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Abstract

Misinformation poses a significant challenge to modern society, yet our
understanding of how people process false information remains limited. This thesis
investigates the computational and neural mechanisms underlying learning from false
information, with a focus on whether well-established learning biases persist even when
information is debunked. Across three studies combining behavioural testing,
computational modelling, and neuroimaging, | demonstrate that people continue to
learn from information explicitly marked as false, and that this learning is biased. In the
first study (two experiments), using a reinforcement learning task, | show that
confirmation bias persists for false information. Participants exhibited higher learning
rates for confirmatory versus disconfirmatory feedback no matter the veracity. The
second study, using a belief-updating paradigm, reveals that optimistic update bias
similarly persists for false information. Participants updated their beliefs more strongly

in response to false good news than false bad news about adverse future life events.

Computational modelling across both paradigms identified a consistent pattern:
a model with four learning rates, separating information desirability (confirmatory/good
news versus disconfirmatory/bad news) and accuracy (true versus false), best explained
participants' behaviour. Further, the strength of both confirmation bias and optimistic
update bias was similar for true and false information. Albeit effective in reducing false
information integration, debunking was less effective for desirable vs undesirable false

information.

The third study used functional MRI to examine the neural basis of biased false
information processing. Results revealed that activity in the ventromedial prefrontal
cortex (vmPFC) was modulated by an interaction between accuracy and confirmation,
showing higher activation when participants learned that confirming (vs disconfirming)
evidence was true, or that disconfirming (vs confirming) evidence was false. These
findings identify mechanisms that support learning from false information despite
debunking, with implications for understanding vulnerability to misinformation and

developing effective interventions.
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Chapter 1: Introduction

1.1 Introduction Overview

In this introduction, | will lay the groundwork for my thesis by arguing for a
computational approach to studying how people learn from false information. | will first
outline the scope of the problem by establishing its scale and reviewing psychological
accounts of why false beliefs emerge and persist. | will then posit that a key reason for
this is biased information integration, reviewing studies that show we form false beliefs
by selectively filtering true information (e.g., Lord, Ross, & Lepper, 1979; Kunda, 1990;
Nickerson, 1998; Epley & Gilovich, 2016; Garrett & Sharot, 2016; Van Bavel & Pereira,
2018). Next, | propose that another reason why false beliefs persist is that a similar
biased mechanism might also be at play when processing false information. Finally, |
outline how the framework of reinforcement learning (RL) has been successfulin formally
modelling and quantifying these biases for true information; therefore, | decided to use a
similar computational modelling approach to test whether the well-documented biases

(e.g., confirmation bias) exist in the face of false information, generating false beliefs.

1.1 The Problem of False Beliefs & False Information

1.1.1 Defining False Beliefs and False Information

False beliefs occur when one’s mental representation of the world does not
correspond to its actual state (Wimmer & Perner, 1983). Such beliefs are often deeply
held and can influence one’s judgments, decisions, and behaviours (Ecker et al., 2022).
For example, a person may hold the false belief that an unproven medication like
ivermectin is an effective cure for a viral disease like COVID-19 (Van Scoy et al., 2022) or
the belief that the 9/11 terrorist attacks were an inside job (Nyhan & Reifler, 2010) despite
any proof. One of the reasons for the formation of false beliefs is exposure to false
information. Put simply, false information is the external claim, while a false belief is the

internal conviction that can be formed once you are exposed to false information.

False information refers to information that is verifiably false (Aimeur et al., 2023)

and represents anincorrect view of the state of the world (Pennycook & Rand, 2020). This
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definition, however, encompasses several related concepts such as fake news (Allcott &
Gentzkow, 2017), misinformation (Ecker et al., 2022), and disinformation (Kapantai et al.,
2021). One can distinguish between these concepts using two features: intent - whether
the purpose is to mislead or cause harm - and authenticity - whether the content is
verifiably false or genuine (Aimeur et al., 2023). For instance, misinformation is a type of
false information that does not intend to mislead, while disinformation does intend to
mislead, so the only difference between the two is in the purpose behind them. In
practice, however, it is difficult to understand the intention behind sharing false
information (Allen et al., 2025; Pennycook & Rand, 2021), so following Pennycook & Rand
(2022), | will use “False Information”, “Misinformation”, and “Disinformation”
interchangeably as “any information that turns out to be false”. This is in line with how a
recent consensus report from the American Psychological Association (APA) defined
misinformation: any information that is demonstrably false or otherwise misleading,

regardless of intention or source (van der Linden et al., 2023).

1.1.2 Consequences of False Information

The proliferation of false information poses a danger to societies worldwide. A
primary concern is its corrosive effect on civic and social cohesion. False narratives
represent a threat to democratic processes, as they often spread along partisan lines,
reinforcing existing political divisions and eroding public trust in institutions like science,
government, and the media (Lazer et al., 2018). This erosion can have violent
consequences, as demonstrated when online conspiracy theories spill over into real-
world attacks, such as the “Pizzagate” incident (Fisher et al., 2016). The incident involved
an online conspiracy theory accusing a Washington D.C. pizzeria of housing a child
trafficking ring run by prominent Democratic Party officials. Motivated by these claims, a
man travelled to the restaurant and fired an assault rifle inside to “self-investigate” and

rescue children he falsely believed were captive (Fisher et al., 2016).

Beyond the civic sphere, false information contributes to vaccine hesitancy,
obstructs disease containment measures, fosters divisive rhetoric, and leads to
misallocation of vital health resources (Borges do Nascimento et al., 2022; Gabarron et
al., 2021; Pierri et al., 2022; Roozenbeek et al., 2020; Zimmerman et al., 2023). The
economic impact can also be severe, such as when a false tweet from a compromised
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account temporarily erased billions in stock market value (Rapoza, 2017). This
widespread societal harm underscores the need to understand how false information is
learned and integrated into an individual's system of beliefs. To do so, we should first
recognise that while the problem of false information feels modern, its roots are ancient

and extend to other animals.

1.1.3 The Pervasiveness of False Information

The use of false information as a tool of influence is a consistent feature of human
history, dating back thousands of years (Soll, 2016). From the fabricated charges that led
to the death of Socrates in ancient Athens to Roman emperors using propaganda on
coins, leaders have long understood the power of manipulating public perception
(Aimeur et al., 2023). This practice continued through events like the "Great Moon Hoax"
of 1835, which saw a newspaper publish fictional articles about life on the moon as fact,
and the systematic state-sponsored propaganda of the 20th century's major conflicts

(Allcott & Gentzkow, 2017; U. K. H. Ecker et al., 2022).

More recently, persistent falsehoods, such as the retracted and debunked link
between vaccines and autism (Lancet, 2010), demonstrate how damaging
misperceptions can endure (Lewandowsky et al., 2012). The manipulation of information
has therefore been a constant force shaping human behaviour, but humans are not the
only animals engaging in misinformation. Indeed, this behaviour is a well-documented
phenomenon among other animals in the form of deception: the act of transmitting
misinformation to mislead others (Drerup et al., 2025; Mitchell, 1986; éekrst, 2022;
Stuart-Fox, 2005; Whiten & Byrne, 1988). Examples include chimpanzees averting their
gaze from food to avoid giving cues to others, cornered guenons emitting a false social
alarm call to end an aggressive chase, chimpanzees feigning a limp to avoid a dominant
individual, and low-ranking gorillas building "fake nests" to covertly approach a desirable

infant (Whiten & Byrne, 1988).

Given how common transmitting false information is across our own history and
throughout the animal kingdom, it is clear this is not a superficial or modern problem. To

understand why false beliefs emerge and persist when exposed to such false
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information, | will now turn from this broad context to the specific, psychological

accounts of what makes our species susceptible to it.

1.1.4 Psychological Accounts of Why False Beliefs Emerge
and Persist

1.1.4.1 Inattention and Motivated Reasoning

It is useful to think of inattention and motivated reasoning as two interacting
pathways that lead to the formation of false beliefs. The first pathway is a failure to engage
in reasoning. This is pure inattention or "lazy thinking," where an individual's reliance on
intuition in a fast-paced environment leads them to accept or share a falsehood without
deliberation, regardless of its content (Bago et al., 2020; Pennycook & Rand, 2021).
Simple prompts asking people to consider accuracy are effective at reducing belief in
false headlines, indicating that this lack of scrutiny is a major driver of the problem
(Brashier et al., 2020; Pennycook et al., 2021). For instance, Pennycook et al. (2021) had
participants in the treatment group rate the accuracy of a single non-partisan news
headline before performing the main news-sharing task. The results consistently showed
that this intervention significantly increased sharing discernment, leading participants to
be less likely to share false headlines while their willingness to share true headlines

remained unchanged.

However, it is important to recognize that this reliance on intuition is not a
shortcoming in and of itself. These heuristic responses are often adaptive strategies for
efficient decision-making under uncertainty (Gigerenzer, 2008). In most daily contexts,
reliance on simple cues - such as familiarity or social consensus - is an effective shortcut
to the truth. The vulnerability to false information arises not because these heuristics are
fundamentally broken, but because the modern information environment (e.g., social
media feeds containing clickbait and bots) is designed to exploit them. Therefore, what
appears as "lazy" thinking is often an adaptive trade-off that is not suited to a novel digital

context.

The second pathway is a biased treatment of reasoning. This is motivated
reasoning, where an individual's goal is not to find the truth, but to defend a prior belief

or identity (Kunda, 1990). An individual will selectively use their attention and scrutiny
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only towards information that challenges their worldview, while uncritically accepting
information that aligns with it. A classic study on capital punishment powerfully
demonstrated this: when shown the exact same mixed body of evidence, both supporters
and opponents of the policy became more convinced of their initial positions, a
phenomenon known as attitude polarisation (Lord, Ross, & Lepper, 1979). Therefore,
while pure inattention is a failure to scrutinize, motivated reasoning is a selective, biased

way to scrutinize.

The broad concept of motivated reasoning is relevant to computationally defined
learning biases in response to misinformation that are the focus of this thesis. Motivated
reasoning is a descriptive theory proposing that human reasoning is often directed by
goals other than accuracy, such as defending a prior belief or identity (Kunda, 1991). In
contrast, biases like the Optimistic Update Bias (Sharot et al., 2011) or Confirmation Bias
(Palminteri et al., 2017) are formal, mechanistic accounts of how this motivated
reasoning can be implemented at the level of trial-by-trial learning. These learning biases
can therefore be understood as the computational instantiation of the broader concept
of motivated reasoning, quantifying the theory. Whilst motivated reasoning describes the
'‘why' - the drive to maintain a desired belief - the biased learning models used in this

thesis will address the ‘how".

1.1.4.2 The illusory truth effect

The illusory truth effect describes how simply being exposed to a false headline,
even once, increases its perceived accuracy and the likelihood of believing it later
(Dechéne et al., 2010). This effect can persist for weeks and occurs even when stories
are labelled as contested or are inconsistent with a person's ideology, although
implausibility can be a boundary condition (Pennycook et al., 2018; Unkelbach et al.,
2019; Wang et al., 2016). This effect is also relevant to “errorful” learning, where learners
are exposed to and then corrected on false information (Kornell et al., 2009). Whilst
generating errors can sometimes strengthen later memory for the correct answer, initial
exposure to misinformation can also increase its familiarity and thus perceived

plausibility, amplifying the risk of illusory truth (Fazio et al., 2019).
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An fMRI study has implicated the perirhinal cortex (PRC) in mediating the illusory
truth effect (Wang et al., 2016). Twenty-four participants were scanned while they rated
the truthfulness of unknown statements. In an initial exposure phase, participants rated
180 trivia statements, with each statement presented twice to enhance fluency. Later, in
the MRI scanner, they rated the truthfulness of 60 repeated unknown, 60 new unknown,
30 repeated known (i.e., they had seen the statements before), and 30 new known
statements on a 6-point confidence scale. The fMRI analyses focused on "maybe false,"
"maybe true," and "probably true" responses to unknown statements. The imaging
analysis revealed that the PRC was the only brain region to show a significant interaction
between repetition and perceived truth. Specifically, PRC activity increased with truth
ratings for repeated statements (i.e., as statements were perceived as truer). However,
PRC activity decreased with truth ratings for new statements. A trial-by-trial analysis
further corroborated these findings, showing that increases in PRC activity predicted
increases in the perceived truth of repeated statements, while decreases in PRC activity
predicted increases in the perceived truth of new statements. This neurobiological
evidence is important because it provides a mechanistic basis for the "fluency heuristic"
account of the illusory truth effect. It suggests that our susceptibility to this bias is not a
failure of high-level, critical reasoning, but rather the result of a low-level, automatic
memory process. It appears that the brain is misinterpreting the signal for familiarity,

processed by the PRC, as a signal for truth.

1.1.4.3 Continued Influence Effect

While the illusory truth effect describes how repetition can make a falsehood feel
true, the Continued Influence Effect (CIE) explains a different but related challenge: why
misinformation remains influential even after it has been explicitly corrected retracted
(M. S. Chan & Albarracin, 2023; M.-P. S. Chan et al., 2017; Ecker et al., 2010; Johnson &
Seifert, 1994; Lewandowsky et al., 2012). The key distinction is the presence of a
retraction. The illusory truth effect is a phenomenon of belief formation driven by fluency,
whereas the CIE is a phenomenon of belief updating failure. It describes how a known
correction often fails to eliminate the influence of the original, now-debunked

information, which continues to shape memory and reasoning.
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A classic study (Johnson & Seifert, 1994) illustrating the CIE involved a story about
a warehouse fire, which was initially blamed on negligently stored hazardous materials.
Participants were later told that this detail was false, and the closet was empty. Despite
remembering the correction, their subsequentinferences about the fire were still shaped
by the debunked information (Johnson & Seifert, 1994). This occurs because the original
information is not simply erased but coexists with the correction. This principle is well-
established in research on associative learning, where the "extinction" of a conditioned
response is understood not as the erasure of the original memory, but as the formation
of a new, competing memory that inhibits the old one (Bouton, 2004). Similarly, a factual
correction does not delete the original misinformation but instead creates a new belief
that must actively compete with the original, often more compelling, narrative. People
canthen fail to retrieve the correction at the right moment or may struggle to update their
understanding. This is particularly true if the correction creates a "causal gap" - thatis, it
removes the explanation for an event without offering an alternative (Ecker et al., 2010,
2022). This phenomenon is related to a broader tendency of some individuals to be less
critical of weak or nonsensical claims, sometimes called "pseudo-profound bullshit",
and to overestimate their own expertise, making them more vulnerable to falling for

misinformation in the first place (Pennycook & Rand, 2020).

1.1.4.4 Emotional Content

Misinformation tends to elicit stronger emotional responses, particularly outrage,
compared to reliable sources (McLoughlin et al., 2024; Rathje & Van Bavel, 2025).
Misleading narratives are often crafted with emotionally charged content, using potent
words like 'fight, 'greed, or 'evil' to provoke a reaction. This strategy is effective at
capturing attention and prompting people to spread the content before they even know it
is accurate. Consequently, efforts to combat misinformation that rely solely on factual
corrections face a significant challenge, as they fail to address the underlying emotional

drivers that make the content so compelling (Brady et al., 2020; Han et al., 2020).

From an evolutionary perspective, this susceptibility is a feature of a cognitive
system designed for survival. In the ancestral environment, paying attention to emotional

stimuli - particularly those signalling threat (fear) or moral violation (outrage) - was crucial
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for physical safety and group cohesion (Haselton & Nettle, 2006). Therefore, emotional
information is prioritised, capturing attention rapidly and automatically to ensure that
survival-relevant cues are not missed. Furthermore, this could suggest emotional
misinformation is difficult to erase from memory. Under the framework of Error
Management Theory, the cost of a false negative (failing to remember a valid threat, like
a predator) is fatal whilst the cost of a false positive (believing a false alarm) is simply
inconvenient (Haselton et al., 2015). Therefore, human memory is biased to retain

emotionally arousing information as a protective mechanism.

1.1.4.5 Theory of Mind and Missing Social Cues

The evolutionary sensitivity to emotional content does not mean that we could
always be fooled. Just as natural selection has shaped our attention to prioritize survival-
relevant threats, it has also equipped us with counter-mechanisms to verify the source
of thatinformation. To understand the limits of our susceptibility - and the extentto which
itis actually possible to fool people — | will take a look into a cognitive tool at our disposal
to filter untrustworthy sources: Theory of Mind - the ability to attribute mental states,
such as beliefs and intentions, to others (Sperber et al., 2010). When evaluating a claim
from others, individuals simulate the mind of the source to assess two things:
competence (do they know the truth?) and benevolence (do they intend to share it?)
(Sperber et al., 2010). Consequently, people are difficult to fool thanks to such
monitoring mechanisms whereby if someone detects cues of deceptive intent, they tend
to discount the information. However, false beliefs can emerge when this monitoring
mechanism fails, resulting in people missing the social cues. It is plausible that digital
environments weaken this defence by stripping away the social cues (e.g., facial
expressions) required for Theory of Mind to function effectively. In this view,
misinformation succeeds by mimicking the signals of a benevolent source, bypassing the

detectors that would otherwise prevent the false belief from taking root.
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1.1.5 Socio-Technical Reasons for False Information
Spread

1.1.5.1 Social and Habitual Drivers of Sharing False
Information

The decision to share information is often driven by factors other than a concern
for its accuracy. People may share information they know is inaccurate to fulfil other
psychological needs, such as signalling group membership, expressing a moral stance,
self-promotion, or even to incite chaos (McLoughlin et al., 2024). Social media platforms
can amplify this behaviour through their design. These systems often prioritize content
that is highly engaging, which frequently includes extremist, emotive, and polarizing
misinformation (Rathje & Van Bavel, 2025). This desigh means that platforms can end up
amplifying false content even if users are interacting with it to express outrage or
disagreement (Budak et al., 2024). Therefore, users might develop social media habits of
posting whatever is most likely to attract attention (Ceylan et al., 2023). Once these
habits take hold, the act of sharing can become a thoughtless reflex, performed with little
consideration for the truthfulness of the content or the real-world consequences of its

spread (Pennycook et al., 2021).

1.1.5.2 Automated and Cross-Platform Spread

The spread of false information is significantly accelerated by automated non-
human accounts, or "social bots." These bots are designed to mimic human behaviour-
by liking, reposting, and commenting on content-to create an artificial sense of social
consensus. By manufacturing the appearance that a piece of information is popular and
widely endorsed, bots exploit human reliance on social proof, tricking users into
perceiving the information as more credible and worthy of sharing (Ferrara et al., 2016;
Le et al., 2019). This amplification is not confined to a single platform; coordinated bot
networks are particularly effective at propagating the same false narratives across
multiple online platforms simultaneously. This cross-platform contamination further
increases a falsehood's reach and creates an illusion of ubiquity, making it seem more

legitimate and pervasive than it actually is (Zannettou et al., 2019).
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1.1.5.3 The Spread of True vs False Information

Finally, to get a sense of how problematic the spread of false information is, it is
useful to compare it with how true information is disseminated. Large-scale analyses of
social media platforms have revealed distinct patterns in how these two types of content
travel. Vosoughi et al. (2018) analysed the spread of verifiable true and false news stories
—around 126,000 news stories tweeted by over 3 million people between 2006 and 2017
- and found that falsehoods travelled six times faster than true information. While the
truth rarely diffused to more than 1,000 people, the top 1% of misinformation reached
between 1,000 and 100,000 individuals. As discussed in Section 1.1.4.4, this viral
advantage is likely driven by the novelty and emotional intensity - particularly outrage and

surprise —common in false narratives.

1.1.6 Interventions for Fighting False Information

1.1.6.1 Debunking

Debunking involves presenting a corrective message that explicitly identifies and
refutes a prior piece of misinformation (Chan et al., 2017; Schwarz et al., 2007). Despite
the persistence of falsehoods, research shows that corrections are effective in reducing
false beliefs (Ecker et al., 2022; Porter & Wood, 2021). Its effects are often durable, lasting
for weeks (Porter & Wood, 2021), and can lead to positive downstream effects by
changing not just beliefs, but also behaviours like sharing and voting intentions (Ecker et
al., 2022). To be effective, however, debunking must follow best practices. Corrections
should provide detailed factual accounts and plausible alternative explanations that can
fill the "coherence gap" left when a piece of misinformation is retracted (M. S. Chan &
Albarracin, 2023; Johnson-Laird, 2012; Tenney et al., 2009). It is vital to lead with the
accurate information rather than unnecessarily repeating the misinformation, which can
inadvertently boost its familiarity. The correction should establish a factual frame from
the outset and re-emphasize the truth at the conclusion (Ecker et al.,, 2022;
Lewandowsky et al.,, 2012). Corrections are also ideally delivered by high-credibility
sources, such as content experts (Vraga & Bode, 2018, 2020), though politicized voices
can be effective in debunking rumours within their respective partisan groups (Berinsky,

2017). Given that resources are limited, efforts should be focused on correcting
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misinformation that is both widespread and has the greatest potential for harm (Ecker et
al., 2022). Finally, all corrections should be delivered in a civil, careful, and thoughtful
manner (Vraga & Bode, 2020), with the understanding that repeated interventions may be
necessary as the effects of a single correction can wear off over time (Carnahan et al.,

2021).

Despite its utility, debunking has significant limitations. The Continued Influence
Effect ensures that misinformation can linger (Ecker et al., 2010). While early concerns
focused on "backfire effects" where corrections strengthened misperceptions, these are
now understood to be largely overstated and uncommon (Wood & Porter, 2019). More
practical challenges include the fact that manual fact-checking is laborious, difficult to
scale (Chuai et al., 2023a), and often arrives only after a claim has gone viral (Stein et al.,
2023). Automated Natural Language Processing (NLP) fact-checking also faces hurdles
due to the lack of readily available counter-evidence for novel, real-world misinformation

(Glockner et al., 2022).

1.1.6.2 Prebunking and Inoculation

A proactive alternative to debunking is "prebunking," or psychological inoculation
(Figure 1.1). This approach aims to prevent people from encoding misinformation in the
first place by building "attitudinal resistance" (Compton, 2013; Van Der Linden, 2024).
The core mechanism involves exposing people to weakened versions of persuasive
messages ahead of time (Van Der Linden, 2024; van der Linden et al., 2017). By warning
recipients about the threat of misleading information and identifying the manipulative
technique, inoculation equips them with the cognitive tools to resist future attempts at
persuasion (Christner et al., 2024; Ecker et al., 2022; Van Der Linden, 2024). Prebunking
has been shown to be an effective counter to misinformation, with effects that can
generalize across different topics, providing an "umbrella" of protection against various
manipulation tactics (Schmid-Petri & Blrger, 2022; Traberg et al., 2022). Furthermore,
successful approaches, like the interactive "Bad News Game," can spark conversations
where people share their new skills with their peers. This "post-inoculation talk" helps
spread the protective effects through social networks, amplifying the impact of the initial

intervention (Roozenbeek & van der Linden, 2019). In Bad News Game, players take on
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the role of a fake news producer to attract as many followers as possible while
maximizing credibility. Throughout the approximate 15-minute gameplay, players learn to
master six documented techniques commonly used in misinformation: polarisation,
invoking emotions, spreading conspiracy theories, trolling people online, deflecting
blame (discrediting opponents), and impersonating fake accounts. Players are rewarded
for using these strategies and penalized for ethical journalistic behaviour. The game
simulates a social media environment, rendering text boxes, images, and Twitter posts.
However, a key limitation of such approaches is requiring users to actively engage, which
may exclude those most in need of inoculation, such as individuals with lower cognitive

reflection (Pennycook & Rand, 2021).
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Figure 1.1: Prebunking vs Debunking. In prebunking (top left panel), people are given advance
warning that the information they are about to see is false to help them prepare (inoculate
themselves) against believing the false information when it arrives. This has been shown to be
effective in reducing susceptibility to misinformation. In contrast, debunking (top right panel)
presents the false information first, followed by a correction, which can be less effective. The
lower panels show how these approaches are designed in laboratory settings, where participants
receive either a warning before (“prebunking”) or after (“debunking”) exposure to false
information. The “information” here refers to the outcome (£1) given to the chosen option in a
two-arm bandit task.
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1.1.6.3 Media Literacy and Critical Thinking

Improving media literacy and critical thinking skills is a long-term strategy for
combating misinformation (Borges do Nascimento et al., 2022; Lee, 2018; Lutzke et al.,
2019). Interventions include dedicated digital media literacy training, promoting civic
online reasoning, and encouraging critical thinking through the questioning of logic,
evidence, and sources (Apuke et al., 2023; Jones-Jang et al., 2021). For instance, one
effective strategy is "lateral reading,” which involves consulting external sources to

examine the origins and credibility of a claim (Wineburg & McGrew, 2019).

1.2 How Biased Processing of True Information
Creates False Beliefs

False information is not the only reason why false beliefs emerge. Biased
processing of true information can also lead to false beliefs (Palminteri & Lebreton, 2022;
Sharot et al., 2023; Sharot & Garrett, 2016). This process is observed when individuals
receive objective, true feedback about themselves. For instance, in one study,
participants took an IQ test and were then asked to estimate their rank relative to another
participant. When they received 'good news' (true feedback that they had ranked higher),
they updated their beliefs about their intelligence significantly. However, when they
received 'bad news' (true feedback that they had ranked lower), they updated their beliefs
to a lesser extent (Eil & Rao, 2011). This same asymmetric pattern is seen in financial
decision-making, where students update their beliefs about their future earnings
prospects far more in response to positive true information than to negative true
information (Wiswall & Zafar, 2015). In each case, the resulting false belief is not caused
by exposure to falsehoods, but by a motivated filtering of true information known as

optimistic update bias (Sharot et al., 2011).

1.2.1 Biases Processing of True Information: Optimistic

Update Bias

An optimistic update bias, also known as the "good news-bad news effect," is a

pervasive tendency to integrate new information more readily when it is desirable or

25



better than expected, compared to when it is undesirable or worse than expected,
leading to false, optimistic beliefs (Garrett et al., 2014; Garrett & Sharot, 2014, 2017a;
Kuzmanovic et al., 2019a; Kuzmanovic & Rigoux, 2017; Sharot & Garrett, 2016). The bias
is relevant in myriad domains and contexts, including financial (Wiswall & Zafar, 2015b),
health risks (Weinstein & Klein, 1995), personal attributes like intelligence (Eil & Rao,
2011b), social (Korn et al., 2012a) reinforcement learning (Lefebvre et al., 2017), and
mental health (Garrett etal., 2014; Ossolaetal., 2020). Forinstance, individuals discount
negative feedback about their own attributes but incorporate positive ones (e.g., learning

they are more attractive than previously thought) (Eil & Rao, 2011b).

One way to study this bias is through the update bias task (UBT) (Figure 1.2), which
| have adapted for my own experiment in Chapter 4. In a typical UBT trial, participants are
asked to consider a negative life event. They first estimate the probability of this event
happeningtothem personally (E1) and to an average person like them (i.e., from the same
location, age, and socioeconomic status as the participant) (eBR). After providing these
estimates, they are shown the true statistical base rate (BR) for the event. Finally, they are
prompted to give a second estimate of their personal risk (E2). The participant's belief
change, or "update,” is calculated by subtracting their first personal estimate from their
second (E2 — E1). Trials are then categorized based on the information provided. When
dealing with negative events, a trial is considered "good news" if the true risk (BR) is lower
than the person's initial estimate (E1), suggesting the event is less likely than they
thought. Conversely, a trial is labelled "bad news" if the true risk is higher than their
estimate, indicating the event is more probable than they initially believed (Sharot et al.,
2011; Sharot & Garrett, 2022). An optimistic update bias occurs when the update values
for events classified as good news is higher than events classified as bad news, which is
consistently shown and replicated in various studies (e.g., Garrett et al., 2014; Garrett &

Sharot, 2017; Korn et al., 2012b; Kuzmanovic et al., 2019b; Oganian et al., 2019).

An alternative design for this task separates the first estimate (E1) and the second
one (E2) into two distinct sessions held at different times (e.g., Sharot et al., 2011).
Because of the delay between sessions, a control for memory is necessary. To address
this, participants are often asked at the end of the second session to recall the actual

probability they were shown for each event. Regardless of the task version, researchers
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often gather additional data to control for other confounds. These variables, collectively
known as subjective ratings, include familiarity with the event, past experience with the
events, how negatively or positively they found the event to be, how vividly they imagine
the event, and how emotionally arousing they perceive the event. The bias survives after

controlling for these ratings (Garrett & Sharot, 2017a).
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Figure 1.2: The Update Bias Task. In each trial, participants estimate their own future likelihood
of experiencing an adverse life event (e.g., kidney stones, burglary) and that of someone like them
(same age, location, and socioeconomic status). They are then presented with the actual
probability of that event for someone like them. Finally, they are prompted to provide their
estimates again. Displayed at top is an example of good news as the chances of kidney stones
happeningto the individual (20%) is lower than what they had thought (40%). Below is an example
of bad news where the chances of burglary happening to the individual (35%) is higher than what
they had thought (22%).

Learning in the UBT is driven by the "Estimation Error": the difference between the
participant's first estimate and the true base rate (Sharot et al., 2011). This is similar to
prediction error (PE) in reinforcement learning (RL) - the difference between expected and
observed outcomes. Because of this shared principle of error-driven updates, the RL
framework has been successfully adapted to build computational models of learning in

the UBT (Kuzmanovic & Rigoux, 2017).

One of these models assumes that people process desirable and undesirable

information differently. It formalizes this idea by using two learning rates: one for positive
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estimation errors (good news) and one for negative estimation errors (bad news). This
model consistently provides the best fit for data, and the estimates from the model show
a higher learning rate for good news than for bad news, which provides model-based
evidence for an optimistically biased pattern of information integration (Kuzmanovic et
al., 2018, 2019b; Kuzmanovic & Rigoux, 2017). The models help formally control for trial-
wise fluctuations and provide insights into the mechanistic components of belief
updating by including estimation error size and the relative personal knowledge (rP) in the
updating process. rP captures how much an individual sees themselves as different from
the average person and is calculated based on differences between their initial personal
estimate (E,) and their estimate of the base rate (eBR). Therefore, the fact that the
optimistic update bias persists even after the model accounts for these componentsis a
testament to its robustness. This computational approach provides a formal,
mechanistic account of how the selective integration of true information leads to the
formation and maintenance of false beliefs. In what follows, | will describe the neural

findings on this bias to better understand how false beliefs are formed.

Distinct neural processes appear to mediate the integration of good and bad
news. Kuzmanovic et al. (2018) implicated the ventromedial prefrontal cortex (vmPFC) in
encoding the valence of belief updates in UBT. Specifically, the fMRI analyses revealed
neural correlates for different stages of belief updating. During the presentation of the
actual BR, regions like the anterior cingulate cortex (ACC), inferior frontal gyrus (IFG), and
dorsolateral prefrontal cortex (dIPFC) tracked errors, with their activity increasing as error
size decreased. Notably, the magnitude of this error tracking in the dIPFC correlated with
individual learning rates, suggestingits role in adjustinginitial beliefs based on errors. The
vmPFC activity increased with larger updates towards lower risks (good news) and with
smaller updates after bad news. This vmPFC activity specifically tracked the
improvement or worsening of final beliefs relative to initial ones, not merely the valence
of the new information or final beliefs themselves. Furthermore, the magnitude of this
vmPFC valence-tracking effect correlated with the individual's optimism bias, indicating
that vmPFC is sensitive to the subjective value of favourable belief updates. Importantly,
this valence encoding in vmPFC occurred during the period of update consideration, not

earlier during the reception of the new information. Dynamic Causal Modeling (DCM) was
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used to infer the causal interactions within the update circuit, consisting of the dIPFC (an
"update processing" node receiving exogenous input), the vmPFC (a "valuation" node),
and the dorsomedial prefrontal cortex (dmPFC, a "cognitive" node). The winning DCM
model revealed a cyclic information flow from the dIPFC via vmPFC to the dmPFC, with a
valence-dependent modulation of the coupling from dIPFC to vmPFC. This indicated that
the vmPFC actively filtered incoming information based on its valence. Both the strength
of this valence-dependent modulation of the dIPFC-vmPFC coupling and the strength of
the vmPFC-dmPFC connection correlated with the individual's optimism bias. This
suggests that a stronger optimism bias is associated with a greater valence-dependent
filtering by the vmPFC and a stronger influence of this valuation system on the cognitive
processing occurring in the dmPFC. In another study (Garrett et al., 2014) BOLD signal
correlated positively with good news estimation errors in the leftinferior frontal gyrus (left
IFG) and bilateral superior frontal gyrus (bilateral SFG), but negatively with bad news
estimation errors in the right inferior parietal lobule (right IPL) and positively in the
Superior Temporal Gyrus and Superior Frontal Gyrus. Further, the study found that BOLD
response in the right IPL of depressed participants tracked bad news errors with greater
fidelity than in healthy controls. Additionally, a stronger negative correlation between
BOLD activity in the right Inferior Frontal Gyrus (rIFG) and bad news estimation errors was
observed in depressed patients compared to healthy controls. These findings indicate
that the unbiased updating observed in MDD is mediated by stronger neural coding of
estimation errors in response to both good news (left IFG, bilateral SFG) and bad news
(right IPL, right IFG), particularly the adequate neural tracking of negative estimation

errors.

This bias is flexible as it is modulated by psychological and environmental context.
It is absent in individuals with clinical depression, who show more balanced belief
updating (Garrett et al., 2014). Similarly, in situations of perceived threat, the bias is
significantly reduced or eliminated, allowing for a more accurate risk assessment. This
has been shown in studies of firefighters on duty (Garrett et al., 2018) and in the general
population during the early, high-uncertainty phase of the COVID-19 pandemic (Beron et
al., 2024). This flexibility could become costly when faced with false information. If the

goal of the bias is to regulate mood and motivate action by filtering true information, it
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stands to reason that its operation - and its potential 'hijacking' by false information - will
similarly depend on these contextual factors. Understanding the conditions under which
the bias is weakened or strengthened for true information provides a theoretical roadmap
for hypothesizing about when individuals will be most vulnerable to accepting desirable

falsehoods.

1.3 Reinforcement Learning for Modelling Bias in
Creating False Beliefs

1.3.1 The Rationale for a Reinforcement Learning Approach

Having established that humans filter true information to form false beliefs, | turn
to computational modelling to formalize the learning process using the reinforcement
learning (RL) framework. RL describes how living beings and artificial systems learn
through experience to make better decisions, maximizing rewards and minimizing
punishments (Rescorla & Wagner, 1972; Sutton & Barto, 2018). Here, | argue that RL is
suited for building a mechanistic model of learning from false information and showing
how it has previously been used to model confirmation and positivity biases in response
to true information, leading to false beliefs. Further, RL provides a formal, quantitative
model of the learning process itself. Instead of merely describing a phenomenon like
"confirmation bias," a tractable RL model can operationalize it through specific,
measurable parameters, such as distinct learning rates for confirmatory versus
disconfirmatory evidence (Palminteri, 2023; Palminteri & Lebreton, 2022). This
transforms a descriptive label into a testable, mechanistic hypothesis. It provides a
benchmark of rational learning against which one can measure and characterise the
systematic biases that could make individuals vulnerable to false information. This
computational framework then provides specific, trial-by-trial latent variables - such as
Prediction Errors (PEs) - that have a well-established neural basis. Numerous studies
have linked these model-based estimates to activity in the dopaminergic midbrain and
its targets in the striatum and ventromedial prefrontal cortex (vmPFC) (Collins et al.,
2017; Daw et al., 2005, 2011; Jocham et al., 2014; Lefebvre et al., 2017; McDougle et al.,
2019; Palminteri et al., 2012). This allows me to bridge the underlying computations to
their neural bases. Finally, while my thesis uses controlled laboratory tasks to isolate
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these mechanisms, the core principles of RL are relevant in (mis)information-rich

environments (da Silva Pinho et al., 2024).

1.3.2 The Reinforcement Learning Framework

Imagine an agent, whether an animal, a human, or a computer program, trying to
achieve a goal. It doesn’t receive explicit instructions on what to do; instead, it must
discover which actions lead to desirable outcomes (rewards) and which lead to
undesirable ones (punishments) through trial and error (Yoo & Collins, 2022). This trial-
and-error process is at the heart of RL, an example of which is the two-armed bandit task
(Figure 1.3). In this task, participants repeatedly choose between two options, each
offering probabilistic outcomes. For example, one option gives 10 points with 80%
probability, while another with 20% probability. Through accumulated feedback,
participants learn the value of each option (Lefebvre et al., 2017; Palminteri, 2023; Sutton

& Barto, 2018).

Choice
Fixation Choice Confirmation Feedback

WA R E

+10

Figure 1.3: An example of a two-arm bandit task. Participants choose between two cues to
maximize rewards. The goalis to learn which option is better (i.e., offers reward most of the time).

Learning happens through the continuous updating of expectations. Each option
is assigned an "expected value" or "Q value," representing what the agent believes that
option is worth. These expectations are then updated based on observed outcomes,
which can be rewarding (e.g. +10) or punishing (e.g. -10). The difference between the
expected outcome and the observed outcome is called Prediction Error (PE or 8) (Sutton

& Barto, 2018). Formally, for a given trial (t), PE for Option A is written as:

O(t) = ra(t) - Qa(t)
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In which ra is the observed outcome for option A and Q. is the expected outcome
of the option. Positive PEs occur when outcomes are better than expected (ra(t) > Qa(t))

while negative PEs occur when they are worse than expected (ra(t) < Qa(t)).

Therefore, PEs serve as a learning signal to update future expectations. The extent
to which PEs are used as a learning signal can be determined by a learning rate (a)
parameter (Sutton & Barto, 2018). A high learning rate means the agent quickly adjusts
its beliefs based on new information, while a low learning rate produces more gradual

changes.
The value update follows this formula:
Qa(t+1) = Qa(t) + a*d(t)

Since the two-armed bandit task involves comparing two options (A and B), their
learned values must be converted into choice probabilities. One wayto do the conversion
is through the SoftMax function, which transforms the learned values into the probability
of selecting each option: The probability of choosing option A, for example, is calculated

as follows:

1+ exp(B(Qsp —Qa)

In which, B is the inverse temperature parameter that controls how sensitive the
choice probabilities are to the differences in the learned values of the options (Sutton &
Barto, 2018). The higher the value of B the greater the tendency to exploit (i.e., the agent
is very sensitive to the learned values and will almost always choose the option with the
higher value, even if the difference is tiny); and the lower the value of  the greater the
tendency to explore (i.e., the agent is less sensitive to the value differences, and its
choices become more random). This parameter thus controls the exploration-

exploitation trade-off in action selection (Sazhin et al., 2025; Wilson et al., 2014).

The above model with two free parameters, a learning rate and an inverse
temperature, is a simple computational model that produces trial-by-trial latent
estimates of PE and Q values. The latent estimates can then be used in neural studies,

allowing researchers to link computational processes to brain activity (Collins et al.,
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2017; Daw et al., 2005, 2011; Hare et al., 2008; Huys et al., 2011; Jocham et al., 2014;
Lefebvre et al., 2017; O’Doherty et al., 2007; Zhang et al., 2020).

1.3.3 Neural Correlates of Reinforcement Learning
Computations

A key strength of the RL framework is that its core computational variables have
well-established neural correlates. Foundational work has demonstrated that the firing
of midbrain dopamine neurons closely tracks the Reward Prediction Error (RPE),
increasing for better-than-expected outcomes and decreasing for worse-than-expected
outcomes (Schultz et al., 1997). This dopaminergic signal is broadcast to the striatum,
where it is thought to drive the synaptic plasticity necessary for updating the values of
actions and states (Wickens, 2009). However, this classic model has been refined, with
recent work showing that dopamine's role is more complex, also encoding the
motivational value of an action and acting as many local, "partial" teaching signals within
specific corticostriatal circuits rather than as a single, global broadcast (Berke, 2018; Lak

et al., 2020).

While the striatum and its dopaminergic inputs are crucial for computing the error
sighal, a distinct but overlapping network, centred on the ventromedial prefrontal cortex
(vmPFC), is responsible for representing the value of different choices to guide decisions
(Boorman et al., 2009; Kable & Glimcher, 2007). Activity in the vmPFC has been shown to
track the subjective value of chosen options, integrating different attributes of a choice
into a "common currency" signal that can be used for comparison (Levy & Glimcher,
2012). This valuation system is not static; for example, under time pressure, the vmPFC
represents the overall value of all available options, but with more time for deliberation,
its activity shifts to represent the specific value difference between the chosen and

unchosen option (Jocham et al., 2014).

This neural architecture for value-based learning is the fundamental system
through which beliefs, including false beliefs, are likely formed and updated. Critically,
its role extends beyond processing external rewards like money or food. A body of
research now demonstrates that these same neural circuits - particularly the

dopaminergic midbrain, striatum, and orbitofrontal/ventromedial prefrontal cortex - are
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also responsible for encoding the intrinsic value of information itself (Bromberg-Martin &
Monosov, 2020). Monkeys, for instance, will “pay" by forgoing a guaranteed juice reward
for the mere opportunity to gain advance information about future rewards, and their
dopamine neurons track this information-seeking preference just as they would a
primary reward (Bromberg-Martin & Hikosaka, 2009). This indicates that the brain's

valuation circuitry treats the resolution of uncertainty as inherently rewarding.

This neurobiological finding - that the brain treats information as a form of
currency processed by its core reward system - provides a mechanistic rationale for
applying a value-based learning framework to the problem of false information. If the
brain is wired to seek out and assign value to information, the unaddressed
neurocomputational question becomes: what happens to this valuation process when
the currency is counterfeit and false? How does the brain's valuation and learning
circuitry respond when the information it receives is known to be false? Understanding
the baseline neural mechanisms for processing true information is therefore important
for investigating how those mechanisms are altered and potentially hijacked in the face

of falsehoods.

1.3.4 Reinforcement Learning and Working Memory

The reinforcement learning system does not operate in isolation. Its interaction
with working memory (WM) is indispensable, even in simple instrumental tasks (Collins,
2018; Yoo & Collins, 2022). This relationship is potentially important when encountering
unreliable or false information. Efficient learning in such a context requires actively
filtering out false feedback before it can erroneously one's beliefs. This mirrors the
cognitively demanding nature of modern online environments, where users must
constantly ignore or discount information from bots and unreliable accounts (Chuai et
al., 2023b; Pittman & Haley, 2023). One possibility is that a reason why people learn from
false information is a failure of this WM-dependent filtering mechanism. When cognitive
control is taxed or when a piece of false information is particularly compelling (e.g., it
confirms a prior belief), this filter may fail, allowing the falsehood to be processed by the
RL system as if it were true. To understand the nature of this potential failure, it is first

necessary to detail the relationship between WM and RL.
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WM is a capacity-limited process for temporarily holding and manipulating
information to guide behaviour, particularly when that information is no longer present
(Yoo & Collins, 2022). The limitations of WM include a finite capacity and a temporal limit,
meaning information is only accurately remembered for a short duration (Collins, 2018).
These limitations are well-documented by classic findings. For example, as the number
of items held in memory grows, accuracy and reaction time decrease, a phenomenon
known as the set size effect (Sternberg, 1966). Further, these mental representations are
inherently tenuous, susceptible to fading over time or being disrupted by distracting

stimuli (Peterson & Peterson, 1959).

Although often conceptualized as a separate cognitive module, WM operates in
concert with RL, an interaction that is evident across behavioural, computational, and
neural levels of analysis (Yoo & Collins, 2022). This relationship is bidirectional. On one
hand, WM supports RL by maintaining stimulus information (e.g., in partially observable
Markov decision processes) or even reward information itself, feeding these inputs into
RL computations. This assistance allows the RL system to form more abstract, task-
relevant representations, which in turn promotes generalization to new contexts and
simplifies the learning problem by effectively ignoring irrelevant aspects of the
environment (Yoo & Collins, 2022). Similarly, RL can influence WM. It has been
demonstrated, for example, that people can acquire more efficient strategies for using
their WM through feedback-based learning. This finding implies that a trial-and-error
process, guided by reinforcement, helps to optimize how WM is recruited (Yoo & Collins,

2022).

This dynamic leads to a surprising trade-off, often called the "tortoise and hare"
effect (Collins, 2018). In low WM load problems (e.g., fewer stimuli to learn) where WM
capacity is sufficient (the fast "hare"), individuals learn quickly. However, this comes at
the cost of poorer long-term retention because the slower, more robust RL system (the
"tortoise") is less engaged (Collins, 2018; Collins et al., 2017). Collins (2018) showed this
in an experimental protocolincluding a learning phase, an unrelated n-back task serving
as a delay, and a surprise testing phase. During the learning phase, participants learned
stimulus-action associations by receiving feedback, with varying set sizes (ns=3 for low

load and ns=6 for high load) across 14 blocks. The set size manipulation was crucial
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because WM is capacity-limited, unlike RL, allowing researchers to disentangle their
contributions. The surprise testing phase, conducted without feedback after a 10-minute
delay and involving 54 different stimulus-action associations, was designed to assess
the retention of learned associations, specifically probing RL function as WM was
assumedto playnodirectrole due to its temporal and capacity limits. Behaviouralresults
replicated previous findings for the learning phase: participants learned in both set sizes,
but learning was slower and performance was lower in blocks with a high set size (ns=6)
compared to low set size (ns=3). This demonstrated WM's contribution, characterized by
negative effects of set size and delay on performance, while RL was evident through
sensitivity to reward history. However, the associations learned under high set sizes were
better retained than those learned under low set sizes, indicating greater robustness of
learning under high cognitive load. This meant that using working memory to learn quickly
came at the cost of long-term retention. Further analysis confirmed this was not due to
differences in reward history or error avoidance. To understand these interactions,
computational modelling was employed, testing three families of models: pure RL
models (RLs), mixture models with independent WM and RL (RLWM), and mixture models
with interacting WM and RL (RLWMi). The RLWMi model, which assumed WM influences
RL computations by contributing to PE calculations, was strongly favoured as the best fit
for the behavioural data. This model posits that when WM learns faster than RL in low-
set-size scenarios, it effectively decreases positive PEs, thereby impeding learning within
the RL system. This is bolstered by a neural observation that brain signals related to RL
encoding are weaker at lower set sizes (Collins et al., 2017). Ultimately, RL and WM can
be viewed as partially redundant systems that learn with different dynamics: WM is fast
but fleeting, while RL is slower but more robust (Collins, 2018). Therefore, cognitive load
is a key factor that modulates the balance between these two learning systems such that
under high load imposed by environments containing false information, such as social
media, the slow-but-steady RL system may become more dominant, potentially making

it more vulnerable to integrating false information.

The link between RL and WM is mirrored by a significant overlap in their underlying
neural circuits (Yoo & Collins, 2022). While the prefrontal cortex (PFC) is associated with

WM and the basal ganglia with RL, these networks are not entirely distinct. Instead, they
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are connected through multiple parallel loops, with the frontal cortex and basal ganglia
projecting directly onto each other (Haber, 2011). This shared architecture has functional
consequences. The PFC, for example, is implicated in many goal-directed RL tasks (Daw
et al., 2005, 2011). Furthermore, dopamine levels in the PFC, a neuromodulator central
to RL, are also related to WM performance (Fallon et al., 2015). This is evident in how
damage to the basal ganglia can produce cognitive impairments similar to those caused
by frontal cortex damage (Middleton & Strick, 2000). This neural evidence confirms that
RL and WM are not separate brain modules but deeply integrated systems that work

together to produce intelligent, adaptive behaviour.

1.3.5 Using Reinforcement Learning to Model Positivity
Bias

RL has also been applied to formalize two learning biases: positivity bias and
confirmation bias. Positivity bias is when an agent learns more from better-than-
expected outcomes (positive prediction errors) than from worse-than-expected
outcomes (negative prediction errors) (Palminteri & Lebreton, 2022). For instance, in one
RL study (Lefebvre et al., 2017), where participants played a 2-arm bandit task (Figure
1.1) involving abstract cues that gave rewards and punishments for the chosen option,
higher learning rates were observed for positive PEs versus negative ones. To model
behaviour, the researchers compared a standard Rescorla-Wagner (RW) model with a
modified version (RW=) that allowed for different learning rates for positive and negative
PEs. The findings supported the hypothesis of a general learning asymmetry: the RW=
model provided a better fit for subjects' behaviour. Further, the learning rate for positive
PEs was significantly higher than for negative PEs, indicating that participants
preferentially updated values following better-than-expected outcomes for the item they
chose. This asymmetry was primarily driven by subjects categorized as "RW+= subjects,"
who exhibited a significantly reduced negative learning rate compared to "RW subjects"
who displayed unbiased learning. The positivity bias (a+ > a-) was replicated in the
second behavioural experiment, where punishment replaced reward omission (i.e., loss
pairs instead of gain pairs), indicating that the learning asymmetry is driven by the
valence of the prediction error itself, not solely by the outcome valence (i.e., in a loss pair

of -10 and -1, a -1 outcome would incur a positive PE despite having a negative outcome

37



valence). The fMRI results from the same study (gain pairs only) revealed that PE
encoding in the brain's reward circuitry, specifically the striatum and vmPFC, was
enhanced in optimistic (RW=) subjects. This neural activity positively correlated with the
learning rate asymmetry, establishing an association between the positivity bias and
brain activity when outcomes are revealed. The individual differences in positivity bias
were also linked to pupil dilation —a physiological proxy of neuromodulator activity - such
that positive PEs increase the dilation and the negative ones increase the constriction
(Van Slooten et al., 2018). Further, higher dopamine is associated with a stronger
positivity bias in Parkinson’s disease patients ON medication vs OFF in the dorsal
striatum (McCoy et al., 2019), which is in line with the fMRI results of the study, as
dopamine is sensitive to positive and negative PEs (Frank et al., 2004; Palminteri et al.,
2009). Other studies show that the bias is robust to different outcome ranges (Ting et al.,
2022) and outcomes of a different nature (electric shocks) (Gagne et al., 2020). It has also
been observed in rhesus monkeys (Farashahi et al., 2019), rodents (Harris et al., 2021;
Ohtaetal., 2021), foraging (Garrett & Daw, 2020) , multi-attribute RL (Steinke et al., 2020),
and large language models (LLMs) such as Claude, ChatGPT, and Llama (Hayes et al.,
2025). The models' positivity bias comes from their training on human language,

suggesting this bias is important in how we communicate (Palminteri, 2025a).

1.3.5.1 The Role of Positivity Bias in Learning from False
Information

The positivity bias could also offer a computational mechanism for belief
formation when faced with false information. A recent study has already provided
compelling evidence for this (Vidal-Perez et al., 2025). The study employed a novel
"disinformation" version of the two-armed bandit, where individuals repeatedly chose
between two options and received the outcome for the chosen option from computer-
programmed "feedback agents" who varied in their truthfulness. Participants were
explicitly informed about the credibility of each agent via a "star system": a 3-star agent
was always truthful, a 2-star agent lied 25% of the time (75% truthful), and a 1-star agent
lied 50% of the time (50% truthful), making its feedback statistically random. On each
trial, participants were first told which agent will give the feedback and then made their

decision. Participants were incentivized based on true bandit outcomes, not agent-
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provided feedback. The results indicated an exacerbated "positivity bias", where
individuals boosted their learning from positive feedback relative to negative feedback.
This bias was found to be amplified for information of low and intermediate credibility.
When measured in relative terms, the positivity bias was significantly higher for the 1-star
and 2-star agents compared to the 3-star agent. This bias could not be accounted for by
Bayesian strategies, which instead predicted a negativity bias, nor could it be fully
explained by choice perseveration. The researchers posited that feedback of ambiguous
veracity might enable individuals to interpret positive feedback as true (as it confers
desirable outcomes) and explain away negative feedback as false. This provides a formal,
mechanistic account of how individuals might maintain an overly optimistic view of their
choices by systematically overweighting desirable falsehoods and underweighting the

undesirable ones.

Inthe two-arm bandit studies mentioned so far, partial feedback is given, meaning
that when you choose an option, you get an outcome only for that option; therefore, it is
not clear whether people are learning more from positive vs negative prediction errors or
confirmatory vs disconfirmatory outcomes (Lefebvre et al., 2017). In other words, is the
learning bias driven purely by the outcome's valence (i.e., all positive prediction errors
are overweighed) or a confirmation bias (i.e., only positive PEs following obtained
outcomes are overweighed)? To answer this question, we need a design that offers
outcomes for the unchosen option as well (Palminteri & Lebreton, 2022), which the

studies in the next section have offered.

1.3.6 Using Reinforcement Learning to Model Confirmation
Bias

Confirmation bias differs from optimistic update bias or positivity bias in that
valence is not the only determining factor in integrating a piece of information; rather,
whether it aligns with one’s prior beliefs, choices, judgements, and decisions or notis as
important (Nickerson, 1998; Palminteri & Lebreton, 2022). While distinct in their
definitions - positivity bias relates to the valence of new evidence, and confirmation bias
to alignment with prior beliefs - these two biases frequently co-occur in real-world

scenarios. This is typically because people hold opinions and make choices that they
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anticipate will lead to positive subjective outcomes. Consequently, an outcome that is
better than expected often simultaneously provides positive news and confirms a prior
decision or belief (Palminteri & Lebreton, 2022). However, the two can be dissociated in
a controlled experiment. Consider a two-arm bandit task with complete feedback, where
one sees the outcome of both the chosen and the unchosen option. An outcome can be
"confirmatory" - meaning it provides evidence that your choice was correct - in two ways.
First, if your chosen option yields a reward (a positive PE). Second, and more subtly, if the
optionyou did notchoose would have resulted in a loss (a negative PE). While this second
case is technically "bad news" about the unchosen option, it is motivationally "good
news" for the decision-maker as it validates their choice. The key finding is that people
learn more from both types of confirmatory evidence, demonstrating a learning process
that is biased towards validating prior decisions, not just towards seeking positive

outcomes (Palminteri et al., 2017; Palminteri & Lebreton, 2022).

Within the RL framework, several studies have shown the existence of
confirmation bias, where people integrated confirmatory information to a greater extent
than disconfirmatory one (e.g., Chierchia et al., 2023; Palminteri et al., 2017). The key
manipulation in these studies was offering complete feedback (i.e., outcomes shown for
chosen and unchosen cues), specifically aiming to distinguish between a general
"positivity bias" and a "confirmation bias". To model the behaviour, first, the researchers
used a modified Rescorla-Wagner computational model that allowed for different
learning rates for positive and negative PEs for both chosen (“factual learning”) and
unchosen (“counterfactual learning”) outcomes. Replicating previous findings, they
found a positivity bias in factual learning, where participants preferentially learned from
outcomes that were better than expected. Specifically, the learning rate for positive PEs
from chosen options (a..) was significantly higher than for negative PEs (a..). However,
the results for counterfactual learning revealed an opposite valence-induced bias:
unchosen negative PEs drove stronger learning than unchosen positive PEs, as the
learning rate for negative unchosen PEs (a..) was higher than for positive unchosen PEs
(aus) (Figure 1.4 (a)). The pattern of results supported a confirmation bias in learning,
suggesting that, on one hand, people are more sensitive to information that validates the

decision; on the other hand, individuals tend to discount evidence that suggests their
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choice was wrong, such as a negative PE from their chosen option or a positive PE from
the one they rejected. Then, they created a more parsimonious model called the
Confirmation Model by collapsing Positive-Chosen and Negative-Unchosen learning
rates into one learning rate called Confirmatory and Negative-Chosen and Positive-
Unchosen into one learning rate called Disconfirmatory. Model comparison showed this
model provided the best fit for the data, surpassing the four-learning-rate model with
separate learning rates for the chosen and chosen options. Further, its estimates
revealed that the Confirmatory learning rate was significantly higher than the
Disconfirmatory one (Figure 1.3 (b)). This also suggested that factual and counterfactual
outcomes might be processed by the same underlying learning systems. The superiority
of this model and the asymmetrical pattern of the learning rates have been replicated in

other studies (Lebreton et al., 2019; Palminteri, 2023; Schuller et al., 2020).
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Figure 1.4: Positivity vs Confirmation. The pattern of learning rates for positivity and
confirmation biases (Palminteri, Lefebvre, et al., 2017). a) Although there is positivity bias for the
chosen options (.. > a..), this pattern is reversed for the unchosen options (ay: < ay.), consistent
with confirmation bias. b) The estimates of the Confirmation Model where acon (learning rate for
positive obtained and negative forgone outcomes) is significantly higher than apis (learning rate
for negative obtained and positive forgone outcomes).***P<0.001 and *P<0.05, two-tailed paired
t-test. Reproduced from Palminteri et al. (2017), “Confirmation bias in human reinforcement
learning: Evidence from counterfactual feedback processing,” PLOS Computational Biology
13(8): €1005684, licensed under CC BY 4.0.

The robustness of this bias has been questioned by researchers who point out that
choice perseverance can create a statistical artifact that mimics confirmation bias
(Katahira, 2018; Sugawara & Katahira, 2021). To resolve this, they developed a "Hybrid

model" that accounts for both asymmetric learning rates and gradual perseverance
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(where multiple previous choices influence the current one). When they applied this
model to their own data, they found that perseverance appeared to be the dominant
factor driving behaviour. In response to these claims, Palminteri (2023) re-examined data
from nine separate experiments, encompassing over 126,000 trials from 363 individuals.
This re-analysis compared a model that only included asymmetric learning with a "full"
modelthatalso incorporated the gradual perseverance term. The reanalysis revealed two
key findings. First, the inclusion of the gradual perseveration significantly reduced the
estimated confirmation bias. Second, even after accounting for gradual perseveration,
the confirmation bias remained present at the meta-analytical level and was significantly
differentfrom zero in most experiments. This robust presence indicates that confirmation
bias is a reliable feature of human reinforcement learning, not simply a byproduct of the

tendency to repeat choices.

1.4 The Adaptive Value of The Biases

If these biases are suboptimal, why would evolution allow them to persist? One
could argue that they were favoured by evolution because they are adaptive and have
ecological rationality, meaning that they confer real-world advantages that outweigh the
costs of deviating from perfect logic (Palminteri, 2025b). Supporting this argument are
studies on optimism that show maintaining an optimistic outlook can be inherently
rewarding, fostering a sense of self-competence, personal growth, positive emotions,
reduced stress, and a sense of control over outcomes (Chang, 2001; S. E. Taylor & Brown,
1988). Further, the absence of optimistic update bias in belief updating is observed in
individuals with clinical depression (Garrett et al., 2014) and precede clinical
manifestations of relapse in bipolar disorder (Ossola et al., 2020), suggesting its

importance for mental health.

The adaptive side of the optimistic update bias has been shown within the RL
framework as well. In a simulation study, for instance, it has been shown that an agent
learning in a biased manner - positivity bias - can objectively outperform an "unbiased"
agent in certain probabilistic learning tasks, particularly in low-rewarding environments
or when payouts are rare (Cazé & van der Meer, 2013). Another study using evolutionary

simulations showed that positivity bias is evolutionary stable (Hoxha et al., 2024). The
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core of its methodology was an evolutionary algorithm designed to identify the optimal
set of parameters for each environment. A population of 1000 agents, each with a unique
set of parameters, performed the task for 200 "generations". In each generation, an
agent's fithess was determined by its performance. The bottom 5% of performers were
eliminated, while the top 5% were duplicated, ensuring the population size remained
constant and that successful "genotypes" propagated over time. Agents with positivity
bias evolved across different two-armed bandit scenarios, including volatile

environments where reward probabilities change.

Similar findings have been reported for the simulation studies of confirmation
bias. Studies conducted in a range of learning environments — e.g., stable, volatile, rich,
and poor - have indicated that confirmation bias optimizes reward learning, with biased
agents outperforming their unbiased counterparts (Kandroodi et al., 2021; Lefebvre et al.,
2022; Tarantola et al., 2021). This counterintuitive result is explained by the bias
mechanistically neglecting uninformative, stochastic negative PEs associated with the
best response, leading to more efficient resource accumulation and reward collection
(Palminteri & Lebreton, 2022). Furthermore, confirmation bias can improve decision-
making inthe presence of noise (Lefebvre et al., 2022, 2024). By making subjective action
values more extreme (overvaluing good options and undervaluing bad ones), itincreases
the relative distance between options, thereby making decisions more robust to random
fluctuations and increasing the probability of selecting the better option in subsequent
trials. It has also been shown to enhance collective decision-making in reinforcement
learning agents (Bergerot et al., 2024). Finally, this bias can be advantageous when paired
with efficient metacognition, as it allows for the neglect of probabilistic negative
feedback that sometimes inevitably follows correct choices, creating a normative basis

for positivity and confirmation biases (Rollwage & Fleming, 2021).

But how can these computationally advantageous biases also contribute to
vulnerability to false information? The answer could lie in the dramatic shift in the
information environment. Biases like confirmation and positivity are adaptive when
filtering a world that is noisy but reliable - they help an agent maintain a stable course
and avoid overreacting to random negative outcomes. However, the modern information

ecosystem is not just noisy; it contains deliberately crafted false information
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(disinformation) that is built to exploit these very mechanisms (Aimeur et al., 2023). In
this new context, the adaptive machinery could be a liability. The confirmation bias,
which is useful for ignoring a single bad outcome from a generally reliable food source,
becomes a liability when it causes an individual to ignore a well-sourced factual

correction that contradicts a desirable political falsehood.

1.5 The Gap: The Need for Computational Models of

Learning from False Information

Sofar, | have established that the brain selectively filters true information, creating
false beliefs, such as an overly optimistic view of the future. The framework of
Reinforcement Learning provides a mechanistic account of how these biases operate,
formalizing hypotheses with different computational models that give insight into the
reasons behind the formation of false beliefs, such as the asymmetric treatment of
prediction errors (or estimation errors in the UBT). | propose using the same
computational approach to build models of learning from false information because our
understanding of the underlying computations involved in learning from false information
and in the success or failure of interventions like debunking is lacking. For instance, the
very existence of the Continued Influence Effect (Ecker et al., 2010) - where a debunked
falsehood continues to shape reasoning - reveals that the process of belief updating is
not a simple matter of replacing one fact with another. The computations involved in a
debunking event are often treated as a "black box." We can measure the input (a
correction) and the output (a change in belief), but we lack a formal model of how that
correction is processed, how it competes with the original falsehood in memory, and
what factors determine the degree of learning or belief change. To open this black box
and move toward developing more informed interventions, we should first develop
mechanistic models of learning from false information. Also, this would allow me to
answer a key question: do the biases detailed so far, such as the confirmation bias,
persist when faced with false information? | hypothesize that one of the reasons for
vulnerability to learning from false information is the very same biases used to process

true information.
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1.6 Aim and Outline of the Thesis

The first goal is to characterise the computational underpinnings of learning from
false information in two different environments. | will start with a chapter on
computational modelling (Chapter 2), detailing and justifying the modelling approaches
| have used in the thesis. Chapter 3 will modify the classic two-armed bandit task to
assess if people learn from false information and whether they do so in a biased manner
— be it positivity or confirmation bias - just as they do in learning from true information
(Palminteri & Lebreton, 2022). Building on previous work (Garrett et al., 2014; Garrett &
Sharot, 2014, 2017a; Kuzmanovic et al., 2019a; Kuzmanovic & Rigoux, 2017; Sharot &
Garrett, 2016), Chapter 4 will adapt the UBT to include explicitly given statements about
information accuracy as a variable, testing whether people learn from information
explicitly described as false, and if so, whether the well-documented optimistic update

bias persists when people encounter false information. Similarly,

Following these behavioural and computational investigations, the second goal is
to assess the neural underpinnings of this process, which represents a significant gap in
the current literature. To my knowledge, no study has examined how the brain processes
false information within an RL framework using fMRI. Given that the striatum and vmPFC
are consistently implicated in RL studies (Daw & Tobler, 2013; Fouragnan et al., 2018;
Lefebvre et al., 2017) and the fact that information itself can be rewarding (Bromberg-
Martin & Monosov, 2020) It may be that the striatum and vmPFC are also involved in
processing false information. Therefore, Chapter 5 will detail an fMRI study that uses the
modified two-armed bandit task from Chapter 3 to elucidate the neural mechanisms

involved in learning from both true and false information.

Chapter 2: Computational Modelling

Computational modelling serves as a bridge between qualitative psychological
theory and quantitative behavioural, simulated, and physiological data (e.g., neural
recordings, pupil dilation, etc). By requiring theories to be instantiated as mathematical
formulations, modelling forces theoretical assumptions to be made explicit which in turn

can reveal theoretical ambiguities in the process (Guest & Martin, 2021).
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The process of Parameter Estimation (which | outline in greater detail later in this
chapter) - fitting a specific model to data such as participants choices in a decision-
making task - results in a set of parameters for each participant that best describe their
data. These “best fit” estimated parameters can provide insights into individual
differences (Montague et al., 2012). For example, variations in a learning rates (which
characterise the rate at which beliefs change following new evidence) have been
associated with mood and anxiety disorders (Pike & Robinson, 2022). Specifically, higher
and more volatile learning rates from negative outcomes have been observed in
individuals with anxiety, potentially reflecting a cognitive mechanism of over-weighting
recent, adverse events. Similarly, differences in a decision-temperature parameter
(which characterises sensitivity to differences in value) can map onto traits like
impulsivity; a lower temperature parameter, reflecting more stochastic or 'noisy'
decision-making, is often observed in individuals with higher trait impulsivity (Maia &
Frank, 2011). These associations move beyond simply correlating a symptom with
behaviour, providing a falsifiable hypothesis about the underlying computational
mechanism that may generate that symptom, which could be a target for therapeutic

interventions.

The process of model comparison, when implemented correctly and verified with
simulations (which | also outline in greater detail later in this chapter) allows the
researcher to quantitively compare competing mathematical accounts of how a process
might occur. For instance, a standard experiment might find that participants perform
better in high-reward contexts - a simple directional effect. However, modelling allows
one to ask how this arises and compare different possibilities in terms of how well they
each explain the observed data. Is it because the learning process itself is amplified by
reward magnitude, with larger rewards increasing the learning rate? Or is the learning
process constant, while the expression of that learning in choices becomes more
precise, with the prospect of high rewards leading to less noisy decisions (a higher
choice-temperature parameter)? These competing accounts can be instantiated as
distinct models. By formally comparing them, one can move from asking if a
phenomenon occurs to understanding how it occurs, providing a more rigorous testing

ground for theories (Farrell & Lewandowsky, 2018).
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In the current thesis, the specific models vary by chapter but the methodological
approaches for model fitting, comparison, recovery, and validation are consistent
throughout (Figure 2.1). In this chapter, | detail these approaches, abiding by the best
practices (Wilson & Collins, 2019).

1. Formalise Models 2. Model Fitting 3. Model Comparison

Translate theory into equations Estimate parameters & calculate model scores Select best-performing model

4. Model Validation 5. Identifiability Analyses

Simulate the winning model to reproduce the Test robustness

behavioural patterns
5a. Model Recovery — Test distinguishability

5b. Parameter Recovery — Test interpretability

Figure 2.1: The Computational Modelling Workflow.

2.1 Model Fitting

The goal of model fitting is to find the parameter values for a given model that
maximize the likelihood of the observed behavioural data. For this, | used a hierarchical
approach using the Expectation-Maximization (EM) algorithm (Huys et al., 2011). lused a
publicly available package (https://github.com/ndawlab/em/tree/master) written by
Nathaniel Daw to implement this algorithm in the Julia programming language (version
1.9.4) (Bezanson et al., 2017) which has been successfully used in a number of
computational modelling studies previously (e.g., Garrett & Daw, 2020; Nussenbaum et

al., 2025).

EM is an iterative method for finding maximum a posteriori (MAP) estimates in
models with latent variables - in this case, the individual-subject parameters. A more
traditional approach would be to fit each participant's data independently, finding the
best-fitting parameter set for each person in isolation. However, this method is
problematic for two reasons. First, it treats all individual estimates as equally reliable,
giving the same weight to a parameter derived from noisy, sparse data as to one derived
from clean, consistent data (Huys et al., 2011). Second, because it fails to account for
the uncertainty in each point estimate, it can produce extreme and psychologically

implausible parameter outliers, especially for noisy participants (Ahn etal., 2011). These
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unreliable estimates can in turn inflate the overall variance at the group level and obscure

true effects.

The hierarchical approach | employed using EM addresses these issues through
the advantage of regularization (or "shrinkage"). Instead of fitting in isolation, the model
assumes that while each participant has a unique set of parameters, these are drawn
from a common group-level distribution - a Gaussian distribution defined by a group
mean and variance. By doing so, the model "borrows statistical strength" from the entire
group to inform each individual's parameter estimate, down weighting the influence of
unreliable participants (Morris, 1977). The unreliable estimates from these participants
are gently pulled toward the more stable group mean. This process effectively manages
the bias-variance trade-off, reducing the variance of individual estimates at the cost of a
small amount of bias. This bias is introduced at the individual level - an estimate for a
participant whose true parameter value is far from the population average will be pulled,
or biased, toward that mean - but it allows for a more stable and accurate estimation of
the group-level distribution as a whole. This approach has been shown to yield superior
predictive performance on unobserved data compared to fitting each participant

independently (Scheibehenne & Pachur, 2015).

The EM algorithm finds these hierarchical estimates by alternating between two
steps until convergence: Expectation and Maximization. The process begins with an
initialization step, where | provided the algorithm with plausible starting values for the
group-level parameters (the population mean, B, and covariance, 2). These initial values
represent the prior beliefs about the population before observing the data. The algorithm
then iterates between the two main steps. The Expectation (E) step essentially asks:
"Given our current belief about the population, what are the likely parameters for each
individual?". It uses the current group-level parameters (B, 2) as a prior to find the
Maximum A Posteriori (MAP) estimate of each subject's individual parameters, x;, by

maximizing the log posterior probability:
x{!4F = arg rrgca_lx(logP (ilx) +log P (x18,%))

where vy; is the data for subject i. It then computes a Gaussian approximation to

the full posterior distribution at that MAP estimate, characterized by its mean (leAP) and
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its variance (the inverse of the Hessian matrix, h;, at the peak). The Maximization (M) Step
then asks: "Given these individual parameter distributions, what is the most likely
population distribution?". It uses the sufficient statistics from the E-step - the individual
MAP estimates and their posterior variance - to update the group-level parameters. The
group means, B, are updated based on the subject-level estimates, while the group
covariance, 2, is updated based on the squared errors and the average posterior variance
from the E-step. These steps are repeated iteratively until the parameter estimates

stabilize, indicating convergence on the most likely set of hierarchical parameters.

2.2 Model Comparison

Following fitting, different competing models were formally compared to
determine which provided the most parsimonious and generalizable account of the data.
This step attempts to balance goodness-of-fit and model complexity. Without penalizing
for complexity, a more complex model will always fit the data better, but this can lead to
overfitting - a scenario where the model captures idiosyncratic noise in the current
dataset rather than its underlying structure, resulting in poor predictions for new data
(Pitt & Myung, 2002). To guard against this, the model comparison process is guided by
the principle of parsimony (also known as Ockham's razor), which favours the simplest

model that can adequately explain the data (Burnham & Anderson, 2002).

A common method for this in non-hierarchical contexts is the Bayesian
Information Criterion (BIC), which provides an approximation to the model evidence

(Schwarz, 1978). It is calculated as:
BIC = kIn(n) — 21In(L)

where L is the maximized likelihood of the model, k is the number of free

parameters, and n is the number of data points.

The penalty for model complexity is the explicit kin(n) term. For a more complex
model to be favoured, its improvement in log-likelihood must be large enough to

outweigh the penalty incurred by its additional parameters.
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While influential and widely used (Lefebvre et al.,, 2017; Pitt & Myung, 2002),
standard information criteria like BIC are ill-suited for the hierarchical models. Their
calculation requires a single, unambiguous value for the number of free parameters and
the number of data points, both of which are difficult to define in a hierarchical context
where parameters exist at both the individual and group levels (Vehtari et al., 2017). It
should be noted that specialized variants, such as the integrated Bayesian Information
Criterion (iBIC), have been developed to approximate the model evidence in a
hierarchical context (Stephan et al., 2009). This approach works by first integrating out
the individual-subject parameters using a Laplace approximation to get a single marginal
likelihood for the entire dataset and then applying a BIC penalty based on the number of

group-level parameters. However, this method is still an approximation.

Given these limitations, | chose leave-one-out cross-validation (LOOcv) as my
model comparison metric. This is a method for estimating a model's out-of-sample
predictive accuracy (i.e. a model's ability to generalize to new, unseen individuals). The
process begins by temporarily holding out a single subject from the dataset. The
hierarchical model is then re-fitted (using EM) using the data from all other subjects
except the held out subject which generates a set of cross-validated group-level
parameters that are not influenced by the held-out subject's data. These cross-validated
group parameters are subsequently used as a Bayesian prior to compute the marginal
likelihood of the held-out subject's data, a score that quantifies how well the model,
trained on the rest of the population, predicts the behaviour of a novel individual. To
compute this marginal likelihood, the subject-level parameters are integrated out using
the Laplace approximation, a standard technique that approximates the integral by
finding the MAP estimate for the held-out subject's parameters under the new prior and
using the curvature of the posterior at that point (the Hessian) to estimate the total

probability.

This entire process is then repeated iteratively for every subject (each time holding
out that subject). This yields a predictive likelihood score for each one. Because each
subject's score is computed based on a model that was not trained on their own data,

the resulting set of scores across the group can be treated as independent, which makes
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them suitable for subsequent classical statistical tests at the group level (e.g., ttests) and

use in approaches like the Variational Bayesian Approach (VBA).

Compared with simpler information criteria like BIC, this method's penalty for
model complexity is implicit and often more reliable (Vehtari et al., 2017). Rather than
using an explicit penalty term based on the number of parameters, it penalizes
complexity through the process of cross-validation itself. An overly complex model with
too many free parameters will tend to overfit the training subjects by capturing their
specific behavioural noise. When the group-level parameters from this overfitted model
are used as a prior to predict the held-out subject’s data, the predictions will be poor
because the noise it has learned is not present in the new subject. This failure to
generalize results in a lower predictive likelihood score, which is the mechanism of the
penalty. Conversely, an overly simple model that underfits by failing to capture key
patterns in the training data will also generate an inaccurate prior and predict the held-
out subject's behaviour poorly. The procedure thus favours models that are just complex

enough to capture the true, generalizable patterns in the data (Browne, 2000).

Subject-level LOOcv scores were then submitted to the mbb-vb-toolbox in
MATLAB for group-level Bayesian model selection (BMS) (Daunizeau et al., 2014). The
toolbox implements a random-effects VBA. A random-effects analysis is conceptually
superior to a fixed-effects analysis as a fixed-effects approach assumes the same model
is best for all subjects, whereas a random-effects approach has a more plausible
assumption: different models may best describe different subjects (Stephan, et al.,
2009). The core challenge this approach addresses is that for many nonlinear models,
the integrals required to compute the exact model evidence or posterior densities are
analytically intractable. VBA provides a solution by using an iterative scheme to optimize
an approximation to both the model evidence and the posterior density. It does this by
maximizing a tractable lower bound on the log model evidence, known as the free energy,
This process simultaneously minimizes the Kullback-Leibler (KL) divergence between an
approximate posterior density, q(6), and the true posterior, p(6ly,m). The specific
implementation in the toolbox, known as a variational-Laplace scheme (K. Friston et al.,
2007), uses a mean-field assumption to partition the parameters and a Laplace

(Gaussian) approximation for the resulting marginal distributions to make the

51



optimization computationally efficient. For random-effects BMS, this approach treats the
model frequencies in the population as the unknown parameters to be estimated. It
assumes a Dirichlet distribution prior over the vector of model frequencies, r, which is
updated based on the log-evidence provided by the model scores — in my case, this is
LOOcyv - for each model and subject. The output of this inversion process is a posterior

Dirichlet distribution over r, from which the key metrics are derived (Stephan et al., 2009).
The VBA provides two key metrics for inference:

1. Model Frequency: This is the estimated posterior probability that a given model
generated the data for a randomly chosen subject from the population. The
frequencies for all models under consideration sum to 1, which should be
compared to the chance level (1 divided by the total number of models). This
metric is particularly useful for understanding population heterogeneity, as it may
reveal that multiple competing models are prevalent, rather than one single
winner. For a given model k, its expected frequency is computed from the
parameters (a) of the posterior Dirichlet distribution as:

O

E[r] =
j‘<=1 Q;

2. Exceedance Probability (XP): This represents the posterior probability that a
specific model is more frequent than all other competing models combined.
Whereas model frequency gives the expected prevalence, XP quantifies the belief
that a given model is the most prevalent. For instance, a model could have the
highest model frequency (e.g., 0.4) but still have a low XP if other models have
similar frequencies (e.g., 0.35 and 0.25), reflecting uncertainty about which is
truly the most common. An XP near 1, however, provides strong evidence for a
single "winning" model, indicating a high degree of confidence that it is the most
common data-generating process in the population (Rigoux et al., 2014). It is
calculated by integrating the posterior distribution over the simplex region where

its frequency is the largest:

XP, = P!(r, > 1 Vj # k| data)
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As an additional check, | also compared the LOOcv scores of the winning model
to the other models using paired sample t-tests, correcting for multiple comparisons by

adjusting the p value according to the number of models being compared.

2.3 Model Validation using Simulations

Relative model comparison criteria (like LOOcv) focus on evidence for the best
model given the set of models being compared. But they say little about how well a model
fits the data in an absolute sense. Awinning modelis just comparatively better, even if all
models poorly describe important data features (Palminteri, Wyart, et al., 2017).
Consequently, a model deemed "winning" based on fitting alone may still fail at
reproducing key behavioural signatures of the data. Further, the likelihood maximization
procedure used in model fitting can inadvertently inflate a model's performance. It may
favour parameters that, by chance, maximize the probability of observing an effect
already present in the data, even if the model's intrinsic computational process cannot
generate that effect. This differs from cross-validation by shifting the focus from
descriptive accuracy to generative capability. Forexample, a simple model might achieve
a better descriptive fit (lower LOOcv) than a more complex one, yet be unable to recreate
a key behavioural pattern in simulations. A simulation is the process of creating a
synthetic dataset by having a model "perform" the experimental task. Itis the analysis of
model simulations that provides insight into the behavioural bases for accepting or
rejecting a model, elucidating why a particular model is effective, rather than merely

which model fits best (Palminteri, Wyart, et al., 2017).

I validated winning models by seeing the degree to which it was able to reproduce
the pattern of behavioural data through simulations. For each simulated participant, |
began by drawing a set of parameter values from uniform distributions that spanned the
plausible ranges observed in the parameters estimated from the real data. This synthetic
agent, equipped with these parameters, then progressed through the task trial by trial.
On each trial, the model's equations were used to update its internal states (e.g., Q-
values) based on the outcomes and to generate a probabilistic choice based on those
states, mirroring the decision-making process hypothesized for human participants. |

repeated this for the same number of trials and conditions as in the actual experiment,
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resulting in a synthetic behavioural dataset for each model. To evaluate the simulations,
| treated the generated data as if it were from real participants. | applied the exact same
model-free statistical analyses (e.g., t-tests or ANOVAs or regressions) to the synthetic
data as | did to the human data. | was interested to see whether the key experimental
effects observed in the human participants were also present in the simulated data. The
key experimental effects were defined as the statistically significant findings from the
model-free analyses, which tested the study's main hypotheses. A successful validation
required that the winning model not only fit the data well quantitatively but could also
qualitatively reproduce these effects (e.g., show a statistically significant difference in
performance between Condition A and B that was comparable to the human effect). This
confirms that the model's internal mechanisms provide a sufficient explanation for the

observed behaviour.

2.4 Identifiability Analyses

The validation confirms that the winning model can reproduce the observed
behaviour. However, for this conclusion to be robust, two further methodological
conditions must be met. First, the model comparison procedure itself must be sensitive
enough to distinguish between the candidate models — model recovery. Second, the
parameters of the winning model must be uniquely identifiable and meaningful —

parameter recovery (Wilson & Collins, 2019).

2.4.1 Model Recovery

Model recovery asks “if one of our models were the true data-generating process,
could our model comparison procedure reliably detect it? “This is essential for ruling out
the possibility that a "winning" model is simply more flexible and can mimic data from
other models - a problem known as model confusion. A failure of model recovery would
imply that, within the context of the current experimental design, two or more models are
"conceptually unidentifiable" as they produce nearly indistinguishable patterns of
behaviour (Heathcote et al., 2015).

To conduct model recovery (Figure 2.2), | began with a simulation step. For each
candidate model, | generated a synthetic dataset for a simulated group of subjects, with

the number of subjects and trials mirroring the real experiment. The parameter values |
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used for this simulation were the ranges observed in the actual data. This process
resulted in a collection of synthetic datasets, one for each model under consideration.
Next, | subjected each of these synthetic datasets to the fullmodel comparison pipeline.
Specifically, | fitted every candidate modelto each synthetic dataset and fed the resulting
LOOcv scores into the VBA toolbox to determine a winning model based on the
exceedance probability. | repeated this entire simulation-and-comparison process for 50
iterations and recorded how often the model used to simulate the data was correctly
identified as the best-fitting model (e.g., if data were simulated using model M1, M1
should have the highest XP value). Next, | aggregated the outcomes into a confusion
matrix, which visualizes the proportion of iterations in which data generated from a
specific model (rows) was correctly identified as best fit by that same model (columns).
An ideal confusion matrix has high values on the diagonal (indicating successful
recovery) and low values on the off-diagonals (indicating low confusion between
models). This result validates that the models make sufficiently different predictions and
that the comparison method is sensitive enough to identify the true underlying model.
Additionally, | calculated the mean LOOcv score for each model during each iteration as

another model identifiability metric.
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Figure 2.2: The model recovery process for a hypothetical model space of three models (A,
B, and C). The workflow is iterated for all candidate models. In each iteration, one of the models
is designated as the 'ground truth’, meaning it is used to simulate the data. For example, the top
row shows the process where Model A is the ground truth. A synthetic dataset is generated using
Model A and then all models are fitted to this dataset and compared. If Model A comes out as the
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winner, then this iteration is a success. This entire simulation-and-comparison loop is repeated
for 50 iterations, and the number of successes and failures are counted. In the example shown,
out of 50 iterations 46 were a success and 4 a failure, corresponding to a 92% recovery rate. The
results from all iterations are aggregated into a Confusion Matrix (right panel). In this matrix, the
rows represent the true, data-generating model, and the columns represent the model that was
selected as the winner by model comparison. The diagonal elements show the proportion of
successful recoveries (e.g., the cell A,A shows that Model A was correctly recovered 46 times).
The off-diagonal elements show instances of "model confusion,” where the model that generated
the data did not win (e.g., the cell A,B shows that Model B emerged as the winner 3 times when
Model A was the true model). An ideal confusion matrix has high values on the diagonal and low
values on the off-diagonals, providing confidence that the models are distinguishable.

2.4.2 Parameter Recovery

Parameter recovery assesses whether the individual parameters of a given model
are identifiable (Wilson & Collins, 2019). A lack of identifiability can arise from model
misspecification or poor experimental design, leading to parameter trade-offs where
similar behaviour can be produced by opposing changes in two parameters (e.g., a low
learning rate might be compensated by higher decision noise). This would render the
interpretation of fitted parameter values at best difficult, at worst meaningless (Kruschke,

2015).

To check for this, | simulated data from the winning model using "true" parameter
values drawn randomly from gaussian distributions — to focus on the most common
values - spanning the empirically observed range. The standard hierarchical fitting
procedure was then used to "recover" the parameters from this simulated data. Recovery
success was assessed in two ways. First, by examining the relationship between the true
and recovered parameter values. This is typically visualized using scatter plots, where
strong recovery is indicated by the points clustering tightly around the identity line (y=x),
and a correlation matrix where the values are given by the Pearson correlation between
the true and recovered values. | used a correlation value of 0.80 and higher as the
evidence that a parameter is well-constrained by the data and can be estimated reliably
(Figure 2.3 (A)) while values lower than that would raise concerns (Figure 2.3 (B)). Second,
to diagnose potential trade-offs, the correlation matrix of the recovered parameters was
examined. Strong correlations between different recovered parameters which were
generated independently, would indicate an identifiability issue, suggesting that the

model is unable to disentangle the unique contribution of each parameter to the
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behaviour (Wilson & Collins, 2019). Successful recovery, marked by high true-to-
recovered correlations and low correlations between different recovered parameters,

provides confidence that the model's parameters can be validly interpreted.
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E y1-0.08 0.04 ' 0.96 g y1 0.15 0.20 0.55
: :
s o
]
£ B1002 092 008 < B{-085 065 0.20
D o
: :
é a4 095 0.05 -0.10 é a4 0.60 -0.85 0.15
S @ o\ s & A
Simulated (True) Parameters Simulated (True) Parameters

Figure 2.3: Examples of good and bad parameter recovery. A) High correlations on the diagonal
indicate that true parameters were successfully recovered. B) Low correlations on the diagonal
and strong off-diagonal correlation (here, between a and ) indicate parameter recovery failure.
The numbers are fictitious and just for illustrative purposes.

2.5 Testing for differences between parameters

A key question | address using computational models in this thesis is whether
learning (i.e. the degree to which beliefs are updated) varies between different
conditions. This rate of learning is captured in the models by learning rates, with different
learning rates used to characterise learning in different conditions (e.g., one learning rate
for confirmatory feedback and one for disconfirmatory). To assess whether learning is
indeed statistically different between conditions, | tested for differences using a
hierarchical ttest. This test was used as a result of the EM model fitting process used; it
was important to use a method that accounts for the statistical properties of the
hierarchically estimated parameters. Applying standard frequentist tests (e.g., t-tests) to
individual parameter point-estimates from a hierarchical model is statistically invalid.
The regularization or "shrinkage" inherent in the fitting process violates the assumption

of independence required by such tests, as each individual's estimate is influenced by
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the group distribution. This shrinkage artificially reduces inter-subject variance, leading
to a substantial inflation of the Type | error rate (i.e., false positives) (Piray et al., 2019). To
overcome this, following Piray and colleagues’ (2019) approach, | used hierarchical t-
tests. This method operates on the posterior distribution of the group-level parameters
(e.g., the group mean), which correctly reflects the uncertainty of the estimate at the
population level. The test evaluates whether a credible interval for the group mean effect

includes zero, based on the estimated mean and its hierarchical standard error.

58



Chapter 3: Confirmation Bias Exists in the
Face of False Information

3.1 Introduction

When a financial trader pursues the markets and ignores an increase in the price
of shares they recently sold whilst boosting their ego from an increase in the price of
shares they recently bought, they are applying a well-known learning bias prevalent in
decision making. Across a wide range of domains, information consistent with past
choices and judgments is integrated into beliefs to a greater extent than information that
challenges them. This phenomenon, known as confirmation bias ((Bronfman et al., 2015;
Klayman & Ha, 1987; Nickerson, 1998; Talluri et al., 2018), impacts a range of domains,
ranging from finance (Park et al., 2010) to science (C. X. Cheng, 2018; Darley & Gross,
1983) to politics (McClung Lee, 1949).

The computational principles that enable biased beliefs to persist in the face of
new evidence are thought to arise from a key feature of how we learn: the differential use
of prediction errors, which quantify the difference between expected and received
outcomes (Sutton & Barto, 2018). By enabling prediction errors to selectively have a
greater impact when these confirm versus disconfirm our expectations, information that
confirms past choices is amplified, whilst information that undermines them is ignored.
This mechanism - a form of asymmetric learning - goes against classic normative
theories from economics (Neumann & Morgenstern, 1944), machine learning (Russell &
Norvig, 1995), and psychology (Kérding & Wolpert, 2004; Maslow, 1950). However, a raft
of neurobiological (Dabney et al., 2020; Garrett et al., 2014; Lefebvre et al., 2017; Sharot
et al., 2011) and computational (Garrett & Daw, 2020; Lefebvre et al., 2017; Palminteri,
Lefebvre, et al., 2017) evidence converge to suggest that the process of updating beliefs
in the face of new evidence involves prediction errors changing beliefs to differing
degrees, depending on both their sign (whether the prediction error is positive — greater
than expected or negative — less than expected) and whether this sign signals one has
made the right (a positive prediction error for a chosen option or a negative prediction

error for an unchosen option) or wrong (the converse) decision.
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Whilst the computational principles that give rise to confirmation bias have been
established, much of the theory and empirical work has been confined to cases in which
information is accurate (Chierchia et al., 2023; Lefebvre et al., 2022; Palminteri, 2023;
Palminteri, Lefebvre, et al., 2017; Rollwage et al., 2020; Rollwage & Fleming, 2021) (but
see recent work from (Vidal-Perez et al., 2025). Yet much of our everyday experience
involves gathering and processing information, which often transpires to be either
intentionally or unintentionally false. Understanding whether confirmation bias also
exists in the face of such cases and, if it does, establishing if it arises from similar
computational mechanisms, is an increasingly prescient question in an era where
platforms that are regularly used to receive and share information prioritise engagement
over accuracy, which can lead to the proliferation of misleading content (Lewandowsky

etal., 2017).

Here, | combined behavioural testing with a novel learning paradigm in
conjunction with computational modelling in two separate studies. In the task (Figure
3.1(a)), participants (study 1, online: N=47; study 2, in the lab: N=57) made choices
between pairs of options (abstract symbols). Following the outcome (gain/loss), cues
indicated whether the outcome was genuine or false. The task dissociated outcome from
true and false information and used learning to both avoid losses (where getting -1 is the
better outcome compared to -10) and accrue gains (where getting +1 is the worse
outcome compared to +10) in order to disassociate effects driven solely by outcome
valence. | also provided counterfactual (outcome shown for the unchosen option) as well
as factual (outcome shown for the chosen option) outcomes to be able to disassociate

confirmation bias from positivity bias.

3.2 Methods

3.2.1 Participants

A total of 70 participants were recruited online via Prolific for the first study, 23 of
whom were excluded; therefore, the final sample was 47 participants (mean [standard
deviation] age: 30.45 [7.2]; 28 female). A total of 91 participants were recruited from the
university pool for the second study, 34 of whom were excluded, leaving the final sample
of 57 participants (mean [standard deviation] age: 20.45[3.8]. While these exclusion rates
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(roughly 30-37%) might seem high, they actually align with current best practices that
emphasize data quality over sheer numbers, where exclusion rates like my experiments
are often necessary to weed out careless responding by inattentive participants (Nadler
et al., 2021; Peer et al., 2022). Further, Zorowitz et al., (2023) found that keeping such
participants in the dataset can create spurious correlations between behavioural tasks

and self-reported measures.

Three exclusion criteria were applied to ensure data quality. First, participants
who incorrectly answered more than one of the ten catch trials were excluded (n=1 in
Study 2). Second, trials with reaction times below 100ms or above 4 seconds were
removed from analysis. Third, participants showing subpar learning performance were
excluded, defined as choosing the better option less than 55% of the time in solvable
conditions (n=23 in Study 1, n=33 in Study 2). Study 1 participants received £3 plus a
performance-based bonus ranging from £3-£6. Study 2 participants received course
credits plus a performance bonus up to £3. All participants provided informed consent
prior to participation. The research protocol received approval from the University of East

Anglia's ethics committee and complied with all relevant ethical guidelines.

3.2.2 Behavioural task

Participants completed an instrumental learning task where, on each trial, they
chose between two options, received an outcome, and were told whether the outcome
was true (a tick symbol) or false (a cross symbol) — Information Cues (Figure 3.1(a)).
Participants were told that when they received a cue saying the preceding outcome was
false this represented a "glitch" showing an outcome from an unrelated game, and they

should ignore this information when learning which options were better.

The experiment consisted of 160 trials organised into gain and loss contexts. In
gain trials, participants could receive +1 or +10 points, while loss trials involved -1 or -10
points. Information cues were equally split between true and false trials (50% each), with
assignments made randomly. Four consistent option pairs were used throughout the
experiment, where a given option was always paired with the same counterpart. These

option pairs were presented in random order with randomised left/right positioning.
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Two experimental conditions defined the underlying reward structure (Figure 1(b),
and (c)). Inthe solvable condition, when the outcome was to be subsequently designated
true, one option had an 80% chance of giving the superior outcome of the two outcomes
available and the other 20%. When the outcome was to be subsequently desighated false
it was 50% likely to be favourable for both options. In the unsolvable condition, when the
outcome was to be subsequently designated true, it was 50% likely to be favourable for
both options (hence unsolvable). When the outcome was to be subsequently designated
false, one option had an 80% chance of giving the superior outcome of the two outcomes

available and the other 20%.

Participants' goal was to identify which option more frequently provided rewards
(in gain pairs) or less frequently provided punishments (in loss pairs). They learned these
preferences through trial and error, as they were not privy to probability contingencies,
but had to pay attention to true and false information. Although participants were
instructed to ignore false information, these trials still contributed to their final bonus

payment.

As an attention check, ten separate catch trials were randomly shown to
participants, and they had to answer whether the previous trial they just saw was true or
false. The task was programmed in JavaScript using the toolbox JSPSYCH version 6.3

(Leeuw et al., 2023).
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Figure 3.1: The Task. (a) Participants made choices between four pairs of options (abstract
symbols) and received an outcome (win/lose money) about one of the two options (the option
chosen or the unchosen option). A cue (tick or cross) then indicated whether the outcome was
genuine (tick) or false (cross). In 6.25% of trials, we then asked participants to report what the
accuracy cue had been as an attention check. (b) For two of the pairs, in true trials, in most trials
one of the two options provided the best outcome (either winning money or avoiding losing
money), but outcomes were random for each option in false trials. (c) For the other two pairs, this
pattern was reversed, such that in true trials, outcomes were random for each option; hence,
there was no better option. In false trials, however, one option gave favourable outcomes 80% of
the time, potentially misleading the participants into thinking it was the better option.
3.2.3 Behavioural Analysis

To assess whether participants had used true or false information, | averaged the
number of times each participant had selected the correct option in the solvable
condition and the misleading option in the unsolvable condition (i.e. the option that gives
them a false favourable outcome 80% of the time) and then averaged this average to
obtainthe mean choice rate forthem. Next, | ran a one-sample t-test on this mean against

0.50. A significant result would indicate that they have learned about the correct and

misleading options.
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3.2.4 Computational Models

| fitted several models that were variations of the standard Rescorla-Wagner (RW)
model (Rescorla & Wagner, 1972). In each model, in each trial (t), either the chosen or
unchosen option is updated depending on whether the outcome is shown for one or the

other. The formula is the same. For instance, for the chosen option, we have:

Qc(t+1) = Qc(t) + a * dc(t)
In which 8. is the prediction error () for the chosen option, defined as the

difference between the expected outcome and the observed outcome:

And a is the learning rate parameter determining the extent to which PEs are used

as a learning signal.

Then, the learned values of the two A and B options are converted to choice
probabilities using the SoftMax function. For instance, the probability of choosing option

Ais given as:

1+ exp(B(Qp —Qa)
Where B is the inverse temperature parameter that controls the degree of
stochasticity in choice behaviour. Larger values of B yield more deterministic choices,

while smaller values reflect more exploratory behaviour.

The contribution of each trial to the likelihood was given by the log probability of

the observed choice. For a choice between the chosen (ic) and unchosen (i,) options:

1
I =1
o8 <1 T exp(—B[Qu(0) - Qiu(o]))

The log-likelihood for a subject was then:

L:th
t

and the model minimised the negative log-likelihood, —-L, during estimation.

To test the effect of Feedback (Confirmatory vs Disconfirmatory) and Accuracy

(True vs False) on decision-making, | tested four different models with different numbers
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of a (a =2, 3 or 4). The number of learning rates was varied according to Feedback and
Accuracy dimensions. The confirmatory feedback is defined as a positive PE (+10 in the
gain context and -1 in the loss) for the chosen option or a negative PE (+1 in the gain
context and -10 in the loss) for the unchosen option. Conversely, the disconfirmatory
feedback is when a negative PE outcome occurs for the chosen option or a positive PE

for the unchosen option.

The four models were formulated as follows:
Model 1 (M1)
Q(t+1) = Q(t) + arue * O(t) if information accuracy cue = True
Q(t+1) = Q(t) + Afase * O(1) if information accuracy cue = False

Free parameters (N=3): Qure, Ctatse, B

Model 2 (M2)

Q(t+1) = Q(t) + Atrue * O(1) if accuracy = True

Q(t+1) = Q(t) + Acont, faise * O(t) if accuracy = False and feedback = Confirmatory
Q(t+1) = Q(t) + Apiscont, faise * O(t) if accuracy = False and feedback = Disconfirmatory

Free pa rameters (n=4): Qltrue; Oconf, falses ADiscont, falses B

Model 3 (M3)

Q(t+1) = Q(t) + Qtatse * O(t) if accuracy = False

Q(t+1) = Q(t) + Aconf, true * O(t) if accuracy = True and feedback = Confirmatory
Q(t+1) = Q(t) + Aiscont, true * O(t) if accuracy = True and feedback = Disconfirmatory

Free pa rameters (n=4): Clalse; Qcont, trues; ADisconf, trues B

Model 4 (M4)

Q(t+1) = Q(t) + Aconf, fatse * O(t) if accuracy = False and feedback = Confirmatory
Q(t+1) = Q(t) + Apiscont, faise * O(t) if accuracy = False and feedback = Disconfirmatory
Q(t+1) = Q(t) + Aconf, true * O(t) if accuracy = True and feedback = Confirmatory
Q(t+1) = Q(t) + Abiscont, true * O(t) if accuracy = True and feedback = Disconfirmatory

Free parameters (n=5): Clconf, true; ADiscontf, true, Aconf, false, CDisconf, falses B
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Next, | created two 8-learning-rate models. In the first, to see if the observed
pattern of learning rates was indeed confirmation bias and not positivity bias, Model 4
was expanded to include separate learning rates for factual and counterfactual
outcomes (see Appendix 3.1 for full details). Second, to see if the confirmation bias for
true and false information exists for both Gain and Loss contexts, Model 4 was expanded
to include separate learning rates for Gain and Loss contexts (see Appendix 3.2). An
additional supplementary model introduced gradual perseveration parameters to Model
4. The goal here was to see if the confirmation bias is robust once the gradual
perseveration is considered, as some argue the confirmation bias is a pseudo-bias bias
emerging from perseveration (Katahira, 2018; Sugawara & Katahira, 2021), while others

defend the validity of the bias (Palminteri, 2023) .

The core idea behind the gradual perseveration model is to maintain a "choice
trace" - like a memory of how often an option has been selected - for both chosen and

unchosen options:

C.(t+1) = Cc(t) + T(CPE(c))
Cu(t+1) = Cu(t) + T(CPE(u))
CPE(c)=1-Cc(t)
CPE(u) =0-C.(t)

Where C. and C, are the choice traces for the chosen and unchosen options,
respectively. When an option is chosen, its trace is increased towards 1; when an option
isnotchosen, itstrace is decreased towards 0. This update process is driven by a “choice
prediction error" (CPE) and choice trace accumulation rate (t) akin to a learning rate,
which controls how quickly the trace adapts. For instance, if it is set to 1, then only the

previous choice affects the current choice, while lower values mean more of the past

choices are influential.

This choice trace then biases future decisions. The probability of picking one
option (A) over another (B) is determined not just by its expected value (Q) but also by its

choice trace (C) as given by the following:

1+ exp(B(Qp —Qa) + ¢(Cs — C))
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In which, B determines how much the learned value of an option influences the
choice, while ¢ (phi) determines how much the history of past choices sways the
decision. If ¢ is positive, it encourages repeating past choices (perseveration), while if

negative, it encourages switching to different options (alternation).

Therefore, the gradual perseveration model has seven free parameters: Acont, true,

aDisconf, true, aConf, false, aDisconf, false, B, (P’ T.

It should be noted that | focus on the four main models in model comparison and
modelrecovery for two reasons. First, these models test my hypotheses of interest, while
the supplementary models serve as robustness checks. Second, | employ the same
modelling approach in subsequent chapters, ensuring a consistent and generalisable

framework throughout the thesis.

3.2.5 Model Fitting Procedure

Models were fitted hierarchically by maximising the likelihood of observed
choices using an Expected Maximisation (EM) algorithm (Huys et al.,, 2011) in Julia
(v1.9.4) (Bezanson et al., 2012). This hierarchical approach was chosen for its superior
performance in predicting unobserved data (Scheibehenne & Pachur, 2015). A full

description of the fitting procedure is available in Chapter 2.

3.2.6 Model Comparison

To compare model performance, | calculated subject-level leave-one-out cross-
validation (LOOcv) scores. | analysed these scores using a Variational Bayesian Approach
(VBA; Daunizeau et al., 2014) to determine model frequencies and the exceedance
probability for each model. The exceedance probability indicates how likely it is that one
model is a better fit than all others in the set (Daunizeau et al., 2009). The full model

comparison strategy is detailed in Chapter 2.

3.2.7 Statistical Tests on the Learning Rates

After identifying the winning model, | reparametrized it to create parameters that
directly quantified the magnitude of confirmation bias for true and false information,

respectively (see Appendix S for equations). Because these parameters were estimated
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hierarchically, standard t-tests could yield biased results (Piray et al., 2019). Therefore, |
used hierarchical t-tests, which are designed for this data structure, to assess the effects

of interest. See Chapter 2 for the full details.

3.2.8 Model Recovery

To ensure my models were distinguishable, | conducted a model recovery
analysis. For each of the four models, | generated 50 synthetic datasets using parameters
from the experimental data. | then fitted all four models to each synthetic dataset to verify
that the data-generating model could be correctly identified via the VBA procedure. The

full model recovery strategy is detailed in Chapter 2.

3.2.9 Parameter Recovery

| also conducted a parameter recovery analysis for the winning model to ensure
its parameters could be reliably estimated. | generated data for 5000 synthetic
participants using a range of known parameter values. After fitting the model to this data,
| compared the original and recovered parameters using Pearson correlations to confirm
a high degree of correlation. The full parameter recovery strategy is detailed in Chapter

2.

3.3 Results

Participants learn from true and false information. Analysing choice rates
revealed that on average participants selected Option 1 (O1) over Option 2 (02) in both
the solvable (Study 1: t(46) = 14.66, p < 0.01; Study 2: t(56) =12.50, p < 0.01) and
unsolvable conditions (Study 1: t(46) = 2.64, p < 0.05; Study 2: t(56) = 3.47, p < 0.01),
Figure 3.2. This suggests that participants integrated feedback from both true and false
information. However, this was not the result of ignoring accuracy cues since there was
clear evidence that information integration was modulated by these cues; the propensity
to choose O1 over O2 was greater in the solvable condition compared to the unsolvable
one (Study 1:t(46) =5.42, p <0.01; Study 2: t(56) = 5.48, p <0.01). As an additional check
to verify that participants paid attention to this cue, on 6.25% of trials, participants were
asked to report what the accuracy cue had been on the previous trial — participants
correctly reported this 90% of the time.
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Figure 3.2: Choice Rates for (a) Study 1 and (b) Study 2. Participants opt to select option 1 - the
option that provides the best outcome (+10 in the gain context or -1 in the loss context) more often
relative to option 2 - to a greater degree in solvable compared to the unsolvable
conditions(Experiment 1: t(46) =5.42, p <0.01; Experiment 2: t(56) = 5.48, p < 0.01). But, in both
solvable (Experiment 1: t(46) = 14.66, p < 0.01; Experiment 2: t(56) =12.50, p < 0.01) and
unsolvable (Experiment 1: 1(46) = 2.64, p < 0.05; Experiment 2: t(56) = 3.47, p < 0.01) conditions,
participants chose O1 to a greater degree than chance. Choice rates are averaged over gain and
loss contexts. *p < 0.05, ***p < 0.001 (one-tailed test vs 0.5 or paired sample t-test as
appropriate)

Next, | sought to assess if participants learned from false information in a biased
manner. | tested four computational models that differed in their number of learning rates
(see Methods). All models shared the same basic structure butvaried in how they parsed

confirmatory versus disconfirmatory feedback and true versus false information.

Model 1 used two learning rates: one for true and another for false information.
Model 2 had three learning rates, maintaining a single rate for true information but
splitting false information into separate rates for confirmatory and disconfirmatory false
information. Model 3 also used three learning rates but took the opposite approach,
using one rate for false information while distinguishing between confirmatory true and
disconfirmatory true information. Finally, Model 4 incorporated four learning rates,
providing separate rates for each combination: confirmatory true, disconfirmatory true,
confirmatory false, and disconfirmatory false information. This modelling approach
allowed me to examine whether participants processed information differently based on
feedback (confirmatory vs disconfirmatory) and veracity (true vs. false). Full model

specifications are provided in the Methods section.
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Four learning rate model the best fit to the data. Across both studies, Model 4
consistently provided the best fit to the data. | compared the four models using leave-
one-out cross-validation (LOOcv) scores and a Variational Bayesian Approach, and in
both studies, Model 4 achieved the highest model frequency (~83% in Study 1 - Figure
3.5(a) - and ~93% in Study 2 — Figure 3.5(c)) and an exceedance probability of 1.0 (Figure
3.3(b)). These frequencies were well above the 25% chance level, indicating strong
evidence that the four-parameter learning structure of Model 4 was the best at capturing
participants' behaviour. Model recovery (Figure 3.3 (b) and (c)) indicated all models are
identifiable and parameter recovery showed all parameters of the winning model had a
high recovery rate (Figure 3.4 (a)) and the correlation between the parameters in the real
data was low for study 1 (Figure 3.4 (b)) and study 2 (Figure 3.4 (c)).
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Figure 3.3: Model Fit and Recovery. (a) Shows the exceedance probabilities (XP), which quantify
the confidence that each model is more likely than all other models in the set. M4 achieved an
exceedance probability of nearly 1.0, indicating extremely high confidence that it outperforms
the competing models. (b) Shows the confusion matrix representing model recovery accuracy.
Each simulated model (x-axis) is correctly identified by the model comparison procedure as the
best-fitting model (y-axis), with all values on the diagonal equal to 1 and off-diagonal values equal
to 0. This indicates perfect recoverability and discriminability between the models, confirming
that the model-fitting approach can reliably distinguish among the candidate models. (c)
Displays the mean Leave-One-Out Cross-Validation (LOOcv) scores for each model averaged
over 50 iterations, where lower values indicate better predictive performance. The simulation
results demonstrate that when data were generated from a specific model (columns), the
corresponding model generally achieved the lowest LOOcv score when fitted to that data,
validating my model recovery procedure. Notably, M4 showed strong recovery performance.
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Figure 3.4: Parameter Recovery. (a) Successful parameter recovery of the winning model with high

correlations between the simulated and estimated parameters. (b) The correlation between the

parameters of the winning model in Study 1 and (¢) in Study 2. The weak correlations demonstrate that

parameters do not systematically trade off against each other during estimation, supporting the
model's identifiability.

As an additional check, paired sample t-tests with FDR correction confirmed

Model 4's superiority over all other models. In Study 1, Model 4 was significantly better

than Model 1 (t(46 ) = —-4.75, p_adj < 0.001), Model 2 (t(46) = -3.69, p_adj<0.001), and

Model 3 (t(46) = -3.07, p_adj < 0.01). This was also true in Study 2, where Model 4 again

outperformed Model 1 (1(56) = —-4.94, p_adj < 0.001), Model 2 (t(56) = -3.82, p_adj <

0.001), and Model 3 (t(56) = -3.34, p_adj <0.01).

This advantage was also apparent at the individual level. In Study 1, Model 4
provided the best fit for the largest portion of participants (44.7%), followed by Model 3
(25.5%), and then Models 2 and 1 (both 14.9%). Similarly, in Study 2, Model 4 accounted
for the largest group of individuals (42.1%), compared to Model 3 (22.8%), Model 2
(19.3%), and Model 1 (15.8%). These results show differential treatment of PEs across
accuracy (true vs false) and feedback (confirmatory vs disconfirmatory), with four

learning rates governing the decision-making.
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Figure 3.5: Modelling Results and Estimates. (a) Estimated model frequencies from the VBA
model comparison in study 1. Model 4 (M4) had the highest frequency, selected for
approximately 83% of participants, with an exceedance probability (XP) of 1. (b) The estimates
from M4 showed a higher learning rate for confirmatory versus disconfirmatory feedback for true
(t(46) = 6.50, p < 0.001, hierarchical t-test comparing Qeonf rue With Quiscont wue ) @and false (t(46) =
5.19, p < 0.001, hierarchical t-test comparing Qconf fase With Quisconf faise) information, indicating
confirmation bias. (c) Estimated model frequencies from the VBA model comparison in study 2.
Similar to study1, Model 4 (M4) had the highest frequency, selected for approximately 93% of
participants, with an exceedance probability (XP) of 1. (d) The estimates from M4 show the
existence of confirmation bias for true (t(56) = 5.24, p < 0.001, hierarchical t-test comparing
Cloont true With Qiscont true ) @nd false (t(56) = 2.43, p =0.01, hierarchical t-test comparing Qcont faise With
Qaisconf faise) 1IN this study as well. The model frequency reflects the proportion of the population
best accounted for by each model. ***p < 0.001, *p < 0.05, hierarchical t-test.

Confirmation bias exists for false information. | then probed the pattern of
learning rates from the winning model (M4) (Figures 3.5 (b) and (d)). In both studies,
participants exhibited a strong confirmation bias for false information (t(46) = 5.19, p <
0.001; t(56) = 2.43, p = 0.01) and true (t(46) = 6.50, p < 0.001; t(56) = 6.38, p < 0.001),
learning more from confirmatory vs disconfirmatory feedback. There was no significant
differenceinthe size of this bias between true and false information (t(46) = 1.81, p =0.07;

t(56) = 1.11, p = 0.26). | confirmed that this was indeed confirmation bias and not
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positivity bias (see Appendix 3.3) and that it is robust across Gain and Loss contexts (see
Appendix 3.4). Then | controlled for perseveration by estimating the learning rates of the
gradual perseveration model to see if the confirmation bias holds (Figure 3.6). The reason
for this analysis was that within the context of such RL experiments, a group of
researchers argues that the confirmation bias is a "pseudo-bias" that emerges from a
simpler tendency to persevere with previous choices (Katahira, 2018; Sugawara &
Katahira, 2021). However, another group defends the bias's validity that cannot be
explained away by perseveration (Palminteri, 2023). My results from this model showed
that the bias for false information survived in study 1 (t(46) = 3.13, p < 0.001) and study 2
(t(56) = 5.24, p < 0.001). The bias for true information, however, survived in study 1 (t(46)
= 2.43, p = 0.01) but not in study 2 (t(56) = 1.15, p = 0.25). It should be noted that the

choice
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Figure 3.6: Gradual Perseveration Model Estimates. (a) The estimates from the gradual
perseveration model showing confirmation bias for study 1 for both true (t(46) = 2.43, p = 0.01)
and false (t(46) = 3.13, p < 0.001) information. (b) The estimates of the model in study 2 showed
confirmation bias for false information (t(56) = 5.24, p < 0.001) but not for true (t(56) = 1.15, p =
0.25). n.s: not significant, *p < 0.05, hierarchical t-test.

3.4 Discussion

Debunking reduces learning from false information compared to true information,
but it is less effective when false information confirms vs disconfirms one’s beliefs, as
demonstrated by a higher learning rate for confirmatory vs disconfirmatory false
information — a confirmation bias. In two reinforcement learning (RL) studies, through
computational models, | showed that confirmation bias exists when faced with false

information, not only replicating the well-documented asymmetric treatment of
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prediction errors as the mechanism behind this bias for true information (Chierchia et al.,
2023; Palminteri, 2023, 2025; Palminteri et al., 2017; Palminteri & Lebreton, 2022) but
also extending it to the misinformation domain. The winning model had different learning
rates across feedback (confirmatory vs disconfirmatory) and accuracy (true vs false)
domains, surpassing other models with fewer learning rates in a formal model
comparison. Therefore, both model estimation and model comparison indicated

sensitivity to information based on its feedback and accuracy.

Confirmation bias for false information could explain the phenomenon of echo
chambers or filter bubbles (Flaxman et al., 2016). The key feature of these bubbles is the
preference for confirmatory information; and, as my results demonstrate, confirmatory
false information is harder to debunk because the earlierinformation whose veracity was
unknown told people what they wanted to hear, acting as a reward. On social media,
features such as “Like” that confirm one’s beliefs can indeed act as a reward akin to my
RL task. Turner et al. (2025) modelled social media using RL whereby they treated its
features - such as receiving likes on posts - as rewards that updated action values. They
showed that when users repeatedly receive this type of social validation through likes and
shares they develop habits around content they have learned to be rewarding. The issue
is that this reinforcement mechanism doesn't distinguish between true and false
information and only responds to whether content aligns with existing beliefs. One
cannot establish causality here, but the outcome of such interactions is a polarized
environment with different echo-chambers that boost their own confirmatory content
and dispense with disconfirmatory information. According to my results, debunking is
boundto be less effective in such environments as the content thatis being fact-checked

is most likely in line with the bubble’s beliefs.

This problem gets worse because in real life, people actively choose what
information they like to consume - unlike in my experiment where | presented information
to them. The exposure effect (Sears & Freedman, 1967) explains that people tend to seek
information that is in line with what they already believe while avoiding information that
contradicts their views. Given that we are inundated with so many choices today, it is
much easier to choose sources that we know will confirm our beliefs, downweighting

accuracy (lyengar & Hahn, 2009; Karlsen et al., 2020). Bromberg-Martin and Sharot (2020)
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argue that confirmatory information produces rewarding "internal outcomes" akin to
positive emotional experiences, reframing motivated reasoning as the rational pursuit of
information thatis rewardingin and of itself. Hart et al.'s (2009). A meta-analysis supports
this (Hart et al., 2009), demonstrating that while accuracy matters, the drive toward
confirmatory information intensifies when people want to defend their beliefs. Therefore,
information seeking becomes a tool to feel good, whereby people seek information that
brings them positive emotions rather than accurate information. This keeps happening
over and over, creating a loop whereby not only do we interpret information in a biased
manner, but our choices also control what information we see in the first place. This
creates a system that favours information matching our beliefs, no matter the veracity.
Therefore, providing a mechanistic account of why people seek information from

unreliable sources is an important future direction.

The main finding of this chapter — confirmation bias for false information - applies
to Large Language Models (LLMs) like ChatGPT as well. These Al systems are trained to
match user preferences using methods like Reinforcement Learning from Human
Feedback (RLHF). Basically, the models get rewarded when they produce responses
users deem helpful (Ouyang et al., 2022). While this makes the Al easier to use, it also
makes it sycophantic (Rathje et al., 2025), telling people what they want to hear instead
of giving accurate information (Perez et al., 2022; Santurkar et al., 2023). My findings add
another layer to this. When an LLM gives someone confirmatory false information, that
person is more likely to learn from that information. At a larger scale, LLMs could create
customised false information for each user based on their beliefs, creating mini echo

chambers detached from reality.

My results shed light on both the benefits and limitations of debunking
misinformation. On the bright side, debunking could be effective: participants learned
less from false vs true information. This is in line with other studies showing that
debunking could be an effective intervention (M.-P. S. Chan et al., 2017; Walter et al.,
2020). The only downside is that debunking is less effective when false information tells
us whatwe want to hear. This helps the continued influence effect, where misinformation
keeps affecting people's thinking even after they've been corrected and accepted the

correction (Johnson & Seifert, 1994). Previous research suggests misinformation leaves
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a mental 'trace' that's hard to erase from memory (Walter & Tukachinsky, 2020). My
findings complement this by showing that this mentaltrace is stronger for misinformation
that confirms our beliefs, potentially because we learn it better in the first place, making

it harder to undo later.

In light of such limitations, an alternative approach is offered called prebunking
(Van Der Linden, 2024; van der Linden et al., 2017). This approach is akin to a vaccine
whereby you expose people to a small, weakened version of misinformation and explain
why it's wrong beforehand, building mental resistance, the effectiveness of which has
been shown in several studies (van der Linden et al., 2017; Roozenbeek & van der Linden,
2019). For instance, a prebunking version of the current RL task would be to bring the
information cue presentation before the outcomes are observed (Vidal-Perez et al.,
2025). Prebunking, however, is not a perfect solution. For instance, using RL, Vidal-Perez
et al. (2025) found that even when people were warned in advance that a source was
unreliable, they still learned from it - especially when they were under higher cognitive or
working memory load. They also found that people showed stronger positivity bias when
learning from sources they knew had low credibility. This raises important questions for
future research: Is prebunking better than debunking at stopping people from learning
false information? Does the confirmation bias | found with debunking also happens with

prebunking?

Another factor that may contribute to learning from false information is cognitive
or working memory (WM) load. Efficient learning in the current RL task requires tracking
the values of four option pairs while simultaneously monitoring their veracity - filtering
outirrelevant false information and integrating true information - which taxes WM. WM is
indispensable to RL, even in simple instrumental tasks like the two-arm bandit (Collins,
2018; Collins et al., 2017; Yoo & Collins, 2022). In my RL task, WM could help filter out
false information, but under higher load, this filtering capacity may fail, leading to greater
integration of false information. Evidence from Vidal Perez et al. (2025) supports this
hypothesis. They tested two versions of a prebunking paradigm that differed in cognitive
load: their "Discovery Study" required participants to learn one option pair per block
(lower load), while their "Main Study" required learning three pairs simultaneously (higher

load). Under lower load, participants showed no significant learning from an unreliable
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agent - basically, the False cue in my task. However, under higher load, significant
learning from the unreliable agent emerged. The positivity bias persisted across both
studies when encountering the unreliable agent. These findings suggest that filtering out
false information becomes more difficult as load increases, which might apply to my
debunking paradigm despite the obvious methodological differences. Given that
processing information on environments replete with misinformation such as social
media is also cognitively demanding (Pittman & Haley, 2023), where people shouldignore
the abundant bots and shoddy accounts (Chuai et al., 2023b), it is plausible that one
reason why people are vulnerable to false information in such environments is failure to
filter out misleading content, especially when they confirm one’s beliefs. Future studies
could shed light on this by directly manipulating WM load (e.g., by varying the number of
stimuli to learn - set size) and testing whether false information integration changes as a

function of it.

While the RL framework employed here provides a useful method for quantifying
confirmation bias, it is important to acknowledge its limitations. One limitation is the
restriction of learning rates (a) to values between 0 and 1, meaning that a negative
learning rate is impossible. In a standard Rescorla-Wagner model, a positive outcome
(e.g., +10 points) generates a positive prediction error, which mathematically forces an
increase in the expected value of the associated option. However, when the same
outcome turns out false it could create a computational paradox. Considerthis example:
a participant chooses Option A, sees a +10 win, but is then shown a Cross (False). If the
participant interprets this as a negative scenario, they might lower their estimate of
Option A. Yet, to reduce the value of Option A the model would mathematically require a
negative learning rate (multiplying the positive error by a negative number). Since this
parameteris conceptually invalid in standard RL, the model cannot capture this potential
scenario. Instead, the model is forced to either increase the value towards the displayed
reward or to suppress the learning rate toward zero, meaning that it cannot capture acase
where the participant lowers the value of the option. Further, standard RL algorithms are
associative, meaning that they update values incrementally based on the reward history.
However, processing false information in this task involves retrospective judgement. For

example, a participant understands that a “Cross” changes the meaning of the +10 they
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just saw. This limitation suggests that while RL can model how values change, it does not
capture the reasoning participants use to determine what those values actually are when
information is unreliable. To address these limitations, future studies could employ
Bayesian learning models (Behrens et al., 2007; Diaconescu et al., 2014a) or Latent
Cause Models (Gershman & Niv, 2010). Bayesian models track the reliability of the
information source. Unlike RL, which assumes inputs are always “true” rewards, a
Bayesian agent estimates the probability that a signal is correct. If the agent infers that
the False cue indicates a reliability of 0%, the model mathematically inverts the
prediction error in the update step. Alternatively, Latent Cause models shift the
mechanism from value updating to structural inference. Rather than assuming all
outcomes belong to a single state, the agent infers distinct “hidden states” that generate
observations. In this framework, the agent can infer that the False cue sighals a specific
“Noise State,” allowing the model to ignore the false feedback and protect the true value

estimate.

These findings paint a bleaker picture than earlier studies, demonstrating that
misinformation can exert a noticeable influence on our learning even when tested with
basic, abstract stimuli in controlled settings. The confirmation bias for false information,
in particular, is a finding that showcases how vulnerable we are to false claims that are in
line with our existing viewpoints. Given that the algorithms are tailored to our beliefs
(Glickman & Sharot, 2024; Vellani et al., 2024), these kinds of confirmatory information
are bound to be common, a sizeable chunk of which will be misleading or false. The
computational modelling approach | employed here was useful in understanding both
the potential effectiveness of debunking interventions and the reason behind their
limitations. Combating misinformation therefore requires a better understanding of the

reward-based cognitive biases that shape how we learn from false information.
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Chapter 4: Optimistic update bias in
response to false information

4.1 Introduction

Encountering false information is a phenomenon animals and humans have long
had to grapple with. From monkeys misleading their peers where food sources have been
hidden (Mitchell, 1986), human scientists falsifying and publishing false data
(Gopalakrishna et al., 2022) to governments spreading propaganda in the pursuit of
furthering their own political agendas (Waight et al., 2025), encountering misleading
information has been a long-standing problem. But whilst not a hew phenomenon,
exposure to false information has — amongst humans at least — become a more urgent
and pressing concern in recent years due to the increased volume, velocity, and variety |
now encounter on aregular basis (Ceylan et al., 2023; Pennycook & Rand, 2021; Van Der
Linden, 2024). This has been driven by technological advances that have lowered the cost
of producing realistic false information (open-source Al tools can be used to generate
highly realistic deepfakes, for instance), decreased cost attached to disseminating false
information (automated ‘bots’ can be used, for instance) (Ceylan et al., 2023; Pennycook
& Rand, 2021), and low levels of regulatory oversight that exist to constrain content
posted and shared via social media. Alongside this, recommendation systems
technology platforms use look to prioritise engagement (rather than prioritising
accuracy), which has been argued to further facilitate the spread of misinformation
(Pennycook & Rand, 2021; Vosoughi et al., 2018) which can often be more novel,
surprising and likely to garner attention and engagement.

This recent surge of exposure to false information has been blamed for a range of
negative outcomes, including: failures to respond to climate change (Brulle & Roberts,
2017; van der Linden et al., 2017), political unrest (Ruohonen, 2024) and poor medical
decision making, such as vaccine hesitancy (Loomba et al., 2021; Pierri et al., 2022;
Roozenbeek et al., 2020; Zimmerman et al., 2023). Given the threat it poses, there has
been considerable debate surrounding how best to counteract it. One proposal

(Christner et al., 2024; Van Der Linden, 2024) is for content to be moderated by attaching
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labels to information, which inform cases where information is suspect and
questionable. This has been contentious of late as prominent media platforms Meta and
X (formerly Twitter) have abolished attempts to do this, citing ineffectiveness, proneness
to bias and conflicts with free speech (Isaac & Schleifer, 2025; J. Taylor, 2023).

Here | investigate the degree to which such labels could enable humans to
moderate the degree to which they learn from new information. On the one hand, a
considerable body of evidence from psychology and neuroscience suggest that the
extent to which individuals learn is not fixed. Rather, the degree to which information is
integrated and used to update beliefs varies with a host of factors, including arousal
(Filipowicz et al., 2020; Nassar et al., 2012), how volatile an environment | are in (Behrens
etal., 2007; Pearce & Hall, 1980; Pulcu & Browning, 2019), arousal (Browning et al., 2015;
Garrett et al., 2018), working memory (Z. Cheng et al., 2024), and mood (Kao et al., 2023).
But on the other hand, there are many examples where it seems learning cannot be
completely curtailed when people get information that they explicitly told is irrelevant or
false (Eckeretal., 2010; Ross etal., 1975; Tversky & Kahneman, 1974). A well-known case
is the continued influence of misinformation (Ecker et al., 2010) whereby individuals
continue to recall narratives they encountered that were subsequently retracted or
discredited.

One factor that could influence the degree to which learning can be adjusted in
the face of false information — which | explore here — is that of valence; whether the
information is better or worse than expected to begin with. A range of evidence suggests
that individuals tend to integrate better than expected information over worse than
expected information (Garrett et al., 2014, 2014; Garrett & Sharot, 2017a; Kuzmanovic et
al., 2019c; Kuzmanovic & Rigoux, 2017; Sharot et al., 2011), a pattern which has been
argued to help generate and sustain optimism over time. If learning can be “undone” in
cases where information is revealed to be false but was better than expected in the first
instance, potentially this act of “mentally undoing” the initial learning requires a greater
degree of effort, compared to instances in which the initial information was worse than
expected (and therefore didn’t actually change beliefs by much in the first place). If, in
addition, individuals engage in motivational reasoning (Kunda, 1990) as part of this
revisionist process, they are less likely to possess the motivation to undo learning that

restores them back towards a worse belief (which will be the case when better than
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expected information is revised) compared to cases where such arevision restores them
back towards a better belief (which will be the case when worse than expected
information is revised).

To test this idea, | adapted a classic belief updating paradigm (Sharot et al., 2011)
in which participants were presented with information about the likelihood of
experiencing different adverse life events in the future. This information was then
explicitly labelled as either true or false. This manipulation allowed us to answer 2 key
questions: (1) whether belief updating was attenuated when information was shown to
be false; (2) whether the valence bias shown in the past to exist in response to true
information (Garrett et al., 2014; Garrett & Sharot, 2017a; Kuzmanovic et al., 2019c;
Kuzmanovic & Rigoux, 2017; Sharot et al., 2011; Sharot & Garrett, 2016) persists when

information is shown to be false.

4.2 Methods
4.2.1 Participants

127 students were recruited from the University of East Anglia SONA subject pool
to participate in the study. 19 of the 127 were excluded from all analysis (1 participant did
not pass attention checks during the task, 3 did not complete the task, 13 failed catch
questions in the questionnaires, and 3 did not have trials | could assign to each of our
four experimental conditions). The final sample size was 108 (mean (SD) age: 19.48
(1.51)). Power analysis based on effect sizes from a previous study (d=0.40) using this
paradigm (Garrett & Sharot, 2017a) indicated that a sample size of 80 was sufficient to
detect an effect size of with 95% power and an alpha level of 0.05 (paired sample t-test
comparing good versus bad news). | increased the sample size further to enable us to use
Bayes Factors where a sample size of at least 100 participants is recommended (Fu et
al., 2021, 2022) to infer evidence for/against the null. The study was approved by the
University of East Anglia’s ethics committee. Participants received study credits as

compensation for participating in the study.
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4.2.2 Behavioural Task and Stimuli

The task was adapted from a belief updating task previously used to investigate
optimistic updating biases (Khalid et al., 2024; Kuzmanovic et al., 2019c; Kuzmanovic &
Rigoux, 2017; Ma et al., 2016; Sharot et al., 2011; Sharot & Garrett, 2016) and followed
best practices for using the task (Sharot & Garrett, 2022).

Update
i .
Information Accuracy
1st Estimate 1st Estimate Base Rate Presented
(Self) (Base Rate) Presented

N
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happening to
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Figure 4.1: Behavioural task. On each trial, participants were presented with a short description
of an adverse event and asked to imagine the event happening to them in the future. They were
then asked to estimate how likely this event was to occur to them in the future and then to
estimate how likely the event was to happen to them on average (the order of these two estimates
was randomised). They were then presented with the probability of that event occurring on
average (in a demographically similar population) and then with a cue indicating whether this
statistic had been true (tick) or false (cross). Finally, participants are asked to provide their
estimate how likely this event was to occur to them in the future. Shown here is an example of
Good News (as the Average Presented to Participants is lower than their initial self-estimate). In
other cases (where the Average Presented to Participants is higher than their initial self-estimate)
participants received Bad News. See Supplementary Materials for Examples of the 4 different trial
types (Good News True, Bad News True, Good News False and Bad News False). Update is
guantified as the change in 1t and 2" Self Estimates. Estimates of the Base Rate are used in the
computational modelling to infer relative personal knowledge participants might privately hold
abouteach event.

Stimuli consisted of two lists of 25 different negative life events (e.g., domestic
burglary - see Appendix 4.6 for events used). Events and their statistics were obtained
from stimuli used in the original study (Sharot et al., 2011), which compiled the statistics

of each event occurring at least once to someone from the United Kingdom from
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reputable online resources (including the Office for National Statistics and PubMed).
Very rare or very common events were not included; all event probabilities lay between
10 and 70% and were normally distributed around the midpoint of the range (Sharot &
Garrett, 2022), see Appendix 4.2. To ensure that the range of possible overestimation
was equal to the range of possible underestimation, participants were told thatthe range
of probabilities lay between 3 and 77%, and they were only permitted to enter estimates
within this range. Each participant was randomly assigned to one of the two lists for true
trials and the other list for false trials. When a list was designated as the false list, the
event statistics were randomly shuffled so that the statistics didn’t match the event
descriptions (e.g., the likelihood for domestic burglary was shown for bicycle theft), but
the statistical properties of the base rates (the median, range, distribution, etc.)
remained unchanged. The two lists were then merged to create a final list of 50 events

with 25 accurate statistics and 25 false statistics.
4.2.3 Behavioural Task

On each trial, one of the 50 events was shown. Participants were then prompted
to estimate how likely the event was to happen to them personally in the future (E,) and
how likely it was to occur on average in the population (eBR; their estimate of the base
rate). In half of the trials, the order of the two estimations (E, and eBR) was reversed (i.e.
E, followed by eBR). After this, the base rate of the event happening to someone in the
same socioeconomic environment as the participant (BR; the base rate) was provided.
Participants were then prompted to press the spacebar to see the accuracy of the
statistic. They then saw a stimulus indicating whether the statistic they had been shown
was accurate (tick) or false (cross). Finally, they were told to estimate how likely the event
was to happen to them again (E,). There were no time constraints for submitting

responses (E,, eBR, E,). The task was created using Qualtrics.

4.2.4 Questionnaires

At the end of the experiment, participants were asked to complete three
psychiatric questionnaires: Beck Depression Inventory (Beck et al., 1961), Obsessive

Compulsive Inventory (Foa et al., 2002), and the Schizotypy short scale (Mason et al.,
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2005). In each of the questionnaires, a catch check question was included, which was
used to exclude inattentive participants (Zorowitz et al., 2023). Participants (N=13) were

excluded if they got 1 or more of the catch questions wrong.

4.2.5 Controls

At the end of the experiment, participants rated stimuli on six-point scales for
Negativity (“How negative you found this event?” From 1 = Not at all to 6 = Very), Prior
Experience (“Has this event happened to you before?” From 1 = never to 6 = very often),
Vividness (“How vividly could you imagine this event?” From 1 = not vivid to 6 = very vivid),
Familiarity (“Regardless of if this event has happened to you before, how familiar do you
feelitis to you from TV, friends, movies and so on?” From 1 = not at all familiar to 6 very
familiar); and Arousal (“When you imagine this event happening to you how emotionally
arousing is the image in your mind?” From 1 = not arousing at all to 6 = very arousing).

These Ratings were included as covariates in control analysis.

4.2.6 Behavioural Analysis

Trials were categorised into 4 types (Good News True, Bad News True, Good News
False and Bad News False) in a 2*2 within-subject repeated measures design with
accuracy and valence as factors. Accuracy (True/False) was determined according to
whether the trial had presented an accurate or false cue. Valence (Good/Bad) was
determined based on whether participants underestimated or overestimated the
likelihood of an event happening to them personally (i.e. E,) relative to the provided base
rate (BR). Trials where the initial estimate was equal to the base rate (E, = BR), ~ 2% of
total trials, were excluded as they could not be classified. Update was calculated for
each trial such that positive updates indicate a change toward the probability presented
[update (good news) = first estimate - second estimate] and negative updates indicate a
change away from the probability presented [update (bad news) = second estimate - first

estimate].
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Update scores were entered into a 2*2 repeated measures ANOVA with valence
(good news or bad news) and accuracy (true or false) as factors. To determine whether
there was evidence of biased updating for true trials, false trials or both, | followed up
with planned paired sample t-tests on good news vs bad news separately for true (Good
True vs Bad True) and false (Good False vs Bad False) trials. The ANOVA was run using the
ezANOVA package (Lawrence, 2016). | then repeated this ANOVA analysis, this time
applying a stricter classification of good and bad news (Garrett & Sharot, 2014).
Specifically, | excluded any trials where BR was higher than E but lower than eBR (as this
could be perceived as bad news if comparing BR with E; but good news if comparing BR
with eBR) and trials where BR was lower than E; but higher than eBR (as this could be
perceived as good news if comparing BR with E; but bad news if comparing BR with eBR).

Next, | complemented this analysis using linear mixed-effects models (LMM).
Trial-by-trial updates were entered as the dependent variable, with valence (codedas 1=
good news, -1 =bad news) and accuracy (1 =true, -1 =false) as predictors along with their
interaction. Predictors were included as random effects and allowed to vary by

participant. The model was implemented in the syntax of R as follows

LMM1: Update ~ Valence*Accuracy + (1 + Valence*Accuracy | Participant)

Next, | ran a second LMM and now included potential confounds (Sharot & Garrett,
2022).

For each trial, an estimation error (EE) term was calculated as the absolute
difference between the presented probability (BR; the new information) and the

participant’s initial estimate (E,) for that trial:

EE = |E, - BR|

EE’s on each trial and the 5 subjective ratings for each event shown on each trial
(Vividness, Past Experience, Arousal, Familiarity and Negativity) were entered as
additional predictors in the model. Once again, all predictors were included as random

effects. The model was implemented in the syntax of R as follows:
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LMM2: Update ~ Valence*Accuracy + EE + Vividness + Arousal + Familiarity + Negativity
+ PastExperience + (1+ Valence*Accuracy + EstErr + Vividness + Arousal + Familiarity +
Negativity + PastExperience | Participant)

The two models were fitted in R using the lmer package (Bates et al., 2015) with
significance tests implemented by ImerTEST (Kuznetsova et al., 2017).

To test whether null effects for the Valence*Accuracy interaction in each model
(LMM1 and LMM2) provided evidence in favour of the null (i.e. that the strength of the
valence effect was the same for true and false trials), | used the brms package (Burkner,
2017) with weakly informative priors, 16000 iterations (3000 for warmup), and four chains
to generate posterior distributions for all model parameters. These were then used to
generate Bayes Factors (BFs) in bayestestR (Makowski et al., 2019). | used Jeffreys’ scale
tointerpret BFs (Jeffreys, 1961; Wagenmakers et al., 2011) according to which: BFs < 1/30
are interpreted as extreme evidence supporting the null hypothesis; BFs 1/10-1/30 reflect
strong evidence in favour of the null; BFs: 1/3-1/10 reflect moderate evidence in favour of

the null; BFs 1/3-1/1 reflect anecdotal evidence in favour of the null.

4.2.7 Computational Modelling

| adapted the computational model used by Kuzmanovic & Rigoux (2017, see also
Garrett & Sharot, 2022) to test if the relationship between trial-by-trial errors and
subsequent updates was modulated by accuracy and valence. | note that the models |
test here do not attempt to make claims as to what time points in the task belief change
occurs. | apply these models primarily as an analytical tool to understand the degree to
which error sighals in the task correspond to subsequent belief change and test whether
this relationship is modulated by accuracy, valence and their interaction.

In each model, update on each trial (t), i.e. the change between participants' first
and second self-estimates [calculated as: update (good news) = first estimate - second
estimate; update (bad news) = second estimate - first estimate] was predicted via the
following equation:

Update.= a*EE*(1 - rP*w)

rP (relative personal knowledge) was calculated by comparing the estimated base

rate (eBR) and the first estimate (E,) as:
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rP:=(eBR(-E,:)/ (eBR:-1) if E,<eBR
rP.=(E;:—eBRy)/ (77-eBRy) ifE;>eBR
rP.=0 if E,=eBR

rP ranges from 0 to 1 where rP = 0 indicates the person does not see themselves
as different from the population, rP = 1 indicates the greatest disparity possible between
the individual's perceived likelihood of the event occurring to themselves and the
population's likelihood (which might occur if say the individual has a range of reasons -
such as specific lifestyle choices, family history, etc.) - why they believe a population
statistic is not relevant for them.

w is a free parameter which indexes the degree to which rP impacts belief
updating. When W is 0, rP has no influence on belief updating, while when Wis 1, rP has
maximum influence on belief updating.

ais a learning rate, which governs the degree to which participants updated their
beliefs in response to the size of the estimation errors (Sharot et al., 2011; Garrett et al.,
2014; Garrett et al., 2018). | tested 4 different models with different numbers of a (a = 2,
3 or 4). By varying the number of learning rates and how these selectively parsed
information according to whether information presented was true/false, good/bad, | were
able to test if estimation errors were integrated to differing degrees for these two factors

—valence and accuracy. The 4 models were formulated as follows:

Model 1 (M1)
Update: = Auue*EE* (1 = rP*w) if information accuracy cue = True
Update: = Qrase *EE* (1 — rP*w) if information accuracy cue = False

Free parameters (n=3): e, Qratse, W

Model 2 (M2)

Update: = Qe *EE™ (1 - rP*w) if accuracy = True

Update: = Qraise, goodnews* EE+*(1 — rP*w) if accuracy = False and valence = Good
Update: = Qsaise, badnews *EE*(1 — rP*w) if accuracy = False and valence = Bad

Free parameters (n=4): Qltrue, Qfalse, goodnews, Clfalse, badnews; W
Model 3 (M3)
Update: = Qsase *EE* (1 = rP*w) if accuracy = False
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Update: = Qire, goodnews™ EE:*(1 — rP*w) if accuracy = True and valence = Good
Update: = Qirue, badnews™ EE*(1 — rP*w) if accuracy = True and valence = Bad

Free pa rameters (n=4): afalse, atrue, goodnews) atrue, badnews) W

Model 4 (M4)

Update: = Qirue, goodnews “EE* (1 — rP*w) if accuracy = True and valence = Good
Update: = Qire, badnews "EE:* (1 — rPi*w) if accuracy = True and valence = Bad
Update: = Qtatse, goodnews *EE* (1 — rP*w) if accuracy = False and valence = Good
Update: = Qsaise, badnews* EE* (1 — rP*w) if accuracy = False and valence = Bad

Free pa rameters (n=5): Qfalse, goodnews) Ctatse, badnews Cltrue, goodnews Qtrue, badnews, W

In each model, | converted the predicted Update on each trial into a predicted 2™

Estimate (E}) on each trial by adding or subtracting the predicted Update from
participants’ 1°* Self Estimate (E,), depending whether the base rate (BR) presented on
that trial was lower than E, (in which case beliefs shift down) or above E, (in which case
beliefs shift up as the base rate presented was above E,):

E,.=E, + Update: if BR: > E¢

E,.=E, - Update; if BR; < E ¢

2" estimates predicted on each trial (fz(t)) were compared to participants'
actual 2" estimates (E,(t)) to find the best fitting parameters in the model fitting

process.

4.2.7.1 Model Fitting Procedure
| fitted the models hierarchically using Expected Maximization (EM) algorithm
(Huys etal., 2011) in the Julia language (Bezanson et al., 2012) version 1.9.4. Hierarchical
parameter estimation has been shown to provide superior cross-validation performance
on unobserved data (Scheibehenne & Pachur, 2015). See Chapter 2 for the full details.
To find the best fitting set of parameters for each model (given the data | observed)
using the EM algorithm, | used a log-likelihood function. For each observation, |

calculated the probability density of the observed second estimate (E,) given the model's
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predicted second estimate and other parameters. Specifically, | modelled E, as following
a normal distribution (similar to (Nassar et al., 2021)) but truncated the distribution such

that it was bounded between 3 and 77 (the range of possible values in our task):

o (Ez () — EZ(t))

N o
logl= ), g oo (2= Ez(t)) YEE E(t))}
o o
Where:
) E,(t) is the observed second estimate for
trial t
. E,(t) is the model’s predicted estimate for trial t
° o is the standard deviation as a free parameter
° ¢ is the standard normal cumulative distribution function (CDF)
° @ is the standard normal probability density function (PDF)

4.2.7.2 Model Comparison

| then compared the fit of the four models by calculating unbiased subject-level
leave-one-out cross-validation (LOOcv) scores for each participant for each model. The
LOOcv scores were fed into the mbb-vb-toolbox in MATLAB (Daunizeau et al., 2014). See

Chapter 2 for the full details.

4.2.7.3 Statistical Tests on the Learning Rates

Once the winning model was identified, | reparametrized it such that one
parameter indexed the optimistic update bias for true information, one for false
information, and a third captured their interaction. | then estimated these parameters

again using hierarchical EM. See the full details in Chapter 2.

4.2.7.4 Model Recovery

| ran model recovery to validate the degree | could robustly identify each of our 4

models (M1-M4). The basic logic of this approach is that if the underlying data has
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verifiably been generated by one of the four specific models, this model should

outperform the other 3 in model comparison. See Chapter 2 for the full details.

4.2.7.5 Parameter Recovery

To evaluate parameter identifiability, | conducted a parameter recovery analysis
on the winning model. | simulated behaviour for 200 synthetic participants, each
completing 200 trials, using parameter values randomly drawn from uniform
distributions spanning the empirically observed ranges. The same model-fitting
procedure used for real participants was then applied to the simulated data. Recovery
success was assessed by comparing the true and recovered parameter values using
Pearson correlations, and values higher than 0.80 were deemed high enough for a

successful recovery. See Chapter 2 for the full details.

4.2.7.6 Simulations

To qualitatively examine each model’s capacity to reproduce the behavioural
patterns | observed, | simulated data for each of the four models (M1-M4). For each
model, | generated data for 500 synthetic participants, each completing 50 trials. Trial
characteristics (base rates, number of true/false trials, range of estimations) matched
the structure and range of the actual task. Parameter values used for each simulation

were set to the average value of the parameters observed in the real data.

4.3 Results

Biased updating in response to true and false information. Update scores from
each participant were entered into a 2*2 repeated measures ANOVA with Accuracy
(True/False) and Valence (Good/Bad) as within-subject factors. This showed a main
effect of valence (F(107) = 297.27, p < 0.001) with greater updating for good news
compared to bad news, a main effect of accuracy (F(107) = 43.47, p < 0.001) with greater
updating for true compared to false trials, and no interaction between valence and
accuracy (F(107) = 2.05, p = 0.15). Replicating findings from previous studies
(Kuzmanovic et al., 2019a; Kuzmanovic & Rigoux, 2017; Ma et al., 2016; Sharot et al.,
2011; Sharot & Garrett, 2016), | found a significant difference in belief updating between

good and bad news for true (t(107) = 5.74, p < 0.001; paired t-test, 75.9% of participants
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updated more in response to True Good compared to True Bad). But | also found a similar
difference in updating between good and bad for the false trials (t(107) = 5.09, p < 0.001,
75.9% of participants updated more in response to False Good compared to False Bad).

These results are not explained by differences in the distribution of statistics
presented to participants (Garrett & Sharot, 2017a, 2023; Sharot & Garrett, 2022) — these
were deliberately engineered (by the experimental design, see Methods) such that
statistics labelled as true and statistics labelled as false during the experiment each
assumed a nhormal distribution centred around the midpoint of the scale (see Appendix
4.2 for histogram plots of the base rates presented). The results are also not the result of
potential misclassification of trials into good or bad (Garrett & Sharot, 2014). To check
this, | reran this analysis, this time applying a more stringent method of classifying trials
into good and bad news (See Methods and Appendix 4.7 for full details). This again
revealed a main effect of valence (F(1,107) =318.76, p <0.001), a main effect of accuracy
(F(1,107) = 37.88, p < 0.001) and no significant interaction (F(1,107) = 1.38, p = 0.24).
Again, paired t-tests showed greater updating for good compared to bad news for true

(t(107) = 5.26, p < 0.001) and for false trials (t(107) = 4.86, p < 0.001).

* %% *k%k
30 A
20 g
E Valence
(o) . Good
210+ : B Bad

True False
Information Accuracy

Figure 4.2: Biased updating in response to true and false information. Participants reduced
the degree to which they used the information presented and updated their beliefs following the
receipt of false compared to true information (Main Effect of Accuracy: F(107) =43.47, p <0.001).
Participants also updated their beliefs more when information was good news (presented an
opportunity to adjust beliefs in a positive direction) than after receiving bad news (that called for
adjustments in a negative direction, Main Effect of Valence: F(107) =297.27, p < 0.001). Planned
paired sample comparisons showed that the valence effect was present both for true (t(107) =
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5.74, p < 0.001, replicating previous results) and for false trials (t(107) = 5.09, p < 0.001). There
was nho interaction between information accuracy and valence (F(107) =2.05, p=0.15). Error bars
represent SEM. ***p < 0.001, two-tailed paired sample t-test.

Together, these results suggest that whilst participants can modulate the degree
to which they update beliefs in response to new information (according to how accurate
the information is), biased updating exists both in response to true and false information.
Next, | complemented this analysis using linear mixed-effects models (LMM). The
motivation for this was that it allowed us to conduct a Bayes Factor analysis tointerrogate
whether the lack of an interaction | observed above provided evidence in favour of the
null (i.e. evidence in favour that the valence effect was similarly strong for true and for
false trials). Trial-by-trial updates were entered as the dependent variable, with valence,
accuracy and their interaction as predictors. This again revealed a main effect of valence
(t(101.32) =7.47, p < 0.001), a main effect of accuracy t(107.84) = 18.18, p < 0.001) and
no accuracy by valence interaction (t(128.63) = 1.13, p = 0.25) (see Table 4.1 for full
statistics). | then ran a Bayesian Factor analysis on the interaction (see Methods). This
revealed strong evidence (Jeffreys, 1961; Wagenmakers et al., 2011) in favour of the null
(BFo = 0.030, Bayes factors < 1 indicate support for the null over the alternative
hypothesis), suggesting that the valence effect for false trials was indeed of a similar

maghnitude to the valence effect for true trials.

Predictor Estimate| std. Error df Cl Statistic p
(Intercept) 0.06 0.03 105.89 0.00-0.11 2.03 0.043
Valence 0.17 0.02 101.32 0.12-0.21 7.47 <0.001
Accuracy 0.35 0.02 107.84 0.31-0.39 | 18.18 <0.001
Valence x 0.02 0.02 128.63 - 1.13 0.258
Accuracy 0.01-0.05
N Participant 108
Observations | 5242

Table 4.1: Linear mixed effects model. Fixed Effect Estimates and accompanying
statistics from a linear mixed-effects model predicting updates on each trial from Valence,
Accuracy, and their interaction (Valence x Accuracy).

Optimistic update bias survives after controlling for confounds. Next, | ran a

second LMM, this time controlling for potential confounds (Sharot & Garrett, 2022):
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Estimation Errors (the absolute difference between participants’ initial estimations and
the information provided) and all subjective ratings (see Methods and Table 2.2). This
again revealed a main effect of valence (t(98.86) = 10.17, p < 0.001), a main effect of
accuracy (t(107.15) = 19.18, p < 0.001) and no interaction (t(105.85) = 1.26, p = 0.20).
There were also significant effects for Estimation Error (t(105.46) = 14.23, p <0.001) and
Past Experience (t(79.42) =-3.44, p =0.001). The remaining subjective rating scores were
not significant (Vividness: t(179.54) = -0.48, p = 0.62; Familiarity: t(207.52) = -0.93, p =
0.35; Arousal: t(216.79) = -0.26, p = 0.79; Negativity (t(100.59) = -1.29, p = 0.19) (see
Appendix 4.5 for full statistics of this model). The Bayes Factor analysis on the
interaction again found evidence in favour of the null (BF,, = 0.038).

Together, these results suggest two key findings: (1) Belief updating can be
modulated according to how true or false a piece of information is when this is made
explicit; (2) Optimistic update bias (i.e. the valence effect) exists both in response to true
and false information and is of a similar strength in each instance. Together, these
findings result in false information having a larger impact on changing beliefs when the

information is better (versus worse) than expected.

Trial Type (Valence, Accuracy)
Good, True Bad, True Good, False Bad, False
Mean (SD) Mean (SD) Mean (SD) Mean (SD)
Update A 12.50 (12.65) 8.46 (12.01) 4.37 (9.74) 0.94 (7.37)
Estimation 17.94 (13.78) 24.29 (15.03) 21.34 (16.06) 24.87 (15.42)
Errors
N trials 8.39(3.19) 16.1(3.14) 8.32(3.47) 15.7 (3.19)
Subjective
Ratings

(All scales 1

=lowto6=
high)

Familiarity % # 3.42(1.40) 2.96 (1.42) 3.51(1.38) 2.93(1.43)
Past 1.64 (1.09) 1.24 (0.63) 1.81(1.18) 1.20 (0.55)

ExperienceV:*

Vividness " 3.12(1.43) 2.72(1.36) 3.38(1.40) 2.68(1.36)
Emotional 3.03(1.45) 2.89(1.37) 2.93(1.40) 2.89(1.43)
ArousalYA

Negativity “# 4.51 (1.34) 4.43 (1.26) 4.35(1.33) 4.49 (1.31)

VMain effect of valence p <0.05
A Main effect of valence p <0.05
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V*AInteraction effect (Valence * Accuracy) p < 0.05

Table 4.2 Participants’ Updates, Estimation Errors, Number of trials and subjective ratings
of familiarity with stimuli, past experience, vividness, arousal, negativity.

Formal models suggest that estimates are updated by a prediction error signal
(that quantifies the difference between prior expectations and outcomes) and a learning
rate which governs the rate at which prediction errors drive belief change (Sutton & Barto,
2018). Next, | turned to computational modelling (Kuzmanovic & Rigoux, 2017) to
examine the relationship between updates to beliefs and learning rates inferred during
learning using an error term analogous to the prediction error in our task, the estimation
error (Sharot et al., 2011), which quantifies the difference between prior beliefs (E,) and
the information provided (BR).

| adapted and extended the computational modelling approach used by
Kuzmanovic & Rigoux (2017) to test how participants beliefs changed on each trial as a
function of the size of the estimation error (i.e. how much the difference in prior beliefs
and the information provided motivated subsequent belief change) and the degree to
which this process was modulated by information accuracy and valence.

| did this by testing 4 different models, which were identical except for the number
of learning rates and how these learning rates parsed out different types of information.
Briefly (see Methods for full details), Model 1 (M1) had 2 learning rates: one for true and
one for false information; Model 2 (M2) had 3 learning rates: one for true information and
two for false information —one for false good news and another for false bad news; Model
3 (M3) also had 3 learning rates: one for false information and two for true information -
one for true good news and another for true bad news. Model 4 (M4) had 4 learning rates
(onefortrue good news, true bad news, false good news and false bad news). Each model
also had 2 additional parameters: w and o. w enabled the model to dampen the effect
that estimation errors had in changing beliefs according to participants' personal
knowledge about each event (e.g., personalrisk factors for developing anillness, such as
family history). o was used to estimate the Gaussian that the estimates were drawn from
in the model fitting process (see Methods). Model recovery tests | conducted, where | fit
data simulated under one of the four models to all 4 models and examined whether the

winning modelis reliably identified as the model used to generate the data, validated that
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data generated by each model would be identifiable as the winning model (see Methods

and Appendix 4.3).

Four learning rate model the best fit to the data. Leave-one-out cross-
validation (LOOcv) scores from the 4 models were compared using a Variational Bayesian
Approach (see Methods). This inferred that out of the 4 models, M4 provided a superior
fitto the data (see Figure 4.3(b)). M4 had the highest model frequency (~75%), well above
the chance level (25%), and an exceedance probability of 1. This indicates strong
evidence that M4 - featuring learning rates that facilitate optimistic update bias for both
true and false information - captured participants’ behaviour best compared to the
simpler models (M1-M3). As an additional check, | also compared M4 to the other 3
models using paired sample t-tests (FDR corrected for multiple comparisons) which also
suggested M4 was a superior fit to participants estimations (M4 vs M3: t(107) = -2.11,
p_adj = 0.03; M2 vs M4: t(107) = -5.17, p_adj < 0.001; M1 vs M4: t(107) = -5.45, p_adj <
0.001). 32.4% of participants had the lowest LOOcv score for M4 (18.5% for M1, 19.4%
for M2 and 29.6% M3). Together, this model comparison analysis suggests that
participants used estimation errors differentially to update beliefs depending on both
whether the information that generated these errors was true or false and whether the
information was better or worse than expected.

Higher learning rate for good news vs bad news for both true and false
information. Next, | examined the pattern of learning rates from the winning model (M4)
and tested for differences between them. This showed an optimistic update bias present
both for true and false information (see Figure 4.3(b)). Specifically, participants learn
more from good than bad news for true (t(107) = 8.56, p < 0.001, hierarchical t-test
comparing Qirue_goodnews With Qirue badnews) @nd false (t(107) = 6.74, p < 0.001, hierarchical t-
test comparing Qaise_goodnews With Qtaise_badnews) information. There was no interaction in the
magnitude of the learning rates between valence (good versus bad) and information

accuracy (true vs false): t(107) = 0.59, p = 0.55.
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Figure 4.3: Model Frequencies and Estimates. (a) Estimated model frequencies from the VBA
model comparison. Model 4 (M4) had the highest frequency, selected for approximately 74% of
participants, with an exceedance probability (XP) of 1. This frequency is substantially higher than the
chance level of 25% (indicated by the red dashed line), which represents the expected frequency if
model selection were random across the four models (M1-M4). The model frequency reflects the
proportion of the population best accounted for by each model (see Supplementary Material Figure 3
for additional model diagnostics). (b) Four learning rates from the winning model (M4) showed an
optimistic update bias present both for true (t(107) = 8.56, p < 0.001, hierarchical t-test comparing
Clirue_goodnews With Qe badnews) and false (t(107) = 6.74, p < 0.001, hierarchical t-test comparing Qsaise_goodnews
With Qtaise_badnews) information. ***p < 0.001, hierarchical t-test.

Finally, to check how updating patterns varied under each model (given the
parameters fit to the data), | simulated updating under each of the four models using the
mean parameters from the model fitting process (see Table 4.3). This showed a clear
pattern whereby M1 enabled estimation errors to produce updating that was greater for
true than false, but there was no valence bias (i.e. updating from good being greater than
for bad) for either. M2 enabled estimation errors to produce updating that was greater for
true than false and a valence bias for false only. M3 enabled estimation errors to produce
updating that was greater for true than false and a valence bias for true only. By having 4
learning rates that allowed learning to vary for each combination of true, false, good, and
bad, M4, the winning model enabled estimation errors to produce updating that was
greater for true then false and a valence bias for both types of information in a pattern

qualitatively similar to the actual updating | observed in the data (Figure 4.4).
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MOdel CQlirue Qsalse utrue_goodnews atrue_badnews afalse_goodnews afalse_badnews w (o} LOOCV
M1 0.63 0.042 - - - - 0.67 8.02 166 [
[0.58- | [0.02- [0.57- | [7.43- | 162-
0.68] 0.06] 0.76] 8.67] 169
M2 0.62 - - - 0.16[0.12 0.02 0.80 7.65 165
[0.57 - -0.21] [0.009- | [0.72- | [7.14- | [162-
0.68] 0.04] 0.87] 8.20] | 169]
M3 - 0.051 0.84[0.79- | 0.50[0.43 - - 0.72 7.24 164
[0.03- 0.88] -0.56] [0.63- | [6.73- | [160-
0.072] 0.80] 7.79] | 167]
M4 - - 0.84[0.79 0.49 0.16[0.12 | 0.02[0.01- 0.70 7.13 163
-0.88] [0.43- -0.21] 0.039] [0.61- | [6.63- | [160-
0.56] 0.79] 7.65] | 167]

Table 4.3. Mean parameter estimates and Leave-One-Out cross-validation (LOOcv) scores
from each of the 4 models. 95% confidence intervals are shown in square brackets. The mean
parameter estimates were used for simulating data under each model shown in Figure 4.4.
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Figure 4.4: Simulations from each of my four models. M1 (which has 2 learning rates: one for true
and one for false information) recovers the main effect of accuracy but cannot generate an effect of
valence. M2 (which has 3 learning rates: a single learning rate for true information and two for false
information —one for false good news and another for false bad news) recovers a main effect of accuracy
but a valence effect for false information only. M3 (which also has 3 learning rates: a single learning rate
for false information and two for true information — one for true good news and another for true bad news)
recovers a main effect of accuracy and a valence effect for true information only. M4 (the winning model
when fitted to participants responses) which has 4 learning rates (one for true good news, true bad news,
false good news and false bad news) is able to capture the updating pattern | observe in the real data -
a main effect of information accuracy and a valence effect both in response to true information and false
information. Grey diamonds plot the real data from participants to be able to compare with the
simulated data (plotted as coloured dots).

97




4.4 Discussion

Understanding the circumstances under which individuals are prone to
integrating false information is important for understanding how erroneous beliefs such
as conspiracy theories can persist in the face of flawed evidence (Douglas et al., 2017)
and developing effective strategies to counter the prominent rise of misinformation
(Hanley & Durumeric, 2024; Lewandowsky et al., 2012; Nyhan & Reifler, 2010) . Here, by
adapting a classic belief updating task which presents individuals with information that
can vary on two dimensions — valence (whether the information is better or worse than
expected) and accuracy (whether the information is true or false) — | show that both of
these factors exertimportantroles in governing the degree towhich beliefs are influenced
by the information and change as a consequence. First, | show that information is used
to update beliefs to a greater degree when that information is revealed to be true
compared to false. This suggests that warnings about the reliability of a piece of
information may contribute towards determining whether that information serves to have
animpact on altering beliefs or not over the long term. Second, | show that information is
integrated to a greater degree when it presents a shift in beliefs towards a “good” (i.e.
better than first thought) compared to a “bad” (i.e. worse than first thought) direction.
This is consistent with past findings (Garrett et al., 2014, 2014; Garrett & Daw, 2020;
Kappes et al., 2018; Korn et al., 2012b, 2016; Kube & Rozenkrantz, 2021; Kuzmanovic et
al., 2018, 2019c¢; Kuzmanovic & Rigoux, 2017; Ma et al., 2016; Oganian et al., 2019b;
Sharot et al., 2011; Sharot & Garrett, 2016), suggesting that learning is often biased in a
positive direction. What is new in the findings | present here is that this bias is equally
prevalentin response to false information (in fact, | find evidence against any modulation
of the bias by accuracy). This suggests that whilst debunking information after it has been
encountered can act to mitigate its influence, such measures are likely to be less
successful in cases where false information presents news that is better than expected.

Using computational modelling of participants' responses suggested that both of
these patterns of belief updating arose out of the differential use of error signals,
generated when new information is encountered and deviates from prior expectations. In
general (Garrett & Daw, 2020; Sharot et al., 2011; Sutton & Barto, 2018), the more

surprising a piece of information is, the more beliefs can be expected to shift up or down.
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Here | show that this relationship between degree of surprise (i.e. the size of the error
signal) and subsequent change in beliefs (parametrised in computational models as
learning rates) is stronger when information is revealed to be true compared to when itis
revealed to be false and when information is better compared to worse than expected. |
show this by comparing models which parse information according to its accuracy only,
according to valence only and according to both accuracy and valence with this latter
model providing the best fit to the data both quantitively - using Bayesian model
comparison - and qualitatively - by comparing how well belief updating generated by each
model (using simulations) was able to capture the updating pattern | observe in the
human data (Palminteri, Wyart, et al., 2017).

In the set of computational models | tested, updates were implemented as a
single step, which (effectively) collapses over two distinct stages of a trial in our task.
Specifically: (1) when information is first received and an estimation error generated; (2)
when cues about the reliability of the information are received. One possibility is that the
process of belief change occurs in a single step in this way. Under this scenario,
information presented (at (1)) would need to be maintained in working memory before the
true/false cue is shown (at (2)), which could act much akin to a go/no-go signal (Logan et
al., 1984) in determining whether to then integrate the information (i.e. implement an
update), possibly via recruiting the brain circuits previously suggested to be involved in
belief updating in this task to differing degrees dependent both on whether the
information was true or false and whether the information was better or worse than
expected. These brain regions include the left inferior frontal gyrus and medial frontal
cortex (Garrett et al., 2014; Sharot et al., 2011) for good news and the right inferior frontal
gyrus (Sharot et al., 2011) and right inferior parietal lobule (Garrett et al., 2014) for bad
news. But an alternative possibility is that separate updates to beliefs occur at each of
these two stages; an initial update to beliefs at (1) before the accuracy of the information
is known. And then arevision to this updated belief at (2), depending on the identity of the
true/false cue. At this second stage, learning from the first stage could either be undone
(in the presence of a false cue) and/or further boosted (in the presence of a true cue).
Building a complete temporal picture of the updating process as it unfolds and
understanding which stages of this process could cause biases to emerge remains to be

tested both by incorporating other neuroscience methods such as functional Magnetic
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Resonance Imaging (Glover, 2011) alongside experimental paradigms which would
enable these different potential underlying processes to be dissociated from one
another.

| adapted a widely used belief updating task (Garrett et al., 2014, 2014; Garrett &
Daw, 2020; Garrett & Sharot, 2023; Kappes et al., 2018; Korn et al., 2012b, 2016; Kube &
Rozenkrantz, 2021; Kuzmanovic et al., 2018, 2019c¢; Kuzmanovic & Rigoux, 2017; Ma et
al., 2016; Oganian et al., 2019b; Sharot et al., 2011; Sharot & Garrett, 2016) shown to test
for the presence of biases in belief updating by adding explicit cues on each trial which
sighalled to participants whether the information they had just observed had been true
or false. This allowed me to test whether the bias exists and is similar in strength when
true and false information is received. A natural question that arises from these findings
is how might biases in belief updating manifest in the absence of any such cues or in the
presence of a third “unknown accuracy” cue? The former is how original versions of the
belief updating task have been run in the past. Interestingly, the optimistic pattern of
belief updating observed when using this original version (without any information
accuracy cues) qualitatively (Sharot et al., 2011) resembles the pattern of belief updating
| observe in the true condition here. This might lead one to hypothesise that participants
might treat information explicitly signalled to be true similarly to cases where information
is presented without any cues provided about accuracy. However, caution is warranted.
Even though cues about information accuracy were not provided, the default position of
participants undertaking original instantiations of the belief updating task may be to
assume that the statistics presented were true (rather than unknown). Indeed, the
statistics presented in the original design were factually correct and task instructions
primed participants to believe they were accurate. Hence, it remains to be tested how
belief updating from true and false information each differs from cases where
information accuracy is withheld.

Nonetheless, the results here show that sensitivity to new information is able to
adaptinresponse to signals about how accurate the informationis oris not. This extends
past findings showing that sensitivity to new information is often not fixed but can flexibly
adjust to a range of factors including: volatility of the environment (Behrens et al., 2007),
surprise (Pearce & Hall, 1980), age(Moutsiana et al.,, 2013), psychiatric

symptoms (Garrett et al., 2014; Ossola et al., 2020), reward uncertainty (Chen et al.,
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2022; Nassar et al., 2012), working memory (Collins & Frank, 2012), social context
(Diaconescu et al., 2014b), arousal levels (Eldar et al., 2016; Garrett et al., 2018) and
confidence (Desender et al., 2019; Meyniel et al., 2015; Rollwage et al., 2020; Yeung &
Summerfield, 2012). Potentially some or all of these factors may also exert roles in
governing the degree to which information known to be false can impact beliefs making
certain groups of individuals more susceptible than others to the effects of malicious
misinformation attempts which in turn might warrant greater measures being putin place
to protect those likely to be more vulnerable.

My findings suggest that warnings and labels that call out cases of potential false
information could be a means to help prevent false beliefs being generated and
sustained in the face of accurate information to the contrary. However, explicit labels
and the like are unlikely to be a panacea. Not least because - as | show here - individuals
are likely be more suspectable to false information (even when this is made explicit) in
cases where it provides a better-than-expected view of the future. Indeed, recent
complementary findings (Vidal-Perez et al., 2025) suggest that a related (‘positivity’) bias
also exists whereby individuals learn to a greater degree from false information that
confirms past choices and decisions. An important concern is that alongside these
biases in how individuals learn when they receive false information, individuals also have
increasing agency over where they choose to source their information from in the first
place, particularly in digital environments. This can resultin selective exposure to certain
types of information and skewed informational environments (Flaxman et al., 2016). This
skew can be further compounded if individuals are also selective about what information
they choose to share with peers in their network, choosing to predominantly share false
information that perpetuates a specific view of the world that one finds desirable
(Pennycook & Rand, 2022). There is then a potential dual challenge to be met to counter
disinformation — how biased the information is that | receive and the role that biases play
in how | then choose to learn from that information. Other promising avenues exist to
meet this challenge such as using Large Language Models to deploy reasoning to move
individuals away from deep seated false beliefs (Costello et al., 2024), providing rewards
(such as ‘likes’) in return for sharing accurate information (Vellani et al., 2024) and
‘prebunking’ (Van Der Linden, 2024). Awareness of the powerful role that biases can play

and how these can arise from core learning principles are important factors to consider
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in evaluating the effectiveness of these and others as the scientific community looks to
develop and test different ways to counteract inaccurate information from successfully

perpetuating and sustaining false beliefs.
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Chapter 5: When we value false information: the
interaction between information accuracy and
confirmation in the ventromedial prefrontal
cortex

5.1 Introduction

Imagine reading online that your favoured political party was likely to win the next
election, only to later find out that this information was in fact false. How would finding
this out make you feel? Grateful for the chance to be able to apply a retrospective
correction to the fake news? Or disappointed that this information (which was in line with
what you had hoped) was no longer valid? If the latter, would this be accompanied by a
lingering temptation to ignore or downweight the evidence that the information you had
received was suspect?

Whilst it might seem like the most rational thing to place a high value on the
opportunity to correct false beliefs, previous findings (Garrett & Daw, 2020; Garrett &
Sharot, 2017b; Korn et al., 2012b; Kuzmanovic & Rigoux, 2017; Lefebvre et al., 2017;
Palminteri, 2023, 2025b; Palminteri, Lefebvre, et al., 2017; Sharot et al., 2011) suggest
that even when individuals getinformation from legitimate bona fide sources, they attend
to this selectively and in such a way that enables them to maintain beliefs that are biased
in a desirable direction given their idiosyncratic motivations, goals, desires and past
decisions (Hart et al., 2009; Kunda, 1990; Tappin et al., 2017). And when it comes to false
information, behavioural evidence alongside computational modelling (Chapters 3 and
4) has revealed that when individuals find out that information they encountered was
false, they do not correct their beliefs in a symmetric manner. Rather, they continue to
learn from and use false information in cases where that false information had been
confirmatory — confirming that their past choices and decisions were correct. But at the
same time, they are adept at ignoring false information in cases where the information

had been disconfirmatory and called into question past decisions.
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A potential account of these findings is that people are motivated, value, and pay
attention to cues warning them that the information they’ve encountered is suspicious,
faulty and should not be heeded. But only in certain cases. These cases are when the
information to begin with is disconfirmatory; hence, fake news warnings provide a
welcome opportunity to ignore the information that had served to challenge past
decisions. But in cases where the information encountered has been confirmatory,
revelations that this information was inaccurate act as aversive, which in turn prevents
any necessary motivation to try and correct them. Adapting the degree to which we value
and pay attention to signals about whether information can or cannot be trusted,
potentially provides a mechanism by which information can be selectively used to help
beliefs align with our desires (i.e. what we want to be the case) rather than the reality.

To investigate this, | combined brain imaging with a reinforcement learning
paradigm (Chapter 3) in which individuals made repeated choices, received feedback
which could either confirm or disconfirm whether their choices were correct and were
then told whether this feedback was true or false. My computational modelling findings
previously showed that individuals integrated information revealed to be true and false to
a greater degree when it was confirmatory compared to disconfirmatory. If this relates to
how agents value finding out the veracity of the information, this makes an interesting
and neural prediction for populations of neurons that encode subjective value.
Specifically, finding out that information is true ought to act as rewarding if the
information is confirmatory (as this serves to validate both the information and the
decision) relative to when the information is disconfirmatory (as this validates the
information but challenges the decision in the process). Conversely, finding out the
information is false ought to act as rewarding if the information is disconfirmatory (as this
serves to challenge the information calling the decision into disrepute) relative to when
the information is confirmatory (as this challenges the information and suggests the
decision may not have been correct after all).

To see whether this revelation of whether the feedback was true or false
selectively activated voxels associated with subjective value, | focused my analysis on
the ventromedial prefrontal cortex (vmPFC), a region known to correlate with value
across a range of domains including primary rewards like food, secondary rewards like

money, abstract rewards like social approval (Bartra et al., 2013; Clithero & Rangel, 2014;
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Levy & Glimcher, 2012), aesthetic judgments of art (Kawabata & Zeki, 2004), and viewing
attractive faces (O’Doherty et al., 2003).

5.2 Methods
5.2.1 Participants

Forty participants (mainly students at the University of East Anglia) took partin the
study for credits and up to a £5 bonus based on performance. Data from eight
participants were excluded from the analysis: three for failing to pass behavioural
attention checks (less than 50% accuracy) and five due to excessive head motion
(defined as mean framewise displacement higher than 0.3 mm or absolute mean
displacement higher than 2mm). The final sample for analysis consisted of 32
participants ([25 female, 7 male]; mean age = 20.5 years). All participants were right-
handed, had normal or corrected-to-normal vision, and reported no history of
neurological or psychiatric conditions. The study was approved by the School of
Psychology Ethics Committee at the University of East Anglia. All participants provided

written informed consent prior to participation.

5.2.2 The Task

Participants performed the probabilistic instrumental learning task (Chapter 3)
with several changes (Figure 5.1). First, the duration of the first and second fixation
crosses was randomized to last between one to three seconds and four to five seconds,
respectively. Second, choices were no longer self-paced but restricted to a 3-second
time limit, with a warning message appearing if participants responded too slowly. This
helped to ensure all sessions had the exact same length. Third, the trial structure was set
so that each of the four blocks had 12 trials for each of the four unique pairs of stimuli,
bringing the total to 196 trials for the entire task. Finally, one attention check trial was
added to each block. The task was programmed and presented using PsychoPy 2.2

(Peirce et al., 2019).
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Figure 5.1: Timeline of the task. Participants are initially shown two options and select one
within a 3-second limit. Upon selection, a star appears above the chosen option as confirmation.
Following this, the outcome of one of the two options (either chosen or unchosen) is displayed,
with "xx" marking the outcome not shown. Whether the outcome was true (tick) or false (cross) is
then indicated.

Before the main experiment, participants completed a practice session (one
outside the scanner on a computer and one inside the scanner). This involved 16 trials
with two unique stimulus pairs outside the scanner, followed by 8 trials with two different

unique pairs inside the scanner.

5.2.3 Behavioural Analysis

To investigate how participants used both feedback and accuracy of the feedback
to guide subsequent decisions, | analysed choice repetition on a trial-by-trial basis. The
dependentvariable was choice repetition, coded as a binary outcome (1 =the participant
repeated the choice from the previous trial, -1 = they switched their choice). | fitted a
linear mixed-effects model using the glmer function from the Ilme4 package in R (Bates et
al., 2015). The model predicted the likelihood of choice repetition (t) from two fixed
effects: the previous_feedback (t-1) (confirmatory coded as +1 vs disconfirmatory coded
as -1) and the previous _accuracy (t-1) (true coded as +1 and false coded as -1), including
the interaction between them. To account for variability across participants, the model
included a random intercept for each participant as well as random slopes for both main
effects and their interaction.
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5.2.4 Computational Model

| tested the same four models described in Chapter 3, fitted and validated using
approaches outlined in Chapter 2. For brevity, below | will only describe the winning
model M4 (see Appendix 5.4 for the rest of the models).

For each subject and each block, option values Qi(t) were stored separately for
each pair of options, with i € {1,2} denoting the option index and t the trial number. At the
start of the experiment, all Q-values were initialised to zero. On trial t, the participant
chose one option (ichesen), rendering the other option unchosen (iunchosen). Depending on
whether the feedback was presented for the chosen or unchosen option, the
corresponding Q-value was updated.

The prediction error (0) was defined as:

where Ri(t) is the observed outcome.

The update was given as:
Qi(t+1) = Qi(t) + a* &i(t)
with the learning rate a determined by both outcome accuracy (true vs false) and

feedback type (confirmatory vs disconfirmatory). This yielded four distinct learning rates:

Qi(t+1) = Qi(t) + Aconr, faise * Oi(t) if accuracy = False and feedback = Conf
Qi(t+1) = Qi(t) + Apiscont, fatse * Di(t) if accuracy = False and feedback = Disconf
Qi(t+1) = Qi(t) + Aconr, true * Di(t) if accuracy = True and feedback = Conf
Qi(t+1) = Qi(t) + Apiscont, rue * Oi(t) if accuracy = True and feedback = Disconf

“Confirmatory” feedback was defined as an outcome that confirmed the participant
made the right choice (5 > 0 for the chosen option or & <0 PE for the unchosen option),
while “disconfirmatory” feedback was defined as an outcome that disconfirmed the
participants decision (6 < 0 PE for the chosen option or & > 0 for the unchosen option).
Choices were modelled using a SoftMax decision rule applied to the Q-values of the

chosen and unchosen options on the current trial:

107



exp(BQ:i(1))
exp(BQ1(8)) + exp(BQ2 (1))

P(choosei) =

where P(choose i) is the probability of selecting option i at trial t, and B is the inverse
temperature parameter that controls the degree of stochasticity in choice behaviour.
Larger values of B yield more deterministic choices, while smaller values reflect more
exploratory behaviour.

The contribution of each trial to the likelihood was given by the log probability of the

observed choice. For a choice between the chosen (i) and unchosen (i\) options:

1
I =1
o8 <1 T exp(—B Qs (0) - Qiu(t)]))

The log-likelihood for a subject was then:

L=th
t

and the model minimised the negative log-likelihood, -L, during estimation.
In summary, M4 is a five-parameter (Qcont, trues Qbiscont, true, Alcon, fatses Abiscont, fatses B) Model
that distinguishes learning rates for confirmatory vs disconfirmatory feedback and true

vs false information.

5.2.5 fMRI Image Acquisition

Scanning was performed at the University of East Anglia scanning centre
UWWBIC, using a 3T Siemens MAGNETOM Prisma MRI scanner equipped with a Siemens
head coil. The imaging session began with a high-resolution T1-weighted structural scan
with MPRAGE sequence. This was followed by four functional runs, each lasting 12
minutes, amounting to 374 scans, the first 6 of which were discarded. Functionalimages
were acquired using a T2-weighted echo-planar imaging (EPI) sequence with multi-band
acceleration. The following parameters were used: Repetition Time (TR) =2000 ms; Echo
Time (TE) = 30 ms; Flip Angle = 78°; 50 interleaved axial slices; Voxel size =3.0 x 3.0 x 3.0
mm; Slice thickness = 3.0 mm (no gap); Field of View (FOV) =192 x 192 mm; Matrix size =

64 x 64; multi-band acceleration factor = 2. The session concluded with a 1-minute
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gradient echo (GRE) field map with the same resolution and slice locations as the
functional images to correct for geometric distortions caused by magnetic field

inhomogeneities.

5.2.6 fMRI Data Preprocessing

Statistical Parametric Mapping (SPM12, Wellcome Trust Centre for Neuroimaging)
was used for image processing and analysis. Raw DICOM images were first converted to
NIfTI format. After discarding the first 6 dummy volumes, images were realigned to the 7t
volume. Movement plots were studied to ensure scan-to-scan translations greater than
one-half of a voxel (1.5 mm) or rotations greater than 1° did not cause artifacts in the
corresponding scans. Structural images were reregistered to mean EPI images and
segmented into grey and white matter. These segmentation parameters were then used
to normalise and bias-correct the functional images to a standard EPl template based on
the Montreal Neurological Institute (MNI) reference brain using a nonlinear (7th-degree
B-spline) interpolation. Normalised images were spatially smoothed with an 8 mm Full-
Width at Half-Maximum (FWHM) Gaussian kernel. A high-pass filter of 1/128-Hz was

applied to the time-series data to remove low-frequency artifacts.

5.2.7 fMRI General Linear Models

GLM1 (main analysis). For each participant, a design matrix was created with
event onsets time-locked to the temporal positions of Choice Presentation, Feedback
Presentation and Information Cue Presentation. Events were modelled as delta
functions and convolved with a canonical hemodynamic response function to create
regressors of interest. The onset regressor for Information Cue Presentation was
subdivided into 4 conditions: Confirmatory True (where confirmatory feedback turned
out true), Disconfirmatory True (where disconfirmatory feedback turned out true),
Confirmatory False (where confirmatory feedback turned out false), and Disconfirmatory
False (where disconfirmatory feedback turned out false). This resulted in six regressors
for each session. Six motion correction regressors estimated from the realignment
procedure were entered as covariates of no interest.

To identify regions that tracked the subjective value of the two options participants

chose between on each trial, | entered the absolute difference in the learned Q-values
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(IAQ|) of the two options presented (with trial by trial Q values of each option extracted
from the winning computational model for each participant) as parametric regressors,
modulating the events in which choice pairs were presented (Choice Presentation).

To identify correlates of prediction errors at the time that information accuracy
was revealed, unsigned prediction errors (|]) at the time the information accuracy cue
was presented were entered as parametric modulators at the Information Cue
Presentation timepoint, parsing out separately for Confirmatory True, Disconfirmatory
True, Confirmatory False, and Disconfirmatory False. Note that | used unsigned PE here
as a parametric modulator, but confirmatory and disconfirmatory PEs both have a
mixture of positive and negative PEs. For instance, confirmatory feedback is generated
both when a positive PE occurs for factual feedback (i.e. feedback for the option chosen)
and when a negative PE occurs for counterfactual feedback (i.e. feedback for the
unchosen option), and vice versa for disconfirmatory. By using unsigned PEs, | can
identify brain regions in which BOLD responses scale with the extent to which the error
term suggests participants choose correctly (for confirmatory trials) or incorrectly (for
disconfirmatory trials), independently of whether the PE is positive or negative.

GLM2. Asecond GLM was used to be able to separately extract BOLD response at
the time of the information cue, by separating this into eight bins according to whether
feedback was for the option chosen or unchosen, whether the PE had been positive or
negative and whether the information cue revealed the feedback to have been true or
false. This was to be able to explore and plot out effects present in GLM1 at the time of
information cue presentation at a more granular level and see whether the direction of
the BOLD response changed according to all 3 factors.

For each participant, a design matrix was created with event onsets time-locked
to the temporal positions of Choice Presentation, Feedback Presentation and
Information Cue Presentation. As for GLM1, events were modelled as delta functions and
convolved with a canonical hemodynamic response function to create regressors of
interest. The onset regressor for Information Cue Presentation was subdivided into eight
conditions:

(1) Positive PE, Chosen, True (trials where the prediction error was positive, feedback
was provided for the option chosen and the information cue revealed the

feedback to have been true)
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(2) Negative PE, Chosen, True (trials where the prediction error was negative,
feedback was provided for the option chosen, and the information cue revealed
the feedback to have been true)

(3) Positive PE, Chosen, False (trials where the prediction error was positive,
feedback was provided for the option chosen, and the information cue revealed
the feedback to have been false)

(4) Negative PE, Chosen, False (trials where the prediction error was negative,
feedback was provided for the option chosen, and the information cue revealed
the feedback to have been false)

(5) Positive PE, Unchosen, True (trials where the prediction error was positive,
feedback was provided forthe unchosen option, and the information cue revealed
the feedback to have been true)

(6) Negative PE, Unchosen, True (trials where the prediction error was negative,
feedback was provided for the unchosen option, and the information cue revealed
the feedback to have been true)

(7) Positive PE, Unchosen, False (trials where the prediction error was positive,
feedback was provided for the unchosen option, and the information cue revealed
the feedback to have been false)

(8) Negative PE, Unchosen, False (trials where the prediction error was negative,
feedback was provided for the unchosen, and the information cue revealed the
feedback to have been false)

Note that (1), (3), (6) and (8) represent cases of confirmatory feedback which
transpire to be true in the cases of (1) and (6) but false for (3) and (8). Whereas (2), (4), (5)
and (7) represent cases of disconfirmatory feedback which transpire to be true in the
cases of (2) and (5) but false in the cases of (4) and (7).

This resulted in 10 regressors for each session. Six motion correction regressors
estimated from the realignment procedure were entered as covariates of no interest.
Also, one subject had to be excluded from this analysis for insufficient data in one of the

conditions.
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5.2.8 Region of Interest (ROI) Definition

The use of a Region of Interest (ROI) approach in neuroimaging can be summed
up as a trade-off between statistical power and spatial exploration. By restricting the
analysis to a priori hypothesized regions, this approach significantly reduces the severity
of the multiple comparisons problem in whole-brain analyses, increasing the sensitivity
to detect subtle effects (Poldrack, 2007). However, this sensitivity relies on the validity of
the ROI selection strategy. ROls can be defined in several ways. Anatomical definition
uses standardized atlases (e.g., Automated Anatomical Labelling) and assumes that
functional boundaries map perfectly onto structural ones. Functional definition involves
using an independent localizer task to identify the region within each specific subject
(Saxe et al., 2006). While this accounts for individual variability in functional topography,
it increases scanning time and relies on the assumption that the localizer task taps into
the exact same neural computation as the main experiment.

In the absence of a functional localizer, ROIs can be defined using independent
coordinates from the literature. This means a choice between deriving peaks from a
meta-analysis or a single representative or relevant study. Meta-analytic coordinates
offer robustness by aggregating across widespread data, smoothing out study-specific
noise (Yarkoni et al., 2011). However, the resulting consensus regions can be spatially
broad or general. On the other hand, coordinates from a single, high-quality study allow
for greater specificity to the exact psychological process being investigated, which in my
case is subjective value. Therefore, | prioritized specificity and created an independent
ROI mask for an a priori brain region known to signal subjective value, the vmPFC (Bartra
et al., 2013; Chib et al., 2009; Kable & Glimcher, 2007; Lebreton et al., 2009; Lefebvre et
al., 2017; Levy & Glimcher, 2012; Padoa-Schioppa & Assad, 2006; Rangel et al., 2008).
This ROl was created using the MarsBaR software (Brett et al., 2002) by defining a 6-mm
radius sphere centred on peak coordinates (Montreal Neurological Institute (MNI) space
coordinates (x, vy, z) = (12, 56, 4)) from a previous independent study showing robust
vmPFC activation in response to subjective value (De Martino et al., 2013). | extracted the
betas using the same software. Given that the coordinates are derived from an
independent dataset, this approach avoids the circularity or double-dipping error

(Kriegeskorte et al., 2009). This occurs when the same dataset is used to both select the

112



region of interest (e.g., finding the peak voxel of activation in a specific contrast) and to
test the hypothesis within that region (e.g., extracting Beta values to determine if the
effect is significant). Because fMRI data contains noise, selecting the "best" voxels
inherently selects those with noise that aligns with the hypothesis. Therefore, running
statistical tests on these pre-selected voxels inflates effect sizes and significance levels,
rendering the statistics invalid for inference. The use of a fixed sphere (6mm) is to capture
the core of the functional region while accommodating minor inter-subject variability in
functional anatomy. However, a limitation of this approach is that it assumes spatial
consistency across populations. If the functional region in the current sample drifts
slightly from the published coordinates, the fixed sphere may capture less signal than a

subject-specific functional localizer.
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Figure 5.2: The vmPFC ROI mask. This mask was created by a 6-mm radius sphere around peak
coordinates of an independent study (Montreal Neurological Institute (MNI) space coordinates
(x,y, 2) = (12, 56, 4); highlighted in red).

5.2.9 Main Analysis

Choice Presentation. At the time of choice presentation, | investigated if previous
findings of vmPFC tracking the difference in value when choosing between 2 options
(Boorman et al., 2009; Glascher et al., 2009; Hare et al., 2008; Hunt et al., 2012)
replicated in this study. To do this, | extracted (from GLM1) the individual participant beta
coefficients for the parametric modulator (modulating the choice time point by the trial-
by-trial absolute difference in Q-values between the two options under consideration)
from the vmPFC ROI and tested for significance at the group level using a one-sample t-

test (vs 0).

113



Information Cue Presentation. At the time of information presentation (when
participants learned whether the feedback they had just seen was true or false), |
investigated if BOLD response in the vmPFC varied according to whether both the
information was true or false and whether the feedback just seen was confirmatory or
disconfirmatory. | did this in three ways. First, | extracted (from GLM1) the beta
coefficients capturing the average (i.e. unmodulated) BOLD response (vs baseline) forthe
four conditions (true confirmatory, true disconfirmatory, false confirmatory and false
disconfirmatory) from the vmPFC ROI and entered these into a 2*2 repeated measures
ANOVA to test for main effects and interaction. To better understand the pattern of BOLD
response in vmPFC in this analysis, | then used GLM2 to split the pattern out further
(separating for chosen/unchosen, positive/negative PE and true/false information cue).
Finally, to see if vmPFC activity scales proportionally with prediction error magnitude,
such that larger PEs are associated with stronger BOLD responses and smaller PEs with
weaker responses, | extracted the beta coefficients (from GLM1) capturing the
parametrically modulated (by trial-by-trial unsigned PEs) activity from the vmPFC ROI.

These were entered into a 2*2 repeated measures ANOVA.

5.2.10 Whole-Brain Analyses

l also conducted awhole-brain exploratory analysis at choice and information cue
presentations. Significance was determined using a cluster-level correction (voxel-wise
threshold p < 0.001 uncorrected, family-wise error (FWE) P < 0.05, cluster size (K) > 5). |
used the JuBrain Anatomy Toolbox (a.k.a. SPM Anatomy Toolbox) (Eickhoff et al., 2005)

to label the regions corresponding to the coordinates.

5.3 Results

5.3.1 Behavioural and Computational Modelling Results

Participants modulate their learning based on feedback and accuracy. The
linear mixed effects model (see Methods) revealed an interaction between previous
feedback (confirmatory or disconfirmatory) and previous accuracy (true or false) in
predicting choice repetition (B=0.107, p=0.002), as detailed in Table 5.1. Further, while

receiving confirmatory feedback increased the likelihood of repeating a choice (=0.14,
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p<0.001), this effect was significantly amplified when the feedback turned out to be true.
This suggests that participants valued both the confirmatory feedback on its own but
modulated their learning depending on its veracity. Therefore, on a behavioural level, this
confirms that participants integrate both the type of the feedback (confirmatory vs.
disconfirmatory) and its accuracy (true vs. false) to guide their subsequent decisions.
Next, | assessed whether there was any bias in integrating information using

computational models.

Predictor Estimate std. Error | Statistic p
(Intercept) 0.64 0.09 7.14 <0.001
Previous_Feedback 0.14 0.03 3.71 <0.001
Previous_Accuracy -0.06 0.04 -1.42 0.15
Previous_Feedback x Previous_Accuracy 0.107 0.03 3 0.002
N participant 32
Observations 5593

Table 5.1 The behavioural model. Fixed Effect Estimates and accompanying statistics from a
linear mixed-effects model predicting choice repetition on each trial from previous feedback,
previous accuracy, and their interaction.

Four learning rate model the best fit to the data. Using leave-one-out cross-
validation (LOOcv) scores and a Variational Bayesian Approach, | found that Model 4
provided the best fit as it did in the previous chapter. This model achieved the highest
frequency, at approximately 97% (Figure 5.3(a)), with an exceedance probability of 1.0.
This frequency is significantly above the chance level of 25%, indicating that participants
learn differently across the feedback and accuracy domains, echoing the behavioural

results. See Appendix 5.5 for additional model comparison results.
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Figure 5.3: Modelling Results. (a) Results from the VBA model comparison showed that Model
4 (M4) had the highest frequency, being chosen for about 97% of participants, with an
exceedance probability (XP) of 1. (b) Estimates from M4 revealed that learning rates were higher
for confirmatory than disconfirmatory feedback for both true information (t(31) = 4.30, p <0.001;
hierarchical t-test comparing Qiue_cont@Nd Qirue_discont) aNd false information (t(46) = 3.17, p < 0.01;
hierarchical t-test comparing Qsaise_cont @Nd Qrase_dgiscont), CONSistent with confirmation bias. ***p <
0.001, *p <0.01, hierarchical t-test.

Higher learning rate for confirmatory vs disconfirmatory feedback for both true and
false information. Using the winning model (M4), | examined the pattern of learning rates
(Figure 5.3(b)). Replicating the findings from the previous chapter, participants showed
confirmation bias for both false (t(31) =4.30, p <0.001) and true information (t(31) = 3.17,
p < 0.01), learning more from confirmatory than from disconfirmatory feedback.
Moreover, the magnitude of this bias did not significantly differ between true and false

information (t(31) = 0.80, p = 0.42).

5.3.2 fMRI Results

Subjective value at the time of Choice. | first looked to validate the decision to
use activity in the vmPFC as an indirect measure of subjective value at the time
participants were presented with the information cue. | did this by first examining activity
at the time of choice and looking to see if previous findings (Bartra et al., 2013; Boorman
et al., 2009; Hare et al., 2008; Padoa-Schioppa & Assad, 2006) showing that vmPFC
activity correlated with the difference in subjective value between two options being
chosen between replicated here. Indeed, BOLD signal correlated positively with the
unsigned Q-value difference in the vmPFC (peak MNI [x,y,z] = 4,62,10; Z = 3.71, cluster-
level pFWE = 0.03, Figure 5.4) along with the Cingulate Gyrus (peak MNI [x,y,z] x=8,32,-4;
Z=5.09, cluster-level pFWE =0.000), Cerebellum (peak MNI [x,y,z] =-36,-80,-40; Z=4.62,
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cluster-level pFWE = 0.01), and Lateral Occipital Cortex (peak MNI [x,y,z] = -54,-66,34; Z
= 4.54, cluster-level pFWE = 0.02) (see Appendix 5.1 for complete statistics from the
whole-brain analysis). This effect was also significant in the vmPFC ROI mask (see
Methods) constructed using reported voxels from an independent study (t(31) =2.32, p

=0.02, one-sample t-test against 0).

Figure 5.4: The vmPFC Activity at the Time of Choice. The vmPFC activity (peak MNI [x,y,z]: 4,
62, 10) tracks the subjective value difference between options (P < 0.05 FWE corrected at the
cluster level) at the time of choice. The statistical map is displayed at a threshold of p < 0.001
uncorrected, overlaid on a standard MNI template. The colour bar indicates the Z-statistic.

Subjective value at the time of Information Cue. Next, | turned to the main
question - investigating vmPFC activity at the time participants received the information
cue, revealing to them whether the feedback they had just seen had been true or false.
The hypothesis was that when this cue reveals information to have been true, finding this
out would have higher value (indexed here as higher vmPFC BOLD response) when the
feedback had been confirmatory compared to when it had been disconformity. But when
the cue reveals the information to have been false, the opposite should transpire
whereby this has lower value when the feedback had been confirmatory compared to

when it had been disconformity.
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Examining changes to the average BOLD response in vmPFC (i.e. the
unmodulated effect) by extracting betas from the vmPFC ROI and entering them into a
2*2, repeated measures ANOVA with Information Accuracy (True/False) and Feedback
(Confirmatory/Disonfirmatory) revealed a significant interaction between accuracy and
feedback (F(1,31) =7.47, p=0.01, Figure 5.5). There was no effect of accuracy (F(1,31) =
1.99, p = 0.16) or feedback (F(1,31) = 0.0003, p = 0.98). Post hoc tests revealed that the
Accuracy*Feedback interaction was the result of greater vmPFC activity when feedback
had been confirmatory (versus disconfirmatory) when the information cue revealed was
true (t(31) = 2.00, p = 0.05; two-tailed paired t-test between Confirmatory-True and
Disconfirmatory-True). But when the information cue was revealed to be false, vimPFC
activity was in the opposite direction; lower when the feedback had been confirmatory
compared to when it had been disconfirmatory (t(31) = -2.28, p = 0.03; two-tailed paired
t-test between Confirmatory-False and Disconfirmatory-False). The interaction was
further characterised by greater vmPFC activity in response to confirmatory feedback
when the information cue was true compared to when it was false (t(31) = 2.55, p = 0.01;
two-tailed paired t-test between Confirmatory-True and Confirmatory-False) with no
significant difference between the cues in response to disconfirmatory feedback (t(31) =
-0.65, p = 0.51; two-tailed paired t-test between Disconfirmatory-True and
Disconfirmatory-False). The results suggest that finding out information is true is
rewarding when it validates existing beliefs relative to when it calls them into question.
Conversely, finding outinformation is false is valuable when this negates information that
had challenged prior beliefs relative to cases where this negates information that had

validated them.
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Figure 5.5: The Accuracy * Feedback Interaction Effect. Interaction between feedback and
accuracy in the vmPFC ROI (F(1,31) =7.47, p = 0.01). When the information cue is revealed to be
true, vmPFC activity is higher if the feedback had been confirmatory versus disconfirmatory (t(31)
= 2.00, p = 0.05; two-tailed paired t-test between Confirmatory-True and Disconfirmatory-True).
But when the information cue is revealed to be false, vmPFC activity is in the opposite direction,
being lower when the feedback had been confirmatory compared to when it had been
disconfirmatory (t(31) = -2.28, p = 0.03; two-tailed paired t-test between Confirmatory-False and
Disconfirmatory-False). *p < 0.05.

An exploratory whole-brain analysis also revealed a significant interaction
between Accuracy and Feedback in a cluster in the left Medial Temporal Lobe (MTL) that
included the Left Hippocampus (peak MNI [x,y,z] = -36,-38,-2; Z = 4.51, cluster-level
pFWE = 0.04, k = 361), the Dorsolateral Prefrontal Cortex (peak MNI [x,y,z]= 32,30,44; Z =
4.35, cluster-level pFWE = 0.01) and the Left Cerebellum (peak MNI [x,y,z] =-32,-50,-44; Z
= 3.95, cluster-level pFWE = 0.04). See Appendix 5.1 for whole brain statistics including
main effects of Accuracy and Feedback.

Given that confirmatory information can occur under different scenarios (positive

prediction error for factual outcome, negative prediction error for counterfactual
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outcome) as can disconfirmatory (negative prediction error for factual outcome, positive
for counterfactual outcome) the results we observed in the vmPFC (Figure 5.5) predicts
a specific pattern of BOLD response depending on both on the sign of the prediction error,
whether outcome was given to the option chosen or unchosen; and, crucially, whether
accuracy was revealed to be true or false. In the case of true information, we would
expect this to act as rewarding in cases where the prediction error has been positive for
the option chosen or negative for the option unchosen (relative to the opposite cases -
negative prediction error for the option chosen and positive prediction error for the option
not chosen). But this pattern should be inverted for false information, whereby this acts
as rewarding in cases where the prediction error has been negative for the option chosen
or positive for the option unchosen (relative to the opposite cases — positive prediction
error for the option chosen and negative prediction error for the option not chosen).

To unpack this, | used a second fMRI model (GLM2, see Methods) which
separated trials into eight conditions, depending on 3 factors: the sign of the PE
(positive/negative), the outcome (chosen/unchosen) and information cue (true/false)
and extracted the BOLD response in my a priori vmPFC ROI at the time the information

cue was presented.

120



Chosen Unchosen

S} .
m | & B B B B B B B B B BN |

% 10_ f @

> -----?-----—

< o M

Q @ % @ @ @

v 5_ ® & © & © ® @

: OO p @ © @ ( - -

e S e % 8 “@ : < Prediction Error
(3] > e & g ¥ % <

2 0%% = —Eﬁ ] Positive
> o8 : L] Negative
‘3 o ¢ %) % & @ Oo g

DD @ @ O@ @ (5]

3 '5_ @ & ® 4

c ® @

dJ @

0 ’ :

Q

o _10— N €

I

True False True False

Accuracy

Figure 5.6: The Three-way Interaction Effect. A three-way interaction (F(1,30) =7.12, p = 0.01)
between the sign of prediction error (positive vs negative), outcome (chosen vs unchosen), and
accuracy (true vs false). The green, dashed lines show confirmatory feedback (positive — chosen
and negative-unchosen), the direction of which is positive for true information but negative for
false information. The orange, dashed lines indicate disconfirmatory information (negative-
chosen and positive-unchosen).

A 2x2*2 repeated-measures ANOVA on the vmPFC beta estimates revealed a
significant three-way interaction (F(1,30) = 7.12, p = 0.01, Figure 5.6). Post hoc tests
showed that this was the result of a 2-way interaction between Accuracy and PE_Sign
following counterfactual outcomes (i.e. outcome for the unchosen option) (F(1,30) =
5.44, p = 0.02) that was not significant (but showed a qualitative pattern of activation in
the opposite direction, Figure 5.6) following factual outcomes (F(1,30) = 2, p = 0.16).
There was no significant main effect of sign of PE (F(1,30) = 0.26, p = 0.61), Outcome
(F(1,30) = 0.05, p = 0.81) or Accuracy (F(1,30) = 2.16, p = 0.15), full stats are reported in
Table 5.2.
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Effect df F p

Intercept 1,30 0.03 0.861

PE_Sign 1,30 0.27 0.61
Accuracy 1,30 2.16 0.152

Outcome 1,30 0.06 0.811
PE_Sign x Accuracy 1,30 0.13 0.718
PE_Sign x Outcome 1,30 0.01 0.929
Accuracy x Outcome 1,30 0.01 0.957
PE_Sign x Accuracy x Outcome 1,30 7.12 .012*

Table 5.2 The Three-Way ANOVA. A 2x2*2 repeated-measures ANOVA for the sign of PE (positive
or negative), Accuracy (true or false), and Outcome (shown for the chosen or unchosen option)
on the beta estimates of the vmPFC ROI. * p < 0.05.

Finally, | examined whether there were parametric effects of unsigned PEs at the
time of information cue presentation, extracting the betas from the vmPFC ROI (GLM1)
and entering them into a 2*2, repeated measures ANOVA with Information Accuracy
(True/False) and Feedback (Confirmatory/Disonfirmatory) as factors. There was no
significant effect of accuracy (F(1,31) =0.03, p =0.82), Feedback (F(1,31)=1.62, p=0.21)
or Accuracy*Feedback interaction (F(1,31) = 0.02, p = 0.88). See Appendix 5.1 for full

whole-brain statistics, including main effects of Accuracy and Feedback.

5.4 Discussion

The main analysis revealed a significant interaction between feedback (where a
piece of information confirmed or disconfirmed one's choice) and information accuracy
(whether the feedback turned out true or false) in the vmPFC - a key region for assigning
subjective value (Bartra et al., 2013; Chib et al., 2009; le & Glimcher, 2007; Lebreton et
al., 2009; Lefebvre et al., 2017; Levy & Glimcher, 2012; Padoa-Schioppa & Assad, 2006;
Rangel et al., 2008).vmPFC activity was significantly higher if confirmatory vs
disconfirmatory feedback turned out true. Conversely, when the feedback turned out
false, the vmPFC activity showed the opposite pattern; being significantly higher if the
feedback had been disconfirmatory compared to confirmatory. Together, this suggests
that participants assigned greater value to finding out information was false when it
invalidated earlier disconfirmatory evidence compared to when it invalidated earlier
confirmatory evidence, but assigned greater value to finding out information was true

when it validated earlier confirmatory compared to disconfirmatory evidence.
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The neural findings have implications for advancing the computational models of
the thesis. Although there is a significant Feedback*Accuracy interaction effect using the
average BOLD response, there is no significant parametric effect of prediction errors on
this interaction at the time of information cue. These prediction errors, however, were
generated at the feedback timepoint, which raises the possibility that separate learning
signals are generated at the information cue timepoint. This points toward an alternative
framework that my current models cannot test: a two-step learning process. In such a
framework, a first update would occur when the feedback is received. This would be
followed by a second update upon the reveal of the accuracy, which could be modelled
in several ways. For information revealed to be false, the initial learning could be revised,
and | could quantify this by a specific 'undo' parameter (w). Another model could have
two distinct 'undo' parameters: one for confirmatory feedback and another for
disconfirmatory feedback. Conversely, for information revealed to be true, the initial
update is confirmed. A different model could explore whether this confirmation is
passive (i.e., the absence of undoing) or an active 'boosting' of the initial learning,
governed by its own 'boost' parameter (y). Therefore, the neural results of this chapter

could provide insight into the modelling of the behavioural data.

My exploratory, whole-brain analysis culminated in two significant regions for the
Feedback*Accuracy interaction - right dorsolateral prefrontal cortex (DLPFC) and a
cluster that included the left medial temporal lobe (MTL) — and a main effect of accuracy
inthe right DLPFC. | propose two explanations, albeit speculative, for the involvement of
these regions. First, regarding the main effect of accuracy, is the DLPFC’s role in belief-
updating under uncertainty (Hofmans & van den Bos, 2025; Moutsiana et al., 2015;
Schulreich & Schwabe, 2021). In one transcranial direct current stimulation (tDCS) study,
Schulreich and Schwabe (2021) enhanced right DLPFC activity in participants performing
a continuous belief-updating task. The results showed increased value updating when it
was normatively expected from a Bayesian perspective, meaning that they got better at
changing their beliefs when the evidence dictated they should. The current finding of a
main effect of accuracy in the DLPFC, with higher activity for true versus false
information, aligns with this work as it is more rational: participants needed to update

their beliefs more when faced with true information. The MTL has also been implicated in
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learning and belief updating (Moutsiana et al., 2015) as part of a frontal-subcortical
circuitin the original belief update task. Specifically, structural connectivity between the
left hippocampus (an MTL subregion) and left inferior frontal gyrus (IFG) was associated
with a greater tendency to update beliefs in response to good news vs bad news.
Individuals with stronger physical connectivity between these regions showed higher
updating in response to good vs bad news. In the current task, MTL activity was higher for
confirmatory vs disconfirmatory true information, with the opposite pattern for false
information. This suggests the MTL may use desirability as a distinguishing factor in belief
updating. My second speculation is the involvement of both regions in retrospective
confidence judgements when information cue is presented, at which point the brain
asks, "Given the feedback and its accuracy, did | make the right decision?”. In other
words, it is evaluating the correctness of the initial beliefs formed at the feedback
timepoint. A sub-region of MTL, the Left parahippocampal gyrus, has been implicated in
retrospective confidence judgement (Martin-Luengo et al., 2021), with higher activity
correlating with higher confidence. The MTL in the current task has higher activity when
the initial confirmatory feedback turns out true (confirmatory - true) or the contradictory
information could be ignored (disconfirmatory - false), both of which could signal one has
made the right choice (as opposed to disconfirmatory true and confirmatory false),
increasing retrospective confidence. The DLPFC has also been implicated in
retrospective confidence judgment (Fleming, 2024; Fleming et al., 2018; Fleming &
Dolan, 2012; Martin-Luengo et al., 2021), where in one meta-analysis it was shown to
correlate with one’s confidence in the prior decision (Martin-Luengo et al., 2021). Further,
in a causal study using transcranial magnetic stimulation (Shekhar & Rahnev, 2018),
disrupting the DLPFC caused participants to report lower confidence in their decisions.
The researchers proposed a model where the DLPFC's job is to "read out" the strength of
the sensory evidence. When the DLPFC is disrupted, this readout becomes noisy,
signalling to other areas that the evidence was ambiguous, which in turn leads to a lower
feeling of confidence. In the current results, the DLPFC has the highest activity for
confirmatory true and disconfirmatory false information, both of which convey a feeling
of confidence. However, unlike in the MTL, confirmatory true is not significantly higher

than disconfirmatory true, casting doubt on this speculation.
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In the present study, | inferred the subjective value of information from vmPFC
BOLD responses. A promising future direction would be to create a more direct link
between brain activity and subjective feeling by collecting explicit behavioural ratings.
For instance, participants could be asked to rate "How positive or negative did you feel
finding out this information was true/false?" on a continuous scale after the information
cue is revealed. The hypothesis would be that these ratings would mirror the neural data
| have collected. Another approach would be using a willingness-to-pay (WTP) task,
which has been used to probe the neural representations of value (Plassmann et al.,
2007), and see how feedback and accuracy influence willingness to pay and how this is

represented in the brain.

Together, the results here are the first to show how the brain processes false
information depending on whether it had confirmed or disconfirmed one’s beliefs. |
focused on a brain region known for valuation, the vmPFC, to assess its BOLD response
to finding out that earlier feedback is false. One might expect the brain would dislike
learning it had been misled or deceived, but the results revealed that participants do
assign a higher value to disconfirmatory false information compared to when
confirmatory information proves false. These findings suggest that people might be
differentially motivated to scrutinise the accuracy of information depending on whether
it aligns with their existing beliefs. When information appears to confirm one's beliefs
(e.g., experimental results that support a scientist's predictions), one may be less
inclined to verify its validity. Conversely, when information contradicts expectations (e.g.,
experimental results going against a scientist’s predictions), one may be more motivated

to question its veracity.
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Chapter 6: General Discussion

6.1 Summary and Limitations

6.1.1 Chapter 3: Confirmation Bias in Response to False
Information

6.1.1.1 Summary

In this study, | investigated whether confirmation bias, the tendency to overweight
evidence that supports one's existing beliefs and underweight that which disconfirms it,
persists when individuals process information they know to be false. | combined
behavioural testing with computational modelling across two studies, using a novel
learning task where participants made choices and received feedback that was explicitly
cued as either true or false. The behavioural results revealed that participants learned
even from information explicitly cued as false. When guided by this false feedback, their
selection of the misleading option was significantly above the 50% chance level..
However, this learning was modulated, as performance was significantly better when
feedback was true. This demonstrates that while participants paid attention to the
accuracy cues, they were unable to completely ignore the influence of false information

on their decisions.

The computational modelling results suggested that the learning from false
information is biased. | tested a suite of models and found that a model with four distinct
learning rates - for confirmatory true, disconfirmatory true, confirmatory false, and
disconfirmatory false feedback - provided the best fit to the data in both studies. The
parameters from this winning model revealed a robust confirmation bias for both true and
false information, where the learning rate for belief-confirming feedback was significantly
higher than for belief-disconfirming feedback. The bias for false information could not be
explained away by gradual perseveration, was robust across Gain and Loss contexts, and
the patterns of factual and counterfactual learning rates confirmed it was separate from
positivity bias. Further, the strength of the confirmation bias for false information was the
same as the bias for true information as demonstrated by the lack of interaction between

the learning rates across feedback (confirmatory vs disconfirmatory) and accuracy (true
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vs false). These findings identify a mechanism that supports the persistence of biased

beliefs, even in the face of information that is explicitly discredited.

6.1.1.2 Limitations

A limitation of this study is the lack of a neutral or unknown cue with which | could
compare the current results. Although the confirmation bias in the face of false
information is robust, it would be bolstered by having this third Unknown condition as in
the real world seeing a piece of information whose veracity is unknown is common.
Similarly, the True and False labelling of the information is authoritative and in the real

world we don’t get such clear-cut accuracy statements of information.

6.1.2 Chapter 4: Optimistic Update Bias in Response to False
Information

6.1.2.1 Summary

In this study, | investigated the degree to which explicit labels marking information
as false — debunking - enable humans to reduce belief updating in response to false
information. | adapted a classic belief-updating paradigm, the update bias task (UBT), in
which participants were presented with information about the likelihood of experiencing
adverse life events, which was then explicitly labelled as either true or false. This setup
allowed me to answer two main questions: first, do people reduce their belief updating
wheninformationis labelled as false? And second, does the well-documented optimistic
update bias - the tendency to learn more from good news than bad news - persist even
for information known to be false? The behavioural results revealed a main effect of
accuracy, with greater updating for true compared to false information, and a main effect
of valence, with greater updating for good news compared to bad news, and no
interaction between valence and accuracy. Further, separate paired t-tests between
good news and bad news for true and false information showed that optimistic update
bias exists for false information as well. As a result, participants were less successful in
discounting false information when it was better than expected compared to worse than
expected. Finally, the optimistic update bias survived after controlling for potential
confounds like subjective ratings and how much one deems themselves different from

others, with the latter measured through computational modelling.
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Computational models explained belief updating through estimation errors - the
discrepancy between people's initial estimates and the information presented. These
models propose that the belief updating process is governed by learning rates, which
determine how strongly estimation errors influence belief changes. Different models
incorporate varying numbers of learning rates, and the winning model had four learning
rates for True Good News, True Bad News, False Good News, and False Bad News. The
results from this model revealed that learning rates were significantly higher for good

news than for bad news for both true and false information.

These findings identify a potential mechanism - optimistic update bias - that
explains why false good news has a greaterimpact on belief change than false bad news,

which could be important for understanding vulnerability to misinformation.

6.1.2.2 Limitations

Similar to chapter 3, the main limitation of the study is that the "true" and "false"
labels provided to participants were definitive and authoritative. In real-world
environments, the veracity of information is often ambiguous, and individuals must infer
credibility from uncertain cues. Therefore, the ability to modulate learning observed here
might not generalise to more ecologically valid contexts where the truthfulness of

information is not explicitly stated.

6.1.3 Chapter 5: When we value false information: the interaction
between information accuracy and confirmation in the
ventromedial prefrontal cortex

6.1.3.1 Summary

In this study, | used Functional Magnetic Resonance Imaging (fMRlI) to investigate
how the ventromedial prefrontal cortex (vmPFC) values a piece of confirmatory vs
disconfirmatory information that turns out true vs false. The behavioural and
computational results replicated my previous findings; participants' choices were
influenced by an interaction between feedback and its accuracy, and their learning was
best captured by a model with four distinct learning rates. This model confirmed the
existence of a confirmation bias- a higher learning rate for confirmatory versus

disconfirmatory feedback - for both true and false information.
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The neuroimaging results showed a significant interaction in the vmPFC between
the accuracy of the information (true/false) and whether the initial feedback confirmed
or disconfirmed the person's beliefs. Essentially, the value the brain assigned to
information accuracy depended on its relationship with the earlier feedback. When
participants learned that the feedback they received was true, their vmPFC activity was
significantly higher if that feedback had originally confirmed vs disconfirmed their belief.
In contrast, when they learned the feedback was false, vmPFC activity was higher if the
feedback had originally disconfirmed vs confirmed their belief. This suggests it's
rewarding to learn that confirming vs disconfirming evidence was correct, and it's also
rewarding to learn that the evidence that challenged vs confirmed you was wrong. | then
unpacked the feedback*accuracy interaction by separating the confirmatory vs
disconfirmatory feedback into its subcomponents: Outcome (shown for the Chosen vs
Unchosen options) and the sign of PE (Positive vs negative) such that | had eight onset
regressors across PE_Sign (Positive vs Negative), Accuracy (True vs False), and Outcome
(Chosen vs Unchosen). The results showed an interaction across these three
dimensions, indicating that vmPFC is encoding information value based on confirmation

rather than the sign of PE.

6.1.3.2 Limitations

The main limitation is the same as the other two chapters: lack of a no-cue
condition. Currently, we do not know how the brain responds to receiving no information
on the accuracy of confirmatory vs disconfirmatory information. For instance, would we

see the same pattern of vmPFC activity as false cue?

6.2 Synthesis

Across several computational studies in two different learning environments — RL
and one-shot learning - | showed that not only do people learn from false information but
also are biased in this learning whereby they learn more from desirable false information
than undesirable false information. This learning asymmetry, driven by differential
prediction error encoding in the RL task and differential estimation error encoding in the
UBT, gave rise to confirmation bias in the former —where desirable information confirmed

your choices - and optimistic update bias in the latter—- where desirable information gave
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you an optimistic outlook about the future. Across both paradigms, a model featuring
four distinct learning rates - separating desirability (Confirmatory Feedback and Good
News vs Disconfirmatory Feedback and Bad News) and accuracy (True vs False) of
information - provided the best explanation for participants' behaviour. Estimating the
winning model revealed that in both paradigms, desirable information was integrated to
a higher degree than an undesirable information no matter the veracity. This biased
information integration has been shown in a plethora of belief-updating (for a review see
Sharot & Garrett, 2016) and reinforcement learning (for a review see Palminteri &
Lebreton, 2022) studies for true information, and now | have shown it also exists in the

face of false information.

Across all studies, the strength of both biases was not significantly different
between true and false information. This means that in two totally different learning
environments, participants exhibited similar levels of biased information integration
regardless of veracity. One potential explanation for this is that the brain has one control
for desirability thatis asymmetric, and a separate 'accuracy' control that acts like a global
volume knob, reducing the impact of all false information without altering the underlying
bias. Therefore, at the information presentation timepoint, desirability is integrated in a
biased manner - learning rate for the desirable (confirmatory or good news) information
higher than learning rate for the undesirable (disconfirmatory or bad news) information —
and then, when it turns out false, the initial learning is turned down but the bias persists,

hence the lack of interaction for the strength of the bias for true vs false information.

To probe the neural processing across desirability and accuracy dimensions, |
conducted an fMRI study using the RL task, the results of which implicated the vmPFC in
biased information valuation. Specifically, upon accuracy reveal, the vmPFC valued true
and false information differently depending on whether initially, at the feedback
timepoint, the information confirmed or disconfirmed participants’ choice. if initially
desirable, true information was deemed more valuable than false information; if initially
undesirable, however, vmPFC shows no difference between true and false information.
Similarly, it assigned greater value to undesirable information that turned out false

compared to the desirable one that proved false. This could suggest that, for false
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information, participants are motivated to better ignore the undesirable information that

turns out false relative to the desirable one.

Although the biased false information integration and valuation is concerning,
participants did learn less from false information than true information — main effect of
accuracy —across all studies in the thesis. This means that debunking (warning about the
veracity of information) could be somewhat effective. This is in line with the consensus
in the misinformation literature that debunking is an effective, albeit imperfect,
intervention (M.-P. S. Chan et al., 2017; Van Der Linden, 2024). | contribute to this line of
research by providing a computational account of debunking, showing under what
circumstances it could be less effective, and offering a neural account of how the brain
processes false information the moment it is debunked. In what follows | will describe a
few open questions that could deepen our understanding of how misinformation is

learned and how it could be curbed.

6.3 Key Questions for Future Research

6.3.1 Is pre-bunking more effective than debunking in
reducing learning from false information?

Chapters 3 and 4 showed that debunking, where information turns out false, is
effective in reducing the degree to which people learn from false information no matter if
the information is abstract (i.e., two-arm bandit symbols) or realistic like future negative
life events. The misinformation literature has offered another approach that warns
people ahead of a potential falsehood, inoculating them like how a vaccine inoculates
one from infections. This is known as prebunking (Christner et al., 2024; Ecker et al.,
2022; Van Der Linden, 2024). The prebunking version of my tasks would be if the
information cue is presented first - telling them if the upcoming information (e.g., the
outcome of the option) is true or false - and then participants are asked to make a choice

and observe the feedback.

A possible, within-subject design would be intermixing "pre-bunking" and
"debunking" trials to compare the effectiveness of both strategies within the same

individual. In the debunking trials, where information turns out false, a retrospective

131



correction might be involved, a cognitively demanding process where an already
encoded, affectively charged learning signal should be suppressed or undone. As my
current results demonstrate, this correction is often incomplete, leading to residual
learning from false information. In contrast, on pre-bunking trials, | would first warn
participants that the upcoming feedback is false. This "inoculation" allows for the
engagement of proactive filtering. Instead of correcting an error, the brain can prepare to
treat the subsequent information as irrelevant. | hypothesize that this proactive stance
would alter feedback processing in two ways. First, it could effectively gate the learning
signal, preventing the prediction error generated by the outcome from being used to
update value representations in the vmPFC. Second, by framing the outcome as
meaningless from the start, it could dampen the initial affective response to a win or a
loss, neutralizing the very biased valuation shown in Chapter 5 that potentially
contributes to this form of irrational learning. Therefore, learning from false information
would be significantly lower on pre-bunking trials compared to debunking trials.
Specifically, the learned preference for the misleadingly "good" option in the unsolvable
condition should be drastically reduced, if not eliminated, on pre-bunking trials. It should
be noted that Vidal-Perez et al., (2025) have already shown that learning from unreliable

information is still present in a prebunking paradigm.

This behavioural difference should be captured by the parameters of the four-
learning-rate model. | could also extend the model to estimate separate learning rates for
pre-bunking and debunking trials. My prediction is that the learning rates for false
information (a_conf_false and a_disconf_false) would be significantly smaller for pre-
bunking trials, ideally approaching zero, providing formal evidence that the learning
signal was successfully gated. Demonstrating these effects would provide mechanistic
evidence for why inoculation-based interventions are effective. Further, the findings
would reveal that preventing a biased belief from taking root is cognitively more efficient

than attempting to revise it after the fact.

Beyond simply reducing overall learning from false information, another key
question is whether pre-bunking can specifically neutralize the optimistic and
confirmation biases that Chapters 3 and 4 show are so robust. The persistence of these

biases for false information in my studies suggests they are driven by the initial, stronger
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response to desirable or choice-confirming information. A debunking cue arrives too late,
after this biased emotional signal has already been processed. Pre-bunking, however, is
perfectly positioned to intervene in this process. By warning that upcoming information
is false, it can dampen the affective response at its source. A piece of good news or a
confirmatory outcome that is known in advance to be fake should lose its rewarding
quality, thereby neutralizing the very signal that drives the bias. Further, | predict that pre-
bunking will specifically attenuate the confirmation bias for false information.
Computationally, this means the difference between the learning rates (a_conf_false -
a_disconf_false) should be significantly smaller on pre-bunking trials compared to
debunking trials. This same logic applies to a pre-bunking version of my belief-updating
task. | hypothesize that the optimistic update bias - the greater belief updating for "False
Good News" versus "False Bad News" - would also be significantly reduced or eliminated

on pre-bunking trials.

6.3.2 Does withholding information cues affect learning
from false information?

A limitation of my studies is that information was always explicitly labelled as
either true or false. In the real world, however, we frequently encounter information with
unknown veracity. The next step would be to introduce a third, no-cue or Unknown case
to investigate how people learn from false information when it is perceived relative to the
more uncertain information (see Figure 6.1 for the proposed design). In essence, the
probabilities behind the False and Unknown cases are the same (Figure 6.1 (b) and (c))
but participants are not privy to these. This design creates a test of several competing
hypotheses about how we treat ambiguous information thatis common in the real world.
Do we operate under a "truth default," treating unknown information as if it's true? Or do
we assume it is true if it confirms our beliefs and false if it disconfirms them? A third
possibility is that we engage in graded learning, adjusting our learning based on the

reliability signal.

Using a 3 (Accuracy: True, False, Unknown) x 2 (Feedback: confirmatory,
disconfirmatory) within-subject design, | hypothesize that participants will still learn

from false information, but the learning rates will be graded by certainty such that
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learning from unknown information will be higher than false information, falling between
the other two, resulting in an ordered pattern: a_true > a_unknown > a_false (Figure 6.1
(d)). This would suggest that people modulate their learning and belief updating in
proportion to the stated certainty of the information, but still, would learn from false
information, especially if it confirms their beliefs. Second, | hypothesize that the biases |
identified across my studies — confirmation bias and optimistic update bias - would still
be present for the "unknown" information. Specifically, for the reinforcement learning
task (Chapter 3), | predict that learning from "Confirmatory-Unknown" feedback would
be greater than from "Disconfirmatory-Unknown" feedback (Figure 6.1 (d)). Similarly, for
the belief-updating task (Chapter 4), | predict that belief change would be greater in
response to "Good News - Unknown" than to "Bad News - Unknown". Finally, |
hypothesize that the strength of the optimistic and confirmation biases across True,
False, and Unknown would be the same, just like how there was no interaction between
True and False in the strength of the biases in the current studies. Overall, the uncertainty
that comes with the Unknown cue may provide the perfect environment for the biases to
flourish as there is no explicit factual ground to constrain our desire to believe good news

or confirm our choices.
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Figure 6.1: The experimental design and its predictions. (a) shows the same reinforcement
learning (RL) task as in Chapter 3, but now with three cases for information accuracy: True, False,
and Unknown. A key aspect of the design, shown in panels (b) and (c), is that the underlying
reward probabilities for the False and Unknown conditions are identical, but participants are not
privy to these probabilities. The predictions, visualized in panel (d), are twofold. First, learning is
expected to be graded by certainty, with learning rates following the pattern of true > unknown >
false. Second, confirmation bias will exist no matter the accuracy, whereby learning from
confirmatory feedback will be significantly greater than learning from disconfirmatory feedback.

| could also try different computational models with this design. While estimating
a single learning rate (a_unknown) is an obvious first step, more advanced models could
reveal the cognitive strategies underlying this parameter. The "Unknown" condition
forces a choice: how should this ambiguity be resolved? An alternative model could
formalize this as a dynamic process. For instance, a_unknown might not be a fixed value
but rather a mixture of a_true and a_false, weighted by a personal "trust" parameter that
ranges from 0 to 1. If a person's wis close to 1, it means they are resolving the ambiguity
by treating the "Unknown" information as if it were "True." If their w is close to 0, they are
treating it as if it were "False." This approach also allows me to see how this tendency is
shaped by their confirmation or optimistic update biases. Another idea would be to have
a model that proposes we resolve ambiguity in a self-serving manner based on the nature
of the feedback itself. When 'Unknown' feedback is confirmatory the model suggests we
treat the information as if it were true, applying the confirmatory true learning rate.
Conversely, when the feedback is disconfirmatory we dismiss the ambiguous
information as unreliable, applying the disconfirmatory false learning rate. This approach
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formalizes the idea that we interpret ambiguous evidence through the lens of our existing
beliefs, readily accepting it as true when it supports our choices and rejecting it as false

when it doesn't.

6.3.3 From Valuation to Regulation: The Network Dynamics
of Misinformation Valuation

Chapter 5 identified the ventromedial prefrontal cortex (vmPFC) as a hub for the
biased computation of value, showing that the vmPFC treats false information that
disconfirmed one’s choice as more valuable than that which confirmed it. Therefore, it
seems that the vmPFC dynamically recalculates the value of information when its
veracity is revealed, generating different neural signals when a confirmatory vs
disconfirmatory feedback turns out true vs false. These findings establish the vmPFC's
centralrole inthe valuation aspect of biased learning from true and false information. The
vmPFC, however, does not operate in isolation. The interaction | observed at the
information cue stage suggests a potential process of retrospective re-evaluation, where
the initial value representation at the feedback stage is modulated. The next logical step;
therefore, is to investigate the network-level dynamics that support this process.
Specifically, how does the brain's metacognitive network interact with the vmPFC to

suppress or update value signals in light of new information about their reliability?

The process of evaluating the "True/False" cue in my task could be conceived as
an act of metacognitive judgment. As outlined in a recent review by Fleming (2024), such
judgments can be deconstructed into several distinct computational components,
which are likely supported by different neural systems. These components include: (i) the
initial representation of uncertainty about the world, (ii) the transformation of this
uncertainty into a propositional confidence judgment about one's own performance, (iii)
the global broadcast of this confidence signal to other brain systems for control and
communication, and (iv) the influence of a self-model that provides top-down beliefs
about one's own abilities. My study is suited to investigate the interplay between these
components. The initial feedback (confirmatory/disconfirmatory) generates a first-order

choice - actual performance - which my results link to the vmPFC. The subsequent
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accuracy cue then prompts a second-order metacognitive evaluation, forcing the system

to reflect on and potentially revise its initial state.

The literature points to a network of prefrontal regions responsible for this
regulation. This network can be subdivided based on the components of a metacognitive
judgment. One component is about representing propositional confidence - the brain's
estimate of the probability that a specific choice or beliefis correct, which is distinct from
lower-level sensory uncertainty (Fleming, 2024). My finding of a biased valuation signal
in the ventromedial prefrontal cortex (vmPFC) aligns with work showing this region
encodes signatures of propositional confidence (Bang & Fleming, 2018). Next, for a
confidence estimate to be useful, it must be subject to global broadcast and
communication with other brain systems to guide subsequent thought and behaviour.
This broadcasting and strategic use of confidence is thought to involve the rostrolateral
prefrontal cortex (RLPFC), anterior prefrontal cortex (aPFC), and frontopolar cortex
(Fleming, 2024). The aPFC is specifically implicated in mediating the impact of post-
decision evidence on subjective confidence, a process central to my task (Fleming et al.,
2018), making it a prime candidate for receiving the initial value signal from the vmPFC
and initiating a revision. Finally, performance monitoring and control are central
functions of the dorsal anterior cingulate cortex (dACC) and dorsolateral prefrontal
cortex (dIPFC), which monitor for conflict and apply rules to guide behaviour (Miller &
Cohen, 2001; Shenhav et al., 2013). The "False" cue in my task could be thought of as an
error signal that engages this network, which in turn would provide the necessary top-

down signals to execute the belief update.

To formally test hypotheses about these network-level interactions, | propose to
use Dynamic Causal Modelling (DCM). DCM allows for the testing hypotheses about how
brain regions influence one another's activity and how these connections are modulated
by experimental conditions (K. J. Friston et al., 2003). This makes it the ideal tool to move
beyond asking "what areas are active?" to asking "how do these areas work together to
revise beliefs?" For instance, one could ask how does the frontoparietal metacognitive
network regulate the vmPFC to update beliefs when the reliability of feedback is

revealed?
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Using DCM, | can test a plausible model of this network. The model would include
nodes for the vmPFC (representing propositional confidence) and key metacognitive
regions like the RLPFC, aPFC and dIPFC/dACC. This leads to several testable hypotheses.
First, | predict a top-down correction signal, where the presentation of the "False" cue
will significantly modulate the effective connectivity from a cognitive control region (likely
the dIPFC) to the vmPFC. This directed influence would represent a top-down
"correction" or "gating" signal that implements the revision of the initial value
representation. Second, concerning the role of the RLPFC and aPFC in initiating the
update, | predict that these regions will play a mediating role, showing modulated
connectivity from the vmPFC and to the dIPFC. This would be consistent with their
proposed role in monitoring initial confidence signals and initiating a revision by
recruiting the cognitive control side of the dIPFC (Fleming, 2024). Finally, | predict that
the neural signature of "relief" will manifest as a network reconfiguration. | expect that
the strength of this top-down modulation from the metacognitive network to the vmPFC
will be significantly stronger for disconfirmatory false and confirmatory true feedback.
This provides a mechanistic explanation for the "relief" signals | observed in the vmPFC's
activity. Confirming these hypotheses would provide a network-level account of belief
revision, dissociating the initial, biased, bottom-up valuation signal computed in the

vmPFC from a subsequent, top-down regulatory process by the prefrontal cortex.

6.3.4 Is learning from false information dependant on
working memory?

A large body of research has established that human reinforcement learning is not
a monolithic process but relies on the interplay between multiple cognitive systems (see
Yoo & Collins, 2022 for a review). Work by Anne Collins and her colleagues has
demonstrated that a slow, incremental RL system operates in parallel with a fast, flexible,
but capacity-limited working memory (WM) system (Collins & Frank, 2012; Collins, 2018).
This line of research has shown that as the number of items to learn - the set size -
increases, the WM system becomes taxed, impacting learning strategies (Collins &
Frank, 2012). In my task, the challenge is twofold: participants must not only learn the
values of the options but also actively suppress learning from information they know is

false. This suppression is an executive function that relies on the same limited cognitive
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resources as WM. Therefore, | propose that by increasing the cognitive load on the WM
system, | can test its role in gating irrelevant information and resisting cognitive biases. |
can achieve this by varying the set size - having different groups learn a low humber of

pairs (e.g., 2), a medium number (the original 4), or a high number (e.g., 6).

If ignoring false feedback requires these limited cognitive resources, then
increasing the load on that system should impair this ability. This leads to two specific
hypotheses. First, overall learning from false information will increase with cognitive
load. | predict that as the set size increases, participants will be more influenced by the
misleading feedback. This would be evident by a stronger preference for the "best" option
in the unsolvable condition for the group with a set size of 6 compared to the group with
a set size of 2. Second, the confirmation bias for false information will be magnified under
high load. | hypothesize that the bias itself will become stronger as cognitive resources
are depleted. When the working memory system is taxed, the brain may rely more on
default, heuristic-based learning. Computationally, this would manifest in the
parameters of my model: the difference between the learning rates for false confirmatory
and false disconfirmatory feedback (a_false_confirmatory - a_false_disconfirmatory)
should be significantly larger in the high-load (set size 6) condition. For true information,
however, the bias might not vary between the set sizes as ignoring true information is not

a goal.

Beyond predicting how existing learning rates will change, a more powerful
approach would be to develop models that explicitly represent working memory like how
previous works have done (Collins & Frank, 2012; Collins, 2018). One approach would be
to model the suppression of false information as an active "gating" process that is
dependent on cognitive resources. This could be formalized by introducing a new
"cognitive control" parameter, K (kappa), which represents the efficacy of the gating
mechanism. The effective learning rate from false feedback would then be dynamically
modulated by this parameter (e.g., effective a_false = (1 - k) * base a_false). Under low
load, k would be high, effectively driving learning from false information towards zero. As
cognitive load (set size) increases, kK would decrease, representing the depletion of
resources and causing a failure in the gating mechanism. This model would allow for a

direct test of whether cognitive load impairs the control process itself, rather than just
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altering the learning rates. Another approach would be to use a dual-system model that
has separate RL and WM components. In this framework, the capacity-limited WM
system could be responsible for both fast learning and for maintaining the task rule
("ignore false feedback"). As set size increases, the WM component's contribution to
learning diminishes. If this component is also responsible for the suppression signal, its
failure under load would predict a corresponding increase in learning from false
information. This would provide a unified account of how set size affects both learning

and the ability to ignore misinformation.

Confirming these hypotheses would provide evidence that the ability to resist
misleading information is not fixed but depends on the availability of cognitive resources.
It would suggest that individuals are likely more vulnerable to misinformation when they
are distracted, tired, or otherwise cognitively taxed - a finding with real-world
implications for how we consume information in our daily lives, especially on social

media.

6.3.5 Confirmation Bias in Learning from False Information in a
Social Context

My thesis has established a confirmation bias in how individuals learn from
misinformation in a non-social context. A timely extension of this work is to investigate
whether this same bias operates when information comes from a social source. In the
modern world, much of the information we consume - and the misinformation we
encounter - is transmitted through social networks like X (formerly Twitter) (Vosoughi et
al., 2018). The architecture of these networks, which allows for rapid, widespread
dissemination of user-generated content, creates a fertile ground for biases like
confirmation bias to take hold (Aral & Van Alstyne, 2010). Further, their incentive
structures (likes and shares) are not designed to prioritise accuracy (Globig & Sharot,
2024). Instead, they reward content that is popular, emotionally evocative, or identity-
affirming. This creates a social reward landscape that can be orthogonal, or even
antithetical, to truth. Algorithmic personalization and the tendency for users to self-
selectinto ideologically aligned groups can create "filter bubbles" and "echo chambers,"
which reduce exposure to diverse viewpoints and amplify confirmatory content

(Glickman & Sharot, 2024). Turner et al. (2025) applied a computational model of reward
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learning to real-world X data, showing that users' posting behaviour is modulated by the
social rewards they receive. This creates an environment where a confirmation bias is
particularly potent. If users are socially rewarded for sharing confirmatory content, and
our brains are already wired to preferentially learn from it, the result is a feedback loop
that can drive the rapid formation of polarized communities. For instance, in a large-
scale analysis of Facebook users, Zollo et al. (2017) found that people form highly
segregated "tribes" around specific narratives, creating echo chambers where attempts
to debunk misinformation are largely ineffective because users preferentially engage
with content that confirms their group's identity, leading to the wide-scale propagation of

misinformation (Zollo et al., 2017).

Learning from other people is fundamentally different than learning from non-
social probabilistic feedback, requiring us to build a model of the person providing
information and engaging in "mentalizing" or "Theory of Mind" - the fundamental human
ability to attribute unobservable mental states like beliefs, desires, and intentions to
others (Frith & Frith, 2006). When learning from a social source, we process the
information itself and build a predictive model of the other person's mind. We constantly,
and often unconsciously, ask ourselves: Are they knowledgeable? Are they trying to be
helpful, or do they hold a bias? This continuous inference about the minds of others is
what makes social learning computationally complex and distinct from learning from

simple environmental feedback (Saxe, 2006).

To test whether the confirmation bias for false information persists in a social
context, | propose adapting the multiplayer RL paradigm from Zhang and Glascher
(2020). This task is suited for dissociating private belief from social influence. Its multi-
phase design allows for the separate measurement of an initial choice, the influence of
socialinformation, and afinal, updated choice and confidence level. The task begins with
the participant making an initial choice in a learning problem and then placing a bet to
indicate their confidence in that decision. Following this, they are shown the choices
made by four other players. With this new social information, the participantis given an
opportunity to either stay with their original choice or switch to a different one. They are
also allowed to update their confidence bet. Finally, the correct outcome for the trial is

revealed to all players, allowing them to learn from the result.
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To study the impact of false information, | will manipulate the reliability of the
social sources. This approach is grounded in the advice-taking literature, which shows
that people are typically sensitive to an advisor's past performance and adjust how they
weigh their advice accordingly (Bonaccio & Dalal, 2006). Participants will be told they are
playing with a group where some "players" are unreliable bots. This creates two types of
social sources: Reliable players and bots. Reliable players are programmed to perform
well (e.g., choosing the correct option 80% of the time), representing a source of "true"
social information. Bots are programmed to choose at random (50/50), representing a
source of noisy, "false" social information, akin to the False cues in the tasks of the
current thesis. Over the course of the experiment, the participant should learn not only
the value of the task options but also the credibility of their co-players. This allows me to
test whether participants learn to discount the choices of the unreliable bots, a process
that can be formally captured by extending the computational model from the original
paper to include learned reliability weights for each social partner. Layered on top of the
reliability manipulation, | will program the social feedback on a subset of trials to be
either unanimously confirmatory (all four co-players agree with the participant's Choice
1) or unanimously disconfirmatory (all four co-players disagree). This unanimous
feedback will come from a group that the participant has either learned is reliable or

learned is unreliable.

This design creates a direct conflict between a rational assessment of source
credibility and the pull of confirmation. The key dependent variable is the participant's
change in confidence (the difference between Bet 2 and Bet 1). My prediction is that the
confirmation bias will override the rational assessment of the unreliable source. When
feedback comes from a reliable group, confidence should increase after confirmation
and decrease after disconfirmation. This would replicate standard findings in social
influence and collective intelligence (Bahrami et al., 2010). When feedback comes from
an unreliable group, a rational agent should ignore it and show no change in confidence.
However, | hypothesize that participants will still show a significant boost in confidence
after receiving confirming feedback from the unreliable group but will successfully ignore
disconfirming feedback from that same group, mirroring the results of Chapter 3. This

would be a demonstration that the confirmation bias for false information also exists in a
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social context and that we are willing to take a confidence boost from any source,
providing a cognitive mechanism for our vulnerability to confirmatory misinformation

online.

6.3.6 Do large language models exhibit confirmation bias
for false information?

My research demonstrates a robust confirmation bias in humans, which persists
even when they know the information confirming their choices is false. | could investigate
whether this specific pattern of biased learning extends to artificial agents, particularly
Large Language Models (LLMs). Recent work has begun to establish a field of "Al
Psychology," showing that LLMs exhibit many human-like cognitive biases during in-
context learning. First, LLMs, much like humans, exhibit asymmetric belief updating
(Schubertetal., 2024). Critically, when an LLM was given full feedback on both its chosen
and unchosen options, it displayed a classic confirmation bias, learning more from
outcomes that confirmed its past decisions. This bias vanished when the LLM lacked a
sense of agency (i.e., when observing choices made by "someone else"), highlighting the
importance of the model's perceived role in the decision-making process. Second, Hayes
et al. (2025) found that LLMs are susceptible to relative value encoding biases and, using
computational modelling, also found evidence for a confirmation bias in how the models
learned from feedback. However, these foundational studies operate on the assumption
that the feedback provided to the model is true. This leaves open an important question:
is the confirmation bias in LLMs so fundamental that it persists even when the model

"knows" the information is false?

To test this, | would adapt the RL paradigm from human trials (detailed in Chapter
3) for an LLM environment. The experiment will be operationalized through an interactive
prompt that establishes the LLM's agency and objective (e.g., "You are a participantin a
decision-making experiment. Your goal is to maximize your points by learning which of
two abstract symbols is 'correct. On each trial, you will choose a symbol and receive
feedback."). It would be a 2x2 experimental design that manipulates the accuracy of the
feedback and its nature as either confirmatory or disconfirmatory. In "True" trials, the

feedback provided to the LLM is genuine and reliable. In contrast, during "False" trials,
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the feedbackis explicitly labelled as unreliable or a "system glitch," yet itis still presented
to the model. "Confirmatory" feedback supports the model's selection (e.g., "You chose
Symbol A, and the feedback is Positive"), while "Disconfirmatory" feedback contradicts

it (e.g., "You chose Symbol A, and the feedback is Negative").

| predict the LLM will learn less from false information than from true information.
That is, its preference for the "best" option will be stronger in the solvable condition
(where true feedback is informative) than in the unsolvable condition (where false
feedback is informative), replicating the current findings. Further, | predict the LLM will
exhibit a confirmation bias for both true and false information. It will learn more from
feedback that confirms its choices, regardless of whether that feedback is explicitly

labelled as genuine or a "glitch."

Discovering such a bias would be a significant finding. It would suggest that the
architectural or training principles that lead to confirmation bias in LLMs exist even in the
face of explicit falsehoods, mirroring my human data. This would have implications for Al
safety, revealing a potential vulnerability where models could irrationally persist in a
course of action based on desirable but demonstrably false feedback. An LLM that
reinforces its actions based on desirable but false feedback could be susceptible to

manipulation, reward hacking, or irrationally persisting with a flawed strategy.

6.3.7 Using EEG to Dissect the Temporal Dynamics of
Learning from False Information

An unresolved question from my thesis is around the timing of learning or belief
updating. Does the brain immediately update value representations upon receiving
feedback, requiring a subsequent correction if that feedback proves false? Or is the initial
feedback held in working memory, with the update gated until after its veracity is
revealed? To test these competing hypotheses, | propose a study combining
Electroencephalography (EEG) with a novel experimental manipulation. By recording
EEG while participants perform the reinforcement learning task from Chapter 3, | can
examine the event-related potentials (ERPs) - time-locked neural responses - elicited by
the two events in each trial: the feedback and the information cue presentations. Further,

I will introduce a manipulation that further probes this temporal dynamic: | will vary the
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duration of the fixation cross between the feedback and the information cue. This interval
will be short (e.g., 250ms), medium (e.g., 1s), or long (e.g., 4s). This manipulation allows
me to control the time available for post-feedback processing, and thus to test whether

belief updating is an immediate or a delayed process.

The first important event is when a participant receives the outcome (e.g., "+10"
or"-1"). At this point, a prediction error (PE) is generated, but the participant does not yet
know if the outcome is reliable. | can measure the neural signature of this initial,
potentially biased, PE using the Feedback-Related Negativity (FRN) (Holroyd & Coles,
2002; Walsh & Anderson, 2012). The FRN is a well-established ERP component that
peaks approximately 250-300ms after feedback onset over frontocentral scalp sites. Itis
thought to originate from the medial frontal cortex, including the anterior cingulate
cortex, and is considered a robust neural correlate of PEs, being larger (more negative)
for worse-than-expected outcomes like losses or non-rewards (Holroyd & Coles, 2002;
Walsh & Anderson, 2012). | predict that the amplitude of the FRN will be modulated by
confirmation. Specifically, disconfirmatory feedback will elicit a significantly larger FRN
than confirmatory feedback. This would provide a neural index of the initial, biased PE
before the feedback's veracity is known. Because the FRN is a rapid, early component
reflecting a largely automatic evaluation of the outcome (Ullsperger et al., 2014), its
amplitude should not be affected by the subsequent delay manipulation. It provides a
clean measure of the brain's initial reaction, independent of the time allowed for later
deliberation. The second important event is when the participant sees the "True" or
"False" information cue. This information potentially forces the participant to either
solidify or revise their belief. | can measure the neural signature of this potential updating
process using the P300 (or P3b). The P300 is a large, positive-going ERP component
peaking 300-600ms after a task-relevant stimulus, with a parietal scalp distribution. Its
amplitude reflects the allocation of attentional resources to update one's mental model
of the environment and is larger for more surprising or motivationally significant events

(Polich, 2007).

The delay manipulation targets the processing that occurs before the information
cue, allowing me to test two competing models of belief updating. First, If the brain

follows an "Update and Correct" model, an immediate, biased update occurs at
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feedback. A longer delay (4s) allows this initial belief to consolidate, making a
subsequent correction at the information cue more effortful. The P300 amplitude should
be larger after long delays in response to the "False" cue, reflecting a more significant
revision of a consolidated belief trace, consistent with its role in processing task-
updating information (Donchin & Coles, 1988). Further, learning from false information
should be stronger after longer delays, as the initial biased update has had more time to
"stick" and become resistant to revision. Second, if the brain follows a "Hold and Update"
model, the feedback is held in working memory until the information cue triggers the
update. Alonger delay (4s) would lead to the decay of this information in working memory.
The P300 amplitude should be smaller after longer delays, consistent with findings that
P300 amplitude is reduced when processing stimuli that are less certain or built on

degraded memory traces (Kok, 2001).

This combined EEG and delay manipulation study would provide a complete
temporal narrative of learning from false information. It would dissociate the initial,
automatic response to feedback (indexed by the FRN) from the later, more controlled
process of belief revision (indexed by the P300). Most importantly, by observing how the
delay causally affects both the P300 and behaviour, | can provide strong evidence for one
of two distinct computational models of how and when we update our beliefs in the face

of misinformation.

6.4 Conclusion

Through a combination of behavioural experiments, computational modelling,
and neuroimaging, the studies in Chapters 3, 4, and 5 converged on the finding that
humans are biased in learning from false information — optimistic update bias (Chapter
4) and confirmation bias (Chapters 3 and 5) - whereby they learn more from
misinformation that gives them desirable vs undesirable information. Chapter 5
complimented this finding by showing that vmPFC activity, known for valuation, was
modulated by the interaction between confirmation and accuracy, placing a higher value
on information that validated prior desirable vs undesirable beliefs or invalidated prior
opposing vs supporting evidence, and placing a lower value on confirmatory vs

disconfirmatory information that turned out false, suggesting self-serving patterns of
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valuation at the expense of accuracy. These tendencies for desirable information likely
serve to generate and maintain positive affective states, even at the expense of
information accuracy. Algorithms then exploit these biases for engagement, tailoring
content to one’s needs and desires and rendering interventions such as debunking less
effective. Finally, a limitation across all studies is the use of authoritative accuracy cues.
I will address this limitation by introducing a no-cue condition to make the experiment

more ecologically valid where the veracity of information is more ambiguous.
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Appendices

Appendices for Chapter 3
Appendix 3.1: Supplementary Model 1 -

Disentangling Confirmation Bias from Positivity Bias

The main text presents Model 4, which operationalises confirmation bias using
four learning rates that depend on information accuracy and whether feedback is
confirmatory or disconfirmatory. However, the definition of "confirmatory feedback" in
Model 4 combines two distinct events: a positive prediction error (PE) for a chosen option
(factual outcome) and a negative PE for an unchosen option (counterfactual outcome),
and the reverse for disconfirmatory feedback. This parameterisation, while elegant,
confounds a true confirmation bias with simpler underlying biases, such as a positivity
bias, which is a general tendency to learn more from positive PEs than negative PEs. The
purpose of Supplementary Model 1 is to de-confound these potential mechanisms. It
expands on Model 4 by assigning a unique learning rate to each combination of accuracy,
the outcome shown for chosen or unchosen option, and PE sign, resulting in eight
learning rates. This allows me to isolate the specific influence of each factor and
determine if the patterns attributed to confirmation bias in Model 4 are better explained
by positivity bias.

The eight learning rates are partitioned according to three trial-by-trial conditions:

the Accuracy of the information (cued as True or False), the outcome shown (for the
Chosen or Unchosen option), and the sign of the prediction error (Positive or Negative).

For Factual Outcomes (Chosen Option):
If Accuracy = True:
Q(t+1) = Q(t) + Apos,chosen, true * O(t) O(t) = Positive
Q(t+1) = Q(t) + Oneg,chosen, true * O(t) 5(t) = Negative
If Accuracy = False:

Q(t+1) = Q(t) + Qpos,Chosen, false * 6(t) 6(t) = Positive
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Q(t+1) = Q(t) + Oneg,chosen faise * O(t) 5(t) = Negative
For Counterfactual Outcomes (Chosen Option):
If Accuracy = True:
Q(t+1) = Q(t) + Qos,unchosen,tue * B(t)  B(t) = Positive
Q(t+1) = Q(t) + Aneg,unchosen, true * O(t) o(t) = Negative
If Accuracy = False:
Q(t+1) = Q(t) + Apos,unchosen, faise * O(t)  d(t) = Positive
Q(t+1) = Q(t) + Aneg,unchosenfatse * O(t) 0(t) = Negative
Choice probabilities are generated using the SoftMax function with an inverse

temperature parameter . The modelis fitted by minimizing the negative log-likelihood of

the participant's sequence of choices, as described in the main text.

Free pa rameters (n=9): aPos,Chosen,false, aNeg,Chosen false, aPos,Chosen,true, aNeg,Chosen, true, aPos,Unohosen,

false, aNeg,Unchosen falsey ClPos,Unchosen,true, aNeg,Unchosen,true, B

Appendix 3.2: Supplementary Model 2 - Confirmation

Bias Across Gain and Loss Contexts

In this model my goal was to see if confirmation bias is robust across Gain
(outcomes: +10, +1) and Loss (outcomes: -10, -1) contexts, so | created separate learning
rates for each. The model had eight learning rates partitioned according to three
conditions: the Context (Gain or Loss), the Accuracy of the information (True or False),
and the sign of the prediction error (Positive or Negative).

For the Gain Context:
If Accuracy =True:
Q(t+1) = Q(t) + Qpos,cain, e * 8(t)  B(t) = Positive
Q(t+1) = Q(t) + Oneg,cain, true * O(t) 5(t) = Negative
If Accuracy = False:
Q(t+1) = Q(t) + Cpos,cain, fatse * O(t) 5(t) = Positive

Q(t+1) = Q(t) + COlNeg,Gain, false * 6(t) 6(t) = Negative
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For the Loss Context:
If Accuracy = True:
Q(t+1) = Q(t) + Qos,Loss, true * B(t) 3(t) = Positive
Q(t+1) = Q(t) + Aneg,Loss, true * O(t) 5(t) = Negative
If Accuracy = False:
Q(t+1) = Q(t) + Cos,Loss, tase * B(t)  B(t) = Positive
Q(t+1) = Q(t) + Oneg,Loss, faise * O(t) 5(t) = Negative
Choice probabilities are generated using the SoftMax function with a single

inverse temperature parameter B fitted across both contexts. The model is fitted by

minimizing the negative log-likelihood.

Fl'ee pa rameters (n=9): aPos,Gain,false, aNeg,Gain,false, aPos,Gain,true, aNeg,Gain,true, aPos,Loss, false, QNeg,Loss,

falsey aPos,Loss, true, aNeg,Loss, trues B

Appendix 3.3: Factual and Counterfactual Learning

Rates

To ensure my results indicated confirmation bias and not positivity bias, | created
a model with eight separate learning rates. This allowed me to separately look at the
factual learning rate - for the chosen option's outcome - and the counterfactual learning
rate - for the unchosen option's outcome. This approach expanded on my previous model
(M4), which collapsed these into general 'confirmatory' and 'disconfirmatory' rates (see
Methods). This separation was crucial for testing two competing predictions. A positivity
bias would mean participants learn more from positive outcomes than negative ones
across all trials, regardless of what they chose. In contrast, confirmation bias would
mean participants should learn more from outcomes that confirm their initial decisions.
This would mean learning more from positive outcomes on factual trials (to confirm their
choice was good) but learning more from negative outcomes on counterfactual trials (to

confirm rejecting the other option was also good).
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Appendix Figure 3.1: Factual and Counterfactual learning rates. The opposite pattern of
learning rates for factual (above panel, though note that for Study 2 the pattern is qualitative as
they are not significant) and counterfactual (below panel) trials indicating confirmation bias, not
positivity bias, for true and false information in both studies. n.s: not significant, *p < 0.05, ***p <
0.001, hierarchical t-test.

As shown in Appendix Figure 3.1, my findings were consistent with a confirmation
bias. In both studies, for factual trials, | found qualitative patterns of higher learning from
positive outcomes than negative ones, which were flipped in the counterfactual trials.
Specifically, in study 1, they learned more from positive than negative outcomes for
factual trials (for true information: t(46) = 2.59, p = 0.01; paired t-test between positive
and negative learning rates, and for false information: t(46) = 2.20, p=0.03; paired t-test
between positive and negative learning rates) while this pattern flipped for counterfactual
trials, learning more from negative that positive outcomes (for true: t(46) = -2.75, p =
0.008; paired t-test between positive and negative learning rates, and for false
information: t(46) = -2.47, p = 0.01; paired t-test between positive and negative learning
rates). The same patterns emerged in study 2 but some of the effects did not reach
significance (for factual, true information: : t(56) = 1.88, p = 0.068; paired t-test between
positive and negative learning rates, and for false information: t(56) = 1.86, p=0.067;
paired t-test between positive and negative learning rates, for counterfactual true

information: t(56) = -1.87, p = 0.06; paired t-test between positive and negative learning
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rates, and for false information: t(56) = —3.81, p < 0.010; paired t-test between positive

and negative learning rates).

Appendix 3.4: Gain and Loss Learning Rates

Next, | implemented a model with separate learning rates for the Gain context
(where outcomes were positive: +10, +1) and the Loss context (where outcomes were
negative: -10, -1). My goal was to see if the bias for true and false information would
generalize across both as in one case (the gain contexts) getting a low reward (+1) needs
to be framed as a loss whereas in the other (the loss context) incurring a small loss needs
to be framed as a gain. Differences in approach learning between gains and losses have
been reported in the past (Guitart-Masip et al., 2012) but it is unclear whether these

impact confirmation bias.

As shown in Appendix Figure 3.2 confirmation bias is robust in the Gain context
for both true information (t(46) =2.51, p=0.01; t(56) =2.46, p=0.01) and false information
(t(46) =3.99, p<0.001; t(56) =5.06, p<0.001). Similarly, the bias exists inthe Loss context
for both true information (t(46) = 4.05, p < 0.001; t(56) = 3.48, p < 0.001) and false
information (t(46) = 4.37, p < 0.001; t(56) = 6.25, p < 0.001), replicating previous findings

on true information (Palminteri et al., 2017) and extending them to false information.
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Appendix Figure 3.2: Confirmation bias for Gain and Loss contexts. The bias for true and false
information is robust across Gain (above panel) and Loss (lower panel) contexts in both studies.
*p <0.05, ***p < 0.001 hierarchical t-test.
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Appendix 3.5: Parameter Recovery for the Gradual
Perseveration Model
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Appendix Figure 3.3: The Gradual Perseveration Model’s Parameter Recovery. The choice
trace parameter shows suboptimal recovery, which might make the estimates from this model

unreliable
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Appendices for Chapter 4

Appendix 4.1: The four possible trial types in the
Update Bias Task

The following figure illustrates the four possible trial types in my experimental design:

True Good News False Good News

1st Estimate

(et 1st Estimate
Estimation of (Base Rate)
Depression happeningto Base Rate
You? Estimation of Presented
D i information Accuracy
epression 2 petust sitiutiosot Presertod e Etinians
45% ssior 2

(Self)

1st Estimate
(Seln)

1st Estimate
Estimation of (Base Rate)
happening to
you?
Parkinson

15%

Base Rate
Presented

Parkinson

Estimation of

Accuracy
Presented

Actual statistics of
happening on average

Parkinson| pariinson

20% 10%

AVERAGE? 2nd Estimate

(Setf)

% happening o YOU? & gt happaning o YOU?
Depression Parkinson
40% 12%
True Bad News False Bad News

1st Estimate
(Self)

1st Estimate

(St 1st Estimate
) ::‘.m:':;o,.:; (Base Rate) —
Dementia g ot Presented
" Information Accuracy
Dementia Presented 2nd Estimate
(Self)

10%

1st Estimate
(Base Rate)

Estimation of
happening to

Base Rate
Estimation of
happening ON
AVERAGE?
Diabetes

20%

Information Accuracy
Presented

Diabetes
15%

s 2nd Estimate
Diabetes {Betf)

27%
Pross Spacabarto se
thisis

Estimation of
happening to YOU? %

Diabetes

Estimation of
happening to YOU?

Dementia

18%

20%

Appendix Figure 4.1: Trial Types in the Update Bias Task

True Good News: In this example, participants initially estimated their risk of
depression at 45% (1st Estimate). When presented with the actual base rate (37%), which was
lower than their initial estimate, they received "good news" that their risk was overestimated.
The checkmark (v) indicates that the provided statistic was true, and participants were asked
for a 2nd estimate after learning this information.

True Bad News: Here, participants initially estimated their risk of diabetes at 15% (1st
Estimate). The actual base rate (27%) was higher than their initial estimate, representing "bad
news" that they had underestimated their risk. The checkmark (v) indicates that the provided
statistic was true.

False Good News: In this example, participants initially estimated their risk of

Parkinson's disease at 20% (1st Estimate). They were shown a purported base rate of 15%,
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suggesting "good news." However, the cross (X) indicates that this statistic was false
information.

False Bad News: Here, participants initially estimated their risk of dementia at 10% (1st
Estimate). They were shown a purported base rate of 30%, suggesting "bad news." The cross
(X) indicates that this statistic was false information.

In all trials, participants provided an initial self-risk estimate (1st Estimate), were
presented with the purported average risk (Base Rate) along with an indication of whether this
information was true or false and then were asked to provide a second self-risk estimate (2nd
Estimate). The relationship between the 1st Estimate and Base Rate determined whether the

trial represented "good news" or "bad news" for the participant.
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Appendix 4.2: The distribution of base rates in the
Update Bias Task
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Appendix Figure 4.2: The Distribution of Base Rates in the Update Bias Task

This figure illustrates the distribution of base rates (event probabilities) used in the two stimuli
lists. As shown, both List A and List B contain 25 negative life events with base rates that are
normally distributed, primarily ranging between 10% and 70%. The x-axis represents the base
rate percentages while the y-axis shows the frequency of events at each percentage point.
Both distributions follow similar patterns, ensuring comparable statistical properties between
the two lists. This balanced distribution was crucial for our experimental design, as
participants were randomly assigned one list for true trials and the other for false trials.

When a list was designated for false trials, the statistics were randomly shuffled among events
(e.g., pairing the statistic for domestic burglary with bicycle theft), while maintaining the overall
statistical distribution shown here. This shuffling procedure ensured that the false information
retained the same statistical properties (median, range, and distribution) as the true
information, controlling for any potential biases that might arise from systematic differences
in the probability distributions.

The comparable distributions between List A and List B allowed us to counterbalance the
assignment of lists across participants, with each participant receiving one list with true

statistics and one with shuffled (false) statistics, creating a final combined list of 50 events.
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Appendix 4.3: Additional model diagnostics
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Appendix Figure 4.3: Additional Model Diagnostics. (a) Shows the exceedance probabilities (XP),
which quantify the confidence that each model is more likely than all other models in the set. M4
achieved an exceedance probability of nearly 1.0, indicating extremely high confidence that it
outperforms the competing models. This is further supported by the frequency analysis in the main text,
where M4 had an estimated frequency of approximately 0.74, substantially exceeding the chance level
of 0.25. This suggests that for roughly 74% of subjects, M4 was the most likely model to have generated
their data. (b) Shows the confusion matrix representing model recovery accuracy. Each simulated
model (x-axis) is correctly identified by the model comparison procedure as the best-fitting model (y-
axis), with all values on the diagonal equalto 1 and off-diagonal values equal to 0. This indicates perfect
recoverability and discriminability between the models, confirming that the model-fitting approach can
reliably distinguish among the candidate models. (c) Displays the mean Leave-One-Out Cross-
Validation (LOOcv) scores for each model averaged over 100 iterations, where lower values indicate
better predictive performance. The simulation results demonstrate that when data were generated from
a specific model (columns), the corresponding model generally achieved the lowest LOOcv score when
fitted to that data, validating our model recovery procedure. Notably, M4 showed strong recovery
performance.
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Appendix 4.4: Parameter Recovery
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Appendix Figure 4.4: Parameter Recovery. (a) Successful parameter recovery of the winning model in
the Update Bias Task with high correlations between the simulated and estimated parameters. (b) The
correlation between the parameters of the winning model. The weak correlations between most
parameter pairs demonstrate that parameters do not systematically trade off against each other during
estimation, supporting the model's identifiability.

Appendix 4.5: Mixed-Effects model controlling for
potential confounds in the Update Bias Task

The results of a mixed-effects model extending the model in the paper revealed that even after
controlling for potential confounds—including estimation error (EstErr) and subjective
ratings—the main effects of Valence and Accuracy remained intact with no significant
interaction between the two. The subjective ratings included Negativity (“How negative you
found this event?” From 1 = Not at all to 6 = Very), Prior Experience (“Has this event happened
toyou before?” From 1 = never to 6 = very often), Vividness (“How vividly could you imagine this
event?” From 1 = not vivid to 6 = very vivid), Familiarity (“Regardless of if this event has
happened to you before, how familiar do you feel it is to you from TV, friends, movies and so
on?” From 1 = not at all familiar to 6 very familiar); and Arousal (“When you imagine this event
happening to you how emotionally arousing is the image in your mind?” From 1 = not arousing

at allto 6 = very arousing).
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Predictor Estimate std. Error df Cl Statistic p

(Intercept) 0.09 0.02 94.43 0.04-0.13 3.46 0.001
Valence 0.24 0.02 98.86 0.19-0.28 10.17 <0.001
Accuracy 0.36 0.02 107.15 0.33-0.40 19.18 <0.001
EstErr 0.32 0.02 105.46 0.28-0.36 14.23 <0.001
Vividness -0.01 0.02 179.54 -0.04-0.02 -0.48 0.628

Past Experience -0.05 0.02 79.42 -0.08--0.02 -3.44 0.001

Familiarity -0.01 0.02 207.52 -0.04-0.02 -0.93 0.351
Arousal -0.00 0.02 216.79 -0.03-0.03 -0.26 0.795
Negativity -0.02 0.01 100.59 -0.05-0.01 -1.29 0.197
Valence x 0.02 0.02 105.85 -0.01-0.05 1.26 0.207
Accuracy

N participant 108

Observations 5242

Appendix Table 4.1: Mixed-Effects model controlling for potential confounds in the Update
Bias Task

Appendix 4.6: The stimuli used in the Update Bias
Task

List of the stimuli used in the study and their respective base rates. These events were splitinto
two lists, with one randomly assigned to true trials and the other to false trials, where the base

rates for the false trials were shuffled.

Event BaseRate
Computer crash with loss of important data 68
Hospital stay longer than three weeks 58
Bicycle theft 54
Arteries hardening (narrowing of blood vessels) 45
Miss a flight 44
Victim of violence with need to go to A&E 34
Having a stroke 23
Lose Wallet 51
Household accident 58
Insect infestation (like ants) in your home 41
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Victim of bullying at work (non physical)
Food poisoning

diabetes (type 2)

severe insomnia

Sports related accident
artificial joint

Domestic burglary

Depression

Divorce

Being cheated by husband/wife
death by infection

ulcer

death before 80

abnormal heart rhythm

skin burn

Cancer

Knee osteoarthritis (causing knee pain and swelling)

Being fired

Drug abuse

Blood clot in vein

Parkinson's disease

Bone fracture (break)

Victim of violence by a stranger

Victim of mugging

Severe teeth problems when old

Theft from vehicle

Hepatitis Aor B

Theft from person

Eye cataract (clouding of the lens of the eye)
Back pain

Disease of spinal cord

Dementia

Having fleas/lice

Sexual dysfunction

More than 47 thousand dollars debt
Witness a traumatizing accident

Obesity

Irritable bowel syndrome (disorder of the gut)
Hernia (rupture of internal tissue wall)

Fraud when buying something on the internet
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46
40
27
21
62
16
39
37
50
52
10
13
41
29
56
30
54
62
17
14
10
39
37
16
31
63
36
42
61
70
24
18
42
37
48
40
32
30
43
70



Appendix 4.7: Excluding Potentially Misclassified
Trials in the Update Bias Task

To ensure my results were not influenced by potential trial misclassification, |

conducted a supplementary analysis on a dataset that excluded the following trials:
° Trials where the BR was higher than E; but lower than the eBR.
. Trials where the BR was lower than E, but higher than the eBR.

Using this dataset, | conducted the 2*2 repeated measures ANOVA with Accuracy
(True/False) and Valence (Good/Bad) as within-subject factors and the paired t-tests
comparing good news vs bad news for true and false trials. The pattern of results
remained consistent with those reported in the main paper, such that we observed a
significant main effect of valence (F(1,107) = 318.76, p < 0.001) and accuracy (F(1,107) =
37.88, p < 0.001), without a significant interaction (F(1,107) = 1.38, p = 0.24). Paired t-
tests confirmed that updating was greater for good news compared to bad news for both
true (t(107) = 5.26, p < 0.001) and false trials (t(107) = 4.86, p < 0.001). Therefore, the

results reported in the paper cannot be explained away by potentially misclassified trials.
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Appendices for Chapter 5
Appendix 5.1: Additional fMRI Results

Contrast Timepoint Region Peak MNI Peak Cluster Cluster
Coordinates | Statistic level p Size
[xyz] () (FWE)
Positive Correlation Choice Cingulate Gyrus 12-52 32 5.09 0.000 1150
with DV Cerebellum Left, Crus -36-80 -40 4.63 0.01 394
Il
Lateral Occipital -54 -66 34 4.54 0.02 358
Cortex, Superior
Division
Cingulate Gyrus, 832-4 4.20 0.04 280
Anterior
Frontal Pole 46210 3.71 0.03 305
Negative Correlation Choice Lateral Occipital 38-84-10 5.47 0.000 3007
with DV Cortex, Inferior
Division
Temporal Occipital -36-50-20 5.33 0.000 2291
Fusiform Cortex
Middle Frontal Gyrus -56 12 34 4.41 0.01 366
Paracingulate Gyrus -62042 4.38 0.004 533
Lateral Occipital 24 -58 54 4.16 0.001 644
Cortex, Superior
Division
Lateral Occipital -22-6054 4.09 0.003 554
Main Effect of Information Cue Lateral Occipital -34-70-42 4.01 0.03 425
Accuracy (True > False) Cortex, Superior
Division
Main Effect of Information Cue NA NA NA NA NA
Accuracy (False > True)
Main Effect of Information Cue NA NA NA NA NA
Feedback (Conf >
Disconf)
Main Effect of Information Cue NA NA NA NA NA
Feedback (Disconf >
Conf)
Interaction (Conf_True- | Information Cue Left MTL (cluster -36-38-2 4.51 0.04 361
Conf_False) > including
(Disconf_True - Hippocampus)
Disconf_False)) Right DLPFC 3230 44 4.35 0.01 501
Cerebellum Left -32-50-44 3.96 0.04 366
Interaction Information Cue NA NA NA NA NA
(Disconf_True -
Disconf_False) >
(Conf_True -
Conf_False))
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Main Effect of PE-
modulated Accuracy
(True > False)

Information Cue

NA

NA

NA

NA

NA

Main Effect of PE-
modulated Accuracy
(False > True)

Information Cue

NA

NA

NA

NA

NA

Main Effect of PE-
modulated Feedback
(Conf > Disconf)

Information Cue

NA

NA

NA

NA

NA

Main Effect of PE-
modulated Feedback
(Disconf > Conf)

Information Cue

NA

NA

NA

NA

NA

Interaction PE-
modulated (positive)

Information Cue

NA

NA

NA

NA

NA

Interaction PE-
modulated (negative)

Information Cue

NA

NA

NA

NA

NA

Appendix Table 5.1 Activation Table. The coordinates [x y z] are reported in Montreal
Neurological Institute (MNI) space. The statistical threshold for significance was set at a voxel-
level of p<0.05, Family-Wise Error (FWE) corrected at the cluster-level for multiple comparisons
across the whole brain, with a minimum cluster size of [k = 5] voxels. The "Contrast" column
describes the specific statistical comparison being tested at the designated "Timepoint" of the
trial. For each significant cluster, the table lists its anatomical "Region," the MNI "Coordinates" of
its peak voxel, the peak statistical "z-value," the FWE-corrected "p-value," and the "Cluster Size"
in voxels. Other abbreviations include: DV (Difference in Value), PE (Prediction Error), Conf
(confirmatory feedback), and Disconf (disconfirmatory feedback). NA indicates nothing was
significant for the contrast at the threshold.

Appendix 5.2: Additional Computational Modelling
Details

This appendix provides the alternative reinforcement learning models that were
tested against the winning model presented in the main text. All models are based on the
standard Rescorla-Wagner learning rule and use a SoftMax choice rule to generate

choice probabilities. The models differ only in the number of learning rates.

Model 1

This model tests the hypothesis that learning is driven by the accuracy of the
information, regardless of whether it confirms or disconfirms prior expectations. It uses

two learning rates:

Q(t+1) = Q(t) + Qurue * O(t) ifinformation accuracy cue = True
Q(t+1) = Q(t) + Qatse * O(t) if information accuracy cue = False

Free parameters (N=3): Quue, Ataise, B

163




Model 2

This model explores the possibility that the nature of feedback (confirmatory vs.
disconfirmatory) is important for learning when the information turns out false but not
when it is true. It uses a single learning rate for true information, but splits the learning

rate for false information into two:

Q(t+1) = Q(t) + aurue * O(t) if accuracy =True
Q(t+1) = Q(t) + Acont, faise * O(t) if accuracy = False and feedback = Conf
Q(t+1) = Q(t) + Apiscont, fatse * O(t) if accuracy = False and feedback = Disconf

Free pa rameters (n=4): CQltrye, Qcont, false, aDisconf, falses B
Model 3

This model tests the alternative hypothesis that the distinction between
confirmatory and disconfirmatory feedback is relevant for learning when the information

turns out true:

Q(t+1) = Q(t) + Ataise * O(1) if accuracy = False
Q(t+1) = Q(t) + Acont, true * O(t) if accuracy = True and feedback = Conf
Q(t+1) = Q(t) + Apiscont, true * O(1) if accuracy = True and feedback = Disconf

Free pa rameters (n=4): Qlfatse; Oconf, trues Abiscont, trues B

Appendix 5.3: Additional Computational Modelling
Results

In addition to the model comparison results reported in the main text, | conducted
paired sample t-tests with FDR correction. This analysis reinforced Model 4's superiority
over all other models, showing statistically significant advantages against Model 1 (t(31)
= -3.80, p_adj < 0.001), Model 2 (t(31) = -2.80, p_adj < 0.01), and Model 3 (t(31) = -2.75,
p_adj <0.01). When looking at individual participants, Model 4 also performed the best.
It had the lowest LOOcv score for 31.2% of participants, a higher proportion than Model
3 (25%), Model 2 (25%), and Model 1 (18.8%).
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Appendix S: Reparameterization to conduct

hierarchical t-test and interaction tests

For both tasks used in Chapters 2, 3, and 4, the reparameterization of the winning model
is the same. Therefore, In the following | have used the Update Bias Task’s model to

demonstrate the approach.

| started reparametrizing Model 4 (M4) by calculating the sum (ASt, ASr) and difference

(ADy,ADg) between good and bad news learning rates, separately for true and false trials:
(1) AST = O(true, goodnews + O(true, badnews
(2) ADT = O(true, goodnews O(true, badnews
(3) ASF = O(false, goodnews + O(false, badnews
(4) ADF = O(false, goodnews OQ‘alse, badnews

| then added AS; (from (1)) and (AD; from (2)) together to get the following equality:

AST + ADT = (O‘true, goodnews + atrue, badnews) + (atrue, goodnews O(true, badnews)

AST + ADT = 20(true, goodnews

I then divide through both sides by 2 to get the following expression for Qe goodnews:

1
Olrue, goodnews — E (AST + ADT)

I then subtracted AD+ (from (2) ASt(from (1)) and again

divided through by 2 to get a new expression for e padnews:

AST - ADT = (atrue, goodnews + Tirye, badnews) - (atrue, goodnews — true, badnews)

= 2C’ftrue, badnews

1
O(true, badnews — E (AST - ADT)

Then applied the same logic to the False learning rates, resulting in the following 4

expressions for the 4 learning rates:
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1

Utrue, goodnews — E (AST + ADT)
1

atrue, badnews — z (AST - ADT)
1

Ktalse, goodnews — E (ASF + ADF)

1
afalse, badnews — z (ASF - ADF)

| use these 4 learning rates inside the model, but the free parameters are now:
ASr,ADy, ASp, and ADr. Having the model configured in this way then allows me to
conduct a hierarchical t-test (against 0) for AD; which tests the difference between
lirye, goodnews and Qye, badnews @nd a hierarchical t-test

against 0 for ADr which tests the difference between Otyise, goodnews @8N Ataise, badnews:

| assessed the reliability of this approach by correlating the estimates from the original
model with the estimates from the reparametrized model, which showed a very high

correlation for all parameters:

SD_ttest{  0.09 0.38 0.02
W_ttest{  -0.21 -0.28 0.14
Correlation
FalseBad_ttest{  -0.07 0.43 0.12 m 0
0.5
0.0
TrueBad_ttest 0.15 -0.12 0.14 -0.15 0.03 05
. -1.0
FalseGood_ttest - 0.07 -0.09 0.44 -0.33 0.40
TrueGood_ttest - 0.07 0.19 -0.07 -0.23 0.08
& & O O Q
S o g & N °
<« Qé‘& & %

Appendix Figure S.1: Correlation between the estimates from the original model with the
estimates from the reparametrized model in the UBT.
The correlation between the original model and the reparametrized one in the

reinforcement learning task used in Chapters 3 and 5 was also very high:
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Study 1 Study 2
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Conf_True_ttest Conf_True_ttest - 0.22

Appendix Figure S.2: Correlation between the estimates from the original model with the
estimates from the reparametrized model in the RL task.

Next, | used the same approach and created a reparametrized model for the
interaction test. To test whether there is an interaction in learning rates between Valence
(Good News vs Bad News) and Accuracy (True vs. False), we expressed the interaction as

a free parameter, defined as:

Interaction = (afalse, goodnews — Fralse, badnews) - (atrue, goodnews — %true, badnews)

Substitute the expressions:
) 1 1 1 1
Simplify each term:

) 1 1 1 1 1 1 1 1
Interaction = [EASF + EADF - EASF + EADF] - [EAST + EADT — EAST + EADT]

Thus, the interaction simplifies to:
Interaction = ADp — ADy

A hierarchical t-test against 0 for Interaction tells us whether there is an interaction

between valence and accuracy or not.

The very high correlation between the reparametrized model and the original model

confirmed the reliability of this approach:
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Appendix Figure S.3: Correlation between the estimates from the original model with the
estimates from the reparametrized model in the UBT.

And similarly in the RL task:

Study 1 Study 2

Beta_interaction 015 -0.11 0.24 0.04 Beta_interaction

Disconf_False_interaction|  0.12 0.28 0.11 0.12 Disconf_False_interaction

Correlation
m o
] . . 0.5
Disconf_True_interaction - 0.14 0.32 Disconf_True_interaction 00
. 0.5
0.32 _0.08 Conf_False_interaction -1.0

Conf_False_interaction -

Conf_True_interaction 0.14 -0.09 Conf_True_interaction

Appendix Figure S.4: Correlation between the estimates from the original model with the
estimates from the reparametrized modelin the RL task.
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Glossary

Abbreviation

Details

Al

ANOVA

BDI
BOLD

DLPFC

DCM
EEG

fMRI

GLM

IFG

LLM

LMM
LOOcv

MTL
RL
ROI
RT
TR

SD
SEM
SPM
UBT

vmPFC

Artificial Intelligence
Analysis of Variance

Beck Depression Inventory
Blood-Oxygen-Level Dependent

Dorsolateral Prefrontal Cortex

Dynamic Causal Modelling

Electroencephalography
Functional Magnetic Resonance Imaging
General Linear Model
Inferior Frontal Gyrus
Large Language Model

Linear Mixed-effects Model
Leave-One-Out Cross-Validation

Medial Temporal Lobe
Reinforcement Learning
Region of Interest
Reaction Time
Repetition Time

Standard Deviation
Standard Error of the Mean
Statistical Parametric Mapping
Update Bias Task

Ventromedial Prefrontal Cortex
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