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Abstract  

Misinformation poses a significant challenge to modern society, yet our 

understanding of how people process false information remains limited. This thesis 

investigates the computational and neural mechanisms underlying learning from false 

information, with a focus on whether well-established learning biases persist even when 

information is debunked. Across three studies combining behavioural testing, 

computational modelling, and neuroimaging, I demonstrate that people continue to 

learn from information explicitly marked as false, and that this learning is biased. In the 

first study (two experiments), using a reinforcement learning task, I show that 

confirmation bias persists for false information. Participants exhibited higher learning 

rates for confirmatory versus disconfirmatory feedback no matter the veracity. The 

second study, using a belief-updating paradigm, reveals that optimistic update bias 

similarly persists for false information. Participants updated their beliefs more strongly 

in response to false good news than false bad news about adverse future life events. 

Computational modelling across both paradigms identified a consistent pattern: 

a model with four learning rates, separating information desirability (confirmatory/good 

news versus disconfirmatory/bad news) and accuracy (true versus false), best explained 

participants' behaviour. Further, the strength of both confirmation bias and optimistic 

update bias was similar for true and false information. Albeit effective in reducing false 

information integration, debunking was less effective for desirable vs undesirable false 

information. 

The third study used functional MRI to examine the neural basis of biased false 

information processing. Results revealed that activity in the ventromedial prefrontal 

cortex (vmPFC) was modulated by an interaction between accuracy and confirmation, 

showing higher activation when participants learned that confirming (vs disconfirming) 

evidence was true, or that disconfirming (vs confirming) evidence was false. These 

findings identify mechanisms that support learning from false information despite 

debunking, with implications for understanding vulnerability to misinformation and 

developing effective interventions. 
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Chapter 1: Introduction 

1.1 Introduction Overview 
In this introduction, I will lay the groundwork for my thesis by arguing for a 

computational approach to studying how people learn from false information. I will first 

outline the scope of the problem by establishing its scale and reviewing psychological 

accounts of why false beliefs emerge and persist. I will then posit that a key reason for 

this is biased information integration, reviewing studies that show we form false beliefs 

by selectively filtering true information (e.g., Lord, Ross, & Lepper, 1979; Kunda, 1990; 

Nickerson, 1998; Epley & Gilovich, 2016; Garrett & Sharot, 2016; Van Bavel & Pereira, 

2018).  Next, I propose that another reason why false beliefs persist is that a similar 

biased mechanism might also be at play when processing false information. Finally, I 

outline how the framework of reinforcement learning (RL) has been successful in formally 

modelling and quantifying these biases for true information; therefore, I decided to use a 

similar computational modelling approach to test whether the well-documented biases 

(e.g., confirmation bias) exist in the face of false information, generating false beliefs.  

1.1 The Problem of False Beliefs & False Information 

1.1.1 Defining False Beliefs and False Information 
False beliefs occur when one’s mental representation of the world does not 

correspond to its actual state (Wimmer & Perner, 1983). Such beliefs are often deeply 

held and can influence one’s judgments, decisions, and behaviours (Ecker et al., 2022). 

For example, a person may hold the false belief that an unproven medication like 

ivermectin is an effective cure for a viral disease like COVID-19 (Van Scoy et al., 2022) or 

the belief that the 9/11 terrorist attacks were an inside job (Nyhan & Reifler, 2010) despite 

any proof. One of the reasons for the formation of false beliefs is exposure to false 

information. Put simply, false information is the external claim, while a false belief is the 

internal conviction that can be formed once you are exposed to false information.  

False information refers to information that is verifiably false (Aïmeur et al., 2023) 

and represents an incorrect view of the state of the world (Pennycook & Rand, 2020). This 
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definition, however, encompasses several related concepts such as fake news (Allcott & 

Gentzkow, 2017), misinformation (Ecker et al., 2022), and disinformation (Kapantai et al., 

2021). One can distinguish between these concepts using two features: intent - whether 

the purpose is to mislead or cause harm - and authenticity - whether the content is 

verifiably false or genuine (Aïmeur et al., 2023). For instance, misinformation is a type of 

false information that does not intend to mislead, while disinformation does intend to 

mislead, so the only difference between the two is in the purpose behind them. In 

practice, however, it is difficult to understand the intention behind sharing false 

information (Allen et al., 2025; Pennycook & Rand, 2021), so following Pennycook & Rand 

(2022), I will use “False Information”, “Misinformation”, and “Disinformation” 

interchangeably as “any information that turns out to be false”. This is in line with how a 

recent consensus report from the American Psychological Association (APA) defined 

misinformation: any information that is demonstrably false or otherwise misleading, 

regardless of intention or source (van der Linden et al., 2023).  

1.1.2 Consequences of False Information 
The proliferation of false information poses a danger to societies worldwide. A 

primary concern is its corrosive effect on civic and social cohesion. False narratives 

represent a threat to democratic processes, as they often spread along partisan lines, 

reinforcing existing political divisions and eroding public trust in institutions like science, 

government, and the media (Lazer et al., 2018). This erosion can have violent 

consequences, as demonstrated when online conspiracy theories spill over into real-

world attacks, such as the “Pizzagate” incident (Fisher et al., 2016). The incident involved 

an online conspiracy theory accusing a Washington D.C. pizzeria of housing a child 

trafficking ring run by prominent Democratic Party officials. Motivated by these claims, a 

man travelled to the restaurant and fired an assault rifle inside to “self-investigate” and 

rescue children he falsely believed were captive (Fisher et al., 2016).  

Beyond the civic sphere, false information contributes to vaccine hesitancy, 

obstructs disease containment measures, fosters divisive rhetoric, and leads to 

misallocation of vital health resources (Borges do Nascimento et al., 2022; Gabarron et 

al., 2021; Pierri et al., 2022; Roozenbeek et al., 2020; Zimmerman et al., 2023). The 

economic impact can also be severe, such as when a false tweet from a compromised 
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account temporarily erased billions in stock market value (Rapoza, 2017). This 

widespread societal harm underscores the need to understand how false information is 

learned and integrated into an individual's system of beliefs. To do so, we should first 

recognise that while the problem of false information feels modern, its roots are ancient 

and extend to other animals.  

1.1.3 The Pervasiveness of False Information 

The use of false information as a tool of influence is a consistent feature of human 

history, dating back thousands of years (Soll, 2016). From the fabricated charges that led 

to the death of Socrates in ancient Athens to Roman emperors using propaganda on 

coins, leaders have long understood the power of manipulating public perception 

(Aïmeur et al., 2023). This practice continued through events like the "Great Moon Hoax" 

of 1835, which saw a newspaper publish fictional articles about life on the moon as fact, 

and the systematic state-sponsored propaganda of the 20th century's major conflicts 

(Allcott & Gentzkow, 2017; U. K. H. Ecker et al., 2022).  

More recently, persistent falsehoods, such as the retracted and debunked link 

between vaccines and autism (Lancet, 2010), demonstrate how damaging 

misperceptions can endure (Lewandowsky et al., 2012). The manipulation of information 

has therefore been a constant force shaping human behaviour, but humans are not the 

only animals engaging in misinformation. Indeed, this behaviour is a well-documented 

phenomenon among other animals in the form of deception: the act of transmitting 

misinformation to mislead others (Drerup et al., 2025; Mitchell, 1986; Šekrst, 2022; 

Stuart-Fox, 2005; Whiten & Byrne, 1988). Examples include chimpanzees averting their 

gaze from food to avoid giving cues to others, cornered guenons emitting a false social 

alarm call to end an aggressive chase, chimpanzees feigning a limp to avoid a dominant 

individual, and low-ranking gorillas building "fake nests" to covertly approach a desirable 

infant (Whiten & Byrne, 1988).  

Given how common transmitting false information is across our own history and 

throughout the animal kingdom, it is clear this is not a superficial or modern problem. To 

understand why false beliefs emerge and persist when exposed to such false 
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information, I will now turn from this broad context to the specific, psychological 

accounts of what makes our species susceptible to it. 

1.1.4 Psychological Accounts of Why False Beliefs Emerge 
and Persist 

1.1.4.1 Inattention and Motivated Reasoning 
It is useful to think of inattention and motivated reasoning as two interacting 

pathways that lead to the formation of false beliefs. The first pathway is a failure to engage 

in reasoning. This is pure inattention or "lazy thinking," where an individual's reliance on 

intuition in a fast-paced environment leads them to accept or share a falsehood without 

deliberation, regardless of its content (Bago et al., 2020; Pennycook & Rand, 2021). 

Simple prompts asking people to consider accuracy are effective at reducing belief in 

false headlines, indicating that this lack of scrutiny is a major driver of the problem 

(Brashier et al., 2020; Pennycook et al., 2021). For instance, Pennycook et al. (2021) had 

participants in the treatment group rate the accuracy of a single non-partisan news 

headline before performing the main news-sharing task. The results consistently showed 

that this intervention significantly increased sharing discernment, leading participants to 

be less likely to share false headlines while their willingness to share true headlines 

remained unchanged. 

However, it is important to recognize that this reliance on intuition is not a 

shortcoming in and of itself. These heuristic responses are often adaptive strategies for 

efficient decision-making under uncertainty (Gigerenzer, 2008). In most daily contexts, 

reliance on simple cues - such as familiarity or social consensus - is an effective shortcut 

to the truth. The vulnerability to false information arises not because these heuristics are 

fundamentally broken, but because the modern information environment (e.g., social 

media feeds containing clickbait and bots) is designed to exploit them. Therefore, what 

appears as "lazy" thinking is often an adaptive trade-off that is not suited to a novel digital 

context. 

The second pathway is a biased treatment of reasoning. This is motivated 

reasoning, where an individual's goal is not to find the truth, but to defend a prior belief 

or identity (Kunda, 1990). An individual will selectively use their attention and scrutiny 
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only towards information that challenges their worldview, while uncritically accepting 

information that aligns with it. A classic study on capital punishment powerfully 

demonstrated this: when shown the exact same mixed body of evidence, both supporters 

and opponents of the policy became more convinced of their initial positions, a 

phenomenon known as attitude polarisation (Lord, Ross, & Lepper, 1979). Therefore, 

while pure inattention is a failure to scrutinize, motivated reasoning is a selective, biased 

way to scrutinize. 

The broad concept of motivated reasoning is relevant to computationally defined 

learning biases in response to misinformation that are the focus of this thesis. Motivated 

reasoning is a descriptive theory proposing that human reasoning is often directed by 

goals other than accuracy, such as defending a prior belief or identity (Kunda, 1991). In 

contrast, biases like the Optimistic Update Bias (Sharot et al., 2011) or Confirmation Bias 

(Palminteri et al., 2017) are formal, mechanistic accounts of how this motivated 

reasoning can be implemented at the level of trial-by-trial learning. These learning biases 

can therefore be understood as the computational instantiation of the broader concept 

of motivated reasoning, quantifying the theory. Whilst motivated reasoning describes the 

'why' - the drive to maintain a desired belief - the biased learning models used in this 

thesis will address the ‘how'.  

1.1.4.2 The illusory truth effect  

The illusory truth effect describes how simply being exposed to a false headline, 

even once, increases its perceived accuracy and the likelihood of believing it later 

(Dechêne et al., 2010). This effect can persist for weeks and occurs even when stories 

are labelled as contested or are inconsistent with a person's ideology, although 

implausibility can be a boundary condition (Pennycook et al., 2018; Unkelbach et al., 

2019; Wang et al., 2016). This effect is also relevant to “errorful” learning, where learners 

are exposed to and then corrected on false information (Kornell et al., 2009). Whilst 

generating errors can sometimes strengthen later memory for the correct answer, initial 

exposure to misinformation can also increase its familiarity and thus perceived 

plausibility, amplifying the risk of illusory truth (Fazio et al., 2019). 
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An fMRI study has implicated the perirhinal cortex (PRC) in mediating the illusory 

truth effect (Wang et al., 2016). Twenty-four participants were scanned while they rated 

the truthfulness of unknown statements. In an initial exposure phase, participants rated 

180 trivia statements, with each statement presented twice to enhance fluency. Later, in 

the MRI scanner, they rated the truthfulness of 60 repeated unknown, 60 new unknown, 

30 repeated known (i.e., they had seen the statements before), and 30 new known 

statements on a 6-point confidence scale. The fMRI analyses focused on "maybe false," 

"maybe true," and "probably true" responses to unknown statements. The imaging 

analysis revealed that the PRC was the only brain region to show a significant interaction 

between repetition and perceived truth. Specifically, PRC activity increased with truth 

ratings for repeated statements (i.e., as statements were perceived as truer). However, 

PRC activity decreased with truth ratings for new statements. A trial-by-trial analysis 

further corroborated these findings, showing that increases in PRC activity predicted 

increases in the perceived truth of repeated statements, while decreases in PRC activity 

predicted increases in the perceived truth of new statements. This neurobiological 

evidence is important because it provides a mechanistic basis for the "fluency heuristic" 

account of the illusory truth effect. It suggests that our susceptibility to this bias is not a 

failure of high-level, critical reasoning, but rather the result of a low-level, automatic 

memory process.  It appears that the brain is misinterpreting the signal for familiarity, 

processed by the PRC, as a signal for truth. 

1.1.4.3 Continued Influence Effect  

While the illusory truth effect describes how repetition can make a falsehood feel 

true, the Continued Influence Effect (CIE) explains a different but related challenge: why 

misinformation remains influential even after it has been explicitly corrected retracted 

(M. S. Chan & Albarracín, 2023; M.-P. S. Chan et al., 2017; Ecker et al., 2010; Johnson & 

Seifert, 1994; Lewandowsky et al., 2012). The key distinction is the presence of a 

retraction. The illusory truth effect is a phenomenon of belief formation driven by fluency, 

whereas the CIE is a phenomenon of belief updating failure. It describes how a known 

correction often fails to eliminate the influence of the original, now-debunked 

information, which continues to shape memory and reasoning.  
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A classic study  (Johnson & Seifert, 1994) illustrating the CIE involved a story about 

a warehouse fire, which was initially blamed on negligently stored hazardous materials. 

Participants were later told that this detail was false, and the closet was empty. Despite 

remembering the correction, their subsequent inferences about the fire were still shaped 

by the debunked information (Johnson & Seifert, 1994). This occurs because the original 

information is not simply erased but coexists with the correction. This principle is well-

established in research on associative learning, where the "extinction" of a conditioned 

response is understood not as the erasure of the original memory, but as the formation 

of a new, competing memory that inhibits the old one (Bouton, 2004). Similarly, a factual 

correction does not delete the original misinformation but instead creates a new belief 

that must actively compete with the original, often more compelling, narrative. People 

can then fail to retrieve the correction at the right moment or may struggle to update their 

understanding. This is particularly true if the correction creates a "causal gap" - that is, it 

removes the explanation for an event without offering an alternative (Ecker et al., 2010, 

2022). This phenomenon is related to a broader tendency of some individuals to be less 

critical of weak or nonsensical claims, sometimes called "pseudo-profound bullshit", 

and to overestimate their own expertise, making them more vulnerable to falling for 

misinformation in the first place (Pennycook & Rand, 2020).  

1.1.4.4 Emotional Content  

Misinformation tends to elicit stronger emotional responses, particularly outrage, 

compared to reliable sources (McLoughlin et al., 2024; Rathje & Van Bavel, 2025). 

Misleading narratives are often crafted with emotionally charged content, using potent 

words like 'fight,' 'greed,' or 'evil' to provoke a reaction. This strategy is effective at 

capturing attention and prompting people to spread the content before they even know it 

is accurate. Consequently, efforts to combat misinformation that rely solely on factual 

corrections face a significant challenge, as they fail to address the underlying emotional 

drivers that make the content so compelling (Brady et al., 2020; Han et al., 2020). 

From an evolutionary perspective, this susceptibility is a feature of a cognitive 

system designed for survival. In the ancestral environment, paying attention to emotional 

stimuli - particularly those signalling threat (fear) or moral violation (outrage) - was crucial 
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for physical safety and group cohesion (Haselton & Nettle, 2006). Therefore, emotional 

information is prioritised, capturing attention rapidly and automatically to ensure that 

survival-relevant cues are not missed. Furthermore, this could suggest emotional 

misinformation is difficult to erase from memory. Under the framework of Error 

Management Theory, the cost of a false negative (failing to remember a valid threat, like 

a predator) is fatal whilst the cost of a false positive (believing a false alarm) is simply 

inconvenient (Haselton et al., 2015). Therefore, human memory is biased to retain 

emotionally arousing information as a protective mechanism.  

1.1.4.5 Theory of Mind and Missing Social Cues 

The evolutionary sensitivity to emotional content does not mean that we could 

always be fooled. Just as natural selection has shaped our attention to prioritize survival-

relevant threats, it has also equipped us with counter-mechanisms to verify the source 

of that information. To understand the limits of our susceptibility - and the extent to which 

it is actually possible to fool people – I will take a look into a cognitive tool at our disposal 

to filter untrustworthy sources: Theory of Mind - the ability to attribute mental states, 

such as beliefs and intentions, to others (Sperber et al., 2010). When evaluating a claim 

from others, individuals simulate the mind of the source to assess two things: 

competence (do they know the truth?) and benevolence (do they intend to share it?) 

(Sperber et al., 2010). Consequently, people are difficult to fool thanks to such 

monitoring mechanisms whereby if someone detects cues of deceptive intent, they tend 

to discount the information. However, false beliefs can emerge when this monitoring 

mechanism fails, resulting in people missing the social cues. It is plausible that digital 

environments weaken this defence by stripping away the social cues (e.g., facial 

expressions) required for Theory of Mind to function effectively. In this view, 

misinformation succeeds by mimicking the signals of a benevolent source, bypassing the 

detectors that would otherwise prevent the false belief from taking root. 
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1.1.5 Socio-Technical Reasons for False Information 
Spread 

 1.1.5.1 Social and Habitual Drivers of Sharing False 
Information 

The decision to share information is often driven by factors other than a concern 

for its accuracy. People may share information they know is inaccurate to fulfil other 

psychological needs, such as signalling group membership, expressing a moral stance, 

self-promotion, or even to incite chaos (McLoughlin et al., 2024). Social media platforms 

can amplify this behaviour through their design. These systems often prioritize content 

that is highly engaging, which frequently includes extremist, emotive, and polarizing 

misinformation (Rathje & Van Bavel, 2025). This design means that platforms can end up 

amplifying false content even if users are interacting with it to express outrage or 

disagreement (Budak et al., 2024). Therefore, users might develop social media habits of 

posting whatever is most likely to attract attention (Ceylan et al., 2023). Once these 

habits take hold, the act of sharing can become a thoughtless reflex, performed with little 

consideration for the truthfulness of the content or the real-world consequences of its 

spread (Pennycook et al., 2021). 

1.1.5.2 Automated and Cross-Platform Spread 

The spread of false information is significantly accelerated by automated non-

human accounts, or "social bots." These bots are designed to mimic human behaviour-

by liking, reposting, and commenting on content-to create an artificial sense of social 

consensus. By manufacturing the appearance that a piece of information is popular and 

widely endorsed, bots exploit human reliance on social proof, tricking users into 

perceiving the information as more credible and worthy of sharing (Ferrara et al., 2016; 

Le et al., 2019). This amplification is not confined to a single platform; coordinated bot 

networks are particularly effective at propagating the same false narratives across 

multiple online platforms simultaneously. This cross-platform contamination further 

increases a falsehood's reach and creates an illusion of ubiquity, making it seem more 

legitimate and pervasive than it actually is (Zannettou et al., 2019). 
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1.1.5.3 The Spread of True vs False Information 

Finally, to get a sense of how problematic the spread of false information is, it is 

useful to compare it with how true information is disseminated.  Large-scale analyses of 

social media platforms have revealed distinct patterns in how these two types of content 

travel. Vosoughi et al. (2018) analysed the spread of verifiable true and false news stories 

– around 126,000 news stories tweeted by over 3 million people between 2006 and 2017 

- and found that falsehoods travelled six times faster than true information. While the 

truth rarely diffused to more than 1,000 people, the top 1% of misinformation reached 

between 1,000 and 100,000 individuals. As discussed in Section 1.1.4.4, this viral 

advantage is likely driven by the novelty and emotional intensity - particularly outrage and 

surprise – common in false narratives. 

1.1.6 Interventions for Fighting False Information 

1.1.6.1 Debunking 

Debunking involves presenting a corrective message that explicitly identifies and 

refutes a prior piece of misinformation (Chan et al., 2017; Schwarz et al., 2007). Despite 

the persistence of falsehoods, research shows that corrections are effective in reducing 

false beliefs (Ecker et al., 2022; Porter & Wood, 2021). Its effects are often durable, lasting 

for weeks (Porter & Wood, 2021), and can lead to positive downstream effects by 

changing not just beliefs, but also behaviours like sharing and voting intentions  (Ecker et 

al., 2022). To be effective, however, debunking must follow best practices. Corrections 

should provide detailed factual accounts and plausible alternative explanations that can 

fill the "coherence gap" left when a piece of misinformation is retracted (M. S. Chan & 

Albarracín, 2023; Johnson-Laird, 2012; Tenney et al., 2009). It is vital to lead with the 

accurate information rather than unnecessarily repeating the misinformation, which can 

inadvertently boost its familiarity. The correction should establish a factual frame from 

the outset and re-emphasize the truth at the conclusion (Ecker et al., 2022; 

Lewandowsky et al., 2012). Corrections are also ideally delivered by high-credibility 

sources, such as content experts (Vraga & Bode, 2018, 2020), though politicized voices 

can be effective in debunking rumours within their respective partisan groups (Berinsky, 

2017). Given that resources are limited, efforts should be focused on correcting 
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misinformation that is both widespread and has the greatest potential for harm (Ecker et 

al., 2022). Finally, all corrections should be delivered in a civil, careful, and thoughtful 

manner (Vraga & Bode, 2020), with the understanding that repeated interventions may be 

necessary as the effects of a single correction can wear off over time (Carnahan et al., 

2021). 

Despite its utility, debunking has significant limitations. The Continued Influence 

Effect ensures that misinformation can linger (Ecker et al., 2010). While early concerns 

focused on "backfire effects" where corrections strengthened misperceptions, these are 

now understood to be largely overstated and uncommon (Wood & Porter, 2019). More 

practical challenges include the fact that manual fact-checking is laborious, difficult to 

scale (Chuai et al., 2023a), and often arrives only after a claim has gone viral (Stein et al., 

2023). Automated Natural Language Processing (NLP) fact-checking also faces hurdles 

due to the lack of readily available counter-evidence for novel, real-world misinformation 

(Glockner et al., 2022). 

1.1.6.2 Prebunking and Inoculation 

A proactive alternative to debunking is "prebunking," or psychological inoculation 

(Figure 1.1). This approach aims to prevent people from encoding misinformation in the 

first place by building "attitudinal resistance" (Compton, 2013; Van Der Linden, 2024). 

The core mechanism involves exposing people to weakened versions of persuasive 

messages ahead of time (Van Der Linden, 2024; van der Linden et al., 2017). By warning 

recipients about the threat of misleading information and identifying the manipulative 

technique, inoculation equips them with the cognitive tools to resist future attempts at 

persuasion (Christner et al., 2024; Ecker et al., 2022; Van Der Linden, 2024). Prebunking 

has been shown to be an effective counter to misinformation, with effects that can 

generalize across different topics, providing an "umbrella" of protection against various 

manipulation tactics  (Schmid-Petri & Bürger, 2022; Traberg et al., 2022). Furthermore, 

successful approaches, like the interactive "Bad News Game," can spark conversations 

where people share their new skills with their peers. This "post-inoculation talk" helps 

spread the protective effects through social networks, amplifying the impact of the initial 

intervention (Roozenbeek & van der Linden, 2019). In Bad News Game, players take on 
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the role of a fake news producer to attract as many followers as possible while 

maximizing credibility. Throughout the approximate 15-minute gameplay, players learn to 

master six documented techniques commonly used in misinformation: polarisation, 

invoking emotions, spreading conspiracy theories, trolling people online, deflecting 

blame (discrediting opponents), and impersonating fake accounts. Players are rewarded 

for using these strategies and penalized for ethical journalistic behaviour. The game 

simulates a social media environment, rendering text boxes, images, and Twitter posts. 

However, a key limitation of such approaches is requiring users to actively engage, which 

may exclude those most in need of inoculation, such as individuals with lower cognitive 

reflection (Pennycook & Rand, 2021).  

 

Figure 1.1: Prebunking vs Debunking. In prebunking (top left panel), people are given advance 
warning that the information they are about to see is false to help them prepare (inoculate 
themselves) against believing the false information when it arrives. This has been shown to be 
effective in reducing susceptibility to misinformation. In contrast, debunking (top right panel) 
presents the false information first, followed by a correction, which can be less effective. The 
lower panels show how these approaches are designed in laboratory settings, where participants 
receive either a warning before (“prebunking”) or after (“debunking”) exposure to false 
information. The “information” here refers to the outcome (£1) given to the chosen option in a 
two-arm bandit task.  
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1.1.6.3 Media Literacy and Critical Thinking 

Improving media literacy and critical thinking skills is a long-term strategy for 

combating misinformation (Borges do Nascimento et al., 2022; Lee, 2018; Lutzke et al., 

2019). Interventions include dedicated digital media literacy training, promoting civic 

online reasoning, and encouraging critical thinking through the questioning of logic, 

evidence, and sources (Apuke et al., 2023; Jones-Jang et al., 2021). For instance, one 

effective strategy is "lateral reading," which involves consulting external sources to 

examine the origins and credibility of a claim (Wineburg & McGrew, 2019). 

1.2 How Biased Processing of True Information 
Creates False Beliefs 

False information is not the only reason why false beliefs emerge. Biased 

processing of true information can also lead to false beliefs (Palminteri & Lebreton, 2022; 

Sharot et al., 2023; Sharot & Garrett, 2016). This process is observed when individuals 

receive objective, true feedback about themselves. For instance, in one study, 

participants took an IQ test and were then asked to estimate their rank relative to another 

participant. When they received 'good news' (true feedback that they had ranked higher), 

they updated their beliefs about their intelligence significantly. However, when they 

received 'bad news' (true feedback that they had ranked lower), they updated their beliefs 

to a lesser extent (Eil & Rao, 2011). This same asymmetric pattern is seen in financial 

decision-making, where students update their beliefs about their future earnings 

prospects far more in response to positive true information than to negative true 

information (Wiswall & Zafar, 2015). In each case, the resulting false belief is not caused 

by exposure to falsehoods, but by a motivated filtering of true information known as 

optimistic update bias (Sharot et al., 2011).  

1.2.1 Biases Processing of True Information: Optimistic 

Update Bias  

An optimistic update bias,  also known as the "good news-bad news effect," is a 

pervasive tendency to integrate new information more readily when it is desirable or 
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better than expected, compared to when it is undesirable or worse than expected, 

leading to false, optimistic beliefs (Garrett et al., 2014; Garrett & Sharot, 2014, 2017a; 

Kuzmanovic et al., 2019a; Kuzmanovic & Rigoux, 2017; Sharot & Garrett, 2016).  The bias 

is relevant in myriad domains and contexts, including financial (Wiswall & Zafar, 2015b), 

health risks (Weinstein & Klein, 1995), personal attributes like intelligence (Eil & Rao, 

2011b), social (Korn et al., 2012a) reinforcement learning (Lefebvre et al., 2017), and 

mental health (Garrett et al., 2014; Ossola et al., 2020). For instance, individuals discount 

negative feedback about their own attributes but incorporate positive ones (e.g., learning 

they are more attractive than previously thought)  (Eil & Rao, 2011b).   

One way to study this bias is through the update bias task (UBT) (Figure 1.2), which 

I have adapted for my own experiment in Chapter 4. In a typical UBT trial, participants are 

asked to consider a negative life event. They first estimate the probability of this event 

happening to them personally (E1) and to an average person like them (i.e., from the same 

location, age, and socioeconomic status as the participant) (eBR). After providing these 

estimates, they are shown the true statistical base rate (BR) for the event. Finally, they are 

prompted to give a second estimate of their personal risk (E2). The participant's belief 

change, or "update," is calculated by subtracting their first personal estimate from their 

second (E2 − E1). Trials are then categorized based on the information provided. When 

dealing with negative events, a trial is considered "good news" if the true risk (BR) is lower 

than the person's initial estimate (E1), suggesting the event is less likely than they 

thought. Conversely, a trial is labelled "bad news" if the true risk is higher than their 

estimate, indicating the event is more probable than they initially believed (Sharot et al., 

2011; Sharot & Garrett, 2022). An optimistic update bias occurs when the update values 

for events classified as good news is higher than events classified as bad news, which is 

consistently shown and replicated in various studies (e.g., Garrett et al., 2014; Garrett & 

Sharot, 2017; Korn et al., 2012b; Kuzmanovic et al., 2019b; Oganian et al., 2019).  

An alternative design for this task separates the first estimate (E1) and the second 

one (E2) into two distinct sessions held at different times (e.g., Sharot et al., 2011).  

Because of the delay between sessions, a control for memory is necessary. To address 

this, participants are often asked at the end of the second session to recall the actual 

probability they were shown for each event. Regardless of the task version, researchers 
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often gather additional data to control for other confounds. These variables, collectively 

known as subjective ratings, include familiarity with the event, past experience with the 

events, how negatively or positively they found the event to be, how vividly they imagine 

the event, and how emotionally arousing they perceive the event. The bias survives after 

controlling for these ratings (Garrett & Sharot, 2017a).  

 

 

Figure 1.2: The Update Bias Task. In each trial, participants estimate their own future likelihood 
of experiencing an adverse life event (e.g., kidney stones, burglary) and that of someone like them 
(same age, location, and socioeconomic status). They are then presented with the actual 
probability of that event for someone like them. Finally, they are prompted to provide their 
estimates again. Displayed at top is an example of good news as the chances of kidney stones 
happening to the individual (20%) is lower than what they had thought (40%). Below is an example 
of bad news where the chances of burglary happening to the individual (35%) is higher than what 
they had thought (22%).  

Learning in the UBT is driven by the "Estimation Error": the difference between the 

participant's first estimate and the true base rate (Sharot et al., 2011). This is similar to 

prediction error (PE) in reinforcement learning (RL) - the difference between expected and 

observed outcomes. Because of this shared principle of error-driven updates, the RL 

framework has been successfully adapted to build computational models of learning in 

the UBT (Kuzmanovic & Rigoux, 2017).  

One of these models assumes that people process desirable and undesirable 

information differently. It formalizes this idea by using two learning rates: one for positive 
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estimation errors (good news) and one for negative estimation errors (bad news). This 

model consistently provides the best fit for data, and the estimates from the model show 

a higher learning rate for good news than for bad news, which provides model-based 

evidence for an optimistically biased pattern of information integration (Kuzmanovic et 

al., 2018, 2019b; Kuzmanovic & Rigoux, 2017). The models help formally control for trial-

wise fluctuations and provide insights into the mechanistic components of belief 

updating by including estimation error size and the relative personal knowledge (rP) in the 

updating process. rP captures how much an individual sees themselves as different from 

the average person and is calculated based on differences between their initial personal 

estimate (E₁) and their estimate of the base rate (eBR). Therefore, the fact that the 

optimistic update bias persists even after the model accounts for these components is a 

testament to its robustness. This computational approach provides a formal, 

mechanistic account of how the selective integration of true information leads to the 

formation and maintenance of false beliefs. In what follows, I will describe the neural 

findings on this bias to better understand how false beliefs are formed.  

Distinct neural processes appear to mediate the integration of good and bad 

news. Kuzmanovic et al. (2018) implicated the ventromedial prefrontal cortex (vmPFC) in 

encoding the valence of belief updates in UBT. Specifically, the fMRI analyses revealed 

neural correlates for different stages of belief updating. During the presentation of the 

actual BR, regions like the anterior cingulate cortex (ACC), inferior frontal gyrus (IFG), and 

dorsolateral prefrontal cortex (dlPFC) tracked errors, with their activity increasing as error 

size decreased. Notably, the magnitude of this error tracking in the dlPFC correlated with 

individual learning rates, suggesting its role in adjusting initial beliefs based on errors. The 

vmPFC activity increased with larger updates towards lower risks (good news) and with 

smaller updates after bad news. This vmPFC activity specifically tracked the 

improvement or worsening of final beliefs relative to initial ones, not merely the valence 

of the new information or final beliefs themselves. Furthermore, the magnitude of this 

vmPFC valence-tracking effect correlated with the individual's optimism bias, indicating 

that vmPFC is sensitive to the subjective value of favourable belief updates. Importantly, 

this valence encoding in vmPFC occurred during the period of update consideration, not 

earlier during the reception of the new information. Dynamic Causal Modeling (DCM) was 
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used to infer the causal interactions within the update circuit, consisting of the dlPFC (an 

"update processing" node receiving exogenous input), the vmPFC (a "valuation" node), 

and the dorsomedial prefrontal cortex (dmPFC, a "cognitive" node). The winning DCM 

model revealed a cyclic information flow from the dlPFC via vmPFC to the dmPFC, with a 

valence-dependent modulation of the coupling from dlPFC to vmPFC. This indicated that 

the vmPFC actively filtered incoming information based on its valence. Both the strength 

of this valence-dependent modulation of the dlPFC-vmPFC coupling and the strength of 

the vmPFC-dmPFC connection correlated with the individual's optimism bias. This 

suggests that a stronger optimism bias is associated with a greater valence-dependent 

filtering by the vmPFC and a stronger influence of this valuation system on the cognitive 

processing occurring in the dmPFC. In another study (Garrett et al., 2014) BOLD signal 

correlated positively with good news estimation errors in the left inferior frontal gyrus (left 

IFG) and bilateral superior frontal gyrus (bilateral SFG), but negatively with bad news 

estimation errors in the right inferior parietal lobule (right IPL) and positively in the 

Superior Temporal Gyrus and Superior Frontal Gyrus. Further, the study found that BOLD 

response in the right IPL of depressed participants tracked bad news errors with greater 

fidelity than in healthy controls. Additionally, a stronger negative correlation between 

BOLD activity in the right Inferior Frontal Gyrus (rIFG) and bad news estimation errors was 

observed in depressed patients compared to healthy controls. These findings indicate 

that the unbiased updating observed in MDD is mediated by stronger neural coding of 

estimation errors in response to both good news (left IFG, bilateral SFG) and bad news 

(right IPL, right IFG), particularly the adequate neural tracking of negative estimation 

errors. 

This bias is flexible as it is modulated by psychological and environmental context. 

It is absent in individuals with clinical depression, who show more balanced belief 

updating (Garrett et al., 2014). Similarly, in situations of perceived threat, the bias is 

significantly reduced or eliminated, allowing for a more accurate risk assessment. This 

has been shown in studies of firefighters on duty (Garrett et al., 2018) and in the general 

population during the early, high-uncertainty phase of the COVID-19 pandemic (Beron et 

al., 2024). This flexibility could become costly when faced with false information. If the 

goal of the bias is to regulate mood and motivate action by filtering true information, it 
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stands to reason that its operation - and its potential 'hijacking' by false information - will 

similarly depend on these contextual factors. Understanding the conditions under which 

the bias is weakened or strengthened for true information provides a theoretical roadmap 

for hypothesizing about when individuals will be most vulnerable to accepting desirable 

falsehoods. 

1.3 Reinforcement Learning for Modelling Bias in 
Creating False Beliefs 

1.3.1 The Rationale for a Reinforcement Learning Approach  
Having established that humans filter true information to form false beliefs, I turn 

to computational modelling to formalize the learning process using the reinforcement 

learning (RL) framework. RL describes how living beings and artificial systems learn 

through experience to make better decisions, maximizing rewards and minimizing 

punishments (Rescorla & Wagner, 1972; Sutton & Barto, 2018). Here, I argue that RL is 

suited for building a mechanistic model of learning from false information and showing 

how it has previously been used to model confirmation and positivity biases in response 

to true information, leading to false beliefs. Further, RL provides a formal, quantitative 

model of the learning process itself. Instead of merely describing a phenomenon like 

"confirmation bias," a tractable RL model can operationalize it through specific, 

measurable parameters, such as distinct learning rates for confirmatory versus 

disconfirmatory evidence (Palminteri, 2023; Palminteri & Lebreton, 2022). This 

transforms a descriptive label into a testable, mechanistic hypothesis. It provides a 

benchmark of rational learning against which one can measure and characterise the 

systematic biases that could make individuals vulnerable to false information. This 

computational framework then provides specific, trial-by-trial latent variables - such as 

Prediction Errors (PEs) - that have a well-established neural basis. Numerous studies 

have linked these model-based estimates to activity in the dopaminergic midbrain and 

its targets in the striatum and ventromedial prefrontal cortex (vmPFC) (Collins et al., 

2017; Daw et al., 2005, 2011; Jocham et al., 2014; Lefebvre et al., 2017; McDougle et al., 

2019; Palminteri et al., 2012). This allows me to bridge the underlying computations to 

their neural bases. Finally, while my thesis uses controlled laboratory tasks to isolate 
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these mechanisms, the core principles of RL are relevant in (mis)information-rich 

environments (da Silva Pinho et al., 2024).  

1.3.2 The Reinforcement Learning Framework  
Imagine an agent, whether an animal, a human, or a computer program, trying to 

achieve a goal. It doesn’t receive explicit instructions on what to do; instead, it must 

discover which actions lead to desirable outcomes (rewards) and which lead to 

undesirable ones (punishments) through trial and error (Yoo & Collins, 2022). This trial-

and-error process is at the heart of RL, an example of which is the two-armed bandit task 

(Figure 1.3). In this task, participants repeatedly choose between two options, each 

offering probabilistic outcomes. For example, one option gives 10 points with 80% 

probability, while another with 20% probability. Through accumulated feedback, 

participants learn the value of each option (Lefebvre et al., 2017; Palminteri, 2023; Sutton 

& Barto, 2018).  

 

Figure 1.3: An example of a two-arm bandit task. Participants choose between two cues to 
maximize rewards. The goal is to learn which option is better (i.e., offers reward most of the time). 

Learning happens through the continuous updating of expectations. Each option 

is assigned an "expected value" or "Q value," representing what the agent believes that 

option is worth. These expectations are then updated based on observed outcomes, 

which can be rewarding (e.g. +10) or punishing (e.g. -10). The difference between the 

expected outcome and the observed outcome is called Prediction Error (PE or δ) (Sutton 

& Barto, 2018). Formally, for a given trial (t), PE for Option A is written as:  

δ(t) = rA(t) – QA(t) 
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In which rA is the observed outcome for option A and QA is the expected outcome 

of the option. Positive PEs occur when outcomes are better than expected (rA(t) > QA(t)) 

while negative PEs occur when they are worse than expected (rA(t) < QA(t)). 

Therefore, PEs serve as a learning signal to update future expectations. The extent 

to which PEs are used as a learning signal can be determined by a learning rate (α) 

parameter (Sutton & Barto, 2018). A high learning rate means the agent quickly adjusts 

its beliefs based on new information, while a low learning rate produces more gradual 

changes.  

The value update follows this formula: 

QA(t+1) = QA(t) + α*δ(t) 

Since the two-armed bandit task involves comparing two options (A and B), their 

learned values must be converted into choice probabilities. One way to do the conversion 

is through the SoftMax function, which transforms the learned values into the probability 

of selecting each option: The probability of choosing option A, for example, is calculated 

as follows: 

1

1 + exp(β(Q𝐵 − QA)
 

In which, β is the inverse temperature parameter that controls how sensitive the 

choice probabilities are to the differences in the learned values of the options (Sutton & 

Barto, 2018). The higher the value of β the greater the tendency to exploit (i.e., the agent 

is very sensitive to the learned values and will almost always choose the option with the 

higher value, even if the difference is tiny); and the lower the value of β the greater the 

tendency to explore (i.e., the agent is less sensitive to the value differences, and its 

choices become more random). This parameter thus controls the exploration-

exploitation trade-off in action selection (Sazhin et al., 2025; Wilson et al., 2014).  

The above model with two free parameters, a learning rate and an inverse 

temperature, is a simple computational model that produces trial-by-trial latent 

estimates of PE and Q values. The latent estimates can then be used in neural studies, 

allowing researchers to link computational processes to brain activity (Collins et al., 
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2017; Daw et al., 2005, 2011; Hare et al., 2008; Huys et al., 2011; Jocham et al., 2014; 

Lefebvre et al., 2017; O’Doherty et al., 2007; Zhang et al., 2020).  

1.3.3 Neural Correlates of Reinforcement Learning 
Computations 

A key strength of the RL framework is that its core computational variables have 

well-established neural correlates. Foundational work has demonstrated that the firing 

of midbrain dopamine neurons closely tracks the Reward Prediction Error (RPE), 

increasing for better-than-expected outcomes and decreasing for worse-than-expected 

outcomes (Schultz et al., 1997). This dopaminergic signal is broadcast to the striatum, 

where it is thought to drive the synaptic plasticity necessary for updating the values of 

actions and states (Wickens, 2009). However, this classic model has been refined, with 

recent work showing that dopamine's role is more complex, also encoding the 

motivational value of an action and acting as many local, "partial" teaching signals within 

specific corticostriatal circuits rather than as a single, global broadcast (Berke, 2018; Lak 

et al., 2020) . 

While the striatum and its dopaminergic inputs are crucial for computing the error 

signal, a distinct but overlapping network, centred on the ventromedial prefrontal cortex 

(vmPFC), is responsible for representing the value of different choices to guide decisions 

(Boorman et al., 2009; Kable & Glimcher, 2007). Activity in the vmPFC has been shown to 

track the subjective value of chosen options, integrating different attributes of a choice 

into a "common currency" signal that can be used for comparison (Levy & Glimcher, 

2012). This valuation system is not static; for example, under time pressure, the vmPFC 

represents the overall value of all available options, but with more time for deliberation, 

its activity shifts to represent the specific value difference between the chosen and 

unchosen option (Jocham et al., 2014). 

This neural architecture for value-based learning is the fundamental system 

through which beliefs, including false beliefs, are likely formed and updated. Critically, 

its role extends beyond processing external rewards like money or food. A body of 

research now demonstrates that these same neural circuits - particularly the 

dopaminergic midbrain, striatum, and orbitofrontal/ventromedial prefrontal cortex - are 
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also responsible for encoding the intrinsic value of information itself (Bromberg-Martin & 

Monosov, 2020). Monkeys, for instance, will “pay" by forgoing a guaranteed juice reward 

for the mere opportunity to gain advance information about future rewards, and their 

dopamine neurons track this information-seeking preference just as they would a 

primary reward (Bromberg-Martin & Hikosaka, 2009). This indicates that the brain's 

valuation circuitry treats the resolution of uncertainty as inherently rewarding. 

This neurobiological finding - that the brain treats information as a form of 

currency processed by its core reward system - provides a mechanistic rationale for 

applying a value-based learning framework to the problem of false information. If the 

brain is wired to seek out and assign value to information, the unaddressed 

neurocomputational question becomes: what happens to this valuation process when 

the currency is counterfeit and false? How does the brain's valuation and learning 

circuitry respond when the information it receives is known to be false? Understanding 

the baseline neural mechanisms for processing true information is therefore important 

for investigating how those mechanisms are altered and potentially hijacked in the face 

of falsehoods. 

1.3.4 Reinforcement Learning and Working Memory 
The reinforcement learning system does not operate in isolation. Its interaction 

with working memory (WM) is indispensable, even in simple instrumental tasks (Collins, 

2018; Yoo & Collins, 2022). This relationship is potentially important when encountering 

unreliable or false information. Efficient learning in such a context requires actively 

filtering out false feedback before it can erroneously one's beliefs. This mirrors the 

cognitively demanding nature of modern online environments, where users must 

constantly ignore or discount information from bots and unreliable accounts (Chuai et 

al., 2023b; Pittman & Haley, 2023). One possibility is that a reason why people learn from 

false information is a failure of this WM-dependent filtering mechanism. When cognitive 

control is taxed or when a piece of false information is particularly compelling (e.g., it 

confirms a prior belief), this filter may fail, allowing the falsehood to be processed by the 

RL system as if it were true. To understand the nature of this potential failure, it is first 

necessary to detail the relationship between WM and RL. 
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WM is a capacity-limited process for temporarily holding and manipulating 

information to guide behaviour, particularly when that information is no longer present 

(Yoo & Collins, 2022). The limitations of WM include a finite capacity and a temporal limit, 

meaning information is only accurately remembered for a short duration (Collins, 2018). 

These limitations are well-documented by classic findings. For example, as the number 

of items held in memory grows, accuracy and reaction time decrease, a phenomenon  

known as the set size effect  (Sternberg, 1966). Further, these mental representations are 

inherently tenuous, susceptible to fading over time or being disrupted by distracting 

stimuli (Peterson & Peterson, 1959). 

Although often conceptualized as a separate cognitive module, WM operates in 

concert with RL, an interaction that is evident across behavioural, computational, and 

neural levels of analysis (Yoo & Collins, 2022). This relationship is bidirectional. On one 

hand, WM supports RL by maintaining stimulus information (e.g., in partially observable 

Markov decision processes) or even reward information itself, feeding these inputs into 

RL computations. This assistance allows the RL system to form more abstract, task-

relevant representations, which in turn promotes generalization to new contexts and 

simplifies the learning problem by effectively ignoring irrelevant aspects of the 

environment (Yoo & Collins, 2022). Similarly, RL can influence WM.  It has been 

demonstrated, for example, that people can acquire more efficient strategies for using 

their WM through feedback-based learning. This finding implies that a trial-and-error 

process, guided by reinforcement, helps to optimize how WM is recruited (Yoo & Collins, 

2022).  

This dynamic leads to a surprising trade-off, often called the "tortoise and hare" 

effect (Collins, 2018). In low WM load problems (e.g., fewer stimuli to learn) where WM 

capacity is sufficient (the fast "hare"), individuals learn quickly. However, this comes at 

the cost of poorer long-term retention because the slower, more robust RL system (the 

"tortoise") is less engaged (Collins, 2018; Collins et al., 2017). Collins (2018) showed this 

in an experimental protocol including a learning phase, an unrelated n-back task serving 

as a delay, and a surprise testing phase. During the learning phase, participants learned 

stimulus-action associations by receiving feedback, with varying set sizes (ns=3 for low 

load and ns=6 for high load) across 14 blocks. The set size manipulation was crucial 
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because WM is capacity-limited, unlike RL, allowing researchers to disentangle their 

contributions. The surprise testing phase, conducted without feedback after a 10-minute 

delay and involving 54 different stimulus-action associations, was designed to assess 

the retention of learned associations, specifically probing RL function as WM was 

assumed to play no direct role due to its temporal and capacity limits. Behavioural results 

replicated previous findings for the learning phase: participants learned in both set sizes, 

but learning was slower and performance was lower in blocks with a high set size (ns=6) 

compared to low set size (ns=3). This demonstrated WM's contribution, characterized by 

negative effects of set size and delay on performance, while RL was evident through 

sensitivity to reward history. However, the associations learned under high set sizes were 

better retained than those learned under low set sizes, indicating greater robustness of 

learning under high cognitive load. This meant that using working memory to learn quickly 

came at the cost of long-term retention. Further analysis confirmed this was not due to 

differences in reward history or error avoidance. To understand these interactions, 

computational modelling was employed, testing three families of models: pure RL 

models (RLs), mixture models with independent WM and RL (RLWM), and mixture models 

with interacting WM and RL (RLWMi). The RLWMi model, which assumed WM influences 

RL computations by contributing to PE calculations, was strongly favoured as the best fit 

for the behavioural data. This model posits that when WM learns faster than RL in low-

set-size scenarios, it effectively decreases positive PEs, thereby impeding learning within 

the RL system. This is bolstered by a neural observation that brain signals related to RL 

encoding are weaker at lower set sizes (Collins et al., 2017). Ultimately, RL and WM can 

be viewed as partially redundant systems that learn with different dynamics: WM is fast 

but fleeting, while RL is slower but more robust (Collins, 2018). Therefore, cognitive load 

is a key factor that modulates the balance between these two learning systems such that 

under high load imposed by environments containing false information, such as social 

media, the slow-but-steady RL system may become more dominant, potentially making 

it more vulnerable to integrating false information. 

The link between RL and WM is mirrored by a significant overlap in their underlying 

neural circuits (Yoo & Collins, 2022). While the prefrontal cortex (PFC) is associated with 

WM and the basal ganglia with RL, these networks are not entirely distinct. Instead, they 
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are connected through multiple parallel loops, with the frontal cortex and basal ganglia 

projecting directly onto each other (Haber, 2011). This shared architecture has functional 

consequences. The PFC, for example, is implicated in many goal-directed RL tasks (Daw 

et al., 2005, 2011). Furthermore, dopamine levels in the PFC, a neuromodulator central 

to RL, are also related to WM performance (Fallon et al., 2015). This is evident in how 

damage to the basal ganglia can produce cognitive impairments similar to those caused 

by frontal cortex damage (Middleton & Strick, 2000). This neural evidence confirms that 

RL and WM are not separate brain modules but deeply integrated systems that work 

together to produce intelligent, adaptive behaviour. 

1.3.5 Using Reinforcement Learning to Model Positivity 
Bias 

RL has also been applied to formalize two learning biases:  positivity bias and 

confirmation bias. Positivity bias is when an agent learns more from better-than-

expected outcomes (positive prediction errors) than from worse-than-expected 

outcomes (negative prediction errors) (Palminteri & Lebreton, 2022). For instance, in one 

RL study (Lefebvre et al., 2017), where participants played a 2-arm bandit task (Figure 

1.1) involving abstract cues that gave rewards and punishments for the chosen option, 

higher learning rates were observed for positive PEs versus negative ones. To model 

behaviour, the researchers compared a standard Rescorla-Wagner (RW) model with a 

modified version (RW±) that allowed for different learning rates for positive and negative 

PEs. The findings supported the hypothesis of a general learning asymmetry: the RW± 

model provided a better fit for subjects' behaviour. Further, the learning rate for positive 

PEs was significantly higher than for negative PEs, indicating that participants 

preferentially updated values following better-than-expected outcomes for the item they 

chose. This asymmetry was primarily driven by subjects categorized as "RW± subjects," 

who exhibited a significantly reduced negative learning rate compared to "RW subjects" 

who displayed unbiased learning. The positivity bias (α+ > α−) was replicated in the 

second behavioural experiment, where punishment replaced reward omission (i.e., loss 

pairs instead of gain pairs), indicating that the learning asymmetry is driven by the 

valence of the prediction error itself, not solely by the outcome valence (i.e., in a loss pair 

of -10 and -1, a -1 outcome would incur a positive PE despite having a negative outcome 
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valence). The fMRI results from the same study (gain pairs only) revealed that PE 

encoding in the brain's reward circuitry, specifically the striatum and vmPFC, was 

enhanced in optimistic (RW±) subjects. This neural activity positively correlated with the 

learning rate asymmetry, establishing an association between the positivity bias and 

brain activity when outcomes are revealed. The individual differences in positivity bias 

were also linked to pupil dilation – a physiological proxy of neuromodulator activity - such 

that positive PEs increase the dilation and the negative ones increase the constriction 

(Van Slooten et al., 2018). Further, higher dopamine is associated with a stronger 

positivity bias in Parkinson’s disease patients ON medication vs OFF in the dorsal 

striatum (McCoy et al., 2019), which is in line with the fMRI results of the study, as 

dopamine is sensitive to positive and negative PEs (Frank et al., 2004; Palminteri et al., 

2009). Other studies show that the bias is robust to different outcome ranges (Ting et al., 

2022) and outcomes of a different nature (electric shocks) (Gagne et al., 2020). It has also 

been observed in rhesus monkeys (Farashahi et al., 2019), rodents (Harris et al., 2021; 

Ohta et al., 2021), foraging (Garrett & Daw, 2020) , multi-attribute RL (Steinke et al., 2020), 

and large language models (LLMs) such as Claude, ChatGPT, and Llama (Hayes et al., 

2025). The models' positivity bias comes from their training on human language, 

suggesting this bias is important in how we communicate (Palminteri, 2025a).  

1.3.5.1 The Role of Positivity Bias in Learning from False 
Information 

The positivity bias could also offer a computational mechanism for belief 

formation when faced with false information. A recent study has already provided 

compelling evidence for this (Vidal-Perez et al., 2025). The study employed a novel 

"disinformation" version of the two-armed bandit, where individuals repeatedly chose 

between two options and received the outcome for the chosen option from computer-

programmed "feedback agents" who varied in their truthfulness. Participants were 

explicitly informed about the credibility of each agent via a "star system": a 3-star agent 

was always truthful, a 2-star agent lied 25% of the time (75% truthful), and a 1-star agent 

lied 50% of the time (50% truthful), making its feedback statistically random. On each 

trial, participants were first told which agent will give the feedback and then made their 

decision. Participants were incentivized based on true bandit outcomes, not agent-
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provided feedback. The results indicated an exacerbated "positivity bias", where 

individuals boosted their learning from positive feedback relative to negative feedback. 

This bias was found to be amplified for information of low and intermediate credibility. 

When measured in relative terms, the positivity bias was significantly higher for the 1-star 

and 2-star agents compared to the 3-star agent. This bias could not be accounted for by 

Bayesian strategies, which instead predicted a negativity bias, nor could it be fully 

explained by choice perseveration. The researchers posited that feedback of ambiguous 

veracity might enable individuals to interpret positive feedback as true (as it confers 

desirable outcomes) and explain away negative feedback as false. This provides a formal, 

mechanistic account of how individuals might maintain an overly optimistic view of their 

choices by systematically overweighting desirable falsehoods and underweighting the 

undesirable ones.  

In the two-arm bandit studies mentioned so far, partial feedback is given, meaning 

that when you choose an option, you get an outcome only for that option; therefore, it is 

not clear whether people are learning more from positive vs negative prediction errors or 

confirmatory vs disconfirmatory outcomes (Lefebvre et al., 2017). In other words, is the 

learning bias driven purely by the outcome's valence (i.e., all positive prediction errors 

are overweighed) or a confirmation bias (i.e., only positive PEs following obtained 

outcomes are overweighed)? To answer this question, we need a design that offers 

outcomes for the unchosen option as well (Palminteri & Lebreton, 2022), which the 

studies in the next section have offered. 

1.3.6 Using Reinforcement Learning to Model Confirmation 
Bias 

Confirmation bias differs from optimistic update bias or positivity bias in that 

valence is not the only determining factor in integrating a piece of information; rather, 

whether it aligns with one’s prior beliefs, choices, judgements, and decisions or not is as 

important (Nickerson, 1998; Palminteri & Lebreton, 2022).  While distinct in their 

definitions - positivity bias relates to the valence of new evidence, and confirmation bias 

to alignment with prior beliefs - these two biases frequently co-occur in real-world 

scenarios. This is typically because people hold opinions and make choices that they 
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anticipate will lead to positive subjective outcomes. Consequently, an outcome that is 

better than expected often simultaneously provides positive news and confirms a prior 

decision or belief (Palminteri & Lebreton, 2022). However, the two can be dissociated in 

a controlled experiment. Consider a two-arm bandit task with complete feedback, where 

one sees the outcome of both the chosen and the unchosen option. An outcome can be 

"confirmatory" - meaning it provides evidence that your choice was correct - in two ways. 

First, if your chosen option yields a reward (a positive PE). Second, and more subtly, if the 

option you did not choose would have resulted in a loss (a negative PE). While this second 

case is technically "bad news" about the unchosen option, it is motivationally "good 

news" for the decision-maker as it validates their choice. The key finding is that people 

learn more from both types of confirmatory evidence, demonstrating a learning process 

that is biased towards validating prior decisions, not just towards seeking positive 

outcomes (Palminteri et al., 2017; Palminteri & Lebreton, 2022). 

 Within the RL framework, several studies have shown the existence of 

confirmation bias, where people integrated confirmatory information to a greater extent 

than disconfirmatory one (e.g., Chierchia et al., 2023; Palminteri et al., 2017). The key 

manipulation in these studies was offering complete feedback (i.e., outcomes shown for 

chosen and unchosen cues), specifically aiming to distinguish between a general 

"positivity bias" and a "confirmation bias". To model the behaviour, first, the researchers 

used a modified Rescorla-Wagner computational model that allowed for different 

learning rates for positive and negative PEs for both chosen (“factual learning”) and 

unchosen (“counterfactual learning”) outcomes. Replicating previous findings, they 

found a positivity bias in factual learning, where participants preferentially learned from 

outcomes that were better than expected. Specifically, the learning rate for positive PEs 

from chosen options (αc+) was significantly higher than for negative PEs (αc-). However, 

the results for counterfactual learning revealed an opposite valence-induced bias: 

unchosen negative PEs drove stronger learning than unchosen positive PEs, as the 

learning rate for negative unchosen PEs (αu-) was higher than for positive unchosen PEs 

(αu+) (Figure 1.4 (a)). The pattern of results supported a confirmation bias in learning, 

suggesting that, on one hand, people are more sensitive to information that validates the 

decision;  on the other hand, individuals tend to discount evidence that suggests their 
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choice was wrong, such as a negative PE from their chosen option or a positive PE from 

the one they rejected. Then, they created a more parsimonious model called the 

Confirmation Model by collapsing Positive-Chosen and Negative-Unchosen learning 

rates into one learning rate called Confirmatory and Negative-Chosen and Positive-

Unchosen into one learning rate called Disconfirmatory. Model comparison showed this 

model provided the best fit for the data, surpassing the four-learning-rate model with 

separate learning rates for the chosen and chosen options. Further, its estimates 

revealed that the Confirmatory learning rate was significantly higher than the 

Disconfirmatory one (Figure 1.3 (b)). This also suggested that factual and counterfactual 

outcomes might be processed by the same underlying learning systems. The superiority 

of this model and the asymmetrical pattern of the learning rates have been replicated in 

other studies (Lebreton et al., 2019; Palminteri, 2023; Schüller et al., 2020).  

 

Figure 1.4: Positivity vs Confirmation. The pattern of learning rates for positivity and 
confirmation biases (Palminteri, Lefebvre, et al., 2017). a) Although there is positivity bias for the 
chosen options (αc+ > αc-), this pattern is reversed for the unchosen options (αU+ < αU-), consistent 
with confirmation bias. b) The estimates of the Confirmation Model where αCON (learning rate for 
positive obtained and negative forgone outcomes) is significantly higher than αDIS (learning rate 
for negative obtained and positive forgone outcomes).***P<0.001 and *P<0.05, two-tailed paired 
t-test. Reproduced from Palminteri et al. (2017), “Confirmation bias in human reinforcement 
learning: Evidence from counterfactual feedback processing,” PLOS Computational Biology 
13(8): e1005684, licensed under CC BY 4.0. 

The robustness of this bias has been questioned by researchers who point out that 

choice perseverance can create a statistical artifact that mimics confirmation bias 

(Katahira, 2018; Sugawara & Katahira, 2021). To resolve this, they developed a "Hybrid 

model" that accounts for both asymmetric learning rates and gradual perseverance 
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(where multiple previous choices influence the current one). When they applied this 

model to their own data, they found that perseverance appeared to be the dominant 

factor driving behaviour. In response to these claims, Palminteri (2023) re-examined data 

from nine separate experiments, encompassing over 126,000 trials from 363 individuals. 

This re-analysis compared a model that only included asymmetric learning with a "full" 

model that also incorporated the gradual perseverance term. The reanalysis revealed two 

key findings. First, the inclusion of the gradual perseveration significantly reduced the 

estimated confirmation bias. Second, even after accounting for gradual perseveration, 

the confirmation bias remained present at the meta-analytical level and was significantly 

different from zero in most experiments. This robust presence indicates that confirmation 

bias is a reliable feature of human reinforcement learning, not simply a byproduct of the 

tendency to repeat choices. 

1.4 The Adaptive Value of The Biases  
If these biases are suboptimal, why would evolution allow them to persist? One 

could argue that they were favoured by evolution because they are adaptive and have 

ecological rationality, meaning that they confer real-world advantages that outweigh the 

costs of deviating from perfect logic (Palminteri, 2025b). Supporting this argument are 

studies on optimism that show maintaining an optimistic outlook can be inherently 

rewarding, fostering a sense of self-competence, personal growth, positive emotions, 

reduced stress, and a sense of control over outcomes (Chang, 2001; S. E. Taylor & Brown, 

1988). Further, the absence of  optimistic update bias in belief updating is observed in 

individuals with clinical depression (Garrett et al., 2014) and precede clinical 

manifestations of relapse in bipolar disorder (Ossola et al., 2020), suggesting its 

importance for  mental health.  

The adaptive side of the optimistic update bias has been shown within the RL 

framework as well. In a simulation study, for instance, it has been shown that an agent 

learning in a biased manner – positivity bias - can objectively outperform an "unbiased" 

agent in certain probabilistic learning tasks, particularly in low-rewarding environments 

or when payouts are rare (Cazé & van der Meer, 2013). Another study using evolutionary 

simulations showed that positivity bias is evolutionary stable (Hoxha et al., 2024).   The 
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core of its methodology was an evolutionary algorithm designed to identify the optimal 

set of parameters for each environment. A population of 1000 agents, each with a unique 

set of parameters, performed the task for 200 "generations". In each generation, an 

agent's fitness was determined by its performance. The bottom 5% of performers were 

eliminated, while the top 5% were duplicated, ensuring the population size remained 

constant and that successful "genotypes" propagated over time. Agents with positivity 

bias evolved across different two-armed bandit scenarios, including volatile 

environments where reward probabilities change. 

Similar findings have been reported for the simulation studies of confirmation 

bias.   Studies conducted in a range of learning environments – e.g., stable, volatile, rich, 

and poor - have indicated that confirmation bias optimizes reward learning, with biased 

agents outperforming their unbiased counterparts (Kandroodi et al., 2021; Lefebvre et al., 

2022; Tarantola et al., 2021).  This counterintuitive result is explained by the bias 

mechanistically neglecting uninformative, stochastic negative PEs associated with the 

best response, leading to more efficient resource accumulation and reward collection 

(Palminteri & Lebreton, 2022). Furthermore, confirmation bias can improve decision-

making  in the presence of noise (Lefebvre et al., 2022, 2024). By making subjective action 

values more extreme (overvaluing good options and undervaluing bad ones), it increases 

the relative distance between options, thereby making decisions more robust to random 

fluctuations and increasing the probability of selecting the better option in subsequent 

trials. It has also been shown to enhance collective decision-making in reinforcement 

learning agents (Bergerot et al., 2024). Finally, this bias can be advantageous when paired 

with efficient metacognition, as it allows for the neglect of probabilistic negative 

feedback that sometimes inevitably follows correct choices, creating a normative basis 

for positivity and confirmation biases (Rollwage & Fleming, 2021).  

But how can these computationally advantageous biases also contribute to 

vulnerability to false information? The answer could lie in the dramatic shift in the 

information environment. Biases like confirmation and positivity are adaptive when 

filtering a world that is noisy but reliable - they help an agent maintain a stable course 

and avoid overreacting to random negative outcomes. However, the modern information 

ecosystem is not just noisy; it contains deliberately crafted false information 
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(disinformation) that is built to exploit these very mechanisms (Aïmeur et al., 2023). In 

this new context, the adaptive machinery could be a liability. The confirmation bias, 

which is useful for ignoring a single bad outcome from a generally reliable food source, 

becomes a liability when it causes an individual to ignore a well-sourced factual 

correction that contradicts a desirable political falsehood.  

1.5 The Gap: The Need for Computational Models of 

Learning from False Information   

So far, I have established that the brain selectively filters true information, creating 

false beliefs, such as an overly optimistic view of the future. The framework of 

Reinforcement Learning provides a mechanistic account of how these biases operate, 

formalizing hypotheses with different computational models that give insight into the 

reasons behind the formation of false beliefs, such as the asymmetric treatment of 

prediction errors (or estimation errors in the UBT).  I propose using the same 

computational approach to build models of learning from false information because our 

understanding of the underlying computations involved in learning from false information 

and in the success or failure of interventions like debunking is lacking. For instance, the 

very existence of the Continued Influence Effect (Ecker et al., 2010) - where a debunked 

falsehood continues to shape reasoning - reveals that the process of belief updating is 

not a simple matter of replacing one fact with another. The computations involved in a 

debunking event are often treated as a "black box." We can measure the input (a 

correction) and the output (a change in belief), but we lack a formal model of how that 

correction is processed, how it competes with the original falsehood in memory, and 

what factors determine the degree of learning or belief change. To open this black box 

and move toward developing more informed interventions, we should first develop 

mechanistic models of learning from false information.  Also, this would allow me to 

answer a key question: do the biases detailed so far, such as the confirmation bias, 

persist when faced with false information? I hypothesize that one of the reasons for 

vulnerability to learning from false information is the very same biases used to process 

true information.  
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1.6 Aim and Outline of the Thesis 
The first goal is to characterise the computational underpinnings of learning from 

false information in two different environments. I will start with a chapter on 

computational modelling (Chapter 2), detailing and justifying the modelling approaches 

I have used in the thesis. Chapter 3 will modify the classic two-armed bandit task to 

assess if people learn from false information and whether they do so in a biased manner 

– be it positivity or confirmation bias – just as they do in learning from true information 

(Palminteri & Lebreton, 2022). Building on previous work (Garrett et al., 2014; Garrett & 

Sharot, 2014, 2017a; Kuzmanovic et al., 2019a; Kuzmanovic & Rigoux, 2017; Sharot & 

Garrett, 2016), Chapter 4 will adapt the UBT to include explicitly given statements about 

information accuracy as a variable, testing whether people learn from information 

explicitly described as false, and if so, whether the well-documented optimistic update 

bias persists when people encounter false information. Similarly,  

Following these behavioural and computational investigations, the second goal is 

to assess the neural underpinnings of this process, which represents a significant gap in 

the current literature. To my knowledge, no study has examined how the brain processes 

false information within an RL framework using fMRI. Given that the striatum and vmPFC 

are consistently implicated in RL studies (Daw & Tobler, 2013; Fouragnan et al., 2018; 

Lefebvre et al., 2017) and the fact that information itself can be rewarding (Bromberg-

Martin & Monosov, 2020) It may be that the striatum and vmPFC are also involved in 

processing false information. Therefore, Chapter 5 will detail an fMRI study that uses the 

modified two-armed bandit task from Chapter 3 to elucidate the neural mechanisms 

involved in learning from both true and false information.  

Chapter 2: Computational Modelling  
Computational modelling serves as a bridge between qualitative psychological 

theory and quantitative behavioural, simulated, and physiological data (e.g., neural 

recordings, pupil dilation, etc). By requiring theories to be instantiated as mathematical 

formulations, modelling forces theoretical assumptions to be made explicit which in turn 

can reveal theoretical ambiguities in the process (Guest & Martin, 2021).  
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The process of Parameter Estimation (which I outline in greater detail later in this 

chapter) - fitting a specific model to data such as participants choices in a decision-

making task - results in a set of parameters for each participant that best describe their 

data. These “best fit” estimated parameters can provide insights into individual 

differences (Montague et al., 2012). For example, variations in a learning rates (which 

characterise the rate at which beliefs change following new evidence) have been 

associated with mood and anxiety disorders (Pike & Robinson, 2022). Specifically, higher 

and more volatile learning rates from negative outcomes have been observed in 

individuals with anxiety, potentially reflecting a cognitive mechanism of over-weighting 

recent, adverse events.  Similarly, differences in a decision-temperature parameter 

(which characterises sensitivity to differences in value) can map onto traits like 

impulsivity; a lower temperature parameter, reflecting more stochastic or 'noisy' 

decision-making, is often observed in individuals with higher trait impulsivity (Maia & 

Frank, 2011). These associations move beyond simply correlating a symptom with 

behaviour, providing a falsifiable hypothesis about the underlying computational 

mechanism that may generate that symptom, which could be a target for therapeutic 

interventions. 

The process of model comparison, when implemented correctly and verified with 

simulations (which I also outline in greater detail later in this chapter) allows the 

researcher to quantitively compare competing mathematical accounts of how a process 

might occur. For instance, a standard experiment might find that participants perform 

better in high-reward contexts - a simple directional effect. However, modelling allows 

one to ask how this arises and compare different possibilities in terms of how well they 

each explain the observed data. Is it because the learning process itself is amplified by 

reward magnitude, with larger rewards increasing the learning rate? Or is the learning 

process constant, while the expression of that learning in choices becomes more 

precise, with the prospect of high rewards leading to less noisy decisions (a higher 

choice-temperature parameter)? These competing accounts can be instantiated as 

distinct models. By formally comparing them, one can move from asking if a 

phenomenon occurs to understanding how it occurs, providing a more rigorous testing 

ground for theories (Farrell & Lewandowsky, 2018). 
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In the current thesis, the specific models vary by chapter but the methodological 

approaches for model fitting, comparison, recovery, and validation are consistent 

throughout (Figure 2.1). In this chapter, I detail these approaches, abiding by the best 

practices (Wilson & Collins, 2019).  

 

Figure 2.1: The Computational Modelling Workflow. 

2.1 Model Fitting  
The goal of model fitting is to find the parameter values for a given model that 

maximize the likelihood of the observed behavioural data. For this, I used a hierarchical 

approach using the Expectation-Maximization (EM) algorithm (Huys et al., 2011). I used a 

publicly available package (https://github.com/ndawlab/em/tree/master) written by 

Nathaniel Daw to implement this algorithm in the Julia programming language (version 

1.9.4) (Bezanson et al., 2017) which has been successfully used in a number of 

computational modelling studies previously (e.g., Garrett & Daw, 2020; Nussenbaum et 

al., 2025). 

EM is an iterative method for finding maximum a posteriori (MAP) estimates in 

models with latent variables - in this case, the individual-subject parameters. A more 

traditional approach would be to fit each participant's data independently, finding the 

best-fitting parameter set for each person in isolation. However, this method is 

problematic for two reasons. First, it treats all individual estimates as equally reliable, 

giving the same weight to a parameter derived from noisy, sparse data as to one derived 

from clean, consistent data (Huys et al., 2011). Second, because it fails to account for 

the uncertainty in each point estimate, it can produce extreme and psychologically 

implausible parameter outliers, especially for noisy participants (Ahn et al., 2011). These 
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unreliable estimates can in turn inflate the overall variance at the group level and obscure 

true effects.  

The hierarchical approach I employed using EM addresses these issues through 

the advantage of regularization (or "shrinkage"). Instead of fitting in isolation, the model 

assumes that while each participant has a unique set of parameters, these are drawn 

from a common group-level distribution - a Gaussian distribution defined by a group 

mean and variance. By doing so, the model "borrows statistical strength" from the entire 

group to inform each individual's parameter estimate, down weighting the influence of 

unreliable participants (Morris, 1977). The unreliable estimates from these participants 

are gently pulled toward the more stable group mean. This process effectively manages 

the bias-variance trade-off, reducing the variance of individual estimates at the cost of a 

small amount of bias. This bias is introduced at the individual level - an estimate for a 

participant whose true parameter value is far from the population average will be pulled, 

or biased, toward that mean - but it allows for a more stable and accurate estimation of 

the group-level distribution as a whole. This approach has been shown to yield superior 

predictive performance on unobserved data compared to fitting each participant 

independently (Scheibehenne & Pachur, 2015). 

The EM algorithm finds these hierarchical estimates by alternating between two 

steps until convergence: Expectation and Maximization. The process begins with an 

initialization step, where I provided the algorithm with plausible starting values for the 

group-level parameters (the population mean, β, and covariance, Σ). These initial values 

represent the prior beliefs about the population before observing the data. The algorithm 

then iterates between the two main steps. The Expectation (E) step essentially asks: 

"Given our current belief about the population, what are the likely parameters for each 

individual?". It uses the current group-level parameters (β, Σ) as a prior to find the 

Maximum A Posteriori (MAP) estimate of each subject's individual parameters, xi, by 

maximizing the log posterior probability:  

𝑥𝑖
𝑀𝐴𝑃 = arg max

𝑥𝑖

(log 𝑃 (𝑦𝑖|𝑥𝑖) + log 𝑃 (𝑥𝑖|𝛽, Σ)) 

where yi is the data for subject i. It then computes a Gaussian approximation to 

the full posterior distribution at that MAP estimate, characterized by its mean (𝑥𝑖
𝑀𝐴𝑃) and 



49 
 

its variance (the inverse of the Hessian matrix, hi, at the peak). The Maximization (M) Step 

then asks: "Given these individual parameter distributions, what is the most likely 

population distribution?". It uses the sufficient statistics from the E-step - the individual 

MAP estimates and their posterior variance - to update the group-level parameters. The 

group means, β, are updated based on the subject-level estimates, while the group 

covariance, Σ, is updated based on the squared errors and the average posterior variance 

from the E-step. These steps are repeated iteratively until the parameter estimates 

stabilize, indicating convergence on the most likely set of hierarchical parameters. 

2.2 Model Comparison 

Following fitting, different competing models were formally compared to 

determine which provided the most parsimonious and generalizable account of the data. 

This step attempts to balance goodness-of-fit and model complexity. Without penalizing 

for complexity, a more complex model will always fit the data better, but this can lead to 

overfitting - a scenario where the model captures idiosyncratic noise in the current 

dataset rather than its underlying structure, resulting in poor predictions for new data 

(Pitt & Myung, 2002). To guard against this, the model comparison process is guided by 

the principle of parsimony (also known as Ockham's razor), which favours the simplest 

model that can adequately explain the data (Burnham & Anderson, 2002). 

A common method for this in non-hierarchical contexts is the Bayesian 

Information Criterion (BIC), which provides an approximation to the model evidence 

(Schwarz, 1978). It is calculated as:  

𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2 ln(𝐿) 

where L is the maximized likelihood of the model, k is the number of free 

parameters, and n is the number of data points.  

The penalty for model complexity is the explicit kln(n) term. For a more complex 

model to be favoured, its improvement in log-likelihood must be large enough to 

outweigh the penalty incurred by its additional parameters.  



50 
 

While influential and widely used (Lefebvre et al., 2017; Pitt & Myung, 2002), 

standard information criteria like BIC are ill-suited for the hierarchical models. Their 

calculation requires a single, unambiguous value for the number of free parameters and 

the number of data points, both of which are difficult to define in a hierarchical context 

where parameters exist at both the individual and group levels (Vehtari et al., 2017). It 

should be noted that specialized variants, such as the integrated Bayesian Information 

Criterion (iBIC), have been developed to approximate the model evidence in a 

hierarchical context (Stephan et al., 2009). This approach works by first integrating out 

the individual-subject parameters using a Laplace approximation to get a single marginal 

likelihood for the entire dataset and then applying a BIC penalty based on the number of 

group-level parameters. However, this method is still an approximation. 

Given these limitations, I chose leave-one-out cross-validation (LOOcv) as my 

model comparison metric. This is a method for estimating a model's out-of-sample 

predictive accuracy (i.e. a model's ability to generalize to new, unseen individuals). The 

process begins by temporarily holding out a single subject from the dataset. The 

hierarchical model is then re-fitted (using EM) using the data from all other subjects 

except the held out subject which generates a set of cross-validated group-level 

parameters that are not influenced by the held-out subject's data. These cross-validated 

group parameters are subsequently used as a Bayesian prior to compute the marginal 

likelihood of the held-out subject's data, a score that quantifies how well the model, 

trained on the rest of the population, predicts the behaviour of a novel individual. To 

compute this marginal likelihood, the subject-level parameters are integrated out using 

the Laplace approximation, a standard technique that approximates the integral by 

finding the MAP estimate for the held-out subject's parameters under the new prior and 

using the curvature of the posterior at that point (the Hessian) to estimate the total 

probability.  

This entire process is then repeated iteratively for every subject (each time holding 

out that subject). This yields a predictive likelihood score for each one. Because each 

subject's score is computed based on a model that was not trained on their own data, 

the resulting set of scores across the group can be treated as independent, which makes 
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them suitable for subsequent classical statistical tests at the group level (e.g., ttests) and 

use in approaches like the Variational Bayesian Approach (VBA).  

Compared with simpler information criteria like BIC, this method's penalty for 

model complexity is implicit and often more reliable (Vehtari et al., 2017). Rather than 

using an explicit penalty term based on the number of parameters, it penalizes 

complexity through the process of cross-validation itself. An overly complex model with 

too many free parameters will tend to overfit the training subjects by capturing their 

specific behavioural noise. When the group-level parameters from this overfitted model 

are used as a prior to predict the held-out subject’s data, the predictions will be poor 

because the noise it has learned is not present in the new subject. This failure to 

generalize results in a lower predictive likelihood score, which is the mechanism of the 

penalty. Conversely, an overly simple model that underfits by failing to capture key 

patterns in the training data will also generate an inaccurate prior and predict the held-

out subject's behaviour poorly. The procedure thus favours models that are just complex 

enough to capture the true, generalizable patterns in the data (Browne, 2000). 

Subject-level LOOcv scores were then submitted to the mbb-vb-toolbox in 

MATLAB for group-level Bayesian model selection (BMS) (Daunizeau et al., 2014). The 

toolbox implements a random-effects VBA. A random-effects analysis is conceptually 

superior to a fixed-effects analysis as a fixed-effects approach assumes the same model 

is best for all subjects, whereas a random-effects approach has a more plausible 

assumption: different models may best describe different subjects (Stephan, et al., 

2009). The core challenge this approach addresses is that for many nonlinear models, 

the integrals required to compute the exact model evidence or posterior densities are 

analytically intractable. VBA provides a solution by using an iterative scheme to optimize 

an approximation to both the model evidence and the posterior density. It does this by 

maximizing a tractable lower bound on the log model evidence, known as the free energy, 

This process simultaneously minimizes the Kullback-Leibler (KL) divergence between an 

approximate posterior density, q(θ), and the true posterior, p(θ∣y,m). The specific 

implementation in the toolbox, known as a variational-Laplace scheme (K. Friston et al., 

2007), uses a mean-field assumption to partition the parameters and a Laplace 

(Gaussian) approximation for the resulting marginal distributions to make the 
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optimization computationally efficient. For random-effects BMS, this approach treats the 

model frequencies in the population as the unknown parameters to be estimated. It 

assumes a Dirichlet distribution prior over the vector of model frequencies, r, which is 

updated based on the log-evidence provided by the model scores – in my case, this is 

LOOcv - for each model and subject. The output of this inversion process is a posterior 

Dirichlet distribution over r, from which the key metrics are derived (Stephan et al., 2009).  

The VBA provides two key metrics for inference: 

1. Model Frequency: This is the estimated posterior probability that a given model 

generated the data for a randomly chosen subject from the population. The 

frequencies for all models under consideration sum to 1, which should be 

compared to the chance level (1 divided by the total number of models). This 

metric is particularly useful for understanding population heterogeneity, as it may 

reveal that multiple competing models are prevalent, rather than one single 

winner. For a given model k, its expected frequency is computed from the 

parameters (α) of the posterior Dirichlet distribution as:  

𝐸[𝑟𝑘] =
α𝑘

∑ α𝑗
𝐾
𝑗=1

 

2. Exceedance Probability (XP): This represents the posterior probability that a 

specific model is more frequent than all other competing models combined. 

Whereas model frequency gives the expected prevalence, XP quantifies the belief 

that a given model is the most prevalent. For instance, a model could have the 

highest model frequency (e.g., 0.4) but still have a low XP if other models have 

similar frequencies (e.g., 0.35 and 0.25), reflecting uncertainty about which is 

truly the most common. An XP near 1, however, provides strong evidence for a 

single "winning" model, indicating a high degree of confidence that it is the most 

common data-generating process in the population (Rigoux et al., 2014). It is 

calculated by integrating the posterior distribution over the simplex region where 

its frequency is the largest:  

𝑋𝑃𝑘 = 𝑃! (𝑟𝑘 > 𝑟𝑗   ∀𝑗 ≠ 𝑘 | data) 
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As an additional check, I also compared the LOOcv scores of the winning model 

to the other models using paired sample t-tests, correcting for multiple comparisons by 

adjusting the p value according to the number of models being compared. 

2.3 Model Validation using Simulations 
Relative model comparison criteria (like LOOcv) focus on evidence for the best 

model given the set of models being compared. But they say little about how well a model 

fits the data in an absolute sense. A winning model is just comparatively better, even if all 

models poorly describe important data features (Palminteri, Wyart, et al., 2017). 

Consequently, a model deemed "winning" based on fitting alone may still fail at 

reproducing key behavioural signatures of the data. Further, the likelihood maximization 

procedure used in model fitting can inadvertently inflate a model's performance. It may 

favour parameters that, by chance, maximize the probability of observing an effect 

already present in the data, even if the model's intrinsic computational process cannot 

generate that effect. This differs from cross-validation by shifting the focus from 

descriptive accuracy to generative capability. For example, a simple model might achieve 

a better descriptive fit (lower LOOcv) than a more complex one, yet be unable to recreate 

a key behavioural pattern in simulations. A simulation is the process of creating a 

synthetic dataset by having a model "perform" the experimental task. It is the analysis of 

model simulations that provides insight into the behavioural bases for accepting or 

rejecting a model, elucidating why a particular model is effective, rather than merely 

which model fits best (Palminteri, Wyart, et al., 2017).  

I validated winning models by seeing the degree to which it was able to reproduce 

the pattern of behavioural data through simulations. For each simulated participant, I 

began by drawing a set of parameter values from uniform distributions that spanned the 

plausible ranges observed in the parameters estimated from the real data. This synthetic 

agent, equipped with these parameters, then progressed through the task trial by trial. 

On each trial, the model's equations were used to update its internal states (e.g., Q-

values) based on the outcomes and to generate a probabilistic choice based on those 

states, mirroring the decision-making process hypothesized for human participants. I 

repeated this for the same number of trials and conditions as in the actual experiment, 
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resulting in a synthetic behavioural dataset for each model. To evaluate the simulations, 

I treated the generated data as if it were from real participants. I applied the exact same 

model-free statistical analyses (e.g., t-tests or ANOVAs or regressions) to the synthetic 

data as I did to the human data. I was interested to see whether the key experimental 

effects observed in the human participants were also present in the simulated data. The 

key experimental effects were defined as the statistically significant findings from the 

model-free analyses, which tested the study's main hypotheses. A successful validation 

required that the winning model not only fit the data well quantitatively but could also 

qualitatively reproduce these effects (e.g., show a statistically significant difference in 

performance between Condition A and B that was comparable to the human effect). This 

confirms that the model's internal mechanisms provide a sufficient explanation for the 

observed behaviour. 

2.4 Identifiability Analyses 
The validation confirms that the winning model can reproduce the observed 

behaviour. However, for this conclusion to be robust, two further methodological 

conditions must be met. First, the model comparison procedure itself must be sensitive 

enough to distinguish between the candidate models – model recovery. Second, the 

parameters of the winning model must be uniquely identifiable and meaningful – 

parameter recovery (Wilson & Collins, 2019). 

2.4.1 Model Recovery 
Model recovery asks “if one of our models were the true data-generating process, 

could our model comparison procedure reliably detect it? “This is essential for ruling out 

the possibility that a "winning" model is simply more flexible and can mimic data from 

other models - a problem known as model confusion. A failure of model recovery would 

imply that, within the context of the current experimental design, two or more models are 

"conceptually unidentifiable" as they produce nearly indistinguishable patterns of 

behaviour  (Heathcote et al., 2015). 

To conduct model recovery (Figure 2.2), I began with a simulation step. For each 

candidate model, I generated a synthetic dataset for a simulated group of subjects, with 

the number of subjects and trials mirroring the real experiment. The parameter values I 
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used for this simulation were the ranges observed in the actual data. This process 

resulted in a collection of synthetic datasets, one for each model under consideration. 

Next, I subjected each of these synthetic datasets to the full model comparison pipeline. 

Specifically, I fitted every candidate model to each synthetic dataset and fed the resulting 

LOOcv scores into the VBA toolbox to determine a winning model based on the 

exceedance probability. I repeated this entire simulation-and-comparison process for 50 

iterations and recorded how often the model used to simulate the data was correctly 

identified as the best-fitting model (e.g., if data were simulated using model M1, M1 

should have the highest XP value). Next, I aggregated the outcomes into a confusion 

matrix, which visualizes the proportion of iterations in which data generated from a 

specific model (rows) was correctly identified as best fit by that same model (columns). 

An ideal confusion matrix has high values on the diagonal (indicating successful 

recovery) and low values on the off-diagonals (indicating low confusion between 

models). This result validates that the models make sufficiently different predictions and 

that the comparison method is sensitive enough to identify the true underlying model. 

Additionally, I calculated the mean LOOcv score for each model during each iteration as 

another model identifiability metric.  

 

 
Figure 2.2: The model recovery process for a hypothetical model space of three models (A, 
B, and C). The workflow is iterated for all candidate models. In each iteration, one of the models 
is designated as the 'ground truth', meaning it is used to simulate the data. For example, the top 
row shows the process where Model A is the ground truth. A synthetic dataset is generated using 
Model A and then all models are fitted to this dataset and compared. If Model A comes out as the 
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winner, then this iteration is a success. This entire simulation-and-comparison loop is repeated 
for 50 iterations, and the number of successes and failures are counted. In the example shown, 
out of 50 iterations 46 were a success and 4 a failure, corresponding to a 92% recovery rate. The 
results from all iterations are aggregated into a Confusion Matrix (right panel). In this matrix, the 
rows represent the true, data-generating model, and the columns represent the model that was 
selected as the winner by model comparison. The diagonal elements show the proportion of 
successful recoveries (e.g., the cell A,A shows that Model A was correctly recovered 46 times). 
The off-diagonal elements show instances of "model confusion," where the model that generated 
the data did not win (e.g., the cell A,B shows that Model B emerged as the winner 3 times when 
Model A was the true model). An ideal confusion matrix has high values on the diagonal and low 
values on the off-diagonals, providing confidence that the models are distinguishable. 
 

2.4.2 Parameter Recovery 
Parameter recovery assesses whether the individual parameters of a given model 

are identifiable (Wilson & Collins, 2019). A lack of identifiability can arise from model 

misspecification or poor experimental design, leading to parameter trade-offs where 

similar behaviour can be produced by opposing changes in two parameters (e.g., a low 

learning rate might be compensated by higher decision noise). This would render the 

interpretation of fitted parameter values at best difficult, at worst meaningless (Kruschke, 

2015).  

To check for this, I simulated data from the winning model using "true" parameter 

values drawn randomly from gaussian distributions – to focus on the most common 

values - spanning the empirically observed range. The standard hierarchical fitting 

procedure was then used to "recover" the parameters from this simulated data. Recovery 

success was assessed in two ways. First, by examining the relationship between the true 

and recovered parameter values. This is typically visualized using scatter plots, where 

strong recovery is indicated by the points clustering tightly around the identity line (y=x), 

and a correlation matrix where the values are given by the Pearson correlation between 

the true and recovered values. I used a correlation value of 0.80 and higher as the 

evidence that a parameter is well-constrained by the data and can be estimated reliably 

(Figure 2.3 (A)) while values lower than that would raise concerns (Figure 2.3 (B)). Second, 

to diagnose potential trade-offs, the correlation matrix of the recovered parameters was 

examined. Strong correlations between different recovered parameters which were 

generated independently, would indicate an identifiability issue, suggesting that the 

model is unable to disentangle the unique contribution of each parameter to the 
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behaviour (Wilson & Collins, 2019). Successful recovery, marked by high true-to-

recovered correlations and low correlations between different recovered parameters, 

provides confidence that the model's parameters can be validly interpreted. 

 

Figure 2.3: Examples of good and bad parameter recovery. A) High correlations on the diagonal 
indicate that true parameters were successfully recovered. B) Low correlations on the diagonal 
and strong off-diagonal correlation (here, between α and β) indicate parameter recovery failure. 
The numbers are fictitious and just for illustrative purposes.  

2.5 Testing for differences between parameters  
A key question I address using computational models in this thesis is whether 

learning (i.e. the degree to which beliefs are updated) varies between different 

conditions. This rate of learning is captured in the models by learning rates, with different 

learning rates used to characterise learning in different conditions (e.g., one learning rate 

for confirmatory feedback and one for disconfirmatory). To assess whether learning is 

indeed statistically different between conditions, I tested for differences using a 

hierarchical ttest. This test was used as a result of the EM model fitting process used; it 

was important to use a method that accounts for the statistical properties of the 

hierarchically estimated parameters. Applying standard frequentist tests (e.g., t-tests) to 

individual parameter point-estimates from a hierarchical model is statistically invalid. 

The regularization or "shrinkage" inherent in the fitting process violates the assumption 

of independence required by such tests, as each individual's estimate is influenced by 
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the group distribution. This shrinkage artificially reduces inter-subject variance, leading 

to a substantial inflation of the Type I error rate (i.e., false positives) (Piray et al., 2019). To 

overcome this, following Piray and colleagues’ (2019) approach, I used hierarchical t-

tests. This method operates on the posterior distribution of the group-level parameters 

(e.g., the group mean), which correctly reflects the uncertainty of the estimate at the 

population level. The test evaluates whether a credible interval for the group mean effect 

includes zero, based on the estimated mean and its hierarchical standard error.  
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Chapter 3: Confirmation Bias Exists in the 
Face of False Information  

3.1 Introduction 
When a financial trader pursues the markets and ignores an increase in the price 

of shares they recently sold whilst boosting their ego from an increase in the price of 

shares they recently bought, they are applying a well-known learning bias prevalent in 

decision making. Across a wide range of domains, information consistent with past 

choices and judgments is integrated into beliefs to a greater extent than information that 

challenges them. This phenomenon, known as confirmation bias ((Bronfman et al., 2015; 

Klayman & Ha, 1987; Nickerson, 1998; Talluri et al., 2018), impacts a range of domains, 

ranging from finance (Park et al., 2010) to science (C. X. Cheng, 2018; Darley & Gross, 

1983) to politics (McClung Lee, 1949).  

The computational principles that enable biased beliefs to persist in the face of 

new evidence are thought to arise from a key feature of how we learn: the differential use 

of prediction errors, which quantify the difference between expected and received 

outcomes (Sutton & Barto, 2018). By enabling prediction errors to selectively have a 

greater impact when these confirm versus disconfirm our expectations, information that 

confirms past choices is amplified, whilst information that undermines them is ignored. 

This mechanism – a form of asymmetric learning - goes against classic normative 

theories from economics (Neumann & Morgenstern, 1944), machine learning (Russell & 

Norvig, 1995), and psychology (Körding & Wolpert, 2004; Maslow, 1950). However, a raft 

of neurobiological (Dabney et al., 2020; Garrett et al., 2014; Lefebvre et al., 2017; Sharot 

et al., 2011) and computational (Garrett & Daw, 2020; Lefebvre et al., 2017; Palminteri, 

Lefebvre, et al., 2017) evidence converge to suggest that the process of updating beliefs 

in the face of new evidence involves prediction errors changing beliefs to differing 

degrees, depending on both their sign (whether the prediction error is positive – greater 

than expected or negative – less than expected) and whether this sign signals one has 

made the right (a positive prediction error for a chosen option or a negative prediction 

error for an unchosen option) or wrong (the converse) decision.  
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Whilst the computational principles that give rise to confirmation bias have been 

established, much of the theory and empirical work has been confined to cases in which 

information is accurate (Chierchia et al., 2023; Lefebvre et al., 2022; Palminteri, 2023; 

Palminteri, Lefebvre, et al., 2017; Rollwage et al., 2020; Rollwage & Fleming, 2021) (but 

see recent work from (Vidal-Perez et al., 2025). Yet much of our everyday experience 

involves gathering and processing information, which often transpires to be either 

intentionally or unintentionally false. Understanding whether confirmation bias also 

exists in the face of such cases and, if it does, establishing if it arises from similar 

computational mechanisms, is an increasingly prescient question in an era where 

platforms that are regularly used to receive and share information prioritise engagement 

over accuracy, which can lead to the proliferation of misleading content (Lewandowsky 

et al., 2017).  

Here, I combined behavioural testing with a novel learning paradigm in 

conjunction with computational modelling in two separate studies. In the task (Figure 

3.1(a)), participants (study 1, online: N=47; study 2, in the lab: N=57) made choices 

between pairs of options (abstract symbols). Following the outcome (gain/loss), cues 

indicated whether the outcome was genuine or false. The task dissociated outcome from 

true and false information and used learning to both avoid losses (where getting -1 is the 

better outcome compared to -10) and accrue gains (where getting +1 is the worse 

outcome compared to +10) in order to disassociate effects driven solely by outcome 

valence. I also provided counterfactual (outcome shown for the unchosen option) as well 

as factual (outcome shown for the chosen option) outcomes to be able to disassociate 

confirmation bias from positivity bias. 

3.2 Methods  

3.2.1 Participants 
A total of 70 participants were recruited online via Prolific for the first study, 23 of 

whom were excluded; therefore, the final sample was 47 participants (mean [standard 

deviation] age: 30.45 [7.2]; 28 female). A total of 91 participants were recruited from the 

university pool for the second study, 34 of whom were excluded, leaving the final sample 

of 57 participants (mean [standard deviation] age: 20.45[3.8]. While these exclusion rates 
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(roughly 30–37%) might seem high, they actually align with current best practices that 

emphasize data quality over sheer numbers, where exclusion rates like my experiments 

are often necessary to weed out careless responding by inattentive participants (Nadler 

et al., 2021; Peer et al., 2022). Further, Zorowitz et al., (2023) found that keeping such 

participants in the dataset can create spurious correlations between behavioural tasks 

and self-reported measures. 

Three exclusion criteria were applied to ensure data quality. First, participants 

who incorrectly answered more than one of the ten catch trials were excluded (n=1 in 

Study 2). Second, trials with reaction times below 100ms or above 4 seconds were 

removed from analysis. Third, participants showing subpar learning performance were 

excluded, defined as choosing the better option less than 55% of the time in solvable 

conditions (n=23 in Study 1, n=33 in Study 2). Study 1 participants received £3 plus a 

performance-based bonus ranging from £3-£6. Study 2 participants received course 

credits plus a performance bonus up to £3. All participants provided informed consent 

prior to participation. The research protocol received approval from the University of East 

Anglia's ethics committee and complied with all relevant ethical guidelines. 

3.2.2 Behavioural task 
Participants completed an instrumental learning task where, on each trial, they 

chose between two options, received an outcome, and were told whether the outcome 

was true (a tick symbol) or false (a cross symbol) – Information Cues (Figure 3.1(a)). 

Participants were told that when they received a cue saying the preceding outcome was 

false this represented a "glitch" showing an outcome from an unrelated game, and they 

should ignore this information when learning which options were better.  

The experiment consisted of 160 trials organised into gain and loss contexts. In 

gain trials, participants could receive +1 or +10 points, while loss trials involved -1 or -10 

points. Information cues were equally split between true and false trials (50% each), with 

assignments made randomly. Four consistent option pairs were used throughout the 

experiment, where a given option was always paired with the same counterpart. These 

option pairs were presented in random order with randomised left/right positioning. 
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Two experimental conditions defined the underlying reward structure (Figure 1(b), 

and (c)). In the solvable condition, when the outcome was to be subsequently designated 

true, one option had an 80% chance of giving the superior outcome of the two outcomes 

available and the other 20%. When the outcome was to be subsequently designated false 

it was 50% likely to be favourable for both options. In the unsolvable condition, when the 

outcome was to be subsequently designated true, it was 50% likely to be favourable for 

both options (hence unsolvable). When the outcome was to be subsequently designated 

false, one option had an 80% chance of giving the superior outcome of the two outcomes 

available and the other 20%. 

Participants' goal was to identify which option more frequently provided rewards 

(in gain pairs) or less frequently provided punishments (in loss pairs). They learned these 

preferences through trial and error, as they were not privy to probability contingencies, 

but had to pay attention to true and false information. Although participants were 

instructed to ignore false information, these trials still contributed to their final bonus 

payment. 

As an attention check, ten separate catch trials were randomly shown to 

participants, and they had to answer whether the previous trial they just saw was true or 

false. The task was programmed in JavaScript using the toolbox JSPSYCH version 6.3 

(Leeuw et al., 2023). 
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Figure 3.1: The Task. (a) Participants made choices between four pairs of options (abstract 
symbols) and received an outcome (win/lose money) about one of the two options (the option 
chosen or the unchosen option). A cue (tick or cross) then indicated whether the outcome was 
genuine (tick) or false (cross). In 6.25% of trials, we then asked participants to report what the 
accuracy cue had been as an attention check. (b) For two of the pairs, in true trials, in most trials 
one of the two options provided the best outcome (either winning money or avoiding losing 
money), but outcomes were random for each option in false trials. (c) For the other two pairs, this 
pattern was reversed, such that in true trials, outcomes were random for each option; hence, 
there was no better option. In false trials, however, one option gave favourable outcomes 80% of 
the time, potentially misleading the participants into thinking it was the better option.  

3.2.3 Behavioural Analysis 

To assess whether participants had used true or false information, I averaged the 

number of times each participant had selected the correct option in the solvable 

condition and the misleading option in the unsolvable condition (i.e. the option that gives 

them a false favourable outcome 80% of the time) and then averaged this average to 

obtain the mean choice rate for them. Next, I ran a one-sample t-test on this mean against 

0.50. A significant result would indicate that they have learned about the correct and 

misleading options.  
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3.2.4 Computational Models  

I fitted several models that were variations of the standard Rescorla-Wagner (RW) 

model (Rescorla & Wagner, 1972). In each model, in each trial (t), either the chosen or 

unchosen option is updated depending on whether the outcome is shown for one or the 

other. The formula is the same. For instance, for the chosen option, we have: 

Qc(t+1) = Qc(t) + α * δc(t) 

In which δc is the prediction error (δ) for the chosen option, defined as the 

difference between the expected outcome and the observed outcome: 

δc(t) = Rc(t) – Qc(t) 

And α is the learning rate parameter determining the extent to which PEs are used 

as a learning signal. 

Then, the learned values of the two A and B options are converted to choice 

probabilities using the SoftMax function. For instance, the probability of choosing option 

A is given as:  

1

1 + exp(β(Q𝐵 − QA)
 

Where β is the inverse temperature parameter that controls the degree of 

stochasticity in choice behaviour. Larger values of β yield more deterministic choices, 

while smaller values reflect more exploratory behaviour. 

The contribution of each trial to the likelihood was given by the log probability of 

the observed choice. For a choice between the chosen (ic) and unchosen (iu) options: 

l𝑡 = log (
1

1 + exp(−β [𝑄𝑖𝑐
(𝑡) − 𝑄𝑖𝑢

(𝑡)])
) 

The log-likelihood for a subject was then: 

ℒ = ∑ l𝑡
𝑡

 

and the model minimised the negative log-likelihood, –L, during estimation. 

To test the effect of Feedback (Confirmatory vs Disconfirmatory) and Accuracy 

(True vs False) on decision-making, I tested four different models with different numbers 



65 
 

of α (α = 2, 3 or 4). The number of learning rates was varied according to Feedback and 

Accuracy dimensions.  The confirmatory feedback is defined as a positive PE (+10 in the 

gain context and -1 in the loss) for the chosen option or a negative PE (+1 in the gain 

context and -10 in the loss) for the unchosen option. Conversely, the disconfirmatory 

feedback is when a negative PE outcome occurs for the chosen option or a positive PE 

for the unchosen option.  

The four models were formulated as follows: 

Model 1 (M1)  

Q(t+1) = Q(t) + αtrue * δ(t)                 if information accuracy cue = True 

Q(t+1) = Q(t) + αfalse * δ(t)                 if information accuracy cue = False 

Free parameters (n=3): αtrue, αfalse, β 

Model 2 (M2)  

Q(t+1) = Q(t) + αtrue * δ(t)                if accuracy = True 

Q(t+1) = Q(t) + αConf, false * δ(t)                 if accuracy = False and feedback = Confirmatory 

Q(t+1) = Q(t) + αDisconf, false * δ(t)             if accuracy = False and feedback = Disconfirmatory 

Free parameters (n=4): αtrue, αConf, false, αDisconf, false, β 

Model 3 (M3) 

Q(t+1) = Q(t) + α false * δ(t)               if accuracy = False 

Q(t+1) = Q(t) + αConf, true * δ(t)                 if accuracy = True and feedback = Confirmatory 

Q(t+1) = Q(t) + αDisconf, true * δ(t)             if accuracy = True and feedback = Disconfirmatory 

Free parameters (n=4): αfalse, αConf, true, αDisconf, true, β 

Model 4 (M4) 

Q(t+1) = Q(t) + αConf, false * δ(t)                 if accuracy = False and feedback = Confirmatory 

Q(t+1) = Q(t) + αDisconf, false * δ(t)             if accuracy = False and feedback = Disconfirmatory 

Q(t+1) = Q(t) + αConf, true * δ(t)                  if accuracy = True and feedback = Confirmatory 

Q(t+1) = Q(t) + αDisconf, true * δ(t)              if accuracy = True and feedback = Disconfirmatory 

Free parameters (n=5):  αConf, true, αDisconf, true, αConf, false, αDisconf, false, β 
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Next, I created two 8-learning-rate models. In the first, to see if the observed 

pattern of learning rates was indeed confirmation bias and not positivity bias, Model 4 

was expanded to include separate learning rates for factual and counterfactual 

outcomes (see Appendix 3.1 for full details). Second, to see if the confirmation bias for 

true and false information exists for both Gain and Loss contexts, Model 4 was expanded 

to include separate learning rates for Gain and Loss contexts (see Appendix 3.2). An 

additional supplementary model introduced gradual perseveration parameters to Model 

4. The goal here was to see if the confirmation bias is robust once the gradual 

perseveration is considered, as some argue the confirmation bias is a pseudo-bias bias 

emerging from perseveration (Katahira, 2018; Sugawara & Katahira, 2021), while others 

defend the validity of the bias (Palminteri, 2023) .  

The core idea behind the gradual perseveration model is to maintain a "choice 

trace" - like a memory of how often an option has been selected - for both chosen and 

unchosen options:  

Cc(t+1) = Cc(t) + τ(CPE(c)) 

Cu(t+1) = Cu(t) + τ(CPE(u))      

CPE(c) = 1 – Cc(t) 

CPE(u) = 0 – Cu(t) 

Where Cc and Cu are the choice traces for the chosen and unchosen options, 

respectively.  When an option is chosen, its trace is increased towards 1; when an option 

is not chosen, its trace is decreased towards 0. This update process is driven by a “choice 

prediction error" (CPE) and choice trace accumulation rate (τ) akin to a learning rate, 

which controls how quickly the trace adapts. For instance, if it is set to 1, then only the 

previous choice affects the current choice, while lower values mean more of the past 

choices are influential.  

This choice trace then biases future decisions. The probability of picking one 

option (A) over another (B) is determined not just by its expected value (Q) but also by its 

choice trace (C) as given by the following:  

1

1 + exp(β(Q𝐵 − QA) +  𝜑(𝐶𝐵 −  𝐶𝐴))
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In which, β determines how much the learned value of an option influences the 

choice, while φ (phi) determines how much the history of past choices sways the 

decision. If φ is positive, it encourages repeating past choices (perseveration), while if 

negative, it encourages switching to different options (alternation).  

Therefore, the gradual perseveration model has seven free parameters: αConf, true, 

αDisconf, true, αConf, false, αDisconf, false, β, φ, τ.  

It should be noted that I focus on the four main models in model comparison and 

model recovery for two reasons. First, these models test my hypotheses of interest, while 

the supplementary models serve as robustness checks. Second, I employ the same 

modelling approach in subsequent chapters, ensuring a consistent and generalisable 

framework throughout the thesis.  

3.2.5 Model Fitting Procedure 

Models were fitted hierarchically by maximising the likelihood of observed 

choices using an Expected Maximisation (EM) algorithm (Huys et al., 2011) in Julia 

(v1.9.4) (Bezanson et al., 2012). This hierarchical approach was chosen for its superior 

performance in predicting unobserved data (Scheibehenne & Pachur, 2015). A full 

description of the fitting procedure is available in Chapter 2. 

3.2.6 Model Comparison 

To compare model performance, I calculated subject-level leave-one-out cross-

validation (LOOcv) scores. I analysed these scores using a Variational Bayesian Approach 

(VBA; Daunizeau et al., 2014) to determine model frequencies and the exceedance 

probability for each model. The exceedance probability indicates how likely it is that one 

model is a better fit than all others in the set (Daunizeau et al., 2009). The full model 

comparison strategy is detailed in Chapter 2. 

3.2.7 Statistical Tests on the Learning Rates 

After identifying the winning model, I reparametrized it to create parameters that 

directly quantified the magnitude of confirmation bias for true and false information, 

respectively (see Appendix S for equations). Because these parameters were estimated 
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hierarchically, standard t-tests could yield biased results (Piray et al., 2019). Therefore, I 

used hierarchical t-tests, which are designed for this data structure, to assess the effects 

of interest. See Chapter 2 for the full details.  

3.2.8 Model Recovery  

To ensure my models were distinguishable, I conducted a model recovery 

analysis. For each of the four models, I generated 50 synthetic datasets using parameters 

from the experimental data. I then fitted all four models to each synthetic dataset to verify 

that the data-generating model could be correctly identified via the VBA procedure. The 

full model recovery strategy is detailed in Chapter 2. 

3.2.9 Parameter Recovery  

I also conducted a parameter recovery analysis for the winning model to ensure 

its parameters could be reliably estimated. I generated data for 5000 synthetic 

participants using a range of known parameter values. After fitting the model to this data, 

I compared the original and recovered parameters using Pearson correlations to confirm 

a high degree of correlation. The full parameter recovery strategy is detailed in Chapter 

2. 

3.3 Results  
Participants learn from true and false information. Analysing choice rates 

revealed that on average participants selected Option 1 (O1) over Option 2 (O2) in both 

the solvable (Study 1: t(46) = 14.66, p < 0.01; Study 2: t(56) =12.50, p < 0.01) and 

unsolvable conditions (Study 1: t(46) = 2.64, p < 0.05; Study 2: t(56) = 3.47, p < 0.01), 

Figure 3.2. This suggests that participants integrated feedback from both true and false 

information. However, this was not the result of ignoring accuracy cues since there was 

clear evidence that information integration was modulated by these cues; the propensity 

to choose O1 over O2 was greater in the solvable condition compared to the unsolvable 

one (Study 1: t(46) = 5.42, p < 0.01; Study 2: t(56) = 5.48, p < 0.01). As an additional check 

to verify that participants paid attention to this cue, on 6.25% of trials, participants were 

asked to report what the accuracy cue had been on the previous trial – participants 

correctly reported this 90% of the time. 
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Figure 3.2: Choice Rates for (a) Study 1 and (b) Study 2. Participants opt to select option 1 - the 
option that provides the best outcome (+10 in the gain context or -1 in the loss context) more often 
relative to option 2 - to a greater degree in solvable compared to the unsolvable 
conditions(Experiment 1: t(46) = 5.42, p < 0.01; Experiment 2: t(56) = 5.48, p < 0.01). But, in both 
solvable (Experiment 1: t(46) = 14.66, p < 0.01; Experiment 2: t(56) =12.50, p < 0.01) and 
unsolvable (Experiment 1: t(46) = 2.64, p < 0.05; Experiment 2: t(56) = 3.47, p < 0.01) conditions, 
participants chose O1 to a greater degree than chance. Choice rates are averaged over gain and 
loss contexts. *p < 0.05, ***p < 0.001 (one-tailed test vs 0.5 or paired sample t-test as 
appropriate)  

Next, I sought to assess if participants learned from false information in a biased 

manner. I tested four computational models that differed in their number of learning rates 

(see Methods). All models shared the same basic structure but varied in how they parsed 

confirmatory versus disconfirmatory feedback and true versus false information. 

Model 1 used two learning rates: one for true and another for false information. 

Model 2 had three learning rates, maintaining a single rate for true information but 

splitting false information into separate rates for confirmatory and disconfirmatory false 

information. Model 3 also used three learning rates but took the opposite approach, 

using one rate for false information while distinguishing between confirmatory true and 

disconfirmatory true information. Finally, Model 4 incorporated four learning rates, 

providing separate rates for each combination: confirmatory true, disconfirmatory true, 

confirmatory false, and disconfirmatory false information. This modelling approach 

allowed me to examine whether participants processed information differently based on 

feedback (confirmatory vs disconfirmatory) and veracity (true vs. false). Full model 

specifications are provided in the Methods section. 
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Four learning rate model the best fit to the data. Across both studies, Model 4 

consistently provided the best fit to the data. I compared the four models using leave-

one-out cross-validation (LOOcv) scores and a Variational Bayesian Approach, and in 

both studies, Model 4 achieved the highest model frequency (~83% in Study 1 - Figure 

3.5(a) - and ~93% in Study 2 – Figure 3.5(c)) and an exceedance probability of 1.0 (Figure 

3.3(b)). These frequencies were well above the 25% chance level, indicating strong 

evidence that the four-parameter learning structure of Model 4 was the best at capturing 

participants' behaviour. Model recovery (Figure 3.3 (b) and (c)) indicated all models are 

identifiable and parameter recovery showed all parameters of the winning model had a 

high recovery rate (Figure 3.4 (a)) and the correlation between the parameters in the real 

data was low for study 1 (Figure 3.4 (b)) and study 2 (Figure 3.4 (c)).  

 

Figure 3.3: Model Fit and Recovery. (a) Shows the exceedance probabilities (XP), which quantify 
the confidence that each model is more likely than all other models in the set. M4 achieved an 
exceedance probability of nearly 1.0, indicating extremely high confidence that it outperforms 
the competing models. (b) Shows the confusion matrix representing model recovery accuracy. 
Each simulated model (x-axis) is correctly identified by the model comparison procedure as the 
best-fitting model (y-axis), with all values on the diagonal equal to 1 and off-diagonal values equal 
to 0. This indicates perfect recoverability and discriminability between the models, confirming 
that the model-fitting approach can reliably distinguish among the candidate models. (c) 
Displays the mean Leave-One-Out Cross-Validation (LOOcv) scores for each model averaged 
over 50 iterations, where lower values indicate better predictive performance. The simulation 
results demonstrate that when data were generated from a specific model (columns), the 
corresponding model generally achieved the lowest LOOcv score when fitted to that data, 
validating my model recovery procedure. Notably, M4 showed strong recovery performance. 
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Figure 3.4: Parameter Recovery. (a) Successful parameter recovery of the winning model with high 
correlations between the simulated and estimated parameters. (b) The correlation between the 
parameters of the winning model in Study 1 and (c) in Study 2. The weak correlations demonstrate that 
parameters do not systematically trade off against each other during estimation, supporting the 
model's identifiability. 
 

As an additional check, paired sample t-tests with FDR correction confirmed 

Model 4's superiority over all other models. In Study 1, Model 4 was significantly better 

than Model 1 (t(46 ) = −4.75, p_adj < 0.001), Model 2 (t(46) = −3.69, p_adj<0.001), and 

Model 3 (t(46) = −3.07, p_adj < 0.01). This was also true in Study 2, where Model 4 again 

outperformed Model 1 (t(56) = −4.94, p_adj < 0.001), Model 2 (t(56) = −3.82, p_adj < 

0.001), and Model 3 (t(56) = −3.34, p_adj < 0.01). 

This advantage was also apparent at the individual level. In Study 1, Model 4 

provided the best fit for the largest portion of participants (44.7%), followed by Model 3 

(25.5%), and then Models 2 and 1 (both 14.9%). Similarly, in Study 2, Model 4 accounted 

for the largest group of individuals (42.1%), compared to Model 3 (22.8%), Model 2 

(19.3%), and Model 1 (15.8%). These results show differential treatment of PEs across 

accuracy (true vs false) and feedback (confirmatory vs disconfirmatory), with four 

learning rates governing the decision-making.  
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Figure 3.5: Modelling Results and Estimates. (a) Estimated model frequencies from the VBA 
model comparison in study 1. Model 4 (M4) had the highest frequency, selected for 
approximately 83% of participants, with an exceedance probability (XP) of 1. (b) The estimates 
from M4 showed a higher learning rate for confirmatory versus disconfirmatory feedback for true 
(t(46) = 6.50, p < 0.001, hierarchical t-test comparing αconf_true  with  αdisconf_true ) and false (t(46) = 
5.19, p < 0.001, hierarchical t-test comparing αconf_false  with  αdisconf_false) information, indicating 
confirmation bias. (c) Estimated model frequencies from the VBA model comparison in study 2. 
Similar to study1, Model 4 (M4) had the highest frequency, selected for approximately 93% of 
participants, with an exceedance probability (XP) of 1. (d)  The estimates from M4 show the 
existence of confirmation bias for true (t(56) = 5.24, p < 0.001, hierarchical t-test comparing 
αconf_true  with  αdisconf_true ) and false (t(56) = 2.43, p = 0.01, hierarchical t-test comparing αconf_false  with  

αdisconf_false) in this study as well. The model frequency reflects the proportion of the population 
best accounted for by each model. ***p < 0.001, *p < 0.05, hierarchical t-test. 
 
 

Confirmation bias exists for false information. I then probed the pattern of 

learning rates from the winning model (M4) (Figures 3.5 (b) and (d)). In both studies, 

participants exhibited a strong confirmation bias for false information (t(46) = 5.19, p < 

0.001; t(56) = 2.43, p = 0.01) and true (t(46) = 6.50, p < 0.001; t(56) = 6.38, p < 0.001), 

learning more from confirmatory vs disconfirmatory feedback. There was no significant 

difference in the size of this bias between true and false information (t(46) = 1.81, p = 0.07; 

t(56) = 1.11, p = 0.26). I confirmed that this was indeed confirmation bias and not 
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positivity bias (see Appendix 3.3) and that it is robust across Gain and Loss contexts (see 

Appendix 3.4).  Then I controlled for perseveration by estimating the learning rates of the 

gradual perseveration model to see if the confirmation bias holds (Figure 3.6). The reason 

for this analysis was that within the context of such RL experiments, a group of 

researchers argues that the confirmation bias is a "pseudo-bias" that emerges from a 

simpler tendency to persevere with previous choices (Katahira, 2018; Sugawara & 

Katahira, 2021). However, another group defends the bias's validity that cannot be 

explained away by perseveration (Palminteri, 2023). My results from this model showed 

that the bias for false information survived in study 1 (t(46) = 3.13, p < 0.001) and study 2 

(t(56) = 5.24, p < 0.001). The bias for true information, however, survived in study 1 (t(46) 

= 2.43, p = 0.01) but not in study 2 (t(56) = 1.15, p = 0.25). It should be noted that the 

choice  

 

Figure 3.6: Gradual Perseveration Model Estimates. (a) The estimates from the gradual 
perseveration model showing confirmation bias for study 1 for both true (t(46) = 2.43, p = 0.01) 
and false (t(46) = 3.13, p < 0.001) information. (b) The estimates of the model in study 2 showed 
confirmation bias for false information (t(56) = 5.24, p < 0.001) but not for true (t(56) = 1.15, p = 
0.25). n.s: not significant, *p < 0.05, hierarchical t-test. 

3.4 Discussion 
Debunking reduces learning from false information compared to true information, 

but it is less effective when false information confirms vs disconfirms one’s beliefs, as 

demonstrated by a higher learning rate for confirmatory vs disconfirmatory false 

information – a confirmation bias. In two reinforcement learning (RL) studies, through 

computational models, I showed that confirmation bias exists when faced with false 

information, not only replicating the well-documented asymmetric treatment of 
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prediction errors as the mechanism behind this bias for true information (Chierchia et al., 

2023; Palminteri, 2023, 2025; Palminteri et al., 2017; Palminteri & Lebreton, 2022) but 

also extending it to the misinformation domain. The winning model had different learning 

rates across feedback (confirmatory vs disconfirmatory) and accuracy (true vs false) 

domains, surpassing other models with fewer learning rates in a formal model 

comparison. Therefore, both model estimation and model comparison indicated 

sensitivity to information based on its feedback and accuracy.  

Confirmation bias for false information could explain the phenomenon of echo 

chambers or filter bubbles (Flaxman et al., 2016). The key feature of these bubbles is the 

preference for confirmatory information; and, as my results demonstrate, confirmatory 

false information is harder to debunk because the earlier information whose veracity was 

unknown told people what they wanted to hear, acting as a reward. On social media, 

features such as “Like” that confirm one’s beliefs can indeed act as a reward akin to my 

RL task.  Turner et al. (2025) modelled social media using RL whereby they treated its 

features - such as receiving likes on posts - as rewards that updated action values. They 

showed that when users repeatedly receive this type of social validation through likes and 

shares they develop habits around content they have learned to be rewarding.  The issue 

is that this reinforcement mechanism doesn't distinguish between true and false 

information and only responds to whether content aligns with existing beliefs. One 

cannot establish causality here, but the outcome of such interactions is a polarized 

environment with different echo-chambers that boost their own confirmatory content 

and dispense with disconfirmatory information. According to my results, debunking is 

bound to be less effective in such environments as the content that is being fact-checked 

is most likely in line with the bubble’s beliefs.  

This problem gets worse because in real life, people actively choose what 

information they like to consume - unlike in my experiment where I presented information 

to them. The exposure effect (Sears & Freedman, 1967) explains that people tend to seek 

information that is in line with what they already believe while avoiding information that 

contradicts their views. Given that we are inundated with so many choices today, it is 

much easier to choose sources that we know will confirm our beliefs, downweighting 

accuracy (Iyengar & Hahn, 2009; Karlsen et al., 2020). Bromberg-Martin and Sharot (2020) 
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argue that confirmatory information produces rewarding "internal outcomes" akin to 

positive emotional experiences, reframing motivated reasoning as the rational pursuit of 

information that is rewarding in and of itself. Hart et al.'s (2009). A meta-analysis supports 

this (Hart et al., 2009), demonstrating that while accuracy matters, the drive toward 

confirmatory information intensifies when people want to defend their beliefs. Therefore, 

information seeking becomes a tool to feel good, whereby people seek information that 

brings them positive emotions rather than accurate information. This keeps happening 

over and over, creating a loop whereby not only do we interpret information in a biased 

manner, but our choices also control what information we see in the first place. This 

creates a system that favours information matching our beliefs, no matter the veracity. 

Therefore, providing a mechanistic account of why people seek information from 

unreliable sources is an important future direction.  

The main finding of this chapter – confirmation bias for false information - applies 

to Large Language Models (LLMs) like ChatGPT as well. These AI systems are trained to 

match user preferences using methods like Reinforcement Learning from Human 

Feedback (RLHF). Basically, the models get rewarded when they produce responses 

users deem helpful (Ouyang et al., 2022). While this makes the AI easier to use, it also 

makes it sycophantic (Rathje et al., 2025), telling people what they want to hear instead 

of giving accurate information (Perez et al., 2022; Santurkar et al., 2023). My findings add 

another layer to this. When an LLM gives someone confirmatory false information, that 

person is more likely to learn from that information. At a larger scale, LLMs could create 

customised false information for each user based on their beliefs, creating mini echo 

chambers detached from reality.  

My results shed light on both the benefits and limitations of debunking 

misinformation. On the bright side, debunking could be effective: participants learned 

less from false vs true information. This is in line with other studies showing that 

debunking could be an effective intervention (M.-P. S. Chan et al., 2017; Walter et al., 

2020). The only downside is that debunking is less effective when false information tells 

us what we want to hear. This helps the continued influence effect, where misinformation 

keeps affecting people's thinking even after they've been corrected and accepted the 

correction (Johnson & Seifert, 1994). Previous research suggests misinformation leaves 
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a mental 'trace' that's hard to erase from memory (Walter & Tukachinsky, 2020). My 

findings complement this by showing that this mental trace is stronger for misinformation 

that confirms our beliefs, potentially because we learn it better in the first place, making 

it harder to undo later. 

In light of such limitations, an alternative approach is offered called prebunking 

(Van Der Linden, 2024; van der Linden et al., 2017). This approach is akin to a vaccine 

whereby you expose people to a small, weakened version of misinformation and explain 

why it's wrong beforehand, building mental resistance, the effectiveness of which has 

been shown in several studies (van der Linden et al., 2017; Roozenbeek & van der Linden, 

2019). For instance, a prebunking version of the current RL task would be to bring the 

information cue presentation before the outcomes are observed (Vidal-Perez et al., 

2025). Prebunking, however, is not a perfect solution. For instance, using RL, Vidal-Perez 

et al. (2025) found that even when people were warned in advance that a source was 

unreliable, they still learned from it - especially when they were under higher cognitive or 

working memory load.  They also found that people showed stronger positivity bias when 

learning from sources they knew had low credibility. This raises important questions for 

future research: Is prebunking better than debunking at stopping people from learning 

false information? Does the confirmation bias I found with debunking also happens with 

prebunking? 

Another factor that may contribute to learning from false information is cognitive 

or working memory (WM) load. Efficient learning in the current RL task requires tracking 

the values of four option pairs while simultaneously monitoring their veracity - filtering 

out irrelevant false information and integrating true information - which taxes WM. WM is 

indispensable to RL, even in simple instrumental tasks like the two-arm bandit (Collins, 

2018; Collins et al., 2017; Yoo & Collins, 2022). In my RL task, WM could help filter out 

false information, but under higher load, this filtering capacity may fail, leading to greater 

integration of false information. Evidence from Vidal Perez et al. (2025) supports this 

hypothesis. They tested two versions of a prebunking paradigm that differed in cognitive 

load: their "Discovery Study" required participants to learn one option pair per block 

(lower load), while their "Main Study" required learning three pairs simultaneously (higher 

load). Under lower load, participants showed no significant learning from an unreliable 
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agent - basically, the False cue in my task. However, under higher load, significant 

learning from the unreliable agent emerged. The positivity bias persisted across both 

studies when encountering the unreliable agent. These findings suggest that filtering out 

false information becomes more difficult as load increases, which might apply to my 

debunking paradigm despite the obvious methodological differences. Given that 

processing information on environments replete with misinformation such as social 

media is also cognitively demanding (Pittman & Haley, 2023), where people should ignore 

the abundant bots and shoddy accounts (Chuai et al., 2023b), it is plausible that one 

reason why people are vulnerable to  false information in such environments is failure to 

filter out misleading content,  especially when they confirm one’s beliefs. Future studies 

could shed light on this by directly manipulating WM load (e.g., by varying the number of 

stimuli to learn - set size) and testing whether false information integration changes as a 

function of it. 

While the RL framework employed here provides a useful method for quantifying 

confirmation bias, it is important to acknowledge its limitations. One limitation is the 

restriction of learning rates (α) to values between 0 and 1, meaning that a negative 

learning rate is impossible. In a standard Rescorla-Wagner model, a positive outcome 

(e.g., +10 points) generates a positive prediction error, which mathematically forces an 

increase in the expected value of the associated option. However, when the same 

outcome turns out false it could create a computational paradox.  Consider this example: 

a participant chooses Option A, sees a +10 win, but is then shown a Cross (False). If the 

participant interprets this as a negative scenario, they might lower their estimate of 

Option A. Yet, to reduce the value of Option A the model would mathematically require a 

negative learning rate (multiplying the positive error by a negative number). Since this 

parameter is conceptually invalid in standard RL, the model cannot capture this potential 

scenario. Instead, the model is forced to either increase the value towards the displayed 

reward or to suppress the learning rate toward zero, meaning that it cannot capture a case 

where the participant lowers the value of the option. Further, standard RL algorithms are 

associative, meaning that they update values incrementally based on the reward history. 

However, processing false information in this task involves retrospective judgement.  For 

example, a participant understands that a “Cross” changes the meaning of the +10 they 
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just saw. This limitation suggests that while RL can model how values change, it does not 

capture the reasoning participants use to determine what those values actually are when 

information is unreliable. To address these limitations, future studies could employ 

Bayesian learning models (Behrens et al., 2007; Diaconescu et al., 2014a) or Latent 

Cause Models (Gershman & Niv, 2010). Bayesian models track the reliability of the 

information source. Unlike RL, which assumes inputs are always “true” rewards, a 

Bayesian agent estimates the probability that a signal is correct. If the agent infers that 

the False cue indicates a reliability of 0%, the model mathematically inverts the 

prediction error in the update step. Alternatively, Latent Cause models shift the 

mechanism from value updating to structural inference. Rather than assuming all 

outcomes belong to a single state, the agent infers distinct “hidden states” that generate 

observations. In this framework, the agent can infer that the False cue signals a specific 

“Noise State,” allowing the model to ignore the false feedback and protect the true value 

estimate.  

These findings paint a bleaker picture than earlier studies, demonstrating that 

misinformation can exert a noticeable influence on our learning even when tested with 

basic, abstract stimuli in controlled settings. The confirmation bias for false information, 

in particular, is a finding that showcases how vulnerable we are to false claims that are in 

line with our existing viewpoints. Given that the algorithms are tailored to our beliefs  

(Glickman & Sharot, 2024; Vellani et al., 2024), these kinds of confirmatory information 

are bound to be common, a sizeable chunk of which will be misleading or false. The 

computational modelling approach I employed here was useful in understanding both 

the potential effectiveness of debunking interventions and the reason behind their 

limitations. Combating misinformation therefore requires a better understanding of the 

reward-based cognitive biases that shape how we learn from false information.  
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Chapter 4: Optimistic update bias in 
response to false information 

4.1 Introduction 
 

Encountering false information is a phenomenon animals and humans have long 

had to grapple with. From monkeys misleading their peers where food sources have been 

hidden (Mitchell, 1986), human scientists falsifying and publishing false data 

(Gopalakrishna et al., 2022) to governments spreading propaganda in the pursuit of 

furthering their own political agendas  (Waight et al., 2025), encountering misleading 

information has been a long-standing problem. But whilst not a new phenomenon, 

exposure to false information has – amongst humans at least – become a more urgent 

and pressing concern in recent years due to the increased volume, velocity, and variety I 

now encounter on a regular basis (Ceylan et al., 2023; Pennycook & Rand, 2021; Van Der 

Linden, 2024). This has been driven by technological advances that have lowered the cost 

of producing realistic false information (open-source AI tools can be used to generate 

highly realistic deepfakes, for instance), decreased cost attached to disseminating false 

information (automated ‘bots’ can be used, for instance) (Ceylan et al., 2023; Pennycook 

& Rand, 2021), and low levels of regulatory oversight that exist to constrain content 

posted and shared via social media. Alongside this, recommendation systems 

technology platforms use look to prioritise engagement (rather than prioritising 

accuracy), which has been argued to further facilitate the spread of misinformation 

(Pennycook & Rand, 2021; Vosoughi et al., 2018) which can often be more novel, 

surprising and likely to garner attention and engagement. 

This recent surge of exposure to false information has been blamed for a range of 

negative  outcomes, including: failures to respond to climate change (Brulle & Roberts, 

2017; van der Linden et al., 2017), political unrest (Ruohonen, 2024) and poor medical 

decision making, such as vaccine hesitancy (Loomba et al., 2021; Pierri et al., 2022; 

Roozenbeek et al., 2020; Zimmerman et al., 2023). Given the threat it poses, there has 

been considerable debate surrounding how best to counteract it. One proposal 

(Christner et al., 2024; Van Der Linden, 2024) is for content to be moderated by attaching 
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labels to information, which inform cases where information is suspect and 

questionable. This has been contentious of late as prominent media platforms Meta and 

X (formerly Twitter) have abolished attempts to do this, citing ineffectiveness, proneness 

to bias and conflicts with free speech (Isaac & Schleifer, 2025; J. Taylor, 2023).  

Here I investigate the degree to which such labels could enable humans to 

moderate the degree to which they learn from new information. On the one hand, a 

considerable body of evidence from psychology and neuroscience suggest that the 

extent to which individuals learn is not fixed. Rather, the degree to which information is 

integrated and used to update beliefs varies with a host of factors, including arousal 

(Filipowicz et al., 2020; Nassar et al., 2012), how volatile an environment I are in (Behrens 

et al., 2007; Pearce & Hall, 1980; Pulcu & Browning, 2019), arousal (Browning et al., 2015; 

Garrett et al., 2018), working memory (Z. Cheng et al., 2024), and mood (Kao et al., 2023). 

But on the other hand, there are many examples where it seems learning cannot be 

completely curtailed when people get information that they explicitly told is irrelevant or 

false (Ecker et al., 2010; Ross et al., 1975; Tversky & Kahneman, 1974). A well-known case 

is the continued influence of misinformation (Ecker et al., 2010) whereby individuals 

continue to recall narratives they encountered that were subsequently retracted or 

discredited. 

One factor that could influence the degree to which learning can be adjusted in 

the face of false information – which I explore here – is that of valence; whether the 

information is better or worse than expected to begin with. A range of evidence suggests 

that individuals tend to integrate better than expected information over worse than 

expected information (Garrett et al., 2014, 2014; Garrett & Sharot, 2017a; Kuzmanovic et 

al., 2019c; Kuzmanovic & Rigoux, 2017; Sharot et al., 2011), a pattern which has been 

argued to help generate and sustain optimism over time. If learning can be “undone” in 

cases where information is revealed to be false but was better than expected in the first 

instance, potentially this act of “mentally undoing” the initial learning requires a greater 

degree of effort, compared to instances in which the initial information was worse than 

expected (and therefore didn’t actually change beliefs by much in the first place). If, in 

addition, individuals engage in motivational reasoning (Kunda, 1990) as part of this 

revisionist process, they are less likely to possess the motivation to undo learning that 

restores them back towards a worse belief (which will be the case when better than 
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expected information is revised) compared to cases where such a revision restores them 

back towards a better belief (which will be the case when worse than expected 

information is revised). 

To test this idea, I adapted a classic belief updating paradigm (Sharot et al., 2011) 

in which participants were presented with information about the likelihood of 

experiencing different adverse life events in the future. This information was then 

explicitly labelled as either true or false. This manipulation allowed us to answer 2 key 

questions: (1) whether belief updating was attenuated when information was shown to 

be false; (2) whether the valence bias shown in the past to exist in response to true 

information (Garrett et al., 2014; Garrett & Sharot, 2017a; Kuzmanovic et al., 2019c; 

Kuzmanovic & Rigoux, 2017; Sharot et al., 2011; Sharot & Garrett, 2016) persists when 

information is shown to be false.  

4.2 Methods  
4.2.1 Participants  
 

127 students were recruited from the University of East Anglia SONA subject pool 

to participate in the study. 19 of the 127 were excluded from all analysis (1 participant did 

not pass attention checks during the task, 3 did not complete the task, 13 failed catch 

questions in the questionnaires, and 3 did not have trials I could assign to each of our 

four experimental conditions). The final sample size was 108 (mean (SD) age: 19.48 

(1.51)). Power analysis based on effect sizes from a previous study (d=0.40) using this 

paradigm (Garrett & Sharot, 2017a) indicated that a sample size of 80 was sufficient to 

detect an effect size of with 95% power and an alpha level of 0.05 (paired sample t-test 

comparing good versus bad news). I increased the sample size further to enable us to use 

Bayes Factors where a sample size of at least 100 participants is recommended (Fu et 

al., 2021, 2022) to infer evidence for/against the null. The study was approved by the 

University of East Anglia’s ethics committee. Participants received study credits as 

compensation for participating in the study.  
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4.2.2 Behavioural Task and Stimuli 
 

The task was adapted from a belief updating task previously used to investigate 

optimistic updating biases (Khalid et al., 2024; Kuzmanovic et al., 2019c; Kuzmanovic & 

Rigoux, 2017; Ma et al., 2016; Sharot et al., 2011; Sharot & Garrett, 2016)  and followed 

best practices for using the task (Sharot & Garrett, 2022). 

 

 
 
Figure 4.1: Behavioural task. On each trial, participants were presented with a short description 
of an adverse event and asked to imagine the event happening to them in the future. They were 
then asked to estimate how likely this event was to occur to them in the future and then to 
estimate how likely the event was to happen to them on average (the order of these two estimates 
was randomised). They were then presented with the probability of that event occurring on 
average (in a demographically similar population) and then with a cue indicating whether this 
statistic had been true (tick) or false (cross). Finally, participants are asked to provide their 
estimate how likely this event was to occur to them in the future. Shown here is an example of 
Good News (as the Average Presented to Participants is lower than their initial self-estimate). In 
other cases (where the Average Presented to Participants is higher than their initial self-estimate) 
participants received Bad News. See Supplementary Materials for Examples of the 4 different trial 
types (Good News True, Bad News True, Good News False and Bad News False). Update is 
quantified as the change in 1st and 2nd Self Estimates. Estimates of the Base Rate are used in the 
computational modelling to infer relative personal knowledge participants might privately hold 
about each event. 

 
Stimuli consisted of two lists of 25 different negative life events (e.g., domestic 

burglary - see Appendix 4.6 for events used). Events and their statistics were obtained 

from stimuli used in the original study (Sharot et al., 2011), which compiled the statistics 

of each event occurring at least once to someone from the United Kingdom from 
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reputable online resources (including the Office for National Statistics and PubMed). 

Very rare or very common events were not included; all event probabilities lay between 

10 and 70% and were normally distributed around the midpoint of the range (Sharot & 

Garrett, 2022), see Appendix 4.2. To ensure that the range of possible overestimation 

was equal to the range of possible underestimation, participants were told that the range 

of probabilities lay between 3 and 77%, and they were only permitted to enter estimates 

within this range. Each participant was randomly assigned to one of the two lists for true 

trials and the other list for false trials. When a list was designated as the false list, the 

event statistics were randomly shuffled so that the statistics didn’t match the event 

descriptions (e.g., the likelihood for domestic burglary was shown for bicycle theft), but 

the statistical properties of the base rates (the median, range, distribution, etc.) 

remained unchanged. The two lists were then merged to create a final list of 50 events 

with 25 accurate statistics and 25 false statistics.  

4.2.3 Behavioural Task 
 

On each trial, one of the 50 events was shown. Participants were then prompted 

to estimate how likely the event was to happen to them personally in the future (E₁) and 

how likely it was to occur on average in the population (eBR; their estimate of the base 

rate). In half of the trials, the order of the two estimations (E₁ and eBR) was reversed (i.e. 

E₁ followed by eBR). After this, the base rate of the event happening to someone in the 

same socioeconomic environment as the participant (BR; the base rate) was provided. 

Participants were then prompted to press the spacebar to see the accuracy of the 

statistic. They then saw a stimulus indicating whether the statistic they had been shown 

was accurate (tick) or false (cross). Finally, they were told to estimate how likely the event 

was to happen to them again (E₂). There were no time constraints for submitting 

responses (E₁, eBR, E₂). The task was created using Qualtrics. 

 

4.2.4 Questionnaires 
 

At the end of the experiment, participants were asked to complete three 

psychiatric questionnaires: Beck Depression Inventory (Beck et al., 1961), Obsessive 

Compulsive Inventory (Foa et al., 2002), and the Schizotypy short scale (Mason et al., 



84 
 

2005). In each of the questionnaires, a catch check question was included, which was 

used to exclude inattentive participants (Zorowitz et al., 2023). Participants (N=13) were 

excluded if they got 1 or more of the catch questions wrong.   

 

4.2.5 Controls 
 

At the end of the experiment, participants rated stimuli on six-point scales for 

Negativity (“How negative you found this event?” From 1 = Not at all to 6 = Very), Prior 

Experience (“Has this event happened to you before?” From 1 = never to 6 = very often), 

Vividness (“How vividly could you imagine this event?” From 1 = not vivid to 6 = very vivid), 

Familiarity (“Regardless of if this event has happened to you before, how familiar do you 

feel it is to you from TV, friends, movies and so on?” From 1 = not at all familiar to 6 very 

familiar); and Arousal (“When you imagine this event happening to you how emotionally 

arousing is the image in your mind?” From 1 = not arousing at all to 6 = very arousing). 

These Ratings were included as covariates in control analysis. 

 

4.2.6 Behavioural Analysis 
 

Trials were categorised into 4 types (Good News True, Bad News True, Good News 

False and Bad News False) in a 2*2 within-subject repeated measures design with 

accuracy and valence as factors. Accuracy (True/False) was determined according to 

whether the trial had presented an accurate or false cue. Valence (Good/Bad) was 

determined based on whether participants underestimated or overestimated the 

likelihood of an event happening to them personally (i.e. E₁) relative to the provided base 

rate (BR). Trials where the initial estimate was equal to the base rate (E₁ = BR), ~ 2% of 

total trials, were excluded as they could not be classified. Update was calculated for 

each trial such that positive updates indicate a change toward the probability presented 

[update (good news) = first estimate - second estimate] and negative updates indicate a 

change away from the probability presented [update (bad news) = second estimate - first 

estimate]. 

 



85 
 

Update scores were entered into a 2*2 repeated measures ANOVA with valence 

(good news or bad news) and accuracy (true or false) as factors. To determine whether 

there was evidence of biased updating for true trials, false trials or both, I followed up 

with planned paired sample t-tests on good news vs bad news separately for true (Good 

True vs Bad True) and false (Good False vs Bad False) trials. The ANOVA was run using the 

ezANOVA package (Lawrence, 2016). I then repeated this ANOVA analysis, this time 

applying a stricter classification of good and bad news (Garrett & Sharot, 2014). 

Specifically, I excluded any trials where BR was higher than E1 but lower than eBR (as this 

could be perceived as bad news if comparing BR with E1 but good news if comparing BR 

with eBR) and trials where BR was lower than E1 but higher than eBR (as this could be 

perceived as good news if comparing BR with E1 but bad news if comparing BR with eBR). 

Next, I complemented this analysis using linear mixed-effects models (LMM). 

Trial-by-trial updates were entered as the dependent variable, with valence (coded as 1 = 

good news, -1 = bad news) and accuracy (1 = true, -1 = false) as predictors along with their 

interaction. Predictors were included as random effects and allowed to vary by 

participant. The model was implemented in the syntax of R as follows 

 
LMM1: Update ~ Valence*Accuracy + (1 + Valence*Accuracy | Participant) 
 

Next, I ran a second LMM and now included potential confounds (Sharot & Garrett, 

2022).  

For each trial, an estimation error (EE) term was calculated as the absolute 

difference between the presented probability (BR; the new information) and the 

participant’s initial estimate (E₁) for that trial:  

 
EE = |E₁ – BR| 

 

EE’s on each trial and the 5 subjective ratings for each event shown on each trial 

(Vividness, Past Experience, Arousal, Familiarity and Negativity) were entered as 

additional predictors in the model. Once again, all predictors were included as random 

effects. The model was implemented in the syntax of R as follows: 
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LMM2: Update ~ Valence*Accuracy + EE + Vividness + Arousal + Familiarity + Negativity 
+ PastExperience + (1+ Valence*Accuracy + EstErr + Vividness + Arousal + Familiarity + 
Negativity + PastExperience | Participant) 
 

The two models were fitted in R using the lmer package (Bates et al., 2015) with 

significance tests implemented by lmerTEST (Kuznetsova et al., 2017). 

To test whether null effects for the Valence*Accuracy interaction in each model 

(LMM1 and LMM2) provided evidence in favour of the null (i.e. that the strength of the 

valence effect was the same for true and false trials), I used the brms package (Bürkner, 

2017) with weakly informative priors, 16000 iterations (3000 for warmup), and four chains 

to generate posterior distributions for all model parameters. These were then used to 

generate Bayes Factors (BFs) in bayestestR (Makowski et al., 2019). I used Jeffreys’ scale 

to interpret BFs (Jeffreys, 1961; Wagenmakers et al., 2011) according to which: BFs < 1/30 

are interpreted as extreme evidence supporting the null hypothesis; BFs 1/10-1/30 reflect 

strong evidence in favour of the null; BFs: 1/3-1/10 reflect moderate evidence in favour of 

the null; BFs 1/3-1/1 reflect anecdotal evidence in favour of the null. 

4.2.7 Computational Modelling 
I adapted the computational model used by Kuzmanovic & Rigoux (2017, see also 

Garrett & Sharot, 2022) to test if the relationship between trial-by-trial errors and 

subsequent updates was modulated by accuracy and valence. I note that the models I 

test here do not attempt to make claims as to what time points in the task belief change 

occurs. I apply these models primarily as an analytical tool to understand the degree to 

which error signals in the task correspond to subsequent belief change and test whether 

this relationship is modulated by accuracy, valence and their interaction.  

In each model, update on each trial (t), i.e. the change between participants' first 

and second self-estimates [calculated as: update (good news) = first estimate - second 

estimate; update (bad news) = second estimate - first estimate] was predicted via the 

following equation: 

Updatet = α*EEt*(1 - rPt*w) 

 

rP (relative personal knowledge) was calculated by comparing the estimated base 

rate (eBR) and the first estimate (E₁) as: 
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rPt = (eBR t – E₁ t) / (eBR t – 1)   if E₁< eBR 

rPt = (E₁ t – eBR t) / (77– eBR t)   if E₁> eBR 

rPt = 0      if E₁= eBR 

rP ranges from 0 to 1 where rP = 0 indicates the person does not see themselves 

as different from the population, rP = 1 indicates the greatest disparity possible between 

the individual's perceived likelihood of the event occurring to themselves and the 

population's likelihood (which might occur if say the individual has a range of reasons – 

such as specific lifestyle choices, family history, etc.) - why they believe a population 

statistic is not relevant for them.  

w is a free parameter which indexes the degree to which rP impacts belief 

updating. When W is 0, rP has no influence on belief updating, while when W is 1, rP has 

maximum influence on belief updating.  

α is a learning rate, which governs the degree to which participants updated their 

beliefs in response to the size of the estimation errors (Sharot et al., 2011; Garrett et al., 

2014; Garrett et al., 2018). I tested 4 different models with different numbers of α (α = 2, 

3 or 4). By varying the number of learning rates and how these selectively parsed 

information according to whether information presented was true/false, good/bad, I were 

able to test if estimation errors were integrated to differing degrees for these two factors 

– valence and accuracy. The 4 models were formulated as follows: 

 

Model 1 (M1)  

Updatet = αtrue*EEt*(1 – rPt*w)    if information accuracy cue = True 

Updatet = αfalse*EEt*(1 – rPt*w)    if information accuracy cue = False 

Free parameters (n=3): αtrue, αfalse, w 

 

Model 2 (M2)  

Updatet = αtrue*EEt* (1 – rPt*w)    if accuracy = True 

Updatet = αfalse, goodnews*EEt*(1 – rPt*w)   if accuracy = False and valence = Good 

Updatet = αfalse, badnews*EEt*(1 – rPt*w)   if accuracy = False and valence = Bad 

Free parameters (n=4): αtrue, αfalse, goodnews, αfalse, badnews, w 

Model 3 (M3) 

Updatet = αfalse*EEt*(1 – rPt*w)    if accuracy = False 
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Updatet = αtrue, goodnews* EEt*(1 – rPt*w)   if accuracy = True and valence = Good 

Updatet = αtrue, badnews* EEt*(1 – rPt*w)   if accuracy = True and valence = Bad 

Free parameters (n=4): αfalse, αtrue, goodnews, αtrue, badnews, w 

 

Model 4 (M4) 

Updatet = αtrue, goodnews*EEt*(1 – rPt*w)   if accuracy = True and valence = Good 

Updatet = αtrue, badnews*EEt*(1 – rPt*w)   if accuracy = True and valence = Bad 

Updatet = αfalse, goodnews*EEt*(1 – rPt*w)   if accuracy = False and valence = Good 

Updatet = αfalse, badnews*EEt*(1 – rPt*w)   if accuracy = False and valence = Bad 

Free parameters (n=5): αfalse, goodnews, αfalse, badnews αtrue, goodnews, αtrue, badnews, w 

 

In each model, I converted the predicted Update on each trial into a predicted 2nd 

Estimate (𝐸2
̂ ) on each trial by adding or subtracting the predicted Update from 

participants’ 1st Self Estimate (E₁), depending whether the base rate (BR) presented on 

that trial was lower than E₁ (in which case beliefs shift down) or above E₁ (in which case 

beliefs shift up as the base rate presented was above E₁): 

 

𝐸2̂t = E₁t + Updatet    if BRt > E₁t 

𝐸2̂t = E₁t – Updatet    if BRt < E₁t 

 

2nd estimates predicted on each trial (𝐸2
̂ (𝑡)) were compared to participants' 

actual 2nd estimates (𝐸2(𝑡))  to find the best fitting parameters in the model fitting 

process. 

4.2.7.1 Model Fitting Procedure 
I fitted the models hierarchically using Expected Maximization (EM) algorithm 

(Huys et al., 2011) in the Julia language (Bezanson et al., 2012) version 1.9.4. Hierarchical 

parameter estimation has been shown to provide superior cross-validation performance 

on unobserved data (Scheibehenne & Pachur, 2015). See Chapter 2 for the full details. 

To find the best fitting set of parameters for each model (given the data I observed) 

using the EM algorithm, I used a log-likelihood function. For each observation, I 

calculated the probability density of the observed second estimate (E₂) given the model's 
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predicted second estimate and other parameters. Specifically, I modelled E₂ as following 

a normal distribution (similar to (Nassar et al., 2021)) but truncated the distribution such 

that it was bounded between 3 and 77 (the range of possible values in our task): 

 

log 𝐿 = ∑
𝑁

𝑡=1
log [

ϕ (
𝐸2(𝑡) − 𝐸2̂(𝑡)

σ
)

σ [Φ (
77 − 𝐸2̂(𝑡)

σ
) − Φ (

3 − 𝐸2̂(𝑡)
σ

)]

] 

 

Where:  

• 𝐸2(𝑡) is the observed second estimate for 

trial t  

• 𝐸2̂(𝑡) is the model’s predicted estimate for trial t 

• σ is the standard deviation as a free parameter  

• 𝜙 is the standard normal cumulative distribution function (CDF) 

• Φ is the standard normal probability density function (PDF) 

 

4.2.7.2 Model Comparison 

I then compared the fit of the four models by calculating unbiased subject-level 

leave-one-out cross-validation (LOOcv) scores for each participant for each model. The 

LOOcv scores were fed into the mbb-vb-toolbox in MATLAB (Daunizeau et al., 2014). See 

Chapter 2 for the full details. 

4.2.7.3 Statistical Tests on the Learning Rates 
Once the winning model was identified, I reparametrized it such that one 

parameter indexed the optimistic update bias for true information, one for false 

information, and a third captured their interaction. I then estimated these parameters 

again using hierarchical EM. See the full details in Chapter 2.  

4.2.7.4 Model Recovery  
I ran model recovery to validate the degree I could robustly identify each of our 4 

models (M1-M4). The basic logic of this approach is that if the underlying data has 
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verifiably been generated by one of the four specific models, this model should 

outperform the other 3 in model comparison. See Chapter 2 for the full details. 

4.2.7.5 Parameter Recovery  
To evaluate parameter identifiability, I conducted a parameter recovery analysis 

on the winning model. I simulated behaviour for 200 synthetic participants, each 

completing 200 trials, using parameter values randomly drawn from uniform 

distributions spanning the empirically observed ranges. The same model-fitting 

procedure used for real participants was then applied to the simulated data. Recovery 

success was assessed by comparing the true and recovered parameter values using 

Pearson correlations, and values higher than 0.80 were deemed high enough for a 

successful recovery. See Chapter 2 for the full details. 

4.2.7.6 Simulations  
To qualitatively examine each model’s capacity to reproduce the behavioural 

patterns I observed, I simulated data for each of the four models (M1–M4). For each 

model, I generated data for 500 synthetic participants, each completing 50 trials. Trial 

characteristics (base rates, number of true/false trials, range of estimations) matched 

the structure and range of the actual task. Parameter values used for each simulation 

were set to the average value of the parameters observed in the real data.  

4.3 Results 
Biased updating in response to true and false information. Update scores from 

each participant were entered into a 2*2 repeated measures ANOVA with Accuracy 

(True/False) and Valence (Good/Bad) as within-subject factors. This showed a main 

effect of valence (F(107) = 297.27, p < 0.001) with greater updating for good news 

compared to bad news, a main effect of accuracy (F(107) = 43.47, p < 0.001) with greater 

updating for true compared to false trials, and no interaction between valence and 

accuracy (F(107) = 2.05, p = 0.15). Replicating findings from previous studies 

(Kuzmanovic et al., 2019a; Kuzmanovic & Rigoux, 2017; Ma et al., 2016; Sharot et al., 

2011; Sharot & Garrett, 2016), I found a significant difference in belief updating between 

good and bad news for true (t(107) = 5.74, p < 0.001; paired t-test, 75.9% of participants 
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updated more in response to True Good compared to True Bad). But I also found a similar 

difference in updating between good and bad for the false trials (t(107) = 5.09, p < 0.001, 

75.9% of participants updated more in response to False Good compared to False Bad).  

These results are not explained by differences in the distribution of statistics 

presented to participants (Garrett & Sharot, 2017a, 2023; Sharot & Garrett, 2022) – these 

were deliberately engineered (by the experimental design, see Methods) such that 

statistics labelled as true and statistics labelled as false during the experiment each 

assumed a normal distribution centred around the midpoint of the scale (see Appendix 

4.2 for histogram plots of the base rates presented). The results are also not the result of 

potential misclassification of trials into good or bad (Garrett & Sharot, 2014). To check 

this, I reran this analysis, this time applying a more stringent method of classifying trials 

into good and bad news (See Methods and Appendix 4.7 for full details). This again 

revealed a main effect of valence (F(1,107) = 318.76, p < 0.001), a main effect of accuracy 

(F(1,107) = 37.88, p < 0.001) and no significant interaction (F(1,107) = 1.38, p = 0.24). 

Again, paired t-tests showed greater updating for good compared to bad news for true 

(t(107) = 5.26, p < 0.001) and for false trials (t(107) = 4.86, p < 0.001).  

 
Figure 4.2: Biased updating in response to true and false information. Participants reduced 
the degree to which they used the information presented and updated their beliefs following the 
receipt of false compared to true information (Main Effect of Accuracy: F(107) = 43.47, p < 0.001). 
Participants also updated their beliefs more when information was good news (presented an 
opportunity to adjust beliefs in a positive direction) than after receiving bad news (that called for 
adjustments in a negative direction, Main Effect of Valence: F(107) = 297.27, p < 0.001). Planned 
paired sample comparisons showed that the valence effect was present both for true (t(107) = 
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5.74, p < 0.001, replicating previous results) and for false trials (t(107) = 5.09, p < 0.001). There 
was no interaction between information accuracy and valence (F(107) = 2.05, p = 0.15). Error bars 
represent SEM. ***p < 0.001, two-tailed paired sample t-test. 

 

Together, these results suggest that whilst participants can modulate the degree 

to which they update beliefs in response to new information (according to how accurate 

the information is), biased updating exists both in response to true and false information. 

Next, I complemented this analysis using linear mixed-effects models (LMM). The 

motivation for this was that it allowed us to conduct a Bayes Factor analysis to interrogate 

whether the lack of an interaction I observed above provided evidence in favour of the 

null (i.e. evidence in favour that the valence effect was similarly strong for true and for 

false trials). Trial-by-trial updates were entered as the dependent variable, with valence, 

accuracy and their interaction as predictors. This again revealed a main effect of valence 

(t(101.32) = 7.47, p < 0.001), a main effect of accuracy t(107.84) = 18.18, p < 0.001) and 

no accuracy by valence interaction (t(128.63) = 1.13, p = 0.25) (see Table 4.1 for full 

statistics). I then ran a Bayesian Factor analysis on the interaction (see Methods). This 

revealed strong evidence (Jeffreys, 1961; Wagenmakers et al., 2011) in favour of the null 

(BF10 = 0.030, Bayes factors < 1 indicate support for the null over the alternative 

hypothesis), suggesting that the valence effect for false trials was indeed of a similar 

magnitude to the valence effect for true trials. 

Predictor Estimate std. Error df CI Statistic p 

(Intercept) 0.06 0.03 105.89 0.00 – 0.11 2.03 0.043 

Valence 0.17 0.02 101.32 0.12 – 0.21 7.47 <0.001 

Accuracy 0.35 0.02 107.84 0.31 – 0.39 18.18 <0.001 

Valence × 
Accuracy 

0.02 0.02 128.63 -
0.01 – 0.05 

1.13 0.258 

N Participant 108  

Observations 5242  
Table 4.1: Linear mixed effects model. Fixed Effect Estimates and accompanying 

statistics from a linear mixed-effects model predicting updates on each trial from Valence, 
Accuracy, and their interaction (Valence × Accuracy). 

 

Optimistic update bias survives after controlling for confounds. Next, I ran a 

second LMM, this time controlling for potential confounds (Sharot & Garrett, 2022): 
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Estimation Errors (the absolute difference between participants’ initial estimations and 

the information provided) and all subjective ratings (see Methods and Table 2.2). This 

again revealed a main effect of valence (t(98.86) = 10.17, p < 0.001), a main effect of 

accuracy (t(107.15) = 19.18, p < 0.001) and no interaction (t(105.85) = 1.26, p = 0.20). 

There were also significant effects for Estimation Error (t(105.46) = 14.23, p < 0.001) and 

Past Experience (t(79.42) = -3.44, p = 0.001). The remaining subjective rating scores were 

not significant (Vividness: t(179.54) = -0.48, p = 0.62; Familiarity: t(207.52) = -0.93, p = 

0.35; Arousal: t(216.79) = -0.26, p = 0.79; Negativity (t(100.59) = -1.29, p = 0.19) (see 

Appendix 4.5 for full statistics of this model). The Bayes Factor analysis on the 

interaction again found evidence in favour of the null (BF10 = 0.038).  

Together, these results suggest two key findings: (1) Belief updating can be 

modulated according to how true or false a piece of information is when this is made 

explicit; (2) Optimistic update bias (i.e. the valence effect) exists both in response to true 

and false information and is of a similar strength in each instance. Together, these 

findings result in false information having a larger impact on changing beliefs when the 

information is better (versus worse) than expected. 

 

 Trial Type (Valence, Accuracy) 
 
 

Good, True  
Mean (SD) 

Bad, True  
Mean (SD) 

Good, False  
Mean (SD) 

Bad, False 
Mean (SD) 

Update V, A 12.50 (12.65) 8.46 (12.01) 4.37 (9.74) 0.94 (7.37) 
Estimation 

Errors 
17.94 (13.78) 24.29 (15.03) 21.34 (16.06) 24.87 (15.42) 

N trials 8.39 (3.19) 16.1 (3.14) 8.32 (3.47) 15.7 (3.19) 
Subjective 

Ratings 
 (All scales 1 
= low to 6 = 

high) 

    

Familiarity V, A 
 

3.42 (1.40) 2.96 (1.42) 3.51 (1.38) 2.93 (1.43) 

Past 
Experience V, A 

 

1.64 (1.09) 1.24 (0.63) 1.81 (1.18) 1.20 (0.55) 

Vividness V, A 
 

3.12 (1.43) 2.72 (1.36) 3.38 (1.40) 2.68 (1.36) 

Emotional 
Arousal V, A 

3.03 (1.45) 2.89 (1.37) 2.93 (1.40) 2.89 (1.43) 

Negativity V, A 4.51 (1.34) 4.43 (1.26) 4.35 (1.33) 4.49 (1.31) 
 

V Main effect of valence p < 0.05 
A Main effect of valence p < 0.05 
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V*A Interaction effect (Valence * Accuracy) p < 0.05 

Table 4.2 Participants’ Updates, Estimation Errors, Number of trials and subjective ratings 
of familiarity with stimuli, past experience, vividness, arousal, negativity. 
 

Formal models suggest that estimates are updated by a prediction error signal 

(that quantifies the difference between prior expectations and outcomes) and a learning 

rate which governs the rate at which prediction errors drive belief change (Sutton & Barto, 

2018). Next, I turned to computational modelling (Kuzmanovic & Rigoux, 2017) to 

examine the relationship between updates to beliefs and learning rates inferred during 

learning using an error term analogous to the prediction error in our task, the estimation 

error (Sharot et al., 2011), which quantifies the difference between prior beliefs (E₁) and 

the information provided (BR). 

I adapted and extended the computational modelling approach used by 

Kuzmanovic & Rigoux (2017) to test how participants beliefs changed on each trial as a 

function of the size of the estimation error (i.e. how much the difference in prior beliefs 

and the information provided motivated subsequent belief change) and the degree to 

which this process was modulated by information accuracy and valence.  

I did this by testing 4 different models, which were identical except for the number 

of learning rates and how these learning rates parsed out different types of information. 

Briefly (see Methods for full details), Model 1 (M1) had 2 learning rates: one for true and 

one for false information; Model 2 (M2) had 3 learning rates: one for true information and 

two for false information – one for false good news and another for false bad news; Model 

3 (M3) also had 3 learning rates: one for false information and two for true information – 

one for true good news and another for true bad news. Model 4 (M4) had 4 learning rates 

(one for true good news, true bad news, false good news and false bad news). Each model 

also had 2 additional parameters: w and σ. w enabled the model to dampen the effect 

that estimation errors had in changing beliefs according to participants' personal 

knowledge about each event (e.g., personal risk factors for developing an illness, such as 

family history). σ was used to estimate the Gaussian that the estimates were drawn from 

in the model fitting process (see Methods). Model recovery tests I conducted, where I fit 

data simulated under one of the four models to all 4 models and examined whether the 

winning model is reliably identified as the model used to generate the data, validated that 
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data generated by each model would be identifiable as the winning model (see Methods 

and Appendix 4.3).  

 

Four learning rate model the best fit to the data. Leave-one-out cross-

validation (LOOcv) scores from the 4 models were compared using a Variational Bayesian 

Approach (see Methods). This inferred that out of the 4 models, M4 provided a superior 

fit to the data (see Figure 4.3(b)). M4 had the highest model frequency (~75%), well above 

the chance level (25%), and an exceedance probability of 1. This indicates strong 

evidence that M4 - featuring learning rates that facilitate optimistic update bias for both 

true and false information - captured participants’ behaviour best compared to the 

simpler models (M1–M3).  As an additional check, I also compared M4 to the other 3 

models using paired sample t-tests (FDR corrected for multiple comparisons) which also 

suggested M4 was a superior fit to participants estimations  (M4 vs M3: t(107) = -2.11, 

p_adj = 0.03; M2 vs M4: t(107) = -5.17, p_adj < 0.001; M1 vs M4: t(107) = -5.45, p_adj < 

0.001). 32.4% of participants had the lowest LOOcv score for M4 (18.5% for M1, 19.4% 

for M2 and 29.6% M3). Together, this model comparison analysis suggests that 

participants used estimation errors differentially to update beliefs depending on both 

whether the information that generated these errors was true or false and whether the 

information was better or worse than expected. 

Higher learning rate for good news vs bad news for both true and false 

information. Next, I examined the pattern of learning rates from the winning model (M4) 

and tested for differences between them. This showed an optimistic update bias present 

both for true and false information (see Figure 4.3(b)). Specifically, participants learn 

more from good than bad news for true (t(107) = 8.56, p < 0.001, hierarchical t-test 

comparing αtrue_goodnews with αtrue_badnews) and false (t(107) = 6.74, p < 0.001, hierarchical t-

test comparing αfalse_goodnews with αfalse_badnews) information. There was no interaction in the 

magnitude of the learning rates between valence (good versus bad) and information 

accuracy (true vs false): t(107) = 0.59, p = 0.55.  
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Figure 4.3: Model Frequencies and Estimates. (a) Estimated model frequencies from the VBA 
model comparison. Model 4 (M4) had the highest frequency, selected for approximately 74% of 
participants, with an exceedance probability (XP) of 1. This frequency is substantially higher than the 
chance level of 25% (indicated by the red dashed line), which represents the expected frequency if 
model selection were random across the four models (M1–M4). The model frequency reflects the 
proportion of the population best accounted for by each model (see Supplementary Material Figure 3 
for additional model diagnostics). (b) Four learning rates from the winning model (M4) showed an 
optimistic update bias present both for true (t(107) = 8.56, p < 0.001, hierarchical t-test comparing 
αtrue_goodnews with αtrue_badnews) and false (t(107) = 6.74, p < 0.001, hierarchical t-test comparing αfalse_goodnews 

with αfalse_badnews) information. ***p < 0.001, hierarchical t-test. 
 

Finally, to check how updating patterns varied under each model (given the 

parameters fit to the data), I simulated updating under each of the four models using the 

mean parameters from the model fitting process (see Table 4.3). This showed a clear 

pattern whereby M1 enabled estimation errors to produce updating that was greater for 

true than false, but there was no valence bias (i.e. updating from good being greater than 

for bad) for either. M2 enabled estimation errors to produce updating that was greater for 

true than false and a valence bias for false only. M3 enabled estimation errors to produce 

updating that was greater for true than false and a valence bias for true only. By having 4 

learning rates that allowed learning to vary for each combination of true, false, good, and 

bad, M4, the winning model enabled estimation errors to produce updating that was 

greater for true then false and a valence bias for both types of information in a pattern 

qualitatively similar to the actual updating I observed in the data (Figure 4.4). 
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Model αtrue αfalse αtrue_goodnews αtrue_badnews αfalse_goodnews αfalse_badnews w σ LOOcv 
M1 0.63 

[0.58-
0.68] 

0.042 
[0.02 – 
0.06] 

- - - - 0.67 
[0.57 – 
0.76] 

8.02 
[7.43-
8.67] 

166 [ 
162 - 
169 

M2 0.62 
[0.57 – 
0.68] 

- - - 0.16 [0.12 
– 0.21] 

0.02 
[0.009 – 

0.04] 

0.80 
[0.72 – 
0.87] 

7.65 
[7.14 – 
8.20] 

165 
[162-
169] 

M3 - 0.051 
[0.03-
0.072] 

0.84 [0.79-
0.88] 

0.50 [0.43 
– 0.56] 

- - 0.72 
[0.63-
0.80] 

7.24 
[6.73-
7.79] 

164 
[160-
167] 

M4 - - 0.84 [0.79 
– 0.88] 

0.49 
[0.43-
0.56] 

0.16 [0.12 
– 0.21] 

0.02 [0.01-
0.039] 

0.70 
[0.61-
0.79] 

7.13 
[6.63 – 
7.65] 

163 
[160-
167] 

Table 4.3. Mean parameter estimates and Leave-One-Out cross-validation (LOOcv) scores 
from each of the 4 models. 95% confidence intervals are shown in square brackets. The mean 
parameter estimates were used for simulating data under each model shown in Figure 4.4.  

 

 
Figure 4.4: Simulations from each of my four models. M1 (which has 2 learning rates: one for true 
and one for false information) recovers the main effect of accuracy but cannot generate an effect of 
valence. M2 (which has 3 learning rates: a single learning rate for true information and two for false 
information – one for false good news and another for false bad news) recovers a main effect of accuracy 
but a valence effect for false information only. M3 (which also has 3 learning rates: a single learning rate 
for false information and two for true information – one for true good news and another for true bad news) 
recovers a main effect of accuracy and a valence effect for true information only. M4 (the winning model 
when fitted to participants responses) which has 4 learning rates (one for true good news, true bad news, 
false good news and false bad news) is able to capture the updating pattern I observe in the real data – 
a main effect of information accuracy and a valence effect both in response to true information and false 
information. Grey diamonds plot the real data from participants to be able to compare with the 
simulated data (plotted as coloured dots).  
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4.4 Discussion 
Understanding the circumstances under which individuals are prone to 

integrating false information is important for understanding how erroneous beliefs such 

as conspiracy theories can persist in the face of flawed evidence (Douglas et al., 2017) 

and developing effective strategies to counter the prominent rise of misinformation 

(Hanley & Durumeric, 2024; Lewandowsky et al., 2012; Nyhan & Reifler, 2010) . Here, by 

adapting a classic belief updating task which presents individuals with information that 

can vary on two dimensions – valence (whether the information is better or worse than 

expected) and accuracy (whether the information is true or false) – I show that both of 

these factors exert important roles in governing the degree to which beliefs are influenced 

by the information and change as a consequence. First, I show that information is used 

to update beliefs to a greater degree when that information is revealed to be true 

compared to false. This suggests that warnings about the reliability of a piece of 

information may contribute towards determining whether that information serves to have 

an impact on altering beliefs or not over the long term. Second, I show that information is 

integrated to a greater degree when it presents a shift in beliefs towards a “good” (i.e. 

better than first thought) compared to a “bad” (i.e. worse than first thought) direction. 

This is consistent with past findings (Garrett et al., 2014, 2014; Garrett & Daw, 2020; 

Kappes et al., 2018; Korn et al., 2012b, 2016; Kube & Rozenkrantz, 2021; Kuzmanovic et 

al., 2018, 2019c; Kuzmanovic & Rigoux, 2017; Ma et al., 2016; Oganian et al., 2019b; 

Sharot et al., 2011; Sharot & Garrett, 2016), suggesting that learning is often biased in a 

positive direction. What is new in the findings I present here is that this bias is equally 

prevalent in response to false information (in fact, I find evidence against any modulation 

of the bias by accuracy). This suggests that whilst debunking information after it has been 

encountered can act to mitigate its influence, such measures are likely to be less 

successful in cases where false information presents news that is better than expected.  

Using computational modelling of participants' responses suggested that both of 

these patterns of belief updating arose out of the differential use of error signals, 

generated when new information is encountered and deviates from prior expectations. In 

general (Garrett & Daw, 2020; Sharot et al., 2011; Sutton & Barto, 2018), the more 

surprising a piece of information is, the more beliefs can be expected to shift up or down. 
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Here I show that this relationship between degree of surprise (i.e. the size of the error 

signal) and subsequent change in beliefs (parametrised in computational models as 

learning rates) is stronger when information is revealed to be true compared to when it is 

revealed to be false and when information is better compared to worse than expected. I 

show this by comparing models which parse information according to its accuracy only, 

according to valence only and according to both accuracy and valence with this latter 

model providing the best fit to the data both quantitively - using Bayesian model 

comparison - and qualitatively - by comparing how well belief updating generated by each 

model (using simulations) was able to capture the updating pattern I observe in the 

human data (Palminteri, Wyart, et al., 2017). 

In the set of computational models I tested, updates were implemented as a 

single step, which (effectively) collapses over two distinct stages of a trial in our task. 

Specifically: (1) when information is first received and an estimation error generated; (2) 

when cues about the reliability of the information are received. One possibility is that the 

process of belief change occurs in a single step in this way. Under this scenario, 

information presented (at (1)) would need to be maintained in working memory before the 

true/false cue is shown (at (2)), which could act much akin to a go/no-go signal (Logan et 

al., 1984) in determining whether to then integrate the information (i.e. implement an 

update), possibly via recruiting the brain circuits previously suggested to be involved in 

belief updating in this task to differing degrees dependent both on whether the 

information was true or false and whether the information was better or worse than 

expected. These brain regions include the left inferior frontal gyrus and medial frontal 

cortex (Garrett et al., 2014; Sharot et al., 2011)  for good news and the right inferior frontal 

gyrus (Sharot et al., 2011) and right inferior parietal lobule (Garrett et al., 2014) for bad 

news. But an alternative possibility is that separate updates to beliefs occur at each of 

these two stages; an initial update to beliefs at (1) before the accuracy of the information 

is known. And then a revision to this updated belief at (2), depending on the identity of the 

true/false cue. At this second stage, learning from the first stage could either be undone 

(in the presence of a false cue) and/or further boosted (in the presence of a true cue). 

Building a complete temporal picture of the updating process as it unfolds and 

understanding which stages of this process could cause biases to emerge remains to be 

tested both by incorporating other neuroscience methods such as functional Magnetic 
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Resonance Imaging (Glover, 2011) alongside experimental paradigms which would 

enable these different potential underlying processes to be dissociated from one 

another. 

I adapted a widely used belief updating task (Garrett et al., 2014, 2014; Garrett & 

Daw, 2020; Garrett & Sharot, 2023; Kappes et al., 2018; Korn et al., 2012b, 2016; Kube & 

Rozenkrantz, 2021; Kuzmanovic et al., 2018, 2019c; Kuzmanovic & Rigoux, 2017; Ma et 

al., 2016; Oganian et al., 2019b; Sharot et al., 2011; Sharot & Garrett, 2016) shown to test 

for the presence of biases in belief updating by adding explicit cues on each trial which 

signalled to participants whether the information they had just observed had been true 

or false. This allowed me to test whether the bias exists and is similar in strength when 

true and false information is received. A natural question that arises from these findings 

is how might biases in belief updating manifest in the absence of any such cues or in the 

presence of a third “unknown accuracy” cue? The former is how original versions of the 

belief updating task have been run in the past. Interestingly, the optimistic pattern of 

belief updating observed when using this original version (without any information 

accuracy cues) qualitatively (Sharot et al., 2011) resembles the pattern of belief updating 

I observe in the true condition here. This might lead one to hypothesise that participants 

might treat information explicitly signalled to be true similarly to cases where information 

is presented without any cues provided about accuracy. However, caution is warranted. 

Even though cues about information accuracy were not provided, the default position of 

participants undertaking original instantiations of the belief updating task may be to 

assume that the statistics presented were true (rather than unknown). Indeed, the 

statistics presented in the original design were factually correct and task instructions 

primed participants to believe they were accurate.  Hence, it remains to be tested how 

belief updating from true and false information each differs from cases where 

information accuracy is withheld.  

Nonetheless, the results here show that sensitivity to new information is able to 

adapt in response to signals about how accurate the information is or is not. This extends 

past findings showing that sensitivity to new information is often not fixed but can flexibly 

adjust to a range of factors including: volatility of the environment (Behrens et al., 2007), 

surprise (Pearce & Hall, 1980), age (Moutsiana et al., 2013), psychiatric 

symptoms (Garrett et al., 2014; Ossola et al., 2020), reward uncertainty (Chen et al., 
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2022; Nassar et al., 2012), working memory (Collins & Frank, 2012), social context 

(Diaconescu et al., 2014b), arousal levels (Eldar et al., 2016; Garrett et al., 2018)  and 

confidence (Desender et al., 2019; Meyniel et al., 2015; Rollwage et al., 2020; Yeung & 

Summerfield, 2012). Potentially some or all of these factors may also exert roles in 

governing the degree to which information known to be false can impact beliefs making 

certain groups of individuals more susceptible than others to the effects of malicious 

misinformation attempts which in turn might warrant greater measures being put in place 

to protect those likely to be more vulnerable.   

My findings suggest that warnings and labels that call out cases of potential false 

information could be a means to help prevent false beliefs being generated and 

sustained in the face of accurate information to the contrary. However, explicit labels 

and the like are unlikely to be a panacea. Not least because - as I show here - individuals 

are likely be more suspectable to false information (even when this is made explicit) in 

cases where it provides a better-than-expected view of the future. Indeed, recent 

complementary findings (Vidal-Perez et al., 2025) suggest that a related (‘positivity’) bias 

also exists whereby individuals learn to a greater degree from false information that 

confirms past choices and decisions. An important concern is that alongside these 

biases in how individuals learn when they receive false information, individuals also have 

increasing agency over where they choose to source their information from in the first 

place, particularly in digital environments. This can result in selective exposure to certain 

types of information and skewed informational environments (Flaxman et al., 2016). This 

skew can be further compounded if individuals are also selective about what information 

they choose to share with peers in their network, choosing to predominantly share false 

information that perpetuates a specific view of the world that one finds desirable 

(Pennycook & Rand, 2022). There is then a potential dual challenge to be met to counter 

disinformation – how biased the information is that I receive and the role that biases play 

in how I then choose to learn from that information. Other promising avenues exist to 

meet this challenge such as using Large Language Models to deploy reasoning to move 

individuals away from deep seated false beliefs (Costello et al., 2024), providing rewards 

(such as ‘likes’) in return for sharing accurate information (Vellani et al., 2024) and 

‘prebunking’ (Van Der Linden, 2024). Awareness of the powerful role that biases can play 

and how these can arise from core learning principles are important factors to consider 
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in evaluating the effectiveness of these and others as the scientific community looks to 

develop and test different ways to counteract inaccurate information from successfully 

perpetuating and sustaining false beliefs.   
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Chapter 5:  When we value false information: the 
interaction between information accuracy and 
confirmation in the ventromedial prefrontal 
cortex 

5.1 Introduction 

Imagine reading online that your favoured political party was likely to win the next 

election, only to later find out that this information was in fact false. How would finding 

this out make you feel? Grateful for the chance to be able to apply a retrospective 

correction to the fake news? Or disappointed that this information (which was in line with 

what you had hoped) was no longer valid? If the latter, would this be accompanied by a 

lingering temptation to ignore or downweight the evidence that the information you had 

received was suspect? 

Whilst it might seem like the most rational thing to place a high value on the 

opportunity to correct false beliefs, previous findings (Garrett & Daw, 2020; Garrett & 

Sharot, 2017b; Korn et al., 2012b; Kuzmanovic & Rigoux, 2017; Lefebvre et al., 2017; 

Palminteri, 2023, 2025b; Palminteri, Lefebvre, et al., 2017; Sharot et al., 2011) suggest 

that even when individuals get information from legitimate bona fide sources, they attend 

to this selectively and in such a way that enables them to maintain beliefs that are biased 

in a desirable direction given their idiosyncratic motivations, goals, desires and past 

decisions (Hart et al., 2009; Kunda, 1990; Tappin et al., 2017). And when it comes to false 

information, behavioural evidence alongside computational modelling (Chapters 3 and 

4) has revealed that when individuals find out that information they encountered was 

false, they do not correct their beliefs in a symmetric manner. Rather, they continue to 

learn from and use false information in cases where that false information had been 

confirmatory – confirming that their past choices and decisions were correct. But at the 

same time, they are adept at ignoring false information in cases where the information 

had been disconfirmatory and called into question past decisions.  
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A potential account of these findings is that people are motivated, value, and pay 

attention to cues warning them that the information they’ve encountered is suspicious, 

faulty and should not be heeded. But only in certain cases. These cases are when the 

information to begin with is disconfirmatory; hence, fake news warnings provide a 

welcome opportunity to ignore the information that had served to challenge past 

decisions. But in cases where the information encountered has been confirmatory, 

revelations that this information was inaccurate act as aversive, which in turn prevents 

any necessary motivation to try and correct them. Adapting the degree to which we value 

and pay attention to signals about whether information can or cannot be trusted, 

potentially provides a mechanism by which information can be selectively used to help 

beliefs align with our desires (i.e. what we want to be the case) rather than the reality. 

To investigate this, I combined brain imaging with a reinforcement learning 

paradigm (Chapter 3) in which individuals made repeated choices, received feedback 

which could either confirm or disconfirm whether their choices were correct and were 

then told whether this feedback was true or false. My computational modelling findings 

previously showed that individuals integrated information revealed to be true and false to 

a greater degree when it was confirmatory compared to disconfirmatory. If this relates to 

how agents value finding out the veracity of the information, this makes an interesting 

and neural prediction for populations of neurons that encode subjective value. 

Specifically, finding out that information is true ought to act as rewarding if the 

information is confirmatory (as this serves to validate both the information and the 

decision) relative to when the information is disconfirmatory (as this validates the 

information but challenges the decision in the process). Conversely, finding out the 

information is false ought to act as rewarding if the information is disconfirmatory (as this 

serves to challenge the information calling the decision into disrepute) relative to when 

the information is confirmatory (as this challenges the information and suggests the 

decision may not have been correct after all). 

To see whether this revelation of whether the feedback was true or false 

selectively activated voxels associated with subjective value, I focused my analysis on 

the ventromedial prefrontal cortex (vmPFC), a region known to correlate with value 

across a range of domains including primary rewards like food, secondary rewards like 

money, abstract rewards like social approval (Bartra et al., 2013; Clithero & Rangel, 2014; 
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Levy & Glimcher, 2012), aesthetic judgments of art (Kawabata & Zeki, 2004), and viewing 

attractive faces (O’Doherty et al., 2003). 

5.2 Methods 

5.2.1 Participants 

Forty participants (mainly students at the University of East Anglia) took part in the 

study for credits and up to a £5 bonus based on performance. Data from eight 

participants were excluded from the analysis: three for failing to pass behavioural 

attention checks (less than 50% accuracy) and five due to excessive head motion 

(defined as mean framewise displacement higher than 0.3 mm or absolute mean 

displacement higher than 2mm). The final sample for analysis consisted of 32 

participants ([25 female, 7 male]; mean age = 20.5 years). All participants were right-

handed, had normal or corrected-to-normal vision, and reported no history of 

neurological or psychiatric conditions. The study was approved by the School of 

Psychology Ethics Committee at the University of East Anglia. All participants provided 

written informed consent prior to participation. 

5.2.2 The Task 

Participants performed the probabilistic instrumental learning task (Chapter 3) 

with several changes (Figure 5.1). First, the duration of the first and second fixation 

crosses was randomized to last between one to three seconds and four to five seconds, 

respectively. Second, choices were no longer self-paced but restricted to a 3-second 

time limit, with a warning message appearing if participants responded too slowly. This 

helped to ensure all sessions had the exact same length. Third, the trial structure was set 

so that each of the four blocks had 12 trials for each of the four unique pairs of stimuli, 

bringing the total to 196 trials for the entire task. Finally, one attention check trial was 

added to each block. The task was programmed and presented using PsychoPy 2.2 

(Peirce et al., 2019).  
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Figure 5.1: Timeline of the task. Participants are initially shown two options and select one 
within a 3-second limit. Upon selection, a star appears above the chosen option as confirmation. 
Following this, the outcome of one of the two options (either chosen or unchosen) is displayed, 
with "xx" marking the outcome not shown. Whether the outcome was true (tick) or false (cross) is 
then indicated. 

Before the main experiment, participants completed a practice session (one 

outside the scanner on a computer and one inside the scanner). This involved 16 trials 

with two unique stimulus pairs outside the scanner, followed by 8 trials with two different 

unique pairs inside the scanner. 

5.2.3 Behavioural Analysis  

To investigate how participants used both feedback and accuracy of the feedback 

to guide subsequent decisions, I analysed choice repetition on a trial-by-trial basis. The 

dependent variable was choice repetition, coded as a binary outcome (1 = the participant 

repeated the choice from the previous trial, -1 = they switched their choice). I fitted a 

linear mixed-effects model using the glmer function from the lme4 package in R (Bates et 

al., 2015). The model predicted the likelihood of choice repetition (t) from two fixed 

effects: the previous_feedback (t-1) (confirmatory coded as +1 vs disconfirmatory coded 

as -1) and the previous _accuracy (t-1) (true coded as +1 and false coded as -1), including 

the interaction between them. To account for variability across participants, the model 

included a random intercept for each participant as well as random slopes for both main 

effects and their interaction. 
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5.2.4 Computational Model 

I tested the same four models described in Chapter 3, fitted and validated using 

approaches outlined in Chapter 2. For brevity, below I will only describe the winning 

model M4 (see Appendix 5.4 for the rest of the models).  

For each subject and each block, option values Qi(t) were stored separately for 

each pair of options, with i ∈ {1,2} denoting the option index and t the trial number. At the 

start of the experiment, all Q-values were initialised to zero. On trial t, the participant 

chose one option (ichosen), rendering the other option unchosen (iunchosen). Depending on 

whether the feedback was presented for the chosen or unchosen option, the 

corresponding Q-value was updated.  

The prediction error (δ) was defined as: 

 

δi(t) = Ri(t) – Qi(t) 

where Ri(t) is the observed outcome. 

 

The update was given as: 

                                                                       Qi(t+1) = Qi(t) + α * δi(t) 

with the learning rate α determined by both outcome accuracy (true vs false) and 

feedback type (confirmatory vs disconfirmatory). This yielded four distinct learning rates: 

 

Qi(t+1) = Qi(t) + αConf, false * δi(t)                  if accuracy = False and feedback = Conf 

Qi(t+1) = Qi(t) + αDisconf, false * δi(t)               if accuracy = False and feedback = Disconf 

Qi(t+1) = Qi(t) + αConf, true * δi(t)                  if accuracy = True and feedback = Conf 

Qi(t+1) = Qi(t) + αDisconf, true * δi(t)               if accuracy = True and feedback = Disconf 

 

“Confirmatory” feedback was defined as an outcome that confirmed the participant 

made the right choice (δ > 0 for the chosen option or δ < 0 PE for the unchosen option), 

while “disconfirmatory” feedback was defined as an outcome that disconfirmed the 

participants decision (δ < 0 PE for the chosen option or δ > 0 for the unchosen option).  

Choices were modelled using a SoftMax decision rule applied to the Q-values of the 

chosen and unchosen options on the current trial: 



108 
 

 

𝑃(choose 𝑖) =
exp(β𝑄𝑖(𝑡))

exp(β𝑄1(𝑡)) + exp(β𝑄2(𝑡))
 

 

where P(choose i) is the probability of selecting option i at trial t, and β is the inverse 

temperature parameter that controls the degree of stochasticity in choice behaviour. 

Larger values of β yield more deterministic choices, while smaller values reflect more 

exploratory behaviour. 

The contribution of each trial to the likelihood was given by the log probability of the 

observed choice. For a choice between the chosen (ic) and unchosen (iu) options: 

l𝑡 = log (
1

1 + exp(−β [𝑄𝑖𝑐
(𝑡) − 𝑄𝑖𝑢

(𝑡)])
) 

 

The log-likelihood for a subject was then: 

ℒ = ∑ l𝑡
𝑡

 

and the model minimised the negative log-likelihood, –L, during estimation. 

In summary, M4 is a five-parameter (αConf, true, αDisconf, true, αConf, false, αDisconf, false, β) model 

that distinguishes learning rates for confirmatory vs disconfirmatory feedback and true 

vs false information.  

5.2.5 fMRI Image Acquisition 

Scanning was performed at the University of East Anglia scanning centre 

UWWBIC, using a 3T Siemens MAGNETOM Prisma MRI scanner equipped with a Siemens 

head coil. The imaging session began with a high-resolution T1-weighted structural scan 

with MPRAGE sequence. This was followed by four functional runs, each lasting 12 

minutes, amounting to 374 scans, the first 6 of which were discarded. Functional images 

were acquired using a T2-weighted echo-planar imaging (EPI) sequence with multi-band 

acceleration. The following parameters were used: Repetition Time (TR) = 2000 ms; Echo 

Time (TE) = 30 ms; Flip Angle = 78°; 50 interleaved axial slices; Voxel size = 3.0 × 3.0 × 3.0 

mm; Slice thickness = 3.0 mm (no gap); Field of View (FOV) = 192 × 192 mm; Matrix size = 

64 × 64; multi-band acceleration factor = 2.  The session concluded with a 1-minute 
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gradient echo (GRE) field map with the same resolution and slice locations as the 

functional images to correct for geometric distortions caused by magnetic field 

inhomogeneities. 

5.2.6 fMRI Data Preprocessing 

Statistical Parametric Mapping (SPM12, Wellcome Trust Centre for Neuroimaging) 

was used for image processing and analysis. Raw DICOM images were first converted to 

NIfTI format. After discarding the first 6 dummy volumes, images were realigned to the 7th 

volume. Movement plots were studied to ensure scan-to-scan translations greater than 

one-half of a voxel (1.5 mm) or rotations greater than 1° did not cause artifacts in the 

corresponding scans. Structural images were reregistered to mean EPI images and 

segmented into grey and white matter. These segmentation parameters were then used 

to normalise and bias-correct the functional images to a standard EPI template based on 

the Montreal Neurological Institute (MNI) reference brain using a nonlinear (7th-degree 

B-spline) interpolation. Normalised images were spatially smoothed with an 8 mm Full-

Width at Half-Maximum (FWHM) Gaussian kernel. A high-pass filter of 1/128-Hz was 

applied to the time-series data to remove low-frequency artifacts.  

5.2.7 fMRI General Linear Models 

GLM1 (main analysis). For each participant, a design matrix was created with 

event onsets time-locked to the temporal positions of Choice Presentation, Feedback 

Presentation and Information Cue Presentation. Events were modelled as delta 

functions and convolved with a canonical hemodynamic response function to create 

regressors of interest. The onset regressor for Information Cue Presentation was 

subdivided into 4 conditions: Confirmatory True (where confirmatory feedback turned 

out true), Disconfirmatory True (where disconfirmatory feedback turned out true), 

Confirmatory False (where confirmatory feedback turned out false), and Disconfirmatory 

False (where disconfirmatory feedback turned out false). This resulted in six regressors 

for each session. Six motion correction regressors estimated from the realignment 

procedure were entered as covariates of no interest. 

To identify regions that tracked the subjective value of the two options participants 

chose between on each trial, I entered the absolute difference in the learned Q-values 
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(|ΔQ|) of the two options presented (with trial by trial Q values of each option extracted 

from the winning computational model for each participant) as parametric regressors, 

modulating the events in which choice pairs were presented (Choice Presentation).  

To identify correlates of prediction errors at the time that information accuracy 

was revealed, unsigned prediction errors (|δ|) at the time the information accuracy cue 

was presented were entered as parametric modulators at the Information Cue 

Presentation timepoint, parsing out separately for Confirmatory True, Disconfirmatory 

True, Confirmatory False, and Disconfirmatory False. Note that I used unsigned PE here 

as a parametric modulator, but confirmatory and disconfirmatory PEs both have a 

mixture of positive and negative PEs. For instance, confirmatory feedback is generated 

both when a positive PE occurs for factual feedback (i.e. feedback for the option chosen) 

and when a negative PE occurs for counterfactual feedback (i.e. feedback for the 

unchosen option), and vice versa for disconfirmatory. By using unsigned PEs, I can 

identify brain regions in which BOLD responses scale with the extent to which the error 

term suggests participants choose correctly (for confirmatory trials) or incorrectly (for 

disconfirmatory trials), independently of whether the PE is positive or negative.  

GLM2. A second GLM was used to be able to separately extract BOLD response at 

the time of the information cue, by separating this into eight bins according to whether 

feedback was for the option chosen or unchosen, whether the PE had been positive or 

negative and whether the information cue revealed the feedback to have been true or 

false. This was to be able to explore and plot out effects present in GLM1 at the time of 

information cue presentation at a more granular level and see whether the direction of 

the BOLD response changed according to all 3 factors. 

For each participant, a design matrix was created with event onsets time-locked 

to the temporal positions of Choice Presentation, Feedback Presentation and 

Information Cue Presentation. As for GLM1, events were modelled as delta functions and 

convolved with a canonical hemodynamic response function to create regressors of 

interest. The onset regressor for Information Cue Presentation was subdivided into eight 

conditions:  

(1) Positive PE, Chosen, True (trials where the prediction error was positive, feedback 

was provided for the option chosen and the information cue revealed the 

feedback to have been true) 
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(2) Negative PE, Chosen, True (trials where the prediction error was negative, 

feedback was provided for the option chosen, and the information cue revealed 

the feedback to have been true) 

(3) Positive PE, Chosen, False (trials where the prediction error was positive, 

feedback was provided for the option chosen, and the information cue revealed 

the feedback to have been false) 

(4) Negative PE, Chosen, False (trials where the prediction error was negative, 

feedback was provided for the option chosen, and the information cue revealed 

the feedback to have been false) 

(5) Positive PE, Unchosen, True (trials where the prediction error was positive, 

feedback was provided for the unchosen option, and the information cue revealed 

the feedback to have been true) 

(6) Negative PE, Unchosen, True (trials where the prediction error was negative, 

feedback was provided for the unchosen option, and the information cue revealed 

the feedback to have been true) 

(7) Positive PE, Unchosen, False (trials where the prediction error was positive, 

feedback was provided for the unchosen option, and the information cue revealed 

the feedback to have been false) 

(8) Negative PE, Unchosen, False (trials where the prediction error was negative, 

feedback was provided for the unchosen, and the information cue revealed the 

feedback to have been false) 

Note that (1), (3), (6) and (8) represent cases of confirmatory feedback which 

transpire to be true in the cases of (1) and (6) but false for (3) and (8). Whereas (2), (4), (5) 

and (7) represent cases of disconfirmatory feedback which transpire to be true in the 

cases of (2) and (5) but false in the cases of (4) and (7).        

This resulted in 10 regressors for each session. Six motion correction regressors 

estimated from the realignment procedure were entered as covariates of no interest. 

Also, one subject had to be excluded from this analysis for insufficient data in one of the 

conditions.  
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5.2.8 Region of Interest (ROI) Definition 
The use of a Region of Interest (ROI) approach in neuroimaging can be summed 

up as a trade-off between statistical power and spatial exploration. By restricting the 

analysis to a priori hypothesized regions, this approach significantly reduces the severity 

of the multiple comparisons problem in whole-brain analyses, increasing the sensitivity 

to detect subtle effects (Poldrack, 2007). However, this sensitivity relies on the validity of 

the ROI selection strategy. ROIs can be defined in several ways. Anatomical definition 

uses standardized atlases (e.g., Automated Anatomical Labelling) and assumes that 

functional boundaries map perfectly onto structural ones. Functional definition involves 

using an independent localizer task to identify the region within each specific subject 

(Saxe et al., 2006). While this accounts for individual variability in functional topography, 

it increases scanning time and relies on the assumption that the localizer task taps into 

the exact same neural computation as the main experiment. 

In the absence of a functional localizer, ROIs can be defined using independent 

coordinates from the literature. This means a choice between deriving peaks from a 

meta-analysis or a single representative or relevant study. Meta-analytic coordinates 

offer robustness by aggregating across widespread data, smoothing out study-specific 

noise (Yarkoni et al., 2011). However, the resulting consensus regions can be spatially 

broad or general. On the other hand, coordinates from a single, high-quality study allow 

for greater specificity to the exact psychological process being investigated, which in my 

case is subjective value. Therefore, I prioritized specificity and created an independent 

ROI mask for an a priori brain region known to signal subjective value, the vmPFC (Bartra 

et al., 2013; Chib et al., 2009; Kable & Glimcher, 2007; Lebreton et al., 2009; Lefebvre et 

al., 2017; Levy & Glimcher, 2012; Padoa-Schioppa & Assad, 2006; Rangel et al., 2008). 

This ROI was created using the MarsBaR software (Brett et al., 2002) by defining a 6-mm 

radius sphere centred on peak coordinates (Montreal Neurological Institute (MNI) space 

coordinates (x, y, z) = (12, 56, 4)) from a previous independent study showing robust 

vmPFC activation in response to subjective value (De Martino et al., 2013). I extracted the 

betas using the same software. Given that the coordinates are derived from an 

independent dataset, this approach avoids the circularity or double-dipping error 

(Kriegeskorte et al., 2009). This occurs when the same dataset is used to both select the 
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region of interest (e.g., finding the peak voxel of activation in a specific contrast) and to 

test the hypothesis within that region (e.g., extracting Beta values to determine if the 

effect is significant). Because fMRI data contains noise, selecting the "best" voxels 

inherently selects those with noise that aligns with the hypothesis. Therefore, running 

statistical tests on these pre-selected voxels inflates effect sizes and significance levels, 

rendering the statistics invalid for inference. The use of a fixed sphere (6mm) is to capture 

the core of the functional region while accommodating minor inter-subject variability in 

functional anatomy. However, a limitation of this approach is that it assumes spatial 

consistency across populations. If the functional region in the current sample drifts 

slightly from the published coordinates, the fixed sphere may capture less signal than a 

subject-specific functional localizer.  

 

 
Figure 5.2: The vmPFC ROI mask. This mask was created by a 6-mm radius sphere around peak 
coordinates of an independent study (Montreal Neurological Institute (MNI) space coordinates 
(x, y, z) = (12, 56, 4); highlighted in red). 

5.2.9 Main Analysis 

 
Choice Presentation. At the time of choice presentation, I investigated if previous 

findings of vmPFC tracking the difference in value when choosing between 2 options 

(Boorman et al., 2009; Gläscher et al., 2009; Hare et al., 2008; Hunt et al., 2012) 

replicated in this study. To do this, I extracted (from GLM1) the individual participant beta 

coefficients for the parametric modulator (modulating the choice time point by the trial-

by-trial absolute difference in Q-values between the two options under consideration) 

from the vmPFC ROI and tested for significance at the group level using a one-sample t-

test (vs 0).  
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Information Cue Presentation. At the time of information presentation (when 

participants learned whether the feedback they had just seen was true or false), I 

investigated if BOLD response in the vmPFC varied according to whether both the 

information was true or false and whether the feedback just seen was confirmatory or 

disconfirmatory. I did this in three ways. First, I extracted (from GLM1) the beta 

coefficients capturing the average (i.e. unmodulated) BOLD response (vs baseline) for the 

four conditions (true confirmatory, true disconfirmatory, false confirmatory and false 

disconfirmatory) from the vmPFC ROI and entered these into a 2*2 repeated measures 

ANOVA to test for main effects and interaction. To better understand the pattern of BOLD 

response in vmPFC in this analysis, I then used GLM2 to split the pattern out further 

(separating for chosen/unchosen, positive/negative PE and true/false information cue). 

Finally, to see if vmPFC activity scales proportionally with prediction error magnitude, 

such that larger PEs are associated with stronger BOLD responses and smaller PEs with 

weaker responses, I extracted the beta coefficients (from GLM1) capturing the 

parametrically modulated (by trial-by-trial unsigned PEs) activity from the vmPFC ROI. 

These were entered into a 2*2 repeated measures ANOVA.  

5.2.10 Whole-Brain Analyses  

I also conducted a whole-brain exploratory analysis at choice and information cue 

presentations. Significance was determined using a cluster-level correction (voxel-wise 

threshold p < 0.001 uncorrected, family-wise error (FWE) P < 0.05, cluster size (K) > 5). I 

used the JuBrain Anatomy Toolbox (a.k.a. SPM Anatomy Toolbox) (Eickhoff et al., 2005) 

to label the regions corresponding to the coordinates.  

5.3 Results 

5.3.1 Behavioural and Computational Modelling Results 

Participants modulate their learning based on feedback and accuracy. The 

linear mixed effects model (see Methods) revealed an interaction between previous 

feedback (confirmatory or disconfirmatory) and previous accuracy (true or false) in 

predicting choice repetition (β=0.107, p=0.002), as detailed in Table 5.1. Further, while 

receiving confirmatory feedback increased the likelihood of repeating a choice (β=0.14, 
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p<0.001), this effect was significantly amplified when the feedback turned out to be true. 

This suggests that participants valued both the confirmatory feedback on its own but 

modulated their learning depending on its veracity. Therefore, on a behavioural level, this 

confirms that participants integrate both the type of the feedback (confirmatory vs. 

disconfirmatory) and its accuracy (true vs. false) to guide their subsequent decisions. 

Next, I assessed whether there was any bias in integrating information using 

computational models.  

 
Predictor Estimate std. Error Statistic p 

(Intercept) 0.64 0.09 7.14 <0.001 

Previous_Feedback 0.14 0.03 3.71 <0.001 

Previous_Accuracy -0.06 0.04 -1.42 0.15 

Previous_Feedback × Previous_Accuracy 0.107 0.03 3 0.002 

N Participant 32    

Observations 5593    
Table 5.1 The behavioural model. Fixed Effect Estimates and accompanying statistics from a 
linear mixed-effects model predicting choice repetition on each trial from previous feedback, 
previous accuracy, and their interaction. 

Four learning rate model the best fit to the data. Using leave-one-out cross-

validation (LOOcv) scores and a Variational Bayesian Approach, I found that Model 4 

provided the best fit as it did in the previous chapter. This model achieved the highest 

frequency, at approximately 97% (Figure 5.3(a)), with an exceedance probability of 1.0. 

This frequency is significantly above the chance level of 25%, indicating that participants 

learn differently across the feedback and accuracy domains, echoing the behavioural 

results. See Appendix 5.5 for additional model comparison results.  
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Figure 5.3: Modelling Results. (a) Results from the VBA model comparison showed that Model 
4 (M4) had the highest frequency, being chosen for about 97% of participants, with an 
exceedance probability (XP) of 1. (b) Estimates from M4 revealed that learning rates were higher 
for confirmatory than disconfirmatory feedback for both true information (t(31) = 4.30, p < 0.001; 
hierarchical t-test comparing αtrue_conf and αtrue_disconf) and false information (t(46) = 3.17, p < 0.01; 
hierarchical t-test comparing αfalse_conf and αfalse_disconf), consistent with confirmation bias. ***p < 
0.001, *p < 0.01, hierarchical t-test. 

 
Higher learning rate for confirmatory vs disconfirmatory feedback for both true and 

false information. Using the winning model (M4), I examined the pattern of learning rates 

(Figure 5.3(b)). Replicating the findings from the previous chapter, participants showed 

confirmation bias for both false (t(31) = 4.30, p < 0.001) and true information (t(31) = 3.17, 

p < 0.01), learning more from confirmatory than from disconfirmatory feedback. 

Moreover, the magnitude of this bias did not significantly differ between true and false 

information (t(31) = 0.80, p = 0.42). 

5.3.2 fMRI Results 

Subjective value at the time of Choice. I first looked to validate the decision to 

use activity in the vmPFC as an indirect measure of subjective value at the time 

participants were presented with the information cue. I did this by first examining activity 

at the time of choice and looking to see if previous findings (Bartra et al., 2013; Boorman 

et al., 2009; Hare et al., 2008; Padoa-Schioppa & Assad, 2006) showing that vmPFC 

activity correlated with the difference in subjective value between two options being 

chosen between replicated here. Indeed, BOLD signal correlated positively with the 

unsigned Q-value difference in the vmPFC (peak MNI [x,y,z] = 4,62,10; Z = 3.71, cluster-

level pFWE = 0.03, Figure 5.4) along with the Cingulate Gyrus (peak MNI [x,y,z] x=8,32,-4; 

Z = 5.09, cluster-level pFWE = 0.000), Cerebellum (peak MNI [x,y,z] = -36,-80,-40; Z = 4.62, 
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cluster-level pFWE = 0.01), and Lateral Occipital Cortex (peak MNI [x,y,z] = -54,-66,34; Z 

= 4.54, cluster-level pFWE = 0.02) (see Appendix 5.1 for complete statistics from the 

whole-brain analysis). This effect was also significant in the vmPFC ROI mask (see 

Methods) constructed using reported voxels from an independent study (t(31) = 2.32, p 

= 0.02, one-sample t-test against 0).  

 

 
Figure 5.4: The vmPFC Activity at the Time of Choice. The vmPFC activity (peak MNI [x,y,z]: 4, 
62, 10) tracks the subjective value difference between options (P < 0.05 FWE corrected at the 
cluster level) at the time of choice. The statistical map is displayed at a threshold of p < 0.001 
uncorrected, overlaid on a standard MNI template. The colour bar indicates the Z-statistic.  

Subjective value at the time of Information Cue. Next, I turned to the main 

question - investigating vmPFC activity at the time participants received the information 

cue, revealing to them whether the feedback they had just seen had been true or false. 

The hypothesis was that when this cue reveals information to have been true, finding this 

out would have higher value (indexed here as higher vmPFC BOLD response) when the 

feedback had been confirmatory compared to when it had been disconformity. But when 

the cue reveals the information to have been false, the opposite should transpire 

whereby this has lower value when the feedback had been confirmatory compared to 

when it had been disconformity.  
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Examining changes to the average BOLD response in vmPFC (i.e. the 

unmodulated effect) by extracting betas from the vmPFC ROI and entering them into a 

2*2, repeated measures ANOVA with Information Accuracy (True/False) and Feedback 

(Confirmatory/Disonfirmatory) revealed a significant interaction between accuracy and 

feedback (F(1,31) = 7.47, p = 0.01, Figure 5.5). There was no effect of accuracy (F(1,31) = 

1.99, p = 0.16) or feedback (F(1,31) = 0.0003, p = 0.98). Post hoc tests revealed that the 

Accuracy*Feedback interaction was the result of greater vmPFC activity when feedback 

had been confirmatory (versus disconfirmatory) when the information cue revealed was 

true (t(31) = 2.00, p = 0.05; two-tailed paired t-test between Confirmatory-True and 

Disconfirmatory-True). But when the information cue was revealed to be false, vmPFC 

activity was in the opposite direction; lower when the feedback had been confirmatory 

compared to when it had been disconfirmatory (t(31) = -2.28, p = 0.03; two-tailed paired 

t-test between Confirmatory-False and Disconfirmatory-False). The interaction was 

further characterised by greater vmPFC activity in response to confirmatory feedback 

when the information cue was true compared to when it was false (t(31) = 2.55, p = 0.01; 

two-tailed paired t-test between Confirmatory-True and Confirmatory-False) with no 

significant difference between the cues in response to disconfirmatory feedback (t(31) = 

-0.65, p = 0.51; two-tailed paired t-test between Disconfirmatory-True and 

Disconfirmatory-False). The results suggest that finding out information is true is 

rewarding when it validates existing beliefs relative to when it calls them into question. 

Conversely, finding out information is false is valuable when this negates information that 

had challenged prior beliefs relative to cases where this negates information that had 

validated them. 
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Figure 5.5: The Accuracy * Feedback Interaction Effect. Interaction between feedback and 
accuracy in the vmPFC ROI (F(1,31) = 7.47, p = 0.01). When the information cue is revealed to be 
true, vmPFC activity is higher if the feedback had been confirmatory versus disconfirmatory (t(31) 
= 2.00, p = 0.05; two-tailed paired t-test between Confirmatory-True and Disconfirmatory-True). 
But when the information cue is revealed to be false, vmPFC activity is in the opposite direction, 
being lower when the feedback had been confirmatory compared to when it had been 
disconfirmatory (t(31) = -2.28, p = 0.03; two-tailed paired t-test between Confirmatory-False and 
Disconfirmatory-False). *p ≤ 0.05. 
 

An exploratory whole-brain analysis also revealed a significant interaction 

between Accuracy and Feedback in a cluster in the left Medial Temporal Lobe (MTL) that 

included the Left Hippocampus (peak MNI [x,y,z] = -36,-38,-2; Z = 4.51, cluster-level 

pFWE = 0.04, k = 361), the Dorsolateral Prefrontal Cortex (peak MNI [x,y,z]= 32,30,44; Z = 

4.35, cluster-level pFWE = 0.01) and the Left Cerebellum (peak MNI [x,y,z] =-32,-50,-44; Z 

= 3.95, cluster-level pFWE = 0.04). See Appendix 5.1 for whole brain statistics including 

main effects of Accuracy and Feedback.  

Given that confirmatory information can occur under different scenarios (positive 

prediction error for factual outcome, negative prediction error for counterfactual 
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outcome) as can disconfirmatory (negative prediction error for factual outcome, positive 

for counterfactual outcome) the results we observed in the vmPFC (Figure 5.5) predicts 

a specific pattern of BOLD response depending on both on the sign of the prediction error, 

whether outcome was given to the option chosen or unchosen; and, crucially, whether 

accuracy was revealed to be true or false. In the case of true information, we would 

expect this to act as rewarding in cases where the prediction error has been positive for 

the option chosen or negative for the option unchosen (relative to the opposite cases – 

negative prediction error for the option chosen and positive prediction error for the option 

not chosen). But this pattern should be inverted for false information, whereby this acts 

as rewarding in cases where the prediction error has been negative for the option chosen 

or positive for the option unchosen (relative to the opposite cases – positive prediction 

error for the option chosen and negative prediction error for the option not chosen). 

To unpack this, I used a second fMRI model (GLM2, see Methods) which 

separated trials into eight conditions, depending on 3 factors: the sign of the PE 

(positive/negative), the outcome (chosen/unchosen) and information cue (true/false) 

and extracted the BOLD response in my a priori vmPFC ROI at the time the information 

cue was presented. 
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Figure 5.6: The Three-way Interaction Effect. A three-way interaction (F(1,30) = 7.12, p = 0.01) 
between the sign of prediction error (positive vs negative), outcome (chosen vs unchosen), and 
accuracy (true vs false). The green, dashed lines show confirmatory feedback (positive – chosen 
and negative-unchosen), the direction of which is positive for true information but negative for 
false information. The orange, dashed lines indicate disconfirmatory information (negative-
chosen and positive-unchosen).  
 

A 2×2*2 repeated-measures ANOVA on the vmPFC beta estimates revealed a 

significant three-way interaction (F(1,30) = 7.12 , p = 0.01, Figure 5.6). Post hoc tests 

showed that this was the result of a 2-way interaction between Accuracy and PE_Sign 

following counterfactual outcomes (i.e. outcome for the unchosen option) (F(1,30) = 

5.44, p = 0.02) that was not significant (but showed a qualitative pattern of activation in 

the opposite direction, Figure 5.6) following factual outcomes (F(1,30) = 2, p = 0.16).  

There was no significant main effect of sign of PE (F(1,30) = 0.26, p = 0.61), Outcome 

(F(1,30) = 0.05, p = 0.81) or Accuracy (F(1,30) = 2.16, p = 0.15), full stats are reported in 

Table 5.2. 
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Effect df F p 
Intercept 1, 30 0.03 0.861 
PE_Sign 1, 30 0.27 0.61 

Accuracy 1, 30 2.16 0.152 
Outcome 1, 30 0.06 0.811 

PE_Sign × Accuracy 1, 30 0.13 0.718 
PE_Sign × Outcome 1, 30 0.01 0.929 

Accuracy × Outcome 1, 30 0.01 0.957 
PE_Sign × Accuracy × Outcome 1, 30 7.12 .012* 

Table 5.2 The Three-Way ANOVA.  A 2×2*2 repeated-measures ANOVA for the sign of PE (positive 
or negative), Accuracy (true or false), and Outcome (shown for the chosen or unchosen option) 
on the beta estimates of the vmPFC ROI. * p < 0.05. 
 

Finally, I examined whether there were parametric effects of unsigned PEs at the 

time of information cue presentation, extracting the betas from the vmPFC ROI (GLM1) 

and entering them into a 2*2, repeated measures ANOVA with Information Accuracy 

(True/False) and Feedback (Confirmatory/Disonfirmatory) as factors. There was no 

significant effect of accuracy (F(1,31) = 0.03, p = 0.82), Feedback (F(1,31) = 1.62, p = 0.21) 

or Accuracy*Feedback interaction (F(1,31) = 0.02, p = 0.88). See Appendix 5.1 for full 

whole-brain statistics, including main effects of Accuracy and Feedback. 

5.4 Discussion 
The main analysis revealed a significant interaction between feedback (where a 

piece of information confirmed or disconfirmed one's choice) and information accuracy 

(whether the feedback turned out true or false) in the vmPFC – a key region for assigning 

subjective value (Bartra et al., 2013; Chib et al., 2009; le & Glimcher, 2007; Lebreton et 

al., 2009; Lefebvre et al., 2017; Levy & Glimcher, 2012; Padoa-Schioppa & Assad, 2006; 

Rangel et al., 2008).vmPFC activity was significantly higher if confirmatory vs 

disconfirmatory feedback turned out true. Conversely, when the feedback turned out 

false, the vmPFC activity showed the opposite pattern; being significantly higher if the 

feedback had been disconfirmatory compared to confirmatory. Together, this suggests 

that participants assigned greater value to finding out information was false when it 

invalidated earlier disconfirmatory evidence compared to when it invalidated earlier 

confirmatory evidence, but assigned greater value to finding out information was true 

when it validated earlier confirmatory compared to disconfirmatory evidence. 
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The neural findings have implications for advancing the computational models of 

the thesis. Although there is a significant Feedback*Accuracy interaction effect using the 

average BOLD response, there is no significant parametric effect of prediction errors on 

this interaction at the time of information cue. These prediction errors, however, were 

generated at the feedback timepoint, which raises the possibility that separate learning 

signals are generated at the information cue timepoint. This points toward an alternative 

framework that my current models cannot test: a two-step learning process. In such a 

framework, a first update would occur when the feedback is received. This would be 

followed by a second update upon the reveal of the accuracy, which could be modelled 

in several ways. For information revealed to be false, the initial learning could be revised, 

and I could quantify this by a specific 'undo' parameter (ω). Another model could have 

two distinct 'undo' parameters: one for confirmatory feedback and another for 

disconfirmatory feedback.  Conversely, for information revealed to be true, the initial 

update is confirmed. A different model could explore whether this confirmation is 

passive (i.e., the absence of undoing) or an active 'boosting' of the initial learning, 

governed by its own 'boost' parameter (γ). Therefore, the neural results of this chapter 

could provide insight into the modelling of the behavioural data.  

My exploratory, whole-brain analysis culminated in two significant regions for the 

Feedback*Accuracy interaction - right dorsolateral prefrontal cortex (DLPFC) and a 

cluster that included the left medial temporal lobe (MTL) – and a main effect of accuracy 

in the right DLPFC.  I propose two explanations, albeit speculative, for the involvement of 

these regions. First, regarding the main effect of accuracy, is the DLPFC’s role in belief-

updating under uncertainty (Hofmans & van den Bos, 2025; Moutsiana et al., 2015; 

Schulreich & Schwabe, 2021). In one transcranial direct current stimulation (tDCS) study, 

Schulreich and Schwabe (2021) enhanced right DLPFC activity in participants performing 

a continuous belief-updating task. The results showed increased value updating when it 

was normatively expected from a Bayesian perspective, meaning that they got better at 

changing their beliefs when the evidence dictated they should. The current finding of a 

main effect of accuracy in the DLPFC, with higher activity for true versus false 

information, aligns with this work as it is more rational: participants needed to update 

their beliefs more when faced with true information. The MTL has also been implicated in 
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learning and belief updating (Moutsiana et al., 2015) as part of a frontal-subcortical 

circuit in the original belief update task. Specifically, structural connectivity between the 

left hippocampus (an MTL subregion) and left inferior frontal gyrus (IFG) was associated 

with a greater tendency to update beliefs in response to good news vs bad news. 

Individuals with stronger physical connectivity between these regions showed higher 

updating in response to good vs bad news. In the current task, MTL activity was higher for 

confirmatory vs disconfirmatory true information, with the opposite pattern for false 

information. This suggests the MTL may use desirability as a distinguishing factor in belief 

updating.  My second speculation is the involvement of both regions in retrospective 

confidence judgements when information cue is presented, at which point the brain 

asks, "Given the feedback and its accuracy, did I make the right decision?”. In other 

words, it is evaluating the correctness of the initial beliefs formed at the feedback 

timepoint. A sub-region of MTL, the Left parahippocampal gyrus, has been implicated in 

retrospective confidence judgement (Martín‐Luengo et al., 2021), with higher activity 

correlating with higher confidence. The MTL in the current task has higher activity when 

the initial confirmatory feedback turns out true (confirmatory - true) or the contradictory 

information could be ignored (disconfirmatory - false), both of which could signal one has 

made the right choice (as opposed to disconfirmatory true and confirmatory false), 

increasing retrospective confidence. The DLPFC has also been implicated in 

retrospective confidence judgment (Fleming, 2024; Fleming et al., 2018; Fleming & 

Dolan, 2012; Martín‐Luengo et al., 2021), where in one meta-analysis it was shown to 

correlate with one’s confidence in the prior decision (Martín‐Luengo et al., 2021). Further, 

in a causal study using transcranial magnetic stimulation (Shekhar & Rahnev, 2018), 

disrupting the DLPFC caused participants to report lower confidence in their decisions. 

The researchers proposed a model where the DLPFC's job is to "read out" the strength of 

the sensory evidence. When the DLPFC is disrupted, this readout becomes noisy, 

signalling to other areas that the evidence was ambiguous, which in turn leads to a lower 

feeling of confidence. In the current results, the DLPFC has the highest activity for 

confirmatory true and disconfirmatory false information, both of which convey a feeling 

of confidence. However, unlike in the MTL, confirmatory true is not significantly higher 

than disconfirmatory true, casting doubt on this speculation.  
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In the present study, I inferred the subjective value of information from vmPFC 

BOLD responses.  A promising future direction would be to create a more direct link 

between brain activity and subjective feeling by collecting explicit behavioural ratings. 

For instance, participants could be asked to rate "How positive or negative did you feel 

finding out this information was true/false?" on a continuous scale after the information 

cue is revealed. The hypothesis would be that these ratings would mirror the neural data 

I have collected. Another approach would be using a willingness-to-pay (WTP) task, 

which has been used to probe the neural representations of value (Plassmann et al., 

2007), and see how feedback and accuracy influence willingness to pay and how this is 

represented in the brain.  

Together, the results here are the first to show how the brain processes false 

information depending on whether it had confirmed or disconfirmed one’s beliefs. I 

focused on a brain region known for valuation, the vmPFC, to assess its BOLD response 

to finding out that earlier feedback is false. One might expect the brain would dislike 

learning it had been misled or deceived, but the results revealed that participants do 

assign a higher value to disconfirmatory false information compared to when 

confirmatory information proves false. These findings suggest that people might be 

differentially motivated to scrutinise the accuracy of information depending on whether 

it aligns with their existing beliefs. When information appears to confirm one's beliefs 

(e.g., experimental results that support a scientist's predictions), one may be less 

inclined to verify its validity. Conversely, when information contradicts expectations (e.g., 

experimental results going against a scientist’s predictions), one may be more motivated 

to question its veracity.    
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Chapter 6: General Discussion   

6.1 Summary and Limitations 

6.1.1 Chapter 3: Confirmation Bias in Response to False 
Information  

6.1.1.1 Summary  

In this study, I investigated whether confirmation bias, the tendency to overweight 

evidence that supports one's existing beliefs and underweight that which disconfirms it, 

persists when individuals process information they know to be false. I combined 

behavioural testing with computational modelling across two studies, using a novel 

learning task where participants made choices and received feedback that was explicitly 

cued as either true or false. The behavioural results revealed that participants learned 

even from information explicitly cued as false. When guided by this false feedback, their 

selection of the misleading option was significantly above the 50% chance level.. 

However, this learning was modulated, as performance was significantly better when 

feedback was true. This demonstrates that while participants paid attention to the 

accuracy cues, they were unable to completely ignore the influence of false information 

on their decisions. 

The computational modelling results suggested that the learning from false 

information is biased. I tested a suite of models and found that a model with four distinct 

learning rates - for confirmatory true, disconfirmatory true, confirmatory false, and 

disconfirmatory false feedback - provided the best fit to the data in both studies. The 

parameters from this winning model revealed a robust confirmation bias for both true and 

false information, where the learning rate for belief-confirming feedback was significantly 

higher than for belief-disconfirming feedback. The bias for false information could not be 

explained away by gradual perseveration, was robust across Gain and Loss contexts, and 

the patterns of factual and counterfactual learning rates confirmed it was separate from 

positivity bias. Further, the strength of the confirmation bias for false information was the 

same as the bias for true information as demonstrated by the lack of interaction between 

the learning rates across feedback (confirmatory vs disconfirmatory) and accuracy (true 
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vs false).  These findings identify a mechanism that supports the persistence of biased 

beliefs, even in the face of information that is explicitly discredited. 

6.1.1.2 Limitations 

A limitation of this study is the lack of a neutral or unknown cue with which I could 

compare the current results. Although the confirmation bias in the face of false 

information is robust, it would be bolstered by having this third Unknown condition as in 

the real world seeing a piece of information whose veracity is unknown is common.  

Similarly, the True and False labelling of the information is authoritative and in the real 

world we don’t get such clear-cut accuracy statements of information.  

6.1.2 Chapter 4: Optimistic Update Bias in Response to False 
Information  

6.1.2.1 Summary  

In this study, I investigated the degree to which explicit labels marking information 

as false – debunking - enable humans to reduce belief updating in response to false 

information. I adapted a classic belief-updating paradigm, the update bias task (UBT), in 

which participants were presented with information about the likelihood of experiencing 

adverse life events, which was then explicitly labelled as either true or false. This setup 

allowed me to answer two main questions: first, do people reduce their belief updating 

when information is labelled as false? And second, does the well-documented optimistic 

update bias - the tendency to learn more from good news than bad news - persist even 

for information known to be false? The behavioural results revealed a main effect of 

accuracy, with greater updating for true compared to false information, and a main effect 

of valence, with greater updating for good news compared to bad news, and no 

interaction between valence and accuracy.  Further, separate paired t-tests between 

good news and bad news for true and false information showed that optimistic update 

bias exists for false information as well. As a result, participants were less successful in 

discounting false information when it was better than expected compared to worse than 

expected. Finally, the optimistic update bias survived after controlling for potential 

confounds like subjective ratings and how much one deems themselves different from 

others, with the latter measured through computational modelling. 
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Computational models explained belief updating through estimation errors - the 

discrepancy between people's initial estimates and the information presented. These 

models propose that the belief updating process is governed by learning rates, which 

determine how strongly estimation errors influence belief changes. Different models 

incorporate varying numbers of learning rates, and the winning model had four learning 

rates for True Good News, True Bad News, False Good News, and False Bad News. The 

results from this model revealed that learning rates were significantly higher for good 

news than for bad news for both true and false information.  

These findings identify a potential mechanism - optimistic update bias - that 

explains why false good news has a greater impact on belief change than false bad news, 

which could be important for understanding vulnerability to misinformation.   

6.1.2.2 Limitations 

Similar to chapter 3, the main limitation of the study is that the "true" and "false" 

labels provided to participants were definitive and authoritative. In real-world 

environments, the veracity of information is often ambiguous, and individuals must infer 

credibility from uncertain cues. Therefore, the ability to modulate learning observed here 

might not generalise to more ecologically valid contexts where the truthfulness of 

information is not explicitly stated. 

6.1.3 Chapter 5: When we value false information: the interaction 
between information accuracy and confirmation in the 
ventromedial prefrontal cortex 

6.1.3.1 Summary  

In this study, I used Functional Magnetic Resonance Imaging (fMRI) to investigate 

how the ventromedial prefrontal cortex (vmPFC) values a piece of confirmatory vs 

disconfirmatory information that turns out true vs false. The behavioural and 

computational results replicated my previous findings; participants' choices were 

influenced by an interaction between feedback and its accuracy, and their learning was 

best captured by a model with four distinct learning rates. This model confirmed the 

existence of a confirmation bias- a higher learning rate for confirmatory versus 

disconfirmatory feedback - for both true and false information. 
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The neuroimaging results showed a significant interaction in the vmPFC between 

the accuracy of the information (true/false) and whether the initial feedback confirmed 

or disconfirmed the person's beliefs. Essentially, the value the brain assigned to 

information accuracy depended on its relationship with the earlier feedback. When 

participants learned that the feedback they received was true, their vmPFC activity was 

significantly higher if that feedback had originally confirmed vs disconfirmed their belief. 

In contrast, when they learned the feedback was false, vmPFC activity was higher if the 

feedback had originally disconfirmed vs confirmed their belief. This suggests it's 

rewarding to learn that confirming vs disconfirming evidence was correct, and it's also 

rewarding to learn that the evidence that challenged vs confirmed you was wrong. I then 

unpacked the feedback*accuracy interaction by separating the confirmatory vs 

disconfirmatory feedback into its subcomponents: Outcome (shown for the Chosen vs 

Unchosen options) and the sign of PE (Positive vs negative) such that I had eight onset 

regressors across PE_Sign (Positive vs Negative), Accuracy (True vs False), and Outcome 

(Chosen vs Unchosen). The results showed an interaction across these three 

dimensions, indicating that vmPFC is encoding information value based on confirmation 

rather than the sign of PE.  

6.1.3.2 Limitations 

The main limitation is the same as the other two chapters: lack of a no-cue 

condition. Currently, we do not know how the brain responds to receiving no information 

on the accuracy of confirmatory vs disconfirmatory information. For instance, would we 

see the same pattern of vmPFC activity as false cue?  

6.2 Synthesis  
Across several computational studies in two different learning environments – RL 

and one-shot learning - I showed that not only do people learn from false information but 

also are biased in this learning whereby they learn more from desirable false information 

than undesirable false information. This learning asymmetry, driven by differential 

prediction error encoding in the RL task and differential estimation error encoding in the 

UBT, gave rise to confirmation bias in the former – where desirable information confirmed 

your choices - and optimistic update bias in the latter– where desirable information gave 
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you an optimistic outlook about the future. Across both paradigms, a model featuring 

four distinct learning rates - separating desirability (Confirmatory Feedback and Good 

News vs Disconfirmatory Feedback and Bad News) and accuracy (True vs False) of 

information - provided the best explanation for participants' behaviour. Estimating the 

winning model revealed that in both paradigms, desirable information was integrated to 

a higher degree than an undesirable information no matter the veracity. This biased 

information integration has been shown in a plethora of belief-updating (for a review see 

Sharot & Garrett, 2016) and reinforcement learning (for a review see Palminteri & 

Lebreton, 2022) studies for true information, and now I have shown it also exists in the 

face of false information.  

Across all studies, the strength of both biases was not significantly different 

between true and false information. This means that in two totally different learning 

environments, participants exhibited similar levels of biased information integration 

regardless of veracity. One potential explanation for this is that the brain has one control 

for desirability that is asymmetric, and a separate 'accuracy' control that acts like a global 

volume knob, reducing the impact of all false information without altering the underlying 

bias. Therefore, at the information presentation timepoint, desirability is integrated in a 

biased manner – learning rate for the desirable (confirmatory or good news) information 

higher than learning rate for the undesirable (disconfirmatory or bad news)  information – 

and then, when it turns out false, the initial learning is turned down but the bias persists, 

hence the lack of interaction for the strength of the bias for true vs false information.  

To probe the neural processing across desirability and accuracy dimensions, I 

conducted an fMRI study using the RL task, the results of which implicated the vmPFC in 

biased information valuation. Specifically, upon accuracy reveal, the vmPFC valued true 

and false information differently depending on whether initially, at the feedback 

timepoint, the information confirmed or disconfirmed participants’ choice. if initially 

desirable, true information was deemed more valuable than false information; if initially 

undesirable, however, vmPFC shows no difference between true and false information. 

Similarly, it assigned greater value to undesirable information that turned out false 

compared to the desirable one that proved false. This could suggest that, for false 
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information, participants are motivated to better ignore the undesirable information that 

turns out false relative to the desirable one.  

Although the biased false information integration and valuation is concerning, 

participants did learn less from false information than true information – main effect of 

accuracy – across all studies in the thesis. This means that debunking (warning about the 

veracity of information) could be somewhat effective. This is in line with the consensus 

in the misinformation literature that debunking is an effective, albeit imperfect, 

intervention (M.-P. S. Chan et al., 2017; Van Der Linden, 2024). I contribute to this line of 

research by providing a computational account of debunking, showing under what 

circumstances it could be less effective, and offering a neural account of how the brain 

processes false information the moment it is debunked. In what follows I will describe a 

few open questions that could deepen our understanding of how misinformation is 

learned and how it could be curbed.  

6.3 Key Questions for Future Research  

6.3.1 Is pre-bunking more effective than debunking in 
reducing learning from false information? 

Chapters 3 and 4 showed that debunking, where information turns out false, is 

effective in reducing the degree to which people learn from false information no matter if 

the information is abstract (i.e., two-arm bandit symbols) or realistic like future negative 

life events. The misinformation literature has offered another approach that warns 

people ahead of a potential falsehood, inoculating them like how a vaccine inoculates 

one from infections. This is known as prebunking (Christner et al., 2024; Ecker et al., 

2022; Van Der Linden, 2024). The prebunking version of my tasks would be if the 

information cue is presented first - telling them if the upcoming information (e.g., the 

outcome of the option) is true or false - and then participants are asked to make a choice 

and observe the feedback.  

A possible, within-subject design would be intermixing "pre-bunking" and 

"debunking" trials to compare the effectiveness of both strategies within the same 

individual. In the debunking trials, where information turns out false, a retrospective 
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correction might be involved, a cognitively demanding process where an already 

encoded, affectively charged learning signal should be suppressed or undone. As my 

current results demonstrate, this correction is often incomplete, leading to residual 

learning from false information. In contrast, on pre-bunking trials, I would first warn 

participants that the upcoming feedback is false. This "inoculation" allows for the 

engagement of proactive filtering. Instead of correcting an error, the brain can prepare to 

treat the subsequent information as irrelevant. I hypothesize that this proactive stance 

would alter feedback processing in two ways. First, it could effectively gate the learning 

signal, preventing the prediction error generated by the outcome from being used to 

update value representations in the vmPFC.  Second, by framing the outcome as 

meaningless from the start, it could dampen the initial affective response to a win or a 

loss, neutralizing the very biased valuation shown in Chapter 5 that potentially 

contributes to this form of irrational learning. Therefore, learning from false information 

would be significantly lower on pre-bunking trials compared to debunking trials. 

Specifically, the learned preference for the misleadingly "good" option in the unsolvable 

condition should be drastically reduced, if not eliminated, on pre-bunking trials. It should 

be noted that Vidal-Perez et al., (2025) have already shown that learning from unreliable 

information is still present in a prebunking paradigm.  

This behavioural difference should be captured by the parameters of the four-

learning-rate model. I could also extend the model to estimate separate learning rates for 

pre-bunking and debunking trials. My prediction is that the learning rates for false 

information (α_conf_false and α_disconf_false) would be significantly smaller for pre-

bunking trials, ideally approaching zero, providing formal evidence that the learning 

signal was successfully gated. Demonstrating these effects would provide mechanistic 

evidence for why inoculation-based interventions are effective. Further, the findings 

would reveal that preventing a biased belief from taking root is cognitively more efficient 

than attempting to revise it after the fact.  

Beyond simply reducing overall learning from false information, another key 

question is whether pre-bunking can specifically neutralize the optimistic and 

confirmation biases that Chapters 3 and 4 show are so robust. The persistence of these 

biases for false information in my studies suggests they are driven by the initial, stronger 
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response to desirable or choice-confirming information. A debunking cue arrives too late, 

after this biased emotional signal has already been processed. Pre-bunking, however, is 

perfectly positioned to intervene in this process. By warning that upcoming information 

is false, it can dampen the affective response at its source. A piece of good news or a 

confirmatory outcome that is known in advance to be fake should lose its rewarding 

quality, thereby neutralizing the very signal that drives the bias. Further, I predict that pre-

bunking will specifically attenuate the confirmation bias for false information. 

Computationally, this means the difference between the learning rates (α_conf_false - 

α_disconf_false) should be significantly smaller on pre-bunking trials compared to 

debunking trials. This same logic applies to a pre-bunking version of my belief-updating 

task. I hypothesize that the optimistic update bias - the greater belief updating for "False 

Good News" versus "False Bad News" - would also be significantly reduced or eliminated 

on pre-bunking trials. 

6.3.2 Does withholding information cues affect learning 
from false information?  

A limitation of my studies is that information was always explicitly labelled as 

either true or false. In the real world, however, we frequently encounter information with 

unknown veracity. The next step would be to introduce a third, no-cue or Unknown case 

to investigate how people learn from false information when it is perceived relative to the 

more uncertain information (see Figure 6.1 for the proposed design). In essence, the 

probabilities behind the False and Unknown cases are the same (Figure 6.1 (b) and (c)) 

but participants are not privy to these. This design creates a test of several competing 

hypotheses about how we treat ambiguous information that is common in the real world. 

Do we operate under a "truth default," treating unknown information as if it's true? Or do 

we assume it is true if it confirms our beliefs and false if it disconfirms them? A third 

possibility is that we engage in graded learning, adjusting our learning based on the 

reliability signal.  

Using a 3 (Accuracy: True, False, Unknown) x 2 (Feedback: confirmatory, 

disconfirmatory) within-subject design, I hypothesize that participants will still learn 

from  false information, but the learning rates will be graded by certainty such that 
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learning from unknown information will be higher than false information, falling between 

the other two, resulting in an ordered pattern: α_true > α_unknown > α_false (Figure 6.1 

(d)). This would suggest that people modulate their learning and belief updating in 

proportion to the stated certainty of the information, but still, would learn from false 

information, especially if it confirms their beliefs. Second, I hypothesize that the biases I 

identified across my studies – confirmation bias and optimistic update bias -  would still 

be present for the "unknown" information. Specifically, for the reinforcement learning 

task (Chapter 3), I predict that learning from "Confirmatory-Unknown" feedback would 

be greater than from "Disconfirmatory-Unknown" feedback (Figure 6.1 (d)). Similarly, for 

the belief-updating task (Chapter 4), I predict that belief change would be greater in 

response to "Good News - Unknown" than to "Bad News - Unknown". Finally, I 

hypothesize that the strength of the optimistic and confirmation biases across True, 

False, and Unknown would be the same, just like how there was no interaction between 

True and False in the strength of the biases in the current studies. Overall, the uncertainty 

that comes with the Unknown cue may provide the perfect environment for the biases to 

flourish as there is no explicit factual ground to constrain our desire to believe good news 

or confirm our choices. 
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Figure 6.1: The experimental design and its predictions. (a) shows the same reinforcement 
learning (RL) task as in Chapter 3, but now with three cases for information accuracy: True, False, 
and Unknown. A key aspect of the design, shown in panels (b) and (c), is that the underlying 
reward probabilities for the False and Unknown conditions are identical, but participants are not 
privy to these probabilities. The predictions, visualized in panel (d), are twofold. First, learning is 
expected to be graded by certainty, with learning rates following the pattern of true > unknown > 
false. Second, confirmation bias will exist no matter the accuracy, whereby learning from 
confirmatory feedback will be significantly greater than learning from disconfirmatory feedback. 

I could also try different computational models with this design. While estimating 

a single learning rate (α_unknown) is an obvious first step, more advanced models could 

reveal the cognitive strategies underlying this parameter. The "Unknown" condition 

forces a choice: how should this ambiguity be resolved? An alternative model could 

formalize this as a dynamic process. For instance, α_unknown might not be a fixed value 

but rather a mixture of α_true and α_false, weighted by a personal "trust" parameter that 

ranges from 0 to 1. If a person's w is close to 1, it means they are resolving the ambiguity 

by treating the "Unknown" information as if it were "True." If their w is close to 0, they are 

treating it as if it were "False." This approach also allows me to see how this tendency is 

shaped by their confirmation or optimistic update biases. Another idea would be to have 

a model that proposes we resolve ambiguity in a self-serving manner based on the nature 

of the feedback itself. When 'Unknown' feedback is confirmatory the model suggests we 

treat the information as if it were true, applying the confirmatory true learning rate. 

Conversely, when the feedback is disconfirmatory we dismiss the ambiguous 

information as unreliable, applying the disconfirmatory false learning rate. This approach 
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formalizes the idea that we interpret ambiguous evidence through the lens of our existing 

beliefs, readily accepting it as true when it supports our choices and rejecting it as false 

when it doesn't.  

6.3.3 From Valuation to Regulation: The Network Dynamics 
of Misinformation Valuation 

Chapter 5 identified the ventromedial prefrontal cortex (vmPFC) as a hub for the 

biased computation of value, showing that the vmPFC treats false information that 

disconfirmed one’s choice as more valuable than that which confirmed it. Therefore, it 

seems that the vmPFC dynamically recalculates the value of information when its 

veracity is revealed, generating different neural signals when a confirmatory vs 

disconfirmatory feedback turns out true vs false. These findings establish the vmPFC's 

central role in the valuation aspect of biased learning from true and false information. The 

vmPFC, however, does not operate in isolation. The interaction I observed at the 

information cue stage suggests a potential process of retrospective re-evaluation, where 

the initial value representation at the feedback stage is modulated. The next logical step; 

therefore, is to investigate the network-level dynamics that support this process. 

Specifically, how does the brain's metacognitive network interact with the vmPFC to 

suppress or update value signals in light of new information about their reliability? 

The process of evaluating the "True/False" cue in my task could be conceived as 

an act of metacognitive judgment. As outlined in a recent review by Fleming (2024), such 

judgments can be deconstructed into several distinct computational components, 

which are likely supported by different neural systems. These components include: (i) the 

initial representation of uncertainty about the world, (ii) the transformation of this 

uncertainty into a propositional confidence judgment about one's own performance, (iii) 

the global broadcast of this confidence signal to other brain systems for control and 

communication, and (iv) the influence of a self-model that provides top-down beliefs 

about one's own abilities. My study is suited to investigate the interplay between these 

components. The initial feedback (confirmatory/disconfirmatory) generates a first-order 

choice - actual performance - which my results link to the vmPFC. The subsequent 
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accuracy cue then prompts a second-order metacognitive evaluation, forcing the system 

to reflect on and potentially revise its initial state. 

The literature points to a network of prefrontal regions responsible for this 

regulation. This network can be subdivided based on the components of a metacognitive 

judgment. One component is about representing propositional confidence - the brain's 

estimate of the probability that a specific choice or belief is correct, which is distinct from 

lower-level sensory uncertainty (Fleming, 2024). My finding of a biased valuation signal 

in the ventromedial prefrontal cortex (vmPFC) aligns with work showing this region 

encodes signatures of propositional confidence (Bang & Fleming, 2018). Next, for a 

confidence estimate to be useful, it must be subject to global broadcast and 

communication with other brain systems to guide subsequent thought and behaviour. 

This broadcasting and strategic use of confidence is thought to involve the rostrolateral 

prefrontal cortex (RLPFC), anterior prefrontal cortex (aPFC), and frontopolar cortex 

(Fleming, 2024). The aPFC is specifically implicated in mediating the impact of post-

decision evidence on subjective confidence, a process central to my task (Fleming et al., 

2018), making it a prime candidate for receiving the initial value signal from the vmPFC 

and initiating a revision. Finally, performance monitoring and control are central 

functions of the dorsal anterior cingulate cortex (dACC) and dorsolateral prefrontal 

cortex (dlPFC), which monitor for conflict and apply rules to guide behaviour (Miller & 

Cohen, 2001; Shenhav et al., 2013). The "False" cue in my task could be thought of as an 

error signal that engages this network, which in turn would provide the necessary top-

down signals to execute the belief update. 

To formally test hypotheses about these network-level interactions, I propose to 

use Dynamic Causal Modelling (DCM). DCM allows for the testing hypotheses about how 

brain regions influence one another's activity and how these connections are modulated 

by experimental conditions (K. J. Friston et al., 2003). This makes it the ideal tool to move 

beyond asking "what areas are active?" to asking "how do these areas work together to 

revise beliefs?" For instance, one could ask how does the frontoparietal metacognitive 

network regulate the vmPFC to update beliefs when the reliability of feedback is 

revealed? 
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Using DCM, I can test a plausible model of this network. The model would include 

nodes for the vmPFC (representing propositional confidence) and key metacognitive 

regions like the RLPFC, aPFC and dlPFC/dACC. This leads to several testable hypotheses. 

First, I predict a top-down correction signal, where the presentation of the "False" cue 

will significantly modulate the effective connectivity from a cognitive control region (likely 

the dlPFC) to the vmPFC. This directed influence would represent a top-down 

"correction" or "gating" signal that implements the revision of the initial value 

representation. Second, concerning the role of the RLPFC and aPFC in initiating the 

update, I predict that these regions will play a mediating role, showing modulated 

connectivity from the vmPFC and to the dlPFC. This would be consistent with their 

proposed role in monitoring initial confidence signals and initiating a revision by 

recruiting the cognitive control side of the dlPFC (Fleming, 2024). Finally, I predict that 

the neural signature of "relief" will manifest as a network reconfiguration. I expect that 

the strength of this top-down modulation from the metacognitive network to the vmPFC 

will be significantly stronger for disconfirmatory false and confirmatory true feedback. 

This provides a mechanistic explanation for the "relief" signals I observed in the vmPFC's 

activity. Confirming these hypotheses would provide a network-level account of belief 

revision, dissociating the initial, biased, bottom-up valuation signal computed in the 

vmPFC from a subsequent, top-down regulatory process by the prefrontal cortex. 

6.3.4 Is learning from false information dependant on 
working memory?  

A large body of research has established that human reinforcement learning is not 

a monolithic process but relies on the interplay between multiple cognitive systems (see 

Yoo & Collins, 2022 for a review). Work by Anne Collins and her colleagues has 

demonstrated that a slow, incremental RL system operates in parallel with a fast, flexible, 

but capacity-limited working memory (WM) system (Collins & Frank, 2012; Collins, 2018). 

This line of research has shown that as the number of items to learn - the set size - 

increases, the WM system becomes taxed, impacting learning strategies (Collins & 

Frank, 2012). In my task, the challenge is twofold: participants must not only learn the 

values of the options but also actively suppress learning from information they know is 

false. This suppression is an executive function that relies on the same limited cognitive 
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resources as WM. Therefore, I propose that by increasing the cognitive load on the WM 

system, I can test its role in gating irrelevant information and resisting cognitive biases. I 

can achieve this by varying the set size - having different groups learn a low number of 

pairs (e.g., 2), a medium number (the original 4), or a high number (e.g., 6). 

If ignoring false feedback requires these limited cognitive resources, then 

increasing the load on that system should impair this ability. This leads to two specific 

hypotheses. First, overall learning from false information will increase with cognitive 

load. I predict that as the set size increases, participants will be more influenced by the 

misleading feedback. This would be evident by a stronger preference for the "best" option 

in the unsolvable condition for the group with a set size of 6 compared to the group with 

a set size of 2. Second, the confirmation bias for false information will be magnified under 

high load. I hypothesize that the bias itself will become stronger as cognitive resources 

are depleted. When the working memory system is taxed, the brain may rely more on 

default, heuristic-based learning. Computationally, this would manifest in the 

parameters of my model: the difference between the learning rates for false confirmatory 

and false disconfirmatory feedback (α_false_confirmatory - α_false_disconfirmatory) 

should be significantly larger in the high-load (set size 6) condition. For true information, 

however, the bias might not vary between the set sizes as ignoring true information is not 

a goal.  

Beyond predicting how existing learning rates will change, a more powerful 

approach would be to develop models that explicitly represent working memory like how 

previous works have done (Collins & Frank, 2012; Collins, 2018). One approach would be 

to model the suppression of false information as an active "gating" process that is 

dependent on cognitive resources. This could be formalized by introducing a new 

"cognitive control" parameter, κ (kappa), which represents the efficacy of the gating 

mechanism. The effective learning rate from false feedback would then be dynamically 

modulated by this parameter (e.g., effective α_false = (1 - κ) * base α_false). Under low 

load, κ would be high, effectively driving learning from false information towards zero. As 

cognitive load (set size) increases, κ would decrease, representing the depletion of 

resources and causing a failure in the gating mechanism. This model would allow for a 

direct test of whether cognitive load impairs the control process itself, rather than just 
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altering the learning rates. Another approach would be to use a dual-system model that 

has separate RL and WM components. In this framework, the capacity-limited WM 

system could be responsible for both fast learning and for maintaining the task rule 

("ignore false feedback"). As set size increases, the WM component's contribution to 

learning diminishes. If this component is also responsible for the suppression signal, its 

failure under load would predict a corresponding increase in learning from false 

information. This would provide a unified account of how set size affects both learning 

and the ability to ignore misinformation. 

 Confirming these hypotheses would provide evidence that the ability to resist 

misleading information is not fixed but depends on the availability of cognitive resources. 

It would suggest that individuals are likely more vulnerable to misinformation when they 

are distracted, tired, or otherwise cognitively taxed - a finding with real-world 

implications for how we consume information in our daily lives, especially on social 

media.  

6.3.5 Confirmation Bias in Learning from False Information in a 
Social Context 

My thesis has established a confirmation bias in how individuals learn from 

misinformation in a non-social context. A timely extension of this work is to investigate 

whether this same bias operates when information comes from a social source. In the 

modern world, much of the information we consume - and the misinformation we 

encounter - is transmitted through social networks like X (formerly Twitter) (Vosoughi et 

al., 2018). The architecture of these networks, which allows for rapid, widespread 

dissemination of user-generated content, creates a fertile ground for biases like 

confirmation bias to take hold (Aral & Van Alstyne, 2010). Further, their incentive 

structures (likes and shares) are not designed to prioritise accuracy (Globig & Sharot, 

2024). Instead, they reward content that is popular, emotionally evocative, or identity-

affirming. This creates a social reward landscape that can be orthogonal, or even 

antithetical, to truth. Algorithmic personalization and the tendency for users to self-

select into ideologically aligned groups can create "filter bubbles" and "echo chambers," 

which reduce exposure to diverse viewpoints and amplify confirmatory content 

(Glickman & Sharot, 2024). Turner et al. (2025) applied a computational model of reward 
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learning to real-world X data, showing that users' posting behaviour is modulated by the 

social rewards they receive. This creates an environment where a confirmation bias is 

particularly potent. If users are socially rewarded for sharing confirmatory content, and 

our brains are already wired to preferentially learn from it, the result is a feedback loop 

that can drive the rapid formation of polarized communities.  For instance, in a large-

scale analysis of Facebook users, Zollo et al. (2017) found that people form highly 

segregated "tribes" around specific narratives, creating echo chambers where attempts 

to debunk misinformation are largely ineffective because users preferentially engage 

with content that confirms their group's identity, leading to the wide-scale propagation of 

misinformation (Zollo et al., 2017). 

Learning from other people is fundamentally different than learning from non-

social probabilistic feedback, requiring us to build a model of the person providing 

information and engaging in "mentalizing" or "Theory of Mind" - the fundamental human 

ability to attribute unobservable mental states like beliefs, desires, and intentions to 

others (Frith & Frith, 2006). When learning from a social source, we process the 

information itself and build a predictive model of the other person's mind. We constantly, 

and often unconsciously, ask ourselves: Are they knowledgeable? Are they trying to be 

helpful, or do they hold a bias? This continuous inference about the minds of others is 

what makes social learning computationally complex and distinct from learning from 

simple environmental feedback (Saxe, 2006). 

To test whether the confirmation bias for false information persists in a social 

context, I propose adapting the multiplayer RL paradigm from Zhang and Gläscher 

(2020). This task is suited for dissociating private belief from social influence. Its multi-

phase design allows for the separate measurement of an initial choice, the influence of 

social information, and a final, updated choice and confidence level. The task begins with 

the participant making an initial choice in a learning problem and then placing a bet to 

indicate their confidence in that decision. Following this, they are shown the choices 

made by four other players. With this new social information, the participant is given an 

opportunity to either stay with their original choice or switch to a different one. They are 

also allowed to update their confidence bet. Finally, the correct outcome for the trial is 

revealed to all players, allowing them to learn from the result. 
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To study the impact of false information, I will manipulate the reliability of the 

social sources. This approach is grounded in the advice-taking literature, which shows 

that people are typically sensitive to an advisor's past performance and adjust how they 

weigh their advice accordingly (Bonaccio & Dalal, 2006). Participants will be told they are 

playing with a group where some "players" are unreliable bots. This creates two types of 

social sources: Reliable players and bots. Reliable players are programmed to perform 

well (e.g., choosing the correct option 80% of the time), representing a source of "true" 

social information. Bots are programmed to choose at random (50/50), representing a 

source of noisy, "false" social information, akin to the False cues in the tasks of the 

current thesis. Over the course of the experiment, the participant should learn not only 

the value of the task options but also the credibility of their co-players. This allows me to 

test whether participants learn to discount the choices of the unreliable bots, a process 

that can be formally captured by extending the computational model from the original 

paper to include learned reliability weights for each social partner. Layered on top of the 

reliability manipulation, I will program the social feedback on a subset of trials to be 

either unanimously confirmatory (all four co-players agree with the participant's Choice 

1) or unanimously disconfirmatory (all four co-players disagree). This unanimous 

feedback will come from a group that the participant has either learned is reliable or 

learned is unreliable. 

This design creates a direct conflict between a rational assessment of source 

credibility and the pull of confirmation. The key dependent variable is the participant's 

change in confidence (the difference between Bet 2 and Bet 1). My prediction is that the 

confirmation bias will override the rational assessment of the unreliable source. When 

feedback comes from a reliable group, confidence should increase after confirmation 

and decrease after disconfirmation. This would replicate standard findings in social 

influence and collective intelligence (Bahrami et al., 2010). When feedback comes from 

an unreliable group, a rational agent should ignore it and show no change in confidence. 

However, I hypothesize that participants will still show a significant boost in confidence 

after receiving confirming feedback from the unreliable group but will successfully ignore 

disconfirming feedback from that same group, mirroring the results of Chapter 3. This 

would be a demonstration that the confirmation bias for false information also exists in a 
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social context and that we are willing to take a confidence boost from any source, 

providing a cognitive mechanism for our vulnerability to confirmatory misinformation 

online. 

6.3.6 Do large language models exhibit confirmation bias 
for false information?  

My research demonstrates a robust confirmation bias in humans, which persists 

even when they know the information confirming their choices is false. I could investigate 

whether this specific pattern of biased learning extends to artificial agents, particularly 

Large Language Models (LLMs). Recent work has begun to establish a field of "AI 

Psychology," showing that LLMs exhibit many human-like cognitive biases during in-

context learning. First, LLMs, much like humans, exhibit asymmetric belief updating 

(Schubert et al., 2024). Critically, when an LLM was given full feedback on both its chosen 

and unchosen options, it displayed a classic confirmation bias, learning more from 

outcomes that confirmed its past decisions. This bias vanished when the LLM lacked a 

sense of agency (i.e., when observing choices made by "someone else"), highlighting the 

importance of the model's perceived role in the decision-making process. Second, Hayes 

et al. (2025) found that LLMs are susceptible to relative value encoding biases and, using 

computational modelling, also found evidence for a confirmation bias in how the models 

learned from feedback. However, these foundational studies operate on the assumption 

that the feedback provided to the model is true. This leaves open an important question: 

is the confirmation bias in LLMs so fundamental that it persists even when the model 

"knows" the information is false?  

To test this, I would adapt the RL paradigm from human trials (detailed in Chapter 

3) for an LLM environment. The experiment will be operationalized through an interactive 

prompt that establishes the LLM's agency and objective (e.g., "You are a participant in a 

decision-making experiment. Your goal is to maximize your points by learning which of 

two abstract symbols is 'correct'. On each trial, you will choose a symbol and receive 

feedback."). It would be a 2x2 experimental design that manipulates the accuracy of the 

feedback and its nature as either confirmatory or disconfirmatory. In "True" trials, the 

feedback provided to the LLM is genuine and reliable. In contrast, during "False" trials, 
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the feedback is explicitly labelled as unreliable or a "system glitch," yet it is still presented 

to the model. "Confirmatory" feedback supports the model's selection (e.g., "You chose 

Symbol A, and the feedback is Positive"), while "Disconfirmatory" feedback contradicts 

it (e.g., "You chose Symbol A, and the feedback is Negative").  

I predict the LLM will learn less from false information than from true information. 

That is, its preference for the "best" option will be stronger in the solvable condition 

(where true feedback is informative) than in the unsolvable condition (where false 

feedback is informative), replicating the current findings. Further, I predict the LLM will 

exhibit a confirmation bias for both true and false information. It will learn more from 

feedback that confirms its choices, regardless of whether that feedback is explicitly 

labelled as genuine or a "glitch." 

Discovering such a bias would be a significant finding. It would suggest that the 

architectural or training principles that lead to confirmation bias in LLMs exist even in the 

face of explicit falsehoods, mirroring my human data. This would have implications for AI 

safety, revealing a potential vulnerability where models could irrationally persist in a 

course of action based on desirable but demonstrably false feedback. An LLM that 

reinforces its actions based on desirable but false feedback could be susceptible to 

manipulation, reward hacking, or irrationally persisting with a flawed strategy. 

6.3.7 Using EEG to Dissect the Temporal Dynamics of 
Learning from False Information 

An unresolved question from my thesis is around the timing of learning or belief 

updating. Does the brain immediately update value representations upon receiving 

feedback, requiring a subsequent correction if that feedback proves false? Or is the initial 

feedback held in working memory, with the update gated until after its veracity is 

revealed? To test these competing hypotheses, I propose a study combining 

Electroencephalography (EEG) with a novel experimental manipulation. By recording 

EEG while participants perform the reinforcement learning task from Chapter 3, I can 

examine the event-related potentials (ERPs) - time-locked neural responses - elicited by 

the two events in each trial: the feedback and the information cue presentations. Further, 

I will introduce a manipulation that further probes this temporal dynamic: I will vary the 
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duration of the fixation cross between the feedback and the information cue. This interval 

will be short (e.g., 250ms), medium (e.g., 1s), or long (e.g., 4s). This manipulation allows 

me to control the time available for post-feedback processing, and thus to test whether 

belief updating is an immediate or a delayed process. 

The first important event is when a participant receives the outcome (e.g., "+10" 

or "-1"). At this point, a prediction error (PE) is generated, but the participant does not yet 

know if the outcome is reliable. I can measure the neural signature of this initial, 

potentially biased, PE using the Feedback-Related Negativity (FRN) (Holroyd & Coles, 

2002; Walsh & Anderson, 2012). The FRN is a well-established ERP component that 

peaks approximately 250-300ms after feedback onset over frontocentral scalp sites. It is 

thought to originate from the medial frontal cortex, including the anterior cingulate 

cortex, and is considered a robust neural correlate of PEs, being larger (more negative) 

for worse-than-expected outcomes like losses or non-rewards (Holroyd & Coles, 2002; 

Walsh & Anderson, 2012). I predict that the amplitude of the FRN will be modulated by 

confirmation. Specifically, disconfirmatory feedback will elicit a significantly larger FRN 

than confirmatory feedback. This would provide a neural index of the initial, biased PE 

before the feedback's veracity is known. Because the FRN is a rapid, early component 

reflecting a largely automatic evaluation of the outcome (Ullsperger et al., 2014), its 

amplitude should not be affected by the subsequent delay manipulation. It provides a 

clean measure of the brain's initial reaction, independent of the time allowed for later 

deliberation. The second important event is when the participant sees the "True" or 

"False" information cue. This information potentially forces the participant to either 

solidify or revise their belief. I can measure the neural signature of this potential updating 

process using the P300 (or P3b). The P300 is a large, positive-going ERP component 

peaking 300-600ms after a task-relevant stimulus, with a parietal scalp distribution. Its 

amplitude reflects the allocation of attentional resources to update one's mental model 

of the environment and is larger for more surprising or motivationally significant events 

(Polich, 2007). 

The delay manipulation targets the processing that occurs before the information 

cue, allowing me to test two competing models of belief updating. First, If the brain 

follows an "Update and Correct" model, an immediate, biased update occurs at 
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feedback. A longer delay (4s) allows this initial belief to consolidate, making a 

subsequent correction at the information cue more effortful. The P300 amplitude should 

be larger after long delays in response to the "False" cue, reflecting a more significant 

revision of a consolidated belief trace, consistent with its role in processing task-

updating information (Donchin & Coles, 1988). Further, learning from false information 

should be stronger after longer delays, as the initial biased update has had more time to 

"stick" and become resistant to revision. Second, if the brain follows a "Hold and Update" 

model, the feedback is held in working memory until the information cue triggers the 

update. A longer delay (4s) would lead to the decay of this information in working memory. 

The P300 amplitude should be smaller after longer delays, consistent with findings that 

P300 amplitude is reduced when processing stimuli that are less certain or built on 

degraded memory traces (Kok, 2001). 

This combined EEG and delay manipulation study would provide a complete 

temporal narrative of learning from false information. It would dissociate the initial, 

automatic response to feedback (indexed by the FRN) from the later, more controlled 

process of belief revision (indexed by the P300). Most importantly, by observing how the 

delay causally affects both the P300 and behaviour, I can provide strong evidence for one 

of two distinct computational models of how and when we update our beliefs in the face 

of misinformation. 

6.4 Conclusion  
Through a combination of behavioural experiments, computational modelling, 

and neuroimaging, the studies in Chapters 3, 4, and 5 converged on the finding that 

humans are biased in learning from false information – optimistic update bias (Chapter 

4) and confirmation bias (Chapters 3 and 5) - whereby they learn more from 

misinformation that gives them desirable vs undesirable information. Chapter 5 

complimented this finding by showing that vmPFC activity, known for valuation, was 

modulated by the interaction between confirmation and accuracy, placing a higher value 

on information that validated prior desirable vs undesirable beliefs or invalidated prior 

opposing vs supporting evidence, and placing a lower value on confirmatory vs 

disconfirmatory information that turned out false, suggesting self-serving patterns of 
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valuation at the expense of accuracy.  These tendencies for desirable information likely 

serve to generate and maintain positive affective states, even at the expense of 

information accuracy. Algorithms then exploit these biases for engagement, tailoring 

content to one’s needs and desires and rendering interventions such as debunking less 

effective. Finally, a limitation across all studies is the use of authoritative accuracy cues. 

I will address this limitation by introducing a no-cue condition to make the experiment 

more ecologically valid where the veracity of information is more ambiguous. 
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Appendices 

Appendices for Chapter 3 

Appendix 3.1: Supplementary Model 1 - 

Disentangling Confirmation Bias from Positivity Bias 

The main text presents Model 4, which operationalises confirmation bias using 

four learning rates that depend on information accuracy and whether feedback is 

confirmatory or disconfirmatory. However, the definition of "confirmatory feedback" in 

Model 4 combines two distinct events: a positive prediction error (PE) for a chosen option 

(factual outcome) and a negative PE for an unchosen option (counterfactual outcome), 

and the reverse for disconfirmatory feedback. This parameterisation, while elegant, 

confounds a true confirmation bias with simpler underlying biases, such as a positivity 

bias, which is a general tendency to learn more from positive PEs than negative PEs. The 

purpose of Supplementary Model 1 is to de-confound these potential mechanisms. It 

expands on Model 4 by assigning a unique learning rate to each combination of accuracy, 

the outcome shown for chosen or unchosen option, and PE sign, resulting in eight 

learning rates. This allows me to isolate the specific influence of each factor and 

determine if the patterns attributed to confirmation bias in Model 4 are better explained 

by positivity bias.  

The eight learning rates are partitioned according to three trial-by-trial conditions: 
the Accuracy of the information (cued as True or False), the outcome shown (for the 
Chosen or Unchosen option), and the sign of the prediction error (Positive or Negative). 

    For Factual Outcomes (Chosen Option): 

        If Accuracy = True: 

Q(t+1) = Q(t) + αPos,Chosen, true * δ(t)          δ(t) = Positive 

Q(t+1) = Q(t) + αNeg,Chosen, true * δ(t)            δ(t) = Negative 

        If Accuracy = False: 

Q(t+1) = Q(t) + αPos,Chosen, false * δ(t)          δ(t) = Positive 



149 
 

Q(t+1) = Q(t) + αNeg,Chosen false * δ(t)             δ(t) = Negative 

    For Counterfactual Outcomes (Chosen Option): 

        If Accuracy = True: 

Q(t+1) = Q(t) + αPos,Unchosen, true * δ(t)       δ(t) = Positive 

Q(t+1) = Q(t) + αNeg,Unchosen, true * δ(t)          δ(t) = Negative 

        If Accuracy = False: 

Q(t+1) = Q(t) + αPos,Unchosen, false * δ(t)       δ(t) = Positive 

Q(t+1) = Q(t) + αNeg,Unchosen false * δ(t)          δ(t) = Negative 

Choice probabilities are generated using the SoftMax function with an inverse 

temperature parameter β. The model is fitted by minimizing the negative log-likelihood of 

the participant's sequence of choices, as described in the main text. 

Free parameters (n=9):  αPos,Chosen, false, αNeg,Chosen false, αPos,Chosen, true, αNeg,Chosen, true, αPos,Unchosen, 

false, αNeg,Unchosen false, αPos,Unchosen, true, αNeg,Unchosen, true, β 

Appendix 3.2: Supplementary Model 2 - Confirmation 

Bias Across Gain and Loss Contexts  

In this model my goal was to see if confirmation bias is robust across Gain 

(outcomes: +10, +1) and Loss (outcomes: -10, -1) contexts, so I created separate learning 

rates for each. The model had eight learning rates partitioned according to three 

conditions: the Context (Gain or Loss), the Accuracy of the information (True or False), 

and the sign of the prediction error (Positive or Negative). 

For the Gain Context: 

    If Accuracy = True: 

Q(t+1) = Q(t) + αPos,Gain, true * δ(t)          δ(t) = Positive 

Q(t+1) = Q(t) + αNeg,Gain, true * δ(t)           δ(t) = Negative 

    If Accuracy = False: 

Q(t+1) = Q(t) + αPos,Gain, false * δ(t)           δ(t) = Positive 

Q(t+1) = Q(t) + αNeg,Gain, false * δ(t)             δ(t) = Negative 
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For the Loss Context:  

    If Accuracy = True: 

Q(t+1) = Q(t) + αPos,Loss, true * δ(t)           δ(t) = Positive 

Q(t+1) = Q(t) + αNeg,Loss, true * δ(t)            δ(t) = Negative 

    If Accuracy = False: 

Q(t+1) = Q(t) + αPos,Loss, false * δ(t)          δ(t) = Positive 

Q(t+1) = Q(t) + αNeg,Loss, false * δ(t)            δ(t) = Negative 

Choice probabilities are generated using the SoftMax function with a single 

inverse temperature parameter β fitted across both contexts. The model is fitted by 

minimizing the negative log-likelihood. 

Free parameters (n=9):  αPos,Gain, false, αNeg,Gain, false, αPos,Gain, true, αNeg,Gain, true, αPos,Loss, false, αNeg,Loss, 

false, αPos,Loss, true, αNeg,Loss, true, β 

Appendix 3.3: Factual and Counterfactual Learning 

Rates 

 To ensure my results indicated confirmation bias and not positivity bias, I created 

a model with eight separate learning rates. This allowed me to separately look at the 

factual learning rate - for the chosen option's outcome - and the counterfactual learning 

rate - for the unchosen option's outcome. This approach expanded on my previous model 

(M4), which collapsed these into general 'confirmatory' and 'disconfirmatory' rates (see 

Methods). This separation was crucial for testing two competing predictions. A positivity 

bias would mean participants learn more from positive outcomes than negative ones 

across all trials, regardless of what they chose. In contrast, confirmation bias would 

mean participants should learn more from outcomes that confirm their initial decisions. 

This would mean learning more from positive outcomes on factual trials (to confirm their 

choice was good) but learning more from negative outcomes on counterfactual trials (to 

confirm rejecting the other option was also good).  
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Appendix Figure 3.1: Factual and Counterfactual learning rates. The opposite pattern of 
learning rates for factual (above panel, though note that for Study 2 the pattern is qualitative as 
they are not significant) and counterfactual (below panel) trials indicating confirmation bias, not 
positivity bias, for true and false information in both studies. n.s: not significant, *p < 0.05, ***p < 
0.001, hierarchical t-test. 

As shown in Appendix Figure 3.1, my findings were consistent with a confirmation 

bias. In both studies, for factual trials, I found qualitative patterns of higher learning from 

positive outcomes than negative ones, which were flipped in the counterfactual trials.    

Specifically, in study 1, they learned more from positive than negative outcomes for 

factual trials (for true information: t(46) = 2.59, p = 0.01; paired t-test between positive 

and negative learning rates, and for false information: t(46) = 2.20, p=0.03; paired t-test 

between positive and negative learning rates) while this pattern flipped for counterfactual 

trials, learning more from negative that positive outcomes (for true: t(46) = −2.75, p = 

0.008; paired t-test between positive and negative learning rates, and for false 

information: t(46) = −2.47, p = 0.01; paired t-test between positive and negative learning 

rates). The same patterns emerged in study 2 but some of the effects did not reach 

significance (for factual, true information: : t(56) = 1.88, p = 0.068; paired t-test between 

positive and negative learning rates, and for false information: t(56) = 1.86, p=0.067; 

paired t-test between positive and negative learning rates, for counterfactual true 

information: t(56) = −1.87, p = 0.06; paired t-test between positive and negative learning 
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rates, and for false information: t(56) = −3.81, p < 0.010; paired t-test between positive 

and negative learning rates).  

Appendix 3.4: Gain and Loss Learning Rates 

Next, I implemented a model with separate learning rates for the Gain context 

(where outcomes were positive: +10, +1) and the Loss context (where outcomes were 

negative: -10, -1). My goal was to see if the bias for true and false information would 

generalize across both as in one case (the gain contexts) getting a low reward (+1) needs 

to be framed as a loss whereas in the other (the loss context) incurring a small loss needs 

to be framed as a gain. Differences in approach learning between gains and losses have 

been reported in the past (Guitart-Masip et al., 2012) but it is unclear whether these 

impact confirmation bias.  

As shown in Appendix Figure 3.2 confirmation bias is robust in the Gain context 

for both true information (t(46) = 2.51, p = 0.01; t(56) = 2.46, p = 0.01) and false information 

(t(46) = 3.99, p < 0.001; t(56) = 5.06, p < 0.001). Similarly, the bias exists in the Loss context 

for both true information (t(46) = 4.05, p < 0.001; t(56) = 3.48, p < 0.001) and false 

information (t(46) = 4.37, p < 0.001; t(56) = 6.25, p < 0.001), replicating previous findings 

on true information (Palminteri et al., 2017) and extending them to false information. 

 

Appendix Figure 3.2: Confirmation bias for Gain and Loss contexts. The bias for true and false 
information is robust across Gain (above panel) and Loss (lower panel) contexts in both studies. 
*p < 0.05, ***p < 0.001 hierarchical t-test. 
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Appendix 3.5: Parameter Recovery for the Gradual 
Perseveration Model 

Appendix Figure 3.3: The Gradual Perseveration Model’s Parameter Recovery. The choice 
trace parameter shows suboptimal recovery, which might make the estimates from this model 
unreliable 
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Appendices for Chapter 4 

Appendix 4.1: The four possible trial types in the 
Update Bias Task  

The following figure illustrates the four possible trial types in my experimental design: 

 

Appendix Figure 4.1: Trial Types in the Update Bias Task 
 

True Good News: In this example, participants initially estimated their risk of 

depression at 45% (1st Estimate). When presented with the actual base rate (37%), which was 

lower than their initial estimate, they received "good news" that their risk was overestimated. 

The checkmark (✓) indicates that the provided statistic was true, and participants were asked 

for a 2nd estimate after learning this information. 

True Bad News: Here, participants initially estimated their risk of diabetes at 15% (1st 

Estimate). The actual base rate (27%) was higher than their initial estimate, representing "bad 

news" that they had underestimated their risk. The checkmark (✓) indicates that the provided 

statistic was true. 

False Good News: In this example, participants initially estimated their risk of 

Parkinson's disease at 20% (1st Estimate). They were shown a purported base rate of 15%, 
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suggesting "good news." However, the cross (✗) indicates that this statistic was false 

information. 

False Bad News: Here, participants initially estimated their risk of dementia at 10% (1st 

Estimate). They were shown a purported base rate of 30%, suggesting "bad news." The cross 

(✗) indicates that this statistic was false information. 

In all trials, participants provided an initial self-risk estimate (1st Estimate), were 

presented with the purported average risk (Base Rate) along with an indication of whether this 

information was true or false and then were asked to provide a second self-risk estimate (2nd 

Estimate). The relationship between the 1st Estimate and Base Rate determined whether the 

trial represented "good news" or "bad news" for the participant. 
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Appendix 4.2: The distribution of base rates in the 
Update Bias Task 

 

Appendix Figure 4.2: The Distribution of Base Rates in the Update Bias Task 

 
This figure illustrates the distribution of base rates (event probabilities) used in the two stimuli 

lists. As shown, both List A and List B contain 25 negative life events with base rates that are 

normally distributed, primarily ranging between 10% and 70%. The x-axis represents the base 

rate percentages while the y-axis shows the frequency of events at each percentage point. 

Both distributions follow similar patterns, ensuring comparable statistical properties between 

the two lists. This balanced distribution was crucial for our experimental design, as 

participants were randomly assigned one list for true trials and the other for false trials. 

When a list was designated for false trials, the statistics were randomly shuffled among events 

(e.g., pairing the statistic for domestic burglary with bicycle theft), while maintaining the overall 

statistical distribution shown here. This shuffling procedure ensured that the false information 

retained the same statistical properties (median, range, and distribution) as the true 

information, controlling for any potential biases that might arise from systematic differences 

in the probability distributions. 

The comparable distributions between List A and List B allowed us to counterbalance the 

assignment of lists across participants, with each participant receiving one list with true 

statistics and one with shuffled (false) statistics, creating a final combined list of 50 events. 
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Appendix 4.3: Additional model diagnostics  

 

Appendix Figure 4.3: Additional Model Diagnostics. (a) Shows the exceedance probabilities (XP), 
which quantify the confidence that each model is more likely than all other models in the set. M4 
achieved an exceedance probability of nearly 1.0, indicating extremely high confidence that it 
outperforms the competing models. This is further supported by the frequency analysis in the main text, 
where M4 had an estimated frequency of approximately 0.74, substantially exceeding the chance level 
of 0.25. This suggests that for roughly 74% of subjects, M4 was the most likely model to have generated 
their data. (b) Shows the confusion matrix representing model recovery accuracy. Each simulated 
model (x-axis) is correctly identified by the model comparison procedure as the best-fitting model (y-
axis), with all values on the diagonal equal to 1 and off-diagonal values equal to 0. This indicates perfect 
recoverability and discriminability between the models, confirming that the model-fitting approach can 
reliably distinguish among the candidate models. (c) Displays the mean Leave-One-Out Cross-
Validation (LOOcv) scores for each model averaged over 100 iterations, where lower values indicate 
better predictive performance. The simulation results demonstrate that when data were generated from 
a specific model (columns), the corresponding model generally achieved the lowest LOOcv score when 
fitted to that data, validating our model recovery procedure. Notably, M4 showed strong recovery 
performance. 
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Appendix 4.4: Parameter Recovery 

 

Appendix Figure 4.4: Parameter Recovery. (a) Successful parameter recovery of the winning model in 
the Update Bias Task with high correlations between the simulated and estimated parameters. (b) The 
correlation between the parameters of the winning model. The weak correlations between most 
parameter pairs demonstrate that parameters do not systematically trade off against each other during 
estimation, supporting the model's identifiability. 

Appendix 4.5: Mixed-Effects model controlling for 
potential confounds in the Update Bias Task  

The results of a mixed-effects model extending the model in the paper revealed that even after 

controlling for potential confounds—including estimation error (EstErr) and subjective 

ratings—the main effects of Valence and Accuracy remained intact with no significant 

interaction between the two. The subjective ratings included Negativity (“How negative you 

found this event?” From 1 = Not at all to 6 = Very), Prior Experience (“Has this event happened 

to you before?” From 1 = never to 6 = very often), Vividness (“How vividly could you imagine this 

event?” From 1 = not vivid to 6 = very vivid), Familiarity (“Regardless of if this event has 

happened to you before, how familiar do you feel it is to you from TV, friends, movies and so 

on?” From 1 = not at all familiar to 6 very familiar); and Arousal (“When you imagine this event 

happening to you how emotionally arousing is the image in your mind?” From 1 = not arousing 

at all to 6 = very arousing).  
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Predictor Estimate std. Error df CI Statistic p 

(Intercept) 0.09 0.02 94.43 0.04 – 0.13 3.46 0.001 

Valence 0.24 0.02 98.86 0.19 – 0.28 10.17 <0.001 

Accuracy 0.36 0.02 107.15 0.33 – 0.40 19.18 <0.001 

EstErr 0.32 0.02 105.46 0.28 – 0.36 14.23 <0.001 

Vividness -0.01 0.02 179.54 -0.04 – 0.02 -0.48 0.628 

Past Experience -0.05 0.02 79.42 -0.08 – -0.02 -3.44 0.001 

Familiarity -0.01 0.02 207.52 -0.04 – 0.02 -0.93 0.351 

Arousal -0.00 0.02 216.79 -0.03 – 0.03 -0.26 0.795 

Negativity -0.02 0.01 100.59 -0.05 – 0.01 -1.29 0.197 

Valence × 
Accuracy 

0.02 0.02 105.85 -0.01 – 0.05 1.26 0.207 

N Participant  108 

Observations  5242 

Appendix Table 4.1: Mixed-Effects model controlling for potential confounds in the Update 
Bias Task  

Appendix 4.6: The stimuli used in the Update Bias 
Task  

List of the stimuli used in the study and their respective base rates. These events were split into 

two lists, with one randomly assigned to true trials and the other to false trials, where the base 

rates for the false trials were shuffled. 

Event BaseRate 
Computer crash with loss of important data 68 
Hospital stay longer than three weeks 58 
Bicycle theft 54 
Arteries hardening (narrowing of blood vessels) 45 
Miss a flight 44 
Victim of violence with need to go to A&E 34 
Having a stroke 23 
Lose Wallet 51 
Household accident 58 
Insect infestation (like ants) in your home 41 
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Victim of bullying at work (non physical) 46 
Food poisoning 40 
diabetes (type 2) 27 
severe insomnia 21 
Sports related accident 62 
artificial joint 16 
Domestic burglary 39 
Depression 37 
Divorce 50 
Being cheated by husband/wife 52 
death by infection 10 
ulcer 13 
death before 80 41 
abnormal heart rhythm 29 
skin burn 56 
Cancer 30 
Knee osteoarthritis (causing knee pain and swelling) 54 
Being fired 62 
Drug abuse 17 
Blood clot in vein 14 
Parkinson's disease 10 
Bone fracture (break) 39 
Victim of violence by a stranger 37 
Victim of mugging 16 
Severe teeth problems when old 31 
Theft from vehicle  63 
Hepatitis A or B 36 
Theft from person 42 
Eye cataract (clouding of the lens of the eye) 61 
Back pain 70 
Disease of spinal cord 24 
Dementia 18 
Having fleas/lice 42 
Sexual dysfunction 37 
More than 47 thousand dollars debt 48 
Witness a traumatizing accident 40 
Obesity 32 
Irritable bowel syndrome (disorder of the gut) 30 
Hernia (rupture of internal tissue wall) 43 
Fraud when buying something on the internet  70 
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Appendix 4.7: Excluding Potentially Misclassified 
Trials in the Update Bias Task 

To ensure my results were not influenced by potential trial misclassification, I 

conducted a supplementary analysis on a dataset that excluded the following trials:  

• Trials where the BR was higher than E1 but lower than the eBR. 

• Trials where the BR was lower than E1 but higher than the eBR. 

Using this dataset, I conducted the 2*2 repeated measures ANOVA with Accuracy 

(True/False) and Valence (Good/Bad) as within-subject factors and the paired t-tests 

comparing good news vs bad news for true and false trials. The pattern of results 

remained consistent with those reported in the main paper, such that we observed a 

significant main effect of valence (F(1,107) = 318.76, p < 0.001) and accuracy (F(1,107) = 

37.88, p < 0.001), without a significant interaction (F(1,107) = 1.38, p = 0.24). Paired t-

tests confirmed that updating was greater for good news compared to bad news for both 

true (t(107) = 5.26, p < 0.001) and false trials (t(107) = 4.86, p < 0.001). Therefore, the 

results reported in the paper cannot be explained away by potentially misclassified trials.  
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Appendices for Chapter 5 

Appendix 5.1: Additional fMRI Results 

 
Contrast Timepoint Region Peak MNI 

Coordinates 
[x y z] 

Peak 
Statistic 

(z) 

Cluster 
level p 
(FWE) 

Cluster 
Size 

Positive Correlation 
with DV 

Choice 
 

Cingulate Gyrus 12 -52 32 5.09 0.000 1150 
Cerebellum Left, Crus 

II 
-36 -80 -40 4.63 0.01 394 

Lateral Occipital 
Cortex, Superior 

Division 

-54 -66 34 4.54 0.02 358 

Cingulate Gyrus, 
Anterior 

8 32 -4 4.20 0.04 280 

Frontal Pole 4 62 10 3.71 0.03 305 
Negative Correlation 

with DV 
Choice 

 
Lateral Occipital 
Cortex, Inferior 

Division 

38 -84 -10 5.47 0.000 3007 

Temporal Occipital 
Fusiform Cortex 

-36 -50 -20 5.33 0.000 2291 

Middle Frontal Gyrus -56 12 34 4.41 0.01 366 
Paracingulate Gyrus -6 20 42 4.38 0.004 533 

Lateral Occipital 
Cortex, Superior 

Division 

24 -58 54 4.16 0.001 644 

Lateral Occipital -22 -60 54 4.09 0.003 554 
       
       

Main Effect of 
Accuracy (True > False) 

Information Cue Lateral Occipital 
Cortex, Superior 

Division 

-34 -70 -42 4.01 0.03 425 

Main Effect of 
Accuracy (False > True) 

Information Cue NA NA NA NA NA 

Main Effect of 
Feedback (Conf > 

Disconf) 

Information Cue NA NA NA NA NA 

Main Effect of 
Feedback (Disconf > 

Conf) 

Information Cue NA NA NA NA NA 

Interaction (Conf_True - 
Conf_False) > 

(Disconf_True - 
Disconf_False)) 

Information Cue 
 

Left MTL (cluster 
including 

Hippocampus)  

-36 -38 -2 4.51 0.04 361 

Right DLPFC 32 30 44 4.35 0.01 501 
Cerebellum Left -32 -50 -44 3.96 0.04 366 

Interaction 
(Disconf_True - 

Disconf_False) > 
(Conf_True -
Conf_False)) 

Information Cue NA NA NA NA NA 
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Main Effect of PE-
modulated Accuracy 

(True > False) 

Information Cue NA NA NA NA NA 

Main Effect of PE-
modulated Accuracy 

(False > True) 

Information Cue NA NA NA NA NA 

Main Effect of PE-
modulated Feedback 

(Conf > Disconf) 

Information Cue NA NA NA NA NA 

Main Effect of PE-
modulated Feedback 

(Disconf > Conf) 

Information Cue NA NA NA NA NA 

Interaction PE-
modulated (positive) 

Information Cue NA NA NA NA NA 

Interaction PE-
modulated (negative) 

Information Cue NA NA NA NA NA 

Appendix Table 5.1 Activation Table. The coordinates [x y z] are reported in Montreal 
Neurological Institute (MNI) space. The statistical threshold for significance was set at a voxel-
level of p<0.05, Family-Wise Error (FWE) corrected at the cluster-level for multiple comparisons 
across the whole brain, with a minimum cluster size of [k = 5] voxels. The "Contrast" column 
describes the specific statistical comparison being tested at the designated "Timepoint" of the 
trial. For each significant cluster, the table lists its anatomical "Region," the MNI "Coordinates" of 
its peak voxel, the peak statistical "z-value," the FWE-corrected "p-value," and the "Cluster Size" 
in voxels. Other abbreviations include: DV (Difference in Value), PE (Prediction Error), Conf 
(confirmatory feedback), and Disconf (disconfirmatory feedback). NA indicates nothing was 
significant for the contrast at the threshold. 

Appendix 5.2: Additional Computational Modelling 
Details 

This appendix provides the alternative reinforcement learning models that were 

tested against the winning model presented in the main text. All models are based on the 

standard Rescorla-Wagner learning rule and use a SoftMax choice rule to generate 

choice probabilities. The models differ only in the number of learning rates. 

 
Model 1 
 

This model tests the hypothesis that learning is driven by the accuracy of the 

information, regardless of whether it confirms or disconfirms prior expectations. It uses 

two learning rates:  

 
Q(t+1) = Q(t) + αtrue * δ(t)                 if information accuracy cue = True 
Q(t+1) = Q(t) + αfalse * δ(t)                 if information accuracy cue = False 
 
Free parameters (n=3): αtrue, αfalse, β 
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Model 2 
 

This model explores the possibility that the nature of feedback (confirmatory vs. 

disconfirmatory) is important for learning when the information turns out false but not 

when it is true. It uses a single learning rate for true information, but splits the learning 

rate for false information into two: 

 
Q(t+1) = Q(t) + αtrue * δ(t)                if accuracy = True 
Q(t+1) = Q(t) + αConf, false * δ(t)                  if accuracy = False and feedback = Conf 
Q(t+1) = Q(t) + αDisconf, false * δ(t)               if accuracy = False and feedback = Disconf 
 
Free parameters (n=4): αtrue, αConf, false, αDisconf, false, β 
 
Model 3 
 

This model tests the alternative hypothesis that the distinction between 

confirmatory and disconfirmatory feedback is relevant for learning when the information 

turns out true:  

 
Q(t+1) = Q(t) + α false * δ(t)                if accuracy = False 
Q(t+1) = Q(t) + αConf, true * δ(t)                  if accuracy = True and feedback = Conf 
Q(t+1) = Q(t) + αDisconf, true * δ(t)               if accuracy = True and feedback = Disconf 
 
 
Free parameters (n=4): αfalse, αConf, true, αDisconf, true, β 
 

Appendix 5.3: Additional Computational Modelling 
Results 

In addition to the model comparison results reported in the main text, I conducted 

paired sample t-tests with FDR correction. This analysis reinforced Model 4's superiority 

over all other models, showing statistically significant advantages against Model 1 (t(31) 

= -3.80, p_adj < 0.001), Model 2 (t(31) = -2.80, p_adj < 0.01), and Model 3 (t(31) = -2.75, 

p_adj < 0.01). When looking at individual participants, Model 4 also performed the best. 

It had the lowest LOOcv score for 31.2% of participants, a higher proportion than Model 

3 (25%), Model 2 (25%), and Model 1 (18.8%). 
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Appendix S: Reparameterization to conduct 

hierarchical t-test and interaction tests 

For both tasks used in Chapters 2, 3, and 4, the reparameterization of the winning model 

is the same. Therefore, In the following I have used the Update Bias Task’s model to 

demonstrate the approach.  

I started reparametrizing Model 4 (M4) by calculating the sum (𝐴𝑆𝑇, 𝐴𝑆𝐹) and difference 

(𝐴𝐷𝑇 , 𝐴𝐷𝐹)  between good and bad news learning rates, separately for true and false trials: 

(1) 𝐴𝑆𝑇 = αtrue, goodnews + αtrue, badnews 

(2) 𝐴𝐷𝑇 = αtrue, goodnews − αtrue, badnews 

(3) 𝐴𝑆𝐹 = αfalse, goodnews + αfalse, badnews 

(4)  𝐴𝐷𝐹 = αfalse, goodnews − αfalse, badnews 

I then added 𝐴𝑆𝑇 (from (1)) and (𝐴𝐷𝑇  from (2)) together to get the following equality: 

𝐴𝑆𝑇 + 𝐴𝐷𝑇 = (αtrue, goodnews + αtrue, badnews) + (αtrue, goodnews − αtrue, badnews) 

𝐴𝑆𝑇 + 𝐴𝐷𝑇 = 2αtrue, goodnews 

I then divide through both sides by 2 to get the following expression for αtrue, goodnews: 

αtrue, goodnews =
1

2
(𝐴𝑆𝑇 + 𝐴𝐷𝑇) 

 I then subtracted ADT  (from (2) AST (from (1)) and again 

divided through by 2 to get a new expression for αtrue, badnews: 

𝐴𝑆𝑇 − 𝐴𝐷𝑇 = (𝛼true, goodnews + 𝛼true, badnews)  −  (𝛼true, goodnews − 𝛼true, badnews)

= 2𝛼true, badnews 

αtrue, badnews =
1

2
(𝐴𝑆𝑇 − 𝐴𝐷𝑇) 

Then applied the same logic to the False learning rates, resulting in the following 4 

expressions for the 4 learning rates: 
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αtrue, goodnews =
1

2
(𝐴𝑆𝑇 + 𝐴𝐷𝑇) 

αtrue, badnews =
1

2
(𝐴𝑆𝑇 − 𝐴𝐷𝑇) 

αfalse, goodnews =
1

2
(𝐴𝑆𝐹 + 𝐴𝐷𝐹) 

αfalse, badnews =
1

2
(𝐴𝑆𝐹 − 𝐴𝐷𝐹) 

I use these 4 learning rates inside the model, but the free parameters are now: 

𝐴𝑆𝑇 , 𝐴𝐷𝑇 , 𝐴𝑆𝐹, 𝑎𝑛𝑑 𝐴𝐷𝐹 . Having the model configured in this way then allows me to 

conduct a hierarchical t-test (against 0) for 𝐴𝐷𝑇  which tests the difference between 

αtrue, goodnews  and αtrue, badnews and a hierarchical t-test 

against 0 for 𝐴𝐷𝐹  which tests the difference between αfalse, goodnews and αfalse, badnews. 

I assessed the reliability of this approach by correlating the estimates from the original 

model with the estimates from the reparametrized model, which showed a very high 

correlation for all parameters: 

 

Appendix Figure S.1: Correlation between the estimates from the original model with the 

estimates from the reparametrized model in the UBT. 

The correlation between the original model and the reparametrized one in the 

reinforcement learning task used in Chapters 3 and 5 was also very high: 
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Appendix Figure S.2: Correlation between the estimates from the original model with the 

estimates from the reparametrized model in the RL task. 

Next, I used the same approach and created a reparametrized model for the 

interaction test. To test whether there is an interaction in learning rates between Valence 

(Good News vs Bad News) and Accuracy (True vs. False), we expressed the interaction as 

a free parameter, defined as:  

Interaction = (𝛼false, goodnews − 𝛼false, badnews) − (𝛼true, goodnews − 𝛼true, badnews) 

Substitute the expressions: 

Interaction = [
1

2
(𝐴𝑆𝐹 + 𝐴𝐷𝐹) −

1

2
(𝐴𝑆𝐹 − 𝐴𝐷𝐹)] − [

1

2
(𝐴𝑆𝑇 + 𝐴𝐷𝑇) −

1

2
(𝐴𝑆𝑇 − 𝐴𝐷𝑇)] 

Simplify each term:  

Interaction = [
1

2
𝐴𝑆𝐹 +

1

2
𝐴𝐷𝐹 −

1

2
𝐴𝑆𝐹 +

1

2
𝐴𝐷𝐹] − [

1

2
𝐴𝑆𝑇 +

1

2
𝐴𝐷𝑇 −

1

2
𝐴𝑆𝑇 +

1

2
𝐴𝐷𝑇] 

Thus, the interaction simplifies to:  

Interaction = 𝐴𝐷𝐹 − 𝐴𝐷𝑇  

A hierarchical t-test against 0 for Interaction tells us whether there is an interaction 

between valence and accuracy or not.  

The very high correlation between the reparametrized model and the original model 

confirmed the reliability of this approach: 
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Appendix Figure S.3: Correlation between the estimates from the original model with the 

estimates from the reparametrized model in the UBT. 

And similarly in the RL task:  

Appendix Figure S.4: Correlation between the estimates from the original model with the 
estimates from the reparametrized model in the RL task. 
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Glossary 

Abbreviation Details 

AI Artificial Intelligence 

ANOVA Analysis of Variance 

BDI Beck Depression Inventory 
BOLD Blood-Oxygen-Level Dependent 

DLPFC Dorsolateral Prefrontal Cortex 

DCM Dynamic Causal Modelling 

EEG Electroencephalography 

fMRI Functional Magnetic Resonance Imaging 

GLM General Linear Model 

IFG Inferior Frontal Gyrus 

LLM Large Language Model 

LMM Linear Mixed-effects Model 
LOOcv Leave-One-Out Cross-Validation 

MTL Medial Temporal Lobe 

RL Reinforcement Learning 

ROI Region of Interest 

RT Reaction Time 

TR Repetition Time 

SD Standard Deviation 
SEM Standard Error of the Mean 
SPM Statistical Parametric Mapping 
UBT Update Bias Task 

vmPFC Ventromedial Prefrontal Cortex 
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