of the thesis. It
is in this chapter that we present our final analysis and conclusions. The reader interested solely in an analysis
of the final simulations may skip directly to Part III. The reader interested solely in running the code may skip
directly to Chapter 20 for a description of how to run it and use its output.

We emphasise the following mathematical contributions. We do not claim to be the first to discover them,
but we have derived them independently of the literature and as such they may be regarded as original work.

• Chapter 21: Multidimensional numerical integration in general curvilinear coordinate systems, obtained
by generalising the trapezium rule.

• Chapter 23: Numerical derivatives of single-variable functions with increased accuracy over standard
expressions by employing multiple neighbouring gridpoints.

The other mathematical results in the Appendices are of course well known, but in our experience often
proved elusive in the literature - especially proofs, which we consider essential to trust the result. For example,
generalising Chebyshev polynomials and Chebyshev series to cover intervals of arbitrary length (§26.2 and §27.2)
is a simple task but one which was difficult to find in standard resources and took a substantial time to derive
and verify. We provide the reader with a clear and accessible bank of resources, including as many proofs as
possible. Our hope is that they might be spared the time losses and code development issues associated with
implementing these non-project-specific methods from scratch.

Many results do not feature in the final code. They were studied and developed with applications in mind,
but ultimately proved unfeasible or less accurate than expected. These methods are always highlighted as such,
and may be skipped to maintain flow. They are retained for future reference before others commit to studying
these methods when they may not deliver the results expected, or as a foundation to improve upon with a fresh
approach.

Throughout this thesis and especially in the Appendices, we employ a “proposition-proof” structure for
introducing various mathematical results. We appreciate that such a layout is highly unconventional in the field
of astrophysics, but find it a useful way to improve flow, highlighting the main result and separating its proof
from the rest of the text, while still maintaining a clear description of how the result was reached. Further,
enumerating each proposition gives a simple way to refer to results throughout the text without repetition.
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We endeavour to use SI units throughout as we find it easier to keep track of dimensional analysis. For
example, in §8.5 we quote the magnetic pressure as B2

2µ0
instead of the cgs version B2

8π , highlighting that it is
really an energy density, and the multiplying factor ϵ0 in the Goldreich-Julian charge density Eq. (8.29) is
needed to balance the units. However, cgs units have been deeply embedded within the astrophysical literature
for so long that it would add confusion to convert to SI when reviewing the literature.

Many of the figures were generated by Python codes; these are included in the GitHub repository under the
folder

Writeup codes

We encourage the reader to run these codes and reproduce the figures to aid their understanding, and to modify
them to suit other purposes. For example, Figure 4.1 (an evolutionary track of a pulsar on the P − Ṗ diagram)
was produced by the code

Plot_Pulsar_Period_as_Function_of_Time.py

7



Part I

Astrophysical overview



2 History of study of neutron stars and the Crab
Nebula

The term neutron star (NS) was coined by Baade & Zwicky (1934a,b), who suggested that core-collapse
supernovae yield very small and dense objects composed mostly of neutrons. They noted that neutrons can
be packed together more closely than atomic nuclei, making a neutron star the most stable configuration of
matter if the mass density is sufficiently high. Oppenheimer & Volkoff (1939) found an equilibrium solution to
the equations of stellar structure under general relativity for a degenerate neutron gas, including an estimate
for the maximum possible mass of such a structure.

The story begins with the Crab Nebula, an object that has taught us much in astrophysics. Jan Oort
once stated that the study of astronomy is divided into two halves: the study of the Crab Nebula and the study
of the rest of the Universe.

In 1054, a supernova was observed by Chinese astronomers and recorded as a “guest star”. It was later
referred to as SN 1054. John Bevis discovered the Crab Nebula in 1731; Charles Messier discovered it in-
dependently in 1758 and designated it M1 in his Messier catalogue. The supernova and nebula were not yet
known to be connected.

Vesto Slipher compiled photographs of the nebula at the Lowell Observatory in Flagstaff, Arizona over a
number of years starting in 1912. By comparing the negatives of these photographs, it was shown that the
shape of the nebula is changing, and speculated that the cause was either motion within the nebula or local
brightening of matter (Lampland, 1921). Later calculations showed that the nebula was expanding (Duncan,
1921).

In 1939, Nicholas Mayall conclusively associated the Crab Nebula with the “guest star” of 1054. The idea
had been suggested as early as 1921 when Knut Lundmark collated a list of guest stars that had been seen in
ancient times, and strengthened by Edwin Hubble in 1928 who estimated that the nebula would have taken
around 900 years to reach its then-present dimensions (Mayall, 1939; Mayall & Oort, 1942).

Baade (1942) noted that the expansion must have accelerated: measured velocities of filaments implied a
formation in 1172, contradicting the association with the guest star of 1054. This was counter-intuitive: one
would expect the filaments to slow due to resistance from the interstellar medium. He suggested that the
central star could be responsible for this acceleration, but ultimately concluded that the measurements must
be spurious.

John Bolton detected strong radio wave emission in 1949, making it the first night-sky object other than
the sun to be observed in the radio (Bolton & Stanley, 1949).

It was already known that the nebula features both line emission and continuum spectra, with the continuum
spectrum strongly linearly polarised. Iosif Shklovsky conjectured that the continuum radiation and radio
emission were from synchrotron radiation due to electrons being accelerated to relativistic speeds (e.g.
Shklovsky, 1958, 1964). However, the short synchrotron lifetime required a continuous source of new electrons
in order to power the observed brightness of the nebula. Woltjer (1958, 1964) explored the possibility of a
central star as the source of the synchrotron emission, and estimated a magnetic field of 1014 − 1016 G using
the fossil field scenario (see Proposition 4.9).

The first pulsar was discovered by Dame Jocelyn Bell Burnell on 28 November 1967, PSR B1919+211

(Hewish et al., 1968). She and her collaborators observed a pulsed radio source and concluded that its origin
was either a white dwarf or a neutron star. Antony Hewish went on to receive a share of 1974 Nobel Prize in
Physics for the discovery, along with Sir Martin Ryle. The overlooking of Bell Burnell’s contributions remains
a source of controversy (e.g. Judson, 2003).

The authors originally suggested that the pulses were powered by oscillations in the host object, which was
further explored by Gold (1968) and Pacini (1968). Alternatively, after a radio source was discovered at the
centre of the Crab Nebula, Franco Pacini suggested that nebulae could be powered by rotational and magnetic

1Also known as PSR J1921+2153 or, less formally, LGM-1 for “little green men”.
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energy released from a pulsar as it spins down. He conjectured that the “central engine” driving the observed
synchrotron radiation must be a neutron star. He estimated that a rotation period 10−3 s and magnetic field
1010 G could yield radiation with intensity 1040 erg s−1, enough to cause the observed acceleration of the nebula
(Pacini, 1967).

Radio emission from near the centre of the nebula was detected by Comella et al. (1969) with period
33.09112± 0.00003 ms, roughly in line with that expected by Pacini. The authors used this value to argue that
the central engine was indeed a rotating neutron star, since a pulsating white dwarf would require excitation of
very high-order modes to reproduce it.

Bell Burnell’s and Hewish’s 1967 discovery of the first pulsar finally confirmed the existence of neutron stars,
and led to the suggestion that a neutron star lies in the centre of the Crab Nebula. An object was observed
later that year and named the Crab Pulsar; its period of 33 ms ruled out a white dwarf,2 leaving a neutron
star as the only viable candidate.

Later observations confirmed a magnetic field of 5× 1012 G and energy loss rate of 1038 erg s−1, matching
the luminosity of the Crab Nebula and confirming that the Crab Pulsar is able to power this luminosity. Modern
observations estimate the polar magnetic field of the Crab Pulsar at around Bpole = 7.6× 1012 G (e.g. Kou &
Tong, 2015). We will explore calculations aiming to derive these results in Chapters 4 and 5.

2With a radius R ∼ 103 km, a white dwarf would be ripped apart by centripetal forces at this rotation speed.
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3 Formation of neutron stars as supernova rem-
nants

In this chapter, we briefly outline the general understanding that neutron stars arise as the result of core-collapse
supernovae, when massive stars run out of fuel for nuclear fusion.

Mass density strongly increases toward the centre of a star, so the temperature, which itself depends strongly
on density, also increases. This enables nuclear fusion reactions involving heavier and heavier nuclei as we move
toward the core, and so the stellar interior becomes stratified with increasingly massive fusion products. This
is the famous onion-skin model of a stellar interior.

The greater the initial mass, the greater the central density and core temperature, and so fusion can proceed
to more massive nuclei. This occurs up until iron-56, which represents the peak of the curve of binding energy
per nucleon (e.g. Martin, 2009, Figure 2.8); fusion of heavier species is possible but energy is absorbed instead
of released, inhibiting further reactions. If any iron-56 is fused via alpha capture, the loss of energy will lower
the surrounding temperature and inhibit further reactions until an equilibrium is reached. Stars with initial
mass ≳ 8M⊙ typically evolve up to the iron-burning stage.

Energy in an iron core is absorbed by two main processes:

• Photodisintegration: Thermal photons carrying sufficient energy are absorbed by nuclei and cause
them to break apart into smaller nuclei. The two main photodisintegration reactions are those of iron-56
and helium-4:

γ + 56Fe ⇋ 13 4He + 4n, (3.1)

γ + 4He ⇋ 2 p+ 2n. (3.2)

• Electron capture, also known as neutronisation: The degenerate electrons may combine with protons
to form neutrons and electron neutrinos. The general reaction is

p + e− → n+ νe. (3.3)

The first reaction that occurs is

56Fe + e− → 56Mn + νe, (3.4)

and the 56Mn may undergo further electron capture to 56Cr and so on. Not only does extreme energy loss
occur by the radiation of neutrinos, which pass through the star almost unimpeded, but also the loss of
degenerate electrons reduces pressure support and the core continues to collapse.

For an iron core at the Chandrasekhar mass,1 the processes of photodisintegration and electron capture can
each cause around 1045 J of energy to be lost within a few seconds (Ryan & Norton, 2010, §7.1).

1The maximum possible mass of a white dwarf star, MCh ≈ 1.4M⊙. See §4.7.
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Proposition 3.1. It would take roughly the entire main-sequence lifetime of a 10M⊙ star to radiate the
same amount of energy released by photodisintegration and electron capture in an iron core.

Proof. The mass-luminosity relation is a semi-empirical formula estimating the relationship between lumi-
nosity and mass of main-sequence stars, L ∝ Mν . Comparing to the Sun, we can eliminate the constant of
proportionality:

L

L⊙
=

(
M

M⊙

)ν

. (3.5)

The exponent ν also depends on the mass (e.g. Eker et al., 2024, Table 2), so it is not strictly valid to divide
L ∝ Mν and L⊙ ∝ Mν

⊙ in this way with the same ν, but we only require a rough estimate. In particular,
ν ≈ 3.6 for M ≈ 2 − 20M⊙ and ν ≈ 4.5 for M ≈ 0.5 − 2M⊙, so the difference is not too great (Salaris &
Cassisi, 2005, §5.7). Assuming that the star has constant luminosity while it is on the main sequence, the time
t taken to radiate energy E is t = E

L , giving

t =
E

L⊙

(
M

M⊙

)−ν

. (3.6)

For M = 10M⊙, ν = 3.6 and E = 1045 J, we obtain t ≈ 20.8 Myr, which is comparable to estimates of the core
hydrogen-burning lifetime for such a star from simulations (Salaris & Cassisi, 2005, Table 5.1).

Proposition 3.2. Neutronisation can occur if the core temperature exceeds Tc ≳ 1.5 × 1010 K, while
photodisintegration of iron-56 can occur if Tc ≳ 5.7× 1012 K.

Proof. The degenerate electrons may combine with protons if their energy exceeds the mass-energy difference
between a proton and a neutron:

Ee > (mp −mn)c
2 ∼ 1.3 MeV, (3.7)

which corresponds to a thermal temperature T > Ee
kB

≈ 1.5× 1010 K. For photodisintegration, thermal photons
must carry energy 56EB, where EB ≈ 8.8 MeV is the binding energy per nucleon of iron-56. This corresponds
to a core temperature Tc >

56EB
kB

≈ 5.7× 1012 K.

Once the iron core exceeds the Chandrasekhar mass, electron degeneracy pressure becomes insufficient and
it collapses. The gravitational free-fall timescale for a spherical mass with constant density ρ and no pressure
support is (e.g. Ryan & Norton, 2010, Eq. (2.5))

Tff =

√
3π

32Gρ
, (3.8)

so an iron core with density ρ ∼ 1014 kg m−3 will collapse on a timescale of 7 ms. Collapse continues until
nuclear density is reached, at which point the strong force prevents further infall. The core rebounds and
produces a shockwave, which propagates to the weakly gravitationally bound envelope and ejects it. This
releases an incredibly vast amount of energy and is observed as a Type II supernova.
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Proposition 3.3. The number density and mass density of nuclear matter are n ≈ 1.3 × 1044 m−3 =
0.13 fm−3 and ρ ∼ 1017 kg m−3, approximately independent of the species.

Proof. An atomic nucleus with mass number A (the total number of neutrons and protons) has mass m = Au,
where u ≈ 1.66×10−27 kg is the atomic mass unit, or the dalton. Nuclei can be reasonably well represented
as homogeneous spheres with radius r = r0A

1/3, where r0 = 1.21 fm is a constant obtained by fitting to
empirical data (e.g. Martin, 2009, §2.2.1). Then, the nucleus has volume

V =
4

3
πr30 A. (3.9)

The density is then

ρ =
M

V
=

3u

4π r30
= constant ≈ 2.24× 1017 kg m−3, (3.10)

and the number density is

n = u ρ ≈ 1.35× 1044 m−3. (3.11)

Proposition 3.4. A core of iron-56 collapsing from the Chandrasekhar mass down to nuclear density
releases around 1046 J of energy.

Proof. The iron core immediately before collapse has radius around R1 ≈ 3000 km (Sukhbold et al., 2016). If it
collapses down to nuclear density ρnucl, its final radius assuming a uniform sphere of mass M =MCh = 1.4M⊙
will be

R2 =

(
3

4π

MCh

ρnucl

)1/3

≈ 14.3 km. (3.12)

A crude estimate of the total gravitational potential energy contained in a uniform sphere of massM and radius
R can be given by splitting it into two hemispheres and considering the gravitational potential energy between
them. Each has mass 1

2 M . The centre-of-mass of a uniform hemisphere of radius R is located a distance 3
8 R

from the flat surface, so the separation between the centres-of-mass is twice this, 3
4 R. We have

U
( 1

2
M ,

3

4
R
)

= −
G
(
1
2 M

) (
1
2 M

)(
3
4 R
) = −GM

2

3R
. (3.13)

Collapse from R1 to R2 with constant mass then gives a change in gravitational potential energy

∆U = U2 − U1 = U
( 1

2
M ,

3

4
R2

)
− U

( 1

2
M ,

3

4
R1

)
=

GM2

3

(
1

R1
− 1

R2

)
≈ −1.1× 1046 J. (3.14)

Since ∆U < 0, this energy is released and not absorbed, as we may expect.

The energy released by core collapse far exceeds that released by photodisintegration and that observed as
kinetic energy of the expanding debris. It is thought that the excess energy is radiated as neutrinos. Neutrinos
may provide an early warning sign of supernovae, allowing astronomers to prepare for observations. Several
neutrinos were detected a few hours before SN1987A (Hirata et al., 1987, 1988; Bionta et al., 1987; Bratton
et al., 1988; Alexeyev et al., 1988; Kunkel et al., 1987). The snews collaboration consists of seven neutrino
detectors across that globe (Antonioli et al., 2004) that hope to allow triangulation of an imminent supernova’s
position to a few percent of the sky (Linzer & Scholberg, 2019).
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4 Basic properties of neutron stars

In this chapter, we briefly review some general properties of neutron stars, in order to get a feel for their general
scales and significance as Galactic objects. We will obtain a basic theoretical grounding aiming to explain the
properties which are inferred from observation, many of which are extreme and surprising, and would have been
especially so at the time these objects were first discovered.

4.1 Estimating magnetic field strength

A simple theoretical model of neutron stars, especially pulsars, is to consider them as rotating magnetic dipoles.1

The model assumes that the pulsar has a constant magnetic field B, in line with predictions that Ohmic decay
is negligible (Baym et al., 1969) even accounting for core superconductivity (Alford et al., 2000), and in line
with population synthesis models (e.g. Bhattacharya et al., 1992). For an in-depth discussion on the constancy
of B, see e.g. Regimbau & de Freitas Pacheco (2001). For a discussion on the evolution of the crustal magnetic
field of a magnetar, see §7.1 of this thesis.

The pulsar’s emission is powered by magnetic torque slowing its rotation over time (a process known as
spin-down), so that its period P and period derivative Ṗ are constantly changing. Since P and Ṗ are easily
obtained from observations, they are often plotted together on a log-log graph known as a P − Ṗ diagram.
Plotting populations of pulsars, it appears that they move along lines of constant B as they evolve, giving
credence to this simple model. Further, producing a P − Ṗ diagram unveils distinct categories of pulsars, such
as millisecond pulsars and magnetars (e.g. Lyne & Graham-Smith, 2006, Chapter 15).

Let us present a basic theoretical model of pulsars as magnetic dipoles which are rotating but spinning
down, and demonstrate that the model can reproduce some general observed properties of neutron stars.

Proposition 4.1. The time derivative of the angular frequency of a rotating magnetic dipole is

Ω̇ = − 2π

3µ0c3
B2

poleR
6Ω3 sin2(α)

I
, (4.1)

where Bpole is the magnetic field strength of the dipole at its poles, R is its radius (distance from the centre
to each charge), α is the angle between the magnetic dipole moment and the rotation axis and I is the
moment of inertia of the dipole.

Proof. We use the method shown in §5.4.1 of Rosswog & Brüggen (2007). A magnetic dipole has magnetic field
(e.g. Griffiths, 2017, Eq. (5.88))

B(r) =
µ0m

4πr3
[
2 cos(θ) er + sin(θ) eθ

]
, (4.2)

where m = |m| is the magnitude of its magnetic dipole moment m. Then, at the north pole we have

Bpole = B(R, 0, 0) =
µ0m

2πR3
er =

µ0
2πR3

m, (4.3)

where, according to Rosswog & Brüggen (2007), m ∥ r and r = R er so that m = m er. Now, the power
radiated by an electric dipole is given by the Larmor formula (e.g. Griffiths, 2017, Eq. (11.61))(

dW

dt

)
electr

= − µ0
6πc

(p̈)2, (4.4)

1See Goldreich & Julian (1969). The model is discussed further in §5.3 of this thesis.
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where p = |p| is the magnitude of the electric dipole moment, so by analogy the power radiated by a magnetic
dipole is (

dW

dt

)
mag

= − µ0
6πc3

(m̈)2, (4.5)

where we introduced a factor 1
c2

to balance the units. Suppose that the dipole rotates about the z-axis with
angular frequency Ω, and that the magnetic dipole moment makes an angle α to the z-axis (Rosswog & Brüggen,
2007, Figure 5.6). Then, we can express m in spherical coordinates and use it to calculate (m̈)2:

m =
2π

µ0
R3Bpole

[
sin(α) cos(Ωt)i+ sin(α) sin(Ωt)j+ cos(α)k

]
, (4.6)

⇒ m̈ = −2π

µ0
R3Bpole ω

2 sin(α)
[
cos(Ωt)i+ sin(Ωt)j

]
, (4.7)

⇒ (m̈)2 = m̈ · m̈ =

(
− 2π

µ0
R3BpoleΩ

2 sin(α)

)2[
cos2(Ωt) + sin2(Ωt)

]
=

4π2

µ20
B2

poleΩ
4R6 sin2(α). (4.8)

The rotational energy of an object with moment of inertia I is Erot =
1
2 IΩ

2. Assuming a rigid sphere such that

I is constant in time, the rate of change of rotational energy is then Ėrot = IΩΩ̇. Assume that all the radiated
power comes from rotational energy,

(
dW
dt

)
mag

= Ėrot. Finally, rearrange for Ω̇:

Ω̇ =
Ėrot

IΩ
=

1

IΩ

(
dW

dt

)
mag

= − 4π

6µ0c3
B2

poleR
6Ω3 sin2(α)

I
. (4.9)

Proposition 4.2. The magnetic field strength at the poles of a neutron star can be estimated given measured
values of its rotation period P and period derivative Ṗ and an assumed radius R and moment of inertia I:

Bpole =
1

R3 sin(α)

√
3µ0c3

8π3
IP Ṗ . (4.10)

Proof. Rotation period and angular velocity are related by P = 2π
Ω , and so the period derivative can be written

by the chain rule as Ṗ = −2π Ω̇
Ω2 . Substitute the expression for Ω̇ in Eq. (4.1) and rearrange. The result agrees

with Eq. (33) in Chapter 16 of Carroll & Ostlie (2014).

A rotating electric dipole emits radiation and loses energy, causing it to slow down. Note that Ω̇ < 0, so the
dipole indeed slows down over time. For a uniform solid sphere, I = 2

5 MR2. Typical values are M = 1.4M⊙,

R = 10 km and P = 10 s. Using these, a measured spin-down rate Ṗ ≈ 10−12 s s−1 implies a magnetic field
B ≈ 1010 T = 1014 G. We appreciate from this that magnetar magnetic fields exceed the Schwinger limit2

BQ =
m2

ec
2

ℏe
≈ 4.4× 109 T = 4.4× 1013 G, (4.11)

and so the effects of quantum electrodynamics (QED) start to become apparent. An overview of the most
important phenomena at such high field strengths is given by Duncan (2000).

2The definition in cgs units requires an extra value of c so that BQ =
m2

ec
3

ℏe , so to avoid confusion we first quote the definition in
SI units and then convert it to gauss.
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4.2 Approximating a neutron star’s age

We mentioned that neutron stars spin down over time due to magnetic torque. If we assume that magnetic
torque is the only force causing spin-down, we can use observational measurements of its rotation period P and
period derivative Ṗ = dP

dt to estimate the age of a neutron star.

Proposition 4.3. Assume that pulsar spin-down follows a power law,

Ω̇ = −K Ωn, (4.12)

where K is some proportionality constant and n is called the braking index. Then, the characteristic
age of the pulsar is

τ = − 1

n− 1

Ω

Ω̇
=

1

n− 1

P

Ṗ
. (4.13)

Proof. We use the method shown in §5.4.2 of Rosswog & Brüggen (2007). Separate the variables and integrate
from the time of pulsar formation t0, when the angular velocity was Ω0 = Ω(t0), to an arbitrary time t, when
the angular velocity is Ω: ∫ Ω

Ω0

(Ω′)−n dΩ′ = −K
∫ t

t0

dt′, (4.14)

⇒

[
1

−n+ 1
(Ω′)−n+1

]Ω
Ω0

= −K
[
t′
]t
t0
, (4.15)

⇒ − 1

n− 1

[
1

Ωn−1
− 1

Ωn−1
0

]
= −K

[
t− t0

]
, (4.16)

where −n+1 = −(n− 1) and the primes denote dummy variables for integration. Rearrange for the age of the
pulsar τ ≡ t− t0, using that − 1

K = Ωn

Ω̇
:

t− t0 = − 1

n− 1

Ωn

Ω̇

[
1

Ωn−1
− 1

Ωn−1
0

]
= − 1

n− 1

Ω

Ω̇

[
1−

( Ω

Ω0

)n−1
]
. (4.17)

Most observed pulsars are relatively old so that they have slowed significantly, Ω ≪ Ω0. Further, observed
braking indices are around 2− 3, so Ω

Ω0
≪ 1 and

(
Ω
Ω0

)n−1 ≪ 1, so this term can be ignored and we obtain the

given expression. To convert from angular frequency to period, note that Ω = 2π
P and so the chain rule gives

Ω̇ = − 2π
P 2 Ṗ , so that Ω

Ω̇
= −P

Ṗ
.

We see from Eq. (4.1) that the dipole approximation gives n = 3 and hence a dipole age

τdipole = −1

2

Ω

Ω̇
=

1

2

P

Ṗ
. (4.18)

4.3 Time-evolution of period and period derivative

As shown above, magnetic torque is weaker at lower rotation rates, so Ṗ should decrease over time. Then, the
combination of P and Ṗ for a given neutron star follow a predictable evolutionary path. We can plot P vs Ṗ for
a single neutron star or a collection of neutron stars and obtain a visual guide to their life cycles, in a similar
way to the Hertzsprung-Russell diagram for main-sequence stars (which uses mass and luminosity, or colour
and magnitude if only observational data is available). Since both P and Ṗ are measurable from observations,
plotting a P − Ṗ diagram is a simple but powerful way to characterise and compare the neutron stars within
the Galaxy. Let us first demonstrate how P and Ṗ vary with time. Then, we will discuss P − Ṗ diagrams in
more detail.
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Proposition 4.4. Suppose that the pulsar formed at time t0 with initial period P0, and suppose that the
product PṖ remains constant over time. Then, its period and period derivative as a function of its age
τ ≡ t− t0 at time t are

P (τ) = P0

√
1 + fτ , (4.19)

Ṗ (τ) =
1

2
P0

f√
1 + fτ

, (4.20)

where we define here f ≡ 16π3

3µ0c3
B2R6 sin2(α)

I
1
P 2
0

for notational shorthand. To a good approximation these

reproduce the dipole age τ = P
2Ṗ

. The pulsar follows a line of constant B on the P − Ṗ diagram as it
evolves.

Proof. We use the method outlined in Chapter 16, Problem 18 of Carroll & Ostlie (2014). Rearrange Eq. (4.10)
for the constant PṖ , use that Ṗ = dP

dt , separate the variables and integrate from time t0, when the period was
P0, to t, when the period is P : ∫ P

P0

P ′ dP ′ =

∫ t

t0

8π3

3µ0c3
B2R6 sin2(α)

I
dt′, (4.21)

⇒
[
1

2
(P ′)2

]P
P0

=

[
8π3

3µ0c3
B2R6 sin2(α)

I
t′
]t
t0

, (4.22)

⇒ 1

2

(
P 2 − P 2

0

)
=

8π3

3µ0c3
B2R6 sin2(α)

I

(
t− t0

)
, (4.23)

which rearranges to the given expression for P . The expression for Ṗ follows by differentiation with the chain
rule. Let us now attempt to reproduce the expression for the dipole age:

P

2Ṗ
=

P0
√
1 + fτ

2 · 1
2 P0

f√
1+fτ

=
1

f

(
1 + fτ

)
=

1

f
+ τ. (4.24)

Let us use values for the Crab Pulsar: B = 7.6 × 108 T, M = 1.4M⊙, R ∼ 104 m and P0 = 0.033 s yield
f ≈ 2 × 10−11 s−1 and 1

f ≈ 4 × 1010 s. Typical pulsar ages are of order kyr ∼ 1010 s to Myr ∼ 1013 s, so for

most ages we have 1
f ≪ τ and the added term 1

f can be neglected. The dependence on B2R6 makes the age at

which 1
f < τ quite sensitive to the input parameters; we must remember that the expression τ = P

2Ṗ
is only a

rough estimate.
We should not be surprised that B remains constant in this model, since it was among our assumptions when
we performed the integration over time. However, it is useful to show this explicitly now. Taking logarithms of
both expressions and substituting one into the other yields

log10(P ) = log10(P0) +
1

2
log10(1 + fτ), (4.25)

log10(Ṗ ) = − log10(2) + log10(P0) + log10(f)−
1

2
log10(1 + fτ) (4.26)

= − log10(2) + log10(f)− log10(P ), (4.27)

so we see that d log10(Ṗ )
d log10(P ) = −1 and the pulsar indeed evolves along a line of constant magnetic field (see

Proposition 4.7).
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Proposition 4.5. A pulsar with a relatively long period is unlikely to have spun down to this value within
a reasonably short time unless its magnetic field were very strong.

Proof. Eq. (4.19) rearranges to give

τ =
1

f

[(
P

P0

)2

− 1

]
. (4.28)

The same fiducial properties as in Proposition 4.4 yield a time of τ ∼ 1.2 Myr for the Crab Pulsar to spin-down
to P = 1 s and τ ∼ 120 Myr to spin-down to P = 10 s. At B = 1 × 108 T, we have 72 Myr and 7.2 Gyr
respectively, the latter being of order the age of the Galaxy and hence extremely unlikely. However, if we allow
an initial magnetic field of B = 1010 T, these become 7.2 kyr and 720 kyr respectively.

We plot the period and period derivative as a function of time on a P − Ṗ diagram in Figure 4.1, using data
for the Crab Pulsar: initial period P0 = 33 ms (i.e. using the present-day value and evolving into the future)
and mass 1.4M⊙. To emphasise the direction of motion across the diagram, the red star represents the initial
values and the blue star represents the final values, taken at τ = 1 Myr into the future.

As we predicted above, the pulsar evolves along a line of constant magnetic field, beginning near the top
left of the figure and ending near the bottom right as its period increases and its rate of spin-down decreases.
As a result of the latter, the jumps between successive gridpoints, which are evenly spaced in time, become
progressively smaller. That is, we expect younger pulsars to experience significant spin-down but older pulsars
to be relatively stable.

The track is similar to the blue trace in Figure 3 of Kou & Tong (2015). Our simple model does not
take into account phenomena such as time-dependence of the magnetic field, pulsar glitches and a possible
time-dependence of the braking index, but is enough to give an overview.

Figure 4.1: Evolutionary track of the Crab Pulsar across the P − Ṗ diagram from the present day (red star,
top left) to 1 Myr in the future (blue star, bottom right), using 100 equally spaced timesteps of 10 kyr.
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4.4 Understanding P − Ṗ diagrams

Proposition 4.6. In a P − Ṗ diagram, straight lines of gradient +1 (bottom left to top right) represent
constant characteristic age.

Proof. Note that ω = 2π
P and so by the chain rule ω̇ = −2π Ṗ

P 2 . Then, Eq. (4.13) for the characteristic age of a
pulsar can be written

τ =
1

n− 1

P

Ṗ
. (4.29)

Take the logarithm of both sides and rearrange for log10(Ṗ ):

log10(τ) = − log10(n− 1) + log10(P )− log10(Ṗ ), (4.30)

⇒ log10(Ṗ ) = log10(P )− log10(τ)− log10(n− 1). (4.31)

Differentiate with respect to log10(P ):

d log10(Ṗ )

d log10(P )
=

d log10(P )

d log10(P )
− d log10(τ)

d log10(P )
− d log10(n− 1)

d log10(P )
= 1− d log10(τ)

d log10(P )
. (4.32)

where we recall that n is a proportionality constant so its derivative is zero. Then, a straight line of gradient
+1 implies that d log10(τ)

d log10(P ) = 0; that is, it is a line of constant characteristic age with respect to the period.

Proposition 4.7. In a P − Ṗ diagram, straight lines of gradient −1 (i.e. going top left to bottom right)
represent constant dipole field.

Proof. Take the logarithm of both sides of Eq. (4.10) and rearranges for log10(Ṗ ):

log10(Bpole) = − log10
(
R3 sin(α)

)
+

1

2
log10

(
6µ0c

3

16π3

)
+

1

2
log10(I) +

1

2
log10(P ) +

1

2
log10(Ṗ ), (4.33)

⇒ log10(Ṗ ) = − log10(P ) + 2 log10(Bpole) + 2 log10
(
R3 sin(α)

)
− log10(I)− log10

(
6µ0c

3

16π3

)
. (4.34)

Differentiate with respect to log10(P ). The angle α is independent of the period, and we can assume that the
mass and radius are too. Then, I ∼MR2 is also independent and we obtain

d log10(Ṗ )

d log10(P )
= −d log10(P )

d log10(P )
+ 2

d log10(Bpole)

d log10(P )
+ 2

d log10
(
R3 sin(α)

)
d log10(P )

− d log10(I)

d log10(P )
−
d log10

(6µ0c3

16π3

)
d log10(P )

(4.35)

= −1 + 2
d log10(Bpole)

d log10(P )
. (4.36)

Then, a straight line of gradient −1 implies that
d log10(Bpole)
d log10(P ) = 0; that is, it is a line of constant polar magnetic

field with respect to the period.
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The Australia Telescope National Facility maintains the ATNF Pulsar Catalogue, a publicly available
database of all measured pulsars (Manchester et al., 2005). It is available online at

https://www.atnf.csiro.au/research/pulsar/psrcat/

In Figure 4.2, we use the ATNF catalogue to produce a P − Ṗ diagram for all known pulsars. For the lines of
constant characteristic age, we assume a braking index n = 3. For the lines of constant polar magnetic field,
we assume an angle α = 90◦ between the magnetic and rotation axes, a radius R = 10 km, a mass M = 1.4M⊙
and a uniform sphere I = 2

5 MR2.
Having already produced an evolutionary track for a single pulsar in Figure 4.1, we can appreciate further

from this figure that the magnetars (denoted “AXP” in blue) are relatively young, and that the binary recycled
pulsars (denoted “binary” in red) are old because time must pass while they accrete matter from lower-mass
companions (e.g. Srinivasan, 2010).

Figure 4.2: P − Ṗ diagram of all known pulsars as of 13 September 2024, using data from the ATNF Pulsar
Catalogue v2.4.0.
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4.5 Galactic distribution and motion

The Milky Way contains around 105 − 106 pulsars, mostly concentrated near the Galactic plane (e.g. Lyne &
Graham-Smith, 2006, §1.10). This can be seen in Figure 4.3. Since most of the main-sequence stars in the Milky
Way are also concentrated near the plane,3 this is evidence to support the theory of neutron stars originating
from core collapse supernovae.

The extreme energy release during core-collapse supernovae is not necessarily isotropic, and imbalances can
lead to very high kick velocities of the iron core, which is what entails a neutron star once it is separated
from the ejected outer layers. Sure enough, measured velocities around 200 km s−1 are common for pulsars.
Further, the velocities are mostly directed away from the Galactic plane, suggesting an origin in that region.

Figure 4.3: Galactic distribution of all known pulsars as of 11 September 2024, using data from the ATNF
Pulsar Catalogue v2.4.0.

3In contrast, the Galactic halo is where globular clusters hosting very low-mass, old stars are typically found.
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4.6 Origin of magnetic field strength

We have seen that neutron stars have extremely strong external magnetic fields, vastly amplified compared to
the magnetic field the star possessed during its main sequence phase. But what causes this?

Proposition 4.8. A solid homogeneous sphere with initial radius R1 and rotational period P1 that collapses
to new radius R2 will have new rotational period

P2 = P1

(
R2

R1

)2

. (4.37)

Proof. The magnitude of the angular momentum of a rotating object is L = IΩ, where I is its moment of
inertia and Ω is its angular velocity. The angular velocity and rotational period are linked by Ω = 2π

P . For a
solid homogeneous sphere of mass M and radius R, we have I = 2

5 MR2. Then,

L =
4π

5

MR2

P
. (4.38)

Angular momentum is a conserved quantity, so the sphere will have the same value of L before its collapse (with
radius R1 and period P1) as after its collapse (with R2 and P2). Equating these and cancelling the constants,
including the mass, we find that

R2
1

P1
=

R2
2

P2
, (4.39)

which rearranges to the given result.

The Sun exhibits differential rotation, with equatorial rotational period 25.6 days and polar rotational period
33.5 days. Let us crudely approximate it as a uniformly rotating sphere whose period is the average of these,

P1 =
(25.6 d) + (33.5 d)

2
≈ 29.6 d ≈ 2.55× 106 s. (4.40)

Its equatorial radius is R1 ≈ 6.96× 105 km. If it were to suddenly collapse to a neutron star with R2 = 10 km,
its rotation period would be P2 ≈ 5.27× 10−4 s, roughly comparable with some of the fastest observed pulsars.

Proposition 4.9. A sphere with a dipolar magnetic field of initial strength B1 compressing/expanding from
radius R2 to radius R1 will experience a magnetic field amplification/suppression such that its new field
strength is

B2 = B1

(
R2

R1

)2

. (4.41)

Proof. Magnetic flux Φ is measured in webers, where 1 Wb = 1 T m2. Thus, we have Φ ∝ BA, where B
is the magnetic field and A is the area through which the flux passes. Since magnetic flux is conserved, we
have B1A1 = B2A2. Now, we must be careful which area we choose: Gauss’s law for magnetism states that
the flux through any closed surface is zero, so we cannot use the entire surface of the sphere. Instead, let us
choose a surface defining only the northern hemisphere, such that all the field lines point “out”, not “in”. Then,
A = 1

2
4
3 πR

2 = 2
3 πR

2 and we obtain B1R
2
1 = B2R

2
2, which rearranges to the given result.
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One explanation for the high magnetic field strengths of pulsars, attractive for its simplicity, is the fossil
field scenario, which states that the magnetic field is simply that of the progenitor star, amplified by flux
conservation during the supernova event. Main-sequence stars have been observed with magnetic fields as high
as B1 ≈ 104 G (Donati & Landstreet, 2009), and an iron core may have initial radius R1 ≈ 3000 km (Sukhbold
et al., 2016). These results suggest that under collapse to a neutron star with R2 ≈ 10 km, flux conservation
alone could generate magnetic fields up to 108 G. However, this does not agree well with measured NS magnetic
fields; for example, the Crab Pulsar has B ≈ 7.6× 1012 G (e.g. Kou & Tong, 2015).

Additionally, the Galactic distribution of magnetic fields of massive stars is insufficient to reproduce the
observed pulsar and magnetar distribution (Makarenko et al., 2021). Further, the progenitor star exhibits core
convection and the proto-neutron star (PNS) is expected to be unstable to particularly vigorous convection
driven by a neutrino flux of ∼ 1053 erg s−1 in its first few seconds of existence (Thompson & Duncan, 1993),
so that young neutron stars have extremely high values of the magnetic Reynolds number4 Rm ∼ 1017;
compare this to Rm ∼ 1010 for the Sun.

Rapidly-moving conducting fluids within an object with high Rm can generate intense magnetic fields by
dynamo action; specifically, the α−Ω dynamo mechanism, also called the convective dynamo mech-
anism (e.g. Davidson, 2001, §6.2.1). If the bulk movement of matter is powerful enough, it can drag magnetic
field lines along with it, possibly leading to magnetic field amplification. If the rotation period is less than the
convective turnover time P < τcon, this amplification becomes global: strong fields of 1015 G or higher permeate
the entire star and its magnetosphere. PNSs which achieve this are known as magnetars. For longer periods,
the amplification is only local (confined within a small region of the NS) and the NS becomes a “normal radio
pulsar”. Thompson & Duncan (1993) estimate τcon ∼ 10−3 s (Table 1 in their paper) and suggest that a PNS
born with P < 10 ms could become a magnetar through dynamo action. Lander (2021) further explored the use
of dynamo phases in NS magnetic field generation. Simulations by Raynaud et al. (2020) showed that convective
dynamo action can generate magnetar-strength magnetic fields regardless of the initial magnetic field.

Another alternative is the magnetorotational instability (MRI). Consider a rotating magnetic fluid
in which a small element of fluid has been displaced. Instead of restoring back to equilibrium, the resulting
magnetic force on the element actually compounds its motion, and this can lead to turbulent flow. Balbus &
Hawley (1991) popularised the MRI as a model for turbulence in accretion discs. Akiyama et al. (2003) were
the first to apply MRI to core-collapse supernovae, demonstrating that this instability can generate magnetar-
strength magnetic fields comfortably given a typical main-sequence star as a starting point. These results were
recently corroborated with numerical simulations by Reboul-Salze et al. (2021).

4.7 Mass, radius and equation of state

An approximate mass-radius relation for neutron stars is (Ryan & Norton, 2010, §7.2.2)

R =

(
729

32π4

)1/3 1

G

h2

5

1

m
8/3
n

1

M−1/3
≈ 16.30 km

(
M

M⊙

)−1/3

. (4.42)

For a neutron star with the Chandrasekhar mass, R ≈ 14.57 km. Comparing to Eq. (3.12), this puts the star
around nuclear mass density on average. As we will see in §4.8, the core region is expected to be far above
nuclear density.

Neutron star masses should all exist within a relatively narrow range, roughly 1.4− 2.9M⊙. The iron core
must reach the Chandrasekhar mass in order to collapse, so if no further mass loss occurs during formation
then this represents the lowest possible NS mass. An upper limit can be derived using the same logic as for the
maximum mass of a white dwarf.5 The first to do this were Tolman (1939) and Oppenheimer & Volkoff (1939),
so the maximum has been named the Tolman-Oppenheimer-Volkoff (TOV) limit. The exact value of
the TOV limit is unknown because calculations are highly sensitive to the still-unknown equation of state of a
neutron star interior, described below.

4A rough measure of the applicability of ideal MHD to describe a magnetic fluid. If Rm ≪ 1 the magnetic field diffuses through
the fluid; if Rm ≫ 1 then flux freezing occurs and magnetic field lines are advected with the fluid.

5Which, of course, is the Chandrasekhar mass.
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The original authors’ estimate was MTOV ≈ 0.7M⊙; recently, Jiang et al. (2020) used nicer X-ray data to
find MTOV ≈ 2.04− 2.40M⊙ depending on the equation of state. It is thought that rotation may increase the
maximum mass by 18− 20% (Rezzolla et al., 2018), raising this estimate to 2.40− 2.88M⊙. The most massive
observed pulsar is PSR J0952–0607 with M = 2.35 ± 0.17M⊙ (Romani et al., 2022). Calculations by Clifford
& Ransom (2019) estimate that PSR J1748-2021B has mass M = 2.548+0.047

−0.078M⊙.
One of the most important goals in neutron star modelling is to obtain an equation of state (EoS), an

expression of the pressure as a function of mass density P (ρ). From this, one can predict a host of useful prop-
erties such as mass-radius relations, the presence of superconductivity and superfluidity and even estimations of
the gravitational wave signatures given off during merger events. Once an EoS is obtained, one may substitute
it into the TOV equations and directly integrate to obtain NS models and mass profile estimates, as outlined
in §B of Baym et al. (2018).

The equation of state is highly sensitive to the composition of the neutron star, so carries large uncertainties.
A soft EoS is one in which the average Fermi momentum of particles is low; a stiff EoS features high Fermi
momenta. A softer EoS corresponds to smaller radii and lower upper mass limits.

The EoS may be constrained by direct observations (e.g. Annala et al., 2022). The nicer X-ray experiment
on board the iss can measure NS masses and radii, albeit with large uncertainty primarily due to distance
measurements and the poorly characterised modification of spectra by surface atom distortion (e.g. Gendreau
et al., 2016, see also §4.8 of this thesis). Observations of X-ray bursts may also constrain the mass-radius relation
(e.g. Özel & Freire, 2016). The signature of gravitational waves emitted during NS-NS mergers is sensitive to

the dimensionless tidal deformability of the NS, a quantity scaling as
(
R
M

)5
, so such gravitational wave

detections can strongly constrain the NS mass-radius relation (e.g. Miller et al., 2019).

4.8 Neutron star interiors

While our project focuses on NS magnetospheres, we cannot neglect the workings of the interior. As we will
see in §7.1, NS bursting events are ultimately caused by the outward diffusion of the core magnetic field. Even
if this were not the case, NS interiors are among the densest and most highly magnetised regions known to
science, and so they provide a natural laboratory of physics at the edge of the standard model and perhaps
beyond it.

Let us rapidly summarise the main elementary particles. The curious reader may also see, for example,
Chapter 3 of Martin (2009). Hadrons are particles that feel the strong nuclear force. They are composed
of quarks, of which there exist six “flavours”: up u, down d, charm c, strange s, top t and bottom b. The
two classes of hadron are baryons, composed of an odd number of quarks (most notably the proton uud and
neutron udd) and mesons, composed of an even number. Hyperons are a class of baryons containing at least
one strange quark. The eight most important baryons are often visualised by the baryon octet arranging them
by their charge, strangeness and isospin (Figure 4.4). Leptons are particles that do not feel the strong force.
There are three flavours: the electron e−, muon µ− and tau τ−, plus their associated neutrinos νe, νµ, ντ .

Despite their extreme conditions, neutron stars are cold objects. Violent neutrino emission during their
supernova birth cools them to a very low-energy configuration, such that the chemical potential per baryon is
extremely low. This makes NSs the only known natural laboratory for studying cold dense QCD (e.g. Kurkela
et al., 2010).

Similarly to main-sequence stars (Chapter 3), the density of a neutron star strongly increases as we descend
from the surface to the core, and this density plays a crucial role in the conditions of the local matter. For
this reason, it is convenient to speak about depth inside a NS interior in terms of density, rather than more
immediate quantities such as radial distance.
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Figure 4.4: The first baryon octet (Trassiorf, 2007, released into the public domain). Note that the strangeness
quantum number should be negative; i.e. the horizontal lines should read S = 0, S = −1 and S = −2.

Brief overviews of NS interiors are given in §5.6 of Rosswog & Brüggen (2007) and §2.4 of Lyne & Graham-
Smith (2006), while a more in-depth review is given by Baym et al. (2018). The interior can be roughly divided
into the following broad regions (Figure 4.5):

• “Atmosphere”: Around 106 g cm−3. Due to the intense surface magnetic field, NS atmospheres are
only around 1 cm thick. Matter here exists as atoms, but the extreme magnetic fields distort these atoms
into needle-like shapes (Proposition 4.10 below), vastly affecting their spectra and making it difficult to
correctly interpret NS observations without an accurate model of their surface conditions.

• Outer crust: The nuclei in the outer crust are fully ionised, and once the density passes 107 g cm−3

the sea of electrons becomes degenerate. Near the surface the dominant nucleus is 56Fe, but as density
increases the electrons undergo inverse beta decay to form neutrons which are absorbed to form extremely
neutron-rich nuclei that would not be stable on Earth.

• Inner crust: Above the neutron drip density 4 × 1011 g cm−3, the chemical potential of neutrons
inside nuclei falls to zero and they leak out of the nuclei to form a Fermi sea. If the temperature is low
enough, this neutron sea will be superfluid (zero viscosity). NS crusts are reviewed in detail by Chamel
& Haensel (2008).

• Outer core: Above nuclear density ρ0 ≈ 1014 g cm−3 (Proposition 3.3), the nuclei break down and
the matter becomes a Fermi sea of protons and neutrons in equilibrium, with a Fermi sea of leptons to
hold charge neutrality. The protons may be superconducting (zero electrical resistance). This region
represents most of the mass of the NS; see the end of this section.

• Inner core: The inner core is so dense that the standard model of particle physics breaks down. Many
theories exist aiming to describe the states of matter here and their influence on the EoS; see Blaschke
& Chamel (2018) or Kumar et al. (2024) for reviews. Let us describe some models here. At densities
(2 − 3)ρ0, lighter nucleons may begin conversion into the more massive Λ and Σ hyperons, lowering
the Fermi momentum per particle and softening the EoS. However, this reduces the maximum NS mass
below 2M⊙, in tension with observations. The discrepancy is known as the hyperon puzzle (e.g. Tolos
& Fabbietti, 2020; Burgio et al., 2021). Reanalysis by Haidenbauer et al. (2017) pushed the hyperon
critical density higher, which was corroborated by Ye et al. (2025). Theoretical work by Ma et al. (2022)
showed that the speculated formation of Bose-Einstein condensates of π and K mesons can be compatible
with these observed masses. Another model, quarkyonic matter, attempts to fix predictions that the
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sound speed can exceed the theoretical limit for matter (called the conformal bound) 1√
3
c ≈ 0.577 c

(e.g. McLerran & Reddy, 2019; Pang et al., 2024). Implications of theories that quark deconfinement
occurs within NS cores were discussed by e.g. Han et al. (2019) and Annala et al. (2023).

A review of the history of superfluidity and superconductivity in neutron stars can be found in §8 of
Chamel & Haensel (2008). NS interiors are thought to be the only environments where superfluidity and
superconductivity exist together, making them a crucial testbed for these phenomena. Melatos & Link (2014)
argued that superfluidity leads to turbulence which can cause timing noise, and discussed the implications on
gravitational wave detection from pulsar timing arrays. Turbulent superfluidity may also explain the origin of
pulsar glitches (e.g. Antonelli et al., 2022). Evidence for superfluidity and superconductivity was found by
Ho et al. (2015), who applied various equations of state to the NS at the centre of Cassiopeia A and found that
a model with superfluid neutrons and superconducting protons gave the best fit to observations.

Figure 4.5: Interior of a neutron star (Schulze, 2010, used under CC BY 3.0). The data is taken from p. 12 of
Haensel et al. (2007). Here, ρ0 ≈ 1017 kg m−3 is the mass density of nuclear matter (Proposition 3.3).

Proposition 4.10. Atoms on the NS crust or in its atmosphere are not spherical, but distorted into needle-
like shapes.

Proof. As a vast oversimplification, let us take the values for neutral hydrogen and assume that they hold, at
least to order-of-magnitude, for 56Fe. Under normal conditions, electrons orbit atomic nuclei at a radial distance
roughly given by the Bohr radius

rB =
4πϵ0ℏ2

e2me
≈ 5.3× 10−11 m. (4.43)

A charge q with mass m moving at speed v perpendicular to a magnetic field B will undergo circular motion
with the cyclotron radius rc = mv

qB . Assume that the electrons orbit at the same speed that they would

in atomic hydrogen, v = c
α ≈ 2.2 × 106 m s−1 (e.g Foot, 2005, §1.3) and take a pulsar surface magnetic field

B ≈ 108 T. Then rc ≈ 1.2× 10−13 m < rB. These atoms will have radius rB in the radial direction and smaller
radius rc in the perpendicular direction.
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Let us briefly test the claim that most of the mass is contained within the outer core.6 Use the same regions
and densities shown in Figure 4.5 with a linear increase between region boundaries. Suppose that the inner core
has constant density ρ = 2.0 ρ0. For example, ρ = 2.0 ρ0 at r = 3 km, ρ = 1.25 ρ0 at r = 7.5 km and ρ = 0.5 ρ0
at r = 12 km. Then, the mass enclosed within radii r1 and r2 > r1 is (Baym et al., 2018, Eq. (2))

M(r1, r2) = 4π

∫ r2

r1

ρ(r) r2 dr. (4.44)

This allows calculation of the mass profile of a typical neutron star given a density profile such as that outlined
above (Figure 4.6). Using the values in Figure 4.5, we find a radius R = 14.5 km and total mass M ≈ 1.02M⊙,
for an average density ρ ≈ 1.60 × 1017 kg m−3 ≈ 0.71 ρ0. In this model, the outer core makes up 77% of the
total mass. Our calculation is very simple but is enough to qualitatively show that the outer core is the greatest
contributor to the total mass.

Figure 4.6: Density (Left) and mass (Right) profiles of a neutron star using the parameters given in Figure 4.5.
The dashed vertical lines represent region boundaries.

6This was performed with the Python code Neutron star mass profile.py, available in the GitHub source material.
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4.9 Are neutrons the dominant particles in NS interiors?

Finally, let us perform a basic calculation to show that NS interiors are indeed composed mainly of neutrons,
as opposed to some other particle, hence the name neutron star. We use a method outlined in §7.2.1 of Ryan
& Norton (2010) and physical arguments described in §5.6.1 of Rosswog & Brüggen (2007). This analysis only
applies to the outer core, but since that makes up most of the mass, it is a reasonable approximation of the
neutron star as a whole. We have already described how nuclei become more neutron-rich as one descends from
the outer crust to neutron drip point.

Let us model the NS interior as a Fermi sea of neutrons, protons and electrons in chemical equilibrium via
the equation

n ⇋ p + e− + νe. (4.45)

Free neutrons under normal conditions7 decay via this reaction with a half-life of around 14 minutes. However,
the extreme density of NS interiors inhibits this reaction by Pauli blocking, where few quantum states remain
available for the protons and electrons to occupy. Specifically, neutron decay is favoured when the Fermi energy
of the neutrons exceeds the sum of the Fermi energies of the protons and electrons (such that the system seeks
its lowest-energy configuration) and inhibited in the opposite case. We thus have equilibrium when the Fermi
energies balance:

EF(n) = EF(p) + EF(e). (4.46)

The neutrons and protons are non-relativistic, while the electrons are ultra-relativistic. Their Fermi energies
are

EF(n, p) = mn,p c
2 +

p2F(n, e)

2mn,e
, (4.47)

EF(e) = pF(e) c, (4.48)

where the Fermi momentum is

pF =

(
3

8π

)1/3

hn1/3. (4.49)

Consider a system with mass density ρ consisting of several species of particles. For species i whose particles each
have massmi, the the number density ni (particles per unit volume) and mass fraction Xi ∈ [0, 1] (dimensionless
number giving the contribution of the species to the total mass of the system) are related by

n =
ρX

m
. (4.50)

We have a system of free neutrons, protons and electrons. Charge neutrality gives that np = ne, and the mass
fractions must sum to unity, Xn +Xp +Xe = 1. Then, np and hence ne can be expressed terms of nn:

np =
ρ−mn nn
mp +me

. (4.51)

Combining these results, we find an expression in terms of a single variable8 nn for a given mass density ρ,
which is equal to zero at equilibrium:

f(nn) =
1

2

(
3

8π

)2/3

h2
[

1

mn
n2/3n − 1

mp
n2/3p

]
−
(

3

8π

)1/3

hc n1/3p + (mn −mp)c
2 !

= 0. (4.52)

7That is, conditions familiar to us on Earth.
8We keep np as a separate term since Eq. (4.51) does nothing to simplify the function, and it is useful to know np anyway.
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At a given mass density ρ, the expression can be solved numerically9 for nn. Figure 4.7 plots the equilibrium
nn, and the ratio nn

np
, for ρ ranging from 1.4 to 3.0 kg m−3. We find nn

np
∼ 200− 300 for this range of densities,

confirming that neutrons are indeed the dominant species within NS outer cores.

Figure 4.7: Neutron number density (solid blue line) and neutron-to-proton ratio (dashed red line) of a degen-
erate gas of non-relativistic neutrons and protons and ultra-relativistic electrons, as a function of mass density.

9The curious reader is encouraged to run the codes Decimal search NS neutron number density.py and
Plot NS Neutron to Proton Ratio.py in the GitHub source material.
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5 Neutron stars as candidates for pulsars

5.1 Physical arguments that pulsars are neutron stars

Having outlined some key properties of neutron stars in the preceding chapters, let us use our results to argue for
neutron stars as the most likely drivers behind pulsar activity, over alternatives such as pulsating main-sequence
stars and white dwarfs.

Proposition 5.1. The pulse length from a typical pulsar is too short for a main sequence star to be the
source of its radiation.

Proof. Suppose that the source of the pulses is a spherical object of radius R. Suppose that each burst is
emitted isotropically over an infinitesimally small duration. Then, any observed duration of a pulse, lasting
time ∆t, can be assumed to be entirely due to the difference in light travel time from photons originating on
different regions of its surface. We see the star as a disc in the night sky. Suppose that a photon originating
from the centre of the disc travels a distance d1 to Earth, while a photon originating from an edge travels a
distance d2; this is illustrated in Figure 5.1. By trigonometry, these paths form a right-angled triangle with
shorter sides d1 and R, and hypotenuse d2. The hypotenuse must be shorter than the other two sides combined,
d2 < d1 +R. Then, if the light travel time from the centre of the star is t1 =

d1
c , the light travel time from the

edge is

t2 =
d2
c

<
d1 +R

c
= t1 +

R

c
. (5.1)

The maximum pulse duration is the difference between these two extremal arrival times, (∆t)max = max(d2 −
d1) =

R
c , and so the radius of the source is at most Rmax = c(∆t)max. Using ∆t = 14.5 ms (Comella et al., 1969,

Table 1), we obtain R ≈ 4.3×106 m ≈ 6×10−3R⊙, and so the source is far too small to be a star. Interestingly
however, the original report by Hewish et al. (1968) quoted ∆t ≈ 0.3 s, resulting in R ≈ 9× 107 m ≈ 0.1R⊙,
which would not quite be small enough to discount a main-sequence star as a candidate.

Figure 5.1: Path lengths d1 and d2 of light rays emerging from a disc of radius R.
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The result of Proposition 5.1 eliminates main sequence stars as candidates for pulsars. An approximate
mass-radius relation for white dwarfs is (Ryan & Norton, 2010, Eq. (6.6))

R ≈ 9.41× 106 m

(
M

M⊙

)−1/3

, (5.2)

and an alternative is (Nauenberg, 1972)

R ≈ 7.83× 106 m

[( M

1.44M⊙

)−2/3
−
( M

1.44M⊙

)2/3]1/2
. (5.3)

These are plotted in Figure 5.2. Note that the Nauenberg expression predicts radii which decline more rapidly
approaching the Chandrasekhar limit than the Ryan-Norton expression, thus accounting for the star overcoming
electron degeneracy pressure. It has the unphysical limit limM→1.44M⊙(R) = 0 and does not give real radii for
M > 1.44M⊙, representing the moment at which electron degeneracy pressure is overcome and a new model
(i.e. a neutron star) is needed. According to these mass-radius relations, a theoretical pulsating white dwarf
would still have a radius consistent with observed pulsar emission as calculated in Proposition 5.1. We require
further restrictions in order to eliminate white dwarfs as candidates. According to the neutron star mass-radius
relation in Eq. (4.42), theoretical pulsating neutron stars would also be consistent with pulsars. However, white
dwarfs and neutron stars are too dense to pulsate, a claim we make without proof.

Figure 5.2: Two white dwarf mass-luminosity relations, described in the text.
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Proposition 5.2. An object of mass M and radius R cannot rotate with a period less than

Pmin = 2π

√
R3

GM
(5.4)

without breaking apart.

Proof. Consider a test massm on the surface of a sphere with massM and radius R rotating at angular frequency
Ω. As the rotation increases, the centripetal force on the mass will eventually overcome the gravitational
attraction keeping the mass on the surface; this is a good approximation for a star breaking up. Then, the
maximum rotation rate that the object can have without breaking up is given when the gravitational and
centripetal forces on the test mass balance:

GMm

R2
= mRΩ2

max. (5.5)

The test mass cancels and the expression rearranges to

Ωmax =

√
GM

R3
. (5.6)

Finally, angular velocity and rotation period are related by Ω = 2π
P , so a maximum Ω corresponds to a minimum

P . Substituting this, we obtain the given result.

Eq. (5.4) rearranges to give a maximum radius

Rmax =

(
1

4π2
GM P 2

min

)1/3

. (5.7)

Substituting the Chandrasekhar mass and a nominal period P = 0.1 s, we obtain Rmax ≈ 3.6× 105 m. This is
far smaller than expected white dwarf radii from the mass-radius relations in Eqs. (5.2) and (5.3), ruling them
out as candidates, but well within tolerance for expected neutron star radii.

Proposition 5.3. The Crab Pulsar is emitting sufficient energy to supply the observed luminosity of its
surrounding nebula.

Proof. Assume that the Crab Nebula is entirely rotation-powered. That is, all of the energy it receives is due to
the energy lost by its central pulsar as the latter spins down. Then, as we saw in the proof of Proposition 4.1,
the power fed by the pulsar to the nebula is P = IΩΩ̇. The Crab Pulsar has angular frequency Ω ≈ 190 s−1 and
angular frequency derivative Ω̇ ≈ −2.43 × 10−9 s−2 (Lyne et al., 1993, Table 1)1. Assuming a uniform sphere
with M = 1.4M⊙ and R ≈ 10 km such that I = 2

5 MR2 ≈ 1.11×1038 kg, we obtain P = −5.13×1031 W. This
agrees reasonably well with calculations of the luminosity of the Crab Nebula at around 5 × 1031 W (Ryan &
Norton, 2010, §7.3.3).

Having argued that neutron stars, not pulsating main sequence stars or white dwarfs, are the most likely
candidates for pulsars, our final calculation above has demonstrated that a rotating neutron star is indeed a
viable candidate for the central engine driving the observed luminosity of an emission nebula such as the Crab.

1The authors quote linear frequencies, so we multiply the values given in the cited source by 2π.
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5.2 The Goldreich-Julian model of a pulsar

The magnetic field lines of a rotating object are bound to its surface at locations known as footpoints, and
this causes the magnetosphere to co-rotate with it. The classical model of a pulsar, presented by Goldreich &
Julian (1969), is a rotating dipole whose co-rotating magnetic field is potential (current-free, §25.3) except for
a narrow bunch of lines which extend out to the light cylinder RLC. This is the radial distance at which a
particle co-rotating with the pulsar must move at the speed of light to keep up. Nothing beyond the pulsars’s
light cylinder can co-rotate with it, so field lines extending beyond it necessarily remain open and dissipate
energy. Since charged particles flow along magnetic field lines in the absence of other forces, this causes the
emission of synchrotron electrons that can power the luminosity of a host nebula if one is present. See Figure
11.1 for a diagram of the magnetic field structure of a non-rotating dipole. That of a typical neutron star is
shown in Figure 5.3.

Radhakrishnan & Cooke (1969) noted that the radiation from the Crab Nebula is linearly polarised and
extends over a range of frequencies, a hallmark of curvature and synchrotron radiation and a sign that charged
particles surrounding the pulsar are being accelerated to relativistic speeds. Further, they determined that the
direction of polarisation sweeps through a large angle, which could only be explained if the radiation is produced
near the poles. This has become known as the polar cap model of pulsar emission.

Figure 5.3: Magnetic field lines of a rotating neutron star. The force-free approximation (Chapter 8) holds
within the last closed field line (regions I and II). Note that many models, including ours, assume that the last
closed field line intersects the light cylinder, i.e. Rsep = RL. This is Figure 5 of Glampedakis et al. (2014);
reproduced with permission.
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5.3 Issues extending the Goldreich-Julian pulsar model to magnetars

Can the Goldreich-Julian model be applied to magnetars? Dipoles are axisymmetric, but Cowling’s neutral
point theorem states that a steady, axisymmetric dynamo cannot exist (e.g. Davidson, 2001, §6.2.3). There-
fore, the magnetic field of a magnetar must vary from that of a dipole if magnetic field amplification is to occur
by convection (see the discussion in §4.6).

Proposition 5.4. The magnetic field of a dipole is purely poloidal.2

Proof. The magnetic field of a dipole is (e.g. Griffiths, 2017, Eq. (5.88))

B(r) =
µ0m

4π

(
2 cos(θ)

r3
er +

sin(θ)

r3
eθ

)
, (5.8)

where m is the magnitude of its magnetic dipole moment. This has no ϕ-component and its r, θ-components
are independent of ϕ so, using the expression in Eq. (25.12), its curl may only have a ϕ-component. We state
in §25.2 that the curl of a poloidal field is purely azimuthal, so it follows that our B is poloidal. In fact, the
azimuthal component is zero and so ∇×B = 0.

It has been shown (e.g. Braithwaite, 2009, and references therein) that the internal magnetic field of a NS
must contain both poloidal and toroidal components because each of these are unstable on their own. Lander
& Jones (2011a,b) carried out numerical simulations on neutron stars with purely toroidal and purely poloidal
magnetic fields, confirming that both were unstable but finding that rotation has a stabilising effect in both
cases. The strong internal magnetic fields of magnetars cause large deviations of the external field from that of
a dipole, and their slow rotation means that instabilities are not suppressed if the field is assumed to be purely
poloidal as for pulsars. This may explain why the model remains acceptable for pulsars, even if it breaks down
for magnetars.

A particular difficulty in numerical simulations of NS magnetospheres is that the magnetic field becomes
discontinuous across RLC. Full time-dependent solutions have so far proved elusive, but so-called steady-state
solutions, those that create a snapshot of the magnetic field at a given moment in time, have been found.
Michel (1973) and Scharlemann & Wagoner (1973) presented the pulsar equation, which can be solved to
describe the field everywhere in the magnetosphere at a given point in time. Contopoulos et al. (1999) were
the first to solve it for a rotating dipole with a large magnetospheric charge density. Analytical steady-state
solutions for a dipole in vacuum with arbitrary alignment between its magnetic and rotational axes were found
by Deutsch (1955).

It must also be noted that Goldreich & Julian (1969) only ever presented a qualitative picture of how a pulsar
magnetosphere might appear; their model had little mathematical grounding and certainly was not obtained
by solving some differential equation such as the pulsar equation or Grad-Shafranov equation (§25.4). It
is telling that, in the decades since, authors have struggled to produce stable magnetospheric models even as
computing power and numerical model complexity have increased. As such, although we may expect at a first
approximation to obtain magnetospheres resembling the Goldreich-Julian model with our own code later in
this thesis, there is no certainty that such a model is the only correct stable configuration. If (when) we run
into model convergence issues, this may be worth remembering. Recently, Contopoulos et al. (2024) explored
alternative solutions for the magnetic field around a pulsar.

Significant non-dipolar magnetic field components have been detected in some magnetars. Tiengo et al.
(2013) and Rodŕıguez Castillo et al. (2016) both reported absorption lines from proton cyclotron radiation,
indicating a non-dipolar field component that is perhaps an order of magnitude stronger than the dipole field.
This component is most significant near the magnetar surface.

2See §25.2 for a discussion on poloidal and toroidal vectors.
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6 History of study of magnetar bursts

In this chapter, we provide a brief review of the history of observation of giant flares and their connection to a
hyper-magnetic class of neutron star known as a magnetar. In-depth reviews of magnetars have been produced
by, for example, Esposito et al. (2021); Kaspi & Beloborodov (2017); Turolla et al. (2015), while a description
aimed at a general audience was written by Kouveliotou et al. (2003).

Although neutron stars are most commonly associated with radio pulsars, some also emit strongly in X-rays.
Observations over the years have led to the classification of many X-ray-emitting neutron stars as soft gamma
repeaters (SGRs) or anomalous X-ray pulsars (AXPs), though it is now widely held that these classes
are both part of the same unified group. They are often associated with nearby supernova remnants, making
them particularly young NSs (104 yr). X-ray-emitting NSs have four key observational properties:

1. Isolated (i.e. no binary companion).

2. Persistent but variable X-ray emission comprising a two-component spectrum: a soft (∼ 0.5 keV) black
body and a hard (∼ 100 keV) tail. For reference, Table 6.1 gives the rough wavelength and photon energies
of soft X-ray, hard X-ray and gamma-ray photons.

3. Long spin periods P ∼ 2− 12 s compared to radio pulsars.

4. High period derivatives Ṗ ∼ 10−13 − 10−11 s s−1.

We have seen from Proposition 4.2 that Properties 3 and 4 imply an inferred polar magnetic field Bdipole ∼
1014 − 1015 G for magnetars and ∼ 1012 − 1013 G for pulsars. The magnetic fields of magnetars are among the
strongest currently known in the universe. Although supported by theory and simulations, it must be noted
that no direct measurement of such a strong magnetic field has yet been made.

X-ray emission consists of a persistent component as well as transient behaviour in the form of bursts. Bursts
occur on a range of time- and energy-scales, and are roughly categorised accordingly as short bursts (peak
luminosity around 1036−1041 erg s−1 and total emitted energy around 1036−1042 erg), intermediate bursts1

and giant flares (peak 1044−1047 erg s−1 and total 1044 erg) (Turolla et al., 2015; Kaspi & Beloborodov, 2017).2

Most galaxies have visible-light luminosity ∼ 1042 − 1045 erg s−1 (e.g. Jones et al., 2015, Table 2.1), so giant
flares can outshine an entire galaxy.

The Eddington luminosity of an object is the maximum luminosity that it can possess without breaking
itself apart. At higher luminosities, the radiation pressure becomes strong enough to overcome the gravitational
binding energy of the object. Taking as a major simplification the opacity for neutral hydrogen3 κ = σT

mp
≈

0.0398 m2 kg−1, we have

LEdd =
4πcGM

κ
≈ 1.76× 1038

M

1.4M⊙

(
κ

0.0398 m2 kg−1

)−1

erg s−1. (6.1)

This corresponds well to the ≈ 2×1038 erg s−1 quoted in §5.1.1 of Turolla et al. (2015). The measured energies
of magnetar bursts thus indicate that they are super-Eddington events. Elenbaas et al. (2017) argued that
super-Eddington outflows cause intense inverse Compton scattering in the magnetosphere, which could explain
detections of > 250 keV emission lasting for tens of seconds after the initial spike.

1“Intermediate burst” is somewhat an umbrella term covering observations in the energy range between short bursts and giant
flares. Some resemble prolonged short bursts, while some resemble smaller flares.

2For context, the Solar luminosity is L⊙ ≈ 3.8 × 1033 erg s−1, so it would take the sun around 3800 years to radiate the
4.6× 1044 erg emitted by the 1979 March 5 giant flare (§6.4).

3Purely for the purpose of obtaining a result; van Putten et al. (2013) also used this value. In NS magnetospheres opacity is
mainly due to events such as Compton scattering; see e.g. Poutanen (2017) for a treatment.
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Table 6.1: Rough maximum wavelengths and minimum photon energies for X-ray and gamma-ray bands. The
wavelengths and energies are related by E = hc

λ .

Band Wavelength λ (m) Photon energy E (keV)

Soft X-ray 10−8 = 10 nm 0.1
Hard X-ray 10−10 = 100 pm 10
Gamma-ray 10−11 = 10 pm 100

6.1 Persistent emission

Persistent magnetar emission is reviewed in §3 of Turolla et al. (2015). Due to space telescopes like XMM-
Newton, Chandra and Swift, there is an abundance of observational data in the soft X-ray band. The spectra
in these bands are well approximated by a black-body-plus-power-law model (e.g. Zavlin & Pavlov, 2002),
indicating that the X-ray emission is thermal in nature but that the magnetosphere strongly influences outgoing
radiation, perhaps by resonant cyclotron scattering4 (Coburn et al., 2006). The inferred emission zone of
the thermal component is smaller than the entire NS surface, hinting that the origin of the X-ray emission is
local in nature.

For magnetars, resonant cyclotron effects are so strong that a significant component of their total emission
is detected in the hard X-ray band. This radiation is under-studied, but could provide crucial data constraining
magnetosphere models and explaining the recently established link between FRBs and magnetar bursts (to be
discussed in §6.7) (Alford et al., 2024).

Zane et al. (2023) performed X-ray polarimetry on 1RXS J170849.0-400910 using the ixpe satellite (Weis-
skopf et al., 2022). They found a very high polarisation angle, especially at higher photon energies. Harding
et al. (2025) interpreted this as evidence for a pair synchrotron cascade, which could point to resonant inverse
Compton scattering5 as the driving mechanism for hard X-ray emission in magnetars.

6.2 Short X-ray bursts

Short X-ray bursts are relatively common, with thousands having been recorded. They have been observed
in around two-thirds of all known magnetars (Olausen & Kaspi, 2014) and may even be used to detect new
magnetars or predict giant flares, as turned out to be the case for the flare from SGR 1900+14 (Kouveliotou
et al., 1999).

Short bursts are often clustered into “active periods” during which the wait time between bursts follows a
lognormal distribution with peak around 100 s, interspersed by periods of quiescence that can last for years.
There appears no correlation between wait time and burst intensity.

Short burst durations follow a lognormal distribution peaking around 0.1 s, with X-ray luminosity around
1043 erg s−1 (Göǧüş et al., 2001). Unlike giant flares, the light curves of short bursts show much variety. Some
have multiple peaks and some have long exponential tails pulsed at the NS period, although the latter may
simply be due to dust scattering by interstellar clouds between the source and observer (e.g. Pintore et al.,
2017).

Keskin et al. (2025b) present evidence that burst frequency slows down with magnetar age, as each burst
leads to a reduction in the stresses on the crust. This corroborates the study by Coti Zelati et al. (2018), who
had detected the trend in their analysis of the then 17 magnetars with recorded outbursts.

4An electron moving within a magnetic field will gyrate with a characteristic frequency known as the cyclotron frequency
ω = eB

me
. Incident radiation with this frequency is readily absorbed by electrons. See also the proof of Proposition 4.10.

5Inverse Compton scattering refers to ultra-relativistic electrons scattering photons and imparting large amounts of energy to
the photons (e.g. Longair, 2011, §9.3).
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6.3 Giant flares

So far, three giant flares have been detected and positively identified with a magnetar source. Up to six other
giant flare detections have been claimed, since they coincide in the night sky with star-forming galaxies (Trigg
et al., 2024, §1). These confirmed and suspected giant flares are summarised in Table 6.2.

The flares all exhibited similar profiles, namely a hard initial spike lasting 0.1 − 0.4 s followed by a softer
tail exponentially decaying over a few minutes. The tail is pulsed at the neutron star period. The spike and
tail phases each radiate a total of around 1044 erg. A second burst is observed around a day afterward, with
total luminosity around an order of magnitude lower than the first. The six extragalactic candidates were too
distant for the softer pulsed tail to be detected, making a magnetar origin difficult to verify (e.g. Mereghetti
et al., 2024), but their short rise time and high spectral energy peak are consistent with the three confirmed
giant flares and distinguish them from other gamma-ray bursts (GRBs) (e.g. Trigg et al., 2024).

Giant flares seem to correspond to braking glitches, or large spikes in the spin-down rate which is otherwise
roughly constant before and after. For example, the 1998 August 27 flare was accompanied by a glitch which
caused ∆P

P ∼ 10−4 (Woods et al., 1999) and released roughly 1041 erg, or around 0.5% of the energy that the
giant flare would release. Thompson et al. (2000) presented a possible mechanism for the braking glitch.

Table 6.2: List of confirmed and suspected giant flares observed as gamma ray bursts.

GRB Object Location Example citation

GRB 790305B SGR 0526-666 N49, LMC Mazets et al. (1979b)

GRB 980827 SGR 1900+14 Milky Way Mazets et al. (1999)

GRB 041227 SGR 1806-20
1806-20
(open cluster)

Hurley et al. (2005)

GRB 051103 M81 Ofek et al. (2006)

GRB 070201 M31 Ofek et al. (2008)

GRB 070222 M83 Burns et al. (2021)

GRB 180128A NGC 253 Trigg et al. (2024)

GRB 200415A M83 Roberts et al. (2021)

GRB 231115A M82 Mereghetti et al. (2024)

6Also referred to by some sources as SGR 0525-66.
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6.4 SGR 0526-66

The first observed giant flare inspired much research in order to understand the mechanism behind it; the burst
has been covered so many times in the literature that it is commonly referred to simply as the (1979) March
5 event.

The 1979 March 5 flare was detected in the energy range 50− 150 keV (8− 25 pm) by the konus detectors
onboard the Venera 11 and Venera 12 space missions (Mazets et al., 1979b). It featured an initial burst with
rise time 15 ms and decay 150 ms. The hard tail had energy 400 − 500 keV, which the authors identified as
electron-positron annihilation with a gravitational redshift due to an object with M = M⊙ and R = 10 km,
giving further evidence that the burst was from a neutron star. However, it was initially speculated to be an
accreting binary. The pulsed tail was similar in shape to continuous X-ray sources, so was identified to be a
neutron star. It was fitted to a burst spectrum with kBT = 30 keV, or within the hard X-ray band. The second
burst was detected around 14 hours later. It followed a similar profile to the first, but at around 1% of the
intensity.

The authors identified that the burst came from the Large Magellanic Cloud and speculated that it originated
from the Brasil Nebula N49. Armed with a known distance to the LMC, they estimated luminosities of 5 ×
1044 erg s−1 in the initial phase and 3.6 × 1044 erg s−1 in the pulsating phase, for a total released energy
> 4.6 × 1044 erg. Later, Cline et al. (1982) used the fact that the radiation had been detected by multiple
satellites throughout the solar system at slightly different times to locate it within a box of size 0.1 arcmin2

(i.e. side 19 arcsec). By comparison, N49 has angular diameter 84 arcsec (Badenes et al., 2010, Table 1).
Although the pulsation period of the latter spectrum and the identification with N49 were strong evidence

of a neutron star, there were still issues to be resolved:

1. The period of 8 seconds was far longer than for most known pulsars at the time. The magnetar scenario
neatly resolves this: Eq. (4.28) with B = 1015 G and other quantities taking fiducial values yields a time
τ ∼ 5 kyr for a magnetar to spin-down to P = 8 s, in good agreement with the estimated 4.8 kyr age of
N49 (Park et al., 2012).

2. The NS associated with N49 is significantly offset from the centre of the SNR, implying a very high kick
velocity 103 km s−1 when it was formed. Duncan & Thompson (1992) speculated that anisotropies in
the extremely violent neutrino emission during NS formation could lead to an anisotropic momentum loss
that scales with B, with magnetar-strength magnetic fields easily yielding the required kick velocity.

3. The super-Eddington luminosity could not be explained; accretion had only previously resulted in out-
bursts slightly above LEdd. Besides, X-ray-emitting neutron stars are not observed to have binary com-
panions. However, Paczyński (1992) argued that strong magnetic fields reduce the opacity of electrons
to outgoing radiation, and calculated that luminosities up to 104 LEdd could be sustained if B ∼ 1014 G.
Thus, the luminosity may be explained not by accretion but by a starquake releasing a magnetic flare.

The radiation from the burst was around 100 times stronger than previously detected gamma-ray bursts and
the source was found to emit 16 further bursts of around 0.1 s duration over the ensuing four years (Golenetskii
et al., 1984), whereas traditional GRBs are expected to be standalone events. Another source of repeated
gamma-ray bursts, later named SGR 1806-20, was also detected (Atteia et al., 1987, see §6.6 of this thesis), and
the term soft gamma repeater was coined to distinguish these objects from GRBs. The magnetar scenario
was laid out by Thompson & Duncan (1995, 1996), which gained credence when Kouveliotou et al. (1998) finally
confirmed suspicions that a pulsar lay within SGR 1806-20. A statistical analysis by Cheng et al. (1996) and
verified by Göǧüş et al. (1999, 2000) highlighted the similarity of the energy distribution of SGR outbursts to
those of earthquakes on Earth, giving evidence for a system of self-organised criticality. These results gave
credence to the starquake model of magnetar eruptions.
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6.5 SGR 1900+14

By incredible coincidence, what would ultimately be the source of the second giant flare was also discovered in
March 1979 by the Venera 11 and 12 spacecraft. Mazets et al. (1979a) detected three GRBs from a common
source which they designated B1900+14, each of 50− 190 ms duration and releasing 1039 erg. It was observed
a few times since, but a source object was not conclusively found (e.g. Hurley et al., 1996).

The source had been quiescent for a reasonably long time, before becoming active again around 1998 June.
Then, on 1998 August 27, an extremely intense GRB was detected by several satellites throughout the Solar
System (Mazets et al., 1999; Hurley et al., 1999; Feroci et al., 1999). The peak luminosity > 3.7× 1044 erg s−1

was very similar to the 1979 event, but being at a distance 10 kpc (compared to 55 kpc) the detections were
far more intense. At the time, this giant flare was the brightest gamma-ray source ever detected apart from the
Sun; this record would be surpassed by the third giant flare in 2004 (§6.6).

There was a precursor in which the intensity gradually increased over 80 ms. The onset of the burst itself
was characterised by a 2 ms rise, followed by a 0.25 s initial pulse that was powerful enough to saturate the
konus-wind gamma ray spectrometer. The burst then decayed with a pulsed tail until around 230 s. Even
at the time with just two examples to go from, the strong similarity between the 1979 and 1998 bursts led to
speculation of a common mechanism behind them. The physical characteristics of both giant flares, including
properties of the initial pulse and tail, total luminosity and positive detections of subsequent recurrent bursts,
are given in Tables 1 and 2 of Mazets et al. (1999).

The giant flare and subsequent short bursts allowed Kouveliotou et al. (1999) to finally detect a magnetar as
the source of the giant flare and the original gamma ray detections. The authors reported a period of 5.16 s, in
agreement with the pulsed tail of the giant flare. Wachter et al. (2008) performed observations that associated
the SGR with a cluster of massive stars, which had previously been suggested by Vrba et al. (1996). This gave
further evidence that magnetars are formed from massive stars.

6.6 SGR 1806-20

We stated in §6.4 how SGR 1806-20 was detected as a soft gamma repeater by Atteia et al. (1987). After
a few years of dormancy, Kulkarni & Frail (1993) compared approximate locations of bursts from this SGR
with a supernova catalogue, and found it roughly coincident with the radio nebula G10.0-0.3. They used this,
combined with the association of SGR 0526-66 with N49, as further evidence that SGRs are young neutron
stars. The SGR became active again in September that year, being detected by the BATSE experiment on
NASA’s Compton Gamma Ray Observatory (Kouveliotou et al., 1994), and this led Murakami et al. (1994),
who had detected the same burst with the ASCA satellite, to definitively locate it with this SNR. Follow-up
radio images of G10.0-0.3 by Kulkarni et al. (1994) suggested that SGR 1806-20 is an isolated pulsar with both
steady-state and transient emission which power the growth of the SNR. As with SGR 0526-66, the pulsar
was found to be offset from the centre, implying a large kick velocity. Kouveliotou et al. (1998) studied the
persistent X-ray radiation of the SGR, finding P = 7.47 s and Ṗ = 8.25 × 10−11. Eqs. (4.10) and (4.13)
then yield Bpole ≈ 2 × 1015 G and τ ≈ 1500 yr, consistent with values found for SGR 0526-66 and further
strengthening the burst mechanism suggested by Thompson & Duncan (1995).

The SGR emitted a giant flare on 2004 December 27 (Hurley et al., 2005; Palmer et al., 2005). It was
detected by the Burst Alert Telescope on the Swift satellite (Barthelmy, 2004), whose high temporal resolution
allowed the flare rise to be recorded for the first time. There was a steady rise over 40 ms with signal-to-noise
ratio around 3 relative to the background, followed by a steep increase by a factor 100 over 1.5 ms, with at least
one dip in the brightness before the peak was reached. A precursor was also detected around 142 s before the
giant flare, with approximately 1 second duration.

The initial spike had duration 0.5 s and emitted 2 × 1046 erg, while the tail lasted 7.56 s and emitted
5 × 1043 erg. The spike was two orders of magnitude higher than the previous two giant flares, hinting at
particularly intense magnetic reconnection, but the similarity of the pulsed tail to previous flares was evidence
that the burst becomes trapped by the magnetosphere and can only be radiated at a limited rate (Thompson
& Duncan, 2001). No significant change in the pulsar spin-down rate was detected due to the giant flare.
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6.7 Magnetar flares as candidates for fast radio bursts

Magnetars were long thought to be devoid of radio emission, until Camilo et al. (2006) unexpectedly detected
pulsed radio emission from XTE J1810–197 shortly after it had experienced an X-ray outburst. Since then,
transient radio emission has been associated with other magnetars; see §4.3 of Turolla et al. (2015) for a review.
Unlike that of pulsars, the emission is highly time-dependent and is only associated with magnetars undergoing
transient behaviour, suggesting a different physical origin.

Around the same time, the first fast radio burst (FRB) was detected (Lorimer et al., 2007). Their driving
mechanism is not yet known; candidates are neutron stars, collisions between massive objects (i.e. inspirals
involving black holes and/or neutron stars) and hyper-energetic supernovae.

FRBs release around 1042 erg s−1 of energy (Petroff et al., 2019, §1.1), well within the capabilities of mag-
netar bursts (giant flares release 1047 erg s−1). FRBs may repeat, but almost always at irregular intervals.
This suggests that the repeating FRBs are associated with some persistent host object which emits the radio
bursts sporadically. By contrast, a neutron-star inspiral may produce a single FRB at the moment of collision,
but would not repeat. Further, if FRBs are polarised, they were likely generated by an intense magnetic field
(Michilli et al., 2018) and magnetars can account for this. Since the bursts have 10−3 s duration, their host
object cannot be larger than 102 km by the same logic that we used in Proposition 5.1. This physical size is
consistent with a neutron star.

Almost all FRBs are extragalactic in origin, but in 2020 April one was observed and pinpointed to the
magnetar SGR J1935+2154, located within the Milky Way. The magnetar underwent a period of bursting
activity, emitting hundreds of X-ray bursts (XRBs) as well as a single FRB catalogued as FRB 200428
(Bochenek et al., 2020). This strongly suggests magnetars as a potential generating mechanism for FRBs.
An XRB accompanying the FRB was detected by Li et al. (2021). A more detailed account is given in the
introduction of Tang et al. (2024). However, the luminosity of FRB 200428 was several orders of magnitude
lower than the average for an FRB, so it may not be representative of the majority of FRBs (Andersen et al.,
2020).

The association of FRBs with magnetars affords a unique opportunity to study FRBs up close, and a
tantalising hint that magnetar bursts are a candidate for the mechanism causing FRBs (Zhang, 2020). On
the flipside, if this proves correct then FRB observation may even provide a method of detecting magnetars
in external galaxies, something not yet feasible by other means due to the low luminosity of both quiescent
magnetars and their short bursts. With enough data, this may help us constrain their distribution within
galaxies and their birth rate (Nicholl et al., 2017), which is difficult at present due to the small number of
known magnetars (§6.8) and their short lifetimes owing to their large spin-down rates (§4.2).
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6.8 Currently known magnetars

A total of 31 magnetars are known as of 2025 October, summarised in Table 6.3. A catalogue of magnetars was
compiled by Olausen & Kaspi (2014) and is maintained online in the McGill Online Magnetar Catalog;7 a
list of observed bursts is maintained in the Amsterdam Magnetar Burst Library.8

Table 6.3: List of currently known magnetars.

Discovered Confirmed Object Example citation

2001 2001 CXOU J010043.1-721134 Lamb et al. (2002)
1978 2000 4U 0142+61 Hulleman et al. (2000)
2009 2010 SGR 0418+5729 van der Horst et al. (2010)
2008 2010 SGR 0501+4516 Göǧüş et al. (2010b)
1979 1992 SGR 0526-66 Duncan & Thompson (1992)
1979 2002 1E 1048.1-5937 Wang & Chakrabarty (2002)
1980 2007 1E 1547.0-54089 Gelfand & Gaensler (2007)
2010 2010 PSR J1622-4950 Levin et al. (2012)
1998 2004 SGR 1627-41 Wachter et al. (2004)
2006 2006 CXOU J164710.2-455216 Muno et al. (2006)
1996 2003 1RXS J170849.0-400910 Israel et al. (2003)
2008 2010 CXOU J171405.7-381031 Halpern & Gotthelf (2010)
2013 2013 SGR J1745-2900 Kennea et al. (2013)
1979 2003 SGR 1806-20 Ibrahim et al. (2003)
2004 2004 XTE J1810-197 Ibrahim et al. (2004)
2020 2020 Swift J1818.0-1607 Lower et al. (2020)
2011 2011 Swift J1822.3-160610 Livingstone et al. (2011)
2010 2010 SGR 1833-0832 Göǧüş et al. (2010a)
2011 2011 Swift J1834.9-0846 Kargaltsev et al. (2012)
1985 2004 1E 1841-045 Wachter et al. (2004)
2014 2014 3XMM J185246.6+003317 Zhou et al. (2014)
1979 1999 SGR 1900+14 Kouveliotou et al. (1999)
2014 2014 SGR 1935+2154 Kozlova et al. (2016)
1980 2001 1E 2259+586 Hulleman et al. (2001)
2016 (Candidate) SGR 0755-2933 Doroshenko et al. (2021)
2000 (Candidate) SGR 1801-23 Cline et al. (2000)
2003 (Candidate) SGR 1808-20 Molkov et al. (2005)
2012 (Candidate) AX J1818.8-1559 Mereghetti et al. (2012)
1998 (Candidate) AX J1845.0-0258 Tam et al. (2006)
2011 (Candidate) SGR 2013+34 Sakamoto et al. (2011)
2000 (Candidate) PSR J1846-0258 Kumar & Safi-Harb (2008)
2021 2021 SGR 1830-0645 Younes et al. (2022)

7http://www.physics.mcgill.ca/∼pulsar/magnetar/main.html.
8https://staff.fnwi.uva.nl/a.l.watts/magnetar/mb.html.
8Also referred to as PSR J1550–5418.

10Also referred to as SGR 1822-1606.
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7 The magnetar scenario of giant flares and SGR
bursts

Over a series of papers culminating in Thompson & Duncan (1995), Christopher Thompson and Robert Duncan
argued that the source of giant flares was a neutron star with a decaying ultra-strong magnetic field. They
coined the term magnetar to describe such an object and their model has become known as the magnetar
scenario of giant flares (Duncan & Thompson, 1992). In particular, they argued the following points:

1. SGR bursts show no correlation between energy released and time between subsequent bursts. This
eliminates accretion as a possible trigger. Additionally, optical counterparts are too faint to allow for the
presence of a sizeable accretion disk (e.g. Hulleman et al., 2000).

2. Giant flares have highly super-Eddington luminosities 103 - 104 LEdd, enough to rip the source apart if it
were supported by gravity alone. Since the object is preserved, a mechanism must exist which confines
the emitting plasma around it. The proposed mechanism was magnetic confinement.

3. The more frequent short and intermediate bursts may be caused by fracturing of the neutron star crust,
a process that is particularly common in young magnetars.

The required magnetic field strengths 1014 − 1015 G were unprecedented in the literature, but Thompson and
Duncan gave a total of six independent arguments for the decaying ultra-strong magnetic field hypothesis:

1. The supernova remnant N49 associated with SGR 0526-66 has age ∼ 104 yr and period 8.0 s. Such a
spin-down requires Bdipole ∼ 6× 1014 G.

2. If magnetic fields are the cause, the magnetic free energy of a neutron star must be far greater than the
total energy of a giant flare. Then, the energy ∼ 5 × 1044 erg released in the March 5 event implies a
magnetic field Bdipole ≫ 8× 1013 G.

3. For Bsurface ≳ 3 × 1015 G, diffusion of magnetic field lines through the crust and the core occur on a
timescale of 104 yr, comparable to the age of SGRs.

4. Strong magnetic fields suppress the electron scattering opacity of photons (e.g. Uzdensky, 2011), allowing
more radiation to escape and resulting in super-Eddington luminosities. In particular, Bsurface ≳ 3×1014 G
allows the ∼ 104 LEdd observed in SGRs. This argument was previously made by Paczyński (1992) as
evidence that the March 5 event was caused by a strongly magnetised NS.

5. A crustal magnetic field Bcrust ≳ 1 × 1015 G is required for the magnetic energy of the crust to be high
enough to power the persistent X-ray emission of SGR 0526-066.

6. The March 5 event began with a spike in the hard X-rays of duration 0.15 ms. If B ≳ 7× 1014 G, this is
comparable to the Alfvén crossing time1 of the star.

Thompson & Duncan (2001) later argued that, since the initial spike and pulsed tail have comparable total
energies but vastly different durations, the burst becomes a “trapped fireball” whose radiation away from the
star is limited by scattering opacity of the electron-positron pairs formed when it enters the magnetosphere.
Although SGR 1806-20 had a far stronger initial burst, its tail had similar strength to the previous two giant
flares and this gave evidence that the magnetosphere has a limited storage capacity.

The Thompson-Duncan model has become widely accepted, despite the extreme rarity of giant flares making
it difficult to obtain enough observational data for conclusive verification. To aid this, the far more frequent
short X-ray bursts outlined in §6.2 may also be explained by the model. The wealth of observational data on

1The time taken by an MHD wave to cross an object.
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shorter outbursts allows for stringent testing through statistical studies (e.g. Coti Zelati et al., 2018). It has
even been suggested that giant flares may be a possible progenitor of some gamma-ray bursts (e.g. Burns et al.,
2021).

7.1 Crustal fractures as the cause of bursting events

Goldreich & Reisenegger (1992) argued that magnetic field decay in neutron stars is effectively a balancing act
between three main processes:

1. Ohmic decay (also called Ohmic dissipation): The loss of energy due to heat as a current encounters
resistance, causing magnetic field lines to diffuse away from the charge carriers. This allows magnetic flux
to diffuse from the NS core to the crust, despite chemical equilibrium precluding diffusion of particles.
However, Baym et al. (1969) had already argued that Ohmic decay is negligibly slow, with timescales for
NSs comparable to the age of the universe. This formed the basis of our approximation in §4.1 that B is
constant throughout a pulsar’s evolution.

2. Ambipolar diffusion: The diffusion of the magnetic field along with charged particles relative to neu-
trons. This is responsible for rapid magnetic flux transport from the outer core, where protons and
electrons exist in equilibrium, toward the outer crust.

3. Hall drift: The induction of a magnetic field, due to the electric field generated when a current flows
through the NS interior.2 Hall drift is slow in the core, but the lattice structure of the solid crust makes
it the dominant magnetic flux transport mechanism there (e.g. Jones, 1988).

The authors also took on the common assumption of electron MHD, in which the crust is assumed to be rigid
except for the flow of electrons. This yielded an evolutionary equation for the crustal magnetic field, Eq. (15)
in Goldreich & Reisenegger (1992).

Thompson & Duncan (1996) argued that this decaying and diffusing magnetic field could explain the persis-
tent X-ray emission of SGRs and AXPs, over competing models such as accretion (for a review, see Zhang et al.,
2000). Ambipolar diffusion causes the extremely high magnetic flux density of the core to diffuse outwards. It
also heats the core, with the heat being conducted to the surface and radiated away as quiescent X-rays.

When the outwardly diffusing magnetic field passes the crust-core boundary, it excites Hall turbulences
which propagate to the crust (see Figure 6 in Thompson & Duncan, 1996). These fields build up near the crust;
the Maxwell stress rapidly grows until it exceeds the crustal yield stress, leading to failure of the crust (e.g.
Chugunov & Horowitz, 2010; Lander & Gourgouliatos, 2019) and releasing a steady stream of Alfvén waves
into the magnetosphere (e.g. Blaes et al., 1989).

All of these effects, and hence the X-ray luminosity, are amplified if core neutrons are superfluid (Thompson
& Duncan, 1996). This makes an understanding of the conditions in a NS core crucial for the modelling of NS
star emission. However, by the same logic, studies of quiescent X-ray emission can also be used to constrain
models of NS core superfluidity.

As shown in Figure 7.1, crustal fractures impart twists to magnetospheric magnetic field lines embedded
into them. At the same time, electrical currents are passed from the interior to the exterior. These currents
push a twist in a given magnetic flux tube further outwards, so that it becomes distributed more evenly along
the tube and hence enters a lower-energy configuration (see Figure 1 in Thompson et al., 2002). The external
current is driven by stripping charges from the surface, and this results in a pair-production avalanche in the
magnetosphere. A plasma corona is created, which organises into a quasi-steady state that can persist for
1 - 10 yr; this may be responsible for the observed persistent X-ray emission (Beloborodov & Thompson, 2007).

2This is similar to the Hall effect; see e.g. §3.3.5 of Hook & Hall (1991) and §6.6 of Kittel (2005) for brief discussions.
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Figure 7.1: Visualisation of failure of a magnetar crust. The red region on the right experiences a plastic flow
vpl which twists its embedded magnetic field lines. For comparison, untwisted field lines are shown on the left.
This is Figure 1 of Lander (2023); reproduced with permission.

Larger crustal fractures may also be generated, possibly triggering SGR bursts (Thompson & Duncan, 1995).
Thus, for bursting events we are particularly interested in situations when the Hall drift dominates. This process
is difficult to model numerically, but Wood & Hollerbach (2015) were the first to produce a 3D simulation of it.
If the Alfvén wave is ejected to a maximum radius large enough that the magnetic field strength there is low,
the result is instead a relativistic outflow in the form of a magnetic reconnection event (Lyutikov, 2003, 2006).
Thus, magnetic field decay and crustal failure offer a unified model of short and intermediate bursts and of
giant flares, but modelling giant flares and their associated energy release probably also requires a prescription
for magnetic reconnection.

Recently, De Grandis et al. (2025) performed 3D simulations accounting for the heating effect of Hall drift
and subsequent cooling of the surface, finding good correlation with observed burst luminosity profiles. This
cooling is thought to make magnetars less prone to bursting as they age (e.g. Keskin et al., 2025b).

However, once the crustal yield stress is exceeded, the electron MHD model breaks down: by its definition, it
cannot model displacement of the crust. Lander (2016) derived an updated crustal field evolutionary equation
which included a crustal velocity term. Simulations with this new prescription are ongoing (e.g. Lander &
Gourgouliatos, 2019; Gourgouliatos & Lander, 2021; Kojima et al., 2021).

Lander (2023) further attempted to unify theories of transient magnetar behaviour, modelling the crust as
a cellular automaton that may be displaced and even yield due to magnetic diffusion, which then drives coronal
activity and can produce a wide range of bursting events. This new approach allowed for local as well as global
stresses, making it suitable to model short bursts (e.g. Younes et al., 2022) and giant flares respectively. The
cellular automaton was employed by Keskin et al. (2025a), who reproduced a strong temporal clustering of
bursts similar to that observed in active episodes of real magnetars. This adds credence to the crustal yielding
theory of magnetar bursting.
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7.2 Modelling magnetospheric twists in axisymmetry

Despite the difficulties in extending the Goldreich-Julian pulsar model to magnetars as discussed in §5.3, much
progress has been made in the literature under the dipole approximation.

Consider an object with an axisymmetric magnetic field, and let us twist its magnetic field footpoints about
the symmetry axis. Lynden-Bell & Boily (1994) showed that, after 1√

3
≈ 0.58 turns,3 the magnetic field remains

finite but the current becomes infinite and a large-scale discharge of magnetic energy is triggered. Aly (1984,
1991) and Sturrock (1991) conjectured that the energy of the sheared field cannot exceed that of an open field,4

and this was supported by Wolfson (1995).
Thompson et al. (2002) modified the Goldreich-Julian model to allow for a current to flow across the NS

surface, a consequence of the outwardly-diffusing internal magnetic field. They considered an axisymmetric
NS in which the twist was global, not local: one hemisphere was rotated relative to the other. They looked
for self-similar solutions, resulting in a sequence of equilibria similarly to the methods of Lynden-Bell & Boily
(1994) and Wolfson (1995). They derived an equation for the twist angle reached by a field line as a function of
the polar angle of its footpoints and found a maximum value of π. This is below the angle for explosive energy
release found by Lynden-Bell & Boily (1994), albeit in a different physical setup, so is reasonable for persistent
X-ray emission. A number of their predictions from the model corroborated with observations; examples are
given below.

• A persistent current can be maintained by stripping electrons and ions from the NS surface, prolonging
the life of the plasma corona for ∼ 30 yr. This is in line with the persistent X-ray emission from SGR
0526-66, which is decaying but still detectable even though it has not undergone a strong burst since 1983
(Aptekar et al., 2001; Park et al., 2020).

• Spin-down rate is correlated to twist angle, for a given polar magnetic field strength.

• Emission from the NS surface near the equatorial plane experiences strong resonant Compton scattering
at the cyclotron resonance, while emission from near the poles undergoes little scattering (Figure 5 in their
paper). Large twists yield multiple scatterings and a hard thermal X-ray tail in the spectrum. Spectral
hardness is correlated with observed burst activity (Marsden & White, 2001) and observed spectra have
a black-body-plus-power-law shape (Mereghetti, 2008); resonant Compton scattering can explain both
these trends (Turolla et al., 2015).

7.3 Understanding magnetic reconnection from other areas of physics

Analogies can be drawn with models of solar flares, in which the magnetic footpoints are displaced by turbulent
convection below the photosphere. This opens the intriguing possibility of studying giant flare mechanics
through the wealth of observational data from the Sun. A comprehensive review of the magnetohydroynamics
of solar flares was presented by Shibata & Magara (2011), while Wiegelmann & Sakurai (2021) detailed the
treatment of force-free magnetic fields (Chapter 8) in solar physics. Magnetic reconnection in the context of
solar physics was discussed by Mikić & Linker (1994). Magnetic reconnection is also commonly studied in the
contexts of Earth’s magnetosphere and of nuclear fusion.

Care must be taken: these alternative applications represent low-energy environments in which only the
charged particles (electrons and ions) are important. However, in high-density plasmas, electron-positron pairs
are created so vigorously that they cover the reconnection region in an optically thick region, trapping any
photons within and causing radiation pressure to dominate. As a result, the effects of radiative transfer must
also be considered when studying magnetic reconnection in NSs (Uzdensky, 2011). These effects are even more
important in the context of magnetars, whose magnetic fields are strong enough for spontaneous pair creation
to occur (for a review, see Daugherty & Harding, 1983).

3A twist angle 2π√
3
≈ 1.15π ≈ 3.63 rad.

4Specifically, for a force-free field (see Chapter 8 and §25.3).
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7.4 Simulations of reconnection events

Parfrey et al. (2012) developed the code phaedra in order to simulate relativistic magnetospheres under the
force-free condition. They reasoned that pre-existing methods, which evolve the magnetic field using finite
differences or finite volumes, are prone to numerical noise which can erroneously lead to instabilities and
reconnection events. To combat this, they developed a method in which the fields are expanded into orthogonal
basis functions, similar to contemporary spectroscopic codes. This is the method that we intend to develop
throughout the remainder of the project.

The authors used phaedra to simulate reconnection in strongly twisted magnetospheres (Parfrey et al.,
2013). They defined the shear ψ to be the azimuthal separation between the two footpoints of a magnetic field
line,5 and performed calculations using various shearing profiles which each concentrated the shear within
a certain latitude. The shear was imparted slowly through a sequence of equilibrium states. For all models,
the shear caused the magnetic field lines to expand to larger radii, with the radial extent of field lines found
to be quite sensitive to the shear angle. Departures from equilibrium were noted at ψ ≳ 3 rad, indicating that
the extent of field lines was such that the weaker magnetic field at their maximum extent could not retain
Alfvén waves. The authors concluded that every shearing profile possesses a critical shear ψcrit beyond which
a magnetic reconnection event is inevitable.

Continued twisting has a stabilising effect, allowing the magnetosphere to temporarily possess supercritical
twist amplitudes ψ > ψcrit; however, a reconnection event is inevitable once ψcrit is exceeded. The same tests
were performed on rotating stars, with the conclusion that rotating stars must also possess a critical shear. If
the shear is continued after a reconnection event, a twisted reservoir forms from those field lines which did
not fully open, and after further shearing this will also expand explosively. Reconnection events exhibit a spike
in the spindown torque on the NS, corroborating the second prediction of Thompson et al. (2002) in §7.2.

7.5 Note on general relativity

We will wish to incorporate general relativistic corrections: the work of Thorne & MacDonald (1982); Mac-
Donald & Thorne (1982) will allow us to do so while still invoking the notion of an “absolute time”. This will
allow us to evolve the electric and magnetic fields as vectors without the need to introduce an electromagnetic
field tensor. We will be able to develop a non-relativistic version of our code and later add general relativistic
corrections when required, without the need for a full tensor treatment from the outset.

The abovementioned code phaedra was developed in a way that would allow for general relativistic treat-
ments in future versions; these have been performed in the contexts of black hole magnetospheres and accreting
pulsars (Parfrey, 2019; Parfrey & Tchekhovskoy, 2017).

5The coordinate system is aligned with the magnetic axis, so an untwisted field line should start and end at the same azimuthal
angle in axisymmetry. The authors also used the term twist to refer to ψ.
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8 Force-free electrodynamics (FFE)

8.1 General electrodynamics

Electrodynamics is concerned with modelling the evolution in time t of an electric field E(t, r) and a magnetic
field B(t, r). This is described by the Maxwell equations

∇ ·E =
ρe
ϵ0

(Gauss’s law), (8.1)

∇ ·B = 0 (Solenoidal condition), (8.2)

∇×E = −∂B
∂t

(Faraday’s law), (8.3)

∇×B = µ0 J+ µ0 ϵ0
∂E

∂t
(Ampère’s law), (8.4)

the Lorentz force law

L = ρeE+ J×B, (8.5)

and a set of initial conditions. Here, ρe is the charge density, ϵ0 ≈ 8.85 × 10−12 F m−1 is the permittivity of
free space and µ0 ≈ 1.26× 10−6 N A−2 is the permeability of free space. We also require an expression for the
current density J(t, r), which describes the response of the medium to an imposed electromagnetic field. For
many systems, we can use Ohm’s law

J = σE. (8.6)

8.2 Force-free electrodynamics (FFE)

If the Lorentz force Eq. (8.5) vanishes L = 0 and all non-magnetic forces are negligible, we enter a regime
known as force-free electrodynamics (FFE). This is characterised by two conditions, known as the force-
free conditions, which are fulfilled at all times:

1. Degeneracy condition (also known as the ideal MHD condition): The electric and magnetic fields
are orthogonal, E ·B = 0. As a result, charged particles in the magnetosphere flow exactly along magnetic
field lines.

2. The electric field is weaker than the magnetic field, B2 − 1
c2
E2 > 0.

Let us describe a few interesting results of FFE below. The reader is also directed to §25.3 for further
mathematical results.

Proposition 8.1. If ρe ̸= 0, the degeneracy condition and that E · J = 0 follow immediately from the FFE
requirement that L = 0. If ρe = 0, these become independent basic equations of FFE.

Proof. Let ρe ̸= 0. If L = ρeE+ J×B = 0, then E = − 1
ρe

J×B. This implies that E ⊥ J ⊥ B. If ρe = 0, we
instead obtain J×B = 0; this does not imply E ·B = E · J = 0 and we must set these as separate conditions.
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Proposition 8.2. In FFE, the current is uniquely determined to be

J =

(
1

µ0
B ·∇×B− ϵ0E ·∇×E

)
B

B2
+

∇ ·E
B2

E×B. (8.7)

Proof. Use Proposition 25.1 to write J in components parallel and perpendicular to B. In this case, J∥ is
determined by requiring the degeneracy condition to be maintained at all times:

0 =
∂

∂t
(E ·B) (8.8)

=
∂E

∂t
·B+E · ∂B

∂t
(8.9)

=

(
1

µ0ϵ0
∇×B− 1

ϵ0
J

)
·B+E · (−∇×E) (8.10)

=
1

µ0ϵ0
B ·∇×B− 1

ϵ0
J ·B−E ·∇×E, (8.11)

which rearranges to

J ·B =
1

µ0
B ·∇×B− ϵ0E ·∇×E, (8.12)

giving an expression for J∥. We could find the perpendicular component J⊥ in the same way, but a simpler
method is to take the cross product of the Lorentz force law (8.5), which has been set to zero, with B:

J×B = −ρeE, (8.13)

⇒ (J×B)×B = −ρeE×B = −(∇ ·E)E×B, (8.14)

⇒ J⊥ =
(∇ ·E)E×B

B2
. (8.15)

Combining J∥ and J⊥, we obtain the given expression for the current vector J.

The above expression for J agrees with Eq. (4) of Gruzinov (1999) (in cgs units) and Eq. (7) of Pétri (2012).
The component of J parallel to the magnetic field

J∥ =

(
1

µ0
B ·∇×B− ϵ0E ·∇×E

)
B

B2
(8.16)

maintains the degeneracy condition. The perpendicular component is also known as the drift current because
it can be expressed in terms of the the velocity of the magnetic field lines vdrift =

1
B2 E×B (Gruzinov, 1999):

J⊥ = ρe vdrift =
∇ ·E
B2

E×B. (8.17)

Proposition 8.3. The requirement B2 − 1
c2
E2 > 0 is equivalent to the requirement that vdrift < c.

Proof. The magnitude of a cross product is less than or equal to the product of the magnitudes of the two
individual vectors, so we can write

vdrift =
1

B2
E×B ≤ 1

B2
EB =

E

B
. (8.18)
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The drift velocity must be less than the speed of light, vdrift < c, because it represents the velocity of charged
particles moving within the magnetic field. Then, we have

E

B
< c, (8.19)

⇒
(
E

B

)2

< c2, (8.20)

⇒ 1

c2
E2 < B2, (8.21)

⇒ B2 − 1

c2
E2 < 0. (8.22)

We have shown that the condition vdrift < c implies the condition B2 − 1
c2
E2 < 0.

8.3 Evolutionary equations for B and E

The fact that FFE uniquely determines the current is one of its most attractive features in the context of this
thesis because it allows us to directly state our time evolution equations. Ampère’s law Eq. (8.4) and that
1

µ0ϵ0
= c2 give

∂E

∂t
=

1

c2
∇×B− 1

ϵ0
J. (8.23)

Using this, our expression for the current vector J in Proposition 8.2 and Faraday’s law Eq. (8.3), the expressions
that we wish to evolve over time are

∂

∂t
B = −∇×E, (8.24)

∂

∂t
E = c2∇×B+

E ·∇×E− c2B ·∇×B

B2
B− ∇ ·E

B2
E×B. (8.25)
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8.4 History of study of FFE in NS magnetospheres

Uchida (1997a) described the theory of FFE in a largely general setting, which could then be specialised to
a required physical problem such as a pulsar magnetosphere. The author then concentrated on symmetric
configurations in Uchida (1997b).

Much progress has been made with the assumption that the NS exists within a vacuum: before pulsars
were even discovered, Armin Deutsch was able to write down an analytic expression for the magnetic field of
a rotating dipole in vacuum, even with arbitrary alignment between the rotation and magnetic axes (Deutsch,
1955). A dipole in vacuum was the basis of the polar cap model1 presented by Radhakrishnan & Cooke (1969).

However, the degeneracy condition E · B = 0 requires a high magnetospheric charge density because the
magnetic currents themselves must be supplied by charges. Contopoulos et al. (1999) argued that the electric
fields induced by rotation are strong enough to pull charges from the NS surface, which promptly give off curva-
ture radiation. The ensuing pair production maintains a supply of electron-positron pairs in the magnetosphere.
Finally, they argued that, at high plasma densities, E∥ is screened out and so E ·B = 0 is maintained.2

Li et al. (2012a) argued that real pulsars exist somewhere between the pure-vacuum model and that of
e.g. Contopoulos et al. (1999) in which there is an abundance of charge density whose origin is not questioned
beyond the heuristic argument in the preceding paragraph. To that end, they developed a model of resistive
MHD which allows for slot gaps and outer gaps, low-density regions across which the particle acceleration
leading to radiation occurs (e.g. Cheng et al., 1986). They found that resistivity greatly increases spin-down
rates Ṗ over the vacuum solution, and noted that the model closely described spin-down of intermittent
pulsars3 in the “off” state (see also Li et al., 2012b). Moreover, there was a smooth transition in Ṗ between
vacuum and FFE models.

Furthering the argument that E ·B = 0 cannot be the full story because it precludes charge acceleration and
radiation, simulations with nonzero E∥ have been performed by groups such as Kalapotharakos et al. (2012)
and Tchekhovskoy et al. (2013). Their results allow us to gain insight on the structure of current sheets,
regions in which FFE does not apply but are crucial to understand since they are the sites of reconnection
events (e.g. Cerutti et al., 2015). It also enables further study of the Y-point and its role in pulsar glitches (e.g.
Contopoulos, 2005).

Pétri (2022) investigated the radiation reaction limit: if charges are accelerated to ultra-relativistic
speeds, their emitted radiation is so intense that it can drastically affect their motion compared to the force-free
approximation.4 His model reproduced the force-free regime for large values of the pair multiplicity factor, and
the abundant-magnetosphere regime for small values. However, the structure of the resulting magnetic field
was not greatly affected and he argued that the true physics would therefore have little effect on observations,
at least with present-day technology.

8.5 Does FFE hold in a neutron star magnetosphere?

First, let us demonstrate that magnetic forces dominate over gravitational forces in NS magnetospheres. The
gravitational force on an electron in the magnetosphere due to the NS is

Fgrav =
GMNSme

R2
NS

, (8.26)

where G ≈ 6.67 × 10−11 m3 kg −1 s−2 is the gravitational constant and me ≈ 9.11 × 10−31 kg is the electron
rest mass. Assuming MNS ≈ 1.4M⊙ ≈ 2.8× 1030 kg and RNS ≈ 104 m, we find Fgrav ≈ 2× 10−18 N.

1See §5.2 of this thesis.
2Here, E∥ is the component of E parallel to B. By Proposition 25.1, we have E∥ = E·B

B2 B.
3A class of pulsars which alternate between an “on” state in which radio emission is readily detected, and an “off” state with no

detections. Examples are PSR B1931+24 (Kramer et al., 2006) and PSR J1832+0029 (Lyne, 2009).
4The radiation reaction is usually understood by the Abraham-Lorentz force, the non-relativistic version of which is described

in §11.2.2 of Griffiths (2017) and §16.2 of Jackson (1999). However, this expression infamously predicts runaway solutions with
exponential charge acceleration. Instead, Pétri (2022) employs the perturbative expansion described in Chapter 9 of Landau &
Lifshitz (1989).
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Meanwhile, the magnetic force on the electron due to the NS magnetic field is

Fmag = e v B, (8.27)

where v = 2πRNS
P is the velocity of the electron and P is its orbital period. We may approximate P as the

spin period of the neutron star, having already stated that charged particles flow along magnetic field lines in
the magnetosphere and that these co-rotate with the NS. Then, for the Crab pulsar, P ≈ 0.033 s (Lyne et al.,
1993) and so v ≈ 1.9× 106 m s−1. Using B ≈ 7.6× 108 T (Kou & Tong, 2015), we find a magnetic force on the
electron Fmag ≈ 2.3× 10−4 N, dominating over gravity by a ratio of around 1015. Our result is similar to that
described in §2.5 of Lyne & Graham-Smith (2006).

Now, let us show that the Lorentz force is negligible. In the magnetosphere, which is essentially a highly-
conducting plasma, the magnetic flux density is so high that it completely dominates over any hydrodynamic
forces. Then, the magnetic energy density far exceeds the average particle energy density (e.g Scharlemann &
Wagoner, 1973):

B2

2µ0
≫ γ ρm c

2, (8.28)

where ρm is the mass density. For a NS magnetosphere, the charge density is roughly the Goldreich-Julian
charge density5 (Goldreich & Julian, 1969),

ρGJ = −2 ϵ0Ω ·B. (8.29)

With the values above for the Crab pulsar, the magnetic energy density is 2.3× 1023 J m−3. Using Ω = 2π
P and

approximating to order-of-magnitude that Ω · B ≈ ΩB, we find ρGJ ≈ −2.6 C m−3. This corresponds to an
electron mass density

ρm =
me

e
ρGJ ≈ 1.6× 1019 kg m−3, (8.30)

and, with γ ∼ 100 (e.g. Lyutikov et al., 2019), an average electron energy density 1.3×108 J m−3, far outweighed
by the magnetic energy density.

8.6 Violating FFE

There is no requirement that the physical system satisfies FFE at all points. If FFE is violated in a certain
region, there ought to be dissipation of energy which may be observable (Uchida, 1997a). Indeed, current sheets,
the structures that are believed to cause transient bursts, are especially significant areas where FFE does not
hold. Thus, we should not expect FFE to hold everywhere in our system, nor for it to hold at a given point for
all times.

Let us define the force-free region as the region in which the force-free conditions are satisfied for a given
magnetic and electric field. For a rotating dipole, this is all points inside the last closed magnetic field line
(Proposition 11.4).

Numerical codes must enforce FFE at each timestep. In our code, we will use the same prescription as
described in §3.2 of Pétri (2012) and §3.8 of Parfrey (2012), in which we iterate through all gridpoints within
the force-free region and modify the electric field at all points where either condition is not satisfied. This
has the added advantage of maintaining ∇ · B = 0. However, the new values of E will “only just” fulfil the
force-free conditions in that the inequalities are saturated, giving little protection against the conditions being
again violated in the next timestep. We expect this method to only delay a breakdown of force-free conditions,
as opposed to preventing it altogether.

In a study of the solar corona, Peter et al. (2015) noted that the magnetic energy of the plasma is not
always negligible compared to the free magnetic energy, which can lead to pressure gradients comparable to the
Lorentz force.

5This expression in SI units is given in Eq. (23) of Pétri et al. (2002).
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8.7 The pulsar equation

Assuming FFE and axisymmetry, Eq. (8.5) for the Lorentz force can be rewritten as the pulsar equation
(Michel, 1973; Scharlemann & Wagoner, 1973) and this becomes the description of the electric and magnetic
fields within a pulsar magnetosphere. In spherical coordinates, the equation reads (e.g. Contopoulos et al.,
2024, Eq. (2))(

1− r2 sin2(θ)

R2
LC

)[
∂2Ψ

∂r2
− cos(θ)

r2 sin(θ)

∂Ψ

∂θ
+

1

r2
∂2Ψ

∂θ2

]
− 2r sin(θ)

R2
LC

[
cos(θ)

r

∂Ψ

∂θ
+ sin(θ)

∂Ψ

∂r

]
+ I I ′ = 0, (8.31)

where Ψ(r, θ) is the magnetic flux function, I(Ψ) = I(r, θ) is defined so that

Bϕ(r, θ) =
1

r sin(θ)
I(r, θ) (8.32)

and I ′ = dI
dΨ .

For a stationary dipole, we have Ψ(r, θ) = 1
r sin2(θ) (e.g. Timokhin, 2006). Substituting this, along with

I = I ′ = 0, we obtain for the pulsar equation

2 sin2(θ)

r RLC

[
3 sin2(θ)− 2

]
= 0. (8.33)

This expression is not true in general, but satisfied for θ = 0 and for θ ≈ 0.955 radians (and satisfied for all r
at these polar angles). Thus, the stationary dipole does not satisfy the pulsar equation at all points.

For a stationary monopole, we have (e.g. Hadjesfandiari, 2007, Eq. (2))

B(r) =
B0

r2
er, (8.34)

where B0 is a constant. This yields the streamfunction Ψ(r, θ) = −B0 cos(θ), and the pulsar equation becomes

sin2(θ) cos(θ) = 0, (8.35)

which is only satisfied at the polar lines θ = 0 and θ = π
2 . Thus, the stationary monopole does not satisfy the

pulsar equation at all points. However, Michel (1973) found an exact solution for a rotating monopole.
The first to solve the pulsar equation for a neutron star magnetosphere were Contopoulos et al. (1999), thus

obtaining a picture of its magnetic field distribution. However, this was a steady-state solution, that is, one
that assumes long-term stability of the configuration and does not evolve in time. Since our goal is to measure
the onset of transient behaviour, we require a model that explicitly allows for time-evolution of the magnetic
and electric fields.
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9 Evolutionary equations

In Chapter 8, we showed that assuming force-free electrodynamics (FFE) leads to a fully determined system of
evolutionary equations for the magnetic and electric fields. In this chapter, let us apply a non-dimensionalisation
and a set of boundary conditions relevant to a magnetar, specialising to the problem we wish to tackle in this
thesis and allowing us to encode it.

9.1 Non-dimensionalisation

Physical quantities can have vastly different orders of magnitude from each other, which can introduce floating
point errors in numerical codes. To counteract this, a common technique is to introduce dimensionless units
in which we scale the physical quantities relative to some convenient measure, so that they all become of order
unity.

In this section, we shall represent non-dimensionalised parameters with a tilde, e.g. t is the physical time
coordinate and t̃ is the non-dimensionalised time coordinate. We choose the following non-dimensional units:

1. Rescale lengths to the radius of the neutron star R⋆, so that r ≡ R⋆ r̃.

2. Rescale times to the radial light-crossing time τ = R⋆
c , so that t ≡ τ t̃ = R∗

c t̃.

3. Rescale magnetic field strengths by a constant B0 ≡ µ0

4π
m∗
R3

∗
and where m∗ is the magnetic dipole moment

of the NS. Typical values are m∗ ∼ (1031 − 1033) A m2 (Coelho & Malheiro, 2014). We have B ≡ B0 B̃.

4. Rescale electric field strengths so that E ≡ cB0 Ẽ.

Non-dimensionalised magnetic and electric field vectors can then be defined as B = B0 B̃ and E = cB0 Ẽ. For
a scalar function f(t, r), it follows from the chain rule that

∂f

∂r
=

∂r̃

∂r

∂f

∂r̃
=

∂

∂r

(
r

R⋆

)
∂f

∂r̃
=

1

R⋆

∂f

∂r̃
, (9.1)

∂f

∂t
=

∂t̃

∂t

∂f

∂t̃
=

∂

∂t

(
1

τ
t

)
∂f

∂r̃
=

1

τ

∂f

∂t̃
. (9.2)

From these and the definitions in Eqs. (25.11) and (25.12), we can define the non-dimensionalised divergence
and curl of a vector function A. We simply replace all instances of r by r̃, and all instances of ∂

∂r by ∂
∂r̃ . Note

the simple relation between these and the fully dimensional derivatives:

∇ ·A =
1

R⋆
∇̃ ·A, (9.3)

∇×A =
1

R⋆
∇̃×A. (9.4)

Proposition 9.1. The non-dimensionalised system of equations is

∂

∂t̃
B̃ = −∇̃× Ẽ, (9.5)

∂

∂t̃
Ẽ = ∇̃× B̃+

Ẽ · ∇̃× Ẽ− B̃ · ∇̃× B̃

B̃2
B̃− ∇̃ · Ẽ

B̃2
Ẽ · B̃. (9.6)
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Proof. Consider Faraday’s law first. The left-hand side becomes

LHS =
c

R⋆

∂

∂t̃

(
B0 B̃

)
=

cB0

R⋆

∂

∂t̃
B̃, (9.7)

and the right-hand side becomes

RHS = − 1

R⋆
∇̃×

(
cB0 Ẽ

)
= −cB0

R⋆
∇̃× Ẽ. (9.8)

Equating these and letting the common factor cB0
R⋆

cancel, we obtain the non-dimensionalised version of the
equation. Now consider Ampère’s law. The left-hand side becomes

LHS =
c

R⋆

∂

∂t̃

(
cB0 Ẽ

)
=

c2B0

R⋆

∂

∂t̃
Ẽ, (9.9)

and the right-hand side becomes

RHS = c2
1

R⋆
∇̃×

(
B0 B̃

)
+

(
cB0 Ẽ

)
· 1
R⋆

∇̃×
(
cB0 Ẽ

)
− c2

(
B0 B̃

)
· 1
R⋆

∇̃×
(
B0 B̃

)(
B0 B̃)2

(
B0 B̃

)
−

1
R⋆

∇̃ ·
(
cB0 Ẽ

)(
B0 B̃

)2 (
cB0 Ẽ

)
×
(
B0 B̃

)
(9.10)

=
c2B0

R⋆
∇̃× B̃+

c2B2
0

R⋆
Ẽ · ∇̃× Ẽ− c2B2

0
R⋆

B̃ · ∇̃× B̃

B2
0 B̃

2
B0 B̃−

cB0
R⋆

∇̃ · Ẽ
B2

0 B̃
2

cB2
0 Ẽ× B̃ (9.11)

=
c2B0

R⋆

(
∇̃× B̃+

Ẽ · ∇̃× Ẽ− B̃ · ∇̃× B̃

B̃2
B̃− ∇̃ · Ẽ

B̃2
Ẽ× B̃

)
. (9.12)

Equating these and letting the common factor c2B0
R⋆

cancel, we obtain the non-dimensionalised version of the
equation. This completes the proof.

An object moving a distance r = R⋆ r̃ in time t = R⋆
c t̃ has speed v = r

t . Defining the dimensionless speed
as ṽ = r̃

t̃
, we see that

v = c ṽ. (9.13)

For light, we have vlight = c = c ṽlight and so the speed of light in our dimensionless units is ṽlight = 1.
If the NS has rotational period P in SI units and P̃ in code units such that P = τ P̃ , its angular velocity in

SI units and code units is respectively

Ω =
2π

P
, (9.14)

Ω̃ =
2π

P̃
, (9.15)

and so the values in SI and code units are related by

Ω =
2π

τP̃
=

1

τ
Ω̃. (9.16)

The light cylinder RLC is the radial distance at which an object co-rotating with the star would be
travelling at the speed of light. Linear velocity v and angular velocity Ω at radius r are related by v = rΩ, so
setting v = c gives

RLC =
c

Ω
. (9.17)
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Then, in dimensionless units, RLC = R⋆ R̃LC and Ω = 1
τ Ω̃ = c

R⋆
Ω̃, so

R̃LC =
1

R⋆

c
c
R⋆

Ω̃
=

c

R⋆

R⋆

c

1

Ω̃
=

1

Ω̃
, (9.18)

and the values in SI and code units are related, as expected, by

RLC =
c

Ω
=

c
1
τ Ω̃

= c τ
1

Ω̃
= c τ R̃LC = R⋆ Ω̃LC. (9.19)

From now on, we will use non-dimensionalised quantities exclusively and refer to them without the tildes.

9.2 Inner boundary conditions

The inner boundary conditions are (Pétri, 2012, §3.3)

Br(t, R⋆, θ) = B⋆
r (t, θ), (9.20)

Bθ(t, R⋆, θ) = −R⋆Ω(t) sin(θ)B
⋆
r (t, θ), (9.21)

Eϕ(t, R⋆, θ) = 0, (9.22)

where B⋆
r (t, θ) is the radial magnetic field imposed by the star. For a dipole, Eq. (11.3) gives

B⋆
r (t, θ) =

2 cos(θ)

R3
⋆

, (9.23)

which is constant in time. The remaining components Bϕ(t, R⋆, θ), Er(t, R⋆, θ) and Eθ(t, R⋆, θ) must be allowed
to evolve freely (Parfrey, 2012, §3.9.1).

9.3 Outer boundary conditions

Our ideal simulation is that of a neutron star in an infinite domain, so we should expect that electrodynamic
waves only leave the star and none move toward it. Numerical domains are necessarily finite, so an artificial
outer boundary must be placed at some finite radial distance rmax. Waves reaching the outer boundary may
be erroneously reflected back into the system.

The outer boundary conditions are those of outgoing spherical waves. That is, we allow energy to be
dissipated by the system but forbid waves to be reflected back toward the star. To forbid incoming (reflected)
waves, we require (Pétri, 2012, §3.3)

Eθ(t, rmax, θ)− cBϕ(t, rmax, θ) = 0, (9.24)

Eϕ(t, rmax, θ) + cBθ(t, rmax, θ) = 0, (9.25)

Eθ(t, rmax, θ) + cBϕ(t, rmax, θ) = EPDE
θ (t, rmax, θ) + cBPDE

ϕ (t, rmax, θ), (9.26)

Eϕ(t, rmax, θ)− cBθ(t, rmax, θ) = EPDE
ϕ (t, rmax, θ)− cBPDE

θ (t, rmax, θ), (9.27)

where the superscript PDE refers to the values of the fields that would be calculated by integrating our system
of equations without applying outer boundary conditions. Adding and subtracting these four simultaneous
equations, we obtain

Bθ(t, rmax, θ) =
1

2

[
BPDE

θ (t, rmax, θ)−
1

c
EPDE

ϕ (t, rmax, θ)

]
, (9.28)

Bϕ(t, rmax, θ) =
1

2

[
BPDE

ϕ (t, rmax, θ) +
1

c
EPDE

θ (t, rmax, θ)

]
, (9.29)

Eθ(t, rmax, θ) = cBϕ(t, rmax, θ) =
1

2

[
cBPDE

ϕ (t, rmax, θ) + EPDE
θ (t, rmax, θ)

]
, (9.30)

Eϕ(t, rmax, θ) = −cBθ(t, rmax, θ) =
1

2

[
− cBPDE

θ (t, rmax, θ) + EPDE
ϕ (t, rmax, θ)

]
. (9.31)
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There is a potential issue: if the star is not rotating, EPDE(t, r) = 0 and these equations reduce to

Bθ(t, rmax, θ) =
1

2
BPDE

θ (t, rmax, θ), (9.32)

Bϕ(t, rmax, θ) =
1

2
BPDE

ϕ (t, rmax, θ), (9.33)

Eθ(t, rmax, θ) = cBϕ(t, rmax, θ) =
1

2
cBPDE

ϕ (t, rmax, θ), (9.34)

Eϕ(t, rmax, θ) = −cBθ(t, rmax, θ) = −1

2
cBPDE

θ (t, rmax, θ), (9.35)

implying that the magnetic field at the outer boundary should become half its previous value at each timestep,
and that the electric field at the outer boundary should be equal to the magnetic field. This is true for Bϕ

and hence Eθ, but is only true for Bθ and hence Eϕ as rmax → ∞ because Br ∼ 1
r3
. We are then at risk of a

diminishing Bθ and, if the evolution is not exact, nonzero Bϕ, Eθ, Eϕ at the outer boundary. To counter this,
we introduce specific outer boundaries for all times at which the star is not rotating:

Bθ(t, rmax, θ) = B0
θ (t, rmax, θ), (9.36)

Bϕ(t, rmax, θ) = B0
ϕ(t, rmax, θ), (9.37)

Eθ(t, rmax, θ) = 0, (9.38)

Eϕ(t, rmax, θ) = 0, (9.39)

where B0
θ (t, rmax, θ) and B

0
ϕ(t, rmax, θ) are the initial field components. For a dipole with A(Ψ) = 0, Eq. (11.3)

gives that B0
θ (t, rmax, θ) =

sin(θ)
r3max

and B0
ϕ(t, rmax, θ) = 0.

Whether the star is rotating or not, we allow the radial components to evolve freely at the outer boundary.
The boundary conditions are applied by the functions

void apply_inner_boundary_conditions()

void apply_outer_boundary_conditions()

which are enforced at every timestep. To check the effect of our implementation of boundary conditions on the
evolution of the system, we save the field components at each coordinate immediately before and after their
application and output them to the CSV file _4_BCs.

9.4 Outer sponge layer

On top of our choice of outer boundary conditions, we apply a sponge layer to further prevent the outer
boundary from reflecting waves back into the system. We employ the same method as described in §3.9.2 of
Parfrey (2012), which works by adding a frictional term to the evolutionary equations that only applies near
the outer boundary.

The strength of this friction is controlled by three arbitrary parameters, which we allow the user to set.
Parfrey claims that the effect of the boundary layer is largely insensitive to the values of these coefficients, so
we did not alter them from the values he quotes.
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9.5 Field lines

Field lines are lines in 3D space showing the direction in which a vector field is pointing as a function of
position. They are only mathematical constructions, but can serve useful purposes. For example, if the field
represents a force, the lines represent the direction in which a particle will move if it is subject only to that
force. Divergenceless fields feature no sources or sinks, so they must have closed field lines. Open field lines
imply that energy is lost to the surroundings, perhaps in the form of particles being ejected from the system.

When we model neutron star magnetospheres with force-free electrodynamics, we expect charged particles
emitted from the neutron star surface to flow along the magnetic field lines; those that are emitted along open
field lines will be ejected from the neutron star, forming the beams of radiation near the poles that characterise
pulsars but also the spontaneous bursts of radiation in giant flares.

It would be useful to develop a method to plot the field lines of an arbitrary magnetic field; however, we
will argue in this section that such a goal is unrealistic for our setup.

Field lines are created by drawing a curve that is tangent to the field at each point. The unit vector in the
direction of a force F(r) is eF = 1

F F. If we start our field line at some arbitrary point ri, then we can draw a
straight line of length δ, whose value can be freely chosen, to some new point

ri+1 = ri + δ eF = ri + δ
1

F (ri)
F(ri). (9.40)

The process is repeated as many times as necessary until the field line has reached a satisfactory final coordinate
rfinal. Because divergenceless fields feature closed field lines, we would expect the coordinates to return to the
original point rfinal = r0. The smaller the value of δ chosen, the more accurate the field lines will be, analogous
to the step size used in numerical differentiation by finite differencing (Chapter 23).

Despite giving a clear description of how to construct field lines, our definition has highlighted three reasons
preventing us from doing so in our evolutionary model:

1. As we will see when constructing the magnetic field lines of a dipole in Figure 11.1, accurate field lines
are only produced when δ is very small, necessitating a very large number of gridpoints in the domain.

2. The choice of rfinal is difficult to automate. We could simply end the field line after a certain number of
points, but this will need to scale inversely to δ to prevent higher resolution (smaller δ) leading to lines
which do not extend far from their start point r0. For divergenceless fields, we could add a condition to
end the field line once it returns within a certain proximity of r0, but this may never occur or only after
a very large number of iterations.

3. Our evolution features discrete grids, so there is no guarantee that ri+1 = ri + δ eF will coincide with a
gridpoint. We will be forced to use interpolation to estimate Fi+1 from the nearest surrounding gridpoints,
introducing further numerical uncertainty.

These shortcomings prevent us from plotting magnetic field lines, which is unfortunate as it would have provided
a useful tool to visualise the structure of the magnetic field surrounding the neutron star and how this evolves
with time. One alternative would be to abandon the goal of plotting an accurate closed loop, and instead place
a small sample of arrows depicting the direction of the field at relatively widely spaced intervals. We will not
attempt to plot magnetic field lines in our simulations.

However, there are instances in which the magnetic field lines can be exactly computed; see §11.1 for those
of a magnetic dipole.

In many simulations, the streamfunction (§25.4) is evolved instead of the fields themselves. Then, the field
lines can be plotted immediately by simply producing a contour plot of the streamfunction.
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10 Viability of pseudospectral evolution method

The original intention for this project was to model the magnetic and electric fields with a spectral method; that
is, to expand into basis functions in the angular directions. In the non-axisymmetric case, these basis functions
are the vector spherical harmonics (Chapters 31 and 32). Such methods are common in the literature; however,
we will find that they are not well suited to our evolutionary equations.

We describe in §32.3 how the basis functions can be reduced to Legendre polynomials and m = 1 associated
Legendre functions if we enforce axisymmetry. Our final code uses only these functions.

Suppose that at time t, the magnetic field B(t, r) and electric field E(t, r) have been calculated and both
have been expanded into VSH series, so that we have (Definition 32.1)

B(t, r) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

[
Br,ℓ

m (t, r)Ym
ℓ (θ, ϕ) +B(1),ℓ

m (t, r)Ψm
ℓ (θ, ϕ) +B(2),ℓ

m (t, r)Φm
ℓ (θ, ϕ)

]
, (10.1)

E(t, r) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

[
Er,ℓ

m (t, r)Ym
ℓ (θ, ϕ) + E(1),ℓ

m (t, r)Ψm
ℓ (θ, ϕ) + E(2),ℓ

m (t, r)Φm
ℓ (θ, ϕ)

]
. (10.2)

The time dependence must then be relegated to the VSH series coefficients Br,ℓ
m , B

(1),ℓ
m , B

(2),ℓ
m , Er,ℓ

m , E
(1),ℓ
m , E

(2),ℓ
m ,

simply because the basis functions Ym
ℓ ,Ψ

m
ℓ ,Φ

m
ℓ are constant in time. Now suppose that we have also expanded

in the radial direction, for example by Chebyshev polynomials, so that1 (Proposition 27.6)

Br,ℓ
m (t, r) =

∞∑
k=0

Br,ℓ
m,k(t)Tk

[
Λ−1
rmax,rmin

(r)
]
, (10.3)

and similarly for B
(1),ℓ
m , B

(2),ℓ
m , Er,ℓ

m , E
(1),ℓ
m , E

(2),ℓ
m . Then, evolving the fields in time is equivalent to evolving

only the VSH series coefficients in time: Br,ℓ
m,k(t), B

(1),ℓ
m,k (t), B

(2),ℓ
m,k (t), Er,ℓ

m,k(t), E
(1),ℓ
m,k (t), E

(2),ℓ
mk (t). Since the

VSHs form an orthonormal basis, we can match the expressions for the coefficients term-by-term and index-
by-index.2 We have simplified our 6 partial differential equations (PDEs) (Proposition 9.1; one for each
vector component) to (kmax + 1)

[
6(ℓmax + 1)2 − 4

]
ordinary differential equations (ODEs) (Proposition

32.7), which are clearly more numerous but far simpler to solve.
Spectral methods do not force us to treat the radial direction in any particular way, so these advantages

still apply even if we do not expand in the radial direction, for example if we use a finite differencing scheme
instead. We will see in Chapter 13 that finite differencing is far more accurate for our model, so we do not lose
the option to use it.

Further, we would only need to use the basis a handful of times: once at the start of the code to determine
the initial coefficients, and then at timesteps on which we output the actual field values (Propositions 27.6 and
32.3). This simplifies even further when the VSH coefficients for the initial configuration can be calculated
exactly, e.g. for a dipole (Proposition 11.2).

However, recasting the equations in this way presents some issues, which our evolutionary equations are
susceptible to, losing much of the advantage of a full VSH decomposition:

1. Accuracy of the evolution is limited by the accuracy of the calculation of the VSH and Chebyshev co-
efficients of the initial configuration. Even though a dipole has exactly calculable VSH coefficients, its
Chebyshev coefficients are both infinitely many and only calculable numerically (Example 27.7 and its
discussion).

1We reserve the index n for the time coordinate, so let us use k here.
2For example, the evolutionary equations for Br,2

1 are given by the ℓ = 2 and m = 1 term on the RHS of the expanded form of
Eq. (10.1).
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2. We assume that the VSH coefficients of the RHS of our time-evolution equations can be simply read-off at
each timestep based on the already-known coefficients of the field components. But even though Definition
32.1 and Proposition 27.6 guarantee that a Chebyshev-VSH expansion of the RHS always exists, we know
from §32.2 that it may not be attainable without evaluating the basis functions.

Let us expand the time-evolution equation for B, Eq. (9.5), as a VSH series. Applying Definition 32.1 to
the LHS, we obtain

∂B

∂t
=

∞∑
ℓ=0

ℓ∑
m=−ℓ

[
∂Br,ℓ

m

∂t
Ym

ℓ +
∂B

(1),ℓ
m

∂t
Ψm

ℓ +
∂B

(2),ℓ
m

∂t
Φm

ℓ

]
, (10.4)

Applying Proposition 32.6 to the RHS, we obtain

−∇×E =
∞∑
ℓ=1

ℓ∑
m=−ℓ

[
ℓ(ℓ+ 1)

r
E(2),ℓ

m Ym
ℓ +

(
∂E

(2),ℓ
m

∂r
+

1

r
E(2),ℓ

m

)
Ψm

ℓ −
(
∂E

(1),ℓ
m

∂r
− 1

r
Er,ℓ

m +
1

r
E(1),ℓ

m

)
Φm

ℓ

]
.

(10.5)

Assuming that we can match the coefficients term-by-term, we would obtain the far simpler set of evolutionary
equations

∂Br,ℓ
m

∂t
=

ℓ(ℓ+ 1)

r
E(2),ℓ

m , (10.6)

∂B
(1),ℓ
m

∂t
=

∂E
(2),ℓ
m

∂r
+

1

r
E(2),ℓ

m , (10.7)

∂B
(2),ℓ
m

∂t
= −∂E

(1),ℓ
m

∂r
+

1

r
Er,ℓ

m − 1

r
E(1),ℓ

m . (10.8)

If we expand in the radial direction, these reduce to ODEs. The expansions for B match up smoothly, but the
issue lies with E, Eq. (9.6). For example, consider the term

E ·∇×E−B ·∇×B

B2
B. (10.9)

We obtain ∇ × E and ∇ × B immediately from Proposition 32.6, and we can even use Proposition 32.10
to efficiently evaluate E · ∇ × E and B · ∇ × B. Then, the fraction multiplying B is straightforward to
evaluate. However, Proposition 32.8 tells us that we cannot easily obtain the VSH series coefficients of the
vector function formed by multiplying this fraction by B, without performing further integrals. The same will
be true for calculating the ∇ ·E term.

As a result, we cannot cast our evolutionary equations (9.5) and (9.6) into simple ODEs for the VSH series
coefficients of B and E. We must evolve the equations in full.
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11 Application to magnetic dipole

11.1 Static magnetic dipole

Definition 11.1. A general axisymmetric divergence-free vector field B(r) can be written as a sum of
poloidal and toroidal components as

B = Bp +Bt =
1

r sin(θ)

(
∇Ψ× eϕ +A(Ψ) eϕ

)
, (11.1)

where Ψ(r) is a streamfunction (§25.4) and A(Ψ) is to be determined.

The streamfunction of a magnetic dipole in spherical coordinates is (Timokhin, 2006)

Ψ(r, θ) =
1

r
sin2(θ), (11.2)

and so the vector field can be written as1

B =
2 cos(θ)

r3
er +

sin(θ)

r3
eθ +

A(Ψ)

r sin(θ)
eϕ. (11.3)

It will be useful to note that

B2 =
3 cos2(θ) + 1

r6
+

A2(Ψ)

r2 sin2(θ)
, (11.4)

∇×B =
1

r sin(θ)

(
1

r

∂A

∂θ
er −

∂A

∂r
eθ

)
. (11.5)

Proposition 11.2. The VSH series of a magnetic dipole is

Br,1(r) = 4

√
π

3

1

r3
, (11.6)

B(1),1(r) = −1

2
Br,1(r) = −2

√
π

3

1

r3
, (11.7)

with B(2),ℓ(r) only calculable once A(Ψ) is specified. If A(Ψ) = 0, then

B(2),ℓ(r) = 0. (11.8)

If A(Ψ) = −2Ψ such that Bϕ = −2 sin(θ)
r2

, then

B(2),ℓ(r) = Br,ℓ(r) = 4

√
π

3

1

r3
δℓ,1. (11.9)

1For reference, in SI units we have Ψ(r, θ) = µ0 m
4π

1
r
sin2(θ) and so B = µ0 m

4π

( 2 cos(θ)

r3
er +

sin(θ)

r3
eθ + A(Ψ)

r sin(θ)
eϕ

)
, where m is the

magnetic dipole moment (e.g. Griffiths, 2017, Eq. (5.88)).
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Proof. The VSH series for this axisymmetric function is given by the expression in Definition 32.1, with coeffi-
cients Br,ℓ(r), B(1),ℓ(r), B(2),ℓ(r) given in Proposition 32.2. For the r-coefficients, we have

Br,ℓ(r) =
√
(2ℓ+ 1)π

∫ π

0

(
2 cos(θ)

r3

)
P 0
ℓ sin(θ) dθ (11.10)

=
√

(2ℓ+ 1)π
2

r3

∫ π

0
P 0
1 P

0
ℓ sin(θ) dθ (11.11)

=
√
(2ℓ+ 1)π

2

r3
2

2ℓ+ 1
δℓ,1 (11.12)

= 4

√
π

2ℓ+ 1

1

r3
δℓ,1 (11.13)

= 4

√
π

3

1

r3
δℓ,1, (11.14)

where we use that P 0
1

[
cos(θ)

]
= cos(θ), the orthogonality relation (28.15), and finally evaluate the prefactor of

the Kronecker delta symbol for ℓ = 1 because the expression would clearly be zero for any other ℓ.
For the (1)-coefficients, we have

B(1),ℓ(r) =

√
(2ℓ+ 1)π

ℓ(ℓ+ 1)

∫ π

0

(
sin(θ)

r3

)
P 1
ℓ sin(θ) dθ (11.15)

= −
√

(2ℓ+ 1)π

ℓ(ℓ+ 1)

1

r3

∫ π

0
P 1
1 P

1
ℓ sin(θ) dθ (11.16)

= −
√

(2ℓ+ 1)π

ℓ(ℓ+ 1)

1

r3
2

2ℓ+ 1

(ℓ+ 1)!

(ℓ− 1)!
δℓ,1 (11.17)

= −2

√
π

2ℓ+ 1

1

r3
δℓ,1 (11.18)

= −2

√
π

3

1

r3
δℓ,1, (11.19)

where we use that P 1
1

[
cos(θ)

]
= − sin(θ), the orthogonality relation (29.45), that

1

ℓ(ℓ+ 1)

(ℓ+ 1)!

(ℓ− 1)!
=

1

ℓ(ℓ+ 1)

(ℓ+ 1)ℓ(ℓ− 1)!

(ℓ− 1)!
= 1, (11.20)

and evaluate the prefactor of the Kronecker delta symbol for ℓ = 1.
For the (2)-coefficients, we have

B(2),ℓ(r) =

√
(2ℓ+ 1)π

ℓ(ℓ+ 1)

∫ π

0

(
A(Ψ)

r sin(θ)

)
P 1
ℓ sin(θ) dθ. (11.21)

If A(Ψ) = 0 then clearly B(2),ℓ(r) = 0. If A(Ψ) = −2Ψ, then

B(2),ℓ(r)
∣∣∣
A=−2Ψ

=

√
(2ℓ+ 1)π

ℓ(ℓ+ 1)

∫ π

0

(
− 2

r2
sin(θ)

)
P 1
ℓ sin(θ) dθ. (11.22)
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The magnetic field lines of a non-rotating dipole satisfy (e.g. Willis & Young, 1987, Eq. (20))2

r

sin2(θ)
= constant. (11.23)

This is illustrated in Figure 11.1.

Figure 11.1: Magnetic field lines of a non-rotating magnetic dipole of radius R∗.

11.2 Modelling rotation via an induced electric field

The electric field induced by a magnetic field B rotating with angular velocity Ω = Ωr er +Ωθ eθ +Ωϕ eϕ is3

Erot = −
(
Ω× r

)
×B (11.24)

= r
([

− Ωθ Bθ − ΩϕBϕ

]
er +Ωθ Br eθ +ΩϕBr eϕ

)
, (11.25)

where r = r er is a position vector.

Proposition 11.3. The electric field in Eq. (11.24) automatically satisfies the degeneracy condition for
FFE, E ·B = 0.

Proof. This is readily seen by the cyclic permutations of the scalar triple product (a×b)·c = (b×c)·a = (c·a)·b
and that a× a = 0 for any vector a.

For constant angular velocity Ω about the z-axis, we have

Ω = Ω ez = Ω cos(θ) er − Ω sin(θ) eθ, (11.26)

and so

Erot = Ω r sin(θ)
[
Bθ er −Br eθ

]
. (11.27)

For a magnetic dipole, this becomes

Erot =
Ω sin(θ)

r2

(
sin(θ) er − 2 cos(θ) eθ

)
, (11.28)

which is independent of the choice of A(Ψ). We have ∇ ·Erot =
2Ω
r3

[
1− 3 cos2(θ)

]
and ∇×Erot = 0.

2We can also see this immediately by recalling from §9.5 that field lines are lines of constant streamfunction, and taking the
reciprocal of the streamfunction Eq. (11.2); this is a pure number so taking a reciprocal causes no dimensional issues.

3For reference, in SI units we have Erot = − 1
c
(Ω× r)×B.
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Proposition 11.4. Our magnetic dipole with A = 0 and Ω < 1 satisfies the second force-free condition
for all points inside the light cylinder and violates it for all points outside the light cylinder. That is,
B2 − E2 > 0 iff r sin(θ) < RLC.

Proof. We see by Eq. (11.27) that

B2 − E2 =
[
1− Ω2 r2 sin2(θ)

] [
B2

r +B2
θ

]
+B2

ϕ. (11.29)

For a dipole with A = 0, we see from Eq. (11.4) that

B2
r +B2

θ =
3 cos2(θ) + 1

r6
(11.30)

and Bϕ = 0. Now, if r ≥ 1 then 1
r6
> 0, and note also that ∀ θ ∈ [0, 2π], then 3 cos2(θ) + 1 ∈ [1, 4], and so

B2 − E2 < 0 iff 1− Ω2 r2 sin2(θ) < 0. Then, using that Ω ≥ 0,∣∣r sin(θ)
∣∣ < 1

Ω
. (11.31)

But we saw in Eq. (9.18) that 1
Ω = RLC, completing the proof.

As a result, we define the force-free region to be all points (r, θ) such that r sin(θ) < RLC. Recall from
Eq. (24.35) that r sin(θ) is merely the x-coordinate in our axisymmetric coordinate system, so this is indeed a
cylinder with maximum extent RLC in the x-direction but no restriction in the z-direction.

11.3 Energy stored in an electromagnetic field

The electric energy density of an electromagnetic field is4

uelec(t, r) =
1

2
E2(t, r), (11.32)

and so the total electric energy is given by the volume integral over the region V occupied by the field:

Uelec(t) =

∫
V
uelec(t, r) dV. (11.33)

In axisymmetric spherical polar coordinates, this is

Uelec(t) = 2π

∫ π

0

∫ ∞

0
uelec(t, r) r

2 sin(θ) dr dθ = π

∫ π

0

∫ ∞

0
E2(t, r) r2 sin(θ) dr dθ. (11.34)

Similarly, the magnetic energy density of an electric field is5

umag(t, r) =
1

2
B2(t, r), (11.35)

and the total magnetic energy is

Umag(t) =

∫
V
umag(t, r) dV, (11.36)

which in axisymmetric spherical polar coordinates is

Umag(t) = π

∫ π

0

∫ ∞

0
B2(t, r) r2 sin(θ) dr dθ. (11.37)

Then, the total energy density of the field is given by the sum of its electric and magnetic components, and
likewise for the total energy (e.g. Griffiths, 2017, Eq. (9.53)):

u(t, r) = uelec(t, r) + umag(t, r), (11.38)

U(t) = Uelec(t) + Umag(t). (11.39)

4For reference, in SI units this is uelec(t, r) = 1
2
ϵ0E

2(t, r).
5For reference, in SI units this is umag(t, r) = 1

2
1
µ0
B2(t, r).
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Proposition 11.5. The total magnetic energy of a magnetic dipole with A(Ψ) = 0 in a finite domain
r ∈ [rmin, rmax] is constant in time, and has the value

Umag =
4π

3

(
1

r3min

− 1

r3max

)
, (11.40)

Proof. Eq. (11.35) with Eq. (11.3) with A(Ψ) = 0 gives

umag(t, r) =
1

2

[
4 cos2(θ)

r6
+

sin2(θ)

r6

]
=

1

2

[
4 cos2(θ)

r6
+

1− cos2(θ)

r6

]
=

1

2

3 cos2(θ) + 1

r6
(11.41)

=
1

r6

[
P2

[
cos(θ)

]
+ P0

[
cos(θ)

]]
, (11.42)

where we used the Legendre polynomials P2

[
cos(θ)

]
= 1

2

[
3 cos2(θ)− 1

]
and P0

[
cos(θ)

]
= 1. Note that there

is no time-dependence. Then, the total magnetic energy over the finite radial domain is

Umag = 2π

∫ π

0

∫ rmax

rmin

1

r6

[
P2

[
cos(θ)

]
+ P0

[
cos(θ)

]]
sin(θ) r2 sin(θ) dr dθ (11.43)

= 2π

(∫ π

0
P2

[
cos(θ)

]
sin(θ) dθ +

∫ π

0
P0

[
cos(θ)

]
sin(θ) dθ)

)(∫ rmax

rmin

1

r4
dr

)
(11.44)

= 2π

(
2 δ2,0 + 2 δ0,0

)[
− 1

3

1

r3

]rmax

rmin

(11.45)

= 2π

(
0 + 2

)
· −1

3

(
1

r3max

− 1

r3min

)
, (11.46)

where we used Corollary 28.3. This simplifies to the given result.

Proposition 11.6. The total electric energy of a magnetic dipole in a finite domain r ∈ [rmin, rmax],
rotating with constant angular velocity Ω, is constant in time, and has the value

Uelec =
32π

15
Ω2
(
rmax − rmin

)
. (11.47)

Proof. Eq. (11.32) with Eq. (11.28) gives

uelec(t, r) =
1

2

Ω2 sin2(θ)

r2

[
sin2(θ) + 4 cos2(θ)

]
(11.48)

=
Ω2 sin2(θ)

2r2

[
1 + 3 cos2(θ)

]
(11.49)

=
Ω2

2r2

[
− 3 cos4(θ) + 2 cos2(θ) + 1

]
. (11.50)

Use Eq. (28.6) to give

−3 cos4(θ) = −24

35
P4

[
cos(θ)

]
− 18

7
cos2(θ) +

9

35
, (11.51)

so that

uelec(t, r) =
Ω2

2r2

[
− 24

35
P4

[
cos(θ)

]
− 4

7
cos2(θ) +

44

35

]
. (11.52)

Use Eq. (28.6) to give

−4

7
cos2(θ) = − 8

21
P2

[
cos(θ)

]
− 4

21
, (11.53)
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so that

uelec(t, r) =
Ω2

2r2

[
− 24

35
P4

[
cos(θ)

]
− 8

21
P2

[
cos(θ)

]
+

16

15
P0

[
cos(θ)

]]
. (11.54)

Now the volume integral is straightforward:

Uelec(t, r) = 2π

∫ π

0

∫ rmax

rmin

Ω2

2r2

[
− 24

35
P4

[
cos(θ)

]
− 8

21
P2

[
cos(θ)

]
+

16

15
P0

[
cos(θ)

]
r2 sin(θ) dr dθ (11.55)

= πΩ2

(
− 24

35

∫ π

0
P4

[
cos(θ)

]
sin(θ) dθ − 8

21

∫ π

0
P2

[
cos(θ)

]
sin(θ) dθ

+
16

15

∫ π

0
P0

[
cos(θ) sin(θ) dθ

) ∫ rmax

rmin

dr (11.56)

= πΩ2

(
0 + 0 +

16

15
· 2
)[

r
]rmax

rmin

, (11.57)

which simplifies to the given result.

The total energy of the rotating dipole is then the sum of Eqs. (11.40) and (11.47).
If the dipole is either stationary or rotating at a constant rate, U is constant in time. This provides a useful

tool for testing numerical evolutions. Its value may be calculated at each timestep, and an erroneous gain or
dissipation of energy can be attributed to inaccuracies in the calculation methods; we touch on this in a footnote
in §21.1.

If the dipole is spinning up, U will increase with time, reflecting the fact that the dipole gains energy as
its rotation rate increases. Rotational energy goes like Erot =

1
2 I Ω

2, corroborating the Ω dependence found in
Eq. (11.47).

For rmin = 1 and rmax → ∞, we have Umag → 4π
3 but Uelec → ∞, which reflects that more energy is required

to rotate magnetic field lines that extend further out into space. This corotation breaks at the light cylinder,
which should prevent our expression from predicting infinite energies as the domain increases.
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12 Coordinate system and function generation

12.1 Time and rotation

12.1.1 Implementation

Evolution is performed linearly in time, with constant timestep ∆t and number of values Nt set by the user
(see §20.7), running from t = 0 to t = (Nt − 1)∆t and enumerated by the code variable T_index.

We saw in §11.2 that rotation enters the evolutionary equations via angular velocity Ω with magnitude Ω,
but observational data usually refers to a rotation period P . Hence, the code allows the user to specify a desired
final rotation period P in seconds, which is then converted to a final angular velocity Ω̃ in code units by Eq.
(9.15) with the relevant conversion factor.

Angular velocity is ramped up linearly from zero to this final value. There is an initial period with no
rotation, to ensure that the simulation is stable. The user controls the timesteps at which rotation ramp-up
begins and ends by the parameters T_index_rotation_ramp_start and T_index_rotation_ramp_stop. They
also have control of the ramp-up rate by varying the difference between these two values.

As we will see in §12.2, it may be useful to set the maximum radial coordinate rmax to twice the final value of
the light cylinder radius. As such, it is important to calculate the values of t, P,Ω, RLC before the radial coordi-
nates are generated. We implement a failsafe to reset back to the chosen rmax in Initial_Conditions_xx.h if
the evolution will finish before rotation starts, i.e. n_T is less than or equal to T_index_rotation_ramp_start.
Otherwise, the code would return rmax = 0 and the evolution would be invalid.

Finally, when using computers for repeated incrementation, errors can be introduced due to floating point
inaccuracies. Only numbers expressible as a sum of reciprocal powers of 2, e.g. 2−9 + 2−12 = 0.00244140625,
can be represented exactly by a floating point; other numbers are only approximated to the nearest sum of
reciprocal powers of 2 to the accuracy of the floating point used. For repeatedly added constants, ∆t in this
case, the resulting error can become significant. To get around this, we define the function

double next_sum_of_reciprocal_powers_of_2( double x )

to give the first value above some input x that can be represented exactly. In this function, we arbitrarily
choose a smallest value of 2−14 = 6.103515625× 10−5. The function will always return a value in [x, x+ 2−14].
Changing ∆t like this and keeping the initial time (zero) and number of time values Nt constant means that
the final time tmax will also be changed. The new and old values of ∆t and tmax are output to the screen and
the log file for reference.

The values of time, angular velocity, rotation period and total rotation angle are pre-calculated at the
beginning of the code and stored in arrays by the function

void calculate_time_and_rotation_values()

Clearly just one value of each is required at a given timestep, but calculating everything in advance allows the
values to be tested before committing to an evolution. This may also be useful when determining a ramp-up
rate. It also maintains consistency with the treatment of the coordinates r, θ.

We calculate a ramp-up rate in code units per timestep,

double dOmega_by_dT_index =

Omega_final /( T_index_rotation_ramp_stop - T_index_rotation_ramp_start + 1.0 );

Between T_index_rotation_ramp_start and T_index_rotation_ramp_stop, inclusive, we calculate

Omega[T_index] = Omega[ T_index - 1 ] + dOmega_by_dT_index;

with Omega[T_index] = 0 before T_index_rotation_ramp_start and Omega[T_index] = Omega_final at
and after T_index_rotation_ramp_stop. This ramp-up rate is output to the console and the log files for
reference, along with its conversion to SI units (rad s−2). Rotation period is recalculated from this, as it may
be easier to interpret, and we set P[T_index] = 0 before rotation begins to avoid inf values.
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12.1.2 Testing

We write the codes

Test_time_and_rotation.cpp

Test_time_and_rotation.py

which read the evolution code, run the function calculate_time_and_rotation_values(), output the calcu-
lated values to a CSV file, and plot them in a graph. The results in SI units are shown in Figure 12.1. The
chosen parameters are as follows:

int n_T = 150;

double delta_T = 0.002;

double P_SI_final = 2.0;

int T_index_rotation_ramp_start = 50;

int T_index_rotation_ramp_stop = 100;

The value of ∆t was updated to 0.00201416015625.

Figure 12.1: Angular velocity, rotation period and total angle rotated by the neutron star as a function of time,
given in SI units.
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12.2 Coordinate system

12.2.1 Implementation

The code uses a 2D axisymmetric coordinate system in spherical polar coordinates (r, θ). The radial coordinate
r ∈ [rmin, rmax] is scaled to R⋆, such that a common choice would be to start at the NS surface rmin = 1 and
end at some cutoff radius rmax. When rotation is considered, grids should extend beyond the light cylinder;
for this reason, we add bool set_r_max_to_2_R_LC to Header_Initial_Conditions_xx.h to automatically
update rmax = 2RLC as described in §12.1.

The polar coordinate θ ∈ [∆θ
2 ,

∆θ
2 + π] is shifted by half a gridpoint to avoid the north pole θ = 0 and south

pole θ = π, since there we may encounter numerical errors due to the 1
sin(θ) term in the divergence and curl,

Eqs. (25.11) and (25.12).
The grid is separated into discrete cells with spacing ∆r(r) and ∆θ(θ). In future code versions, it may

prove useful to explore alternative coordinate mappings focussing the gridpoints toward potentially problematic
regions, increasing the resolution there at the cost of other regions where high resolution is less critical. However,
for simplicity, we use a linear spacing such that ∆r and ∆θ are both constant. The user inputs their choice
of rmin and rmax and decides on the number of gridpoints to include in both dimensions (including the two
endpoints), Nr and Nθ. Then, the grid spacing is calculated by

∆r =
rmax − rmin

Nr − 1
, (12.1)

∆θ =
θmax − θmin

Nθ − 1
=

π

Nθ − 1
. (12.2)

As with the timestep, we then modify ∆r to the next decimal that can be represented as a sum of reciprocal
powers of 2, which also modifies rmax. We cannot do this for ∆θ because θmin = ∆θ

2 , θmax = ∆θ
2 + π and Nθ are

fixed.
Enumerating the radial gridpoints by i ∈ Z : 0 ≤ i ≤ Nr − 1 and the polar gridpoints by j ∈ Z : 0 ≤ j ≤

Nθ − 1, the coordinates of these gridpoints are then

ri = rmin + i∆r, (12.3)

θj =
∆θ

2
+ j∆θ. (12.4)

The polar coordinates r and θ are each stored in 1D lists. Then, to avoid repeat calculation throughout
the simulation, the code immediately calculates the values of sin(θj) and cos(θj), the values of the Cartesian
coordinates by Eqs. (24.17) and (24.19),

xi,j = ri sin(θj), (12.5)

zi,j = ri cos(θj), (12.6)

and the finite line elements and area elements for 1D and 2D numerical integration in axisymmetric spherical
polar coordinates using Eqs. (21.62) and (21.60) respectively, storing these in 1D or 2D arrays as appropriate.
Note that the expressions for xi,j , zi,j , (dθ)j , (dA)i,j are independent of the coordinate spacing used; they simplify
for linear spacing, but there is no performance gain to hard-coding those simplified expressions because the
arrays are only populated once.
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12.2.2 Testing

Let us perform a test to ensure that the lists of coordinate values are produced correctly, including both
endpoints, featuring the same number of gridpoints that we specify (i.e. without any “counting the fenceposts”
errors) and that the spacing is indeed linear.

We write a code Test_Coordinates.cpp which opens the Header_Time_Evolution.cpp file and calls the
function void calculate_gridpoints(). It is important to make sure we test the actual file storing the
function used in the evolution code, as opposed to copying that function into a separate testing file. This makes
the test easily repeatable following updates to the evolutionary code. Once the gridpoints are calculated, the
test code outputs them to a CSV file so that they can easily be read by a human or an external program.

We also calculate the first and second derivatives of each coordinate with respect to their indices, dr
di ,

d2r
di2
, dθdj ,

d2θ
dj2

,
numerically at each index i, j. For a linear spacing, we expect that the first derivatives are constant and equal
to ∆r or ∆θ, and that the second derivatives are zero.

The chosen parameters are as follows:

int n_r = 300;

int n_t = 1000;

double r_min = 1.0;

double r_max = 10.0;

int n_T = 150;

double delta_T = 0.002;

double P_SI_final = 2.0;

int T_index_rotation_ramp_start = 50;

int T_index_rotation_ramp_stop = 100;

bool set_r_max_to_2_R_LC = true;

The value of ∆r was updated from 63.827359989792 to 63.827392578125, and correspondingly rmax was updated
from 19085.3806369478 to 19085.3903808594. Note that bool set_r_max_to_2_R_LC works as expected. The
derivatives of the coordinates with respect to the indices are as follows, clearly indicating that the spacing is
indeed linear. We also verify from the CSV file that the coordinate endpoints and the number of gridpoints are
indeed as expected.

Mean value of |dr_by_di| : 63.827392578125

Exp. value of |dr_by_di| : 63.827392578125

Max value of |d2r_by_di2|: 0

Mean value of |dt_by_dj| : 0.00314473739098077

Exp. value of |dt_by_dj| : 0.00314473739098077

Max value of |d2t_by_dj2|: 4.44089209850063e-16

Were we not to modify ∆t or ∆r to the nearest power of 2, we would obtain a nonzero second radial derivative:

Mean value of |dr_by_di| : 63.827359989792

Exp. value of |dr_by_di| : 63.827359989792

Max value of |d2r_by_di2|: 3.63797880709171e-12

Although marginal, we see that this modification is necessary to produce truly linearly spaced coordinates.
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12.3 Associated Legendre functions

12.3.1 Implementation

In order to calculate and evaluate VSH series of axisymmetric vector functions and their spatial derivatives,
we require constant evaluation of Legendre polynomials and m = 1 associated Legendre functions (§32.3).
To increase code performance, we pre-calculate the values of P 0

ℓ [cos(θ)] and P 1
ℓ [cos(θ)] at all gridpoints from

ℓ = 0 up to the cutoff value ℓmax specified by the user. The code populates the 2D arrays P0[j][ell],
representing P 0

ℓ [cos(θj)], and P1[j][ell], representing P 1
ℓ [cos(θj)]. For each gridpoint θj , we perform the

following calculations.

1. For m = 0 (the Legendre polynomials), hard-code the values for ℓ = 0 and ℓ = 1:

P 0
0 [cos(θj)] = 1, (12.7)

P 0
1 [cos(θj)] = cos(θj). (12.8)

Then, use Bonnet’s recursion relation Eq. (28.10) to calculate P 0
ℓ [cos(θj)] for ℓ ∈ Z : 2 ≤ ℓ ≤ ℓmax.

2. For m = 1, hard-code the values for ℓ = 1 and ℓ = 2:

P 1
1 [cos(θj)] = − sin(θj), (12.9)

P 1
2 [cos(θj)] = −3 cos(θj) sin(θj). (12.10)

Note that the values for ℓ = 0 are already zero upon initialisation of the array P1[j][ell]. Then, use
the generalised Bonnet recursion relation Eq. (29.38) to calculate P 1

ℓ [cos(θj)] for ℓ ∈ Z : 3 ≤ ℓ ≤ ℓmax.

12.3.2 Testing

To ensure that all the values of P 0
ℓ [cos(θj)] and P

1
ℓ [cos(θj)] are accurate, we write two codes in the subfolder

Test codes:

1. Test_Associated_Legendre_Functions_Part1.cpp exports the calculated values at all gridpoints to a
CSV file. Similarly to before, we call the same header file and function that produces the function values
in the full evolution code, instead of copying the function into the test code. In this case, the function is
void calculate_associated_legendre_functions().

2. Test_Associated_Legendre_Functions_Part2.py reads this CSV file, and then calculates the function
values at the same gridpoints via two standard Python functions: scipy.special.eval_legendre() and
scipy.special.lpmv(). For each function, e.g. P 1

2 [cos(θ)], we calculate the standard deviation of the
C++ values with respect to the Python values across all gridpoints.

The results are displayed in Table 12.1; we see agreement to 14 − 15 significant figures across all values of ℓ
tested. Our method assumes that the Python values are exactly correct, which of course is not true, but in any
case such strong agreement with values produced by alternative, publicly available methods, gives confidence
in our calculated values.
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Table 12.1: Standard deviation of m = 0 and m = 1 associated Legendre functions, up to ℓmax = 10, calculated
by the evolutionary code and compared to values in standard Python SciPy modules. Values are copied straight
from the Python console for easy reproducibility of this table.

ℓ m = 0 m = 1

0 0.0 0.0

1 1.8781543466942318e-15 1.734034442963705e-15

2 2.4343783810638837e-15 6.18597381411709e-15

3 3.0426152223290122e-15 1.0965910304560862e-14

4 3.7315273993892195e-15 1.656094595064458e-14

5 4.190064288180544e-15 2.402037537648517e-14

6 4.627552123259113e-15 3.240527627733262e-14

7 5.156903857233102e-15 4.11638385749612e-14

8 5.57471582400508e-15 5.1636150665116126e-14

9 5.938297600437188e-15 6.32402803465098e-14

10 6.394651772972282e-15 7.474016340308689e-14

12.4 Chebyshev polynomials

One method of calculating radial derivatives involves expanding functions as Chebyshev series on the interval
[rmin, rmax], and so we will need to evaluate the Chebyshev polynomials of the first and second kinds at each
gridpoint (Chapter 27).

There is a slight complication: we will not be working in terms of the radial coordinate r itself, but the shifted
integration variable1 R. Looking at the argument of the function in Eq. (27.45), the function is evaluated at
the gridpoints r = ΛA,B

[
cos(R)

]
, and so the values of the integration variable should be R = cos−1

[
Λ−1
A,B(r)

]
.

Generating a list of values of R allows us to compute numerical integrals with the trapezium rule as normal.
As with the associated Legendre functions (§12.3), we pre-calculate the values of Tn(r) = Tn

[
ΛA,B

[
cos(R)

]]
at all gridpoints from n = 0 up to nmax, populating the 2D arrays Tn[i][n] and Un[i][n]. For each gridpoint
ri, we perform the following calculations.

1. To generate the polynomials of the first kind, hard-code the values for n = 0 and n = 1:

T0
[
Λ−1
A,B(r)

]
= 1, (12.11)

T1
[
Λ−1
A,B(ri)

]
= Λ−1

A,B(ri). (12.12)

Then, use the recursion relation Eq. (26.15) to calculate Tn
[
Λ−1
A,B(ri)

]
for n ∈ Z : 2 ≤ n ≤ nmax.

2. To generate the polynomials of the second kind, hard-code the values for n = 0 and n = 1:

U0

[
Λ−1
A,B(r)

]
= 1, (12.13)

U1

[
Λ−1
A,B(ri)

]
= 2Λ−1

A,B(ri). (12.14)

Then, use the recursion relation Eq. (26.16) to calculate Un

[
Λ−1
A,B(ri)

]
for n ∈ Z : 2 ≤ n ≤ nmax.

1Here, we renamed θ in Eq. (27.45) to R, to avoid confusion with the polar coordinate.
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12.5 Determining suitable coordinate spacing and timesteps

12.5.1 Implementation

There is of course a trade-off between choosing large timesteps and few coordinates for computational speed,
or small timesteps and many coordinates for accuracy of calculations. The number of coordinates should
be decided first, by testing the accuracy of functions like the VSH decomposition of the vectors. Then, the
maximum timestep can be determined as a function of these, by the Courant-Friedrichs-Lewy (CFL)
condition (Courant et al., 1967).

The CFL condition argues that a signal should not be able to propagate between any two adjacent gridpoints
in a time shorter than the timestep; otherwise, energy transfer would be undetectable by the numerical model,
putting it at risk of energy dissipation. The timestep might be further restricted by the choice of integration
method, but we do not explore this; to be safe, we avoid “getting too close” to the upper limit on the timestep.

Lemma 12.1. The separation between two gridpoints r1 = (r1, θ1) and r2 = (r2, θ2) is

δ(r1, θ1, r2, θ2) ≡ |r2 − r1| =
√
r22 + r21 − 2 r2 r1

[
sin(θ2) sin(θ1) + cos(θ2) cos(θ1)

]
. (12.15)

This is visualised in Figure 12.2.

Proof. It is easier to calculate the separation between vectors in Cartesian coordinates. By Eqs. (24.35 - 24.37),
a gridpoint is

r = x i+ y j+ z k = r sin(θ) i+ r cos(θ)k, (12.16)

and so

δ(r1, θ1, r2, θ2)
2 = |r2 − r1|2 (12.17)

=
∣∣∣[r2 sin(θ2)− r1 sin(θ1)

]
i+
[
r2 cos(θ2)− r1 cos(θ1)

]
k
∣∣∣2 (12.18)

=
[
r2 sin(θ2)− r1 sin(θ1)

]2
+
[
r2 cos(θ2)− r1 cos(θ1)

]
(12.19)

=
[
r22 sin2(θ2)− 2 r2 r1 sin(θ2) sin(θ1) + r21 sin2(θ1)

]
+
[
r22 cos2(θ2)− 2 r2 r1 cos(θ2) cos(θ1) + r21 cos2(θ1)

]
(12.20)

= r22
[
sin2(θ2) + cos2(θ2)

]
+ r21

[
sin2(θ1) + cos2(θ1)

]
− 2 r2 r1

[
sin(θ2) sin(θ1) + cos(θ2) cos(θ1)

]
. (12.21)

Using that sin2(θ) + cos2(θ) = 1 and taking the square root, we obtain the given result.
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Figure 12.2: Visualisation of the separation δ(r1, θ1, r2, θ2) between two points r1 = (r1, θ1) and r2 = (r2, θ2) in
2D polar coordinates.

Proposition 12.2 (Separation between neighbouring gridpoints). For neighbouring gridpoints on the same
arc of radius r, with polar angles θ and θ+∆θ, where ∆θ(r, θ) is the spacing in the polar direction, we have

δ(r, θ, r, θ +∆θ) = r
√
2
√
1− cos(∆θ). (12.22)

For neighbouring gridpoints on the same radial line of polar angle θ, with radial coordinates r and r +∆r,
where ∆r(r, θ) is the spacing in the radial direction, we have

δ(r, θ, r +∆r, θ) = ∆r(r, θ). (12.23)

Proof. There are three situations in which we can find two neighbouring gridpoints:

1. Constant r, with θ varying by one value of the grid spacing ∆θ(r, θ), which in general is not constant.
Then, r1 = r2 = r, θ1 = θ and θ2 = θ +∆θ(r, θ) and we have

δ(r, θ, r, θ +∆θ)2 = r2 + r2 − 2 r r
[
sin(θ +∆θ) sin(θ) + cos(θ +∆θ) cos(θ)

]
(12.24)

= 2r2
[
1− sin(θ +∆θ) sin(θ)− cos(θ +∆θ) cos(θ)

]
. (12.25)

The trig identities

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b), (12.26)

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b), (12.27)

yield

δ(r, θ, r, θ +∆θ)2 = 2r2
(
1−

[
sin(θ) cos(∆θ) + cos(θ) sin(∆θ)

]
sin(θ)

−
[
cos(θ) cos(∆θ)− sin(θ) sin(∆θ)

]
cos(θ)

)
(12.28)

= 2r2
(
1− sin2(θ) cos(∆θ)− cos(θ) sin(θ) sin(∆θ)

− cos2(θ) cos(∆θ) + sin(θ) cos(θ) sin(∆θ)
)

(12.29)

= 2r2
(
1−

[
sin2(θ) + cos2(θ)

]
cos(∆θ)

)
. (12.30)

74



University of East Anglia Neutron star magnetospheres

Using that sin2(θ) + cos2(θ) = 1 and taking the square root, we obtain the given result.

2. Constant θ, with r varying by one value of the grid spacing ∆r(r, θ), which in general is not constant.
Then, r1 = r, r2 = r +∆r(r, θ) and θ1 = θ2 = θ and we have

δ(r, θ, r +∆r, θ)2 = (r +∆r)2 + r2 − 2 (r +∆r) r
[
sin(θ) sin(θ) + cos(θ) cos(θ)

]
(12.31)

= (r2 + 2 r∆r +∆r2) + r2 − 2r2 − 2 r∆r
[
1
]

(12.32)

= ∆r2. (12.33)

Taking the square root, we obtain the given result.

3. Both r and θ varying by one gridpoint; that is, gridpoints touching diagonally. We do not consider this
situation because our objective is to find the smallest spacing, and diagonally neighbouring gridpoints
cannot be closer than those differing by just one coordinate.

Corollary 12.3. If the grid spacing is constant in the radial and polar directions, such that ∆r(r, θ) = const
and ∆θ(r, θ) = const, with ∆r and ∆θ not necessarily equal to each other, the smallest possible gridpoint
separation is

δmin = min
{
rmin

√
2
√

1− cos(∆θ) , ∆r }, (12.34)

where rmin is the smallest value of r included in the domain. For ∆θ ≪ 1, this is well approximated by

δmin = min
{
rmin∆θ , ∆r

}
. (12.35)

Proof. The expression for δ(r, θ, r, θ+∆θ) is linear in r, so it is minimised when r takes its smallest value. The
expression for δ(r, θ, r +∆r, θ) is constant. The smallest gridpoint separation is then the smallest of these two
minimum values. Now, the Taylor series

cos(∆θ) = 1− 1

2
∆θ2 +

1

24
∆θ4 +O(∆θ6) (12.36)

yields

1− cos(∆θ) =
1

2
∆θ2 − 1

24
∆θ4 +O(∆θ6) =

1

2
∆θ2

[
1− 1

12
∆θ2 +O(∆θ4)

]
, (12.37)

and so

√
2
√
1− cos(∆θ) = ∆θ

√
1− 1

12
∆θ2 +O(∆θ4). (12.38)

The binomial approximation (1 + x)n = 1 + nx+O(x2) then gives

√
2
√
1− cos(∆θ) = ∆θ

[
1− 1

24
∆θ2 +O(∆θ)4

]
+O

[
(∆θ2 +∆θ4)2

]
= ∆θ +O(∆θ3). (12.39)

If ∆θ ≪ 1 then ∆θ3 is negligibly small compared to ∆θ.
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To find the smallest neighbouring gridpoint separation in the general case with non-uniform grid spacing,
we must evaluate both expressions in Proposition 12.2 at all gridpoints and then determine the smallest of the
calculated values. For linear spacing in both directions, an exact expression is given by Corollary 12.3 without
the need to calculate any separations. Recall that we neglect other effects on the maximum timestep. If we
account for this by avoiding timesteps close to the upper bound, then the approximation Eq. (12.35) for the
upper bound will suffice.

Energy transfer in electrodynamics occurs by radiation of light, so signals in our system propagate at the
speed of light. We saw in §9.1 that the speed of light in our dimensionless units is unity, so the time to propagate
across the smallest grid spacing is simply the value of that separation. We conclude that our maximum timestep
in dimensionless units with linear grid spacing in both directions is

(∆t)max = min
{
rmin∆θ , ∆r

}
, (12.40)

and repeat that values “not too close” to this upper bound should be chosen to account for effects we did not
consider here.

12.5.2 Testing

We write the code

Test codes/Test_CFL_condition.cpp

to read the evolution code, run the function calculate_gridpoints() and determine the spacing between all
adjacent pairs of gridpoints. The calculation may be performed by either the Cartesian expression (the square
root of the RHS of Eq. (12.19)), the spherical polar expression (Lemma 12.1), the specific spherical polar
expressions for adjacent gridpoints (Proposition 12.2) or the approximation of the former (Proposition 12.2),
allowing us to verify the accuracy of all four sets of expressions.

The results are shown in Table 12.2. We see agreement between the three exact expressions to 11 significant
figures for constant r, and 10 significant figures for constant θ. The approximation for constant r agrees with
the exact expressions to 7 significant figures. For linear spacing in both directions, we can use the approximate
expressions to good accuracy.

In the evolution code, the CFL condition is implemented by the function

void calculate_CFL_max_timestep()

which calculates the value of double delta_T_CFL by the approximation Eq. (12.40). One can easily adapt
this function for arbitrary step sizes by copying the relevant functions from Test_CFL_condition.cpp into
void calculate_CFL_max_timestep() so that all possible neighbouring gripoint separations are calculated
and the function returns the smallest value.

Table 12.2: Smallest separation between adjacent gridpoints, calculated by four different expressions, with
rmin = 1, rmax = 10, Nr = 300, Nθ = 1000 and constant grid spacing ∆r = 0.0301003344481605 and ∆θ =
0.00314473739098077.

Expression Constant r Constant θ

Cartesian 0.00314473609516886 0.0301003344481572

Spherical 0.00314473609511657 0.0301003344469711

Spherical (constant) 0.00314473609515188 0.0301003344481605

Spherical (constant) (approximation) 0.00314473739098077 0.0301003344481605
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12.6 Ramping up electric field

To ensure a stable evolution, we begin the simulation with a static dipole and let it evolve freely until

T_index = T_index_rotation_ramp_start

Then, we ramp-up the angular velocity Ω linearly between

T_index_rotation_ramp_start < T_index < T_index_rotation_ramp_stop

such that Ω reaches its final value Ωfinal at T_index_rotation_ramp_stop, and is maintained until the evolution
finishes. As discussed in §11.2, rotation is implemented by adding a term to the electric field, given by Eq.
(11.27). To a good approximation, we can split this linearly into additions

Erot,step =
1

nramp
Ωfinal sin(θ)

[
B⋆

θ er −B⋆
r eθ

]
(12.41)

where B⋆
r and B⋆

θ are the components of the magnetic field imposed by the star, i.e. a dipole, (borrowing
notation from §9.2) and nramp is the number of timesteps over which the ramping-up occurs, given by

T_index_rotation_ramp_stop - T_index_rotation_ramp_start + 1

This expression does not account for the fact that B is time-dependent, but recall the purpose of this ramp-up
phase. We know that the final configuration should indeed resemble Eq. (11.27), and we only ramp-up the
electric field over a finite time scale to ensure that the code remains stable. Hence, we can neglect any changes
this will cause to B during the ramp-up phase. We have tested using (a) the exact dipole values for B∗

θ and B∗
r

and (b) the values of the magnetic field according to the code at the current timestep. There is no discernible
difference between evolutions using either option; we choose the exact dipole value for all simulations. The
ramping-up is performed by the function

void ramp_up_electric_fields_for_rotation()

which is called at every timestep but only updates the electric field if T_index is between

T_index_rotation_ramp_start

T_index_rotation_ramp_stop

We find that re-applying the inner and outer boundary conditions when this code executes, yields better results.
To check whether this ramping-up gives the expected final electric field under the approximation that B is

unaffected, we write the code

Test codes/Test_Electric_field_rampup.cpp

This simply calls ramp_up_electric_fields_for_rotation() for every timestep and outputs the electric field
at a specific gridpoint to a CSV for quick manual verification. Once the final electric field has been reached, the
values are compared to those we would expect if the ramp-up was instantaneous, given by Eq. (11.27). When
running this test, we disable the application of boundary conditions. Using the same parameters as in previous
tests, the standard deviation between the resulting and expected final electric field across all gridpoints is as
follows:

Stdev of final electric field in radial direction: 1.82566e-17

Stdev of final electric field in theta direction: 2.1078e-17

Stdev of final electric field in phi direction: 0

Note that this test does not model B, so we cannot test our assumption that B is unaffected during the ramp-up.
The only real way to do this is to perform a normal evolution which ends at

T_index = T_index_rotation_ramp_stop
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13 Estimating spatial derivatives of fields

We see from our expression in Proposition 9.1 that, in order to evolve the magnetic and electric fields, we must
estimate ∇ ·E, ∇×E and ∇×B at each timestep. There are two ways to achieve this: a 2D finite difference
method, or expansion of the fields into VSH series to handle the angular component. Here, we shall employ the
latter method. From Eqs. (32.56) and (32.57), using VSH series will still require estimation of radial derivatives.
This can be achieved in two ways:

1. Calculate numerical derivatives by the finite difference expressions in Chapter 23.

2. Expand each VSH coefficient as a Chebyshev series over the entire radial domain by Proposition 27.6 and
then calculate its radial derivative by the relation found in Proposition 27.13.

If the function may be evaluated at any radial coordinate, or if we are free to locate the radial gridpoints at
the Chebyshev nodes, then a Chebyshev decomposition is among the most accurate ways to approximate a
function. However, in our code, we only have a discrete set of radial gridpoints and they are linearly spaced.
Further, the act of decomposing a function into a Chebyshev series is itself an approximation, so we introduce
numerical error before even taking a derivative.

Chebyshev decompositions are not always the best choice. Example 27.7 and its discussion show us that
the Chebyshev series coefficients for the radial dependence of a dipole, 1

r3
, are infinitely many, only calculable

numerically and decay relatively slowly with n. Then, the accuracy of the decomposition depends strongly on
our choice of truncation index nmax, but including too many unnecessary terms gives more opportunities for
numerical error to disturb the fit.

Recall also from Proposition 27.13 that the first derivative of the nth term in a Chebyshev series depends
on an infinite number of Chebyshev polynomials. Although a function with a finite Chebyshev series avoids
this issue, that does not match our situation. Thus, our choice of nmax affects the radial derivatives over and
above its effect on the decomposition itself.

Finite differencing is far less computationally intensive to implement. It could be argued that any deficiency
in its accuracy compared to a Chebyshev series is negated by the ability to use finer grids for the same processing
power. However, that assumes that the deficiency can be cured by scaling alone, which is not always true, and
in our application the grid spacing is limited by the spacing of the simulation itself.

However, one drawback of finite differencing is that we cannot use the more accurate symmetric derivative
at or near the endpoints because there are no or fewer neighbouring gridpoints (cf. Chapter 23 and particularly
Figure 23.1). This potentially introduces a source of errors near rmin and rmax. In §23.2.5 and §23.3.4 we
largely mitigate this by developing accurate one-sided and “offset” finite difference expressions which make use
of the available gridpoints in these regions. By contrast, using a Chebyshev series for radial derivatives does
not automatically yield obvious troublesome gridpoints.
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13.1 Testing radial derivatives with finite differencing

We describe in Chapter 23 how to calculate the first and second derivatives of a function f(x) evaluated at a
set of equally spaced gridpoints. We produce expressions of varying accuracy, which are encoded in the header
file Finite_Difference_Expressions.h. In this section, we will compare various finite difference expressions
in order to find the best candidate for this method. This will be added to the main evolution code within the
functions

std::vector<double> radial_derivatives_1_FD( std::vector<double> &f )

std::vector<double> radial_derivatives_2_FD( std::vector<double> &f )

which take a vector v of function values at the gridpoints and return a vector of derivative values at the same
gridpoints. Note that arrays are passed by reference (hence the use of &); this is because passing large arrays
by value requires many values to be read by the function, which can easily take more time than the execution
of the function itself.

Testing of radial finite difference methods is performed by the code

Test codes/Test_radial_derivatives_FD.cpp

The user defines a function f of the radial coordinate r along with exact expressions for its first two radial
derivatives. The desired accuracy O(hN ) is specified and the code is ran, calculating the absolute relative error∣∣∣∣1−

( df
dr

)
FD( df

dr

)
exact

∣∣∣∣ (13.1)

at each gridpoint, along with the standard deviation between
( df
dr

)
FD

and
( df
dr

)
exact

across all gridpoints. This
is performed for the first and second radial derivatives.

We test f(r) = 1
r3

such that df
dr = −3

r4
and d2f

dr2
= 12

r5
since it is a realistic function matching the radial

dependence of a magnetic dipole. The parameters are set as follows:

int n_r = 300;

int n_t = 1000;

int n_T = 150;

double delta_T = 0.002;

double P_SI_final = 0.001;

double r_min = 1.0;

double r_max = 10.0;

bool set_r_max_to_2_R_LC = true;

The resulting standard deviation for various O(hn) is given in Table 13.1 and the absolute relative error as
a function of r is plotted in Figure 13.1. As expected, error decreases as the chosen order increases. For the
second derivative at O(h6), we approach floating point precision and low levels of noise enter the data; this still
yields better accuracy than lower-order methods, so is not a concern.

Higher-order expressions require more datapoints and hence more function evaluations. In general, this
comes at a cost of increasing the computing power required. However, since all of our function values are
pre-calculated in this example and will be numerical data in the evolution code, there is no associated penalty.
We can thus choose a high-accuracy method without drawbacks.
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Table 13.1: Standard deviation of first and second radial derivatives of f(r) = 1
r3

to various accuracy O(hN ),
with relevant parameters defined in the text.

N First derivative Second derivative

2 0.0011419 0.012834

4 1.4424e-05 0.00045611

6 4.1378e-07 2.0894e-05

Figure 13.1: Absolute relative error of first derivative (Left) and second derivative (Right) of a function with
respect to the radial coordinate using a three-point finite difference method.

Although we have expressions for the endpoints that in theory yield similar accuracy as for the intermediate
points, there is still a jump in error at these values. To mitigate this, we can produce a “hybrid” system of
finite-difference expressions that use a higher-order expression near the endpoints: let us use O(h8) near the
endpoints (the first and last four gridpoints) and O(h6) between. The results near the endpoints are given in
Figure 13.2. We see that a hybrid system improves both derivatives near both endpoints, by around an order of
magnitude, and brings the error roughly in line with the last gridpoint at which a symmetric O(h6) expression
can be used, which is also plotted for comparison.

We choose a hybrid O(h6 − h8) system as our preferred finite difference method for the remainder of the
project, and so we implement this function within

std::vector<double> radial_derivatives_1_FD( std::vector<double> &f )

std::vector<double> radial_derivatives_2_FD( std::vector<double> &f )

in the main evolution code.
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Figure 13.2: Absolute relative error of first derivative (Top) and second derivative (Bottom), for the innermost
(Left) and outermost (Right) few gridpoints, for a finite-difference system using O(h6) at all gridpoints and a
system using O(h8) near the endpoints.

13.2 Testing radial derivatives from Chebyshev series

Another method of calculating the radial derivative of a function is to calculate its Chebyshev series by Eq.
(27.45) and differentiate it term-by-term. In the evolution code, the Chebyshev series coefficients are calculated
by the function

std::vector<double> chebyshev_series_coeffs( std::vector<double> &v )

which performs a 1D numerical integral by the trapezium rule in Cartesian coordinates, Eq. (21.73). Here, we
suppose that f is only known at N uniformly spaced gridpoints ri, since that is the situation we will encounter
in the evolution code. This precludes methods involving off-gridpoint function evaluations such as the RK4
method (§21.1) and the ability to set the gridpoints equal to the Chebyshev nodes; we expect accuracy to be
suboptimal as a result. The function and its first derivative are then evaluated by the two functions

std::vector<double> evaluate_chebyshev_series( std::vector<double> &coeffs )

std::vector<double> evaluate_chebyshev_series_dr( std::vector<double> &coeffs )

To test the accuracy of these implementations, we write the code

Test codes/Test_Chebyshev_series_arbitrary_interval.cpp

A realistic test function might be f(r) = 1
r3

but its resulting Chebyshev series cannot be calculated analytically,
as can be appreciated from Example 27.7. Instead, we choose the simpler function f(r) = r2, whose Chebyshev
series coefficients are calculated exactly in Example 27.12. Setting the parameters the same as for the finite-
differencing test, we obtain the results shown in Table 13.2.
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We see reasonable agreement for small n, but the relative error grows with n and the calculated values are
substantially nonzero for n > 2. This may have to do with the wide range of radial gridpoints, or equivalently
the relatively small gridspacing compared to rmax, but since these radial coordinates represent typical values
that we wish to use, we do not have the freedom to try smaller ranges. The issue of potentially overfitting,
where we use more Chebyshev polynomials than needed and hence become susceptible to numerical error when
the coefficients are not accurate, is exacerbated by the inaccuracy of the calculated coefficients and the fact
that the relative error grows with n. It is obvious in our simple example that we should truncate at n = 2, but
in real situations that may not be the case. Indeed, functions like 1

r3
require infinitely many coefficients.

The standard deviation of the recalculated function values from the Chebyshev series, over all gridpoints,
is respectively

Stdev f(x) : 0.509373824373812

Stdev df/dx: 4.04846327106684

for nmax = 10 and

Stdev f(x) : 0.0282734491338191

Stdev df/dx: 0.0224819520646707

for nmax = 2.

Table 13.2: Calculated and exact Chebyshev coefficents of f(r) = r2 on an arbitrary interval, with relevant
parameters defined in the text.

n Calculated Exact Relative error

0 37.0268617116986 37.0303361504339 -9.38356256690032e-05

1 45.170295936518 45.1874412018806 -0.000379569471642416

2 9.11624740009207 9.15710505144671 -0.0044818497745267

3 -0.0800977853421981 0 1

4 -0.132725455852873 0 1

5 -0.191619470608629 0 1

6 -0.265226716254139 0 1

7 -0.333894796127272 0 1

8 -0.419877997140564 0 1

9 -0.488688971820303 0 1

10 -0.577974768981311 0 1

Now that the accuracy of the Chebyshev series coefficients themselves has been evaluated, we can perform
the decomposition for f(r) = 1

r3
. Using the same parameters, we repeat the test for various values of nmax and

find a best result at nmax = 10 with standard deviations

Stdev f(x) : 0.00481196799223615

Stdev df/dx: 0.0662394945416891

The first derivative is an order of magnitude less accurate than for finite differencing O(h2). We attribute this
to the Chebyshev decomposition itself already being relatively poor, for the reasons outlined above brought
on by the restrictions of our coordinate system. The absolute relative error as a function of r is plotted for
a few nmax in Figure 13.3. Note that the error grows with r. The approximations at the endpoints are not
particularly worse than the intermediate points, but the approximation at rmax is poor as a result of the error
growing with r.
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At this point, we can already eliminate Chebyshev series as a candidate for handling divergence-free func-
tions, making finite differencing the method to use if maintaining zero divergence is less important than an
accurate decomposition. This avoids the need to calculate expressions for the second radial derivative, which
we already saw in Eq. (26.44) for r ∈ [−1, 1] to be a complicated expression.

Figure 13.3: Absolute relative error of reconstructed function (Left) and its first derivative (Right) with respect
to the radial coordinate using a Chebyshev series approximation of varying maximum order.

Note that the “sweet spot” for a choice of truncation index depends also on the number of gridpoints used.
Table 13.3 shows the standard standard deviation of the VSH series of f(r) = 1

r3
for various nmax, both for

Nr = 300 and Nr = 3000 gridpoints. In both cases, a “sweet spot” appears in the balance between adding more
Chebyshev polynomials and introducing more opportunities for numerical error; this occurs at nmax = 10 and
nmax = 14, respectively.

Table 13.3: Standard deviation of the Chebyshev series coefficients of f(r) = 1
r3
, first with 300 radial gridpoints

and then with 3000.

nmax Nr = 300 Nr = 3000

2 0.112838781973848 0.112189670740875

4 0.0526601223826733 0.053110542010322

6 0.0208758873336772 0.0219069611833538

8 0.00736559271247053 0.00825758354638785

10 0.00481196799223615 0.00287120944065367

12 0.00646971912189649 0.000904685992760827

14 0.00808585023097846 0.000430350336366974

16 0.00931073258260299 0.000567577051818395

18 0.0101361607314389 0.000743958703430782

20 0.0105493573166358 0.000913512435034331
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13.3 Testing VSH series

With a radial derivative method chosen, we next verify our calculation method for axisymmetric VSH series.
The VSH series for axisymmetric fields are calculated with separate functions for each component:

std::vector< std::vector<double> > VSH_decomposition_r

( std::vector< std::vector< std::vector<double> > > &v )

and similarly for VSH_decomposition_1() and VSH_decomposition_2(). If a vector B is divergenceless, we
have two options to calculate its B(1),ℓ coefficients:

1. Use the same expression as for the non-divergenceless case.

2. Use Corollary 32.5 and calculate dBr,ℓ

dr by finite differencing.

In the latter case, we replace VSH_decomposition_1 by

for( int ell=0; ell<=ell_max; ell++ ){

B_VSH_coeffs_dr[0][ell] = radial_derivatives_1_FD( B_VSH_coeffs[0][ell] );

}

which calculates dBr,ℓ

dr by finite differencing, followed by

void calculate_B_1_ell_and_derivative_divergenceless()

which calculates B(1),ℓ and dB(1),ℓ

dr based on these values.
The advantage of using separate functions for each component is that VSH_decomposition_r and

VSH_decomposition_2 can be called regardless of the method used; it is only VSH_decomposition_1 that
changes. This avoids copying code and introducing errors or code divergence as functions are updated.

To test both of the above methods, we use the code

Test codes/Test_VSH_series_axisymmetric.cpp

For our test vector, we use the static magnetic dipole Eq (11.3) with A(Ψ) = −2Ψ. It is of course divergenceless
and its exact VSH series coefficients are known (Proposition 11.2). We use separate functions for the vector
values to those in Initial Conditions xx.h,

double B_r_function_test( double r, double t )

and similarly B_t_function_test() and B_p_function_test(), alongside functions for the known exact values
of the VSH coefficients,

double B_VSH_coefficient_exact_r_test( double r, int ell )

and similarly B_VSH_coefficient_exact_1_test() and B_VSH_coefficient_exact_2_test(). This makes
it easier to change the vector being tested and keep expressions for its exact values and those of the known
VSH coefficients in the same file, without fear of desynchronisation if Initial Conditions xx.h is updated for
future code runs.

These functions are used to populate the pre-existing vector in the main evolution code,

std::vector< std::vector< std::vector<double> > > B

( 3, std::vector< std::vector<double> > ( n_points_r, std::vector<double> ( n_points_t ) ) )

which stores the magnetic field B evaluated at all the gridpoints. the first index of size 3 represents the three
components Br, Bθ, Bϕ, so that, for example, B[0][3][5] represents Br(r3, θ5).

We use the same parameters as given in §13.1, and maximum associated Legendre function order ℓmax = 10.
The standard deviations of the recalculated vector components Ar(r, θ) and Aϕ(r, θ) across all coordinates are:

stdev of r-component across all coordinates: 9.10713e-06

stdev of p-component across all coordinates: 2.32977e-06
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Figure 13.4 plots the standard deviation of each vector component recalculated from its VSH series, as a function
of each coordinate. For example, the value as a function of r is calculated by holding r constant and calculating
the standard deviation as a function of θ across these gridpoints.

Both the recalculated Br (hence Br,ℓ) and Bϕ (hence B(2),ℓ) agree with the original vector within 10−4 to
10−8 at all gridpoints. The agreement for Br is poorest at smaller radii and near the poles, exhibiting fairly
strong radial and angular dependence. The agreement for Bϕ is independent of radius, which is to be expected
since Bϕ = −2 sin(θ) is independent of r. Although the exact behaviour is unique to our choice of function, we
can be confident by the magnitude of the standard deviation that the VSH decomposition is accurate in the r-
and ϕ-directions.

For the θ-component, we compare the results from the two methods described above. The standard deviation
across all coordinates is:

Original : 1.84197e-07

Finite differencing : 1.05419e-06

Figure 13.5 plots the standard deviation of the recalculated Bθ as a function of r and as a function of θ.
The finite differencing method is far less accurate than the original method, which is to be expected since the
calculation of numerical derivatives necessarily introduces an extra source of uncertainty. Curiously, the error
is greatest at the two radial endpoints.

When deciding which method to use for a divergenceless vector, we must consider whether guaranteeing
that its VSH series remains divergenceless is more important than modelling its θ-component (in axisymmetry)
to high precision. A nonzero divergence may grow over time and create significantly more issues than a method
which is simply less accurate. The issue could also be resolved by some divergence-cleaning algorithm, but our
numerical model does not yet feature one.

Perhaps surprisingly, it may be better not to use a specific expression for A(1),ℓ if the vector is divergenceless.
However, this introduces the risk of the recalculated vector having nonzero divergence. To that end, we now
calculate the resulting divergence of the vector using the original VSH decomposition method. Again, this can
be performed by either taking finite differences or by calculating the Chebyshev series of the coefficients. Note
that this already introduces a numerical error which may even dwarf the error in the original decomposition,
so we must be careful when drawing any conclusions.

In any case, we still require accurate calculation of numerical radial derivatives for the divergence and curl,
so the second two methods mentioned above are still needed elsewhere in the code. Of the two, it appears that
a finite-differencing method is the more accurate.

Recall from Corollary 32.5 that the B(1),ℓ coefficients already contain radial derivatives, and so dB(1),ℓ

dr
contains second radial derivatives. This causes numerical uncertainties to be far higher than if only first
derivatives were required.

The accuracy of a VSH decomposition depends on the truncation index ℓmax, but from Proposition 11.2 we
know that the coefficients for a static dipole are zero for ℓ > 1. We can only test for an optimum ℓmax when we
come to full evolutions of the rotating model. One simple way to tell is by how close the calculated coefficients
for the chosen ℓmax are to zero; if they are significantly nonzero, then increasing ℓmax is likely to have some
effect, but further investigation will be required to determine whether this is noise or useful data. As an initial
estimate, we find that ℓmax = 10 gives reasonable accuracy.
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Figure 13.4: Standard deviation of spherical polar components of a vector with nonzero divergence, recalculated
from its VSH series. Top: As a function of the radial coordinate (i.e. the standard deviation is taken across all
θ coordinates for a given r). Bottom: As a function of the polar coordinate θ.
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Figure 13.5: Standard deviation of θ-component of a vector with zero divergence, recalculated from its VSH
series, where the VSH series was taken by three different methods as described in the text. Top: As a function
of the radial coordinate (i.e. the standard deviation is taken across all θ coordinates for a given r). Bottom:
As a function of the polar coordinate θ.
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13.4 Testing divergence and curl

With the accuracy of the VSH series itself established, let us now calculate ∇ ·B and ∇×B for a test vector
B. To this end, we write the test code

Test codes/Test_divergence_and_curl_from_VSH_series_axisymmetric.cpp

which allows us to specify a vector B along with exact expressions for its divergence and curl. We then choose
which of the three methods outlined at the top of the chapter that we wish to use. However, we have already
discounted Chebyshev series as an option due to their poor accuracy; all that remains is a comparison between
the finite-difference expressions for the general case and the divergenceless case.

13.4.1 Divergenceless function

First, let us define a vector whose divergence is zero but whose curl is nonzero, allowing us to use both expressions
to test the accuracy of a calculation of the curl. We use a magnetic dipole with A(r, θ) = r3 sin2(θ), such that
Bϕ(r, θ) = r2 sin(θ) and

∇×B = 2 r cos(θ) er − 3 r sin(θ) eθ. (13.2)

The standard deviation in ∇ ·B and ∇×B using both methods is given in Table 13.4. Recall from Proposition
32.6 that B(1),ℓ only appears in the ϕ-component of ∇×B, so we should expect the same results for the r- and
θ-components. Both methods give around the same accuracy in

[
∇×B

]
ϕ
. The divergenceless method agrees

with ∇ ·B = 0 to within floating-point accuracy, as expected; the general method yields a standard deviation
in ∇ ·B of around 10−4.

Table 13.4: Standard deviation of numerically calculated divergence and curl of a divergenceless function
described in the text, using the VSH series with and without the specific expression for divergenceless functions.

Function General Divergenceless

∇ ·B 0.0001806640383908 4.39443763815612e-13[
∇×B

]
r

1.36013607233612e-05 1.36013607233612e-05[
∇×B

]
θ

2.0382825340586e-05 2.0382825340586e-05[
∇×B

]
ϕ

3.74476451401511e-05 3.63320888329485e-05

13.4.2 Function with nonzero divergence

It remains to test the accuracy of the expression for ∇ · B itself, which only applies to the general method
above. We use the function

B(r, θ) =
cos(θ)

r3
er +

2 sin(θ)

r3
eθ +

sin(2θ)

r3
eϕ, (13.3)

which has a similar form to a dipole and hence is reasonably realistic, but its divergence is nonzero:

∇ ·B =
3 cos(θ)

r4
. (13.4)

We obtain a standard deviation in ∇ ·B of 9.52748878910725e-05, which is around the same accuracy as the
value of ∇×B.

Finally, note that the divergenceless method will always yield ∇ ·B = 0 to within floating point accuracy,
even if the original function has nonzero divergence. This follows because we do not calculate B(1),ℓ(r) in its
own right, but only as a derivative of Br,ℓ(r).
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13.5 Monitoring divergence under time evolution

In our simulation, we will begin with a divergenceless function (the magnetic field B of a dipole) and allow
the values of this function to change over time as the system evolves. Even if the function should remain
divergenceless at all times, inaccuracies in the method may introduce a spurious nonzero value. Since ∇ · B
depends on the coordinates, we will in principle need to monitor its value at each gridpoint over time. Let us
instead develop a method of averaging the values over the entire domain, producing a single value that can
be plotted as a function of time. It will also be useful if this value is a dimensionless number, so that it is
unaffected by our choice of non-dimensionalisation made in §9.1.

Because the divergence is a first spatial derivative, we have [∇ ·B] = [B] [L]−1, where the square brackets
mean “dimensions of” and in particular [L]−1 means “dimensions of length, to the power minus one”. We divide
by the magnitude of the magnetic field and multiply by the radial coordinate at the same gridpoint at which
∇ ·B is being evaluated, to give the dimensionless quantity r∇·B

B .
Now, to account for all gridpoints, let us perform a volume integral of this quantity over the entire domain.

This will introduce a dimensional factor [L]3, so let us return to a pure number by dividing by the volume of
the domain V . Our quantity is then

1

V

∫
r∇ ·B
B

dV. (13.5)

For a spherical-shell domain stretching from radial coordinate rmin to rmax,

V =
4π

3

(
r3max − r3min

)
. (13.6)

The volume integral must be calculated numerically (discussed in §21.4 and §21.6), especialy since the
functional form of B will no longer be known once rotation starts (so ∇ ·B must also be calculated numerically
with methods discussed above). Naturally then, we do not expect the result to be accurate, but what is more
important is that it remains constant in time. The differentiation and integration methods, and the coordinates
themselves, do not change with time, so we can say with certainty that any observed time-variation in our
calculated quantity is due to ∇ ·B changing with time (at some or all gridpoints), hence a sign that spurious
nonzero divergence has been introduced by our evolutionary scheme.

This in itself cannot tell us where in the domain the nonzero divergence was introduced, but we will regularly
send values of ∇ ·B across the domain to the output CSV files, which can be analysed separately.
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13.6 Conclusion

We have shown that Chebyshev decompositions are not accurate enough to be used in our code, despite the
potential advantages they typically represent.

We have settled on a finite-difference scheme working to O(h8) for gridpoints within four steps of the
inner and outer boundaries, and to O(h6) for all intermediate points. The latter method uses a symmetrical
expression, while the former methods are offset. Using this hybrid system of finite difference expressions ensures
a roughly even numerical error across the domain.

We have shown that VSH decompositions for grid spacings typically used in our code yield standard devia-
tions in the curl and divergence of a vector of around 10−5 in code units.

Our fears at the beginning of the chapter about using second derivatives for the divergenceless VSH decom-
position have been eased. Since we have the capability to calculate first and second derivatives to any accuracy
required, we are able to get around this issue and use the divergenceless expression without fear of exacerbating
numerical error. This conclusion does not contradict the observation in §13.3 that the numerical error from
a divergenceless expression can be larger than for the general case; in that section, we were not considering
any other variables. Here, the numerical error in the θ-direction dominates over that in the r-direction, so
effectively the two radial finite differencing methods have the same accuracy. The knowledge that errors are
now dominated by the θ-direction validates our choice of maximum accuracy of radial derivatives in §13.1.

Were we to persist with the general expression, we see from the analysis in this chapter that the introduced
divergence would be around 10−4. This is reasonably low, but an order of magnitude higher than the error in
the curl, so may well become the dominant source of error when compounded over multiple timesteps.

We have developed a simple method of monitoring how ∇ ·B evolves over time, which may be used as an
early warning sign of inaccuracies in our numerical calculation of spatial derivatives.

We conclude that finite-difference VSH decompositions should be used at all times, and when we expect the
vector to be divergenceless, we should use the divergenceless-specific decomposition.
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14 Implementing magnetospheric twists

In this chapter, we briefly describe how a magnetospheric twist might be modelled within the code. Twists
are implemented by altering the rotation rate Ω within a finite region of the magnetosphere r ∈ (rL, rU) and
θ ∈ (θL, θU), where the subscripts L and U refer respectively to lower and upper limits. The twist can take
arbitrary values at any gridpoint within this region, allowing for complicated angular dependencies to be trialled
in order to better approximate physical models of a twist.

As with rotation, the twist is implemented linearly over a finite number of timesteps in order to simulate
a gradual onset, and better preserve smooth evolution of the magnetosphere. We recommend to only begin
the ramp-up of the twist after full rotation has been reached, but the code is built so that the rotation and
twist ramp-up intervals are independent of each other. If the star is slowly rotating, it may be preferable to
approximate it as non-rotating; the independence of the ramp intervals easily allows this.

We are especially interested in twists that break the north-south symmetry of the magnetosphere, so rec-
ommend that twists are only located within the northern hemisphere to minimise any risk of “cancelling out”
between points above and below the equator. This is achieved simply by maintaining θU ≤ π

2 .
Simply imposing a twist in the defined region by adding it to the base rotation rate may cause issues with

jump discontinuities in Ω near the boundaries of the twisted region. To counter this, let us develop a few
rudimentary smoothing functions which provide a more gradual onset as one moves from outside to inside the
twisted region in any direction.

The importance of smoothing the twist grows with resolution of the code: if we have few gridpoints, the
action of a smoothing function across any particular gridpoint will be diluted across its extent. We will see in
Chapter 15 that numerical instabilities limit the resolution at which our code runs effectively, so perhaps the
implementation of a smoothing region may not be so crucial in our situation.

14.1 Smoothing the twist over the coordinates in 1D

Consider a 1D coordinate system x and a twisting function f(x) that affects the rotation rate Ω. In the
following examples, suppose that we initially have Ω = 0 everywhere, and wish to impose a twist that will yield
Ω = A = const for some finite range of x-values. If there were no smoothing method, the graph of f(x) would
appear as a step function. We will describe functions which smooth the transition from Ω = 0 to Ω = A and
the transition back to Ω = 0 by applying the change in Ω gradually across a finite region of x each side of the
twisted region. Our functions may be easily extended to situations where Ω is an arbitrary function of x in
both the twisted and non-twisted regions.
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14.1.1 Linear ramp in 1D

Perhaps the simplest smoothing function is a linear increase from x = 0 at the boundary to x = A at some
chosen point within the region, with a similar linear decrease to zero at the opposite boundary.

Proposition 14.1. Let A ∈ R and let xL, xA−, xA+, xU ∈ R such that xL < xA− < xA+ < xU. Then,

f(x) =



A

xA− − xL

(
x− xL

)
xL ≤ x ≤ xA−,

A xA− ≤ x ≤ xA+,

A

xA+ − xU

(
x− xU

)
xA+ ≤ x ≤ xU,

0 otherwise,

(14.1)

represents a function which rises linearly from 0 at x = xL to A at x = xA−, maintains this value until
x = xA+, and falls linearly to 0 at x = xU.

Proof. The straight line between two pairs of gridpoints (x1, y1) and (x2, y2) has equation

y − y1 = m(x− x1), (14.2)

or equivalently y − y2 = m(x− x2), where

m =
y2 − y1
x2 − x1

(14.3)

is the gradient of the line.
Let us first fit a straight line between the points (xL, 0) and (xA−, A). It is simplest if we use the first point,
not the second, to find the equation of the line:

y − 0 = m(x− xL), (14.4)

⇒ y = m(x− xL). (14.5)

The gradient is

m =
A− 0

xA− − xL
=

A

xA− − xL
. (14.6)

These combine to give the expression for the region x ∈ [xL, xA−].
Second, we fit a straight line between (xA+, A) and (xU, 0). This time it is easier to use the second point:

y − 0 = m(x− xU), (14.7)

⇒ y = m(x− xU). (14.8)

The gradient is

m =
0−A

xU − xA+
=

A

xU − xA+
. (14.9)

These combine the give the expression for the region x ∈ [xA+, xU]. Finally, the function is simply constant
for x ≤ xL, for x ∈ [xA−, xA+] and for x ≥ xU. Combining the function behaviour for all of these subintervals,
and noting that the expressions indeed match at the transition points between intervals, i.e. f(x) = 0 for
x ∈ {xL, xU} and f(x) = A for x ∈ {xA−, xA+}, we obtain the given result.
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While such a function is simple to understand and implement, we see that

df

dx
=



A

xA− − xL
xL ≤ x ≤ xA−,

0 xA− ≤ x ≤ xA+,

A

xA+ − xU
xA+ ≤ x ≤ xU,

0 otherwise,

(14.10)

and so we will encounter four discontinuities in the derivative at x ∈ {xL, xA−, xA+, xU}. This is easily seen
from the graph of the function in Figure 14.1.

Figure 14.1: Example of a linear smoothing function over one dimension, generated by Eq. (14.1). The ramp-up
and ramp-down rates are exaggeratedly slowed and deliberately chosen to be different, for illustrative purposes.
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14.1.2 Exponential decay in 1D

We can partially counter the discontinuities in the derivatives above by using an exponential decay to smooth
the end of the ramp-up before the function reaches A, and the start of the ramp-down once the function begins
to decrease.

Proposition 14.2. Let A ∈ R, let p, q ∈ (0, 1) and let xL, xp, xq, xU ∈ R such that xL < xp < xq < xU.
Then,

f(x) =


A
[
1− e−B(x−xL)

] [
1− e−C(−x+xU)

]
, xL ≤ x ≤ xU,

0 otherwise,

(14.11)

where

B = − 1

xp − xL
ln(1− p), (14.12)

C = − 1

−xq + xU
ln(1− q), (14.13)

represents a function which rises from 0, tails off arbitrarily close to A (from below), maintains values close
to A, before falling back to 0, all between lower and upper limits xL and xU, with ramp-up and ramp-down
controlled by f(xp) = pA and f(xq) = qA.

Proof. We know that the function

f(x) = A
[
1− e−Bx

]
(14.14)

represents a smooth increase from 0 to A for x ≥ 0, with ramp length controlled by B: larger B causes a more
sudden ramp. To avoid the function falling to −∞ for x ≪ 0, we can use cases to set f(x) = 0 for x < 0. To
begin the ramp at a particular lower limit xL, we simply use the rule for shifting graphs to the right and replace
x by x− xL. This yields

f(x) =

{
A
[
1− e−B(x−xL)

]
x ≥ xL,

0 otherwise.
(14.15)

To control the value of B, and hence the sharpness of the ramp-up, suppose that we wish for the function to
rise to some fraction1 p ∈ (0, 1) of its maximum value A at the value x = xp > xL, where p, xp are both free
parameters. Then, we have

f(xp) = pA = A
[
1− e−B(xp−xL)

]
, (14.16)

which solves for B to give the result in Eq. (14.12). Now, functions are reflected in the y-axis by replacing f(x)
with f(−x). Then,

g(x) =

{
A
[
1− e−C(−x+xU)

]
x ≤ xU,

0 otherwise,
(14.17)

represents a smooth decrease from A to 0 at upper limit x = xU. To control the tailing-off length, suppose
that we wish the function to fall to some fraction q ∈ (0, 1) of its maximum value A at x = xq < xU, so that
g(xq) = qA. This yields the value of C in Eq. (14.13). Finally, we can multiply Eqs. (14.15) and (14.17) with
only a single occurrence of A to obtain a function which smoothly ramps from 0 at x = xL toward A, and then
smoothly decreases to zero at x = xU. The ramp-up speed is controlled by B and the ramp-down speed by C.

1E.g. p = 0.99 means the function will rise to 99% of its maximum value.
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This function is plotted in Figure 14.2 with its significant points highlighted, and in Figure 14.3 with various
ramping rates. Higher B and C yield faster, less smooth ramps: since B ∼ 1

xp
, increasing B causes xp to decrease

and so close-to-peak values are reached sooner, and the same is true for C. In particular, as B,C → ∞, the
exponentials tend to zero and we recover the non-smoothed function f(x) = A for x1 ≤ x ≤ x2.

We have f(xL) = f(xU) = 0, so the field values will be smooth across the boundary if they are roughly
zero outside the twisted region. If there is some residual field value outside the region, this may be accounted
for by simply adding this residual value to all points within the twisted region. However, there is a potential
discontinuity in the derivative at the boundary since we might expect the fields to be roughly constant (zero
derivative) in a small region surrounding the edge of the boundary, but there is a ramp within the twisted
region. This is a potential limitation of our developed smoothing function. The potential discontinuity in the
derivative can be appreciated from Figures 14.2 and 14.3.

A further limitation is that, although the function reaches 0 at the endpoints, it never actually reaches
f(x) = A because the function is asymptotic with the line y = A. We must be satisfied to get “arbitrarily
close” to A within the twisted region; we do not attempt to quantify how close the function gets.

Figure 14.2: Example of an exponential smoothing function over one dimension, generated by Eq. (14.11). The
ramp-up and ramp-down rates are exaggeratedly slowed and deliberately chosen to be different, for illustrative
purposes.
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Figure 14.3: Example of an exponential smoothing function over one dimension, generated by Eq. (14.11).
various values of the parameters B and C are plotted, to demonstrate their effect on the ramping rate.

96



University of East Anglia Neutron star magnetospheres

14.1.3 Hyperbolic tangent in 1D

Let us try to address the limitations of the exponential smoothing function above by constructing an alternative
using hyperbolic tangents, which offer both a smooth onset and a smooth cessation of the ramp.

Proposition 14.3. Let A ∈ R : A > 0, let p, q ∈ (0, 1) and let xL, xp−, xp+, xq−, xq+, xU ∈ R such that
xL < xp− < xp+ < xq− < xq+ < xU. Then, a smooth ramp-up from x ≈ 0 to some value x ≈ A and back
to x ≈ 0, roughly within the interval (xp−, xq+), is given by

f(x) =


A

4

[
tanh

[
B(x− xp)

]
+ 1
] [

tanh
[
C(−x+ xq)

]
+ 1
]

xL ≤ x ≤ xU,

0 otherwise,

(14.18)

where

xp =
xp− + xp+

2
, (14.19)

xq =
xq− + xq+

2
(14.20)

are the two values for which f(x) = A
2 , and

B =
2

xp− − xp+
tanh−1(2p− 1), (14.21)

C =
2

xq− − xq+
tanh−1(2q − 1). (14.22)

Proof. We know that the function

f(x) = A tanh(Bx) (14.23)

represents a smooth increase from −A at x → −∞ to A at x → ∞, crossing through 0 at x = 0, with ramp
length controlled by B (larger B causes a more sudden ramp). Adding a constant factor 1 and scaling by 1

2 ,
the function

f(x) =
A

2

[
tanh(Bx) + 1

]
(14.24)

represents a smooth increase from 0 to A. As before, we translate the function by replacing the argument by
x−xp, but this time xp refers to the value of x at which f(xp) =

1
2 , not the value at which we wish ramp-up to

begin. Since the function is only asymptotic with f(x) = 0 and f(x) = A, we can only choose a value of x at
which the ramp has already progressed by a certain fraction p ∈ (0, 1). Define xp− to be the value of x at which
the function has increased to p of its maximum, f(xp−) = pA, and xp+ to be the value at which the function
is below its maximum by the same factor, f(xp+) = (1− p)A. These are illustrated in Figure 14.4. Now, since
the hyperbolic tangent is odd, the “midpoint” xp of the ramp-up is simply the mean of these points:

xp =
xp− + xp+

2
, (14.25)

f(xp) =
A

2
. (14.26)

We can use this to find the required value of B given chosen p, xp−, xp+:

f(xp−) = pA =
A

2

[
tanh

[
B(xp− − xp)

]
+ 1
]
. (14.27)
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Use that

xp− − xp = xp− − xp− + xp+
2

=
xp− − xp+

2
(14.28)

and solve for B to obtain Eq. (14.21).
A function which ramps down from A to 0 is given by reflecting in the y-axis, that is, by replacing f(x) by
f(−x). Allowing for new variables q, xq−, xq+ such that2 f(xq−) = (1−q)A and f(xq+) = qA, a smooth decrease
is given by the function

g(x) =
A

2

[
tanh

[
C(−x+ xq)

]
+ 1
]
. (14.29)

The required value of C is found by setting f(xq+) = qA. We multiply these functions together to obtain a single
function which begins with values near 0, smoothly ramps up to maintain values around A, and then smoothly
ramps down to near 0. Finally, we apply cases to ensure that the function is only defined for x ∈ (xL, xU).

The function described by Eq. (14.18) is plotted in Figure 14.4. The ramp-up rate is controlled by three
variables p, xp−, xp+ such that f(xp−) = pA and f(xp+) = (1 − p)A; that is, we choose some fraction p of
the ramped-up value A and then decide on the values xp−, xp+ at which we wish the function to obtain this
fraction. Similarly, the ramp-down rate is controlled by three variables q, xq−, xq+ such that f(xq−) = (1− q)A
and f(xq+) = qA.

The requirement of more variables makes this slightly more complicated than the exponential function in
§14.1.2, but both the ramp-up and ramp-down have smooth onsets and ends. This avoids discontinuities in the
first derivative at the boundaries of the twisted region. However, we have now introduced a discontinuity in the
field values themselves at the boundary because f(xL) > 0 and f(xU) > 0.

This hyperbolic tangent function is asymptotic with the lines y = A and y = 0, so not only does it fail
to address the issue of the exponential function never reaching A, it never reaches 0 either. Although this
may introduce a jump discontinuity in the fields at the boundaries, we claim without proof that the function
gets “close enough” to 0 and to A for it not to become an issue. Moreover, the fact that our six parameters
p, xp−, xp+, q, xq−, xq+ offer so much control over the ramp means we are likely to find values for which this
effect is insignificant. Potential jump discontinuities can be mitigated by choosing small p, q (at the cost of a
sharper ramp-up and ramp-down) and choosing xp−, xq+ to be far from the boundaries of the twisted region
(at the cost of a smaller region over which f(x) ≈ A).

2This may seem “the other way around” to our definition of xp−, xp+. We find it more logical in practice to define the quantities
such that xp− < xp < xp+ and xq− < xq < xq+.
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Figure 14.4: Example of a function which smoothly rises from near 0 to A and back over a chosen interval, in
one dimension, using hyperbolic tangents, generated by Eq. (14.18). The ramp-up and ramp-down rates are
exaggeratedly slowed and deliberately chosen to be different, for illustrative purposes.

14.1.4 Gaussian function in 1D

Perhaps the quintessential function which smoothly ramps from 0 to a maximum A and back is a Gaussian

f(x) = A exp

(
− (x− x0)

2

2σ2

)
, (14.30)

with maximum obtained at x = x0 such that f(x0) = A, and ramp-up controlled by σ. However, as with
the hyperbolic tangent in §14.1.3, the function is asymptotic with f(x) = 0 and so the enduring issue of jump
discontinuities near the boundary is not addressed; further, the values at which the ramp-up begins and the
ramp-down ends are difficult to quantify, as before. Its greatest limitation for our application is that it does
not plateau near its maximum value A as our previous two constructed functions do, instead reaching it at the
single point x0 and immediately decreasing for higher x. We do not consider the Gaussian function further.

14.1.5 Choice of 1D function

To decide upon a smoothing function to use, we might wish to test various instances of the above functions
against each other with a simple twist, and compare which smoothing function allows the strongest twist to
persist for the longest time. However, there are so many variables at play3 that it becomes increasingly difficult
to guarantee a fair comparison. For the same reason, either choice will still offer a large amount of fine-tuning
to the user.

With this in mind, we forego quantitative tests and conclude based on our arguments in the preceding
subsections that the exponential is the optimum smoothing function to implement in the evolution code. It has
no jump discontinuities in the function itself, those in the derivative only appear at the onset of the ramp (i.e.
not as it tails off near A) and its ramp rate is easily tuned by our defined parameters.

3Six per dimension, namely p, q, xL, xp, xq, xU, for the exponential decay and six per dimension, namely p, q, xp−, xp+, xq−, xq+,
for the hyperbolic tangent.
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14.2 Smoothing the twist over the coordinates in multiple dimensions

For smoothing over multiple dimensions, we simply multiply by similar factors in the other coordinates. For
example, consider a two-dimensional smoothing function in axisymmetric spherical polar coordinates f(r, θ).
Choose the boundaries of the twisted region to be the points r1, r2, θ1, θ2. The rates of ramp-up and ramp-
down are controlled by specifying the fractions p, q, s, t and then by choosing coordinate values rp, rq, θs, θt with
r1 < rp < rq < r2 and θ1 < θs < θt < θ2 over which the ramps occur.

These smoothing functions may be applied to any twist, not just one with constant Ω. If the twist is
described by some function g(r, θ), this can be substituted for the constant leading factor A in the equation.

14.2.1 Exponential function in 2D

For smoothing with exponential functions,

f(r, θ) =

{
A
[
1− e−B(r−r1)

] [
1− e−C(−r+r2)

] [
1− e−D(θ−θ1)

] [
1− e−E(−θ+θ2)

]
r1 ≤ r ≤ r2 and θ1 ≤ θ ≤ θ2,

0 otherwise,

(14.31)

where

B = − 1

rp − r1
ln(1− p), (14.32)

C = − 1

−rq + r2
ln(1− q), (14.33)

D = − 1

θs − θ1
ln(1− s), (14.34)

E = − 1

−θt + θ2
ln(1− t), (14.35)

with free parameters p, q, s, t, rp, rq, θs, θt, r1, r2, θ1, θ2 controlling the ramp-up and ramp-down in both dimen-
sions. Note that the asymptotic nature of the exponential smoothing function is exacerbated as we move from
1D to 2D, so we might expect comparatively less gridpoints within the twisted region to be “arbitrarily close”
to A.

14.3 Testing

The smoothing function Eq. (14.31) is used in our evolution code to smooth over the coordinates the contribution
of the twist to the electric field, which is done at each timestep. This is achieved in the functions

void setup_twist_final_Omega()

void ramp_up_electric_fields_for_twist()

We set p = q = s = t to be the same for simplicity. Similarly, we only allow the unsmoothed twist to have a
constant value A, as opposed to being a function of the coordinates. The functions can easily be modified if
required to relax these restrictions. The controlling parameters are set in Header_Initial_Conditions_xx.h.
For this test, let us choose A = 0.01, nr = 50, nθ = 101, p = q = s = t = 0.99, r1 = rmin, r2 = rmax,
rp = rmin + 0.1(rmax − rmin), rq = rmax − 0.1(rmax − rmin), θ1 = 30◦, θ2 = 40◦, θs = 34◦, θt = 36◦.

To verify that the function is implemented correctly, we write the test codes

Test codes/20241015_Test_twist_smoothing_function.cpp

Test codes/20241015_Test_twist_smoothing_function_plot.py

to calculate values of the smoothed twist using the functions from the evolution code, save them to a CSV

file and plot a heatmap of their value normalised to the unsmoothed maximum A. The heatmap is shown in

100



University of East Anglia Neutron star magnetospheres

Figure 14.5; note the gradual onset near all four boundaries of the region within which the twist is defined, and
also the relatively large region at which the twist is “arbitrarily close” to its desired maximum value, i.e. the
normalised value is near unity. The maximum smoothed function value is 0.00993643, which is around 99.3%
of the chosen A, showing that the asymptotic nature of the smoothing function has little detrimental effect on
the final values. Note that there is no twist outside the defined twist region, as required.

The code may easily be modified to instead accommodate other functions, by modifying the definition of
the function setup_twist_final_Omega().

Figure 14.5: Value of 2D exponential smoothing function Eq. (14.31) normalised to its unsmoothed value,
applied to a small region (r1, r2, θ1, θ2) within the full domain of the evolution code. The twisted region is
annotated with a grey dashed box.
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15 Determining suitable number of gridpoints

Let us now decide on suitable numbers of gridpoints for both the radial and angular directions. There is always
a tradeoff between execution speed (equivalently computer memory) and accuracy. In principle, one may wish
to reduce the resolution if runtimes are too slow, especially for bulk simulations, or increase the resolution if
the results are not sufficiently accurate. However, in reality it is not so simple.

For one, we expect diminishing returns as resolution increases, so at some point disproportionately more
gridpoints will be needed for meaningful improvements in accuracy. However, we must also be aware of numerical
instability. If there exists some instability in the method, then paradoxically we may expect more well-behaved
evolution by using fewer gridpoints (Axelrad, 1998). It is easy to fall into the trap of “throwing more resolution
at the problem” when results are not as expected, but if the underlying issue is due to instabilities then this
can actually exacerbate the situation.

In the tests in this chapter, we consider a dipole which ramps-up to a constant angular velocity and with
no twists. We hold the following parameters constant, and vary Nr and Nθ.

Parameter values (given in code units, then in SI units)

P_final : 44.9688687 0.0015

Omega_final : 0.139723001463446 4188.79020478639

r_min, r_max : 1 10.0020751953125

Timestep delta_T : 0.0030517578125 1.01795683349045e-07

Length of simulation : 6 0.000200138457118891 steps: 2000

ell_max : 20

Ramp start : 1 0.0030517578125

Ramp stop : 150 0.457763671875

use_outer_sponge_layer: 1

sigma_0, gamma, beta : 0.8 6 4

15.1 Number of radial gridpoints

We perform three evolutions with Nr = 25, Nr = 50 and Nr = 100. In all of these we use Nθ = 1001, far higher
than the values later considered in §15.2; this is a relic of attempting to overcome troublesome evolutions by
increasing resolution, as alluded to above.

The variation of total energy U(T ) with time1 T is plotted in Figure 15.1. The value is calculated by the
volume integrals in Eqs. (11.34) and (11.37), and we can calculate the exact value by Eqs. (11.47) and (11.40).

At T = 0, the relative error of U(T ) goes as N−2
r (Table 15.1), to be expected since it is calculated by a

numerical volume integral. At t = 0 the relative error for Nr = 25 is around 4.17 times that for Nr = 50,
which in turn is around 4.08 times that for Nr = 100. This is less accurate than the O(∆r6) radial finite
difference scheme we chose in §13.1, so our choice of radial finite differencing method is not a limiting factor in
the accuracy of our calculations.

As evolution progresses, the graph shows that the value of U is still generally closer to the exact value as
resolution increases, and that there are diminishing returns. In all cases, the calculated total energy lags behind
the exact value once ramp-up starts, and the lagging persists for longer as more gridpoints are used. Inevitably,
some sort of blow-up occurs where the calculated value rapidly increases with time. This happens later for
higher resolution and is less intense.2 All of these point to the accuracy of the evolution increasing with Nr, but
the inevitable blow-up points to some underlying numerical instability which cannot be avoided by increasing
radial resolution.

1In the code, we denote the time coordinate by T because the lower-case value t (short for theta) is already used for the polar
coordinate θ. See §20.7. Let us reflect this throughout the thesis by denoting time T instead of the usual t.

2The values to which the energy suddenly spikes are lower for the increased-resolution runs.
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Table 15.1: Relative error in total energy for various numbers of radial gridpoints.

Initial, T = 0 After ramp-up, T = 0.457763671875
Nr Calculated U Relative error Calculated U Relative error

25 5.777291159 0.3806059101 8.901958533 0.6600056765
50 4.566346718 0.09122512492 5.377648162 0.002804769694
100 4.278138909 0.02235177348 4.397623266 −0.1799467996

Exact 4.184605554 5.362607284

Figure 15.1: Total energy as a function of time for various numbers of radial gridpoints.

Code accuracy can also be measured by ensuring that no divergence leakage occurs, which we quantify
across the entire domain by a volume integral of ∇ ·B, Eq. (13.5). The results are plotted in Figure 15.2. We
plot the absolute value since the corrective mechanisms from our third-order Adams-Bashforth time integration
method lead to flips in sign at each timestep. We expect values to be close to zero and remain constant over
time. As Table 15.2 shows, the result at T = 0 is near zero in all cases; it is nearer to zero as Nr decreases,
not increases, but this may simply be due to the volume integral being less accurate for fewer gridpoints. At
the end of ramp-up (T ≈ 0.46 light-crossing times), the value has already grown significantly to 10−4 − 10−3

and there is no longer a clear trend with Nr. At twice the ramp-up time (T ≈ 0.92), the value appears to
have decreased for Nr = 25 and Nr = 50, but the figure shows that fluctuations are beginning to dominate as
the fully-signed value oscillates around zero. Beyond this, there is no discernable difference between the three
Nr tested, although interestingly the simulation for Nr = 100 had to be terminated early since the evolution
became dominated by nan values. All of this is consistent with some instability in the evolution, which cannot
be prevented by increasing radial resolution.
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Table 15.2: Absolute value of dimensionless volume integral of ∇ ·B as a function of time, for various numbers
of radial gridpoints.

Nr T = 0 T = 0.457763671875 T = 0.91552734375

25 3.29513987898665e-15 0.0019056898700025 0.00076294184054962
50 1.88484521320713e-15 0.00471827173856188 0.000350499547531265
100 1.30098354243529e-14 0.000601661204676431 0.131333682616569

Figure 15.2: Dimensionless volume integral of∇·B as a function of time for various numbers of radial gridpoints.

Finally, let us check the standard deviation of the VSH decomposition of each field component, compared
to its calculated value, as a function of time. The VSH decompositions depend on integrals over θ and we
take radial derivatives as part of the evolution, so the accuracy of evolution depends on both coordinates. The
standard deviation is plotted as a function of time for each vector component in Figure 15.3. At early times
there is little discernible difference between the simulations for Nr = 25 and Nr = 50, but for Nr = 50 the
standard deviation generally begins its uncontrollable increase earlier. The run with Nr = 100 causes the
VSH decompositions to become far less accurate as time progresses. Again, this is consistent with a numerical
instability.

104



University of East Anglia Neutron star magnetospheres

Figure 15.3: Standard deviation of VSH decomposition of field components, compared to the current numerical
value, as a function of time for various numbers of radial gridpoints.
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15.2 Number of angular gridpoints

We perform four evolutions with Nθ = 25, Nθ = 49, Nθ = 101 and Nθ = 201. These values are all of the form
4n+ 1, n ∈ Z, which we find gives the best performance.

The variation of total energy with time is plotted in Figure 15.4. At T = 0, the four simulations yield
similar results but all displaced from the exact value, indicating that error at this point is dominated by the
radial coordinate. If we correct for radial error by taking the values for Nθ = 201 to be exact, then the relative
error roughly goes as N−2

θ : that for Nθ = 25 is around 4.18 times that of Nθ = 49, which is around 5.45 times
that of Nθ = 101.

The blow-up in energy highlighted in §15.1 is delayed as Nθ increases, but its intensity appears unaffected.
We suggest that the numerical instability is radial in nature, and that increasing angular resolution may help
to stave it off, but it is still inevitable. The total energy at the end of ramp-up is closer to the exact value as Nθ

increases, but is largely affected by having already begun to blow up. Still, the relative error taking Nθ = 201
to be exact, is around 3.49 times higher for Nθ = 25 than for Nθ = 49, which is around 4.72 times higher than
for Nθ = 101, so the scaling as N−2

θ appears to be preserved as evolution progresses.

Table 15.3: Relative error in total energy for various numbers of angular gridpoints.

Initial, T = 0 After ramp-up, T = 0.457763671875
Nθ Calculated U Relative error R.e. to Nθ = 201 Calculated U Relative error R.e. to Nθ = 201

25 4.559840711 0.08967037685 −0.001405061965 7.701469166 0.4361426742 0.344365137
49 4.564721062 0.09083664014 −0.0003362757984 6.29414423 0.1737097081 0.09870310299
101 4.565974941 0.09113628098 −0.0000616791601 5.848491222 0.09060591469 0.02091010612
201 4.566256584 0.0912035855 5.728703426 0.06826831095

Exact 4.184605554 5.362607284

Let us now check the constancy of our volume integral of ∇ · B with time. At T = 0, the result is near
zero for all cases except Nθ = 25 (Table 15.4), and is nearer to zero as Nθ increases, as expected. At later
times, fluctuations dominate as we saw for the radial test. Perhaps Figure 15.5 may suggest that the value
grows at a slower rate as Nθ increases, and hence remains more well-behaved for longer, but the table shows
that fluctuations make direct comparisons between runs at any single timestep impossible. We conclude that
the angular resolution is not the limiting factor in the behaviour of ∇ ·B with time.

Table 15.4: Absolute value of dimensionless volume integral of ∇ ·B as a function of time, for various numbers
of angular gridpoints.

Nθ T = 0 T = 0.457763671875 T = 0.91552734375

25 0.000191827912407487 0.001188842800387 0.237620633666942
49 6.26071545501263e-16 0.00542484313333733 0.0956445523892594
101 3.83966479295651e-15 0.0263119555645653 0.068276040844469
201 1.90131289900207e-15 0.00702932670973856 0.0190707697404965

The standard deviation of the VSH decomposition of each vector component, compared to its calculated
numerical value, is plotted in Figure 15.6. The accuracy of the VSH decomposition remains higher for longer
as Nθ increases, but we see diminishing returns between Nθ = 101 and Nθ = 201.

We choose Nr = 50 and Nθ = 101 as a compromise between code performance and accuracy. Accuracy may
be slightly improved by increasing Nθ, but increasing Nr may cause further issues. The code is limited by the
existence of some numerical instability. These coordinate choices correspond to a CFL maximum timestep of
(∆t)max ≈ 0.0314 by Eq. (12.35), comfortably above our chosen timestep.
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Figure 15.4: Total energy as a function of time for various numbers of angular gridpoints.

Figure 15.5: Dimensionless volume integral of ∇ · B as a function of time for various numbers of angular
gridpoints.
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Figure 15.6: Standard deviation of VSH decomposition of field components, compared to the current numerical
value, as a function of time for various numbers of angular gridpoints.
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Part III

Simulations and results



16 Stationary dipole

In these chapters, we describe the results of three rudimentary simulations: a stationary magnetic dipole, a
rotating dipole (simulating a pulsar) and a stationary dipole which develops a simple magnetospheric twist
(simulating a magnetar).

First, let us consider a magnetic dipole without rotation. In reality this is a steady, stable configuration
which we expect to persist for all times without changing. Thus, a simulation which persists for long times
without significant deviation in the values of the magnetic or electric fields may be used as an indicator that
the numerical scheme is stable. We use the following parameters:

P_final : 44.9688687 0.0015

Omega_final : 0 0

R_LC_max : 0 0

r_min, r_max : 1 10.0020751953125

n_r, delta_r : 50 0.1837158203125

n_t, delta_t : 101 0.0314159265358979

Timestep delta_T : 0.0030517578125 1.01795683349045e-07

Length of simulation : 9 0.000300207685678337 steps: 3000

ell_max : 20

Ramp start : 100001 305.178833007812

Ramp stop : 100150 305.633544921875

use_outer_sponge_layer: 1

sigma_0, gamma, beta : 0.8 6 4

To disable rotation, we set the times for the start of rotation and twist ramp-up to after the simulation has
finished, i.e.

T_index_rotation_ramp_start = T_index_max + 1;

T_index_rotation_ramp_stop = T_index_max + 1;

T_index_twist_ramp_start = T_index_max + 1;

T_index_twist_ramp_stop = T_index_max + 1;

It may be tempting to simply set P_SI_final = 0 and twist_final_Omega = 0, but recall from §9.3 that a
separate set of outer boundary conditions are used once rotation ramp-up begins.

In addition to ℓmax = 20, we also perform a simulation with ℓmax = 1, since from Proposition 11.2 this
should be enough to exactly reproduce the magnetic field. Comparing the two, we can characterise the extent
to which numerical error from overfitting with high values of ℓ affects simulations.

First, let us consider the values of the fields at an arbitrarily chosen gridpoint as a function of time,

( r[20], theta[20] ) = ( 4.67431640625, 0.644026493985908 )

These can be compared to the known exact values for a non-rotating aligned dipole, Eq. (11.3) with A(Ψ) = 0.
Figure 16.1 shows the time-evolution of Br, Bθ and Eϕ at this gridpoint; all other field components remain zero
throughout the evolution, as expected.

The values of Br and Bθ remain close to their theoretical values up to T ≈ 2, after which numerical instability
begins to affect the evolution. Our third-order Adams-Bashforth time integration works well to minimise noise
growth by causing the field values to oscillate about their exact values. However, by T ≈ 4 the instability
becomes too great; this is further indicated by the development of a nonzero Eϕ. Limiting ℓmax = 1 yields little
qualitative difference, giving confidence that the numerical scheme is relatively insensitive to the choice of ℓmax.

This result shows that the code is capable of relatively stable evolution, at least for a few light-crossing
times, and that the time-evolution method works to reduce the growth of numerical errors.
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Figure 16.1: Time-evolution of Br, Bθ and Eϕ at a single gridpoint for the simulated non-rotating dipole.

A similar story is told by the standard deviation of the VSH decomposition, Figure 16.2. Here, we see that
the uncontrollable rise occurs first in Eϕ, which should not be surprising since nonzero Eϕ is a direct result of
numerical error in the time-evolution. We also see that Bθ begins to lose accuracy long before Br, after around
2 light-crossing times. In these figures, ℓmax = 1 yields far more accurate VSH decompositions.
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Figure 16.2: Standard deviation of VSH decomposition of field components, compared to the current numerical
value, as a function of time, for the simulated non-rotating dipole.

Figures 16.3, 16.4 and 16.5 explore this in more detail. The north pole θ = 0 is not included due to the
half-gridpoint offset (§12.2). The configuration remains symmetric about the equatorial line θ = π

2 at all times.
For Br, the field is largely unchanged until T ≈ 4, after which the values near the outer boundary begin to

oscillate wildly around zero. This region of gridpoints with high |Br| begins to proliferate outwards.
For Bθ, the onset is much sooner. There also develops a region of large Bθ near the outer boundary at

T ≳ 4, which grows in magnitude and extent.
Very early in the evolution, regions of significantly nonzero Eϕ develop near both the inner and the outer

boundary. Although Eϕ = 0 at rmin and rmax are boundary conditions we enforce (§9.2 and §9.3), adjacent
values are not controlled for. These grow both in magnitude and in extent over time, eventually meeting at
T ≈ 2.

One potential cause of this finer structure that appears may be an unrealistically high ℓmax. Note however
that it is concentrated near the inner boundary, where the density of gridpoints is far higher due to our linear
spacing (§12.2). Perhaps a smoother evolution may be gained by employing some other coordinate system;
Parfrey (2012) explores various mappings in both the radial and angular directions which concentrate gridpoints
where they are needed. As discussed in $19.6, implementing nonlinear coordinate mappings is possible with
our code, but would require substantial redevelopment and hence this was not explored further.
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Figure 16.3: Contour plot of Br at various timepoints for the non-rotating model.
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Figure 16.4: Contour plot of Bθ at various timepoints for the non-rotating model.
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Figure 16.5: Contour plot of Eϕ at various timepoints for the non-rotating model.
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Figures 16.6 and 16.7 plot the total energy and the non-dimensionalised volume integral of ∇ ·B, tests of
the numerical stability of the simulation and its susceptibility to leaking of energy out of the domain. Both
figures support our earlier findings that evolution is stable for a few light-crossing times. They also suggest that
refining ℓmax can have a stabilising effect if physical arguments can be made to limit it, but it cannot prevent
the simulation from blowing up, only delaying it.

Figure 16.6: Total energy as a function of time for the non-rotating model.

Figure 16.7: Normalised volume integral of ∇ ·B across the domain as a function of time for the non-rotating
model.
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17 Pulsar model (rotating dipole)

Having assessed the stability of the code for the simplest model in Chapter 16 and concluded that it is sufficient
for our purposes, let us now allow the model to rotate in order to simulate a Goldreich-Julian pulsar. We use
the following parameters:

P_final : 44.9688687 0.0015

Omega_final : 0.139723001463446 4188.79020478639

R_LC_max : 7.15701773885541 71570.1773885541

r_min, r_max : 1 10.0020751953125

n_r, delta_r : 50 0.1837158203125

n_t, delta_t : 101 0.0314159265358979

Timestep delta_T : 0.0030517578125 1.01795683349045e-07

Length of simulation : 9 0.000300207685678337 steps: 3000

ell_max : 20

Ramp start : 1 0.0030517578125

Ramp stop : 150 0.457763671875

use_outer_sponge_layer: 1

sigma_0, gamma, beta : 0.8 6 4

Figure 17.1 shows the field components evaluated at the same gridpoint chosen in the previous evolution
(Chapter 16). Interestingly, the simulation appears to run stably for longer than the non-rotating case, with
significant deviations in the magnetic field values only after around T ≳ 6. The electric field follows the
theoretical value Eq. (11.28) very closely during the ramp-up, and remains stable at this value for around two
light-crossing times before some numerical instability sets in.

The standard deviation of the VSH decomposition is shown in Figure 17.2. That of Br is most poorly
represented, even at the start of the evolution, which is surprising since it appears very stable in Figure 17.1.
There is a spike in the components of E just before the end of ramp-up, after which the values briefly stabilise
before beginning an uncontrollable rise. The standard deviations of the components ofB rise steadily throughout
the evolution.

Figures 17.3 to 17.8 show contour plots of the field components at various points in time. Br only begins to
show variation after T ≳ 2, at which point large values appear at the inner boundary and the smooth structure
begins to become more complex. At T ≳ 4, the value at the outer boundary also begins to increase. Bθ

shows variation almost immediately, increasing in the region around the equatorial line at the outer boundary
and decreasing around the poles at the outer boundary. Nonzero Bϕ appears around both boundaries almost
immediately, growing in both magnitude and physical extent until a relatively complex structure is produced
around T ≈ 1. Er ramps up to its expected value and soon begins to increase near the inner boundary and
decrease near the outer boundary. Eθ retains its structure for longer, before increasing near the inner and outer
boundaries. Eϕ shows a complicated evolution, growing quickly during the ramp-up around both boundaries
and continuing to rise after.

The evolution of all field components appears strongly influenced by the inner and outer boundaries; efforts
to improve code performance in the future might begin by considering these in greater detail. As for the non-
rotating case, the complicated structures that develop may simply be due to the choice of ℓmax or the chosen
gridpoint distribution.
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Figure 17.1: Time-evolution of field components at a single gridpoint for the simulated rotating dipole. The
dashed grey vertical lines represent the end of the ramp-up.
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Figure 17.2: Time-evolution of standard deviation of VSH decomposition of field components at a single grid-
point for the simulated rotating dipole. The dashed grey vertical lines represent the end of the ramp-up.
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Figure 17.3: Contour plot of Br at various timepoints for the rotating model. The dashed black line represents
the light cylinder.
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Figure 17.4: Contour plot of Bθ at various timepoints for the rotating model. The dashed black line represents
the light cylinder.
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Figure 17.5: Contour plot of Bϕ at various timepoints for the rotating model. The dashed black line represents
the light cylinder.
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Figure 17.6: Contour plot of Er at various timepoints for the rotating model. The dashed black line represents
the light cylinder.
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Figure 17.7: Contour plot of Eθ at various timepoints for the rotating model. The dashed black line represents
the light cylinder.
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Figure 17.8: Contour plot of Eϕ at various timepoints for the rotating model. The dashed black line represents
the light cylinder.

125



University of East Anglia Neutron star magnetospheres

Figure 17.9 shows the total energy as a function of time. As with the VSH decomposition, there is a sudden
jump in the electric component just before the end of ramp-up, after which both the electric and magnetic
components grow uncontrollably.

The volume integral of ∇ ·B (Figure 17.10) is not as close to zero as for the stationary dipole, nor does it
remain at low values for as long: even by the end of ramp-up, the value has risen considerably from that at
T = 0. However, we do not see the same pronounced rise over time as for the stationary dipole, indicating that
the scheme is somewhat successful in maintaining the divergencelessness of B.

This relative consistency in ∇ · B compared to the stationary case may be due to our enforcement of the
force-free conditions (§8.2 of this thesis and §3.2 of Pétri (2012)). To test this, we plot in Figure 17.11 the
percentage of gridpoints in the force-free region that are modified at each timestep to satisfy the force-free
conditions. The value begins relatively low, indicating that the system initially obeys the force-free conditions
quite well, and is stable until T ≈ 2. After, the percentage of gridpoints begins to rise, indicating a growing
instability. The rise exhibits some degree of oscillation, showing that the scheme employed is at least somewhat
effective in delaying the breakdown of the force-free conditions, but as discussed in §8.2 we do not expect the
breakdown to be prevented altogether.

Figure 17.12 shows the gridpoints at which the force-free conditions need to be applied at various points
in the evolution. There is still a rotational symmetry about the equatorial line. The violating gridpoints
appear not to persist to later times, indicating that our force-free condition enforcement is working. However,
eventually the number of violating points escalates as the instability grows, especially near the boundaries.

Figure 17.9: Total energy as a function of time for the rotating model.
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Figure 17.10: Normalised volume integral of ∇ · B across the domain as a function of time for the rotating
model.

Figure 17.11: Percentage of gridpoints within the force-free region for which the force-free conditions must be
enforced, as a function of time, for the rotating model.
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Figure 17.12: Gridpoints at which the force-free conditions are violated, and hence must be enforced, at various
timepoints for the rotating dipole. Red (+1): Gridpoint within FF region and FF conditions violated. Yellow
(-1): Gridpoint within FF region and FF conditions fulfilled. Orange (0): Gridpoint outside FF region. The
dashed grey vertical lines represent the light cylinder, which is still outside the domain at T = 0.305.
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18 Magnetar model (constant magnetospheric twist)

Finally, we add a slight twist to the magnetosphere. Since we are most concerned with magnetars, which rotate
slowly, we may approximate the star itself as non-rotating and only the twist as rotating. This may help to
prevent issues from the previous test (Chapter 17) causing further numerical errors in the results.

We consider two configurations: first, a twist contained solely within the northern hemisphere θ ∈ [30◦, 44◦]
in order to produce a rotational shear, preventing “cancelling-out” of its effect above and below the equatorial
line. Second, we consider a twist symmetric about the equatorial line θ ∈ [30◦, π − 30◦] in order to allow
comparisons with previous studies such as those by Contopoulos et al. (1999). We use the following parameters:

P_final : 44.9688687 0.0015

Omega_final : 0 0

r_min, r_max : 1 10.0020751953125

n_r, delta_r : 50 0.1837158203125

n_t, delta_t : 101 0.0314159265358979

Timestep delta_T : 0.0030517578125 1.01795683349045e-07

Length of simulation : 9 0.000300207685678337 steps: 3000

ell_max : 20

Ramp start : 100001 305.178833007812

Ramp stop : 100150 305.633544921875

Twist start : 1 0.0030517578125

Twist stop : 150 0.457763671875

Twist magnitude : 0.15

Twist min radius : 1

Twist ramp 99% radius : 1.9

Twist de-ramp 99% radius : 9.1

Twist max radius : 10

Twist min angle (rad) : 0.523598775598299

Twist ramp 99% angle (rad): 0.593411945678072

use_outer_sponge_layer: 1

sigma_0, gamma, beta : 0.8 6 4

For the northern-hemisphere twist,

Twist de-ramp 99% angle (rad): 0.698131700797732

Twist max angle (rad) : 0.767944870877505

For the symmetric twist,

Twist de-ramp 99% angle (rad): 2.54818070791172

Twist max angle (rad) : 2.61799387799149

The twist angular velocity Ωtwist = 0.15 was chosen to be comparable with the rotation rate of our rotating
dipole (Chapter 17). The twist angles were chosen so that the gridpoint at which we evaluate the fields falls
roughly midway into the twisted region and we can analyse the effects of the twist in full. We will directly
compare this evolution with the stationary dipole (Chapter 16).

Figure 18.1 shows the field components evaluated at the same gridpoint as the previous evolutions, which
indeed falls within the twisted region. Both twists have qualitatively similar behaviour, driving rises in
|Br|, |Er|, |Eθ|, |Bϕ|, |Eϕ| which the code appears to work to restabilise before overshooting and losing out to
numerical noise. The model with a symmetric twist survives for longer, perhaps because the large twisted region
makes the configuration similar to our fully rotating model, which was also relatively stable (Chapter 17).
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Figure 18.2 shows the standard deviation of the field components. All models are similar in Br, Bθ. The
twists introduce nonzero Er, Eθ, Eϕ, but note that the standard deviation in the electric field components
remains roughly stable until T ≈ 4 for both twists.

Figures 18.3 to 18.8 show heatmaps of the vector components at the same timesteps as for the stationary
dipole (Figures 16.3 to 16.5) for the northern-hemisphere twist. The influence of the twist on Br, Bθ is initially
quite subtle; the model diverges at later times but numerical error is beginning to dominate by then. There is
a significant region of nonzero Bϕ coinciding with the twist, which begins to proliferate throughout the entire
domain. The twist also induces an electric field, which also spreads throughout the domain as evolution pro-
gresses. In both the graphs of Er and Eθ there is a noticeable decrease in the intensity within the twisted region
between T = 0.458 and T = 1.07, suggesting that the code is attempting to return to a stable configuration,
but it cannot abate the spread of nonzero Er, Eθ to the rest of the domain.

Figures 18.9 to 18.14 show the corresponding heatmaps for the symmetric twist. The behaviour is similar
to before. The nonzero electric field within the twisted region is qualitatively similar to that of the rotating
dipole (Figures 17.6 to 17.8), perhaps explaining why the configuration remains relatively stable. Note that the
domain only shows small deviations from equatorial symmetry even at late times.

Figure 18.15 shows the total energy for both configurations. That of the twist in the northern hemisphere
deviates little from the nonrotating model, differing by just 3% after 1350 timesteps (T ≈ 4.12). That of the
symmetric twist deviates significantly from the nonrotating model, and underestimates the rotating model by
an amount that grows with time.

Figure 18.16 shows the volume integral of ∇ ·B. Both twisted models have a significantly higher value than
the nonrotating model, but still appreciably close to zero until T ≈ 4.
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Figure 18.1: Time-evolution of field components at a single gridpoint for the simulated twisted dipoles. “NH”
denotes the twist localised within the northern hemisphere; “Symm.” denotes the twist symmetric about the
equatorial line. The dashed grey vertical lines represent the end of the twist ramp-up.
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Figure 18.2: Time-evolution of standard deviation of VSH decomposition of field components at a single grid-
point for the simulated twisted dipoles. “NH” denotes the twist localised within the northern hemisphere;
“Symm.” denotes the twist symmetric about the equatorial line. The dashed grey vertical lines represent the
end of the twist ramp-up.
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Figure 18.3: Contour plot of Br at various timepoints for the model with a twist localised in the northern
hemisphere. The black box represents the twisted region.
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Figure 18.4: Contour plot of Bθ at various timepoints for the model with a twist localised in the northern
hemisphere. The black box represents the twisted region.
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Figure 18.5: Contour plot of Bϕ at various timepoints for the model with a twist localised in the northern
hemisphere. The black box represents the twisted region.
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Figure 18.6: Contour plot of Er at various timepoints for the model with a twist localised in the northern
hemisphere. The black box represents the twisted region.
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Figure 18.7: Contour plot of Eθ at various timepoints for the model with a twist localised in the northern
hemisphere. The black box represents the twisted region.
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Figure 18.8: Contour plot of Eϕ at various timepoints for the model with a twist localised in the northern
hemisphere. The black box represents the twisted region.
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Figure 18.9: Contour plot of Br at various timepoints for the model with a twist symmetric about the equatorial
line. The black box represents the twisted region.
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Figure 18.10: Contour plot of Bθ at various timepoints for the model with a twist symmetric about the equatorial
line. The black box represents the twisted region.
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Figure 18.11: Contour plot of Bϕ at various timepoints for the model with a twist symmetric about the equatorial
line. The black box represents the twisted region.
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Figure 18.12: Contour plot of Er at various timepoints for the model with a twist symmetric about the equatorial
line. The black box represents the twisted region.
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Figure 18.13: Contour plot of Eθ at various timepoints for the model with a twist symmetric about the equatorial
line. The black box represents the twisted region.
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Figure 18.14: Contour plot of Eϕ at various timepoints for the model with a twist symmetric about the equatorial
line. The black box represents the twisted region.
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Figure 18.15: Total energy as a function of time for the twisted models. “NH” denotes the twist localised within
the northern hemisphere; “Symm.” denotes the twist symmetric about the equatorial line.

Figure 18.16: Normalised volume integral of∇·B across the domain as a function of time for the twisted models.
“NH” denotes the twist localised within the northern hemisphere; “Symm.” denotes the twist symmetric about
the equatorial line.
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19 Summary

19.1 Introduction

Neutron stars are the remnants of stars which began their life at1 MZAMS ≈ 10 − 25M⊙ (e.g. Heger et al.,
2003, Figure 4). They cool extremely rapidly due to neutrino emission by the Urca process (Gamow &
Schoenberg, 1941). The resulting low luminosity, coupled with their small size, helps explain why three decades
passed between their theorisation (Baade & Zwicky, 1934a,b) and eventual detection as radio pulsars in late
1967 (Hewish et al., 1968). Neutron stars are detectable due to emission mechanisms in their magnetospheres,
their surrounding regions which are populated by charged particles. Isolated neutron stars are divided into two
main classes:

1. Pulsars emit beams of radio waves and X-rays from their poles that sweep across the sky as the star
rotates, and are detected from Earth as regular pulses of radiation.

2. Magnetars do not emit strong beams, but their extreme internal magnetic fields drive transient X-ray
and gamma-ray emission from the magnetosphere including violent bursts.

The aim of this thesis is to perform numerical simulations in order to better understand the structure of neutron
star magnetospheres.

We will approximate a pulsar by a magnetic dipole rotating at a constant rate, following the Goldreich-
Julian model (Goldreich & Julian, 1969) that has become standard (§5.2). Magnetars rotate so slowly (Chapter
6) that they can be considered stationary relative to the motion of any twisted field lines in their magnetospheres.
Further, we tested the stability of our evolutionary code for both stationary (Chapter 16) and rotating (Chapter
17) dipoles, finding that the stationary configuration remains stable for longer. Then, we may expect the best
numerical results if we approximate the magnetar as stationary.

However, the Goldreich-Julian model appears inconsistent with magnetar models where their strong mag-
netic fields occur by amplification due to convection (§5.3). Further, Contopoulos et al. (2024) have recently
explored alternative equilibrium configurations for pulsar magnetospheres, suggesting that a simple dipole is
not the only possible stable configuration.

Neutron star magnetospheres are often assumed to obey force-free electrodynamics (FFE) (§8.2), where
all non-magnetic forces are negligible and so charged particles are restricted to flowing along magnetic field lines.
The magnetic field lines of a non-rotating dipole are “closed” in that they originate at one pole and terminate
at the other. For a neutron star, which has finite size, this means that the field lines are characterised by
footpoints on the surface. If the neutron star rotates, these footpoints and hence the magnetic field corotate
with it. However, there exists a radial distance known as the light cylinder beyond which a co-rotating
magnetic field line would be moving faster than light. Since in FFE the field lines carry charged particles,
the force-free approximation breaks down and field lines extending beyond the light cylinder must be “open”
(extend to infinite radii). This is illustrated in Figure 5.3. In our code, we make the hard restriction that FFE
applies at all points in the magnetosphere that are within the light cylinder, and does not apply beyond it
(Proposition 11.4).

Duncan & Thompson (1992) suggested that magnetar bursts are caused by an ultra-strong internal magnetic
field, which is capable of plastically deforming the crust. This shifts the footpoints of the external magnetic
field, creating twists in the magnetosphere. If the twists are strong enough, they may form a current sheet before
returning to a stable configuration by undergoing magnetic reconnection and ejecting magnetic energy from the
system in the form of a burst. These bursts may even be powerful enough to explain the three ultra-powerful
giant flares that have been observed since 1979 (§6.4, §6.5, §6.6).

1“ZAMS” means “zero age main sequence”, the mass of the star when it entered the main sequence and ignited hydrogen fusion.
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19.2 Mathematical and numerical methods

This project aims to characterise the response of a neutron star magnetosphere to some initial disturbance,
or twist, which we impart. We do this by writing a C++ code to evolve Maxwell’s equations under FFE. The
evolutionary equations are described in Chapter 9, with their final forms given in Proposition 9.1.

The code evolves the magnetic field B and electric field E directly, as opposed to other abstracted quantities
such as streamfunctions Ψ. This decision was made at an early stage, primarily to aid visualisation of the
results, but instead evolving Ψ would bring advantages such as guaranteeing that the magnetic field remains
divergence-free (§25.4.1) and straightforward plotting of magnetic field lines as contours of Ψ (§9.5).

We model the configuration in axisymmetric spherical polar coordinates, where the fields are expected to be
independent of the azimuthal coordinate ϕ. We model the fields using a pseudospectral method; that is, the
angular components θ, ϕ are handled by expanding into a set of basis functions, leaving the radial component
r to be modelled separately by any method. In the full 3D case, the angular component is expanded as a series
of vector spherical harmonics (Chapters 31 and 32). In axisymmetry, the ϕ-dependence drops out and the
θ-dependence can be modelled by Legendre polynomials (Chapter 28), with their derivatives modelled by
associated Legendre functions (Chapter 29). Spectral methods allow spatial derivatives, particularly diver-
gence and curl, to be calculated exactly (Propositions 32.4 and 32.6). They can also guarantee divergenceless
fields to remain so (Corollary 32.5), but this comes at the cost of taking an additional radial derivative and we
find that the resulting numerical error outweighs the advantages of maintaining ∇ ·B = 0 (§13.3).

The radial dependence is handled by a finite-differencing scheme. We experimented with a differentiated
Chebyshev series expansion (Chapter 27) but found it less accurate (§13.1 and §13.2). In Chapter 23 we
generalised some of the more widely known finite-difference expressions to consider an arbitrary number of
neighbouring gridpoints, contributing to this method’s increased accuracy.

The simulation requires multidimensional numerical integration over the coordinates: spectral methods
require 2D integrals for the full 3D consideration (Proposition 32.2) and 1D integrals in axisymmetry, Eqs.
(32.50) to (32.52). We also require volume integrals to calculate the total energy of the system (§11.3) and to
characterise ∇ ·B across the domain (§13.5). To that end, we develop multidimensional numerical integration
methods for spherical coordinates by generalising the trapezium rule in §21.6.

Time-integration is, of course, one-dimensional. We use a third-order Adams-Bashforth method
(§21.3), which considers the field values at the previous two timesteps. This has a stabilising effect against
numerical noise and contributes to the code’s maintained accuracy over long timescales.

However, there exists an uncharacterised numerical instability within the code. This causes all three final
simulations to blow up after roughly 7 to 9 light-crossing times. The instability is probably due to the radial
treatment since code stability seems highly sensitive to the chosen number of radial gridpoints (§15.1), and
by comparison seems to offer diminishing returns as more angular gridpoints are used (§15.2). We could not
diagnose the instability but our choice of parameters minimised its effect.

The evolutionary code is computationally efficient: our final simulations (Chapters 16, 17 and 18) were
performed on a conventional laptop on the order of five minutes each.
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19.3 Results

19.3.1 Stationary dipole

The stationary dipole (Chapter 16) should persist indefinitely, providing a measure of the long-term stability
of the numerical scheme. To quantify this, we (1) calculate the value of a conserved quantity (the total energy
contained within the fields) at each timestep and monitor its evolution (§11.3); (2) ensure that minimal numerical
divergence of the magnetic field develops by calculating a dimensionless volume integral of ∇ ·B and monitoring
it over time (§13.5).

We find that, with our optimised number of coordinates found in Chapter 15, the model indeed remains
stable for around 2− 3 light-crossing times, or 650− 1000 timesteps with our choice of ∆T . Figure 16.6 shows
that the total energy remains relatively stable for this time, before rapidly increasing to high values. The length
of time for which the system remains stable appears sensitive to the truncation index of the VSH decomposition
of the fields ℓmax, with the known exact result ℓmax = 1 surviving until around T = 5.

The volume-integrated ∇ ·B tells a similar story (Figure 16.7), although the sudden increase is replaced by
a steady rise. Note that the absolute value is plotted; the calculated value oscillates about zero, demonstrating
that the code is attempting to retain zero divergence. We conclude that artificial divergence is never a limiting
factor in our simulations, with the effect of some undetermined numerical instability appearing first.

Deviations in the field values appear first around the inner and outer boundaries (Figures 16.3 to 16.5).
We based our boundary conditions around those implemented by Pétri (2012) and Parfrey (2012), but further
consideration may be required.

19.3.2 Pulsar model (rotating dipole)

Wemodel a pulsar as a magnetic dipole rotating at constant angular velocity. Rotation is simulated by imparting
a nonzero electric field to the stationary dipole (§11.2). The rotation rate is ramped up linearly over around
half a light-crossing time (§12.1), which was arbitrarily chosen but appeared to have little influence on the
result. This ensures a smooth transition from the known stable stationary dipole to the rotating case. The
ramping process appears to work smoothly, with the field values remaining close to their theoretical values until
around T = 2 (Figure 17.1). However, there appears to be a sudden jump toward the end of the ramp phase,
observed as a rise in both the standard deviation of the VSH decomposition of E (Figure 17.2) and the total
electric energy (Figure 17.9). The energy never recovers from this jump and continues to rise, so that the field
structures are significantly altered by around T = 2 (Figures 17.3 to 17.8).

Unlike for the stationary dipole, our choice of ℓmax is more difficult to make. The evolutionary equations
guarantee that nonzero E will affect B, so even after a few timesteps an analytic expression for the fields
is difficult to find. In principle, infinitely many VSH series coefficients would then be required to describe
them. In an ideal world, the magnitude of these coefficients would decrease as ℓ increases so that we could
arbitrarily choose any “high enough” cutoff ℓmax beyond which additional terms contribute negligibly. However,
the coefficients are calculated by numerical integrations which carry nonzero error, so increasing ℓmax allows
more opportunities for error to contribute. The problem is exacerbated if the coefficients drop off relatively
slowly with ℓ. If we could perform the integrals for the VSH coefficients analytically, it would be straightforward
to compare the calculated and expected values in order to decide a cutoff. We choose ℓmax = 20 for all runs as
a compromise. See Example 27.7 for a discussion of the same issue applied to Chebyshev series.

The rotating simulation demonstrates that our reinforcement of the force-free conditions at each timestep
(§8.2) works well and contributes to the long-term stability of the simulation. As shown in Figure 17.11, it
is only after T = 2 when the percentage of gridpoints violating the force-free conditions rises significantly,
after the jump toward the end of the ramp-up. Despite the percentage uncontrollably increasing with time
thereafter, there are short-term decreases which show that the code is actively working to maintain FFE.
Further, Figure 17.12 suggests that individual violating gridpoints do not persist to the following timesteps,
only that on average there are more as the simulation progresses. Interestingly, the violating gridpoints appear
to be concentrated in arcs of constant radius, and perhaps are concentrated around the equator and θ = π

4 ,
3π4
4

as well as the boundaries. There is no clustering near the line defining the edge of our force-free domain, nor

148



University of East Anglia Neutron star magnetospheres

is there significant discontinuity in the field structure around this line (Figures 17.3 to 17.8), indicating that
splitting the domain into distinct force-free and relaxed regions does not cause further instabilities.

Figure 19.1 plots Br for the stationary model and for the pulsar (constantly rotating) model at three light-
crossing times. The rotational electric field has noticeably influenced the magnetic field by this point, which
should not be surprising since we model the fields by coupled PDEs (Proposition 9.1). The large-scale structure
of Br is still preserved at this time, but the field appears to develop a more intricate structure, especially in the
boundaries of the 10−2 − 10−1 contour. This may be physical or a result of the Gibbs phenomenon (§19.5).

Figure 19.1: Contour plots of Br at T = 3.05 for the stationary model (Left) and for the pulsar model (Right).
The dashed black line represents the light cylinder.
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19.3.3 Magnetar model (constant magnetospheric twist)

The twisted magnetosphere is simulated by defining a region within which the rotation rate is allowed to grow
higher than that of the magnetosphere itself. Similarly to the global rotation rate, this twist is ramped up
linearly to ensure a smooth transition from the initial configuration. We are also careful to ramp up smoothly
over the coordinates, minimising jump discontinuities in the rotation rate between the twisted and non-twisted
regions that may cause jump discontinuities in the field values there (Chapter 14). We do not find a perfect
smoothing function, but are able to produce a noticeable and highly controllable smoothing effect (§14.3).

Two twist configurations are tested: a shear contained entirely within the northern hemisphere to avoid any
cancellation of its effect by symmetry across the equator θ = π

2 , and once this was confirmed, a symmetric twist
about the equator to enable comparisons with the literature.

In both cases, after the electric field within the twisted region has been raised by the ramping process, the
code immediately acts to restore equilibrium by reducing |Er| and |Eθ| (Figure 18.1). The simulation overshoots
and by this time (T ≈ 4− 5) the effects of the numerical instability have begun to dominate the evolution.

There is definite interaction between the twisted and non-twisted regions (Figures 18.3 to 18.14), with the
localised amplified electric field spreading throughout the domain over time. In particular, we may expect the
influence of the northern-hemisphere twist to be felt in the southern hemisphere after around π light-crossing
times if the signal travels at the speed of light, and Figures 18.6 and 18.7 appear roughly in line with this. These
heatmaps of field values also show that there is little uncontrolled growth near the boundaries of the twisted
region - the most significant uncontrolled growth is still at the inner and outer boundaries of the domain. Our
spatial smoothing function thus behaves sufficiently well.

Figure 19.2 plots Br for both twisted models at T = 3.05. In both, the field is noticeably affected within
the twisted region and by this time the effect has started to spread to the non-twisted region - note for example
the distortion of the outer boundary of the 10−2 − 10−1 contour near the north pole. Both twists appear to
have had a similar influence on the region2 θ ∈ [0, 30◦] by this time.

The model with a symmetric twist survives for longer than that with the northern hemisphere only. We
suggest that the system becomes a close approximation of the rotating dipole if the twist is symmetric, a
configuration that our scheme can model with reasonable stability. In the limit as the extent of the symmetric
twist approaches the full angular extent of the magnetosphere, we expect to recover the case of a constantly
rotating dipole. Comparing the heatmaps of field components between the twisted case (Figures 18.9 to 18.14)
and the constantly rotating case (Figures 17.3 to 17.8), we see good evidence of this.

We should not be surprised that the code’s effect is a stabilising one: the Adams-Bashforth time integration
method and force-free condition enforcement in particular have already been highlighted as working to maintain
stability. Modelling rotation as an electric field yields an additional contribution to the total energy of the system
(§11.3), so if stability is obtained by minimising total energy, reducing |Er| and |Eθ| is a logical action to take.
It is interesting that the code did not take the same action when ramped up from stationary to rotating without
twists; we suggest that this is because the rotating dipole is inherently stable and that the ramp-up mechanism
is sufficiently smooth not to introduce additional instabilities.

Figure 18.2, however, suggests that the twisted configuration is still somewhat stable because the standard
deviation of the VSH decomposition of the fields3 remains roughly constant from the end of the twist ramp-up
to around T = 4. Perhaps this is because the twist is relatively low in magnitude.

Indeed, in neutron star magnetospheres we expect low-magnitude twists to form regularly and persist for
longer timescales, so our code is a viable candidate for modelling such common events. Bursts require twists of
high enough magnitude for current sheets to form, but this process is only possible in the presence of resistivity.
Since the code assumes zero resistivity everywhere, bursts cannot yet be modelled.

2This interval represents the sector between the north pole and the twisted region.
3A measure of the numerical noise within the system.
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Figure 19.2: Contour plots of Br at T = 3.05 for the two magentar (twisted) models. Left: Localised twist in
northern hemisphere. Right: Symmetric twist about equatorial line. The black box outlines the twisted region.

19.4 The nature of the instabilities in our evolution

It is important to consider whether our system develops a physical instability (a limitation of the physical
model) or a numerical instability (an issue with the model’s implementation into a computer code).

Physical instabilities typically manifest after one or two dynamical timescales of the system being modelled,
since that timescale characterises how long it takes for the system to rearrange itself or to relax to a steady
state. We account for this by giving control of both the rotation starting time its ramp-up rate (§12.1) as well
as the magnetospheric twist if implemented (Chapter 14), so in principle the system can remain in equilibrium
while these processes build-up. Parfrey (2012) has a similar approach (see §4.2, §5.1, §7.3 of his thesis).

In the NS magnetosphere, physical instabilities may be expected to develop on the magnetic wave crossing
timescale, which is effectively the light-crossing timescale since magnetic waves travel at roughly c in this region.4

Numerical instabilities may occur over any timescales because they need not respect any particular physical
mechanism; indeed, they ought to grow with time as their effect becomes more pronounced.

Physical instabilities should be largely independent of the resolution of the system, or at least converge
to a constant rate as resolution increases. By contrast, numerical instabilities may actually be heightened if
resolution is increased (Axelrad, 1998). We found no convergence of instabilities with varying grid resolution.

Our simulations typically survive for several light-crossing timescales. The instability appears to originate
on length scales of the order of a single gridpoint, rather than uniformly throughout the domain. From this,
and the tests performed in Chapter 15, we conclude that the instability in our code is numerical in nature.

Spitkovsky (2006) successfully modelled a rotating dipole for two full turns, far longer than the light-crossing
timescale over which a physical instability ought to develop,5 and still maintained a steady state solution. This
is strong evidence that the system we consider is inherently stable.

4By contrast, for the NS interior, where MHD applies, we may expect physical instabilities on the order of the Alfvén timescale.
5From the results in §9.1, the rotation period P in units of the light-crossing time τ is P̃ = P

τ
= c

R
P . Using P ≈ 33 ms and

R = 10 km for the Crab pulsar, two full turns correspond to around 2000 light-crossing times.
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19.5 Further discussion

We attributed the numerical instability of the code to the radial direction, but another possibility is that high-
multipole features begin to form at later times (Figure 19.1). This may be due to the Gibbs phenomenon,
a consequence of approximating functions by Chebyshev or Legendre series where, instead of converging to the
true value as we increase the truncation index nmax or ℓmax, the approximation oscillates increasingly rapidly
about it (Boyd, 1996; Zhang, 2022). A classic example is the approximation of a square wave (e.g. Arfken &
Weber, 2005, §14.5). Discontinuities or short intervals over which the function changes rapidly, like current
sheets, are particularly susceptible to Gibbs’ phenomenon.

The effect may be countered by spectral filtering (e.g. Gottlieb & Shu, 1997), but if our aim is to
characterise these sharp regions, filtering may not be desirable. Further, adding too much numerical dissipation
may artificially trigger reconnection events; had the project gone to completion, we may then be faced with
uncertainty as to which transient outbursts are genuine consequences of the evolution and which are artefacts
of the numerical method. Nevertheless, we strongly suspect that spectral filtering would have greatly improved
code stability and would suggest it as a priority for future development of our numerical model.

Our outer boundary conditions, those of outgoing spherical waves, are appropriate in the context of the
model. For numerical reasons it may be worthwhile to further explore numerical dissipation at the outer
boundary, ensuring that no waves are reflected back into the system. Although a sponge layer was implemented
and we argued that the choice of its relevant controllable parameters was not critical (§9.4), perhaps a full
optimisation of the parameters would improve code behaviour near the outer boundary.

Recently, Contopoulos et al. (2024) presented another possible explanation: there may exist more than one
stable configuration for the magnetic field of a rotating neutron star. In particular, a solution may be possible
based on a dipole whose field lines do not extend to infinity but are contained within the light cylinder and hence
are all closed. This is interesting because our numerical scheme clearly attempts to return to an equilibrium
solution, but perhaps this equilibrium is not the one in which real neutron stars exist.

Our model is also limited by the suitability of a rotating magnetic dipole as an approximation for a magnetar.
As discussed in §5.3, this is acceptable for pulsars but breaks down for ultra-strong magnetic fields. Our
evolutionary code is designed to accept any arbitrary initial magnetic field, so all analysis in this thesis can in
principle be repeated with little code modification if a more accurate magnetic field expression is found.

The difficulties in code stability during development meant that we ran out of time to implement the relevant
mechanisms to simulate a reconnection event. However, the response mechanism of our code, by attempting
to restore the configuration to equilibrium, still has useful applications in modelling the more-frequent and
lower-energy persistent twists that we expect in neutron stars and in the Solar magnetosphere.

In addition to producing Figures 17.11 and 17.12 to quantify the extent to which FFE is maintained through-
out the evolution, we could also produce contour plots of the parallel electric field E∥ = E·B

B2 B at various
timesteps. As discussed in §8.2, nonzero E∥ is a hallmark of deviation from FFE but is also necessary in order
for particle acceleration and radiation to occur. Such plots were produced by Pétri (2022), who found that
regions of high E∥ were correlated with regions of high energy dissipation in his simulations.
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19.6 Suggestions for the future

The code assumes zero resistivity everywhere, and this precludes the formation of current sheets and hence the
onset of magnetic reconnection. Then, numerical resistivity must be implemented in order to model giant flare
formation.

Despite its popularity, FFE cannot give a complete description of neutron star magnetospheres because
a nonzero E∥ is required in order to drive particle acceleration and emission. The disadvantage of relaxing
E · B = 0 is that the current J is no longer uniquely determined; nevertheless, Kalapotharakos et al. (2012)
explored pulsar magnetospheres without the force-free condition.

Although nonzero magnetic field divergence never appears to be a limiting factor (Figures 16.7, 17.10 and
18.16), the code does not feature a divergence-cleaning mechanism. The figures show that the numerical
divergence grows over time in simulations and is considerably higher for rotating or twisted configurations than
for a stationary dipole, so this may require consideration in more detailed simulations.

Our simulations appear to break down first near the inner and outer boundaries. We have implemented
the same boundary conditions as Pétri (2012) and Parfrey (2012), with a special consideration given for the
non-rotating case (§9.2 and §9.3). We also add a sponge layer near the outer boundary (Parfrey, 2012, §3.9).
Further consideration of these may improve code stability.

The domain uses linear spacing in both the radial and polar coordinates (§12.2). However, we discuss in
Chapter 16 that alternative mappings may prevent clustering of gridpoints around the inner boundary, and
might be employed in order to shift accuracy to regions that require it. In principle, the code may be modified
to suit arbitrary coordinate mappings. The numerical integration schemes would still apply, but the finite
area and volume elements would need to be calculated carefully (e.g. Proposition 21.3). However, our finite
differencing scheme assumes a constant grid spacing. Perhaps separate expressions for variable spacings can be
derived by similar methods to those used in Chapter 23, but this was not attempted. Instead, we would then
recommend handling the radial dependence with a Chebyshev series which may be differentiated term-by-term
(Chapter 27). The code retains this functionality (e.g. §13.2).
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20 Running the code

20.1 Installing C++ on a personal computer

These are brief notes on how to install C++ on a Windows computer, outlining the process followed in the video
youtube.com/watch?v=0HD0pqVtsmw
They are accurate as of 15 February 2022.

1. Go to mingw-w64.org and download MSYS2 (sometimes stylised as Msys2), or alternatively go directly to
msys2.org The file is 91.2 MB in size.

2. Run the file and click Next until it begins. Leave "Run MSYS2 64bit now" checked, and click Finish.

3. Now we will install pacman. Open a terminal, e.g. by clicking Start, typing cmd and hitting the Enter

key. Type pacman -Syu and then y twice to confirm. (The latter mentions that an error has occurred,
but this is expected.) This will close the terminal.

4. Open MSYS2 MSYS. Update with pacman -Su and y. When finished, close the terminal.

5. Now open MSYS2 MinGW 64-bit (or MSYS2 MinGW x64). Search for the gcc package with pacman -Ss gcc.
Look for the option that says mingw64/mingw-w64-x86_64-gcc. The line will also have (C,C++,OpenMP)
on it. Highlight and copy this text: mingw64...-gcc. Paste it as follows:

pacman -S mingw-w64-x86_64-gcc

y

Check version numbers with

gcc --version

g++ --version

This gives a way to confirm that gcc and g++ have been installed correctly.

6. Now we will install the debugger gdb. Type

pacman -Ss gdb

and then

pacman -S mingw-w64-x86_64-gdb

y

gdb --version

Close the terminal.

7. Now we will set the path environment variable. This tells the computer where to look when interpreting
the command gcc etc. To see why it’s needed, go to cmd.exe and type gcc --version. It will return
’gcc’ is not recognized as an internal or external command, operatable program or batch file.

Browse to the location of gcc, g++ and gdb:

C:\msys64\mingw64\bin

https://www.youtube.com/watch?v=0HD0pqVtsmw
https://www.mingw-w64.org/
https://www.msys2.org/
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Go to

Start -> Edit the system environment variables

-> Advanced -> Environment variables -> (System variables part of the box) -> Path.

With this highlighted, click

Edit... -> New

and paste the link. Press the Enter key, then OK three times to close those windows. Now open cmd.exe

and try gcc --version again.

You can now compile and run C++ codes from cmd.exe. A command-line emulator is recommended, which
allows you to use Linux-style commands like ls, pwd etc. A good example is cmder.

20.2 Installing Python on a personal computer

These are brief notes on how to install Python 3 and the IDE Anaconda on a Windows computer, accurate as
of 15 February 2022.

1. Go to anaconda.com/download and download Anaconda Individual Edition. The file is 510 MB in
size.

2. Run the executable file Anaconda3-2021.11-Windows-x86_64. Click through the text boxes that occur,
checking the following boxes when they appear:

Install for: Just me (recommended)

Register Anaconda3 as my default Python 3.9

3. Once the installation is complete, open the Start menu and search for Spyder (anaconda3). This will
open the Anaconda program, which contains a script editor plus a dedicated console for running the code.

20.3 Running the code on a personal computer

The evolutionary code consists of three C++ files:

Initial_conditions_xx.h

Header_Time_Evolution_xx.h

Time_Evolution_xx.cpp

That is, two header files and a single code file, only the latter of which is compiled and ran. The subscripts _xx
refer to version numbers; we maintain an archive of all previous versions of each file for version control. Files
contain brief descriptions of the changes made since the previous version in the multi-line comment at the top;
the user need not be concerned with these changes unless they are tracking issues to previous versions. The
user can assume that they have the most up-to-date versions of each file, but may need to update the #include
lines at the top of Time_Evolution_xx.cpp if different versions of the header files are available.

To run the code, open a terminal and navigate to the parent folder containing the three C++ codes. For
example, on the author’s computer, it would be

cd OneDrive\PhD\Codes\20230810 Time evolution with updated equations

Then, the Time_Evolution_xx.cpp file must be compiled by

g++ Time_Evolution_xx.cpp -o Time_Evolution --std=c++11

156

https://www.anaconda.com/download


University of East Anglia Neutron star magnetospheres

where the added --std=c++11 is required because some of the functions and object types used by the code
were only developed as early as C++11. This produces an executable file, which is ran by

Time_Evolution

or, depending on the user’s computer system,

./Time_Evolution

If the code is running successfully, the user will see output to the console similar to that shown in Figure 20.1
and described below.

First, all user-chosen values are output as described in §20.7 and §20.8, along with the timestamp at which
the execution began. Before evolution begins, a message appears reminding the user that the execution can be
safely stopped at any time by the normal method, pressing CTRL-C or similar. Output files are appended as the
code runs, so data will still be available if the code is stopped early.

Then, the evolution begins and properties of the neutron star are output at certain timesteps according to
the choice of int cout_freq_T in §20.8. Here, the user chooses a single gridpoint by indices cout_i and cout_j,
and tracks the evolution of this gridpoint with time. If one particular region is known to be troublesome, e.g.
the outer boundary, a point within this region can be chosen to give immediate feedback when results begin to
diverge from what is expected. Alternatively, if the choice of gridpoint is not important, one can simply watch
for when values begin to diverge rapidly compared to previous timesteps, or when nan values appear. Finally,
a timestamp is given at the end of the evolution and the final execution time is output.

The user may change the values output to the screen at each timestep within the functions

void output_headers_to_screen()

void output_to_screen()

contained within Header_Time_Evolution_xx.cpp. The parameter % E pts chngd gives the percentage of
values of the electric field that were updated in order to satisfy the force-free conditions. The parameter
% done is calculated by scaling the current timestep to the final timestep, and the parameter Est. time left

is calculated by scaling the elapsed time so far, to the number of timesteps remaining. It should be interpreted
only as a rough estimate, e.g. when deciding whether to commit to a run at a certain resolution.

All values output to the terminal are also saved to the Log.txt file to give a permanent record. If console
output is not available, e.g. if the code is ran on a computing cluster, the log file can be opened to gauge
progress at any time. It is advisable to first create a copy of the log file and open that instead, to avoid issues
where the code tries to write to an open file.

All numerical evolution is performed with the above C++ codes. The result is a set of CSV files, which can be
read by Python codes for future analysis and graph plotting, and a txt file which acts as a log for referencing
previous runs.
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Figure 20.1: Output to the console after successful running of the code. Output is given line-by-line in real
time; these screenshots were taken after it had finished.
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20.4 Running the code on the Ada computing cluster

Ada is the computing cluster at the University of East Anglia. For more intense runs, or for a sequence of
consecutive runs, it is preferable to use this cluster as opposed to a personal computer. Instructions on how to
access the cluster off-campus from a personal computer are below, accurate as of 12 December 2023. There are
two preliminary steps:

1. Register your UEA account with ADA: contact IT Services for instructions on how to do this.

2. Download the UEA VPN: go to vpn.uea.ac.uk and log in with your UEA account. Navigate to Download

VPN (Windows) or similar. This will download the programme Big Edge Client, with filename
BIGIPEdgeClient.exe. Run this file.

Then, the process is as follows.

1. Run the programme BIG-IP Edge Client.

2. Change the server to vpn.uea.ac.uk.1

3. Click Connect.

4. Open a web browser and go to adaood01.uea.ac.uk.

5. Log in with your UEA account. This brings you to the Ada On Demand console. Use the open-on-demand
as normal; start a terminal or open a virtual desktop.

6. Open a virtual desktop by navigating to

Interactive Apps -> Desktop (XFCE)

Choose the parameters that suit your needs for that session and click Launch. In particular, be realistic
with the Number of hours setting; if you finish with the desktop early, computing power will still be
reserved until chosen duration has passed, lessening the resources available to other users.

7. The virtual desktop features a command-line terminal xterm, but it doesn’t recognise the ADA job com-
mands sbatch, squeue etc. Instead, go back to Ada On Demand and open Clusters -> _Ada Shell Access.
This opens a terminal which does recognise the commands.

8. On the virtual desktop, navigate to the folder from which you will perform the evolutions. For the author,
and taking an anonymised username abc12def, this is

/gfps/home/abc12def/Time_evolution_codes

Ensure that the folder contains the subfolders CSV and Logs as described in §20.5, along with the subfolder
Output and error files and the most up-to-date versions of the following files:

Time_Evolution_xx.cpp

Header_Time_Evolution_xx.h

Header_Initial_Conditions_xx.h

sbatch_xx.sh

9. Open Header_Time_Evolution_xx.cpp, navigate to void count_nans() and change std::isnan to
isnan and std::isinf to isinf. Otherwise, the code will not compile on Ada.

1The default vpn2020.uea.ac.uk will not work; it will get stuck in a loop alternating between Downloading server settings...

and Waiting to connect to server....
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10. Open the shell script file sbatch_xx.sh. This is a minimally-changed script provided by IT services
during training sessions for Ada. Update the relevant variables as they are described. In particular, it is
good practice to update

#SBATCH --job-name=yyyymmdd_a

#SBATCH -o Output_and_error-files/yyyymmdd_a_%j.out

#SBATCH -e Output_and_error-files/yyyymmdd_a_%j.err

with a unique name for the run.2

11. Open Header_Initial_Conditions_xx.h and set the parameters desired for the run.

12. Go to the terminal opened in step 7, cd to the target folder (here Time_evolution_codes) and compile
the C++ code in the usual way:3

g++ Time_Evolution_xx.cpp -o Time_Evolution --std==c++11

13. Run the shell script with

sbatch sbatch_xx.sh

A message will appear, confirming that the job has been submitted:

Submitted batch job 12345678

Here, 12345678 is a job ID which Ada assigns and feeds back to you. You will receive an email when the
job starts4 and ends. To check the progress of a job, type

squeue -u abc12def

To cancel a job, type

scancel 12345678

20.4.1 Running Python on the virtual desktop

For simple codes, the following process may be used.

1. Open the code, which in this example is named mycode.py, in a text editor such as emacs and perform
the edits required. If the code can be ran as-is, this step may be skipped.

2. Open a console such as xterm or _Ada Shell Access and type

python &

The & signifies that you still wish to use bash commands like ls, cd etc.

3. cd to the directory containing the code and run it with

python mycode.py

2In this example, the convention yyyymmdd a is chosen to enumerate jobs by the date started and then a lower-case Latin letter
a, b etc. Note that you must physically click the Save icon to save any files you edit on the virtual desktop; keyboard shortcuts
such as CTRL-S may not be recognised.

3Sadly, this will not be recognised if included in the shell script, so must be entered manually to the console.
4This will not be immediately after submission because every job must be scheduled.
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The above does not work for codes that use modules like matplotlib, the most widely used graph-plotting
module. To get around this, we must open an interactive Jupyter session as follows.

1. Go to Ada On Demand and open

Interactive Apps -> JupyterLab (Beta)

2. Open the Python code that you want to run.

3. Right-click somewhere within the opened file and select Create console for editor. You can now run
code snippets by highlighting them and either selecting Run -> Run Code or using the keyboard shortcut
Shift-Enter. To run the entire code, press CTRL-A and Shift-Enter.

Note that LaTeX formatting does not work. You must replace the usual lines, e.g.

plt.rcParams.update({ "font.size":18 })

plt.rc( "text", usetex=True )

by the line

plt.rcParams.update( plt.rcParamsDefault )

Otherwise, you will get the following error message:

RuntimeError: Failed to process string with text because latex could not be found.

A further complication is that the virtual desktop has no installed software to view PNG images. You will have
to make do with the inline preview image that Python or Jupyter shows when running the code, or email the
file to yourself to view on a different computer.

20.4.2 Running the code directly on a university computer

The user may wish to log in to a university computer and run the code through a terminal without submitting
to Ada. The process is as follows.

1. Ensure that the target folder is up-to-date as described in step 8 above, minus the shell script sbatch_xx.sh.

2. Launch the programme PuTTY and sign in with your UEA account abc12def and password. You should
already be in the ADA directory,

/gpfs/home/abc12def

3. Launch the programme WinSCP. Sign in to Ada and enter your password.

4. Send updated versions of the following files to your UEA documents:

Time_Evolution_xx.cpp

Header_Time_Evolution_xx.h

Header_Initial_Conditions_xx.h

Using WinSCP, move them from e.g. Downloads to the target folder from which you will perform the
computations. For the author, this is

/gfps/home/abc12def/Time_evolution_codes

Ensure that the subfolders CSV and Logs exist within this target folder, as described in §20.5.

5. Go to PuTTY and type
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interactive

Your location output will now change from

[abc12def@login01 ~/Time_evolution_codes]$

to

[abc12def@c0010 ~/Time_evolution_codes]$

or similar.

6. Go to PuTTY and compile and run the C++ code in the normal way:

cd Time_evolution_codes

g++ Time_Evolution_xx.cpp -o Time_Evolution_xx --std=c++11

./Time_Evolution_xx

20.5 File structure

It is vital to use the same file structure for which the codes were written. Suppose that we have some parent
folder, which may be saved anywhere on the user’s computer. Within this parent folder should be the four
codes above, plus the following subfolders:

1. Archive: Previous versions of the code files; recommended for version control.

2. CSV: CSV files containing values of the electric and magnetic fields as a function of position and time, for
further analysis. These are the main output of the C++ code.

3. Figures: Graphs plotted from the data using the accompanying Python codes. To avoid clutter, they are
divided into subfolders by date of code execution in YYYYMMDD format.5 This was a convention used by
the author but is not necessary to follow.

4. Logs: Text files maintaining copies of all console output during running of each code. They record the
values of all changeable parameters, plus a brief comment about why the run is being performed. This
allows the user to trace their choice of parameters through previous evolutions, and provides a more
permanent history of code execution than CSV files that require frequent deletion to save space.

5. Python analysis codes: Generalised codes written in Python which read the CSV files and produce
graphs, allowing for publication of results or comparison between successive runs.

6. Test codes: Extra codes described throughout the thesis, which test the numerical methods in the main
evolution code by reading the header files directly, as opposed to copying code into a standalone file for
testing. This prevents code divergence when updates are made, giving confidence that we are always
testing the actual code that will be ran during evolution and not a previous version of it.

Of these, only CSV and Logs are critical to the running of Time_Evolution_xx.cpp.

5This makes alphabetical sorting equivalent to chronological sorting
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20.6 Output files

The code outputs results to up to seven files. The filenames are all prefixed by the user’s choice of

std::string output_filename

which we denote by XXX below. The CSV files are saved within the folder CSV, while the log file is saved within
the folder Logs.

1. XXX_1_time_values.csv: The values of time, angular velocity and rotation period of the magnetosphere,
light-cylinder radius, and total angle rotated, at each timestep. This is read by analysis Python codes, so
is always created.

2. XXX_2_gridpoints.csv: The values of the radial coordinate in code units and the polar coordinate in
radians as a function of the coordinate indices. This is read by analysis Python codes, so is always created.

3. XXX_4_profiles.csv: A series of snapshots of the system at regular intervals, with samples of spatially
varying quantities such as the magnetic field values. These may be used to plot, for example, the heatmaps
of the field components in Figure 16.3 etc by the Python code Plot_Profiles.py. Depending on the
chosen temporal and spatial output frequency, controlled by

csv_profiles_write_freq_T, csv_profiles_write_freq_r, csv_profiles_write_freq_t

this file can become very large in size. It will likely be the largest of the files created. A rough estimate
of the final size of this file is made by the function

double estimate_csv_profiles_filesize();

and output to the terminal and log file upon code execution. This file is optional.

4. XXX_5_history.csv: Values of quantities that are constant throughout the domain, such as the total en-
ergy, output as a function of time. These may be plotted by the Python code Plot_History_Multiple.py
to produce graphs such as Figure 16.6. This file is optional.

5. XXX_6_VSH_coeffs.csv: The values of the numericaly-calculated VSH coefficients of the fields and their
radial derivatives, at a sample of radial gridpoints, as a function of time. This may be useful for diagnosing
the accuracy of the VSH decomposition or the radial derivatives. This file is optional.

6. XXX_7_BCs.csv: The values of the field components at both the inner boundary and the outer boundary,
as a function of θ, both before and after the application of boundary conditions. This may be useful for
diagnosing the consideration of the boundary conditions by the code. This file is optional.

7. XXX.txt: A log file which records all parameters chosen in Header_Initial_Conditions_xx.h, a brief
comment about the purpose of the run, set by the user as

std::string log_file_comment

and the complete list of values that were output to the terminal during code execution. This facilitates
the maintaining of a full record of runs that is descriptive and repeatable, so is always created.
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20.7 Notation convention

The notation convention within the C++ codes is as follows:

1. The three spherical polar coordinates r, θ, ϕ are denoted r, t and p. We choose single characters to
guarantee alignment between similar lines of code, improving readability and error catching.

2. The radial gridpoints are contained within a list r, with n_r values ranging from r_min to r_max and
enumerated by i, such that r[0] = r_min and r[n_r-1] = r_max.

3. The polar-angle gridpoints are contained within a list t, with n_t values ranging from t_min to t_max

and enumerated by j, such that t[0] = t_min and t[n_t-1] = t_max.

4. Time in code units is denoted by T. The timesteps are enumerated by T_index. Note that time values
are not stored in an array; instead, we increase T at each timestep until T_index_max.

5. The associated Legendre function index ℓ is denoted by ell, ranging from 0 to ell_max.

6. The Chebyshev polynomial index n is denoted by n, ranging from 0 to n_max.

7. The rotational angular velocity of the neutron star is denoted by Omega, capitalised to distinguish its
mathematical symbol Ω in this text from ω.

We do not anticipate situations where ranges other than θ ∈ [0, π] will be necessary, and cannot guarantee
that calculations or integrals will be accurate when restricting θ to smaller ranges than this, so we relegate the
assignments double t min = 0 and double t max = pi to Header Time Evolution xx.h to avoid tempting
the user to change them.

20.8 User-defined variables in Header Initial Conditions xx.h

All of the free parameters available to the user are contained within Header_Initial_Conditions_xx.h. Below
are brief descriptions of selected parameters, updated 25 February 2025.

1. double B_r_function( double r, double t ), double B_t_function( double r, double t ) and
double B_p_function( double r, double t ): Functions encoding mathematical expressions for the
chosen initial magnetic field, with a separate function for each spherical polar coordinate.

2. double delta_T: The length of each timestep in code units.

3. double P_SI_final: The final rotation period of the neutron star once rotation has fully ramped up, in
SI units (seconds).

4. int T_index_rotation_ramp_start and int T_index_rotation_ramp_stop: The values of T_index at
which we begin and end rotation ramp-up, so that T_index_rotation_ramp_start is the first value of
T_index with nonzero Omega[T_index] and T_index_rotation_ramp_stop is the first value of T_index
at which Omega[T_index] = Omega_final.

5. int T_index_twist_ramp_start and int T_index_twist_ramp_stop: The values of T_index at which
we begin and end ramp-up of rotation in the twisted region.

6. int twist_final_Omega: The final rotation rate of the twisted region, on top of the global rotation rate.

7. int twist_r_min etc: The radial coordinate and angular coordinate at which the twisted region be-
gins, ends, and reaches 99% of its maximum value from below (twist_r_min_99pct) and from above
(twist_r_max_99pct). These parameters control the size, location and smoothing over the coordinates
of the twisted region (Chapter 14).
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8. std::string output_folder: The output folder into which result files are saved. This must contain the
subfolders CSV and Logs. If not, or if there is a typo in the chosen path, output files will not be saved.
The code will still run without issue, so this may be difficult to diagnose.

9. std::string output_filename: Desired prefix for output files.

10. std::string log_file_comment: A brief description of why this particular run is being performed, to
remind the user of the significance of this run when browsing through old log files.

11. int cout_i and int cout_j: The coordinates of an arbitrarily chosen gridpoint at which parameters such
as the field values are output to the terminal, the log file and XXX_5_history.csv at each timestep. This
can provide a real-time indicator of the general conditions of the system, or monitoring of the conditions
in a particularly troublesome region.

12. int cout_freq_T: The number of timesteps between subsequent outputs to the terminal.

13. int csv_profiles_write_freq_r etc: The number of gridpoints or timesteps between outputs to the CSV
files. The endpoints i=0, i=n_points_r-1, j=0 and j=n_points_t-1, T_index=0 and T_index=T_index_max
are always included. These enable smaller output filesizes, especially if the runs require many gridpoints
for computational accuracy.

14. int csv_profiles_write_i_min etc: Only output to the CSV files a particular region or window of time.
Useful if high-resolution results are required when diagnosing issues occurring in known regions or times.

15. bool use_outer_sponge_layer, double r_sponge etc: Option and controlling parameters for the sponge
layer near the outer boundary; see Eq. (3.40) of Parfrey (2012).

20.9 Process in Time Evolution xx.cpp

Here, we outline the order of processes carried out at each timestep during evolution, as they appear in
Time_Evolution_xx.cpp. The functions themselves are all contained within Header_Time_Evolution_xx.cpp,
and we relegate detailed descriptions of these functions to the verification tests performed throughout the rest
of this document.

First, we perform a few prerequisite steps:

1. Include header files, featuring some standard C++ headers and the files Initial_conditions_xx.h and
Header_Time_Evolution_xx.h from which parameter values and function definitions are read.

2. Create all the CSV and Log files so that they can appended to whilst the code runs. Output chosen values
of the parameters to the screen and the log.

3. Determine the gridpoints and pre-calculate the Legendre polynomials, associated Legendre functions,
Chebyshev polynomials, integration finite length/area elements and sponge layer friction terms (Parfrey,
2012, §3.9). We find that pre-calculation drastically reduces code runtime.

4. Calculate the maximum timestep under the CFL condition and output it along with the user-defined
Delta_T. Provide a warning message if the CFL condition is violated but do not fail the code.

5. Fail the code if the chosen parameters will cause issues such as list overflow.
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Following this, we begin numerical evolution. The process at each timestep is as follows.

1. If we are within the rotation ramp-up phase so that T_index is greater-than-or-equal-to
T_index_rotation_ramp_start but less-than-or-equal-to T_index_rotation_ramp_stop, increase its an-
gular velocity Omega and update star_rotation_angle, the total angle in radians through which the star
has rotated during the simulation.

2. Do the same for twisted region.

3. Apply the boundary conditions (§9.2 and §9.3) and pre-calculate the values of B2, E2,E · B across the
domain.

4. Enforce the force-free conditions (§8.2) and pre-calculate B2, E2,E ·B again, since they will have changed
in general.

5. Expand Br, Bϕ, Er, Eθ, Eϕ as VSH series.

6. Calculate the radial derivatives of the fields by taking finite-difference expressions of their VSH coefficients.
This step may be substituted for a Chebyshev decomposition and subsequent determination of its radial
derivative.

7. Either (a) Expand Bθ as a VSH series and calculate its radial derivative by a finite-difference expression,
the same as above, or (b) calculate the second radial derivative of the Br VSH coefficients and use this
to calculate the Bθ VSH coefficients and their radial derivatives. Following tests in §13.3, we choose (a).

8. Calculate the standard deviation of the VSH decomposition relative to the numerical field values at each
gridpoint, in order to quantify the accuracy with which this calculation is being performed. Calculate
the radial derivatives of the field components themselves, having already calculated the radial derivatives
of the VSH coefficients. These are not used by the code but are saved to the output values to allow for
sanity-check calculations.

9. Calculate the spatial derivatives ∇ · B,∇ · E,∇ × B,∇ × E and hence the current density J and the
time-derivatives of the electric and magnetic fields from Eq. (9.1).

10. Calculate the total energy of the domain (§11.3) and the dimensionless volume integral of ∇ ·B (§13.5) as
measures of code performance, and determine at how many gridpoints the field values have become nan

or infinite.

11. Output to the CSV and log files and to the terminal.

12. Increment the time.
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21 Numerical integration

21.1 Fourth-order Runge-Kutta (RK4) method

Perhaps the most popular one-dimensional numerical integration technique is the fourth-order Runge-Kutta
method (hereafter RK4 method). If the functional form of a quantity depending on x and y is known to
be f(x, y) = dy

dx , the integral from some coordinate xn with known function value yn = y(xn) to some other
coordinate xn+1 = xn + h with known function value yn+1 = y(xn+1) is well approximated by

yn+1 =

∫ xn+h

xn

f(x, y) dx ≈ 1
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xn + h , yn + k3

)
. (21.5)

If there is no y-dependence, as is the case for univariate functions f(x), this reduces to

yn+1 =

∫ xn+h

xn

f(x) dx ≈ h

6

[
f(xn) + 4f

(
xn +

h

2

)
+ f(xn + h)

]
. (21.6)

The RK4 method converges relatively quickly, is computationally efficient and offers a global truncation
error1 O(h4). This makes it one of the most popular one-dimensional numerical integration techniques (Hoff-
man, 1992, §7.5, §7.9). However, it does not automatically provide an explicit error estimate; instead, one must
compute the integral again with two half-steps h

2 , yielding a single-step error estimate given in Proposition
21.1. This requires three times as many derivative function evaluations per step, so can dramatically reduce
computational efficiency. If a more efficient error-control method exists for the intermediate steps,2 one may
choose to calculate this error only at the final step in order to yield a quantitative estimate.

Proposition 21.1. An estimate of the single-step numerical error from the RK4 method is

(Error) =
16

15

[
yn+1

(
h

2

)
− yn+1(h)

]
. (21.7)

Proof. Suppose we calculate yn+1 with an nth-order finite difference equation that uses a single step h. Then,
the single-step error scales as hn+1 (multiplied by some unknown constant coefficient C). The exact solution
yn+1 and the calculated value yn+1(h) are related by3

yn+1 = yn+1(h) + Chn+1 +O(n+ 2). (21.8)

1Global as in, after a large number of iterations, as opposed to a single-step truncation error.
2For example, a calculation to determine whether some conserved quantity such as energy does not change appreciably given

yn+1; see §11.3.
3Here, the notation yn+1(h) means the value of yn+1 when calculated with step size h.
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Our goal is to calculate the error term Chn+1. We do this by repeating the calculation with two half-steps and
hence two errors each scaling as (h/2)n+1 that are summed together:

yn+1 = yn+1

(
h

2

)
+ 2C

(
h

2

)n+1

. (21.9)

We have two simultaneous equations, which we can solve for the error term for the error term Chn+1. Subtract
(21.9) from (21.8) and rearrange for the error term:

0 = yn+1(h)− yn+1

(
h

2

)
+ Chn+1 − 2C

(
h

2

)n+1

= yn+1(h)− yn+1

(
h

2

)
+ Chn+1

(
1− 2−n

)
,

(21.10)

⇒ Chn+1 =
(
1− 2−n

)−1
[
yn+1

(
h

2

)
− yn+1(h)

]
=

2n

2n − 1

[
yn+1

(
h

2

)
− yn+1(h)

]
. (21.11)

Finally, the single-step truncation error for the RK4 method is h4, so n = 4 and the prefactor becomes 16
15 .

Proposition 21.2. The RK4 method is exact for polynomials up to third-order. Since the RK4 error
estimate is taken by half-steps, the error will be identically zero if the algorithm is exact.

Proof. This is readily verified by substituting f(x) = x0 to f(x) = x4, but let us prove it for a general polynomial
exponent n ∈ N0. The exact integral of f(x) = xn between x = x0 and x = h is

Iexact =

∫ x0+h

x0

xn dx =
xn+1

n+ 1

∣∣∣∣x0+h

x0

=
(x0 + h)n+1 − xn+1

0

n+ 1
=

1

n+ 1

n+1∑
k=0

(
n+ 1

k

)
xk0 h

n+1−k − xn+1
0

n+ 1
.

(21.12)

The final term n + 1 in the summation will cancel with −xn+1
0 /(n + 1). Let us separate this from the sum,

along with the penultimate term n (which will later lead to simplification),

1

n+ 1

(
n+ 1

n+ 1

)
xn+1
0 hn+1−(n+1) +

1

n+ 1

(
n+ 1

n

)
xn0 h

n+1−n =
xn+1
0

n+ 1
+ xn0 h, (21.13)

and alter the binomial coefficient,(
n+ 1

k

)
=

(n+ 1)n!

k! (n+ 1− k) (n− k)!
=

n+ 1

n+ 1− k

(
n

k

)
, (21.14)

giving

Iexact = hxn0 +

n−1∑
k=0

(
n

k

)
xk0 h

n+1−k 1

n+ 1− k
. (21.15)

For the RK4 integral, the k-coefficients are

k1 = hxn0 , (21.16)

k2 = k3 = h

(
x0 +

h

2

)n

= h

n∑
k=0

(
n

k

)
xk0

(
h

2

)n−k

= h

n∑
k=0

(
n

k

)
xk0 h

n−k 2k−n, (21.17)

k4 = h(x0 + h)n = h

n∑
k=0

(
n

k

)
xk0 h

n−k, (21.18)
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giving

IRK4 =
h

6

[
xn0 + 4

(
x0 +

h

2

)n
+ (x0 + h)n

]
=

h0
6

[
xn0 + 4

n∑
k=0

(
n

k

)
xk0

(
h

2

)n−k

+

n∑
k=0

(
n

k

)
xk0 h

n−k

]
(21.19)

=
h

6

[ n∑
k=0

(
n

k

)
xk0 h

n−k
(
1 + 2k−n+2

)
+ xn0

]
= hxn0 +

1

6

n−1∑
k=0

(
n

k

)
xk0 h

n+1−k
(
1 + 2k−n+2

)
, (21.20)

where in the last equality we separated the final term
(
n
n

)
xn0 h

n−n
(
1 + 2n−n+2

)
= 5xn0 . The error of the RK4

method is then

(error) = Iexact − IRK4 =

n−1∑
k=0

(
n

k

)
xk0 h

n+1−k

[
1

n+ 1− k
− 1

6

(
1 + 2k−n+2

)]
(21.21)

=
1

6

n−1∑
k=0

(
n

k

)
xk0 h

n+1−k 6−
(
n+ 1− k

)(
1 + 2k−n+2

)
n+ 1− k

. (21.22)

The numerator in the fraction above is zero only if k ∈ {n− 1 , n− 2 , n− 3 }:

6−
(
n+ 1− [n− 1]

)(
1 + 2(n−1)−n+2

)
= 6− 2

(
1 + 21

)
= 0, (21.23)

6−
(
n+ 1− [n− 2]

)(
1 + 2(n−2)−n+2

)
= 6− 3

(
1 + 20

)
= 0, (21.24)

6−
(
n+ 1− [n− 3]

)(
1 + 2(n−3)−n+2

)
= 6− 4

(
1 + 2−1

)
= 0, (21.25)

6−
(
n+ 1− [n− 4]

)(
1 + 2(n−4)−n+2

)
= 6− 5

(
1 + 2−2

)
= − 1

24
, (21.26)

and so on. Hence, we can end the summation at k = n− 4:

(error) =
1

6

n−4∑
k=0

(
n

k

)
xk0 h

n+1−k 6−
(
n+ 1− k

)(
1 + 2k−n+2

)
n+ 1− k

. (21.27)

If n < 4, the summation contains no terms, so the error is zero. If n ≥ 4, the error is nonzero. Hence, the RK4
method is exact for f(x) = const, f(x) = x, f(x) = x2 and f(x) = x3, but not for a general power f(x) = xn.
This proof still holds for a polynomial due to linearity arguments.

21.2 Runge-Kutta-Fehlberg (RKF) method

Some integration methods automatically provide an error estimate. An example is theRunge-Kutta-Fehlberg
method (Fehlberg, 1966):

yn+1 = yn +
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 +

2

55
k6, (21.28)

where

k1 = h f
(
xn , yn

)
, (21.29)

k2 = h f

(
xn +

h

4
, yn +

k1
4

)
, (21.30)

k3 = h f

(
xn +

3

8
h , yn +

3 k1 + 9 k2
32

)
, (21.31)

k4 = h f

(
xn +

12

13
h , yn +

1932 k1 − 7200 k2 + 7296 k3
2197

)
, (21.32)

k5 = h f

(
xn + h , yn +

439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4

)
, (21.33)

k6 = h f

(
xn +

h

2
, yn − 8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5

)
. (21.34)
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The single-step error estimate is given in terms of the same coefficients:

(Error) =
1

360
k1 −

128

4275
k3 −

2197

75240
k4 +

1

50
k5 +

2

55
k6. (21.35)

The easily calculable error term can make the RKF method preferable to the RK4 method. It has global
truncation error O(h5), but is less computationally efficient than the RK4 method because more derivative
function evaluations are required per step (six compared to four, Hoffman, 1992, §7.9). This can be offset by
increasing the step size.

Accuracy can be improved by breaking an integration over the interval [xmin, xmax] into n separate integrals
with step size

h =
xmax − xmin

n− 1
. (21.36)

Treating the single-step errors as statistical errors, which add in quadrature, the total numerical error will be

σtot =

√√√√ n∑
i=1

σ2i , (21.37)

where σi is the error estimate for each step. Although σtot is larger than any of the σi, the act of reducing the
step size h reduces all of the σi, so the total error decreases as the step-size decreases (i.e. as the number of
steps increases).

21.3 Adams-Bashforth methods

The first-, second-, third-, fourth- and fifth-order Adams-Bashforth methods estimate yn+1 to be4

yAB1
n+1 = yn + h f(xn , yn) +O(h2), (21.38)

yAB2
n+1 = yn +

h

2

[
3 f(xn, yn)− f(xn−1, yn−1)

]
= O(h3), (21.39)

yAB3
n+1 = yn +

h

12

[
23 f(xn, yn)− 16 f(xn−1, yn−1) + 5 f(xn−2, yn−2)

]
+O(h4), (21.40)

yAB4
n+1 = yn +

h

24

[
55 f(xn, yn)− 59 f(xn−1, yn−1) + 37 f(xn−2, yn−2)− 9 f(xn−3, yn−3)

]
+O(h5), (21.41)

yAB5
n+1 = yn +

h

720

[
1901 f(xn, yn)− 2774 f(xn−1, yn−1) + 2616 f(xn−2, yn−2)

− 1274 f(xn−3, yn−3) + 251 f(xn−4, yn−4)

]
+O(h6). (21.42)

Note that the AB1 method is equivalent to the Euler method. The kth-order Adams-Bashforth method has
single-step error O(hk+1) (Hairer et al., 1993). Although accuracy increases as the order increases, yn+1 depends
on earlier values of y. This introduces two complications:

1. We must maintain copies of the last few lists of y-values used, and constantly shift them when we move
to the next timestep (e.g. move all the values from yn to yn−1).

2. We cannot use higher-order methods for the first few timesteps because previous sets of y values do not
yet exist.

4The second- and higher-order methods are usually written such that yn+2 and so on are calculated; that is, skipping to
coordinates further ahead. However, we are only interested in calculating the next coordinate yn+1, and so we rewrite the indices
here to suit.
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The latter complication is accounted for by increasing the order every step until the desired method can be
used. For example, if we wish to use the AB3 method, the process is as follows.

1. To start, create four arrays y_nplus1, y_n, y_nminus1 and y_nminus2, which we will use to store the
values of y at the next, current and previous two timesteps.

2. At the initial time n = 0, we only have the initial values y0. Populate y_n with these. To calculate
y_nplus1 (which are y1), we must use the AB1 method.

3. At the second timestep n = 1, copy the values from y_n to y_nminus1 (which are y0) and then copy the
values from y_nplus1 to overwrite y_n (which are y1). Optionally, reset the values in y_nplus1 (which
are y2, to be calculated) to zero, to avoid confusion or potential errors. The most accurate method we
can use to calculate y_nplus1 is the AB2 method.

4. At the third timestep n = 2, copy the values from y_nminus1 to y_nminus2 (which are y0), copy the values
from y_n to overwrite y_nminus1 (which are y1) and then copy the values from y_nplus1 to overwrite y_n
(which are y2). Optionally, reset the values in y_nplus1 (which are y3, to be calculated) to zero. All of
our arrays are populated, so we can use the AB3 method for this and all subsequent steps. Note that, for
example, at the fourth timestep, we will lose y0 when y_nminus2 is overwritten; this is acceptable since
y0 are no longer required.

21.4 Multidimensional integrals and volume elements

Let us now turn our attention to integrals over more than one variable, e.g. surface and volume integrals.
These will be performed extensively throughout our project. However, we are restricted to discrete grids, so
unfortunately generalisations of the Runge-Kutta and Adams-Bashforth methods will not be applicable.

Instead, let us derive a finite-element method that is easily applicable to discrete domains in any number of
dimensions, and let us make this applicable to any orthonormal coordinate system (Chapter 24). We shall do
this by generalising the well-known trapezium rule of one-dimensional numerical integration.

We do not claim to be the first to develop such methods, but we derive them from first principles and
independently of the literature. As such, the entirety of this section may be considered as original work.

Firstly, let us clearly state the notation we will use. Let (u1, u2, u3) be a curvilinear coordinate system with
Lamé coefficients h1, h2, h3 (§24.1). Let u1,min, u1,max, u2,min, u2,max, u3,min, u3,max ∈ R and let f(u1, u2, u3) be a
function defined for u1 ∈ [u1,min, u1,max], u2 ∈ [u2,min, u2,max], u3 ∈ [u3,min, u3,max]. As in the 1D case, accuracy
of numerical integration will be improved by splitting the domain:

• Split the interval [u1,min, u1,max] into N1 ∈ N values u1,i enumerated by i ∈ N0 : 0 ≤ i ≤ N1 − 1, with
u1,0 = u1,min, u1,N1−1 = u1,max and ∀ i ∈ N0 : 0 ≤ i ≤ N1 − 2, we have u1,i < u1,i+1.

• Split the interval [u2,min, u2,max] into N2 ∈ N values u2,j enumerated by j ∈ N0 : 0 ≤ j ≤ N2 − 1, with
u2,0 = u2,min, u2,N2−1 = u2,max and ∀ j ∈ N0 : 0 ≤ j ≤ N2 − 2, we have u2,j < u2,j+1.

• Split the interval [u3,min, u3,max] into N3 ∈ N values u3,k enumerated by k ∈ N0 : 0 ≤ k ≤ N3 − 1, with
u3,0 = u3,min, u3,N3−1 = u3,max and ∀ k ∈ N0 : 0 ≤ k ≤ N3 − 2, we have u3,k < u3,k+1.

Denote linear spacing as ∆u1 =
u1,max−u1,min

N1−1 , and similarly ∆u2 =
u2,max−u2,min

N2−1 and ∆u3 =
u3,max−u3,min

N3−1 .
Now, the 3D integral over the volume spanned by all three coordinates is

I3D ≡
∫ u3,max

u3,min

∫ u2,max

u2,min

∫ u1,max

u1,min

f(u1, u2, u3)h1 h2 h3 du1 du2 du3. (21.43)

Define the finite volume element ∆Vi,j,k to be the volume bounded by the eight points (u1,i, u2,j , u3,k),
(u1,i, u2,j+1, u3,k), (u1,i+1, u2,j , u3,k), (u1,i+1, u2,j+1, u3,k), (u1,i, u2,j , u3,k+1), (u1,i, u2,j+1, u3,k+1), (u1,i+1, u2,j , u3,k+1),
(u1,i+1, u2,j+1, u3,k+1):

∆Vi,j,k ≡
∫ u3,k+1

u3,k

∫ u2,j+1

u2,j

∫ u1,i+1

u1,i

h1 h2 h3 du1 du2 du3. (21.44)
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The 2D integral over the surface spanned by two of the coordinates (say, without loss of generality, u1 and u2)
is

I2D ≡
∫ u2,max

u2,min

∫ u1,max

u1,min

f(u1, u2)h1 h2 du1 du2. (21.45)

Define the finite area element ∆Ai,j to be the area bounded by the four points (u1,i, u2,j), (u1,i, u2,j+1),
(u1,i+1, u2,j), (u1,i+1, u2,j+1):

∆Ai,j ≡
∫ u2,j+1

u2,j

∫ u1,i+1

u1,i

h1 h2 du1 du2. (21.46)

The 1D integral over the line covered by one coordinate (say u1, from which we remove the subscript since there
are no other coordinates to distinguish it from) is

I1D ≡
∫ umax

umin

f(u)h du. (21.47)

Define the finite line element ∆ui to be the length of the straight line connecting the two points ui and ui+1:

∆ui ≡
∫ ui+1

ui

h du. (21.48)

The expression for a finite line element is especially useful for integrals in which a change of variables has been
performed; for example, from some variable x to some other variable t related by x = cos(t).

The finite volume, area and line elements clearly depend only on the coordinate system, not the function, so
they can be calculated in advance and stored in multidimensional arrays separate to the function values. Doing
so avoids repeat calculations when many numerical integrals are required over the same coordinates.

Proposition 21.3. The finite volume elements for Cartesian, cylindrical polar and spherical polar coordi-
nate systems are

∆V Cartesian
i,j,k =

[
xi+1 − xi

] [
yj+1 − yj

] [
zk+1 − zk

]
, (21.49)

∆V cylindrical
i,j,k =

1

2

[
ρ2i+1 − ρ2i

] [
ϕj+1 − ϕj

] [
zk+1 − zk

]
, (21.50)

∆V spherical
i,j,k =

1

3

[
r3i+1 − r3i

] [
cos(θj)− cos(θj+1)

] [
ϕk+1 − ϕk

]
. (21.51)

If we use linear spacing for all coordinates, these expressions become

∆V Cartesian
i,j,k = ∆x∆y∆z, (21.52)

∆V cylindrical
i,j,k = ∆ρ∆ϕ∆z

[
ρi +

1

2
∆ρ

]
, (21.53)

∆V spherical
i,j,k = ∆r∆ϕ

[
r2i + ri∆r +

1

3
∆r2

] [
cos(θj)− cos(θj+1)

]
. (21.54)

Proof. The process is the same in all coordinate systems. Let us show the spherical polar result explicitly:

∆V spherical
i,j,k =

∫ ϕk+1

ϕk

∫ θj+1

θj

∫ ri+1

ri

hr hθ hϕ dr dθ dϕ (21.55)

=

(∫ ri+1

ri

r2 dr

)(∫ θj+1

θj

sin(θ) dθ

)(∫ ϕk+1

ϕk

dϕ

)
(21.56)

=

[
1

3
r3
]ri+1

ri

[
− cos(θ)

]θj+1

θj

[
ϕ

]ϕk+1

ϕk

, (21.57)
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which yields the given result. Now suppose that we use linear spacing for all coordinates. For the radial
component, we have

r3i+1 =
(
ri +∆r

)3
= r3i + 3 r2i ∆r + 3 ri∆r

2 +∆r3, (21.58)

⇒ 1

3

[
r3i+1 − r3i

]
=

1

3

[
3 r2i ∆r + 3 ri∆r

2 +∆r3
]

= ∆r

[
r2i + ri∆r +

1

3
∆r2

]
. (21.59)

We cannot express cos(θj+1) = cos(θj +∆θ) in terms of cos(θj) and cos(∆θ), so the θ term does not simplify.
Clearly ϕk+1 − ϕk = ∆ϕ independent of k. Putting these together, we obtain the given result.

Extensively throughout the numerical evolution, we will require the volume integral of an axisymmetric function
in spherical polar coordinates, integrating over all ϕ ∈ [0, 2π]. This is equivalent to 2π times the surface integral
over r and θ, which has finite area element

∆Ar,θ
i,j =

1

2

[
r2i+1 − r2i

] [
θj+1 − θj

]
, (21.60)

and with linear coordinate spacing,

∆Ar,θ
i,j = ∆r∆θ

[
ri +

1

2
∆r

]
. (21.61)

We will also frequently use 1D integrals over the polar angle θ, for which5

∆θj = cos(θj)− cos(θj+1). (21.62)

These are obtained by the same process as in Proposition 21.3.

5We will always enumerate θ with the index j in the code, so write j here for consistency.
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21.5 Multidimensional indefinite integrals

When comparing numerical results to known indefinite integrals, it is important to properly consider the treat-
ment of upper and lower integration bounds. In maths we are used to 1D indefinite integrals requiring just two
function evaluations, i.e.

I1D =

∫ umin

umax

f(u)hu du = I(umax)− I(umin), (21.63)

but we will now show that this does not carry over to higher dimensions: to return the required definite
integral, we must perform eight function evaluations in 3D and four in 2D. This is perhaps not appreciated
when performing such calculations by hand, as the integrals are usually separated and the bounds applied
during intermediate steps to simply the expression. It is a subtle point, but becomes necessary when defining
indefinite integrals via a function on a computer code.

Proposition 21.4. Suppose that the indefinite integral of Eq. (21.43) is known to be I(u1, u2, u3). Then,
the definite integral is

I3D = I(u1,max, u2,max, u3,max)− I(u1,max, u2,max, u3,min)− I(u1,max, u2,min, u3,max) + I(u1,max, u2,min, u3,min)

− I(u1,min, u2,max, u3,max) + I(u1,min, u2,max, u3,min) + I(u1,min, u2,min, u3,max)− I(u1,min, u2,min, u3,min).
(21.64)

Proof. Eq. (21.43) can be separated into independent integrals over each coordinate:

I3D =

(∫ u1,max

u1,min

f1(u1)h1 du1

)(∫ u2,max

u2,min

f2(u2)h2 du2

)(∫ u3,max

u3,min

f3(u3)h3 du3

)
, (21.65)

where f1, f2, f3 are the parts of the function that depend on u1, u2, u3 respectively. Suppose that the indefinite
integrals of f1, f2, f3 are known to be I1, I2, I3 respectively. Then, the indefinite integral of the full function
f(u1, u2, u3) is the product

I(u1, u2, u3) = I1(u1) I2(u2) I3(u3). (21.66)

Definite integrals are obtained by

I3D =
[
I1

]u1,max

u1,min

[
I2

]u2,max

u2,min

[
I3

]u3,max

u3,min

(21.67)

=
[
I1(u1,max)− I1(u1,min)

] [
I2(u2,max)− I2(u2,min)

] [
I3(u3,max)− I3(u3,min)

]
(21.68)

=
[
I1(u1,max)− I1(u1,min)

] [
I2(u2,max) I3(u3,max)− I2(u2,max) I3(u3,min)

− I2(u2,min) I3(u3,max) + I2(u2,min) I3(u3,min)
]

(21.69)

= I1(u1,max) I2(u2,max) I3(u3,max)− I1(u1,max) I2(u2,max) I3(u3,min)

− I1(u1,max) I2(u2,min) I3(u3,max) + I1(u1,max) I2(u2,min) I3(u3,min)

+ I1(u1,min) I2(u2,max) I3(u3,max)− I1(u1,min) I2(u2,max) I3(u3,min)

− I1(u1,min) I2(u2,min) I3(u3,max) + I1(u1,min) I2(u2,min) I3(u3,min), (21.70)

which combine to give the quoted result.

In the same way, if the indefinite integral of Eq. (21.45) is I(u1, u2), the definite integral is

I2D = I(u1,max, u2,max)− I(u1,max, u2,min)− I(u1,min, u2,max) + I(u1,min, u2,min). (21.71)

174



University of East Anglia Neutron star magnetospheres

21.6 Trapezium rule

21.6.1 1D Cartesian coordinates

While indispensable for 1D numerical integration, the RK4, RKF and Adams-Bashforth methods have two
main drawbacks:

1. The RK4 and RKF methods require function evaluations at intermediate points between x0 and x0 + h,
which is impossible for discrete data without some interpolation method.

2. None of the methods scale easily to higher dimensions.

The trapezium rule does not share these drawbacks. Its form is well known in 1D Cartesian coordinates, but
less so in general coordinate systems or higher dimensions. Let us first recap the 1D Cartesian trapezium rule
and then use this as the basis for a formulation in other coordinate systems.

Definition 21.5. Let a, b ∈ R and let f(x) be a function defined on [a, b] in 1D Cartesian coordinates. The
trapezium rule, also called the trapezoidal rule, approximates the integral of f(x) over [a, b]:∫ b

a
f(x) dx ≈ f(a) + f(b)

2
· (b− a). (21.72)

The value above is equal to the area of the trapezium defined by the four points
(
a, 0
)
,
(
b, 0
)
,
(
a, f(a)

)
and(

b, f(b)
)
, hence the name; this can be seen in the left-hand graph of Figure 21.1. It can equivalently be

interpreted as the average value of f(x) at the two points x = a and x = b, times the separation between them.
Accuracy is improved by splitting the interval [a, b] intoN ∈ N values of x with arbitrary spacing, enumerated

by i ∈ N0 : 0 ≤ i ≤ N − 1; that is, N − 1 subintervals.6 We have x0 = a, xN−1 = b and ∀ i ∈ N0 : 0 ≤ i ≤ N − 2,
we have xi < xi+1. Then, the integral is approximately∫ b

a
f(x) dx ≈ 1

2

N−2∑
i=0

[
f(xi+1) + f(xi)

]
(xi+1 − xi). (21.73)

Figure 21.1 visualises this process.

Figure 21.1: Visualisation of the integral of a function between two points by the trapezium rule. Left: One
step. Right: N = 4 steps. The example used here is sin(x) from 0.3π to 0.6π; the absolute relative error is
0.08 and 0.005 respectively.

6Care must be taken when comparing results in this section to the literature. Some definitions use 1 ≤ i ≤ N , and some use
N subintervals such that there are N + 1 values of x. We choose to “count the fence posts, not the fences” consistently throughout
the project, because it will prove easier when building lists of coordinates in the main evolution code. We also enumerate i from 0
for consistency with C++ array indexing, so that expressions in this report can be directly compared to the functions we write.
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Proposition 21.6. In Cartesian coordinates, the trapezium rule with N values of x can be equivalently
written∫ b

a
f(x) dx ≈ 1

2

(
f(x0)

[
x1 − x0

]
+ f(xN−1)

[
xN−1 − xN−2

]
+

N−2∑
i=1

f(xi)
[
xi+1 − xi−1

])
. (21.74)

Writing x0 = a and xN−1 = b slightly simplifies the notation.

Proof. Denote by IN1 the integral defined in Eq. (21.73) with N values of x, and by IN2 the integral defined in
Eq. (21.74). We prove the statement by induction. Our base case is N = 2 since we need at least two values
of x to integrate between. For the original expression,

2 I21 =
2−2∑
i=0

[
f(xi+1) + f(xi)

]
(xi+1 − xi) =

0∑
i=0

[
f(xi+1) + f(xi)

]
(xi+1 − xi) (21.75)

=
[
f(x0+1) + f(x0)

]
(x0+1 − x0) =

[
f(x1) + f(x0)

]
(x1 − x0). (21.76)

For the proposed expression:

2 I22 = f(x0)
[
x1 − x0

]
+ f(x2−1)

[
x2−1 − x2−2

]
+

2−2∑
i=1

f(xi)
[
xi+1 − xi−1

]
(21.77)

= f(x0)
[
x1 − x0

]
+ f(x1)

[
x1 − x0

]
+

0∑
i=1

f(xi)
[
xi+1 − xi−1

]
. (21.78)

Since ∄ i ∈ N0 : (i ≥ 1) ∧ (i ≤ 0), the summation condition is never fulfilled, so the sum evaluates to zero. We
have

2 I22 = f(x0)
[
x1 − x0

]
+ f(x1)

[
x1 − x0

]
+ 0 =

[
f(x0) + f(x1)

]
(x1 − x0) = 2 I21 . (21.79)

Assume now that the statement holds for N , that is, IN1 = IN2 . To complete the proof, we must show that this
implies that the statement holds for N + 1. Our target value is

2 IN+1
1 =

N+1−2∑
i=0

[
f(xi+1) + f(xi)

]
(xi+1 − xi) =

N−1∑
i=0

[
f(xi+1) + f(xi)

]
(xi+1 − xi) (21.80)

=
N−2∑
i=0

[
f(xi+1) + f(xi)

]
(xi+1 − xi) +

[
f(xN−1+1) + f(xN−1)

]
(xN−1+1 − xN−1) (21.81)

= 2 IN1 +
[
f(xN ) + f(xN−1)

]
(xN − xN−1). (21.82)

We have

2 IN+1
2 = f(x0)

[
x1 − x0

]
+ f(xN+1−1)

[
xN+1−1 − xN+1−2

]
+

N+1−2∑
i=1

f(xi)
[
xi+1 − xi−1

]
(21.83)

= f(x0)
[
x1 − x0

]
+ f(xN )

[
xN − xN−1

]
+

N−1∑
i=1

f(xi)
[
xi+1 − xi−1

]
. (21.84)

Note that

N−1∑
i=1

f(xi)
[
xi+1 − xi−1

]
=

N−2∑
i=1

f(xi)
[
xi+1 − xi−1

]
+ f(xN−1)

[
xN−1+1 − xN−1−1

]
(21.85)

=
N−2∑
i=1

f(xi)
[
xi+1 − xi−1

]
+ f(xN−1)

[
xN − xN−2

]
, (21.86)
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and that

f(x0)
[
x1 − x0

]
+

N−2∑
i=1

f(xi)
[
xi+1 − xi−1

]
= 2 IN2 − f(xN−1)

[
xN−1 − xN−2

]
, (21.87)

giving

2 IN+1
2 = 2 IN2 − f(xN−1)

[
xN−1 − xN−2

]
+ f(xN )

[
xN − xN−1

]
+ f(xN−1)

[
xN − xN−2

]
(21.88)

= 2 IN2 + f(xN−1)
[
− xN−1 + xN

]
+ f(xN )

[
xN − xN−1

]
(21.89)

= 2 IN2 +
[
f(xN−1) + f(xN )

] [
xN − xN−1

]
(21.90)

= 2 IN1 +
[
f(xN−1) + f(xN )

] [
xN − xN−1

]
(21.91)

= 2 IN+1
1 , (21.92)

which completes the proof.

If the subintervals have equal spacing h = b−a
N−1 , the integral is approximately7

∫ b

a
f(x) dx ≈ h

2

N−2∑
i=0

[
f(xi+1) + f(xi)

]
=

h

2

[
f(x0) + f(xN−1)

]
+ h

N−2∑
i=1

f(xi). (21.93)

The expression in Eq. (21.74) comes about because terms cancel when expanding the brackets in Eq.
(21.73). For N > 2, Eq. (21.74) is more computationally efficient than Eq. (21.73) because each term in the
sum contains three terms as opposed to four. It is true that there is only one function evaluation as opposed to
two, but this alone should not offer a speed increase: we can obtain better efficiency anyway by pre-calculating
function values and storing them in an array.

7Note that xi+1 − xi−1 = 2h, so the 1
2
multiplying the sum is cancelled.
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21.6.2 Generalisation to higher dimensions and curvilinear coordinate systems

Definition 21.7. Let u be a one-dimensional coordinate with Lamé coefficient h. The trapezium rule
generalises to approximate I1D as

I1D =

∫ umax

umin

f(u)h du ≈ f(umin) + f(umax)

2
· h (umax − umin). (21.94)

Splitting the interval [umin, umax] into N ∈ N values of u with arbitrary spacing as in §21.4, a general 1D integral
is approximately

I1D ≈ 1

2

N−2∑
i=0

[
f(ui+1) + f(ui)

]
∆ui. (21.95)

Definition 21.8. The trapezium rule generalises to approximate I2D as the mean of the function evaluated
at the four vertices of the region defined by the integration limits, multiplied by the area of the region:

I2D =
1

4

[
f(u1,min, u2,min) + f(u1,min, u2,max) + f(u1,max, u2,min) + f(u1,max, u2,max)

]
· h1 h2 (u1,max − u1,min) (u2,max − u2,min). (21.96)

Splitting the domain as in §21.4, a general 2D integral is approximately

I2D ≈ 1

4

N2−2∑
j=0

N1−2∑
i=0

[
f(u1,i, u2,j) + f(u1,i, u2,j+1) + f(u1,i+1, u2,j) + f(u1,i+1, u2,j+1)

]
∆Ai,j . (21.97)

Definition 21.9. The trapezium rule generalises to approximate I3D as the mean of the function evaluated
at the eight vertices of the region defined by the integration limits, multiplied by the volume of the region:

I3D =
1

8

[
f(u1,min, u2,min, u3,min) + f(u1,min, u2,min, u3,max) + f(u1,min, u2,max, u3,min) + f(u1,min, u2,max, u3,max)

+ f(u1,max, u2,min, u3,min) + f(u1,max, u2,min, u3,max) + f(u1,max, u2,max, u3,min) + f(u1,max, u2,max, u3,max)
]

· h1 h2 h3 (u1,max − u1,min) (u2,max − u2,min) (u3,max − u3,min). (21.98)

Splitting the domain as in §21.4, a general 3D integral is approximately

I3D ≈ 1

8

N3−2∑
k=0

N2−2∑
j=0

N1−2∑
i=0

[
f(u1,i, u2,j , u3,k) + f(u1,i, u2,j , u3,k+1) + f(u1,i, u2,j+1, u3,k) + f(u1,i, u2,j+1, u3,k+1)

+ f(u1,i+1, u2,j , u3,k) + f(u1,i+1, u2,j , u3,k+1) + f(u1,i+1, u2,j+1, u3,k) + f(u1,i+1, u2,j+1, u3,k+1)
]
∆Vi,j,k.

(21.99)

The argument made following Proposition 21.6 of potential inefficiency due to repeat function evaluation is
especially true in multiple dimensions. The expressions above are grouped in terms of the finite area or volume
element ∆Ai,j or ∆Vi,j,k, but since these are typically faster to calculate than the function values f(u1,i, u2,j) or
f(u1,i, u2,j , u3,k), and may be pre-calculated if repeat integrals are required, it is tempting to expand the brackets
and factor instead by common function values. In development this yielded runtimes up to 8 times faster for
the 3D case, but at the cost of very complicated expressions prone to transcription errors when encoding, and
only when the f(u1,i, u2,j , u3,k) were obtained by function evaluations instead of numerical values (i.e. when
function evaluation is the limiting factor in runtime). We recommend to simply pre-calculate the function at
all values, and use the simple expressions grouped by area or volume element.
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21.7 Error scaling of our generalised trapezium rule

An estimate of the single-step error term in the 1D trapezium rule is given by Atkinson (1989). Their expression
requires the evaluation of f ′(x), but this is difficult to calculate accurately for discrete data such as in our final
evolutionary code. What is important is the scaling with the number of gridpoints N , which goes as O(N−3).
We do not attempt to generalise their derivation to higher dimensions or different coordinate systems, but it
should be feasible if more rigorous analysis is required.

Instead, for higher dimensions, let us note that orthogonal coordinates behave independently of each other.
Then, we should expect the errors over each dimension to be independent of each other too. For the 2D
Cartesian case we might expect an error scaling as O(N−3

x ) +O(N−3
y ).

Extending to different coordinate systems may require further thought, recalling the expressions for Lamé
coefficients and volume elements in §24.1. For example, it may be that the error scaling with the polar coordinate
θ goes as O(sink(Nθ)) instead of O(Nk

θ ), or that the radial handling must also be considered for the polar part

O(Nk1
r Nk2

θ ). For our brief analysis we will only consider power-law dependences in each isolated coordinate,
since this should at least capture the expected qualitative behaviour of integrals converging to the exact result
as resolution increases.

21.7.1 1D Cartesian coordinates

To test the 1D Cartesian implementation, we write Test_trapezium_rule_1D_Cartesian.cpp, a code that
numerically integrates the function f(x) = x2 between xmin = 1 and xmax = 2 with a varying number N ∈
{5, 10, 20, 40} of linearly spaced values of x. The exact result is∫ xmax

xmin

f(x) dx =

[
1

3
x3
]3
1

=
7

3
, (21.100)

The output is summarised in Table 21.1. To determine how the error scales with the number of gridpoints, we
perform a least-squares fit of the absolute error to the power-law function

f(N) = ANk, (21.101)

with coefficients A, k to be determined. Using the standard Python module

scipy.optimize.curve_fit

we obtain fit parameters A = 0.44±0.02 and k = −2.32±0.03, in rough alignment with the O(N−3) anticipated
above.

We also test the efficient expression in Proposition 21.74 and the expressions for linear spacing in Eq. (21.93),
which return the same numerical result.

Table 21.1: Absolute relative error as a function of number of gridpoints for trapezium rule in 1D Cartesian
coordinates. We quote relative error to allow comparison between tests; the values used in the fit are obtained
simply by multiplying these by the exact result 7

3 in Eq. (21.100).

Gridpoints Absolute relative error

5 0.00446429
10 0.000881834
20 0.000197863
40 4.69616e-05
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21.7.2 2D Cartesian coordinates

To test the 2D Cartesian implementation, we write Test_trapezium_rule_2D_Cartesian.cpp to integrate
f(x, y) = x2 + y2 from xmin = 1 to xmax = 2, and ymin = 3.5 to ymax = 5, with Nx ∈ {5, 10, 20, 40} values of x
and Ny ∈ {5, 10, 20, 40} values of y, all equally spaced. The exact result is∫ ymax

ymin

∫ xmax

xmin

f(x, y) dx dy =

[
1

3
(x3 y + x y3)

](2, 5)
(1, 3.5)

= 30.875. (21.102)

Using a least-squares fit to the sum of power laws

f(Nx, Ny) = A1N
k1
x +A2N

k2
y (21.103)

with the values in Table 21.2, we obtain fit parameters A1 = 0.63± 0.03, k1 = −2.29± 0.03, A2 = 1.50± 0.04
and k2 = −2.33±0.02. This is similar to the results for the 1D case, and supports our argument that the errors
in each dimension should be independent of each other.

21.7.3 2D polar coordinates

To test the 2D polar implementation, we write Test_trapezium_rule_2D_polar.cpp to integrate f(r, θ) =
r cos(θ) from rmin = 2 to rmax = 3, and θmin = π

4 to θmax = π, with Nr ∈ {5, 10, 20, 40} values of r and
Nθ ∈ {5, 10, 20, 40} values of θ, all equally spaced. The exact result is∫ θmax

θmin

∫ rmax

rmin

f(r, θ) r dr dθ =

[
1

3
r3 sin(θ)

](3, π)
(2, π/4)

=
19

3
√
2

≈ 4.4783429, (21.104)

As before, we fit to the sum of power laws

f(Nr, Nθ) = A1N
k1
r +A2N

k2
θ (21.105)

with the values in Table 21.2. The code fails to fit the parameters within the default number of iterations,
so we employ the initial guess A1 = A2 = 0 and k1 = k2 = −3. This yields a successful fit with parameters
A1 = 0.05± 0.02, k1 = −1.6± 0.2, A2 = 5.7± 0.1 and k2 = −2.35± 0.01.

Table 21.2: Absolute relative error as a function of number of gridpoints for trapezium rule in 2D Cartesian
and polar coordinates. Absolute error is recovered by multiplying by the exact results in Eqs. (21.102) and
(21.104).

N1 N2 Cartesian Polar

5 5 0.00164474 0.0298819
5 10 0.000730994 0.00653578
5 20 0.00055654 0.00210319
5 40 0.000518051 0.0011263
10 5 0.00123863 0.0292412
10 10 0.000324886 0.00587963
10 20 0.000150432 0.00144411
10 40 0.000111943 0.000466579
20 5 0.00116109 0.0291189
20 10 0.000247351 0.00575435
20 20 7.28969e-05 0.00131828
20 40 3.44079e-05 0.000340623
40 5 0.00114399 0.0290919
40 10 0.000230245 0.00572671
40 20 5.57907e-05 0.00129051
40 40 1.73016e-05 0.000312833
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21.7.4 3D Cartesian coordinates

To test the 3D Cartesian implementation, we write Test_trapezium_rule_3D_Cartesian.cpp to integrate
f(x, y, z) = x2 + y2 + z2 from xmin = 1 to xmax = 2, and ymin = 3.5 to ymax = 5, and zmin = 2.5 to ymax = 6,
with Nx ∈ {5, 10, 20, 40} values of x, Ny ∈ {5, 10, 20, 40} values of y and Nz ∈ {5, 10, 20, 40} values of z, all
equally spaced. The exact result is∫ zmax

zmin

∫ ymax

ymin

∫ xmax

xmin

f(x, y, z) dx dy dz =

[
1

3
(x3 y z + x y3 z + x y z3)

](2, 5, 6)
(1, 3.5, 2.5)

= 208.25. (21.106)

We use a least-squares fit to

f(Nx, Ny, Nz) = A1N
k1
x +A2N

k2
y +A3N

k3
z (21.107)

with the values in Table 21.3. As for the 2D polar case, the fit only converges when supplied an initial guess.
Using A1 = A2 = A3 = 0 and k1 = k2 = k3 = −3, we obtain a successful fit with parameters A1 = 1.7 ± 0.2,
k1 = −2.12± 0.06, A2 = 4.7± 0.2, k2 = −2.26± 0.03, A3 = 29.1± 0.3 and k3 = −2.344± 0.006.

21.7.5 3D polar coordinates

To test the 3D polar implementation, we write Test_trapezium_rule_3D_spherical.cpp to integrate f(r, θ, ϕ) =
r cos(θ) sin(ϕ) from rmin = 2 to rmax = 3, and θmin = π

4 to θmax = π, and ϕmin = π
3 to ϕmax = π

2 , with
Nr ∈ {5, 10, 20, 40} values of r, Nθ ∈ {5, 10, 20, 40} values of θ and Nϕ ∈ {5, 10, 20, 40} values of ϕ, all equally
spaced. The exact result is∫ ϕmax

ϕmin

∫ θmax

θmin

∫ rmax

rmin

f(r, θ, ϕ) r2 sin(θ) dr dθ dϕ =

[
1

16
r4 cos(2θ) cos(ϕ)

](3, π, π/2)
(2, π/4, π/3)

=
65

32
= 2.03125.

(21.108)

Fitting to

f(Nr, Nθ, Nϕ) = A1N
k1
r +A2N

k2
θ +A3N

k3
ϕ (21.109)

with the values in Table 21.3 and an initial guess A1 = A2 = A3 = 0 and k1 = k2 = k3 = −3, we obtain a
successful fit with parameters A1 = 0.145± 0.001, k1 = −2.363± 0.005, A2 = (2.9± 0.3)× 10−5, k2 = 0± 0.03,
A3 = 0.129± 0.001 and k3 = −2.363± 0.005.

Interestingly, the resulting error scaling is consistent with being independent of Nθ, and the scalings with
Nr and Nϕ are very similar to each other. This may be a fluke of the chosen function f(r, θ, ϕ). We would
recommend repeating the test with a second function to see whether the trend persists. Due to timing constraints
and a lack of necessity for full 3D integrals in the final code, we did not pursue this intriguing result further.
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Table 21.3: Absolute relative error as a function of number of gridpoints for trapezium rule in 3D Cartesian
and polar coordinates. Absolute error is recovered by multiplying by the exact results in Eqs. (21.106) and
(21.108). The table is split over two columns.

N1 N2 N3 Cartesian Polar

5 5 5 0.00407038 0.00302858
5 5 10 0.00148891 0.00188418
5 5 20 0.000996044 0.00166575
5 5 40 0.000887306 0.00161756
5 10 5 0.00359623 0.00302858
5 10 10 0.00101476 0.00188418
5 10 20 0.000521896 0.00166575
5 10 40 0.000413158 0.00161756
5 20 5 0.0035057 0.00302858
5 20 10 0.000924232 0.00188418
5 20 20 0.000431371 0.00166575
5 20 40 0.000322633 0.00161756
5 40 5 0.00348573 0.00302858
5 40 10 0.00090426 0.00188418
5 40 20 0.000411398 0.00166575
5 40 40 0.000302661 0.00161756
10 5 5 0.00385965 0.00174441
10 5 10 0.00127817 0.000598536
10 5 20 0.000785312 0.000379823
10 5 40 0.000676574 0.000331572
10 10 5 0.0033855 0.00174441
10 10 10 0.000804025 0.000598536
10 10 20 0.000311164 0.000379823
10 10 40 0.000202426 0.000331572
10 20 5 0.00329497 0.00174441
10 20 10 0.0007135 0.000598536
10 20 20 0.000220638 0.000379823
10 20 40 0.0001119 0.000331572
10 40 5 0.003275 0.00174441
10 40 10 0.000693527 0.000598536
10 40 20 0.000200666 0.000379823
10 40 40 9.19281e-05 0.000331572

N1 N2 N3 Cartesian Polar

20 5 5 0.00381941 0.00149923
20 5 10 0.00123794 0.000353077
20 5 20 0.000745078 0.00013431
20 5 40 0.00063634 8.60473e-05
20 10 5 0.00334526 0.00149923
20 10 10 0.000763792 0.000353077
20 10 20 0.00027093 0.00013431
20 10 40 0.000162192 8.60473e-05
20 20 5 0.00325474 0.00149923
20 20 10 0.000673266 0.000353077
20 20 20 0.000180405 0.00013431
20 20 40 7.16667e-05 8.60473e-05
20 40 5 0.00323477 0.00149923
20 40 10 0.000653294 0.000353077
20 40 20 0.000160432 0.00013431
20 40 40 5.16945e-05 8.60473e-05
40 5 5 0.00381054 0.00144514
40 5 10 0.00122906 0.000298922
40 5 20 0.000736202 8.01439e-05
40 5 40 0.000627464 3.18784e-05
40 10 5 0.00333639 0.00144514
40 10 10 0.000754915 0.000298922
40 10 20 0.000262054 8.01439e-05
40 10 40 0.000153316 3.18784e-05
40 20 5 0.00324586 0.00144514
40 20 10 0.00066439 0.000298922
40 20 20 0.000171528 8.01439e-05
40 20 40 6.27902e-05 3.18784e-05
40 40 5 0.00322589 0.00144514
40 40 10 0.000644417 0.000298922
40 40 20 0.000151556 8.01439e-05
40 40 40 4.28179e-05 3.18784e-05
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21.8 Conclusion

The error scaling of our generalised trapezium rule is summarised in Table 21.4 for various dimensions and coor-
dinate systems. All five tests demonstrate that our generalised trapezium rule has accuracy that is predictable
and scales inversely with the number of gridpoints. Hence, we may expect accurate results for any dimension-
ality or coordinate system used within our applications. If a certain calculation is not accurate enough, our
analysis shows that simply adding resolution will improve results.

The error scaling is fairly consistent for Cartesian coordinates, fitting well the simple power laws expected,
Eqs. (21.101), (21.103) and (21.107). The 1D case is roughly similar to the theoretical prediction by Atkinson
(1989), and matches the expected behaviour of converging to the exact result with increasing numbers of
gridpoints.

For polar coordinates we see some evidence supporting our prediction of a more complicated scaling than
Eqs. (21.105) and (21.109), perhaps with interplays between the coordinates as a result of the Lamé coefficients
and volume elements. It may be possible to generalise the derivation of the 1D error scaling in Atkinson (1989)
and obtain a better estimate for a scaling relation. However, that is beyond the scope of this thesis.

The 3D polar method hints at independence of the accuracy of the method on the number of polar gridpoints
Nθ, and that the dependence on Nr, Nϕ is very similar, but further testing is required to confirm this.

We emphasise that our error scaling results are dependent on the function being integrated; a full con-
sideration of the error scaling would need to compare integrals of multiple classes of function. For Cartesian
coordinates, one may also wish to swap the roles of the coordinates8 in order to test whether the coordinates
really are treated independently of each other with this method.

The analysis can easily be extended to test execution times, which we expect to scale disproportionately
with dimensionality. This is not a major concern for our application since we will only require 1D and 2D
integration; however, a full non-axisymmetric treatment would require 3D integrals. Only one 2D integral is
required per timestep, as opposed to larger numbers of 1D integrals. Thus, we can increase grid sizes for better
integration accuracy without slowing the code down too much.

We encoded the generalised trapezium rule for various dimensionalities within the header file
Trapezium_rule.h:

1. double integral_trapezium_1D_Cartesian( std::vector<double> f, std::vector<double> du )

2. double integral_trapezium_2D( std::vector< std::vector<double> > f,

std::vector< std::vector<double> > dA )

3. double integral_trapezium_3D( std::vector< std::vector< std::vector<double> > > f,

std::vector< std::vector< std::vector<double> > > dV )

The reader is encouraged to use these functions directly for their own purposes. The codes that we used to
perform the error characterisation in §21.7 are also included in the GitHub repository, allowing for a repetition
of our analysis and also serving as an example of how to use the header functions.

Table 21.4: Error scaling with number of gridpoints for our generalised trapezium rule, when applied to various
dimensions and coordinate systems.

Coordinates Error scaling

1D Cartesian O(N−2.32±0.03)
2D Cartesian O(N−2.29±0.03

x ) +O(N−2.33±0.02
y )

2D polar O(N−1.6±0.2
r ) +O(N−2.35±0.01

θ )
3D Cartesian O(N−2.12±0.06

x ) +O(N−2.26±0.03
y ) +O(N−2.344±0.006

z )

3D polar O(N−2.363±0.005
r ) +O(N0±0.03

θ ) +O(N−2.363±0.005
ϕ )

8Perform the same integral but swap e.g. x→ y, y → z and z → x and compare the result.
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22 Numerical differentiation by spline fitting

Suppose that we have a function f(x) whose closed analytical form is unknown, and which is evaluated at a
set of points {xi} to give values {fi}. Suppose that we wish to calculate the first and second derivatives of the
function at each gridpoint, i.e. {f ′i} and {f ′′i }.

One method is to fit a polynomial to a small number of gridpoints surrounding xi. This is attractive because
a well-known result in linear algebra is that an (n− 1)th order polynomial can always be found to pass exactly
through n points. One might then näıvely assume that, since polynomials are straightforward to differentiate,
we immediately obtain an exact expression for the derivatives at each gridpoint.

However, the logical fallacy is that although the fitted function passes exactly through each gridpoint, its
behaviour between them is not accounted for. In fact, the higher-order polynomial that is fitted to, the more
the function is prone to spurious oscillations between the gridpoints that may even become very large.

Now, the derivative of a function f(x) is given by the rate of change with respect to x. As we will see
in Chapter 23, this means that the derivative depends on function values either side of the gridpoint, and its
accuracy may be improved by taking into account the effect of increasingly further gridpoints. In the limit of
infinite accuracy, we can interpret this as saying that we need the function values all possible points in order
to obtain an accurate value of the derivative at xi. But if our fitting function is prone to spurious oscillations
between gridpoints, clearly there will be infinitely many sub-gridpoint values of f that will spuriously influence
the value we calculate.

In short, even though we can obtain a polynomial which exactly passes through a set of gridpoints, and even
though we can differentiate this polynomial exactly, it doesn’t necessarily give an exact value of the derivative
at the gridpoints. Hence, polynomial fitting is not a valid method of numerically differentiating a function. Let
us quantify this conclusion below, before moving on to finite difference methods in the following chapter.

Proposition 22.1. Let x0, x1, x2, y0, y1, y2, a, b, c ∈ R. Suppose that we have three pairs of gridpoints
(x0, y0), (x1, y1) and (x2, y2). The y-values may be exactly reproduced from the x-values, by the quadratic
f(x) = ax2 + bx+ c, with coefficients

a =
1

det(A)

[
(x1 − x2)y0 + (x2 − x0)y1 + (x0 − x1)y2

]
, (22.1)

b =
1

det(A)

[
(x22 − x21)y0 + (x20 − x22)y1 + (x21 − x20)y2

]
, (22.2)

c =
1

det(A)

[
x1x2(x1 − x2)y0 + x0x2(x2 − x0)y1 + x0x1(x0 − x1)y2

]
, (22.3)

where det(A) is the matrix determinant

det(A) = det

x20 x0 1
x21 x1 1
x22 x2 1

 = x20(x1 − x2) + x0(x
2
2 − x21) + x1x2(x1 − x2). (22.4)

That is, y0 = f(x0) = ax20 + bx0 + c and so on.

Proof. We have the system of three simultaneous equations

f(x0) = y0 = ax20 + bx0 + c, (22.5)

f(x1) = y1 = ax21 + bx1 + c, (22.6)

f(x2) = y2 = ax22 + bx2 + c, (22.7)
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with coefficients a, b, c to be found. This can equivalently be written as a matrix equationy0y1
y2

 =

x20 x0 1
x21 x1 1
x22 x2 1

ab
c

 , (22.8)

and so the matrix of coefficients is given byab
c

 =

x20 x0 1
x21 x1 1
x22 x2 1

−1y0y1
y2

 . (22.9)

Now, for a general 3× 3 matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , (22.10)

its inverse is

A−1 =
1

det(A)

a22a33 − a23a32 a13a32 − a12a33 a12a23 − a13a22
a23a31 − a21a33 a11a33 − a13a31 a13a21 − a11a23
a21a32 − a22a31 a12a31 − a11a32 a11a22 − a12a21

 , (22.11)

where

det(A) = a11(a22a33 − a23a32) + a12(a23a31 − a21a33) + a13(a21a32 − a22a31) (22.12)

is the determinant of A. Substituting this, we obtain the given result.

Let us illustrate our arguments by fitting a quadratic to three gridpoints. First, we can produce a random
set of three gridpoints by producing six random numbers, and plot a parabola through them. Figure 22.1
demonstrates this. The parabola passes exactly through the gridpoints even though they were generated
randomly as opposed to by a mathematical function.

Figure 22.1: Three gridpoints chosen at random, and the quadratic that passes exactly through them.
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However, let us now use the parabola to estimate the first and second derivative of a function at the
central gridpoint (x1, y1). Suppose that the gridpoints are produced by a function f(x) = sin(x), a particularly
“forgiving” choice because sinusoidal functions behave similarly to quadratics within small regions around a
given gridpoint. Figure 22.2 shows the result given three randomly chosen gridpoints. The tangent line at
(x1, y1) is also plotted, using both the gradient obtained from the parabola and the exact gradient of the known
function. The first and second derivatives are

f’(x_1) exact : 0.5069758539747738

f’(x_1) from parabola : 0.4883380482031725

f’’(x_1) exact : -0.8619602563265598

f’’(x_1) from parabola: -0.9053190730467202

We see that the derivatives are not exact, but accurate in this example to around one significant figure. The
two tangent lines are reasonably well aligned, but accuracy could be improved. This motivates us to develop
a more accurate method, which we shall do by finite differencing in the following chapter. In so doing, we will
obtain generalisable results that can be extended to arbitrary accuracy, greatly improving upon the most widely
known finite difference methods.

Figure 22.2: Three values of the function f(x) = sin(x) chosen at random, and the quadratic that passes exactly
through them.
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23 Numerical differentiation by finite differencing

In this chapter, we develop accurate finite difference schemes for the first and second derivative of a function
evaluated at several equally spaced points. We only consider one-dimensional functions, but all results extend
trivially to partial derivatives of multivariate functions if we hold the other variables constant.

We shall derive a generalised version of the well-known finite difference method, allowing for increased
accuracy by considering larger numbers of neighbouring gridpoints. We will also consider how to “offset” these
expressions to bias toward the gridpoints either side, allowing for high-accuracy methods to still be used near
the endpoints where neigbouring gridpoints may only be available on one side.

We do not claim to be the first to develop such methods, but we derive them from first principles and
independently of the literature. As such, the entirety of this chapter may be considered as original work.

23.1 Derivation from Taylor series

Let x ∈ R be a fixed point, let h ∈ R : |h| ≪ 1 be a small variable and let f : R → R be a smooth function.1

Then, Taylor’s theorem states that we can express f(x+ h) as

f(x+ h) =
∞∑
k=0

1

k!
f (k)(x)hk (23.1)

= f(x) + f ′(x)h+
1

2
f ′′(x)h2 +

1

6
f (3)(x)h3 +

1

24
f (4)(x)h4 + · · · , (23.2)

which is a polynomial in h known as a Taylor series.2 We can assume that the terms become smaller as k
increases, which becomes increasingly accurate as |h| → 0. Then, we can truncate the sum at some maximum
index K and use the next term as an estimate of the error between our approximation and the true value of
f(x+ h):

f(x+ h) =
K∑
k=0

1

k!
f (k)(x)hk +

1

(K + 1)!
f (K+1)(ξ)hK+1, (23.3)

where ξ ∈ (x, x+h) is whichever value of x gives the largest value of |f (K+1)| on the interval (x, x+h). Clearly
this isn’t known in general, and if we had a closed expression for f (K+1)(x) for which to check all values of ξ
then we’d probably have enough knowledge of the original function not to need its Taylor series. But we can
treat f (K+1)(ξ) as some unknown number; what is important is the scaling of this error term with h, so we
typically write simply

f(x+ h) =
K∑
k=0

1

k!
f (k)(x)hk +O(hK+1). (23.4)

Taylor series are most often used as a way to approximate a function in a small region around a gridpoint
x given its derivatives, but we can also work the other way around and use the expression to estimate the
derivatives of f(x). The expressions we obtain are known as finite difference approximations because they
are usually taught by first invoking the definition of the derivative,

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, (23.5)

1That is, f(x) can be differentiated infinitely many times, even if these eventually become zero.
2Note that since x is fixed, the derivatives are evaluated at x and are simply real numbers.
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and relaxing the limit to allow the expression to be evaluated for small but finite h. This yields perhaps the
most famous finite difference expression,

f ′(x) ≈ f(x+ h)− f(x)

h
, (23.6)

which we shall call the order-h forward difference expression for f ′(x). Forward difference expressions are
so-called because they consider only the gridpoint x and those with larger coordinates, i.e. “going forward”.
These are vital for the innermost point of a finite domain, where there are no points with smaller values of x
to use. We can also derive backward difference expressions using gridpoints such as x− h, which are vital
for the outermost point of the domain, and symmetric derivatives using gridpoints either side, which are in
general far more accurate and so should be used for intermediate points. Forward and backward expressions
may be collectively referred to as one-sided expressions. We may also require offset one-sided expressions
for points near the edges of the domain where not enough neighbours exist for a symmetric derivative of the
required accuracy. Figure 23.1 visualises the need for various types of finite difference expression.

Figure 23.1: Visualisation of the use of one-sided, offset and symmetric finite difference expressions when
calculating the first derivative of a function up to increasing accuracy. For higher derivatives, the gridpoint
distribution is the same but the error estimation is different. The function plotted is f(x) = 1

x3 , similar to the
radial dependence that we expect to encounter in the simulation, with a small number N = 10 gridpoints to
emphasise the end regions.
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Let us evaluate the Taylor series at n gridpoints equally spaced either side of our reference point x:

f(x± nh) =

∞∑
k=0

(±1)k nk

k!
f (k)(x)hk (23.7)

= f(x)± n f ′(x)h+
n2

2
f ′′(x)h2 ± n3

6
f (3)(x)h3 +

n4

24
f (4)(x)h3 ± · · · . (23.8)

Adding and subtracting the Taylor series at various gridpoints yields expressions that can easily be rearranged
for f (k)(x) involving as many gridpoints (hence as high accuracy) as required. The weights of each f(x±nh) are
chosen so as to cancel out some of the higher derivatives, improving accuracy; the more gridpoints we include,
the more derivatives we can cancel out.

In principle, the same process can be applied for non-uniform gridpoints. However, the expression in Eq.
(23.7) will in general require specific versions for each displaced gridpoint and so we will need to perform the
analysis again specifically for that grid spacing, arriving at different finite-difference expressions. In this report,
we consider only constant grid spacing.

23.2 First derivative

23.2.1 General expression

Proposition 23.1. Suppose that we have a set of NB gridpoints below x (“backward”) and NF gridpoints
above x (“forward”), all equally spaced by h, for a total NB +NR + 1 gridpoints:{

x−NBh , x− (NB − 1)h , · · · , x− 1 , x , x+ 1 , · · · , x+ (NF − 1)h , x+NFh
}
. (23.9)

Then, the optimum finite difference expression for f ′(x) evaluated at x is

f ′(x) =

NF∑
n=−NB
n̸=0

an f(x+ nh)−
( NF∑

n=−NB
n ̸=0

an

)
f(x)

( NF∑
n=−NB
n ̸=0

an n

)
h

+O(hNB+NF ), (23.10)

with NB + NF coefficients an. The first NB + NF − 1 of these are obtained by first defining normalised
versions with respect to aNB+NF

so that ãn = an
aNB+NF

, and then solving the matrix equation

M ã = N, (23.11)

with matrix and vector elements

Mi,j =

{
(−NB + j − 1)i+1 j < NB,

(−NB + j)i+1 j ≥ NB,
(23.12)

(ã)i =

{
ã−NB+i−1 i < NB,

ã−NB+i i ≥ NB,
(23.13)

(N)i = −N i+1
F , (23.14)

where i, j ∈ N : i, j ≤ NB +NF , to obtain ãn for n ∈ [1, NB +NF − 1]. The choice of aNB+NF
is free.
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Proof. Let us take a linear combination of the Taylor series at these points except for x, with coefficients an to
be found:

−1∑
n=−NB

an f(x+ nh) +

NF∑
n=1

an f(x+ nh) =

NF∑
n=−NB
n ̸=0

an f(x+ nh). (23.15)

Use Eq. (23.7) for f(x+ nh):

NF∑
n=−NB
n̸=0

an f(x+ nh) =
∞∑
k=0

( NF∑
n=−NB
n ̸=0

an n
k

)
1

k!
f (k)(x)hk. (23.16)

The sums over k and n are independent of each other, so we can freely switch their order:

NF∑
n=−NB
n ̸=0

an f(x+ nh) =
∞∑
k=0

( NF∑
n=−NB
n̸=0

an n
k

)
1

k!
f (k)(x)hk (23.17)

=

( NF∑
n=−NB
n̸=0

an

)
f(x) +

( NF∑
n=−NB
n ̸=0

an n

)
f ′(x)h+

∞∑
k=2

( NF∑
n=−NB
n ̸=0

an n
k

)
1

k!
f (k)(x)hk,

(23.18)

where we explicitly stated the k = 0 and k = 1 terms for clarity. To improve the accuracy of our estimate of
f ′(x), we should choose an so as to eliminate as many of the higher-order derivatives as possible. This means
setting as many of the sums over an n

k to zero as possible. We ignore f (0)(x) = f(x) because it is known exactly
(so setting its sum to zero would remove one opportunity to cancel an unknown higher derivative); we ignore
f (1)(x) = f ′(x) because it is the target. Our NB + NF coefficients an give NB + NF − 1 degrees of freedom;
setting to zero the first NB +NF − 1 sums from k = 2 yields up to and including k = NB +NF . This results in

NF∑
n=−NB
n̸=0

an f(x+ nh) =

( NF∑
n=−NB
n̸=0

an

)
f(x) +

( NF∑
n=−NB
n̸=0

an n

)
f ′(x)h+O(hNB+NF+1), (23.19)

which rearranges to the given expression. Let us now find the coefficients an. We have

∀ k ∈ N : 2 ≤ k ≤ NB +NF ,

NF∑
n=−NB
n̸=0

an n
k = 0, (23.20)

a set of NB +NF − 1 equations for NB +NF unknowns, which is underdetermined. To get around this, we can
divide all of the coefficients by aNF

such that ãn = an
aNF

. This would cause issues if an were zero, but then we

would effectively have a set of N − 1 gridpoints up to x+ (N − 1)h and could proceed as normal for that case.
Now we can separate ãNF

from each sum,

NF∑
n=−NB
n̸=0

ãn n
k =

( NF−1∑
n=−NB
n̸=0

ãn n
k

)
+ ãNF

Nk
F =

( NF−1∑
n=−NB
n̸=0

ãn n
k

)
+Nk

F =
0

aNF

= 0, (23.21)

and move it to the RHS:

∀ k ∈ N : 2 ≤ k ≤ NB +NF ,

NF−1∑
n=−NB
n̸=0

ãn n
k = −Nk

F . (23.22)
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This is equivalent to the matrix equation
(−NB)

2 (−NB + 1)2 · · · (−2)2 (−1)2 12 22 · · · (NF − 1)2

(−NB)
3 (−NB + 1)3 · · · (−2)3 (−1)3 13 23 · · · (NF − 1)3

...
...

. . .
...

...
...

...
. . .

...
(−NB)

NB+NF (−NB + 1)NB+NF · · · (−2)NB+NF (−1)NB+NF 1NB+NF 2NB+NF · · · (NF − 1)NB+NF



·



ã−NB

ã−NB+1
...
ã−2

ã−1

ã1
ã2
...

ãNF−1


=


−N2

F

−N3
F

...

−NNB+NF
F

 , (23.23)

where the “central values” of each row of the matrix, and the “central values” of the vector of unknown
coefficients, are shown explicitly to highlight the absence of terms related to k = 0. This can be written in
compact form as given in the proposition.

The matrix equation can be solved with standard methods such as Gaussian elimination. There is freedom
when deciding on a value of aN to return to the original coefficients. When encoding an automatic derivative
calculation on a computer, it may be preferable to set an = 1. In this report, we seek mathematical expressions
for the first derivative that we can quote, so we choose aN to be the smallest value such that all an are integers.

The sums in the numerator in Eq. (23.10) may be combined when encoding onto a computer; if one seeks
a mathematical expression, it is best to leave them separate.

Example 23.2 (1-offset order-h5 forward difference expression). Suppose that we have the points

{x− h , x , x+ h , x+ 2h , x+ 3h , x+ 4h }, (23.24)

and want to find the first derivative of a function at x. Our linear combination of Taylor series is

a−1 f(x− h) + a1 f(x+ h) + a2 f(x+ 2h) + a3 f(x+ 3h) + a4 f(x+ 4h). (23.25)

Continuing with the above process, we will arrive at the matrix equation
1 1 4 9
−1 1 8 27
1 1 16 81
−1 1 32 243



ã−1

ã1
ã2
ã3

 =


−16
−64
−256
−1024

 , (23.26)

whose solution is 
ã−1

ã1
ã2
ã3

 =


4

−40
20
−20
3

 . (23.27)
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We choose a4 = 3 so that a3 becomes an integer, giving
a−1

a1
a2
a3
a4

 =


12

−120
60
−20
3

 . (23.28)

The sums in our expression for f ′(x) are then

NF∑
n=−NB
n̸=0

an f(x+ nh) = a−1 f(x− h) + a1 f(x+ h) + a2 f(x+ 2h) + a3 f(x+ 3h) + a4 f(x+ 4h) (23.29)

= 12 f(x− h)− 120 f(x+ h) + 60 f(x+ 2h)− 20 f(x+ 3h)− 3 f(x+ 4h), (23.30)

NF∑
n=−NB
n̸=0

an = a−1 + a1 + a2 + a3 + a4 = −65, (23.31)

NF∑
n=−NB
n̸=0

an n = a−1 · (−1) + a1 · (1) + a2 · (2) + a3 · (3) + a4 · (4) = −60. (23.32)

Absorbing the minus sign from the denominator, our expression for f ′(x) is

f ′(x) =
−3 f(x+ 4h) + 20 f(x+ 3h)− 60 f(x+ 2h) + 120 f(x+ h)− 65 f(x)− 12 f(x− h)

60h
+O(h5).

(23.33)
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23.2.2 Forward expressions

Corollary 23.3. Given N + 1 forward-facing gridpoints {x, x+ h, x+ 2h, ..., x+Nh}, the optimum finite
difference expression for f ′(x) evaluated at x is

f ′(x) =

( N∑
n=1

an f(x+ nh)

)
−
( N∑

n=1

an

)
f(x)

( N∑
n=1

an n

)
h

+O(hN ), (23.34)

with N coefficients an. The first N − 1 of these are obtained by first defining normalised versions with
respect to aN so that ãn = an

aN
, and then solving the matrix equation

M ã = N, (23.35)

with matrix elements

Mi,j = ji+1, (23.36)

(ã)i = ãi, (23.37)

(N)i = −N i+1, (23.38)

to obtain ãn for n ∈ [1, N − 1]. The choice of aN is free.

Proof. This follows immediately from Proposition 23.1 with NB = 0 and NF = N .

The first few forward expressions for f ′(x) are

f ′(x) =
−f(x) + f(x+ h)

h
+O(h) (23.39)

=
−3 f(x) + 4 f(x+ h)− f(x+ 2h)

2h
+O(h2) (23.40)

=
−11 f(x) + 18 f(x+ h)− 9 f(x+ 2h) + 2 f(x+ 3h)

6h
+O(h3) (23.41)

=
−25 f(x) + 48 f(x+ h)− 36 f(x+ 2h) + 16 f(x+ 3h)− 3 f(x+ 4h)

12h
+O(h4). (23.42)

Note that the order-h expression is the fiducial example we gave in Eq. (23.6).
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23.2.3 Backward expressions

Corollary 23.4. Given N +1 backward-facing gridpoints {x, x−h, x− 2h, ..., x−Nh}, the optimum finite
difference expression for f ′(x) evaluated at x is

f ′(x) =

( N∑
n=1

an

)
f(x)−

( N∑
n=1

an f(x+ nh)

)
( N∑

n=1

an n

)
h

+O(hN ), (23.43)

with N coefficients an equal to those found in Corollary 23.3.

Proof. This follows immediately from Corollary 23.3 with h→ −h.

Although we have shown that the backward expression immediately follows from the forward expression, and
hence from the general expression, we find that computer codes yield inaccurate results for this case. It may
be safer to directly encode the expression in Corollary 23.3 and use this for backward expressions.

The first few backward expressions for f ′(x) are

f ′(x) =
f(x)− f(x− h)

h
+O(h) (23.44)

=
3 f(x)− 4 f(x− h) + f(x− 2h)

2h
+O(h2) (23.45)

=
11 f(x)− 18 f(x− h) + 9 f(x− 2h)− 2 f(x− 3h)

6h
+O(h3) (23.46)

=
25 f(x)− 48 f(x− h) + 36 f(x− 2h)− 16 f(x− 3h) + 3 f(x− 4h)

12h
+O(h4). (23.47)
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23.2.4 Symmetric expressions

Suppose now that we have N gridpoints symmetrically distributed either side of x. The general expression
in Proposition 23.1 still holds, but we can derive a simpler expression which results in the solution of an
(N − 1)× (N − 1) matrix equation instead of a (2N − 1)× (2N − 1) matrix equation.

In Eq. (23.7), the even-powered terms are always positive while the odd-powered terms have the same sign
as ±nh. Then, we can cancel alternate terms by adding or subtracting gridpoints spaced equally about x:

f(x+ nh) + f(x− nh) = 2

∞∑
k=0

k even

1

k!
f (k)(x)nk hk, (23.48)

f(x+ nh)− f(x− nh) = 2
∞∑
k=1
k odd

1

k!
f (k)(x)nk hk. (23.49)

Proposition 23.5. Given 2N + 1 symmetrically distributed points {x−Nh, x− (N − 1)h, ..., x− h, x, x+
h, ..., x+ (N − 1)h, x+Nh}, the optimum finite difference expression for f ′(x) evaluated at x is

f ′(x) =

N∑
n=1

an

[
f(x+ nh)− f(x− nh)

]
( N∑

n=1

an n

)
2h

+O(h2N ), (23.50)

with N coefficients an. The first N − 1 of these are obtained by first defining normalised versions with
respect to aN so that ãn = an

aN
, and then solving the matrix equation

M ã = N, (23.51)

with matrix elements

Mi,j = j2i+1, (23.52)

(ã)i = ãi, (23.53)

(N)i = −N2i+1, (23.54)

to obtain ãn for n ∈ [1, N − 1]. The choice of aN is free.

Proof. Create a linear combination of the differences in Taylor series evaluated at symmetrically opposite
gridpoints from x:

N∑
n=1

an

[
f(x+ nh)− f(x− nh)

]
=

N∑
n=1

an

[ ∞∑
k=1
k odd

2nk

k!
f (k)(x)hk

]
. (23.55)

Switching the order of the sums gives

N∑
n=1

an

[
f(x+ nh)− f(x− nh)

]
=

∞∑
k=1
k odd

( N∑
n=1

an n
k

)
2

k!
f (k)(x)hk (23.56)

=

( N∑
n=1

an n

)
2 f ′(x)h+

( N∑
n=1

an n
3

)
2

6
f (3)(x)h3

+

( N∑
n=1

an n
2N−1

)
2

(2N − 1)!
f (2N−1)(x)h2N−1 +O(h2N+1). (23.57)
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As in the proof of Proposition 23.1, our N coefficients give us N − 1 degrees of freedom. We can set the sums
multiplying f(3)(x) up to f (N)(x) to zero. As before, we have N − 1 equations for N unknowns, so divide the
coefficients by aN such that ãn = an

aN
and separate the n = N terms from the sums, again obtaining Eq. (23.21).

This time, the index k begins at 3 and increments by 2 each time, so the system of equations in matrix form is
1 8 · · · (N − 1)3

1 32 · · · (N − 1)5

...
...

. . .
...

1 22N−1 · · · (N − 1)2N−1



ã1
ã2
...
ãN

 =


−N3

−N5

...
−N2N−1

 . (23.58)

Once an have been found, substitute them back into Eq. (23.56), which has now become

N∑
n=1

an

[
f(x+ nh)− f(x− nh)

]
=

( N∑
n=1

an n

)
2 f ′(x)h+O(h2N+1), (23.59)

and rearrange for f ′(x).

The first few symmetric expressions for f ′(x) are

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2) (23.60)

=
−f(x+ 2h) + f(x− 2h) + 8

[
f(x+ h)− f(x− h)]

12h
+O(h4) (23.61)

=
f(x+ 3h)− f(x− 3h)− 9

[
f(x+ 2h)− f(x− 2h)

]
+ 45

[
f(x+ h)− f(x− h)

]
60h

+O(h6). (23.62)
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23.2.5 Combining expressions

Below, we list systems of finite-difference expressions to use across an entire list of datapoints fn ≡ f(xn)
evaluated for N gridpoints xn = x0 + nh, with n ∈ Z : 0 ≤ n < N .

For a maximum error O(h), we only require forward and backward expressions:

f ′n =
(numerator)

h
+O(h), (23.63)

where

(numerator) =


fn+1 − fn n ≤ N − 2,

fN−1 − fN−2 n = N − 1.

(23.64)

For a maximum error O(h2) we use a symmetric expression with separate forward/backward expressions at the
endpoints:

f ′n =
(numerator)

2h
+O(h2), (23.65)

where

(numerator) =



−f2 + 4 f1 − 3 f0 n = 0,

fn+1 − fn−1 1 ≤ N ≤ N − 2,

3 fN−1 − 4 fN−2 + fN−3 n = N − 1.

(23.66)

For a maximum error O(h4), we require offset expressions at n = 1 and n = N − 2:

f ′n =
(numerator)

12h
+O(h4), (23.67)

where

(numerator) =



−3 f4 + 16 f3 − 36 f2 + 48 f1 − 25 f0 n = 0,

f4 − 6 f3 + 18 f2 − 10 f1 − 3 f0 n = 1,

−fn+2 + fn−2 + 8 (fn+1 − fn−1) n ≤ n ≤ N − 3,

3 fN−1 + 10 fN−2 − 18 fN−3 + 6 fN−4 − fN−5 n = N − 2,

25 fN−1 − 48 fN−2 + 36 fN−3 − 16 fN−4 + 3 fN−5 n = N − 1.

(23.68)

For a maximum error O(h6),

f ′n =
(numerator)

60h
+O(h6), (23.69)
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where

(numerator) =



−10 f6 + 72 f5 − 225 f4 + 400 f3 − 450 f2 + 360 f1 − 147 f0 n = 0,

2 f6 − 15 f5 + 50 f4 − 100 f3 + 150 f2 − 77 f1 − 10 f0 n = 1,

−f6 + 8 f5 − 30 f4 + 80 f3 − 35 f2 − 24 f1 + 2 f0 n = 2,

+fN−7 − 8 fN−6 + 30 fN−5 − 80 fN−4 + 35 fN−3 + 24 fN−2 − 2 fN−1 n = N − 3,

fn+3 − fn−3 − 9 (fn+2 − fn−2) + 45 (fn+1 − fn−1) 3 ≤ n ≤ N − 4,

−2 fN−7 + 15 fN−6 − 50 fN−5 + 100 fN−4 − 150 fN−3 + 77 fN−2 + 10 fN−1 n = N − 2,

10 fN−7 − 72 fN−6 + 225 fN−5 − 400 fN−4 + 450 fN−3 − 360 fN−2 + 147 fN−1 n = N − 1.

(23.70)

Accuracy at or near the endpoints, where symmetric expressions cannot be used, may be slightly lower than
at the intermediate points. Higher-order expressions can be substituted for these points to mitigate this affect;
for example, using the O(h5) forward and backward expressions in the above for n = 0 and n = N − 1.
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23.3 Second derivative

23.3.1 General expression

Proposition 23.6. For the same set of gridpoints mentioned in Proposition 23.1, the optimum finite
difference expression for f ′′(x) evaluated at x is

f ′′(x) =

2

NF∑
n=−NB
n̸=0

an f(x+ nh)− 2

( NF∑
n=−NB
n̸=0

an

)
f(x)

( NF∑
n=−NB
n̸=0

an n
2

)
h2

+O(hNB+NF−1), (23.71)

with NB + NF coefficients an. The first NB + NF − 1 of these are obtained by first defining normalised
versions with respect to aNB+NF

so that ãn = an
aNB+NF

, and then solving the matrix equation

M ã = N, (23.72)

with matrix and vector elements

Mi,j =


−NB + j − 1 i = 1 and j < NB,

−NB + j i = 1 and j ≥ NB,

(−NB + j − 1)i+1 i > 1 and j < NB,

(−NB + j)i+1 i > 1 and j ≥ NB,

(23.73)

(ã)i =

{
ãi−NB−1 i < NB,

ãi i ≥ NB,
(23.74)

(N)i =

{
−NF i = 1,

−N i+1
F i > 1,

(23.75)

where i, j ∈ N : i, j ≤ NB +NF , to obtain ãn for n ∈ [1, NB +NF − 1]. The choice of aNB+NF
is free.

Proof. The proof is similar to that of Proposition 23.1. The same linear combination of Taylor series leads to

NF∑
n=−NB
n̸=0

an f(x+ nh) =

( NF∑
n=−NB
n̸=0

an

)
f(x) +

( NF∑
n=−NB
n̸=0

an n

)
f ′(x)h+

( NF∑
n=−NB
n̸=0

an n
2

)
1

2
f ′′(x)h2

+

∞∑
k=3

( NF∑
n=−NB
n̸=0

an n
k

)
1

k!
f (k)(x)hk, (23.76)

which is the same as Eq. (23.18) but with the k = 2 term also stated for clarity. Again, we have NB +NF − 1
degrees of freedom. We set to zero the sum for k = 1 (first derivative) and the NB +NF − 2 sums from k = 3
up to and including k = NB +NF . This results in

NF∑
n=−NB
n̸=0

an f(x+ nh) =

( NF∑
n=−NB
n̸=0

an

)
f(x) +

( NF∑
n=−NB
n̸=0

an n
2

)
1

2
f ′′(x)h2 +O(hNB+NF+1), (23.77)
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which rearranges to the given expression. Let us now find the coefficients an. We have

∀ k ∈ N : (1 ≤ k ≤ NB +NF ) ∧ (k ̸= 2),

NF∑
n=−NB
n̸=0

an n
k = 0, (23.78)

which as before is an undetermined system of NB+NF −1 equations for NB+NF coefficients. Define ãn = an
aNF

,

separate the last term and move it to the RHS:

∀ k ∈ N : (1 ≤ k ≤ NB +NF ) ∧ (k ̸= 2),

NF−1∑
n=−NB
n ̸=0

ãn n
k = −Nk

F . (23.79)

This is equivalent to the matrix equation
−NB −NB + 1 · · · −2 −1 1 2 · · · NF − 1

(−NB)
3 (−NB + 1)3 · · · (−2)3 (−1)3 13 23 · · · (NF − 1)3

(−NB)
4 (−NB + 1)4 · · · (−2)4 (−1)4 14 24 · · · (NF − 1)4

...
...

. . .
...

...
...

...
. . .

...
(−NB)

NB+NF (−NB + 1)NB+NF · · · (−2)NB+NF (−1)NB+NF 1NB+NF 2NB+NF · · · (NF − 1)NB+NF



·



ã−NB

ã−NB+1
...
ã−2

ã−1

ã1
ã2
...

ãNF−1


=


−NF

−N3
F

−N4
F

...

−NNB+NF
F

 . (23.80)

This can be written in compact form as given in the proposition.

In testing, this provides accurate derivatives for the cases NB = 0 and NB = NF , that is, the forward
and symmetric derivatives. Since the backward derivatives immediately follow from the forward derivatives,
we can obtain those too. However, the expression appears to break when calculating intermediate expressions.
Due to lack of necessity, this issue was not pursued further. The reader may find applications of the above
expression for the second derivative in their own work, but care should be taken with intermediate points. As
discussed above, one could use the forward and backward methods for all intermediate points as a somewhat
crude workaround to achieve the desired accuracy.
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23.3.2 Forward and backward expressions

The first few forward expressions for f ′′(x) are

f ′′(x) =
f(x+ 2h)− 2 f(x+ h) + f(x)

h2
+O(h) (23.81)

=
−f(x+ 3h) + 4 f(x+ 2h)− 5 f(x+ h) + 2 f(x)

h2
+O(h2) (23.82)

=
11 f(x+ 4h)− 56 f(x+ 3h) + 114 f(x+ 2h)− 104 f(x+ h) + 35 f(x)

12h2
+O(h3) (23.83)

=
−10 f(x+ 5h) + 61 f(x+ 4h)− 156 f(x+ 3h) + 214 f(x+ 2h)− 154 f(x+ h) + 45 f(x)

12h2
+O(h4)

(23.84)

=
1

180h2

[
137 f(x+ 6h)− 972 f(x+ 5h) + 2970 f(x+ 4h)− 5080 f(x+ 3h)

+ 5265 f(x+ 2h)− 3132 f(x+ h) + 812 f(x)

]
+O(h5), (23.85)

=
1

180h2

[
− 126 f(x+ 7h) + 1019 f(x+ 6h)− 3618 f(x+ 5h) + 7380 f(x+ 4h)− 9490 f(x+ 3h)

+ 7911 f(x+ 2h)− 4014 f(x+ h) + 938 f(x)

]
+O(h6). (23.86)

The backward expressions for f ′′(x) are the same as the forward expressions, but with f(x + nh) replaced by
f(x−nh). Note that the order-h forward expression is equal to the order-h symmetric expression for f ′′(x+nh),
and hence the order-h backward expression is equal to the order-h symmetric expression for f ′′(x−nh), so these
in particular may not be especially accurate. In this case, we recommend using the order-h2 forward/backward
methods instead.

201



University of East Anglia Neutron star magnetospheres

23.3.3 Symmetric expressions

As we found for the first derivative, the general expression in Proposition 23.6 holds for symmetric derivatives,
but we can obtain a simpler expression with a fresh derivation. In so doing, we will find that the error term is
improved by a factor of h.

Proposition 23.7. Given 2N + 1 symmetrically distributed points {x−Nh, x− (N − 1)h, ..., x− h, x, x+
h, ..., x+ (N − 1)h, x+Nh}, the optimum finite difference expression for f ′′(x) evaluated at x is

f ′′(x) =

N∑
n=1

an

[
f(x+ nh) + f(x− nh)

]
− 2

( N∑
n=1

an

)
f(x)

( N∑
n=1

an n
2

)
h

+O(h2N ), (23.87)

with N coefficients an. The first N − 1 of these are obtained by first defining normalised versions with
respect to aN so that ãn = an

aN
, and then solving the matrix equation

M ã = N, (23.88)

with matrix elements

Mi,j = j2i+2, (23.89)

(ã)i = ãi, (23.90)

(N)i = −N2i+2, (23.91)

to obtain ãn for n ∈ [1, N − 1]. The choice of aN is free.

Proof. Recalling Eq. (23.48), we can eliminate all of the odd derivatives by restricting a−n = an. Doing this
uses up half of the available degrees of freedom, but it means we no longer need to explicitly set the sum for
the first derivative to zero. We have the linear combination

N∑
n=1

an
[
f(x+ nh) + f(x− nh)

]
=

N∑
n=1

an

(
2

∞∑
k=0

k even

1

k!
f (k)(x)nk hk

)
(23.92)

=
∞∑
k=0

k even

( N∑
n=1

an n
k

)
2
1

k!
f (k)(x)hk (23.93)

=

( N∑
n=1

an

)
2 f(x) +

( N∑
n=1

an n
2

)
f ′′(x)h2 +

∞∑
k=4

k even

( N∑
n=1

an n
k

)
2
1

k!
f (k)(x)hk.

(23.94)

Our N coefficients give us N − 1 degrees of freedom, so let us set the first N − 1 sums over an n
k to zero, from

k = 4 up to and including k = 2N + 2. This leaves

N∑
n=1

an
[
f(x+ nh) + f(x− nh)

]
=

( N∑
n=1

an

)
2 f(x) +

( N∑
n=1

an n
2

)
f ′′(x)h2 +O(h2N+2), (23.95)

which rearranges to the given expression. Let us now find the coefficients an. We have

∀ k ∈ N : (k even) ∧ (4 ≤ k ≤ 2N),

N∑
n=1

an n
k = 0, (23.96)
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a system of N − 1 equations for N unknowns. Define ãn ≡ an
aN

and separate the ãn term to give

∀ k ∈ N : (k even) ∧ (4 ≤ k ≤ 2N),

N∑
n=1

an n
k = 0, (23.97)

which is equivalent to the matrix equation
14 24 · · · N4

16 26 · · · N6

...
...

. . .
...

12N 22N · · · N2N



ã1
ã2
...
ã3

 =


−N4

−N6

...
−N2N

 . (23.98)

This can be written in compact form as given in the proposition.

The first few symmetric expressions for f ′′(x) are

f ′′(x) =
f(x+ h)− 2 f(x) + f(x− h)

h2
+O(h2) (23.99)

=
−
[
f(x+ 2h) + f(x− 2h)

]
+ 16

[
f(x+ h) + f(x− h)

]
− 30 f(x)

12h2
+O(h4) (23.100)

=
2
[
f(x+ 3h) + f(x− 3h)

]
− 27

[
f(x+ 2h) + f(x− 2h)

]
+ 270

[
f(x+ h)− f(x− h)

]
− 490 f(x)

180h2

+O(h6). (23.101)
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23.3.4 Combining expressions

Below, we list systems of finite-difference expressions to use across an entire list of datapoints fn ≡ f(xn)
evaluated for N gridpoints xn = x0 + nh, with n ∈ Z : 0 ≤ n ≤ N − 1. Recall that we are unable to find
expressions at intermediate gridpoints, so use the forward and backward expressions at these points.

For maximum error O(h2),

f ′′n =
(numerator)

h2
+O(h2), (23.102)

where

(numerator) =



−f3 + 4 f2 − 5 f1 + 2 f0 n = 0,

fn+1 − 2 fn + fn−1 1 ≤ n ≤ N − 2,

−fN−4 + 4 fN−3 − 5 fN−2 + 2 fN−2 + 2 fN−1 n = N − 1.

(23.103)

For maximum error O(h4),

f ′′n =
(numerator)

12h2
+O(h4), (23.104)

where

(numerator) =



−10 fn+5 + 61 fn+4 − 156 fn+3 + 214 fn+2 − 154 fn+1 + 45 fn 0 ≤ n ≤ 1,

−(fn+2 + fn−2) + 16 (fn+1 + fn−1)− 30 fn 2 ≤ n ≤ N − 3,

−10 fn−5 + 61 fn−4 − 156 fn−3 + 214 fn−2 − 154 fn−1 + 45 fn N − 2 ≤ n ≤ N − 1.

(23.105)

For maximum error O(h6),

f ′′n =
(numerator)

180h2
+O(h6), (23.106)

where

(numerator) =



−126 fn+7 + 1019 fn+6 − 3618 fn+5 + 7380 fn+4

−9490 fn+3 + 7911 fn+2 − 4014 fn+1 + 938 fn 0 ≤ n ≤ 2,

2 (fn+3 + fn−3)− 27 (fn+2 + fn−2) + 270 (fn+1 + fn−1)− 490 fn 3 ≤ n ≤ N − 4,

−126 fn−7 + 1019 fn−6 − 3618 fn−5 + 7380 fn−4

−9490 fn−3 + 7911 fn−2 − 4014 fn−1 + 938 fn N − 3 ≤ n ≤ N − 1.

(23.107)
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24 Coordinate systems

24.1 General 3D coordinates

We use the term curvilinear coordinates to refer to coordinate systems in Euclidean space. In 3D, curvilinear
coordinates (u1, u2, u3) may be derived from Cartesian coordinates by invertible one-to-one transformations

x = x(u1, u2, u3), (24.1)

u1 = u1(x, y, z), (24.2)

and so on. Let P represent some point (x, y, z) in a 3D Cartesian coordinate system, and let r be its position
vector:

r = x i+ y j+ z k =

xy
z

 , (24.3)

where the Cartesian unit vectors are defined by the derivative of the location of P with respect to each coordinate:

i =
∂r

∂x
, (24.4)

and so on. Applying this to our general curvilinear system at P , we can define three basis vectors:

hi =
∂r

∂ui
, i = 1, 2, 3. (24.5)

These may not have unit length and may not be orthogonal. If they are orthogonal, we define the Lamé
coefficients as hi = |hi|, so that the orthonormal basis vectors are

ei =
hi

hi
=

∂r/∂ui∣∣∂r/∂ui∣∣ . (24.6)

Coordinates and Lamé coefficients for the three most common 3D coordinate systems are given in Table 24.1.

Table 24.1: Coordinates ui and Lamé coefficients hi in various curvilinear coordinate systems.

Coordinate system u1 u2 u3 h1 h2 h3

Cartesian x y z 1 1 1
Cylindrical polar ρ ϕ z 1 ρ 1
Spherical polar r θ ϕ 1 r r sin(θ)

Proposition 24.1. An element of arc can be written

ds2 = h21 du
2
1 + h22 du

2
2 + h23 du

2
3. (24.7)

Proof. From the definition of r in (24.3) and (24.4), we can write

dr =
∂r

∂u1
du1 +

∂r

∂u2
du2 +

∂r

∂u3
du3 (24.8)

= h1 du1 + h2 du2 + h3 du3 (24.9)

= h1e1 du1 + h2e2 du2 + h3e3 du3. (24.10)

Writing ds2 = dr · dr and substituting this expression, we obtain the result.
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Proposition 24.2. An element of volume can be written

dV = h1h2h3 du1 du2 du3. (24.11)

Proof. Recall that the scalar triple product a · (b× c) between three non-coplanar vectors a,b, c can be inter-
preted as the volume of the paralleliped spanned by the three vectors. Then, we can write

dV = h1 du1 · (h2 du2 × h3 du3) (24.12)

= h1e1 du1 · (h2e2 du2 × h3e3 du3) (24.13)

= h1h2h3 du1 du2 du3 e1 · (e2 × e3). (24.14)

If the basis vectors are orthonormal, e1 is perpendicular to both e2 and e3 and therefore parallel to their vector
product. But since e1, e2, e3 are unit vectors, e2 × e3 must have unit magnitude, as does e1, so it must be that
e2 × e3 = ±e1. Now, cross products are anti-commutative; that is, for two general vectors ã and b̃, we have
ã × b̃ = −(b̃ × ã). Then, we can choose the positive result without loss of generality by simply changing the
order in which we enumerate the second and third coordinates, and so e2 × e3 = e1. Then,

dV = h1h2h3 du1 du2 du3 e1 · e1 (24.15)

= h1h2h3 du1 du2 du3, (24.16)

completing the proof.

24.2 Spherical polar coordinates

Consider a point in 3D space, which can be modelled in Cartesian coordinates as r = x i+y j+z k or in spherical
polar coordinates are r = r er. We obtain the Cartesian coordinates from the spherical polar coordinates by

x = r sin(θ) cos(ϕ), (24.17)

y = r sin(θ) sin(ϕ), (24.18)

z = r cos(θ). (24.19)

We obtain the spherical polar coordinates from the Cartesian coordinates by

r =
√
x2 + y2 + z2, (24.20)

θ = arccos

(
z

r

)
, (24.21)

ϕ = atan2 (y, x), (24.22)

where atan2 (y, x) is the two-dimensional arctangent. For x > 0, which will be the only situations of interest to
us, we have atan2 (y, x) = tan−1( yx).
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Proposition 24.3. The spherical polar unit vectors are recovered from the Cartesian unit vectors by

er = sin(θ) cos(ϕ) i+ sin(θ) sin(ϕ) j+ cos(θ)k, (24.23)

eθ = cos(θ) cos(ϕ) i+ cos(θ) sin(ϕ) j− sin(θ)k, (24.24)

eϕ = − sin(ϕ) i+ cos(ϕ) j. (24.25)

Proof. In spherical polar coordinates, we see that

hr =
∂r

∂r
=

∂x

∂r
i+

∂y

∂r
j+

∂z

∂r
k = sin(θ) cos(ϕ) i+ sin(θ) sin(ϕ) j+ cos(θ)k, (24.26)

where the Cartesian unit vectors i, j,k are independent of position. We simply have

hr =
√
h2x + h2y + h2z =

√
sin2(θ) cos2(ϕ) + sin2(θ) sin2(ϕ) + cos2(θ) (24.27)

=
√
sin2(θ)

[
cos2(ϕ) + sin2(ϕ)

]
+ cos2(θ) =

√
sin2(θ) + cos2(θ) = 1, (24.28)

where we choose the positive square root, and so using er = hr/hr yields the quoted result. The results for eθ
and eϕ are obtained in the same way.

The Cartesian unit vectors are recovered from the spherical polar unit vectors by

i = sin(θ) cos(ϕ) er + cos(θ) cos(ϕ) eθ − sin(ϕ) eϕ, (24.29)

j = sin(θ) sin(ϕ) er + cos(θ) sin(ϕ) eθ + cos(ϕ) eϕ, (24.30)

k = cos(θ) er − sin(θ) eθ. (24.31)

This can be shown by invoking a Jacobian matrix and noting that transformations back to the old coordinate
system are handled by taking the inverse of this matrix, a process which is simplified for orthogonal coordinate
systems, but it is beyond the scope of this project and we simply quote the well-known result.

Proposition 24.4. Let a 3D vector A be expressed as Ax i + Ay j + Az k in Cartesian coordinates and
Ar er +Aθ eθ +Aϕ eϕ in spherical polar coordinates. Then, the components can be calculated by

Ax = Ar sin(θ) cos(ϕ) +Aθ cos(θ) cos(ϕ)−Aϕ sin(ϕ), (24.32)

Ay = Ar sin(θ) sin(ϕ) +Aθ cos(θ) sin(θ) +Aϕ cos(ϕ), (24.33)

Az = Ar cos(θ)−Aθ sin(θ). (24.34)

Proof. Write A = Ar er +Aθ eθ +Aϕ eϕ, substitute the expressions for the spherical polar unit vectors in Eqs.
(24.23), (24.24) and (24.25) and equate the resulting Cartesian coefficients with A = Ax i+Ay j+Az k.
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24.3 Axisymmetric spherical polar coordinates

An axisymmetric vector function A(r) is one whose components do not depend on the azimuthal coordinate
ϕ. That is, in spherical polar coordinates, the components are Ai = Ai(r, θ) ̸= Ai(r, θ, ϕ).

In axisymmetry, we have the freedom to choose ϕ without affecting any results. Choosing ϕ = 0, as we will
for the 2D evolution in this project, the relations between the coordinates simplify to

x = r sin(θ), (24.35)

y = 0, (24.36)

z = r cos(θ), (24.37)

and the relations between the unit vectors simplify to

i = sin(θ) er + cos(θ) eθ, (24.38)

j = eϕ, (24.39)

k = cos(θ) er − sin(θ) eθ, (24.40)

and

er = sin(θ) i+ cos(θ)k, (24.41)

eθ = cos(θ) i− sin(θ)k, (24.42)

eϕ = j. (24.43)

Then, an axisymmetric vector A has components

Ax = Ar sin(θ) +Aθ cos(θ), (24.44)

Ay = Aϕ, (24.45)

Az = Ar cos(θ)−Aθ sin(θ). (24.46)
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25 Vector functions

Proposition 25.1. Consider two vectors A and B. We can decompose A into components parallel and
perpendicular to B, so that A = A∥ +A⊥, where

A∥ =
A ·B
B2

B, (25.1)

A⊥ = −(A×B)×B

B2
. (25.2)

Notice that A∥ is just a scalar multiple of B, which is to be expected if they both point in the same direction.

Proof. For A∥, we have

A∥ ×B =
A ·B
B2

B×B = 0, (25.3)

that is, A∥ is either parallel or antiparallel to B. But clearly

A∥ ·B =
A ·B
B2

B ·B =
A ·B
B2

B2 = A ·B ≥ 0, (25.4)

so A∥ cannot be antiparallel to B, so it must be parallel. Recalling the cyclic rule for the scalar triple product,

(a× b) · c = (b× c) · a = (c× a) · b, (25.5)

we can write

A⊥ ·B = − 1

B2

(
[A×B]×B

)
·B = − 1

B2

(
B×B

)
· [A×B] = − 1

B2

(
0× [A×B]

)
= 0, (25.6)

so A⊥ is perpendicular to B. Finally, we require that B2(A∥ +A⊥) = A. Recalling the vector triple product

(a× b)× c = (c · a)b− (c · b)a, (25.7)

so that (A×B)×B = (A ·B)B−B2A, we can write

A⊥ =
A ·B
B2

B−A = A∥ −A, (25.8)

completing the proof.
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25.1 Vector calculus

Consider spherical polar coordinates (r, θ, ϕ). Suppose that we have a scalar function f(r, θ, ϕ) and a vector
function

A(r, θ, ϕ) = Ar(r, θ, ϕ) er +Aθ(r, θ, ϕ) eθ +Aϕ(r, θ, ϕ) eϕ. (25.9)

The gradient ∇f of the scalar function is

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin(θ)

∂f

∂ϕ
eϕ. (25.10)

The divergence ∇ ·A and curl ∇×A of the vector function are

∇ ·A =
∂Ar

∂r
+

2

r
Ar +

1

r

∂Aθ

∂θ
+

cos(θ)

r sin(θ)
Aθ +

1

r sin(θ)

∂Aϕ

∂ϕ
, (25.11)

∇×A =

[
1

r

∂Aϕ

∂θ
+

cos(θ)

r sin(θ)
Aϕ − 1

r sin(θ)

∂Aθ

∂ϕ

]
er +

[
1

r sin(θ)

∂Ar

∂ϕ
−
∂Aϕ

∂r
−
Aϕ

r

]
eθ

+

[
∂Aθ

∂r
+
Aθ

r
− 1

r

∂Ar

∂θ

]
eϕ. (25.12)

In axisymmetry, these reduce to

∇ ·A =
∂Ar

∂r
+

2

r
Ar +

1

r

∂Aθ

∂θ
+

cos(θ)

r sin(θ)
Aθ, (25.13)

∇×A =

[
1

r

∂Aϕ

∂θ
+

cos(θ)

r sin(θ)
Aϕ

]
er +

[
−
∂Aϕ

∂r
−
Aϕ

r

]
eθ +

[
∂Aθ

∂r
+
Aθ

r
− 1

r

∂Ar

∂θ

]
eϕ. (25.14)

For the product of the two functions f A,

∇ · (f A) = f∇ ·A+A · (∇f), (25.15)

∇× (f A) = f∇×A+A× (∇f). (25.16)

In particular, for purely radial functions f(r),

∇f =
df

dr
er, (25.17)

∇ ·
[
f A

]
= f∇ ·A+

df

dr
Ar, (25.18)

∇× (f A) = f∇×A+
df

dr

(
−Aϕ eθ +Aθ eϕ

)
. (25.19)

.
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25.2 Poloidal-toroidal decomposition

A divergenceless vector field, also known as a solenoidal vector field, is one whose divergence is zero:

∇ · F = 0. (25.20)

If this is the case, the vector only has n− 1 independent degrees of freedom, where n is the number of spatial
dimensions. For a 3D vector, we can express these as a poloidal field P and a toroidal field T:

F = P+T. (25.21)

The expression of a divergenceless vector in this form is known as its poloidal-toroidal decomposition, or
Mie decomposition; it is a special case of the Helmholtz decomposition.

A poloidal field is one whose curl is orthogonal to the radial vector r in spherical coordinates, and a toroidal
field T is one which is itself orthogonal to r (Figure 25.1):

r · (∇×P) = 0, (25.22)

r ·T = 0. (25.23)

They may be expressed as

P = ∇× (r×∇P ) = ∇×
[
∇× (rP )

]
, (25.24)

T = r×∇T = ∇× (rT ), (25.25)

where r is a given vector1 and P (r, θ, ϕ) and T (θ, ϕ) are called the poloidal and toroidal scalars for F
(Backus, 1986). Note that T has no radial dependence. The functions P, T,P,T are unique up to the addition
of an arbitrary function of r only. The curl of a poloidal field is toroidal and vice versa.

Usually the poloidal and toroidal components P, T are specified first and the field F is calculated from them
(Proposition 25.2 below). The radial component Fr is obtained from P only. It is possible to go the other way
around (derive P, T from F) but this entails solving surface Poisson equations (e.g. Moffatt, 1978, Eq. (2.39)).

Proposition 25.2. Given P, T , we have in spherical coordinates that

P = −1

r

[
∂2P

∂θ2
+

cos(θ)

sin(θ)

∂P

∂θ
+

1

sin2(θ)

∂2P

∂ϕ2

]
er +

[
∂2P

∂r∂θ
+

1

r

∂P

∂θ

]
eθ +

1

sin(θ)

[
∂2P

∂r∂ϕ
+

1

r

∂P

∂ϕ

]
eϕ,

(25.26)

T =
1

sin(θ)

∂T

∂ϕ
eθ −

∂T

∂θ
eϕ, (25.27)

so the vector is

F = −1

r

[
∂2P

∂θ2
+

cos(θ)

sin(θ)

∂P

∂θ
+

1

sin2(θ)

∂2P

∂ϕ2

]
er +

[
1

sin(θ)

∂T

∂ϕ
+
∂2P

∂r∂θ
+

1

r

∂P

∂θ

]
eθ

+

[
1

sin(θ)

∂2P

∂r∂ϕ
+

1

r sin(θ)

∂P

∂ϕ
− ∂T

∂θ

]
eϕ. (25.28)

1The natural choice is the radial vector r = r er in spherical coordinates.
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Proof. Given two scalar functions P (r, θ, ϕ) and T (θ, ϕ), and taking r = r er, we have

∇× (Pr) =
1

sin(θ)

∂P

∂ϕ
eθ −

∂P

∂θ
eϕ, (25.29)

⇒ ∇× (Pr) + Tr = Tr er +
1

sin(θ)

∂P

∂ϕ
eθ −

∂P

∂θ
eϕ. (25.30)

The original vector F is given by the curl of this expression, which returns (25.28). By taking the divergence
of this result, it can be confirmed after some algebra that ∇ ·F = 0 as required for P, T to exist. When this is
done, notice that no derivatives of T wrt r are taken and the equality is still true in general, reflecting the fact
that only the poloidal component carries a radial dependence.

Proposition 25.3. If the vector field is axisymmetric, that is, its spherical polar components are ϕ-
independent Fi = Fi(r, θ) ̸= Fi(r, θ, ϕ), the poloidal and toroidal scalars are also ϕ-independent and the
toroidal field is equal to the azimuthal field. The latter implies that the poloidal field is the sum of the radial
and polar fields:

T = Fϕ eϕ = −∂T
∂θ

eϕ, (25.31)

P = Fr er + Fθ eθ = −1

r

[
∂2P

∂θ2
+

cos(θ)

sin(θ)

∂P

∂θ

]
er +

[
∂2P

∂r∂θ
+

1

r

∂P

∂θ

]
eθ. (25.32)

Proof. We do not attempt to prove that P, T are ϕ-independent, but the reverse (if P, T are ϕ-independent
then F must be axisymmetric) follows immediately from the fact that we expressed F solely in terms of P, T in
(25.28). If F is axisymmetric, the toroidal and poloidal components are The expression for F becomes

F = −1

r

[
∂2P

∂θ2
+

cos(θ)

sin(θ)

∂P

∂θ

]
er +

[
∂2P

∂r∂θ
+

1

r

∂P

∂θ

]
eθ −

∂T

∂θ
eϕ, (25.33)

and we see that P only appears in Fr, Fθ and T only appears in Fϕ. Further, from (25.26) and (25.27) the
vectors P,T are exactly equal to these components:

P = −1

r

[
∂2P

∂θ2
+

cos(θ)

sin(θ)

∂P

∂θ

]
er +

[
∂2P

∂r∂θ
+

1

r

∂P

∂θ

]
eθ + 0 eϕ = Fr er + Fθ eθ, (25.34)

T = 0 eθ −
∂T

∂θ
eϕ = Fϕ eϕ. (25.35)

Figure 25.1: Vectors in the poloidal (red) and toroidal (blue) directions (Burke, 2006, used under CC BY 2.5).
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25.3 Force-free magnetic fields

Force-free magnetic fields are those in which the magnetic flux density B is the only relevant force acting on
particles within them. We discuss force-free electrodynamics fully in Chapter 8; here, let us lay out some of
their mathematical properties.

Proposition 25.4. Force-free magnetic fields satisfy

(∇×B)×B = 0, (25.36)

or equivalently

∇×B = α(r)B. (25.37)

They also satisfy

(∇2 + α2)B = 0. (25.38)

Here, the force-free parameter α(r) may be a function of position (Davidson, 2001, §2.3).

Proof.

• If the electric field is negligible compared to the magnetic field, we can approximate that ∇ ×B = µ0 J
and approximate the Lorentz force as

L = J×B =
1

µ0
(∇×B)×B. (25.39)

Enforcing FFE such that L = 0, we arrive at (∇×B)×B = 0.

• If two vectors B and C are parallel B ∥ C, then we have B × C = 0 and we can write one vector as a
multiple of the other, C = α(r)B or B = C/α(r), where α(r) is a scalar that can in general depend on
the position vector r. It follows that the magnetic field satisfies ∇×B = α(r)B.

• Using the definition of the vector Laplacian, we have

∇2B = ∇(∇ ·B)−∇× (∇×B) = 0−∇× (αB) = −α∇×B = −α2B. (25.40)

In mathematics, a Beltrami field is any general field F satisfying ∇×F = aF for constant a. In this case,
we have a linear force-free magnetic field and the equation can be solved exactly, resulting in an infinite
series involving Gegenbauer polynomials (Chandrasekhar, 1956). Various other solution methods are listed
in §2 of Wiegelmann & Sakurai (2021). The special case a = 0 corresponds to

∇×B = 0. (25.41)

Any curl-free vector can be expressed in terms of a scalar potential, so magnetic fields satisfying this expression
are known as potential magnetic fields. Using Eq. (8.4) and neglecting E compared to B, it occurs when
there is no current J = 0. As such, the term current-free magnetic field may also be used.

Force-free fields are a useful approximation when magnetic fields dominate, as is the case in a neutron star
magnetosphere or the solar magnetosphere, but no truly force-free fields exist.
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Proposition 25.5. There are no force-free fields other than B = 0 for which J is localised in space and B
is differentiable everywhere and O(x−3) at infinity.

Proof. The Biot-Savart law for the electrostatic case E ̸= E(t) becomes

B =
µ0
4π

∫
J× (x− x′)

|x− x′|3
d3x′ =

1

4π

∫
(∇×B)× (x− x′)

|x− x′|3
d3x′ =

α

4π

∫
B× (x− x′)

|x− x′|3
d3x′, (25.42)

but since (B× r) ⊥ B ⊥ r, this implies B ⊥ B. Such a condition is only satisfied if B = 0.

Proposition 25.6. In a stationary fluid, a force-free field decays as

B(t) = B0 e
−λα2t. (25.43)

Proof. In a stationary fluid, we have u = 0 and the induction equation becomes ∂tB = 0 + λ∇2B = −λα2B,
so that B(t) = B0 e

−λα2t.

Proposition 25.7. The poloidal and toroidal fields corresponding to a force-free field F can be written

P =
(∇P )× eϕ
r sin(θ)

, T =
1

r sin(θ)

∫
αdP. (25.44)

In particular, we have

Fr = − 1

r2
∂P

∂µ
=

1

r2 sin(θ)

∂P

∂θ
, Fθ = − 1

r sin(θ)

∂P

∂r
. (25.45)

This is the most general expression for an axisymmetric divergenceless field.

Proof. Consider spherical coordinates and axisymmetry. For the poloidal component, the gradient of the
poloidal scalar P (r, θ) is

∇P =
∂P

∂r
er +

1

r

∂P

∂θ
eθ, (25.46)

so we have

(∇P )× eϕ =
∂P

∂r
er × eϕ +

1

r

∂P

∂θ
eθ × eϕ =

1

r

∂P

∂θ
er −

∂P

∂r
eθ, (25.47)

⇒
(∇P )× eϕ
r sin(θ)

=
1

r2 sin(θ)

∂P

∂θ
er −

1

r sin(θ)

∂P

∂r
eθ. (25.48)
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25.4 Grad-Shafranov equation

The Grad-Shafranov equation (GSE) is used to describe the interiors of neutron stars. While not used
within this project, our results are dependent on the configuration of the NS surface and so it will be useful in
future applications for modelling relationships between the magnetosphere, surface and interior. In this section,
we briefly describe the GSE and its implementation across the literature. Let us adopt cylindrical coordinates
(ϖ,ϕ, z) to match the majority of the literature.

25.4.1 Flux functions in axisymmetric systems

The solenoidal condition ∇ ·B = 0, Eq. (8.2), is not enforced by the equations of motion, so a nonzero magnetic
field divergence may arise as we evolve the electric and magnetic fields with time. This is especially true if our
code is prone to numerical errors. Nonzero magnetic field divergences often manifest as energy leakages because
energy propagating along magnetic field lines to large radii might not return to the system.

In many codes evolving the electromagnetic fields, the solenoidal condition is checked at each timestep in
order to prevent dissipation.2 However, if the configuration is axisymmetric, we can enforce Eq. ∇ ·B = 0 by
introducing a flux function3 u(r), defined such that

B = − 1

ϖ

∂u

∂z
eϖ +Bϕ eϕ +

1

ϖ

∂u

∂ϖ
ez =

1

ϖ
(∇u)× eϕ +Bϕ eϕ. (25.49)

Proposition 25.8. The expression (25.49) satisfies ∇ · B = 0 for any arbitrary function u, and implies
that u is constant along field lines.

Proof.

• Flux function enforces incompressibility: Take the divergence of (25.49) in cylindrical polar coordi-
nates:

∇ ·B =
1

ϖ

∂(ϖBϖ)

∂ϖ
+

1

ϖ

∂Bϕ

∂ϕ
+
∂Bz

∂z
= − 1

ϖ

∂2u

∂ϖ∂z
+ 0 +

1

ϖ

∂2u

∂z∂ϖ
= 0. (25.50)

• Relation between flux function and vector potential: The definition of the curl in cylindrical polar
coordinates for an axisymmetric system is

B = ∇×A =

[
1

ϖ

∂Az

∂ϕ
−
∂Aϕ

∂z

]
eϖ +

[
∂Aϖ

∂z
− ∂Az

∂ϖ

]
eϕ +

1

ϖ

[
∂(ϖAϕ)

∂ϖ
− ∂Aϖ

∂ϕ

]
ez (25.51)

= −
∂Aϕ

∂z
eϖ +

[
∂Aϖ

∂z
− ∂Az

∂ϖ

]
eϕ +

1

ϖ

∂(ϖAϕ)

∂ϖ
ez. (25.52)

Comparing to our definition of B by a flux function (25.49), we see that this is satisfied if Aϕ = u/ϖ and
the eϕ term remains unevaluated ∂Aϖ/∂z − ∂Az/∂Aϖ = Bϕ. Further, note that

(∇u)× eϕ =

(
∂u

∂ϖ
eϖ +

1

ϖ

∂u

∂ϕ
eϕ +

∂u

∂z
ez

)
× eϕ =

∂u

∂ϖ
ez + 0− ∂u

∂z
eϖ. (25.53)

• Flux function is constant along magnetic field lines: Note that (∇u)×eϕ is perpendicular to both
∇u and eϕ. In other words, ∇u ⊥ B, i.e. (∇u) ·B = 0.

2Alternatively, energy conservation may be checked as a proxy.
3Sometimes called a streamfunction in analogy to fluid flows.
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The magnetic field may also be written in terms of a vector potential A such that B = ∇ × A; the flux
function and vector potential are related by

u = ϖAϕ. (25.54)

We can then choose to evolve the flux functions instead of the fields or their potentials, and guarantee that the
magnetic field remains solenoidal.

An axisymmetric magnetic field B and current density j can be written in the general form (Lander & Jones,
2009, §A.1)

B =
1

ϖ
(∇u)× eϕ +Bϕ eϕ, (25.55)

j =
1

4πϖ
∇(ϖBϕ)× eϕ − 1

4πϖ
(∆∗u) eϕ, (25.56)

where Lander & Jones defined for brevity the differential operator

∆∗ ≡ ∂2

∂ϖ2
− 1

ϖ

∂

∂ϖ
+

∂2

∂z2
. (25.57)

25.4.2 Formulations

The GSE relates the magnetic field and current of a system in axisymmetric perfect MHD with mixed poloidal
and toroidal fields (Grad & Rubin, 1958; Shafranov, 1966). It has been formulated in many different ways in
the literature; we list some here.

• Lander & Jones (2009), Eq. (12):

4πρ
dM

du
= − 1

ϖ2

[
∆∗u+ f(u)

df

du

]
, (25.58)

where ρ is the density, u is a flux function defined by (25.49) and M and f are arbitrary functions of u to
be specified by the exact situation at hand.4 Let us take this as the main formulation for our paper, so
that we can compare the others.

• Grad & Rubin (1958), Eq. (18):

∆∗ψ + µr2p′(ψ) + µf ′(ψ) = 0, (25.59)

where (r, θ, z) is the coordinate system, ψ is the flux function,5 ∆∗ ≡ ∆∗, µ is the vacuum permeability
and p, f are arbitrary functions of ψ. In our notation, this is

∆∗u+ µ0ϖ
2 dp

du
+ µ0

df

du
= 0. (25.60)

• Haverkort (2009a,b), Eq. (13) in his first paper:

R2∇ ·
(
∇ψ

R2

)
= −µ0R2 ∂p

∂ψ
− F

dF

dψ
, (25.61)

where (R,ϕ, Z) is the coordinate system, ψ is the flux function, p is the magnetic pressure and F is an
arbitrary function of ψ. In our notation, this is

∆∗u+ µ0ϖ
2 ∂p

∂ψ
+ F

dF

dψ
= 0. (25.62)

4In fact, M is defined in terms of the Lorentz force, itself a cross product between j and B, but it can be treated as an arbitrary
function until specified (Lander & Jones, 2009, §2.1,§A.1).

5But defined under a different sign convention to (25.49): Br = (1/r) ∂zψ and Bz = −(1/r) ∂rψ.
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• Thompson et al. (2002), Eq. (6) and Turolla et al. (2015), Eq. (4):

(1− µ2)f ′′ + p(p+ 1)f + Cf1+2/p = 0, (25.63)

where f = f(µ) = f [cos(θ)] is the subject of the equation, p ∈ [0, 1] is the radial index6 and C is an
arbitrary constant. This version is only valid in axisymmetric spherical coordinates and in the force-free
approximation. Note that Thompson et al. do not explicitly name this as the GSE but Turolla et al. do.

Proposition 25.9. The LHS of (25.62) is equivalent to ∆∗.

Proof. We have

∇u

ϖ2
=

1

ϖ2

(
∂u

∂ϖ
eϖ +

1

ϖ

∂u

∂ϕ
eϕ +

∂u

∂z
ez

)
=

1

ϖ2

∂u

∂ϖ
eϖ +

1

ϖ2

∂u

∂z
ez, (25.64)

⇒ ϖ2∇ ·
(
∇u

ϖ2

)
= ϖ2

(
1

ϖ

∂

∂ϖ

[
1

ϖ

∂u

∂ϖ

]
+ 0 +

1

ϖ2

∂2u

∂z2

)
= ϖ

[
− 1

ϖ2

∂u

∂ϖ
+

1

ϖ

∂2u

∂ϖ2

]
+
∂2u

∂z2

=
∂2u

∂ϖ2
− 1

ϖ

∂u

∂ϖ
+
∂2u

∂z2
= ∆∗, (25.65)

where the flux function is not a function of ϕ and so ∂ϕu = 0.

Low & Lou (1990) solved the GSE in axisymmetric spherical polar coordinates, (r, θ, ϕ) with ϕ-invariance,
yielding an ODE that can be solved numerically. The numerical solution of the resulting ODE was further
discussed by Wolfson (1995).

6This describes how the magnetic field falls off with radial distance, but also, as Thompson et al. (2002) found, the amount of
shear in the field.
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26 Chebyshev polynomials

The reader solely interested in functions used within the final code may skip this and the following chapter.
We will now discuss the Chebyshev polynomials and their application for approximating 1D functions and

their derivatives. The aim is to use these functions to calculate the radial derivatives of our vector fields in the
time-evolution code. We will ultimately conclude after side-by-side testing in Chapter 13 that, for our code, the
finite-difference methods from Chapter 23 prove more accurate than Chebyshev decomposition.1 However, the
results derived in these chapters may well find applications in other projects. In particular, the generalisations
from x ∈ [−1, 1] to an arbitrary interval X ∈ [A,B] where A,B ∈ R : A < B, proved difficult to find in the
literature. While straightforward, the results for X ∈ [A,B] represent original work. We include all the results
we obtained during code development, as a resource for the reader.

26.1 Chebyshev polynomials on [−1, 1]

26.1.1 Definition and examples

Definition 26.1. The Chebyshev polynomials are two sequences of polynomials in x ≡ cos(θ), defined
on the interval x ∈ [−1, 1], or the interval θ ∈ [0, π] because there cos(θ) is one-to-one. There exist
Chebyshev polynomials of the first kind Tn[cos(θ)] = Tn(x) and Chebyshev polynomials of the
second kind Un[cos(θ)] = Un(x), respectively defined in terms of θ as

Tn[cos(θ)] = cos(nθ), (26.1)

Un[cos(θ)] =
sin[(n+ 1)θ]

sin(θ)
, (26.2)

and in terms of x as

Tn(x) = cos
[
n cos−1(x)

]
, (26.3)

Un(x) =
sin
[
(n+ 1) cos−1(x)

]
sin
[
cos−1(x)

] =
sin
[
(n+ 1) cos−1(x)

]
√
1− x2

. (26.4)

While it is not immediately apparent that these are polynomials in x = cos(θ), we prove this fact in §26.3. Note
that we will mostly be using Chebyshev polynomials of the first kind during this text, and for brevity we will
refer to these simply as “Chebyshev polynomials”. Let us also define Tn = Un = 0 for n < 0, which will prove
useful when considering derivatives. The first few Chebyshev polynomials of the first kind are

T0(x) = 1, (26.5)

T1(x) = x, (26.6)

T2(x) = 2x2 − 1, (26.7)

T3(x) = 4x3 − 3x, (26.8)

T4(x) = 8x4 − 8x2 + 1, (26.9)

1Perhaps this should not be surprising given our brief discussion of spline fitting in Chapter 22).
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and the first few Chebyshev polynomials of the second kind are

U0(x) = 1, (26.10)

U1(x) = 2x, (26.11)

U2(x) = 4x2 − 1, (26.12)

U3(x) = 8x3 − 4x, (26.13)

U4(x) = 16x4 − 12x2 + 1. (26.14)

26.1.2 Properties and relations

The Tn and Un both follow the same recursion relation:

Tn(x) = 2xTn−1(x)− Tn−2(x), (26.15)

Un(x) = 2xUn−1(x)− Un−2(x). (26.16)

The Tn and Un of even/odd order are even/odd functions:

Tn(−x) = (−1)n Tn(x), (26.17)

Un(−x) = (−1)n Un(x). (26.18)

Proposition 26.2 (Values at the endpoints). ∀n ∈ N0, we have

Tn(1) = Tn
[
cos(2nπ)

]
= 1, (26.19)

Un(1) = Un

[
cos(2nπ)

]
= n+ 1, (26.20)

and

Tn(−1) = Tn
[
cos((2n+ 1)π)

]
= (−1)n, (26.21)

Un(−1) = Un

[
cos((2n+ 1)π)

]
= (−1)n (n+ 1), (26.22)

and

Tn(0) = Tn

[
cos

(
π

2
+ 2nπ

)]
=


0 n odd,

−1 n ≡ 0 (mod 4),

1 n ≡ 2 (mod 4).

(26.23)

Proof. Since x = cos(θ) is one-to-one on θ ∈ (0, π), then cos(θ) = 1 iff θ = 0. Then,

Tn(1) = Tn
[
cos(0)

]
= cos(n · 0) = cos(0) = 1. (26.24)

For Un, we have a 0
0 indeterminate form and must invoke L’Hôpital’s rule:

lim
x→1

Un(x) = lim
θ→0

sin
[
(n+ 1)θ

]
sin(θ)

= lim
θ→0

(n+ 1) cos
[
(n+ 1)θ)

cos(θ)
= (n+ 1) · 1

1
= n+ 1. (26.25)

Similarly, cos(θ) = −1 iff θ = π. Then,

Tn(−1) = Tn
[
cos(π)

]
= cos(nπ) = (−1)n, (26.26)

and

lim
x→−1

Un(x) = (n+ 1) lim
θ→π

cos
[
(n+ 1)θ

]
cos(θ)

= (n+ 1) · (−1)n

−1
= −(n+ 1) (−1)n = (n+ 1) (−1)n+1.

(26.27)

For Tn(0), make use of the recursion relation. Clearly T0(0) = 1 and T1(0) = 0. Then, for n > 2, Tn(0) =
2 · 0 · Tn−1(0)− Tn−2(0) = −Tn−2(0), so T2(0) = −T0(0) = −1 and so on.
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Proposition 26.3 (First derivatives).

d

dx
Tn(x) = nUn−1(x) (26.28)

Proof. Differentiate the definition of Tn, Eq. (26.3), using the chain rule:

d

dx
Tn(x) =

d

dx
cos
[
n cos−1(x)

]
= − sin

[
n cos−1(x)

] d
dx

n cos−1(x) (26.29)

= − sin
[
n cos−1(x)

]
n · − 1√

1− x2
= n

sin
[
n cos−1(x)

]
√
1− x2

= nUn−1(x), (26.30)

where we used that d
dx cos−1(x) = − 1√

1−x2
and recognised the definition of Un−1, Eq. (26.4).

The Tn obey the following orthogonality relation:

∫ 1

−1
Tn(x)Tm(x)

1√
1− x2

dx =

∫ π

0
Tn
[
cos(θ)

]
Tm
[
cos(θ)

]
dθ =


π n = m = 0,
π
2 n = m and n ̸= 0,

0 n ̸= m,

=

{
π δn,m n = 0,
π
2 δn,m n ̸= 0.

(26.31)

A useful expression is (e.g. Bateman, 1953, §10.11, Eq. (3))

Un+1(x) = xUn(x) + Tn+1(x). (26.32)

Proposition 26.4. Tn(x) = 1
2

[
Un(x)− Un−2(x)

]
Proof. By the recursion relation Eq. (26.16), 2xUn−1 = Un + Un−2 and so xUn = 1

2(Un+1 + Un−1). Then, Eq.
(26.32) gives

Tn+1(x) = Un+1(x)− xUn(x) = Un+1(x)−
1

2

(
Un+1(x) + Un−1(x)

)
=

1

2
Un+1(x)−

1

2
Un−1(x), (26.33)

which is the given result if we relabel n+ 1 → n.

Proposition 26.5. The Chebyshev polynomials of the second kind can be written in terms of those of the
first kind by

Un = 2

n∑
k=0

k+n even

hk Tk = 2

n∑
k=n (mod 2)

k+=2

hk Tk, (26.34)

where we define

hn = 1− 1

2
δn,0 =

{
1
2 n = 0,

1 n ̸= 0,
(26.35)

for notational convenience, and where the second summation gives a faster way to encode the result without
having to check whether k+n is even at each step. We borrow the coding notation += to mean “increment
by 2 in the summation”.
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Proof. We prove the relation by induction. Due to the modulo 2, we must consider the first two base cases:

U0 = = 2

0∑
k=0 (mod 2)

k+=2

hk Tk = 2
(
h0 T0

)
= 2 · 1

2
· 1 = 1, (26.36)

U1 = 2

1∑
k=1 (mod 2)

k+=2

hk Tk = 2
(
h1 T1

)
= 2 · 1 · x = 2x. (26.37)

Assume that the relation holds for n. Then, for n+ 2,

Un+2 = 2

n+2∑
k=n+2 (mod 2)

k+=2

hk Tk = 2

n+2∑
k=n (mod 2)

k+=2

hk Tk = 2hn+2 Tn+2 + 2

n∑
k=n (mod 2)

k+=2

hk Tk. (26.38)

Since n+ 2 ̸= 0, we have hn+2 = 1. We recognise the second term as Un. Then, we have

Un+2 = 2Tn+2 + Un, (26.39)

which is Proposition 26.4. We have shown that the case n implies the case n + 2. Coupled with our two
consecutive base cases n = 0 and n = 1, this completes the proof.

Corollary 26.6 (First derivatives). ∀n ∈ N0, we have

dTn
dx

= nUn−1(x) =

n−1∑
k=0

k+n odd

2nhk Tk. (26.40)

Had we not defined U−1 = 0, we would need a separate case to state that dT0
dx = 0.

We can freely switch the order of a double sum. Let i, j ∈ N. The sum of a quantity ai,j over both indices,
with no restrictions on the indices chosen, is independent of the order in which the sums are taken:

∞∑
i=1

∞∑
j=1

ai,j =
∞∑
j=1

∞∑
i=1

ai,j . (26.41)

If there are conditions on the indices, we can rewrite these as multiplication factors that are unity if the condition
is met and zero otherwise. For example,

∞∑
i=1

i even

ai,j =
∞∑
i=1

ai,j g(i), (26.42)

where we define

g(i) =

{
1 i even,

0 i odd.
. (26.43)

Then, it is easy to switch the order of summation between two indices even with restrictions. Once the order
has been switched, the conditions within g can be relegated to labels on the summations. Typically, it is useful
to convert conditions on one index to conditions on the other.
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Proposition 26.7 (Second derivatives). ∀n ∈ N0, we have

d2Tn
dx2

= n(n+ 1)
Tn

1− x2
+ n

Un

1− x2
=

n−2∑
k=0

k+n even

n−1∑
ℓ=k+1
ℓ+n odd

4nhk ℓ Tk. (26.44)

For the first expression, the values at the endpoints can be hard-coded to avoid division by zero as

d2Tn
dx2

∣∣∣∣
1

=
n4 − n2

3
, (26.45)

d2Tn
dx2

∣∣∣∣
−1

= (−1)n
n4 − n2

3
. (26.46)

For the second expression, the initial value of k can be implemented in numerical codes as k = n (mod 2),
and both k and ℓ can be incremented by 2.

Proof. For the first expression, use L’Hôpital’s rule to obtain the expressions for x = ±1.
For the second expression, separate the k = 0 term in our summation formula for Un and use that T0 = 1 to
give

Un = 2

∞∑
k=0

hk Tk g(k, n) = g(0, n) + 2

∞∑
k=1

Tk g(k, n), (26.47)

where

g(k, n) =

{
1 (k ≤ n) ∧ (k + n even),

0 otherwise.
(26.48)

Then,

dTn
dx

= nUn−1 = n g(0, n− 1) + 2n

∞∑
k=1

Tk g(k, n− 1). (26.49)

We have eliminated hk. Differentiating a second time, we find

d2Tn
dx2

= 2n
∞∑
k=1

dTk
dx

g(k, n− 1) (26.50)

= 2n
∞∑
k=1

2k
∞∑
ℓ=0

hℓ Tℓ g(ℓ, k − 1) g(k, n− 1) (26.51)

= 4n
∞∑
k=0

∞∑
ℓ=0

k hℓ Tℓ g(ℓ, k − 1) g(k, n− 1) (26.52)

= 4n

∞∑
ℓ=0

∞∑
k=0

k hℓ Tℓ g(ℓ, k − 1) g(k, n− 1) (26.53)

= 4n

∞∑
k=0

∞∑
ℓ=0

ℓ hk Tk g(k, ℓ− 1) g(ℓ, n− 1), (26.54)

where we added the k = 0 term (which is zero) to put the sums into the same form and guarantee that we can
interchange their order, and in the final step relabelled ℓ↔ k. Now, g(k, ℓ− 1) = 1 iff k ≤ ℓ− 1, i.e. ℓ ≥ k+1,
and k + ℓ− 1 is even. Similarly, g(ℓ, n− 1) = 1 iff ℓ ≤ n− 1 and ℓ+ n− 1 is even. We have k + 1 ≤ ℓ ≤ n− 1,
which gives us bounds for the sum over ℓ, and moreover k ≤ ℓ− 1 ≤ n− 2 so that k ≤ n− 2, which gives us an
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upper bound for the sum over k. Finally, add the two “even” conditions together to give that k + 2ℓ+ n− 2 is
even, so k + n is even. This can be relegated to the sum over k, while ℓ+ n− 1 is even, i.e. ℓ+ n is odd, can
be relegated to the sum over ℓ. This yields the given result. Finally, the term ℓ = k + 1 is always considered
because then ℓ + n = k + 1 + n, but since k + n is always even, this is always odd. Hence, we can start the
summation at ℓ = k + 2 and increment by 2 in the “code expression”.

26.2 Chebyshev polynomials on arbitrary interval

Proposition 26.8 (Affine linear transformation). Let A,B ∈ R : A < B, let x ∈ [−1, 1] and let X ∈ [A,B].
Then, ΛA,B : [−1, 1] → [A,B], given by

ΛA,B(x) =
B −A

2
x+

A+B

2
, (26.55)

describes the transformation of an element x ∈ [−1, 1] to an element X ∈ [A,B]. The transformation back
to [−1, 1] is described by the inverse function Λ−1

A,B : [A,B] → [−1, 1], given by

Λ−1
A,B(X) =

2

B −A
X − B +A

B −A
. (26.56)

Proof. We require ΛA,B to be a linear mapping, so it must have the form ΛA,B(x) = ax + b, with a, b ∈ R
to find. The transformation must satisfy ΛA,B(−1) = A and ΛA,B(1) = B. We thus have two simultaneous
equations which are easily solved for a, b. The inverse function Λ−1

A,B is found in the usual way, that is, by
setting X = Λ(x) and solving for x.

Corollary 26.9. ∀ k ∈ Z,
[
ΛA,B(x)

]k
= (B−A)k

2k

[
x+ ρ

]k
, where we define ρ ≡ A+B

A−B .

So far, we have defined the Chebyshev polynomials on an interval x ∈ [−1, 1]. It will prove useful to define
versions of them on an arbitrary interval X ∈ [A,B], where A,B ∈ R and A < B. We saw in Definition 26.8
that the two intervals can be mapped to each other by X = ΛA,B(x) and x = Λ−1

A,B(X). Then, our original

change of variables x = cos(θ) becomes X = ΛA,B

[
cos(θ)

]
and we can generalise Definition 26.1 by simply

replacing x by Λ−1
A,B(X) and θ by cos−1

[
Λ−1
A,B(X)

]
:

Tn,A,B(X) = Tn
[
Λ−1
A,B(X)

]
= cos

[
n cos−1

[
Λ−1
A,B(X)

]]
, (26.57)

Un,A,N (X) = Un

[
Λ−1
A,B(X)

]
=

sin
[
(n+ 1) cos−1

[
Λ−1
A,B(X)

]]√
1−

[
Λ−1
A,B(X)

]2 . (26.58)

As before, let us define that ∀n < 0, Tn(X) = Un(X) ≡ 0. Although n is outside the range of validity, defining
the polynomials to be zero allows us to avoid awkward casework when handling derivatives or other relations
which decrease the index.

The rescaled polynomials are equal to those on [−1, 1], Eqs. (26.5) to (26.14), but with x replaced by

Λ−1
A,B(X). There is no other simplification. For example, T2(X) = 2

[
Λ−1
A,B(X)

]2 − 1.
The recursion relations, Eqs. (26.15) and (26.16), become

Tn(X) = 2Λ−1
A,B(X)Tn−1(X)− Tn−2(X), (26.59)

Un(X) = 2Λ−1
A,B(X)Un−1(X)− Un−2(X). (26.60)

223



University of East Anglia Neutron star magnetospheres

Proposition 26.10 (Values at the endpoints). ∀n ∈ N0, we have

Tn(B) = 1, (26.61)

Un(B) = n+ 1, (26.62)

and

Tn(A) = (−1)n, (26.63)

Un(A) = (−1)n (n+ 1). (26.64)

Proof. This follows immediately from Proposition 26.2 with B = ΛA,B(1) and A = ΛA,B(−1).

Proposition 26.11 (Orthogonality). ∀n,m ∈ N0, we have

2

B −A

∫ B

A
Tn
[
Λ−1
A,B(X)

]
Tm
[
Λ−1
A,B(X)

] 1√
1−

[
Λ−1
A,B(X)

]2 dX
=

∫ π

0
Tn
[
cos(θ)

]
Tm
[
cos(θ)

]
dθ =

{
π δn,m n = 0,
π
2 δn,m n ̸= 0.

. (26.65)

Proof. Take the orthogonality relation for [−1, 1], Eq. (26.31) and perform the change of variables X = ΛA,B(x).
Then, dX

dx = B−A
2 and so dx = 2

B−A dX. The bounds of integration become −1 → ΛA,B(−1) = A and 1 →
ΛA,B(1) = B. This yields the result above. If we were to perform another change of variablesX = ΛA,B

[
cos(θ)

]
,

we would simply recover the integral in terms of θ in Eq. (26.31).

Proposition 26.12 (First derivatives). ∀n ∈ N0, we have

dTn
dx

=
2

B −A
nUn−1

[
Λ−1
A,B(x)

]
=

n−1∑
k=0

k+n odd

4

B −A
nhk Tk

[
Λ−1
A,B(x)

]
. (26.66)

Proof. The chain rule gives dTn
dx = dTn

dΛ−1
A,B

dΛ−1
A,B

dx . We have that dTn

dΛ−1
A,B

= nUn−1(Λ
−1
A,B) and from Proposition 26.8

we have
dΛ−1

A,B

dx = 2
B−A .
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26.3 Proof that the Chebyshev polynomials are indeed polynomials

That the Tn and Un are polynomials in cos(θ) follows immediately from the expressions for T0, T1, U0, U1 and
the recursion relations Eqs. (26.15) and (26.16). We provide an alternative proof below that does not rely on
knowledge of the functions, and which will yield a bonus trigonometric relation.

Lemma 26.13. A sum of powers of ix, where i =
√
−1, each with coefficients bk ∈ R, can be written

n∑
k=0

bki
kxk =

⌊n/4⌋∑
k=0

x4k
[
b4k − b4k+2x

2 + ix(b4k+1 − b4k+3x
2)
]
+ r(n), (26.67)

where r(n) is a “remainder” that accounts for the fact that n might not be a multiple of 4, and contains
the leftover terms from the highest value of k:

r(n) =


bnx

n n ≡ 0 ( mod 4 ),

bn−1x
n−1 + ibnx

n n ≡ 1 ( mod 4 ),

xn−2(bn−2 − bnx
2) + ibn−1x

n−1 n ≡ 2 ( mod 4 ),

0 n ≡ 3 ( mod 4 ).

(26.68)

Proof. The powers of i follow a cycle of length 4, which means that for integer k we have

i4k = i0 = 1, i4k+1 = i1 = i, i4k+2 = i2 = −1, i4k+3 = i3 = −i. (26.69)

Then, a sum of powers of i, each with coefficients ak, can easily be split into real and imaginary parts:

n∑
k=0

aki
k =

⌊n/4⌋∑
k=0

[
i0a4k + i1a4k+1 + i2a4k+2 + i3a4k+3

]
+ r(n) =

⌊n/4⌋∑
k=0

[
a4k − a4k+2 + i(a4k+1 − a4k+3)

]
+ r(n),

(26.70)

with “remainder” r(n) given by

r(n) =


an n ≡ 0 ( mod 4 ),

an−1 + ian n ≡ 1 ( mod 4 ),

an−2 − an + ian−1 n ≡ 2 ( mod 4 ),

0 n ≡ 3 ( mod 4 ).

(26.71)

If the coefficients contain increasing powers of x, ak = bkx
k, where bk is a general coefficient, these simplify to

the given expressions.

Lemma 26.14. ∀n, x, a ∈ N,
(

n
x+a

)
=
(
x+a
a

)−1(n−x
a

)(
n
x

)
.

Proof. We have(
n

x+ 1

)
=

n!

(x+ 1)!(n− x− 1)!
=

n!

(x+ 1)x! (n−x)!
n−x

=
n− x

x+ 1

(
n

x

)
, (26.72)(

n

x+ 2

)
=

n!

(x+ 2)(x+ 1)x! (n−x)!
(n−x)(n−x−1)

=
(n− x)(n− x− 1)

(x+ 2)(x+ 1)

(
n

x

)
=

(n− x)!x!

(n− x− 2)! (x+ 2)!

(
n

x

)
, (26.73)

so by extension the general rule is the stated expression, where
(
n−x
a

)
= (n−x)!

a! (n−x−a)! and
a!x!

a! (x+a)! =
(
x+a
a

)−1
.
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Proposition 26.15. ∀n ∈ N, we can express

cos(nθ) = P (x), sin(nθ) = P̃ (x) sin(θ), (26.74)

where P (x), P̃ (x) are general polynomials in cos(θ).

Proof. Combine de Moivre’s theorem
[
cos(x) + i sin(θ)

]n
= cos(nx) + i sin(θ) with the binomial theorem (a+

b)n =
∑n

k=0

(
n
k

)
an−kbk. Using the notational shorthand c ≡ cos(θ) and s ≡ sin(θ), this gives

cos(nθ) + i sin(nθ) =
n∑

k=0

(
n

k

)
cn−k(is)k =

n∑
k=0

(
n

k

)
cn−kskik. (26.75)

This is an example of our sum (26.67) with coefficients ak =
(
n
k

)
cn−ksk, so we can write it as

cos(nθ) + i sin(nθ) =

⌊n/4⌋∑
k=0

[(
n

4k

)
cn−4ks4k −

(
n

4k + 2

)
cn−4k−2s4k+2

+ i

{(
n

4k + 1

)
cn−4k−1s4k+1 −

(
n

4k + 3

)
cn−4k−3s4k+3

}]
+ r(n) (26.76)

=

⌊n/4⌋∑
k=0

cn−4k−3s4k
[(

n

4k

)
c3 −

(
n

4k + 2

)
cs2 + i

{(
n

4k + 1

)
c2s−

(
n

4k + 3

)
s3
}]

+ r(n)

(26.77)

=

⌊n/4⌋∑
k=0

cn−4k−3(1− c2)2k
[(

n

4k

)
c3 −

(
n

4k + 2

)
c(1− c2)

+ is

{(
n

4k + 1

)
c2 −

(
n

4k + 3

)
(1− c2)

}]
+ r(n), (26.78)

where the remainder is

r(n) =


sn n ≡ 0 ( mod 4 ),

(n− 1)csn−1 + isn n ≡ 1 ( mod 4 ),

sn−2[12n(n− 1)c2 − s2] + i(n− 1)csn−1 n ≡ 2 ( mod 4 ),

0 n ≡ 3 ( mod 4 ).

(26.79)

We could use Lemma 26.14 to handle the binomial coefficients, but the simplification is only numerical and
not aesthetical; it will actually make the expression look messier. Further, we can appreciate that the binomial
coefficient is just an integer, so it makes sense to leave it untouched.
The sum follows the required rules, namely that its real part is a polynomial in cos(θ) and its imaginary part
is sin(θ) times a polynomial in cos(θ). The remainder contains mixed terms, but we can put it in the required
form as follows. If n is even, we can write n = 2m where k is an integer, so that

r(n ≡ 0 mod 4) = s2m = (1− c2)m = (1− c2)n/2, (26.80)

and

r(n ≡ 2 mod 4) = s2m−2
[
m(2m− 1)c2 − s2

]
+ i(2m− 1)cs2m−1 (26.81)

= (1− c2)m−1
[
m(2m− 1)c2 + 1− c2

]
+ i(2m− 1)cs2m−2s (26.82)

= (1− c2)m−1
[
(2m+ 1)(m− 1)c2 + 1

]
+ i(2m− 1)c(1− c2)m−1s, (26.83)

= (1− c2)(n−2)/2

[
1

2
n(n− 3)c2 + 1

]
+ i(n− 2)c(1− c2)(n−2)/2s. (26.84)
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If n is odd, we can write n = 2m+ 1 where k is an integer, so that

r(n ≡ 1 mod 4) = 2mcs2m + is2m+1 = 2mc(1− c2)m + i(1− c2)s = (n− 1)c(1− c2)(n−1)/2 + i(1− c2)s,
(26.85)

and still r(≡ 3 mod 4) = 0. To summarise,

r(n) =


(1− c2)n/2 n ≡ 0 ( mod 4 ),

(n− 1)c(1− c2)(n−1)/2 + i(1− c2)s n ≡ 1 ( mod 4 ),

(1− c2)(n−2)/2
[
1
2 n(n− 3)c2 + 1

]
+ i(n− 2)c(1− c2)(n−2)/2s n ≡ 2 ( mod 4 ),

0 n ≡ 3 ( mod 4 ).

(26.86)

In all cases, the real part of the remainder is a polynomial in cos(θ) and the imaginary part is sin(θ) times a
polynomial in cos(θ). Polynomials of any order can be added to give another polynomial, so the entire RHS of
our expression (26.76) follows this rule. Equating real and imaginary parts, the proof is complete.

Corollary 26.16. ∀ θ ∈ R and ∀n ∈ N, we have

cos(nθ) =

⌊n/4⌋∑
k=0

cn−4k−3(1− c2)2k
[(

n

4k

)
c3 −

(
n

4k + 2

)
c(1− c2)

]
+Re

[
r(n)

]
(26.87)

=

⌊n/4⌋∑
k=0

(
n

4k

)
cn−4k−2(1− c2)2k

[
c2 − (n− 4k)(n− 4k − 1)

(4k + 2)(4k + 1)
(1− c2)

]
+Re

[
r(n)

]
, (26.88)

where

Re
[
r(n)

]
=


(1− c2)n/2 n ≡ 0 ( mod 4 ),

(n− 1)c(1− c2)(n−1)/2 n ≡ 1 ( mod 4 ),

(1− c2)(n−2)/2
[
1
2 n(n− 3)c2 + 1

]
n ≡ 2 ( mod 4 ),

0 n ≡ 3 ( mod 4 ),

(26.89)

and

sin(nθ) =

⌊n/4⌋∑
k=0

cn−4k−3(1− c2)2ks

[(
n

4k + 1

)
c2 −

(
n

4k + 3

)
(1− c2)

]
+ Im

[
r(n)

]
(26.90)

= s

⌊n/4⌋∑
k=0

(
n

4k + 1

)
cn−4k−3(1− c2)2k

[
c2 − (n− 4k − 1)(n− 4k − 2)

4k + 3)(4k + 1)
(1− c2)

]
+ Im

[
r(n)

]
,

(26.91)

where

Im
[
r(n)

]
=


0 n ≡ 0 ( mod 4 ) or n ≡ 3 ( mod 4 ),

(1− c2)s n ≡ 1 ( mod 4 ),

(n− 2)c(1− c2)(n−2)/2s n ≡ 2 ( mod 4 ).

(26.92)
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27 Chebyshev series

27.1 Chebyshev series on [−1, 1]

Proposition 27.1 (Chebyshev series on [−1, 1]). Let f(x) be a function defined on [−1, 1]. Then, the
function can be written as an infinite sum of Chebyshev polynomials Tn(x):

f(x) =
∞∑
n=0

an Tn(x), (27.1)

with coefficients

an =
2hn
π

∫ 1

−1
f(x)Tn(x)

dx√
1− x2

=
2hn
π

∫ π

0
f
[
cos(θ)

]
cos(nθ) dθ, (27.2)

and in particular

a0 =
1

π

∫ 1

−1
f(x)

dx√
1− x2

=
1

π

∫ π

0
f
[
cos(θ)

]
dθ, (27.3)

where we define for notational convenience that

hn ≡ 1− 1

2
δn,0 =

{
1
2 n = 0,

1 n ̸= 0.
(27.4)

Proof. Multiply f(x) by Tn(x), integrate over the domain and substitute the desired expression for f(x) as a
sum of coefficients multiplied by Chebyshev polynomials:∫ 1

−1
f(x)Tn(x)

dx√
1− x2

=

∫ 1

−1

∞∑
m=0

am Tm(x)Tn(x)
dx√
1− x2

=
∞∑

m=0

am

∫ 1

−1
Tm(x)Tn(x)

dx√
1− x2

. (27.5)

Substitute the orthogonality condition (26.31). Only the n = m term in the sum yields a nonzero integral: if
n = 0, the integral is π, otherwise the integral is π/2. For the n ̸= 0 case, we then have∫ 1

−1
f(x)Tn(x)

dx√
1− x2

= an
π

2
, (27.6)

which rearranges to the first given expression for an. For n = 0, the prefactor will become 1/π instead of
2/π. We can retain the same expression and account for this by halving a0. When performing numerical
integration, the division by

√
1− x2 will cause issues at the endpoints ±1, so it is necessary to perform a change

of variables. Substitute x = cos(θ) so that dx/dθ = − sin(θ) and dx/
√
1− x2 = dx/ sin(θ) = −dθ. The limits

become −1 → cos−1(−1) = 0 and 1 → cos−1(0) = π, and we swap the limits to absorb the minus sign. We also
note that Tn[cos(θ)] = cos(nθ) by definition. This gives

an =
2

π

∫ 0

π
f
[
cos(θ)

]
Tn
[
cos(θ)

]
· −dθ =

2

π

∫ π

0
f
[
cos(θ)

]
cos(nθ) dθ. (27.7)

The proof is now complete.
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Proposition 27.2 (First derivative of Chebyshev series on [−1, 1]). Let f(x) be a function defined on
[−1, 1] whose Chebyshev series has been found. Then,

df

dx
=

∞∑
n=1

an nUn−1(x) (27.8)

=

∞∑
n=0

( ∞∑
k=n+1
k+n odd

2hn k ak

)
Tn. (27.9)

The second expression is the Chebyshev series expansion of df
dx .

Proof. To obtain the first expression, differentiate the expression in Proposition 27.1 term-by-term, using the
result of Proposition 26.6. To obtain the second expression, substitute Un−1 for a sum over Tk by Proposition
26.5:

df

dx
=

∞∑
n=0

an n

∞∑
k=0

2hk Tk(x) g(k, n− 1) (27.10)

= 2
∞∑
n=0

∞∑
k=0

an nhk Tk(x) g(k, n− 1), (27.11)

= 2
∞∑
k=0

∞∑
n=0

an nhk Tk(x) g(k, n− 1), (27.12)

where

g(k, n− 1) =

{
1 (k ≤ n− 1) ∧ (k + n− 1 even),

0 otherwise,
(27.13)

=

{
1 (k ≤ n− 1) ∧ (k + n odd),

0 otherwise,
(27.14)

=

{
1 (n ≥ k + 1) ∧ (k + n odd),

0 otherwise.
(27.15)

Having rewritten the conditions within g explicitly as conditions on n, we can relegate them to labels in the
sum over n:

df

dx
= 2

∞∑
k=0

∞∑
n=k+1
n+k odd

an nhk Tk(x). (27.16)

We obtain the final result by relabelling k ↔ n.
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Proposition 27.3 (Second derivative of Chebyshev series on [−1, 1]). Let f(x) be a function defined on

[−1, 1] whose Chebyshev series has been found. Then, the Chebyshev series expansion of d2f
dx2 is

d2f

dx2
=

∞∑
n=0

( ∞∑
k=n+2

n+k even

hn k(k
2 − n2) ak

)
Tn. (27.17)

Proof. We have

d2f

dx2
=

∞∑
n=0

an
d2Tn
dx2

(27.18)

=
∞∑
n=0

∞∑
k=0

∞∑
ℓ=0

4nℓ an hk Tk g(k, ℓ− 1) g(ℓ, n− 1) (27.19)

=
∞∑
k=0

∞∑
n=0

∞∑
ℓ=0

4nℓ an hk Tk g(k, ℓ− 1) g(ℓ, n− 1) (27.20)

=
∞∑
n=0

∞∑
k=0

∞∑
ℓ=0

4kℓ ak hn Tn g(n, ℓ− 1) g(ℓ, k − 1), (27.21)

where in the penultimate step we switched the order of summation over n and k, and in the final step we
relabelled n ↔ k. We have that g(n, ℓ− 1) = 1 iff n ≤ ℓ− 1, i.e. ℓ ≥ n+ 1, and n+ ℓ− 1 is even, i.e. n+ ℓ is
odd. Similarly, g(ℓ, k − 1) = 1 iff ℓ ≤ k − 1 and ℓ + k − 1 is even. Adding the two “even” conditions, we find
n + 2ℓ + k − 2 is even, i.e. n + k is even. The bounds on ℓ give n + 1 ≤ ℓ ≤ k − 1, i.e. n + 2 ≤ ℓ + 1 ≤ k, so
k ≥ n+2. Relegating the conditions to the summation indices, we obtain the given result. Finally, if ℓ = n+1
then n+ ℓ− 1 = 2n− 2 is always even, and if k = n+2 then n+ k = 2n+2 is always even, so the lower bounds
of ℓ = k + 1 and k = n+ 2 are always triggered. We will arrive at

d2f

dx2
=

∞∑
n=0

( ∞∑
k=n+2

n+k even

k−1∑
q=n+1
n+q odd

4k q ak hn

)
Tn. (27.22)

It can be shown that

k−1∑
q=n+1
n+ℓ odd

q =
k2 − n2

4
, (27.23)

from which the given result follows.
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Proposition 27.4 (Chebyshev series of product of two functions on [−1, 1]). Let f(x) and g(x) two
functions whose Chebyshev series are known. Then, the Chebyshev series coefficients of f(x) g(x) are

(fg)0 = f0 g0 +
1

2

∞∑
n1=1

fn1 gn1 , (27.24)

(fg)n>0 =
1

2

n∑
n1=0

fn1 gn−n1 +
1

2

∞∑
n1=n

[
fn1 gn1−n + fn1−n gn1

]
. (27.25)

Proof. Suppose that the Chebyshev series coefficients of f(x) are fn and those of g(x) are gn. Then,

f(x) g(x) =
( ∞∑

n=0

fn Tn(x)

)( ∞∑
n=0

gn Tn(x)

)
(27.26)

=
∞∑

n1=0

∞∑
n2=0

fn1 gn2 Tn1(x)Tn2(x) (27.27)

=
1

2

∞∑
n1=0

∞∑
n2=0

fn1 gn2

[
Tn1+n2(x) + Tn1−n2(x)

]
, (27.28)

where we used that Tn(x)Tm(x) = 1
2

[
Tn+m(x) + Tn−m(x)

]
, and where T−n(x) = −Tn(x). This is a function of

x, so it must possess a Chebyshev series with coefficients

(fg)n =
hn
π

∞∑
n1=0

∞∑
n2=0

fn1 gn2

(∫ 1

−1
Tn1+n2(x)

dx√
1− x2

+

∫ 1

−1
Tn1−n2(x)

dx√
1− x2

)
. (27.29)

For n = 0,

(fg)0 =
1

2π

∞∑
n1=0

∞∑
n2=0

fn1 gn2

(
π δn1+n2,0 + π δn1−n2,0

)
=

1

2

∞∑
n1=0

∞∑
n2=0

fn1 gn2

(
δn1+n2,0 + δn1−n2,0

)
. (27.30)

We have that n1 ∈ [0,∞] and n2 ∈ [0,∞]. Then, n1 + n2 = 0 iff n1 = n2 = 0, so the first of the double-sums
collapses to leave only the (n1, n2) = (0, 0) terms. Further, n1 − n2 = 0 iff n2 = n1, so the second sum over n2
collapses to only the n2 = n1 term. We have

(fg)0 =
1

2
f0 g0 +

1

2

∞∑
n1=0

fn1 gn1 =
1

2
f0 g0 +

(
1

2
f0 g0 +

1

2

∞∑
n1=1

fn1 gn1

)
= f0 g0 +

1

2

∞∑
n1=1

fn1 gn1 . (27.31)

For n > 0, due to our double sum, we must be sure to consider the cases where n1 − n2 = n and where
n2 − n1 = n:

(fg)n>0 =
1

π

∞∑
n1=0

∞∑
n2=0

fn1 gn2

(
π

2
δn1+n2,n +

π

2
δn1−n2,n +

π

2
δn2−n1,n

)
(27.32)

=
1

2

∞∑
n1=0

∞∑
n2=0

fn1 gn2

(
δn1+n2,n + δn1−n2,n + δn2−n1,n

)
. (27.33)

Now, n1 + n2 = n iff n2 = n− n1, so

∞∑
n2=0

gn2 δn1+n2,n = gn−n1 . (27.34)
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Since ∀m < 0, gm = 0, we may enforce n− n1 ≥ 0 and so n1 ≤ n to obtain an upper bound on the summation
over n1, giving

1

2

∞∑
n1=0

∞∑
n2=0

fn1 gn2 δn1+n2,n =
1

2

n∑
n1=0

fn1 gn−n1 . (27.35)

Similarly, n1 − n2 = n iff n2 = n1 − n, so

∞∑
n2=0

gn2 δn1−n2,n = gn1−n, (27.36)

and we may enforce n1 − n ≥ 0 so that n1 ≥ n to obtain a lower bound on the summation over n1, giving

1

2

∞∑
n1=0

∞∑
n2=0

fn1 gn2 δn1−n2,n =
1

2

∞∑
n1=n

fn1 gn1−n. (27.37)

Finally, n2 − n1 = n iff n1 = n2 − n and we can make the same argument, leading to

1

2

∞∑
n1=0

∞∑
n2=0

fn1 gn2 δn2−n1,n =
1

2

∞∑
n1=n

fn1−n gn1 . (27.38)

We are free to relabel n2 → n1. Combining the three sums, we obtain the given result.

Example 27.5. The Chebyshev series coefficients of x f(x) are

(xf)n =



1

2
f1 n = 0,

f0 +
1

2
f2 n = 1,

1

2
fn−1 +

1

2
fn+1 n > 1.

(27.39)

Proof. Use the result of Proposition 27.4 with f(x) = x and g(x) = 1. The Chebyshev series coefficients of f(x)
are simply fn = δn,1, and those of g(x) are unknown gn. Then,

(fg)0 = δ0,1 g0 +
1

2

∞∑
n1=1

δn1,1 gn1 . (27.40)

The first term is zero; the only nonzero term in the sum over n1 is that with n1 = 1, so it collapses to
(fg)0 =

1
2 g1. Next, it is instructive to consider the n = 1 coefficient separately:

(fg)1 =
1

2

1∑
n1=0

δn1,1 g1−n1 +
1

2

∞∑
n1=1

δn1,1 gn1−1 +
1

2

∞∑
n1=1

δn1−1,1 gn1 . (27.41)

The first and second sums collapse to the n1 = 1 term so that 1− n1 = n1 − 1 = 0. The third sum collapses to
n1 − 1 = 1, or n1 = 2. This gives (fg)1 = g0 +

1
2 g2. Finally, consider the coefficients with n > 1:

(fg)n>1 =
1

2

n∑
n1=0

δn1,1 gn−n1 +
1

2

∞∑
n1=n

δn1,1 gn1−n +
1

2

∞∑
n1=n

δn1−n,1 gn1 . (27.42)

The first sum collapses to the n1 = 1 term so that n − n1 = n − 1; the second sum collapses to zero because
n1 ̸= 1; the third sum collapses to the n1−n = 1 term so that n1 = n+1. This gives (fg)n>1 =

1
2 gn−1+

1
2 gn+1.
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27.2 Chebyshev series on arbitrary interval

Proposition 27.6 (Chebyshev series on arbitrary interval). Let A,B ∈ R : A < B and let f(X) be a
function defined on X ∈ [A,B]. Then, the function can be written as an infinite sum of linearly transformed
Chebyshev polynomials Tn

[
Λ−1
A,B(X)

]
:

f(X) =
∞∑
n=0

an Tn
[
Λ−1
A,B(X)

]
, (27.43)

with coefficients

an =
2hn
π

2

B −A

∫ B

A
f(X)Tn

[
Λ−1
A,B(X)

] 1√
1−

[
Λ−1
A,B(X)

]2 dX (27.44)

=
2hn
π

∫ π

0
f
(
ΛA,B

[
cos(θ)

])
cos(nθ) dθ, (27.45)

and in particular

a0 =
1

π

∫ π

0
f
(
ΛA,B

[
cos(θ)

])
dθ, (27.46)

where hn is a notational shorthand introduced in Eq. (27.4) and the linear transformation ΛA,B and its
inverse Λ−1

A,B are described in Proposition 26.8.

Proof. The proof proceeds in the same way as for Proposition 27.1. First, take f(X), multiply it by Tn
[
Λ−1
A,B(X)

]
and integrate, labelling by In:

In =
2

B −A

∫ B

A
f(X)Tn

[
Λ−1
A,B(X)

] 1√
1−

[
Λ−1
A,B(X)

]2 dX (27.47)

=
2

B −A

∫ B

A

∞∑
m=0

am Tm
[
Λ−1
A,B(X)

]
Tn
[
Λ−1
A,B(X)

] 1√
1−

[
Λ−1
A,B(X)

]2 dX (27.48)

=
∞∑

m=0

am
2

B −A

∫ B

A
Tm
[
Λ−1
A,B(X)

]
Tn
[
Λ−1
A,B(X)

] 1√
1−

[
Λ−1
A,B(X)

]2 dX. (27.49)

If n = 0, this yields

I0 =
∞∑

m=0

am π δ0,m = a0 π. (27.50)

If n ̸= 0, this yields

In =

∞∑
m=0

am
π

2
δ0,m = an

π

2
, n ̸= 0. (27.51)

Rearranging the expressions for In, and using the definition of hn from Eq. (27.4) to combine the two cases, we
obtain the given result as an integral over X. Now, perform the change of variables X = ΛA,B

[
cos(θ)

]
so that

dX

dθ
=

dX

dΛA,B

dΛA,B

d cos(θ)

d cos(θ)

dθ
= 1 · B −A

2
· − sin(θ, (27.52)

⇒ dX = −(B −A)

2
sin(θ), (27.53)
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the limits become

B → cos−1
[
Λ−1
A,B(B)

]
= cos−1(1) = 0, (27.54)

A → cos−1
[
Λ−1
A,B(A)

]
= cos−1(−1) = π, (27.55)

(27.56)

and we note that

1√
1−

[
Λ−1
A,B(X)

]2 =
1√

1− cos2(θ)
=

1

sin(θ)
. (27.57)

Substituting all of these to the integral in terms of X, and swapping the limits to absorb the minus sign, we
obtain the integral in terms of θ.

Example 27.7. The Chebyshev series coefficients of f(x) = 1
x on an arbitrary interval [A,B] are

an =
4hn

π(B −A)

∫ π

0

cos(nθ)

cos(θ) + ρ
dθ, (27.58)

where ρ = A+B
A−B .

Proof. Note that limx→0±
1
x = ±∞ and so limx→0

1
x does not exist and a Chebyshev series cannot be found in

intervals containing x = 0. We have

an =
2hn
π

∫ π

0

1

Λ
[
cos(θ)

] cos(nθ) dθ =
2hn
π

∫ π

0

1
B−A
2 cos(θ) + B+A

2

cos(nθ) dθ (27.59)

=
2hn
π

∫ π

0

1
B−A
2

[
cos(θ) + B+A

2
2

B−A

] cos(nθ) dθ =
4hn

π(B −A)

∫ π

0

1

cos(θ) + B+A
B−A

cos(nθ) dθ. (27.60)

Defining ρ = B+A
B−A to absorb the constants, the result follows.

From Example 27.7, the Chebyshev series of f(x) = 1
x on an arbitrary interval consists of infinitely many

terms. In reality we must truncate at some nmax, limiting the accuracy of a Chevyshev series decomposition
for modelling this function. Typically we have limn→∞ |an| = 0, so for sufficient nmax the truncation error will
be negligible.

However, the integral for an in Example 27.7 can only be calculated numerically, not analytically. This
means that even low-n coefficients will be subject to numerical error. Further, there will be some nmax beyond
which the total error by using more coefficients outweighs the accuracy gained, adding an upper limit to the
possible accuracy.1 We will experience this during testing in §13.2.

The accuracy of a Chebyshev representation of 1
x is limited not only by our choice of nmax, but also by our

coordinate spacing. We appreciate that the same issue will occur with f(x) = 1
x3 , which is the typical radial

behaviour we will expect in our simulations (Chapter 27.7).

1In principle, nmax could be determined by comparing the truncation error of a Chebyshev series to the numerical error of the
integration method. We have not considered the truncation error, but an estimate could be the magnitude of the first omitted term,
similarly to the “rule of thumb” for Taylor series expansions; cf. Eq. (23.3). The numerical error when performing the calculation
on a computer depends on the method used; we discussed the error of many numerical integration methods in Chapter 21. However,
we are forced to use the trapezium rule for our finite code because it uses finite grids. We stated in §21.6 that the error term is then
difficult to calculate, but pointed the reader to Atkinson (1989) for an expression. We shall not determine an expression for nmax,
but highlight that it exists and limits the ultimate accuracy of numerical computation of a Chebyshev series.
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Lemma 27.8. ∀ a, b ∈ R,∫
cos(ax) cos(bx) dx =

1

2

[
sin
[
(a+ b)x

]
a+ b

+
sin
[
(a− b)x

]
a− b

]
, |a| ≠ b, (27.61)∫

cos(ax) cos(ax) dx =

∫
cos(ax) cos(−ax) dx =

x

2
+

1

4a
sin(2ax), (27.62)

where the addition of an arbitrary constant is implied.

Proof. For the case a ̸= b, write cos(x) in terms of exponentials. For the case a = b, we have a standard integral.

Lemma 27.9. ∀ k ∈ N and ∀n ∈ N,∫
cosk(x) cos(nx) dx =

1

2k+1

k∑
j=0

j ̸=(k±n)/2

(
k

j

)[
sin
[
(2j − k + n)x

]
2j − k + n

+
sin
[
(2j − k − n)x

]
2j − k − n

]

+
1

2k

(
k

k−n
2

)[
x+

1

2n
sin(2nx)

]
k + n even and k ≥ n,

1

2k+1

k∑
j=0

(
k

j

)[
sin
[
(2j − k + n)x

]
2j − k + n

+
sin
[
(2j − k − n)x

]
2j − k − n

]
otherwise.

Proof. We can simplify cosk(θ) ∈ R by rewriting in terms of exponentials, applying the binomial theorem and
taking the real part:

cosk(x) =

(
eix + e−ix

2

)k

=
1

2k

k∑
j=0

(
k

j

)[
eix
]k[

e−ix
]k−j

= Re

(
1

2k

k∑
j=0

(
k

j

)
ei(2j−k)x

)
(27.63)

=
1

2k

k∑
j=0

(
k

j

)
cos
[
(2j − k)x

]
. (27.64)

so the integral becomes

I =
1

2k

k∑
j=0

(
k

j

)∫
cos
[
(2j − k)x

]
cos(nx) dx (27.65)

=
1

2k

k∑
j=0

|2j−k|̸=n

(
k

j

)
1

2

[
sin
[
(2j − k + n)x

]
2j − k + n

+
sin
[
(2j − k − n)x

]
2j − k − n

]

+
1

2k

(
k

k+n
2

)[
x

2
+

1

4n
sin
[
2nx

]]
+

1

2k

(
k

k−n
2

)[
x

2
+

1

4(−n)
sin
[
2(−n)x

]]
, (27.66)

where we used Lemma 27.8 and allowed the sum over j to contain terms with |2j−k| = n, i.e. j = (k±n)/2. The
condition in the sum simplifies to j ̸= (k±n)/2. Depending on the values of k, n, there are several possibilities:

1. k+n is even, and k ≥ n. In this case, the sum over j will hit both (k+n)/2 and (k−n)/2, so both these
extra terms need to be considered. Notice that the binomial coefficients are equal,(

k
k+n
2

)
=

k!(
k+n
2 )!

(
k −

[
k+n
2

])
!
=

k!(
k+n
2

)
! (k−n

2

)
!
=

(
k

k−n
2

)
, (27.67)
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and the minus signs in sin(−x)/(−n) cancel, so the two terms are equal.

2. k+ n is even, and k < n. In this case, the lower value is (k− n)/2 < 0 so is never hit. The upper value is
(k + n)/2 ∈ (k, n), but since j ∈ [0, k], this is never hit either. Hence, neither extra term is included.

3. k + n is odd. In this case, (k + n)/2 /∈ Z, so neither extra term is included.

4. k = 0 and n ̸= 0. In this case, the sum over j has one term:

1

20+1

(
0

0

)[
sin
[
(2 · 0− 0 + n)x

]
2 · 0− 0 + n

+
sin
[
(2 · 0− 0− n)x

]
2 · 0− 0− n

]
=

1

2
· 1 ·

[
sin(nx)

n
+

sin(−nx)
−n

]
=

sin(nx)

n
,

(27.68)

and |2j − k| = 0 ̸= n, so the extra terms are never hit. This result agrees with the expected value∫
cos(ax+ b) dx =

1

a
sin(ax+ b) + c. (27.69)

It is consistent with cases 1, 2 and 3 above.

5. n = 0 and k ̸= 0. In this case, we recover the integral∫
cosn(x) dx =

1

n
cosn−1(x) sin(x) +

n− 1

n

∫
cosn−2(x) dx, (27.70)

which is easily proven by writing the integrand as cosn−1(x) cos(x) dx and integrating by parts with
u(x) = cosn−1(x) and dv = cos(x) dx. We have not checked whether the final result is consistent with any
of the cases above.

6. k = n = 0. In this case, the sum over j would only contain one term, but this is the term with
|2j− k| = 0 = ±n, so is excluded. The expression for the two extra terms is invalid due to the 1/n factor.
We know that the integral reduces to

∫
dx = x, and we see that this is not compatible with any of the

cases above.
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Lemma 27.10. ∀n ∈ N0,

∫ π

0
cosk(x) cos(nx) dx =


π

2k

(
k

k−n
2

)
k + n even and k ≥ n,

0 otherwise.

(27.71)

Note that this definite integral holds for n = 0, even though the indefinite integral in Lemma 27.9 does not.

Proof. The case n ̸= 0 follows immediately from Lemma 27.9 and that sin(mπ) = 0 ∀m ∈ Z. We prove the
case n = 0 by induction: ∫ π

0
cosk(x) dx =

{
π
2k

(k
k
2

)
k + 2 even and k ≥ n,

0 otherwise.
(27.72)

We require two base cases. For k = 0,

LHS =

∫ π

0
cos0(x) dx =

∫ π

0
dx =

[
x
]π
0

= π, (27.73)

and

RHS =
π

20

(
0
0
2

)
= π. (27.74)

For k = 1, ∫ π

0
cos1(x) dx =

[
sin(x)

]π
0

= 0. (27.75)

Suppose that the relation holds for k. Then, for k + 2, the integral Ik+2 is

Ik+2 =

∫ π

0
cosk+2(x) dx =

∫ π

0
cosk(x) cos(x) dx. (27.76)

Integrate by parts with u = cosk+1(x) so du = −(k + 1) cosk(x) sin(x) dx and dv = cos(x) so v = sin(x):

Ik+2 =
[
cosk+1 k(x) sin(x)

]π
0
+ (k + 1)

∫ π

0
cosk(x) sin2(x) dx. (27.77)

The boundary term is zero. In the integral on the RHS, write sin2(x) = 1 − cos2(x) and multiply out the
brackets:

Ik+2 = (k + 1)

∫ π

0
cosk(x) dx− (k + 1)

∫ π

0
cosk+2(x) dx = (k + 1) Ik − (k + 1) Ik+2, (27.78)

which rearranges to

Ik+2 =
k + 1

k + 2
Ik. (27.79)

Now, if the induction hypothesis is correct, we also have

Ik =
π

2k

(
k
k
2

)
=

π

2k
k!(

k
2

)
! (k − k

2

)
!
=

π

2k
k!(
k
2

)
!2
, (27.80)
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so that

Ik+2 =
π

2k+2

(
k + 2
k+2
2

)
=

1

4

π

2k
(k + 2)!(
k+2
2

)
!2

=
1

4

π

2k
(k + 2)!(
k
2 + 1

)
!2

=
1

4

π

2k
(k + 2)(k + 1)k![(

k
2 + 1

)(
k
2

)]2 (27.81)

=
1

4

π

2k
(k + 2)(k + 1)(

k+2
2

)2 k!(
k
2

)
!2

=
1

4

π

2k
4
k + 1

k + 2

(
k
k
2

)
=

k + 1

k + 2
Ik. (27.82)

Then, Eq. (27.79) showed that the case k implies the case k+2. Coupled with our two consecutive bases cases,
this completes the proof.

Lemma 27.11. ∀n ∈ N0, ∫ π

0
cos(nx) dx = π δn,0. (27.83)

Proof. For n = 0, we have ∫ π

0
cos(0) dx =

∫ π

0
dx = π. (27.84)

For n ̸= 0, we have ∫ π

0
cos(nx) dx =

[ 1
n

sin(nx)
]π
0

= 0. (27.85)

Combining these, the proof is complete. Alternatively, we could have recognised that cos(nθ) = Tn
[
cos(θ)

]
and

used the orthgonality relation for Chebyshev polynomials of the first kind, Eq. (26.31), with T0
[
cos(θ)

]
= 1:∫ π

0
cos(nθ) dθ =

∫ π

0
Tn
[
cos(θ)

]
dθ =

∫ π

0
Tn
[
cos(θ)

]
T0
[
cos(θ)

]
dθ = π δn,0. (27.86)
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Example 27.12. The Chebyshev series coefficients of f(x) = x2 on an arbitrary interval [A,B] are

a0 =
1

8

(
3B2 + 3A2 + 2AB

)
, (27.87)

a1 =
1

2

(
B +A

)(
B −A

)
, (27.88)

a2 =
1

8

(
B −A

)2
, (27.89)

with an = 0 for n > 2.

Proof. By Proposition 26.8, we have

f
(
ΛA,B

[
cos(θ)

])
=

1

4

(
B −A

)2
cos2(θ) +

1

2

(
B −A

)(
B +A

)
cos(θ) +

1

4

(
B +A

)2
, (27.90)

so Eq. (27.45) gives

an =
hn
2π

(
B −A)2

∫ π

0
cos2(θ) cos(nθ) dθ +

hn
π

(
B −A

)(
B +A

) ∫ π

0
cos(θ) cos(nθ) dθ

+
hn
2π

(
B +A

)2 ∫ π

0
cos(nθ) dθ. (27.91)

Lemma 27.10 yields ∫ π

0
cos2(θ) cos(nθ) dθ =

π

2
δn,0 +

π

4
δn,2, (27.92)∫ π

0
cos(θ) cos(nθ) dθ =

π

2
δn,1. (27.93)

Substituting these plus Lemma 27.11 and using the expression for hn in Eq. (27.4), we obtain the given result.

Proposition 27.13 (First derivative of Chebyshev series on arbitrary interval). Let f(x) be a function
defined on [A,B] whose Chebyshev series has been found on this interval. Then,

df

dx
=

2

B −A

∞∑
n=1

an nUn−1

[
Λ−1
A,B(x)

]
(27.94)

=
∞∑
n=0

(
4

B −A
hn

∞∑
k=n+1
n+k odd

k ak

)
Tn
[
Λ−1
A,B(x)

]
. (27.95)

Proof. Differentiate the expression in Proposition 27.6 term-by-term, using the result of Proposition 26.12.

Proposition 27.14 (Second derivative of Chebyshev series on arbitrary interval). Let f(x) be a function
defined on [A,B] whose Chebyshev series has been found on this interval. Then,

d2f

dx2
=

∞∑
n=0

(
4

(B −A)2
hn

∞∑
k=n+2

n+k even

k(k2 − n2) ak

)
Tn
[
Λ−1
A,B(x)

]
. (27.96)

Proof. Two applications of the chain rule yield

d2Tn
dx2

=
d2Tn

d(Λ−1
A,B)

2

(
dΛ−1

A,B

dx

)2

+
dTn

dΛ−1
A,B

d2(Λ−1
A,B)

dx2
=

4

(B −A)2
d2Tn

d(Λ−1
A,B)

2
. (27.97)

The rest follows in the same way as for [−1, 1].
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28 Legendre polynomials

The spherical harmonics (Definition 30.1) form a complete orthonormal basis over the θ and ϕ directions,
which means that a general 2D angular function f(θ, ϕ) can be expressed exactly as a linear combination
of them. This makes approximation of such a function straightforward. Making a simple extension to the
vector spherical harmonics (VSHs) (Definition 31.1), and using the previously mentioned 1D methods to
handle radial dependence, it is possible to model the behaviour of any vector function in spherical coordinates.
Further, VSHs have straightforward behaviour under divergence and curl operations, facilitating numerical
vector calculus.

Over the next few chapters, we build up to a method of expressing the angular part of a vector function in
terms of VSHs. We begin from their one-dimensional counterparts, the Legendre polynomials and associated
Legendre functions, since many intermediary results will prove useful.

Ultimately, our project will not extend beyond axisymmetry, so angular dependence can be modelled using
only Legendre polynomials and associated Legendre functions. The chapters on spherical harmonics and VSHs
may be skipped, but we retain them because they represent original work that will prove useful should the
project be expanded to 3D in the future, or for other applications.

The statements in this chapter are true ∀x ∈ [−1, 1] and ∀ ℓ ∈ N0, unless otherwise stated.

28.1 Definition and examples

Definition 28.1. Let x ∈ [−1, 1] and ℓ ∈ N0. Then, Legendre’s differential equation states that

(1− x2)
d2Pℓ

dx2
− 2x

dPℓ

dx
+ ℓ(ℓ+ 1)Pℓ(x) = 0. (28.1)

The Legendre polynomials are the unique polynomials Pℓ : [−1, 1] → R with degree ℓ which are solutions
to this equation.

The first few Legendre polynomials are

P0(x) = 1, (28.2)

P1(x) = x, (28.3)

P2(x) =
1

2

(
3x2 − 1

)
, (28.4)

P3(x) =
1

2

(
5x3 − 3x

)
, (28.5)

P4(x) =
1

8

(
35x4 − 30x2 + 3

)
. (28.6)

28.2 Properties and relations

The values at the endpoints are (e.g. Arfken & Weber, 2005, §12.2)

Pℓ(−1) = Pℓ

[
cos((2ℓ+ 1)π)

]
= (−1)ℓ, (28.7)

Pℓ(1) = Pℓ

[
cos(2ℓπ)

]
= 1. (28.8)

The Legendre polynomials of even/odd order are even/odd:

Pℓ(−x) = (−1)ℓ Pℓ(x). (28.9)
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The Legendre polynomials follow Bonnet’s recursion relation. ∀ ℓ ∈ N : ℓ > 1,

Pℓ(x) =
1

ℓ

[
(2ℓ− 1)xPℓ−1(x)− (ℓ− 1)Pℓ−2(x)

]
, (28.10)

This gives a way to generate all the Legendre polynomials up to some cutoff ℓmax, evaluated at a single point
x, given two “seed” values P0(x) and P1(x). We apply this relation in §12.3.

The Legendre polynomials form a complete orthonormal basis on [−1, 1]. Then, any function f(x) may be
expanded on [−1, 1] as a Legendre series (e.g. Arfken & Weber, 2005, §12.3)

f(x) =
∞∑
ℓ=0

aℓ Pℓ(x), (28.11)

an infinite sum of Legendre polynomials with constant coefficients

aℓ =

(
ℓ+

1

2

)∫ 1

−1
f(x)Pℓ(x) dx =

(
ℓ+

1

2

)∫ π

0
f
[
cos(θ)]Pℓ

[
cos(θ)

]
sin(θ) dθ. (28.12)

28.3 Derivatives

The first derivatives of the Legendre polynomials are best expressed in terms of the associated Legendre functions
(Proposition 29.41), but an expression staying with Legendre polynomials does exist:

d

dx
Pℓ(x) =



ℓ

1− x2

[
− xPℓ(x) + Pℓ−1(x)

]
|x| ≠ 1,

ℓ(ℓ+ 1)

2
x = 1,

(−1)ℓ+1 ℓ(ℓ+ 1)

2
x = −1.

(28.13)

The expression for |x| ̸= 1 can be found in e.g. Eq. (12.26) of Arfken & Weber (2005). It breaks down at the
endpoints due to the division by 1− x2; we add those expressions as separate cases.

Proposition 28.2. The first derivative in terms of θ is

d

dθ
Pℓ

[
cos(θ)

]
=

ℓ

sin(θ)

[
cos(θ)Pℓ

[
cos(θ)

]
− Pℓ−1

[
cos(θ)

]]
. (28.14)

In particular, d
dθ Pℓ

[
cos(θ)

]
= 0 if θ ∈ {0, π}.

Proof. For θ ∈ (0, π), the chain rule gives d
dθ Pℓ

[
cos(θ)

]
= dPℓ

d cos(θ)
d cos(θ)

dθ = − sin(θ) dPℓ
d cos(θ) = −

√
1− x2 dPℓ

dx .

Substituting the expression for dPℓ
dx gives the result in terms of θ. We claim that the expression also holds in

the limit as θ → 0 and θ → 2π, and that it yields zero in both limits.

It may be surprising that dPℓ
dx cannot be expressed purely in terms of Legendre polynomials, especially having

stated above that functions can be represented as Legendre series. However, in this case it can only be produced
in the limit of infinitely many such polynomials. One way to explain this is that the Legendre polynomials are
polynomials in x, but x is a trigonometric function of θ, so taking a derivative introduces an extra function of
θ such that the result is no longer a polynomial in x. If it is not a polynomial, we cannot expect finitely many
Legendre polynomials to reproduce it exactly.

We will face this issue with all of the basis functions that we introduce in the proceeding chapters. It is
unfortunate because our evolutionary equations will require us to take spatial derivatives in the radial and
polar directions (r, θ), so it would save much time and computational expense if we found an immediate way to
obtain derivatives of functions whose series expansions we had already calculated. We will instead search for
expressions for the derivatives that are as close to being straightforward as possible.
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28.4 Integrals

The Legendre polynomials obey the orthogonality relation∫ 1

−1
Pℓ(x)Pm(x) dx =

∫ π

0
Pℓ

[
cos(θ)

]
Pm

[
cos(θ)

]
sin(θ) dθ =

2

2ℓ+ 1
δℓ,m, (28.15)

The expression in terms of θ is given by a change of variables x = cos(θ).
A useful expression is (e.g. Arfken & Weber, 2005, §12.2)

(2ℓ+ 1)Pℓ(x) =
d

dx

[
Pℓ+1(x)− Pℓ−1(x)

]
, (28.16)

from which it immediately follows that we can express the integral of a Legendre polynomial in terms of two
other Legendre polynomials. ∀ a, b ∈ R : a, b ∈ [−1, 1] and ∀ ℓ ∈ N,∫ b

a
Pℓ(x) dx =

1

2ℓ+ 1

[
Pℓ+1(x)− Pℓ−1(x)

]b
a
. (28.17)

Some authors relax ℓ ∈ N0 to ℓ ∈ Z for easier application of recursion relations. Some define Pℓ(x) ≡ 0 for
ℓ < 0, but it is also common to define P−1(x) = −1 (e.g. Jackson, 1999, Problem 3.2 (b)), which extends the
validity of Eq. (28.17) to ℓ ∈ N0. We will not consider ℓ < 0 in this project, but note that its handling may be
important in numerical applications.

Corollary 28.3 (Integral over domain).∫ 1

−1
Pℓ(x) dx =

∫ π

0
Pℓ

[
cos(θ)

]
sin(θ) dθ = 2 δℓ,0. (28.18)

Proof. Using the orthogonality relation Eq. (28.15) and that 1 = P0(x), we have∫ 1

−1
Pℓ(x) dx =

∫ 1

−1
Pℓ(x)P0(x) =

2

2ℓ+ 1
δℓ,0. (28.19)

If ℓ ̸= 0, this is zero. If ℓ = 0, it evaluates to 2
2(0)+1 = 2.

Alternatively, we can use Eq. (28.17) with Eqs. (28.7) and (28.8). For ℓ > 0,∫ 1

−1
Pℓ(x) dx =

1

2ℓ+ 1

[
1− 1

]
− 1

ℓ+ 1

[
(−1)2ℓ+1 − (−1)ℓ−1

]
= 0− (−1)ℓ

2ℓ+ 1

[
− 1− 1

−1

]
= 0. (28.20)

For ℓ = 0, use that P−1(x) = −1 to give∫ 1

−1
P0(x) dx =

1

2ℓ+ 1

[
1− (−1)

]
− 1

2ℓ+ 1

[
(−1)1 − (−1)

]
= 2. (28.21)
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29 Associated Legendre functions

29.1 Definition and examples

Definition 29.1. Let ℓ ∈ N0 and m ∈ Z : |m| ≤ ℓ. The associated Legendre functions (ALFs) are
defined by

Pm
ℓ (x) = (−1)m (1− x2)m/2 dm

dxm
Pℓ(x). (29.1)

The associated Legendre functions are often referred to as the associated Legendre polynomials, but we
avoid this name since they are not polynomials ifm is odd. The factor (−1)m is known as theCondon-Shortley
phase and is omitted in some definitions; we employ it throughout this text. Notice that P 0

ℓ (x) = Pℓ(x), that
is, the Legendre polynomials are special cases of the ALFs with m = 0. In this text, we define Pm

ℓ ≡ 0 if m > ℓ,
which is useful for considering derivatives or recursion relations.

The first few ALFs are as follows. For ℓ = 1,

P−1
1 (x) =

1

2

(
1− x2

)1/2
, (29.2)

P 1
1 (x) = −

(
1− x2

)1/2
. (29.3)

For ℓ = 2,

P−2
2 (x) =

1

8

(
1− x2

)
, (29.4)

P−1
2 (x) =

1

2
x
(
1− x2

)1/2
, (29.5)

P 1
2 (x) = −3x

(
1− x2

)1/2
, (29.6)

P 2
2 (x) = 3

(
1− x2

)1/2
. (29.7)

For ℓ = 3,

P−3
3 (x) =

1

48

(
1− x2

)3/2
, (29.8)

P−2
3 (x) =

1

8
x
(
1− x2

)
, (29.9)

P−1
3 (x) = −1

8

(
1− 5x2

) (
1− x2

)1/2
, (29.10)

P 1
3 (x) =

3

2

(
1− 5x2

) (
1− x2

)1/2
, (29.11)

P 2
3 (x) = 15x

(
1− x2

)
, (29.12)

P 3
3 (x) = −15

(
1− x2

)3/2
. (29.13)
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29.2 Properties and relations

The ALFs for negativem are simply a rescaling of those with positivem. In particular, ∀ ℓ ∈ N0, m ∈ N0 : m ≤ ℓ,

P−m
ℓ (x) = (−1)m

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (x). (29.14)

The values at the endpoints are, ∀ ℓ ∈ N0, m ∈ Z : |m| ≤ ℓ,

Pm
ℓ (−1) = Pm

ℓ

[
cos(π)

]
= (−1)ℓ δm,0, (29.15)

Pm
ℓ (1) = Pm

ℓ

[
cos(0)

]
= δm,0. (29.16)

That is, the functions are nonzero at the endpoints iff m = 0.

Lemma 29.2. ∀ ℓ ∈ N,

dℓ−1

dxℓ−1
Pℓ(x) = (2ℓ− 1)!!x, (29.17)

dℓ

dxℓ
Pℓ(x) = (2ℓ− 1)!!. (29.18)

Proof. We prove the (ℓ − 1)th derivative by induction. The result includes a double factorial and we will
increment by 2, not 1, in our proof, so let us consider the first two base cases. For ℓ = 1,

d1−1

dx1−1
P1(x) = P1(x) = x, (29.19)[

2(1)− 1
]
!!x = (2− 1)!!x = 1!!x = x. (29.20)

For ℓ = 2,

d2−1

dx2−1
P2(x) =

d

dx

1

2

(
3x2 − 1

)
= 3x, (29.21)[

2(2)− 1
]
!!x = (4− 1)!!x = 3!!x = 3x. (29.22)

Suppose that the result holds for ℓ. Then, for ℓ+ 2,

dℓ+1

dxℓ+1
Pℓ+1(x) =

dℓ+1

dxℓ+1

1

ℓ+ 2

[[
2(ℓ+ 2)− 1

]
xPℓ+1(x)− (ℓ+ 1)Pℓ(x)

]
(29.23)

=
2ℓ+ 3

ℓ+ 2

dℓ+1

dxℓ+1
xPℓ+1(x)−

ℓ+ 1

ℓ+ 2

dℓ+1

dxℓ+1
Pℓ(x), (29.24)

where we used Bonnet’s recursion relation Eq. (28.10). The second term is zero by the induction hypothesis:

dℓ+1

dxℓ+1
Pℓ(x) =

d2

dx2
dxℓ−1

dxℓ−1
Pℓ(x) =

d2

dx2
(2ℓ− 1)!!x = 0. (29.25)

For the first term, the product rule for the nth derivative generalises to Leibniz’ rule,

dn

dxn
A(x)B(x) =

n∑
k=0

(
n

k

)
dk

dxk
A(x)

dn−k

dxn−k
B(x), (29.26)

so in particular

dn

dxn
xA(x) =

(
n

0

)
d0

dx0
x
dn−0

dxn−0
A(x) +

(
n

1

)
d1

dx1
x
dn−1

dxn−1
A(x) +

n∑
n=2

(
n

k

)
dk

dxk
x
dn−k

dxn−k
A(x) (29.27)

= x
dn

dxn
A(x) + n

dn−1

dxn−1
A(x). (29.28)
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Then,

2ℓ+ 3

ℓ+ 2

dℓ+1

dxℓ+1
xPℓ+1(x) =

2ℓ+ 3

ℓ+ 2

[
x
dℓ+1

dxℓ+1
Pℓ+1(x) + (ℓ+ 1)

dℓ

dxℓ
Pℓ+1(x)

]
. (29.29)

We have

x
dℓ+1

dxℓ+1
Pℓ+1(x) = x

d

dx

dℓ

dxℓ
Pℓ+1(x) = x

d

dx

[
2(ℓ+ 1)− 1

]
!!x = (2ℓ+ 1)!!x, (29.30)

(ℓ+ 1)
dℓ

dxℓ
Pℓ+1(x) = (ℓ+ 1)

[
2(ℓ+ 1)− 1

]
!!x = (ℓ+ 1) (2ℓ+ 1)!!x, (29.31)

giving

2ℓ+ 3

ℓ+ 2

dℓ+1

dxℓ+1
xPℓ+1(x) =

2ℓ+ 3

ℓ+ 2
(1 + ℓ+ 1) (2ℓ+ 1)!!x = (2ℓ+ 3) (2ℓ+ 1)!!x (29.32)

= (2ℓ+ 3)!!x =
[
2(ℓ+ 2)− 1

]
!!x, (29.33)

which proves the (ℓ− 1)th derivative. The ℓth derivative follows immediately by differentiation; it can also be
proven on its own using the same method.

Proposition 29.3. ∀ ℓ ∈ N,

P ℓ
ℓ (x) = (−1)ℓ (2ℓ− 1)!! (1− x2)ℓ/2, (29.34)

P ℓ
ℓ+1(x) = (2ℓ+ 1)xP ℓ

ℓ (x). (29.35)

Proof. The expression for P ℓ
ℓ (x) follows immediately from Lemma 29.2 and Definition 29.1. For P ℓ

ℓ+1(x), we
have

P ℓ
ℓ+1(x) = (−1)ℓ (1− x2)ℓ/2

dℓ

dxℓ
Pℓ+1 = (−1)ℓ (1− x2)ℓ/2

[
2(ℓ+ 1)− 1

]
!!x (29.36)

= (−1)ℓ (1− x2)ℓ/2 (2ℓ+ 1)!!x = (−1)ℓ (1− x2)ℓ/2 (2ℓ+ 1) (2ℓ− 1)!!x = (2ℓ+ 1)xP ℓ
ℓ (x). (29.37)

The ALFs follow the generalised Bonnet recursion relation. ∀ ℓ ∈ N : ℓ > 1 and ∀m ∈ Z : |m| < ℓ,

Pm
ℓ (x) =

1

ℓ−m

[
(2ℓ− 1)xPm

ℓ−1(x)− (ℓ+m− 1)Pm
ℓ−2(x)

]
. (29.38)

This gives a way to generate all the ALFs for fixed m evaluated at x, given two “seed” values Pm
m (x) and

Pm
m+1(x). It is most useful when we will only ever need the ALFs with one value of m; in our code, we only

require those for m = 1 because they represent the derivatives of the Legendre polynomials.
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29.3 Derivatives

As we touched on in Chapter 28, there is no simple expression for the derivative of an ALF which remains in
polynomials. Perhaps it is easier to see for ALFs than Legendre polynomials, since ALFs were not polynomials
to begin with. We will make do with a θ-derivative which is expressable as a sum of two ALFs with the same
ℓ as the original, but differing m.

Proposition 29.4 (Derivatives of the Legendre polynomials). ∀x ∈ (−1, 1), ℓ ∈ N0, n ∈ N,

dn

dxn
Pℓ(x) =

{
(−1)n

(1−x2)n/2 P
n
ℓ (x) n ≤ ℓ,

0 n > ℓ.
(29.39)

In particular,

dPℓ

dx
=

{
−1

(1−x2)1/2
P 1
ℓ (x) ℓ ≥ 1,

0 ℓ = 0.
(29.40)

In terms of θ,

dPℓ

dθ
= P 1

ℓ

[
cos(θ)

]
. (29.41)

Proof. The expression in terms of x follows immediately from Definition 29.1, that Pn
ℓ (x) ≡ 0 if n > ℓ, and

that (−1)−n = (−1)n. In terms of θ, we have

P 1
ℓ (x) = (−1)1 (1− x2)1/2

d1

dx1
P 0
ℓ (x) = −(1− x2)1/2

dPℓ

dx
. (29.42)

Let x = cos(θ). Then, for a function of one variable f , the chain rule gives

df

dθ
=

df

d cos(θ)

d cos(θ)

dθ
=

df

d cos(θ)
· − sin(θ) = −

√
1− x2

df

dx
, (29.43)

where in the last step we used that x = cos(θ). Setting f(x) = P 1
ℓ (x) = P 1

ℓ

[
cos(θ)

]
, the RHS of both equations

are equal, so we can equate the LHS P 1
ℓ (x) and

df
dθ = dPℓ

dθ .

Combining Eq. (29.41) with the recursion relation given in Eq. (12.94) of Arfken & Weber (2005), the first
derivative of a general ALF is then

d

dθ
Pm
ℓ

[
cos(θ)

]
=

1

2
Pm+1
ℓ − 1

2
(ℓ+m)(ℓ−m+ 1)Pm−1

ℓ . (29.44)

This holds for |m| = ℓ with the definition that Pm
ℓ = 0 for |m| > ℓ.
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29.4 Integrals

There is no general orthogonality condition for the ALFs, but the following expressions hold. For constant m,∫ 1

−1
Pm
ℓ (x)Pm

ℓ′ (x) dx =

∫ π

0
Pm
ℓ

[
cos(θ)

]
Pm
ℓ′
[
cos(θ)

]
sin(θ) dθ =

2

2ℓ+ 1

(ℓ+m)!

(ℓ−m)!
δℓ,ℓ′ . (29.45)

For constant ℓ,

∫ 1

−1
Pm
ℓ (x)Pm′

ℓ (x)
1

1− x2
dx =

∫ π

0
Pm
ℓ

[
cos(θ)

]
Pm′
ℓ

[
cos(θ)

] 1

sin(θ)
dθ =


0 m ̸= m′,
1
m

(ℓ+m)!
(ℓ−m)! m = m′ ̸= 0,

∞ m = m′ = 0.

(29.46)

In particular, if it is not true that m = m′ = 0, then∫ 1

−1
Pm
ℓ (x)Pm′

ℓ (x)
1

1− x2
dx =

∫ π

0
Pm
ℓ

[
cos(θ)

]
Pm′
ℓ

[
cos(θ)

] 1

sin(θ)
dθ =

1

m

(ℓ+m)!

(ℓ−m)!
δm,m′ , ¬ (m = m′ = 0).

(29.47)

29.5 Overlap integrals

The reader may skip this section.
The numerical method in our simulation will involve the evaluation of a very large number of integrals of

products of ALFs. If we can avoid computing these integrals numerically and simply quote an exact result, this
will aid the accuracy and long-term stability of the evolution, as well as improve execution times. We might
even find that some terms are identically zero, so could be removed from our calculations.

Unfortunately, we found that while exact expressions for the integrals exist, they are extremely complicated.
For completeness, or even as a way of justifying the choice to calculate the integrals numerically, we quote the
results below. It is clear that we won’t be able to use these to simplify any of our expressions. We also argue
that a code to evaluate the right-hand side of these expressions may be even more computationally expensive
than a simple numerical integration. It would increase the risk of typos or coding logic errors leading to spurious
inaccuracies, which would be extremely hard to find given the added complexity of the written code.

As such, we do not pursue further the idea of evaluating exactly the integrals of products of ALFs.

Definition 29.5. Let ℓ1, ℓ2, ℓ3 ∈ N0 and m1,m2,m3 ∈ Z. The Wigner 3j symbols are the real numbers(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)
= δm1+m2+m3,0 (−1)ℓ1−ℓ2−m3

√
(ℓ1 + ℓ2 − ℓ3)! (ℓ1 − ℓ2 + ℓ3)! (−ℓ1 + ℓ2 + ℓ3)!

(ℓ1 + ℓ2 + ℓ3 + 1)!

·
√

(ℓ1 −m1)! (ℓ1 +m1)! (ℓ2 −m2)! (ℓ2 +m2)! (ℓ3 −m3)! (ℓ3 +m3)!

·
kmax∑

k=kmin

(−1)k

k! (ℓ1 + ℓ2 − ℓ3 − k)! (ℓ1 −m1 − k)! (ℓ2 +m2 − k)! (ℓ3 − ℓ2 +m1 + k)! (ℓ3 − ℓ1 −m2 + k)!
, (29.48)

where kmin = max{ 0 , ℓ2 − ℓ3 −m1 , ℓ1 − ℓ3 +m2 } and kmax = min{ ℓ1 + ℓ2 − ℓ3 , ℓ1 −m1 , ℓ2 +m2 }.
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One must be careful with the notation used: the Wigner 3j symbols are real numbers and not matrices. They
are commonly defined with j1, j2, j3 ∈ N0 occupying the first row, hence the name; however, our application
concerns ℓ. Note the following special case, which applies to the Legendre polynomialss:(

ℓ1 ℓ2 ℓ3
0 0 0

)
= (−1)ℓ1−ℓ2

√
(ℓ1 + ℓ2 − ℓ3)! (ℓ1 − ℓ2 + ℓ3)! (−ℓ1 + ℓ2 + ℓ3)!

(ℓ1 + ℓ2 + ℓ3 + 1)!
ℓ1! ℓ2! ℓ3!

·
kmax∑

k=kmin

(−1)k

k! (ℓ1 + ℓ2 − ℓ3 − k)! (ℓ1 − k)! (ℓ2 − k)! (ℓ3 − ℓ2 + k)! (ℓ3 − ℓ1 + k)!
, (29.49)

where kmin = max{ 0 , ℓ2 − ℓ3 , ℓ1 − ℓ3 } and kmax = min{ ℓ1 + ℓ2 − ℓ3 , ℓ1 , ℓ2 }.
§2 of Dong & Lemus (2002) gives the integral of the product of arbitrarily many ALFs over all space; we

quote the results for two and three functions below. The expressions are only valid for nonnegative orders mi;
expressions for cases with any number of negative orders are easily obtained by Eq. (29.14) but are not of use
to us.

The overlap integral of two ALFs with m1,m2 ≥ 0 is∫ π

0
Pm1
ℓ1

Pm2
ℓ2

sin(θ) dθ =

√
(ℓ1 +m1)!

(ℓ1 −m1)!

(ℓ2 +m2)!

(ℓ2 −m2)!

ℓ1+ℓ2∑
ℓ12=max{|ℓ1−ℓ2|,m12}

G12

√
(ℓ12 −m12)!

(ℓ12 +m12)!

·
[
(−1)ℓ12 + (−1)m12

]
2m12−2m12

Γ
(ℓ12

2

)
Γ
(ℓ12 +m12 + 1

2

)
Γ
(ℓ12 + 3

2

)
Γ
(ℓ12 −m12 + 2

2

) , (29.50)

where

G12 = (−1)m12 (2ℓ12 + 1)

(
ℓ1 ℓ2 ℓ12
0 0 0

)(
ℓ1 ℓ2 ℓ12
m1 m2 −m12

)
(29.51)

and where ℓ12 is a summation index and m12 ≡ m1 +m2. This expression is slightly modified from the one
given by the authors, in order to automatically satisfy the following two requirements:

1. ℓ12 ≥ m12; accounted for by modifying the lower bound on ℓ12 from the |ℓ1 − ℓ2| written in the paper.

2. ℓ1 + ℓ2 + ℓ12 is even; automatically accounted for because

(
ℓ1 ℓ2 ℓ12
0 0 0

)
= 0 otherwise.

The overlap integral of three ALFs with m1,m2,m3 ≥ 0 is∫ π

0
Pm1
ℓ1

Pm2
ℓ2

Pm3
ℓ3

sin(θ) dθ

=

√
(ℓ1 +m1)!

(ℓ1 −m1)!

(ℓ2 +m2)!

(ℓ2 −m2)!

(ℓ3 +m3)!

(ℓ3 −m3)!

ℓ1+ℓ2∑
ℓ12=|ℓ1−ℓ2|

ℓ12+ℓ3∑
ℓ123=|ℓ12−ℓ3|

G12G123

√
(ℓ123 −m123)!

(ℓ123 +m123)!

·
[
(−1)ℓ123 + (−1)m123

]
2m123−2m123

Γ
(ℓ123

2

)
Γ
(ℓ123 +m123 + 1

2

)
Γ
(ℓ123 + 3

2

)
Γ
(ℓ123 −m123 + 2

2

) , (29.52)

where

G123 = (−1)m123 (2ℓ123 + 1)

(
ℓ12 ℓ3 ℓ123
0 0 0

)(
ℓ12 ℓ3 ℓ123
m12 m3 −m123

)
(29.53)

and where ℓ123 is a summation index and m123 ≡ m1 +m2 +m3.
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30 Spherical harmonics

As mentioned in Chapter 28, the reader interested solely in the workings of the final code may skip this chapter
and those on vector spherical harmonics and VSH series.

The statements in this chapter hold ∀ θ ∈ [0, π], ∀ϕ ∈ [0, 2π], ∀ ℓ ∈ N0 and ∀m ∈ Z : |m| ≤ ℓ, unless
otherwise stated.

30.1 Definition and examples

Definition 30.1. Let ℓ ∈ N0 and m ∈ Z : |m| ≤ ℓ. Laplace’s equation, when applied to functions
independent of the radial coordinate r, states that

−ℓ(ℓ+ 1)Y m
ℓ (θ, ϕ) = r2∇2Y m

ℓ (30.1)

=
1

sin(θ)

∂

∂θ

(
sin(θ)

∂Y m
ℓ

∂θ

)
+

1

sin2(θ)

∂2Y m
ℓ

∂ϕ2
(30.2)

=
∂2Y m

ℓ

∂θ2
+

cos(θ)

sin(θ)

∂Y m
ℓ

∂θ
+

1

sin2(θ)

∂2Y m
ℓ

∂ϕ2
. (30.3)

The solutions to this equation are the spherical harmonics Y m
ℓ : [0, π], [0, 2π] → C, given by

Y m
ℓ (θ, ϕ) =

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ

[
cos(θ)

]
eimϕ, (30.4)

which are well known and hence given without proof.

The first few spherical harmonics are as follows. For ℓ = 0,

Y 0
0 (θ, ϕ) =

1

2

√
1

π
. (30.5)

For ℓ = 1,

Y 0
1 (θ, ϕ) =

1

2

√
3

π
cos(θ), (30.6)

Y ±1
1 (θ, ϕ) = ∓1

2

√
3

2π
sin(θ) e±iϕ. (30.7)

For ℓ = 2,

Y 0
2 (θ, ϕ) =

1

4

√
5

π

[
3 cos2(θ)− 1

]
, (30.8)

Y ±1
2 (θ, ϕ) = ∓1

2

√
15

2π
sin(θ) cos(θ) e±iϕ, (30.9)

Y ±2
2 (θ, ϕ) =

1

4

√
15

2π
sin2(θ) e±i2ϕ. (30.10)
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For ℓ = 3,

Y 0
3 (θ, ϕ) =

1

4

√
7

π

[
5 cos3(θ)− 3 cos(θ)

]
, (30.11)

Y ±1
3 (θ, ϕ) = ∓1

8

√
21

π
sin(θ)

[
5 cos2(θ)− 1

]
e±iϕ, (30.12)

Y ±2
3 (θ ϕ) =

1

4

√
105

2π
sin2(θ) cos(θ) e±i2ϕ, (30.13)

Y ±3
3 (θ, ϕ) = ∓1

8

√
35

π
sin3(θ) e±i3ϕ. (30.14)

30.2 Properties and relations

For the case m = 0, the spherical harmonics are real and simply become rescaled Legendre functions:

Y 0
ℓ (θ, ϕ) =

√
2ℓ+ 1

4π
Pℓ

[
cos(θ)

]
∈ R. (30.15)

Corollary 30.2 (Spherical harmonics for negative m and complex conjugates).

Y −m
ℓ = (−1)m e−i2mϕ Y m

ℓ = (−1)m
[
Y m
ℓ

]∗
, (30.16)[

Y m
ℓ

]∗
= e−i2mϕ Y m

ℓ = (−1)m Y −m
ℓ , (30.17)[

Y −m
ℓ

]∗
= (−1)m Y m

ℓ = (−1)m ei2mϕ
[
Y m
ℓ

]∗
. (30.18)

Proof. Substitute m → −m and use Eq. (29.14). That
[
Y 0
ℓ

]∗
= Y 0

ℓ follows either as a corollary of these
arguments, or because Y 0

ℓ ∈ R.

There is a contraction rule which allows us to write the product of two spherical harmonics as an infinite
sum of single spherical harmonics:

Y m1
ℓ1

Y m2
ℓ2

=

√
(2ℓ1 + 1)(2ℓ2 + 1)

4π

∞∑
ℓ3=0

ℓ3∑
m3=−ℓ3

(−1)m3
√
2ℓ3 + 1

(
ℓ1 ℓ2 ℓ3
m1 m2 −m3

)(
ℓ1 ℓ2 ℓ3
0 0 0

)
Y m3
ℓ3

,

(30.19)

where the objects in parentheses are Wigner 3j symbols (Definition 29.5).

Theorem 30.3 (Differentiation and complex conjugation commute). Let f be a complex-valued function
whose variables include x ∈ R. Then,

(∂f
∂x

)∗
= ∂

∂x

(
f∗
)
.

It follows from Theorem 30.3 that (
∂Y m

ℓ

∂θ

)∗
=

∂

∂θ

[
Y m
ℓ

]∗
, (30.20)(

∂Y m
ℓ

∂ϕ

)∗
=

∂

∂ϕ

[
Y m
ℓ

]∗
, (30.21)

so we do not need separate expressions for the derivatives of the complex conjugates of the spherical harmonics.
We can simply differentiate the normal expression and take the conjugate of the result.
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30.3 Derivatives with respect to θ

There are many ways to express the θ-derivatives of the spherical harmonics. Unfortunately, none yield a sum
of only spherical harmonics. Instead, we will obtain an expression given by the sum of two spherical harmonics
with the same ℓ as the original function, but with multiplying exponential factors. This is “as close as we can
get” to maintaining a sum of spherical harmonics, but clearly it is not. However, our expression will indeed
yield spherical harmonics for the case m = 0.

For m = 0, it follows immediately from Eq. (30.15) and Eq. (29.41) that

∂Y 0
ℓ

∂θ
=

√
2ℓ+ 1

4π
P 1
ℓ

[
cos(θ)

]
. (30.22)

Proposition 30.4 (First θ-derivatives).

∂Y m
ℓ

∂θ
=

1

2

[√
(ℓ−m)(ℓ+m+ 1)Y m+1

ℓ e−iϕ −
√
(ℓ+m)(ℓ−m+ 1)Y m−1

ℓ eiϕ
]

(30.23)

=
1

2

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
eimϕ

[
Pm+1
ℓ − (ℓ+m)(ℓ−m+ 1)Pm−1

ℓ

]
. (30.24)

This is valid for all ℓ,m as long as we define that ∀m ∈ Z : |m| > ℓ, Y m
ℓ ≡ 0. In particular, the “edge

cases” are

∂Y ℓ
ℓ

∂θ
= −

√
ℓ

2
Y ℓ−1
ℓ eiϕ, (30.25)

∂Y −ℓ
ℓ

∂θ
=

√
ℓ

2
Y −ℓ+1
ℓ e−ϕ, (30.26)

∂Y 0
0

∂θ
= 0. (30.27)

Proof. Differentiate the definition of Y m
ℓ in Eq. (30.4) and use the derivative of the ALFs in Eq. (29.44):

∂Y m
ℓ

∂θ
=

√
2ℓ+ 1

4π

(ℓ− 1)!

(ℓ+ 1)!
eimϕ dP

m
ℓ

dθ
(30.28)

=

√
2ℓ+ 1

4π

(ℓ− 1)!

(ℓ+ 1)!
eimϕ

[
1

2
Pm+1
ℓ − 1

2
(ℓ+m)(ℓ−m+ 1)Pm+1

ℓ

]
. (30.29)

We wish to express our result in terms of spherical harmonics. Note that

Y m±1
ℓ =

√
2ℓ+ 1

4π

(ℓ−m∓ 1)!

(ℓ+m± 1)!
ei(m±1)ϕ Pm±1

ℓ , (30.30)

and that

(ℓ−m)!

(ℓ+m)!
= (ℓ−m)(ℓ+m+ 1)

(ℓ−m− 1)!

(ℓ+m+ 1)!
=

1

(ℓ+m)(ℓ−m+ 1)

(ℓ−m+ 1)!

(ℓ+m− 1)!
, (30.31)

giving

∂Y m
ℓ

∂θ
=

√
2ℓ+ 1

4π
(ℓ−m)(ℓ+m+ 1)

(ℓ−m− 1)!

(ℓ+m+ 1)!

1

2
e−iϕ ei(m+1)ϕ Pm+1

ℓ

+

√
2ℓ+ 1

4π

1

(ℓ+m)(ℓ−m+ 1)!

(ℓ−m+ 1)!

(ℓ+m− 1)!
(ℓ+m)(ℓ−m+ 1)

1

2
eiϕ ei(m+1)ϕ Pm−1

ℓ , (30.32)

which simplifies to the given result.
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Corollary 30.5 (θ-derivatives for negative m and for complex conjugates).

∂

∂θ
Y −m
ℓ = (−1)m e−i2mϕ ∂Y

m
ℓ

∂θ
, (30.33)

∂

∂θ

[
Y m
ℓ

]∗
= e−i2mϕ ∂Y

m
ℓ

∂θ
, (30.34)

∂

∂θ

[
Y −m
ℓ

]∗
= (−1)m

∂Y m
ℓ

∂θ
. (30.35)

Proof. Using Corollary 30.2, we have the following:

• ∂Y −m
ℓ
∂θ = ∂

∂θ

[
(−1)m e−i2mϕ Y m

ℓ

]
= (−1)m e−i2mϕ ∂Y m

ℓ
∂θ .

• ∂
∂θ

[
Y m
ℓ

]∗
= ∂

∂θ

[
e−i2mϕ Y m

ℓ

]
= e−i2mϕ ∂Y m

ℓ
∂θ .

• ∂
∂θ

[
Y −m
ℓ

]∗
= ∂

∂θ (−1)m Y m
ℓ

]
= (−1)m

∂Y m
ℓ

∂θ .

30.4 Derivatives with respect to ϕ

The ϕ-derivatives are less important since we will only be focusing on axisymmetric solutions. Nevertheless,
we characterise them here to facilitate future generalisations of the code or applications of the method to non-
axisymmetric systems. It is perhaps unfortunate that the ϕ-derivatives, not the θ-derivatives, are the ones
we will not need, since they are far simpler to calculate. Since we are merely differentiating an exponential
function, we see immediately that

∂nY m
ℓ

∂ϕn
= (im)n Y m

ℓ , ∀n ∈ N. (30.36)

In particular,

∂Y m
ℓ

∂ϕ
= imY m

ℓ , (30.37)

∂2Y m
ℓ

∂ϕ
= −m2 Y m

ℓ , (30.38)

∂nY 0
ℓ

∂ϕn
= 0. (30.39)
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Corollary 30.6 (ϕ-derivatives for negative m and for complex conjugates).

∂

∂ϕ
Y −m
ℓ = (−1)m+1 e−i2mϕ ∂Y

m
ℓ

∂ϕ
= (−1)m+1 e−i2mϕ imY m

ℓ , (30.40)

∂

∂ϕ

[
Y m
ℓ

]∗
= −e−i2mϕ ∂Y

m
ℓ

∂ϕ
= −e−i2mϕ imY m

ℓ , (30.41)

∂

∂ϕ

[
Y −m
ℓ

]∗
= (−1)m

∂Y m
ℓ

∂ϕ
= (−1)m imY m

ℓ . (30.42)

Proof. Using Corollary 30.2, we have the following:

•

∂Y −m
ℓ

∂ϕ
=

∂

∂ϕ

[
(−1)m e−i2mϕ Y m

ℓ

]
(30.43)

= (−1)m
∂

∂ϕ

[
e−i2mϕ

]
Y m
ℓ + (−1)m e−i2mϕ ∂Y

m
ℓ

∂ϕ
(30.44)

= (−1)m
[
− i2me−i2mϕ

]
Y m
ℓ + (−1)m e−i2mϕ imY m

ℓ (30.45)

= (−1)m e−i2mϕ imY m
ℓ

[
− 2 + 1

]
(30.46)

= (−1)m+1 e−i2mϕ imY m
ℓ = (−1)m+1 e−i2mϕ ∂Y

m
ℓ

∂ϕ
. (30.47)

• ∂
∂ϕ

[
Y m
ℓ

]∗
= ∂

∂ϕ

[
e−i2mϕ Y m

ℓ

]
= (−1)m ∂

∂ϕ Y
−m
ℓ = (−1)2m+1 e−i2mϕ ∂Y m

ℓ
∂θ = −e−i2mϕ ∂Y m

ℓ
∂θ .

• ∂
∂ϕ

[
Y −m
ℓ

]∗
= ∂

∂ϕ

[
(−1)m (Y m

ℓ )∗
]∗

= (−1)m
∂Y m

ℓ
∂ϕ .

The alternative expressions follow from
∂Y m

ℓ
∂ϕ = imY m

ℓ .

We see from Eq. (25.12) that, for some vector function A, the expression for ∇ × A contains terms like
1

sin(θ) Aϕ and 1
sin(θ)

∂Aϕ

∂θ , so our approximations of A will contain terms like 1
sin(θ) Y

m
ℓ and 1

sin(θ)

∂Y m
ℓ

∂θ . The division

by sin(θ) will cause issues at the poles, so let us find an alternative expression for these terms that avoid the
division.

Proposition 30.7. ∀ ℓ ∈ N0 and ∀m ∈ Z : (|m| ≤ ℓ) ∧ (m ̸= 0),

1

sin(θ)
Y m
ℓ = − 1

2m

√
2ℓ+ 1

2ℓ+ 3

(√
(ℓ+m+ 2)(ℓ+m+ 1)Y m+1

ℓ+1 e−iϕ

+
√
(ℓ−m+ 2)(ℓ−m+ 1)Y m−1

ℓ+1 eiϕ
)

(30.48)

We do not consider the case m = 0.

Proof. The ALFs obey the recursion relation

1

sin(θ)
Pm
ℓ

[
cos(θ)

]
= − 1

2m
Pm+1
ℓ+1

[
cos(θ)

]
− 1

2m
(ℓ−m+ 1)(ℓ−m+ 2)Pm−1

ℓ+1

[
cos(θ)

]
, (30.49)

so it follows that

1

sin(θ)
Y m
ℓ =

√
2ℓ+ 1

4π

(ℓ− 1)!

(ℓ+ 1)!
eimϕ

(
− 1

2m

)
Pm+1
ℓ+1

+

√
2ℓ+ 1

4π

(ℓ− 1)!

(ℓ+ 1)!
eimϕ

(
− 1

2m

)
(ℓ−m+ 1)(ℓ−m+ 2)Pm−1

ℓ+1 . (30.50)
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Now,

Y m+1
ℓ+1 =

√
2(ℓ+ 1) + 1

4π

[
(ℓ+ 1)− (m+ 1)

]
![

(ℓ+ 1) + (m+ 1)
]
!
Pm+1
ℓ+1 ei(m+1)ϕ (30.51)

=

√
2ℓ+ 3

4π

(ℓ−m)!

(ℓ+m+ 2)!
Pm+1
ℓ+1 eiϕ eimϕ (30.52)

=

√
2ℓ+ 3

(ℓ+m+ 2)(ℓ+m+ 1)
eiϕ

√
1

4π

(ℓ−m)!

(ℓ+m)!
Pm+1
ℓ+1 eimϕ, (30.53)

⇒

√
1

4π

(ℓ−m)!

(ℓ+m)!
Pm+1
ℓ+1 eimϕ =

√
(ℓ+m+ 2)(ℓ+m+ 1)

2ℓ+ 3
e−iϕ Y m+1

ℓ+1 , (30.54)

and

Y m−1
ℓ+1 =

√
2(ℓ+ 1) + 1

4π

[
(ℓ+ 1)− (m− 1)

]
![

(ℓ+ 1) + (m− 1)
]
!
Pm−1
ℓ+1 ei(m−1)ϕ (30.55)

=

√
2ℓ+ 3

4π

(ℓ−m+ 2)!

(ℓ+m)!
Pm+1
ℓ+1 eiϕ eimϕ (30.56)

=
√

(2ℓ+ 3)(ℓ−m+ 2)(ℓ−m+ 1) e−iϕ

√
1

4π

(ℓ−m)!

(ℓ+m)!
Pm−1
ℓ+1 eimϕ, (30.57)

⇒

√
1

4π

(ℓ−m)!

(ℓ+m)!
Pm−1
ℓ+1 eimϕ =

1√
(2ℓ+ 3)(ℓ−m+ 2)(ℓ−m+ 1)

eiϕ Y m+1
ℓ+1 . (30.58)

Substituting these, we obtain the given result.

It follows from Proposition 30.7 that ∀ ℓ ∈ N0 and ∀m ∈ Z : (|m| ≤ ℓ) ∧ (m ̸= 0),

1

sin(θ)

∂Y m
ℓ

∂ϕ
= − i

2

√
2ℓ+ 1

2ℓ+ 3

(√
(ℓ+m+ 2)(ℓ+m+ 1)Y m+1

ℓ+1 e−iϕ

+
√

(ℓ−m+ 2)(ℓ−m+ 1)Y m−1
ℓ+1 eiϕ

)
. (30.59)

For m = 0, the result is zero due to Eq. (30.39).
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30.5 Integrals

Lemma 30.8. ∀ a ∈ R,
∫ 2π
0 eiax dx = 2π δa,0.

Proof. If a ̸= 0, the power rule gives 1
ia

[
eiax

]2π
0

= − i
a

[
ei2π − e0

]
= − i

a

[
1 − 1

]
= 0. If a = 0, we simply have∫ 2π

0 dx = 2π.

Proposition 30.9 (Orthonormality).
∫∫

Y m
ℓ

[
Y m′
ℓ′
]∗
dΩ = δℓ,ℓ′ δ

m,m′
.

Proof. We have∫∫
Y m
ℓ

[
Y m′
ℓ′
]∗
dΩ =

∫ 2π

0

∫ π

0
Y m
ℓ

[
Y m′
ℓ′
]∗

sin(θ) dθ dϕ (30.60)

=

∫ 2π

0

∫ π

0

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ

[
cos(θ)

]
eimϕ

·

√
2ℓ′ + 1

4π

(ℓ′ −m′)!

(ℓ′ +m′)!
Pm′
ℓ′
[
cos(θ)

]
e−im′ϕ sin(θ) dθ dϕ (30.61)

=
1

4π

√
(2ℓ+ 1) (2ℓ′ + 1)

(ℓ−m)!

(ℓ+m)!

(ℓ′ −m′)!

(ℓ′ +m′)!

·
∫ 2π

0
ei(m−m′)ϕ dϕ

∫ π

0
Pm
ℓ

[
cos(θ)

]
Pm′
ℓ′
[
cos(θ)

]
sin(θ) dθ (30.62)

=
1

4π

√
(2ℓ+ 1) (2ℓ′ + 1)

(ℓ−m)!

(ℓ+m)!

(ℓ′ −m′)!

(ℓ′ +m′)!

· 2π δm−m′,0

∫ π

0
Pm
ℓ

[
cos(θ)

]
Pm′
ℓ′
[
cos(θ)

]
sin(θ) dθ (30.63)

=
1

2

√
(2ℓ+ 1) (2ℓ′ + 1)

(ℓ−m)!

(ℓ+m)!

(ℓ′ −m)!

(ℓ′ +m)!
δm,m′

∫ π

0
Pm
ℓ

[
cos(θ)

]
Pm
ℓ′
[
cos(θ)

]
sin(θ) dθ

(30.64)

= δℓ,ℓ′ δ
m,m′

, (30.65)

where we used Lemma 30.8, we used that δa,b = δa,b and δa−b,0 = δa,b, we were able to evaluate the remaining
terms at m = m′, even though there was no summation over m,m′, because the expression is zero otherwise,
and we used the orthogonality condition (29.45).
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31 Vector spherical harmonics

In addition to the relations proven in these chapters, detailed discussions on the vector spherical harmonics and
their application for modelling vector functions can be found in Barrera et al. (1985) and Appendix A of Pétri
(2012).

31.1 Definition and examples

Definition 31.1. Let θ ∈ [0, π], ϕ ∈ [0, 2π], ℓ ∈ N0, m ∈ Z : |m| ≤ ℓ. The vector spherical harmonics
(abbreviation VSHs; singular VSH) are the vector functions Ym

ℓ ∈ C3, Ψm
ℓ ∈ C3, Φm

ℓ ∈ C3 given by

Ym
ℓ (θ, ϕ) = Y m

ℓ (θ, ϕ) er, (31.1)

Ψm
ℓ (θ, ϕ) = r∇Y m

ℓ (θ, ϕ), (31.2)

Φm
ℓ (θ, ϕ) = er × r∇Y m

ℓ (θ, ϕ) = er ×Ψm
ℓ (θ, ϕ). (31.3)

Note that some authors define

Ψm
ℓ =

1√
ℓ(ℓ+ 1)

r∇Y m
ℓ , (31.4)

so the numerical factors multiplying Ψm
ℓ and hence Φm

ℓ may vary compared to other sources. The first few
VSHs are as follows. For ℓ = 0,

Ψ0
0(θ, ϕ) = Φ(θ, ϕ) = 0. (31.5)

For ℓ = 1,

Ψ0
1(θ, ϕ) = −1

2

√
3

π
sin(θ) eθ, (31.6)

Ψ±1
1 (θ, ϕ) = ∓1

2

√
3

2π
e±iϕ

[
cos(θ) eθ + i eϕ

]
. (31.7)

For ℓ = 2,

Ψ0
2(θ, ϕ) = −3

2

√
5

π
sin(θ) cos(θ) eθ, (31.8)

Ψ±1
2 (θ, ϕ) = ∓1

2

√
15

2π
e±iϕ

[
cos(2θ) eθ + i cos(θ) eϕ

]
, (31.9)

Ψ±2
2 (θ, ϕ) =

1

2

√
15

2π
e±i2ϕ sin(θ)

[
cos(θ) eθ + i eϕ

]
. (31.10)

For ℓ = 3,

Ψ0
3(θ, ϕ) = −3

4

√
7

π
sin(θ)

[
5 cos2(θ)− 1

]
eθ, (31.11)

Ψ±1
3 (θ, ϕ) = ±1

8

√
21

π
e±iϕ

[[
5 cos3(θ)− 9 cos(θ)

]
eθ − i

[
5 cos2(θ)− 1

]
eϕ

]
, (31.12)

Ψ±2
3 (θ, ϕ) =

1

4

√
105

2π
e±i2ϕ sin(θ)

[[
3 cos2(θ)− 1

]
eθ − i 2 cos(θ) eϕ

]
, (31.13)

Ψ±3
3 (θ, ϕ) = ∓3

8

√
35

π
e±i3ϕ sin2(θ)

[
cos(θ) eθ + i eϕ

]
. (31.14)
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31.2 Properties and relations

Proposition 31.2 (Obtaining Φm
ℓ from Ψm

ℓ ). Given Ψm
ℓ , we immediately obtain Φm

ℓ by swapping the
order of the vector components and adding a minus sign to the new θ-component.

Proof. Let us write that Ψm
ℓ = Ψθ eθ +Ψϕ eϕ. Then,

Φm
ℓ = er ×

(
Ψθ eθ +Ψϕ eϕ

)
(31.15)

= Ψθ er × eθ +Ψϕ er × eϕ (31.16)

= −Ψϕ eθ +Ψθ eϕ. (31.17)

For example, we can read off from Eq. (31.13) that

Φ±2
3 (θ, ϕ) =

1

4

√
105

2π
e±i2ϕ sin(θ)

[
i 2 cos(θ) eθ +

[
3 cos2(θ)− 1

]
eϕ

]
. (31.18)

Proposition 31.3 (Expressions in spherical polar coordinates). We have

Ψm
ℓ (θ, ϕ) =

∂Y m
ℓ

∂θ
eθ +

1

sin(θ)

∂Y m
ℓ

∂ϕ
eϕ, (31.19)

Φm
ℓ (θ, ϕ) = − 1

sin(θ)

∂Y m
ℓ

∂ϕ
eθ +

∂Y m
ℓ

∂θ
eϕ. (31.20)

When evaluating the VSHs numerically, we may use Eq. (30.59) to avoid numerical issues at the poles
θ ∈ {0, π}. In particular, for m = 0,

Y0
ℓ =

√
2ℓ+ 1

4π
Pℓ

[
cos(θ)

]
er, (31.21)

Ψ0
ℓ =

√
2ℓ+ 1

4π
P 1
ℓ

[
cos(θ)

]
eθ, (31.22)

Φ0
ℓ =

√
2ℓ+ 1

4π
P 1
ℓ

[
cos(θ)

]
eϕ, (31.23)

and so Y0
ℓ ,Ψ

0
ℓ ,Φ

0
ℓ ∈ R3.

Proof. Evaluate the expression for Ψm
ℓ in Definition 31.1 using the expression for the gradient of a function in

Eq. (25.10). We then obtain Ψm
ℓ immediately by Proposition 31.2. For the m = 0 expressions, use Eqs. (30.15)

and (30.22).
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Proposition 31.4 (Dot products). We have

Ym
ℓ ·Ym′

ℓ′ = Y m
ℓ Y m′

ℓ′ , (31.24)

Ψm
ℓ ·Ψm′

ℓ′ = Φm
ℓ ·Φm′

ℓ′ =
∂Y m

ℓ

∂θ

∂Y m′
ℓ′

∂θ
+

1

sin2(θ)

∂Y m
ℓ

∂ϕ

∂Y m′
ℓ′

∂ϕ
=

∂Y m
ℓ

∂θ

∂Y m′
ℓ′

∂θ
− mm′

sin2(θ)
Y m
ℓ Y m′

ℓ′ ,

(31.25)

Ym
ℓ ·Ψm′

ℓ′ = Ym
ℓ ·Φm′

ℓ′ = 0, (31.26)

Ψm
ℓ ·Φm′

ℓ′ =
1

sin(θ)

[
∂Y m

ℓ

∂ϕ

∂Y m′
ℓ′

∂θ
−
∂Y m

ℓ

∂θ

∂Y m′
ℓ′

∂ϕ

]
=

i

sin(θ)

[
mY m

ℓ

∂Y m′
ℓ′

∂θ
−m′ Y m′

ℓ′
∂Y m

ℓ

∂θ

]
.

(31.27)

Proof. Substitute the expressions in Proposition 31.3 and take the dot products.

In particular, note that

Ψm′
ℓ′ ·Φm

ℓ = −Ψm
ℓ ·Φm′

ℓ′ , (31.28)

i.e. we can swap the indices on Ψm
ℓ ·Φm′

ℓ′ at the cost of a minus sign, and that

Ym
ℓ ·Ψm

ℓ = Ym
ℓ ·Φm

ℓ = Ψm
ℓ ·Φm

ℓ = 0. (31.29)

Proposition 31.5 (Orthogonality over a surface integral). We have the following relations:∫∫
Ym

ℓ ·
[
Ym′

ℓ′
]∗
dΩ = δℓ,ℓ′ δ

m,m′
, (31.30)∫∫

Ψm
ℓ ·
[
Ψm′

ℓ′
]∗
dΩ =

∫∫
Φm

ℓ ·
[
Φm′

ℓ′
]∗
dΩ = ℓ(ℓ+ 1) δℓ,ℓ′ δ

m,m′
, (31.31)∫∫

Ym
ℓ ·
[
Ψm′

ℓ′
]∗
dΩ =

∫∫
Ym

ℓ ·
[
Φm′

ℓ′
]∗
dΩ =

∫∫
Ψm

ℓ ·
[
Φm′

ℓ′
]
dΩ = 0. (31.32)

These results are given without proof in Eq. (3.21) of Barrera et al. (1985).

Partial proof.

•
∫∫

Ym
ℓ ·
[
Ym′

ℓ′
]∗
dΩ =

∫∫
Y m
ℓ

[
Y m
ℓ

]∗
dΩ = δℓ,ℓ′ δ

m,m′
, where we used Proposition 30.9.

• That
∫∫

Ym
ℓ ·
[
Ψm′

ℓ′
]∗
dΩ =

∫∫
Ym

ℓ ·
[
Φm′

ℓ′
]∗
dΩ = 0 follows immediately from Eq. (31.26).

• We are unable to prove
∫∫

Ψm
ℓ ·
[
Ψm′

ℓ′
]∗
dΩ,

∫∫
Φm

ℓ ·
[
Φm′

ℓ′
]∗
dΩ or

∫∫
Ψm

ℓ ·
[
Φm′

ℓ′
]
dΩ.

• The remaining expressions, e.g.
∫∫

Ψm
ℓ ·
[
Ym

ℓ

]∗
dΩ, follow by taking the complex conjugate of both sides

of the expression.
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Proposition 31.6 (Cross products).

Ym1
ℓ1

×Ym2
ℓ2

= 0, (31.33)

Ym1
ℓ1

×Ψm2
ℓ2

= Y m1
ℓ1

Φm2
ℓ2
, (31.34)

Ym1
ℓ1

×Φm2
ℓ2

= −Y m1
ℓ1

Ψm2
ℓ2
, (31.35)

Ψm1
ℓ1

×Ψm2
ℓ2

= Φm1
ℓ1

×Φm2
ℓ2

=

[
1

sin(θ)

∂Y m1
ℓ1

∂θ

∂Y m2
ℓ2

∂ϕ
− 1

sin(θ)

∂Y m1
ℓ1

∂ϕ

∂Y m2
ℓ2

∂θ

]
er, (31.36)

Ψm1
ℓ1

×Φm2
ℓ2

=

[
∂Y m1

ℓ1

∂θ

∂Y m2
ℓ2

∂θ
− 1

sin2(θ)

∂Y m1
ℓ1

∂ϕ

∂Y m2
ℓ2

∂ϕ

]
er. (31.37)

Proof. Firstly,

Ym1
ℓ1

×Ym2
ℓ2

= (Y m1
ℓ1

er
)
× (Y m2

ℓ2
er) = Y m1

ℓ1
Y m2
ℓ2

er × er = 0. (31.38)

Secondly,

Ym1
ℓ1

×Ψm2
ℓ2

= (Y m1
ℓ1

er
)
×Ψm2

ℓ2
= Y m1

ℓ1
er ×Ψm2

ℓ2
= Y m1

ℓ1
Φm2

ℓ2
. (31.39)

Lagrange’s formula states that, for three general vectors a, b, c, we have

a× (b× c) = (a · c)b− (a · b) c. (31.40)

Then,

Ym1
ℓ1

×Φm2
ℓ2

= Ym1
ℓ1

× (er ×Ψm2
ℓ2

) = (Ym1
ℓ1

·Ψm2
ℓ2

) er − (Ym1
ℓ1

· er)Ψm2
ℓ2

= 0− Y m1
ℓ1

Ψm2
ℓ2
. (31.41)

Lagrange’s formula also gives the remaining expressions.

In particular, note that Ψm2
ℓ2

× Φm1
ℓ1

= Ψm1
ℓ1

× Φm2
ℓ2
. When encoding these on a computer, it is important to

consider the m1,m2 = 0 cases separately in order to avoid 0/0 errors at sin(θ) = 0. In axisymmetry, we have

Yℓ1 ×Yℓ2 = Ψℓ1 ×Ψℓ2 = Φℓ1 ×Φℓ2 = 0, (31.42)

Yℓ1 ×Ψℓ2 = Yℓ1 Φℓ2 =
1

4π

√
(2ℓ1 + 1)(2ℓ2 + 1)P 0

ℓ1 P
1
ℓ2 eϕ, (31.43)

Yℓ1 ×Φℓ2 = −Yℓ1 Ψℓ2 = − 1

4π

√
(2ℓ1 + 1)(2ℓ2 + 1)P 0

ℓ1 P
1
ℓ2 eθ, (31.44)

Ψℓ1 ×Φℓ2 =
1

4π

√
(2ℓ1 + 1)(2ℓ2 + 1)P 1

ℓ1 P
1
ℓ2 er. (31.45)

259



University of East Anglia Neutron star magnetospheres

Proposition 31.7 (Divergence).

∇ ·Ym
ℓ =

2

r
Y m
ℓ , (31.46)

∇ ·Ψm
ℓ = −ℓ(ℓ+ 1)

r
Y m
ℓ , (31.47)

∇ ·Φm
ℓ = 0, (31.48)

and so Φm
ℓ is solenoidal.

Proof. Using the expression for the divergence of a vector in spherical polar coordinates, Eq. (25.13), we obtain
the following:

• For Ym
ℓ ,

∇ ·Ym
ℓ =

∂Y m
ℓ

∂r
+

2

r
Y m
ℓ + 0 =

2

r
Y m
ℓ . (31.49)

• For Φm
ℓ ,

∇ ·Φm
ℓ = 0 +

1

r

∂2Y m
ℓ

∂θ2
+

cos(θ)

r sin(θ)

∂Y m
ℓ

∂θ
+

1

r sin2(θ)

∂2Y m
ℓ

∂ϕ2
(31.50)

=
1

r

[
∂2Y m

ℓ

∂θ2
+

cos(θ)

sin(θ)

∂Y m
ℓ

∂θ
+

1

sin2(θ)

∂2Y m
ℓ

∂ϕ2

]
= −ℓ(ℓ+ 1)

r
Y m
ℓ , (31.51)

where we recognised the defining differential equation for Y m
ℓ (Definition 30.1).

• For Ψm
ℓ ,

∇ ·Ψm
ℓ = 0 +

1

r

∂

∂θ

(
− 1

sin(θ)

∂Y m
ℓ

∂ϕ

)
− cos(θ)

r sin2(θ)

∂Y m
ℓ

∂ϕ
+

1

r sin(θ)

∂2Y m
ℓ

∂ϕ ∂θ
(31.52)

=
1

r

(
cos(θ)

sin2(θ)

∂Y m
ℓ

∂ϕ
− 1

sin(θ)

∂2Y m
ℓ

∂ϕ2
− cos(θ)

sin2(θ)

∂Y m
ℓ

∂ϕ
+

1

sin(θ)

∂2Y m
ℓ

∂ϕ ∂θ

)
= 0. (31.53)

Proposition 31.8 (Curl).

∇×Ym
ℓ = −∇×Ψm

ℓ = −1

r
Φm

ℓ , (31.54)

∇×Φm
ℓ = −1

r

[
ℓ(ℓ+ 1)Ym

ℓ +Ψm
ℓ

]
. (31.55)

Proof. Use the expression for the curl of a vector in spherical polar coordinates, Eq. (25.14). The expressions
for Ym

ℓ and Ψm
ℓ follow immediately. For Φm

ℓ , we have

∇×Φm
ℓ =

[
1

r

∂Y m
ℓ

∂θ2
+

cos(θ)

r sin(θ)

∂Y m
ℓ

∂θ
+

1

r sin(θ)

∂2Y m
ℓ

∂ϕ2

]
er +

[
0− 1

r

∂Y m
ℓ

∂θ

]
eθ +

[
0− 1

r sin(θ)

∂Y m
ℓ

∂ϕ

]
eϕ

(31.56)

=
1

r

[(
∂Y m

ℓ

∂θ2
+

cos(θ)

sin(θ)

∂Y m
ℓ

∂θ
+

1

sin(θ)

∂2Y m
ℓ

∂ϕ2

)
er −

∂Y m
ℓ

∂θ
eθ −

1

sin(θ)

∂Y m
ℓ

∂ϕ
eϕ

]
(31.57)

=
1

r

[
− ℓ(ℓ+ 1)Y m

ℓ er −
∂Y m

ℓ

∂θ
eθ −

1

sin(θ)

∂Y m
ℓ

∂ϕ
eϕ

]
(31.58)

= −1

r

[
ℓ(ℓ+ 1)Ym

ℓ +Ψm
ℓ

]
. (31.59)
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32 VSH series

32.1 VSH series of arbitrary vector functions

Definition 32.1. A general vector field A(r, θ, ϕ) can be expanded as an infinite sum over vector spherical
harmonics as

A(r, θ, ϕ) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

[
Ar,ℓ

m (r)Ym
ℓ (θ, ϕ) +A(1),ℓ

m (r)Ψm
ℓ (θ, ϕ) +A(2),ℓ

m (r)Φm
ℓ (θ, ϕ)

]
. (32.1)

In this text, we will refer to an expansion of this form as the VSH series of A(r, θ, ϕ) and to Ar,ℓ
m , A

(1),ℓ
m , A

(2),ℓ
m

as the VSH series coefficients of A(r, θ, ϕ).

The coefficients carry all of the radial dependence of the original vector components. For example, they may
include an infinite sum over radial polynomials to be evaluated.

Proposition 32.2. The VSH series coefficients are

Ar,ℓ
m (r) =

∫∫
A(r, θ, ϕ) ·

[
Ym

ℓ (θ, ϕ)
]∗
dΩ, (32.2)

A(1),ℓ
m (r) =

1

ℓ(ℓ+ 1)

∫∫
A(r, θ, ϕ) ·

[
Ψm

ℓ (θ, ϕ)
]∗
dΩ, (32.3)

A(2),ℓ
m (r) =

1

ℓ(ℓ+ 1)

∫∫
A(r, θ, ϕ) ·

[
Φm

ℓ (θ, ϕ)
]∗
dΩ. (32.4)

Proof. Let us take the dot product of A with
[
Ym2

ℓ2

]∗
and integrate over all space. Applying the definition of

the VSH series, we obtain∫∫
A ·

[
Ym2

ℓ2

]∗
dΩ =

∞∑
ℓ1=0

ℓ1∑
m1=−ℓ1

[
Ar,ℓ1

m1

∫∫
Ym1

ℓ1
·
[
Ym2

ℓ2

]∗
dΩ+A(1),ℓ1

m1

∫∫
Ψm1

ℓ1
·
[
Ym2

ℓ2

]∗
dΩ

+A(2),ℓ1
m1

∫∫
Φm1

ℓ1
·
[
Ym2

ℓ2

]∗
dΩ

]
(32.5)

=

∞∑
ℓ1=0

ℓ1∑
m1=−ℓ1

Ar,ℓ1
m1

δm1,m2

ℓ1,ℓ2
= Ar,ℓ2

m2
, (32.6)

where we used the orthogonality results in Proposition 31.5. This is the expression for Ar,ℓ
m . The expression

for A
(1),ℓ
m is obtained by instead taking the dot product with

[
Ψm2

ℓ2

]∗
, and similarly the expression for A

(2),ℓ
m is

obtained by taking the dot product with
[
Φm2

ℓ2

]∗
.
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Proposition 32.3 (Spherical polar components). The spherical polar vector components are obtained from
the VSH series components by

Ar =

∞∑
ℓ=0

ℓ∑
m=−ℓ

Ar,ℓ
m Y m

ℓ , (32.7)

Aθ =
∞∑
ℓ=1

ℓ∑
m=−ℓ

(
A(1),ℓ

m

∂Y m
ℓ

∂θ
−A(2),ℓ

m

1

sin(θ)

∂Y m
ℓ

∂ϕ

)
, (32.8)

Aϕ =
∞∑
ℓ=1

ℓ∑
m=−ℓ

(
A(2),ℓ

m

∂Y m
ℓ

∂θ
+A(1),ℓ

m

1

sin(θ)

∂Y m
ℓ

∂ϕ

)
. (32.9)

Proof. Note that

Aθ = A · eθ =
∞∑
ℓ=0

ℓ∑
m=−ℓ

[
Ar,ℓ

m Ym
ℓ · eθ +A(1),ℓ

m Ψm
ℓ · eθ +A(2),ℓ

m Φm
ℓ · eθ

]
(32.10)

=
∞∑
ℓ=0

ℓ∑
m=−ℓ

[
A(1),ℓ

m

∂Y m
ℓ

∂θ
+A(2),ℓ

m

(
− 1

sin(θ)

∂Y m
ℓ

∂ϕ

)]
. (32.11)

The results for Ar and Aϕ follow by evaluating A · er and A · eϕ respectively.

Proposition 32.4 (Divergence). We have

∇ ·A =
∞∑
ℓ=0

ℓ∑
m=−ℓ

[
dAr,ℓ

m

dr
+

2

r
Ar,ℓ

m − ℓ(ℓ+ 1)

r
A(1),ℓ

m

]
Y m
ℓ . (32.12)

Proof. For all radial functions f(r), we obtain from Eq. (25.18) and Proposition 31.7 that

∇ ·
[
f(r)Ym

ℓ

]
=

(
df

dr
+

2

r
f

)
Y m
ℓ , (32.13)

∇ ·
[
f(r)Ψm

ℓ

]
= −ℓ(ℓ+ 1)

r
f Y m

ℓ , (32.14)

∇ ·
[
f(r)Φm

ℓ

]
= 0. (32.15)

The given result follows from this and the linearity of the divergence.

Corollary 32.5. The VSH expansion of a divergence-free vector field satisfies

A(1),ℓ
m =

1

ℓ(ℓ+ 1)

(
r
dAr,ℓ

m

dr
+ 2Ar,ℓ

m

)
. (32.16)

Proof. Set the expression in Proposition 32.4 to zero. This is most easily achieved if[
dAr,ℓ

m

dr
+

2

r
Ar,ℓ

m − ℓ(ℓ+ 1)

r
A(1),ℓ

m

]
Y m
ℓ = 0, ∀ ℓ,m. (32.17)

Note that ∄ ℓ,m : ∀ θ, ϕ, Y m
ℓ (θ, ϕ) = 0, so it must be that

dAr,ℓ
m

dr
+

2

r
Ar,ℓ

m − ℓ(ℓ+ 1)

r
A(1),ℓ

m = 0, ∀ ℓ,m. (32.18)

Thus, A
(1),ℓ
m and Ar,ℓ

m are inextricably linked. Rearranging for A
(1),ℓ
m , we obtain the given result.
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For a more rigorous proof of Corollary 32.5, see §B.3 of Pétri (2012). As a result, we only require two sets

of coefficients Ar,ℓ
m and A

(2),ℓ
m . This reflects the fact that divergence-free vector fields have only two degrees of

freedom. A useful consequence is that

dA
(1),ℓ
m

dr
=

1

ℓ(ℓ+ 1)

(
r
d2Ar,ℓ

m

dr2
+ 3

dAr,ℓ

dr

)
. (32.19)

Proposition 32.6 (Curl). We have

∇×A =
∞∑
ℓ=1

ℓ∑
m=−ℓ

[
− ℓ(ℓ+ 1)

r
A(2),ℓ

m Ym
ℓ −

(
dA

(2),ℓ
m

dr
+

1

r
A(2),ℓ

m

)
Ψm

ℓ +

(
dA

(1),ℓ
m

dr
− 1

r
Ar,ℓ

m +
1

r
A(1),ℓ

m

)
Φm

ℓ

]
.

(32.20)

Proof. For all radial functions f(r), we obtain from Eq. (25.19) and Proposition 31.8 that

∇×
[
f(r)Ym

ℓ

]
= −1

r
f Φm

ℓ , (32.21)

∇×
[
f(r)Ψm

ℓ

]
=

(
df

dr
+

1

r
f

)
Φm

ℓ , (32.22)

∇×
[
f(r)Φm

ℓ

]
= −ℓ(ℓ+ 1)

r
f Ym

ℓ −
(
df

dr
+

1

r
f

)
Ψm

ℓ . (32.23)

The given result follows from this, the linearity of the curl and that Y0
0, Ψ

0
0, Φ

0
0 have zero curl.

Proposition 32.7. If we truncate the VSH series decomposition of a function at ℓmax, its VSH series
contains 3(ℓmax + 1)2 − 2 terms.

Proof. First, consider only Ym
ℓ . For each ℓ, there are 2ℓ+1 terms due to the possible values of m. (For example,

for ℓ = 2 we have 5 terms Y−2
2 ,Y−1

2 ,Y0
2,Y

1
2,Y

2
2.) Then, the total number of terms up to ℓmax is

ℓmax∑
ℓ=0

(
2ℓ+ 1). (32.24)

Now, the sum of an arithmetic progression with N terms an from n = 1 to n = N is given by 1
2 N times the

sum of the first and last terms:

N∑
n=1

an =
1

2
N(a1 + aN ). (32.25)

We have N = ℓmax + 1 terms, with first term 2(0) + 1 = 1 and last term 2ℓmax + 1, giving

ℓmax∑
ℓ=0

(
2ℓ+ 1) =

1

2

(
ℓmax + 1

) (
1 + 2ℓmax + 1

)
=

1

2

(
ℓmax + 1

)
2
(
ℓmax + 1

)
=
(
ℓmax + 1

)2
. (32.26)

The same applies for Ψm
ℓ and Φm

ℓ , multiplying our total by 3, but since Ψ0
0 = Φ0

0 = 0 we can subtract two
terms from this total.
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32.2 VSH series for operations of vectors

We have seen that, given the VSH series decomposition of a vector function, its divergence and the VSH series
coefficients of its curl follow immediately without the need for further integrals. This motivates us to search
for other simple operations for which the VSH series of the result is immediately obtainable by summing the
already-calculated constant coefficients of the original functions.

If we can find such expressions, it will greatly ease integration of the time-evolution equations in our project,
Eq. (8.24) and Eq. (8.25), by converting them into a set of ODEs for the VSH coefficients themselves, effectively
removing all spatial dependence from the problem (see Chapter 10). Our attempt will be unsuccessful: all
results obtained below still feature the basis functions, so we cannot obtain the VSH series coefficients of the
new function by summing previously calculated constant coefficients.

As a result, the best course of action for integrating our time-evolution equations will be to recompute the
vector functions for B and E from their coefficients (Proposition 32.3), perform the operations in the normal
way (except the divergence and curl) and recalculate the VSH decomposition of the result. We appreciate that
this second calculation will yield an increase in numerical error.

The following results were not implemented within the project code, but their derivation represented a
substantial part of the background work. They may be useful on their own as generalised results, perhaps find
applications in other areas of numerical modelling, or even save effort for others in search of similar relations.

In the expressions for the dot and cross products, Propositions 32.10 and 32.11, we are able to remove
or combine many of the cross-terms. This may result in algorithms faster than simply evaluating the vectors
one-at-a-time and taking the dot or cross product of these series, making these expressions of interest for any
application. We do not test this claim.

Proposition 32.8 (VSH series of scalar function multiplying vector). Let f(r, θ, ϕ) be a scalar function
and A(r, θ, ϕ) be a vector with known VSH series expansion. The quantity f A has the following VSH series
coefficients in terms of the VSH series coefficients of A. The r-coefficients are

[
f A

]r,ℓ
m

=
∞∑

ℓ1=0

ℓ1∑
m1=−ℓ1

Ar,ℓ1
m1

∫∫
f Y m1

ℓ1
(Y m

ℓ )∗ dΩ. (32.27)

The (1)-coefficients are

[
f A

](1),ℓ
m

=
1

ℓ(ℓ+ 1)

∞∑
ℓ1=0

ℓ1∑
m1=−ℓ1

[
A(1),ℓ1

m1

∫∫
f
∂Y m1

ℓ1

∂θ

(
∂Y m

ℓ

∂θ

)∗
dΩ

+A(2),ℓ1
m1

∫∫
f
∂Y m1

ℓ1

∂θ

(
∂Y m

ℓ

∂ϕ

)∗ 1

sin(θ)
dΩ

−A(2),ℓ1
m1

∫∫
f
∂Y m1

ℓ1

∂ϕ

(
∂Y m

ℓ

∂θ

)∗ 1

sin(θ)
dΩ

+A(1),ℓ1
m1

∫∫
f
∂Y m1

ℓ1

∂ϕ

(
∂Y m

ℓ

∂ϕ

)∗ 1

sin2(θ)
dΩ

]
. (32.28)
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The (2)-coefficients are

[
f A

](2),ℓ
m

=
1

ℓ(ℓ+ 1)

∞∑
ℓ1=0

ℓ1∑
m1=−ℓ1

[
A(2),ℓ1

m1

∫∫
f
∂Y m1

ℓ1

∂θ

(
∂Y m

ℓ

∂θ

)∗
dΩ

−A(1),ℓ1
m1

∫∫
f
∂Y m1

ℓ1

∂θ

(
∂Y m

ℓ

∂ϕ

)∗ 1

sin(θ)
dΩ

+A(1),ℓ1
m1

∫∫
f
∂Y m1

ℓ1

∂ϕ

(
∂Y m

ℓ

∂θ

)∗ 1

sin(θ)
dΩ

+A(2),ℓ1
m1

∫∫
f
∂Y m1

ℓ1

∂ϕ

(
∂Y m

ℓ

∂ϕ

)∗ 1

sin2(θ)
dΩ

]
. (32.29)

Proof. The (1)-coefficients are

[
f A

](1),ℓ
m

=
1

ℓ(ℓ+ 1)

∫∫
f A ·

(
Ψm

ℓ

)∗
dΩ (32.30)

=
1

ℓ(ℓ+ 1)

∫∫
f Aθ

(
∂Y m

ℓ

∂θ

)∗
dΩ+

1

ℓ(ℓ+ 1)

∫∫
f Aϕ

1

sin(θ)

(
∂Y m

ℓ

∂ϕ

)∗
dΩ. (32.31)

Substitute the expressions forAθ andAϕ from Proposition 32.3. Since the VSH series coefficientsAr,ℓ
m , A

(1),ℓ
m , A

(2),ℓ
m

are independent of θ, ϕ, they can be taken outside the integrals and the given result follows. The expressions
for the r-coefficients and (2)-coefficients are obtained in the same way.

Lemma 32.9. The product of two sums is the double sum of the product of their elements. That is, given
A =

∑N
i=1 ai and B =

∑M
i=1 bi, then

AB =

N∑
i=1

M∑
j=1

aibj . (32.32)

Proof. We have

AB =

( N∑
i=1

ai

)( M∑
j=1

bj

)
(32.33)

=
(
a1 + a2 + · · ·+ aN

)( M∑
j=1

bj

)
(32.34)

= a1

M∑
j=1

bj + a2

M∑
j=1

bj + · · ·+ aN

M∑
j=1

bj (32.35)

=
M∑
j=1

ai bj +
M∑
j=1

a2 bj + · · ·+
M∑
j=1

aN bj (32.36)

=

N∑
i=1

( M∑
j=1

ai bj

)
, (32.37)

which completes the proof.
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Proposition 32.10 (Dot product of two vector functions). Let A(r, θ, ϕ) and B(r, θ, ϕ) be vector functions
with known VSH series expansions. Then, A ·B can be simplified as

A ·B =
∞∑

ℓ1=0

ℓ1∑
m1=−ℓ1

∞∑
ℓ2=0

ℓ2∑
m2=−ℓ2

[
Ar,ℓ1

m1
Br,ℓ2

m2
Ym1

ℓ1
·Ym2

ℓ2

+
[
A(1),ℓ1

m1
B(1),ℓ2

m2
+A(2),ℓ1

m1
B(2),ℓ2

m2

]
Ψm1

ℓ1
·Ψm2

ℓ2

+
[
A(1),ℓ1

m1
B(2),ℓ2

m2
−A(2),ℓ1

m1
B(1),ℓ2

m2

]
Ψm1

ℓ1
·Φm2

ℓ2

]
. (32.38)

Proof. Substitute the VSH series expansions for A and B:

A ·B =
∞∑

ℓ1=0

ℓ1∑
m1=0

[
Ar,ℓ1

m1
Ym1

ℓ1
+A(1),ℓ1

m1
Ψm1

ℓ1
+A(2),ℓ1

m1
Φm1

ℓ1

]
·

∞∑
ℓ2=0

ℓ2∑
m2=0

[
Br,ℓ2

m2
Ym2

ℓ2
+B(1),ℓ2

m2
Ψm2

ℓ2
+B(2),ℓ2

m2
Φm2

ℓ2

]
.

(32.39)

Use the distributivity of the dot product, combine the sums and expand the brackets term-by-term:

A ·B =
∞∑

ℓ1=0

ℓ1∑
m1=0

∞∑
ℓ2=0

ℓ2∑
m2=0

[
Ar,ℓ1

m1
Br,ℓ2

m2
Ym1

ℓ1
·Ym2

ℓ2
+Ar,ℓ1

m1
B(1),ℓ2

m2
Ym1

ℓ1
·Ψm2

ℓ2
+Ar,ℓ1

m1
B(2),ℓ2

m2
Ym1

ℓ1
·Φm2

ℓ2

+A(1),ℓ1
m1

Br,ℓ2
m2

Ψm1
ℓ1

·Ym2
ℓ2

+A(1),ℓ1
m1

B(1),ℓ2
m2

Ψm1
ℓ1

·Ψm2
ℓ2

+A(1),ℓ1
m1

B(2),ℓ2
m2

Ψm1
ℓ1

·Φm2
ℓ2

+A(2),ℓ1
m1

Br,ℓ2
m2

Φm1
ℓ1

·Ym2
ℓ2

+A(2),ℓ1
m1

B(1),ℓ2
m2

Φm1
ℓ1

·Ψm2
ℓ2

+A(2),ℓ1
m1

B(2),ℓ2
m2

Φm1
ℓ1

·Φm2
ℓ2

]
.

(32.40)

We have from Proposition 31.4 that Ym1
ℓ1

·Ψm2
ℓ2

= Ym1
ℓ1

·Φm2
ℓ2

= 0, so the underlined terms are zero, giving

A ·B =

∞∑
ℓ1=0

ℓ1∑
m1=0

∞∑
ℓ2=0

ℓ2∑
m2=0

[
Ar,ℓ1

m1
Br,ℓ2

m2
Ym1

ℓ1
·Ym2

ℓ2

+A(1),ℓ1
m1

B(1),ℓ2
m2

Ψm1
ℓ1

·Ψm2
ℓ2

+A(1),ℓ1
m1

B(2),ℓ2
m2

Ψm1
ℓ1

·Φm2
ℓ2

+A(2),ℓ1
m1

B(1),ℓ2
m2

Φm1
ℓ1

·Ψm2
ℓ2

+A(2),ℓ1
m1

B(2),ℓ2
m2

Φm1
ℓ1

·Φm2
ℓ2

]
. (32.41)

We also have that Ψm1
ℓ1

·Ψℓ2
ℓ2

= Φm1
ℓ1

·Φℓ2
ℓ2
, so the underlined terms can be combined, giving

A ·B =

∞∑
ℓ1=0

ℓ1∑
m1=0

∞∑
ℓ2=0

ℓ2∑
m2=0

[
Ar,ℓ1

m1
Br,ℓ2

m2
Ym1

ℓ1
·Ym2

ℓ2

+
[
A(1),ℓ1

m1
B(1),ℓ2

m2
+A(2),ℓ1

m1
B(2),ℓ2

m2

]
Ψm1

ℓ1
·Ψm2

ℓ2

+A(1),ℓ1
m1

B(2),ℓ2
m2

Ψm1
ℓ1

·Φm2
ℓ2

+A(2),ℓ1
m1

B(1),ℓ2
m2

Φm1
ℓ1

·Ψm2
ℓ2

]
. (32.42)

Finally, we have from Eq. (31.28) that Ψm1
ℓ1

· Φℓ2
ℓ2

= −Ψm2
ℓ2

· Φℓ1
ℓ1
, so we can swap the indices on the double-

underlined terms at the cost of a minus sign and combine them with the single-underlined terms. Doing this,
we arrive at the given result.
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Proposition 32.11 (Cross product of two vector functions). Let A(r, θ, ϕ) and B(r, θ, ϕ) be vector functions
with known VSH series expansions. Then, A×B can be simplified as

A×B =
∞∑

ℓ1=0

ℓ1∑
m1=−ℓ1

∞∑
ℓ2=0

ℓ2∑
m2=−ℓ2

[
(
Ar,ℓ1

m1
B(1),ℓ2

m2
−A(1),ℓ2

m2
Br,ℓ1

m1

)
Ym1

ℓ1
×Ψm2

ℓ2
+
(
Ar,ℓ1

m1
B(2),ℓ2

m2
−A(2),ℓ2

m2
Br,ℓ1

m1

)
Ym1

ℓ1
×Φm2

ℓ2

+
(
A(1),ℓ1

m1
B(2),ℓ2

m2
−A(2),ℓ2

m2
B(1),ℓ1

m1

)
Ψm1

ℓ1
×Φm2

ℓ2
+
(
A(1),ℓ1

m1
B(1),ℓ2

m2
+A(2),ℓ1

m1
B(2),ℓ2

m2

)
Ψm1

ℓ1
×Ψm2

ℓ2

]
.

(32.43)

Proof. Substitute the VSH series expansions for A and B:

A×B =
∞∑

ℓ1=0

ℓ1∑
m1=0

[
Ar,ℓ1

m1
Ym1

ℓ1
+A(1),ℓ1

m1
Ψm1

ℓ1
+A(2),ℓ1

m1
Φm1

ℓ1

]
×

∞∑
ℓ2=0

ℓ2∑
m2=0

[
Br,ℓ2

m2
Ym2

ℓ2
+B(1),ℓ2

m2
Ψm2

ℓ2
+B(2),ℓ2

m2
Φm2

ℓ2

]
.

(32.44)

Use the distributivity of the cross product, combine the sums and expand the brackets term-by-term:

A×B =

∞∑
ℓ1=0

ℓ1∑
m1=0

∞∑
ℓ2=0

ℓ2∑
m2=0

[
Ar,ℓ1

m1
Br,ℓ2

m2
Ym1

ℓ1
×Ym2

ℓ2
+Ar,ℓ1

m1
B(1),ℓ2

m2
Ym1

ℓ1
×Ψm2

ℓ2
+Ar,ℓ1

m1
B(2),ℓ2

m2
Ym1

ℓ1
×Φm2

ℓ2

+A(1),ℓ1
m1

Br,ℓ2
m2

Ψm1
ℓ1

×Ym2
ℓ2

+A(1),ℓ1
m1

B(1),ℓ2
m2

Ψm1
ℓ1

×Ψm2
ℓ2

+A(1),ℓ1
m1

B(2),ℓ2
m2

Ψm1
ℓ1

×Φm2
ℓ2

+A(2),ℓ1
m1

Br,ℓ2
m2

Φm1
ℓ1

×Ym2
ℓ2

+A(2),ℓ1
m1

B(1),ℓ2
m2

Φm1
ℓ1

×Ψm2
ℓ2

+A(2),ℓ1
m1

B(2),ℓ2
m2

Φm1
ℓ1

×Φm2
ℓ2

]
.

(32.45)

We have from Proposition 31.6 that Ym1
ℓ1

×Ym2
ℓ2

= 0 and Φm1
ℓ1

×Φm2
ℓ2

= Ψm1
ℓ1

×Ψm2
ℓ2

, so the single-underlined
terms are zero and the double-underlined terms may be combined, giving

A×B =
∞∑

ℓ1=0

ℓ1∑
m1=0

∞∑
ℓ2=0

ℓ2∑
m2=0

[
Ar,ℓ1

m1
B(1),ℓ2

m2
Ym1

ℓ1
×Ψm2

ℓ2
+Ar,ℓ1

m1
B(2),ℓ2

m2
Ym1

ℓ1
×Φm2

ℓ2

+A(1),ℓ1
m1

Br,ℓ2
m2

Ψm1
ℓ1

×Ym2
ℓ2

+A(1),ℓ1
m1

B(2),ℓ2
m2

Ψm1
ℓ1

×Φm2
ℓ2

+A(2),ℓ1
m1

Br,ℓ2
m2

Φm1
ℓ1

×Ym2
ℓ2

+A(2),ℓ1
m1

B(1),ℓ2
m2

Φm1
ℓ1

×Ψm2
ℓ2

+
(
A(1),ℓ1

m1
B(1),ℓ2

m2
+A(2),ℓ1

m1
B(2),ℓ2

m2

)
Ψm1

ℓ1
×Ψm2

ℓ2

]
. (32.46)

For the underlined terms, use the anticommutativity of the cross product to switch the order of the vectors at
the cost of a minus sign. Then, since the sums over {ℓ1,m1} and {ℓ2,m2} have the same ranges, we can freely
relabel the indices 1 ↔ 2 in these terms. For example,

∞∑
ℓ1=0

ℓ1∑
m1=0

∞∑
ℓ2=0

ℓ2∑
m2=0

A(1),ℓ1
m1

Br,ℓ2
m2

Ψm1
ℓ1

×Ym2
ℓ2

=
∞∑

ℓ1=0

ℓ1∑
m1=0

∞∑
ℓ2=0

ℓ2∑
m2=0

[
−A(1),ℓ1

m1
Br,ℓ2

m2
Ym2

ℓ2
×Ψm1

ℓ1

]
(32.47)

=

∞∑
ℓ1=0

ℓ1∑
m1=0

∞∑
ℓ2=0

ℓ2∑
m2=0

[
−A(1),ℓ2

m2
Br,ℓ1

m1
Ym1

ℓ1
×Ψm2

ℓ2

]
. (32.48)

Doing this for the remaining underlined terms and collecting common cross products, we obtain the given result.
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32.3 VSH series of axisymmetric vector functions

Definition 32.12. An axisymmetric function f(r, θ) is one that does not depend on the ϕ-coordinate.
An axisymmetric vector field A(r, θ) is one whose components Ar(r, θ), Aθ(r, θ), Aϕ(r, θ) do not depend
on the ϕ-coordinate. An axisymmetric vector spherical harmonic series (AVSH series) is the VSH
series of an axisymmetric vector field, which consists solely of axisymmetric VSHs.

Consider now the VSH series of an axisymmetric vector field. We obtain the following results as special
cases of the expressions obtained in the previous section.

The VSH series for an axisymmetric vector field is

A(r, θ) =
Ar,0

√
4π

er +
∞∑
ℓ=1

√
2ℓ+ 1

4π

[
Ar,ℓ(r)P 0

ℓ er +A(1),ℓ(r)P 1
ℓ eθ +A(2),ℓ(r)P 1

ℓ eϕ

]
, (32.49)

with coefficients

Ar,ℓ(r) =
√
(2ℓ+ 1)π

∫ π

0
Ar P

0
ℓ sin(θ) dθ, (32.50)

A(1),ℓ(r) =

√
(2ℓ+ 1)π

ℓ(ℓ+ 1)

∫ π

0
Aθ P

1
ℓ sin(θ) dθ, (32.51)

A(2),ℓ(r) =

√
(2ℓ+ 1)π

ℓ(ℓ+ 1)

∫ π

0
Aϕ P

1
ℓ sin(θ) dθ, (32.52)

where we dropped the subscript labelling m because m = 0 always, making it redundant, and where arguments
(r, θ) for the components of A and cos(θ) for the (associated) Legendre functions are implied.

The spherical polar vector components are recovered by

Ar =
∞∑
ℓ=0

Ar,ℓ

√
2ℓ+ 1

4π
P 0
ℓ , (32.53)

Aθ =
∞∑
ℓ=1

A(1),ℓ

√
2ℓ+ 1

4π
P 1
ℓ , (32.54)

Aϕ =

∞∑
ℓ=1

A(2),ℓ

√
2ℓ+ 1

4π
P 1
ℓ . (32.55)

The divergence is

∇ ·A =
∞∑
ℓ=0

√
2ℓ+ 1

4π
P 0
ℓ

[
dAr,ℓ

dr
+

2

r
Ar,ℓ − ℓ(ℓ+ 1)

r
A(1),ℓ

]
. (32.56)

The curl is

∇×A =

∞∑
ℓ=1

√
2ℓ+ 1

4π

[
− ℓ(ℓ+ 1)

r
A(2),ℓ P 0

ℓ er −
(
dA(2),ℓ

dr
+

1

r
A(2),ℓ

)
P 1
ℓ eθ

+

(
dA(1),ℓ

dr
− 1

r
A(1),ℓ +

1

r
A(1),ℓ

)
P 1
ℓ eϕ

]
. (32.57)
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Let f(r, θ) be an axisymmetric scalar function. Then, the AVSH series coefficients of f A are

[
f A

]r,ℓ
=

1

2

√
2ℓ+ 1

∞∑
ℓ1=0

√
2ℓ1 + 1Ar,ℓ1

∫ π

0
f P 0

ℓ1 P
0
ℓ sin(θ) dθ, (32.58)

[
f A

](1),ℓ
=

√
2ℓ+ 1

2ℓ(ℓ+ 1)

∞∑
ℓ1=1

√
2ℓ1 + 1A(1),ℓ1

∫ π

0
f P 1

ℓ1 P
1
ℓ sin(θ) dθ, (32.59)

[
f A

](2),ℓ
=

√
2ℓ+ 1

2ℓ(ℓ+ 1)

∞∑
ℓ1=1

√
2ℓ1 + 1A(2),ℓ1

∫ π

0
f P 1

ℓ1 P
1
ℓ sin(θ) dθ. (32.60)

Lemma 32.13. The nonzero cross products of the axisymmetric VSHs have AVSH series coefficients(
Yℓ1 ×Ψℓ2

)(2),ℓ
= −

(
Yℓ1 ×Φℓ2

)(1),ℓ
=

1

ℓ(ℓ+ 1)
I0,1,1ℓ1,ℓ2,ℓ

, (32.61)(
Ψℓ1 ×Φℓ2

)r,ℓ
= I0,1,1ℓ,ℓ1,ℓ2

, (32.62)

where we define for brevity that

I0,1,1ℓ1,ℓ2,ℓ3
≡ 1

4
√
π

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

∫ π

0
P 0
ℓ1 P

1
ℓ2 P

1
ℓ3 sin(θ) dθ (32.63)

= − 1√
π

√
2ℓ1 + 1

√
ℓ2(ℓ2 + 1)(2ℓ2 + 1)

√
ℓ3(ℓ3 + 1) (2ℓ3 + 1)

ℓ1+ℓ2∑
ℓ12=max{|ℓ1−ℓ2|,1}

ℓ12+ℓ3∑
ℓ123=max{|ℓ12−ℓ3|,2}

ℓ123 even

(2ℓ12 + 1)(2ℓ123 + 1)√
(ℓ123 + 2)(ℓ123 + 1)ℓ123(ℓ123 − 1)

(
ℓ1 ℓ2 ℓ12
0 0 0

)(
ℓ1 ℓ2 ℓ12
0 1 −1

)(
ℓ12 ℓ3 ℓ123
0 0 0

)(
ℓ12 ℓ3 ℓ123
1 1 −2

)
.

(32.64)

We have that I0,1,1ℓ1,ℓ2,ℓ3
= 0 for ℓ3 > ℓ1 + ℓ2. With this expression, we can immediately obtain the AVSH

series coefficients of A×B in terms of the AVSH series coefficients of A and B without needing to perform
further integrals.

Proof. We have from Proposition 31.6 that Yℓ1 × Ψℓ2 = Yℓ1 Φℓ2 = 1
4π

√
(2ℓ1 + 1)(2ℓ2 + 1)P 0

ℓ1
P 1
ℓ2
eϕ. Since

this is an axisymmetric vector, it must possess an AVSH series. It only has a ϕ-component, so immediately the
r-coefficients and (1)-coefficients are zero. The (2)-coefficients are

(
Yℓ1 ×Ψℓ2

)(2),ℓ
=

√
(2ℓ+ 1)π

ℓ(ℓ+ 1)

∫ π

0

1

4π

√
(2ℓ1 + 1)(2ℓ2 + 1)P 0

ℓ1 P
1
ℓ2 P

1
ℓ sin(θ) dθ (32.65)

=
1

4
√
π

1

ℓ(ℓ+ 1)

√
(2ℓ+ 1)(2ℓ1 + 1)(2ℓ2 + 1)

∫ π

0
P 0
ℓ1 P

1
ℓ2 P

1
ℓ sin(θ) dθ. (32.66)

The other two nonzero cross products are obtained in the same way. The integral is evaluated as follows. We
have m1 = 0, m2 = 1 and m3 = 1, so that m12 = 1 and m123 = 2. Then, by Eqs. (29.51) and (29.53),

G12

∣∣∣
m1=0,m2=1

= −(2ℓ12 + 1)

(
ℓ1 ℓ2 ℓ12
0 0 0

)(
ℓ1 ℓ2 ℓ12
0 1 −1

)
, (32.67)

G123

∣∣∣
m1=0,m2=1,m3=1

= +(2ℓ123 + 1)

(
ℓ12 ℓ3 ℓ123
0 0 0

)(
ℓ12 ℓ3 ℓ123
1 1 −2

)
. (32.68)
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Consider Eq. (29.52). Note the following simplifications:√
(ℓ1 +m1)!

(ℓ1 −m1)!

(ℓ2 +m2)!

(ℓ2 −m2)!

(ℓ3 +m3)!

(ℓ3 −m3)!
=

√
(ℓ1 + 0)!

(ℓ1 − 0)!

(ℓ2 + 1)!

(ℓ2 − 1)!

(ℓ3 + 1)!

(ℓ3 − 1)!
=
√
ℓ2(ℓ2 + 1) ℓ3(ℓ3 + 1), (32.69)

√
(ℓ123 −m123!)

(ℓ123 +m123!)
=

√
(ℓ123 − 2)!

(ℓ123 + 2)!
=

1√
(ℓ123 + 2)(ℓ123 + 1)ℓ123(ℓ123 − 1)

, (32.70)

[
(−1)ℓ123 + (−1)m123

]
2m123−2m123 =

[
(−1)ℓ123 + (−1)2

]
22−2 2 = 2

[
(−1)ℓ123 + 1

]
= 4 δℓ123 (mod 2),0,

(32.71)

Γ
(ℓ123

2

)
Γ
(ℓ123 +m123 + 1

2

)
Γ
(ℓ123 + 3

2

)
Γ
(ℓ123 −m123 + 2

2

) =
Γ
(ℓ123

2

)
Γ
(ℓ123 + 2 + 1

2

)
Γ
(ℓ123 + 3

2

)
Γ
(ℓ123 − 2 + 2

2

) =
Γ
(ℓ123

2

)
Γ
(ℓ123 + 3

2

)
Γ
(ℓ123 + 3

2

)
Γ
(ℓ123

2

) = 1.

(32.72)

The Kronecker delta symbol can be absorbed into the summation over ℓ123 by requiring that ℓ123 is even.
Substituting these and multiplying by 1

4
√
π

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1), we obtain the given result.

Proposition 32.14 (AVSH series of cross product). Let A(r, θ) and B(r, θ) be two axisymmetric vector
functions with known AVSH series expansions. Then, their cross product has AVSH series coefficients
which are purely given in terms of the AVSH coefficients of A and B:

[
A×B

]r,ℓ
=

∞∑
ℓ1=1

∞∑
ℓ2=1

(
A(1),ℓ1 B(2),ℓ2 −A(2),ℓ2 B(1),ℓ1

)
I0,1,1ℓ,ℓ1,ℓ2

, (32.73)

[
A×B

](1),ℓ
=

∞∑
ℓ1=0

∞∑
ℓ2=1

(
A(2),ℓ2 Br,ℓ1 −Ar,ℓ1 B(2),ℓ2

) 1

ℓ(ℓ+ 1)
I0,1,1ℓ1,ℓ2,ℓ

, (32.74)

[
A×B

](2),ℓ
=

∞∑
ℓ1=0

∞∑
ℓ2=1

(
Ar,ℓ1 B(1),ℓ2 −A(1),ℓ2 Br,ℓ1

) 1

ℓ(ℓ+ 1)
I0,1,1ℓ1,ℓ2,ℓ

, (32.75)

with I0,1,1ℓ1,ℓ2,ℓ3
defined in Eq. (32.63).

Proof. Proposition 32.11 with Ψℓ1 ×Ψℓ2 = 0 by Proposition 31.6 gives that

A×B =
∞∑

ℓ1=0

∞∑
ℓ2=0

[(
Ar,ℓ1 B(1),ℓ2 −A(1),ℓ2 Br,ℓ1

)
Yℓ1 ×Ψℓ2

+
(
Ar,ℓ1 B(2),ℓ2 −A(2),ℓ2 Br,ℓ1

)
Yℓ1 ×Φℓ2 +

(
A(1),ℓ1 B(2),ℓ2 −A(2),ℓ2 B(1),ℓ1

)
Ψℓ1 ×Φℓ2

]
. (32.76)

This is an axisymmetric vector, so must possess an AVSH series. Further, it is a sum of vectors (cross products)
with known AVSH series coefficients by Lemma 32.13, so we can immediately read off the AVSH coefficients of
A × B. The lower bound on ℓ2 in the sums can be increased to 1 because all pairs of VSH series coefficients
that appear feature one of {A(1),ℓ2 , A(2),ℓ2 , B(1),ℓ2 , B(2),ℓ2}, which are zero for ℓ2 = 0. The lower bound on ℓ1 in

the sum for
[
A×B

]r,ℓ
can be increased to 1 for a similar reason.
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