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Abstract: River deltas are essential socio-ecological systems, sustaining dense human populations, major economic centers, and vital ecosystems worldwide. Rising sea levels and subsiding land threaten the sustainability of these valuable landscapes with relative sea-level rise and associated flood, land-loss, and salinization hazards. Despite these risks, vulnerability assessments are impeded by the lack of contemporary, high- resolution delta-wide subsidence observations. Here, we present spatially variable surface elevation changes across 40 global deltas using interferometric synthetic aperture radar. Using this dataset, we quantify delta surface elevation loss and reveal the prevalence and severity of subsidence in river deltas worldwide. Our analysis of three key anthropogenic drivers of delta elevation changes shows that groundwater storage have the strongest relative influence on VLM in 10 of the 40 deltas. In the other
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dominated by sediment flux or urban expansion. Furthermore, we find that contemporary subsidence surpasses absolute (geocentric) sea-level rise as the dominant driver of relative sea-level rise for most deltas over the 21st century. These findings emphasize the need for targeted interventions addressing subsidence as an immediate and localized challenge, in parallel with broader efforts to mitigate/adapt to climate change-driven global sea-level rise.
Main Text
River deltas, which occupy only 1% of land area, are among the most vital landforms on Earth. Globally, deltas host an estimated 350 to 500 million people (representing 4 6% of the global population
1-4. These dynamic
landforms serve important socioeconomic, ecological, and energy-related functions5,6. They sustain agricultural productivity and fisheries, their ecosystems sustain important biodiversity, and their infrastructure, such as ports and transportation networks, anchors maritime trade vital to national, regional, and global economies4-8. Deltas are also strategic hubs for energy systems, hosting abundant subsurface hydrocarbons, offshore wind potential, and hydropower infrastructure from upstream dams, which collectively support national and transnational energy security1,2. Ecologically, deltas sustain biodiversity-rich wetlands and mangroves, which provide coastal protection by mitigating erosion and act as coastal defense buffers against storms5,9,10. These low- elevation landscapes also nurture ancient civilizations and traditions intrinsically linked to their dynamic geomorphic structure11.
This recognized importance, which makes deltas indispensable, also increases their exposure to compounding climatic, environmental, and anthropogenic threats2,12-15. As low-lying landforms, with extensive areas less than two meters above sea level16, deltas are acutely susceptible to rising sea level, storm surge, land subsidence, shifting temperature and rainfall patterns, and other environmental pressures, which are amplified by climate change2-4,8,13-15,17,18. These pressures degrade agricultural land, disrupt freshwater availability, exacerbate coastal and fluvial flooding, promote wetland loss, saltwater intrusion, shoreline retreat, and threaten infrastructure in deltas2,5,6,19,20. Beyond direct physical impacts, the interplay of these hazards also creates potential cascading socio-economic consequences. For example, land loss and freshwater scarcity may drive displacement and migration, heightening competition for dwindling resources and fueling social tensions21,22. Additionally, infrastructure and ecosystem degradation disrupt economic activities while undermining biodiversity and livelihoods in fragile deltaic communities3,5. Together, these intersecting climatic, environmental, human-driven pressures and multi-hazards renders deltas the most fragile landscapes
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on Earth, with their low elevation and high urban exposure placing them at the forefront of climate and environmental risks3-5,13,23 (Supplementary Figure 1).
Among these threats, land subsidence often emerges as a critical contributor to risks in global river deltas1-3,17,24,25. A recent study of five Asian mega-deltas (the Yangtze, Pearl, Chao Phraya, Mekong, and the Ganges Brahmaputra Meghna deltas) revealed that the maximum subsidence rates exceed regional sea-level rise by 6 40 times, effectively dominating relative sea-level rise in these densely populated regions26. This predominantly human-driven process is just as or more influential than climate-induced sea-level rise in the 21st century3,27, with subsidence control now providing an important component of future coastal adaptation strategies28,29.
Despite its perceived importance, land subsidence remains underrepresented in global assessments of delta vulnerability13,30 largely due to the lack of modern, high-resolution subsidence observations18,23. Even with recent advances in space-based geodetic monitoring, high-resolution synoptic measurement of subsidence rates remains scarce, as most observations remain restricted to major urban centers within deltas, neglecting rural and ecologically critical zones23. Understanding delta-wide spatial characteristics of contemporary land elevation changes is critical for informing their sustainable management. Here, we present high-spatial-resolution datasets of surface-elevation change derived from Sentinel-1 Synthetic Aperture Radar (SAR) interferometry across 40 deltas globally (Figure 1). These datasets capture delta-wide temporal trends, subsidence rates, and horizontal motion at a 75 m resolution, spanning 5 continents and 29 countries. Our analysis includes all major river deltas with a population exceeding 3 million people23, historically recognized sinking deltas2, and representatives of less- populated, understudied deltas of regional ecological and economic importance (see methods).
Global Analysis of Delta Subsidence
We measured the spatial patterns and rates of subsidence in 40 deltas by analyzing the complete archive of the Sentinel-1 SAR dataset between 2014 and 2023 using advanced multitemporal interferometric SAR (InSAR) analysis (see methods). InSAR measures surface elevation changes, capturing vertical land motion (VLM), sediment deposition, and erosional processes18. In densely populated deltas or deltaic areas, where human activities dominate, and natural sedimentation/erosion is probably negligible, InSAR-derived surface elevation changes reflect VLM31. In dynamic delta regions (e.g., active river mouths or intertidal zones), surface elevation changes integrate both VLM and sediment dynamics. For consistency to reflect both VLM and surface elevation change in the deltas, we use the terms VLM or elevation gain/loss to describe net surface elevation change across all delta environments, with positive
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values indicating uplift or elevation gain and negative values indicating subsidence or net elevation loss. The SAR datasets include ~3,000 acquisitions obtained in single orbit geometry (ascending/descending) for 13 deltas, and more than 10,000 images obtained in both (ascending and descending) orbits for 27 deltas. In deltas with a single orbit geometry, we project the line-of-sight (LOS) displacements in the vertical direction using satellite orbit unit vectors to obtain the vertical displacement, assuming a uniform horizontal deformation. In deltas with multiple SAR orbit geometry, we obtain both horizontal (east-west motion) and vertical (VLM) components of deformation by jointly inverting the LOS displacements of the ascending and descending tracks (see methods). For each delta, the obtained vertical velocities are transformed from a local reference frame to IGS14 global reference frame using available global navigation satellite systems (GNSS) datasets and VLM model to ensure consistency across global deltas (see methods). Unique to this study are delta-wide estimates of vertical and horizontal land motion (in 27 deltas) and a globally consistent reference frame, which advances previous studies and measurements of VLM in coastal regions. The spatial distribution of the VLM rates and the horizontal motion for the 40 deltas are shown in Figure 2 and Supplementary Figures 2 to 7. Throughout this study, negative VLM is quoted with negative signs and references land subsidence rates, while we only report the absolute values when presenting subsidence rates.
Our analysis reveals that subsidence threatens deltas globally, with the delta-scale average rate of VLM on all deltas indicating subsidence (Figure 1). In 12 out of 40 deltas, the average sinking rate is moderate, at less than 2 mm per year. In contrast, more than half of the deltas exhibit subsidence rates exceeding 3 mm per year, and in 13 of these deltas (Nile, Po, Vistula, Ceyhan, Brahmani, Mahanadi, Chao Phraya, Mekong, Red, Ciliwung, Brantas, Godavari, Yellow), the average subsidence rates exceed the current estimates of global sea-level rise (i.e. ~4 mm per year). Among these, the Chao Phraya (Thailand), Brantas (Indonesia), and Yellow (China) deltas show an average sinking rate of more than twice the current global sea-level rise rate. To further highlight the severity of subsidence in deltas, we compared the subsidence with the regional geocentric sea-level rise rates for the 21st century (2001 present). In 18 of the 40 deltas (the Nile, Po, Vistula, Ceyhan, Rioni, Brahmani, Mahanadi, Ganges- Brahmaputra, Godavari, Chao Phraya, Mekong, Red, Ciliwung, Brantas, Amazon, Parana, Pearl, and Yellow river), the average rate of local land subsidence is greater than the rate of regional geocentric sea-level rise (Figure 1; Supplementary table 1). However, in almost every delta (except Rio Grande) at least 1% of the delta area is subsiding faster than both global and geocentric sea level (Figure 1; Supplementary table 1).


(excluding Neva and Fraser), more than 50% of the delta area is sinking (Figure 2a). Of the 40 deltas, 19 show widespread subsidence patterns, with greater than 90% of the delta area affected by subsidence (e.g., Mississippi, Niger, Nile, Rhine-Meuse, Po, Vistula, Brahmani, Mahanadi, Ganges-Brahmaputra, Chao Phraya, Mekong, and Brantas deltas). Deltas with notable subsiding areas with greater than 50% of the delta area sinking faster than 5 mm per year include the Chao Phraya (percent area: 94%), Nile (80%), Brahmani (77%), Po (74%), Mahanadi (69%), Brantas (66%), Vistula (57%), Yellow (53%), and Mekong (51%) deltas (Figure 2a; Supplementary table 1). In sum, we estimate a total delta area of 460,370 km2 is exposed to subsidence. If we consider a global habitable geomorphic area of 710,000 to 855,000 km2 for deltas4,32, approximately 54 65% of global delta areas are sinking just from the analysis of the 40 deltas. By region, South Asia, East Asia, and Southeast Asia, with 17 representative deltas, have the greatest exposure to subsidence, with 274,000 km2 of delta area subsiding. Africa, South America, North America, and Europe have total subsiding delta areas of 78,800 km2, 39,800 km2, 37,800 km2, and 30,000 km2, respectively. Seven large deltas Ganges-Brahmaputra, Nile, Mekong, Yangtze, Amazon, Irrawaddy, and Mississippi deltas contribute ~57% of the total subsiding delta area, with a combined area of 265,000 km2. Although deltaic areas are dynamic environments with diverse land uses, many host major metropolitan hubs (>1 million people) and megacities (>10 million people). Coastal cities such as Alexandria (Nile), Bangkok (Chao Phraya), Dhaka and Kolkata (Ganges-Brahmaputra), Shanghai (Yangtze), Yangon (Irrawaddy), C
-gawa), Jakarta (Ciliwung),
Surabaya (Brantas), and Dongying (Yellow) are experiencing subsidence at rates equal to or exceeding the delta-wide averages, indicative of the intensity of subsidence and elevation loss processes in cities on deltas.
Furthermore, we observe non-uniform spatially variable VLM within individual deltas, reflecting the complex interplay of natural and anthropogenic processes2,5,18,33 (Figure 2 and Supplementary Figures 2 to 4). While all deltas exhibit an overall trend of subsidence, localized and broad zones of uplift, which vary from 0 mm per year to greater than 5 mm per year are observed in some areas (Figure 2b, d, k, m, and Supplementary Figures 2e, 2f, 2i, 2j, 2l, 3c, 3f). In some deltas (e.g., Wouri, Zambezi, Indus, Ciliwung, and Yellow), the observed uplift or elevation gaining parts correlate with patterns of sediment deposition and horizontal land motion (Supplementary Figures 6e, 6g, 6h, 7f, and 7h). This suggests that sediment redistribution processes, potentially driven by river dynamics, can cause localized zones of elevation gain even within a predominantly subsiding deltaic system11,34. This highlights the necessity of comprehensive assessments and models of delta vulnerability to consider not only


dynamics.
Anthropogenic Drivers of Subsidence in Deltas
All deltas, by their inherent nature, subside over time as recently deposited sediments or in-situ organic material compact under their weight35-37, a process further influenced by isostatic adjustments and tectonic activity18,33. Ongoing glacial isostatic adjustment (GIA), which is one of the most widespread contributions to VLM across global coastlines shows negligible (<10%) influences in 55% of deltas but accounts for substantial fractions (10 55%) of observed VLM magnitude in deltas such as the Rio Grande, Mississippi, Rhine, and Ogooué deltas (Supplementary table 1). The Fraser River and Neva deltas exhibit net uplift (+1.8 and +1.0 mm per year, respectively), primarily driven by post-glacial rebound, opposing the observed net subsidence on these deltas, demonstrating how GIA can mask underlying subsidence signals from other processes in formerly glaciated regions (see methods section for further discussion). Despite these natural contributions, human interventions have accelerated
process into an urgent environmental crisis23,26,37. Previous studies estimate that anthropogenic activities in deltas may account for 50 90% of total subsidence in densely populated deltas, with sinking rates exceeding natural processes by an order of magnitude2,3,22. The primary anthropogenic drivers that dominate delta subsidence include excessive groundwater extraction, oil and gas exploitation, and land-use changes associated with urbanization and agriculture6,18,23,26,38,39.
To quantify the relative contributions of anthropogenic factors to delta subsidence and elevation loss, we analyzed the relationship between three major anthropogenic drivers groundwater storage change, sediment flux alteration, and urban expansion and non-GIA VLM/subsidence rates across the 40 deltas (see Methods; Supplementary Table 2). For our analysis, we derived 21st-century groundwater storage trends from Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE- FO) satellite observations40,41, sediment flux changes from the difference between pristine (without humans) and disturbed fluxes (with humans)34, and urban fractional expansion between 2001 and present from satellite-based land cover classifications42 (See methods). These globally consistent datasets enabled systematic comparison across all 40 deltaic systems. Groundwater storage trends reflect mass loss, primarily from groundwater extraction and, to a lesser extent, oil/gas extraction43; for simplicity, we refer to this combined signal as groundwater storage (GWS). Sediment flux change quantifies the reduction in sediment delivery to deltas and consequently the reduced ability to compensate subsidence-induced elevation loss due to human activities like levee/dam construction and river mining. Urban fractional expansion, a

proxy for urbanization-driven land-use changes, captures the conversion from natural landscapes (e.g., wetlands and forests) to built environments, which exacerbates subsidence through infrastructure loading, drainage, and increased groundwater demand39,44.
Figure 3a and Supplementary Figure 8 illustrate the interplay of anthropogenic factors and their correlation with subsidence rates across the 40 deltas. Deltas experiencing GWS loss (indicative of groundwater extraction), negative sediment flux change (red/yellow hues; reflecting sediment reduction due to upstream human activities), and higher urban population growth tend to have higher rates of subsidence (e.g., Yellow, Po, Nile, Chao Phraya, and Mekong deltas). Conversely, deltas with GWS stability or gain (net increase in groundwater storage), positive sediment flux change (blue colors; sediment surplus), and limited urban expansion show lower subsidence rates (e.g., Saloum, Amazon, and Ogooué deltas). However, we note some deltas deviate from this trend. For instance, the Brantas, Mahanadi and Brahmani deltas exhibit moderate-to- high subsidence rates despite low urban growth and GWS gain, and a sediment surplus (which can potentially buffer the subsidence-induced elevation loss). Additionally, we note a nonlinear logarithmic inverse trend between subsidence rate and percent of the urban fractional expansion. These outliers and deviations highlight the complex, nonlinear, and interwoven processes driving surface elevation change in deltaic systems18,23,32,33
The initial multilinear regression (MLR) model, which included interaction terms between the different anthropogenic factors, poorly captured subsidence dynamics on the deltas (R2 = 0.2 ± 0.1), as it fails to account for nonlinear interactions between the different processes (Figure 3a). For instance, urban expansion not only directly increases infrastructure loading but also indirectly elevates groundwater demand, compounding aquifer depletion and extraction-induced subsidence synergistic effects that linear models cannot resolve.
To address these limitations, we employed a random forest (RF) machine learning approach designed to capture nonlinear relationships and variable interactions. Using Monte Carlo simulations to quantify uncertainty, we systematically varied holdout fractions (0.1-0.5) across 100 iterations per fraction. In each iteration, we randomly subsampled the 40 deltas to partition training and validation sets. This random partitioning ensures that each delta is used in both training and validation phases across iterations, enhancing the robustness against overfitting and sampling bias (see methods). The RF model reveals a moderate to strong relationship between the predictors (GWS, sediment flux, and urban expansion) and VLM, achieving improved performance over the MLR model (R2 = 0.6 ± 0.1; RMSE = 1.9 ± 0.1 mm per year; MAE

= 1.4 ± 0.2 mm per year), and capturing complex, non-additive relationships between anthropogenic stressors and subsidence rates (Figure 3a and Supplementary Figure 9). However, we observe some underestimation at high subsidence rates (>8 mm/year) (Supplementary Figure 9), which likely suggests that natural processes or other anthropogenic predictors (not considered in our analysis) may contribute to subsidence in these highly dynamic deltaic environments.
Note that the primary objective in our analysis is not to predict subsidence rates across deltas, but rather to identify and extract key features that explain the dynamic relationships between the three anthropogenic drivers and subsidence across these deltas. Feature importance analysis from the RF model identifies GWS as the dominant anthropogenic predictor of delta subsidence (0.5 ± 0.2), while sediment flux change (0.3 ± 0.2) and urbanization (0.3 ± 0.1) play secondary roles as subsidence rate predictors across these deltas (Figure 3a and Supplementary Figure 9b). However, the large standard deviations in feature importance values reflect substantial variability in predictor dominance across subsampled delta subsets, suggesting that the primary contributors to subsidence differ locally depending on the anthropogenic/geomorphic context. To resolve delta-specific mechanisms, we applied Local Interpretable Model​agnostic Explanations (LIME), which interprets individual predictions by approximating the RF model locally with simpler, interpretable functions. Deltas with low LIME model fidelity (R2 < 0.5) were excluded from this interpretative analysis, refining the dataset from 40 to 28 deltas (see methods). The low fidelity scores for some deltas could be due to unaccounted processes (both natural and/or other anthropogenic) in our RF model. The retained 28 deltas show improved overall model performance (R2 = 0.7 ± 0.1; RMSE = 0.1 ± 0.1 mm per year; MAE = 0.1 mm per year), ensuring reliable interpretation of local feature importance. Normalized LIME feature importance scores (nLIME) revealed substantial heterogeneity in predictor dominance (Supplementary table 2). GWS emerged as the most significant factor across the different deltas (0.6 ± 0.3), while sediment flux change (0.3 ± 0.1) and urbanization (0.1 ± 0.1) exhibited lower but context-dependent impacts (Supplementary Figure 9b).
To assess the dominant influence on land motion across individual deltas, the nLIME for each delta was mapped onto a ternary diagram (Figure 3b). Of the 28 deltas, 35%, including the Mekong, Ganges-Brahmaputra, Rhine-Meuse, Fraser, Cauvery, Irrawaddy, and Red River systems, cluster within the GWS portion of the diagram (nLIMEGWS > 0.7), suggesting that observed GWS changes in these deltas is the primary driver of subsidence among the three anthropogenic variables examined (Figure 3b; Supplementary table 2). The Chao Phraya and Yellow River deltas, with the highest average
relatively balanced contributions from GWS, sediment flux, and urban expansion.


Saloum, Mississippi, Amazon, and Rio Grande deltas, suggesting reduced sediment delivery may exacerbate land elevation loss in these deltas. The Nile, Po, Chikuma- gawa, Mahanadi, Kabani, Niger, and Volta deltas exhibit mixed contributions from GWS, sediment flux changes, and population change, with GWS slightly outweighing sediment deficits as predictors in the Nile and Po Deltas, possibly reflecting reliance on aquifer​dependent irrigation45. Importantly, no delta exhibits elevation change driven solely (100%) by one variable. All deltas show varying combinations of GWS change, sediment flux alteration, and urbanization contributing to observed elevation change (Figure 3b; Supplementary table 2). This reinforces the interconnected nature of anthropogenic pressures in deltaic systems32. These findings are consistent with delta​specific studies attributing accelerated subsidence in densely populated Asian deltas Mekong, Ganges-Brahmaputra, Chao Phraya to urbanization and unsustainable groundwater extraction for agriculture, industry, and domestic use6,26,36,37,46. Additionally, the Nile, Po, and Mississippi deltas, historically sustained by seasonal floods that deposited sediments, are documented to now expereince severe sediment deficits due to dams and levees accelerating elevation loss2,26,34.
We acknowledge the following limitations in our analysis. First, GRACE-derived GWS trends (spatial resolution ~300 400 km) may introduce signal leakage from adjacent basins, particularly affecting smaller deltas where the signal may not accurately represent delta-specific groundwater changes. Second, the sediment flux dataset represents percentage changes between pristine and disturbed conditions rather than contemporary absolute rates, potentially masking recent trends or localized anthropogenic modifications such as dredging, bank engineering, or within-delta spatial heterogeneity in sediment delivery. Third, other localized natural VLM processes (e.g., sediment loading and compaction, organic matter production/decomposition, tectonics) and additional anthropogenic drivers (e.g., hydrocarbon extraction, peat drainage) are not explicitly separated from our measurements. Fourth, machine learning RF models are inherently dependent on input variable distributions and dataset composition, and as such, these results should be interpreted in the context of these datasets alone, with potential limitations of the evolving, heterogeneous nature of delta environments. Lastly, while the 40 deltas in this study represent a substantial portion of the global delta area and reach within rounding limits of the total delta population, they are not representative of all deltaic systems globally. Nevertheless, our analysis focuses on understanding the relative influence of these three key anthropogenic variables on elevation change across these 40 diverse deltaic systems rather than providing delta-specific VLM budgets. Future studies incorporating spatially dense, delta-specific datasets will better resolve local-scale processes within individual deltas and enable rigorous partitioning of anthropogenic versus natural contributions to land motion and elevation change.
Assessing the Relative Impact of Sea-Level Rise and Subsidence in Deltas Globally, d
climate-induced sea-level rise and sinking land, which together drives relative sea-level rise (RSLR) at rates exceeding global averages2,3,8,12,24. Unlike sea-level rise, which reflects global-scale processes and progresses at a relatively uniform rate globally8,47, subsidence operates at local to regional scales, is highly variable, and reflects localized natural and human processes18,33,36. In many deltas, contemporary rates of subsidence may surpass the current sea-level rise rates2,19 (see previous section), creating a compound hazard where RSLR in deltas is dominated not by climate-induced changes in sea surface height but by VLM.
To quantify the contributions of sea-level rise and land subsidence in deltas, we evaluated their relative impact on the exposed delta populations. Our analysis reveals that current average subsidence rates exceeds geocentric sea-level rise in 18 of the 40 deltas, including the Nile, Mekong, Red, Ganges-Brahmaputra, Brahmani, Mahanadi, Chao Phraya, Ciliwung, Brantas, and Yellow deltas, impacting approximately 236 million people a population ~50% larger than those residing in deltas where current rates of geocentric sea-level rise outpace subsidence rates (156.9 million) (Figure 4a). This disparity is amplified for vulnerable populations occupying land below 1 m elevation 16. In these lowest elevation areas, subsidence dominates the contribution to RSLR in about two-thirds of the deltas, including Amazon, Fraser, Niger, Rhone, Vistula, Ganges- Brahmaputra, Mekong, Red, Pearl, Yangtze, and Godavari deltas (Figure 4b). Of the 76 million people living on delta areas below 1 m elevation, 84% (63.7 million people) reside in rapidly sinking areas of the deltas (Figure 4b). These observations are striking, revealing the current dominance of subsidence over geocentric sea-level rise in global deltas. Moreover, the spatial heterogeneity of VLM creates localized extreme rates of subsidence within deltas, further exacerbating their vulnerability. Under the current trajectory, moderate emission scenarios (shared socioeconomic pathway 2-4.5; SSP2- 4.5), current maximum subsidence rates in the deltas already surpass projected 21st- century sea-level rise rates (no VLM)48. Through the end of the 21st century, current maximum subsidence rates in all 40 deltas exceed projected sea-level rise rates. (Figure 4c). This disparity extends to the 95th percentile subsidence rates, representing widespread, high magnitude sinking across the deltas. In 28 deltas, 95th percentile subsidence rates exceed the projected sea-level rise rates by 2050, outpacing sea-level rise by 1.1 (Niger delta) to 10.3 (Yellow River delta) times. By 2100, as the current maximum rate of sea level rise (SSP2-4.5) accelerates to 0.9 cm per year, current 95th percentile subsidence rates still dominate in 21 deltas, surpassing geocentric sea-level rise by up to 7 times. Even accounting for worst-case, high-emission scenarios (SSP5- 8.5), subsidence will exceed projected sea level rise rates in all deltas (considering

maximum subsidence) and in 22 deltas (considering 95th percentile subsidence) through 2050. By 2100, current maximum subsidence rates exceed projected sea-level rise in 37 of 40 deltas, while 95th percentile subsidence rates remain dominant in 7 deltas (Godavari, Chao Phraya, Mekong, Ciliwung, Brantas, Red, and Yellow) (Supplementary table 1).
These findings identify VLM as the principal hazard in deltaic systems and some subsidence-prone low-elevation coastal zones. While global coastal zones face baseline threats from sea level rise48, subsidence in many deltas often dominates RSLR, creating a distinct and more acute risk profile, which is amplified by the high populations in many of these deltas17. Yet, subsidence remains under-prioritized in global coastal risk discourse, a tendency which stems from its perceived tractability. Unlike climate-induced sea-level rise, which can be slowed but not stopped on human policy timescales, human-induced subsidence can theoretically be slowed or halted through targeted interventions28,29,36,37. Yet this very characteristic its responsiveness to human action has paradoxically relegated it to the periphery of international policy49. This disconnect reflects a broader misalignment between the spatial scales of climate impacts and adaptation priorities. For instance, subsidence-driven RSLR can reduce the efficacy of sea-level rise adaptation infrastructure (e.g., seawalls, levees) by lowering land elevation relative to engineered defenses, effectively negating their protective capacity over decadal timescales29,50-53. Thus, subsidence does not merely compound sea-level rise; it undermines the foundational logic of incremental, sea-level rise-centric adaptation. Addressing this requires shifting adaptation from just a global climate challenge to a regional socio-technical imperative and an integrated approach that prioritizes subsidence mitigation (e.g., groundwater regulation, managed aquifer recharge, and sediment management) alongside RSLR adaptation.
Adaptation Readiness and Capacity in Vulnerable Delta Regions
From the Fraser Delta in Canada to the Yellow River Delta in China, global deltas are sinking, as climate change accelerates sea-level rise, compounding the vulnerabilities of low-lying regions. These combined effects create a multifaceted threat, forcing delta communities to contend with land loss, more frequent flooding, and saltwater intrusion6,8,12,13,26. Whereas the urgency of adaptation is immediate and universal, the capacity to act is not. For many deltas, especially those in low- and middle-income countries, adaptative capacity is limited by institutional, social, and financial constraints13. These systemic barriers are quantified by the Notre Dame Global Adaptation Index (ND- climate change and their readiness to deploy adaptation resources across economic, social, and governance dimensions54,55. The ND-GAIN index assesses vulnerability across 181 countries annually, utilizing data from over 45 indicators by examining six

critical sectors such as food, water, health, ecosystem services, human habitat, and infrastructure and considering factors such as exposure, sensitivity, and adaptive capacity. The readiness score is evaluated through three components: economic, governance, and social factors, collectively reflecting a country's ability to leverage investments for effective adaptation actions54. A higher ND-GAIN adaptation readiness score (> 0.52) is an indication of a countr
to absorb funds and translate
these into actionable strategies55.
To visualize disparities in adaptive capacity and risk, we mapped global deltas into a two-dimensional impact matrix defined by RSLR and ND-GAIN adaptation readiness scores (Figure 5). This framework allows for a comparative assessment of deltas assuming that
adaptation
readiness,
Unprepared Divers (high RSLR (> 4
mm per year), low readiness (< 0.52)), Rising Ready (high RSLR, high readiness (> 0.52)),
(low RSLR, low readiness), and Safe Havens (low RSLR, high
readiness). 65% of the deltas (26 out of 40 deltas), predominantly in low- and middle​income nations, fall into the Unprepared Divers group, where nations have a diminished adaptive capacity and RSLR rates exceeding current global sea-level rise (Figure 5a). These challenges are compounded for indigenous communities, such as the Khmer, Hoa, and Cham people (Mekong delta); the Ticuna, Bora, and Huitoto people (Amazon delta); the Ewe people (Volta); Ogoni, Ijaw, and Urhobo people (Niger delta); Deori, Bawm, Chakma, and Santal people (Ganges-Brahmaputra delta), who primarily live in the lowest-lying delta areas; lack the resources needed to implement large-scale adaptation; and face relocation barriers due to cultural and subsistence ties despite escalating risks56,57.
Most deltas in high-income countries, including the Yellow (China), Vistula (Poland), Po (Italy), Rhine-Meuse (Netherlands), and Mississippi (USA) deltas, cluster in the Rising Ready group, demonstrating robust governance (Figure 5a). For example, the Dutch approach, which combines ecological restoration with infrastructural fortifications, has become a model for coastal hazard resilience58. However, some deltas even within this group face critical gaps. For instance, the Mississippi Delta has lost over 5,000 km2 of land (mainly wetlands) since 1932 due to a lack of adaptation (e.g., sediment diversion projects)59,60, while the Po Delta struggles with salinization driven by agricultural groundwater extraction, highlighting how economic priorities can undermine adaptation even in high-income regions61. While RSLR exceeds global rates of sea level rise in most deltas, exceptions exist. The Latent Threats group includes the Saloum and Neva deltas, which exhibit relatively low RSLR and low adaptive capacity (Figure 5a), indicating their unpreparedness and potential vulnerability to future rise in sea level (Figure 4c). The

Rioni and the Fraser Delta fall into the Safe Havens group, where lower RSLR is coupled with higher adaptive capacity, indicative of low risk and preparedness for current and future sea-level changes. The Rioni Delta is the only delta in our sample exhibiting negative sea level trends for the 21st century, where long-term regional sea​level decline masks short-term fluctuations (see methods).
To examine the evolving risk landscape, we compared 20th-century and present-day impact matrices (Figure 5b). For our analysis, we used tide gauge data to estimate 20th-century RSLR rates, which were available for only 15 of the 40 deltas. Our estimates show that 10 deltas previously classified as Latent Threats (low RSLR, low readiness) and Safe Havens (low RSLR, high readiness) groups during the 20th century have transitioned to Unprepared Divers (high RSLR, low readiness) and Rising Ready (high RSLR, high readiness) groups in the 21st century (Figure 5b). This shift highlights the accelerating contemporary RSLR trends, driven by land subsidence and sea-level rise62,63. Deltas such as the Mississippi, Ganges-Brahmaputra, and Mekong show sustained increases in long-term RSLR rates above 4.0 mm per year since the 20th century, exacerbating vulnerabilities in these densely populated regions. Conversely, the Chao Phraya and the Rioni deltas showed a decline in RSLR and improved adaptive capacity from the 20th century. However, while the Rioni Delta exhibited a more than 200% decline in RSLR, the Chao Phraya Delta still experiences high RSLR rates (12.3 mm per year). The pronounced decrease in RSLR for the 20th century in the Rioni Delta likely reflects localized subsidence at the tide gauge station rather than a delta-wide RSLR trend64 (see methods). The greatest change in RSLR was observed in the Nile Delta, surging from 1 mm per year in the 20th century to over 10 mm per year in the 21st century (Figure 5b). Additionally, we find that all deltas in low- and middle-income countries in the present-day Unprepared Divers groups, transitioned from the Latent Threats group, suggesting stagnant adaptive capacity despite worsening RSLR. In contrast, deltas such as the Yangtze (China), Pearl (China) and Vistula (Poland) shifted from Latent Threats to Rising Ready, demonstrating increased adaptation readiness due to economic growth, raising governance and institutional capacity to adapt, although RSLR has surged (Figure 5b). While deltas in Rising Ready quadrant showed potential for robust adaptation policies, deltas in Unprepared Divers remain trapped in cycles of reactive, underfunded responses.
These long-term trajectories reveal a challenging reality in which deltas with strong adaptive capacity still struggle to manage persistent subsidence and climate-driven sea​level rise, while those with limited capacity face severe and escalating risks on both fronts. Ideally, the goal for sustained coastal resilience is a transition to Safe Havens, characterized by both low RSLR and high adaptation readiness. However, only two deltas (the Fraser and Rioni) currently occupy this quadrant. As the climate crisis and
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related threats intensify, the challenge for the up to 500 million people in deltas demands more than incremental adaptation; it requires global attention to subsidence and other key vulnerability drivers while advancing governance approaches that preserves land elevation and long-term habitability over short-term adaptation.
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Methods
Selection of Global River Deltas
We selected 40 deltas globally, prioritizing 35 deltaic systems with the greatest exposed area and population currently below sea level, supplemented by 5 less-exposed deltas of local and regional significance and previously identified risks13. To assess the 35 deltas with the greatest exposure among global river deltas, we used 955 delineated delta boundaries from Edmonds et al.4 and identified coastal delta elevation below sea​level using the DeltaDTM dataset v1.1 (Ref.16) resampled to 3 arcseconds (100 m) and referenced to mean sea level65. Global delta population was estimated by aggregating 100 m resolution WorldPop population count for each delta, which is calibrated to the 2020 national population estimates from the United Nations population data66.
Our estimates show that globally, 42,000 km2 of the delta area at present lies below sea level, containing a population of 10.2 million people (Supplementary Figure 1). The 35 deltas with the greatest exposure included in this analysis are Nile, Mississippi, Rhine- Meuse, Mekong, Niger, Cauvery, Po, Red, Vistula, Rhone, Amazon, Ganges Brahmaputra, Chao Phraya, Kabani, Pearl, Rio Grande, Yangtze, Yellow, Senegal, Indus, Saloum, Grijalva, Ceyhan/Seyhan, Rioni, Cross, Chikuma-gawa, Volta, Brantas, Neva, Wouri, Irrawaddy, Ogooué, Zambezi, Magdalena, and Ciliwung (Supplementary Figure 1). The cumulative delta area and population below sea level are 38,000 km2 and 10.1 million people, respectively, reaching within rounding errors of the global total exposure. Deltas such as the Danube, Orinoco, and Shatt-el-Arab met the selection criteria but were excluded due to challenges associated with the synthetic aperture radar (SAR) imaging and interferometric analysis (including spatial coverage gaps,

excessive temporal baselines, poor coherence, and limited data availability). The five supplementary deltas are Brahmani, Mahanadi, Godavari, Parana, and Fraser deltas.
The final selection of 40 deltas spans five continents (Asia, Africa, Europe, North America, and South America) and 29 countries, encompassing deltas with noted and emerging environmental, geophysical, and social vulnerabilities13,30, historically sinking river deltas2, and densely populated coastal megacities3,23,67.
SAR dataset
We analyzed 132 SAR frames from Sentinel-1A/B C-band satellite, spanning September 2016 to May 2023. The SAR datasets include 3,300 images obtained in single-orbit geometry (ascending or descending) for 13 deltas and 10,700 images obtained in both ascending and descending orbits for 27 deltas. See Supplementary table 3 for the complete inventory of SAR images used in each delta. For each SAR dataset, we applied a multi-looking factor of 32:6 (range:azimuth) to improve the signal- to-noise ratio, obtaining an average pixel resolution of ~75 m. To minimize decorrelation errors, we also constrained the interferometric pairs to a maximum temporal and perpendicular baselines of 300 days and 80 m, respectively. For deltas requiring multi​frame coverage (e.g., Amazon, Mississippi, Mekong, Ganges-Brahmaputra, Nile, Red, Niger), we mosaicked overlapping adjacent frames along a single path prior to processing or post-processed deltas with coverage spanning multiple paths to ensure full spatial continuity across expansive deltas.
SAR Interferometric Analysis
We processed each SAR frame or single-path multiple-frame coverage to generate high-spatial resolution maps of surface deformation for the 40 deltas using multitemporal interferometric synthetic aperture radar (InSAR) Wavelet-based InSAR (WabInSAR) algorithm68-71. First, we generated 59,000 high-quality interferograms from the coregistered SAR images using GAMMA software72,73, with an interferogram pair selection algorithm71 optimized through dyadic downsampling and Delaunay triangulation. To minimize phase errors and to maximize the pixel density associated with dynamic surface changes over deltas (e.g., flooding, vegetation growth, or soil saturation), we screened the initial set of interferograms based on their coherence stability to exclude interferograms with high coherence variability, while maintaining a 50% temporal baseline coverage. The final selection retained ~55,000 interferometric pairs (93%) for further analysis. Additionally, we implemented a statistical framework to discard noisy pixels with average coherence less than 0.7 for distributed scatterers and amplitude dispersion of greater than 0.35 for permanent scatterers71. Next, we employed a minimum cost flow phase unwrapping algorithm optimized for sparse coherent pixels74,75 to estimate the absolute phase changes of the elite (less noisy)


of residual orbital error76 and minimized the effects of topography-correlated components of atmospheric phase delay and spatially uncorrelated DEM error by applying a suite of wavelet-based filters68. Lastly, we estimated the timeseries and line-of-sight (LOS) using a reweighted least-squares optimization69. For large deltas requiring overlapping SAR frame coverage, the LOS velocities were mosaicked to ensure seamless spatial representation across the entire delta.
In the 27 deltas with overlapping spatiotemporal SAR satellite coverage and different orbit geometries (ascending and descending), we estimate the horizontal (east-west) and vertical land motion (VLM) components of deformation by jointly inverting the LOS time series of the ascending and descending tracks77-79. To this end, we identified the co-located pixels of the LOS time series by resampling the pixels from the descending track onto the ascending track to obtain two co-located LOS displacement velocities
. Given
and their associated variances
are the LOS displacement and variances for a given pixel, the model to combine the LOS velocities to generate a high-resolution map of the east-west and VLM displacements are given by Equation (1):

where, represents the unit vectors for projecting and displacements onto the LOS, which is a function of the heading angle of the satellite and incidence angles of each pixel80. The solution to the model in Equation (1) is given by Equation (2):
(2)
where, represents the unknowns: and , are the observations
, and is the weight matrix, which is inversely proportional to the observant variances
. To obtain the parameter variance-covariance matrix , we employ the concept of error propagation81 to calculate the associated parameter uncertainties given the observation errors using Equation (3):
(3)
For the 13 deltas imaged in single orbit geometry (ascending or descending), we projected the LOS velocities to the vertical direction using Equation (4) assuming the principal deformation is vertical.

(4)
where, is the local incidence angle for each pixel. This assumption of zero gradients in the horizontal components of deformation is tenuous for most coastal areas, given the significant localized horizontal motion noted (up to 10 mm per year) across the 27 deltas with multiple orbit geometries. Nevertheless, the assumption is necessary given that overlapping ascending and descending orbit geometries are available for less than 50% of global land areas (for European Space Agency Sentinel-1 satellite), limiting the ability to resolve 2D deformation trends. However, under this assumption, it is necessary for the locally referenced VLM estimates to be transformed into a globally consistent reference frame, particularly for comparative studies across multiple regions18, 33.
To transform the VLM rates from a local to a global reference frame, we utilized the available global navigation satellite systems (GNSS) datasets for 17 deltas (the Fraser, Mississippi, Rio Grande, Rhine-Meuse, Rhone, Po, Vistula, Red, Amazon, Parana, Ciliwung, Brantas, Ganges Brahmaputra, Chao Phraya, Mekong, Pearl, and Chikuma- gawa) to align the velocity reference point with GNSS-derived rates, ensuring consistency with the IGS14 global reference frame. The GNSS datasets across the 16 deltas were obtained from the Nevada Geodetic Laboratory82 and previous regional studies83. In deltas without GNSS stations, we utilized the global VLM model84, which mainly includes long-wavelength deformation signals due to total water storage changes, tectonics, and glacial isostatic adjustment (GIA) referenced to the IGS14 global frame. We then applied an affine transformation to align the VLM rates from local to the IGS14 global reference frame25,85. This approach ensures consistency in VLM rates across global deltas by correcting for local reference biases and should be the standard practice in coastal research employing InSAR33. When comparing these measurements to other subsidence rate estimation techniques in deltas, such as RSET, marker horizons, sediment cores, repeat LiDAR, or other InSAR measurements, careful consideration must be given to differences in both reference frames and temporal ranges. Reference frame incompatibility may require adjustments to align local or relative measurements with other datasets, while mismatches in monitoring periods introduce temporal biases that complicate direct quantitative comparisons.
The distribution of the standard deviations (precision of the results) for all pixels (20.5 million) across the 40 deltas is shown in Supplementary Figure 10. The standard deviation distribution shows that 99% of the pixels have a value <0.5 mm per year. We evaluated the accuracy of the results by comparing averaged VLM rates of pixels within a radius of 1
more than 100 independent GNSS data for 23 deltas (122

GNSS stations) with historical recorded rates and 15 deltas (81 GNSS stations) with timeseries overlapping the InSAR observation period (2014 2023) (Supplementary Figure 11). We found a strong correlation (0.7 0.8), between GNSS and InSAR velocities, with a root mean square error (RMSE) of 1.4 mm per year for long-term rates (Supplementary Figure 11a) and 1.2 mm per year for rates within the InSAR observation period (Supplementary Figure 11b). Note that some GNSS stations used for validation while within the broader processed SAR frame are outside the clipped delta boundaries. Note that the final delta extents were delineated using a tiered approach. Primary boundaries were derived from Tessler et al. 13, supplemented by Edmonds et al.4 for deltas not covered in the former. For extensive deltas where the entire delta surface is not analyzed (e.g., the Ganges Brahmaputra), boundaries were defined using the SAR spatial extent.
GIA Influence on Vertical Land Motion
We estimated VLM trends and the associated uncertainty due to GIA using the model by Caron et al.86, which was derived from a probabilistic ensemble of 128,000 GIA forward simulations. Each model solves the sea-level equation for a compressible, viscoelastic Maxwell Earth under late-Pleistocene ice-sheet loading, incorporating solid​Earth deformation, geoid change, and rotational feedback. The ensemble samples a wide range of Earth rheological structures, including lithospheric thickness, upper and lower mantle viscosities, and scaling factors applied to regional deglaciation histories over the past 122,000 years. Likelihoods were assigned to each simulation based on fit to a global dataset of 11,451 relative sea-level records and 459 GNSS-derived uplift rates using a Bayesian framework that accounts for data uncertainties and spatial correlations. The resulting posterior distributions enable spatially resolved estimates of GIA-driven VLM with formal uncertainty.
For each delta, we extracted the ensemble mean and standard deviation in GIA vertical velocity to correct observed deformation rates and isolate contemporary, non-GIA contributions to VLM. Supplementary Table 1 details the mean GIA-induced VLM, the associated standard deviation, and the percent contribution of GIA to the total observed VLM magnitude for each delta. GIA accounts for the largest proportion and exceeds (>100%) the total VLM in the Neva (540%) and Fraser (455%) deltas, where low observed VLM rates are substantially influenced by strong GIA uplift. Moderate GIA contributions (25 55%) are observed in five deltas, including the Rio Grande, Mississippi, Volta, Rhine, and Ogooué deltas. The majority (55%) of deltas exhibit minimal GIA influence, with contributions under 10%, indicating that observed VLM is primarily governed by contemporary anthropogenic and natural processes such as groundwater withdrawal, sediment compaction, or tectonics. In 28 67% (accounting for uncertainty) of the deltas, the sign and approximate magnitude of observed and GIA-

corrected VLM are consistent, implying limited distortion from GIA and the sustained expression of contemporary processes on the average local subsidence. In contrast, the Fraser and Neva deltas illustrate how substantial GIA-induced uplift in high-latitude, post-glacial regions can obscure contemporary subsidence processes through opposing vertical trends. In both cases, modest observed subsidence rates (Fraser: -0.4 mm per year and Neva: -0.2 mm per year) are counteracted by substantial GIA uplift of 1.8 ± 2.3 and 1.0 ± 0.3 mm per year, respectively.
Anthropogenic Drivers Datasets
We analyzed the relationship between major anthropogenic pressures on global deltas to subsidence and elevation loss by quantifying the contributions of groundwater storage change, sediment flux alteration, and urban expansion to the residual rates of sinking (after GIA correction) across the 40 deltas. These globally consistent datasets provide insights into human-induced impacts on land subsidence and elevation change in river deltas (Supplementary table 2).
Groundwater Storage Change (GWS): We derived 21st-century groundwater storage trends for all deltas by leveraging Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) satellite observations40,41. We utilized the JPL GRACE/GRACE-FO Level 3 mascon solutions (RL06.3)87,88, which provides monthly global estimates of Total Water Storage (TWS) change relative to a 2004.9 2009.999 mean baseline. The final solutions span 2002 to present and are derived from solving for monthly gravity field variations in terms of 4,551 equal-area 3-degree spherical cap mass concentration functions rather than global spherical harmonic coefficients. The mascon approach implements geophysical constraints during the Level-2 processing step to filter out noise, applies improved accelerometer data and standard corrections, including several geophysical adjustments, such as gravity anomaly due to ocean (GAD), GIA, degree-1, C20 and C30 replacement and representation on ellipsoidal earth87-89. We extracted TWS values at 3 mascon resolution (~300 400km spatial resolution) covering each delta area to compute representative regional water storage estimates. TWS change from GRACE contains contributions from groundwater storage (GWS), soil moisture storage (SMS), snow water equivalent SWE, and surface water storage (SWS) represented by Equation (5):
(5)
To isolate GWS change from TWS, we utilized the 1/4 global land data assimilation system (GLDAS) Noah model90 to remove changes in SMS and SWE contributions, and utilized the WaterGAP Global Hydrology Model (WGHM v2.2d)91,92 to remove SWS contributions. The contribution from SWE was negligible in most deltas given their

prevailing arid and semi-arid climate (Figure 1), though it was included to maintain consistency across all deltas. SWS components include contributions from rivers, lakes, wetlands, and reservoir storage within the GRACE footprint for each delta. The residual signal following removal of SWS, SMS, and SWE was interpreted as the GWS anomaly.
To estimate the temporal trend of groundwater storage changes, we applied harmonic analysis to account for annual and semiannual variations in the time series of the GWS anomalies. In standard practice, environmental variables (e.g., GRACE data, GNSS data, and sea-level anomalies) are modeled as time-invariant seasonal signals. However, response to environmental changes represented as seasonal signals is not time-invariant93-95. To account for this variability, we adopted the stochastic- seasonal model in Equation (6), where the harmonic amplitudes evolve as random walks, allowing for time-dependent seasonal variations and the seasonal trends are modeled using a Kalman filter95.
(6)
where, is the reference epoch, is the reference intercept at , is the time​varying rates, indexes the annual (
) and semiannual ( components, and are the harmonic amplitudes. ,
, and are modeled as random walk parameters. To estimate the long-term multi-year trend of GWS from the time​varying rates, we computed the weighted average of the time varying rates using Equation (7):
where, is the total number of epochs in the time series and is the variance of the rate at epoch , derived from the posterior covariance matrix of the Kalman filter. The uncertainty in the rate is given by Equation (8):
(8)
Supplementary Figures 12 and 13 compare the time-invariant model (black curves) with the stochastic-seasonal model (red curves) for GRACE-derived GWS and RSLR from tide gauges in the Mississippi and Chao Phraya deltas. These plots illustrate that a stochastic seasonal process better represents the observed variability in the time series. The post-fit residuals of the time-invariant model show some systematic seasonal patterns, particularly during periods when seasonal amplitudes deviate from the assumed constant values (Supplementary Figures 12b, 12d, 13b, 13d). In contrast, the stochastic model accommodates time-dependent variations in seasonal amplitudes,


13d), demonstrating the advantage of the stochastic seasonal model in capturing transient seasonal variations rather than fixed annual and semiannual cycles95.
The GWS rates for each delta are summarized in Supplementary table 2, while Figure 3a and Supplementary Figure 8a illustrate the relationship with the subsidence rates. Negative GWS trends indicate mass depletion, primarily driven by groundwater extraction, while positive trends represent net groundwater accumulation due to recharge processes, reduced extraction, or hydrological interventions. To evaluate the reliability of GRACE-derived groundwater storage (GWS) trends, we compared them with in-situ groundwater level trends for 18 deltas (Supplementary Figure 14). Groundwater levels were compiled from two publicly available sources: 13 deltas from Jasechko et al.96 and 5 deltas from the Global Groundwater Monitoring Network97. Given the spatial scale discrepancy between GRACE (basin-wide) and well observations (point-scale), we emphasized agreement in trend direction rather than absolute magnitudes. Each site was categorized based on the sign of the GRACE and well trends, and a confusion matrix was constructed to assess consistency. The analysis yielded an overall classification accuracy of 88.9%, with 6 sites exhibiting positive-positive trends (PPT) and 10 showing negative-negative trends (NNT). Only 2 sites showed mixed behavior (NPT or PNT), and no site exhibited fully opposing trends. Additionally, a moderate correlation (R = 0.7) was observed between the GRACE-based GWS and well-derived trends, further supporting the consistency of GRACE estimates at the basin scale despite localized variability in in-situ measurements. Although GRACE/GRACE-FO's coarse spatial resolution may not capture localized variations96, its basin-scale sensitivity is well-suited to characterizing basin-wide groundwater trends. Moreover, the dominance of groundwater extraction in many deltas2,26,36 likely ensures that GWS trends are the primary signal captured.
We find a modest linear correlation (R = 0.5) between GWS and subsidence rate; however, a cubic regression model (R=0.6) provides a better fit (Supplementary Figure 8a).
Sediment Flux Alteration: We obtained values for the sediment flux alteration for the 40 deltas from Nienhuis et al.34. This dataset provides a global assessment of fluvial sediment supply, distinguishing between pristine sediment fluxes (before substantial anthropogenic influences) and disturbed or contemporary sediment fluxes (reflecting human influences such as dam construction and land-use changes) within the contributing delta basins. We quantified the percent change in sediment flux for each delta using Equation (9), which expresses the relative alteration (increase or decrease) in sediment delivery due to human activities:
The pristine and disturbed sediment flux, along with computed sediment flux changes for each delta, are summarized in Supplementary table 2. A negative sediment flux change indicates a decline or loss in fluvial sediment supply (disturbed < pristine) due to human activities, while a positive sediment flux change reflects an increase or gain (disturbed > pristine). We acknowledge that this framework represents a simplified characterization of complex sediment delivery processes and may not capture all temporal variations in sediment supply. Additionally, some concerns have been raised about potential errors in global sediment flux datasets98, which we consider as a limitation in our analysis.
Figures 3a and Supplementary Figure 8b show the relationship between sediment flux change and subsidence rates. While a poor correlation (R <0.4) is observed, we find that 62% of the deltas (25 out of 40) exhibit negative sediment flux change, indicating widespread human-induced reductions in sediment supply.
Urban Expansion: Urban expansion is one of the most visible and rapid types of ongoing anthropogenic changes in river deltas6. To assess how population-driven land​use changes may impact subsidence rates across deltas, we used a global 1/8 (~12.5 km) urban land fraction dataset, derived from high-spatial-resolution remote sensing observations42. This dataset tracks the conversion of natural landscapes (e.g., wetlands and forests) into built environments and serves as a proxy for land-use changes that may exacerbate subsidence through increased infrastructure loading and increased groundwater demand. We quantified the urban fraction change in deltas in the 21st century by calculating the percentage change in the proportion of urban areas relative to total delta area between 2000 and 2020.
Supplementary table 2 summarizes the urban fraction dataset (2000 and 2020) and the urban fraction change for each delta. Figures 3a and Supplementary Figure 8c show the subsidence-urban expansion relationship across the 40 deltas. All deltas showed consistent urban expansion in the 21st century, ranging from relatively low increases (<1%) in the Ogooué river delta to significant increases (greater than 400%) in the Indus delta. However, despite this rapid expansion, the Indus delta remains one of the least urbanized, with only 0.4% of its total area classified as urban in 2020. In contrast, the Ciliwung (Jakarta) and Neva (Saint Petersburg) deltas exhibit the highest urban fractions, exceeding 50%. A logarithmic fit best describes the entire data and reveals a moderate but significant nonlinear inverse correlation (correlation, R = 0.38 0.51), indicating that deltas with significant urban land conversion tend to experience more


pronounced land sinking (Supplementary Figure 8c). Steadily urbanizing deltas, such as the Rio Grande and Rhine-Meuse, exhibit slower subsidence rates, whereas rapidly urbanizing deltas, such as the Brahmani and Yellow River deltas, show faster rates of land sinking. However, regional variability is evident, as some deltas deviate from the overall trend (e.g., Indus and Cauvery deltas). When excluding outliers (the Indus and Cauvery deltas), subsidence and urban expansion exhibit a strong linear correlation across deltas (Supplementary Figure 8c).
We also explored the relationship among the anthropogenic drivers (Supplementary Figures 8d to 8f), finding a low (R = 0.1 to 0.3) correlations depending on the specific driver.
Random Forest Analysis for Identifying Anthropogenic Drivers of Subsidence and Elevation Loss
Given the nonlinear and interacting relationships among GWS, sediment flux alteration, urban expansion, and residual land subsidence (after GIA correction) discussed above, a machine learning framework was implemented to model these complexities. First, we attempted a multilinear regression model, incorporating interaction terms between variables, formulated as Equation (10):
(10)
where, is the predicted VLM, is the intercept, are the predictor variables (GWS, sediment flux alteration, and urban expansion), are the regression coefficients for each predictor variable, represents the interaction effects between predictor variables, and is the residual error term. However, this multilinear regression model yielded poor performance (correlation, R = 0.38; R2 = 0.15; RMSE = 4.7 mm per year) (Figure 3a), demonstrating the inefficiency of linear models to capture these complex dependencies and the need for a machine learning model.
Next, we employed a random forest (RF) machine learning model to better account for these complex nonlinear interactions between variables. RF has been widely applied in environmental and hydrological studies to model complex systems with nonlinear dependencies, outperforming traditional regression techniques in similar contexts99-103. The RF model is well-suited for this analysis due to its ability to handle small datasets (40 deltas), its simpler hyperparameter tuning, and its capability to compute feature importance. In this study, the primary objective for applying RF is not to predict the subsidence rates, but rather to extract key features that explain the dynamic relationships between anthropogenic drivers and subsidence across global deltas.


independent regressor decision trees , where each tree is trained on a randomly sampled subset of the input features (
, representing GWS, sediment flux, and urban expansion) through bootstrap aggregation (bagging). Key hyperparameters, including the number of trees, maximum tree depth, minimum samples per split, and minimum samples per leaf, were optimized using grid search with 5-fold cross-validation to minimize overfitting and maximize predictive accuracy104. This ensemble approach enhances predictive performance by creating a learning environment where large number of predictors work on various characteristics of the input features and learn to combat overfitting and generate predictions (VLM) by computing the average of all decision tree predictions, given by Equation (11):
(11)
The RF regressor optimizes each decision tree using the mean square error (MSE) defined in Equation (12), as a cost function to identify node splits and model performance during model training and testing.
(12)
where, is the observed VLM rate for individual delta , is the predicted VLM rate, and N is the total number of observations. To assess uncertainty, we used Monte Carlo simulations to create multiple holdout fractions (0.1 to 0.5) across 100 iterations, randomly subsampling the 40 deltas for training and validation in each iteration. The final RF model predictions were obtained by averaging prediction estimates across all iterations. The final model performance was evaluated using coefficient of determination (R2), RMSE, and mean absolute error (MAE):
(13)
(14)
(15)
where, is the mean observed VLM rate, and the other variables are defined in Equation (12). The feature importance for input feature
was

computed using Equation (16), based on the cumulative reduction in node, impurity among all the trees:
(16)
Where N denotes the total number of trees and denotes the change in impurity.
Although RF effectively captures nonlinear relationships, its ensemble structure limits delta-specific interpretability. To resolve local insights into delta-specific subsidence drivers, we applied Local Interpretable Model-Agnostic Explanations (LIME), a technique within the field of Explainable Artificial Intelligence (XAI)105. LIME approximates black-box models like RF by fitting interpretable models to perturbed samples of the input data, allowing for local feature importance estimation. For each delta , LIME approximates the RF prediction locally by using a linear surrogate model trained on perturbed instances around . The explanation function is obtained using Equation (17) by solving the following minimization problem:
(17)
where is the local interpretable model for each delta , is the interpretable model, is the RF model, is a proximity kernel,
is the loss function
measuring the differences between and , and
penalizes complexity. This
process was repeated for each delta, and deltas with low LIME model fidelity (R2 < 0.5) were excluded to ensure reliable interpretation (Supplementary table 2). The final dataset for interpretation consisted of 30 deltas, where LIME produced more consistent feature importance estimates. The feature importance scores from LIME are normalized to obtain normalized LIME (nLIME) scores:
(18)
where is the LIME-derived coefficient for feature and is set for all features. The nLIME scores provide an instance-specific (local) explanation rather than a global one to evaluate the relative contributions of GWS, sediment flux alteration, and urban expansion in each delta. The nLIME values for each delta are summarized in supplementary table 2 and were analyzed in a ternary diagram to visualize the heterogeneity in delta-specific subsidence and elevation-loss drivers (Figure 3b).
It is important to emphasize that machine learning model predictions are inherently dependent on the input variables and their distributions. In this study, the predictor​response relationship implies that variations in predictor magnitudes (e.g., subsidence rates, GWS rates), dataset composition (e.g., inclusion or exclusion of specific deltas),


across deltas. Additionally, localized policy interventions, such as groundwater extraction regulations or sediment management initiatives, may alter subsidence and elevation change trends over time, potentially affecting future predictions. Therefore, while our RF-based analysis provides valuable insights into the anthropogenic drivers of subsidence and elevation loss, these results should be interpreted with an awareness of dataset limitations and the potential for evolving land-use and hydrological management practices. Furthermore, the inclusion of additional deltas, particularly those representing under-sampled geographic regions or differing geomorphic, socioeconomic, or governance conditions, may shift model behavior and feature rankings, as is typical in data-driven learning frameworks. Nonetheless, within the context of the current global delta sample and observed subsidence patterns, the RF-derived feature importance values provide a consistent and interpretable estimate of the relative influence of anthropogenic drivers under present conditions for these deltas.
Historical, Current, and Projected Sea-Level Rise Rates
We analyzed historical (20th century), present-day (early 21st century), and projected (2050 and 2100) sea-level rise rates to assess the relative and combined impacts of rising seas and sinking lands on global river deltas.
Historical relative sea-level changes were obtained from the Revised Local Reference database of the Permanent Service for Mean Sea Level (PSMSL)106,107, which provides monthly relative sea-level records from globally distributed tide gauge stations. These tide gauge records have undergone quality control procedures, including corrections for datum inconsistencies, jumps, and spurious data points, and validation through comparisons with neighboring tide gauge stations106,108. For this study, we selected 20 tide gauge stations across 15 deltas (the Mississippi, Rio Grande, Fraser, Amazon, Chao Phraya, Mekong, Red, Nile, Ganges Brahmaputra, Vistula, Rhine-Meuse, Chikuma-gawa, Yangtze, Pearl, and Rioni deltas), only considering stations within 100 m of the delta boundary and at least 5 years (20th century) of valid record. The RSLR rates for each delta were estimated by applying the stochastic seasonal model (Equations (6) to (8)) over the full observational record for each tide gauge. For deltas with multiple stations (e.g., the Mississippi, Ganges Brahmaputra, and Rhine-Meuse deltas), individual station rates were averaged to provide a delta-wide estimate of 20th century RSLR. Note that the representativeness of the derived RSLR may vary for each delta following individual tide gauge characteristics (e.g. is the station founded on bedrock
, is the station GNSS corrected).
Supplementary Figure 15 shows the time series of relative sea level over the 20th century for six representative deltas. Supplementary Table 1 provides a complete summary of the RSLR rates for the 15 deltas. The median 20th century RSLR trend


year in the Amazon delta (indicating declining 20th century sea level) to a maximum rate of 1.5 cm per year in the Chao Phraya delta (Figure 5b).
To estimate present-day (early 21st century) absolute (geocentric) sea-level rise rates, we used the multi-mission satellite altimetry data from 2001 to present, obtained from Copernicus Marine Environment Monitoring Service (CMEMS)109. This dataset provides gridded monthly sea level anomalies (SLA) referenced to a 20-year mean baseline (1993 to 2012). SLA estimates are derived from optimal interpolation, merging the Level 3 along-track measurement from multiple contemporaneous altimeter missions (Jason-3, Sentinel-3A, HY-2A, Saral/AltiKa, Cryosat-2, Jason-2, Jason-1, TOPEX/Poseidon, ENVISAT, GFO, and ERS1/2)109,110. Several necessary corrections have been applied to the raw altimetry data, including instrumental biases and drifts, geophysical, tidal, and atmospheric corrections, to ensure accurate SLA estimates. Monthly mean sea-level anomalies were obtained for each delta by spatially averaging the altimetry grid points within 100 m radius, culling outliers beyond the 95th percentile. Supplementary Figure 16 shows the monthly SLA time series in 6 deltas. We estimated the 21st century trends in sea level anomalies, using Equations (6) to (8). The altimetry- derived geocentric sea-level rise rates for the 21st century show exacerbating regional sea level rise rates over global sea-level estimates (~4 mm per year) for 45% of the deltas (18 out of 40) (Supplementary Table 1). Regional sea level rates vary from 0.2 mm per year in the Parana delta to 7.3 mm per year over the Mississippi delta (Figure 1 and Supplementary Table 1). However, a negative geocentric sea-level rate of -1.9 mm per year was observed in the Rioni Delta (Black Sea) (Supplementary Table 1). This long-term sea-level decline in the 21st century persists in the background of short-term fluctuations (Supplementary Figure 16d); a characteristic feature of Black Sea sea-level dynamics64. This 21st-century decline in geocentric sea level for the Rioni Delta represents more than a 100% reduction compared to historical (20th-century) rates, even when accounting for average VLM across the delta. To investigate this anomaly, we estimated VLM at the Poti tide gauge (Rioni Delta) by differencing 21st-century RSLR rates obtained from Poti tide gauge station from geocentric sea level rise. The resulting VLM rate of -6.7 mm per year matches the average InSAR-derived VLM rate (​5.9 ± 0.7 mm per year) within 100 m of the tide gauge. This rapid subsidence rate at the coast of Poti represents localized conditions and highlights the need for caution when extrapolating point-based tide gauge measurements to infer delta-wide or city-wide subsidence and exposure. Note that satellite altimetry data, while highly valuable for global sea-level monitoring, was primarily optimized for open ocean conditions. Coastal environments naturally exhibit additional complexity due to processes such as shelf circulation, freshwater discharge, and tidal amplification, which contribute to the inherent


observations.
We use projected sea-level rates from the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6)48, 111 to assess future sea-level rise rates across all deltas. The sea-level rate projections integrate process-based models that account for the key contributors to climate-induced sea-level change, such as thermal expansion, ocean dynamics, and glacier and ice sheet mass loss, and consider uncertainties in global temperature change and their influence on sea-level drivers48. We focus on the no-VLM 50th percentile (median) projected rates for 2050 (mid-21st century) and 2100 (end of the 21st century) under shared socioeconomic pathway 2 4.5 (SSP2 4.5) and SSP5 8.5 scenario. SSP5 8.5 represents a high reference scenario associated with the highest emission levels (global atmospheric CO2 concentrations exceeding 800 1,100 ppm by 2100) and associated warming of 3.3°C 5.7°C (Refs.48,112). These projections provide an upper-bound reference scenario, capturing the potential worst-case outcome for future sea-level rise. Figure 4c shows the comparison of projected sea-level rise rates with observed land subsidence rates.
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Figure 1. Land Subsidence in Global Deltas. Each circle represents the location of the 40 deltas evaluated in this study, color- coded by the average land subsidence rate. Circle size represents the percentage of delta area subsiding faster than geocentric sea​level rise (SLR). For visualization purposes, the geocentric SLR rate is displayed as the color gradient over entire watersheds/basins, though this does not represent the actual extent of exposure. A summary of these statistics is provided in Supplementary Table 1.

[image: image1.jpg]Mississippi, USA Niger, Nigeria

32VLM<0
52VLM<-3

Bl -10>VIM<-5

Bl VLM <-10

@Cflag Phraya, Thailand

K

"

y

-

.A.: North America
.A.: South America





Figure 2. Spatial Pattern of Vertical Land Motion (VLM) across Global Deltas. (a) Proportion of each delta exposed to different rates of subsidence. Note that only subsiding areas are represented in each bar and areas of uplift within each delta are omitted to emphasize the extent of elevation loss. Supplementary Table 1 summarizes the percentage of each delta affected by different subsidence ranges. Spatial map of VLM rates for the (b) Fraser (Canada), (c) Mississippi (USA), (d) Parana (Argentina), (e) Niger (Nigeria), (f) Rhine-Meuse (the Netherlands), (g) Po (Italy), (h) Ganges Brahmaputra (India-Bangladesh), (i) Chao Phraya (Thailand), (j) Mekong (Vietnam), (k) Red (Vietnam), (l) Pearl (China), (m) Yellow (China) deltas (background image: ESRI, streets-dark). Positive VLM (green-purple hues) suggest uplift or elevation gain, while negative VLM (yellow-orange-red hues) indicate land subsidence. The spatial VLM maps for the other 28 deltas are shown in Supplementary Figures 2 4.

Figure 3. Anthropogenic Drivers of Land Subsidence and Elevation Loss in Global Deltas. (a) Bubble plot showing the relationship between vertical land motion (VLM) rates and anthropogenic drivers across deltas. Plot shows VLM rate (mm per year) against groundwater storage rate (mm per year). Bubble colors represent sediment flux change (%), where positive values (blue colors) indicate increased sediment supply due to human activities (and thereby increased potential to gain elevation and compensate subsidence-induced elevation loss), while negative values (yellow-orange-red colors) indicate a decline in sediment availability. Bubble size indicates urban fraction change (%), with larger circles representing a greater urban expansion over the 21st century. The dashed line represents the multilinear regression (MLR) fit. See Supplementary Figure 8 for individual pairwise relationships between each anthropogenic driver and VLM. (b) Ternary plot of subsidence rates with normalized Local Interpretable Model-agnostic Explanations (LIME) feature importance (nLIME) scores. A summary of the anthropogenic driver statistics is provided in Supplementary Table 2.

Figure 4. Relative Contributions of Land Subsidence and Sea-level rise (SLR) in Global Deltas. (a) Bubble plot comparing geocentric (absolute) SLR (mm per year) and land subsidence (mm per year) across 40 deltas. Deltas where subsidence rates exceed geocentric SLR fall to the right of the 1:1 line, while those where geocentric SLR exceeds subsidence fall to the left. Bubble colors indicate the total delta population, ranging from fewer than 100,000 (lighter colors) to more than 100 million (darker colors). Bubble size represents the percentage population living on delta land areas subsiding faster than geocentric SLR. (b) Same as (a) but considering only the population living at elevations below 1 m. Note that Brantas and Yellow deltas have values greater than 15 mm per year and are not represented on the plot for visual clarity. (c) Bar plots comparing the range of land subsidence rates, contemporary and projected SLR for 30 representative deltas. The maximum subsidence rate is calculated as the median of the 50 highest rates to avoid biases from single extreme values. The dashed vertical line shows the maximum 2100 projected SLR rate across all deltas. A summary of the population, land subsidence, and SLR ranges is provided in Supplementary Table 1.
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	



Figure 5. Relative Sea-level rise (RSLR) and Adaptive Capacity in Global Deltas. (a) Scatter plot showing the relationship between RSLR and the Notre Dame Global Adaptation Index (ND-GAIN) adaptation readiness score for 40 deltas in the 21st century. The horizontal dashed line represents the current global sea-level rise (~4 mm per year), while the vertical

as defined by Andrijevic et al.55. (b) Same as (a) but including both 20th- and 21st-century data for 15 deltas. Arrow markers illustrate the
20th century to the 21st century. The four quadrants represent: 'Unprepared Divers' (deltas with high RSLR, low adaptation readiness); 'Rising Ready' (deltas with high RSLR, high adaptation readiness); 'Latent Threats' (deltas with low RSLR, low adaptation readiness); and 'Safe Havens' (deltas with low RSLR, high adaptation readiness). A summary of RSLR and ND-GAIN adaptation scores for both centuries is provided in Supplementary Table 1.
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