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Abstract 

Gut microbiomes (GMs) – microbes living in the intestine – play a central role in host 

health, survival and evolution, yet what affects their dynamics, and how that impacts 

host individuals in wild populations remains poorly understood. This thesis 

investigates host–GM interactions in a natural population of Seychelles warblers, 

integrating longitudinal sampling, shotgun metagenomics, and host genomic 

analyses to identify ecological, genetic, and social drivers of GM variation and their 

consequences for host survival. 

I show that both taxonomic and functional GM diversity decline progressively with 

age, with compositional shifts and an age-related increase in transposase 

abundance. Host immunogenetics, measured through major histocompatibility 

complex (MHC) variation, shaped GM structure, revealing trade-offs between 

microbial defence and microbial metabolic function. Social interactions also 

influenced the GM: individuals sharing space harboured more similar GMs, and 

individuals that interact closely (e.g. breeding pairs and helpers) shared more similar 

anaerobic, but not aerotolerant, taxa. Host inbreeding effects were detectable at 

both individual and parental levels, correlating with GM taxonomic and functional 

composition. Genome-wide association analysis further identified nine loci linked to 

GM composition, the genes these loci encompass implicate host immune and gut 

physiological pathways shaping the GM. All nine loci were associated with microbial 

taxa that are related to survival in the warbler, and two loci were directly linked to 

host survival, demonstrating genomic pathways through which host–GM 

interactions influence fitness. 

Overall, this thesis demonstrates that age, host genetics, and social environment all 

shape the GM through distinct but interacting mechanisms. By integrating ecological 

and genomic perspectives, this thesis advances understanding of how GMs are 

structured in the wild and their potential fitness consequences. More broadly, it 

emphasises the importance of viewing the hosts and their microbiomes as an 

interconnected system, with implications for both evolutionary biology and 

conservation. 

  



 3 

Access Condition and Agreement 

Each deposit in UEA Digital Repository is protected by copyright and other 

intellectual property rights, and duplication or sale of all or part of any of the Data 

Collections is not permitted, except that material may be duplicated by you for your 

research use or for educational purposes in electronic or print form. You must obtain 

permission from the copyright holder, usually the author, for any other use. 

Exceptions only apply where a deposit may be explicitly provided under a stated 

licence, such as a Creative Commons licence or Open Government licence.  

 

Electronic or print copies may not be offered, whether for sale or otherwise to 

anyone, unless explicitly stated under a Creative Commons or Open Government 

license. Unauthorised reproduction, editing or reformatting for resale purposes is 

explicitly prohibited (except where approved by the copyright holder themselves) 

and UEA reserves the right to take immediate ‘take down’ action on behalf of the 

copyright and/or rights holder if this Access condition of the UEA Digital Repository 

is breached. Any material in this database has been supplied on the understanding 

that it is copyright material and that no quotation from the material may be published 

without proper acknowledgement.  



 4 

Acknowledgements  

I am deeply grateful to David Richardson for his exceptional guidance and support 

over the past four years—his feedback has been instrumental to my development. I 

also sincerely thank Hannah Dugdale for her valuable insights on the Seychelles 

warbler and thoughtful attention to detail. Special thanks to Falk Hildebrand for his 

generous support and expertise in microbiome research, particularly in 

metagenomics, which greatly enriched my work. Finally, heartfelt thanks to Sarah 

Worsley for her unwavering help throughout my PhD—even while on maternity 

leave, your support has meant a great deal to me. A massive thank you to all my 

affiliated institutions – the School of Biological Sciences at the University of East 

Anglia, Quadram Institute, and Nature Seychelles for a stimulating environment. 

A heartfelt thank you to everyone from the lab group for supporting me through all 

the comments from David – Tom Brown, Charli Davies, Sarah Worsley, Maria-Elena 

Mannarelli, Eleanor Sheppard, Mike Pointer, George West, Alessandro Pinto, Claire 

Tsui, Callista Aikens, Eugenio Carlon, and Liz Alloca. I also want to thank everyone 

from the Hildebrand group, especially Ece Silan and Klara Cerk. A huge thank you 

to all in the Firefly and Cabbage office for the amazing vibes. 

Heartfelt thanks to everyone I shared fieldwork with in the Seychelles for the hard 

work and unforgettable experiences – Chris Tagg and island wardens, Frigg 

Speelman, Alexander Schlatmann, Kiran Lee, Bernice Brands, Alessandro Pinto 

and Claire Tsui. I'm also grateful to the Seychelles warbler research group for their 

ongoing support, especially Sen Dong and Kiran, for helping me with genomics. 

Thank you to my dearest friends – Calvin Lim, Gurpinder Singh, Jack Barham, Emily 

Smith, Sam Speak, Esme Peers, and Finn Wostear.  

A massive thank you to my family for a lifetime of support and encouragement – Lee 

Gang Yin, Chan Kwee Peng, and Lee Zhenling. You've always given me the 

freedom and the opportunity to pursue what I love, and I wouldn't be where I am 

today without your constant love and dedication. Finally, to Claire, who has been 

through the thickest mosquito clouds and the stickiest of the wooden cabins- I thank 

you for making me focus on life and supporting me with all the choices I make.  

  



 5 

Animal ethics 

 

All procedures involving animals during fieldwork was carried out in accordance with 

local ethical regulations and agreements (UEA ethics approval ID ETH2223-0665). 

The Seychelles Department of Environment and the Seychelles Bureau of 

Standards approved the fieldwork (permit number A0157).  

 

 

 

 

  



 6 

Contents  

 

ABSTRACT .................................................................................................................................. 2 

ACCESS CONDITION AND AGREEMENT ................................................................................... 3 

ACKNOWLEDGEMENTS ............................................................................................................. 4 

ANIMAL ETHICS .......................................................................................................................... 5 

CONTENTS .................................................................................................................................. 6 

LIST OF TABLES AND FIGURES .............................................................................................. 11 

CHAPTER CONTRIBUTION ....................................................................................................... 15 

CHAPTER 1 |   GENERAL INTRODUCTION .............................................................................. 17 

1.1 HISTORY OF MICROBIOME RESEARCH ..................................................................................... 19 

1.2 ENVIRONMENTAL FACTORS AFFECTING THE GM ...................................................................... 20 

1.2.1 Diet ............................................................................................................................ 20 

1.2.2 Temporal environmental factors ................................................................................. 21 

1.2.3 Pathogens .................................................................................................................. 22 

1.3 INTRINSIC HOST FACTORS AND THE GM.................................................................................. 23 

1.3.1 Age ............................................................................................................................ 23 

1.3.2 Senescence ............................................................................................................... 23 

1.3.3 Sex ............................................................................................................................ 24 

1.3.4 Host genetics and the GM .......................................................................................... 24 

1.4 TRANSMISSION OF THE GM................................................................................................... 27 

1.4.1 Vertical transmission of the GM .................................................................................. 27 

1.4.2 Horizontal transmission of the GM .............................................................................. 27 

1.5 TECHNIQUES USED TO CHARACTERISE THE GM ...................................................................... 28 

1.5.1 Amplicon Sequencing ................................................................................................. 28 

1.5.2 Metagenomic Sequencing .......................................................................................... 29 

1.5.3 Other -omic options .................................................................................................... 29 

BOX 1.1. PRESERVING MICROBIAL FUNCTIONAL BIODIVERSITY (LEE, 2025)................................................ 31 

1.6 THE SEYCHELLES WARBLER AS A MODEL SYSTEM.................................................................... 32 

1.6.1 Conclusions and Perspectives .................................................................................... 35 

1.6.2: Thesis aims ............................................................................................................... 36 



 7 

1.7 REFERENCES ...................................................................................................................... 38 

CHAPTER 2 |   METAGENOMIC ANALYSES OF GUT MICROBIOME COMPOSITION AND 

FUNCTION WITH AGE IN A WILD BIRD; LITTLE CHANGE, EXCEPT INCREASED 

TRANSPOSASE GENE ABUNDANCE ....................................................................................... 60 

2.1 ABSTRACT .......................................................................................................................... 61 

2.2 INTRODUCTION .................................................................................................................... 62 

2.3 MATERIALS AND METHODS ................................................................................................... 65 

2.3.1 Study system and sample collection ........................................................................... 65 

2.3.2 DNA extraction and sequencing ................................................................................. 66 

2.3.3 Bioinformatics ............................................................................................................ 67 

2.3.4 Gut microbiome analyses ........................................................................................... 67 

2.3.5 Taxonomic GM changes with age ............................................................................... 68 

2.3.6 Functional GM changes with age ................................................................................ 70 

2.4 RESULTS ............................................................................................................................ 72 

2.4.1 Taxonomic GM changes with age ............................................................................... 72 

2.4.2 Functional GM changes with age ................................................................................ 75 

2.5 DISCUSSION ........................................................................................................................ 82 

2.6 REFERENCES ...................................................................................................................... 87 

2.7 SUPPLEMENTARY MATERIAL .................................................................................................. 94 

2.7.1 Supplementary methods............................................................................................. 94 

2.7.2 Supplementary Figures and Tables ............................................................................ 96 

CHAPTER 3 |   HOST IMMUNOGENETIC VARIATION AND GUT MICROBIOME FUNCTIONALITY 

IN A WILD VERTEBRATE POPULATION ................................................................................ 115 

3.1 ABSTRACT ........................................................................................................................ 116 

3.2 INTRODUCTION .................................................................................................................. 117 

3.3 METHODS ......................................................................................................................... 121 

3.3.1 Study system ........................................................................................................... 121 

3.3.2 Sample collection ..................................................................................................... 121 

3.3.3 Molecular genotyping ............................................................................................... 122 

3.3.4 Gut microbiome screening ........................................................................................ 122 

3.3.5 Bioinformatics .......................................................................................................... 123 

3.3.6 Statistical analysis .................................................................................................... 124 

3.4 RESULTS .......................................................................................................................... 129 



 8 

3.4.1 GM diversity ............................................................................................................. 129 

3.4.2 GM composition ....................................................................................................... 132 

3.4.3 Differential abundance analysis ................................................................................ 138 

3.4.4 Network analysis ...................................................................................................... 141 

3.5 DISCUSSION ...................................................................................................................... 145 

3.6 REFERENCES .................................................................................................................... 152 

3.7 SUPPLEMENTARY MATERIAL ................................................................................................ 162 

CHAPTER 4 |   SOCIAL INTERACTIONS SHAPE ANAEROBIC, BUT NOT AEROTOLERANT, 

GUT MICROBIOME COMPOSITION IN A COOPERATIVE BREEDING SPECIES ................... 170 

4.1 ABSTRACT ........................................................................................................................ 171 

4.2 INTRODUCTION .................................................................................................................. 173 

4.3 MATERIALS AND METHODS ................................................................................................. 176 

4.3.1 Study systems .......................................................................................................... 176 

4.3.2 Sample collection ..................................................................................................... 177 

4.3.3 Molecular methods ................................................................................................... 177 

4.3.4 Bioinformatics .......................................................................................................... 178 

4.3.5 Statistics .................................................................................................................. 179 

4.4 RESULTS .......................................................................................................................... 182 

4.5 DISCUSSION ...................................................................................................................... 192 

4.6 REFERENCES .................................................................................................................... 197 

4.7 SUPPLEMENTARY MATERIAL ................................................................................................ 205 

CHAPTER 5 |   INBREEDING, INTERGENERATIONAL INBREEDING AND THE GUT 

MICROBIOME .......................................................................................................................... 212 

5.1 ABSTRACT ........................................................................................................................ 213 

5.2 INTRODUCTION .................................................................................................................. 215 

5.3 METHODS ......................................................................................................................... 219 

5.3.1 Study system ........................................................................................................... 219 

5.3.2 Sample collection ..................................................................................................... 220 

5.3.3 Gut (bacterial) microbiome molecular methods ......................................................... 220 

5.3.4 Host genome molecular methods ............................................................................. 221 

5.3.5 Bioinformatics .......................................................................................................... 221 

5.3.6 Pedigree .................................................................................................................. 223 

5.3.7 Statistical analysis .................................................................................................... 223 



 9 

5.4 RESULTS .......................................................................................................................... 228 

5.4.1 Inbreeding and GM alpha diversity ........................................................................... 228 

5.4.2 Inbreeding and GM composition ............................................................................... 231 

5.4.3 Inbreeding and differential abundance analysis ........................................................ 234 

5.4.4 Inbreeding and GM stability ...................................................................................... 235 

5.5 DISCUSSION ...................................................................................................................... 236 

5.6.1 Conclusion ............................................................................................................... 239 

5.7 REFERENCES .................................................................................................................... 240 

5.8 SUPPLEMENTARY MATERIAL ................................................................................................ 250 

CHAPTER 6 |   THE HOLOBIONT AND SURVIVAL IN A WILD VERTEBRATE POPULATION 266 

6.1 ABSTRACT ........................................................................................................................ 267 

6.2 INTRODUCTION .................................................................................................................. 269 

6.3 METHOD ........................................................................................................................... 272 

6.3.1 Study system ........................................................................................................... 272 

6.3.2 Sample collection ..................................................................................................... 272 

6.3.3 DNA extraction and sequencing ............................................................................... 273 

6.3.4 Bioinformatics .......................................................................................................... 273 

6.3.5 Statistical methods ................................................................................................... 275 

6.4 RESULTS .......................................................................................................................... 277 

6.4.1 Genome wide association study (GWAS) of GM composition ................................... 277 

6.4.2 Determining ASVs associated with GM-associated SNPs ......................................... 278 

6.4.3 GM-associated SNPs and host survival to the next season ....................................... 279 

6.4.4 GM-associated SNPs and direct host survival........................................................... 280 

6.5 DISCUSSION ...................................................................................................................... 285 

6.5.1 Host genomic regions and the GM............................................................................ 285 

6.5.2 Survival and GM-associated SNPs ........................................................................... 287 

6.5.3 Conclusion ............................................................................................................... 290 

6.6 REFERENCES .................................................................................................................... 291 

6.7 SUPPLEMENTARY MATERIAL ................................................................................................ 302 

CHAPTER 7 |   GENERAL DISCUSSION ................................................................................. 350 

7.1 OVERVIEW ........................................................................................................................ 352 

7.2 SYNTHESIS ....................................................................................................................... 353 



 10 

7.2.1 External environmental effects ................................................................................. 353 

7.2.2 Gut microbiome diversity .......................................................................................... 354 

7.2.3 Gut microbiome composition .................................................................................... 354 

7.2.4 Decoupling of gut microbiome taxonomy and function .............................................. 355 

7.2.5 The benefits of metagenomics .................................................................................. 356 

7.2.6 Peculiarities of the avian GM .................................................................................... 357 

7.2.7 Advances made ....................................................................................................... 357 

7.3 LIMITATIONS ...................................................................................................................... 357 

7.4 FUTURE RESEARCH............................................................................................................ 359 

7.5 FINAL REMARKS ................................................................................................................. 360 

7.6 REFERENCES .................................................................................................................... 362 

APPENDIX 1 |   PUBLISHED VERSION OF BOX 1.1 ............................................................... 368 

APPENDIX 2 |   PUBLISHED VERSION OF CHAPTER 2 ......................................................... 370 

 

 

  



 11 

List of tables and figures 

Figure 1.1. The Seychelles warbler study system. ................................................ 33 

Figure 2.1. Gut microbiome species richness in relation to within-individual, 

longitudinal differences in age (delta age in years) in Seychelles warblers........... 74 

Figure 2.2. Gut microbiome functional diversity measured as (A) observed richness 

and (B) Shannon diversity in relation to within-individual host age (years). .......... 78 

Figure 2.3. Differential abundance analysis of functional gut microbiome cluster of 

orthologous genes (COG) categories in Seychelles warblers using (A) ANCOMBC2 

and (B) GLLVM. .................................................................................................... 80 

Figure 2.4. CLR-transformed COG2801 abundance in relation to (A) within-

individual (delta) host age and (B) between-individual (mean) host age in the gut 

microbiome of Seychelles warblers. ...................................................................... 81 

Figure 3.1. Principal Component Analyses (PCA) of gut microbiome compositional 

variation determined using 16S rRNA metabarcoding of adult Seychelles warbler 

faecal samples in relation to (A) MHC-I diversity, (B) MHC-II diversity, and the 

presence/absence (1/0) of (C) MHC-I allele Ase-ua 5, (D) MHC-I allele Ase-ua 7, 

(E) MHC-I allele Ase-ua 9. N=253 from 149 birds. .............................................. 135 

Figure 3.2. Principal Component Analyses (PCA) of gut microbiome metagenomic 

taxonomic compositional variation of Seychelles warbler faecal samples in relation 

to (A) genome-wide heterozygosity, (B) MHC-II diversity, and (C) MHC-I allele Ase-

ua 7. N=99 from 57 birds. ................................................................................... 136 

Figure 3.3. Principal Component Analyses (PCA) of gut microbiome compositional 

variation determined using metagenomics function with MHC-I diversity in the gut 

microbiome of Seychelles warblers (n = 99 from 57 birds). ................................ 137 

Figure 3.4. Differential abundance of metagenomically identified bacterial species 

in adult Seychelles warblers according to host (A) genome-wide heterozygosity, (B) 

MHC-I diversity, (C) MHC-II diversity, and (D) presence of MHC-I Ase-ua 7 (n=99 

from 57 birds). ..................................................................................................... 139 

Figure 3.5. Variation in the abundance of bacterial functional genes (determined 

using eggNOG) in the gut microbiome of adult Seychelles warblers in relation to 

individual MHC-I diversity (n=99 from 57 birds). ................................................. 141 



 12 

Figure 3.6. Network analysis between MHC diversity and the gut microbiome in adult 

Seychelles warblers (n=99 from 57 birds). .......................................................... 143 

Figure 4.1. Gut microbiome composition similarity of pairs of individuals from the 

same versus pairs of individuals taken from different breeding groups in the 

Seychelles warbler (N = 27821 pairwise comparisons across 683 samples from 345 

individual birds). .................................................................................................. 184 

Figure 4.2. Gut microbiome Shannon diversity similarity of different breeding group 

status pairs of Seychelles warblers. .................................................................... 188 

Figure 4.3. Anaerobic gut microbiome composition similarity of different social status 

pair categories of Seychelles warblers (comparison within groups). ................... 190 

Figure 5.1. Representation of a focal individual resulting from (A) inbreeding, (B) 

intergenerational inbreeding and (C) extra-pair paternity. ................................... 220 

Figure 5.2. Seychelles warbler gut microbiome metagenomic-derived (A) species 

richness in relation to individual inbreeding coefficient (FROH), and (B) functional 

richness and genetic father’s inbreeding coefficient. ........................................... 231 

Figure 6.1. Genome-wide association analysis (GWAS) of host genetic variants and 

gut microbiome (GM) composition in Seychelles warblers (N = 205 individuals).277 

Figure 6.2. Differentially abundant amplicon sequencing variants (ASVs) in the gut 

microbiome (GM) of adult Seychelles warblers harbouring (or not) the minor allele 

at nine genomic loci. ........................................................................................... 279 

Figure 6.3. Gut microbiome (GM) amplicon sequencing variants (ASVs) associated 

with host genetic variants (Table S6.3,4.2) and with the differential survival of 

Seychelles warblers (N = 205 individuals). ......................................................... 280 

Figure 6.4. Survival probability in relation to variation at the genomic loci A) 

rs95_2409799 and B) rs728642 in Seychelles warblers (N=1340). .................... 284 

 

Table 2.1 A generalised linear mixed effect model with a negative binomial 

distribution (glmer.nb) investigating gut microbiome species richness in relation to 

within- (delta) and between- (mean) individual variation in age amongst Seychelles 

warblers (n = 151 samples, 91 individuals). .......................................................... 73 

Table 2.2. A PERMANOVA analysis of gut microbiome taxonomic composition in 

relation to age and terminal year in the Seychelles warbler. The PERMANOVA was 



 13 

performed using a Euclidean distance matrix of CLR-transformed taxon 

abundances. ......................................................................................................... 75 

Table 2.3. A linear mixed effect model investigating variation in gut microbiome 

functional diversity (observed richness and Shannon diversity) in relation to within- 

(delta) and between- (mean) individual age in Seychelles warblers (n = 152 

samples, 90 individuals). ....................................................................................... 76 

Table 2.4. A PERMANOVA analysis of gut microbiome functional composition in 

relation to age (and other factors) in the Seychelles warbler. ............................... 79 

Table 3.1. The relationship between gut microbiome alpha diversity (richness) and 

variation in host (A) Major histocompatibility complex (MHC) diversity and (B) the 

presence/absence of specific MHC alleles in adult Seychelles warblers. ........... 130 

Table 3.2. PERMANOVA analyses of gut microbiome composition in relation to 

individual major histocompatibility complex (MHC) characteristics in adult 

Seychelles warblers. ........................................................................................... 133 

Table 4.1. A linear mixed effect model (lmer) investigating the relationship between 

breeding group membership and gut microbiome ASV Shannon diversity similarity 

in pairs of Seychelles warblers (N = 27,821 pairwise comparisons across 648 

samples from 345 individual birds). ..................................................................... 182 

Table 4.2. A linear mixed effect model investigating gut microbiome composition 

similarity in Seychelles warbler pairs from the same versus pairs from different 

breeding groups (N = 27821 pairwise comparisons across 648 samples from 345 

individual birds). .................................................................................................. 183 

Table 4.3. A linear mixed effect model (lmer) investigating the relationship between 

aerotolerant gut microbiome composition similarity in pairs of Seychelles warblers 

from the same breeding group versus pairs generated from individuals sampled 

from different breeding groups (N = 27821 pairwise comparisons across 648 

samples from 345 individual birds). ..................................................................... 185 

Table 4.4. A linear mixed effect model (lmer) investigating the relationship between 

anaerobic gut microbiome composition similarity in pairs of Seychelles warblers 

from the same breeding group versus pairs generated from individuals sampled in 

different breeding groups (N = 27821 pairwise comparisons across 648 samples 

from 345 individual birds). ................................................................................... 186 



 14 

Table 4.5. A linear mixed effect model (lmer) investigating the relationship between 

individual breeding group status pairs and anaerobic GM composition similarity of 

Seychelles warblers (N = 279 pairwise comparisons across 320 samples from 204 

individual birds). .................................................................................................. 189 

Table 5.1. Models investigating associations between gut microbiome (GM) alpha 

diversity and inbreeding (of individuals and their parents) in the Seychelles warbler.

 ............................................................................................................................ 229 

Table 5.2. A PERMANOVA of the relationship between gut microbiome (GM) ASV 

compositional differences and the inbreeding coefficients (FROH) of Seychelles 

warblers and its mother, genetic and social fathers. ........................................... 231 

Table 5.3. The relationship between GM composition and inbreeding in the 

Seychelles warbler. ............................................................................................. 232 

Table 6.1. Host genetic variants associated with differences in gut microbiome (GM) 

composition among adult Seychelles warblers (N = 205). .................................. 278 

Table 6.2. Cox proportional hazard model to test the effects of (A) allelic variation 

and (B) the genotype of SNPs associated with gut microbiome composition, on 

survival in the Seychelles warbler (N = 1340). .................................................... 282 

  



 15 

Chapter contribution 

This thesis has resulted in the following manuscripts presented in Box 1.1, Chapters 

2, 3, 4, 5, and 6. At the time of submission, Box 1.1 and Chapter 2 in this thesis 

have been published in peer-reviewed journals. Chapter 3 is being revised for 

resubmission, following the reviewer’s comments. Chapter 4 is submitted and is 

under review. Below, I detail the specific contributions I have made to each chapter. 

I am the lead author and responsible for the largest contribution to all chapters. 

 

Box 1.1 | Lee, C.Z. Preserving microbial functional biodiversity, Nature Reviews 

Biodiversity (2025). https://doi.org/10.1038/s44358-025-00037-w  

I wrote the manuscript (100%) 

 

Chapter 2 | Lee, C.Z., Worsley, S.F., Davies, C.S., Silan, E., Burke, T., Komdeur, 

J., Dugdale, H.L., Richardson, D.S. Metagenomic analyses of gut microbiome 

composition and function with age in a wild bird; little change, except increased 

transposase gene abundance, ISME Communications (2025). 

https://doi.org/10.1093/ismeco/ycaf008  

I compiled and analysed the data, and drafted the manuscript (75%) 

 

Chapter 3 | Lee, C.Z., Worsley, S.F., Komdeur, J., Dugdale, H.L., Richardson, D.S. 

Host immunogenetic variation and gut microbiome functionality in a wild vertebrate 

population, In review at Microbiome 

I conceived and designed the study, compiled and analysed the data and drafted 

the manuscript (80%) 

 

Chapter 4 | Lee, C.Z., Worsley, S.F., Burke, T., Komdeur, J., Dugdale, H.L., 

Richardson, D.S. Social interactions shape anaerobic, but not aerotolerant, gut 

microbiome composition in a cooperative breeding species, In review at Molecular 

Ecology  

I conceived and designed the study, compiled and analysed the data and drafted 

the manuscript (80%) 

https://doi.org/10.1038/s44358-025-00037-w
https://doi.org/10.1093/ismeco/ycaf008


 16 

 

Chapter 5 | | Lee, C.Z., Worsley, S.F., Pinto, A.V., Lee, K.G.L., Burke, T., Komdeur, 

J., Dugdale, H.L., Richardson, D.S. Inbreeding, intergenerational inbreeding and the 

gut microbiome 

I conceived and designed the study, compiled and analysed the data and drafted 

the manuscript (80%) 

 

Chapter 6 | | Lee, C.Z., Worsley, S.F., Burke, T., Lee, K.G.L., Dong, S., Komdeur, 

J., Dugdale, H.L., Richardson, D.S.The holobiont and survival in a wild vertebrate 

population 

I conceived and designed the study, compiled and analysed the data and drafted 

the manuscript (80%) 

 

 

 

 

  



 17 

Chapter 1 |  

 

General Introduction 

 
 
 

 
Perched quietly among the branches, this Seychelles warbler appears deep in 
thought—perhaps contemplating its life-history, genetic makeup, social bonds, and 
the hidden world of its gut microbiome! 
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“How far along the gut have we gone?” 
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1.1 History of microbiome research 

The microbiome refers to all microbes living in or on a body that can influence host 

health and disease (Round and Mazmanian, 2009). It encompasses bacteria, 

viruses, fungi, and protozoa (Weinstock, 2012) and is defined (Berg et al., 2020) as:  

“… a characteristic microbial community occupying a reasonably well-defined 

habitat that has distinct physio-chemical properties. The term thus not only refers 

to the microorganisms involved but also encompasses their theatre of activity” 

(Whipps et al., 1988).  

This definition captures not only the organisms present but also their ecological and 

functional roles. 

Microbiome research began with Antonie van Leeuwenhoek’s observations of 

bacteria under a handmade microscope, describing them as animalcules (a 

microscopic animal) (Leeuwenhoek, 1677). Subsequent advances included 

microbial culturing techniques, which revealed discrepancies between the number 

of observed bacterial cells (under the microscope) and those successfully grown in 

the lab (Stewart, 2012). The sequencing of 16S ribosomal RNA genes (16S rRNA) 

by Carl Woese and George Fox (1977) enabled taxonomic identification of bacteria. 

The human gut microbiome (GM) was then studied with the 16S rRNA, uncovering 

substantial inter-individual variation (Eckburg, 2005). More recently, shotgun 

metagenomics, metatranscriptomics, and metabolomics have expanded GM 

research beyond taxonomy, providing insights into microbial function, host-microbe 

interactions, and links to health and disease (Worsley et al., 2024c). 

Research has subsequently shifted toward host-centric perspectives, examining 

how microbiomes influence host physiology, behaviour, health and fitness 

(Claesson et al., 2012; Langille et al., 2014). In vertebrates, work has largely 

focused on the microbiome of the gastrointestinal tract (gut microbiome, GM), a 

dense community (107 – 1014) normally dominated by mutualistic taxa (Ferranti et 

al., 2014; A. R. Wang et al., 2018). Oxygen availability declines along the gut, 

allowing both aerotolerant (oxygen-resistant) and anaerobic (oxygen-sensitive) 

microbes to thrive (Chikina and Matic Vignjevic, 2021). Some microbes anchor in 

the gut and form mutualistic relationships with the host’s mucosal layer, where the 

mucus protects them. The microbes then provide nutrients and metabolites to the 

host and prevent pathogen colonisation (Rathore et al., 2025). Over time, gut 
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microbial taxa form stable populations in individuals and become personalised gut 

microbes (Claesson et al., 2011; Ghosh et al., 2020).  

To date, most GM studies have been performed on humans or captive and model 

organisms (Sharma, 2022). However, studies on humans are often confounded by 

lifestyle factors such as antibiotics, malnutrition, and residential care (DeJong et al., 

2020). With captive animals, captivity influences the GM through differences in 

environmental and social conditions (Oliveira et al., 2020; San Juan et al., 2021), 

and is associated with often extensive differences in GM diversity and composition. 

Effects of captivity have been repeatedly shown in birds (Oliveira et al., 2020; San 

Juan et al., 2021; Wang et al., 2016), fish (Dhanasiri et al., 2011), reptiles (Keenan 

et al., 2013), amphibians (Bataille et al., 2016), and mammals (Clayton et al., 2016; 

Delport et al., 2016; Gibson et al., 2019). Thus, captive animal studies cannot 

accurately portray the GM in wild populations (Hird, 2017). Research on wild animal 

populations is necessary to fully understand natural GM changes associated with 

age and senescence, host genetics, and sociality (Hird, 2017).  

While work on humans and captive animals has provided a wealth of important 

information, it is important to recognise these limitations. Accordingly, I deliberately 

diversify the examples to assess whether findings from humans and captive animals 

are confirmed in wild systems. Despite substantial progress, we still know relatively 

little about how these factors interact in natural populations, or the extent to which 

patterns observed in controlled settings translate to the wild. This review 

synthesises current GM research, focusing on how senescence, sociality, and host 

genetics shape the GM. It also explores the consequences of GM changes, the 

importance of selecting an appropriate study population, and the methodologies 

used to investigate the GM effectively. 

1.2 Environmental factors affecting the GM 

1.2.1 Diet 

Diet is one of the most influential factors shaping the GM (Albenberg and Wu, 2014; 

Cotillard et al., 2013; Wolters et al., 2019), due to both external dietary inputs and 

intrinsic host factors that determine what the host can eat (Trevelline and Kohl, 

2022). This influence is evident at multiple levels, including animal dietary 

classification, differences among species, among populations, and even among 

individuals within a population (Baniel et al., 2021; Bodawatta et al., 2021; Griffin et 

al., 2017; Zoelzer et al., 2021). Numerous studies have shown that shifts in diet can 
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rapidly and predictably alter gut microbial composition, diversity, and function, 

highlighting the strong and dynamic link between what hosts consume and their 

microbiome across ecological and evolutionary contexts (Bodawatta et al., 2021; 

Cotillard et al., 2013; Suriano et al., 2022; van Leeuwen et al., 2020). 

In wild animals, changes in diet also impact GM composition (Amato et al., 2015; 

Ren et al., 2016; Springer et al., 2017). For instance, the GM structure of lowland 

gorillas (Gorilla gorilla gorilla), mice (Mus musculus), and myrmecophagous 

mammals (Orycteropus afer, Vermilingua and Proteles cristata) is highly dependent 

on their diet (Carmody et al., 2015; Delsuc et al., 2014; Hicks et al., 2018). However, 

in some species, the GM does not reflect dietary input (Youngblut et al., 2019), for 

example, Giant Pandas (Ailuropoda melanoleuca) subsist almost entirely on a 

herbivorous diet, yet their digestive system and GM resemble those of carnivores 

(Guo et al., 2020). 

Additionally, the GM plays a critical functional role in host digestion and nutrition. 

For example, the mammal GM aids in the degradation of xyloglucans, which are 

found in vegetables (Larsbrink et al., 2014) and the degradation of cellulose, which 

is found in grass and most plants (Cholewińska et al., 2020). Thus, allowing 

herbivorous mammals to access otherwise inaccessible sources of nutrients 

(Froidurot and Julliand, 2022). Short-chain fatty acids, produced via fermentation of 

indigestible dietary fibres by gut microbes, serve as the primary source of energy 

for colonocytes- absorptive epithelial cells lining the large intestine (Ahmad, 2000). 

Ultimately, the interplay between diet, host physiology, and microbial function not 

only shapes the composition of the GM but also influences the host's overall health 

and metabolic efficiency. 

 

1.2.2 Temporal environmental factors 

Seasonal changes are associated with GM composition in wild animals (Amato et 

al., 2016; Ren et al., 2017; Wang et al., 2015), largely attributed to fluctuations in 

diet, i.e. resource abundance and diversity (David et al., 2014; Góngora et al., 2021; 

Schmiedová et al., 2022). However, these seasonal shifts also encompass broader 

environmental changes, including shifts in temperature, humidity, rainfall, and the 

start or end of breeding seasons, all of which may also shape the GM (Baniel et al., 

2021; Góngora et al., 2021; Marsh et al., 2022).  
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In addition to these broader seasonal influences, finer-scale temporal factors such 

as host circadian rhythm can also modulate GM communities (Voigt et al., 2016). 

Multiple studies have shown that the GM taxonomic composition changes 

throughout the day (Schmid et al., 2023; Voigt et al., 2016; Zhang et al., 2023), with 

up to 60% of GM composition oscillating over 24 hours in mice (Thaiss et al., 2014). 

Moreover, microbial gene expression in mice varies by time of day (light-dark cycle): 

microbial gene functions such as energy metabolism, DNA repair and cell growth 

are upregulated in the dark phase (lights off), whereas genes such as detoxification, 

motility, and environmental sensing are upregulated in the light phase (lights on) of 

mice (Thaiss et al., 2014). Similarly, in wild meerkats (Suricata suricatta), GM 

Clostridium abundance peaked at dawn, aligning with the species’ foraging 

schedule (Risely et al., 2021). 

 

1.2.3 Pathogens 

Viral outbreaks, such as the avian flu H5N1 in seabirds and chickens or the COVID-

19 pandemic in humans, are factors that can alter the GM by activating host immune 

response and inducing inflammation (Chakraborty et al., 2022; Huang et al., 2023). 

Bacterial outbreaks, such as a pathogenic strain of Escherichia coli, could also 

directly lead to changes in the GM, especially if commensals are outcompeted by 

the pathogenic strain (Doranga et al., 2024).  

Climate change has the potential to impact the GM through changes in abundance 

and quality of food, altering host physiology, and potentially increasing pathogenic 

microbes (Litchman, 2025). Global warming may increase enteric pathogens as 

microbes that previously could not survive in vertebrate systems (e.g., many fungi) 

adapt to higher viable temperatures. Such shifts could enable colonisation of hosts, 

while existing microbiota may fail to tolerate these changes, weakening colonisation 

resistance and increasing disease outbreaks (Konkel Neabore, 2024). Furthermore, 

climate change could impact host physiology, such as reduced hormonal expression 

due to increasing temperature, which could be associated with changes in GM 

composition (Maeng and Beumer, 2023; Santos-Marcos et al., 2023). Therefore, 

GM dynamics are not only a reflection of host biology, but are also deeply 

intertwined with broader environmental, ecological, and anthropogenic influences.  
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1.3 Intrinsic host factors and the GM 

1.3.1 Age 

Numerous studies link the GM with host age (Claesson et al., 2012; Xu and Zhang, 

2021). At birth, gut microbial loads are low and gradually increase with age in 

mammals (Du et al., 2023; Shi et al., 2018; Wampach et al., 2017; J. Wang et al., 

2018). Aerotolerant taxa (e.g. Staphylococcus, Streptococcus, Escherichia coli and 

Enterobacteria) are first to colonise the gut, with the role of consuming oxygen, 

producing a suitable environment for obligate anaerobic bacteria (e.g. Bacteroides, 

Clostridium, Actinomyces and Fusobacterium) to grow (Clemente et al., 2012a; Du 

et al., 2023; Minato et al., 1992). Therefore, the GM of human infants is typically of 

low diversity, dominated by Bifidobacteria and Bacteroidetes (Mitsuoka, 1996). At 

one to three years, the human GM shifts towards an adult-like state (Clemente et 

al., 2012b; Tamburini et al., 2016). Similarly, in other vertebrates – Koala 

(Phascolarctos cinereus), dog (Canis lupus familiaris), Great tit (Parus major), and 

ostrich (Struthio camelus) - the developmental GM gradually increases in diversity 

and converges compositionally to resemble an adult GM (Blyton et al., 2022; Dong 

et al., 2022; Teyssier et al., 2018; Videvall et al., 2019). 

 

1.3.2 Senescence 

Senescence is an age-related decline in host function (Monaghan et al., 2008; 

Nussey et al., 2008), which varies in onset and rate across and within species and 

across traits (Jones et al., 2014; Nussey et al., 2013). The GM is thought to be one 

such trait. In mammals, the GM remains relatively stable over long periods of the 

adult life (Becker et al., 2015; Martínez et al., 2013), but changes in later life, often 

becoming dysbiotic – characterised by an imbalanced or disrupted GM community 

(Biagi et al., 2016; Luan et al., 2020). These shifts are associated with age-related 

declines in beneficial bacterial taxa like Bifidobacteria and increases in potentially 

harmful groups like Gammaproteobacteria (Claesson et al., 2011). Experimental 

studies support the idea that age-related changes in the GM impact health. Faecal 

microbiota transplants from older donors shorten lifespan, while those from younger 

donors extend it (Bárcena et al., 2019; Fransen et al., 2017; Smith et al., 2017). This 

may be due to reduced microbial production of short-chain fatty acids, vital microbial 

metabolites (Lee et al., 2020a, 2020b; Nagpal et al., 2018; Spychala et al., 2018). 
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 In wild vertebrates, age-related GM studies have been mostly cross-sectional, 

comparing juveniles and adults (Funosas et al., 2021; Reese et al., 2021). Few 

studies include elderly individuals, and often yield mixed results (Reese et al., 2021). 

Such cross-sectional studies are limited by inter-individual variation and selective 

disappearance effects (Benson et al., 2010; Dzierozynski et al., 2023; Nussey et al., 

2013). Therefore, a longitudinal approach is needed to better understand age-

related GM changes in wild vertebrates. Several studies on wild mammalian species 

using longitudinal sampling have reported that ageing is associated with small shifts 

in GM composition (Reese et al., 2021; Risely et al., 2021; Sadoughi et al., 2022).  

 

1.3.3 Sex 

Sex-related GM differences are found in most vertebrates but vary across host 

species (Valeri and Endres, 2021; Xu and Zhang, 2021). Hormonal differences likely 

explain many of these patterns, as hormones can directly modulate bacterial 

metabolism via steroid receptors (Menon et al., 2013). However, sex hormones 

could also influence behavioural differences in animals, leading to differences in 

dietary choices, consequently influencing GM characteristics (Ma et al., 2020; 

Zucker et al., 1972). Sex differences in the GM may also reflect energy investment 

strategies, such as in yellow-bellied marmots (Marmota flaviventer), where males 

invest in mass gain for hibernation, while females are focused on nursing (Pfau et 

al., 2024).  

 

1.3.4 Host genetics and the GM  

1.3.4.1 Host and GM phylogenies 

Phylosymbiosis describes evolutionary alignment between host species and their 

GM, arising from the close coevolution of the hosts and microbes, whereby microbial 

communities adapt alongside host physiology, immunity, and diet (Lim and 

Bordenstein, 2020). This has been observed in several mammals (Brooks et al., 

2016a; Kohl et al., 2018b, 2018a) and birds (Hird et al., 2015; Laviad-Shitrit et al., 

2019) and may be driven by coevolution between host and microbes (see below 

Vertical Transmission). Alternatively, it could be caused by environmental filtering, 

i.e. the host may filter for specific microbes that can adapt to their gastrointestinal 

system (Moran and Sloan, 2015). Similarly, host phylogeny at the vertebrate classes 

and between species has repeatedly been shown to be associated with the GM, 
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though this doesn’t necessarily indicate phylosymbiosis – as they may arise from 

correlated factors such as shared diet, geographic distribution or amount of social 

interactions (Gomez et al., 2019; Knowles et al., 2019; Sherrill-Mix et al., 2018; Song 

et al., 2020; Trevelline et al., 2020; Youngblut et al., 2019). While host-GM 

phylogenetic congruence captures long-term evolutionary influences on the GM 

across species, genetic variation within a species may also shape the GM in 

important ways.  

1.3.4.2 Host immune system 

The GM and the host immune system influence each other bidirectionally (Russler-

Germain et al., 2017; Zheng et al., 2020). Host immune genes may shape GM 

composition (Dzierozynski et al., 2023; Marietta et al., 2015; Zheng et al., 2020), as 

immune activation must balance defending against pathogens while tolerating 

commensals (Fuess et al., 2021; Tanoue et al., 2010). In particular, immune 

receptor genes (pathogen detection) could preferentially affect certain microbes, 

shaping the GM (Kurilshikov et al., 2017).  

Further, in humans, growing evidence links the GM to diseases such as colorectal 

cancer (Wong and Yu, 2019), inflammatory bowel disease (Khan et al., 2019), 

obesity (Ley et al., 2005), diabetes (Gurung et al., 2020; J. Wang et al., 2018), and 

Clostridium difficile infection (Kelly et al., 2014). It has been suggested that 

ulcerative colitis may result from a disrupted host-GM interaction (Bullard et al., 

2022). Germ-free animals show underdeveloped immune systems and reduced 

immune activity, likely due to the absence of a healthy GM (Sommer and Bäckhed, 

2013). A major reason for this is that the GM plays a central role in shaping and 

maintaining host immune defences (Fuess et al., 2021; Tanoue et al., 2010). This 

can occur directly, through microbial stimulation of immune cells and the production 

of metabolites such as short-chain fatty acids that modulate inflammation, or 

indirectly by maintaining gut barrier integrity (Mann et al., 2024; Takiishi et al., 2017; 

Tanoue et al., 2010; Wu and Wu, 2012; Zhao et al., 2023). In addition, commensal 

microbes enhance colonisation resistance by preventing pathogens from 

establishing in the gut by competing with pathogens for nutrients and niches 

(Caballero-Flores et al., 2023; Tanoue et al., 2010). 

1.3.4.3 Host genetics  

Beyond the host immune system, specific host genes such as those involved in gut 

physiology, nutrient production, and antimicrobial properties could also shape the 

GM (Cornick et al., 2015; Ridlon et al., 2014; Rowland et al., 2018).  For example, 
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genes regulating mucus production (e.g. MUC2) and epithelial barrier integrity can 

influence microbial colonisation (Birchenough et al., 2023; Cornick et al., 2015; Song 

et al., 2023). Similarly, genes linked to nutrient availability (e.g. ABO and FUT2 in 

humans) determine the abundance of microbes such as Faecalibacterium 

prausnitzii due to the utilisation of N-acetylgalactosamine (GalNAc), a sugar 

molecule (Zhang et al., 2024; Zhernakova et al., 2024). Genes linked to bile acid 

synthesis and detoxification (e.g. FXR, UGT family genes) also affect GM 

community structure, since bile acids have strong antimicrobial properties (Collins 

et al., 2023; Ridlon et al., 2014). Even taste receptors and olfactory genes can shape 

diet choice, indirectly modifying the GM. Together, these pathways illustrate that 

host control of the microbiome extends beyond the immune function, supporting the 

view that the GM is a polygenic trait (Benson et al., 2010; Liu et al., 2024).  

Conversely, the GM can also mediate host genetic expression via microbial short-

chain fatty acids, immune signalling and epigenetic mechanisms (Nichols and 

Davenport, 2021). These interactions highlight the importance of within-species or 

within-population studies for disentangling the nuanced host genetic and GM drivers 

of host health and fitness. 

1.3.4.4 Host inbreeding 

Within a species, inbreeding can expose deleterious recessive alleles and reduce 

heterosis, leading to inbreeding depression, causing a shorter lifespan and reduced 

fertility (Bertorelle et al., 2022; Charlesworth and Willis, 2009). Inbreeding may also 

affect the GM directly, by altering the expression of genes that regulate them 

(Bonder et al., 2016; Melis et al., 2023) or indirectly, through loss of heterosis at key 

GM-associated loci, such as immune genes, which are frequently under balancing 

selection (Spurgin and Richardson, 2010). Related individuals tend to have more 

similar GMs due to shared environment, thus making it difficult to disentangle 

relatedness from environmental effects (Yuan et al., 2015). Consequently, inbred 

offspring may inherit less diverse sets of genes and microbes (Grieneisen et al., 

2021; Roche et al., 2023; Turnbaugh et al., 2009).  
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1.4 Transmission of the GM 

1.4.1 Vertical transmission of the GM 

Vertical transmission refers to the direct transfer of microbes from parent to 

offspring, shaping the early GM (Sarkar et al., 2024, 2020). In asexually reproducing 

organisms, microbes are transferred as tissues are separated during the vegetative 

reproduction, such as producing runners and budding (Rosenberg and Zilber-

Rosenberg, 2021). In egg-laying animals, transfer occurs from the egg white before 

hatching and from the eggshell (Bunker and Weiss, 2024; Ding et al., 2017; 

Perlmutter and Bordenstein, 2020; Wilkinson et al., 2003). Eggs of birds showed a 

proportion of microbiota originating at the yolk sac and embryonic gut, suggesting 

vertical transmission before egg shelling (Bunker and Weiss, 2024; Gao et al., 2025; 

Trevelline et al., 2018). In mammals, vaginal birth plays an important role in GM 

transfer (Dominguez-Bello et al., 2010) and the maturation of the GM (Stewart et 

al., 2018), as shown by the depauperate GM of caesarean-born individuals 

(Inchingolo et al., 2024). Postnatal behaviours such as coprophagy, regurgitation, 

and nursing also contribute to vertical transmission of microbes (Daft et al., 2015; 

Rosenberg and Zilber-Rosenberg, 2021; Soave and Brand, 1991; van Dongen et 

al., 2013). Close physical contact, such as hugging and kissing, has also been linked 

to the transmission of microbes between parents and offspring (Reyman et al., 2019; 

Sakwinska et al., 2017; van den Elsen et al., 2019).  

Vertical transmission will lead to greater congruence between host and the GM, 

because microbial lineages are passed along host lineages (Funkhouser and 

Bordenstein, 2013; Moran et al., 2008). Hence, closely related hosts often harbour 

more similar GM, a pattern that has been observed across species and higher 

taxonomic levels (Lim and Bordenstein, 2020; Mallott and Amato, 2020; Yuan et al., 

2015). This phylogenetic concordance facilitates tighter coevolution between hosts 

and their GM, potentially reinforcing host-specific adaptations and contributing to 

the stability and functional integration of the holobiont (Brooks et al., 2016b; Lim and 

Bordenstein, 2020).  

 

1.4.2 Horizontal transmission of the GM 

Horizontal transmission refers to the transfer of microbes from the environment and 

may be mediated by direct (close physical contact) with other con- and hetero-
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specifics and indirect (shared environment) mechanisms (Sarkar et al., 2024). 

Indeed, research has shown that conspecific social interactions are a driving force 

for GM convergence in animals (Archie and Tung, 2015; Raulo et al., 2018; Sarkar 

et al., 2020). For instance, cohabitation leads to more similar GMs than living apart 

(Dill-McFarland et al., 2019; Griffin et al., 2017; Hildebrand et al., 2013; Seedorf et 

al., 2014). Several studies in wild mammals have also found that the GM is 

correlated with the host’s social networks, with individuals who interact frequently 

having more similar GM compositions (Archie and Tung, 2015; Degnan et al., 2012; 

Raulo et al., 2018; Tung et al., 2015). However, social species that have close 

interactions often share physical space/environment, making it challenging to 

disentangle direct and indirect social transmission components of the GM (Raulo et 

al., 2024). To address this, studies in baboons (Papio) and wild mice (Apodemus 

sylvaticus) used behavioural scores and GPS tracking, respectively, to quantify 

social intimacy (Raulo et al., 2024; Tung et al., 2015). These studies found that 

individuals who socially interact more intimately tend to share more anaerobic 

(oxygen-sensitive) bacteria (Raulo et al., 2024; Tung et al., 2015), highlighting the 

role of close interaction in microbial sharing. 

The interaction between hetero-specific has also been shown to increase GM 

similarities, which suggests that spatial proximity between host species promotes 

convergence in the GM (Moeller et al., 2017, 2013; Song et al., 2013). Although, 

much of the work on hetero-specific has focused on the transfer of pathogens 

between species, such as the spread of tuberculosis or SARS-CoV-2 between 

mammals (Gryseels et al., 2021; Torgerson et al., 2024). However, hetero-specific 

interactions may be beneficial; in one case, mice exposed to dog-associated house 

dust had reduced inflammation and were protected against respiratory infection and 

pathology (Fujimura et al., 2014).  

 

1.5 Techniques used to characterise the GM 

1.5.1 Amplicon Sequencing  

The introduction of next-generation sequencing (NGS) enabled high-throughput 

amplicon sequencing of the 16S rRNA gene, allowing culture-independent profiling 

of bacterial communities (Clarridge, 2004). This technique revolutionised 

microbiome research (MacLeod et al., 2022; Wu et al., 2022; Zhu et al., 2022), but 

it has several limitations. Quantitative bias arises from DNA extraction efficiency, 
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PCR amplification, and primer specificity (Sinha et al., 2017). For instance, some 

bacteria (e.g. Gram-negative) are easier to lyse than others (e.g. Gram-positive), 

therefore, the DNA yield of some bacteria may be higher than others (Costea et al., 

2017; Morgan et al., 2010). The inability to accurately determine microbial function 

is another limitation of amplicon sequencing (Aßhauer et al., 2015). This is because 

microbial function can differ between species and strains (Chang et al., 2022; 

Worsley et al., 2024c), but 16S rRNA (V3-V4 region) sequencing is only accurate to 

the genus level (Frioux et al., 2020; Srinivas et al., 2025). For example, most 

Escherichia coli strains are harmless, but some cause disease (Nataro and Kaper, 

1998). Additionally, microbial functions are inferred from reference genomes, so 

poorly characterised genera often result in unreliable or incomplete functional 

annotations (Aßhauer et al., 2015). To access accurate functional data of the 

microbiome, other -omics options are preferred (Sharpton, 2014; Worsley et al., 

2024c).  

1.5.2 Metagenomic Sequencing 

Shotgun metagenomic sequencing includes all DNA in the GM, which enables 

detection of all microbes, including fungi, bacteria, archaea and viruses (Yang et al., 

2018). However, analyses typically focus on bacteria, as bacterial DNA dominates 

the GM metagenomic datasets (Xie et al., 2023). Shotgun sequencing also enables 

lower-level taxonomic assignment – often to species and strain level and is 

important for accurate functional assignment (Ferrer et al., 2012; Frioux et al., 2020). 

Additionally, any genes identified can be traced back to the microbes that carry them 

(Ferrer et al., 2012). The importance of understanding and preserving microbial 

function is discussed in Box 1.1. Finally, shotgun sequencing also reduces PCR-

related bias, although sample handling and DNA extraction still affect results 

(McLaren et al., 2019). However, despite its strengths, shotgun sequencing is costly, 

technically challenging, and lacks standardised workflows. Therefore, most studies 

of microbiome research utilise 16S sequencing to determine the bacterial 

community before proceeding with metagenomics. 

1.5.3 Other -omic options 

Several other -omic approaches have been used to study the GM, including 

metatranscriptomics, metaproteomics, metabolomics, and culturomics. 

Metatranscriptomics is the shotgun sequencing of all expressed genes (RNA to 

cDNA) in a microbiome sample, which provides excellent data on gene activity in a 
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sample but is expensive (relative to amplicon and shotgun metagenomics). 

Furthermore, the bioinformatics steps are not well developed to filter out host 

transcripts, especially in non-model organisms (Worsley et al., 2024c). Similarly, 

metaproteomics and metabolomics provide even stronger evidence of functional 

profiles by directly measuring proteins and metabolites, respectively, but are also 

expensive and have much lower throughput than other methods (Worsley et al., 

2024c). Additionally, there is a high number of unknown metabolites, further 

reducing metabolomics’ ability to accurately measure GM function. Culturomics is a 

technique that isolates the microbe from the sample, followed by whole-genome or 

amplicon sequencing (Worsley et al., 2024c). However, culturomics underestimates 

the true GM composition because only culturable microbes will be characterised 

(Worsley et al., 2024c).  
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Box 1.1. Preserving microbial functional biodiversity (Lee, 2025) 

First published in Nature Reviews Biodiversity, 1, 212, 2025. Reproduced with permission 

from Springer Nature.  

When thinking of conservation, people often picture elephants roaming the savannah, sea 

turtles on beaches, or lush rainforests. Although these species and ecosystems are 

undeniably important, people often overlook another vital, smaller world — the realm of 

microorganisms. In 2021, a paper by Dodd and Grueber highlighted the importance of 

conserving the microbial ecosystems that exist in, or on, animals in natural populations 

(Dodd and Grueber, 2021). This exciting paper inspired me to pursue a PhD in wildlife 

functional microbiomes.  

In addition to providing a useful summary of emerging techniques in functional 

microbiome research, Dodd and Grueber offer a compelling description of the key 

functions of host microbial communities and their importance to species’ conservation. 

Human activity can disrupt microbial ecosystems, which affects species’ health and 

survival. For example, rhinoceroses are endangered primarily owing to poaching, but 

deforestation and pollution has led to dietary changes and exposure to pathogens, which 

alters their microbiomes and contributes to the declining population. Therefore, the 

authors emphasize that understanding the association between functional microbiomes 

and host health would help to identify host species that might suffer most from microbiome 

change. With this knowledge, informed conservation actions — such as introducing 

beneficial microorganisms — can be taken to help species to maintain a healthy wild 

microbiome.  

The authors also made an unexpected point that well-intentioned conservation efforts can 

inadvertently harm host microbiomes and, therefore, the host species itself. For example, 

the process of translocating individuals — a common tool in animal conservation — could 

damage the vertebrate gut microbiome if it involves a period of captivity, supplementary 

feeding or antibiotic treatment. By highlighting the complexity of host–microorganism 

interactions and their implications for host health (and, thus, conservation), the authors 

illustrate the importance of understanding of the host microbiome’s role in guiding 

effective conservation strategies.  

To date, microbial function in wild animal hosts remains poorly understood, primarily 

owing to the costs associated with sampling, sequencing and analysis (Worsley et al., 

2024c). Dodd and Grueber point out that research on wild endangered species is 

constrained by the difficulty of obtaining sufficient sample sizes. Analysing these samples 

presents further challenges, as the field is still relatively new — particularly in the context 

of wild systems. Moreover, changes in the wild animal microbiome are often influenced 

by many interacting variables, including biotic and abiotic environmental factors and 

intrinsic host factors, which must be accounted for in analyses to ensure accurate 

interpretations.  

Dodd and Grueber recommend thoughtful study designs to reduce costs and optimize 

insights when studying wild animal microbiomes. They suggest reusing genomic and 

microbiome data from well-studied species to aid decision-making in small, isolated 

populations and speed up research. Given the complexity of host–microorganism 

interactions in wild populations, it is essential to develop effective strategies to protect life 

across all scales — from taxonomy to functional diversity. 
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1.6 The Seychelles warbler as a model system 

The Seychelles warbler (Acrocephalus sechellensis) is a wild-living passerine 

endemic to the Seychelles archipelago (Figure 1.1AB; Spurgin et al., 2014). In 1968, 

only a single population of less than 30 warblers remained on Cousin Island, 

following anthropogenic destruction of their natural habitat (Crook, 1960; Loustau-

Lalanne, 1968; Vesey-Fitzgerald, 1940). Subsequently, total population size has 

been increased by conservation efforts, including habitat restoration and 

translocations of Seychelles warblers to other islands: Cousine Island in 1988, Aride 

Island in 1990, Denis Island in 2004 and Fregate Island in 2011 (Komdeur, 1994; 

Richardson et al., 2006; Wright et al., 2014). Translocation is necessary to establish 

new populations of this species as there is virtually no inter-island dispersal 

(Komdeur et al., 2004). These successful conservation efforts have moved the 

Seychelles warblers from a critically endangered species to a near-threatened 

species, which now consists of over 3000 individuals spread across five islands 

(BirdLife International, 2022). 

The Seychelles warbler population on Cousin Island (Figure 1.1C; 29 ha; 04° 20′ S, 

55° 40′ E) has been monitored continuously since 1985. From 1997, even more 

extensive monitoring has been undertaken covering both the minor (January-March) 

and major (June-October) breeding seasons (Barrett et al., 2013; Brown et al., 2022; 

Komdeur, 1992). Each season, as many birds as possible are caught with mist nets 

or at the nest (chicks) and ringed with a British Trust of Ornithology metal ring and 

a unique combination of three colour rings (Figure 1.1B). Individuals are normally 

ringed as a nestling or as a still dependent fledgling on their natal territory (Komdeur, 

1992). As Seychelles warblers do not disperse to other islands (Komdeur et al., 

2004), each individual within this small population can be closely monitored 

throughout its life. 



 33 

 

Figure 1.1. The Seychelles warbler study system. (A) A begging fledgling. 
https://youtu.be/zlTC9InGhPM , (B) An adult with a BTO metal ring and colour rings 
(Black-white (M)/orange(O) orange(O)/metal(X)). (C) Cousin Island, Republic of 
Seychelles. 29 ha in size and 69 m elevation. 

 

The extensive long-term monitoring of the Cousin Island Seychelles warbler 

population has created a valuable extensive dataset, including accurate survival, 

reproductive success and social status data, alongside biological samples (blood 

and faeces) (Davies et al., 2022; Hammers et al., 2015a; D S Richardson et al., 

2003). Birth and death dates of individual birds can be accurately estimated 

(Hammers et al., 2015), as individuals are first identified at their nest, and 98 ± 1% 

of adult Seychelles warblers are resighted each season (Brouwer et al., 2010a). 

Therefore, if an individual is not sighted for more than one year, they are presumed 

dead (Brouwer et al., 2010b). There are no natural adult predators; hence, extrinsic 

mortality is low (Komdeur, 1999). Seychelles warblers have an average lifespan of 

5.5 years, with one individual previously documented living to 19 years (Barrett et 

al., 2013). On Cousin Island, there have been up to 115 territories, varying in quality 

https://youtu.be/zlTC9InGhPM
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based on foliage cover, insect availability, and territory size (Komdeur and Pels, 

2005).  

Seychelles warblers are facultative cooperative breeders, with social groups 

comprising a monogamous dominant pair and subordinate individuals (Komdeur, 

1991; Komdeur and Pels, 2005). The dominant pair usually pair for life and defends 

their territory year-round (Komdeur, 1992; Richardson et al., 2007). Some 

subordinates act as helpers, helping to raise the offspring of the dominant pair, while 

others (non-helpers) share the territory but do not contribute to breeding (Komdeur, 

1991). Subordinates likely occur due to the population reaching carrying capacity 

(Komdeur and Pels, 2005). Helpers significantly improve the reproductive success 

of the breeding pair (Richardson et al., 2002, 2001). This system enables the 

disentangling of genetics from social interactions because subordinates vary 

extensively in how related they are to the dominant pair (Richardson et al., 2003b), 

partly due to the frequent dispersal of offspring into non-natal groups to become 

helpers (Groenewoud et al., 2018). Even subordinates originating from within their 

natal group could be the result of extra-pair paternity (EPP) and/or cobreeding 

(Hadfield et al., 2006; Raj Pant et al., 2019; Richardson et al., 2003b, 2002; Sparks 

et al., 2022).  

The intensive monitoring of the Seychelles warblers enables long-term studies and 

represents a valuable model system for studies of ageing in a wild population. In 

this population, actuarial senescence begins at approximately seven years of age 

in both sexes (Hammers et al., 2013). For females, reproductive senescence begins 

at ca. six years, while in males it begins ca. eight years (Hammers et al., 2012; Raj 

Pant et al., 2020). In line with previous studies on other species (McCleery et al., 

1996; Orell and Belda, 2002; Reed et al., 2008; Reid et al., 2003), early-life 

reproductive investment affects senescence in the Seychelles warbler (Hammers et 

al., 2013). 

The Seychelles warbler system is well-suited for studying the GM because of the 

long-term individual-level data, including age, survival, social groups, genetic and 

social parents, territory quality, immunogenetics, and whole genome variation (Raj 

Pant et al., 2019; Wright et al., 2016). Faecal specimens for GM assessment have 

also been collected since 2017, so a relatively large, partially longitudinal sample is 

now available (Davies et al., 2022). This longitudinal dataset allows me to identify 

within individual changes in the GM, which is especially crucial for studies on 

senescence and sociality. In addition, as warblers are tree-foraging insectivores, 
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they are rarely exposed to conspecific faeces, thus limiting non-contact horizontal 

transfer post-fledging. Additionally, low extrinsic mortality allows warblers to reach 

remarkably old ages, increasing the likelihood of detecting GM-mediated fitness 

consequences. 

A limitation of the Seychelles warbler system is the inability to manipulate the 

population, such as creating germ-free individuals or performing microbiome 

transplantation experiments to determine functional mechanisms. Nonetheless, the 

Seychelles warbler is a very tractable population to study the GM due to the 

availability of longitudinal sampling and extensive ecological, demographic, and 

environmental data.  

Prior to my work in this system, studies on the Seychelles warbler GM had shown 

that the GM composition is correlated with adult host survival (Worsley et al., 2021) 

and Major Histocompatibility Complex (MHC) gene variation (Davies et al., 2022). 

In addition, adult birds that died the next breeding season carried a higher number 

of opportunistic bacteria compared to adult birds that survived the next breeding 

season (Worsley et al., 2021). Since I have begun working on the system, a study 

on the gut mycobiome (fungal component of the GM) has shown that the MHC is 

associated with alpha diversity and composition of the gut mycobiome (Worsley et 

al., 2022). Additionally, 16S rRNA has been used to examine the gut microbiome in 

relation to ageing (Worsley et al., 2024b), fine-scale geographic variation (Worsley 

et al., 2025), and the effects of translocation (Worsley et al., 2024a). The GM was 

not associated with GM diversity and had small effects on composition (Worsley et 

al., 2024b). Despite the small size of Cousin Island, the GM beta diversity was 

associated in a quadratic manner with geographic distance, suggesting more similar 

GMs between coastal territories than coastal-inland territories (Worsley et al., 2025). 

Additionally, the GM had lower alpha diversity in all translocated populations and 

varied in GM composition compared to the source Cousin Island population 

(Worsley et al., 2024a). 

1.6.1 Conclusions and Perspectives 

The past two decades of GM research have made it clear that animals live in a 

symbiotic relationship with microorganisms (Lim and Bordenstein, 2020). Gut 

microbe variation has been linked with environmental factors, host physiology, 

genetics, senescence, and social interactions (Biagi et al., 2010; Bonder et al., 2016; 

Hicks et al., 2018; Raulo et al., 2024; Sharma, 2022). The complexity of these 
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associations highlights the need for continued, in-depth research. Given that the GM 

can vary significantly between individuals, repeated longitudinal sampling is 

necessary to track changes within individuals over time, and to understand why they 

occur (Levy et al., 2020). Furthermore, captivity drastically changes the GM (Hird, 

2017), highlighting the need to study GMs in wild populations to reveal true fitness 

effects and the evolutionary significance of host-microbe interactions. Such studies 

will allow a better understanding of host-microbe interactions, deciphering factors 

that shape the GM and uncovering the consequences of these changes on host 

senescence, reproductive success and mortality – and thus host evolution. 

Integration of metagenomic approaches will deepen functional GM insights, and 

long-term research in wild systems could ultimately identify the microbial factors 

critical for maintaining host health. 

 

1.6.2: Thesis aims 

Overall aim:  

I use the Seychelles warbler as a model system to investigate the causes and 

consequences of GM variation within a wild vertebrate population. My research uses 

both amplicon and shotgun sequencing to explore what may generate differences 

among and within individual hosts in terms of GM taxonomy and function. The 

following chapters each aim to address a key aspect: 

Chapter 2 will test how the GM taxonomy and functionality changes within 

individuals in relation to age and senescence using a longitudinal sampling 

approach.  

Chapter 3 aims to determine the role of host immunogenetics in shaping the GM. 

Specifically, how Major Histocompatibility Complex (MHC) variation influences the 

GM taxonomy and function.  

Chapter 4 endeavours to disentangle how close social contact and shared 

environment affect horizontal transmission of the GM in the cooperatively breeding 

Seychelles warblers. Specifically, I will also investigate how the transmission 

dynamics of both aerotolerant and anaerobic microbes differ with social contact to 

understand how social structures influence microbial exchange. 

Chapter 5 aims to test the association between host inbreeding, including 

intergenerational inbreeding, and GM variation. By integrating host genomic 
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sequencing, accurate pedigree data, and amplicon and shotgun metagenomics GM 

sequencing, I will determine if and how levels of inbreeding are linked to variations 

in GM taxonomy and function. 

Chapter 6 will identify host genomic loci that are associated with GM composition, 

and determine if these loci mediate host survival through the GM.  

Discussion synthesises the findings from Chapters 2-6, highlighting the key 

contributions, identifying recurring themes, and proposing avenues for future 

research. 

 

  



 38 

1.7 References 

Ahmad, M.S., 2000. Butyrate and glucose metabolism by colonocytes in 
experimental colitis in mice. Gut 46, 493–499. 
https://doi.org/10.1136/gut.46.4.493 

Albenberg, L.G., Wu, G.D., 2014. Diet and the Intestinal Microbiome: Associations, 
Functions, and Implications for Health and Disease. Gastroenterology 146, 
1564–1572. https://doi.org/10.1053/j.gastro.2014.01.058 

Amato, K.R., Leigh, S.R., Kent, A., Mackie, R.I., Yeoman, C.J., Stumpf, R.M., 
Wilson, B.A., Nelson, K.E., White, B.A., Garber, P.A., 2015. The Gut 
Microbiota Appears to Compensate for Seasonal Diet Variation in the Wild 
Black Howler Monkey (Alouatta pigra). Microb Ecol 69, 434–443. 
https://doi.org/10.1007/s00248-014-0554-7 

Amato, K.R., Martinez-Mota, R., Righini, N., Raguet-Schofield, M., Corcione, F.P., 
Marini, E., Humphrey, G., Gogul, G., Gaffney, J., Lovelace, E., Williams, L., 
Luong, A., Dominguez-Bello, M.G., Stumpf, R.M., White, B., Nelson, K.E., 
Knight, R., Leigh, S.R., 2016. Phylogenetic and ecological factors impact the 
gut microbiota of two Neotropical primate species. Oecologia 180, 717–733. 
https://doi.org/10.1007/s00442-015-3507-z 

Archie, E.A., Tung, J., 2015. Social behavior and the microbiome. Curr Opin Behav 
Sci 6, 28–34. https://doi.org/10.1016/j.cobeha.2015.07.008 

Aßhauer, K.P., Wemheuer, B., Daniel, R., Meinicke, P., 2015. Tax4Fun: predicting 
functional profiles from metagenomic 16S rRNA data: Fig. 1. Bioinformatics 
31, 2882–2884. https://doi.org/10.1093/bioinformatics/btv287 

Baniel, A., Amato, K.R., Beehner, J.C., Bergman, T.J., Mercer, A., Perlman, R.F., 
Petrullo, L., Reitsema, L., Sams, S., Lu, A., Snyder-Mackler, N., 2021. 
Seasonal shifts in the gut microbiome indicate plastic responses to diet in 
wild geladas. Microbiome 9, 26. https://doi.org/10.1186/s40168-020-00977-
9 

Bárcena, C., Valdés-Mas, R., Mayoral, P., Garabaya, C., Durand, S., Rodríguez, F., 
Fernández-García, M.T., Salazar, N., Nogacka, A.M., Garatachea, N., 
Bossut, N., Aprahamian, F., Lucia, A., Kroemer, G., Freije, J.M.P., Quirós, 
P.M., López-Otín, C., 2019. Healthspan and lifespan extension by fecal 
microbiota transplantation into progeroid mice. Nat Med 25. 
https://doi.org/10.1038/s41591-019-0504-5 

Barrett, E.L.B., Burke, T.A., Hammers, M., Komdeur, J., Richardson, D.S., 2013. 
Telomere length and dynamics predict mortality in a wild longitudinal study. 
Mol Ecol 22. https://doi.org/10.1111/mec.12110 

Bataille, A., Lee-Cruz, L., Tripathi, B., Kim, H., Waldman, B., 2016. Microbiome 
Variation Across Amphibian Skin Regions: Implications for Chytridiomycosis 
Mitigation Efforts. Microb Ecol 71. https://doi.org/10.1007/s00248-015-0653-
0 

Becker, A.A.M.J., Janssens, G.P.J., Snauwaert, C., Hesta, M., Huys, G., 2015. 
Integrated Community Profiling Indicates Long-Term Temporal Stability of 
the Predominant Faecal Microbiota in Captive Cheetahs. PLoS One 10, 
e0123933. https://doi.org/10.1371/journal.pone.0123933 

Benson, A.K., Kelly, S.A., Legge, R., Ma, F., Low, S.J., Kim, J., Zhang, M., Oh, P.L., 
Nehrenberg, D., Hua, K., Kachman, S.D., Moriyama, E.N., Walter, J., 



 39 

Peterson, D.A., Pomp, D., 2010. Individuality in gut microbiota composition 
is a complex polygenic trait shaped by multiple environmental and host 
genetic factors. Proc Natl Acad Sci U S A 107, 18933–18938. 
https://doi.org/10.1073/pnas.1007028107 

Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.-C.C., Charles, T., 
Chen, X., Cocolin, L., Eversole, K., Corral, G.H., Kazou, M., Kinkel, L., Lange, 
L., Lima, N., Loy, A., Macklin, J.A., Maguin, E., Mauchline, T., McClure, R., 
Mitter, B., Ryan, M., Sarand, I., Smidt, H., Schelkle, B., Roume, H., Kiran, 
G.S., Selvin, J., Souza, R.S.C. de, van Overbeek, L., Singh, B.K., Wagner, 
M., Walsh, A., Sessitsch, A., Schloter, M., 2020. Microbiome definition re-
visited: old concepts and new challenges. Microbiome 8. 
https://doi.org/10.1186/s40168-020-00875-0 

Bertorelle, G., Raffini, F., Bosse, M., Bortoluzzi, C., Iannucci, A., Trucchi, E., 
Morales, H.E., van Oosterhout, C., 2022. Genetic load: genomic estimates 
and applications in non-model animals. Nat Rev Genet 23, 492–503. 
https://doi.org/10.1038/s41576-022-00448-x 

Biagi, E., Franceschi, C., Rampelli, S., Severgnini, M., Ostan, R., Turroni, S., 
Consolandi, C., Quercia, S., Scurti, M., Monti, D., Capri, M., Brigidi, P., 
Candela, M., 2016. Gut Microbiota and Extreme Longevity. Current Biology 
26. https://doi.org/10.1016/j.cub.2016.04.016 

Biagi, E., Nylund, L., Candela, M., Ostan, R., Bucci, L., Pini, E., Nikkïla, J., Monti, 
D., Satokari, R., Franceschi, C., Brigidi, P., De Vos, W., 2010. Through 
Ageing, and Beyond: Gut Microbiota and Inflammatory Status in Seniors and 
Centenarians. PLoS One 5, e10667. 
https://doi.org/10.1371/journal.pone.0010667 

Birchenough, G.M.H., Schroeder, B.O., Sharba, S., Arike, L., Recktenwald, C. V, 
Puértolas-Balint, F., Subramani, M. V, Hansson, K.T., Yilmaz, B., Lindén, 
S.K., Bäckhed, F., Hansson, G.C., 2023. Muc2-dependent microbial 
colonization of the jejunal mucus layer is diet sensitive and confers local 
resistance to enteric pathogen infection. Cell Rep 42, 112084. 
https://doi.org/10.1016/j.celrep.2023.112084 

BirdLife International, 2022. Species factsheet: Acrocephalus sechellensis. 

Blyton, M.D.J., Soo, R.M., Hugenholtz, P., Moore, B.D., 2022. Maternal inheritance 
of the koala gut microbiome and its compositional and functional maturation 
during juvenile development. Environ Microbiol 24, 475–493. 
https://doi.org/10.1111/1462-2920.15858 

Bodawatta, K.H., Freiberga, I., Puzejova, K., Sam, K., Poulsen, M., Jønsson, K.A., 
2021. Flexibility and resilience of great tit (Parus major) gut microbiomes to 
changing diets. Anim Microbiome 3, 20. https://doi.org/10.1186/s42523-021-
00076-6 

Bonder, M.J., Kurilshikov, A., Tigchelaar, E.F., Mujagic, Z., Imhann, F., Vila, A.V., 
Deelen, P., Vatanen, T., Schirmer, M., Smeekens, S.P., Zhernakova, D. V., 
Jankipersadsing, S.A., Jaeger, M., Oosting, M., Cenit, M.C., Masclee, 
A.A.M., Swertz, M.A., Li, Y., Kumar, V., Joosten, L., Harmsen, H., Weersma, 
R.K., Franke, L., Hofker, M.H., Xavier, R.J., Jonkers, D., Netea, M.G., 
Wijmenga, C., Fu, J., Zhernakova, A., 2016. The effect of host genetics on 
the gut microbiome. Nat Genet 48, 1407–1412. 
https://doi.org/10.1038/ng.3663 



 40 

Brooks, A.W., Kohl, K.D., Brucker, R.M., van Opstal, E.J., Bordenstein, S.R., 2016a. 
Phylosymbiosis: Relationships and Functional Effects of Microbial 
Communities across Host Evolutionary History. PLoS Biol 14, e2000225. 
https://doi.org/10.1371/journal.pbio.2000225 

Brooks, A.W., Kohl, K.D., Brucker, R.M., van Opstal, E.J., Bordenstein, S.R., 2016b. 
Phylosymbiosis: Relationships and Functional Effects of Microbial 
Communities across Host Evolutionary History. PLoS Biol 14, e2000225. 
https://doi.org/10.1371/journal.pbio.2000225 

Brouwer, L., Barr, I., Van De POL, M., Burke, T., Komdeur, J., Richardson, D.S., 
2010a. MHC-dependent survival in a wild population: evidence for hidden 
genetic benefits gained through extra-pair fertilizations. Mol Ecol 19, 3444–
3455. https://doi.org/10.1111/j.1365-294X.2010.04750.x 

Brouwer, L., Barr, I., Van De Pol, M., Burkke, T., Komdeur, J., Richardson, D.S., 
2010b. MHC-dependent survival in a wild population: evidence for hidden 
genetic benefits gained through extra-pair fertilizations. Mol Ecol 19. 
https://doi.org/10.1111/j.1365-294X.2010.04750.x 

Brown, T.J., Dugdale, H.L., Hammers, M., Komdeur, J., Richardson, D.S., 2022. 
Seychelles warblers with silver spoons: Juvenile body mass is a lifelong 
predictor of annual survival, but not annual reproduction or senescence. Ecol 
Evol 12, e9049. https://doi.org/10.1002/ece3.9049 

Bullard, B.M., VanderVeen, B.N., McDonald, S.J., Cardaci, T.D., Murphy, E.A., 
2022. Cross talk between the gut microbiome and host immune response in 
ulcerative colitis: nonpharmacological strategies to improve homeostasis. 
American Journal of Physiology-Gastrointestinal and Liver Physiology 323, 
G554–G561. https://doi.org/10.1152/ajpgi.00210.2022 

Bunker, M.E., Weiss, S.L., 2024. The reproductive microbiome and maternal 
transmission of microbiota via eggs in Sceloporus virgatus. FEMS Microbiol 
Ecol 100. https://doi.org/10.1093/femsec/fiae011 

Caballero-Flores, G., Pickard, J.M., Núñez, G., 2023. Microbiota-mediated 
colonization resistance: mechanisms and regulation. Nat Rev Microbiol 21, 
347–360. https://doi.org/10.1038/s41579-022-00833-7 

Carmody, R.N., Gerber, G.K., Luevano, J.M., Gatti, D.M., Somes, L., Svenson, K.L., 
Turnbaugh, P.J., 2015. Diet Dominates Host Genotype in Shaping the Murine 
Gut Microbiota. Cell Host Microbe 17, 72–84. 
https://doi.org/10.1016/j.chom.2014.11.010 

Chakraborty, C., Sharma, A.R., Bhattacharya, M., Dhama, K., Lee, S.-S., 2022. 
Altered gut microbiota patterns in COVID-19: Markers for inflammation and 
disease severity. World J Gastroenterol 28, 2802–2822. 
https://doi.org/10.3748/wjg.v28.i25.2802 

Chang, Y., Li, X., Ding, L., Yang, C., Pan, Z., Han, N., Cui, Y., Zhi, F., Yang, R., 
Gao, H., Bi, Y., 2022. Genetic and Functional Differences of Escherichia coli 
Strains from Colorectal Cancer Mucosal Tissues. Engineering 16, 210–219. 
https://doi.org/10.1016/j.eng.2021.03.028 

Charlesworth, D., Willis, J.H., 2009. The genetics of inbreeding depression. Nat Rev 
Genet 10, 783–796. https://doi.org/10.1038/nrg2664 

Chikina, A., Matic Vignjevic, D., 2021. At the right time in the right place: How do 
luminal gradients position the microbiota along the gut? Cells & Development 
168, 203712. https://doi.org/10.1016/j.cdev.2021.203712 



 41 

Cholewińska, P., Czyż, K., Nowakowski, P., Wyrostek, A., 2020. The microbiome of 
the digestive system of ruminants – a review. Anim Health Res Rev 21, 3–
14. https://doi.org/DOI: 10.1017/S1466252319000069 

Claesson, M.J., Cusack, S., O’Sullivan, O., Greene-Diniz, R., de Weerd, H., 
Flannery, E., Marchesi, J.R., Falush, D., Dinan, T., Fitzgerald, G., Stanton, 
C., van Sinderen, D., O’Connor, M., Harnedy, N., O’Connor, K., Henry, C., 
O’Mahony, D., Fitzgerald, A.P., Shanahan, F., Twomey, C., Hill, C., Ross, 
R.P., O’Toole, P.W., 2011. Composition, variability, and temporal stability of 
the intestinal microbiota of the elderly. Proceedings of the National Academy 
of Sciences 108, 4586–4591. https://doi.org/10.1073/pnas.1000097107 

Claesson, M.J., Jeffery, I.B., Conde, S., Power, S.E., O’Connor, E.M., Cusack, S., 
Harris, H.M.B., Coakley, M., Lakshminarayanan, B., O’Sullivan, O., 
Fitzgerald, G.F., Deane, J., O’Connor, M., Harnedy, N., O’Connor, K., 
O’Mahony, D., van Sinderen, D., Wallace, M., Brennan, L., Stanton, C., 
Marchesi, J.R., Fitzgerald, A.P., Shanahan, F., Hill, C., Ross, R.P., O’Toole, 
P.W., 2012. Gut microbiota composition correlates with diet and health in the 
elderly. Nature 488. https://doi.org/10.1038/nature11319 

Clarridge, J.E., 2004. Impact of 16S rRNA Gene Sequence Analysis for 
Identification of Bacteria on Clinical Microbiology and Infectious Diseases. 
Clin Microbiol Rev 17, 840–862. https://doi.org/10.1128/CMR.17.4.840-
862.2004 

Clayton, J.B., Vangay, P., Huang, H., Ward, T., Hillmann, B.M., Al-Ghalith, G.A., 
Travis, D.A., Long, H.T., Tuan, B. Van, Minh, V. Van, Cabana, F., Nadler, T., 
Toddes, B., Murphy, T., Glander, K.E., Johnson, T.J., Knights, D., 2016. 
Captivity humanizes the primate microbiome. Proceedings of the National 
Academy of Sciences 113. https://doi.org/10.1073/pnas.1521835113 

Clemente, J.C., Ursell, L.K., Parfrey, L.W., Knight, R., 2012a. The Impact of the Gut 
Microbiota on Human Health: An Integrative View. Cell 148, 1258–1270. 
https://doi.org/10.1016/j.cell.2012.01.035 

Clemente, J.C., Ursell, L.K., Parfrey, L.W., Knight, R., 2012b. The Impact of the Gut 
Microbiota on Human Health: An Integrative View. Cell 148, 1258–1270. 
https://doi.org/10.1016/j.cell.2012.01.035 

Collins, S.L., Stine, J.G., Bisanz, J.E., Okafor, C.D., Patterson, A.D., 2023. Bile 
acids and the gut microbiota: metabolic interactions and impacts on disease. 
Nat Rev Microbiol 21, 236–247. https://doi.org/10.1038/s41579-022-00805-x 

Cornick, S., Tawiah, A., Chadee, K., 2015. Roles and regulation of the mucus barrier 
in the gut. Tissue Barriers. https://doi.org/10.4161/21688370.2014.982426 

Costea, P.I., Zeller, G., Sunagawa, S., Pelletier, E., Alberti, A., Levenez, F., 
Tramontano, M., Driessen, M., Hercog, R., Jung, F.-E., Kultima, J.R., 
Hayward, M.R., Coelho, L.P., Allen-Vercoe, E., Bertrand, L., Blaut, M., 
Brown, J.R.M., Carton, T., Cools-Portier, S., Daigneault, M., Derrien, M., 
Druesne, A., de Vos, W.M., Finlay, B.B., Flint, H.J., Guarner, F., Hattori, M., 
Heilig, H., Luna, R.A., van Hylckama Vlieg, J., Junick, J., Klymiuk, I., 
Langella, P., le Chatelier, E., Mai, V., Manichanh, C., Martin, J.C., Mery, C., 
Morita, H., O’Toole, P.W., Orvain, C., Patil, K.R., Penders, J., Persson, S., 
Pons, N., Popova, M., Salonen, A., Saulnier, D., Scott, K.P., Singh, B., 
Slezak, K., Veiga, P., Versalovic, J., Zhao, L., Zoetendal, E.G., Ehrlich, S.D., 
Dore, J., Bork, P., 2017. Towards standards for human fecal sample 
processing in metagenomic studies. Nat Biotechnol 35. 
https://doi.org/10.1038/nbt.3960 



 42 

Cotillard, A., Kennedy, S.P., Kong, L.C., Prifti, E., Pons, N., Le Chatelier, E., 
Almeida, M., Quinquis, B., Levenez, F., Galleron, N., Gougis, S., Rizkalla, S., 
Batto, J.-M., Renault, P., Doré, J., Zucker, J.-D., Clément, K., Ehrlich, S.D., 
Blottière, H., Leclerc, M., Juste, C., de Wouters, T., Lepage, P., Fouqueray, 
C., Basdevant, A., Henegar, C., Godard, C., Fondacci, M., Rohia, A., 
Hajduch, F., Weissenbach, J., Pelletier, E., Le Paslier, D., Gauchi, J.-P., 
Gibrat, J.-F., Loux, V., Carré, W., Maguin, E., van de Guchte, M., Jamet, A., 
Boumezbeur, F., Layec, S., 2013. Dietary intervention impact on gut 
microbial gene richness. Nature 500, 585–588. 
https://doi.org/10.1038/nature12480 

Crook, J.H., 1960. The present status of certain rare land birds of the Seychelles 
islands Seychelles Government Bulletin. Department of Environment, 
Victoria. 

Daft, J.G., Ptacek, T., Kumar, R., Morrow, C., Lorenz, R.G., 2015. Cross-fostering 
immediately after birth induces a permanent microbiota shift that is shaped 
by the nursing mother. Microbiome 3, 17. https://doi.org/10.1186/s40168-
015-0080-y 

David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, 
B.E., Ling, A. V., Devlin, A.S., Varma, Y., Fischbach, M.A., Biddinger, S.B., 
Dutton, R.J., Turnbaugh, P.J., 2014. Diet rapidly and reproducibly alters the 
human gut microbiome. Nature 505. https://doi.org/10.1038/nature12820 

Davies, C.S., Worsley, S.F., Maher, K.H., Komdeur, J., Burke, T., Dugdale, H.L., 
Richardson, D.S., 2022. Immunogenetic variation shapes the gut microbiome 
in a natural vertebrate population. Microbiome 10, 41. 
https://doi.org/10.1186/s40168-022-01233-y 

Degnan, P.H., Pusey, A.E., Lonsdorf, E. V., Goodall, J., Wroblewski, E.E., Wilson, 
M.L., Rudicell, R.S., Hahn, B.H., Ochman, H., 2012. Factors associated with 
the diversification of the gut microbial communities within chimpanzees from 
Gombe National Park. Proceedings of the National Academy of Sciences 
109, 13034–13039. https://doi.org/10.1073/pnas.1110994109 

DeJong, E.N., Surette, M.G., Bowdish, D.M.E., 2020. The Gut Microbiota and 
Unhealthy Aging: Disentangling Cause from Consequence. Cell Host 
Microbe 28, 180–189. https://doi.org/10.1016/j.chom.2020.07.013 

Delport, T.C., Power, M.L., Harcourt, R.G., Webster, K.N., Tetu, S.G., 2016. Colony 
Location and Captivity Influence the Gut Microbial Community Composition 
of the Australian Sea Lion (Neophoca cinerea). Appl Environ Microbiol 82. 
https://doi.org/10.1128/AEM.00192-16 

Delsuc, F., Metcalf, J.L., Wegener Parfrey, L., Song, S.J., González, A., Knight, R., 
2014. Convergence of gut microbiomes in myrmecophagous mammals. Mol 
Ecol 23, 1301–1317. https://doi.org/10.1111/mec.12501 

Dhanasiri, A.K.S., Brunvold, L., Brinchmann, M.F., Korsnes, K., Bergh, Ø., Kiron, 
V., 2011. Changes in the Intestinal Microbiota of Wild Atlantic cod Gadus 
morhua L. Upon Captive Rearing. Microb Ecol 61. 
https://doi.org/10.1007/s00248-010-9673-y 

Dill-McFarland, K.A., Tang, Z.-Z., Kemis, J.H., Kerby, R.L., Chen, G., Palloni, A., 
Sorenson, T., Rey, F.E., Herd, P., 2019. Close social relationships correlate 
with human gut microbiota composition. Sci Rep 9, 703. 
https://doi.org/10.1038/s41598-018-37298-9 



 43 

Ding, J., Dai, R., Yang, L., He, C., Xu, K., Liu, S., Zhao, W., Xiao, L., Luo, L., Zhang, 
Y., Meng, H., 2017. Inheritance and Establishment of Gut Microbiota in 
Chickens. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.01967 

Dodd, C.S., Grueber, C.E., 2021. Functional Diversity within Gut Microbiomes: 
Implications for Conserving Biodiversity. Conservation 1, 311–326. 
https://doi.org/10.3390/conservation1040024 

Dominguez-Bello, M.G., Costello, E.K., Contreras, M., Magris, M., Hidalgo, G., 
Fierer, N., Knight, R., 2010. Delivery mode shapes the acquisition and 
structure of the initial microbiota across multiple body habitats in newborns. 
Proceedings of the National Academy of Sciences 107, 11971–11975. 
https://doi.org/10.1073/pnas.1002601107 

Dong, B., Gazzano, A., Garrigues, Q., 2022. Gut microbiota development in the 
growing dog: A dynamic process influenced by maternal, environmental and 
host factors. 

Doranga, S., Krogfelt, K.A., Cohen, P.S., Conway, T., 2024. Nutrition of Escherichia 
coli within the intestinal microbiome. EcoSal Plus 12. 
https://doi.org/10.1128/ecosalplus.esp-0006-2023 

Du, Y., Gao, Y., Hu, M., Hou, J., Yang, L., Wang, X., Du, W., Liu, J., Xu, Q., 2023. 
Colonization and development of the gut microbiome in calves. J Anim Sci 
Biotechnol 14, 46. https://doi.org/10.1186/s40104-023-00856-x 

Dzierozynski, L., Queen, J., Sears, C.L., 2023. Subtle, persistent shaping of the gut 
microbiome by host genes: A critical determinant of host biology. Cell Host 
Microbe 31, 1569–1573. https://doi.org/10.1016/j.chom.2023.09.007 

Eckburg, P.B., 2005. Diversity of the Human Intestinal Microbial Flora. Science 
(1979) 308. https://doi.org/10.1126/science.1110591 

Ferranti, E.P., Dunbar, S.B., Dunlop, A.L., Corwin, E.J., 2014. 20 Things You Didn’t 
Know About the Human Gut Microbiome. Journal of Cardiovascular Nursing 
29, 479–481. https://doi.org/10.1097/JCN.0000000000000166 

Ferrer, M., Ghazi, A., Beloqui, A., Vieites, J.M., López-Cortés, N., Marín-Navarro, 
J., Nechitaylo, T.Y., Guazzaroni, M.-E., Polaina, J., Waliczek, A., Chernikova, 
T.N., Reva, O.N., Golyshina, O. v., Golyshin, P.N., 2012. Functional 
Metagenomics Unveils a Multifunctional Glycosyl Hydrolase from the Family 
43 Catalysing the Breakdown of Plant Polymers in the Calf Rumen. PLoS 
One 7, e38134. https://doi.org/10.1371/journal.pone.0038134 

Fransen, F., van Beek, A.A., Borghuis, T., Aidy, S. el, Hugenholtz, F., van der Gaast 
– de Jongh, C., Savelkoul, H.F.J., de Jonge, M.I., Boekschoten, M. v., Smidt, 
H., Faas, M.M., de Vos, P., 2017. Aged Gut Microbiota Contributes to 
Systemical Inflammaging after Transfer to Germ-Free Mice. Front Immunol 
8. https://doi.org/10.3389/fimmu.2017.01385 

Frioux, C., Singh, D., Korcsmaros, T., Hildebrand, F., 2020. From bag-of-genes to 
bag-of-genomes: metabolic modelling of communities in the era of 
metagenome-assembled genomes. Comput Struct Biotechnol J 18, 1722–
1734. https://doi.org/10.1016/j.csbj.2020.06.028 

Froidurot, A., Julliand, V., 2022. Cellulolytic bacteria in the large intestine of 
mammals. Gut Microbes 14. 
https://doi.org/10.1080/19490976.2022.2031694 



 44 

Fuess, L.E., den Haan, S., Ling, F., Weber, J.N., Steinel, N.C., Bolnick, D.I., 2021. 
Immune Gene Expression Covaries with Gut Microbiome Composition in 
Stickleback. mBio 12. https://doi.org/10.1128/mBio.00145-21 

Fujimura, K.E., Demoor, T., Rauch, M., Faruqi, A.A., Jang, S., Johnson, C.C., 
Boushey, H.A., Zoratti, E., Ownby, D., Lukacs, N.W., Lynch, S. V., 2014. 
House dust exposure mediates gut microbiome Lactobacillus enrichment and 
airway immune defense against allergens and virus infection. Proceedings of 
the National Academy of Sciences 111, 805–810. 
https://doi.org/10.1073/pnas.1310750111 

Funkhouser, L.J., Bordenstein, S.R., 2013. Mom Knows Best: The Universality of 
Maternal Microbial Transmission. PLoS Biol 11, e1001631. 
https://doi.org/10.1371/journal.pbio.1001631 

Gao, M., Chen, S., Fan, H., Li, P., Liu, A., Li, D., Li, X., Hu, Y., Han, G., Guo, Y., Lv, 
Z., 2025. Soyasaponin and vertical microbial transmission: Maternal effect 
on the intestinal development and health of early chicks. iMeta 4, e70044. 
https://doi.org/10.1002/imt2.70044 

Ghosh, T.S., Das, M., Jeffery, I.B., O’Toole, P.W., 2020. Adjusting for age improves 
identification of gut microbiome alterations in multiple diseases. Elife 9. 
https://doi.org/10.7554/eLife.50240 

Gibson, K.M., Nguyen, B.N., Neumann, L.M., Miller, M., Buss, P., Daniels, S., Ahn, 
M.J., Crandall, K.A., Pukazhenthi, B., 2019. Gut microbiome differences 
between wild and captive black rhinoceros – implications for rhino health. Sci 
Rep 9. https://doi.org/10.1038/s41598-019-43875-3 

Gomez, A., Sharma, A.K., Mallott, E.K., Petrzelkova, K.J., Jost Robinson, C.A., 
Yeoman, C.J., Carbonero, F., Pafco, B., Rothman, J.M., Ulanov, A., Vlckova, 
K., Amato, K.R., Schnorr, S.L., Dominy, N.J., Modry, D., Todd, A., Torralba, 
M., Nelson, K.E., Burns, M.B., Blekhman, R., Remis, M., Stumpf, R.M., 
Wilson, B.A., Gaskins, H.R., Garber, P.A., White, B.A., Leigh, S.R., 2019. 
Plasticity in the Human Gut Microbiome Defies Evolutionary Constraints. 
mSphere 4. https://doi.org/10.1128/mSphere.00271-19 

Góngora, E., Elliott, K.H., Whyte, L., 2021. Gut microbiome is affected by inter-
sexual and inter-seasonal variation in diet for thick-billed murres (Uria 
lomvia). Sci Rep 11, 1200. https://doi.org/10.1038/s41598-020-80557-x 

Grieneisen, L., Dasari, M., Gould, T.J., Björk, J.R., Grenier, J.-C., Yotova, V., 
Jansen, D., Gottel, N., Gordon, J.B., Learn, N.H., Gesquiere, L.R., Wango, 
T.L., Mututua, R.S., Warutere, J.K., Siodi, L., Gilbert, J.A., Barreiro, L.B., 
Alberts, S.C., Tung, J., Archie, E.A., Blekhman, R., 2021. Gut microbiome 
heritability is nearly universal but environmentally contingent. Science (1979) 
373, 181–186. https://doi.org/10.1126/science.aba5483 

Griffin, N.W., Ahern, P.P., Cheng, J., Heath, A.C., Ilkayeva, O., Newgard, C.B., 
Fontana, L., Gordon, J.I., 2017. Prior Dietary Practices and Connections to a 
Human Gut Microbial Metacommunity Alter Responses to Diet Interventions. 
Cell Host Microbe 21, 84–96. https://doi.org/10.1016/j.chom.2016.12.006 

Groenewoud, F., Kingma, S.A., Hammers, M., Dugdale, H.L., Burke, T., Richardson, 
D.S., Komdeur, J., 2018. Subordinate females in the cooperatively breeding 
Seychelles warbler obtain direct benefits by joining unrelated groups. Journal 
of Animal Ecology 87, 1251–1263. https://doi.org/10.1111/1365-2656.12849 



 45 

Gryseels, S., De Bruyn, L., Gyselings, R., Calvignac‐Spencer, S., Leendertz, F.H., 

Leirs, H., 2021. Risk of human‐to‐wildlife transmission of SARS‐CoV‐2. 
Mamm Rev 51, 272–292. https://doi.org/10.1111/mam.12225 

Guo, W., Chen, Y., Wang, C., Ning, R., Zeng, B., Tang, J., Li, C., Zhang, M., Li, Yan, 
Ni, Q., Ni, X., Zhang, H., li, D., Zhao, J., Li, Ying, 2020. The carnivorous 
digestive system and bamboo diet of giant pandas may shape their low gut 
bacterial diversity. Conserv Physiol 8. 
https://doi.org/10.1093/conphys/coz104 

Gurung, M., Li, Z., You, H., Rodrigues, R., Jump, D.B., Morgun, A., Shulzhenko, N., 
2020. Role of gut microbiota in type 2 diabetes pathophysiology. 
EBioMedicine 51. https://doi.org/10.1016/j.ebiom.2019.11.051 

Hadfield, J.D., Richardson, D.S., Burke, T., 2006. Towards unbiased parentage 
assignment: combining genetic, behavioural and spatial data in a Bayesian 
framework. Mol Ecol 15, 3715–3730. https://doi.org/10.1111/j.1365-
294X.2006.03050.x 

Hammers, M., Kingma, S.A., Bebbington, K., van de Crommenacker, J., Spurgin, 
L.G., Richardson, D.S., Burke, T., Dugdale, H.L., Komdeur, J., 2015a. 
Senescence in the wild: Insights from a long-term study on Seychelles 
warblers. Exp Gerontol 71, 69–79. 
https://doi.org/10.1016/j.exger.2015.08.019 

Hammers, M., Kingma, S.A., Bebbington, K., van de Crommenacker, J., Spurgin, 
L.G., Richardson, D.S., Burke, T., Dugdale, H.L., Komdeur, J., 2015b. 
Senescence in the wild: Insights from a long-term study on Seychelles 
warblers. Exp Gerontol 71, 69–79. 
https://doi.org/10.1016/j.exger.2015.08.019 

Hammers, M., Richardson, D.S., Burke, T., Komdeur, J., 2013. The impact of 
reproductive investment and early-life environmental conditions on 
senescence: support for the disposable soma hypothesis. J Evol Biol 26, 
1999–2007. https://doi.org/10.1111/jeb.12204 

Hammers, M., Richardson, D.S., Burke, T., Komdeur, J., 2012. Age-Dependent 
Terminal Declines in Reproductive Output in a Wild Bird. PLoS One 7, 
e40413. https://doi.org/10.1371/journal.pone.0040413 

Hicks, A.L., Lee, K.J., Couto-Rodriguez, M., Patel, J., Sinha, R., Guo, C., Olson, 
S.H., Seimon, A., Seimon, T.A., Ondzie, A.U., Karesh, W.B., Reed, P., 
Cameron, K.N., Lipkin, W.I., Williams, B.L., 2018. Gut microbiomes of wild 
great apes fluctuate seasonally in response to diet. Nat Commun 9, 1786. 
https://doi.org/10.1038/s41467-018-04204-w 

Hildebrand, F., Nguyen, T.L.A., Brinkman, B., Yunta, R., Cauwe, B., Vandenabeele, 
P., Liston, A., Raes, J., 2013. Inflammation-associated enterotypes, host 
genotype, cage and inter-individual effects drive gut microbiota variation in 
common laboratory mice. Genome Biol 14, R4. https://doi.org/10.1186/gb-
2013-14-1-r4 

Hird, S.M., 2017. Evolutionary Biology Needs Wild Microbiomes. Front Microbiol 8. 
https://doi.org/10.3389/fmicb.2017.00725 

Hird, S.M., Sánchez, C., Carstens, B.C., Brumfield, R.T., 2015. Comparative Gut 
Microbiota of 59 Neotropical Bird Species. Front Microbiol 6. 
https://doi.org/10.3389/fmicb.2015.01403 



 46 

Huang, Y., Zhang, P., Han, S., He, H., 2023. Lactoferrin Alleviates Inflammation and 
Regulates Gut Microbiota Composition in H5N1-Infected Mice. Nutrients 15, 
3362. https://doi.org/10.3390/nu15153362 

Inchingolo, F., Inchingolo, A.D., Palumbo, I., Trilli, I., Guglielmo, M., Mancini, A., 
Palermo, A., Inchingolo, A.M., Dipalma, G., 2024. The Impact of Cesarean 
Section Delivery on Intestinal Microbiota: Mechanisms, Consequences, and 
Perspectives—A Systematic Review. Int J Mol Sci 25, 1055. 
https://doi.org/10.3390/ijms25021055 

Jones, O.R., Scheuerlein, A., Salguero-Gómez, R., Camarda, C.G., Schaible, R., 
Casper, B.B., Dahlgren, J.P., Ehrlén, J., García, M.B., Menges, E.S., 
Quintana-Ascencio, P.F., Caswell, H., Baudisch, A., Vaupel, J.W., 2014. 
Diversity of ageing across the tree of life. Nature 505, 169–173. 
https://doi.org/10.1038/nature12789 

Keenan, S.W., Engel, A.S., Elsey, R.M., 2013. The alligator gut microbiome and 
implications for archosaur symbioses. Sci Rep 3. 
https://doi.org/10.1038/srep02877 

Kelly, C.R., Ihunnah, C., Fischer, M., Khoruts, A., Surawicz, C., Afzali, A., Aroniadis, 
O., Barto, A., Borody, T., Giovanelli, A., Gordon, S., Gluck, M., Hohmann, 
E.L., Kao, D., Kao, J.Y., McQuillen, D.P., Mellow, M., Rank, K.M., Rao, K., 
Ray, A., Schwartz, M.A., Singh, N., Stollman, N., Suskind, D.L., Vindigni, 
S.M., Youngster, I., Brandt, L., 2014. Fecal Microbiota Transplant for 
Treatment of Clostridium difficile Infection in Immunocompromised Patients. 
American Journal of Gastroenterology 109. 
https://doi.org/10.1038/ajg.2014.133 

Khan, I., Ullah, N., Zha, L., Bai, Y., Khan, A., Zhao, T., Che, T., Zhang, C., 2019. 
Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or 
Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens 8, 
126. https://doi.org/10.3390/pathogens8030126 

Knowles, S.C.L., Eccles, R.M., Baltrūnaitė, L., 2019. Species identity dominates 
over environment in shaping the microbiota of small mammals. Ecol Lett 22, 
826–837. https://doi.org/10.1111/ele.13240 

Kohl, K.D., Dearing, M.D., Bordenstein, S.R., 2018a. Microbial communities exhibit 
host species distinguishability and phylosymbiosis along the length of the 
gastrointestinal tract. Mol Ecol 27, 1874–1883. 
https://doi.org/10.1111/mec.14460 

Kohl, K.D., Varner, J., Wilkening, J.L., Dearing, M.D., 2018b. Gut microbial 
communities of American pikas ( O chotona princeps): Evidence for 
phylosymbiosis and adaptations to novel diets. Journal of Animal Ecology 87, 
323–330. https://doi.org/10.1111/1365-2656.12692 

Komdeur, J., 1999. Predation risk affects trade-off between nest guarding and 
foraging in Seychelles warblers. Behavioral Ecology 10. 
https://doi.org/10.1093/beheco/10.6.648 

Komdeur, J., 1994. Conserving the seychelles warbler Acrocephalus sechellensis 
by translocation from Cousin Island to the islands of Aride and Cousine. Biol 
Conserv 67. https://doi.org/10.1016/0006-3207(94)90360-3 

Komdeur, J., 1992. Importance of habitat saturation and territory quality for evolution 
of cooperative breeding in the Seychelles warbler. Nature 358. 
https://doi.org/10.1038/358493a0 



 47 

Komdeur, J., 1991. Cooperative breeding in the Seychelles warbler. University of 
Cambridge. 

Komdeur, J., Pels, M.D., 2005. Rescue of the Seychelles warbler on Cousin Island, 
Seychelles: the role of habitat restoration. Biol Conserv 124, 15–26. 
https://doi.org/10.1016/j.biocon.2004.12.009 

Komdeur, J., Piersma, T., Kraaijeveld, K., Kraaijeveld-Smit, F., Richardson, D.S., 
2004. Why Seychelles Warblers fail to recolonize nearby islands: unwilling or 
unable to fly there? Ibis 146. https://doi.org/10.1046/j.1474-
919X.2004.00255.x 

Konkel Neabore, L., 2024. Wake-up Call: Rapid Increase in Human Fungal 
Diseases under Climate Change. Environ Health Perspect 132. 
https://doi.org/10.1289/EHP14722 

Kurilshikov, A., Wijmenga, C., Fu, J., Zhernakova, A., 2017. Host Genetics and Gut 
Microbiome: Challenges and Perspectives. Trends Immunol 38, 633–647. 
https://doi.org/10.1016/j.it.2017.06.003 

Langille, M.G., Meehan, C.J., Koenig, J.E., Dhanani, A.S., Rose, R.A., Howlett, S.E., 
Beiko, R.G., 2014. Microbial shifts in the aging mouse gut. Microbiome 2. 
https://doi.org/10.1186/s40168-014-0050-9 

Larsbrink, J., Rogers, T.E., Hemsworth, G.R., McKee, L.S., Tauzin, A.S., Spadiut, 
O., Klinter, S., Pudlo, N.A., Urs, K., Koropatkin, N.M., Creagh, A.L., Haynes, 
C.A., Kelly, A.G., Cederholm, S.N., Davies, G.J., Martens, E.C., Brumer, H., 
2014. A discrete genetic locus confers xyloglucan metabolism in select 
human gut Bacteroidetes. Nature 506, 498–502. 
https://doi.org/10.1038/nature12907 

Laviad-Shitrit, S., Izhaki, I., Lalzar, M., Halpern, M., 2019. Comparative Analysis of 
Intestine Microbiota of Four Wild Waterbird Species. Front Microbiol 10. 
https://doi.org/10.3389/fmicb.2019.01911 

Lee, C.Z., 2025. Preserving microbial functional biodiversity. Nature Reviews 
Biodiversity 1, 212–212. https://doi.org/10.1038/s44358-025-00037-w 

Lee, J., d’Aigle, J., Atadja, L., Quaicoe, V., Honarpisheh, P., Ganesh, B.P., Hassan, 
A., Graf, J., Petrosino, J., Putluri, N., Zhu, L., Durgan, D.J., Bryan, R.M., 
McCullough, L.D., Venna, V.R., 2020a. Gut Microbiota–Derived Short-Chain 
Fatty Acids Promote Poststroke Recovery in Aged Mice. Circ Res 127. 
https://doi.org/10.1161/CIRCRESAHA.119.316448 

Lee, J., Venna, V.R., Durgan, D.J., Shi, H., Hudobenko, J., Putluri, N., Petrosino, J., 
McCullough, L.D., Bryan, R.M., 2020b. Young versus aged microbiota 
transplants to germ-free mice: increased short-chain fatty acids and 
improved cognitive performance. Gut Microbes 12. 
https://doi.org/10.1080/19490976.2020.1814107 

Leeuwenhoek, A. van, 1677. Observations, communicated to the publisher by Mr. 
Antony van Leewenhoeck, in a dutch letter of the 9th Octob. 1676. here 
English’d: concerning little animals by him observed in rain-well-sea- and 
snow water; as also in water wherein pepper had lain infused. Philos Trans 
R Soc Lond 12, 821–831. https://doi.org/10.1098/rstl.1677.0003 

Levy, R., Magis, A.T., Earls, J.C., Manor, O., Wilmanski, T., Lovejoy, J., Gibbons, 
S.M., Omenn, G.S., Hood, L., Price, N.D., 2020. Longitudinal analysis reveals 
transition barriers between dominant ecological states in the gut microbiome. 



 48 

Proceedings of the National Academy of Sciences 117, 13839–13845. 
https://doi.org/10.1073/pnas.1922498117 

Ley, R.E., Bäckhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D., Gordon, J.I., 
2005. Obesity alters gut microbial ecology. Proceedings of the National 
Academy of Sciences 102, 11070–11075. 
https://doi.org/10.1073/pnas.0504978102 

Lim, S.J., Bordenstein, S.R., 2020. An introduction to phylosymbiosis. Proceedings 
of the Royal Society B: Biological Sciences 287, 20192900. 
https://doi.org/10.1098/rspb.2019.2900 

Litchman, E., 2025. Climate change effects on the human gut microbiome: complex 
mechanisms and global inequities. Lancet Planet Health 9, e134–e144. 
https://doi.org/10.1016/S2542-5196(24)00332-2 

Liu, Y., Ritchie, S.C., Teo, S.M., Ruuskanen, M.O., Kambur, O., Zhu, Q., Sanders, 
J., Vázquez-Baeza, Y., Verspoor, K., Jousilahti, P., Lahti, L., Niiranen, T., 
Salomaa, V., Havulinna, A.S., Knight, R., Méric, G., Inouye, M., 2024. 
Integration of polygenic and gut metagenomic risk prediction for common 
diseases. Nat Aging 4, 584–594. https://doi.org/10.1038/s43587-024-00590-
7 

Loustau-Lalanne, P., 1968. The Seychelles, Cousin Island Nature Reserve. 
International Council for Bird Preservation, Cambridge, UK. 

Luan, Z., Sun, G., Huang, Y., Yang, Y., Yang, R., Li, C., Wang, T., Tan, D., Qi, S., 
Jun, C., Wang, C., Wang, S., Zhao, Y., Jing, Y., 2020. Metagenomics Study 
Reveals Changes in Gut Microbiota in Centenarians: A Cohort Study of 
Hainan Centenarians. Front Microbiol 11. 
https://doi.org/10.3389/fmicb.2020.01474 

Ma, R., Mikhail, M.E., Culbert, K.M., Johnson, A.W., Sisk, C.L., Klump, K.L., 2020. 
Ovarian Hormones and Reward Processes in Palatable Food Intake and 
Binge Eating. Physiology 35, 69–78. 
https://doi.org/10.1152/physiol.00013.2019 

MacLeod, K.J., Kohl, K.D., Trevelline, B.K., Langkilde, T., 2022. Context‐dependent 
effects of glucocorticoids on the lizard gut microbiome. Mol Ecol 31, 185–
196. https://doi.org/10.1111/mec.16229 

Maeng, L.Y., Beumer, A., 2023. Never fear, the gut bacteria are here: Estrogen and 
gut microbiome-brain axis interactions in fear extinction. International Journal 
of Psychophysiology 189, 66–75. 
https://doi.org/10.1016/j.ijpsycho.2023.05.350 

Mallott, E.K., Amato, K.R., 2020. Phylosymbiosis, diet and gut microbiome-
associated metabolic disease. Evol Med Public Health 2020, 100–101. 
https://doi.org/10.1093/emph/eoaa019 

Mann, E.R., Lam, Y.K., Uhlig, H.H., 2024. Short-chain fatty acids: linking diet, the 
microbiome and immunity. Nat Rev Immunol 24, 577–595. 
https://doi.org/10.1038/s41577-024-01014-8 

Marietta, E., Rishi, A., Taneja, V., 2015. Immunogenetic control of the intestinal 
microbiota. Immunology 145, 313–322. https://doi.org/10.1111/imm.12474 

Marsh, K.J., Raulo, A.M., Brouard, M., Troitsky, T., English, H.M., Allen, B., Raval, 
R., Venkatesan, S., Pedersen, A.B., Webster, J.P., Knowles, S.C.L., 2022. 
Synchronous Seasonality in the Gut Microbiota of Wild Mouse Populations. 
Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.809735 



 49 

Martínez, I., Muller, C.E., Walter, J., 2013. Long-Term Temporal Analysis of the 
Human Fecal Microbiota Revealed a Stable Core of Dominant Bacterial 
Species. PLoS One 8, e69621. https://doi.org/10.1371/journal.pone.0069621 

McCleery, R.H., Clobert, J., Julliard, R., Perrins, C.M., 1996. Nest Predation and 
Delayed Cost of Reproduction in the Great Tit. J Anim Ecol 65, 96. 
https://doi.org/10.2307/5703 

McLaren, M.R., Willis, A.D., Callahan, B.J., 2019. Consistent and correctable bias 
in metagenomic sequencing experiments. Elife 8. 
https://doi.org/10.7554/eLife.46923 

Melis, C., Billing, A.M., Wold, P.-A., Ludington, W.B., 2023. Gut microbiome 
dysbiosis is associated with host genetics in the Norwegian Lundehund. 
Front Microbiol 14. https://doi.org/10.3389/fmicb.2023.1209158 

Menon, R., Watson, S.E., Thomas, L.N., Allred, C.D., Dabney, A., Azcarate-Peril, 
M.A., Sturino, J.M., 2013. Diet Complexity and Estrogen Receptor β Status 
Affect the Composition of the Murine Intestinal Microbiota. Appl Environ 
Microbiol 79, 5763–5773. https://doi.org/10.1128/AEM.01182-13 

Minato, H., OTSUKA, M., SHIRASAKA, S., ITABASHI, H., MITSUMORI, M., 1992. 
Colonization of microorganisms in the rumen of young calves. J Gen Appl 
Microbiol 38, 447–456. https://doi.org/10.2323/jgam.38.447 

Mitsuoka, T., 1996. Intestinal flora and human health. Asia Pac J Clin Nutr 5, 2–9. 

Moeller, A.H., Peeters, M., Ndjango, J.-B., Li, Y., Hahn, B.H., Ochman, H., 2013. 
Sympatric chimpanzees and gorillas harbor convergent gut microbial 
communities. Genome Res 23, 1715–1720. 
https://doi.org/10.1101/gr.154773.113 

Moeller, A.H., Suzuki, T.A., Lin, D., Lacey, E.A., Wasser, S.K., Nachman, M.W., 
2017. Dispersal limitation promotes the diversification of the mammalian gut 
microbiota. Proceedings of the National Academy of Sciences 114, 13768–
13773. https://doi.org/10.1073/pnas.1700122114 

Monaghan, P., Charmantier, A., Nussey, D.H., Ricklefs, R.E., 2008. The 
evolutionary ecology of senescence. Funct Ecol 22, 371–378. 
https://doi.org/10.1111/j.1365-2435.2008.01418.x 

Moran, N.A., McCutcheon, J.P., Nakabachi, A., 2008. Genomics and Evolution of 
Heritable Bacterial Symbionts. Annu Rev Genet 42, 165–190. 
https://doi.org/10.1146/annurev.genet.41.110306.130119 

Moran, N.A., Sloan, D.B., 2015. The Hologenome Concept: Helpful or Hollow? PLoS 
Biol 13, e1002311. https://doi.org/10.1371/journal.pbio.1002311 

Morgan, J.L., Darling, A.E., Eisen, J.A., 2010. Metagenomic Sequencing of an In 
Vitro-Simulated Microbial Community. PLoS One 5. 
https://doi.org/10.1371/journal.pone.0010209 

Nagpal, R., Mainali, R., Ahmadi, S., Wang, S., Singh, R., Kavanagh, K., Kitzman, 
D.W., Kushugulova, A., Marotta, F., Yadav, H., 2018. Gut microbiome and 
aging: Physiological and mechanistic insights. Nutr Healthy Aging 4. 
https://doi.org/10.3233/NHA-170030 

Nataro, J.P., Kaper, J.B., 1998. Diarrheagenic Escherichia coli. Clin Microbiol Rev 
11, 142–201. https://doi.org/10.1128/CMR.11.1.142 



 50 

Nichols, R.G., Davenport, E.R., 2021. The relationship between the gut microbiome 
and host gene expression: a review. Hum Genet 140, 747–760. 
https://doi.org/10.1007/s00439-020-02237-0 

Nussey, D.H., Coulson, T., Festa-Bianchet, M., Gaillard, J.-M., Coulson2, \ T, Festa-
Bianchet3, M., Gaillard4, J.-M., 2008. Measuring Senescence in Wild Animal 
Populations: Towards a Longitudinal Approach THE EVOLUTIONARY 
ECOLOGY OF SENESCENCE Measuring senescence in wild animal 
populations: towards a longitudinal approach. Funct Ecol 22, 393–406. 
https://doi.org/10.HH/j.1365-2435.2008.01408.x 

Nussey, D.H., Froy, H., Lemaitre, J.-F., Gaillard, J.-M., Austad, S.N., 2013. 
Senescence in natural populations of animals: Widespread evidence and its 
implications for bio-gerontology. Ageing Res Rev 12, 214–225. 
https://doi.org/10.1016/j.arr.2012.07.004 

Oliveira, B.C.M., Murray, M., Tseng, F., Widmer, G., 2020. The fecal microbiota of 
wild and captive raptors. Anim Microbiome 2. https://doi.org/10.1186/s42523-
020-00035-7 

Orell, M., Belda, E.J., 2002. Delayed cost of reproduction and senescence in the 
willow tit Parus montanus. Journal of Animal Ecology 71, 55–64. 
https://doi.org/10.1046/j.0021-8790.2001.00575.x 

Perlmutter, J.I., Bordenstein, S.R., 2020. Microorganisms in the reproductive tissues 
of arthropods. Nat Rev Microbiol 18, 97–111. https://doi.org/10.1038/s41579-
019-0309-z 

Pfau, M., Degregori, S., Barber, P.H., Blumstein, D.T., Philson, C.S., 2024. 
Differences in Gut Microbes Across Age and Sex Linked to Metabolism and 
Microbial Stability in a Hibernating Mammal. Ecol Evol 14. 
https://doi.org/10.1002/ece3.70519 

Raj Pant, S., Hammers, M., Komdeur, J., Burke, T., Dugdale, H.L., Richardson, 
D.S., 2020. Age-dependent changes in infidelity in Seychelles warblers. Mol 
Ecol 29, 3731–3746. https://doi.org/10.1111/mec.15563 

Raj Pant, S., Komdeur, J., Burke, T.A., Dugdale, H.L., Richardson, D.S., 2019. 
Socio-ecological conditions and female infidelity in the Seychelles warbler. 
Behavioral Ecology 30, 1254–1264. https://doi.org/10.1093/beheco/arz072 

Rathore, K., Shukla, N., Naik, S., Sambhav, K., Dange, K., Bhuyan, D., Imranul Haq, 
Q.M., 2025. The Bidirectional Relationship Between the Gut Microbiome and 
Mental Health: A Comprehensive Review. Cureus. 
https://doi.org/10.7759/cureus.80810 

Raulo, A., Bürkner, P.-C., Finerty, G.E., Dale, J., Hanski, E., English, H.M., 
Lamberth, C., Firth, J.A., Coulson, T., Knowles, S.C.L., 2024. Social and 
environmental transmission spread different sets of gut microbes in wild 
mice. Nat Ecol Evol 8, 972–985. https://doi.org/10.1038/s41559-024-02381-
0 

Raulo, A., Ruokolainen, L., Lane, A., Amato, K., Knight, R., Leigh, S., Stumpf, R., 
White, B., Nelson, K.E., Baden, A.L., Tecot, S.R., 2018. Social behaviour and 

gut microbiota in red‐bellied lemurs ( <scp>E</scp> ulemur rubriventer ): In 
search of the role of immunity in the evolution of sociality. Journal of Animal 
Ecology 87, 388–399. https://doi.org/10.1111/1365-2656.12781 

Reed, T.E., Kruuk, L.E.B., Wanless, S., Frederiksen, M., Cunningham, E.J.A., 

Harris, M.P., 2008. Reproductive Senescence in a Long‐Lived Seabird: 



 51 

Rates of Decline in Late‐Life Performance Are Associated with Varying Costs 
of Early Reproduction. Am Nat 171, E89–E101. 
https://doi.org/10.1086/524957 

Reese, A.T., Phillips, S.R., Owens, L.A., Venable, E.M., Langergraber, K.E., 
Machanda, Z.P., Mitani, J.C., Muller, M.N., Watts, D.P., Wrangham, R.W., 
Goldberg, T.L., Emery Thompson, M., Carmody, R.N., 2021. Age Patterning 
in Wild Chimpanzee Gut Microbiota Diversity Reveals Differences from 
Humans in Early Life. Current Biology 31, 613-620.e3. 
https://doi.org/10.1016/j.cub.2020.10.075 

Reid, J.M., Bignal, E.M., Bignal, S., McCracken, D.I., Monaghan, P., 2003. Age‐
specific reproductive performance in red‐billed choughs Pyrrhocorax 
pyrrhocorax : patterns and processes in a natural population. Journal of 
Animal Ecology 72, 765–776. https://doi.org/10.1046/j.1365-
2656.2003.00750.x 

Ren, T., Boutin, S., Humphries, M.M., Dantzer, B., Gorrell, J.C., Coltman, D.W., 
McAdam, A.G., Wu, M., 2017. Seasonal, spatial, and maternal effects on gut 
microbiome in wild red squirrels. Microbiome 5, 163. 
https://doi.org/10.1186/s40168-017-0382-3 

Ren, T., Grieneisen, L.E., Alberts, S.C., Archie, E.A., Wu, M., 2016. Development, 
diet and dynamism: longitudinal and cross-sectional predictors of gut 
microbial communities in wild baboons. Environ Microbiol 18, 1312–1325. 
https://doi.org/10.1111/1462-2920.12852 

Reyman, M., van Houten, M.A., van Baarle, D., Bosch, A.A.T.M., Man, W.H., Chu, 
M.L.J.N., Arp, K., Watson, R.L., Sanders, E.A.M., Fuentes, S., Bogaert, D., 
2019. Impact of delivery mode-associated gut microbiota dynamics on health 
in the first year of life. Nat Commun 10, 4997. https://doi.org/10.1038/s41467-
019-13014-7 

Richardson, D.S., Bristol R, Shah N J, 2006. Translocation of the Seychelles warbler 
Acrocephalus sechellensis to establish a new population on Denis Island, 
Seychelles, Conservation Evidence. 

Richardson, D.S., Burke, T., Komdeur, J., 2007. GRANDPARENT HELPERS: THE 
ADAPTIVE SIGNIFICANCE OF OLDER, POSTDOMINANT HELPERS IN 
THE SEYCHELLES WARBLER. Evolution (N Y) 61, 2790–2800. 
https://doi.org/10.1111/j.1558-5646.2007.00222.x 

Richardson, D.S., Burke, T., Komdeur, J., 2003a. Sex-specific associative learning 
cues and inclusive fitness benefits in the Seychelles warbler. 

Richardson, D.S., Burke, T., Komdeur, J., 2002. DIRECT BENEFITS AND THE 
EVOLUTION OF FEMALE-BIASED COOPERATIVE BREEDING IN 
SEYCHELLES WARBLERS. Evolution (N Y) 56, 2313–2321. 
https://doi.org/10.1111/j.0014-3820.2002.tb00154.x 

Richardson, D.S., Jury, F.L., Blaakmeer, K., Komdeur, J., Burke, T., 2001. 
Parentage assignment and extra-group paternity in a cooperative breeder: 
The Seychelles warbler (Acrocephalus sechellensis). Mol Ecol 10, 2263–
2273. https://doi.org/10.1046/j.0962-1083.2001.01355.x 

Richardson, D.S., Komdeur, J., Burke, T., 2003b. Altruism and infidelity among 
warblers. Nature 422, 580–580. https://doi.org/10.1038/422580a 



 52 

Ridlon, J.M., Kang, D.J., Hylemon, P.B., Bajaj, J.S., 2014. Bile acids and the gut 
microbiome. Curr Opin Gastroenterol 30, 332–338. 
https://doi.org/10.1097/MOG.0000000000000057 

Risely, A., Wilhelm, K., Clutton-Brock, T., Manser, M.B., Sommer, S., 2021. Diurnal 
oscillations in gut bacterial load and composition eclipse seasonal and 
lifetime dynamics in wild meerkats. Nat Commun 12, 6017. 
https://doi.org/10.1038/s41467-021-26298-5 

Roche, K.E., Bjork, J.R., Dasari, M.R., Grieneisen, L., Jansen, D., Gould, T.J., 
Gesquiere, L.R., Barreiro, L.B., Alberts, S.C., Blekhman, R., Gilbert, J.A., 
Tung, J., Mukherjee, S., Archie, E.A., 2023. Universal gut microbial 
relationships in the gut microbiome of wild baboons. Elife 12. 
https://doi.org/10.7554/eLife.83152 

Rosenberg, E., Zilber-Rosenberg, I., 2021. Reconstitution and Transmission of Gut 
Microbiomes and Their Genes between Generations. Microorganisms 10, 70. 
https://doi.org/10.3390/microorganisms10010070 

Round, J.L., Mazmanian, S.K., 2009. The gut microbiota shapes intestinal immune 
responses during health and disease. Nat Rev Immunol 9, 313–323. 
https://doi.org/10.1038/nri2515 

Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., Tuohy, K., 
2018. Gut microbiota functions: metabolism of nutrients and other food 
components. Eur J Nutr 57, 1–24. https://doi.org/10.1007/s00394-017-1445-
8 

Russler-Germain, E. v, Rengarajan, S., Hsieh, C.-S., 2017. Antigen-specific 
regulatory T-cell responses to intestinal microbiota. Mucosal Immunol 10, 
1375–1386. https://doi.org/10.1038/mi.2017.65 

Sadoughi, B., Schneider, D., Daniel, R., Schülke, O., Ostner, J., 2022. Aging gut 
microbiota of wild macaques are equally diverse, less stable, but 
progressively personalized. Microbiome 10. https://doi.org/10.1186/s40168-
022-01283-2 

Sakwinska, O., Foata, F., Berger, B., Brüssow, H., Combremont, S., Mercenier, A., 
Dogra, S., Soh, S.-E., Yen, J.C.K., Heong, G.Y.S., Lee, Y.S., Yap, F., 
Meaney, M.J., Chong, Y.-S., Godfrey, K.M., Holbrook, J.D., 2017. Does the 
maternal vaginal microbiota play a role in seeding the microbiota of neonatal 
gut and nose? Benef Microbes 8, 763–778. 
https://doi.org/10.3920/BM2017.0064 

San Juan, P.A., Castro, I., Dhami, M.K., 2021. Captivity reduces diversity and shifts 
composition of the Brown Kiwi microbiome. Anim Microbiome 3. 
https://doi.org/10.1186/s42523-021-00109-0 

Santos-Marcos, J.A., Mora-Ortiz, M., Tena-Sempere, M., Lopez-Miranda, J., 
Camargo, A., 2023. Interaction between gut microbiota and sex hormones 
and their relation to sexual dimorphism in metabolic diseases. Biol Sex Differ 
14, 4. https://doi.org/10.1186/s13293-023-00490-2 

Sarkar, A., Harty, S., Johnson, K.V.-A., Moeller, A.H., Archie, E.A., Schell, L.D., 
Carmody, R.N., Clutton-Brock, T.H., Dunbar, R.I.M., Burnet, P.W.J., 2020. 
Microbial transmission in animal social networks and the social microbiome. 
Nat Ecol Evol 4, 1020–1035. https://doi.org/10.1038/s41559-020-1220-8 

Sarkar, A., McInroy, C.J.A., Harty, S., Raulo, A., Ibata, N.G.O., Valles-Colomer, M., 
Johnson, K.V.-A., Brito, I.L., Henrich, J., Archie, E.A., Barreiro, L.B., 



 53 

Gazzaniga, F.S., Finlay, B.B., Koonin, E. V., Carmody, R.N., Moeller, A.H., 
2024. Microbial transmission in the social microbiome and host health and 
disease. Cell 187, 17–43. https://doi.org/10.1016/j.cell.2023.12.014 

Schmid, D.W., Capilla-Lasheras, P., Dominoni, D.M., Müller-Klein, N., Sommer, S., 
Risely, A., 2023. Circadian rhythms of hosts and their gut microbiomes: 
Implications for animal physiology and ecology. Funct Ecol 37, 476–487. 
https://doi.org/10.1111/1365-2435.14255 

Schmiedová, L., Tomášek, O., Pinkasová, H., Albrecht, T., Kreisinger, J., 2022. 
Variation in diet composition and its relation to gut microbiota in a passerine 
bird. Sci Rep 12, 3787. https://doi.org/10.1038/s41598-022-07672-9 

Seedorf, H., Griffin, N.W., Ridaura, V.K., Reyes, A., Cheng, J., Rey, F.E., Smith, 
M.I., Simon, G.M., Scheffrahn, R.H., Woebken, D., Spormann, A.M., 
Van Treuren, W., Ursell, L.K., Pirrung, M., Robbins-Pianka, A., Cantarel, 
B.L., Lombard, V., Henrissat, B., Knight, R., Gordon, J.I., 2014. Bacteria from 
Diverse Habitats Colonize and Compete in the Mouse Gut. Cell 159, 253–
266. https://doi.org/10.1016/j.cell.2014.09.008 

Sharma, R., 2022. Emerging Interrelationship Between the Gut Microbiome and 
Cellular Senescence in the Context of Aging and Disease: Perspectives and 
Therapeutic Opportunities. Probiotics Antimicrob Proteins. 
https://doi.org/10.1007/s12602-021-09903-3 

Sharpton, T.J., 2014. An introduction to the analysis of shotgun metagenomic data. 
Front Plant Sci 5. https://doi.org/10.3389/fpls.2014.00209 

Sherrill-Mix, S., McCormick, K., Lauder, A., Bailey, A., Zimmerman, L., Li, Y., 
Django, J.-B.N., Bertolani, P., Colin, C., Hart, J.A., Hart, T.B., Georgiev, A. 
v., Sanz, C.M., Morgan, D.B., Atencia, R., Cox, D., Muller, M.N., Sommer, V., 
Piel, A.K., Stewart, F.A., Speede, S., Roman, J., Wu, G., Taylor, J., Bohm, 
R., Rose, H.M., Carlson, J., Mjungu, D., Schmidt, P., Gaughan, C., Bushman, 
J.I., Schmidt, E., Bittinger, K., Collman, R.G., Hahn, B.H., Bushman, F.D., 
2018. Allometry and Ecology of the Bilaterian Gut Microbiome. mBio 9. 
https://doi.org/10.1128/mBio.00319-18 

Shi, Y.-C., Guo, H., Chen, J., Sun, G., Ren, R.-R., Guo, M.-Z., Peng, L.-H., Yang, 
Y.-S., 2018. Initial meconium microbiome in Chinese neonates delivered 
naturally or by cesarean section. Sci Rep 8, 3255. 
https://doi.org/10.1038/s41598-018-21657-7 

Sinha, R., Abu-Ali, G., Vogtmann, E., Fodor, A.A., Ren, B., Amir, A., Schwager, E., 
Crabtree, J., Ma, S., Abnet, C.C., Knight, R., White, O., Huttenhower, C., 
2017. Assessment of variation in microbial community amplicon sequencing 
by the Microbiome Quality Control (MBQC) project consortium. Nat 
Biotechnol 35. https://doi.org/10.1038/nbt.3981 

Smith, P., Willemsen, D., Popkes, M., Metge, F., Gandiwa, E., Reichard, M., 
Valenzano, D.R., 2017. Regulation of life span by the gut microbiota in the 
short-lived African turquoise killifish. Elife 6. 
https://doi.org/10.7554/eLife.27014 

Soave, O., Brand, C.D., 1991. Coprophagy in animals: a review. Cornell Vet 81, 
357–64. 

Sommer, F., Bäckhed, F., 2013. The gut microbiota — masters of host development 
and physiology. Nat Rev Microbiol 11, 227–238. 
https://doi.org/10.1038/nrmicro2974 



 54 

Song, C., Chai, Z., Chen, S., Zhang, H., Zhang, X., Zhou, Y., 2023. Intestinal mucus 
components and secretion mechanisms: what we do and do not know. Exp 
Mol Med 55, 681–691. https://doi.org/10.1038/s12276-023-00960-y 

Song, S.J., Lauber, C., Costello, E.K., Lozupone, C.A., Humphrey, G., Berg-Lyons, 
D., Caporaso, J.G., Knights, D., Clemente, J.C., Nakielny, S., Gordon, J.I., 
Fierer, N., Knight, R., 2013. Cohabiting family members share microbiota with 
one another and with their dogs. Elife 2. https://doi.org/10.7554/eLife.00458 

Song, S.J., Sanders, J.G., Delsuc, F., Metcalf, J., Amato, K., Taylor, M.W., Mazel, 
F., Lutz, H.L., Winker, K., Graves, G.R., Humphrey, G., Gilbert, J.A., Hackett, 
S.J., White, K.P., Skeen, H.R., Kurtis, S.M., Withrow, J., Braile, T., Miller, M., 
McCracken, K.G., Maley, J.M., Ezenwa, V.O., Williams, A., Blanton, J.M., 
McKenzie, V.J., Knight, R., 2020. Comparative Analyses of Vertebrate Gut 
Microbiomes Reveal Convergence between Birds and Bats. mBio 11. 
https://doi.org/10.1128/mBio.02901-19 

Sparks, A.M., Spurgin, L.G., van der Velde, M., Fairfield, E.A., Komdeur, J., Burke, 
T., Richardson, D.S., Dugdale, H.L., 2022. Telomere heritability and parental 
age at conception effects in a wild avian population. Mol Ecol 31, 6324–6338. 
https://doi.org/10.1111/mec.15804 

Springer, A., Fichtel, C., Al-Ghalith, G.A., Koch, F., Amato, K.R., Clayton, J.B., 
Knights, D., Kappeler, P.M., 2017. Patterns of seasonality and group 
membership characterize the gut microbiota in a longitudinal study of wild 
Verreaux’s sifakas (Propithecus verreauxi). Ecol Evol 7, 5732–5745. 
https://doi.org/10.1002/ece3.3148 

Spurgin, L.G., Richardson, D.S., 2010. How pathogens drive genetic diversity: MHC, 
mechanisms and misunderstandings. Proceedings of the Royal Society B: 
Biological Sciences 277, 979–988. https://doi.org/10.1098/rspb.2009.2084 

Spurgin, L.G., Wright, D.J., Velde, M., Collar, N.J., Komdeur, J., Burke, T., 
Richardson, D.S., 2014. Museum <scp>DNA</scp> reveals the demographic 
history of the endangered Seychelles warbler. Evol Appl 7, 1134–1143. 
https://doi.org/10.1111/eva.12191 

Spychala, M.S., Venna, V.R., Jandzinski, M., Doran, S.J., Durgan, D.J., Ganesh, 
B.P., Ajami, N.J., Putluri, N., Graf, J., Bryan, R.M., McCullough, L.D., 2018. 

Age‐related changes in the gut microbiota influence systemic inflammation 
and stroke outcome. Ann Neurol 84. https://doi.org/10.1002/ana.25250 

Srinivas, M., Walsh, C.J., Crispie, F., O’Sullivan, O., Cotter, P.D., van Sinderen, D., 
Kenny, J.G., 2025. Evaluating the efficiency of 16S-ITS-23S operon 
sequencing for species level resolution in microbial communities. Sci Rep 15, 
2822. https://doi.org/10.1038/s41598-024-83410-7 

Stewart, C.J., Ajami, N.J., O’Brien, J.L., Hutchinson, D.S., Smith, D.P., Wong, M.C., 
Ross, M.C., Lloyd, R.E., Doddapaneni, H., Metcalf, G.A., Muzny, D., Gibbs, 
R.A., Vatanen, T., Huttenhower, C., Xavier, R.J., Rewers, M., Hagopian, W., 
Toppari, J., Ziegler, A.-G., She, J.-X., Akolkar, B., Lernmark, A., Hyoty, H., 
Vehik, K., Krischer, J.P., Petrosino, J.F., 2018. Temporal development of the 
gut microbiome in early childhood from the TEDDY study. Nature 562, 583–
588. https://doi.org/10.1038/s41586-018-0617-x 

Stewart, E.J., 2012. Growing Unculturable Bacteria. J Bacteriol 194, 4151–4160. 
https://doi.org/10.1128/JB.00345-12 



 55 

Suriano, F., Nyström, E.E.L., Sergi, D., Gustafsson, J.K., 2022. Diet, microbiota, and 
the mucus layer: The guardians of our health. Front Immunol 13. 
https://doi.org/10.3389/fimmu.2022.953196 

Takiishi, T., Fenero, C.I.M., Câmara, N.O.S., 2017. Intestinal barrier and gut 
microbiota: Shaping our immune responses throughout life. Tissue Barriers 
5, e1373208. https://doi.org/10.1080/21688370.2017.1373208 

Tamburini, S., Shen, N., Wu, H.C., Clemente, J.C., 2016. The microbiome in early 
life: implications for health outcomes. Nat Med 22, 713–722. 
https://doi.org/10.1038/nm.4142 

Tanoue, T., Umesaki, Y., Honda, K., 2010. Immune responses to gut microbiota-
commensals and pathogens. Gut Microbes 1, 224–233. 
https://doi.org/10.4161/gmic.1.4.12613 

Teyssier, A., Lens, L., Matthysen, E., White, J., 2018. Dynamics of Gut Microbiota 
Diversity During the Early Development of an Avian Host: Evidence From a 
Cross-Foster Experiment. Front Microbiol 9. 
https://doi.org/10.3389/fmicb.2018.01524 

Thaiss, C.A., Zeevi, D., Levy, M., Zilberman-Schapira, G., Suez, J., Tengeler, A.C., 
Abramson, L., Katz, M.N., Korem, T., Zmora, N., Kuperman, Y., Biton, I., 
Gilad, S., Harmelin, A., Shapiro, H., Halpern, Z., Segal, E., Elinav, E., 2014. 
Transkingdom Control of Microbiota Diurnal Oscillations Promotes Metabolic 
Homeostasis. Cell 159, 514–529. https://doi.org/10.1016/j.cell.2014.09.048 

Torgerson, P.R., Hartnack, S., Rasmussen, P., Lewis, F., Langton, T.E.S., 2024. 
Absence of effects of widespread badger culling on tuberculosis in cattle. Sci 
Rep 14, 16326. https://doi.org/10.1038/s41598-024-67160-0 

Trevelline, B.K., Kohl, K.D., 2022. The gut microbiome influences host diet selection 
behavior. Proceedings of the National Academy of Sciences 119. 
https://doi.org/10.1073/pnas.2117537119 

Trevelline, B.K., MacLeod, K.J., Knutie, S.A., Langkilde, T., Kohl, K.D., 2018. In ovo 
microbial communities: a potential mechanism for the initial acquisition of gut 
microbiota among oviparous birds and lizards. Biol Lett 14, 20180225. 
https://doi.org/10.1098/rsbl.2018.0225 

Trevelline, B.K., Sosa, J., Hartup, B.K., Kohl, K.D., 2020. A bird’s-eye view of 
phylosymbiosis: weak signatures of phylosymbiosis among all 15 species of 
cranes. Proceedings of the Royal Society B: Biological Sciences 287, 
20192988. https://doi.org/10.1098/rspb.2019.2988 

Tung, J., Barreiro, L.B., Burns, M.B., Grenier, J.-C., Lynch, J., Grieneisen, L.E., 
Altmann, J., Alberts, S.C., Blekhman, R., Archie, E.A., 2015. Social networks 
predict gut microbiome composition in wild baboons. Elife 4. 
https://doi.org/10.7554/eLife.05224 

Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, 
R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., Egholm, M., 
Henrissat, B., Heath, A.C., Knight, R., Gordon, J.I., 2009. A core gut 
microbiome in obese and lean twins. Nature 457, 480–484. 
https://doi.org/10.1038/nature07540 

Valeri, F., Endres, K., 2021. How biological sex of the host shapes its gut microbiota. 
Front Neuroendocrinol 61, 100912. 
https://doi.org/10.1016/j.yfrne.2021.100912 



 56 

van den Elsen, L.W.J., Garssen, J., Burcelin, R., Verhasselt, V., 2019. Shaping the 
Gut Microbiota by Breastfeeding: The Gateway to Allergy Prevention? Front 
Pediatr 7. https://doi.org/10.3389/fped.2019.00047 

van Dongen, W.F., White, J., Brandl, H.B., Moodley, Y., Merkling, T., Leclaire, S., 
Blanchard, P., Danchin, É., Hatch, S.A., Wagner, R.H., 2013. Age-related 
differences in the cloacal microbiota of a wild bird species. BMC Ecol 13, 11. 
https://doi.org/10.1186/1472-6785-13-11 

van Leeuwen, P., Mykytczuk, N., Mastromonaco, G.F., Schulte‐Hostedde, A.I., 
2020. Effects of captivity, diet, and relocation on the gut bacterial 

communities of white‐footed mice. Ecol Evol 10, 4677–4690. 
https://doi.org/10.1002/ece3.6221 

Vesey-Fitzgerald, D., 1940. The birds of the Seychelles. 1. The endemic birds. Ibis 
14, 480–489. 

Videvall, E., Song, S.J., Bensch, H.M., Strandh, M., Engelbrecht, A., Serfontein, N., 
Hellgren, O., Olivier, A., Cloete, S., Knight, R., Cornwallis, C.K., 2019. Major 
shifts in gut microbiota during development and its relationship to growth in 
ostriches. Mol Ecol 28, 2653–2667. https://doi.org/10.1111/mec.15087 

Voigt, R.M., Forsyth, C.B., Green, S.J., Engen, P.A., Keshavarzian, A., 2016. 
Circadian Rhythm and the Gut Microbiome. pp. 193–205. 
https://doi.org/10.1016/bs.irn.2016.07.002 

Wampach, L., Heintz-Buschart, A., Hogan, A., Muller, E.E.L., Narayanasamy, S., 
Laczny, C.C., Hugerth, L.W., Bindl, L., Bottu, J., Andersson, A.F., de 
Beaufort, C., Wilmes, P., 2017. Colonization and Succession within the 
Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during 
the First Year of Life. Front Microbiol 8. 
https://doi.org/10.3389/fmicb.2017.00738 

Wang, A.R., Ran, C., Ringø, E., Zhou, Z.G., 2018. Progress in fish gastrointestinal 
microbiota research. Rev Aquac 10, 626–640. 
https://doi.org/10.1111/raq.12191 

Wang, J., Tang, H., Zhang, C., Zhao, Y., Derrien, M., Rocher, E., van-Hylckama 
Vlieg, J.E., Strissel, K., Zhao, L., Obin, M., Shen, J., 2015. Modulation of gut 
microbiota during probiotic-mediated attenuation of metabolic syndrome in 
high fat diet-fed mice. ISME J 9, 1–15. https://doi.org/10.1038/ismej.2014.99 

Wang, J., Zheng, J., Shi, W., Du, N., Xu, X., Zhang, Y., Ji, P., Zhang, F., Jia, Z., 
Wang, Y., Zheng, Z., Zhang, H., Zhao, F., 2018. Dysbiosis of maternal and 
neonatal microbiota associated with gestational diabetes mellitus. Gut 67, 
1614–1625. https://doi.org/10.1136/gutjnl-2018-315988 

Wang, W., Zheng, S., Sharshov, K., Cao, J., Sun, H., Yang, F., Wang, X., Li, L., 
2016. Distinctive gut microbial community structure in both the wild and 
farmed Swan goose ( Anser cygnoides ). J Basic Microbiol 56. 
https://doi.org/10.1002/jobm.201600155 

Weinstock, G.M., 2012. Genomic approaches to studying the human microbiota. 
Nature 489, 250–256. https://doi.org/10.1038/nature11553 

Whipps, J., Lewis, K., Cooke, R., 1988. Mycoparasitism and plant disease control. 
In: Burge M, editor. Fungi Biol Control Syst. Manchester University Press 
176. 

Wilkinson, T.L., Fukatsu, T., Ishikawa, H., 2003. Transmission of symbiotic bacteria 
Buchnera to parthenogenetic embryos in the aphid Acyrthosiphon pisum 



 57 

(Hemiptera: Aphidoidea). Arthropod Struct Dev 32, 241–245. 
https://doi.org/10.1016/S1467-8039(03)00036-7 

Woese, C.R., Fox, G.E., 1977. Phylogenetic structure of the prokaryotic domain: 
The primary kingdoms. Proceedings of the National Academy of Sciences 
74, 5088–5090. https://doi.org/10.1073/pnas.74.11.5088 

Wolters, M., Ahrens, J., Romaní-Pérez, M., Watkins, C., Sanz, Y., Benítez-Páez, A., 
Stanton, C., Günther, K., 2019. Dietary fat, the gut microbiota, and metabolic 
health – A systematic review conducted within the MyNewGut project. 
Clinical Nutrition 38, 2504–2520. https://doi.org/10.1016/j.clnu.2018.12.024 

Wong, S.H., Yu, J., 2019. Gut microbiota in colorectal cancer: mechanisms of action 
and clinical applications. Nat Rev Gastroenterol Hepatol 16, 690–704. 
https://doi.org/10.1038/s41575-019-0209-8 

Worsley, S.F., Crighton, Z., Lee, C., Burke, T., Komdeur, J., Dugdale, H., 
Richardson, D., 2024a. Conservation translocations lead to reduced gut 
microbiome diversity, and compositional changes, in the Seychelles warbler. 
https://doi.org/10.32942/X2DC9J 

Worsley, S.F., Davies, C.S., Lee, C.Z., Mannarelli, M., Burke, T., Komdeur, J., 
Dugdale, H.L., Richardson, D.S., 2024b. Longitudinal gut microbiome 
dynamics in relation to age and senescence in a wild animal population. Mol 
Ecol. https://doi.org/10.1111/mec.17477 

Worsley, S.F., Davies, C.S., Mannarelli, M.-E., Hutchings, M.I., Komdeur, J., Burke, 
T., Dugdale, H.L., Richardson, D.S., 2021. Gut microbiome composition, not 
alpha diversity, is associated with survival in a natural vertebrate population. 
Anim Microbiome 3, 84. https://doi.org/10.1186/s42523-021-00149-6 

Worsley, S.F., Davies, C.S., Mannarelli, M.-E., Komdeur, J., Dugdale, H.L., 
Richardson, D.S., 2022. Assessing the causes and consequences of gut 
mycobiome variation in a wild population of the Seychelles warbler. 
Microbiome 10, 242. https://doi.org/10.1186/s40168-022-01432-7 

Worsley, S.F., Lee, C.Z., Versteegh, M.A., Burke, T., Komdeur, J., Dugdale, H.L., 
Richardson, D.S., 2025. Gut microbiome communities demonstrate fine-
scale spatial variation in a closed, island bird population. ISME 
Communications. https://doi.org/10.1093/ismeco/ycaf138 

Worsley, S.F., Mazel, F., Videvall, E., Harrison, X.A., Björk, J.R., Wanelik, K.M., 
2024c. Probing the functional significance of wild animal microbiomes using 
omics data. 

Wright, D.J., Brouwer, L., Mannarelli, M.-E., Burke, T., Komdeur, J., Richardson, 
D.S., 2016. Social pairing of Seychelles warblers under reduced constraints: 
MHC, neutral heterozygosity, and age. Behavioral Ecology 27, 295–303. 
https://doi.org/10.1093/beheco/arv150 

Wright, D.J., Shah, N.J., Richardson, D.S., 2014. Translocation of the Seychelles 
warbler Acrocephalus sechellensis to establish a new population on Frégate 
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Chapter 2 |  

 

Metagenomic analyses of gut microbiome 

composition and function with age in a wild bird; 

little change, except increased transposase gene 

abundance 

 

A version of this chapter (Appendix 2) is published as:  

 

 

Credit: Eugenio Carlon 
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2.1 Abstract 

Studies on wild animals, mostly undertaken using 16S metabarcoding, have yielded 

ambiguous evidence regarding changes in the gut microbiome (GM) with age and 

senescence. Furthermore, variation in GM function has rarely been studied in such 

wild populations, despite GM metabolic characteristics potentially being associated 

with host senescent declines. Here, we used seven years of repeated sampling of 

individuals and shotgun metagenomic sequencing to investigate taxonomic and 

functional changes in the GM of Seychelles warblers (Acrocephalus sechellensis) 

with age. Our results suggest that taxonomic GM species richness declines with age 

and in the terminal year, with this terminal decline occurring consistently across all 

ages. Taxonomic and functional GM composition also shifted with host age. 

However, the changes we identified occurred linearly with age (or even mainly 

during early years prior to the onset of senescence in this species) with little 

evidence of accelerated change in later life or during their terminal year. Therefore, 

the results suggest that changes in the GM with age are not linked to senescence. 

Interestingly, we found a significant increase in the abundance of a group of 

transposase genes with age, which may accumulate passively or due to increased 

transposition induced as a result of stressors that arise with age. These findings 

reveal taxonomic and functional GM changes with age, but not senescence, in a 

wild vertebrate and provide a blueprint for future wild functional GM studies linked 

to age and senescence.  

 

Keywords: gut microbiome, age, senescence, metagenomics, transposase, 

Acrocephalus sechellensis 
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2.2 Introduction 

 

Senescence - a decline in physiological function in later life- occurs in most 

organisms (Jones et al., 2014; Nussey et al., 2013). However, its onset and rate 

often differ greatly among individuals within populations (Hammers et al., 2015; 

Nussey et al., 2013). One factor that may contribute to individual differences in 

senescence is variation in host-associated microbial communities. The intestinal 

tract of animals contains a diverse collection of microbes and their genomes (the 

gut microbiome; GM), which play an important role in host adaptation and fitness 

(Hildebrand et al., 2021; Petersen et al., 2023). The GM influences the regulation of 

essential processes, such as digestion, reproduction, and immune function 

(Caviedes-Vidal et al., 2007; Cholewińska et al., 2020). However, shifts in GM 

composition can be detrimental to the host; certain microbes may be pathogenic, 

while overall dysbiosis may impair host function (Davenport et al., 2017; 

Thevaranjan et al., 2017).  

 

Studies in humans and laboratory animals have shown that GM composition 

generally changes rapidly in early life (Blyton et al., 2022; Guard et al., 2017) before 

stabilising during adulthood (Dong et al., 2022). This is often followed by greater GM 

instability in advanced age including a loss of diversity and changes to composition 

(Biagi et al., 2016; Dillin et al., 2017; Maynard & Weinkove, 2018). These late-life 

compositional shifts are generally characterised by a loss of commensal or probiotic 

bacteria and an increase in pathogenic microbes (Ghosh et al., 2022). GM functional 

changes with age have also been identified. For example, healthy ageing has been 

associated with microbes that enable increased biodegradation and metabolism of 

xenobiotics (Ghosh et al., 2022; Rampelli et al., 2020), whereas unhealthy ageing 

has been linked to increased production of detrimental microbial metabolites (Ghosh 

et al., 2022). 

 

Studies have demonstrated links between the GM and senescence in humans and 

laboratory animals, however, their GM composition varies markedly from their 

counterparts living in natural environments because of the artificial environments 

they are exposed to (Gibson et al., 2019; Reese et al., 2021). It remains unclear if 
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these effects can be generalised to wild animals (Gibson et al., 2019; Oliveira et al., 

2020; Reese et al., 2021).  

 

Recent studies on wild organisms have not reached a consensus on what 

characterises the ageing microbiome. Some have documented altered GM 

composition (Fenn et al., 2023; Pannoni et al., 2022; Ren et al., 2017), increased 

GM diversity (Fenn et al., 2023; Hernandez et al., 2021), and reduced GM stability 

(Sadoughi et al., 2022) with increasing age. Other studies have indicated that GM 

characteristics remain relatively stable throughout adulthood (Baniel et al., 2021; 

Sadoughi et al., 2022; Worsley, Davies, et al., 2024). However, these studies have 

been based on 16S rRNA gene metabarcoding, which is limited in resolution 

(Durazzi et al., 2021; Scholz et al., 2012; Worsley, Mazel, et al., 2024). Shotgun 

metagenomic sequencing enables higher taxonomic resolution (species or strain 

level), as well as informing on the functional potential of microbial communities 

based on gene content (Cerk et al., 2024; Frioux et al., 2020; Hugenholtz & Tyson, 

2008). In humans and captive primates, metagenomics has revealed an increase in 

pathogenic microbial genes, and a decrease in beneficial genes, with age (Duan et 

al., 2019; Rampelli et al., 2013, 2020). To our knowledge, no previous studies have 

investigated GM functional changes with age and senescence using shotgun 

metagenomics in a wild population. 

 

Also, most GM studies on wild animals have relied on a cross-sectional sampling of 

differently aged individuals (Bennett et al., 2016; Janiak et al., 2021; Pereira et al., 

2020) and, therefore, may be confounded by the selective 

appearance/disappearance of individuals with particular GM characteristics. A lack 

of longitudinal samples also makes it difficult to infer changes in GM stability with 

age (Chen et al., 2021). Understanding what drives this GM variation is important, 

as it may lead to a deeper comprehension of the evolution of senescence and life-

history trade-offs (Hammers et al., 2015), and enhance our ability to prolong healthy 

lifespans. As senescence occurs at different rates across individuals, a longitudinal 

approach is crucial for accurately evaluating age-associated effects (Nussey et al., 

2008). Given this rate variation, and because declines are expected to be greatest 

at the end of life, GM changes may be more closely associated with proximity to 

death than chronological age. Including such information in analyses requires 

accurate estimates of the point of death that are not confounded by dispersal.  
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The long-term study of the Seychelles warbler population on Cousin Island provides 

a powerful natural system to study GM variation and host senescence (Hammers et 

al., 2015). Its isolated nature allows for the longitudinal sampling of uniquely marked, 

known-age individuals across their entire lifespan and the collection of accurate 

survival and reproductive success data (Raj Pant et al., 2020; Richardson et al., 

2001). Previous studies using 16S metabarcoding have demonstrated that 

Seychelles warbler GM composition is linked to subsequent survival (Worsley et al., 

2021) but identified no overall patterns of GM senescence (Worsley, Davies, et al., 

2024). Additionally, host age was not associated with GM diversity, but a very 

marginal effect of host age on GM composition was reported (Worsley, Davies, et 

al., 2024). 

 

Here, we use shotgun metagenomics to assess fine-scale changes in the GM with 

age and senescence in the Seychelles warbler. First, we determine how GM 

taxonomic diversity and composition change with host age, particularly in a bird’s 

terminal year when GM dysregulation is expected to be at its greatest. Then we test 

the hypothesis that GM functional characteristics (assessed via microbiome gene 

content) will change with age, senescence, and in the terminal year.  
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2.3 Materials and Methods 

 

2.3.1 Study system and sample collection 

Seychelles warblers are insectivorous passerines endemic to the Seychelles 

archipelago. The population on Cousin Island (29 ha; 04° 20′ S, 55° 40′ E) has been 

extensively monitored since 1985 in the winter (January – March) and summer 

(June – October) breeding seasons (Brown et al., 2022; Hammers et al., 2015; 

Komdeur, 1992). Each season nearly all new birds (offspring) are caught, in the nest 

or as dependent fledglings in the natal territory (Komdeur, 1992). As many adult 

birds as possible are re-caught each season using mist nets. Bird age is determined 

using either lay/fledgling date (Komdeur, 1992) for the majority of individuals, if birds 

are first caught without a fledging date being recorded, eye colour is used to 

estimate age instead (see (Komdeur, 1992)).  

 

The population on Cousin Island consists of ca. 320 individuals grouped into ca. 115 

territories, defended year-round by a dominant breeding pair (Hammers et al., 2019; 

Komdeur & Pels, 2005). Territory quality is calculated each season using arthropod 

counts, vegetation density, and territory size information (Brouwer et al., 2009; 

Komdeur, 1992). 

 

Nearly every bird in the population (> 96% since 1997 (Raj Pant et al., 2019)) has 

been caught and marked with a unique combination of a British Trust for Ornithology 

(BTO) metal ring and three plastic colour rings, which enables them to be monitored 

throughout their lives (Davies et al., 2021; Hammers et al., 2015). Individuals almost 

never disperse between islands and the annual resighting probability is around 98% 

± 1% (Komdeur et al., 2004; Raj Pant et al., 2020; Richardson et al., 2001). If an 

individual is not seen for two consecutive seasons it is assumed to have died (an 

error rate of 0.04%) (Raj Pant et al., 2020; Richardson et al., 2001). Death dates for 

individuals were set as the final day of the season in which the bird was last seen. 

Benign climatic conditions and a lack of predators result in relatively long-lived 

individuals (median lifespan 5.5 years, max lifespan 19 years) (Hammers et al., 

2019; Sparks et al., 2022). Previous studies have found that male and female 

Seychelles warblers are sexually mature at one-year-old, and senescence (survival 
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and reproductive) begins at ca. 6 years of age (Hammers et al., 2015, 2019, 2021; 

Raj Pant et al., 2020). The annual survival of adults does not differ between sexes, 

remaining around 80% up to six years of age and then decreasing (Brouwer et al., 

2006; Hammers et al., 2015). Thus, there were no differences in survival 

senescence between the sexes (Hammers et al., 2015, 2019, 2021). In addition, 

elderly females in their last year of life (terminal year) had reduced reproductive 

success (Hammers et al., 2012).  

 

Faecal samples were collected from caught birds and stored as described 

previously (see (Worsley, Davies, et al., 2024)). Between 2017 and 2023 all caught 

birds were placed in a disposable flat-bottom waxed paper bag containing a 

sterilised plastic weighing tray underneath a sterilised metal grate (Davies et al., 

2022). This allows the bird to stand on the grate and faeces to fall into the sterile 

tray, minimising contact with the bird’s surface. After ca 15 minutes (after 

defaecation) the bird was removed. The sample was collected, using a sterile 

flocked swab, and placed into a microcentrifuge tube containing 1 mL of absolute 

ethanol. Samples were stored at 4°C in the field before being transferred to -80°C 

for long-term storage. Contamination (hand) controls were collected from 

fieldworkers each season. The time-of-day that samples were collected and the 

number of days for which samples were stored at 4°C, were recorded. A ca 25 µl 

blood sample was also taken via brachial venepuncture and stored in 1 mL of 

absolute ethanol at 4°C.  

 

2.3.2 DNA extraction and sequencing 

Blood samples were processed with a salt extraction method (Richardson et al., 

2001) or Qiagen DNeasy Blood and Tissue Kit and the resulting DNA was used for 

molecular sexing (Griffiths et al., 1998; Sparks et al., 2022). 

DNA from faecal samples was extracted using the Qiagen DNeasy PowerSoil Kit 

with a modified protocol (see (Davies et al., 2022)). Samples were lysed using both 

mechanical agitation and enzymic processes (Davies et al., 2022). Individuals for 

which multiple longitudinal samples were available were prioritised for metagenomic 

sequencing to capture within-individual changes. In total, 155 faecal samples from 

92 individuals across 7 years were sequenced, as well as three positive controls 

(two extractions from a ZymoBIOMICS Microbial Community Standard (D6300), and 



 67 

one extraction from a ZymoBIOMICS Fecal Reference with TruMatrix™ Technology 

(D6323)), and six hand controls. Library preparation was performed in two lanes per 

run using the LITE protocol (Perez-Sepulveda et al., 2021) and sequencing 

undertaken in two runs of 2 x 150 bp NovaSeq X platform. The D6300 extraction 

control was sequenced on both runs to compare extraction and batch effects. 

 

2.3.3 Bioinformatics  

Shotgun metagenomic sequence analysis was carried out using the MATAFILER 

pipeline (see (Hildebrand et al., 2021) and supplementary materials). Briefly, 

MATAFILER removes host reads, assembles reads, predicts and annotates genes, 

builds metagenome-assembled genomes (MAGs) and metagenomic species 

(MGSs), and taxonomically assigned MGSs. Due to the high individuality of the 

Seychelles warbler GM and the high sequencing coverage required to assign MGS, 

Metaphlan4 was also used to taxonomically classify reads (see supplementary 

materials for details).  

 

2.3.4 Gut microbiome analyses 

A total of 162 samples were successfully processed bioinformatically (153 faecal 

samples, 4 controls). Positive controls were successfully recovered, and hand 

controls did not contribute to substantial contamination in samples (Figure S2.1). 

 

The 153 faecal samples (Figure S2.2) included 71 from 40 females and 82 from 51 

males. In total, 41 individuals had one sample, 41 had two, eight individuals had 

three, and one individual had four samples. Age at sampling ranged from 0.6-17.0 

years (mean 5.7 ± 0.3 SE). Of these, 48 were from 22 individuals in their terminal 

year (the year in which they died); with ages in terminal year ranging from 1.4–17.0 

years. From all these samples, 1025 unique metaphlan4 species-genome-bins 

assignments were used for the subsequent taxonomic analysis (mean 29.3 ± 2.0 

SE per sample).  

 

All statistical analysis was performed using R version 4.33 (Posit team, 2024; R 

Core Team, 2024). Variance Inflation Factor (VIF) scores (car version 3.1.2) were 
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used to test for collinearity between variables in all models; all had a score <3 

indicating no issues with collinearity (Fox John & Weisberg Sanford, 2019). 

 

2.3.5 Taxonomic GM changes with age 

2.3.5.1 Taxonomic GM alpha diversity 

 

A rarefaction curve of Metaphlan4 species was constructed with iNEXT version 

3.0.1 to determine the read depth required to recover 95% of theoretically present 

species (Figure S2.3) (Chao et al., 2014). Taxonomic classifications were rarefied 

to a depth of 5,500 reads before alpha diversity analysis; two samples were 

removed due to insufficient read depth. Species richness and Shannon diversity 

metrics were calculated per sample using R packages phyloseq version 1.46.0 and 

microbiome 1.24.0 (Leo Lahti & Sudarshan Shetty, 2019; McMurdie & Holmes, 

2013). Wilcoxon rank sum tests were used to examine whether different sequencing 

plates affected species diversity (Shannon index, p = 0.353) and species richness 

(Observed index, p = 0.124), both were not significantly different.  

 

A linear mixed effect model with a Gaussian distribution (lmer), and a generalised 

linear mixed effect model with a negative binomial distribution (glmer.nb), were used 

to model changes in species diversity (Shannon index) and richness (observed 

taxa), respectively, using lme4 version 1.1-35.5 (Bates et al., 2015). Fixed effect 

variables included in models were: host age (years); terminal year (yes/no); sex 

(male/female); breeding season (winter/summer); sample year (as a factor: 2017-

2023); territory quality; storage days at 4°C (days); time of day collected (minutes 

since sunrise at 6:00 am). Bird ID was included as a random effect. 

Storage at 4°C in the field ranged from 4 days to 104 days (mean 36.3 ± 1.8 SE). A 

quadratic age term, and an interaction between terminal year and host age, were 

tested to assess whether GM changes became more extreme with age or if GM 

changes in the terminal year differ depending on age.  These terms were dropped 

if not significant to allow interpretation of the main effects. Age was measured in 

years, but all samples taken when birds were >12 years of age were designated as 

12 years because these samples were rare (n = 9, max age = 17 years). Previous 

analysis shows that body condition is not associated with Seychelles warbler gut 
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microbiome diversity and composition, thus, it was not included in analysis (Worsley 

et al., 2021). Model diagnostics were run using DHARMa version 0.4.6, with no 

significant issues in each chosen model (Florian Hartig, 2022). Herein, all models 

were tested with the same variables unless stated otherwise.  

 

 A within-subject centering approach was used to separate between-individual 

(cross-sectional) GM differences with age (which could be driven by the selective 

appearance/disappearance of individuals with particular GM characteristics), from 

within-individual (longitudinal) change (which could indicate senescence) (van de 

Pol & Verhulst, 2006). This involves calculating the mean age of each individual 

across all its sampling events (mean age) and the within-individual deviation from 

that mean age at each separate sampling event (delta age). These terms replace 

host age in the model. The fixed effect of terminal year was also replaced by a 

“terminal year bird” term (yes/no) which indicates whether individuals have at least 

one sample collected in the terminal year or not. An interaction between the terminal 

year bird and delta age, as well as quadratic delta age, were tested to assess 

whether within-individual GM changes were more extreme in birds with a sample 

taken in the terminal year of life and/or in older individuals, respectively (which would 

be indicative of senescence). In addition, an interaction between delta age and 

mean age was included in the models to test if within-individual changes with time 

occur differently depending on host age. The analysis was repeated with non-

rarefied reads to determine if rarefaction influenced the results. These terms were 

dropped if not significant to allow interpretation of the main effects.  

 

2.3.5.2 Taxonomic GM composition 

 

A permutational multivariate analysis of variances (PERMANOVA) was carried out 

on a Euclidean distance matrix calculated using centered log ratio (CLR)-

transformed reads, using the adonis2() function in vegan version 2.6.6 (Oksanen 

Jari et al., 2024). A blocking effect of Bird ID was used to account for repeated 

measures. The same predictors were included as for the main model in the Alpha 

diversity analysis above. Differences in composition were visualised with a principal 

component analysis (PCA) in phyloseq version 1.46.0 (McMurdie & Holmes, 2013).  
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2.3.5.3 Taxonomic GM differential abundance analysis (DAA) 

 

Two different DAA methods were used to identify differentially abundant GM species 

with host age (as recommended by (Cappellato et al., 2022; Nearing et al., 2022); 

ANCOMBC2 version 2.4.0 and GLLVM version 1.4.3 (Lin & Peddada, 2024; Niku et 

al., 2019). ANCOMBC2 calculates log fold change of species one at a time before 

adjusting p-values, whereas GLLVM calculates log fold change of all species all at 

the same time, accounting for correlation between species (Lin & Peddada, 2024; 

Niku et al., 2019). A total of 22 common species, defined as species found in 20% 

of the population at more than 0.01% abundance, were retained. Species that were 

significantly differentially abundant in the same direction using both DAA methods 

were considered robustly significant. Variables included in each model were the 

same as in models above.  

 

2.3.6 Functional GM changes with age 

2.3.6.1 Functional GM alpha diversity 

 

Initially, 4727 different eggNOG orthologues (mean = 3616.6 ± 64.4 SE per sthe 

ample) were identified in our gene catalogues. A rarefaction curve of eggNOG 

orthologues was constructed using iNEXT to determine sample completeness 

(Chao et al., 2014). Samples were then rarefied to 100,000 reads based on >95% 

completeness. One sample was removed due to insufficient reads. Following 

rarefication, 4685 eggNOG orthologues were retained (mean = 3054.3 ± 47.1 SE 

per sample). Due to the (negative) skewness of the observed richness and Shannon 

diversity of eggNOG annotations, a scaled exponential transformation and an 

exponential transformation were used for analyses, respectively, to improve residual 

fit. Both these alpha diversity indices were then analysed with linear mixed models 

containing the same predictors as for taxonomic alpha diversity above.  

 

2.3.6.2 Functional GM composition 

 

To test for changes in functional microbiome beta diversity, a PERMANOVA of 

Euclidean distances calculated from CLR-transformed read abundances per 
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orthologue was used, using the same model structure as for taxonomic 

compositional analysis (described above). Differences in composition were 

visualized with a PCA plot as above. 

 

2.3.6.3 Functional GM differential abundance analysis (DAA) 

 

Differential abundance analysis was performed on eggNOG annotations using their 

assigned categories from the database of clusters of orthologous genes (COG) 

(Supplementary Table S2.1) (Tatusov et al., 2000) using ANCOMBC2 and GLLVM 

as described above (Lin & Peddada, 2024; Niku et al., 2019). Post-hoc DAA were 

performed on individual eggNOG members found within differentially abundant 

COG categories to establish the drivers of any significant differences (see 

Supplementary material for details).  
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2.4 Results 

 

2.4.1 Taxonomic GM changes with age 

2.4.1.1 Taxonomic GM alpha diversity 

 

GM species richness declines with host age, and individuals in their terminal year 

had significantly lower species richness than those in a non-terminal year (Table 

S2.2 & Figure S2.4). However, Shannon diversity was not significantly associated 

with host age, and did not differ between samples taken in a terminal or non-terminal 

year (Table S2.3). A quadratic age term, and an interaction between host age and 

terminal year were not significantly associated with species richness or Shannon 

diversity (p > 0.05) and were dropped from the final model. 

 

The within-individual centering approach revealed that a decline in GM species 

richness with host age occurred longitudinally within individuals (Table 2.1, Figure 

2.1). However, the slope of declining species richness within an individual (delta 

age) decreases with increasing mean age, i.e. a decline in GM species richness 

with time occurs more at earlier host ages than in later life (Table 2.1, Figure 2.1). 

Indeed, after the age of 6 there doesn’t appear to be any significant decline in GM 

species richness with increasing age (Figure 2.1).  This shows that contrary to our 

prediction that GM may show senescent effects, within-individual changes were less 

extreme in older individuals (in the ages we know senescence is occurring). There 

was also no evidence of between-individual selective disappearance effects (Table 

2.1). Shannon diversity did not change significantly with mean or delta age (Table 

S2.4). There was also no evidence of a quadratic relationship between within-

individual delta age and species richness or Shannon diversity, hence the quadratic 

age term was dropped from the final model. We also tested for an interaction 

between within-individual age and whether an individual’s final sample was in their 

terminal year, but this was not significant (p > 0.05) and was dropped. Additionally, 

the results were consistent with Table 2.1 when non-rarefied reads were used 

(Table S2.5). This result indicates that within-individual changes in species richness 

with age had a similar slope whether the bird was sampled in its terminal year or 

not. 
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Table 2.1 A generalised linear mixed effect model with a negative binomial 
distribution (glmer.nb) investigating gut microbiome species richness in relation to 
within- (delta) and between- (mean) individual variation in age amongst Seychelles 
warblers (n = 151 samples, 91 individuals). Conditional R2 = 53.1%. Reference 

categories for categorical variables are shown in brackets.  

Predictor Estimate SE z P 

(Intercept) 2.705 0.317 8.536 < 0.001 

Delta Age  -0.308 0.095 -3.233 0.001 

Mean Age  -0.036 0.023 -1.534 0.125 

Terminal Year 

 Bird (yes) 
-0.189 0.142 -1.329 0.184 

Season (winter) 0.020 0.157 0.126 0.900 

Sex (female) -0.020 0.144 -0.139 0.889 

Days at 4℃ -0.238 0.137 -1.734 0.083 

Time of day 0.237 0.122 1.938 0.053 

Territory quality -0.081 0.125 -0.645 0.519 

Sample Year (2017) 

   
2018 0.439 0.280 1.568 0.117 

2019 0.399 0.323 1.233 0.217 

2020 0.701 0.351 1.997 0.046 

2021 0.755 0.338 2.231 0.026 

2022 0.725 0.346 2.099 0.036 

2023 0.879 0.400 2.197 0.028 

Delta Age * Mean Age 0.034 0.014 2.440 0.015 

Random 

Individual ID 151 observations 91 individuals Variance 0.2321 

Note: Significant (p < 0.05) predictors are shown in bold. 
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Figure 2.1. Gut microbiome species richness in relation to within-individual, 
longitudinal differences in age (delta age in years) in Seychelles warblers. The solid 
lines represent model predictions with 95% confidence intervals calculated from the 
generalised linear mixed effect model (Table 2.1). Coloured lines are model 
predictions at mean age of 3 (black) and 7 (gold) points before and after the start of 
senescence in this species (Hammers et al., 2015). Each point represents an 
individual gut microbiome sample, coloured by mean age of less than 6 (black) and 
greater or equal to 6 (gold), and the dashed grey lines connect samples from the 
same individual (n = 151 samples, 91 individuals). 

 

 

2.4.1.2 Taxonomic GM composition 

A PERMANOVA analysis found that cross-sectional host age was a marginally 

significant predictor of GM taxonomic composition (Table 2.2), but terminal year was 

not (Table 2.2). Sample year, season, and catch time were significant and explain 

the largest proportion of GM compositional variance (Table 2.2) followed by days 

sample stored at 4°C and sex. An interaction between age and terminal year was 

not significant (p > 0.05). A PCA showed limited sample clustering according to age, 

which is consistent with the small amount of variance explained in the PERMANOVA 

(Figure S2.5).  



 75 

Table 2.2. A PERMANOVA analysis of gut microbiome taxonomic composition in 
relation to age and terminal year in the Seychelles warbler. The PERMANOVA was 
performed using a Euclidean distance matrix of CLR-transformed taxon 
abundances. N = 153 samples from 91 individuals. Bird ID was included as a 

blocking factor. 

Predictor df R2 F P 

Age  1 0.009 1.368 0.043 

Terminal Year  1 0.007 1.051 0.569 

Season  1 0.013 2.021 0.001 

Sample Year 6 0.056 1.479 < 0.001 

Sex 1 0.007 1.096 0.064 

Days at 4℃ 1 0.008 1.193 0.034 

Time of day 1 0.010 1.583 < 0.001 

Territory Quality 1 0.005 0.813 0.982 

Note: Significant (p < 0.05) predictors are shown in bold. 

 

 

2.4.1.3 Taxonomic GM differential abundance analysis (DAA) 

Five of the 22 common GM species found in the Seychelles warbler population (i.e. 

in >20% individuals) differed significantly in relative abundance with age in the 

GLLVM analysis (Escherichia coli, Lactococcus lactis, Brucella 

pseudogrignonensis, Lactococcus garvieae, Microbacterium enclense), but none 

were differentially abundant with age in the ANCOMBC2 analysis (Figure S2.6A & 

S2.6B). Similarly, six species were differentially abundant in the terminal year in the 

GLLVM analysis (Lactococcus garvieae, Pantoea anthophila, Escherichia coli, 

Rothia sp AR01, Microbacterium enclense, Brucella pseudogrignonensis), but none 

were differentially abundant with terminal year in the ANCOMBC2 analysis (Figure 

S2.6C & S2.6D). Thus, there is no clear consensus of significant variation in the 

abundance of specific GM species with age or in the terminal year.  

 

 

 

2.4.2 Functional GM changes with age 
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2.4.2.1 Functional GM alpha diversity 

 

Alpha diversity of eggNOG gene orthologues declined significantly with host age for 

both observed richness and Shannon diversity metrics (Table S2.6, Figure S2.7). 

Alpha diversity of eggNOG orthologues did not differ between terminal year and 

non-terminal year samples (Table S2.6). Additionally, the interaction between host 

age (or quadratic age) and terminal year was not significant (p > 0.05). 

 

The decrease in functional alpha diversity with host age is best explained by within-

individual longitudinal changes with age for both tested indices (Table 2.3, Figure 

2.2). Cross-sectional, between-individual age was a marginally significant predictor 

of Shannon diversity but not observed richness (Table 2.3). Alpha diversity did not 

differ between individuals that had at least one sample taken in their terminal year 

and those that did not. The interaction of terminal year bird and within-individual 

age, quadratic within-individual age, and the interaction between within-individual 

age and mean age were also not significant (p > 0.05) predictors of either index. 

Sample year was a significant variable of both eggNOG observed richness and 

Shannon diversity.  

 

Table 2.3. A linear mixed effect model investigating variation in gut microbiome 
functional diversity (observed richness and Shannon diversity) in relation to within- 
(delta) and between- (mean) individual age in Seychelles warblers (n = 152 
samples, 90 individuals). Functional diversity is based on eggNOG annotations. 

Observed richness and Shannon diversity were transformed using a scaled 

exponential and exponential function, respectively. Conditional R2 = 35.6% and 

13.7% respectively. Reference categories for categorical variables are shown in 

brackets. 

Observed Richness 

Predictor Estimate SE df t P 

(Intercept) 0.99 0.17 124.77 5.68  < 0.001 

Delta Age  -0.12 0.04 137.00 -3.31 0.001 

Mean Age  -0.03 0.01 89.42 -1.97 0.052 

Terminal Year Bird (yes) 0.01 0.08 83.34 0.17 0.870 

Season (winter) -0.06 0.10 136.94 -0.64 0.525 

Sex (female) -0.06 0.08 81.33 -0.79 0.430 

Days at 4℃ -0.19 0.09 127.35 -2.23 0.028 
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Time of day -0.07 0.08 137.00 -0.88 0.381 

Territory quality -0.07 0.08 129.62 -0.88 0.381 

Sample Year (2017)      

2018 0.13 0.15 135.76 0.82 0.416 

2019 0.08 0.18 135.88 0.46 0.647 

2020 0.36 0.20 136.54 1.82 0.071 

2021 0.39 0.19 136.94 2.04 0.044 

2022 0.56 0.19 128.48 2.90 0.004 

2023 0.57 0.23 122.81 2.50 0.014 

Random 

Individual ID 152 observations 90 individuals Variance 0.050 

Shannon Diversity 

Predictor Estimate SE df t P 

(Intercept) 757.59 182.06 119.47 4.16 < 0.001 

Delta Age  -117.01 41.06 135.71 -2.85 0.005 

Mean Age  -27.30 13.54 83.56 -2.02 0.047 

Terminal Year Bird (yes) 17.93 79.75 76.74 0.23 0.823 

Season (winter) 173.07 104.67 127.74 1.65 0.101 

Sex (female) -4.98 80.46 69.67 -0.06 0.951 

Days at 4℃ -48.55 95.70 133.26 -0.51 0.613 

Time of day -21.18 81.57 132.14 -0.26 0.796 

Territory quality -0.74 85.97 136.99 -0.01 0.993 

Sample Year (2017)      

2018 88.02 168.08 136.67 0.52 0.601 

2019 32.22 200.48 136.71 0.16 0.873 

2020 169.50 210.62 131.73 0.81 0.422 

2021 464.12 206.85 136.39 2.24 0.026 

2022 484.95 202.78 124.82 2.39 0.018 

2023 453.37 238.55 116.14 1.90 0.060 

Random 

Individual ID 152 observations 90 individuals Variance 5046 

Note: Significant (p < 0.05) predictors are shown in bold. 
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Figure 2.2. Gut microbiome functional diversity measured as (A) observed richness 
and (B) Shannon diversity in relation to within-individual host age (years). Functional 
diversity calculations are based on eggNOG orthologue groups. Solid lines 
represent model predictions (± 95% confidence interval) from linear mixed effects 
models (Table 2.3). Each point represents a unique gut microbiome sample, and 
the dashed grey lines connect samples collected from the same individual (n = 152 
samples, 90 individuals). 

 

 

2.4.2.2 Functional GM beta diversity 

A PERMANOVA analysis identified factors that were significantly related to GM 

functional composition (Table 2.4). Host age, but not terminal year, was a marginally 

significant predictor of functional composition (Table 2.4). An interaction between 

age and terminal year was not significant (p > 0.05). The largest effect sizes were 

found in relation to season, sample year, sex, and days stored at 4℃ (Table 2.4). 

Time of day was not significantly related to GM functional composition (in contrast 

to GM taxonomic composition). A PCA plot showed limited clustering of GM samples 
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according to age, consistent with the small amount of variance explained by this 

variable (Figure S2.8). 

 

Table 2.4. A PERMANOVA analysis of gut microbiome functional composition in 
relation to age (and other factors) in the Seychelles warbler. The PERMANOVA was 
performed using a Euclidean distance matrix calculated using CLR-transformed 
(eggNOG) abundances. N = 153 samples. 91 individuals. Bird ID was included as a 
blocking factor. 

Predictor df R2 F P 

Age  1 0.007 1.096 0.044 

Terminal Year 1 0.006 0.890 0.292 

Season  1 0.011 1.823 0.042 

Sample Year 6 0.052 1.374 0.020 

Sex 1 0.008 1.250 0.001 

Days at 4℃ 1 0.010 1.569 0.007 

Time of day 1 0.008 1.200 0.139 

Territory quality 1 0.007 1.094 0.413 

Note: Significant (p < 0.05) predictors are shown in bold. 

 

2.4.2.3 Functional GM differential abundance analysis (DAA) 

Only one cluster of orthologous genes (COG) category was differentially abundant 

in relation to age. The COG category “X”, which represents mobilome COGs such 

as prophages and transposons, significantly increased in abundance with age in 

both the ANCOMBC2 and the GLLVM analyses (Figure 2.3). Several COG 

categories were significantly differentially abundant with environmental variables 

including Cat A (RNA processing and modification) with season and Cat C (Energy 

production and conversion) with sample year (Figure S2.9, Figure S2.10). 

 

Within category X (mobilome), only COG2801 (transposase genes) was found to 

significantly increase in abundance with age in both GLLVM and ANCOMBC2 

analyses (Figure S2.11, Table S2.1). A within-subject centering approach within a 

linear mixed model showed an increase in COG2801 was associated with both 

within-individual (longitudinal) age and between-individual (cross-sectional) age 

(Table S2.7, Figure 2.4). However, the interaction between within-individual age and 

terminal year, as well as the interaction between within-individual age and mean 

age, was not significant (p > 0.05). 
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Figure 2.3. Differential abundance analysis of functional gut microbiome cluster of 
orthologous genes (COG) categories in Seychelles warblers using (A) ANCOMBC2 
and (B) GLLVM. Each COG category is represented on the y-axis. Points and error 
bars are coloured according to significance (green: p < 0.05; grey: p > 0.05). 

 

 

COG2801 located within MGSs (509 COG2801 copies from 160 MGS) were most 

closely related to the group insertion sequences (IS) 3 family of transposases (30%), 

other IS family transposases (12%), partial or putative transposases (33%) or 

other/unknown function (25%; Table S2.8). An increased abundance of COG2801 

in the GM may be due to either an increase in the abundance of COG2801-carrying 

microbes or increased replication of the transposase gene itself. However, contrary 

to the first hypothesis, we found no relationship between the total abundance of 

COG2801-carrying MGSs (n = 160) and host age (Table S2.9). To further test this, 

COG2801-MGSs were matched with metaphlan4 annotations at the genus level; 

the abundance of COG2801-metaphlan4 genera was not significantly associated 

with host age (Table S2.10). Hence, the increase in COG2801 abundance with host 

age could not be attributed to an increased abundance of COG2801-carrying 

bacteria. Additionally, within COG2801, ten gene catalogues were commonly 

shared across 50% of samples. Each of these ten COG2801 gene catalogues was 
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not significantly (p > 0.05) differentially abundant with age individually when tested 

using both ANCOMBC2 or GLLVM analysis (Figure S2.12). Thus, the increase in 

abundance of COG2801 with age was not being driven by the abundance of a single 

prevalent, gene catalogue but rather the cumulative abundance of many. 

 

 

Figure 2.4. CLR-transformed COG2801 abundance in relation to (A) within-
individual (delta) host age and (B) between-individual (mean) host age in the gut 
microbiome of Seychelles warblers. The solid line represents model predictions (± 
95% confidence intervals) from a linear mixed effect model (Table S2.7). Each point 
represents a gut microbiome sample with dashed grey lines connecting samples 
from the same individual (n = 153 samples, 91 individuals). 
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2.5 Discussion 

 

We used a repeated metagenomic dataset from individuals in a Seychelles warbler 

population to investigate how GM taxonomic and functional characteristics varied 

with host age. We identified a linear decrease in species richness, and small shifts 

in GM taxonomic composition, with host age. Additionally, species richness was 

lower in samples taken during an individual’s terminal year, but taxonomic 

composition did not differ between terminal and non-terminal samples. We also 

identified a linear decrease in the GM’s functional richness and diversity, and 

differences in functional GM composition, with host age. Finally, COG categories 

representing the mobilome increased in prevalence with bird age, driven by an 

increase in the abundance of COG2801, a group of transposases. 

 

The small reduction in GM richness, but not Shannon diversity, with age suggests 

a loss of rare taxa that is not linked with a major restructuring of the evenness of the 

GM. The reduction in species richness was also age-dependent, with younger 

individuals experiencing greater reduction in species richness over time compared 

to older individuals, indicating that changes in GM species richness is not associated 

with senescence. This also concurs with the small changes in GM composition with 

age we identified; i.e showing a limited number of differentially abundant taxa with 

increasing host age. This result is consistent with a previous 16S metabarcoding 

analysis of senescence of the Seychelles warbler GM despite the increased 

taxonomic resolution afforded by a metagenomics approach (Worsley, Davies, et 

al., 2024). Additionally, the three dominant phyla identified in the metagenomics 

analysis (accounts for 95.6% of all taxonomic assignments) were the same three 

dominant phyla identified through the 16S analysis (Proteobacteria, Actinobacteria, 

and Firmicutes) (Worsley, Davies, et al., 2024). Overall, the results support the 

conclusion that, taxonomically, most of the GM stays the same with increasing age, 

apart from the loss of a few rare taxa.  

 

Taxonomic changes in GM species diversity and composition with age have been 

repeatedly demonstrated in humans and captive animals (Ghosh et al., 2022). 

However, in these species, late-life changes in the GM may be due to external 

factors such as antibiotic use, lifestyle, and dietary changes (Gibson et al., 2019; 
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Oliveira et al., 2020). An increasing number of wild animal studies are finding little 

evidence of a late-life shift in GM taxonomic diversity without such external factors 

(see (Risely et al., 2022; Worsley, Davies, et al., 2024)). Our study supports this 

conclusion despite the repeated sampling and increased resolution yielded by 

shotgun metagenomics, which can potentially reveal more nuanced changes at 

lower taxonomic levels. 

 

Few studies have directly investigated functional changes in the GM with age in wild 

animals (Levin et al., 2021). Some studies have been undertaken using functional 

inferences from metabarcoding sequence homology. However, this can be 

misleading due to being limited to variation within the same genus thus providing 

potentially inaccurate functional profiles. (Chang et al., 2022; Wilson & Nicholson, 

2017). In our study using a higher resolution metagenomic approach, we found 

evidence of small, linear, changes in GM functional diversity and composition with 

age in the Seychelles warbler. Functional observed richness and Shannon diversity 

declined with age, which suggests not only that rare functions are lost, but that the 

evenness of these GM functions also changes linearly with adult age. Age-related 

decreases in functional richness and shifts in functional composition have previously 

been identified in elderly humans (Armour et al., 2019; Mosca et al., 2016). Such 

changes have been linked to the onset of specific disease states, such as 

inflammation and pathogenesis and changes to diet degradation and digestion, in 

humans and laboratory mice (Singh et al., 2021). However, other studies have either 

found no change in functional alpha diversity, or even an increase in microbial 

functional richness and diversity with age (Rampelli et al., 2013; Ruiz-Ruiz et al., 

2020). Whether the loss of functional diversity, and minor changes in functional 

composition, with host age in Seychelles warbler is linked to declines in health and 

condition remains unclear and requires further study. The decline in taxonomic 

richness (but not taxonomic diversity) along with declines of functional richness and 

diversity with host age suggests that as the host age, less rare taxa contribute to the 

number and evenness of functional genes in the GM.  

 

Despite the small changes in functional diversity and composition with age in the 

Seychelles warbler, we only identified one specific functional category whose 

abundance was significantly associated with host age. An increase in the 

abundance of COG2801 transposases occurred with age. However, this was not 
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due to an increase in COG2801-carrying microbes. COG2801 are a group of 

transposases that are primarily found in bacteria (89.5%) and have been shown to 

be the most widely transferred genes among prokaryotes (Powell et al., 2014). Most 

COG2801 genes found within MGSs were group insertion sequences 3 (IS3), which 

use a copy-out-paste-in mechanism to replicate (Ohtsubo et al., 2004). This could 

lead to an increased number of transposon copies in the same individual bacterial 

genome over time, or to horizontally transfer to other bacterial genomes. (Siguier et 

al., 2015; Wells & Feschotte, 2020). Thus, the increased abundance of COG2801 

with age in Seychelles warbler GM’s may be the result of self-replication, 

independent of microbial host cell DNA replication. An increase in transposition has 

been observed when bacteria are stressed and COG2801 is one of the most 

horizontally transferable eggNOG genes (Lysnyansky et al., 2009; Nakamura, 

2018). Therefore, as vertebrate hosts get older, the GM may be exposed to a greater 

number or intensity of stressors, such as mucus barrier thinning or inflammation, 

which may induce activation of COG2801 (Elderman et al., 2017). However, there 

was not an accelerated increase (i.e. a quadratic relationship) of COG2801 

abundance with host age, which would be expected if the cumulative effects of host 

senescence were driving these changes. Therefore, stressors to the host that occur 

linearly in adulthood, such as cell death in the gastrointestinal autonomic nervous 

system (Phillips et al., 2007; Phillips & Powley, 2001), may better explain the 

increased abundance of COG2801 with host age. 

 

We also focused on assessing terminal year effects in the Seychelles warbler GM. 

Only species richness was found to be significantly lower in the final year of a bird’s 

life. Moreover, the effect of terminal year was uniform across age, i.e. it was not 

more extreme in older individuals. Previous research has identified age-dependent 

terminal-declines in fitness components (reproductive success and survival 

probability) in the Seychelles warbler (Hammers et al., 2012). However, the lack of 

age-dependent terminal changes in GM characteristics identified in our study 

suggests that the GM does not undergo senescence in association with these other 

traits. As such, the declines in microbial species richness in terminal year samples 

(and linearly with age) may rather reflect the stabilisation of the GM with age rather 

than a senescence effect. These results concur with the previous 16S 

metabarcoding analysis of the Seychelles warbler GM which found little evidence of 

GM senescence (Worsley, Davies, et al., 2024). 
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Across analyses, environmental factors explained most of the variance in the 

Seychelles warbler GM. This concurs with previous research on this species (Davies 

et al., 2022; Worsley, Davies, et al., 2024; Worsley et al., 2021) as well as studies 

of other taxa (Gacesa et al., 2022; Ren et al., 2017; Wang et al., 2023). Temporal 

variation -specifically year and season- explained the most variance in both 

taxonomic and functional GM composition. This may be explained by many factors 

including climate variability, differences in insect prey availability, or host population 

density (Foster et al., 2012; Li et al., 2016; Sepulveda & Moeller, 2020). Most 

Seychelles warbler individuals breed in the summer rather than the winter season, 

and GM shifts may therefore reflect reproductive activity and related hormonal 

changes (Hernandez et al., 2021). Time of day was also associated with GM 

composition. Differences in insect activity might drive this pattern due to light 

availability and/or temperature (Totland & Totland, 1994; Welti et al., 2022). 

However, such patterns could also be due to host intrinsic circadian rhythms 

(Schmid et al., 2023). In addition, differences in the amount of time samples were 

stored at 4℃ resulted in differences in the GM characteristics and it is very important 

that these are controlled for. Given that samples are stored directly in absolute 

ethanol, the changes related to the time in storage at 4℃ are likely to do with DNA 

degradation affecting the assignment of reads rather than an actual biological 

change in storage.  

These factors lead to a substantial amount of noise in GM studies that can confound 

studies on ageing, reproduction, and disease outcomes in wild populations. 

Therefore, accounting for these factors is important when investigating the GM in 

natural systems. 

 

Our findings highlight the need for more studies investigating the functional 

characteristics of wild microbiomes as taxonomic relationships might not capture 

functional GM changes that occur (e.g. the increased prevalence of COG2801). 

However, researchers should not totally discount the utility of 16S metabarcoding 

for investigating general GM questions, as it may, in many cases, provide sufficient 

taxonomic resolution to answer specific questions (Durazzi et al., 2021). Indeed, we 

identified similar taxonomic patterns using shotgun metagenomics to those revealed 

by a previous metabarcoding study on the Seychelles warbler (Worsley, Davies, et 

al., 2024). The cost-effectiveness of 16S rRNA allows greater sample sizes, and 
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thus power, to resolve certain questions. A combination approach that harmonises 

both 16S metabarcoding and shotgun metagenomics has been proposed to 

maximise sample size, although such analyses are limited to genus-level 

comparisons (Usyk et al., 2023). On the other hand, shotgun metagenomics not only 

allows higher taxonomic resolution and functional analysis of the GM, but also an 

assessment of the interaction between taxa and their functions. As described with 

transposable elements, our functional analysis uncovered changes in GM function 

that were not detectable using 16S metabarcoding analysis.  

 

In conclusion, while we found that the Seychelles warbler GM changes in terms of 

diversity, composition and even function with age, this happens gradually over the 

adult lifespan and there is little evidence of late-life GM senescence. Whilst species 

richness is lower in the terminal year, this occurs at all ages and is not more extreme 

in the oldest individuals. Interestingly, we found that the abundance of a group of 

transposase gene increases considerably with age in the GM, probably because of 

more frequent transposition within the GM community over time. Future work is 

required to determine exactly why these transposable element changes occur and 

what impact they may have. Additionally, work should investigate the generality of 

these conclusions by assessing whether functional changes occur in the GM of 

other wild vertebrates.  
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 2.7 Supplementary material 

2.7.1 Supplementary methods 

 

2.7.1.1 Bioinformatics  

Briefly, host reads were removed by mapping sequences to the Seychelles warbler 

genome (unpublished; complete BUSCO = 96.0% with a total length = 

1,081,018,985 bp), using Kraken 2 (version 2.1.3). Remaining reads underwent 

quality filtering using sdm software version 2.14 beta [101,102]. After trimming, two 

samples and five hand controls were removed because they did not return enough 

reads for subsequent analysis (< 300,000 reads). An average of 20,481,040 

(±1,109,059 SE) paired-end reads per sample were retained across the remaining 

samples. 

 

The same trimmed reads were also used for de novo metagenome assembly, as 

implemented in MATAFILER: MEGAHIT version 1.2.9 [103] was used for 

metagenomic assemblies, on these genes were predicted using Prodigal version 

2.6.3 [104] and clustered into a gene catalogue (95 % identity) of 19,527,109 gene 
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clusters, and a gene abundance matrix created using rtk2 [105]. Functional 

annotations of clustered genes were done using eggNOGmapper version 2.1.12 

and the evolutionary genealogy of genes: Non-supervised Orthologous Groups 

(eggNOG) database version 4 [82,106]. Subsequently, genome binning was done 

with SemiBin which created 4,176 bins (mean completeness = 34.95%, mean 

contamination = 1.41%) [107]. The bins were then filtered based on >80% 

completeness and <5% contamination using CheckM2 [108]; this retained 824 

metagenome-assembled genomes (MAGs). MAGs were dereplicated across 

samples to generate 323 non-redundant metagenomic species (MGS) level bins, 

using clusterMAGs (https://github.com/hildebra/clusterMAGs). For MGSs, 

taxonomic assignment was performed using a marker-based approach with GTDB 

database version 214 [109]. Due to the high individuality of the warbler GM and the 

high sequencing coverage required to assign MGS, only one MGS was present in 

more than 50% of sequenced samples and relatively fewer MGSs were identified 

per sample (average 17  1.3 SE per sample) which is likely to be an underestimate 

of the true diversity of the GM.  

 

Therefore, Metaphlan4 version 4.1.0 (which is assembly-free and therefore requires 

lower coverage) was used to taxonomically classify reads using the default 

parameters [110]. Metaphlan4 assignments identified an average of 29.3  2.0 

species genome bins per sample and were used for the subsequent taxonomic 

analysis and MGS was only used for tracking functional annotations back to their 

taxonomy.  

 

2.7.1.2 Post-hoc functional differential abundance analysis 

Posthoc investigations were performed on individual eggNOG members found 

within the COG categories that were significantly differentially abundant with age. 

Firstly, a linear model was performed for each significant eggNOG member to test 

whether age-related changes were driven by between- or within-individual 

processes. Second, we tested if changes in the abundance of significant eggNOG 

members could be driven by changes in the abundance of the taxa from which these 

genes originate. To test this, the total abundance of MGSs carrying the eggNOG 

gene orthologs of interest was used as the response variable and age was included 

as a predictor in a lmer model. Furthermore, genera of eggNOG-carrying MGSs 

were matched with metaphlan4 genera to test whether the total abundance of known 

eggNOG-carrying genera was significantly associated with host age. Lastly, a 

protein-protein Basic Local Alignment Search Tool (BLASTp) analysis of each 

eggNOG gene ortholog of interest embedded within each MGS was performed to 

determine the identity of genes [111,112]. To test if the differential abundance of 

eggNOG members was driven by changes in the abundance of a specific gene 

(versus the cumulative abundance of many genes), gene catalogues assigned to 

the eggNOG cluster of interest (filtered to those with > 20% prevalence and 0.1% 

detection) were tested for differential abundance.   
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2.7.2 Supplementary Figures and Tables 

Components of positive controls were successfully recovered as high-quality MGSs 

in acceptable relative abundances (Figure S2.2). Only 2 out of the 18 MGS from 

controls were found in faecal samples, both were widespread species Enterococcus 

faecalis and Klebsiella pneumoniae [113,114]. E. faecalis was part of the positive 

control but not found in the hand controls. K. pneumoniae was found in hand controls 

as well as samples but due to the low abundance in hand controls, we decided to 

retain all species for taxonomic analysis.  

 

 

 

Figure S2.1. Controls and relative abundance of MGS at the species level. 

SWControl is positive control (ZymoBIOMICS Fecal Reference with TruMatrix™ 

Technology), SW984 and SWzymo are positive controls (ZymoBIOMICS Microbial 

Community Standard) sequenced separately, and SW1421 is a contamination 

(hand) control from 2023. We identified subspecies of Bacillus subtilis - Bacillus 

spizizenii and Lactobacillus fermentum – Limosilactobacillus fermentum . In 

SW1421 hand control, Cutibacterium acnes is linked to acne, Klebsiella 

pneumoniae is commonly found in the gut, Salinisphaera orenii are bacteria 

commonly isolated in high salinity environments, Staphylococcus hominis is 

commonly found to be harmless on human and animal skin.  
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Figure S2.2. Seychelles warbler gut microbiome samples that were retained for 

analysis after sequencing and bioinformatics (n = 153 from 91 individuals). Points 

represent each sample, the x-axis represents individual’s age at sampling, whilst 

the y-axis represents individuals. Solid lines connect samples that were collected 

from the same individual. Colours represent the different sex (black = female, gold 

= male). Shape represents whether the sample was collected in the individual’s 

terminal year (circle = no, triangle = yes). 

 

 

Taxonomy 
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Figure S2.3. Sequencing depth against number of observed (metaphlan4) 

assembly-free taxonomic assignments (left) and read count against sample 

completeness (right) of each gut microbiome sample from Seychelles warblers (n = 

153). 5500 reads at 95% completeness. 

 

Table S2.1. COG functional categories [71] 

Abbreviation COG Functional Categories 

A   RNA processing and modification 

K   Transcription 

L   Replication, recombination and repair 

B   Chromatin structure and dynamics 

D   Cell cycle control, cell division, chromosome 

partitioning 

V   Defense mechanisms 

Y   Nuclear structure 

T   Signal transduction mechanisms 

M   Cell wall/membrane/envelope biogenesis 

N   Cell motility 

Z   Cytoskeleton 

W   Extracellular structures 

U   Intracellular trafficking, secretion, and vesicular 

transport 

O   Posttranslational modification, protein turnover, 

chaperones 

X   Mobilome: prophages, transposons 
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C   Energy production and conversion 

G   Carbohydrate transport and metabolism 

E   Amino acid transport and metabolism 

F   Nucleotide transport and metabolism 

H   Coenzyme transport and metabolism 

I   Lipid transport and metabolism 

P   Inorganic ion transport and metabolism 

R   General function prediction only 

Q   Secondary metabolites biosynthesis, transport and 

catabolism 

S   Function unknown 

` Unassigned 

 

 

Table S2.2. A generalised linear mixed effect model with a negative binomial 

distribution investigating the relationship between age, terminal year, and species 

richness in the gut microbiome of Seychelles warblers (n = 151 samples, 91 

individuals). Significant (p < 0.05) predictors are shown in bold. Conditional R2 = 

38.9%. 

Predictor Estimate SE z P 

(Intercept) -125.20 71.62 -1.75 0.081 

Age -0.04 0.02 -2.10 0.036 

Terminal Year (yes) -0.26 0.13 -2.06 0.039 

Season (winter) 0.01 0.13 0.09 0.932 

Sex (female) 0.01 0.13 0.05 0.959 

Time at 4℃ -0.18 0.14 -1.33 0.183 

Time of day 0.22 0.12 1.82 0.069 

Territory quality -0.08 0.12 -0.67 0.506 

Sample Year 0.06 0.04 1.79 0.073 

Random  

Individual ID 151 observations 91 individuals Variance 0.14 
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Figure S2.4. Species richness prediction from glmer.nb of the gut microbiome in the 

Seychelles warblers (n = 151 samples from 91 individuals). (A) Species richness 

against host age in years, solid black line and grey shaded area represent model 

predictions and confidence intervals respectively (Table S2.1, p = 0.036), points 

represent raw data. (B) Species richness against terminal year (0: No, 1: Yes), black 

dot and lines represent model predictions and error bars respectively, grey dots 

represent raw data points (Table S2.1, p = 0.039). 

 

Table S2.3. A linear mixed effect model of Shannon diversity with chronological age 

and terminal year in the gut microbiome of Seychelles warblers (n = 151 samples, 

91 individuals). Significant (p < 0.05) predictors are shown in bold. Conditional R2 = 

46.4%.  

Predictor Estimate SE df t P 

(Intercept) -152.40 76.85 142.00 -1.98 0.049 

Age -0.01 0.02 86.36 -0.46 0.644 

Terminal Year (yes) -0.16 0.14 133.79 -1.17 0.244 

Season (winter) -0.12 0.17 130.60 -0.69 0.491 

Sex (female) 0.10 0.16 74.64 0.63 0.529 

Time at 4℃ -0.32 0.15 113.36 -2.15 0.034 

Time of day -0.01 0.13 133.62 -0.10 0.920 
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Territory quality -0.14 0.14 124.33 -1.02 0.311 

Sample Year 0.08 0.04 142.00 2.00 0.047 

Random  

Individual ID 151 observations 91 individuals Variance 0.27 

 

Table S2.4. A linear mixed effect model of Shannon diversity within- and between- 

individual age analysis, accounting for subsequent close-to-death samples in the 

gut microbiome of Seychelles warblers (n = 151 samples, 91 individuals). Significant 

(p < 0.05) predictors are shown in bold. Conditional R2 = 49.7%.  

Predictor Estimate SE df z P 

(Intercept) 0.95 0.35 129.65 2.75 0.007 

Delta Age -0.07 0.07 135.41 -1.12 0.265 

Mean Age -0.18 0.16 77.16 -1.14 0.257 

Terminal Year Bird 

(yes) 
-0.01 0.03 81.30 -0.24 0.809 

Sample Year 0.09 0.06 105.90 1.60 0.11 

Season (winter) -0.12 0.17 128.97 -0.72 0.470 

Sex (female) 0.10 0.16 75.58 0.62 0.535 

Time at 4℃ -0.33 0.15 112.75 -2.24 0.027 

Time of day -0.02 0.13 131.47 -0.12 0.908 

Territory quality -0.15 0.14 122.92 -1.08 0.281 

Random 

Individual ID 151 observations 
91 

individuals 
Variance 0.3003 

 

 

Table S2.5. A linear mixed effect model of non-rarefied reads species richness 

within- and between- individual age analysis, accounting for subsequent close-to-

death samples in the gut microbiome of Seychelles warblers (n = 151 samples, 91 

individuals). Significant (p < 0.05) predictors are shown in bold. R2 = 0.4587057 

Predictor Estimate SE z P 

(Intercept) 2.809 0.336 8.362 < 0.001 

Delta Age  -0.320 0.105 -3.043 0.002 

Mean Age  -0.035 0.024 -1.432 0.152 

Terminal Year -0.170 0.147 -1.161 0.246 
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 Bird (yes) 

Season (winter) 0.008 0.170 0.046 0.963 

Sex (female) -0.063 0.149 -0.424 0.672 

Days at 4℃ -0.188 0.149 -1.259 0.208 

Time of day 0.240 0.132 1.819 0.069 

Territory quality -0.099 0.136 -0.724 0.469 

Sample Year (2017) 

   
2018 0.461 0.297 1.552 0.121 

2019 0.556 0.345 1.611 0.107 

2020 0.851 0.373 2.283 0.022 

2021 0.917 0.358 2.561 0.010 

2022 0.834 0.362 2.302 0.021 

2023 0.953 0.418 2.280 0.023 

Delta Age * Mean Age 0.033 0.016 2.118 0.034 

Random 

Individual ID 153 observations 91 individuals Variance 0.2119 
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Figure S2.5. PCA plot of CLR-transformed reads in Euclidean distance, coloured by 

age.  

 

Figure S2.6. Taxonomic differential abundance analysis for common species (> 

20% prevalence in the population). (A) ANCOMBC2 with age, (B) GLLVM with age, 

(C) ANCOMBC2 with terminal year, (D) GLLVM with terminal year. Significant (p < 

0.05). Green = significant (p < 0.05) log fold change, grey = insignificant log fold 

change.  
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Table S2.6. A linear mixed effect model testing for age-related changes in functional 

scaled exponentially transformed observed richness and exponentially transformed 

Shannon diversity of eggNOG annotations in the gut microbiome of Seychelles 

warblers (n = 152 samples, 90 individuals). Conditional R2 = 33.7% and 9.2% 

respectively. 

Observed Richness 

Predictor Estimate SE df t P 

(Intercept) -109.417 42.293 142.715 -2.587 0.011 

Age (years) -0.036 0.013 92.620 -2.877 0.005 

Terminal Year 

(yes) 
-0.124 0.077 142.784 -1.605 0.111 

Season (winter) -0.080 0.078 141.089 -1.024 0.307 

Sex (female) -0.080 0.080 78.890 -1.008 0.317 

Days at 4℃ -0.198 0.082 130.818 -2.422 0.017 

Time of day -0.027 0.071 142.930 -0.373 0.710 

Territory quality -0.074 0.072 134.361 -1.030 0.305 

Sample Year 0.055 0.021 142.686 2.618 0.010 

Random 

Individual ID 
152 

observations 

90 

individuals 
Variance 0.047 

 

Shannon Diversity 

Predictor Estimate SE df t P 

(Intercept) -92473.06 46119.45 143.00 -2.01 0.047 

Age (years) -31.31 12.59 143.00 -2.49 0.014 

Terminal Year 

(yes) 
-20.41 83.74 143.00 -0.24 0.808 

Season (winter) 105.32 85.76 143.00 1.23 0.221 

Sex (female) -21.32 78.14 143.00 -0.27 0.785 

Time at 4℃ -36.85 92.11 143.00 -0.40 0.690 

Time of day 27.32 76.97 143.00 0.36 0.723 

Territory quality -1.21 79.70 143.00 -0.02 0.988 

Sample Year 46.31 22.85 143.00 2.03 0.045 

Random  

Individual ID 
152 

observations 
90 individuals Variance 108.9 

 



 105 

 

Figure S2.7. Evolutionary genealogy of genes: Non-supervised Orthologous Groups 

(eggNOG) (A) observed richness and (B) Shannon diversity against host age 

(years) model prediction from linear mixed effect model in the gut microbiome of 

Seychelles warblers (Table S2.4, p = 0.005 in A and p = 0.014 in B). The solid line 

represents model predictions and ribbon-shadding represent confidence intervals 

from model predictions. Each point represents a sample, and the dashed grey lines 

connect samples collected from the same individual (n = 152 samples from 90 

individuals). 
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Figure S2.8. Functional PCA plot of CLR-count, euclidean distances of eggNOG 

annotations 
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Figure S2.9. Differential abundance analysis of functional gut microbiome cluster of 

orthologous genes (COG) categories in Seychelles warblers using ANCOMBC2 

with season and sample year. Each COG category is represented by a letter on the 

y-axis. Details of all COG categories are given in Table S2.5 [71]. “Cat_`” represents 

eggNOG annotations that were not assigned a COG category. Points and error bars 

are coloured according to significance (green: p < 0.05; grey: p > 0.05). 
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Figure S2.10. Differential abundance analysis of functional gut microbiome cluster 

of orthologous genes (COG) categories in Seychelles warblers using GLLVM with 

season and sample year. Each COG category is represented by a letter on the y-

axis. Details of all COG categories are given in Table S2.5 [71]. “Cat_`” represents 

eggNOG annotations that were not assigned a COG category. Points and error bars 

are coloured according to significance (black: p < 0.05; grey: p > 0.05). 
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Figure S2.11. Differential abundance of COG X eggNOG members (A) ANCOMBC2 

and (B) GLLVM. 
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Table S2.7. A linear mixed effect model of COG2801 abundance in the gut 

microbiome of Seychelles warblers in relation to within- (delta) and between- 

individual (mean) age. n = 153 samples, 91 individuals. Significant (p < 0.05) 

predictors in bold. Conditional R2 = 14.7%. Reference categories for categorical 

variables are shown in brackets 

Predictor Estimate SE df t P 

(Intercept) 9.700 0.971 
115.37

0 
9.989 

< 

0.001 

Delta Age  0.549 0.218 
141.99

1 
2.516 0.013 

Mean Age  0.157 0.062 85.606 2.534 0.013 

Terminal Year Bird 

(yes) 
0.028 0.420 69.803 0.067 0.947 

Season (winter) -0.502 0.553 
132.36

8 
-0.908 0.365 

Sex (female) 0.219 0.422 63.434 0.520 0.605 

Days at 4℃ -0.196 0.495 
136.50

9 
-0.396 0.693 

Time of day -0.313 0.428 
136.42

1 
-0.730 0.466 

Territory quality -0.315 0.452 
141.90

1 
-0.697 0.487 

Sample Year (2017) 

 

 

  

2018 -1.662 0.902 
140.92

1 
-1.844 0.067 

2019 -1.457 1.068 
141.64

5 
-1.363 0.175 

2020 -2.200 1.129 
134.38

4 
-1.949 0.053 

2021 -2.911 1.119 
140.58

5 
-2.601 0.010 

2022 -3.341 1.098 
118.24

3 
-3.042 0.003 
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2023 -3.215 1.289 
111.44

2 
-2.495 0.014 

 Random 

Individual ID 
153 

observations 

91 

individuals 

 Varianc

e 
0.1776 

 

 

Table S2.8. BLASTp top hits for each COG2801 found in the genomes of all 

constructed metagenomics species (MGS) from the gut microbiome of Seychelles 

warblers (n = 153 from 91 individuals). 

Top hit (contains keyword) Count Percentage 

IS3 transposase 154 30% 

otherIS transposase 64 13% 

transposase 170 33% 

integrase 30 6% 

Mobile element protein 4 1% 

Helix-turn-helix 19 4% 

Hypothetical protein 45 9% 

Unknown 23 5% 

 

 

Table S2.9. Linear mixed model on the CLR-transformed abundance of 

metagenomic species in the gut microbiome of Seychelles warblers (n = 2589 from 

89 individuals). To test if COG2801-carrying MGS significantly differed in 

abundance with host age. Significant (p < 0.05) predictors are shown in bold. 

Conditional R2 = 46.9%. 

Predictor Estimate SE df t P 

(Intercept) 5.44 0.41 233.52 13.34 < 0.001 

Age 0.03 0.04 69.32 0.79 0.432 

Terminal Year 

(yes) 
0.24 0.19 339.71 1.26 0.210 

Season (winter) -0.09 0.22 394.36 -0.43 0.671 

Sex (female) 0.01 0.26 69.10 0.02 0.982 

Time at 4℃ -0.44 0.18 434.74 -2.40 0.017 

Time of day -0.35 0.18 395.12 -2.01 0.045 

Territory quality -0.47 0.17 379.46 -2.85 0.005 
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Sample Year 

(2017) 
     

2018 -0.77 0.41 402.12 -1.90 0.059 

2019 -1.69 0.46 416.15 -3.71 0.000 

2020 -1.19 0.48 360.43 -2.50 0.013 

2021 -0.70 0.46 334.48 -1.53 0.127 

2022 -0.56 0.45 266.74 -1.25 0.213 

2023 -0.65 0.49 239.09 -1.33 0.186 

Random 

Individual ID 874 

observations 

85 individuals Variance 1.042 

 

Table S2.10. Linear mixed model on the CLR-transformed abundance of 

metaphlan4 genera in the gut microbiome of Seychelles warblers (n = 4477 from 91 

individuals). To test if known COG2801-carrying genera significantly differed in 

abundance with host age. Significant (p < 0.05) predictors are shown in bold. 

Conditional R2 = 16.8%. 

Predictor Estimate SE df t P 

(Intercept) 9.08 0.45 316.13 20.37 < 0.001 

Age 0.04 0.04 77.18 0.91 0.363 

Terminal Year 

(yes) 0.30 0.22 272.48 1.37 0.173 

Season (winter) -0.30 0.27 271.10 -1.09 0.276 

Sex (female) 0.15 0.27 70.01 0.54 0.589 

Time at 4℃ -0.52 0.22 373.62 -2.34 0.020 

Time of day -0.60 0.21 224.79 -2.82 0.005 

Territory quality 0.03 0.21 486.10 0.13 0.898 

Sample Year (2017) 

2018 -0.15 0.47 519.08 -0.33 0.745 

2019 -0.85 0.54 423.70 -1.57 0.116 

2020 -0.80 0.55 380.92 -1.46 0.145 

2021 -1.13 0.52 377.58 -2.20 0.029 

2022 -0.56 0.49 363.36 -1.14 0.254 

2023 -0.06 0.55 281.62 -0.11 0.916 

Random 

Individual ID 1794 observations 89 individuals Variance 0.995 
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Figure S2.12. Differential abundance analysis of functional gut microbiome 

COG2801 gene catalogue that were commonly (20% prevalence) found in 

Seychelles warblers using (A) ANCOMBC2 and (B) GLLVM. Each gene catalogue 

(95% average nucleotide identity) are represented on the y-axis by their gene 
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catalogue number.  Points and error bars are coloured according to significance 

(black: p < 0.05; grey: p > 0.05). 
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Chapter 3 |  

 

Host immunogenetic variation and gut microbiome 

functionality in a wild vertebrate population 

 

 

 

Promoting diversity and safeguarding communities for enhanced 

interconnectedness. 
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3.1 Abstract 

Background: The gut microbiome (GM) –important for host health and survival– is 

partially shaped by host immunogenetics. However, to date, no study has 

investigated the influence of host Major Histocompatibility Complex (MHC) genes 

on gut microbiome functionality in a wild population. Here we use a natural 

population of the Seychelles warbler (Acrocephalus sechellensis) to assess the 

effects of MHC genes on GM taxonomy and functionality using shotgun 

metagenomics.  

Results: Our results show that taxonomic GM composition was associated with 

MHC-II diversity and the presence of one specific MHC-I allele (Ase-ua 7). 

Specifically, MHC-II diversity was associated with decreased Lactococcus lactis and 

increased Staphylococcus lloydii abundance, while Ase-ua 7 was linked to reduced 

Enterococcus casselifavus and Gordonia sp OPL2 but increased Escherichia coli 

and Vulcaniibacterium thermophilum. These taxonomic changes may reflect 

differences in MHC-mediated microbial recognition. In contrast, functional GM 

composition was significantly associated with increasing individual MHC-I diversity 

but not MHC-II diversity. Potentially importantly, MHC-I diversity was associated 

with an increased prevalence of microbial defence genes but a reduced prevalence 

of microbial metabolism genes.  Analysis also revealed that taxonomic and 

functional GM networks were more fragmented but had stronger connections in high 

compared to low MHC-I diversity hosts, suggesting higher GM resilience in high 

MHC-I diversity individuals. 

Conclusion: These results suggest that MHC-I variation (surprisingly more than 

MHC-II variation) is important in shaping the GM in this wild vertebrate population. 

MHC-I diversity induces microbial defence and metabolism trade-offs and increases 

GM resilience, which may, in turn, result in individual variation in health and survival 

in the Seychelles warbler. Consequently, this study highlights the importance of host 

immunogenetics in shaping the gut microbiome, both taxonomically and 

functionally.  

 

Keywords: Acrocephalus sechellensis; Metagenomics; Gut microbiome; Major 

Histocompatibility Complex; wild population. 
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3.2 Introduction 

 

The vertebrate gut microbiome (GM), a complex ecosystem of microorganisms 

inhabiting the gastrointestinal tract, is increasingly recognised as a critical 

determinant of host health and fitness (Zhu et al., 2021). However, the composition 

and function of the GM exhibit extensive variability across individuals, particularly in 

natural populations (Fenn et al., 2023; Ren et al., 2016; Worsley et al., 2021). This 

variation has been attributed to a range of factors, such as diet, age, sex, location 

and host genetic variation (Davies et al., 2022; Worsley et al., 2025; Zoelzer et al., 

2021). 

 

A growing body of evidence links GM characteristics to host immunogenetic 

variation (Dzierozynski et al., 2023; Zheng et al., 2020). Immune genes influence 

the immune system’s ability to recognise, tolerate, or eliminate microbial populations 

(Criscitiello & de Figueiredo, 2013; McConnell et al., 2023). Therefore, the immune 

system must maintain a balance – tolerating beneficial microbes while combating 

pathogens- to optimise host health (Fuess et al., 2021; Tanoue et al., 2010). 

Furthermore, the GM also appears to play a role in the immune defences of the host, 

with GM dysbiosis (an imbalance in the composition of microbes) resulting in a 

reduction of host immune function, emphasising the interconnected nature of 

immune health and GM stability (Kuhn & Stappenbeck, 2013; Reikvam et al., 2011).  

 

The major histocompatibility complex (MHC) is a family of immune genes, forming 

part of the vertebrate acquired immune system (Piertney & Oliver, 2006). These 

genes encode cell-surface glycoprotein receptor molecules that bind to antigens 

before presenting them to T lymphocytes and B cell receptors, which trigger an 

immune or tolerogenic response (Blum et al., 2013; Roland et al., 2020). The MHC 

has two main classes, MHC-I and MHC-II, based on the encoded receptors 

presenting intracellular or extracellular antigens, respectively (Rock et al., 2016; 

Roland et al., 2020). The role of the MHC in combating pathogens has been well-

studied (Janeway et al., 2001; Özer & Lenz, 2021), with the extraordinarily high 

polymorphism of MHC genes observed in natural populations thought to be driven 

by pathogen-mediated selection mechanisms and sexual selection (Spurgin & 

Richardson, 2010). Individual MHC variation determines the range of microbial 
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antigens recognised by the immune system (Bolnick et al., 2014), and is associated 

with variation in commensal gut microbial communities (Davies et al., 2022; Kubinak 

et al., 2015; Silverman et al., 2017; Toivanen et al., 2001). Thus, different MHC 

genotypes could shape individual GM variation by initiating immune responses to 

potentially pathogenic microbes while maintaining beneficial species (Russell et al., 

2019; Silverman et al., 2017).  

 

Previous studies examining the impact of MHC variation on the GM in wild animals 

using 16s metabacoding, have reported mixed findings. Several have found that 

increased MHC diversity is associated with decreased microbiome diversity (Bolnick 

et al., 2014; Leclaire et al., 2019; Uren Webster et al., 2018) but others associated 

it with increased (Hernández-Gómez et al., 2018) or unchanged GM diversity 

(Davies et al., 2022; Montero et al., 2021). Similarly, some studies have observed 

shifts in taxonomic composition with MHC diversity (Bolnick et al., 2014; Hernández-

Gómez et al., 2018; Montero et al., 2021), while others have not (Davies et al., 2022; 

Fleischer et al., 2020, 2022; Uren Webster et al., 2018). Additionally, the 

presence/absence of specific MHC alleles (rather than the overall diversity of 

alleles) has been found to be correlated with GM taxonomic composition (Bolnick et 

al., 2014; Davies et al., 2022). 

 

The functional composition of the GM – represented through microbial genes – 

could provide a more direct representation of host-microbe interactions (Worsley, 

Mazel, et al., 2024). However, the consequences of MHC variation for GM 

functionality have remained underexplored so far (Fuess et al., 2021). Many 

microbes share genes and, consequently, have similar functional roles (Louca et 

al., 2018). Therefore, changes in microbial taxa do not always result in altered GM 

function – i.e. there is functional redundancy (Louca et al., 2018; Worsley, Mazel, et 

al., 2024). Functional redundancy refers to the ecological concept that multiple 

species within an ecosystem can perform similar roles, encoding the same gene 

and/or different genes with the same function, buffering against species loss (Louca 

et al., 2018; Worsley, Mazel, et al., 2024). Studying functionality is important for 

understanding if and how host genetic variation interacts with the GM to influence 

host fitness and evolutionary trajectories (Worsley, Mazel, et al., 2024). Most studies 

on MHC and microbial functionality rely on 16S metabarcoding markers and infer 

function based on known microbial taxa-function association (Gill et al., 2018, 2019; 
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Sun et al., 2020; Wadud Khan et al., 2019). However, in less studied systems, such 

as wild animals, functional inferences from 16S metabarcoding markers may lead 

to misassignments due to the lack of representation of the specific microbes 

observed in existing databases (Sun et al., 2020; Toole et al., 2021).  

 

In humans and transgenic captive mice (Mus musculus), MHC haplotype is 

associated with GM functional composition (Berryman et al., 2024; Bonder et al., 

2016). However, captive/domesticated populations often harbour greatly reduced 

genetic variation and microbial diversity compared to natural populations (Williams 

et al., 2024); thus, these results may not be transferable to wild systems. To our 

knowledge, the only pioneering study of host MHC and GM function in a wild animal 

so far used 16S functional inferences (Montero et al., 2021), which are likely to lead 

to inaccuracies (Sun et al., 2020; Toole et al., 2021). Shotgun metagenomics or 

transcriptomic approaches are needed to accurately determine gut microbiome 

function in response to host MHC variation in wild animal populations.  

 

Here, we investigate the relationship between MHC and GM variation in a population 

of Seychelles warblers (Acrocephalus sechellensis). Despite reduced neutral 

genetic variation due to past population bottlenecks (Spurgin et al., 2014), the 

Seychelles warbler has maintained variation (albeit reduced) at MHC-I and MHC-II 

loci (Davies et al., 2022; Hansson & Richardson, 2005; Richardson & Westerdahl, 

2003). Furthermore, one specific MHC allele (Ase-ua 4) and MHC-I diversity overall 

have been positively correlated with survival and reproductive success (Brouwer et 

al., 2010; Richardson et al., 2005). A previous 16S-based analysis of this population 

has demonstrated that MHC alleles are associated with changes in bacterial GM 

taxonomic diversity and composition (Davies et al., 2022). An analysis of the fungal 

mycobiome also reported changes in species diversity and composition associated 

with MHC alleles and MHC-I diversity, respectively (Worsley et al., 2022). Since 

these studies, we have greatly expanded our sample size, identified key 

environmental control variables, and conducted shotgun sequencing for 

metagenomic analysis (Lee et al., 2024).  

 

We leverage a powerful combination of both 16S rRNA metabarcoding (larger 

sample size) and shotgun metagenomics to provide a comprehensive and high-
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resolution assessment of the association between host MHC variation and both 

taxonomic and, importantly, functional components of the bacterial GM in adult 

Seychelles warblers. First, we test if GM taxonomic diversity and composition 

correlate with MHC-I and MHC-II diversity or alleles. Next, we test if GM functional 

diversity and functional composition are associated with this MHC variation. Finally, 

we assess the role of functional redundancy in preserving the functionality of the 

GM despite changes in host MHC variation. 
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3.3 Methods  

3.3.1 Study system 

The population of insectivorous Seychelles warblers on Cousin Island (29 ha; 04° 

20′ S, 55° 40′ E) has been extensively monitored since 1985 (Brown et al., 2022; 

Komdeur, 1992) Two field seasons are undertaken annually from ca. January to 

March (minor) and June to September (major). Each season, as many individuals 

as possible are caught in the nest (chicks) or using mist nets and sampled (see 

below). New individuals are marked with a British Trust for Ornithology (BTO) metal 

ring and a unique combination of three colour rings, allowing them to be monitored 

throughout their lives. Almost every bird (>96%) on Cousin has been marked this 

way since 1997 (Raj Pant et al., 2019; Richardson et al., 2007). Age is calculated 

based on fledge or hatch dates, or eye colour at first catch (Komdeur, 1991). This 

population includes ca. 320 individuals in approximately 115 territories (Hammers 

et al., 2019; Komdeur & Pels, 2005).  

 

3.3.2 Sample collection 

Faecal sample collection, storage, DNA extraction, library preparation and 

sequencing were conducted between 2017 and 2023, as part of (and described in 

full in) previous studies using 16S rRNA metabarcoding (Davies et al., 2022; 

Worsley, Davies, et al., 2024) and shotgun metagenomics (Lee et al., 2024). In brief, 

caught birds were placed in a flat-bottom paper bag with a sterilised weigh boat 

under a metal grate, allowing faeces to drop to the weigh boat, while minimising 

contact with the birds’ surface. Faecal matter was transferred into a sterile 

microcentrifuge tube containing 1 mL of absolute ethanol, stored at 4°C during 

fieldwork and then at -80°C for long-term storage at the University of East Anglia 

(UEA). The time-of-day (minutes after sunrise; 06:00 AM) of sampling was recorded. 

Each season, control samples were also taken from the hands of fieldworkers using 

a sterile swab and stored in the same manner. A small (ca 25 μL) blood sample was 

also collected from each bird via brachial venepuncture and stored in 0.7 ml of 

absolute ethanol at 4°C. Samples may be collected from the same individual in 

different field seasons; thus, the identify of each individual sampled (Bird ID) is 

recorded and used to control for these repeated measures in statistical analyses.  
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3.3.3 Molecular genotyping  

Total genomic DNA was extracted from blood samples using the DNeasy Blood and 

Tissue kit (Qiagen, Crawley, UK) according to the manufacturer’s protocol. All 

Individuals were genotyped using up to 30 polymorphic microsatellite loci and 3 

sexing markers following (Hadfield et al., 2006; Richardson et al., 2001; Sparks et 

al., 2022) as part of the ongoing determination of parentage and pedigree within this 

population (Raj Pant et al., 2022). Individual genome-wide heterozygosity (Hs) at 

these neutral loci was calculated using genhet 3.1 in R 4.33 (COULON, 2010; R 

Core Team, 2024) as per (Wright et al., 2016). 

 

Sequencing of amplified MHC-I exon 3 and MHC-II exon 2 variants using Illumina 

MiSeq technology had already been undertaken for 314 warblers (Davies et al., 

2022). All confirmed variants (20 MHC-I and 14 MHC-II;  hereafter termed alleles) 

at each of these MHC regions (which contain 4 replicated loci) (Hutchings, 2009; 

Richardson & Westerdahl, 2003) were used to calculate individual MHC diversity. 

However, due to statistical power limitations, only alleles present in >5% and <95% 

of individuals were included in the presence/absence analysis. Two MHC-I alleles 

(Ase-ua1 and Ase-ua10) were co-occurring; thus, only one of them, Ase-ua1, was 

retained for downstream analyses. Therefore, nine MHC-I alleles and three MHC-II 

alleles were used in the presence/absence statistical analyses. Each allele in the 

presence/absence analysis each translates to unique amino acid sequences with 

different antigen-binding properties (Davies et al., 2022). 

 

3.3.4 Gut microbiome screening  

Microbial DNA from faecal samples was extracted using the DNeasy PowerSoil Kit 

(Qiagen, Crawley, UK) and a modified version of the manufacturer’s protocol 

(described in detail (Davies et al., 2022)). Samples were randomised across 

extractions to minimise batch effects.  

 

Faecal DNA samples were submitted for 16S rRNA amplicon sequencing. Amplicon 

sequencing libraries were generated using the V4 primers 515F 

(5'TGCCAGCMGCCGCGGTAA3’) and 806R (5’GGACTACHVGGGTWTCTAAT3’). 

Libraries were sequenced across seven batches using 2 x 250bp, paired-end 
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sequencing on an Illumina MiSeq Platform (see (Davies et al., 2022; Worsley, 

Davies, et al., 2024)). Control samples were also extracted, library prepped and 

sequenced the same way (n = 21 hand controls, 15 negative controls, and 10 

positive ZymoBIOMICS Microbial Community Standard (D6300) controls). 

 

Faecal DNA samples underwent library preparation using the LITE protocol (Perez-

Sepulveda et al., 2021) and were sequenced using 2 x 150 bp, paired-end shotgun 

metagenomic sequencing in two runs on an Illumina NovaSeq X platform (see (Lee 

et al., 2024)). Hand controls (n =6) and positive controls (n =3, two ZymoBIOMICS 

Microbial Community Standard (D6300), and one ZymoBIOMICS Fecal Reference 

with TruMatrix™ Technology (D6323)) were also prepped and sequenced as part 

of the metagenomic samples sequencing.  

 

3.3.5 Bioinformatics 

Read processing for 16S metabarcoding was performed as previously described 

(Worsley, Davies, et al., 2024). Briefly, 16S rRNA reads were processed using 

QIIME2 2019.10; reads were truncated, filtered, and classified into amplicon 

sequencing variants (ASV) using DADA2 (Callahan et al., 2016). ASVs were then 

taxonomically assigned using the naïve-Bayes classifier on the SILVA 132 reference 

database for 16S rRNA gene sequences (Bolyen et al., 2019). These ASVs were 

then imported into R 4.3.3 using phyloseq 1.46.0 (Callahan et al., 2016; McMurdie 

& Holmes, 2013), then filtered to remove non-bacterial sequences, reads 

unassigned to phylum level, and potential contaminants (based on hand controls). 

Rarefaction curves were constructed with iNEXT version 3.0.1 with the default 50 

bootstrap replications (Chao et al., 2014), reaching an asymptote at 8000 reads, 

indicating sample completeness (Figure S3.1A). In addition, 27 faecal samples with 

<8000 reads were removed and ASVs with <50 reads across all samples were also 

removed.  

 

Shotgun metagenomic sequence processing was performed using MATAFILER 

(Hildebrand et al., 2021) as previously described (Lee et al., 2024). Host reads were 

removed by mapping reads with Kraken2 2.1.3 to the Seychelles warbler genome 

(unpublished; complete BUSCO = 96.0% with a total length = 1,081,018,985 bp), 

followed by read quality filtering using sdm 2.14 beta; minimum sequence length of 



 124 

50, minimum average quality of 27 (Hildebrand et al., 2014; Wood et al., 2019), an 

average of 21% (0.07SE) reads were removed. After trimming, two samples and 

five hand controls were removed because they did not have enough reads for 

metagenome assembly. An average of 20,481,040 (SD = 13,718,305) paired-end 

reads per sample were retained for de novo metagenome assembly using 

MEGAHIT 1.2.9 with default parameters and kmer-list of 25,43,67,87,111,131 (Li et 

al., 2015). Using the resulting assemblies, genes were predicted using Prodigal 

2.6.3 (Hyatt et al., 2010) and clustered into gene catalogues (95% identity). Genes 

were functionally annotated using eggNOGmapper 2.1.12 with default parameters 

and the eggNOG database 4 (Cantalapiedra et al., 2021; Powell et al., 2014). 

Functional categories were also assigned to each functional annotation based on 

the cluster of gene orthologs (COG) database (Tatusov et al., 2000). Metaphlan4 

assignments were used to taxonomically assign shotgun sequencing reads. 

Rarefaction curves were constructed for metagenomics taxonomy and functional 

reads with iNEXT version 3.0.1 with the default 50 bootstrap replications (Chao et 

al., 2014) and showed an asymptote and sample completeness at 5,500 and 

100,000 reads, respectively (Figure S3.1B-C). 

 

3.3.6 Statistical analysis  

Adult warblers with both microbiome and MHC data were analysed. For 16S 

analysis, 253 samples from 149 individuals were included in this study. Of these, 99 

samples from 57 adult individuals also had GM shotgun metagenomic data. 

Individuals carried a mean of 5.13 (SE: 0.088, range 2-7) MHC-I alleles and 2.88 

(SE: 0.060, range 1-5) MHC-II alleles. Due to the low number of samples for which 

we had shotgun metagenomic data, we had to limit the number of predictor variables 

(i.e. <9) in each model to avoid overfitting and unreliable estimates. Thus, for MHC 

diversity models, all control variables (see below) were included, but we first used 

the 16S metabarcoding dataset to shortlist which genetic metrics (including specific 

MHC alleles) should be included in the shotgun metagenomic models. Unless stated 

otherwise, all statistical analyses were conducted in R 4.3.3 in R Studio 

2024.12.0+467 (Posit team, 2024; R Core Team, 2024) and linear mixed effect 

(LMMs) and generalised linear mixed effect models (GLMMs) were constructed 

using lme4 1.1-35.5 (Bates et al., 2015). 
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3.3.6.1 GM diversity 

3.3.6.1.1 16S rRNA metabarcoding diversity 

Reads were rarefied to 8,000 reads with the rarefy_even_depth function in vegan 

2.6.6 (Oksanen Jari et al., 2024) – the point at which the number of ASVs identified 

reached an asymptote in rarefaction curves (Figure S3.1A) - before calculation of 

alpha diversity metrics. Both ASV richness and Shannon diversity were calculated 

for each sample using phyloseq 1.46.0 (McMurdie & Holmes, 2013).  

 

A GLMM with a negative binomial distribution was constructed with ASV richness 

as a response variable. An LMM with a Gaussian distribution was used to model 

Shannon diversity. Hereafter, all 16S models were tested with the same set of 

variables (described below) with either MHC alleles or MHC diversity as the 

response unless stated otherwise. MHC-I and MHC-II diversity (i.e. the number of 

alleles per individual) were included as predictors, along with genome-wide 

heterozygosity, age, season, sample year, sex, sample days at 4°C, and time of day 

sampled, as fixed-term control variables and bird ID as a random effect. Quadratic 

effects of MHC-I diversity and MHC-II diversity were included to test if an 

intermediate number of alleles influenced GM characteristics, but were dropped if 

not significant, least significant first, to allow interpretation of the main terms. 

Standardised effect sizes of each fixed effect were determined using partial R2.  

 

To determine if specific MHC alleles were shaping the GM, a second model was 

constructed using the presence/absence of MHC-I (Ase-ua 1, Ase-ua 3, Ase-ua 4, 

Ase-ua 5, Ase-ua 6, Ase-ua 7, Ase-ua 8, Ase-ua 9, Ase-ua 11) and MHC-II alleles 

(Ase-dab 3, Ase-dab 4, Ase-dab 5) as predictors in place of MHC diversity.  

 

3.3.6.1.2 Metagenomic taxonomic diversity 

Metaphlan4 assignments were rarefied to 5,500 reads (Figure S3.1B) – prior to 

alpha diversity analysis. A GLMM with a negative binomial distribution was then 

used to model species richness, and an LMM was used to model Shannon diversity. 

All metagenomics analyses were performed with the same structure (described 

below, i.e. MHC diversity models included all terms, while MHC presence/absence 

models only included genetic variables that were identified as significant in the 

corresponding 16S analysis).  
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A second model with the presence/absence of specific MHC alleles (identified as 

significant in the 16S metabarcoding model above) was constructed.  

 

3.3.6.1.3 Metagenomic functional diversity 

Functional gene annotations (determined using eggNOG mapper described above) 

were rarefied to 100,000 reads (Figure S3.1C) before functional alpha diversity 

analysis. Scaled exponentially transformed functional gene richness and 

exponentially transformed functional Shannon diversity were modelled separately 

with LMMs, with either the MHC diversity or the presence/absence of MHC alleles, 

along with genome-wide heterozygosity and environmental control variables (as 

described for 16S analyses above).  

 

3.3.6.2 GM composition 

3.3.6.2.1 16S rRNA metabarcoding composition 

Unrarefied reads were used. Rare ASVs (<5% prevalence) were removed prior to 

analysis, and a centred log ratio (CLR) transformation was applied to the remaining 

ASV abundances using microbiome 1.24.0 (Leo Lahti & Sudarshan Shetty, 2019). 

Pairwise Aitchison distances (i.e. composition differences) among GM samples 

were then modelled via a PERMANOVA using the adonis2() function in vegan 2.6.6 

with 9999 permutations. A blocking effect of bird ID was included to account for 

repeated sampling (Oksanen Jari et al., 2024). The first PERMANOVA model 

included MHC diversity, genome-wide heterozygosity, age, season, sample year, 

sex, days at 4°C and time of day as predictors. The second PERMANOVA model 

had the presence/absence of individual MHC alleles instead of MHC diversity. Both 

these and all subsequent GM composition models were set up in the same way and 

visualised with a PCA generated in phyloseq 1.46.0 (McMurdie & Holmes, 2013) 

unless stated otherwise. 

Metagenomic taxonomic composition 

Rare species were removed (<5% prevalence), the remaining unrarefied reads were 

CLR transformed and used in a PERMANOVA to identify differences in taxonomic 

composition associated with MHC variation (as described for 16S analysis above). 

For the MHC alleles model, only genetic predictors identified as significant in the 
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16S rRNA metabarcoding composition analysis were included, along with all control 

variables (as described for 16S analyses above).  

 

3.3.6.2.3 Metagenomic functional composition 

Rare functional genes (<5% prevalence) were removed and the remaining 

unrarefied reads were CLR transformed and used in a PERMANOVA to test for 

differences in functional composition linked to MHC variation (as described for 

metagenomic taxonomic composition analyses above).  

 

3.3.6.3 Differential abundance analyses  

3.3.6.3.1 Differential abundance of metagenomic taxonomic species 

Differential abundance tests were carried out using ALDEx2 1.34.0 (Fernandes et 

al., 2013). Only common species (>10% prevalence and >0.001% abundance 

resulting in 49 metagenomic identified species) were included. Abundances were 

CLR transformed as part of the ALDEx2 method (Fernandes et al., 2013). Genome-

wide heterozygosity, MHC-I and MHC-II diversity as well as significant variables 

identified in the metagenomic taxonomic composition analysis were included as 

predictors. 

 

3.3.6.3.2 Differential abundance of metagenomic functional genes 

Abundances of common functional genes (>50% prevalence, >0.1% abundance 

resulting in 94 eggNOG members) were CLR-transformed using ALDEx2 1.34.0 

(Fernandes et al., 2013) and included in this analysis. Predictors were included as 

above but based on significant variables in metagenomic functional composition 

analysis. 

 

3.3.6.4 Network analysis 

3.3.6.4.1 Network analysis of metagenomic taxonomic species 

Networks of metagenomic taxonomic species were constructed with SParse 

InversE Covariance Estimation for Ecological Association Inference (SPIEC-EASI) 

version 1.0.7 (Kurtz et al., 2015). The samples were split into two categories based 

on average MHC diversity (see above): low (<6) and high (6) MHC-I diversity, or 

low (<3) and high (3) MHC-II diversity. The raw counts of common bacterial species 
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were used as inputs, with SPIEC-EASI applying a CLR transformation. Common 

species were used to capture relevant, stable GM species and minimise the 

influence of rare taxa (Fabbrini et al., 2023). The number of nodes (species), the 

number of edges (interaction between species), the average number of connections 

per node, modularity and negative-to-positive ratios were calculated. The networks 

were then plotted with the ggnet2 function in ggnet 0.1.0 (Briatte, 2025). Nodes were 

coloured by Phylum, and size was based on mean abundance per species.  

 

3.3.6.4.2 Network analysis of metagenomic functional genes 

Networks were constructed exactly as described above but using Metagenomic 

functional genes (eggNOG genes) instead of metagenomic species.  
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3.4 Results 

3.4.1 GM diversity 

3.4.1.1 16S rRNA metabarcoding diversity 

GM alpha diversity (Shannon diversity or richness) was not significantly associated 

with MHC-I or MHC-II diversity (Table 3.1A, Table S3.1A & S3.2A & S3.3A). The 

presence of the MHC-I allele Ase-ua 11 - but no other MHC allele - was significantly 

positively associated with 16S richness (Table 3.1B, Table S3.1B & S3.2B & S3.3B). 

No alleles were associated with Shannon diversity.  

 

  



Table 3.1. The relationship between gut microbiome alpha diversity (richness) and variation in host (A) Major histocompatibility complex (MHC) 
diversity and (B) the presence/absence of specific MHC alleles in adult Seychelles warblers. Generalised linear mixed models with a negative 
binomial distribution were used for 16S ASV diversity (N = 253 samples from 149 individuals) and metagenomics taxonomy diversity (N = 99 
samples, 57 individuals), and linear mixed models were used for metagenomics functional diversity (N = 99 samples, 57 individuals). Reference 
categories for categorical variables were as follows: Female (sex), winter (season), 2017 (Sample year), and absent (in all MHC alleles). 
Significant (P < 0.05) variables are shown in bold. Shannon diversity results are similar and shown in Supplementary Table S3.1.  

Predictors 
16S ASV diversity Metagenomics taxonomic diversity Metagenomics functional diversity 

Est SE z P Est SE z P Est SE t P 

A) MHC Diversity             

(Intercept) 5.37 0.32 16.82 < 0.001 3.23 0.70 4.62 < 0.001 1.06 0.45 2.39 0.02 

Heterozygosity -0.19 0.21 -0.93 0.35 0.43 0.43 1.02 0.31 -0.13 0.28 -0.46 0.65 

MHC-I Diversity 0.04 0.03 1.26 0.21 -0.01 0.06 -0.18 0.85 0.07 0.04 1.60 0.12 

MHC-II Diversity -0.01 0.04 -0.23 0.82 -0.14 0.08 -1.83 0.07 -0.02 0.06 -0.26 0.79 

Age -0.02 0.02 -1.28 0.20 -0.04 0.03 -1.12 0.26 -0.04 0.02 -2.07 0.04 

Season (summer) 0.04 0.12 0.30 0.76 0.19 0.22 0.90 0.37 -0.04 0.14 -0.26 0.79 

Sex (male) -0.22 0.09 -2.51 0.01 0.15 0.17 0.90 0.37 -0.04 0.12 -0.31 0.76 

Days at 4°C -0.01 0.09 -0.05 0.96 0.02 0.19 0.13 0.90 -0.07 0.10 -0.63 0.53 

Time of day 0.02 0.08 0.19 0.85 0.26 0.18 1.46 0.15 -0.06 0.10 -0.60 0.55 

Sample Year (2018) -0.03 0.13 -0.27 0.79 0.01 0.27 0.05 0.96 0.13 0.16 0.84 0.40 

Sample Year (2019) 0.14 0.16 0.87 0.39 -0.29 0.37 -0.79 0.43 -0.03 0.21 -0.13 0.90 

Sample Year (2020) 0.48 0.21 2.29 0.02 -0.02 0.45 -0.05 0.96 0.08 0.26 0.31 0.76 

Sample Year (2021) 0.21 0.16 1.32 0.19 0.00 0.37 -0.01 0.99 0.07 0.20 0.33 0.75 

Sample Year (2022) 0.14 0.16 0.88 0.38 0.45 0.31 1.44 0.15 0.31 0.18 1.70 0.09 

Sample Year (2023)     0.08 0.36 0.22 0.83 -0.05 0.21 -0.25 0.81 

B) Presence/absence of MHC alleles 
            

(Intercept) 5.66 0.33 17.37 < 0.001 3.24 0.29 11.15 < 0.001 1.24 0.17 7.41 < 0.001 

Heterozygosity -0.09 0.21 -0.42 0.68         
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Ase-dab3  0.29 0.15 1.95 0.05         

Ase-dab4  -0.27 0.15 -1.76 0.08         

Ase-dab5  0.18 0.16 1.15 0.25         

Ase-ua1  0.12 0.18 0.64 0.52         

Ase-ua3  -0.11 0.19 -0.60 0.55         

Ase-ua4  -0.19 0.14 -1.37 0.17         

Ase-ua5  -0.09 0.18 -0.52 0.60         

Ase-ua6  -0.18 0.17 -1.04 0.30         

Ase-ua7  -0.16 0.20 -0.80 0.43         

Ase-ua8  -0.04 0.14 -0.29 0.78         

Ase-ua9  -0.07 0.17 -0.39 0.70         

Ase-ua11  0.38 0.18 2.07 0.04 0.00 0.16 0.01 0.99 0.05 0.11 0.44 0.66 

Age -0.03 0.02 -1.63 0.10 -0.06 0.03 -1.67 0.10 -0.05 0.02 -2.38 0.02 

Season (summer) 0.04 0.12 0.31 0.75 0.09 0.22 0.42 0.68 -0.01 0.13 -0.10 0.92 

Sex (male) -0.25 0.09 -2.88 < 0.001 0.12 0.17 0.75 0.45 -0.08 0.11 -0.73 0.47 

Days at 4°C -0.03 0.09 -0.33 0.75 -0.03 0.19 -0.16 0.88 -0.07 0.10 -0.68 0.50 

Time of day 0.08 0.08 0.92 0.36 0.27 0.18 1.48 0.14 -0.05 0.10 -0.52 0.61 

Sample Year (2018) -0.06 0.12 -0.45 0.65 0.08 0.28 0.30 0.76 0.13 0.16 0.85 0.40 

Sample Year (2019) 0.09 0.16 0.56 0.58 -0.13 0.37 -0.35 0.73 -0.05 0.21 -0.22 0.83 

Sample Year (2020) 0.42 0.21 2.02 0.04 -0.08 0.46 -0.18 0.86 0.08 0.26 0.31 0.76 

Sample Year (2021) 0.21 0.16 1.30 0.19 0.14 0.37 0.38 0.71 0.10 0.20 0.50 0.62 

Sample Year (2022) 0.12 0.15 0.79 0.43 0.57 0.32 1.79 0.07 0.34 0.18 1.86 0.07 

Sample Year (2023)     0.29 0.37 0.78 0.43 -0.05 0.21 -0.23 0.82 



3.4.1.2 Metagenomic taxonomic diversity 

Taxonomic alpha diversity (Shannon diversity or richness) calculated using shotgun 

metagenomics data was not associated with MHC-I or MHC-II diversity (Table 3.1A, 

Table S3.1A & S3.2A & S3.3A), nor with the presence/absence of Ase-ua 11 (the 

MHC variant identified in the 16S analysis above (Table 3.1B, Table S3.1B & S3.2B 

& S3.3B)). 

 

3.4.1.3 Metagenomic functional diversity 

Functional alpha diversity (Shannon diversity or richness) of gene annotations 

derived from shotgun metagenomics data was not associated with MHC-I or MHC-

II diversity (Table 3.1A, Table S3.1A & S3.2A & S3.3A) nor with Ase-ua 11 (Table 

3.1B, Table S3.1B & S3.2B & S3.3B). 

 

3.4.2 GM composition 

3.4.2.1 16S rRNA metabarcoding composition 

16S GM composition was associated with both a quadratic function of MHC-I 

diversity and of MHC-II diversity (Table 3.2A, Figure 3.1A-B). It was also associated 

with season, sample year, days at 4°C, and time of day (Table 3.2A) but not with 

genome-wide heterozygosity, age, and sex. 

 



Table 3.2. PERMANOVA analyses of gut microbiome composition in relation to individual major histocompatibility complex (MHC) characteristics 
in adult Seychelles warblers. Performed using Euclidean distance matrices of CLR-transformed abundances of (I) 16S amplicon sequencing 
variants (ASV) composition, (II) metagenomic taxonomic composition, (III) metagenomic functional gene composition categories. Separate 
models included (A) MHC diversity and (B) the presence/absence of MHC alleles. Significant predictors (p<0.05) are in bold. N=253 samples 
from 149 individuals were included in the 16S metabarcoding analyses. N=99 samples from 57 individuals were used for analyses of 
metagenomic taxonomic and functional composition. Bird ID was included as a blocking factor.  

Predictor 
(I) 16S ASV composition (II) Metagenomics taxonomic composition (III) Metagenomics functional gene composition 

df R2 F p df R2 F p df R2 F p 

A) MHC Diversity             

Heterozygosity 1 0.003 0.719 0.067 1 0.008 0.797 0.030 1 0.015 1.485 0.052 

MHC-I Diversity 1 0.003 0.919 0.007 1 0.010 1.034 0.626 1 0.014 1.423 0.045 

MHC-I Diversity^2 1 0.004 0.951 0.006 - - 

MHC-II Diversity 1 0.003 0.839 0.036 1 0.009 0.925 0.034 1 0.011 1.069 0.642 

MHC-II Diversity^2 1 0.003 0.913 0.028 - - 

Age 1 0.003 0.918 0.930 1 0.015 1.625 0.528  0.010 0.976 0.893 

Season 1 0.007 1.955 <0.001 1 0.019 1.995 0.001 1 0.014 1.368 0.155 

Sample Year 5 0.038 2.023 <0.001 6 0.085 1.492 <0.001 6 0.063 1.044 0.202 

Sex 1 0.003 0.914 0.870 1 0.012 1.228 <0.001 1 0.012 1.206 0.185 

Days at 4°C 1 0.010 2.618 0.008 1 0.011 1.116 0.494 1 0.014 1.394 0.015 

Time of day 1 0.010 2.525 0.001 1 0.017 1.773 <0.001 1 0.013 1.325 0.168 

B) Presence/absence of MHC alleles       

Heterozygosity 1 0.003 0.679 0.246 - - 

Ase-dab3 1 0.004 1.004 0.999 - - 

Ase-dab4 1 0.003 0.894 0.371 - - 

Ase-dab5 1 0.004 0.991 0.740 - - 

Ase-ua1 1 0.004 1.107 0.084 - - 

Ase-ua3 1 0.004 0.934 1.000 - - 
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Ase-ua4 1 0.005 1.273 0.876 - - 

Ase-ua5 1 0.004 0.986 0.048 1 0.006 0.584 0.584 1 0.008 0.799 0.604 

Ase-ua6 1 0.003 0.873 0.185 - - 

Ase-ua7 1 0.004 1.150 0.010 1 0.009 0.995 <0.001 1 0.006 0.611 0.502 

Ase-ua8 1 0.006 1.514 0.605 - - 

Ase-ua9 1 0.003 0.899 0.011 1 0.008 0.834 0.118 1 0.007 0.644 0.824 

Ase-ua11 1 0.007 1.743 0.976 - - 

Age 1 0.004 0.937 0.971 1 0.015 1.532 0.518 1 0.011 1.080 0.796 

Season 1 0.007 1.966 0.001 1 0.020 2.145 <0.001 1 0.015 1.421 0.278 

Sample Year 5 0.038 1.986 <0.001 6 0.083 1.455 <0.001 6 0.062 1.011 0.354 

Sex 1 0.003 0.889 0.862 1 0.014 1.481 <0.001 1 0.009 0.900 0.198 

Days at 4°C 1 0.010 2.543 0.009 1 0.010 1.083 0.485 1 0.013 1.297 0.014 

Time of day 1 0.009 2.401 <0.001 1 0.017 1.794 <0.001 1 0.014 1.345 0.224 



16S GM composition was associated with the MHC-I variants, Ase-ua 5, Ase-ua 7, 

and Ase-ua 9 (Table 3.2B, Figure 3.1C-E), and also season, sample year, days at 

4°C, and time of day (Table 3.2B), but not genome-wide heterozygosity, age, and 

sex. Despite these significant associations between GM composition and MHC 

variation, the overall effect sizes were small across all MHC variables (R2<0.4%, 

Table 3.2, Figure 3.1). 

 

 

 

Figure 3.1. Principal Component Analyses (PCA) of gut microbiome compositional 
variation determined using 16S rRNA metabarcoding of adult Seychelles warbler 
faecal samples in relation to (A) MHC-I diversity, (B) MHC-II diversity, and the 
presence/absence (1/0) of (C) MHC-I allele Ase-ua 5, (D) MHC-I allele Ase-ua 7, 
(E) MHC-I allele Ase-ua 9. N=253 from 149 birds. Large diamonds represent the 
group centroids. For clarity, samples were grouped into discrete categories for 
plotting. In plots A-B, the coloured points represent low (green), medium (blue), and 
high (red) MHC diversity. In plots C-E, blue = absence, red = presence of the allele. 
Ellipses of 95% confidence intervals of each group are drawn around the points. 
Principal components 1 and 2 explained 14.1% and 4% of the variation in gut 
microbiome structure, respectively.  

 

3.4.2.2 Metagenomic taxonomic composition 

Variation in GM metagenomic taxonomic composition was associated with genome-

wide heterozygosity and MHC-II diversity, but not MHC-I diversity (Table 3.2A, 

Figure 3.2A-B). Of the control variables, sex, sample year, and time of day were 
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associated with metagenomics taxonomic composition (Table 3.2A), but age, 

season, and days at 4°C were not. 

 

When assessing MHC variants identified in the 16S analysis, GM metagenomic 

taxonomic composition was associated with the presence of MHC-I Ase-ua 7 (Table 

3.2B, Figure 3.2C) but not Ase-ua 5 and Ase-ua 9. Sex, season, sample year, and 

time of day were also associated with metagenomic taxonomic composition (Table 

3.2B), but age and days at 4°C were not. Despite significant differences in GM 

composition, the overall effect sizes were small across all MHC variables (R2<0.9%, 

Table 3.2, Figure 3.2). 

 

 

Figure 3.2. Principal Component Analyses (PCA) of gut microbiome metagenomic 
taxonomic compositional variation of Seychelles warbler faecal samples in relation 
to (A) genome-wide heterozygosity, (B) MHC-II diversity, and (C) MHC-I allele Ase-
ua 7. N=99 from 57 birds. Large diamonds represent the group centroids. For clarity, 
samples were grouped into discrete categories for plotting. In plots A and B, the 
coloured points indicate low (green), middle (blue), and high (red) genome-wide 
heterozygosity (Heterozygosity) and MHC-II diversity, respectively. In plot C, blue = 
absence (0) and red = presence (1) of Ase-ua 7. Ellipses of each group are drawn 
around the points. 
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3.4.2.3 Metagenomics functional composition 

Functional GM composition was significantly associated with increasing individual 

MHC-I diversity (Table 3.2A, Figure 3.3) and with days at 4°C (Table 3.2A). 

However, genome-wide heterozygosity, MHC-II diversity and all other control 

variables (age, sex, season, sample year, and time of day) were not (Table 3.2A). 

 

Functional GM composition was not significantly associated with the MHC alleles 

Ase-ua 5, Ase-ua 7, and Ase-ua 9 identified in the 16S analysis above (Table 3.2B). 

Functional GM composition was associated with days stored at 4°C (Table 3.2B), 

but not with any other control variables (age, sex, season, sample year, time of day) 

(Table 3.2B). Despite significant differences in GM composition, the overall effect 

sizes were small across all MHC variables (R2<1.4%, Table 3.2, Figure 3.3), but the 

MHC-I diversity effect size is the largest among GM compositional analyses. 

 

Figure 3.3. Principal Component Analyses (PCA) of gut microbiome compositional 
variation determined using metagenomics function with MHC-I diversity in the gut 
microbiome of Seychelles warblers (n = 99 from 57 birds). Large diamonds 
represent the group centroids. For clarity, samples were grouped into discrete 
categories for plotting. The coloured points represent the count <4 (green), 4-6 
(blue), and 7 (red) of MHC-I diversity. Principal components 1 and 2 explained 
18.3% and 8.6% of gut microbiome structure, respectively. 
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3.4.3 Differential abundance analysis  

3.4.3.1 Differential abundance of metagenomic taxonomic species 

The abundance of some individual bacterial species (identified using 

metagenomics) varied in relation to MHC characteristics (Figure 3.4AB); the 

abundance of Enterococcus casselifavus decreased, and Microbacterium enclense 

increased with increasing MHC-I diversity (Figure 3.4A). The abundance of 

Lactococcus lactis decreased, and the abundance of Staphylococcus lloydii 

increased with increasing MHC-II diversity (Figure 3.4B).  

 

The abundances of four bacterial species were significantly associated with the 

presence/absence of the MHC-I allele Ase-ua 7 (identified as associated with GM 

taxonomy composition), i.e. there was decreased prevalence of Enterococcus 

casselifavus and Gordonia sp OPL2, and an increased prevalence of Escherichia 

coli and Vulcaniibacterium thermophilum, when Ase-ua 7 was present (Figure 3.4C). 

The abundance of bacterial species was not significantly related to host genome-

wide heterozygosity (Figure 3.4D). 
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Figure 3.4. Differential abundance of metagenomically identified bacterial species 
in adult Seychelles warblers according to host (A) genome-wide heterozygosity, (B) 
MHC-I diversity, (C) MHC-II diversity, and (D) presence of MHC-I Ase-ua 7 (n=99 
from 57 birds). Points represent bacterial species and are coloured according to 
significance; green points (with species-level taxonomic annotations) are 
significantly differentially abundant (p<0.05), and grey points are not.  

 

3.4.3.2 Differential abundance of metagenomic functional genes 

Abundances of 24 GM functional gene annotations differed significantly in relation 

to individual host MHC-I diversity (Table S3.4, Figure 3.5A). In total, 9 GM genes 

increased in abundance and 15 genes decreased in abundance with increasing 

MHC-I diversity.  
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The 24 gene annotations were derived from 13 functional gene categories (defined 

by Cluster of Gene Orthologs (COG)). With increasing MHC-I diversity, two COG 

categories only increased in prevalence, four COG categories increased and 

decreased in prevalence, and seven COG categories only decreased in prevalence 

(Figure 3.5B). Five of the seven COG categories that only decreased in prevalence 

are involved in bacterial metabolism. In addition, one GM functional gene annotation 

(COG1216) increased in prevalence with increasing genome-wide heterozygosity.  

 

The KEGG pathways of MHC-I diversity associated genes (Table S3.4) further 

support the findings, as core microbial function pathways decreased in prevalence; 

Carbohydrate metabolism (K01885, K01886, K01652, K06131, K01115), lipid 

metabolism (K00666), amino acid metabolism (K00852, K00847, K00874), 

transcription (K03043, K02335, K04799), translation (K08832, K15409), and 

replication and repair (K03581, K04043, K03283) (Table S3.4). In addition, MHC-I 

diversity was positively associated with KEGG pathways involved in environmental 

defence or stress adaptation (K02004, K18138, K09800, K04763; Table S3.4). 

 

Three GM functional gene annotations were differentially abundant with increasing 

MHC-II diversity: decreased in COG0318 (K00666 – fatty-acyl-CoA synthase), and 

increased in COG1609 (K02529 – LacI family transcriptional regulator, galactose 

operon repressor) and COG1653 (K02027 – multiple sugar transport system 

substrate-binding protein).  
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Figure 3.5. Variation in the abundance of bacterial functional genes (determined 
using eggNOG) in the gut microbiome of adult Seychelles warblers in relation to 
individual MHC-I diversity (n=99 from 57 birds). (A) The results of an ALDEx2 
differential abundance test showing the log fold change in abundance of each 
eggNOG gene annotation with increasing MHC-I diversity. Blue points are 
significantly (p<0.05) more abundant, red points are significantly (p<0.05) less 
abundant, and grey points do not differ significantly with MHC-I diversity. Labels on 
significant points represent eggNOG members. (B) Counts of functional genes per 
eggNOG category that demonstrated a significant positive (blue) or negative (red) 
log fold change with increasing MHC-I diversity, respectively. 

 

3.4.4 Network analysis 

3.4.4.1 Network analysis of metagenomic taxonomic species 

The metagenomic taxonomic species network had a higher number of connected 

nodes and edges in low MHC-I diversity (19 nodes, 13 edges) compared to high (2 

nodes, 1 edge) MHC-I diversity individuals (Figure 3.6AB). The average number of 
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edges per connected node was also higher in low (mean = 1.4 edges per node) than 

in high MHC-I diversity (mean = 1.0 edges per node). Modularity was 0.82 in low 

MHC-I diversity, but zero in high MHC-I diversity due to only having one edge. The 

ratio of negative to positive edges in low MHC-I diversity was 0.3; there was only a 

single positive edge and no negative edges in MHC-I diversity. This shows that the 

metagenomic taxonomic species network is more fragmented in high MHC-I 

diversity individuals than in low MHC-I diversity individuals. 

 

In relation to MHC-II diversity, the metagenomic taxonomic species network had a 

higher number of connected nodes in low (14 nodes) than in high (10 nodes) MHC-

II diversity individuals (Figure 3.6CD). However, the number of edges did not differ 

between low (8 edges) and high (8 edges) MHC-II diversity (Figure 3.6CD). The 

average number of edges per connected node was lower in low (mean = 1.1 edges 

per node) than in high (mean = 1.6 edges per node) MHC-II diversity. Modularity 

was also higher in low (0.81) than in high (0.59) MHC-II diversity. The ratio of 

negative to positive edges was 0.33 in low MHC-II diversity and was 0.14 in high 

MHC-II diversity. This shows that the metagenomic taxonomic species network of 

individuals with high MHC-II diversity is slightly more fragmented and has weaker 

connections than in individuals with low MHC-II diversity.  
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Figure 3.6. Network analysis between MHC diversity and the gut microbiome in adult 
Seychelles warblers (n=99 from 57 birds). Each node represents A-D) metagenomic 
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taxonomic species or E-H) metagenomic functional genes. ABEF) MHC-I diversity, 
CDGH) MHC-II diversity, ACEG) low MHC diversity, BDFH) high MHC diversity. 
Nodes (species/genes) are coloured by A-D) Phylum and E-H) functional category. 
The size of the nodes is proportional to the mean abundance. Lines are edges 
(interaction between species/genes), connecting nodes that are linked.  

 

3.4.4.2 Network analysis of metagenomic functional genes 

The metagenomic functional genes network had a higher number of connected 

nodes and edges in individuals with low MHC-I (76 nodes, 87 edges) than high 

MHC-I (56 nodes, 44 edges) diversity (Figure 3.6EF). The average number of edges 

per connected node was also higher in low MHC-I (mean = 2.3 edges per node) 

than in high MHC-I diversity (mean = 1.6 edges per node). Modularity was lower in 

low MHC-I (0.72) than in high (0.85) MHC-I diversity. The ratio of negative to positive 

edges was 0.45 in low MHC-I diversity and 0.19 in high MHC-I diversity. This shows 

that the metagenomically derived functional genes network is more fragmented in 

high MHC-I diversity individuals, but has stronger connections than in low MHC-I 

diversity individuals. 

 

In relation to MHC-II diversity, the metagenomic functional genes network had a 

higher number of connected nodes and edges in low (74 nodes, 83 edges) than in 

high MHC-II diversity individuals (55 nodes, 62 edges) (Figure 3.6GH). The average 

number of edges per connected node was very similar between low (mean = 2.2 

edges per node) and high (mean = 2.3 edges per node) MHC-II diversity individuals. 

Modularity was also higher in low (0.76) than in high (0.65) MHC-II diversity 

individuals. The ratio of negative to positive edges was 0.26 in low MHC-II diversity 

and was 0.44 in high MHC-II diversity. This suggests that the metagenomic 

functional genes network of high MHC-II diversity individuals is more fragmented 

and has weaker connections than in low MHC-II diversity individuals. 
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3.5 Discussion 

Our study shows that in adult Seychelles warblers, there was no association 

between GM diversity (characterised by either 16S ASV or metagenomics) and 

MHC diversity, though one specific MHC variant (MHC-I allele Ase-ua 11) was 

associated with 16S GM richness but not metagenomic GM diversity. However, GM 

composition (16S and metagenomic-derived) was associated with MHC diversity. 

The 16S GM composition was associated with MHC-I and MHC-II diversity in a non-

linear (quadratic function) manner, and with the MHC-I alleles Ase-ua 5, Ase-ua 7, 

and Ase-ua 9. The metagenomic taxonomic composition was associated with MHC-

II diversity and the MHC-I allele Ase-ua 7. Furthermore, the functional composition 

of the GM (metagenomically derived) was associated with MHC-I diversity. 

Additionally, two metagenomic bacterial species were differentially abundant with 

increasing MHC-I and MHC-II diversity, and four bacterial species differed in relation 

to the presence/absence of MHC-I allele Ase-ua 7. Furthermore, 24 were 

differentially abundant with increasing MHC-I diversity (driving increases in microbial 

defence mechanisms and decreases in microbial metabolism) and three with 

increasing MHC-II diversity. Network analysis showed that high (compared to low) 

MHC-I diversity was associated with greater fragmentation in both taxonomic and 

functional GM structure, higher modularity, and a lower negative-to-positive 

interaction ratio, indicating fewer but strongly interconnected nodes in high MHC-I 

diversity individuals. In contrast, individuals with high MHC-II diversity were 

associated with slightly more fragmentation, lower modularity, and a higher 

negative-to-positive interaction ratio, suggesting fewer and weaker connections.  

 

Consistent with previous findings on the Seychelles warbler, we found that MHC 

diversity (either class-I or class-II) was not significantly associated with GM diversity 

(Davies et al., 2022; Worsley et al., 2022). This contradicts results found in other 

wild populations (Bolnick et al., 2014; Hernández-Gómez et al., 2018; Leclaire et 

al., 2019; Uren Webster et al., 2018). For example, in giant salamanders 

(Cryptobranchus alleganiensis bishopi and C. a. alleganiensis) and sticklebacks 

(Gasterosteus aculeatus), increasing MHC allelic diversity is correlated with 

increases and decreases in overall skin microbiome diversity, respectively (Bolnick 

et al., 2014; Hernández-Gómez et al., 2018). Given that the Seychelles warblers 

had a recent population bottleneck (<50 individuals in the 1960s, Spurgin et al., 

2014), the MHC is less diverse than similar species (Richardson & Westerdahl, 
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2003), and may therefore have a reduced impact on the GM diversity. However, the 

MHC region in the Seychelles warblers maintains considerable variation despite the 

population bottleneck (Richardson & Westerdahl, 2003). Thus, the MHC and GM 

diversity association may be host-species dependent, regardless of overall MHC 

variation levels. 

 

In contrast to the GM diversity results, shifts in GM composition (both 16S and 

metagenomic) were associated with MHC characteristics. An association between 

MHC-II diversity and GM taxonomic composition, as seen in our study, has been 

shown multiple times in captive and wild systems (see review (Roland et al., 2020)). 

In our study, only two bacterial species were differentially abundant (increased 

Staphylococcus loydii and decreased Lactococcus lactis). There is evidence of 

Lactococcus lactis causing detrimental infections in avian species (Goyache et al., 

2001), but it has also been used as a probiotic for broiler chickens (Gallus gallus 

domesticus) (Boodhoo et al., 2023; Navale et al., 2024). Staphylococcus loydii 

hasn’t been observed to cause infections in any species. These results may suggest 

that in the Seychelles warblers, increasing MHC-II diversity may suppress 

pathogenic species. In addition, the MHC-I allele Ase-ua 7 was significantly 

correlated with GM composition, consistent with previous work on this population 

(Davies et al., 2022). Ase-ua 7 was associated with decreases in Enterococcus 

casselifavus and Gordonia sp OPL2, (gram-positive bacteria), but increased 

prevalence of the gram-negative bacteria, Escherichia coli and Vulcaniibacterium 

thermophilum, (Larke-Mejía et al., 2020; Lim et al., 2010; Niu et al., 2020; Yoshino, 

2023). The World Health Organization (WHO) priority list of pathogens primarily 

consists of Gram-negative bacteria (Breijyeh et al., 2020). Therefore, we speculate 

that the effect of Ase-ua 7 on GM composition could be based on microbial cell wall 

structure and could be important in controlling pathogens. Indeed, during 

inflammation, MHC expression was upregulated in the small intestinal stem cells of 

humans and mice (Mus musculus) (Heuberger et al., 2021). 

 

In our study, the effects of MHC-II diversity and the MHC-I allele Ase-ua 7 on 

taxonomic GM are relatively small (two and four, out of 49, core species were 

differentially abundant, respectively). Such limited effects have also been found in 

the few previous similar studies, with the MHC variations influencing only a very 

small number of bacterial species rather than the overall composition (Bolnick et al., 
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2014; Montero et al., 2021; Worsley et al., 2022). This small taxonomic effect could 

explain why both MHC-II diversity and MHC-I allele Ase-ua 7 were not significantly 

associated with metagenomic function (see below). As only a few species are 

influenced, other microbes may replace their function through functional redundancy 

(Louca et al., 2018; Worsley, Mazel, et al., 2024). Although network analyses of both 

taxonomic and functional GM revealed that high MHC-II diversity was associated 

with greater fragmentation, lower modularity, and a higher negative-to-positive 

interaction ratio, these differences were less pronounced than those observed for 

MHC-I diversity. This further supports the conclusion that MHC-II diversity has a 

relatively small effect on the gut microbiome. 

 

In contrast, the diversity of MHC-I alleles (but not class-II) did appear to influence 

GM functional differences (determined metagenomically), with higher MHC-I 

diversity leading to the presence of an increased number of microbial defence 

genes, whilst decreasing the number of metabolism-related genes. This is further 

shown in network analysis, where taxonomic and functional microbial networks 

appear more fragmented in individuals with high MHC-I diversity, indicating reduced 

microbial interactions. These patterns may reflect increased microbial competition 

or immune-mediated disruption under high MHC-I diversity. In addition, high MHC-

diversity also had higher modularity, suggesting higher resilience to environmental 

perturbations (Coyte et al., 2022; Fabbrini et al., 2023), which supports the findings 

of increased genes involved in defence in our study. Trade-offs between defence 

and growth are common (although not ubiquitous) in microbial species (Ferenci, 

2016; Liu et al., 2024). Our results suggest that these microbial trade-offs can also 

amount to costs for the host, whereby control of the microbiome (via the immune 

system) can result in a reduction in the GM’s metabolic potential. Presumably, these 

costs may be outweighed by the benefits of eliminating pathogens and maintaining 

a healthy microbiome (Gillingham et al., 2025; Metcalf & Koskella, 2019). 

Quantifying the relative costs and benefits of maintaining a dynamic microbiome 

remains largely unexplored but is essential for understanding how host-microbiome 

interactions, and host control mechanisms (including the immune system) evolve 

(Gillingham et al., 2025; Metcalf & Koskella, 2019; Wilde et al., 2024). 

 

Overall, our study indicates that MHC-I, not the MHC-II, plays a greater role in 

shaping the GM, both taxonomically and functionally. This is consistent with 
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previous findings in the Seychelles warbler (Davies et al., 2022; Worsley et al., 

2022), as well as in the reddish-gray mouse lemur (Microcebus griseorufus) 

(Montero et al., 2021). MHC-I molecules encode receptors that typically act 

intracellularly, while MHC-II receptors interact extracellularly, therefore, one would 

think that the class-II receptors should have greater interaction with and influence 

over gut microbes (Rock et al., 2016). However, the mechanisms by which MHC-I 

alleles and diversity influence the GM functions remain unclear. MHC-I receptors 

can be triggered by bacteriophages (Bazan et al., 2012), which play an important 

role in shaping bacterial composition (Hughes & Yeager, 1998). Future work on host 

MHC and the gut virome in the Seychelles warbler could help understand the 

mechanisms behind how MHC-I affect GM composition. It is still surprising to have 

detected less of an effect of the extracellular-acting MHC-II on the GM (Rock et al., 

2016; Roland et al., 2020). However, spatial segregation of microbes and epithelial 

cells, suppression of the host immune system, and peripheral tolerance (elimination 

of self-reactive immune cells) could be potential mechanisms in maintaining a 

mutualistic relationship between the host and the GM (Roland et al., 2020).  

 

In the Seychelles warblers, MHC-I diversity has been positively correlated with both 

survival and reproductive success (Brouwer et al., 2010; Richardson et al., 2005; 

Richardson & Westerdahl, 2003). In the current study, we also found that MHC-I 

diversity was associated with GM metagenomics function. It is plausible that MHC-

I diversity affects the GM functionality by controlling mutualistic bacteria, indirectly 

influencing host survival. However, MHC-I variation could affect other components 

of the host’s overall health, indirectly leading to differences in the GM function. 

Consequently, multiple mechanisms may be involved in the relationship between 

MHC-I diversity and individual differences in the GM.  

 

An individual’s sex and genome-wide heterozygosity, independent of MHC 

variation, were also associated with shifts in GM metagenomic species. However, 

these changes were not detectable in terms of 16S ASVs and metagenomics 

function, which indicates that the changes are species/strain specific and do not 

influence microbial function. This result is reinforced by the fact that no common 

species were differentially abundant with increasing levels of genome-wide 

heterozygosity. Various other variables including sample year, season, and time of 

day, were also predictors of 16S ASVs and metagenomic species, but not 
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metagenomic function. The fact that so many factors affect the species present in 

the GM, but not the overall GM functionality is likely attributed to functional 

redundancy, as the types of environmental microbes change with time, the overall 

GM function is replaced by other microbes (potentially due to changes in diet), 

thereby preserving the overall GM function (Louca et al., 2018; Worsley, Mazel, et 

al., 2024).  

 

Interestingly, the number of days stored at 4°C was associated with shifts in 

metagenomics function but not 16S ASVs and metagenomic species. Larger DNA 

fragments degrade quicker in storage, and these larger DNA fragments are required 

for accurate gene recognition and gene annotation, as these steps require a start 

codon followed by an open reading frame (Hyatt et al., 2010). Whereas smaller DNA 

fragments may still be sufficient for accurate taxonomic assignments in both 16S 

ASV and metagenomic species, as specific marker genes are typically used for 

taxonomic annotations (Blanco-Míguez et al., 2023; Parks et al., 2022). 

 

One limitation of our study on this wild population of Seychelles warbler is that it is 

purely correlative, and we are unable to validate our findings experimentally. 

Nonetheless, our findings in both datasets (16S and metagenomic methods) are 

comparable despite the smaller sample size in the metagenomic work. Future 

experimental work in more amenable study systems could investigate potential 

pathways by which host MHC-I diversity and alleles may affect the GM, for example 

by introducing immune-triggering bacteriophages and measuring their impact on the 

gut bacteriophage and bacteria community. (González-Mora et al., 2020; Wan et 

al., 2001). However, such experiments are likely lab-based and the GM would be 

radically altered (van Leeuwen et al., 2020), hence the generalisation to natural 

populations would be limited. A further limitation of our study is that it lacks gene 

expression data for the MHC and the GM. Therefore, the functional relevance is only 

on the DNA level, reflecting potential rather than actual function of the MHC and 

GM. However, in the bottlenecked Seychelles warbler population, the few remaining 

MHC alleles are highly divergent, preventing further reduction into functional 

supertypes (Davies et al., 2022; Richardson & Westerdahl, 2003; Wright et al., 

2016). Future research could use transcriptomics and proteomics to quantify both 

MHC and GM function. The lack of expression data could plausibly explain the 

modest effect sizes in this study as a locus could be present but not expressing. In 
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addition, although multiple studies have found that MHC is associated with the 

microbiome (Bolnick et al., 2014; Hernández-Gómez et al., 2018; Leclaire et al., 

2019; Uren Webster et al., 2018), the host regulation of the GM may be more directly 

shaped by innate immunity, such as by toll-like receptors, NOD-like receptors or 

defensins (Wilde et al., 2024). However, a previous study in the Seychelles warbler 

found no associations between toll-like receptor 3 (variation at which influences host 

survival in this species) and the GM alpha diversity or composition (Davies et al., 

2022). Therefore, while the MHC may only explain a limited amount of variation in 

the GM (as shown in this study and (Davies et al., 2022; Worsley et al., 2022)), this 

variation may still be important. 

 

We found an association between three MHC-I alleles and GM 16S taxonomy, but 

only one MHC-I allele Ase-ua 7 was associated with GM metagenomic taxonomy, 

none with GM function. The lack of associations in metagenomic dataset may be 

due to the limited sample size, constraining our ability to assess all other MHC 

alleles. To robustly assess all 12 MHC alleles and to include seven essential control 

variables in the same model, we would need at least 190 samples from different 

individuals (10 samples per variable, (Kelly et al., 2015)).  

 

Despite reporting several associations between MHC characteristics and the GM, 

our study is limited to only assessing genome-wide heterozygosity and the specific 

MHC candidate alleles we had already screened for. A genome-wide association 

study on the host and its GM could reveal more loci, and potentially more nuanced 

or polygenic effects by accounting for multiple genes concurrently (Xiang et al., 

2024). However, this requires whole-genome data on a large number of individual 

birds, in combination with metagenomic sequencing of their GM, which would be 

very costly and labour-intensive (La Reau et al., 2023; Yoshida et al., 2019). 

Leveraging a sequencing approach that targets specific individuals and utilises 

recent technological advances, such as the imputation of low-coverage samples, 

could be a feasible way to conduct such studies (Yoshida et al., 2019). In the same 

vein, while heterozygosity measured using 30 neutral microsatellite loci does reflect 

genome-wide heterozygosity/inbreeding in this species (Spurgin et al., 2014), 

whole-genome sequencing of individuals would be a more accurate measure. It 

would enable us to determine runs of homozygosity, and thus provide the resolution 
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needed for a powerful investigation of the effect of host inbreeding on the GM 

(Ceballos et al., 2018). 

 

In conclusion, our study suggests that both MHC class I and II influence an 

individual’s GM in the Seychelles warbler, but that despite being an intracellular 

receptor, MHC-I has a greater influence on GM composition, than MHC-II. We also 

found that MHC-I allele Ase-ua 7 changes the GM taxonomic composition, while 

MHC-I diversity alters GM function. These results may explain previous findings that 

MHC-I diversity is positively correlated with fitness in this population (Brouwer et al., 

2010; Richardson et al., 2005), potentially as a result of inducing changes in the GM 

functionality. GM functional network analyses further support the increased GM 

resilience with high MHC-I diversity, which could be important for host health 

(Fassarella et al., 2021). However, this could be an indirect effect, rather than the 

GM actively contributing to increased fitness. Various pathways are involved in 

regulating the immune system, underscoring the need for host and gut 

transcriptomics and metabolomic data to enable mechanistic investigation of 

immunogenetics and the GM (Eshleman et al., 2023; Roland et al., 2020). 
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3.7 Supplementary material 

Table S3.1. The relationship between gut microbiome alpha diversity (Shannon) and variation in host (A) MHC diversity and (B) the 

presence/absence of specific MHC alleles in Seychelles warblers. Linear mixed models were used for all models. N = 253 samples from 149 

individuals in 16S ASV diversity and N = 99 samples from 57 individuals in metagenomic taxonomy diversity and functional diversity. Reference 

categories for categorical variables were as follows: Female (sex), winter (season), 2017 (Sample year), and absent (0) in al l MHC alleles. 

Significant (P < 0.05) variables are shown in bold. 

Model Predictor 16S ASV Shannon Metagenomics Taxonomy Shannon Metagenomics Functional Shannon 

A
) 

M
H

C
 D

iv
e
rs

it
y
 

Est SE df t P Est SE df t P Est SE df t P 

(Intercept) 3.256 0.609 151.658 5.344 < 0.001 0.707 0.843 51.987 0.838 0.406 810.308 458.228 63.471 1.768 0.082 

Heterozygosity 0.035 0.400 127.858 0.087 0.931 0.549 0.529 43.259 1.039 0.304 84.219 284.505 56.648 0.296 0.768 

MHC-I Diversity 0.043 0.059 126.354 0.726 0.470 0.056 0.079 39.364 0.705 0.485 18.886 41.001 47.343 0.461 0.647 

MHC-II Diversity -0.038 0.085 107.453 -0.444 0.658 -0.106 0.101 36.388 -1.043 0.304 -8.708 54.004 49.176 -0.161 0.873 

Age -0.026 0.034 167.775 -0.742 0.459 -0.015 0.040 54.211 -0.383 0.703 -41.418 22.222 64.476 -1.864 0.067 

Season -0.152 0.218 232.175 -0.698 0.486 0.002 0.246 81.629 0.007 0.994 147.236 147.488 69.650 0.998 0.322 

Sex -0.276 0.164 116.709 -1.677 0.096 0.204 0.217 37.363 0.941 0.353 4.794 113.824 47.563 0.042 0.967 

Days in fridge -0.084 0.177 237.601 -0.475 0.635 -0.235 0.191 65.090 -1.232 0.222 30.756 124.123 75.900 0.248 0.805 

Catch Time -0.023 0.159 238.584 -0.145 0.885 0.112 0.188 74.829 0.594 0.554 79.915 117.418 78.638 0.681 0.498 

SampleYear2018 0.168 0.237 232.771 0.710 0.478 0.216 0.299 81.766 0.721 0.473 95.562 172.637 76.217 0.554 0.582 

SampleYear2019 -0.092 0.306 238.742 -0.301 0.764 -0.188 0.397 79.019 -0.473 0.637 90.988 238.156 78.404 0.382 0.704 

SampleYear2020 0.488 0.393 232.913 1.243 0.215 0.353 0.482 75.198 0.733 0.466 -75.215 292.792 78.329 -0.257 0.798 

SampleYear2021 -0.179 0.300 238.987 -0.597 0.551 0.074 0.375 67.298 0.198 0.844 84.213 237.966 75.655 0.354 0.724 

SampleYear2022 0.114 0.292 232.157 0.391 0.696 0.270 0.347 81.205 0.778 0.439 285.653 202.309 76.433 1.412 0.162 

SampleYear2023      0.425 0.391 81.858 1.087 0.280 133.373 243.410 78.918 0.548 0.585 

B
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re

s
e
n
c
e
/a

b
s
e
n
c
e
 o

f 
M

H
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 a
lle

le
s
 

(Intercept) 3.770 0.643 133.977 5.864 < 0.001 1.262 0.314 82.917 4.018 < 0.001 1024.450 184.100 80.340 5.565 < 0.001 

Heterozygosity 0.119 0.411 111.652 0.291 0.772           

Ase-dab3 0.306 0.289 142.300 1.061 0.290           

Ase-dab4 -0.288 0.301 126.639 -0.958 0.340           

Ase-dab5 -0.031 0.304 146.426 -0.103 0.918           

Ase-ua1 0.153 0.360 123.331 0.424 0.672           

Ase-ua3 -0.332 0.370 122.950 -0.898 0.371           

Ase-ua4 -0.277 0.276 107.669 -1.005 0.317           

Ase-ua5 -0.240 0.348 133.132 -0.690 0.491           
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Ase-ua6 -0.004 0.342 140.968 -0.012 0.991           

Ase-ua7 -0.272 0.401 118.988 -0.679 0.499           

Ase-ua8 0.004 0.284 127.433 0.013 0.990           

Ase-ua9 -0.188 0.337 115.587 -0.557 0.579           

Ase-ua11 0.494 0.363 115.143 1.359 0.177 0.199 0.203 41.077 0.977 0.334 -60.530 103.310 48.260 -0.586 0.561 

Age -0.027 0.036 170.485 -0.753 0.453 -0.034 0.039 59.801 -0.857 0.395 -41.700 21.230 64.560 -1.964 0.054 

Season -0.208 0.222 223.919 -0.939 0.349 -0.010 0.243 83.916 -0.040 0.968 125.180 141.490 70.070 0.885 0.379 

Sex -0.268 0.171 114.037 -1.565 0.120 0.102 0.210 42.108 0.487 0.628 -8.360 107.100 48.910 -0.078 0.938 

Days in fridge -0.155 0.179 228.097 -0.866 0.387 -0.264 0.187 67.914 -1.406 0.164 12.680 121.900 78.130 0.104 0.917 

Catch Time 0.045 0.161 228.854 0.279 0.780 0.123 0.187 75.298 0.658 0.513 88.540 115.770 80.730 0.765 0.447 

SampleYear2018 0.147 0.238 226.562 0.615 0.539 0.242 0.299 83.252 0.810 0.420 79.380 171.340 78.680 0.463 0.644 

SampleYear2019 -0.099 0.306 228.897 -0.325 0.746 -0.173 0.392 80.974 -0.440 0.661 94.310 232.050 79.830 0.406 0.686 

SampleYear2020 0.479 0.398 226.558 1.203 0.230 0.331 0.478 76.291 0.693 0.491 -99.300 288.020 80.150 -0.345 0.731 

SampleYear2021 -0.164 0.304 228.678 -0.538 0.591 0.205 0.370 69.594 0.553 0.582 99.280 232.440 78.440 0.427 0.671 

SampleYear2022 0.087 0.300 218.106 0.291 0.771 0.333 0.346 83.825 0.964 0.338 283.560 198.730 78.970 1.427 0.158 

SampleYear2023      0.514 0.388 83.636 1.325 0.189 141.400 234.950 80.630 0.602 0.549 

 

 

 

Table S3.2. The standardised effect sizes (partial R2) of the relationship between gut microbiome alpha diversity (richness) and variation in host 

(A) Major histocompatibility complex (MHC) diversity and (B) the presence/absence of specific MHC alleles in Seychelles warblers (Table 3.1 in 

main text). 

Model Predictor 

16S ASV diversity 
Metagenomics taxonomic 

diversity 
Metagenomics functional diversity 

Rsq 
upper.

CL lower.CL Rsq 
upper.C

L lower.CL Rsq 
upper.C

L lower.CL 

A
) 

M
H

C
 

D
iv

e
rs

it
y
 

Model 0.088 0.202 0.067 0.128 0.357 0.114 0.169 0.397 0.140 

Heterozygosity 0.003 0.032 <0.001 0.011 0.089 <0.001 0.003 0.066 <0.001 

MHC-I Diversity 0.006 0.039 <0.001 <0.001 0.052 <0.001 0.034 0.139 <0.001 

MHC-II Diversity <0.001 0.021 <0.001 0.028 0.125 <0.001 0.001 0.058 <0.001 
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Age 0.007 0.043 <0.001 0.013 0.094 <0.001 0.049 0.165 0.001 

Season (summer) <0.001 0.021 <0.001 0.008 0.081 <0.001 0.001 0.057 <0.001 

Sex (male) 0.024 0.075 0.001 0.006 0.074 <0.001 0.001 0.060 <0.001 

Days at 4°C <0.001 0.020 <0.001 <0.001 0.052 <0.001 0.004 0.069 <0.001 

Time of day <0.001 0.020 <0.001 0.024 0.119 <0.001 0.003 0.068 <0.001 

Sample Year 
(2018) 0.036 0.110 0.015 0.043 0.207 0.024 0.064 0.236 0.032 

B
) 

P
re

s
e
n
c
e
/a

b
s
e
n
c
e
 o

f 
M

H
C

 a
lle

le
s
 

Model 0.130 0.273 0.122 0.090 0.309 0.082 0.139 0.359 0.109 

Heterozygosity <0.001 0.022 <0.001       

Ase-dab3 0.013 0.055 <0.001       

Ase-dab4  0.011 0.050 <0.001       

Ase-dab5  0.004 0.036 <0.001       

Ase-ua1  0.002 0.027 <0.001       

Ase-ua3  0.001 0.025 <0.001       

Ase-ua4  0.006 0.041 <0.001       

Ase-ua5  0.001 0.024 <0.001       

Ase-ua6  0.004 0.034 <0.001       

Ase-ua7  0.002 0.029 <0.001       

Ase-ua8  <0.001 0.021 <0.001       

Ase-ua9  0.001 0.023 <0.001       

Ase-ua11  0.015 0.059 <0.001 0.002 0.060 <0.001 0.003 0.065 <0.001 

Age 0.010 0.049 <0.001 0.026 0.121 <0.001 0.065 0.188 0.004 

Season <0.001 0.021 <0.001 0.004 0.068 <0.001 <0.001 0.054 <0.001 

Sex 0.028 0.081 0.002 0.001 0.056 <0.001 0.007 0.081 <0.001 

Days at 4°C <0.001 0.022 <0.001 0.001 0.057 <0.001 0.004 0.071 <0.001 

Time of day 0.003 0.030 <0.001 0.028 0.126 <0.001 0.003 0.065 <0.001 

Sample Year  0.031 0.103 0.012 0.037 0.198 0.022 0.074 0.248 0.036 

 

 

Table S3.3. Differentially abundant eggNOG members with increasing MHC-I Diversity in the gut microbiome of the Seychelles warblers (n = 99 

from 57 birds). Categories are COG functional categories: E - Amino acid transport and metabolism, G - Carbohydrate transport and metabolism, 
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I - Lipid transport and metabolism, J – Translation, ribosomal structure and biogenesis, K - Transcription, L - Replication, recombination and 

repair, M - Cell wall/membrane/envelope biogenesis, O - Posttranslational modification, protein turnover, chaperones, P - Inorganic ion transport 

and metabolism, R - General function prediction only, T - Signal transduction mechanisms, V - Defense mechanisms.  

 

eggNOG 

members  

Direction 

of log fold 

change 

Annotation Category KEGG pathways KEGG pathway names 

COG0008 Negative 
Glutamyl- or glutaminyl-tRNA 

synthetase 
J K01885, K01886 

glutamyl-tRNA synthetase [EC:6.1.1.17] & glutaminyl-

tRNA synthetase [EC:6.1.1.18] 

COG0028 Negative 

Acetolactate synthase large subunit or 

other thiamine pyrophosphate-

requiring enzyme 

E H K01652 acetolactate synthase I/II/III large subunit [EC:2.2.1.6] 

COG0085 Negative 
DNA-directed RNA polymerase, beta 

subunit/140 kD subunit 
K K03043 DNA-directed RNA polymerase subunit beta [EC:2.7.7.6] 

COG0258 Negative 
5'-3' exonuclease Xni/ExoIX (flap 

endonuclease) 
L K02335, K04799 

DNA polymerase I [EC:2.7.7.7] & RAD2; flap 

endonuclease-1 [EC:3.1.-.-] 

COG0318 Negative 

O-succinylbenzoic acid-CoA ligase 

MenE or related acyl-CoA synthetase 

(AMP-forming) 

I K00666 fatty-acyl-CoA synthase [EC:6.2.1.-] 
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COG0443 Negative Molecular chaperone DnaK (HSP70) O K04043, K03283 
molecular chaperone DnaK & heat shock 70kDa protein 

1/6/8 

COG0477 Negative 

MFS family permease, includes 

anhydromuropeptide permease 

AmpG 

G E P R None  

COG0488 Negative 

ATPase components of ABC 

transporters with duplicated ATPase 

domains 

R K06158, K15738 
ATP-binding cassette, subfamily F, member 3 & ABC 

transport system ATP-binding/permease protein 

COG0507 Negative 

ATPase/5'-3' helicase helicase 

subunit RecD of the DNA repair 

enzyme RecBCD (exonuclease V) 

L K03581 exodeoxyribonuclease V alpha subunit [EC:3.1.11.5] 

COG0513 Negative Superfamily II DNA and RNA helicase L None  

COG0515 Negative Serine/threonine protein kinase T K08832, K15409 
serine/threonine-protein kinase SRPK3 [EC:2.7.11.1] & 

SRPK1 [EC:2.7.11.1] 

COG0524 Negative 
Sugar or nucleoside kinase, 

ribokinase family 
G K00852, K00847, K00874 

ribokinase [EC:2.7.1.15] & fructokinase [EC:2.7.1.4] & 2-

dehydro-3-deoxygluconokinase [EC:2.7.1.45] 

COG0577 Positive 

ABC-type antimicrobial peptide 

transport system, permease 

component 

V K02004 putative ABC transport system permease protein 

COG0628 Positive 
Predicted PurR-regulated permease 

PerM 
R None  
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COG0642 Positive Signal transduction histidine kinase T None  

COG0697 Negative 
Permease of the drug/metabolite 

transporter (DMT) superfamily 
G E R None  

COG0745 Positive 

DNA-binding response regulator, 

OmpR family, contains REC and 

winged-helix (wHTH) domain 

K T None  

COG0841 Positive Multidrug efflux pump subunit AcrB V K18138 multidrug efflux pump 

COG0845 Positive 
Multidrug efflux pump subunit AcrA 

(membrane-fusion protein) 
V M None  

COG1502 Negative 
Phosphatidylserine/phosphatidylglyce

rophosphate/cardiolipin synthase 
I K06131, K01115 

cardiolipin synthase A/B [EC:2.7.8.-] & phospholipase 

D1/2 [EC:3.1.4.4] 

COG2911 Positive 
Phospholipid transport to the outer 

membrane protein TamB 
M K09800 translocation and assembly module TamB 

COG3209 Positive 
Uncharacterized conserved protein 

RhaS, contains 28 RHS repeats 
R None  

COG4886 Negative Leucine-rich repeat (LRR) protein K None  

COG4974 Positive Site-specific recombinase XerD L K04763 integrase/recombinase XerD 
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Figure S3.1. Rarefaction curve of 16S gut microbiome sequencing of the Seychelles 

warbler.  
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Chapter 4 |  

 

Social interactions shape anaerobic, but not 

aerotolerant, gut microbiome composition in a 

cooperative breeding species 

 

 

  

Image edited by Google Gemini.   
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4.1 Abstract 

Background 

Social transmission of microbes has profound impacts on disease epidemiology and 

host health. However, how social factors influence gut microbiome (GM) 

transmission in wild populations is not well understood. Here, we use a wild 

population of the Seychelles warbler, a facultative cooperatively breeding passerine, 

to determine whether cooperative breeding behaviour influences the GM. 

Specifically we hypothesis that close social interactions as part of cooperative 

breeding should encourage the sharing of anaerobic microbes, that may be less 

likely to transmit indirectly through the environment.  

 

Results 

We found that GM composition was more similar within versus between social 

groups, and this effect was driven by sharing both aerotolerant and anaerobic 

bacterial genera. GM diversity was also more similar between dominant individuals 

and helpers than between the dominant male and female mates within a breeding 

group. As predicted, the similarity of anaerobic, but not aerotolerant, GM 

communities between pairs of individuals within a group was positively correlated 

with the strength of their social interactions (defined by their cooperative breeding 

status). Specifically, anaerobic GM composition was more similar between pairs of 

individuals that cooperate at the nest (dominant breeders and dominant-helper 

pairs) than for non-cooperative pairs (involving non-helping subordinate individuals). 

This is likely because breeders and helpers directly interact while caring for offspring 

at a nest.  

 

Conclusions 

This work reveals how cooperative social interactions lead to microbial transmission 

and thus contribute to shaping specific components of a host’s gut microbiome.  

 

Keywords: Acrocephalus sechellensis; Cooperative breeding; Gut microbiome; 

social transmission; wild population. 
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Graphical abstract. Individuals within groups were more similar in aerotolerant and 
anaerobic gut microbiome composition than between groups. Breeders and helpers 
share more similar anaerobic gut microbiome composition than with subordinates.   
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4.2 Introduction 

 

The vertebrate gut microbiota (GM) –the ecosystem of microbes that live within the 

gastrointestinal tract– plays a role in many important processes within the host, 

including metabolism, immune defences, and cognition (Corbin et al., 2023; Davies 

et al., 2022; Foster & McVey Neufeld, 2013; Zheng et al., 2020). In turn, many 

factors, such as host genetics, environment, and diet, are important in shaping the 

GM (Bonder et al., 2016; Davies et al., 2022; Grieneisen et al., 2021; Hicks et al., 

2018). Consequently, the GM can vary significantly not just across species and 

populations but also across individuals within populations (Hicks et al., 2018). 

Individual variation in GM composition has been associated with host health, being 

linked to, for example, nutrient extraction and immune function in vertebrates and, 

therefore, survival and reproductive success in wild animals (Cholewińska et al., 

2020; Worsley et al., 2021; Zheng et al., 2020).  

 

Despite evidence of the GM’s significant role in host health and fitness (de Vos et 

al., 2022; Gould et al., 2018), there are still substantial gaps in our understanding of 

the factors that shape individual variation in GM composition. Among the least 

understood, yet potentially most important, factors is host sociality. The microbial 

metacommunity within social networks of hosts (the social microbiome) needs to be 

investigated to understand how social microbial transmission impacts host health 

and disease (Sarkar et al., 2024). To date, most research on microbial transmission 

across social networks has focused on pathogens, neglecting commensal microbes 

(Sarkar et al., 2020). In most vertebrates, the GM is initially acquired through 

parental transmission and then quickly becomes shaped by a combination of direct 

(via physical contact) and indirect (via the environment) transmission (see (Sarkar 

et al., 2024)). However, it is often difficult to distinguish between these mechanisms 

as socially interacting individuals also normally share the same environment (Raulo 

et al., 2024).  

 

In captivity, conspecifics that socially interact share a more similar GM composition 

than those that do not (Bensch et al., 2023; Hildebrand et al., 2013; Hufeldt et al., 

2010). However, captive animals are exposed to much less microbial diversity than 

their wild counterparts, which likely contributes to greater microbial sharing. 
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Consequently, the GM of captive animals may be simpler (lower diversity and 

variation) than in nature and show many artefacts (Bensch et al., 2023). In contrast, 

wild animals encounter a much broader range of microbes due to factors such as 

exposure to other species, diverse and variable food sources, habitat and climatic 

variation and anthropogenic influences (Bensch et al., 2023; White et al., 2023). 

Very few studies have investigated the role of sociality in shaping the GM of wild 

animals, but see (Archie & Tung, 2015; Raulo et al., 2018, 2024). Most work has 

focused on differences in GM between social groups (Antwis et al., 2018; Bennett 

et al., 2016; Raulo et al., 2018; Theis et al., 2012; Tung et al., 2015), but now we 

need to understand the links between GM and the degree of sociality within highly 

social animals. 

 

Social organisation has also been associated with the microbiome communities of 

social insects (Gamboa et al., 2025; Jones et al., 2018; Shimoji et al., 2021) and 

non-group-living mice (Raulo et al., 2021, 2024), with individuals that interact more 

frequently having more similar microbial communities. Socially acquired GM 

similarity is likely driven by having a shared environment (indirect) and repeated 

social interactions (direct), such as grooming, food sharing and close contact 

(including copulations), which facilitate microbial transmission (Dill-McFarland et al., 

2019; Raulo et al., 2018, 2024). Related individuals that are from the same social 

group also have a more similar GM composition than unrelated individuals, 

highlighting the importance of host genetics in shaping the microbiome in groups 

(Grieneisen et al., 2021; Roche et al., 2023; Turnbaugh et al., 2009). 

 

Aerotolerance may play a significant role in determining the likelihood of 

environmental versus direct transfer of microbial species (Raulo et al., 2024). 

Aerotolerant (aerobic and facultatively anaerobic) bacteria may grow outside the 

host and are therefore more likely to survive long enough to undergo indirect 

environmental social transmission (Mazel et al., 2024). By contrast, anaerobic 

bacteria survive less well outside the body and are likely limited to vertical and close-

contact transmission (Mazel et al., 2024; Moeller et al., 2018). Consistent with this, 

a couple of studies have suggested that social proximity facilitates the transfer of 

anaerobic bacteria (Dill-McFarland et al., 2019; Raulo et al., 2024). 
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Some group-living vertebrates practice cooperative breeding, whereby additional 

adult group members provide care to offspring produced by a limited number of 

breeders (often just a dominant pair) (Cockburn, 1998; García-Ruiz et al., 2022; 

Koenig & Dickinson, 2016). Such subordinate ‘helpers’ enable dominant breeders 

to increase their reproductive success, while potentially providing the helpers with 

inclusive fitness benefits (including indirect (kin-selected) and direct benefits (e.g 

(Cockburn, 1998; Koenig & Dickinson, 2016; Richardson et al., 2002)). These 

‘helpers’ interact closely with the breeders, potentially facilitating the direct 

transmission of microbes (Sarkar et al., 2024). However, given that helpers normally 

share the same space/territory and may be genetically related to the dominants 

(Cockburn, 1998), separating the role of direct and indirect transmission in shaping 

the GM can be difficult. Research using suitable cooperative systems which allow 

these routes of transmission to be untangled and better understood is now needed. 

 

Here, we use the facultatively cooperative breeding Seychelles warbler 

(Acrocephalus sechellensis) to assess how cooperative interactions shape 

individual GM variation. This system enables us to disentangle the effects of genetic 

relatedness from social interactions, as subordinates vary extensively in how related 

they are to the dominant breeders due to the frequent dispersal of offspring into non-

natal groups to become subordinates (Groenewoud et al., 2018), and even 

subordinates within their natal group being the result of extra-pair paternity (Hadfield 

et al., 2006) and/or cobreeding (Raj Pant et al., 2019). In addition, as warblers are 

tree-foraging insectivores, they are rarely exposed to other conspecifics’ faeces, 

thus limiting non-contact horizontal transfer post-fledging. The insects they eat 

typically contain a high proportion of aerotolerant bacteria (Engel & Moran, 2013; 

Yun et al., 2014). Therefore, we hypothesise that warblers will share aerotolerant 

bacteria through a shared environment, whereas close physical contact is needed 

to transfer anaerobic bacteria. We test the following predictions: (1) Individuals 

sharing a territory have more similar GM than those who do not. (2) Individual GM 

similarity is correlated with the closeness of the social relationship within the 

cooperative breeding system. (3) The cooperative relationship between individuals 

will more strongly affect the anaerobic, rather than the aerotolerant, GM 

components. 
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4.3 Materials and Methods 

 

4.3.1 Study systems 

The Seychelles warbler population on Cousin Island (29 ha; 04° 20′ S, 55° 40′ E) 

has consisted of ca. 320 individuals from ca. 115 territories since 1985 (Brouwer et 

al., 2009; Kingma et al., 2016). This population has been extensively monitored 

during the minor (January–March) and major (June–October) breeding season each 

year, with the major season accounting for 94% of breeding (Brown et al., 2022; 

Hammers et al., 2015; Komdeur, 1992). Since 1997, nearly all individuals (>96%) 

have been uniquely marked with a combination of three colour rings and a British 

Trust for Ornithology metal ring (Davies et al., 2021; Hammers et al., 2015). The 

age of individuals is determined during their first catch, either directly when 

accessing them in the nest, or as begging fledglings, or using their eye colour 

(Komdeur, 1992). Individuals almost never disperse between islands (Komdeur, 

Piersma, et al., 2004) and the annual resighting rate is high (98%  1% SE) (Raj 

Pant et al., 2020; Richardson et al., 2001). 

 

Seychelles warblers often breed successfully in socially monogamous pairs 

(Komdeur, 1996). Individuals who attain a breeding position typically remain in the 

same territory, defending it with the same partner until their death (Richardson et 

al., 2007). However, due to a shortage of suitable breeding opportunities, some 

individuals delay independent breeding and become subordinates, often, but not 

always, in their natal territory (Groenewoud et al., 2018; Komdeur, 1992). In any 

given breeding event, some subordinates (20% males and 42% females (Hammers 

et al., 2019)) contribute to alloparental care (defined as ‘helpers’), assisting with 

incubation (only females) and provisioning (both sexes), while others do not (non-

helper subordinates) (Komdeur, 1992). Helpers benefit by gaining breeding 

experience, through indirect fitness benefits (kin-selected). Each season, every 

group member is given a breeding status: dominant male, dominant female, helper, 

non-helper subordinate. Breeding attempts normally produce single egg clutches 

(80%) (Richardson et al., 2001). Extra-group paternity occurs frequently (~44%) 

(Hadfield et al., 2006; Richardson et al., 2001). Fledglings leave the nest after 18-

20 days but are provided with extended post-fledgling care for up to three months 

(Komdeur, 1996; Komdeur et al., 2016; Richardson et al., 2001). 
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Genetic relatedness of individuals within a group varies considerably (mean 0.26  

0.23 SD, range 0.00-0.77) because, (a) not all subordinates are from the natal 

territory (Komdeur, 1992), (b) subordinates hatched in the territory may be the result 

of extra-pair paternity (Hadfield et al., 2006; Richardson et al., 2001) or subordinate 

maternity (Raj Pant et al., 2019; Richardson et al., 2001, 2002) and (c) dominant 

breeders are replaced over time when individuals die or are deposed (Richardson 

et al., 2007).  

 

4.3.2 Sample collection 

 

Faecal samples were collected from 2017-2022 across ten breeding seasons 

(Worsley, Davies, et al., 2024). Birds were captured in mist nets and placed in a 

clean disposable flat-bottom paper bag containing a sterile metal grate covering a 

sterile plastic tray. This established protocol (Davies et al., 2022; Knutie & Gotanda, 

2018) allows and any faecal sample that is produced by the bird to fall onto the 

plastic tray, minimising contact with the outside of the bird and the bag. After 

defaecation (ca. 15 min), the bird was released and the sample collected using a 

sterile flocked swab and placed in 1ml of absolute ethanol in a sterile screw-cap 

microcentrifuge tube. Control microbiome samples were taken from each 

fieldworker’s hands by swabbing with a sterile flocked swab. Samples were stored 

at 4°C during the field season and transferred to -80°C for long-term storage on 

reaching UEA. The time-of-day of each sample was recorded (minutes after sunrise 

– 06.00 h GMT+4), and the number of days between sampling and -80°C storage 

was recorded. A blood sample (ca. 25µl) was collected through brachial 

venipuncture and stored in 1ml of absolute ethanol at 4°C.  

 

4.3.3 Molecular methods 

 

Total genomic DNA was extracted from faecal samples using the Qiagen DNeasy 

PowerSoil Kit with a modified version of the manufacturer’s protocol (see (Davies et 

al., 2022)). To minimise batch effects of extraction, samples were randomised. DNA 

was submitted for 16S rRNA amplicon sequencing using the amplicon libraries of 
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V4 primers 515F (5'TGCCAGCMGCCGCGGTAA3’) and 806R 

(5’GGACTACHVGGGTWTCTAAT3’) and sequenced across seven batches using 

2x250bp, paired-end sequencing on an Illumina MiSeq Platform (see detailed 

methodology in (Davies et al., 2022; Worsley, Davies, et al., 2024)). Control samples 

were also extracted and sequenced this way (n=21 hand controls, 15 negative 

controls, and 10 positive, ZymoBIOMICS Microbial Community Standard (D6300), 

controls). 

 

DNA had previously been extracted from blood with the DNeasy blood and tissue 

kit (Qiagen) and used in molecular sexing (Griffiths et al., 1998; Sparks et al., 2022) 

and microsatellite genotyping for parentage analyses (Richardson et al., 2001; 

Sparks et al., 2022). All offspring hatched between 1991 and 2022 (2282 offspring, 

1935 (85%) mothers, 2016 (88%) fathers had been assigned parentage at >80% 

confidence using MasterBayes 2.52 as part of previous studies (detailed in 

(Edwards et al., 2018; Hadfield et al., 2006; Sparks et al., 2022)). Relatedness 

between individuals was calculated from the MasterBayes pedigree using sequoia 

2.11.4 in R Studio 2024.12.0+467 (Huisman, 2017; Posit team, 2024; R Core Team, 

2024). 

 

4.3.4 Bioinformatics 

 

The processing of DNA reads followed previously described steps using QIIME2 

2019.10 (Bolyen et al., 2019; Worsley, Davies, et al., 2024). In brief, read truncation, 

filtering and classification into amplicon sequencing variants (ASV) was undertaken 

using DADA2 (Callahan et al., 2016). Taxonomic assignment of ASVs was 

performed using the naïve-Bayes classifier on the SILVA 132 reference database 

(Quast et al., 2012). The resulting ASVs were imported to R using phyloseq 1.46.0 

(Leo Lahti & Sudarshan Shetty, 2019; McMurdie & Holmes, 2013). Samples were 

filtered to remove non-bacterial sequences, reads not assigned to phylum level, and 

potential contaminants (based on hand and lab controls). Based on evidence from 

rarefaction curves showing sample completeness of 95% at 8000 reads (Worsley, 

Davies, et al., 2024), 27 faecal samples with less than 8000 reads were removed. 

ASVs that had fewer than 50 reads across all samples were also removed, as these 

represented possible sequencing errors.  
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The aerotolerance status of each bacterial genus (1111 genera) was assigned using 

both Google Gemini 2.0 and ChatGPT 3.5 on 21st January 2025. The text used was 

“Assign aerotolerance status for the following genera”, followed by the list of genera. 

Google Gemini returned a table of genera and aerotolerance statuses, while 

ChatGPT responded with text. ‘Facultative anaerobic’ and ‘Aerobic’ were 

categorised as ‘Aerotolerant’, ‘Anaerobic’ was categorised as ‘Anaerobic’, and 

everything else was categorised as ‘Unknowns’. After excluding unknown or 

unassigned genera (n = 891 genera assigned), the accuracy of these assignments 

was checked by comparing the assignments obtained with the manually assigned 

genera in Raulo et al. (2024) using Bergey’s Manual of Systematics of Archaea and 

Bacteria (Trujillo et al., 2015). The correspondence to the previous manual 

assignment in Raulo et al. (2024) using Google Gemini was 92.5% and ChatGPT 

was 74.2% (n =160 or n = 98 genera, respectively). However, the assignments in 

(Raulo et al., 2024) could also have been incorrect or out of date. So, in addition, 80 

random genera were manually checked using Bergey’s Manual of Systematics of 

Archaea and Bacteria (Trujillo et al., 2015) by CL, and the correspondence was 

96.3% for Google Gemini and 73.4% for ChatGPT. The assignments from Google 

Gemini were therefore used for subsequent analysis.  

 

4.3.5 Statistics  

4.3.5.1 GM similarity within and between breeding groups  

4.3.5.1.1 Alpha diversity  

Both ASV richness and Shannon diversity were calculated for each sample (after 

rarefication) using phyloseq 1.46.0 (McMurdie & Holmes, 2013). A pairwise alpha 

diversity difference was calculated for ASV richness and Shannon diversity, which 

were made negative to reflect alpha diversity similarity. Importantly, samples were 

then filtered to include only sample pairs from individuals from the same field period 

(n = 27,821 pairwise comparisons across 648 samples from 345 birds) to control for 

temporal variation. A linear mixed effect multi-membership model (lmer with 

lmerMultiMember) using lme4 1.1-35.5 (Bates et al., 2015) was used to test whether 

the difference in alpha diversity was smaller when pairs were from the same 

breeding group than between breeding groups. Breeding group status (within a 

group, between groups), the age difference of individuals (0-16.7 years), sex 
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difference (no/yes), the number of days apart samples were collected (0-97 days), 

the difference in the time of day samples were collected (0-634 minutes), season 

(minor/major), present in nest at hatch (whether one individual was present in the 

other’s nest at hatch e.g. as a sibling, helper or parent), and relatedness were 

included as explanatory variables. Sample year and a multi-membership ID 

(calculated using lmerMultiMember to account for the repeated occurrences of 

individual ID in both columns, and suitable for dyadic models (van Paridon et al., 

2023)), were used as random variables. Hereafter, all models included the same 

explanatory and random variables unless stated otherwise. Variance inflation factor 

(VIF) scores were computed to test for collinearity among the terms (all VIF scores 

were <3). 

 

4.3.5.1.2 GM composition 

Differences in GM composition were modelled using the same pairwise approach 

as for Alpha diversity. Unrarefied raw reads were filtered to remove rare taxa (<5% 

occurrence), and then centred log ratio (CLR) transformed using microbiome 1.20.0, 

which controls for differences in library size and is suitable for compositional 

datasets (Gloor et al., 2017). A pairwise Aitchinson distance matrix was then 

calculated using phyloseq 1.46.0 (Callahan et al., 2016; McMurdie & Holmes, 2013), 

which was made negative to reflect GM composition similarity. A multi-membership 

lmer was used to test if samples from individuals within a group had more similar 

GM composition compared to those outside of the group, where GM Aitchison 

distance was used as a response variable and the explanatory and random 

variables were as described for alpha diversity above.  

 

4.3.5.1.3 Aerotolerance 

Bacterial taxa were split into an anaerobic dataset (205 anaerobic genera), and an 

aerotolerant dataset (686 aerotolerant genera). The same model structure 

(between/within breeding group GM composition model) was used to determine if 

within-group changes in GM composition were dependent on aerotolerance 

capability.  

 

4.3.5.2 The GM and social status categories 
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4.3.5.2.1 Alpha diversity  

A second alpha diversity model was constructed as above but replacing breeding 

group status with individual status. Pairs of samples were filtered from distance 

matrices to only include comparisons made within the same breeding group (n = 

279 pairwise comparisons across 322 samples from 204 individual birds). There 

were five groupings for individual status pairs: (1) dominant breeding pair (Dom-

Dom), (2) breeders—helpers (Dom-Help), (3) dominant breeders— other 

subordinates (Dom-Sub), (4) helpers—other subordinates (Help-Sub), (5) 

subordinates—subordinates (Sub-Sub). If the overall individual status pair predictor 

term was significant, a post-hoc pairwise comparison was performed using a Tukey 

test.  

 

4.3.5.2.2 Overall GM composition 

A social status category model was constructed (as above) to assess the impact of 

individual status on GM composition by replacing breeding group status with 

individual status comparisons and restricting comparisons to within-breeding group. 

 

4.3.5.2.3 Aerotolerance vs. Anaerobic GM composition 

The same model structure as directly above was used to test whether patterns of 

GM variation associated with within-group social status categories differed 

according to bacterial aerotolerance capability. Finally, the same model was run but 

lumping the within group social status categories to compare all categories that 

involved the pair of individuals interacting at a shared nest (Dom-Dom and Dom-

Help combined) with all pairs that did not (Dom-Sub, Help-Sub, Sub-Sub combined), 

using the same model structure as above.  
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4.4 Results 

4.4.1 GM similarity within versus between breeding groups 

4.4.1.1 Alpha diversity 

The observed ASV richness and Shannon diversity similarity did not significantly 

differ between pairs of individuals from within the same breeding group versus pairs 

from different breeding groups (Table S4.1, Table 4.1). ASV richness and Shannon 

diversity similarity did decline as the number of days between sampling points 

increased (Table S4.1, Table 4.1). Shannon diversity similarity was also marginally 

associated with season (positively) and time in season (negatively) (Table 4.1).  

 

Table 4.1. A linear mixed effect model (lmer) investigating the relationship between 
breeding group membership and gut microbiome ASV Shannon diversity similarity 
in pairs of Seychelles warblers (N = 27,821 pairwise comparisons across 648 
samples from 345 individual birds). Significant terms (P <0.05) are in bold, marginal 
terms (P<0.10) in italics. Reference categories for categorical variables were the 
first term in brackets. Time of day was measured as minutes apart, and time in 
season was measured as days apart. 

Characteristic Beta SE1 Statistic df 
p-

value 

(Intercept) -1.279 0.072 -17.7 12.5 <0.001 

Breeding group 

(Between/Within) 
-0.012 0.058 -0.206 27,548 0.837 

Age difference 0.001 0.003 0.496 24,508 0.620 

Sex (same/different) -0.006 0.011 -0.567 27,560 0.571 

Season (major/minor) -0.065 0.033 -1.94 1,654 0.053 

Time of day <0.001 <0.001 -1.96 27,712 0.050 

Time in season -0.001 <0.001 -3.98 27,775 <0.001 

Relatedness -0.029 0.087 -0.333 27,582 0.739 

Shared nest at hatch (no/yes) -0.010 0.025 -0.381 26,525 0.703 

Random 27,821 observations Variance 

Multi membership ID (Intercept)  345 groups  0.374 

Sample Year (Intercept)  6 years  0.137 
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Residual     0.880 

 

 

4.4.1.2 GM composition 

Pairs within breeding groups had a more similar GM composition than pairs in 

different breeding groups (Table 4.2, Figure 4.1). Additionally, pairs sampled in the 

minor season had a more similar GM composition compared to pairs sampled in the 

major season (Table 4.2). GM composition became increasingly different between 

individuals as the number of days between sampling of each of the pair increased. 

Moreover, individuals that shared a nest at hatch (including from different seasons; 

as either siblings, parents or helpers) had a significantly more similar GM 

composition. 

 

Table 4.2. A linear mixed effect model investigating gut microbiome composition 
similarity in Seychelles warbler pairs from the same versus pairs from different 
breeding groups (N = 27821 pairwise comparisons across 648 samples from 345 
individual birds). Significant terms (P <0.05) are in bold. Reference categories for 
categorical variables were the first term in the brackets. Time of day was measured 
as minutes apart, and time in season was measured as days apart. 

Characteristic Beta SE1 Statistic df p-value 

(Intercept) -83.21 2.38 -35.0 6.17 <0.001 

Breeding group Pair 

(Between/Within) 
3.683 0.581 6.34 27,490 <0.001 

Age difference 0.016 0.028 0.556 27,767 0.578 

Sex (same/different) -0.123 0.109 -1.13 27,493 0.259 

Season (major/minor) 2.062 0.353 5.84 25,345 <0.001 

Time of day <0.001 <0.001 -0.304 27,572 0.761 

Time in season  -0.007 0.003 -2.08 27,590 0.038 

Relatedness 0.494 0.870 0.568 27,502 0.570 

Shared nest at hatch 

(no/yes) 
0.538 0.257 2.09 27,806 0.036 

Random 27,821 observations  Variance 
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Multi membership ID (Intercept) 345 groups  6.898 

Sample Year  (Intercept) 6 years  5.514 

Residual     8.808 

 

 

Figure 4.1. Gut microbiome composition similarity of pairs of individuals from the 
same versus pairs of individuals taken from different breeding groups in the 
Seychelles warbler (N = 27821 pairwise comparisons across 683 samples from 345 
individual birds). Dots and lines represent model predictions with 95% confidence 
intervals calculated from lmer models. The density plot represents the distribution 
of raw data. *** represent p<0.001.  
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4.4.1.3 Aerotolerant vs. Anaerobic bacteria 

Considering aerotolerant bacterial genera, GM compositional similarity was 

significantly higher in pairs from the same breeding group compared to pairs from 

different breeding groups (Table 4.3). Aerotolerant GM composition was also 

significantly less similar with increasing age differences, time of day difference, and 

time in season difference, but more similar if the pair shared a nest at hatch (Table 

4.3).  

 

Table 4.3. A linear mixed effect model (lmer) investigating the relationship between 
aerotolerant gut microbiome composition similarity in pairs of Seychelles warblers 

from the same breeding group versus pairs generated from individuals sampled 
from different breeding groups (N = 27821 pairwise comparisons across 648 
samples from 345 individual birds). Significant terms (P <0.05) are in bold. 
Reference categories for categorical variables were the first term in the bracket. 
Time of day was measured as minutes apart, and time in season was measured as 
days apart. 

 Estimate SE df t P 

(Intercept) -46.49 1.10 7.04 -42.4 <0.001 

Breeding group Pair 

(Between/Within) 
1.957 0.325 27,489 6.02 <0.001 

Age difference -0.098 0.007 27,603 -13.3 <0.001 

Sex (same/different) -0.019 0.061 27,492 -0.317 0.752 

Season (major/minor) 0.273 0.197 22,916 1.38 0.167 

Time of day <0.001 <0.001 27,566 -2.13 0.033 

Time in season -0.006 0.002 27,583 -3.41 0.001 

Relatedness 0.756 0.486 27,498 1.55 0.120 

Shared nest at 

hatch (no/yes) 
0.312 0.145 27,803 2.16 0.031 

Random 27821 observations Variance 

Multi membership ID 
(Intercept

) 
345 groups  16.018 

Sample Year  
(Intercept

) 
6 years  6.029 
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Residual     24.243 

 

 

 

Considering only anaerobic bacterial genera, pairs within the same breeding group 

had more similar GM compositions compared to pairs from separate breeding 

groups (Table 4.4). The anaerobic GM composition was significantly negatively 

associated with increasing time of day difference, and time in season difference but 

more similar if the pair shared a nest at hatch (Table 4.4).  

 

Table 4.4. A linear mixed effect model (lmer) investigating the relationship between 
anaerobic gut microbiome composition similarity in pairs of Seychelles warblers 

from the same breeding group versus pairs generated from individuals sampled in 
different breeding groups (N = 27821 pairwise comparisons across 648 samples 
from 345 individual birds). Significant terms (P <0.05) are indicated in bold. 
Reference categories for categorical variables were the first term in brackets. Time 
of day was measured as minutes apart, and time in season was measured as days 
apart. 

 
Estimat

e 
SE df t P 

(Intercept) -24.53 0.807 6.45 -30.4 
<0.00

1 

Breeding group Pair 

(Between/Within) 
0.844 0.285 27,179 2.96 0.003 

Age difference -0.002 0.006 27,370 
-

0.366 
0.714 

Sex (same/different) 0.061 0.053 27,185 1.14 0.255 

Season (major/minor) -0.247 0.170 19,017 -1.45 0.147 

Time of day -0.001 0.000 27,310 -3.38 0.001 

Time in season  -0.007 0.002 27,337 -4.34 
<0.00

1 

Relatedness -0.431 0.425 27,196 -1.01 0.310 

Shared nest at hatch (no/yes) 0.266 0.126 27,326 2.11 0.035 
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Random 
27,821 

observations 
Variance 

Multi membership ID (Intercept) 345 groups 6.342 

Sample Year  (Intercept) 6 years 3.408 

Residual     
18.29

8 

 

 

 

4.4.2 The GM and within-group social status categories 

 

4.4.2.1 Alpha diversity 

We assessed similarity in ASV richness (Table S4.2) and Shannon diversity (Table 

S4.3) between pairs of birds with different statuses within the same breeding group. 

Only Shannon diversity was significantly more similar for dominant-helper status 

pairs than for dominant pairs (Table S4.3, Figure 4.2). All other pairwise 

comparisons were not significantly different from each other (Tables S4.2, S4.3 & 

S4.4) and lower than for dominant-helper status pairs. 
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Figure 4.2. Gut microbiome Shannon diversity similarity of different breeding group 
status pairs of Seychelles warblers. Dots and lines represent model predictions with 
95% confidence intervals calculated from lmer models. The density plot represents 
the distribution of raw data. N = 279 pairwise comparisons across 322 samples from 
204 individual birds.  

 

 

4.4.2.2 Overall GM composition 

None of the social status pair categories significantly differed in overall GM 

composition similarity (Table S4.5).  

 

4.4.2.3 Aerotolerant vs. Anaerobic GM composition 

Pairwise similarities in aerotolerant GM composition did not differ between social 

status pair categories (Table S4.6). The only significant effect in this model was a 

negative association between aerotolerant GM composition similarity and 

increasing differences in host age (Table S4.6).  

 



 189 

In contrast, anaerobic GM composition similarity did significantly differ between 

social status pair categories (Table 4.5, Figure 4.3). Specifically, the anaerobic GM 

compositional similarity of dominant-dominant and dominant-helper categories did 

not differ (Table 4.5, Figure 4.3). However, anaerobic GM composition was 

significantly more similar in dominant-dominant pairs than for pairs in the other three 

categories (dominant-subordinate (marginal), helper-subordinate, and subordinate-

subordinate pairs) (Table 4.5, Figure 4.3). The anaerobic GM composition was not 

significantly different in all other pairwise comparisons (Table S4.7). 

 

Finally, when combining the nest-sharing pairs and the non-nest-sharing pairs into 

two overall categories, anaerobic GM composition similarity was higher for nest-

sharing pairs (Dom-Dom and Dom-Help) than for non-nest-sharing pairs (Dom-Sub, 

Help-Sub, Sub-Sub) (Estimate=-2.317, p=0.003, Table S4.8, Figure 4.3).  

 

Table 4.5. A linear mixed effect model (lmer) investigating the relationship between 
individual breeding group status pairs and anaerobic GM composition similarity of 

Seychelles warblers (N = 279 pairwise comparisons across 320 samples from 204 
individual birds). Significant terms (P <0.05) are indicated in bold, marginal terms (P 
<0.1 are indicated in italics. Reference categories for categorical variables were the 
first term in brackets. Time of day was measured as minutes apart, and time in 
season was measured as days apart. 

Characteristic Beta SE1 Statistic df p-value 

(Intercept) -22.44 1.30 -17.3 39.0 <0.001 

Individual Status Pair      

    Dom - Dom — — —   

    Dom - Help -0.661 1.23 -0.539 209 0.590 

    Dom - Sub -2.231 1.14 -1.96 194 0.051 

    Help - Sub -3.483 1.63 -2.13 160 0.034 

    Sub - Sub -3.319 1.34 -2.47 189 0.014 

Age difference 0.009 0.067 0.135 258 0.893 

Sex (same/different) 0.335 0.735 0.456 239 0.649 

Season (major/minor) 0.049 1.05 0.046 91.8 0.963 

Time of day  -0.002 0.003 -0.591 250 0.555 
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Time in season 0.001 0.018 0.083 260 0.934 

Relatedness 1.622 1.82 0.893 194 0.373 

Shared nest at hatch 

(no/yes) 
-0.283 0.863 -0.328 233 0.743 

Random  274 observations  Variance 

Multi membership ID (Intercept) 204 groups  1.836 

Sample Year  (Intercept) 6 years  1.576 

Residual     4.341 

 

 

 

Figure 4.3. Anaerobic gut microbiome composition similarity of different social status 
pair categories of Seychelles warblers (comparison within groups). Dots and lines 
represent model predictions with 95% confidence intervals calculated from lmer 
models. The density plot represents the distribution of raw data. N = 279 pairwise 
comparisons across 322 samples from 204 individual birds. P-values between 
categories shown above the plots (Table 4.5) and nest-sharing groups of categories 
shown below the plots (Table S4.7) are shown with brackets. 
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4.5 Discussion 

 

We investigated how sociality GM shapes the GM in the cooperative breeding 

Seychelles warbler. GM alpha diversity did not differ between individuals from the 

same breeding group or individuals from different breeding groups. However, 

individuals within a group had a more similar GM composition compared to 

individuals from different groups. When separating aerotolerant from anaerobic 

bacteria, individuals within a breeding group shared more of both categories than 

did individuals from different groups. When we focus on cooperative breeding status 

differences within breeding groups, dominants and helpers shared a more similar 

GM Alpha diversity than the dominant pair, but no other pairs were significantly more 

similar in terms of GM diversity. When looking at all GM genera we found no 

differences in GM compositional similarity between any of the within group social 

status categories. However, when separating aerotolerant and anaerobic bacterial 

genera we find that, as predicted, anaerobic GM composition was more similar 

between birds that directly cooperate during breeding and thus interact closely at 

the nest than between categories of pairs that interact less. 

 

Seychelles warbler groups have defined territory boundaries that they defend year-

round to secure resources (Hammers et al., 2019). Individuals from the same group 

do not differ in how similar their GM alpha diversity is compared to pairs of 

individuals from different groups, which suggests that social transmission does not 

influence the overall diversity of the GM. This is not surprising, as GM alpha diversity 

is highly variable and may not reflect GM composition; individuals that live in 

different territories can have differing GM composition but still retain the same alpha 

diversity (Johnson & Burnet, 2016; Worsley, Lee, et al., 2024). However, as 

predicted, GM composition was more similar for individuals from the same groups 

than individuals from different groups, even when controlling for relatedness. Recent 

research on the social transmission of microbes in other group-living animals has 

yielded similar results (Raulo et al., 2018; Tung et al., 2015). This increase in GM 

composition similarity within groups likely arises from such individuals sharing the 

same resources, but also because of increased physical interaction among 

individuals. Indeed, non-group living wild mice (Apodemus sylvaticus) that interact 

more frequently tend to share a more similar microbiome composition (Raulo et al., 



 193 

2021, 2024). In our results, that both aerotolerant and anaerobic bacterial 

communities were more similar within than between breeding groups further 

supports the idea that shared microbes occur because of a combination of shared 

environment/diet (e.g. aerobes from insects) and close physical contact (e.g. the 

transmission of anaerobes). However, it would be challenging to distinguish 

between resource sharing and social contact modes of transmission when only 

comparing between and within social groups, as the two modes would overlap (but 

see below). 

 

Associations between GM characteristics and social interactions have been 

previously reported in social insects, the harvester ants (Veromessor andrei) and 

honey bees (Apis mellifera) (Gamboa et al., 2025; Jones et al., 2018), wild baboons 

(Papio cynocephalus) (Tung et al., 2015) and wild mice (Raulo et al., 2024), but 

researchers have not directly investigated social interactions within cooperative 

breeders. In social systems where cooperative breeding occurs, a hierarchy of 

closeness of interactions between individuals exists, with the dominant breeding pair 

interacting most frequently, followed by breeders-helpers, breeders-non-helping 

subordinates, helpers-non-helping subordinates, and subordinates-subordinates 

(Cant & Field, 2005; Komdeur, 1994). Interestingly, in Seychelles warblers, 

breeders-helpers have a more similar GM diversity than do the dominant breeding 

pair. This may be because the helpers (who are normally female) also share in 

incubating with the dominant female (Richardson et al., 2001) while male dominants 

do not. Importantly, when comparing all bacterial genera, GM compositional 

similarity was not associated with the closeness of cooperative breeding 

relationships within a group. This may be because individuals from the same 

environment tend to have a similar diet, which leads to homogenisation of the GM 

irrespective of social interactions. However, as predicted, if we only focus on 

anaerobic genera we do find that the closeness of cooperative breeding 

relationships influences GM composition similarity. This was not the case for the 

aerotolerant GM. These results support the hypothesis that aerotolerant microbes 

are likely transmitted through a shared general environment (i.e. the territory), while 

anaerobic microbes require closer social interactions, such as direct interactions at 

the nest, for transmission. The logic being that oxygen-sensitive anaerobic bacteria 

do not survive long outside of a host and therefore require close direct contact for 

transmission (Raulo et al., 2024). Our findings concur with previous work that 
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investigated anaerobic versus aerotolerant GM similarity in relation to social 

intimacy using GPS data tracking or grooming behaviour (Raulo et al., 2024; Tung 

et al., 2015).  

 

Is there likely to be any benefit of GM transmission through close social interactions 

in cooperatively breeding species? One benefit may be gaining beneficial anaerobic 

microbes (as observed in the Seychelles warbler). Anaerobic gut microbes are more 

likely to form close symbiotic relationships with their host as they cannot survive in 

the aerotolerant conditions outside of the intestinal tract. Indeed, most probiotics – 

living microbes that provide health benefits - are anaerobic bacteria (El Enshasy et 

al., 2015). Benefits include aiding gut homeostasis and aid digestion (Kelsey & 

Colpoys, 2018; Nalla et al., 2022; Zhang et al., 2016) and supporting the host’s 

immune system by preventing pathogens from colonising the GM (Murata et al., 

2025; Wells et al., 1988). However, there are also potential downsides to increased 

transmission, such as pathogen transmission. Although many life-threatening 

pathogens are aerotolerant (André et al., 2021), previous studies tracking pathogen 

transmission have suggested that there is an increased risk of spread in animals 

due to social proximity and shared resources (Duncan et al., 2021; Lebarbenchon 

et al., 2015). 

 

The Seychelles warbler is an excellent system for studying the social transmission 

of the GM. However, several limitations exist, such as samples not always being 

collected from all individuals within a breeding group within the same field period. 

All tests were restricted to samples within the same field seasons to ensure that 

individuals had the opportunity to interact recently, and in a similar environment, as 

temporal effects are known to influence GM communities in the Seychelles warbler, 

as well as other wild animals (Hicks et al., 2018; Marsh et al., 2022; Worsley, Davies, 

et al., 2024). Furthermore, although the finding that social closeness makes 

anaerobic GM composition more similar is clear and important, incorporating 

shotgun metagenomic data would help determine whether differences in taxonomy 

alter GM function and the possible contribution of these microbes to host health 

(Worsley, Mazel, et al., 2024). Additionally, metagenomics would enable the 

analysis of the GM at the species or strain-level (Anyansi et al., 2020), which would 

provide higher resolution when asking how GM components are correlated with 

social closeness rather than environmental transmission. Strain-tracking between 



 195 

family members and how long strains persist in the GM during an individual life 

would also improve our understanding of how social closeness shapes the GM 

(Hildebrand et al., 2021). However, the overall patterns as detected in our study are 

still valid and shotgun metagenomics for the number of samples required would be 

very costly. In addition, the use of GPS logger data would allow us to generate more 

nuanced social networks and determine the strength of social relationships (Kingma 

et al., 2016). Unfortunately, GPS monitoring of Seychelles warblers within territories 

is not yet effective, as the accuracy of current tracking technology (that is sufficiently 

light weight to use on the birds) relative to the size of the Seychelles warbler’s 

extremely small territories (0.18-0.46 ha per territory)(Komdeur & Pels, 2005), limits 

our ability to track individual interactions. Given the quality of the data on the 

Seychelles warblers gained through intense fieldwork observations, we are 

confident of the reliability of our estimates used here regarding the closeness of 

relationships between individuals (Brouwer et al., 2009; Hammers et al., 2019; 

Komdeur, 1994).  

 

Overall GM composition was also more similar when one individual (parent/helper) 

attended the other when they were a nestling,suggesting that the developmental 

GM tends to persist into later life and remains more similar due to a shared natal 

environment. This finding is consistent with that found in humans, where an 

individual shares gut microbial strains with their mothers, and these are maintained 

throughout life (Eikenaar et al., 2007; Valles-Colomer et al., 2023). 

 

In the present study on the Seychelles warbler when assessing the GM both within 

and across groups relatedness was not a predictor of GM composition similarity. 

This may be because highly related individuals, such as siblings, may not share the 

same territory later in life when we sample them (all samples were post-fledgling), 

especially since most individuals disperse from their natal territory as soon as a 

breeding opportunity elsewhere becomes available (Eikenaar et al., 2007). In wild 

mice and Verreaux's sifaka (Propithecus verreauxi), kinship and relatedness did not 

predict GM similarity (Perofsky et al., 2017; Raulo et al., 2021). However, in humans 

and wild baboons, related individuals share more similar GMs (Grieneisen et al., 

2021; Roche et al., 2023; Turnbaugh et al., 2009).  
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The Seychelles warbler GM was also influenced by environmental variables, 

especially the number of days apart that samples were collected, which is consistent 

with previous studies on this species (Lee et al., 2025; Worsley, Davies, et al., 2024; 

Worsley, Lee, et al., 2024). The effect of this variable on GM diversity and 

composition could be explained by changes in weather and food availability 

throughout the season or the storage time of our samples (Cunningham et al., 

2020). However, we cannot separate these two possibilities as they are strongly 

correlated. Additionally, GM composition was more similar between pairs sampled 

within the minor breeding season than in the major breeding season. The more 

relaxed territory boundaries in the minor breeding season and possibly fewer 

seasonal changes due to a shorter minor season, as well as less breeding attempts, 

could explain this, as groups are likely to share more of their geographic range and 

diet and, hence, a more similar GM (Komdeur, 1992, 2001).  

 

In conclusion, our study has been able to separate the effect of sharing habitat from 

the effect of close social interactions (within cooperative breeding) in shaping the 

GM of a wild vertebrate. Importantly we show that different components of the GM 

are differentially affected by such social interactions: anaerobic microbes are more 

likely to be transmitted through the cooperative breeding behaviours. Further 

research is needed to determine whether this elevated sharing of specific microbes 

due to cooperative breeding is beneficial or detrimental to host fitness. 
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4.7 Supplementary material 

Table S4.1. A linear mixed effect model investigating the relationship between 
breeding group membership and gut microbiome ASV richness similarity in pairs of 
Seychelles warblers (N = 27,821 pairwise comparisons across 648 samples from 
345 individual birds). Significant terms (P <0.05) are indicated in bold. Reference 
categories for categorical variables were the first term in brackets. Time of day was 
measured as minutes apart, and time in season was measured as days apart.  

Characteristic Beta SE1 Statistic df 
p-

value 

(Intercept) -125.7 9.14 -13.8 13.4 <0.001 

Breeding group 

(Between/Within) 
-0.995 6.43 -0.155 27,528 0.877 

Age difference -0.067 0.308 -0.217 26,377 0.828 

Sex (same/different) -0.636 1.21 -0.527 27,537 0.598 

Season (major/minor) -7.117 3.76 -1.89 2,446 0.059 

Time of day -0.003 0.004 -0.675 27,669 0.500 

Time in season -0.157 0.035 -4.50 27,719 <0.001 

Relatedness 6.394 9.63 0.664 27,553 0.507 

Shared nest at hatch (no/yes) 2.631 2.83 0.931 27,372 0.352 

Random 27,821 observations Variance 

Multi membership ID (Intercept)  345 groups  49.49 

Sample Year (Intercept)  6 years  17.19 

Residual     97.56 

 

 

 

Table S4.2. A linear mixed effect model (lmer) investigating the relationship between 
the social status categories of pairs of Seychelles warblers within breeding groups 
and the gut microbiome ASV richness similarity between them (N = 279 pairwise 
comparisons across 322 samples from 204 individual birds). Significant terms (P 
<0.05) are indicated in bold. Reference categories for categorical variables were the 
first term in brackets. Time of day was measured as minutes apart, and time in 
season was measured as days apart. 
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Characteristic Beta SE1 Statistic df p-value 

(Intercept) -128.9 31.2 -4.13 107 <0.001 

Individual Status Pair      

    Dom - Dom — — —   

    Dom - Help 13.04 31.0 0.420 217 0.675 

    Dom - Sub -29.20 28.5 -1.02 200 0.308 

    Help - Sub -4.601 41.2 -0.112 163 0.911 

    Sub - Sub 46.08 34.6 1.33 193 0.185 

Age difference -2.380 3.20 -0.743 136 0.459 

Sex (same/different) -2.730 18.6 -0.147 243 0.884 

Season (major/minor) -11.05 23.1 -0.479 43.8 0.635 

Time of day  0.099 0.077 1.29 262 0.199 

Time in season  -0.176 0.441 -0.398 267 0.691 

Relatedness -41.71 44.4 -0.940 187 0.348 

Shared nest at hatch 

(no/yes) 
42.05 21.7 1.94 243 0.053 

Random  279 observations  Variance 

Multi membership ID  (Intercept) 204 groups  47.05 

Sample Year  (Intercept) 6 years  18.09 

Residual     109.5 

 

 

Table S4.3. A linear mixed effect model (lmer) investigating the relationship between 
the social status categories of pairs of Seychelles warblers within breeding groups 
and the gut microbiome ASV Shannon diversity similarity between them (N = 279 
pairwise comparisons across 322 samples from 204 individual birds). Significant 
terms (P <0.05) are in bold. Reference categories for categorical variables were the 
first term in brackets. Time of day was measured as minutes apart, and time in 
season was measured as days apart. 

Characteristic Beta SE1 Statistic df p-value 

(Intercept) -1.425 0.230 -6.18 78.3 <0.001 
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Individual Status Pair      

    Dom - Dom — — —   

    Dom - Help 0.542 0.226 2.40 219 0.017 

    Dom - Sub 0.200 0.208 0.963 204 0.337 

    Help - Sub 0.288 0.303 0.950 169 0.344 

    Sub - Sub 0.359 0.254 1.42 194 0.159 

Age difference -0.012 0.024 -0.510 142 0.611 

Sex (same/different) -0.077 0.135 -0.570 243 0.569 

Season (major/minor) -0.075 0.173 -0.436 46.3 0.665 

Time of day 0.001 0.001 1.37 265 0.170 

Time in season <0.001 0.003 0.059 264 0.953 

Relatedness -0.613 0.324 -1.89 191 0.060 

Shared nest at hatch 

(no/yes) 
0.129 0.157 0.820 247 0.413 

Random  279 observations  Variance 

Multi membership ID  (Intercept) 204 groups  0.376 

Sample Year  (Intercept) 6 years  0.166 

Residual     0.762 

 

 

 

Table S4.4. Pairwise comparison of social status categories of pairs of Seychelles 
warblers within breeding groups and the gut microbiome ASV Shannon diversity 
similarity between them using Tukey method p-values (from Table S4.2; N = 279 
pairwise comparisons across 322 samples from 204 individual birds). Significant 
terms (P <0.05) are indicated in bold.  

Contrast Estimate SE df t.ratio p.value 

Dom-Dom vs Dom-Help 0.542 0.229 217 2.364 0.129 

Dom-Dom vs Dom-Sub 0.200 0.210 202 0.954 0.875 

Dom-Dom vs Help-Sub 0.288 0.307 166 0.938 0.882 
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Dom-Dom vs Sub-Sub 0.359 0.260 192 1.384 0.639 

Dom-Help vs Dom-Sub -0.342 0.190 212 -1.805 0.374 

Dom-Help vs Help-Sub -0.255 0.291 192 -0.876 0.906 

Dom-Help vs Sub-Sub -0.183 0.267 214 -0.687 0.959 

Dom-Sub vs Help-Sub 0.087 0.282 177 0.310 0.998 

Dom-Sub vs Sub-Sub 0.159 0.247 206 0.642 0.968 

Help-Sub vs Sub-Sub 0.072 0.333 196 0.215 1.000 

 

Table S4.5. A linear mixed effect model (lmer) investigating the relationship between 
social status pair categories within a breeding group and GM composition similarity 
in Seychelles warblers (N = 279 pairwise comparisons across 322 samples from 204 
individual birds). Significant terms (P <0.05) are indicated in bold. Reference 
categories for categorical variables were the first term in brackets. Time of day was 
measured as minutes apart, and time in season was measured as days apart. 

Characteristic Beta SE Statistic df p-value 

(Intercept) -75.42 3.30 -22.8 24.2 <0.001 

Individual Status Pair      

    Dom - Dom — — —   

    Dom - Help -0.841 2.91 -0.289 237 0.773 

    Dom - Sub -2.150 2.69 -0.799 228 0.425 

    Help - Sub -2.380 4.02 -0.592 198 0.555 

    Sub - Sub -2.352 3.35 -0.702 209 0.483 

Age difference -0.451 0.322 -1.40 174 0.163 

Sex (same/different) -0.199 1.69 -0.117 249 0.907 

Season (major/minor) 3.977 2.39 1.66 92.6 0.100 

Time of day  -0.001 0.007 -0.222 254 0.824 

Time in season  0.002 0.037 0.065 222 0.948 

Relatedness -3.252 4.23 -0.768 220 0.443 

Shared nest at hatch 

(no/yes) 
1.368 1.95 0.701 262 0.484 
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Random  279 observations  Variance 

Multi membership ID (Intercept) 204 groups  6.449 

Sample Year  (Intercept) 6 years  4.151 

Residual     8.037 

 

Table S4.6. A linear mixed effect model (lmer) investigating the relationship between 
individual status pairs and aerotolerant GM composition similarity of Seychelles 

warblers (N = 279 pairwise comparisons across 322 samples from 204 individual 
birds). Significant terms (P <0.05) are indicated in bold. Reference categories for 
categorical variables were the first term in brackets. Time of day was measured as 
minutes apart, and time in season was measured as days apart. 

Characteristic Beta SE1 Statistic df p-value 

(Intercept) -41.42 1.86 -22.2 18.7 <0.001 

Individual Status Pair      

    Dom - Dom — — —   

    Dom - Help -0.831 1.68 -0.495 232 0.621 

    Dom - Sub -1.804 1.56 -1.16 227 0.248 

    Help - Sub -3.017 2.33 -1.29 198 0.197 

    Sub - Sub -1.902 1.88 -1.01 207 0.313 

Age difference -0.245 0.074 -3.29 212 <0.001 

Sex (same/different) -1.102 0.973 -1.13 245 0.258 

Season (major/minor) 1.833 1.40 1.31 116 0.192 

Time of day  <0.001 0.004 -0.040 254 0.968 

Time in season  -0.001 0.021 -0.055 224 0.956 

Relatedness -2.428 2.45 -0.991 221 0.323 

Shared nest at hatch 

(no/yes) 
-0.389 1.12 -0.346 261 0.729 

Random  279 observations  Variance 

Multi membership ID (Intercept) 204 groups  3.785 

Sample Year  (Intercept) 6 years  2.638 
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Residual     4.588 

 

Table S4.7. A pairwise comparison with Tukey method p-values of the relationship 
between individual status pairs and anaerobic GM composition dissimilarity of 

Seychelles warblers (from Table 4.5) (N = 279 pairwise comparisons across 322 
samples from 204 individual birds). Significant terms (P <0.05) are indicated in bold. 

Contrast Estimate SE df t.ratio p.value 

Dom-Dom vs Dom-Help -0.661 1.240 202 -0.534 0.984 

Dom-Dom vs Dom-Sub -2.231 1.150 186 -1.945 0.297 

Dom-Dom vs Help-Sub -3.483 1.650 150 -2.110 0.221 

Dom-Dom vs Sub-Sub -3.319 1.360 179 -2.434 0.111 

Dom-Help vs Dom-Sub -1.570 1.030 205 -1.521 0.550 

Dom-Help vs Help-Sub -2.822 1.580 182 -1.790 0.383 

Dom-Help vs Sub-Sub -2.658 1.440 204 -1.841 0.353 

Dom-Sub vs Help-Sub -1.252 1.530 169 -0.819 0.925 

Dom-Sub vs Sub-Sub -1.088 1.310 200 -0.829 0.921 

Help-Sub vs Sub-Sub 0.164 1.790 190 0.092 1.000 

 

 

Table S4.8. A linear mixed effect model (lmer) investigating the relationship between 
the anaerobic GM composition similarity of nest-sharing pairs of Seychelles 
warblers compared to non-nest-sharing pairs (N = 279 pairwise comparisons across 
320 samples from 204 individual birds). Significant terms (P <0.05) are indicated in 
bold. Reference categories for categorical variables were the first term in brackets. 
Time of day was measured as minutes apart, and time in season was measured as 
days apart. 

Characteristic Beta SE1 Statistic df p-value 

(Intercept) -22.970 1.141 -20.135 30 <0.001 

Nest sharing group (yes/no) -2.317 0.778 -2.977 197 0.003 

Age difference 0.015 0.066 0.223 261 0.824 

Sex (same/different) 0.490 0.694 0.706 240 0.481 

Season (major/minor) 0.157 1.040 0.151 84 0.880 
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Time of day  -0.001 0.003 -0.463 254 0.644 

Time in season <0.001 0.018 -0.024 263 0.981 

Relatedness 1.622 1.754 0.925 206 0.356 

Shared nest at hatch (no/yes) -0.096 0.730 -0.131 242 0.896 

Random 274 observations Variance 

Multi membership ID (Intercept)  204 groups 3.432 

Sample Year (Intercept)  6 years 2.180 

Residual      
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Chapter 5 |  

 

Inbreeding, intergenerational inbreeding and the 

gut microbiome 

 

 

 

Photo of a demographic rescue event in the Cousin Island population of Seychelles 

warbler fieldworkers (n = 3  1)  
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5.1 Abstract 

Background 

Inbreeding can detrimentally impact the fitness of individuals and their offspring 

(inbreeding depression). However, whether being inbred impacts the gut 

microbiome (GM) of individuals in natural populations remains largely unexplored, 

despite this being a potentially important cause of reduced host health and fitness. 

Moreover, the intergenerational effects of having inbred parents on the GM have 

never been explored.  

 

Methods 

We used a natural, closed population of Seychelles warblers (Acrocephalus 

sechellensis) to investigate how host inbreeding impacts GM communities. 

Inbreeding avoidance does not occur in this population, leading to high variance in 

individual inbreeding coefficients (FRoH). Furthermore, extra-pair paternity is high 

(~44%) in this socially monogamous species, which helps us separate genetic and 

social effects influencing the GM. Using faecal samples, we undertook both 16S 

rRNA amplicon sequencing variants (ASV) metabarcoding (n = 439 from 235 

individuals) and metagenomic sequencing (n = 143 from 80 individuals) to 

investigate how being inbred, or having inbred parents, affects an individual’s 

taxonomic and functional GM variation. 

 

Results 

Individuals with higher FRoH had lower metagenomic taxonomic alpha diversity and 

distinct shifts in ASV and functional composition, although no specific taxa or 

functions differed in abundance, and GM stability was unaffected.  

 

Intergenerational effects were also evident: genetic father FRoH was positively 

associated with offspring functional richness, while maternal and social father FRoH 

influenced offspring species composition. However, no specific taxa or functions and 

GM stability were associated with parental inbreeding. 

 

Conclusions 
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Individuals with a higher inbreeding coefficient showed a small but detectable effect 

on the GM, particularly in relation to alpha diversity and composition. Likewise, 

intergenerational inbreeding had some limited effects on microbiome 

characteristics. Together, these findings provide evidence that inbreeding can 

influence (albeit with small effect sizes) not only an individual’s microbiome but also 

that of their offspring.  
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5.2 Introduction 

 

The gut microbiome (GM) plays a key role in many host processes, including 

metabolic functions, immune defence and cognition (Ross et al., 2024; Zhu et al., 

2021). Studies of wild animals have shown that the GM varies amongst individuals 

in association with environmental differences (Hicks et al., 2018; Marsh et al., 2022; 

Schmid et al., 2023) as well as host factors such as age, sex, and sociality (C. Lee 

et al., 2025; Raulo et al., 2021; Risely et al., 2022; Tung et al., 2015; Xu and Zhang, 

2021). Fine-scale within-population studies, where environmental factors (such as 

diet) remain relatively constant, and where individual variation in these other host 

factors is known, provide the best opportunity to reveal the effects of among-

individual host genetic variation on the GM (Dzierozynski et al., 2023).  

 

A few studies in natural populations have shown that individual differences in host 

genetics are associated with variation in the GM (Davies et al., 2022; Flynn et al., 

2023; Grieneisen et al., 2021). For example, a study on baboons (Papio 

cynocephalus) revealed that the GM is significantly heritable (Grieneisen et al., 

2021). Furthermore, host immunogenetic diversity has been associated with 

differences in GM diversity and composition in several species (Bolnick et al., 2014; 

Davies et al., 2022; Fuess et al., 2021; Tanoue et al., 2010), and specific host genes 

that shape gut physiology and nutrient metabolism may also shape the GM (Bonder 

et al., 2016; Kurilshikov et al., 2017; Schroeder, 2019). However, powerful studies 

that address host genetic variation across the entire genome are now needed to 

resolve if, to what extent, and why, host genetic characteristics impact the GM. 

 

Inbreeding results in higher homozygosity across the genome in offspring, which, 

through greater expression of recessive deleterious alleles and a loss of heterosis, 

can lead to reduced health and fitness, i.e. inbreeding depression (Charlesworth 

and Willis, 2009). Despite these detrimental effects, inbreeding may become 

inevitable in small, isolated populations due to increasing relatedness among 

individuals (Ralls et al., 2007), especially where effective inbreeding avoidance 

mechanisms do not exist (Dorsey and Rosenthal, 2023; Eikenaar et al., 2008). 
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The GM may be affected by inbreeding through both direct and indirect effects.  

Increased homozygosity can lead to the expression of deleterious alleles at loci that 

are directly involved in regulating the GM (Bonder et al., 2016; Melis et al., 2023) or 

lead to a loss of heterosis/heterozygote advantage at key genes that interact with 

the GM, e.g. immune genes under balancing selection (Spurgin and Richardson, 

2010). Alternatively, the expression of deleterious alleles and loss of heterosis 

across loci may detrimentally impact the general physiological health of an individual 

(Fareed and Afzal, 2014). That reduced health may subsequently lead to differences 

in GM composition and stability  (Keller, 2002), potentially leading to dysbiosis and 

more negative host health effects (Hooks and O’Malley, 2017; Martinez et al., 2021; 

Videvall et al., 2020).  

 

Given that being inbred reduces individual health and condition, it is also possible 

that the offspring of inbred individuals may also suffer fitness loss independent of 

their own genetics (Ford et al., 2018). For example, such intergenerational 

inbreeding depression can occur due to reduced parental care quality, a key 

contributor to offspring fitness (Vedder et al., 2021). Another possible route is that 

inbred parents have differences in epigenetic regulation of genetic expression 

(Achrem et al., 2023; Vergeer et al., 2012), which may influence offspring 

development and health (Xu et al., 2021). Furthermore, given that the GM is to some 

degree vertically transmitted in many species (Sarkar et al., 2024, 2020), inbred 

parents with poorer GM characteristics may pass on a weaker initial GM to their 

offspring (Choo et al., 2017; Sarkar et al., 2024).  

 

Links between inbreeding and GM variation are still not well characterised or 

understood. Studies on inbred captive animals suggest that inbreeding is associated 

with reduced GM alpha diversity and changes in GM composition, with decreases 

in probiotic, and increases in potentially pathogenic microbes (Hufeldt et al., 2010; 

Melis et al., 2023; Ørsted et al., 2022; Wei et al., 2020). However, captive animals 

harbour a simpler and different (artificial) GM compared to their wild counterparts 

(Gibson et al., 2019; Ning et al., 2020; Oliveira et al., 2020). Thus, findings from 

captive animals may not reflect what is occurring in natural populations. 

Furthermore, long-term captive host lines are often purged of recessive deleterious 

alleles and hence capable of surviving incredibly high inbreeding coefficients 
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(Festing and Lutz, 2010; Wei et al., 2020). Therefore, studies on these lines are 

unlikely to reflect how inbreeding affects GM characteristics in the wild.  

 

In wild populations, some studies have shown that genome-wide heterozygosity is 

associated with increased GM alpha diversity (Davies et al., 2022; Yuan et al., 

2015), while others have not (Guimaraes Sales et al., 2024). Additionally, genome-

wide heterozygosity has been associated with differences in GM composition 

(Guimaraes Sales et al., 2024; Steury et al., 2019). However, overall, the effects of 

inbreeding on the GM in wild animals. has received little, or in the case of 

intergenerational effects, no attention. 

 

The power of modern sequencing methodologies enables us to accurately and 

efficiently assess both host inbreeding and GM characteristics. Whole-genome 

sequencing allows for accurate quantification of recent inbreeding via inbreeding 

coefficients (e.g. the fraction of genome in runs of homozygosity; FRoH (Ceballos 

et al., 2018)). GM composition can be determined in a cost-effective manner using 

16S rRNA metabarcoding, which allows for low-resolution taxonomic analysis of the 

bacterial GM across many samples due to its low sequencing cost (Worsley et al., 

2024d). Additionally, shotgun metagenomic sequencing, though much more 

expensive, can be used to analyse the GM at a higher taxonomic resolution (species 

or strain level) and can shed light on GM functional characteristics via information 

on gene content (Worsley et al., 2024d). An assessment of GM function could 

extend our insights into the mechanisms by which GM variation influences the host 

or vice versa (C. Z. Lee et al., 2025b, 2025a; Worsley et al., 2024d, 2021). 

 

Here, we use the Seychelles warblers (Acrocephalus sechellensis) on Cousin Island 

to investigate how inbreeding affects the GM in a wild vertebrate population. This 

isolated population of ca. 300 individuals has been intensively monitored since 1997 

(Hammers et al., 2015; Richardson et al., 2001; Speelman et al., 2025). Over 2500 

individuals have been followed throughout their lives and an extensive genetically 

verified pedigree generated (Hadfield et al., 2006; Sparks et al., 2022). In this 

socially monogamous, territorial species, extra-pair paternity (EPP) is common 

(~44% of offspring) (Raj Pant et al., 2019; Richardson et al., 2001), and nearly all 

genetic fathers are assigned (Hadfield et al., 2006; Sparks et al., 2022), thus 
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enabling us to separate genetic and environmental paternal effects. The small size 

and lack of inbreeding avoidance in this population (Eikenaar et al., 2008) have 

resulted in a high variance of inbreeding (Richardson et al., 2004) and inbreeding 

depression (Bebbington et al., 2016; Richardson et al., 2004). Prior GM studies on 

this population have shown that genome-wide heterozygosity is positively 

associated with 16S GM diversity (Davies et al., 2022), and major histocompatibility 

complex (MHC) diversity with GM composition (Davies et al., 2022; C. Z. Lee et al., 

2025b; Worsley et al., 2022). Additionally, GM differences have been associated 

with several host factors, including relatedness and sociality(C. Lee et al., 2025; 

Worsley et al., 2024c), as well as environmental factors including season, sampling 

year, and time of day (Davies et al., 2022; C. Z. Lee et al., 2025a, 2025b; Worsley 

et al., 2024c, 2024b, 2021). Importantly, another study also identified 28 ASVs 

whose abundances were associated with differential survival (22 negatively and 6 

positively), suggesting pathogenic or beneficial microbes (Worsley et al., 2021). 

 

Here, we utilise individual inbreeding coefficients (FRoH) derived from whole 

genome sequencing of 1900 Seychelles warblers in combination with previously 

generated 16S metabarcoding (Worsley et al., 2024b) and metagenomic data (C. Z. 

Lee et al., 2025a) to investigate the effects of host inbreeding, and intergenerational 

inbreeding, on the GM. We hypothesise that inbreeding will lead to lower quality 

hosts and GMs. Specifically, we predict that i) individual FRoH will be associated 

with lower GM diversity and ii) negative changes in GM taxonomical and functional 

composition, and reduced GM stability. Specifically, inbred individuals will show an 

increased prevalence of negative/pathogenic microbes, reduced beneficial 

functional genes, and greater inter-individual variation. We also predict that iii) 

offspring of inbred social parents will have lower GM diversity and differences in GM 

taxonomical and functional compositions, and reduced GM stability.   
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5.3 Methods 

5.3.1 Study system 

The Seychelles warblers on Cousin Island, Republic of Seychelles (29 ha; 04° 20′ 

S, 55° 40′ E) are a population of small, insectivorous passerines that has been 

monitored since 1985 (Hammers et al., 2015; Komdeur, 1992; Speelman et al., 

2025). The population consists of ca. 300 individuals inhabiting ca 100 territories 

(Komdeur, 1992) and is closed, with virtually no dispersal to other islands (Komdeur 

et al., 2004). Two field seasons are conducted per year: January to March (minor 

breeding season) and June to September (major breeding season). During these as 

many individuals as possible are caught using mist nets or in the nest (chicks), and 

new individuals are marked using a British Trust for Ornithology (BTO) metal ring 

and a unique combination of three colour rings. Since 1997, almost every individual 

(>98%) has been marked and monitored throughout their life (Brown et al., 2022). 

Age is calculated from an individual’s hatch or fledge date and eye colour (Komdeur, 

1991).  

 

A 12-generation, genetically verified pedigree has been constructed from this 

population (Hadfield et al., 2006; Sparks et al., 2022), allowing accurate assignment 

of parentage and detection of inbreeding events (Figure 5.1A). The pedigree also 

informs intergenerational inbreeding events (Figure 5.1B) and EPP (Figure 5.1C).  
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Figure 5.1. Representation of a focal individual resulting from (A) inbreeding, (B) 
intergenerational inbreeding and (C) extra-pair paternity. Focal individuals are in 
gold.  

 

5.3.2 Sample collection 

Faecal and blood samples were collected from caught individuals. Briefly, birds were 

placed in a flat-bottom paper bag with a sterilised plastic tray under a metal grate 

allowing faeces to drop onto the plastic, while minimising contact with the birds’ 

surface (Davies et al., 2022; Knutie and Gotanda, 2018). Faecal samples are placed 

into a sterile microcentrifuge tube containing 1 mL of absolute ethanol, stored at 4°C 

during fieldwork and then at -80°C for long-term storage. Each season, control 

samples were collected by swabbing collection bags and fieldworker hands. The 

time of day (minutes after sunrise; 06:00 AM) of sampling was recorded, as was 

faecal storage time (days) at 4°C. A small (ca. 25 µl) blood sample was also 

collected from each bird via brachial venepuncture and stored in 0.7 ml of absolute 

ethanol at 4°C.  

 

5.3.3 Gut (bacterial) microbiome molecular methods 

Microbial DNA were extracted from faecal samples using the DNeasy PowerSoil Kit 

(Qiagen, Crawley, UK) with a modified version of the manufacturer’s protocol 

(described in (C. S. Davies et al., 2022)). Microbial DNA were sequenced as part of 

First order 

inbreeding

First order 

inbreeding

Monogamous
Extra-pair 

paternity

A. Inbreeding B. Intergenerational inbreeding C. Extra-pair paternity

- Focal individual 
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previous studies using 16S rRNA amplicon (Worsley et al., 2024b) and shotgun 

sequencing for metagenomics (C. Z. Lee et al., 2025a).  

 

Briefly, microbial DNA samples were submitted for 16S rRNA amplicon sequencing 

across seven batches from libraries generated with V4 primers 515F 

(5'TGCCAGCMGCCGCGGTAA3’) and 806R (5’GGACTACHVGGGTWTCTAAT3’) 

(Worsley et al., 2024b). Libraries were sequenced with 2 x 250 bp paired end reads 

on an Illumina MiSeq Platform. Control samples were extracted, and amplicon 

sequenced in the same way (n = 21 hand controls, 15 negative controls, and 10 

positive ZymoBIOMICS Microbial Community Standard (D6300) controls). 

 

A subset of DNA samples was submitted for shotgun sequencing in two batches 

from libraries generated with the LITE protocol (Perez-Sepulveda et al., 2021). 

Libraries were sequenced using 2 x 150 bp paired end sequencing on an Illumina 

NovaSeq X platform. Controls samples were library prepped and sequenced in the 

same way (n = 6 hand controls, n = 2 ZymoBIOMICS Microbial Community Standard 

(D6300), and n = 1 ZymoBIOMICS Fecal Reference with TruMatrix™ Technology 

(D6323)). 

 

5.3.4 Host genome molecular methods 

Genomic DNA was extracted from blood samples using the DNeasy Blood and 

Tissue kit (Qiagen, Crawley, UK) or a salt extraction protocol (Richardson et al., 

2001) according to the manufacturer’s protocol. Genomic DNA was used for 

molecular sexing following (Griffiths et al., 1998) and microsatellite genotyping for 

parentage analyses (Richardson et al., 2001; Sparks et al., 2022).. Genomic DNA 

was submitted for whole genome sequencing in 20 batches (detailed in Kiran Lee 

et al., 2025 – in prep) from randomly selected libraries generated with NEBNext 

Ultra II FS DNA Library Prep (New England Biolabs). Libraries were sequenced 

using 2 x 150 bp, paired-end sequencing on an Illumina NovaSeq 6000 platform.  

 

5.3.5 Bioinformatics 

Amplicon sequenced reads were processed as described in (Worsley et al., 2024b). 

Briefly, 16S rRNA reads were truncated, filtered, and classified in amplicon 
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sequencing variants (ASV) using DADA2 as part of QIIME2 (Bolyen et al., 2019). 

ASVs were taxonomically assigned with the naïve-Bayes classifier on the SILVA 

132 reference database for 16S rRNA gene sequences (Quast et al., 2012). The 

resulting ASVs were imported to R using phyloseq 1.46.0 (Leo Lahti and Sudarshan 

Shetty, 2019; McMurdie and Holmes, 2013) and filtered to remove ASVs that were 

non-bacterial, unassigned to phylum level, or had less than 50 reads, as well as 

potential contaminants (based on controls). Amplicon sequencing reads were 

rarefied to 8,000 reads, based on samples reaching >95% completeness in 

rarefaction curves (Worsley et al., 2024b). ASV richness and Shannon diversity 

were calculated using phyloseq version 1.46.0 (McMurdie and Holmes, 2013). 

 

Shotgun sequence processing was performed using MATAFILER (Hildebrand et al., 

2021) as previously described in detail (C. Lee et al., 2024). Briefly, host reads were 

removed by mapping reads to the Seychelles warbler genome (see below) with 

Kraken 2 (version 2.1.3), followed by read quality filtering using sdm software 

version 2.14 beta (Hildebrand et al., 2014; Wood et al., 2019). After removing host 

reads and read trimming, two samples and five hand controls were removed 

because they did not have enough reads for metagenome assembly. An average of 

20,481,040 (SD = 13,718,305) paired end reads per sample were retained for de 

novo metagenome assembly using MEGAHIT version 1.2.9 (Li et al., 2015). Genes 

were predicted from the resulting assembly using Prodigal version 2.6.3 (Hyatt et 

al., 2010) and clustered into gene catalogues (95% identity). Functional annotations 

of genes were performed using eggNOGmapper version 2.1.12 and the eggNOG 

database version 4 (Cantalapiedra et al., 2021; Powell et al., 2014). Metaphlan4 

assignments were used to taxonomically assign shotgun sequencing reads. 

Metagenomic species reads were rarefied to 5500 reads, the point of asymptote of 

the metagenomic species rarefaction curve (C. Z. Lee et al., 2025a). Metagenomic 

functional annotation reads were rarefied to 100,000 reads, the point of asymptote 

of the metagenomic functional annotation rarefaction curve (C. Z. Lee et al., 2025a). 

 

Whole host genome sequencing reads were processed as described previously 

(Kiran Lee, et al., 2025). Briefly, reads were filtered to keep only high-quality reads 

(Phred quality score of >33 and a minimum length of 80 bp) 

using Trimmomatic version 0.39 (Bolger et al., 2014). These reads were mapped to 

the Seychelles warbler reference genome (Kiran Lee, et al., 2025; BUSCO: 96.0% 
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with a total length = 1,081,018,985 bp) before imputation with STITCH version 1.7.0 

(Davies et al., 2016), with the following parameters: diploid, eight founding 

haplotypes, and 25 generations since founding (Kiran Lee, et al., 2025). Runs of 

homozygosity (ROH) were then calculated for each sample using PLINK version 2.0 

(Purcell et al., 2007) by including SNPs with genotyping rate >99% and minor allele 

frequency >99% as well as a maximum allowed density of heterozygous SNPs of 

200 kb, maximum allowed gap of 300 kb, minimum length of 3750 kb, minimum 

number of SNPs of 50, maximum number of heterozygous SNPs in a sliding window 

of 2, maximum number of missing genotypes within the sliding window of 4, and 

minimum number of SNPs required in a sliding window of 50 (Kiran Lee, et al., 

2025). The fraction of the genome in ROH (FROH) was calculated by dividing the 

ROH length by genome size.  

 

5.3.6 Pedigree  

Parentage assignment was generated with MasterBayes 2.5.2 (Hadfield et al., 

2006) using microsatellites (Richardson et al., 2001; Sparks et al., 2022). All 

offspring hatched between 1991 and 2022 (2282 offspring, 1935 (85%) mothers, 

2016 (88%) fathers were assigned parentage at >80% confidence using 

MasterBayes 2.52 as part of previous studies (Hadfield et al., 2006; C. Lee et al., 

2025; Sparks et al., 2022)). 

 

In addition, parentage assignment was also performed with sequoia version 2.11.4 

(Huisman, 2017) using SNPs filtered in PLINK for genotyping rate of >99.9 %, minor 

allele frequency of >30% and linkage of 1000 SNP window, 2 step size, 0.1 pairwise 

r2, sex chromosomes and chromosomes with <90% imputation accuracy were 

excluded. Both pedigrees showed excellent consistency (>95% concordance; Kiran 

Lee et al., 2025). Therefore, the genomic pedigree was used for all subsequent 

analyses.  

 

5.3.7 Statistical analysis 

Individuals >0.5 years age (when the mature GM stabilises (Worsley et al., 

2021)).for which we had gut microbiome samples, genomic data, and known parents 

were included (16S, n = 439 samples from 235 individuals; Metagenomics, n = 143 
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samples from 80 individuals).  All statistical analysis was conducted in R 4.3.3 (Posit 

team, 2024; R Core Team, 2024). Linear mixed effect (LMMs) and Generalised 

linear mixed effect models (GLMMs) were constructed using lme4 version 1.1-35.5 

(Bates et al., 2015), and PERMANOVAs were constructed using the adonis2() 

function in vegan version 2.6.6 with 9999 permutations and a blocking effect of bird 

ID to account for repeated measures (Oksanen Jari et al., 2024).  

 

5.3.7.1 Inbreeding and GM alpha diversity 

16S rRNA metabarcoding diversity: A GLMM with negative binomial distribution 

was constructed with ASV richness as the response variable and the individual’s, 

mother’s, genetic father’s, social father’s inbreeding coefficient and extra-pair 

paternity (no/yes) as predictor variables. Age (years), sex, season, sample year, 

days at 4°C, and time of day were also included as fixed-term control variables, and 

bird ID, mother ID, genetic father ID and social father ID were included as random 

variables. An interaction between inbreeding coefficient of genetic father and EPP 

is tested to determine if the effect was only present only during EPP, but the 

interaction was dropped if it was not significant to allow interpretation of the main 

effects. Shannon diversity was also then modelled with an LMM including the same 

variables. 

 

All subsequent models of GM diversity (below) included the same control variables 

unless stated otherwise.  

 

For all analyses, if any inbreeding coefficient had a significant (P < 0.05) effect on 

the dependent variable, then an additional model was constructed with only extra-

pair offspring included to confirm results using only cases where the social and 

genetic fathers were different.  

 

Metagenomic taxonomic diversity: A GLMM with negative binomial distribution 

was constructed with metagenomic species richness as the dependent variable, and 

an LMM was constructed with metagenomic species Shannon diversity.  
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Metagenomic functional diversity: LMMs were constructed for scaled 

exponentially transformed functional richness and exponentially transformed 

functional Shannon diversity. 

 

5.3.7.2 Inbreeding and GM composition 

16S rRNA metabarcoding composition: Unrarefied amplicon sequencing reads 

were filtered to remove rare ASVs (<5% prevalence), and a centred log ratio (CLR) 

transformation was applied to the ASVs abundance using microbiome 1.24.0 

package (Leo Lahti & Sudarshan Shetty, 2019). A PERMANOVA was constructed 

using pairwise Aitchison distance with the inbreeding coefficient of the focal 

individual, and its mother, genetic father, social father and extra-pair paternity (EPP; 

no/yes) as predictors, along with control variables (age, sex (female/male), season 

(major/minor), sample year, days at 4°C, and catch time). An interaction between 

inbreeding coefficient of genetic father and EPP is tested to determine if the effect 

was only present only during EPP, but the interaction was dropped if it was not 

significant to allow interpretation of the main effects. PCA was generated using 

phyloseq version 1.46.0 (McMurdie & Holmes, 2013) to visualise compositional 

changes. 

 

Metagenomic taxonomic composition:  Unrarefied metagenomic species reads 

were filtered, and a CLR transformation was applied to species abundance as for 

ASV composition above. A PERMANOVA (also as described above), was 

constructed to test for inbreeding and intergenerational inbreeding coefficient effects 

on metagenomic species composition.  

 

Metagenomic functional composition: Unrarefied metagenomic functional 

annotations were filtered and a CLR transformation was applied to functional 

annotation abundance as for ASV composition above. A PERMANOVA (also as 

described above) was constructed to test for intergenerational inbreeding coefficient 

effects on metagenomic functional annotation composition. 

 



 226 

5.3.7.3 Inbreeding and GM differential abundance analysis 

16S rRNA metabarcoding abundance: Differential abundance analysis was 

performed using ALDEx2 1.34.0 (Fernandes et al., 2013). CLR transformed ASVs 

from GM composition were used as the response variable with the inbreeding 

coefficient of the focal individual and its mother, genetic father and social father as 

predictors, along with control variables (age, sex, season, sample year, days at 4°C, 

and catch time). The differential abundant ASVs were then compared to previously 

identified survival-related ASVs (Worsley et al., 2021), to assess whether inbreeding 

is associated with an increase in potentially pathogenic microbes and/or a decrease 

in beneficial ones. 

 

Metagenomic taxonomic abundance: Metagenomic species and metagenomic 

function were also analysed with ALDEx2 as described for ASV abundance above. 

 

5.3.7.4 Inbreeding and GM stability 

16S rRNA metabarcoding GM stability: Pairwise Aitchison distances of CLR-

transformed reads from between samples were scaled to similarity values (0-1) 

using the formula as previously described (Worsley et al., 2024b): similarity = 1-

(distance/maximum distance), where a value closer to one indicates samples are 

identical in GM composition. We then modelled pairwise GM similarities using a 

LMM multi-membership model (lmer with lmerMultiMember) using lme4 1.1-35.5 

(Bates et al., 2015). Inbreeding coefficients were categories by the average 

population FRoH (low   0.25 and high >0.25) to assess whether inbreeding of the 

focal individual or its parents had more or less stable GMs. A total of 96141 pairwise 

comparisons of individual inbreeding category (low-low, high-high, and mixed), 

mother inbreeding category, genetic father inbreeding category, social inbreeding 

category, age difference (in years) and temporal distance (days between sampling) 

were included as fixed effects in the model. A multi-membership ID variable 

(calculated using lmerMultiMember to account for the repeated occurrences of 

individual ID in both columns, and suitable for dyadic models (van Paridon et al., 

2023)) was used as a random variable.  

 

Metagenomic GM stability: Metagenomic species and metagenomic function were 

analysed as for ASV GM stability (as described above).  
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5.4 Results 

 

5.4.1 Inbreeding and GM alpha diversity 

16S rRNA metabarcoding diversity: An individual’s GM ASV alpha diversity 

(richness or Shannon diversity) was not significantly associated with the individual’s 

inbreeding coefficient, nor that of its mother, genetic or social father (Table 5.1AB, 

Table S5.1-5.2), but was (both richness and Shannon) negatively associated with 

age (Table S5.1). GM ASV richness was also associated with sample year, while 

Shannon diversity was also significantly negatively associated with days at 4°C 

(Tables S5.1-S5.2). 
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Table 5.1. Models investigating associations between gut microbiome (GM) alpha 
diversity and inbreeding (of individuals and their parents) in the Seychelles warbler. 
The inbreeding coefficient (FROH) predictors in all models are shown on the left 
side of the table: the inbreeding coefficient of 1) the focal individual, and its 2) 
mother, 3) genetic father, and 4) social father. The different metrics describing GM 
characteristics used as the dependent variables are given along the top. The 
estimate (Est), P-value (P), and sample size (N) of each predictor in each model are 
represented by the numbers in the boxes. An asterisk (*) denotes predictors that 
were also significant (P < 0.05) in an extra-pair only model (Table S5.5 & S5.8). 
Significant (P < 0.05) effects of the inbreeding coefficients with the GM characteristic 
in each model are shown by bold text and shading the box in blue (positive 
relationship) or orange (negative relationship). 
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1) Individual 

Est: 

0.22 

P: 0.744 

N: 439 

Est: -

0.84 

P: 0.489 

N: 439 

Est: -

3.09 

P: 0.046* 

N: 141 

Est: -

2.46 

P: 0.184 

N: 141 

Est: -

1.75 

P: 0.061 

N: 139 

Est: -

1206 

P: 0.205 

N: 139 

2) Mother 

Est: 

0.31 

P: 0.606 

N: 439 

Est: 0.05 

P: 0.962 

N: 439 

Est: 2.19 

P: 0.057 

N: 141 

Est: 1.70 

P: 0.238 

N: 141 

Est: 1.12 

P: 0.103 

N: 139 

Est: 175 

P: 0.798 

N: 139 

3) Genetic Father 

Est: -

0.06 

P: 0.920 

N: 439 

Est: 0.52 

P: 0.611 

N: 439 

Est: 0.20 

P: 0.861 

N: 141 

Est: -

0.53 

P: 0.710 

N: 141 

Est: 

1.54 

P: 0.027 

N: 139 

Est: 904 

P: 0.212 

N: 139 

4) Social Father 

Est: 

0.30 

P: 0.628 

N: 439 

Est: 0.58 

P: 0.605 

N: 439 

Est: -

0.16 

P: 0.894 

N: 141 

Est: 0.31 

P: 0.840 

N: 141 

Est: -

0.92 

P: 0.208 

N: 139 

Est: -

1167 

P: 0.117 

N: 139 
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Metagenomics taxonomic alpha diversity: Species richness (but not Shannon 

diversity) was significantly negatively associated with the focal individual’s 

inbreeding coefficient (Table 5.1C, Table S5.3 & S5.4, Figure 5.2A). Using only 

extra-pair offspring, metagenomic species richness remained significantly 

associated with individual inbreeding coefficient, despite the smaller sample size 

(Table S5.5). Neither Richness or Shannon diversity were associated with the 

inbreeding coefficient of the focal individual’s mother, genetic or social father (Table 

5.1C, Table S5.3 & S5.4). In terms of the other control variables, metagenomic 

species richness was significantly negatively associated with age (Table S5.3), and 

metagenomic species Shannon diversity was significantly negatively associated 

with days at 4°C (Table S5.4), but no other variables. 

 

Metagenomic functional diversity: Functional richness and Shannon diversity 

was not associated with inbreeding coefficient of the focal individual or its mother or 

social father, but functional richness was significantly positively associated with the 

inbreeding coefficient of the genetic father’s (Table 5.1E, Table S5.6 & S5.7, Figure 

5.2B). Using only extra-pair offspring, metagenomic functional richness remained 

related to the genetic father’s inbreeding coefficient (with a similar positive effect 

size), though this was no longer significant in this reduced sample size model (Table 

S5.8), which suggests that, despite a lack of power, the results remain consistent. 

Metagenomic functional richness and Shannon diversity were both significantly 

negatively associated with age (Table S5.6 & S5.7) and metagenomic functional 

richness was also significantly associated with sample year (Table S5.6).  
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Figure 5.2. Seychelles warbler gut microbiome metagenomic-derived (A) species 
richness in relation to individual inbreeding coefficient (FROH), and (B) functional 
richness and genetic father’s inbreeding coefficient. Solid lines represent model 
predictions (±95% confidence interval) from a generalised linear mixed effect model 
with negative binomial distribution (Table S5.3) and a linear mixed effects model 
(Table S5.6), respectively. Each point represents a unique gut microbiome sample 
(n = 141 samples from 80 individuals).  

 

5.4.2 Inbreeding and GM composition 

 

16S rRNA metabarcoding composition: GM ASV composition was significantly 

associated with the inbreeding coefficient of an individual, though it only explained 

a small amount of the overall GM variance (R2 = 0.002, Tables 5.2 & 5.3A, Figure 

S5.3). Using only extra-pair offspring, GM ASV composition was still significantly 

associated with individual inbreeding coefficient (Table S5.9). GM ASV composition 

was also significantly associated with season, sample year, days at 4°C, and time 

of day (Table 5.2). The inbreeding coefficient of the focal individual’s mother, genetic 

and social father was not associated with GM composition, nor was age and sex 

(Table 5.2 & 5.3A).  

 

Table 5.2. A PERMANOVA of the relationship between gut microbiome (GM) ASV 
compositional differences and the inbreeding coefficients (FROH) of Seychelles 
warblers and its mother, genetic and social fathers. The analysis was performed 
using Aitchison distances calculated using centred log ratio (CLR) transformed 
amplicon sequencing variant (ASV) abundances. Significant predictors (P < 0.05) 
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are shown in bold. N = 439 samples from 235 individuals. Bird ID was included as 
a blocking factor to control for repeated measures. 

 Df R2 F P 

Individual inbreeding coefficient 1 0.002 0.855 0.005 

Mother inbreeding coefficient 1 0.003 1.147 0.872 

Genetic Father Inbreeding coefficient 1 0.003 1.495 0.653 

Social Father Inbreeding coefficient 1 0.002 1.058 0.648 

Extra-pair paternity  1 0.002 0.995 0.448 

Age 1 0.002 1.106 0.973 

Sex 1 0.003 1.188 0.523 

Season 1 0.005 2.197 <0.001 

Sample Year 5 0.024 2.137 <0.001 

Days at 4°C 1 0.005 2.344 <0.001 

Time of day 1 0.008 3.496 <0.001 

Residual 424 0.935   

Total 438 1   

 

Table 5.3. The relationship between GM composition and inbreeding in the 
Seychelles warbler. The inbreeding coefficient (FROH) predictors in all models are 
shown on the left side of the plot: the inbreeding coefficient of 1) the individual and 
that of its, 2) mother, 3) genetic father, and 4) social father. The different metrics 
describing GM characteristics used as the dependent variables are given along the 
top: A) ASV composition (Table 5.2), B) Metagenomic species composition (Table 
S5.10), C) Metagenomic functional composition (Table S5.12). The effect size (R2), 
P-value, and sample size (N) of each predictor in each model are represented by 
the numbers in the boxes. An asterisk (*) denotes predictors that were also 
significant (P < 0.05) in an extra-pair only model (Table S5.9 & S5.11 & S5.13). 
Significant (P < 0.05) effects of the inbreeding coefficients with the GM composition 
in each model are shown by bold text and box shaded in light green. 

 Model 
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Individual 

R2: 0.002 

P: 0.005* 

N: 439 

R2: 0.007 

P: 0.314* 

N: 143 

R2: 0.010 

P: 0.020 

N: 143 

Mother 

R2: 0.003 

P: 0.872 

N: 439 

R2: 0.008 

P: 0.024 

N: 143 

R2: 0.008 

P: 0.553 

N: 143 

Genetic Father 

R2: 0.003 

P: 0.653 

N: 439 

- - 

Social Father 

R2: 0.002 

P: 0.648 

N: 439 

R2: 0.009 

P: <0.001* 

N: 143 

R2: 0.007 

P: 0.238 

N: 143 

Genetic Father * EPP - 

R2: 0.006 

P: <0.001 

N: 143 

R2: 0.006 

P: 0.028 

N: 143 

 

 

 

Metagenomic taxonomic composition: This was not significantly associated with 

inbreeding coefficient of individual’s (Table S5.10) but was significantly associated 

with the inbreeding coefficient of the mother and social father as well as the 
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interaction between the inbreeding coefficient of genetic father and EPP (R2 = 0.008, 

0.009, and 0.006, respectively, Table 5.3B, Table S5.10, Figure S5.4). Metagenomic 

taxonomic composition was also significantly associated with sex, season, days at 

4°C, and time of day (Table S5.7). The overall effect sizes were small for inbreeding 

coefficient of the mother and social father (R2 = 0.007 and 0.008, respectively). 

Metagenomic species composition within an individual was not significantly 

associated with age and sample year. Using only extra-pair offspring (N=64), 

metagenomic species composition was still significantly associated with the social 

fathers’ inbreeding coefficient (Table S5.11) but not with the inbreeding coefficient 

of mothers. In addition, using only extra-pair offspring, metagenomic species 

composition was also significantly associated with individual inbreeding coefficient 

(Table S5.11). Metagenomic species composition was also not related to age or 

sample year (Table 5.3B, Table S5.10). 

 

Metagenomic functional composition:  This was significantly associated with 

increases in the inbreeding coefficient of individuals, explaining a small amount of 

the overall variance (R2 = 0.01, Table 5.3C, Table S5.12, Figure S5.5). 

Metagenomic functional composition was also significantly associated with the 

interaction between the inbreeding coefficient of genetic fathers and EPP but was 

not associated with the inbreeding coefficient of mothers or social fathers (Table 

5.3C, Table S5.12).  Using only extra-pair offspring (N=64), metagenomic functional 

composition was not significantly associated with the inbreeding coefficient of 

individuals or any other parent (Table S5.13). Metagenomic functional composition 

was significantly associated with age, sample year and days at 4°C (Table S5.12).  

 

5.4.3 Inbreeding and differential abundance analysis 

16S rRNA metabarcoding abundance: No differentially abundant ASVs, were 

identified as changing in abundance in association with the inbreeding coefficients 

of the individual, mother, genetic father or social father. Thus, the absence of 

differentially abundant ASVs suggests that inbreeding is not linked to survival-

related ASVs. 
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Metagenomic abundance: No metagenomic species or functions were identified 

as changing in abundance in association with the inbreeding coefficients of the 

individual, mother, genetic father or social father. 

 

5.4.4 Inbreeding and GM stability 

16S rRNA metabarcoding GM stability: GM ASV stability was not associated with 

the inbreeding coefficients of the individual, mother, genetic father or social father 

(Table S5.14). GM ASV stability was significantly negatively associated with age 

difference and positively associated with temporal difference (Table S5.14). 

 

Metagenomic GM stability:  

GM metagenomic species and function stability was not associated with the 

inbreeding coefficients of the individual, mother, genetic father or social father 

(Table S5.15 & S5.16). GM Metagenomic species was significantly negatively 

associated with temporal difference (Table S5.15). GM metagenomic function was 

significantly positively associated with age difference and negatively associated with 

temporal difference (Table S5.16).  
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5.5 Discussion 

 

In the Seychelles warbler, we found that the individual inbreeding coefficient was 

negatively associated with metagenomic species richness but was not associated 

with species Shannon diversity, ASV or functional GM alpha diversity. Individual 

inbreeding was also associated with changes in ASV and functional GM 

composition, but not metagenomic species composition. However, no specific taxa 

(ASV or metagenomics) or function varied significantly in abundance with increasing 

individual inbreeding. Additionally, individuals with low and high inbreeding 

coefficients did not differ in GM stability (metabarcoding ASV, metagenomic species 

or metagenomic function).  

 

In terms of intergenerational effects, none of the parents’ inbreeding coefficients 

were associated with ASV or metagenomic species alpha diversity. However, the 

genetic father’s (but not the mother’s or social father’s) inbreeding coefficient was 

positively associated with metagenomic functional richness. Furthermore, the 

inbreeding coefficient of both the mother and social father was significantly 

associated with differences in metagenomic species composition. None of the 

parental inbreeding coefficients were significantly associated with changes in the 

abundance of any specific taxa or function. Finally, parental inbreeding coefficients 

were not associated with changes in GM stability (metabarcoding ASV, 

metagenomic species and metagenomic function). 

 

The evidence from the few previous studies undertaken on inbreeding in wild 

animals is mixed on whether individual inbreeding is linked to lower GM diversity. 

We found increased individual inbreeding to be linked to decreased metagenomic 

species richness in the Seychelles warbler. However, individual inbreeding was not 

associated with ASV or functional GM alpha diversity. This contrasts with a previous 

study on the Seychelles warbler, which reported that lower microsatellite 

heterozygosity was associated with lower ASV GM bacterial richness (Davies et al., 

2022). However, microsatellite variation offers low-resolution estimates of genome-

wide heterozygosity and shows limited correlation with inbreeding in the Seychelles 

warbler, thus, it has been replaced by the more powerful whole-genome sequencing 

approach used in this study. The evidence is equally ambiguous in other species; 
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captive studies in house mice (Mus musculus), wild and inbred populations did not 

differ in GM alpha diversity (Kreisinger et al., 2014; Wang et al., 2015), but a different 

study in mice, and studies in banna minipig (Sus scrofa domesticus), and fruit flies 

(Drosophila melanogaster) identified significant differences (Hanski et al., 2025, 

2024; Ørsted et al., 2022; Wei et al., 2020). In wild animals, a study on northern 

muriqui (Brachyteles hypoxanthus) found no link between heterozygosity and GM 

diversity (Guimaraes Sales et al., 2024), while a study on three-spined stickleback 

(Gasterosteus aculeatus) found a positive association (Steury et al., 2019). Further 

research is needed to fully understand how inbreeding affects GM alpha diversity in 

animals (especially wild animals), but this metric may be species-specific. 

 

In the Seychelles warbler, we also found that the individual inbreeding was 

associated with variation in both ASV and functional GM composition. Consistent 

with our results, inbred individuals in previous captive studies also displayed 

changes in ASV (Hanski et al., 2025, 2024; Wang et al., 2015) and functional GM 

composition (Hanski et al., 2025; Wang et al., 2015). Similarly in wild animals, inbred 

individuals showed changes in ASV GM composition ((Guimaraes Sales et al., 

2024; Yuan et al., 2015). However, in the Seychelles warbler, inbreeding was not 

associated with differences in the abundance of any specific ASVs; thus, we found 

no evidence that inbreeding alters any previously identified survival-related ASVs 

(potentially pathogenic or beneficial ASVs; (Worsley et al., 2021)). Although 

inbreeding was significantly associated with GM composition, it accounted for very 

little variance, which may explain the absence of differentially abundant taxa. This 

may also suggest that inbreeding likely influences a broad spectrum of microbes 

rather than impacting particular ones. The small effects across many taxa/function 

may arise from systemic host physiology changes that alter the gut environment, 

thereby reshaping GM composition without consistently affecting specific taxa or 

function (Nearing et al., 2022). 

 

The effects of parental inbreeding varied by GM metric and by parent. The genetic 

father’s inbreeding coefficient was positively correlated with functional richness but 

showed no association with GM composition. Since the GM can mediate genetic 

influences on social behaviour (Jin et al., 2021; Smith et al., 2023), the increase in 

functional richness may reflect a compensatory response to inherited genetic 

deficits. For example, juvenile Hihi’s (Notiomystis cincta) sociability was associated 
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with father’s inbreeding but not mother’s inbreeding, suggesting that inbred fathers 

may shape the social behaviour of juveniles through genetics (Franks et al., 2023). 

However, in Seychelles warblers, it remains unclear whether fathers’ inbreeding 

affects offspring social behaviour or fitness. Thus, whether the GM is compensating 

for genetic deficits or responding to another mechanism requires further 

investigation. 

 

The inbreeding coefficient of mothers and social fathers was associated with 

metagenomic species composition. Social parents could be correlated with their 

offspring’s GM as a result of physical contact or because they experience a shared 

environment (Sarkar et al., 2020; Tochitani et al., 2024). In other species, the GM 

composition of cross-fostered offspring quickly changes to reflect their foster siblings 

(Daft et al., 2015; Teyssier et al., 2018), indicating that parental transmission and 

natal environment play an important role in shaping the GM. Social parents that are 

inbred may have a dysbiotic GM, and this may be transferred to offspring (leading 

to compositional correlations with parental inbreeding), which may, in turn, impact 

the offspring’s health and fitness (Argaw-Denboba et al., 2024). This highlights the 

importance of considering social parental effects on GM characteristics and how 

these may subsequently influence offspring health and fitness. 

 

Inbred parents were not associated with the abundance of any specific taxa or 

function. This may be due to different sets of inbred parents passing on different 

sets of gut microbes. Thus, the changes would be individual-specific and would not 

be detected. Similarly, inbred parents were not associated with changes in GM 

stability, which is consistent with individual inbreeding coefficients, suggesting that 

GM stability is not linked to inbreeding.  

 

One limitation of our study on the Seychelles warbler is that inbreeding coefficients 

can only be calculated from individuals that hatch and survive until being sampled. 

If inbreeding leads to higher mortality in our population (Pinto et al., 2026 – in prep, 

Kiran Lee et al., 2025 – in prep), then our results will be impacted by the selective 

disappearance of highly inbred individuals from our dataset. This may then reduce 

our statistical power to assess the effect of inbreeding on the GM, which could 

explain the small effect sizes. Despite that, we still detected individual inbreeding 
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effects on ASV and functional GM composition, as well as intergenerational 

inbreeding effects on metagenomic species GM composition. Future studies on the 

GM of wild animals where the individuals could be repeatedly sampled in early life 

(before mortality) may provide further resolution of this question. 

 

Beyond genetic effects, environmental variables emerged as crucial factors shaping 

the GM. Specifically, temporal factors such as season and time of day explain a 

significant proportion of ASV and metagenomic species GM composition. In 

addition, sampling year was also a significant predictor of ASV GM composition. 

Similarly, the sampling year and host age were significant predictors of 

metagenomic functional GM composition. Temporal factors have previously been 

shown to affect GM composition in Seychelles warblers (C. Z. Lee et al., 2025a; 

Worsley et al., 2024b) as well as in other wild animals (Hicks et al., 2018; Marsh et 

al., 2022; Schmid et al., 2023; Xu and Zhang, 2021). Across GM compositional 

analyses, the number of days samples were stored at 4°C was also a significant 

predictor; hence, it was included as a control variable and has been found in 

previous studies (C. Z. Lee et al., 2025a; Worsley et al., 2024b).  This underscores 

the importance of accounting for relevant confounding variables such as storage 

time to improve model reliability and reproducibility (Holzhausen et al., 2021).  

 

5.6.1 Conclusion 

Greater habitat fragmentation and escalating climate change will likely result in an 

increasing number of small, isolated populations, potentially leading to more 

inbreeding events in animals (Pinto et al., 2024; Surina et al., 2024). Population 

bottlenecks have been shown to contribute to lower GM diversity (Ørsted et al., 

2022; Worsley et al., 2024a), which could compound the effects of inbreeding 

depression. Given the negative consequences of inbreeding, it is crucial to 

understand the mechanisms that lead to inbreeding depression. Our study highlights 

the importance of host genetics, specifically individual and parental inbreeding, in 

shaping the GM, which may have downstream consequences for influencing fitness.  
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5.8 Supplementary material 

16s richness 

Table S5.1. A generalised linear mixed effect model with a negative binomial 
distribution (glmer.nb) investigating GM ASV richness in relation to intergenerational 
inbreeding coefficient among Seychelles warblers (n = 439 samples, 235 
individuals). Conditional R2 = .09. Significant (P<.05) terms are indicated in bold. 
Reference categories for categorical variables are shown as the first term in 
brackets and are as follows: no (EPP), major (Season), female (Sex), 2017 (Sample 
Year). 

Characteristic Beta SE1 Statistic p-value 

(Intercept) 5.16 0.26 20.10 <0.001 

Individual inbreeding coefficient 0.22 0.68 0.33 0.744 

Mother inbreeding coefficient 0.31 0.60 0.52 0.606 

Genetic Father Inbreeding 
coefficient 

-0.06 0.57 -0.10 0.920 

Social Father Inbreeding coefficient 0.30 0.63 0.49 0.628 

EPP (no/yes) 0.09 0.07 -1.35 0.179 

Age -0.04 0.01 -2.64 0.008 

Season (major/minor) 0.15 0.09 1.72 0.085 

Sex (female/male) -0.12 0.07 -1.79 0.073 

Days at 4°C -0.04 0.08 -0.55 0.585 

Time of day 0.01 0.07 0.15 0.882 

Sample Year     

    2017 — — —  

    2018 0.04 0.11 0.36 0.719 

    2019 0.17 0.13 1.38 0.169 

    2020 0.46 0.17 2.78 0.006 

    2021 0.31 0.13 2.37 0.018 

    2022 0.12 0.13 0.91 0.364 

Random variables Variance SD n  

Bird ID <0.001 <0.001 235  

Mother ID <0.001 <0.001 139  

Genetic Father ID <0.001 <0.001 131  

Social Father ID <0.001 <0.001 134  

 

 

16s Shannon 
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Table S5.2. A linear mixed effect model investigating GM ASV Shannon diversity in 
relation to intergenerational inbreeding coefficient among Seychelles warblers 
(n = 439 samples, 235 individuals). Conditional R2 = .06. Significant (P<.05) terms 
are indicated in bold. Reference categories for categorical variables are shown as 
the first term in brackets and are as follows: no (EPP), major (Season), female (Sex), 
2017 (Sample Year). 

Characteristic Beta SE1 Statistic p-value 

(Intercept) 3.36 0.46 7.32 <0.001 

Individual inbreeding coefficient -0.84 1.21 -0.69 0.489 

Mother inbreeding coefficient 0.05 1.06 0.05 0.962 

Genetic Father Inbreeding coefficient 0.52 1.01 0.51 0.611 

Social Father Inbreeding coefficient 0.58 1.12 0.52 0.605 

EPP (no/yes) 0.13 0.12 -1.10 0.271 

Age -0.06 0.02 -2.41 0.017 

Season (major/minor) 0.10 0.16 0.65 0.517 

Sex (female/male) -0.20 0.12 -1.67 0.096 

Days at 4°C -0.31 0.14 -2.23 0.027 

Time of day -0.10 0.12 -0.82 0.413 

Sample Year     

    2017 — — —  

    2018 0.13 0.19 0.66 0.508 

    2019 0.01 0.23 0.04 0.971 

    2020 0.31 0.30 1.05 0.296 

    2021 0.09 0.24 0.38 0.702 

    2022 0.20 0.24 0.82 0.414 

Random variables Variance SD n  

Bird ID <0.001 <0.001 235  

Mother ID <0.001 <0.001 139  

Genetic Father ID <0.001 <0.001 131  

Social Father ID <0.001 <0.001 134  

 

 

 

Mpa obs 

Table S5.3. A generalised linear mixed effect model with a negative binomial 
distribution (glmer.nb) investigating GM species richness in relation to 
intergenerational inbreeding coefficient among Seychelles warblers (n = 141 
samples, 80 individuals). Conditional R2 = .35. Significant (P<.05) terms are 
indicated in bold. Reference categories for categorical variables are shown as the 
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first term in brackets and are as follows: no (EPP) major (Season), female (Sex), 
2017 (Sample Year). 

Characteristic Beta SE1 Statistic p-value 

(Intercept) 3.36 0.54 6.27 <0.001 

Individual inbreeding coefficient -3.09 1.55 -2.00 0.046 

Mother inbreeding coefficient 2.19 1.15 1.91 0.057 

Genetic Father Inbreeding coefficient 0.20 1.14 0.18 0.861 

Social Father Inbreeding coefficient -0.16 1.22 -0.13 0.894 

EPP (no/yes) -0.04 0.15 0.23 0.815 

Age -0.05 0.02 -2.35 0.019 

Season (major/minor) -0.02 0.16 -0.09 0.927 

Sex (female/male) 0.02 0.14 0.14 0.893 

Days at 4°C -0.16 0.14 -1.19 0.235 

Time of day 0.10 0.12 0.84 0.402 

Sample Year     

    2017 — — —  

    2018 0.06 0.24 0.25 0.806 

    2019 0.07 0.29 0.23 0.821 

    2020 0.28 0.32 0.87 0.383 

    2021 0.31 0.28 1.11 0.269 

    2022 0.41 0.27 1.51 0.132 

    2023 0.20 0.28 0.71 0.477 

Random variables Variance SD N  

Bird ID 0.129 0.359 80  

Mother ID <0.001 0.008 68  

Genetic Father ID <0.001 <0.001 60  

Social Father ID <0.001 0.003 67  

 

 

 

 

Mpa Shannon 

Table S5.4. A linear mixed effect model (lmer) investigating GM species Shannon 
diversity in relation to intergenerational inbreeding coefficient among Seychelles 
warblers (n = 141 samples, 80 individuals). Conditional R2 = .57. Significant (P<.05) 
terms are indicated in bold. Reference categories for categorical variables are 
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shown as the first term in brackets and are as follows: no (EPP), major (Season), 
female (Sex), 2017 (Sample Year). 

Characteristic Beta SE1 df Statistics 
p-

value 

(Intercept) 1.60 0.64 69.41 2.49 0.015 

Individual inbreeding coefficient -2.46 1.84 72.72 -1.34 0.184 

Mother inbreeding coefficient 1.70 1.42 51.43 1.19 0.238 

Genetic Father Inbreeding 
coefficient -0.53 1.42 57.37 -0.37 0.710 

Social Father Inbreeding 
coefficient 0.31 1.53 49.04 0.20 0.840 

EPP (no/yes) 0.17 0.18 66.28 -0.95 0.348 

Age -0.03 0.02 72.68 -1.06 0.293 

Season (major/minor -0.16 0.17 114.38 -0.92 0.357 

Sex (female/male) 0.18 0.17 64.27 1.05 0.297 

Days at 4°C -0.41 0.14 105.16 -2.87 0.005 

Time of day -0.02 0.13 111.76 -0.14 0.892 

Sample Year      

    2017 — — —   

    2018 0.16 0.25 112.81 0.65 0.516 

    2019 0.00 0.30 105.77 0.01 0.989 

    2020 0.24 0.33 109.79 0.73 0.470 

    2021 0.23 0.28 106.93 0.80 0.426 

    2022 0.36 0.28 114.30 1.28 0.204 

    2023 0.51 0.30 118.99 1.71 0.091 

Random variables Variance SD N   

Bird ID 0.264 0.514 80 
  

Mother ID 0.071 0.267 68   

Genetic Father ID <0.001 <0.001 60   

Social Father ID <0.001 <0.001 67   

 

Mpa obs EPP 

Table S5.5. A generalised linear mixed effect model with a negative binomial 
distribution (glmer.nb) investigating GM species richness in relation to 
intergenerational inbreeding coefficient among Seychelles warblers that were born 
in extra-pair paternity (n = 64 samples, 38 individuals). Conditional R2 = .28. 
Significant (P<.05) terms are indicated in bold. Reference categories for categorical 
variables are shown as the first term in brackets and are as follows: major (Season), 
female (Sex), 2017 (Sample Year). 
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Characteristic Beta SE1 Statistic p-value 

(Intercept) 3.377 0.600 5.625 <0.001 

Individual inbreeding coefficient -3.876 1.608 -2.411 0.016 

Mother inbreeding coefficient 0.941 1.247 0.755 0.450 

Genetic Father Inbreeding coefficient 1.484 1.028 1.443 0.149 

Social Father Inbreeding coefficient 0.667 1.136 0.587 0.557 

Age -0.024 0.023 -1.037 0.300 

Season (major/minor) 0.520 0.224 2.323 0.020 

Sex (female/male) 0.136 0.169 0.801 0.423 

Days at 4°C -0.219 0.181 -1.211 0.226 

Time of day -0.063 0.159 -0.398 0.691 

Sample Year -0.481 0.294 -1.640 0.101 

    2017 -0.675 0.367 -1.837 0.066 

    2018 -0.768 0.380 -2.022 0.043 

    2019 0.276 0.345 0.798 0.425 

    2020 0.274 0.314 0.872 0.383 

    2021 -0.130 0.364 -0.357 0.721 

    2022 3.377 0.600 5.625 <0.001 

    2023 -3.876 1.608 -2.411 0.016 

Random variables Variance SD N  

Bird ID 0.129 0.359 80  

Mother ID <0.001 0.008 68  

Genetic Father ID <0.001 <0.001 60  

Social Father ID <0.001 0.003 67  

 

 

 

NOG richness 

Table S5.6. A linear mixed effect model (lmer) investigating GM functional richness 
in relation to intergenerational inbreeding coefficient among Seychelles warblers 
(n = 139 samples, 79 individuals). Conditional R2 = .31. Significant (P<.05) terms are 
indicated in bold. Reference categories for categorical variables are shown as the 
first term in brackets and are as follows: no (EPP), major (Season), female (Sex), 
2017 (Sample Year). 

Characteristic Beta SE1 df Statistics 
p-

value 

(Intercept) 1.19 0.32 66.76 3.71 <0.001 
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Individual inbreeding 
coefficient -1.75 0.92 70.73 -1.91 0.061 

Mother inbreeding coefficient 1.12 0.68 48.14 1.66 0.103 

Genetic Father Inbreeding 
coefficient 1.54 0.67 44.44 2.29 0.027 

Social Father Inbreeding 
coefficient -0.92 0.72 35.27 -1.28 0.208 

EPP (no/yes) -0.07 0.09 56.59 0.84 0.405 

Age -0.04 0.01 69.26 -3.06 0.003 

Season (major/minor -0.10 0.10 116.37 -1.02 0.309 

Sex (female/male) 0.01 0.09 50.54 0.07 0.942 

Days at 4°C -0.13 0.09 117.20 -1.56 0.121 

Time of day -0.05 0.08 117.66 -0.62 0.535 

Sample Year      

    2017 — — —   

    2018 0.04 0.14 120.44 0.25 0.804 

    2019 0.02 0.17 116.76 0.13 0.895 

    2020 0.22 0.19 121.86 1.16 0.248 

    2021 0.18 0.17 115.74 1.04 0.300 

    2022 0.38 0.16 120.36 2.35 0.021 

    2023 0.22 0.17 117.86 1.27 0.207 

Random variables Variance SD N   

Bird ID 0.023 0.173 79   

Mother ID <0.001 <0.001 67   

Genetic Father ID <0.001 <0.001 59   

Social Father ID <0.001 0.080 66   

 

 

NOG Shannon 

Table S5.7. A linear mixed effect model (lmer) investigating GM functional Shannon 
diversity in relation to intergenerational inbreeding coefficient among Seychelles 
warblers (n = 139 samples, 79 individuals). Conditional R2 = .18. Significant (P<.05) 
terms are indicated in bold. Reference categories for categorical variables are 
shown as the first term in brackets and are as follows: no (EPP) major (Season), 
female (Sex), 2017 (Sample Year). 

Characteristic Beta SE1 df Statistics 
p-

value 

(Intercept) 1276.67 334.95 69.41 3.81 <0.001 

Individual inbreeding coefficient -1206.09 945.01 100.55 -1.28 0.205 
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Mother inbreeding coefficient 175.47 684.02 83.04 0.26 0.798 

Genetic Father Inbreeding 
coefficient 903.98 707.96 29.11 1.28 0.212 

Social Father Inbreeding 
coefficient -1167.24 730.92 48.63 -1.60 0.117 

EPP (no/yes) -45.37 90.11 75.46 0.50 0.616 

Age -36.33 12.58 72.85 -2.89 0.005 

Season (major/minor 164.00 107.25 118.11 1.53 0.129 

Sex (female/male) 58.06 87.07 99.35 0.67 0.506 

Days at 4°C 28.16 93.46 120.10 0.30 0.764 

Time of day -26.54 80.38 121.30 -0.33 0.742 

Sample Year      

    2017 — — —   

    2018 -45.50 154.14 118.67 -0.30 0.768 

    2019 -136.02 187.36 121.08 -0.73 0.469 

    2020 36.93 206.39 120.98 0.18 0.858 

    2021 223.96 182.90 120.46 1.22 0.223 

    2022 210.22 176.02 121.52 1.19 0.235 

    2023 121.93 185.43 121.31 0.66 0.512 

Random variables Variance SD N   

Bird ID <0.001 <0.001 79   

Mother ID <0.001 <0.001 67   

Genetic Father ID 13610 116.7 59   

Social Father ID <0.001 <0.001 66   

 

Table S5.8. A linear mixed effect model (lmer) investigating GM functional richness 
in relation to intergenerational inbreeding coefficient among Seychelles warblers 
that were born in extra-pair paternity (n = 64 samples, 38 individuals). Conditional 
R2 = .65. Significant (P<.05) terms are indicated in bold. Reference categories for 
categorical variables are shown as the first term in brackets and are as follows: 
major (Season), female (Sex), 2017 (Sample Year). 

Characteristic Beta SE1 df Statistics 
p-

value 

(Intercept) 1.136 0.561 23.795 2.023 0.054 

Individual inbreeding coefficient -1.731 1.378 31.604 -1.255 0.219 

Mother inbreeding coefficient 1.873 1.140 28.375 1.643 0.111 

Genetic Father Inbreeding 
coefficient 

1.312 1.099 15.906 1.194 0.250 

Social Father Inbreeding 
coefficient 

-1.031 1.172 19.449 -0.879 0.390 
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Age -0.010 0.021 26.114 -0.497 0.623 

Season (major/minor 0.314 0.153 42.929 2.049 0.047 

Sex (female/male) 0.031 0.149 26.395 0.206 0.839 

Days at 4°C 0.041 0.113 35.760 0.362 0.720 

Time of day -0.136 0.104 41.387 -1.308 0.198 

Sample Year      

    2017 — — —   

    2018 -0.307 0.204 44.658 -1.506 0.139 

    2019 -0.509 0.233 36.265 -2.185 0.036 

    2020 -0.445 0.253 39.905 -1.763 0.086 

    2021 -0.170 0.223 40.254 -0.764 0.449 

    2022 -0.041 0.205 41.652 -0.199 0.843 

    2023 -0.335 0.239 45.020 -1.404 0.167 

Random variables Variance SD N   

Bird ID 0.032 0.180 38   

Mother ID <0.001 <0.001 36   

Genetic Father ID <0.001 <0.001 35   

Social Father ID <0.001 0.080 31   

 

 

Intergenerational inbreeding on GM composition 
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Figure S5.3. Principal Components Analyses (PCA) of gut microbiome 16S rRNA 
amplicon sequencing variants of Seychelles warbler faecal samples in relation to 
host inbreeding coefficient, N=439 from 235 birds. Large diamonds represent the 
group centroids. For clarity, samples were grouped into discrete categories for 
plotting. In plots, the coloured points indicate low (black) and high (orange) individual 
inbreeding coefficient.  

 

ASV EPP 

Table S5.9. A PERMANOVA of the relationship between gut microbiome (GM) ASV 
compositional differences and the inbreeding coefficients (FROH) of Seychelles 
warblers that were born in extra-pair paternity. The analysis was performed using 

Aitchison distances calculated using centred log ratio (CLR) transformed amplicon 
sequencing variant (ASV) abundances. Significant predictors (P < 0.05) are shown 
in bold. N = 183 samples from 101 individuals. Bird ID was included as a blocking 
factor to control for repeated measures.  

 Df R2 F Pr (>F) 

Individual inbreeding coefficient 1 0.005 0.871 0.004 

Mother inbreeding coefficient 1 0.005 1.034 0.974 

Genetic Father Inbreeding coefficient 1 0.008 1.577 0.107 

Social Father Inbreeding coefficient 1 0.005 0.981 0.053 

Age 1 0.006 1.049 0.571 

Sex 1 0.007 1.267 0.176 

Season 1 0.007 1.239 0.079 
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Sample Year 5 0.041 1.568 0.001 

Days at 4°C 1 0.009 1.660 0.104 

Time of day 1 0.012 2.309 <0.001 

Residual 168 0.887 
  

Total 182 1   

 

 

Mpa  

Table S5.10. A permutational multivariate analysis of variance analysis of the 
relationship between metagenomics species gut microbiome compositional 
differences and individual, mother’s, genetic father’s and social father’s inbreeding 
coefficients (fraction of the genome in runs of homozygosity) in Seychelles warblers. 
The analysis was performed using Aitchison distances calculated using centred log 
ratio (CLR) transformed amplicon sequencing variant (ASV) abundances. 
Significant predictors (P<0.05) are shown in bold. N=143 samples from 80 
individuals. Bird ID was included as a blocking factor to control for repeated 
measures. 

 Df R2 F Pr(>F) 

Inbreeding coefficient 1 0.007 1.031 0.314 

Mother inbreeding coefficient 1 0.008 1.191 0.024 

Social Father Inbreeding coefficient 1 0.009 1.437 <0.001 

Age 1 0.011 1.625 0.196 

Sex 1 0.017 2.541 <0.001 

Season 6 0.065 1.671 <0.001 

Sample Year 1 0.005 0.772 0.455 

Days at 4°C 1 0.008 1.294 0.008 

Time of day 1 0.012 1.866 0.001 

Genetic Father Inbreeding coefficient * EPP 1 0.006 0.958 <0.001 

Residual 127 0.828 
  

Total 142 1 
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Figure S5.4. Principal Components Analyses (PCA) of gut microbiome 
metagenomic taxonomic composition of Seychelles warbler faecal samples in 
relation to (A) mother’s and (B) social father’s inbreeding coefficient, N=143 from 80 
birds. Large diamonds represent the group centroids. For clarity, samples were 
grouped into discrete categories for plotting. In plots, the coloured points indicate 
low (black) and high (orange) inbreeding coefficient.  

 

 

Table S5.11. A permutational multivariate analysis of variance analysis of the 
relationship between metagenomics species gut microbiome compositional 
differences and individual, mother’s, genetic father’s and social father’s inbreeding 
coefficients (fraction of the genome in runs of homozygosity) in Seychelles warblers 
that were born in extra-pair paternity. The analysis was performed using Aitchison 
distances calculated using centred log ratio (CLR) transformed amplicon 
sequencing variant (ASV) abundances. Significant predictors (P<0.05) are shown 
in bold. N=64 samples from 38 individuals. Bird ID was included as a blocking factor 
to control for repeated measures. 

 Df R2 F Pr(>F) 

Inbreeding coefficient 1 0.022 1.483 0.005 

Mother inbreeding coefficient 1 0.017 1.201 0.073 

Genetic Father Inbreeding coefficient 1 0.022 1.505 0.187 

Social Father Inbreeding coefficient 1 0.020 1.372 0.006 

Age 1 0.025 1.706 0.222 

Sex 1 0.027 1.844 0.018 

Season 6 0.123 1.414 0.010 

Sample Year 1 0.011 0.779 0.292 

Days at 4°C 1 0.017 1.137 0.356 
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Time of day 1 0.020 1.344 0.114 

Residual 48 0.698 
  

Total 63 1 
  

 

 

NOG 

Table S5.12. A permutational multivariate analysis of variance analysis of the 
relationship between metagenomics functional gut microbiome compositional 
differences and individual, mother’s, genetic father’s and social father’s inbreeding 
coefficients (fraction of the genome in runs of homozygosity) in Seychelles warblers. 
The analysis was performed using Aitchison distances calculated using centred log 
ratio (CLR) transformed amplicon sequencing variant (ASV) abundances. 
Significant predictors (P<0.05) are shown in bold. N=143 samples from 80 
individuals. Bird ID was included as a blocking factor to control for repeated 
measures. 

 Df R2 F Pr(>F) 

Inbreeding coefficient 1 0.010 1.465 0.020 

Mother inbreeding coefficient 1 0.008 1.128 0.553 

Social Father Inbreeding coefficient 1 0.007 0.978 0.238 

Age 1 0.009 1.259 0.033 

Sex 1 0.013 1.868 0.050 

Season 6 0.051 1.249 0.147 

Sample Year 1 0.007 0.988 0.001 

Days at 4°C 1 0.013 1.891 0.001 

Time of day 1 0.009 1.290 0.072 

Genetic Father Inbreeding coefficient * EPP 1 0.006 0.924 0.028 

Residual 127 0.867 
  

Total 142 1 
  

 



 262 

 

Figure S5.5. Principal Components Analyses (PCA) of gut microbiome 
metagenomic functional composition of Seychelles warbler faecal samples in 
relation to host inbreeding coefficient, N=143 from 80 birds. Large diamonds 
represent the group centroids. For clarity, samples were grouped into discrete 
categories for plotting. In plots, the coloured points indicate low (black) and high 
(orange) individual inbreeding coefficient.  

 

NOG EPP 

Table S5.13. A permutational multivariate analysis of variance analysis of the 
relationship between metagenomics functional gut microbiome compositional 
differences and individual, mother’s, genetic father’s and social father’s inbreeding 
coefficients (fraction of the genome in runs of homozygosity) in Seychelles warblers 
that were born in extra-pair paternity. The analysis was performed using Aitchison 

distances calculated using centred log ratio (CLR) transformed amplicon 
sequencing variant (ASV) abundances. Significant predictors (P<0.05) are shown 
in bold. N=64 samples from 38 individuals. Bird ID was included as a blocking factor 
to control for repeated measures. 

 Df R2 F Pr(>F) 

Inbreeding coefficient 1 0.021 1.418 0.198 

Mother inbreeding coefficient 1 0.014 0.930 0.752 

Genetic Father Inbreeding coefficient 1 0.019 1.272 0.211 

Social Father Inbreeding coefficient 1 0.015 0.987 0.699 

Age 1 0.013 0.840 0.577 
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Sex 1 0.030 1.987 0.167 

Season 6 0.102 1.123 0.408 

Sample Year 1 0.011 0.720 0.266 

Days at 4°C 1 0.027 1.765 0.036 

Time of day 1 0.019 1.230 0.043 

Residual 48 0.726 
  

Total 63 1.000 
  

 

 

Intergeneration inbreeding and Differential abundance analysis 

All DAA not significant.  

 

 

Inbreeding and GM stability 

Table S5.14. A linear mixed effect model (lmer) investigating the relationship 
between metabarcoding amplicon sequencing variant (ASV) gut microbiome 

composition similarity in pairs of Seychelles warblers from individuals with low 
individual inbreeding coefficient versus high individual inbreeding coefficient (N =  
96141 pairwise comparisons across 439 samples from 235 individual birds). 
Significant terms (P <0.05) are indicated in bold. Reference categories for 
inbreeding are low inbred individuals.  

 
Estimat

e 
SE df t P 

(Intercept) 
0.354 0.013 231 

28.00
2 

<0.00
1 

Individual inbreeding (High) -0.007 0.014 230 -0.487 0.627 

Individual inbreeding (Mix) -0.003 0.007 232 -0.460 0.646 

Mother inbreeding (High) -0.027 0.015 230 -1.755 0.081 

Mother inbreeding (Mix) -0.013 0.008 231 -1.755 0.081 

Genetic father inbreeding 
(High) 0.001 0.018 230 0.056 0.955 

Genetic father inbreeding (Mix) 0.000 0.009 231 0.049 0.961 

Social father inbreeding (High) -0.005 0.018 230 -0.276 0.783 

Social father inbreeding (Mix) -0.002 0.009 231 -0.265 0.791 

Age difference -0.0003 0.000 96130 -2.630 0.009 

Temporal difference <0.001 0.000 95960 3.384 0.001 

Random 
54767 
observations 

Variance 
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Multi membership ID (Intercept) 235 groups 0.003 

Residual     0.005 

 

 

Table S5.15. A linear mixed effect model (lmer) investigating the relationship 
between metagenomic functional gut microbiome composition similarity in pairs 

of Seychelles warblers from mothers and social fathers with low inbreeding 
coefficient versus high inbreeding coefficient (N = 10153 pairwise comparisons 
across 141 samples from 80 individual birds). Significant terms (P <0.05) are 
indicated in bold. Reference categories for categorical variables were the first term 
in brackets. 

 
Estimat

e 
SE df t P 

(Intercept) 
0.344 0.025 75 

13.96
6 

<0.00
1 

Individual inbreeding (High) 0.028 0.028 75 0.969 0.336 

Individual inbreeding (Mix) 0.014 0.014 76 0.960 0.340 

Mother inbreeding (High) -0.004 0.030 75 -0.126 0.900 

Mother inbreeding (Mix) -0.002 0.015 76 -0.104 0.917 

Genetic father inbreeding 
(High) 0.006 0.033 75 0.175 0.861 

Genetic father inbreeding (Mix) -0.001 0.017 76 -0.054 0.957 

Social father inbreeding (High) 0.004 0.033 75 0.121 0.904 

Social father inbreeding (Mix) 0.002 0.017 76 0.104 0.918 

Age difference <0.001 0.000 10130 -1.554 0.120 

Temporal difference 
<0.001 0.000 10080 -7.406 

<0.00
1 

Random 
54767 
observations 

Variance 

Multi membership ID (Intercept) 235 groups 0.003 

Residual     0.005 

 

 

Table S5.16. A linear mixed effect model (lmer) investigating the relationship 
between metagenomic functional gut microbiome composition similarity in pairs 
of Seychelles warblers from individuals with low individual inbreeding coefficient 
versus high individual inbreeding coefficient (N = 10153 pairwise comparisons 
across 141 samples from 80 individual birds). Significant terms (P <0.05) are 
indicated in bold. Reference categories for categorical variables were the first term 
in brackets. 
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Estimat

e 
SE df t P 

(Intercept) 
0.443 0.029 75 

15.21
3 

<0.00
1 

Individual inbreeding (High) -0.041 0.034 75 -1.219 0.227 

Individual inbreeding (Mix) -0.023 0.017 76 -1.362 0.177 

Mother inbreeding (High) -0.005 0.036 75 -0.152 0.880 

Mother inbreeding (Mix) -0.003 0.018 76 -0.185 0.854 

Genetic father inbreeding 
(High) 0.004 0.039 75 0.109 0.913 

Genetic father inbreeding (Mix) 0.003 0.020 76 0.139 0.890 

Social father inbreeding (High) -0.014 0.039 75 -0.353 0.725 

Social father inbreeding (Mix) -0.009 0.020 76 -0.447 0.656 

Age difference 
0.001 0.000 10130 4.139 

<0.00
1 

Temporal difference 
<0.001 0.000 10080 -6.764 

<0.00
1 

Random 
54767 
observations 

Variance 

Multi membership ID (Intercept) 235 groups 0.003 

Residual     0.005 

 

 

 

 

  



 266 

Chapter 6 |  

 

The holobiont and survival in a wild vertebrate 

population 

 

 

 

“On Cousin Island, the night sky mirrors the challenge of microbiome–genome 

research: just as stars become constellations when connected, individual data 

points only reveal their true meaning when viewed as part of a larger pattern.” 

 

  



 267 

6.1 Abstract 

Background 

The gut microbiome (GM) plays a key role in host health, influencing digestion, 

immunity, cognition, and survival. While environmental factors like diet and age 

affect GM composition, host genetics also play an important role. However, which 

loci across the host genome are key to shaping the GM, and the extent to which 

host genomic variation contributes to GM-mediated survival remains unclear—

especially in natural populations. 

 

Method  

Here, we use a natural population of the Seychelles warbler (Acrocephalus 

sechellensis) on Cousin Island to investigate host genome-mediated GM 

compositional differences (including survival-related microbes) among individuals, 

and whether these differences are associated with host survival. This population 

provides exceptionally accurate survival data, as the small size and a lack of 

migration allows life-long monitoring of individuals. We analyse 205 individuals for 

which both whole-genome sequences and gut microbiome 16S rRNA amplicon 

sequencing profiles are available to address these questions. 

 

Results 

Our study provides some of the first evidence in a wild population that host genomic 

variation shapes gut microbiome composition. Nine host genome loci, spanning 14 

genes, were strongly associated with GM composition. Variation at these loci was 

correlated with significant differences in the abundance of 107 unique GM ASVs. 

Ten out of the 107 ASVs were also differentially abundant in relation to host survival 

to the next season. Importantly, all nine host loci were linked to the differential 

abundance of at least one of these survival-related ASVs. In addition, two of the loci, 

rs95_2409799 and rs728642, were linked to opposing effects on survival-related 

ASVs, and also directly on host survival.  

 

Discussion 



 268 

Our study demonstrates that the host genome influences GM composition via 

multiple pathways, including the immune system and gut physiology. Host loci were 

linked to survival-associated microbes, and the opposing effects of rs95_2409799 

and rs728642 on both GM and host survival underscores the complex and 

potentially consequential role of host genomic variation in shaping microbiome–

fitness relationships. These findings highlight the importance of exploring host 

genetic influences on the GM to better understand host health and survival.  
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6.2 Introduction  

The gut microbiome (GM) has been linked with a multitude of important host 

processes such as digestion, immunity, behaviour and cognition (Archie and Tung, 

2015; Cholewińska et al., 2020; Davidson et al., 2018; Davies et al., 2022). 

Therefore, it is important that we also understand what factors shape individual 

variation in the GM. Recent studies have identified various such factors, including 

diet, host age, sex, and social interactions (Bonder et al., 2016; Davies et al., 2022; 

Lee et al., 2025; Ruiz-Ruiz et al., 2020; Worsley et al., 2022; Xu and Zhang, 2021). 

Research has also highlighted the role of host genetics in shaping individual 

variation in the GM (Bonder et al., 2016; Goodrich et al., 2014; Melis et al., 2023). 

For example, host immunogenetic variation can alter the GM composition by 

favouring or eliminating specific microbes (Davies et al., 2022; Roland et al., 2020; 

Worsley et al., 2022). In turn, changes to the GM can alter the immunological 

function of the host, for example, by fostering beneficial microbes which prevent 

pathogenic microbe colonisation (Noh, 2021; Sommer and Bäckhed, 2013). 

Therefore, the GM may be an integral part of a host’s defences. Indeed, the host 

genome and GM may interact to form a functional unit termed “the hologenome”; 

this is a potentially important concept that could improve our understanding of host 

traits, disease and fitness (Zilber-Rosenberg and Rosenberg, 2008). Growing 

evidence for this hologenome concept has significantly expanded our understanding 

of host–microbe coevolution (Lan et al., 2021; Rosenberg and Zilber-Rosenberg, 

2018).  

 

Given the GM is a determinant of host evolution, an important next step is to 

determine how host genetics influences the component of the microbiome that 

impacts host survival. Studies in humans and captive animals have shown that a 

reduction in GM diversity and a dysbiotic GM composition are correlated with poor 

health and the onset of diseases (Shreiner et al., 2015; Sommer et al., 2017; 

Videvall et al., 2020). Additionally, work on a wide range of human conditions has 

demonstrated that host genetic factors shape health outcomes partly through their 

interactions with the GM (Liu et al., 2024; Park et al., 2020). Microbiome genome 

wide association studies (GWAS) in humans have identified numerous genomic 

regions and GM characteristics that are associated with diseases (Liu et al., 2024; 

Markowitz et al., 2022; Priya et al., 2022; Xu et al., 2020). A common set of these 

loci collectively regulate the host immune response, gut physiology, and gut-microbe 
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interactions (Hao et al., 2025; Ntunzwenimana et al., 2021; Priya et al., 2022). Such 

findings highlight that neither host genetics nor the GM alone fully explain variation 

in health. and underscore the importance of adopting a hologenome perspective to 

understand health and fitness outcomes.  

 

While valuable, humans and captive animals often have a very different GM 

community compared to their wild counterparts (Clayton et al., 2016; Malukiewicz 

et al., 2022; van Leeuwen et al., 2020). Captive animals, normally exhibit a reduced 

GM diversity, which may not provide a representative model for detecting natural 

(and/or subtle) GM shifts that precede disease in wild populations (Gibson et al., 

2019; Ning et al., 2020; Oliveira et al., 2020). Wild animals tend to have a more 

diverse GM, and, unlike in captive animals, diversity alone is often not been a good 

indicator of health (Davidson et al., 2021; Williams et al., 2024; Worsley et al., 2021). 

In addition, captive animals often harbour limited genomic variation, further 

restricting the generalisation of findings to wild populations (Festing and Lutz, 2010; 

Wei et al., 2020). Finally, human/captive GM studies are limited by confounding 

variables such as medical intervention and lifestyle changes (Haran et al., 2021; 

Konstantinidis et al., 2020; Martinez et al., 2021; Thorburn et al., 2014). Direct 

studies on wild animals are needed to fully understand the complex co-evolutionary 

relationship between host genetics, the GM, and host survival.  

 

Quantifying survival in wild animals is inherently challenging because it requires 

accurate, individual-level survival data, which is often confounded by dispersal and 

imperfect detection. Despite these challenges, a few studies have investigated how 

the GM is associated with host survival in wild animals, but the evidence remains 

mixed. One study found that higher alpha diversity is correlated with higher survival 

(Bestion et al., 2017), while three others did not (Davidson et al., 2021; Stothart et 

al., 2024; Worsley et al., 2021) In addition, two studies reported association between 

GM composition and host survival (Stothart et al., 2024; Worsley et al., 2021) but 

not one other one (Davidson et al., 2021). Furthermore, a study in feral horses 

(Equus ferus caballus) also reported functional GM differences related to host 

survival (Stothart et al., 2024). However, to our knowledge, no studies have 

investigated the influence of the host genome on the gut microbes that influence 

survival in a wild population. 
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Whether variation in the host genome contributes to the strength or direction of any 

GM-host survival associations is unexplored in the wild. This represents a major gap 

in our understanding, as linking host genetics with the microbiome and survival 

could reveal fundamental mechanisms of host-microbe coevolution. A microbiome 

GWAS approach offers a powerful way to pinpoint host loci that shape microbial 

community structure (Hua et al., 2022), enabling us to link specific genetic variants 

with survival-associated microbes. To our knowledge, ours is the first study to take 

such an approach in a wild species, providing a unique window into how natural 

genetic variation interacts with the GM to influence fitness. Such knowledge could 

inform targeted interventions, such as personalised probiotics to support survival, 

when the natural GM is disturbed (e.g. in captivity or during translocation events) 

(Chong et al., 2019).  

 

Here, we use a population of the Seychelles warbler (Acrocephalus sechellensis) to 

investigate links between individual host genomic variation and GM composition, 

including specifically with survival-related gut microbes. The Seychelles warbler 

provides an excellent system for such a study as intensive long-term monitoring, 

provides accurate survival data, while extensive whole genome resequencing 

provides aligned genetic data (Kiran Lee et al., 2025, in prep). A previous analysis 

on this population has demonstrated that adult survival is associated with GM 

composition (Worsley et al., 2021). We hypothesise that host genomic variation is 

linked to GM composition, leading to differences in survival. Specifically, we aim to 

determine, 1) which host loci are correlated with GM composition, 2) more 

specifically, which host loci are associated with variation in the abundance of 

survival-related ASVs, and 3) to what extent that host genomic variation is 

associated directly with host survival.   
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6.3 Method 

 

6.3.1 Study system 

 

The Seychelles warblers on Cousin Island have been monitored since 1985 during 

both the January to March (minor) and June to October (major) breeding seasons 

that occur each year  (Brown et al., 2022; Komdeur, 1992). Individuals are caught 

using mist nets or in the nest (age is determined based on hatch/lay dates and eye 

colour (Komdeur, 1992)), and all new individuals are marked using a British Trust 

for Ornithology (BTO) metal ring and a unique combination of three colour rings. 

Since 1997, nearly all individuals have been marked (>96%), allowing them to be 

closely monitored throughout their lives (Richardson et al., 2001). The annual 

resighting rate of individuals is high at 98%  1% SE (Brouwer et al., 2010) and 

there is virtually no dispersal between islands (Komdeur et al., 2004), therefore, if 

an individual has not been sighted during a breeding season, it is confidently 

presumed dead. The population normally consists of ca. 300 individuals from ca. 

110 stable year-round territories (Kingma et al., 2016; Komdeur, 1992). Seychelles 

warblers are monogamous facultative cooperative breeders, whereby the dominant 

breeding pair in each territory may be joined by other subordinate adult individuals 

that may also help (Komdeur, 1991; Richardson et al., 2003, 2002). Cobreeding and 

extra-pair paternity occur frequently (~44%) (Hadfield et al., 2006; Richardson et al., 

2001), thus, all parentage is genetically verified thus allowing a multi-generation 

pedigree to be generated (Sparks et al., 2022). 

 

6.3.2 Sample collection 

 

Faecal samples were collected by placing caught birds in a flat-bottom paper bag 

with a sterilised weigh boat under a metal grate, thus allowing faeces to drop to the 

plastic, while minimising contact with the birds’ surface (Davies et al., 2022; Knutie 

and Gotanda, 2018). Faecal samples were stored in a microcentrifuge tube 

containing 1 mL of absolute ethanol, at 4°C during fieldwork and then at -80°C for 

long-term storage at UEA. Each season, control samples were collected by 

swabbing the insides of collection bags and fieldworker hands. A small (ca. 25 µl) 
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blood sample was collected from each bird via brachial venepuncture and stored in 

0.7 ml of absolute ethanol at 4°C. The time of day (minutes after sunrise; 06:00 AM) 

of sampling and the number of days faecal samples were kept at 4°C during 

fieldwork were recorded.  

 

6.3.3 DNA extraction and sequencing 

 

Microbial DNA from faecal samples were extracted using the DNeasy PowerSoil Kit 

(Qiagen, Crawley, UK) with a modified version of the manufacturer’s protocol 

(described in (Davies et al., 2022)). Samples were extracted in a random order to 

minimise batch effects. Microbial DNA samples were submitted for 16S rRNA gene 

amplicon sequencing in seven batches. Libraries were generated with V4 primers 

515F (5'TGCCAGCMGCCGCGGTAA3’) and 806R 

(5’GGACTACHVGGGTWTCTAAT3’) and sequenced using 2 x 250 bp paired-end 

sequencing on an Illumina MiSeq platform. Control samples were also DNA 

extracted, amplified and sequenced in the same way (n = 21 hand controls, 15 

negative controls, and 10 positive ZymoBIOMICS Microbial Community Standard 

(D6300) controls).  

 

Total host genomic DNA from blood samples was extracted using the DNeasy Blood 

and Tissue kit (Qiagen, Crawley, UK) according to the manufacturer’s protocol, or a 

salt extraction protocol (Richardson et al., 2001). Extracted DNA was used for 

molecular sexing following (Griffiths et al., 1998) and microsatellite genotyping for 

parentage analyses (Richardson et al., 2001; Sparks et al., 2022b). Genomic DNA 

was submitted for whole genome sequencing in 20 batches (detailed in Kiran Lee 

et al., 2025 – in prep) from randomly selected libraries generated with NEBNext 

Ultra II FS DNA Library Prep (New England Biolabs). Libraries were sequenced 

using 2 x 150 bp, paired-end sequencing on an Illumina NovaSeq 6000 platform.  

 

 

6.3.4 Bioinformatics 
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Microbial 16S amplicon sequenced reads were processed as described in detail in 

(Worsley et al., 2024b). Briefly, 16S rRNA reads were truncated, filtered, and 

classified as amplicon sequencing variants (ASVs) using DADA2 as part of QIIME2 

(Bolyen et al., 2019; S. F. Worsley et al., 2024a). ASVs were taxonomically assigned 

using a naïve-Bayes classifier on the SILVA 132 reference database for 16S rRNA 

gene sequences (Quast et al., 2012). The resulting ASVs were imported into R using 

phyloseq 1.46.0 (Leo Lahti and Sudarshan Shetty, 2019; McMurdie and Holmes, 

2013). ASVs were filtered to remove non-bacterial sequences, those unassigned to 

the phylum level, or with fewer than 50 reads (which may represent sequencing 

errors). Potential contaminants were also filtered with decontam 1.18.0 (Davis et al., 

2018) using negative lab and collection controls as a reference. Samples with fewer 

than 8000 reads were also removed based on samples reaching >95% 

completeness in rarefaction curves (Worsley et al., 2024b). In total, 205 adult 

samples/individuals remained with both gut microbiome and host genomic samples. 

Rare ASVs (<5% prevalence) were then removed, and pairwise UniFrac distances 

(beta diversity) were calculated using the distance() function in phyloseq (Leo Lahti 

and Sudarshan Shetty, 2019; McMurdie and Holmes, 2013). 

 

Whole-genome sequencing reads were processed as described previously (Kiran 

Lee et al., 2025). Briefly, reads were filtered to remove low-quality reads (Phred 

quality score of 33 and a minimum length of 80 bp) using Trimmomatic version 0.39 

(Bolger et al., 2014). The remaining reads were mapped to the Seychelles warbler 

reference genome (Kiran Lee et al., 2025; BUSCO: 96.0% with a total length = 

1,081,018,985 bp) before imputation with STITCH version 1.7.0 (Davies et al., 

2016), with the following parameters: diploid, eight founding haplotypes, and 25 

generations since founding (Kiran Lee, et al., 2025). The accuracy of imputation was 

tested by down sampling high coverage samples (n = 57), imputing the reduced 

sample, and then comparing the imputed genotypes against the original high-

coverage genotypes at each site (accuracy = 96%). Linkage disequilibrium (LD) was 

then calculated in PLINK version 2.0 (Purcell et al., 2007) with these high coverage 

samples using a genotyping rate of >99%, minor allele frequency of >30%, LD 

window of 5 Mb and LD of 0.  
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6.3.5 Statistical methods 

All statistical analyses were conducted in R 4.3.3 on R Studio 2024.12.0+467 unless 

stated otherwise (Posit team, 2024; R Core Team, 2024).  

 

6.3.5.1 Genome wide association study (GWAS) of GM composition 

A GWAS was carried out using MicrobiomeGWAS (Hua et al., 2022) with GM beta 

diversity (UniFrac distance matrix) as the response variable. Firstly, the imputed 

host SNPs were filtered for >0.4 STITCH imputation INFO score, autosomes, >95% 

genotyping rate, and >5% minor allele frequency (no. of SNPs = 2,720,843). A minor 

allele frequency of 5% was chosen because this coincides with the most accurate 

p-values (lowest skewness and kurtosis) for small sample sizes in 

MicrobiomeGWAS (Hua et al., 2022). To account for relatedness, we calculated the 

top five principal components of host genome variation using --pca function in PLINK 

(Purcell et al., 2007). These and variables identified as important in previous 

Seychelles warbler GM studies (Lee et al., 2025; Worsley et al., 2024b, 2024c) (i.e. 

host age, sex, individual inbreeding coefficient, sample year, season (major/minor), 

time at 4°C, and time of day), were included as control variables in the GWAS. 

Significant SNPS were determined by applying a false discovery rate (FDR) 

correction with the qvalue package (Storey et al., 2024); giving q < 0.05. The highest 

SNP per peak in the GWAS (smallest q-value) that are also not co-occurring (i.e. 

VIF < 3) (Fox and Weisberg, 2019), were selected for downstream analysis. Genes 

within 75 kb (half-LD, Figure S6.1) of all the significant SNPs were identified using 

the functionally annotated Seychelles warbler reference genome (Kiran Lee, et al., 

2025). 

 

6.3.5.2 Determining ASVs associated with GM-associated SNPs 

To determine how the GM-associated SNPs (identified above) impacted the 

abundance of specific bacterial ASVs, an analysis of Compositions of Microbiomes 

with Bias Correction (ANCOM-BC2) (Lin and Peddada, 2024) was conducted. This 

included the presence/absence of all identified GM-associated SNPs as the primary 

independent variables, followed by host age, sex, individual inbreeding coefficient, 

sample year, season, storage time at 4°C, and the time-of-day samples were 

collected as control variables. The Holm method was used to correct P-values for 

multiple testing (q<0.05).  
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6.3.5.3 GM-associated SNPs and host survival to the next season  

ASVs determined to be associated with any GM-associated SNPs were then tested 

to establish if they differed in abundance across hosts that survived or died by the 

following breeding season. Adult warblers with GM samples (including individuals 

without whole-genome sequencing data) and accurate survival records (excluding 

birds sampled in 2020 due to incomplete censusing during the covid pandemic) 

were selected. Only one sample per bird was used in this analysis as described 

previously (Worsley et al., 2021).  In total, N = 266 samples/individuals were 

included in the analysis. An analysis of ANCOM-BC2 was conducted with survival 

to the next season (yes/no) as the primary variable, and the control variables, 

sample year and season as described previously (Worsley et al., 2021). Significance 

was determined following a Holm correction for multiple testing correction (q<0.05).  

 

6.3.5.4 GM-associated SNPs and host survival (lifespan) 

A Cox-regression mixed effect model was conducted to test if any of the GM-

associated SNPs was directly associated with host survival using the long-term  

dataset of individuals with survival and genomic data. Annual survival from birth 

(lifespan) was the response variable, with individuals right censored if still alive (N 

= 1340 samples/individuals; 57 right censored), and the presence of the minor allele 

at all GM-associated SNPs was the predictor. Variables previous identified as 

important for Seychelles warblers’ survival were included as control variables 

(Borger et al., 2023; Brouwer et al., 2006; Davies et al., 2021; Sparks et al., 2022a): 

sex (female/male), individual inbreeding coefficient, mother’s age, group size, 

helper presence at birth (no/yes), sibling presence at birth (no/yes), and mean 

rainfall (the average annual rainfall experience by the bird in its lifetime) were 

included as control variables. Birth year was included as a random effect. A second 

model was constructed with the same structure, replacing presence of minor allele 

with allele genotypes.   
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6.4 Results 

 

6.4.1 Genome wide association study (GWAS) of GM composition 

In the Seychelles warbler’s genome we identified 393 SNPs, spanning 9 peaks 

(labelled after and represented by the highest SNP (Table 6.1)), significantly (q < 

0.05) associated with overall GM composition (Table S6.1, Figure 6.1). The peaks, 

-one in chromosome three, one in chromosome six, one in chromosome 12, and 11 

in chromosome 17, -are in or close to 14 known genes (Table S6.1). Two peaks 

were not in or near any genes (Table 6.1). Three peaks were single SNPs, whereas 

six peaks consist of more than one SNP (Table 6.1). Gene functions are 

summarised in Table S6.2.  

 

 

Figure 6.1. Genome-wide association analysis (GWAS) of host genetic variants and 
gut microbiome (GM) composition in Seychelles warblers (N = 205 individuals). 
Differences in GM composition were calculated using pairwise UniFrac distances. 
GWAS signals (-log10P) are reported for SNP markers across all chromosomes 
(displayed with alternating colours). SNPs that are significantly associated (q < 0.05) 
with differences in GM composition are coloured in red. Labelled SNPs represent 
the highest points (largest -log10P value) that are not collinear (VIF < 3) with any 
other SNP.  



 278 

 

Table 6.1. Host genetic variants associated with differences in gut microbiome (GM) 
composition among adult Seychelles warblers (N = 205). Associations were 
identified via a Genome-wide Association analysis (GWAS)- see Figure 6.1. The 
chromosome (Chr) number, position, number of SNPs, and minor allele freqeuncy 
are presented, as well as the genes encoded within that region. Gene functions are 
summarised in Table S6.2.  

Region name 
Ch

r 
Position 

No. 

of 

SNP

s 

Minor allele 

F 
Genes 

rs95_1075473 2 3,156,468 1 0.23 Unknown gene 

rs728642 3 65,229,635 1 0.32 Unknown gene 

rs750388 3 
77,394,794 – 

78,619,451 
86 0.41 GRIK2 

rs95_2409799 6 2,239,609 – 2,278,765 15 0.18 CACHD1 

rs1220065 6 
57,461,779 – 

57,462,611 
4 0.25 Not near any genes 

rs95_2940759 8 
31,789,764 – 

31,799,923 
68 0.31 Not near any genes 

rs1657804 12 13,802,557 1 0.18 MED7 

rs95_965036 17 
12,982,837 – 

12,986,427 
12 0.43 SEC16A 

rs95_974945 17 
14,084,350 – 

14,617,185 
205 0.21 

SARDH, FAM163B, 

ADAMTSL2, 

TMEM8C, SLC2A6, 

SPACA9, AK8, 

DDX31, BARHL1, 

CFAP77 

 

6.4.2 Determining ASVs associated with GM-associated SNPs 

The abundance of 107 unique ASVs differed significantly in association with the 

presence/absence of the minor allele at the nine identified loci (Figure 6.2). These 

ASVs are assigned to six phyla, 24 orders, and 37 families (differentially abundant 

ASV taxonomy is presented in full in Table S6.2). An average of 23.4  3.67 SE 

ASVs (range = 7-44 ASVs) were associated with each GM-associated SNP. Each 

ASV was associated with 1-7 loci (average of 1.97  0.12 SE); 49.5% of ASVs were 

associated with one locus.   
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Figure 6.2. Differentially abundant amplicon sequencing variants (ASVs) in the gut 
microbiome (GM) of adult Seychelles warblers harbouring (or not) the minor allele 
at nine genomic loci. Host loci were selected based on a GWAS of GM composition 
(see Figure 6.1, Table 6.1). Points and error bars represent the log fold change in 
abundance of significant ASVs (Padj<0.05) associated with each host genomic loci. 
A positive log fold change indicates that an ASV is more abundant in individuals 
containing the minor allele and a negative log fold change indicates a higher 
prevalence in individuals without the minor allele. ASVs are classified by bacterial 
order and coloured by bacterial phylum. Results of differential abundance tests and 
ASV taxonomies are presented in full in Table S6.3. N = 205 individuals were 
included in the analysis.   

 

6.4.3 GM-associated SNPs and host survival to the next season  

Analysis revealed 10 out of the 107 differentially abundant ASVs were also linked 

to host survival: five were more abundant in the GM of those that survived to the 

next breeding season, and five were more abundant in those that died (Figure 6.3, 
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Table S6.4). These ASVs were from seven bacterial orders (see Figure 6.3), nine 

bacterial families, and 10 bacterial genera (taxonomy of survival-related ASVs is 

presented in full in Table S6.4). All nine genomic loci identified in the GWAS were 

associated with at least one survival-related ASV; the presence of the minor allele 

in six loci was associated with both positive and negative survival-related ASVs 

(r95_1075473, rs728642, rs95_2409799, rs95_2940759, rs95_965036, 

rs95_974945), one locus was associated with only positive survival-related ASVs 

(rs750388), and two loci were associated with only negative survival-related ASVs 

(rs1220065 and rs1657804) (Figure 6.3, Table S6.5).  

 

 

 

Figure 6.3. Gut microbiome (GM) amplicon sequencing variants (ASVs) associated 
with host genetic variants (Table S6.3,4.2) and with the differential survival of 
Seychelles warblers (N = 205 individuals). Survival was defined based on whether 
an individual survived to the breeding season following gut microbiome sampling. 
Skulls and smiley faces designate where ASV abundance was negatively or 
positively associated with survival, respectively. The allele with increased ASV 
abundance is coloured in black (without minor allele) and blue (presence of minor 
allele). ASV taxonomies are shown in bacterial order, family, genus (y-axis).  

 

6.4.4 GM-associated SNPs and direct host survival 

The presence of the minor allele at rs95_2409799 was associated with significantly 

lower mortality risks, while the presence of the minor allele at rs728642 was 
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significantly associated with higher mortality risks (indicated by a negative and 

positive coefficient, and a higher hazard ratio, respectively; Table 6.2A, Figure 6.4). 

The minor allele of both loci was inversely associated with survival-related 

Clostridiales ASVs- rs95_2409799 was associated with increased abundance of 

Family XIII; Anaerovorax and a decrease in Ruminococcaceae; uncultured, 

whereas rs728642 was associated with decreased abundance of Family XIII; 

Anaerovorax and an increase in Ruminococcaceae; uncultured (Figure 6.3, Table 

S6.5). No other GM-associated loci were significantly associated survival (Table 

6.2A).  

 

The heterozygous genotype of rs95_2409799 was significantly associated with a 

lower mortality risk (Table 6.2B, Figure S6.2A). In addition, the heterozygous 

genotype of rs728642 was marginally associated with a higher mortality risk (Table 

6.2B, Figure S6.2B). However, the genotypes of other loci were not significantly 

associated with survival (Table 6.2B).  
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Table 6.2. Cox proportional hazard model to test the effects of (A) allelic variation 
and (B) the genotype of SNPs associated with gut microbiome composition, on 
survival in the Seychelles warbler (N = 1340). Individuals still alive at the end of the 
study are right censored (N = 57). Significant terms (P < 0.05) are indicated in bold, 
marginal and significant alleles (P < 0.1) are underlined. Reference categorical 
variables are as follows: (A) absence of minor allele, (B) major allele homozygous, 
sex (female), helper presence in natal territory (no), and sibling presence in natal 
territory (no). Abbreviations: Coef, hazard rate; HR, hazard ratio; SE(coef), standard 
error of the hazard rate. 

Predictors Coef HR SE(coef) z p 

(A) Presence/absence of minor allele     

rs95_2940759 0.05 1.05 0.06 0.80 0.424 

rs95_974945 0.09 1.09 0.06 1.39 0.163 

rs95_2409799 -0.14 0.87 0.06 -2.27 0.023 

rs750388 -0.10 0.90 0.06 -1.66 0.097 

rs1220065 -0.06 0.94 0.06 -1.03 0.304 

rs95_1075473 -0.01 0.99 0.06 -0.09 0.931 

rs728642 0.12 1.12 0.06 1.97 0.048 

rs95_965036 -0.02 0.98 0.06 -0.37 0.715 

rs1657804 -0.01 0.99 0.06 -0.21 0.835 

Sex (male) 0.09 1.10 0.06 1.59 0.112 

Inbreeding coefficient 2.20 9.07 0.49 4.50 <0.001 

Mother’s age 0.01 1.01 0.01 1.13 0.260 

Helper (yes) 0.13 1.14 0.09 1.42 0.154 

Sibling (yes) -0.08 0.93 0.06 -1.23 0.220 

Group Size 0.02 1.02 0.05 0.51 0.612 

Mean rainfall <0.01 1.00 <0.01 10.43 <0.001 

Random effects Variance SD    

Birth Year 0.078 0.278    

(B) SNP genotypes     

rs95_2940759      

Hz 0.07 1.07 0.07 0.96 0.335 

Hm 0.02 1.02 0.07 0.28 0.782 
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rs95_974945      

Hz 0.08 1.09 0.07 1.25 0.211 

Hm 0.20 1.22 0.13 1.50 0.133 

rs95_2409799      

Hz -0.14 0.87 0.07 -2.18 0.030 

Hm -0.17 0.85 0.21 -0.78 0.437 

rs750388      

Hz -0.11 0.90 0.06 -1.66 0.097 

Hm -0.07 0.93 0.09 -0.82 0.411 

rs1220065      

Hz -0.07 0.94 0.06 -1.04 0.299 

Hm -0.02 0.98 0.15 -0.11 0.910 

rs95_1075473      

Hz -0.01 0.99 0.06 -0.14 0.887 

Hm 0.05 1.05 0.13 0.39 0.694 

rs728642      

Hz 0.12 1.13 0.06 1.90 0.057 

Hm 0.11 1.12 0.09 1.23 0.217 

rs95_965036      

Hz 0.01 1.01 0.07 0.22 0.829 

Hm -0.14 0.87 0.09 -1.57 0.116 

rs1657804      

Hz -0.01 0.99 0.06 -0.10 0.920 

Hm 0.01 1.01 0.14 0.05 0.962 

Sex (male) 0.10 1.10 0.06 1.66 0.098 

Inbreeding coefficient 2.21 9.07 0.50 4.44 <0.001 

Mother’s age 0.01 1.01 0.01 1.12 0.262 

Helper 0.14 1.15 0.09 1.49 0.136 

Sibling -0.07 0.93 0.06 -1.09 0.275 
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Group size 0.03 1.03 0.05 0.58 0.562 

Mean rainfall <0.01 1.00 <0.01 10.43 <0.001 

Random effects Variance SD    

Birth Year 0.079 0.28    

  

 

 

Figure 6.4. Survival probability in relation to variation at the genomic loci A) 
rs95_2409799 and B) rs728642 in Seychelles warblers (N=1340). Lifetime survival 
probabilities are denoted with different colours: absence of minor allele (black) and 
presence of minor allele (blue). The number of alive/at-risk individuals at each 
interval of 5 years is shown at the bottom of the plot. Individuals still alive at the end 
of the study are right censored (indicated with the symbol “+”, N=57). 

 

Individual inbreeding coefficient and mean rainfall (average yearly rainfall the bird 

experiences over its lifetime) were significantly associated with increased mortality 

in both the minor allele and genotype analyses (Table 6.2A&B). 
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6.5 Discussion 

 

Nine host loci (encompassing 393 SNPs) were correlated with GM composition; 

these loci included 14 known genes. There were 107 unique differentially abundant 

ASVs associated with variation at these nine loci. Ten of these 107 ASVs were also 

linked to host survival to the next breeding season. Notably, the minor allele at two 

of these host loci rs95_2409799 and rs728642 was also directly associated with 

higher and lower host survival, respectively. These two loci were inversely 

associated with survival-related Clostridiales ASVs- rs95_2409799 increases 

Family XIII; Anaerovorax and decreases Ruminococcaceae; uncultured, while 

rs728642 decreases Family XIII; Anaerovorax and increases Ruminococcaceae; 

uncultured. 

 

6.5.1 Host genomic regions and the GM  

The finding that nine host genomic loci are associated with differences in GM 

composition in the Seychelles warbler and is in line with previous studies on 

humans, cows (Bos taurus), shrimp (Litopenaeus vannamei) and wild mice (Mus 

musculus) showing associations between host genome and the GM (Bonder et al., 

2016; Brulin et al., 2025; Cornejo-Granados et al., 2025; Kurilshikov et al., 2021; 

Suzuki et al., 2019). However, such genome–GM comparisons remain rare in wild 

animal systems (but see (Suzuki et al., 2019)), making our study one of the first to 

demonstrate these links in a natural population. The nine loci identified in our study 

encompassed 14 known genes, each of which could be directly or indirectly linked 

to the GM. 

 

The GRIK2 (glutamate ionotropic receptor kainite type subunit 2) gene (rs750388; 

chromosome 3) plays a role in glutamatergic neurotransmission in which variation 

has been linked to changes in intestinal motility, secretions, and gut barrier function, 

all of which can shape microbial communities (Hamnett et al., 2025). Variation at 

GRIK2 has also been associated with the presence of Faecalibacterium in the 

human gut (Boulund et al., 2022).  
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The CACHD1 (Cache Domain Containing 1) gene (rs95_2409799; Chromosome 6), 

which modulates voltage-gated calcium channel activity (Powell et al., 2024) is 

expressed in multiple tissues, including the gut (Dahimene et al., 2018; Powell et 

al., 2024). Given its role in calcium channel function, this locus could indirectly shape 

the GM through changes in mucus secretion, gut motility, and immune response 

(Diercks, 2024; Kirchhoff, 2006; Song et al., 2023).  

 

The MED7 (Mediator Complex Subunit 7) gene (rs1657804; Chromosome 12) 

encodes a component of the Mediator complex, important for DNA-bound 

transcription and RNA polymerase II (Kim et al., 1994; Kornberg, 2005). MED7 has 

been associated with immune responses and may influence the GM via host 

transcriptional responses to microbial signals (Wu et al., 2023). Downregulation of 

MED7 in humans has also been associated with increased gastrointestinal stromal 

tumour risk (Hur et al., 2010). 

 

The SEC16A gene (rs95_965036; Chromosome 17) is involved in protein transport 

from the endoplasmic reticulum to the Golgi apparatus (Piao et al., 2017). Variants 

of this gene have been associated with inflammatory bowel disease (Hu et al., 

2020). SEC16A is crucial in COPII vesicle formation, which is a target of some 

gastrointestinal pathogens such as Escherichia coli and Norovirus (Sharp and 

Estes, 2010; Wang et al., 2024). 

 

The second locus identified in chromosome 17 (rs95_974945) encompasses 10 

genes. Of these, the gene SLC2A6, involved in extracellular glucose uptake 

(DOEGE et al., 2000; Jiang et al., 2022), has been associated with the human 

intestinal-type alkaline phosphatase measurement (Loya et al., 2025) and thus, is 

the most plausibly linked to GM variation. The other genes do not appear to be 

directly linked to the GM but could also influence the GM pleiotropically. For 

instance, genomic regions in mice (Mus musculus) that were associated with body 

fat were also associated with GM composition (Leamy et al., 2014). Therefore, even 

in the absence of a direct association, the identified genes may still impact the GM 

indirectly through shared genetic architecture with other host traits.  
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Many of the genes we identify (GRIK2, CACHD1, MED7, SEC16A, and SLC2A6), 

appear to have been previously associated with the gastrointestinal tract, influencing 

the GM primarily through pathways related to gut physiology, immunity, and host-

microbes interactions (see above). These findings suggest that host genetic effects 

on the GM are multifaceted, acting through diverse host systems but converging on 

pathways that alter the gut environment and immune system. This is consistent with 

previous findings, where immune-related genes and gut physiology are known to 

shape the GM of humans and captive animals (Bonder et al., 2016; Procházková et 

al., 2024; Tanoue et al., 2010). Similarly, studies on wild animals have shown that 

the host’s immunogenetics also shape the GM (Davies et al., 2022; Marietta et al., 

2015; Montero et al., 2021). 

 

The loci we identified in chromosome two and one locus in chromosome three were 

in unknown genes, and hence, we are unable to speculate on potential pathways 

that could link the gene to the GM. In addition, there were two other loci (in 

chromosomes 6 and 8) that were not near any genes. These intergenic SNPs could 

be part of promoters, enhancers, transposable elements and tandem repeats, which 

can have significant influences on genome function (Pagni et al., 2022). However, 

since the reference genome of Seychelles warblers is only annotated with functional 

genes, we are unable to identify the gene regulatory impact of these regions.  

 

6.5.2 Survival and GM-associated SNPs 

Among the 107 ASVs that are associated with variation at GM-associated host loci, 

10 were also linked with host survival to the next season. Five out of ten of these 

host survival-related ASVs were in the same bacterial order as identified in a 

previous study in the Seychelles warbler carried out using a smaller dataset 

(Worsley et al., 2021). Five ASVs were positively associated with survival, and five 

were negatively associated with survival, which suggests the GM could be 

associated with host survival through a variety of mechanisms (Shealy et al., 2021; 

Tanoue et al., 2010; Wang et al., 2015). 

 

One ASV from an unknown genus (family: Enterobacteriaceae, order: 

Enterobacteriales), one from Leifsonia (family: Microbacteriaceae, order: 

Micrococcales), and one from Oxalobacter (family: Burkholderiaceae, order: 
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Betaproteobacteriales) were negatively linked to survival in the warbler. 

Enterobacteriaceae and M. Leifsonia are known opportunistic pathogens in humans 

(Al-Sardi et al., 2021; Shealy et al., 2021). However, Oxalobacter is not known to be 

pathogenic in any species and instead is important for preventing kidney stones in 

humans (Duncan et al., 2002). In the warbler, these ASVs identified from 

Enterobacteriales and Micrococcales could infect hosts that are already weakened 

by other infections. This is consistent with previous findings in feral horses, where 

opportunistic pathogens were associated with reduced survival (Stothart et al., 

2024). 

 

The three ASVs from the Clostridiales order (two Ruminococcaceae with unknown 

genus and one Family XIII, Anaerovorax genus) were identified as being positively 

linked to survival in the warbler. Clostridiales is a bacterial order found in other 

insectivorous passerines (Bodawatta et al., 2021, 2018), and is capable of 

fermenting carbohydrates and proteins and degrading toxic by-products (Yang et 

al., 2022). The Ruminococcaceae and Anerovorax are known producers of the 

short-chain fatty acids acetate and butyrate, which play key roles in maintaining gut 

health and homeostasis (González Hernández et al., 2019; Kim et al., 2024; Liu et 

al., 2018; Matthies et al., 2000).  Both genera have also been positively associated 

with physical activity in humans, further supporting their potential beneficial roles in 

host physiology and fitness (Santarossa et al., 2021; Zhong et al., 2021). A reduction 

in Clostridiales was detected in the GM of juvenile ostriches (Struthio camelus) that 

subsequently died (Videvall et al., 2020), suggesting that it may be beneficial to the 

host. Collectively, these findings suggest that Clostridiales may represent an 

important microbial group mediating links between gut community composition, host 

condition, and survival in wild populations. 

 

Finally, we also identified four Seychelles warbler survival-related ASVs that did not 

have a clear biological link to host health. The ASV from the bacterial order 

Thermomicrobiales and one ASV from Rhizobiales were negatively associated with 

host survival, and the one ASV in each of the orders Rhizobiales and 

Xanthomonadales (genus Vulcaniibacterium) was positively associated with 

survival. The Vulcaniibacterium and Thermomicrobiales are frequently found in 

high-temperature environments and are important for biofilm formation and nutrient 

cycling (Niu et al., 2020) but have no clear association with vertebrate GM or host 
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survival. Similarly, the ASVs Rhizobiales are typically environmental and have not 

been reported to be associated with host survival (Garrido-Oter et al., 2018). 

However, the ASVs identified in our study have not been functionally characterised 

in Seychelles warblers, and most inferred functions are derived from non-avian 

systems; therefore, these interpretations remain speculative. 

 

All nine host genomic loci identified as being linked GM variation were associated 

with at least one, but no more than four, survival-related ASVs, suggesting that host 

genomic effects on survival may be mediated, at least in part, through the GM. In 

addition, five loci were associated with ASVs showing both positive and negative 

associations with survival. This pattern suggests that a given host locus may 

selectively suppress certain microbes while simultaneously tolerating others. Such 

contrasting effects could mask clear functional outcomes, as functional redundancy 

within the GM may buffer against the loss or gain of individual taxa (Louca et al., 

2018; Worsley et al., 2024d). Therefore, while the host genome is associated with 

survival-related ASVs, whether the consequences of these associations are likely 

to depend on the functional roles of the specific ASVs involved, but the exact 

mechanisms remain to be determined. 

 

Two GM-associated host loci (rs95_2409799 and rs728642) were also directly 

associated with host survival, where the presence of the minor allele was associated 

with an increase and decrease in survival probability, respectively. The two loci 

involved showed opposite associations with the beneficial Clostridiales ASVs: the 

minor allele of rs95_2409799 was linked to an increase in Family XIII (Anaerovorax) 

and a decrease in Ruminococcaceae (uncultured), whereas the minor allele of 

rs728642 was associated with the reverse pattern, an increase in Ruminococcaceae 

(uncultured) and a decrease in Family XIII (Anaerovorax) (Table S6.5). Although 

both ASVs are positively associated with survival, the effect of Family XIII 

(Anaerovorax) on survival is stronger than Ruminococcaceae (uncultured), 

suggesting that survival not only depends on harbouring beneficial microbes, but on 

which beneficial microbe is favoured. These opposing effects underscore the role of 

host genomic variation in shaping specific GM components, which may ultimately 

influence host survival.  
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Our study highlights the intricate interplay between host genetics, the GM, and host 

survival. However, identifying causal mechanisms in wild populations remains 

challenging. While our analyses provide an important starting point, the analyses 

were based on independent associations, rather than an integrative framework, 

meaning that the effects of host genetic variants on survival could be dependent or 

independent of their effects on survival-related ASVs. It is also possible that 

changes in ASV abundance reflect declines in host health caused by genetic 

variants rather than the ASVs driving mortality themselves (i.e. they are a 

consequence, not a cause of imminent mortality). To establish this directionality 

would require future research that functionally characterises ASVs (e.g. 

metagenomics), employs experimental manipulation, for example, to test whether 

altering ASV abundance affects mortality, or with structural equation modelling in 

wild populations. Another limitation is that all analyses were conducted within a 

single population, which may restrict the generalisability of our findings to other 

populations and species. The influence of the host genome on GM composition 

could vary across populations due to differences in environmental conditions, 

ecological pressures, and local selection regimes (Degregori et al., 2025; Worsley 

et al., 2024a).  

 

6.5.3 Conclusion 

Our study provides evidence that the host genome is linked to GM variation through 

various pathways, including elements of the host immune system and gut 

physiology. In addition, host loci were associated with some host survival-related 

gut microbes, suggesting that the host genome interacts with the GM to influence 

host survival in this species. Two host loci, rs95_2409799 and rs728642, exhibited 

opposing associations with the survival-related ASVs Anaerovorax and 

Ruminococcaceae, mirroring their opposite effects on host survival. These findings 

highlight the complexity of host-GM-fitness relationships and underscore the 

importance of integrating genomics and microbial perspectives to gain deeper 

insights into the evolution of host traits in natural populations. 
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6.7 Supplementary material 

 

Table S6.1. Host single-nucleotide polymorphisms (SNP) that were significantly (q<0.05) associated with gut microbiome composition of 
Seychelles warblers (n=205). Abbreviations: SNP position (Pos) on the chromosome (Chr), major allele (A1), minor allele (A2), minor allele 
frequency (MAF), whether the SNP is in a gene or near (Inside Gene). The representative SNP of the locus is in bold.  

SNP Chr Pos q MAF Inside Gene Gene ID Gene start Gene end 

rs95_1075473 2 3156468 0.039 0.227 near Unknown 3156527 3170101 

rs728642 3 65229635 0.039 0.317 near Unknown 65221342 65226115 

rs95_1854197 3 77314535 0.039 0.418 None None - - 

rs95_1854198 3 77314702 0.039 0.418 None None - - 

rs746442 3 77358510 0.039 0.419 None None - - 

rs746475 3 77376834 0.039 0.419 None None - - 

rs746535 3 77390364 0.043 0.416 None None - - 

rs746540 3 77393927 0.043 0.416 None None - - 

rs746545 3 77394450 0.039 0.418 None None - - 

rs746547 3 77394794 0.039 0.419 None None - - 

rs746649 3 77496766 0.039 0.419 None None - - 

rs746696 3 77520320 0.039 0.419 None None - - 

rs746781 3 77565911 0.043 0.420 None None - - 

rs746782 3 77566060 0.039 0.419 None None - - 
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rs746838 3 77584645 0.039 0.419 None None - - 

rs746839 3 77584784 0.039 0.419 None None - - 

rs95_1857837 3 78309141 0.039 0.418 near GRIK2 78353417 78713749 

rs95_1857850 3 78309763 0.039 0.415 near GRIK2 78353417 78713749 

rs749151 3 78310019 0.039 0.415 near GRIK2 78353417 78713749 

rs95_1857926 3 78329306 0.039 0.414 near GRIK2 78353417 78713749 

rs749246 3 78345567 0.039 0.414 near GRIK2 78353417 78713749 

rs749277 3 78357411 0.039 0.413 yes GRIK2 78353417 78713749 

rs749370 3 78373096 0.039 0.415 yes GRIK2 78353417 78713749 

rs749377 3 78374287 0.039 0.415 yes GRIK2 78353417 78713749 

rs749379 3 78374363 0.039 0.414 yes GRIK2 78353417 78713749 

rs749410 3 78378012 0.039 0.415 yes GRIK2 78353417 78713749 

rs749428 3 78381777 0.039 0.415 yes GRIK2 78353417 78713749 

rs749434 3 78382297 0.039 0.415 yes GRIK2 78353417 78713749 

rs749435 3 78382308 0.039 0.415 yes GRIK2 78353417 78713749 

rs749436 3 78382318 0.039 0.415 yes GRIK2 78353417 78713749 

rs749437 3 78382370 0.039 0.415 yes GRIK2 78353417 78713749 

rs749442 3 78382585 0.039 0.415 yes GRIK2 78353417 78713749 

rs749443 3 78382607 0.039 0.415 yes GRIK2 78353417 78713749 
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rs749446 3 78382635 0.039 0.415 yes GRIK2 78353417 78713749 

rs749457 3 78382986 0.039 0.415 yes GRIK2 78353417 78713749 

rs749458 3 78382994 0.039 0.415 yes GRIK2 78353417 78713749 

rs749459 3 78383035 0.039 0.415 yes GRIK2 78353417 78713749 

rs749484 3 78386682 0.039 0.415 yes GRIK2 78353417 78713749 

rs749485 3 78386776 0.039 0.415 yes GRIK2 78353417 78713749 

rs749486 3 78387022 0.039 0.415 yes GRIK2 78353417 78713749 

rs749487 3 78387056 0.039 0.415 yes GRIK2 78353417 78713749 

rs749488 3 78387083 0.039 0.415 yes GRIK2 78353417 78713749 

rs749489 3 78387759 0.039 0.415 yes GRIK2 78353417 78713749 

rs749490 3 78390775 0.039 0.415 yes GRIK2 78353417 78713749 

rs749491 3 78390796 0.039 0.415 yes GRIK2 78353417 78713749 

rs95_1858221 3 78390875 0.039 0.415 yes GRIK2 78353417 78713749 

rs749492 3 78390973 0.039 0.415 yes GRIK2 78353417 78713749 

rs749493 3 78391318 0.039 0.415 yes GRIK2 78353417 78713749 

rs749494 3 78391642 0.039 0.415 yes GRIK2 78353417 78713749 

rs749495 3 78391681 0.039 0.412 yes GRIK2 78353417 78713749 

rs749496 3 78392225 0.039 0.415 yes GRIK2 78353417 78713749 

rs749509 3 78393919 0.039 0.415 yes GRIK2 78353417 78713749 
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rs749510 3 78394107 0.039 0.415 yes GRIK2 78353417 78713749 

rs749511 3 78394217 0.039 0.415 yes GRIK2 78353417 78713749 

rs95_1858242 3 78394657 0.039 0.415 yes GRIK2 78353417 78713749 

rs95_1858244 3 78396427 0.039 0.415 yes GRIK2 78353417 78713749 

rs749853 3 78476212 0.039 0.413 yes GRIK2 78353417 78713749 

rs749890 3 78483596 0.039 0.413 yes GRIK2 78353417 78713749 

rs749892 3 78483863 0.039 0.414 yes GRIK2 78353417 78713749 

rs749893 3 78483980 0.039 0.414 yes GRIK2 78353417 78713749 

rs749894 3 78485038 0.039 0.414 yes GRIK2 78353417 78713749 

rs749895 3 78485048 0.039 0.414 yes GRIK2 78353417 78713749 

rs749896 3 78485108 0.039 0.414 yes GRIK2 78353417 78713749 

rs749897 3 78485763 0.039 0.414 yes GRIK2 78353417 78713749 

rs749945 3 78492331 0.039 0.415 yes GRIK2 78353417 78713749 

rs749946 3 78492454 0.039 0.415 yes GRIK2 78353417 78713749 

rs749948 3 78492675 0.039 0.415 yes GRIK2 78353417 78713749 

rs749949 3 78492686 0.039 0.415 yes GRIK2 78353417 78713749 

rs749952 3 78493435 0.039 0.409 yes GRIK2 78353417 78713749 

rs749953 3 78493490 0.039 0.415 yes GRIK2 78353417 78713749 

rs749954 3 78493595 0.039 0.415 yes GRIK2 78353417 78713749 
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rs749955 3 78493922 0.039 0.415 yes GRIK2 78353417 78713749 

rs749956 3 78493926 0.039 0.415 yes GRIK2 78353417 78713749 

rs749957 3 78494048 0.039 0.415 yes GRIK2 78353417 78713749 

rs749958 3 78494245 0.039 0.415 yes GRIK2 78353417 78713749 

rs749960 3 78494388 0.039 0.414 yes GRIK2 78353417 78713749 

rs750119 3 78513425 0.039 0.414 yes GRIK2 78353417 78713749 

rs750124 3 78514312 0.039 0.415 yes GRIK2 78353417 78713749 

rs750175 3 78521310 0.039 0.415 yes GRIK2 78353417 78713749 

rs750177 3 78521552 0.039 0.415 yes GRIK2 78353417 78713749 

rs750178 3 78521585 0.039 0.415 yes GRIK2 78353417 78713749 

rs750183 3 78523284 0.039 0.415 yes GRIK2 78353417 78713749 

rs750184 3 78523505 0.043 0.416 yes GRIK2 78353417 78713749 

rs750252 3 78562154 0.039 0.414 yes GRIK2 78367739 78713749 

rs750253 3 78562255 0.039 0.414 yes GRIK2 78367739 78713749 

rs750256 3 78566935 0.039 0.414 yes GRIK2 78367739 78713749 

rs95_1859246 3 78616549 0.039 0.414 yes GRIK2 78367739 78713749 

rs750388 3 78619451 0.029 0.412 yes GRIK2 78367739 78713749 

rs95_2409590 6 2239609 0.043 0.171 yes CACHD1 2219428 2312883 

rs95_2409591 6 2239614 0.039 0.169 yes CACHD1 2219428 2312883 
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rs95_2409592 6 2239615 0.039 0.169 yes CACHD1 2219428 2312883 

rs95_2409597 6 2240049 0.024 0.167 yes CACHD1 2219428 2312883 

rs95_2409598 6 2240058 0.024 0.167 yes CACHD1 2219428 2312883 

rs95_2409599 6 2240059 0.024 0.167 yes CACHD1 2219428 2312883 

rs95_2409642 6 2249271 0.039 0.174 yes CACHD1 2219428 2312883 

rs95_2409796 6 2277958 0.039 0.180 yes CACHD1 2219428 2312883 

rs95_2409799 6 2278070 0.024 0.177 yes CACHD1 2219428 2312883 

rs95_2409800 6 2278082 0.024 0.177 yes CACHD1 2219428 2312883 

rs95_2409801 6 2278163 0.024 0.177 yes CACHD1 2219428 2312883 

rs95_2409802 6 2278164 0.024 0.177 yes CACHD1 2219428 2312883 

rs95_2409803 6 2278479 0.024 0.177 yes CACHD1 2219428 2312883 

rs95_2409804 6 2278757 0.024 0.177 yes CACHD1 2219428 2312883 

rs95_2409805 6 2278765 0.024 0.177 yes CACHD1 2219428 2312883 

rs1220065 6 57461779 0.039 0.251 None None - - 

rs1220068 6 57462214 0.043 0.254 None None - - 

rs1220070 6 57462341 0.043 0.254 None None - - 

rs1220076 6 57462611 0.039 0.254 None None - - 

rs1441391 8 31789764 0.013 0.320 None None - - 

rs1441392 8 31789825 0.013 0.320 None None - - 
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rs1441393 8 31789864 0.013 0.320 None None - - 

rs1441394 8 31790009 0.013 0.320 None None - - 

rs1441395 8 31790064 0.013 0.320 None None - - 

rs1441396 8 31790401 0.013 0.320 None None - - 

rs95_2940681 8 31790532 0.013 0.320 None None - - 

rs1441397 8 31790586 0.013 0.320 None None - - 

rs1441398 8 31790606 0.013 0.320 None None - - 

rs1441399 8 31790616 0.013 0.320 None None - - 

rs1441400 8 31791099 0.013 0.320 None None - - 

rs1441401 8 31791180 0.013 0.320 None None - - 

rs95_2940687 8 31791246 0.013 0.320 None None - - 

rs1441402 8 31791386 0.013 0.320 None None - - 

rs1441403 8 31791441 0.013 0.320 None None - - 

rs1441404 8 31791490 0.013 0.320 None None - - 

rs1441405 8 31791587 0.013 0.320 None None - - 

rs1441406 8 31791606 0.013 0.320 None None - - 

rs1441407 8 31791607 0.013 0.320 None None - - 

rs95_2940694 8 31791678 0.013 0.321 None None - - 

rs95_2940695 8 31791696 0.013 0.321 None None - - 
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rs95_2940696 8 31791756 0.013 0.321 None None - - 

rs95_2940697 8 31791764 0.013 0.321 None None - - 

rs1441408 8 31791834 0.013 0.321 None None - - 

rs95_2940699 8 31791971 0.013 0.321 None None - - 

rs1441409 8 31792197 0.013 0.321 None None - - 

rs1441410 8 31792206 0.013 0.321 None None - - 

rs95_2940702 8 31792242 0.013 0.321 None None - - 

rs95_2940703 8 31792251 0.013 0.321 None None - - 

rs95_2940704 8 31792263 0.013 0.321 None None - - 

rs1441411 8 31792295 0.013 0.321 None None - - 

rs1441412 8 31792306 0.013 0.321 None None - - 

rs1441413 8 31792322 0.013 0.320 None None - - 

rs95_2940708 8 31792329 0.013 0.320 None None - - 

rs1441416 8 31793250 0.013 0.320 None None - - 

rs95_2940712 8 31793286 0.013 0.320 None None - - 

rs95_2940716 8 31793896 0.013 0.321 None None - - 

rs95_2940717 8 31793899 0.013 0.321 None None - - 

rs1441418 8 31794311 0.013 0.321 None None - - 

rs1441419 8 31794583 0.013 0.321 None None - - 
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rs95_2940720 8 31795075 0.013 0.321 None None - - 

rs95_2940721 8 31795204 0.013 0.321 None None - - 

rs1441420 8 31795465 0.013 0.321 None None - - 

rs1441421 8 31795523 0.013 0.321 None None - - 

rs1441422 8 31795682 0.013 0.321 None None - - 

rs1441423 8 31795751 0.013 0.321 None None - - 

rs95_2940730 8 31797035 0.013 0.321 None None - - 

rs95_2940731 8 31797093 0.013 0.321 None None - - 

rs95_2940732 8 31797112 0.013 0.321 None None - - 

rs95_2940733 8 31797262 0.013 0.321 None None - - 

rs95_2940734 8 31797312 0.013 0.321 None None - - 

rs95_2940735 8 31797320 0.013 0.321 None None - - 

rs95_2940736 8 31797327 0.013 0.321 None None - - 

rs95_2940753 8 31798961 0.002 0.317 None None - - 

rs95_2940754 8 31798962 0.002 0.317 None None - - 

rs95_2940755 8 31799330 0.002 0.317 None None - - 

rs95_2940756 8 31799339 0.002 0.317 None None - - 

rs1441425 8 31799395 0.002 0.317 None None - - 

rs95_2940758 8 31799409 0.002 0.317 None None - - 
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rs95_2940759 8 31799410 0.001 0.314 None None - - 

rs1441426 8 31799423 0.002 0.312 None None - - 

rs1441427 8 31799557 0.002 0.313 None None - - 

rs95_2940762 8 31799587 0.001 0.311 None None - - 

rs1441428 8 31799612 0.001 0.311 None None - - 

rs1441429 8 31799627 0.001 0.311 None None - - 

rs1441430 8 31799660 0.001 0.311 None None - - 

rs95_2940766 8 31799917 0.001 0.311 None None - - 

rs1441431 8 31799923 0.001 0.310 None None - - 

rs1657804 12 13802557 0.043 0.177 near MED7 13800481 13801173 

rs95_965023 17 12982837 0.043 0.428 yes SEC16A 12972402 12994093 

rs95_965026 17 12982958 0.043 0.428 yes SEC16A 12972402 12994093 

rs95_965028 17 12983044 0.043 0.428 yes SEC16A 12972402 12994093 

rs95_965029 17 12983134 0.043 0.428 yes SEC16A 12972402 12994093 

rs95_965030 17 12983137 0.043 0.428 yes SEC16A 12972402 12994093 

rs95_965031 17 12983143 0.043 0.428 yes SEC16A 12972402 12994093 

rs95_965033 17 12983214 0.043 0.428 yes SEC16A 12972402 12994093 

rs95_965034 17 12983220 0.043 0.428 yes SEC16A 12972402 12994093 

rs95_965035 17 12983244 0.043 0.428 yes SEC16A 12972402 12994093 
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rs95_965036 17 12983248 0.039 0.428 yes SEC16A 12972402 12994093 

rs95_965037 17 12983250 0.039 0.428 yes SEC16A 12972402 12994093 

rs95_965056 17 12986427 0.039 0.428 yes SEC16A 12972402 12994093 

rs95_972005 17 14081628 0.045 0.267 yes SARDH 14075427 14102674 

rs95_972008 17 14081657 0.045 0.267 yes SARDH 14075427 14102674 

rs95_972010 17 14081694 0.045 0.267 yes SARDH 14075427 14102674 

rs95_972020 17 14081844 0.045 0.267 yes SARDH 14075427 14102674 

rs95_972024 17 14081886 0.045 0.267 yes SARDH 14075427 14102674 

rs95_972025 17 14081927 0.045 0.267 yes SARDH 14075427 14102674 

rs95_972027 17 14082509 0.045 0.267 yes SARDH 14075427 14102674 

rs95_972034 17 14083501 0.045 0.267 yes SARDH 14075427 14102674 

rs95_972042 17 14084350 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972044 17 14085154 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972058 17 14091248 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972060 17 14091351 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972062 17 14091383 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972063 17 14091386 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972069 17 14091513 0.039 0.268 yes SARDH 14075427 14102674 

rs1798058 17 14095417 0.039 0.268 yes SARDH 14075427 14102674 
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rs95_972103 17 14096077 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972104 17 14096086 0.039 0.268 yes SARDH 14075427 14102674 

rs1798061 17 14096292 0.039 0.268 yes SARDH 14075427 14102674 

rs1798064 17 14097611 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972114 17 14097842 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972116 17 14098231 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972117 17 14098233 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972123 17 14098783 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972128 17 14099069 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972133 17 14099631 0.039 0.268 yes SARDH 14075427 14102674 

rs1798081 17 14100140 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972155 17 14100509 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972157 17 14100579 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972162 17 14100632 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972213 17 14101729 0.039 0.268 yes SARDH 14075427 14102674 

rs95_972860 17 14151891 0.046 0.229 near FAM163B 14155387 14156086 

rs95_972864 17 14151910 0.044 0.228 near FAM163B 14155387 14156086 

rs95_972982 17 14171133 0.039 0.268 yes ADAMTSL2 14159465 14187958 

rs95_972993 17 14171308 0.039 0.268 yes ADAMTSL2 14159465 14187958 
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rs95_972994 17 14171400 0.043 0.270 yes ADAMTSL2 14159465 14187958 

rs1798266 17 14172197 0.043 0.270 yes ADAMTSL2 14159465 14187958 

rs95_973009 17 14174018 0.043 0.270 yes ADAMTSL2 14159465 14187958 

rs95_973014 17 14176049 0.039 0.268 yes ADAMTSL2 14159465 14187958 

rs1798277 17 14177662 0.039 0.268 yes ADAMTSL2 14159465 14187958 

rs1798278 17 14177912 0.039 0.270 yes ADAMTSL2 14159465 14187958 

rs95_973024 17 14179230 0.039 0.268 yes ADAMTSL2 14159465 14187958 

rs1798282 17 14179790 0.039 0.268 yes ADAMTSL2 14159465 14187958 

rs95_973156 17 14191099 0.029 0.268 near TMEM8C 14198859 14206190 

rs95_973182 17 14194687 0.022 0.265 near TMEM8C 14198859 14206190 

rs95_973258 17 14205945 0.039 0.221 yes TMEM8C 14198859 14206190 

rs95_973259 17 14206027 0.039 0.219 yes TMEM8C 14198859 14206190 

rs1798330 17 14208180 0.039 0.223 near TMEM8C 14198859 14206190 

rs1798331 17 14208270 0.039 0.223 near TMEM8C 14198859 14206190 

rs1798332 17 14208282 0.039 0.223 near TMEM8C 14198859 14206190 

rs1798333 17 14208290 0.039 0.223 near TMEM8C 14198859 14206190 

rs95_973286 17 14208764 0.039 0.223 near TMEM8C 14198859 14206190 

rs1798334 17 14208857 0.039 0.223 near TMEM8C 14198859 14206190 

rs95_973294 17 14209272 0.039 0.223 near TMEM8C 14198859 14206190 
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rs95_973295 17 14209295 0.039 0.223 near TMEM8C 14198859 14206190 

rs95_973298 17 14209312 0.039 0.223 near TMEM8C 14198859 14206190 

rs95_973299 17 14209388 0.039 0.223 near TMEM8C 14198859 14206190 

rs1798363 17 14219256 0.043 0.223 near SLC2A6 14226604 14233714 

rs95_974880 17 14468396 0.043 0.225 yes SPACA9 14465731 14472331 

rs95_974884 17 14468545 0.043 0.225 yes SPACA9 14465731 14472331 

rs95_974887 17 14468599 0.043 0.225 yes SPACA9 14465731 14472331 

rs95_974888 17 14468600 0.043 0.225 yes SPACA9 14465731 14472331 

rs95_974889 17 14468618 0.043 0.225 yes SPACA9 14465731 14472331 

rs95_974893 17 14469387 0.043 0.225 yes SPACA9 14465731 14472331 

rs95_974894 17 14469436 0.043 0.225 yes SPACA9 14465731 14472331 

rs95_974896 17 14469923 0.043 0.225 yes SPACA9 14465731 14472331 

rs95_974909 17 14473367 0.043 0.223 yes AK8 14473227 14541222 

rs1799056 17 14473444 0.043 0.223 yes AK8 14473227 14541222 

rs95_974913 17 14473708 0.043 0.223 yes AK8 14473227 14541222 

rs95_974916 17 14473984 0.043 0.223 yes AK8 14473227 14541222 

rs95_974920 17 14474951 0.043 0.223 yes AK8 14473227 14541222 

rs95_974921 17 14474983 0.043 0.223 yes AK8 14473227 14541222 

rs95_974922 17 14474985 0.043 0.223 yes AK8 14473227 14541222 
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rs95_974923 17 14474995 0.043 0.223 yes AK8 14473227 14541222 

rs95_974924 17 14475025 0.043 0.223 yes AK8 14473227 14541222 

rs95_974925 17 14475193 0.043 0.223 yes AK8 14473227 14541222 

rs95_974926 17 14475817 0.039 0.222 yes AK8 14473227 14541222 

rs95_974936 17 14477367 0.043 0.221 yes AK8 14473227 14541222 

rs95_974937 17 14477368 0.043 0.221 yes AK8 14473227 14541222 

rs95_974941 17 14477653 0.037 0.219 yes AK8 14473227 14541222 

rs95_974945 17 14478560 0.019 0.212 yes AK8 14473227 14541222 

rs1799063 17 14479233 0.029 0.203 yes AK8 14473227 14541222 

rs95_974957 17 14479671 0.039 0.219 yes AK8 14473227 14541222 

rs1799065 17 14479840 0.029 0.219 yes AK8 14473227 14541222 

rs1799066 17 14479854 0.029 0.219 yes AK8 14473227 14541222 

rs1799070 17 14480129 0.039 0.221 yes AK8 14473227 14541222 

rs1799071 17 14480240 0.039 0.221 yes AK8 14473227 14541222 

rs1799072 17 14480272 0.039 0.221 yes AK8 14473227 14541222 

rs1799073 17 14480426 0.039 0.221 yes AK8 14473227 14541222 

rs1799074 17 14481005 0.039 0.221 yes AK8 14473227 14541222 

rs1799075 17 14481137 0.039 0.221 yes AK8 14473227 14541222 

rs1799076 17 14481138 0.039 0.221 yes AK8 14473227 14541222 
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rs1799077 17 14481139 0.039 0.221 yes AK8 14473227 14541222 

rs1799078 17 14481185 0.039 0.221 yes AK8 14473227 14541222 

rs1799079 17 14481202 0.039 0.221 yes AK8 14473227 14541222 

rs1799081 17 14481515 0.039 0.221 yes AK8 14473227 14541222 

rs1799083 17 14481549 0.039 0.221 yes AK8 14473227 14541222 

rs1799084 17 14481738 0.039 0.221 yes AK8 14473227 14541222 

rs95_974980 17 14482056 0.039 0.221 yes AK8 14473227 14541222 

rs95_974981 17 14482067 0.039 0.221 yes AK8 14473227 14541222 

rs95_974982 17 14482632 0.039 0.221 yes AK8 14473227 14541222 

rs1799085 17 14482660 0.039 0.221 yes AK8 14473227 14541222 

rs95_974984 17 14482944 0.039 0.221 yes AK8 14473227 14541222 

rs1799087 17 14483507 0.029 0.219 yes AK8 14473227 14541222 

rs1799088 17 14483550 0.029 0.219 yes AK8 14473227 14541222 

rs1799089 17 14484068 0.029 0.219 yes AK8 14473227 14541222 

rs1799090 17 14484420 0.029 0.219 yes AK8 14473227 14541222 

rs1799091 17 14484738 0.029 0.219 yes AK8 14473227 14541222 

rs1799092 17 14484874 0.029 0.219 yes AK8 14473227 14541222 

rs1799093 17 14484924 0.029 0.219 yes AK8 14473227 14541222 

rs1799095 17 14485290 0.039 0.221 yes AK8 14473227 14541222 
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rs1799099 17 14486057 0.039 0.221 yes AK8 14473227 14541222 

rs1799100 17 14486371 0.039 0.221 yes AK8 14473227 14541222 

rs1799102 17 14487108 0.039 0.221 yes AK8 14473227 14541222 

rs1799104 17 14488156 0.039 0.221 yes AK8 14473227 14541222 

rs1799106 17 14488432 0.039 0.221 yes AK8 14473227 14541222 

rs1799107 17 14488867 0.039 0.221 yes AK8 14473227 14541222 

rs1799108 17 14489466 0.039 0.221 yes AK8 14473227 14541222 

rs1799109 17 14489640 0.039 0.221 yes AK8 14473227 14541222 

rs1799110 17 14489794 0.039 0.221 yes AK8 14473227 14541222 

rs1799111 17 14489805 0.039 0.221 yes AK8 14473227 14541222 

rs1799112 17 14490111 0.039 0.221 yes AK8 14473227 14541222 

rs1799113 17 14490376 0.039 0.221 yes AK8 14473227 14541222 

rs1799115 17 14491819 0.039 0.221 yes AK8 14473227 14541222 

rs1799116 17 14492597 0.039 0.221 yes AK8 14473227 14541222 

rs1799117 17 14495656 0.039 0.221 yes AK8 14473227 14541222 

rs1799118 17 14496885 0.039 0.221 yes AK8 14473227 14541222 

rs1799119 17 14497167 0.039 0.221 yes AK8 14473227 14541222 

rs1799121 17 14497235 0.039 0.221 yes AK8 14473227 14541222 

rs1799122 17 14497253 0.039 0.221 yes AK8 14473227 14541222 
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rs1799123 17 14497973 0.039 0.221 yes AK8 14473227 14541222 

rs1799124 17 14499286 0.039 0.221 yes AK8 14473227 14541222 

rs1799125 17 14499369 0.039 0.221 yes AK8 14473227 14541222 

rs1799126 17 14499603 0.039 0.221 yes AK8 14473227 14541222 

rs1799128 17 14499963 0.039 0.221 yes AK8 14473227 14541222 

rs1799129 17 14499997 0.039 0.221 yes AK8 14473227 14541222 

rs1799133 17 14500768 0.039 0.221 yes AK8 14473227 14541222 

rs95_975042 17 14507911 0.039 0.221 yes AK8 14473227 14541222 

rs95_975046 17 14508098 0.039 0.221 yes AK8 14473227 14541222 

rs95_975048 17 14508758 0.039 0.221 yes AK8 14473227 14541222 

rs1799142 17 14509273 0.039 0.221 yes AK8 14473227 14541222 

rs1799172 17 14514614 0.039 0.221 yes AK8 14473227 14541222 

rs1799176 17 14514662 0.039 0.221 yes AK8 14473227 14541222 

rs95_975282 17 14559320 0.043 0.222 yes DDX31 14554666 14597701 

rs95_975287 17 14560260 0.043 0.222 yes DDX31 14554666 14597701 

rs95_975294 17 14560700 0.043 0.222 yes DDX31 14554666 14597701 

rs1799295 17 14562827 0.043 0.222 yes DDX31 14554666 14597701 

rs1799297 17 14563103 0.043 0.222 yes DDX31 14554666 14597701 

rs1799300 17 14563140 0.043 0.222 yes DDX31 14554666 14597701 
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rs1799322 17 14564959 0.043 0.222 yes DDX31 14554666 14597701 

rs1799326 17 14565480 0.043 0.222 yes DDX31 14554666 14597701 

rs1799336 17 14566686 0.043 0.222 yes DDX31 14554666 14597701 

rs1799345 17 14567503 0.043 0.222 yes DDX31 14554666 14597701 

rs1799353 17 14568483 0.043 0.222 yes DDX31 14554666 14597701 

rs1799374 17 14570796 0.035 0.218 yes DDX31 14554666 14597701 

rs1799377 17 14571418 0.043 0.222 yes DDX31 14554666 14597701 

rs1799631 17 14603792 0.043 0.222 near BARHL1 14603834 14609469 

rs1799649 17 14605681 0.043 0.222 yes BARHL1 14603834 14609469 

rs1799686 17 14610211 0.043 0.222 near BARHL1 14603834 14609469 

rs1799688 17 14610768 0.043 0.222 near BARHL1 14603834 14609469 

rs1799693 17 14611471 0.043 0.222 near BARHL1 14603834 14609469 

rs1799694 17 14611504 0.043 0.222 near BARHL1 14603834 14609469 

rs1799695 17 14611571 0.043 0.222 near BARHL1 14603834 14609469 

rs1799696 17 14611582 0.043 0.222 near BARHL1 14603834 14609469 

rs1799698 17 14611723 0.043 0.222 near BARHL1 14603834 14609469 

rs1799699 17 14611811 0.043 0.222 near BARHL1 14603834 14609469 

rs1799700 17 14612045 0.043 0.222 near BARHL1 14603834 14609469 

rs1799701 17 14612202 0.043 0.222 near BARHL1 14603834 14609469 
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rs1799702 17 14612383 0.043 0.222 near BARHL1 14603834 14609469 

rs1799703 17 14612741 0.043 0.222 near BARHL1 14603834 14609469 

rs1799704 17 14612820 0.043 0.222 near BARHL1 14603834 14609469 

rs1799705 17 14612880 0.043 0.222 near BARHL1 14603834 14609469 

rs1799706 17 14612899 0.043 0.222 near BARHL1 14603834 14609469 

rs1799708 17 14612953 0.043 0.222 near BARHL1 14603834 14609469 

rs95_975783 17 14617185 0.043 0.222 yes CFAP77 14615352 14671769 

rs95_975787 17 14617524 0.043 0.222 yes CFAP77 14615352 14671769 

rs95_975797 17 14619749 0.043 0.222 yes CFAP77 14615352 14671769 

rs95_975798 17 14619765 0.043 0.222 yes CFAP77 14615352 14671769 

rs1799732 17 14619829 0.043 0.222 yes CFAP77 14615352 14671769 

rs1799738 17 14620366 0.043 0.222 yes CFAP77 14615352 14671769 

rs95_975814 17 14622240 0.043 0.222 yes CFAP77 14615352 14671769 

rs1799742 17 14622481 0.043 0.222 yes CFAP77 14615352 14671769 

rs1799743 17 14622673 0.043 0.222 yes CFAP77 14615352 14671769 

rs1799744 17 14623060 0.043 0.222 yes CFAP77 14615352 14671769 

rs95_975819 17 14625251 0.043 0.222 yes CFAP77 14615352 14671769 

rs95_975821 17 14625428 0.043 0.222 yes CFAP77 14615352 14671769 

rs1799745 17 14625615 0.043 0.222 yes CFAP77 14615352 14671769 
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rs95_975824 17 14626261 0.043 0.222 yes CFAP77 14615352 14671769 

rs1799747 17 14627154 0.043 0.222 yes CFAP77 14615352 14671769 

rs95_975827 17 14627368 0.043 0.222 yes CFAP77 14615352 14671769 

rs95_975828 17 14627419 0.043 0.222 yes CFAP77 14615352 14671769 

rs95_975829 17 14627532 0.043 0.222 yes CFAP77 14615352 14671769 

rs1799748 17 14627600 0.043 0.222 yes CFAP77 14615352 14671769 

rs95_975831 17 14627609 0.043 0.222 yes CFAP77 14615352 14671769 

rs95_975832 17 14627788 0.043 0.222 yes CFAP77 14615352 14671769 

rs1799749 17 14627990 0.043 0.222 yes CFAP77 14615352 14671769 

rs95_975834 17 14628065 0.043 0.222 yes CFAP77 14615352 14671769 

rs1799750 17 14628521 0.043 0.222 yes CFAP77 14615352 14671769 

rs1799751 17 14629076 0.043 0.222 yes CFAP77 14615352 14671769 

rs95_975837 17 14629894 0.043 0.222 yes CFAP77 14615352 14671769 

rs95_975838 17 14630263 0.043 0.222 yes CFAP77 14615352 14671769 

rs95_975846 17 14632389 0.043 0.222 yes CFAP77 14615352 14671769 

rs1799758 17 14632570 0.043 0.222 yes CFAP77 14615352 14671769 

rs1799763 17 14634026 0.043 0.222 yes CFAP77 14615352 14671769 

rs1799766 17 14634409 0.043 0.222 yes CFAP77 14615352 14671769 
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Table S6.2. Host genes and gene functions that were associated with gut microbiome composition of Seychelles warblers (n=205).  

Genes Full Gene name NCBI Refseq Gene Summary (https://www.ncbi.nlm.nih.gov/datasets/gene/) 

GRIK2 

Glutamate ionotropic 

receptor kainate type 

subunit 2 

Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian 

brain and are activated in a variety of normal neurophysiologic processes. This gene product 

belongs to the kainate family of glutamate receptors, which are composed of four subunits and 

function as ligand-activated ion channels. The subunit encoded by this gene is subject to RNA 

editing at multiple sites within the first and second transmembrane domains, which is thought to 

alter the structure and function of the receptor complex. Alternatively spliced transcript variants 

encoding different isoforms have also been described for this gene. Mutations in this gene have 

been associated with autosomal recessive cognitive disability. [provided by RefSeq, Jul 2008] 

CACHD1 
Cache domain containing 

1 

Predicted to enable voltage-gated calcium channel activity. Predicted to be involved in calcium ion 

transmembrane transport. Predicted to be located in membrane. Predicted to be part of voltage-

gated calcium channel complex. [provided by Alliance of Genome Resources, Jul 2025] 

MED7 
Mediator complex 

subunit 7 

The activation of gene transcription is a multistep process that is triggered by factors that 

recognize transcriptional enhancer sites in DNA. These factors work with co-activators to direct 

transcriptional initiation by the RNA polymerase II apparatus. The protein encoded by this gene is 

a subunit of the CRSP (cofactor required for SP1 activation) complex, which, along with TFIID, is 

required for efficient activation by SP1. This protein is also a component of other multisubunit 

https://www.ncbi.nlm.nih.gov/datasets/gene/
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complexes e.g. thyroid hormone receptor-(TR-) associated proteins which interact with TR and 

facilitate TR function on DNA templates in conjunction with initiation factors and cofactors. Two 

transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, 

Jul 2008] 

SEC16A 

SEC16 homolog A, 

endoplasmic reticulum 

export factor 

This gene encodes a protein that forms part of the Sec16 complex. This protein has a role in 

protein transport from the endoplasmic reticulum (ER) to the Golgi and mediates COPII vesicle 

formation at the transitional ER. Alternative splicing results in multiple transcript variants that 

encode different protein isoforms. [provided by RefSeq, Feb 2013] 

SARDH 
Sarcosine 

dehydrogenase 

This gene encodes an enzyme localized to the mitochondrial matrix which catalyzes the oxidative 

demethylation of sarcosine. This enzyme is distinct from another mitochondrial matrix enzyme, 

dimethylglycine dehydrogenase, which catalyzes a reaction resulting in the formation of sarcosine. 

Mutations in this gene are associated with sarcosinemia. Alternatively spliced transcript variants 

have been described. [provided by RefSeq, Oct 2008] 

FAM163B 
Family with sequence 

similarity 163 member B 
Predicted to be located in membrane. [provided by Alliance of Genome Resources, Jul 2025] 

ADAMTSL2 ADAMTS like 2 

This gene encodes a member of the ADAMTS (a disintegrin and metalloproteinase with 

thrombospondin motifs) and ADAMTS-like protein family. Members of the family share several 

distinct protein modules, including a propeptide region, a metalloproteinase domain, a disintegrin-

like domain, and a thrombospondin type 1 (TS) motif. Individual members of this family differ in the 
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number of C-terminal TS motifs, and some have unique C-terminal domains. The protein encoded 

by this gene lacks the protease domain, and is therefore of a member of the the ADAMTS-like 

protein subfamily. It is a secreted glycoprotein that binds the cell surface and extracellular matrix; it 

also interacts with latent transforming growth factor beta binding protein 1. Mutations in this gene 

have been associated with geleophysic dysplasia. [provided by RefSeq, Feb 2009] 

TMEM8C 
Transmembrane protein 

8C 
Provisional gene – unknown function 

SLC2A6 
Solute carrier family 2 

member 6 

Hexose transport into mammalian cells is catalyzed by a family of membrane proteins, including 

SLC2A6, that contain 12 transmembrane domains and a number of critical conserved 

residues.[supplied by OMIM, Jul 2002] 

SPACA9 
Sperm acrosome 

associated 9 

Enables microtubule binding activity. Involved in axoneme assembly. Located in axonemal 

microtubule. [provided by Alliance of Genome Resources, Jul 2025] 

AK8 Adenylate kinase 8 

Enables AMP binding activity and nucleobase-containing compound kinase activity. Predicted to 

be involved in nucleoside monophosphate phosphorylation. Predicted to act upstream of or within 

ventricular system development. Located in 9+2 motile cilium. [provided by Alliance of Genome 

Resources, Apr 2025] 

DDX31 DEAD-box helicase 31 
DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative 

RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA 



 326 

secondary structure such as translation initiation, nuclear and mitochondrial splicing, and ribosome 

and spliceosome assembly. Based on their distribution patterns, some members of this DEAD box 

protein family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth 

and division. This gene encodes a member of this family. The function of this member has not 

been determined. Alternative splicing of this gene generates multiple transcript variants encoding 

different isoforms. [provided by RefSeq, Apr 2016] 

BARHL1 BarH like homeobox 1 

Enables sequence-specific double-stranded DNA binding activity. Predicted to be involved in 

regulation of transcription by RNA polymerase II. Predicted to act upstream of or within several 

processes, including negative regulation of outer hair cell apoptotic process; nervous system 

development; and sensory perception of sound. Predicted to be located in chromatin. Predicted to 

be active in nucleus. Biomarker of Alzheimer's disease; high grade glioma; and triple-receptor 

negative breast cancer. [provided by Alliance of Genome Resources, Jul 2025] 

CFAP77 
Cilia and flagella 

associated protein 77 

Predicted to be involved in flagellated sperm motility. Located in axonemal microtubule. [provided 

by Alliance of Genome Resources, Jul 2025] 

 

 

 

Table S6.3. Differentially abundant amplicon sequencing variants (ASVs) in the gut microbiome significantly (Padj<0.05) associated with nine 

genomic loci in adult Seychelles warblers (N=204).  
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ASV SNP lfc se q 
Kingdo

m 
Phylum Class Order Family 

8f7c737007cfbed8b5ea17503e45

422c 

rs95_10754

73 

-

1.35 

0.2

3 

0.01

0 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Corynebacteriales Nocardiaceae 

df98b3d20eafc1a8628a93e7b04a

3325 

rs95_10754

73 
1.86 

0.1

6 

0.03

1 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Micrococcales Microbacteriaceae 

e019a4db05822cabb7c9b4c2d16

03056 

rs95_10754

73 
0.99 

0.2

1 

0.02

8 

Bacteri

a 

Actinobacter

ia 
Actinobacteria 

Propionibacteriale

s 
Nocardioidaceae 

155fc453a9b2083b2246927750b3

adb2 

rs95_10754

73 

-

2.48 

0.2

3 

0.00

1 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Dysgonomonadaceae 

d9072e1cebd91a61f8afca4f8963b

5be 

rs95_10754

73 

-

1.68 

0.2

7 

0.01

2 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Dysgonomonadaceae 

d8b1a77dfc5fcc46c34936ac6d56c

848 

rs95_10754

73 

-

1.54 

0.3

3 

0.02

0 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Tannerellaceae 

52e0efeb21d0e7d271464fbd25c1

9f2c 

rs95_10754

73 

-

1.48 

0.2

7 

0.00

4 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Bacteroidaceae 

bfb3000539dcc3f92f5596f1902ae

cc9 

rs95_10754

73 

-

2.07 

0.3

0 

0.00

0 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Bacteroidaceae 

68e632a89a7b3a65e318d15bd6a

24af9 

rs95_10754

73 

-

1.90 

0.1

6 

0.00

3 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Tannerellaceae 

38f39d32b69c25e9c315a57df4cd

6529 

rs95_10754

73 

-

2.15 

0.2

3 

0.00

5 

Bacteri

a 
Chloroflexi Chloroflexia 

Thermomicrobiale

s 
JG30-KF-CM45 

44b093eb341528171b8bf175602

a3eb3 

rs95_10754

73 

-

1.81 

0.1

8 

0.00

7 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

a7bc7a114d44fc504e29440deaa1

77d4 

rs95_10754

73 

-

2.31 

0.2

6 

0.00

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 
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5073acc23b8393bff0d6b923c54d

41cb 

rs95_10754

73 

-

1.36 

0.2

1 

0.00

4 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

e5102f241d2860ef10a22c734994

3ea6 

rs95_10754

73 

-

1.35 

0.2

5 

0.00

3 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

64d51efb9e80efe006ba73ec4dc7

1a43 

rs95_10754

73 

-

3.55 

0.2

4 

0.01

0 

Bacteri

a 
Firmicutes Negativicutes Selenomonadales Acidaminococcaceae 

82dece6e35540738ba450a0c3a9

0b5a0 

rs95_10754

73 
1.55 

0.3

0 

0.00

9 

Bacteri

a 

Proteobacte

ria 

Gammaproteobact

eria 
Enterobacteriales Enterobacteriaceae 

0356b8bf9fd15d2b45124228f1e8

a464 

rs95_10754

73 
3.14 

0.2

9 

0.00

5 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Devosiaceae 

240f1818162f44e37e45da79cf72a

ac7 

rs95_10754

73 
3.02 

0.2

3 

0.01

6 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Beijerinckiaceae 

561cd8096aaf39bae17a35286191

df07 
rs728642 1.42 

0.2

4 

0.02

3 

Bacteri

a 

Actinobacter

ia 
Coriobacteriia Coriobacteriales 

Coriobacteriales Incertae 

Sedis 

b8232a8b26d5f1bbb3e12aa2ce8c

9ade 
rs728642 2.20 

0.2

0 

0.03

7 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Frankiales Geodermatophilaceae 

e019a4db05822cabb7c9b4c2d16

03056 
rs728642 

-

1.27 

0.2

7 

0.03

3 

Bacteri

a 

Actinobacter

ia 
Actinobacteria 

Propionibacteriale

s 
Nocardioidaceae 

de4398f5aa45c3f4c65cea1276af9

cde 
rs728642 1.72 

0.2

6 

0.01

3 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Tannerellaceae 

e3475214847c4c5ad349fa98e8d7

7b4b 
rs728642 1.54 

0.2

5 

0.00

3 

Bacteri

a 
Firmicutes Clostridia Clostridiales Christensenellaceae 

44b093eb341528171b8bf175602

a3eb3 
rs728642 

-

2.24 

0.1

8 

0.00

2 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

93fbf502ac0ca16e7746c15c7852

884c 
rs728642 1.87 

0.2

0 

0.00

6 

Bacteri

a 
Firmicutes Clostridia Clostridiales Family XIII 
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09666b1754e79c10181ea027c4e

16595 
rs728642 

-

1.75 

0.1

9 

0.00

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Family XIII 

1f6a965b1db7f6b030e88767881a

c6de 
rs728642 3.78 

0.2

0 

0.00

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

a443e786f67086749ef29ce0ab49

4c9e 
rs728642 

-

1.39 

0.2

0 

0.01

7 

Bacteri

a 
Firmicutes Bacilli Lactobacillales Enterococcaceae 

556864a5da3a811b67be9fc73488

e926 
rs728642 

-

1.92 

0.3

3 

0.00

1 

Bacteri

a 
Firmicutes Bacilli Lactobacillales Enterococcaceae 

aee9f354c80ca7baa872c3da2fe4

62c2 
rs728642 

-

1.22 

0.2

4 

0.02

6 

Bacteri

a 

Proteobacte

ria 

Gammaproteobact

eria 
Enterobacteriales Enterobacteriaceae 

a0901407705992dc213ac509ede

97d47 
rs728642 1.97 

0.3

6 

0.02

1 

Bacteri

a 

Proteobacte

ria 

Gammaproteobact

eria 
Enterobacteriales Enterobacteriaceae 

e04bebc06e6ea7571bca8406fc51

a247 
rs728642 1.39 

0.1

9 

0.01

0 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

0414019fbf6990da9b14a5c07fa51

e88 
rs728642 

-

1.84 

0.2

5 

0.00

0 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

c1049a7e04cbb23f9393be111a2f

b40d 
rs728642 

-

2.68 

0.2

0 

0.00

1 

Bacteri

a 
Tenericutes Mollicutes Mollicutes RF39 

uncultured Firmicutes 

bacterium 

561cd8096aaf39bae17a35286191

df07 
rs750388 

-

1.84 

0.2

2 

0.00

1 

Bacteri

a 

Actinobacter

ia 
Coriobacteriia Coriobacteriales 

Coriobacteriales Incertae 

Sedis 

ad8664f21c744d16b06f829014b5

511c 
rs750388 1.97 

0.1

5 

0.00

0 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Corynebacteriales Mycobacteriaceae 

b510a187af183f4f23d1b7548590

e057 
rs750388 1.59 

0.2

0 

0.03

2 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Corynebacteriales Tsukamurellaceae 

e019a4db05822cabb7c9b4c2d16

03056 
rs750388 

-

1.01 

0.1

9 

0.00

5 

Bacteri

a 

Actinobacter

ia 
Actinobacteria 

Propionibacteriale

s 
Nocardioidaceae 
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7722655b922eeb9dc8b8f5540016

684c 
rs750388 1.25 

0.1

9 

0.03

2 

Bacteri

a 

Actinobacter

ia 
Thermoleophilia 

Solirubrobacterale

s 
67-14 

d9072e1cebd91a61f8afca4f8963b

5be 
rs750388 

-

1.62 

0.2

4 

0.00

5 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Dysgonomonadaceae 

de4398f5aa45c3f4c65cea1276af9

cde 
rs750388 1.21 

0.2

1 

0.04

1 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Tannerellaceae 

1adcb4432c1748e25195afa08445

6f06 
rs750388 

-

1.20 

0.1

6 

0.04

0 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Tannerellaceae 

00bba75546dccb66972bcd3db2f2

1c70 
rs750388 

-

0.81 

0.1

6 

0.04

8 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Marinifilaceae 

52e0efeb21d0e7d271464fbd25c1

9f2c 
rs750388 

-

1.67 

0.2

4 

0.00

0 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Bacteroidaceae 

6c7697bc0a5b3fe71168932bca7a

358b 
rs750388 

-

1.03 

0.2

0 

0.00

8 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Tannerellaceae 

bfb3000539dcc3f92f5596f1902ae

cc9 
rs750388 

-

1.37 

0.2

6 

0.01

5 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Bacteroidaceae 

7f00ef6dd3ed4b3ee63a718d37bc

cd25 
rs750388 1.52 

0.2

2 

0.01

5 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

1f6a965b1db7f6b030e88767881a

c6de 
rs750388 1.18 

0.1

6 

0.03

2 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

d89ea01870634721df50d0484ceb

5190 
rs750388 1.36 

0.2

7 

0.00

7 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

e5102f241d2860ef10a22c734994

3ea6 
rs750388 

-

1.76 

0.2

7 

0.00

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

8cc1122edb65f25be0fe002b9215

ef93 
rs750388 1.40 

0.2

1 

0.00

4 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 
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e3475214847c4c5ad349fa98e8d7

7b4b 
rs750388 

-

1.25 

0.2

3 

0.01

4 

Bacteri

a 
Firmicutes Clostridia Clostridiales Christensenellaceae 

04bb579482c97dd31aee2e295aa

6b900 
rs750388 

-

1.21 

0.2

7 

0.04

8 

Bacteri

a 
Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae 

64d51efb9e80efe006ba73ec4dc7

1a43 
rs750388 

-

5.36 

0.2

5 

0.00

2 

Bacteri

a 
Firmicutes Negativicutes Selenomonadales Acidaminococcaceae 

0768028d5708206376cea53dc82

16c61 
rs750388 1.30 

0.2

4 

0.00

2 

Bacteri

a 

Proteobacte

ria 

Deltaproteobacteri

a 
Desulfovibrionales Desulfovibrionaceae 

36ecd054f5309a9658926a0926d7

ee82 
rs750388 

-

6.02 

0.2

4 

0.04

6 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

4a97f30401e751b4ab95285d520

81371 
rs750388 1.78 

0.2

3 

0.04

4 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

513d71b4885ea6a7ffb3b9bf7955

0ae1 
rs750388 

-

4.02 

0.2

6 

0.03

9 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

0356b8bf9fd15d2b45124228f1e8

a464 
rs750388 

-

1.78 

0.1

9 

0.01

3 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Devosiaceae 

21045dfb2dc1f9ed56d360a3a292

291c 
rs750388 

-

1.08 

0.1

8 

0.04

4 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

0414019fbf6990da9b14a5c07fa51

e88 
rs750388 

-

1.48 

0.2

5 

0.00

4 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

5464b890bc8886e24432241fbd06

3406 
rs750388 

-

1.27 

0.2

4 

0.02

5 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Beijerinckiaceae 

e04bebc06e6ea7571bca8406fc51

a247 
rs750388 

-

1.96 

0.2

0 

0.00

1 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

240f1818162f44e37e45da79cf72a

ac7 
rs750388 2.64 

0.2

2 

0.02

7 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Beijerinckiaceae 
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89c35640e742b9d427778a4f3560

1c19 
rs750388 5.77 

0.2

8 

0.01

2 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Beijerinckiaceae 

934a0a85cf44102603af0b354db6

0d22 
rs750388 1.83 

0.3

2 

0.03

6 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

b7f5af401f678ffbe9f7299cfa59e3b

f 
rs750388 1.87 

0.2

6 

0.00

0 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Devosiaceae 

126dededfbef4551638cafb183ad8

def 
rs750388 

-

1.35 

0.2

6 

0.04

9 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhodospirillales Rhodospirillaceae 

561cd8096aaf39bae17a35286191

df07 

rs95_24097

99 
2.04 

0.2

7 

0.00

3 

Bacteri

a 

Actinobacter

ia 
Coriobacteriia Coriobacteriales 

Coriobacteriales Incertae 

Sedis 

b8232a8b26d5f1bbb3e12aa2ce8c

9ade 

rs95_24097

99 

-

2.55 

0.2

2 

0.03

2 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Frankiales Geodermatophilaceae 

4b9243da4d6fa5e09c00a3028518

69a4 

rs95_24097

99 
1.76 

0.2

5 

0.00

0 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Micrococcales Micrococcaceae 

7722655b922eeb9dc8b8f5540016

684c 

rs95_24097

99 

-

1.86 

0.2

2 

0.00

6 

Bacteri

a 

Actinobacter

ia 
Thermoleophilia 

Solirubrobacterale

s 
67-14 

155fc453a9b2083b2246927750b3

adb2 

rs95_24097

99 
1.78 

0.2

5 

0.01

8 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Dysgonomonadaceae 

06cdd022246e9427f51e85e2b84f

9040 

rs95_24097

99 
1.37 

0.2

9 

0.03

1 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Dysgonomonadaceae 

de4398f5aa45c3f4c65cea1276af9

cde 

rs95_24097

99 

-

5.89 

0.2

5 

0.00

0 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Tannerellaceae 

52e0efeb21d0e7d271464fbd25c1

9f2c 

rs95_24097

99 
1.54 

0.2

8 

0.00

5 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Bacteroidaceae 

d9072e1cebd91a61f8afca4f8963b

5be 

rs95_24097

99 
2.70 

0.2

5 

0.00

0 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Dysgonomonadaceae 
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061062949bbf882e44007c5fba1bf

43b 

rs95_24097

99 
1.92 

0.2

5 

0.00

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

37c55ab92106d40a5b4eb8fc910c

2e3a 

rs95_24097

99 

-

1.25 

0.2

6 

0.04

1 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

09666b1754e79c10181ea027c4e

16595 

rs95_24097

99 
2.50 

0.2

4 

0.00

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Family XIII 

917e5e80e61ae435d7483b3e826

baffd 

rs95_24097

99 
1.32 

0.2

9 

0.02

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

1f6a965b1db7f6b030e88767881a

c6de 

rs95_24097

99 

-

1.95 

0.2

1 

0.00

6 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

8d05637380a2682c88f955c19d9a

1b4c 

rs95_24097

99 
1.31 

0.2

5 

0.02

1 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

85a8ff4e8267be7ee22683a4853b

b5e7 

rs95_24097

99 
1.78 

0.2

3 

0.00

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

0c1af63ebb72ddcb81901b7a5512

1c28 

rs95_24097

99 
1.60 

0.2

2 

0.01

2 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

93fbf502ac0ca16e7746c15c7852

884c 

rs95_24097

99 

-

1.65 

0.2

3 

0.03

9 

Bacteri

a 
Firmicutes Clostridia Clostridiales Family XIII 

8cc1122edb65f25be0fe002b9215

ef93 

rs95_24097

99 

-

2.68 

0.2

3 

0.00

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

4a97f30401e751b4ab95285d520

81371 

rs95_24097

99 

-

2.25 

0.2

9 

0.04

3 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

2e4c00977817e0832a1188525ca

6d7f8 

rs95_24097

99 

-

1.41 

0.2

7 

0.03

2 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

4b9243da4d6fa5e09c00a3028518

69a4 
rs1220065 1.56 

0.3

1 

0.02

6 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Micrococcales Micrococcaceae 
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1f6a965b1db7f6b030e88767881a

c6de 
rs1220065 

-

2.52 

0.3

2 

0.01

7 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

061062949bbf882e44007c5fba1bf

43b 
rs1220065 1.89 

0.3

1 

0.00

1 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

04bb579482c97dd31aee2e295aa

6b900 
rs1220065 

-

1.65 

0.3

3 

0.01

5 

Bacteri

a 
Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae 

64d51efb9e80efe006ba73ec4dc7

1a43 
rs1220065 6.20 

0.3

3 

0.00

3 

Bacteri

a 
Firmicutes Negativicutes Selenomonadales Acidaminococcaceae 

89c35640e742b9d427778a4f3560

1c19 
rs1220065 

-

6.60 

0.4

1 

0.03

3 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Beijerinckiaceae 

126dededfbef4551638cafb183ad8

def 
rs1220065 2.87 

0.3

9 

0.00

1 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhodospirillales Rhodospirillaceae 

a35842bcf8fa5b819611065e58ad

4038 

rs95_29407

59 
1.90 

0.2

1 

0.00

2 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Corynebacteriales Nocardiaceae 

b8232a8b26d5f1bbb3e12aa2ce8c

9ade 

rs95_29407

59 
1.81 

0.1

6 

0.03

8 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Frankiales Geodermatophilaceae 

7b05524c9fc15b98949d166220fc

d60f 

rs95_29407

59 

-

1.17 

0.2

4 

0.04

4 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Bacteroidaceae 

06b6dc64ed1385fa4c5f3ee92126

7c37 

rs95_29407

59 
1.39 

0.2

6 

0.00

2 

Bacteri

a 
Firmicutes Clostridia Clostridiales Family XIII 

93fbf502ac0ca16e7746c15c7852

884c 

rs95_29407

59 
2.12 

0.1

9 

0.00

1 

Bacteri

a 
Firmicutes Clostridia Clostridiales Family XIII 

8d05637380a2682c88f955c19d9a

1b4c 

rs95_29407

59 

-

1.27 

0.2

0 

0.00

3 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

1f6a965b1db7f6b030e88767881a

c6de 

rs95_29407

59 
1.59 

0.1

9 

0.01

3 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 
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09666b1754e79c10181ea027c4e

16595 

rs95_29407

59 

-

1.03 

0.1

8 

0.03

2 

Bacteri

a 
Firmicutes Clostridia Clostridiales Family XIII 

8cc1122edb65f25be0fe002b9215

ef93 

rs95_29407

59 
2.17 

0.2

2 

0.00

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

5073acc23b8393bff0d6b923c54d

41cb 

rs95_29407

59 
1.33 

0.2

2 

0.00

9 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

a443e786f67086749ef29ce0ab49

4c9e 

rs95_29407

59 

-

2.37 

0.2

0 

0.00

0 

Bacteri

a 
Firmicutes Bacilli Lactobacillales Enterococcaceae 

64d51efb9e80efe006ba73ec4dc7

1a43 

rs95_29407

59 

-

2.24 

0.2

0 

0.03

8 

Bacteri

a 
Firmicutes Negativicutes Selenomonadales Acidaminococcaceae 

aa8290338f51566d44735c3ab76b

67b0 

rs95_29407

59 
2.99 

0.2

8 

0.04

4 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

27d8f12f22ba9352acadc2f057b18

95a 

rs95_29407

59 
1.62 

0.2

5 

0.01

0 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales D05-2 

3f73222e4a3ce7521ef471683fe61

079 

rs95_29407

59 

-

1.98 

0.2

9 

0.00

1 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

126dededfbef4551638cafb183ad8

def 

rs95_29407

59 

-

1.56 

0.2

8 

0.02

5 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhodospirillales Rhodospirillaceae 

708e50f6b07a7fcee8183886a5f16

9b1 

rs95_29407

59 

-

1.44 

0.2

0 

0.02

1 

Bacteri

a 

Proteobacte

ria 

Gammaproteobact

eria 
Xanthomonadales Xanthomonadaceae 

535486be478535576e961533b0f

14f46 

rs95_29407

59 

-

1.33 

0.2

8 

0.03

2 

Bacteri

a 

Proteobacte

ria 

Gammaproteobact

eria 
Xanthomonadales Xanthomonadaceae 

cff60bed359051dd65fe850fd0bd0

7e1 
rs1657804 

-

0.74 

0.1

5 

0.04

6 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Corynebacteriales Nocardiaceae 

b8232a8b26d5f1bbb3e12aa2ce8c

9ade 
rs1657804 

-

1.80 

0.1

0 

0.00

4 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Frankiales Geodermatophilaceae 
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144d2b8f94ec382e34460e8217d6

a750 
rs1657804 

-

1.49 

0.2

2 

0.00

7 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Kineosporiales Kineosporiaceae 

b1dde0ed7ab1f036845b5643cfaa

699e 
rs1657804 

-

5.22 

0.1

3 

0.01

3 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Kineosporiales Kineosporiaceae 

df98b3d20eafc1a8628a93e7b04a

3325 
rs1657804 1.02 

0.0

9 

0.03

9 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Micrococcales Microbacteriaceae 

4b9243da4d6fa5e09c00a3028518

69a4 
rs1657804 

-

0.76 

0.1

3 

0.00

4 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Micrococcales Micrococcaceae 

a017c36e39ab836bcbcd6e1714c

ae758 
rs1657804 

-

2.22 

0.1

4 

0.03

2 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Micrococcales Micrococcaceae 

e019a4db05822cabb7c9b4c2d16

03056 
rs1657804 

-

1.31 

0.1

6 

0.00

0 

Bacteri

a 

Actinobacter

ia 
Actinobacteria 

Propionibacteriale

s 
Nocardioidaceae 

cec2b53a478c65984fc5aaa6c8ad

9f54 
rs1657804 

-

1.32 

0.2

3 

0.03

4 

Bacteri

a 

Actinobacter

ia 
Actinobacteria 

Propionibacteriale

s 
Nocardioidaceae 

b20c16d3ebe571ddb000e9072cfd

0ddf 
rs1657804 2.16 

0.1

1 

0.00

2 

Bacteri

a 

Actinobacter

ia 
Rubrobacteria Rubrobacterales Rubrobacteriaceae 

7722655b922eeb9dc8b8f5540016

684c 
rs1657804 

-

1.39 

0.1

4 

0.00

2 

Bacteri

a 

Actinobacter

ia 
Thermoleophilia 

Solirubrobacterale

s 
67-14 

d9072e1cebd91a61f8afca4f8963b

5be 
rs1657804 

-

1.13 

0.1

3 

0.00

0 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Dysgonomonadaceae 

47d567c28de6cd0c1148ba93ff4e

3aa7 
rs1657804 

-

1.34 

0.2

0 

0.00

0 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Tannerellaceae 

1adcb4432c1748e25195afa08445

6f06 
rs1657804 

-

1.27 

0.1

0 

0.00

2 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Tannerellaceae 

bfb3000539dcc3f92f5596f1902ae

cc9 
rs1657804 

-

1.04 

0.2

0 

0.02

3 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Bacteroidaceae 



 337 

061062949bbf882e44007c5fba1bf

43b 
rs1657804 

-

0.72 

0.1

3 

0.00

6 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

44b093eb341528171b8bf175602

a3eb3 
rs1657804 

-

2.28 

0.0

9 

0.00

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

17327d6dc726d2503fb40b572df3

9de2 
rs1657804 1.08 

0.1

9 

0.00

1 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

7f00ef6dd3ed4b3ee63a718d37bc

cd25 
rs1657804 2.38 

0.1

7 

0.00

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

917e5e80e61ae435d7483b3e826

baffd 
rs1657804 1.04 

0.2

4 

0.04

4 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

93fbf502ac0ca16e7746c15c7852

884c 
rs1657804 

-

1.62 

0.1

5 

0.00

2 

Bacteri

a 
Firmicutes Clostridia Clostridiales Family XIII 

1f6a965b1db7f6b030e88767881a

c6de 
rs1657804 

-

1.64 

0.1

2 

0.00

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

465c3a41559c5655c0e1fa88362d

af68 
rs1657804 1.23 

0.1

6 

0.01

9 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

3230c86b61839502c9c1837e5c6

72a45 
rs1657804 2.62 

0.1

2 

0.00

1 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

d8f86f866900533770e5d5b27b0f

042f 
rs1657804 

-

0.98 

0.1

9 

0.01

4 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

8cc1122edb65f25be0fe002b9215

ef93 
rs1657804 1.67 

0.1

4 

0.00

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

85a8ff4e8267be7ee22683a4853b

b5e7 
rs1657804 

-

1.04 

0.1

6 

0.00

1 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

f32d7e288fa805b9816b49e08ea3

eebe 
rs1657804 0.89 

0.1

9 

0.01

1 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 
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8b46fc7b8e646871ea666e40bf01f

518 
rs1657804 0.87 

0.1

1 

0.01

0 

Bacteri

a 
Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae 

64d51efb9e80efe006ba73ec4dc7

1a43 
rs1657804 

-

1.74 

0.1

7 

0.04

6 

Bacteri

a 
Firmicutes Negativicutes Selenomonadales Acidaminococcaceae 

5fdfa9fc9810cce81578a1f6458bc

64c 
rs1657804 

-

1.75 

0.1

5 

0.00

0 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Acetobacterales Acetobacteraceae 

1e5094a00b54498a967ba1d8ffe7

9837 
rs1657804 

-

2.25 

0.2

3 

0.00

4 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Acetobacterales Acetobacteraceae 

8029a92bd672e641733132c302a

9108d 
rs1657804 1.11 

0.1

6 

0.01

3 

Bacteri

a 

Proteobacte

ria 

Gammaproteobact

eria 

Betaproteobacteri

ales 
Burkholderiaceae 

c939ee112ba982665e012437dae

05c1e 
rs1657804 1.52 

0.2

5 

0.01

9 

Bacteri

a 

Proteobacte

ria 

Gammaproteobact

eria 
Enterobacteriales Enterobacteriaceae 

13e95cfbeef5d976331e058e676df

dc6 
rs1657804 

-

2.03 

0.1

8 

0.00

0 

Bacteri

a 

Proteobacte

ria 

Gammaproteobact

eria 
Enterobacteriales Enterobacteriaceae 

664765dce1a593784085345685a

67650 
rs1657804 1.35 

0.2

1 

0.01

4 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

21045dfb2dc1f9ed56d360a3a292

291c 
rs1657804 

-

1.25 

0.1

6 

0.00

5 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

8cc8e6565ca94b2237fad1d81f58

65c5 
rs1657804 2.61 

0.1

5 

0.00

0 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

78d965a900ff7e19d546b879c9b0

bf12 
rs1657804 2.38 

0.2

5 

0.01

0 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Labraceae 

dd070e655d5c10f17ed045ab7bf6

008b 
rs1657804 0.65 

0.1

1 

0.00

3 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

aa8290338f51566d44735c3ab76b

67b0 
rs1657804 1.57 

0.1

3 

0.02

0 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 
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89c35640e742b9d427778a4f3560

1c19 
rs1657804 5.42 

0.2

8 

0.01

4 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Beijerinckiaceae 

708e50f6b07a7fcee8183886a5f16

9b1 
rs1657804 

-

1.24 

0.1

7 

0.01

4 

Bacteri

a 

Proteobacte

ria 

Gammaproteobact

eria 
Xanthomonadales Xanthomonadaceae 

c1049a7e04cbb23f9393be111a2f

b40d 
rs1657804 1.75 

0.1

1 

0.00

0 

Bacteri

a 
Tenericutes Mollicutes Mollicutes RF39 

uncultured Firmicutes 

bacterium 

df98b3d20eafc1a8628a93e7b04a

3325 

rs95_96503

6 

-

2.35 

0.2

2 

0.04

2 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Micrococcales Microbacteriaceae 

4b9243da4d6fa5e09c00a3028518

69a4 

rs95_96503

6 

-

1.75 

0.2

7 

0.00

1 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Micrococcales Micrococcaceae 

b20c16d3ebe571ddb000e9072cfd

0ddf 

rs95_96503

6 

-

3.80 

0.2

6 

0.01

0 

Bacteri

a 

Actinobacter

ia 
Rubrobacteria Rubrobacterales Rubrobacteriaceae 

d3db18b9320e3a4b9dfd3f7557dd

0698 

rs95_96503

6 

-

1.87 

0.3

3 

0.00

2 

Bacteri

a 

Actinobacter

ia 
Thermoleophilia 

Solirubrobacterale

s 
67-14 

68e632a89a7b3a65e318d15bd6a

24af9 

rs95_96503

6 

-

2.10 

0.2

4 

0.02

1 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Tannerellaceae 

d9072e1cebd91a61f8afca4f8963b

5be 

rs95_96503

6 

-

2.86 

0.3

7 

0.00

1 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Dysgonomonadaceae 

e23e5f762f1db27f75a8e47367e6

9c64 

rs95_96503

6 

-

2.25 

0.3

6 

0.00

0 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Tannerellaceae 

06b6dc64ed1385fa4c5f3ee92126

7c37 

rs95_96503

6 

-

2.14 

0.3

3 

0.00

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Family XIII 

31ba992fb23ccb4ed50b819846c6

f65d 

rs95_96503

6 

-

1.83 

0.3

3 

0.01

2 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

36af7a2ab3128912c105a2f5e15d

135e 

rs95_96503

6 

-

1.62 

0.3

4 

0.01

2 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 
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a5065a7e5f0311dbdc4d65014189

ee99 

rs95_96503

6 

-

2.33 

0.2

3 

0.00

3 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

465c3a41559c5655c0e1fa88362d

af68 

rs95_96503

6 

-

2.43 

0.2

8 

0.01

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

f4f25b4d40944286bff7d571dde1b

a20 

rs95_96503

6 

-

1.47 

0.2

7 

0.02

5 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

1f6a965b1db7f6b030e88767881a

c6de 

rs95_96503

6 
2.11 

0.2

6 

0.01

4 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

e3475214847c4c5ad349fa98e8d7

7b4b 

rs95_96503

6 

-

1.76 

0.2

6 

0.00

1 

Bacteri

a 
Firmicutes Clostridia Clostridiales Christensenellaceae 

7f00ef6dd3ed4b3ee63a718d37bc

cd25 

rs95_96503

6 

-

2.46 

0.3

5 

0.01

3 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

dd45968f44cd0a920b784a516c7d

f1b2 

rs95_96503

6 

-

1.71 

0.2

6 

0.00

1 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

44b093eb341528171b8bf175602

a3eb3 

rs95_96503

6 

-

2.59 

0.2

4 

0.00

4 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

a7bc7a114d44fc504e29440deaa1

77d4 

rs95_96503

6 

-

2.53 

0.3

6 

0.00

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

2560d4657d16cc98d87c20f8f064

bda3 

rs95_96503

6 

-

1.83 

0.3

5 

0.01

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

f32d7e288fa805b9816b49e08ea3

eebe 

rs95_96503

6 

-

1.66 

0.3

9 

0.04

1 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

09a261cd2ba6d5db1a38bfe0ef01

2286 

rs95_96503

6 

-

2.27 

0.4

5 

0.00

4 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

5073acc23b8393bff0d6b923c54d

41cb 

rs95_96503

6 

-

2.83 

0.2

9 

0.00

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 
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64d51efb9e80efe006ba73ec4dc7

1a43 

rs95_96503

6 

-

3.44 

0.3

0 

0.02

9 

Bacteri

a 
Firmicutes Negativicutes Selenomonadales Acidaminococcaceae 

d46e2205f0c6ecf67b51f83d111c5

09c 

rs95_96503

6 

-

1.97 

0.4

3 

0.01

4 

Bacteri

a 

Proteobacte

ria 

Gammaproteobact

eria 
Enterobacteriales Enterobacteriaceae 

0414019fbf6990da9b14a5c07fa51

e88 

rs95_96503

6 

-

2.49 

0.2

8 

0.00

0 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

126dededfbef4551638cafb183ad8

def 

rs95_96503

6 

-

2.15 

0.3

0 

0.00

2 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhodospirillales Rhodospirillaceae 

10afda2baef44de4c584a6641de3

99b1 

rs95_96503

6 

-

1.42 

0.2

4 

0.00

4 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 

Sphingomonadale

s 
Sphingomonadaceae 

708e50f6b07a7fcee8183886a5f16

9b1 

rs95_96503

6 

-

2.78 

0.2

7 

0.00

1 

Bacteri

a 

Proteobacte

ria 

Gammaproteobact

eria 
Xanthomonadales Xanthomonadaceae 

c1049a7e04cbb23f9393be111a2f

b40d 

rs95_96503

6 

-

2.19 

0.2

7 

0.02

8 

Bacteri

a 
Tenericutes Mollicutes Mollicutes RF39 

uncultured Firmicutes 

bacterium 

b510a187af183f4f23d1b7548590

e057 

rs95_97494

5 
1.63 

0.1

7 

0.01

1 

Bacteri

a 

Actinobacter

ia 
Actinobacteria Corynebacteriales Tsukamurellaceae 

b20c16d3ebe571ddb000e9072cfd

0ddf 

rs95_97494

5 
4.63 

0.2

7 

0.00

4 

Bacteri

a 

Actinobacter

ia 
Rubrobacteria Rubrobacterales Rubrobacteriaceae 

00bba75546dccb66972bcd3db2f2

1c70 

rs95_97494

5 
1.32 

0.1

6 

0.00

0 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Marinifilaceae 

52e0efeb21d0e7d271464fbd25c1

9f2c 

rs95_97494

5 
1.41 

0.2

4 

0.00

2 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Bacteroidaceae 

47d567c28de6cd0c1148ba93ff4e

3aa7 

rs95_97494

5 
1.79 

0.3

4 

0.00

2 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Tannerellaceae 

155fc453a9b2083b2246927750b3

adb2 

rs95_97494

5 
1.17 

0.1

8 

0.03

9 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Dysgonomonadaceae 
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b065b43b380ca0dcc8d17f2bd328

f8c3 

rs95_97494

5 
1.49 

0.2

6 

0.00

2 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Bacteroidaceae 

6c7697bc0a5b3fe71168932bca7a

358b 

rs95_97494

5 
1.22 

0.2

4 

0.00

8 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Tannerellaceae 

d9072e1cebd91a61f8afca4f8963b

5be 

rs95_97494

5 
2.87 

0.3

3 

0.00

0 

Bacteri

a 

Bacteroidet

es 
Bacteroidia Bacteroidales Dysgonomonadaceae 

31ba992fb23ccb4ed50b819846c6

f65d 

rs95_97494

5 
1.73 

0.2

6 

0.00

1 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

a7bc7a114d44fc504e29440deaa1

77d4 

rs95_97494

5 
1.62 

0.3

0 

0.01

0 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

f4f25b4d40944286bff7d571dde1b

a20 

rs95_97494

5 
1.15 

0.2

1 

0.02

4 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

2e651aced8b895be03721d92af87

7963 

rs95_97494

5 
1.20 

0.2

4 

0.04

5 

Bacteri

a 
Firmicutes Clostridia Clostridiales Ruminococcaceae 

5073acc23b8393bff0d6b923c54d

41cb 

rs95_97494

5 
1.55 

0.2

3 

0.00

2 

Bacteri

a 
Firmicutes Clostridia Clostridiales Lachnospiraceae 

64d51efb9e80efe006ba73ec4dc7

1a43 

rs95_97494

5 
5.63 

0.2

0 

0.00

0 

Bacteri

a 
Firmicutes Negativicutes Selenomonadales Acidaminococcaceae 

5fdfa9fc9810cce81578a1f6458bc

64c 

rs95_97494

5 

-

2.77 

0.2

9 

0.00

1 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Acetobacterales Acetobacteraceae 

11f0558dca37009cbf1a6083b0b6

58e5 

rs95_97494

5 
1.78 

0.3

4 

0.02

2 

Bacteri

a 

Proteobacte

ria 

Gammaproteobact

eria 
Enterobacteriales Enterobacteriaceae 

aee9f354c80ca7baa872c3da2fe4

62c2 

rs95_97494

5 

-

1.75 

0.2

9 

0.00

3 

Bacteri

a 

Proteobacte

ria 

Gammaproteobact

eria 
Enterobacteriales Enterobacteriaceae 

0414019fbf6990da9b14a5c07fa51

e88 

rs95_97494

5 
2.25 

0.2

7 

0.00

0 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 
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36ecd054f5309a9658926a0926d7

ee82 

rs95_97494

5 

-

9.43 

0.2

5 

0.01

5 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Rhizobiaceae 

240f1818162f44e37e45da79cf72a

ac7 

rs95_97494

5 

-

3.10 

0.2

2 

0.01

3 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Beijerinckiaceae 

7265f8def29fe6c4baf366cbea6e9f

52 

rs95_97494

5 

-

2.04 

0.2

6 

0.02

0 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhizobiales Beijerinckiaceae 

0ac723a8700b14f8613b2febd515

d830 

rs95_97494

5 

-

1.66 

0.2

9 

0.00

5 

Bacteri

a 

Proteobacte

ria 

Alphaproteobacteri

a 
Rhodobacterales Rhodobacteraceae 

 

 

 

 

Table S6.4. Differentially abundant amplicon sequencing variants were significantly (q<0.05) associated with the host’s survival to the next 

season in the gut microbiome of adult Seychelles warblers (N=266).  

 

ASV 
lfc_Survi

ve1 

se_Survi

ve1 

q_Survi

ve1 
Phylum Class Order Family Genus 

df98b3d20eafc1a8628a93e7b

04a3325 
-1.125 0.174 0.000 

Actinobact

eria 
Actinobacteria Micrococcales 

Microbacteriac

eae 
Leifsonia 

38f39d32b69c25e9c315a57df

4cd6529 
-1.351 0.197 0.000 Chloroflexi Chloroflexia 

Thermomicrobial

es 

JG30-KF-

CM45 

uncultured Thermomicrobia 

bacterium 
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09666b1754e79c10181ea027

c4e16595 
0.911 0.190 0.002 Firmicutes Clostridia Clostridiales Family XIII Anaerovorax 

1f6a965b1db7f6b030e887678

81ac6de 
0.677 0.177 0.047 Firmicutes Clostridia Clostridiales 

Ruminococcac

eae 
uncultured 

d8f86f866900533770e5d5b27

b0f042f 
0.915 0.186 0.001 Firmicutes Clostridia Clostridiales 

Ruminococcac

eae 
NA 

8029a92bd672e641733132c3

02a9108d 
-1.157 0.187 0.000 

Proteobact

eria 

Gammaproteoba

cteria 

Betaproteobacte

riales 

Burkholderiace

ae 
Oxalobacter 

aee9f354c80ca7baa872c3da2

fe462c2 
-2.076 0.243 0.000 

Proteobact

eria 

Gammaproteoba

cteria 

Enterobacteriale

s 

Enterobacteria

ceae 
NA 

0414019fbf6990da9b14a5c07f

a51e88 
-0.916 0.221 0.014 

Proteobact

eria 

Alphaproteobact

eria 
Rhizobiales Rhizobiaceae NA 

27d8f12f22ba9352acadc2f057

b1895a 
0.865 0.178 0.002 

Proteobact

eria 

Alphaproteobact

eria 
Rhizobiales D05-2 NA 

708e50f6b07a7fcee8183886a

5f169b1 
1.432 0.203 0.000 

Proteobact

eria 

Gammaproteoba

cteria 

Xanthomonadal

es 

Xanthomonada

ceae 
Vulcaniibacterium 

 

 

Table S6.5. Differentially abundant amplicon sequencing variants (ASVs) significantly (q<0.05) associated with both the presence of the minor 

allele of genomic loci (Table S6.3) and host’s survival to the next season (Table S6.4) in the gut microbiome of adult Seychelles warblers. 

taxon SNP 
SNP

_lfc 

SNP

_se 

SN

P_q 

Surviv

al_lfc 

Surviv

al_se 

Surviv

al_q 
Phylum Class Order Family Genus 
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1f6a965b1db7f6b030e

88767881ac6de 

rs72864

2 
3.78 0.20 

0.0

00 
0.68 0.18 0.047 

Firmicu

tes 
Clostridia 

Clostridiale

s 

Ruminoco

ccaceae 
uncultured 

1f6a965b1db7f6b030e8

8767881ac6de 

rs75038

8 
1.18 0.16 

0.0

01 
0.68 0.18 0.047 

Firmicut

es 
Clostridia Clostridiales 

Ruminococ

caceae 
uncultured 

09666b1754e79c10181

ea027c4e16595 

rs95_24

09799 
2.50 0.24 

0.0

00 
0.91 0.19 0.002 

Firmicu

tes 
Clostridia 

Clostridiale

s 
Family XIII Anaerovorax 

1f6a965b1db7f6b030e8

8767881ac6de 

rs95_29

40759 
1.59 0.19 

0.0

01 
0.68 0.18 0.047 

Firmicut

es 
Clostridia Clostridiales 

Ruminococ

caceae 
uncultured 

1f6a965b1db7f6b030e8

8767881ac6de 

rs95_96

5036 
2.11 0.26 

0.0

01 
0.68 0.18 0.047 

Firmicut

es 
Clostridia Clostridiales 

Ruminococ

caceae 
uncultured 

aee9f354c80ca7baa872

c3da2fe462c2 

rs72864

2 

-

1.22 
0.24 

0.0

02 
-2.08 0.24 0.000 

Proteob

acteria 

Gammaprote

obacteria 

Enterobacter

iales 

Enterobacte

riaceae 
 

aee9f354c80ca7baa872

c3da2fe462c2 

rs95_97

4945 

-

1.75 
0.29 

0.0

00 
-2.08 0.24 0.000 

Proteob

acteria 

Gammaprote

obacteria 

Enterobacter

iales 

Enterobacte

riaceae 
 

df98b3d20eafc1a8628a

93e7b04a3325 

rs95_96

5036 

-

2.35 
0.22 

0.0

02 
-1.12 0.17 0.000 

Actinoba

cteria 

Actinobacteri

a 

Micrococcale

s 

Microbacter

iaceae 
Leifsonia 

0414019fbf6990da9b14

a5c07fa51e88 

rs72864

2 

-

1.84 
0.25 

0.0

00 
-0.92 0.22 0.014 

Proteob

acteria 

Alphaproteob

acteria 
Rhizobiales 

Rhizobiace

ae 
- 

0414019fbf6990da9b14

a5c07fa51e88 

rs75038

8 

-

1.48 
0.25 

0.0

00 
-0.92 0.22 0.014 

Proteob

acteria 

Alphaproteob

acteria 
Rhizobiales 

Rhizobiace

ae 
- 

27d8f12f22ba9352acad

c2f057b1895a 

rs95_29

40759 
1.62 0.25 

0.0

01 
0.86 0.18 0.002 

Proteob

acteria 

Alphaproteob

acteria 
Rhizobiales D05-2 - 

0414019fbf6990da9b14

a5c07fa51e88 

rs95_96

5036 

-

2.49 
0.28 

0.0

00 
-0.92 0.22 0.014 

Proteob

acteria 

Alphaproteob

acteria 
Rhizobiales 

Rhizobiace

ae 
- 



 346 

38f39d32b69c25e9c315

a57df4cd6529 

rs95_10

75473 

-

2.15 
0.23 

0.0

01 
-1.35 0.20 0.000 

Chlorofl

exi 
Chloroflexia 

Thermomicro

biales 

JG30-KF-

CM45 

uncultured 

Thermomicrobia 

bacterium 

8029a92bd672e641733

132c302a9108d 

rs16578

04 
1.11 0.16 

0.0

00 
-1.16 0.19 0.000 

Proteob

acteria 

Gammaprote

obacteria 

Betaproteob

acteriales 

Burkholderi

aceae 
Oxalobacter 

09666b1754e79c10181

ea027c4e16595 

rs72864

2 

-

1.75 
0.19 

0.0

00 
0.91 0.19 0.002 

Firmicu

tes 
Clostridia 

Clostridiale

s 
Family XIII Anaerovorax 

1f6a965b1db7f6b030e

88767881ac6de 

rs95_24

09799 

-

1.95 
0.21 

0.0

01 
0.68 0.18 0.047 

Firmicu

tes 
Clostridia 

Clostridiale

s 

Ruminoco

ccaceae 
uncultured 

1f6a965b1db7f6b030e8

8767881ac6de 

rs12200

65 

-

2.52 
0.32 

0.0

04 
0.68 0.18 0.047 

Firmicut

es 
Clostridia Clostridiales 

Ruminococ

caceae 
uncultured 

09666b1754e79c10181

ea027c4e16595 

rs95_29

40759 

-

1.03 
0.18 

0.0

02 
0.91 0.19 0.002 

Firmicut

es 
Clostridia Clostridiales Family XIII Anaerovorax 

1f6a965b1db7f6b030e8

8767881ac6de 

rs16578

04 

-

1.64 
0.12 

0.0

00 
0.68 0.18 0.047 

Firmicut

es 
Clostridia Clostridiales 

Ruminococ

caceae 
uncultured 

d8f86f866900533770e5

d5b27b0f042f 

rs16578

04 

-

0.98 
0.19 

0.0

00 
0.91 0.19 0.001 

Firmicut

es 
Clostridia Clostridiales 

Ruminococ

caceae 
- 

df98b3d20eafc1a8628a

93e7b04a3325 

rs95_10

75473 
1.86 0.16 

0.0

02 
-1.12 0.17 0.000 

Actinoba

cteria 

Actinobacteri

a 

Micrococcale

s 

Microbacter

iaceae 
Leifsonia 

df98b3d20eafc1a8628a

93e7b04a3325 

rs16578

04 
1.02 0.09 

0.0

01 
-1.12 0.17 0.000 

Actinoba

cteria 

Actinobacteri

a 

Micrococcale

s 

Microbacter

iaceae 
Leifsonia 

0414019fbf6990da9b14

a5c07fa51e88 

rs95_97

4945 
2.25 0.27 

0.0

00 
-0.92 0.22 0.014 

Proteob

acteria 

Alphaproteob

acteria 
Rhizobiales 

Rhizobiace

ae 
- 

708e50f6b07a7fcee818

3886a5f169b1 

rs95_29

40759 

-

1.44 
0.20 

0.0

02 
1.43 0.20 0.000 

Proteob

acteria 

Gammaprote

obacteria 

Xanthomona

dales 

Xanthomon

adaceae 
Vulcaniibacterium 



 347 

708e50f6b07a7fcee818

3886a5f169b1 

rs16578

04 

-

1.24 
0.17 

0.0

00 
1.43 0.20 0.000 

Proteob

acteria 

Gammaprote

obacteria 

Xanthomona

dales 

Xanthomon

adaceae 
Vulcaniibacterium 

708e50f6b07a7fcee818

3886a5f169b1 

rs95_96

5036 

-

2.78 
0.27 

0.0

00 
1.43 0.20 0.000 

Proteob

acteria 

Gammaprote

obacteria 

Xanthomona

dales 

Xanthomon

adaceae 
Vulcaniibacterium 



 

Figure S6.1. Linkage disequilibrium (LD) decay of Seychelles warblers. LD plotted 

using a random subsample consisting of approximately 1% of pairwise SNP 

comparisons from each chromosome. Maximum distance between SNPs for LD 

estimation: 5 Mbp (plotted to 2.5 Mbp). Red solid line represents model fit, red dotted 

line represent where LD decayed to 50%.  
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Figure S6.2. Survival probability in relation to variation at the genomic loci A) 

rs95_2409799 and B) rs728642 in Seychelles warblers (N=1340). Lifetime survival 

probabilities are denoted with different colours: homozygous major allele (black), 

heterozygous (orange), homozygous minor allele (blue). The number of alive/at-risk 

individuals at each interval of 5 years is shown at the bottom of the plot. Individuals 

still alive at the end of the study are right censored (indicated with the symbol “+”, 

N=57).  
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General Discussion 

 

 
Photo Credit: Sen Dong – Seychelles warblers, having a pleasant viva discussion 
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“Time to digest – the journey thus far” 
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7.1 Overview 

The aim of this thesis was to investigate the relationship between the host and its 

gut microbiome (GM) in a natural vertebrate population. Building upon existing 

research, incorporating shotgun metagenomics, and using modern computational 

methods, the aim was to extend our understanding of the factors that shape, and 

are shaped by, the GM using the Seychelles warbler. In this final chapter, I bring 

together results from earlier chapters to discuss what they may reveal about the GM 

in Seychelles warblers, their wider relevance to the field and possible directions for 

future research.  

Chapter two aimed at identifying age and senescence-related changes in the GM 

using longitudinal sampling and shotgun metagenomics. I showed that the GM 

decreases linearly with age in both taxonomic and functional alpha diversity and 

change in composition within individuals. This provides support for a consistent 

change of the GM with age, rather than a sudden drop-off in alpha diversity or 

composition linked to senescence. I also showed that a group of microbial 

transposases (COG2801) increases linearly with age. This is despite functional 

alpha diversity decreasing with age, suggesting fewer functions are present.  

Chapter three explored how different aspects of host immunogenetics could 

modulate the GM. I showed that variation on the host major histocompatibility 

complex (MHC) shapes the GM – both in terms of taxonomic and functional 

characteristics. Moreover, I identified a trade-off between microbial defence and 

metabolism in relation to increasing MHC-I diversity.  

Chapter four assessed how social interactions influence the GM within a cooperative 

breeding population. I showed that individuals who shared space had a more similar 

GM composition, and that individuals who interact closely (i.e. breeding pair and 

helpers) shared more anaerobic GM composition.  

Chapter five investigated the effects of inbreeding (including intergenerational 

inbreeding) on the GM. I found that the inbreeding coefficient of individuals was 

correlated with amplicon sequencing variants (ASVs) and functional GM 

composition. Additionally, I showed that the inbreeding coefficient of mothers and 

social fathers was correlated with the taxonomic GM composition. 

Chapter six aimed to identify host loci that are associated with GM composition and 

determine if those loci contribute to GM-associated survival. I showed that nine 

genomic loci from 14 known genes were correlated with the GM, suggesting multiple 
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genetic pathways (immune-related genes and gut physiology), through which host 

genetics modulate the GM. All nine loci were also correlated with at least one 

survival-related ASV. Two of these loci were also directly associated with host 

survival. 

Overall, this thesis presents a coherent research programme aimed at identifying 

the key drivers that shape the GM in a wild population. By integrating ecological, 

genetic, and social perspectives, it offers new insights into processes shaping GM 

taxonomy and function, within and between individuals.  

7.2 Synthesis 

Each chapter provides an in-depth discussion of its key findings. Thus, here, I focus 

more on connecting and synthesising the findings across chapters. I explain how 

my findings confirm and build upon previous work in the Seychelles warbler and in 

the broader field of wild animal GM research.  

7.2.1 External environmental effects 

Before my project began, temporal environmental effects on the GM in the 

Seychelles warbler had already been documented (Davies et al., 2022; Worsley et 

al., 2021, 2022). Across all of my chapters, I found consistent support for these 

effects in shaping the GM (including GM function newly revealed through my 

metagonomics approach). Sample year, season, and time of day were significant 

across multiple analyses, indicating that temporal variation at both broad (year and 

season) and fine (time of day) scales influences GM composition. These temporal 

factors affecting the GM have been seen in many other wild animal systems (Hicks 

et al., 2018; Marsh et al., 2022; Risely et al., 2022; Schmid et al., 2023; Voigt et al., 

2016), revealing the importance of controlling for environmental variables in wild 

animal GM research. Unexpectedly, territory quality – a proxy for food abundance 

(Komdeur, 1992) – was not significantly associated with the GM, shown in two 

papers (Worsley, Davies, et al., 2024; Worsley et al., 2021) and Chapter 2. This 

contrasts with the frequent suggestion that diet is the major driver of GM variation 

in both wild and captive systems (Bodawatta, Freiberga, et al., 2021; Cotillard et al., 

2013; Loo et al., 2019; Suriano et al., 2022; van Leeuwen et al., 2020). However, 

most of these studies examined dietary changes (e.g. seasonal shifts, 

supplementation, or replacement), rather than food abundance per se, so direct 

comparisons may be limited. Together, these results suggest that seasonal and 
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interannual differences are important contributors to GM variation in the Seychelles 

warbler, but that the underlying mechanisms may not involve food abundance. 

7.2.2 Gut microbiome diversity  

GM alpha diversity measures have been linked to host health and mortality in 

several captive species (Shreiner et al., 2015; Sommer et al., 2017; Videvall et al., 

2020). In my chapters, I showed within-individual but limited between-individual 

effects. Age (Chapter 2) and environmental variables (across chapters) were 

significantly associated with GM alpha diversity, but host genetics and sociality had 

limited effects. This suggests that within-individual temporal changes had a larger 

influence on alpha diversity than between-individual host factors – revealing the 

importance of within-individual measures of GM alpha diversity. Additionally, 

previous studies support our findings as environmental variables are frequently 

associated with GM alpha diversity across diverse taxa, such as great tits (Parus 

major), giant panda (Ailuropoda melanoleuca) and meerkats (Suricata suricatta) 

(Liukkonen et al., 2024; Risely et al., 2021; Xue et al., 2015). However, studies into 

the role of between-individual host factors, such as host genetics, on GM alpha 

diversity have reported mixed findings (Bolnick et al., 2014; Hernández-Gómez et 

al., 2018; Leclaire et al., 2019; Montero et al., 2021; Uren Webster et al., 2018), with 

effects apparently species dependent (Williams et al., 2024). Thus, GM alpha 

diversity may be a valuable indicator for tracking within-individual changes in the 

GM but is less informative for between-individual comparisons in the Seychelles 

warbler. Additionally, GM alpha diversity may be limited in response in Seychelles 

warblers, where GM composition appears to be a better measure of individual 

differences (see below).  

7.2.3 Gut microbiome composition 

The GM composition of Seychelles warblers was associated with multiple variables: 

age (Chapter 2), immunogenetics (Chapter 3), sociality (Chapter 4), inbreeding 

(Chapter 5), and nine host genomic loci (Chapter 6), as well as environmental 

variables (discussed above). Indeed, all main variables tested impacted the GM 

composition in some way. However, as expected, each variable was associated with 

different sets of GM taxa and functions, indicating that their effects on the GM are 

distinct and act on different pathways. Although many previous separate studies 

across many species have suggested that the GM is shaped by many different 

factors (Bonder et al., 2016; Raulo et al., 2018; Xu & Zhang, 2021), here we show 
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that the GM of a single wild species/population was shaped by many of these same 

factors. This shows studying the GM of a single population in depth, as we did here, 

provides rare evidence that the GM is shaped by multiple interacting factors. It also 

points to the fact that these factors need to be considered together to avoid 

oversimplification and to more accurately interpret host–microbe dynamics. 

Although multiple factors shape the GM, changes in GM composition do not 

necessarily indicate host deterioration, unless they have been directly linked to 

survival (Williams et al., 2024). Instead, these shifts in taxa and functional GM are 

often adaptive adjustments of the GM to differences in the host’s physiological state, 

with certain GM taxa or functions selectively maintained to support host health and 

resilience (Williams et al., 2024). Therefore, in the Seychelles warbler, the GM shifts 

we observe may represent subtle compensatory mechanisms that buffer the effects 

of, for example, ageing, inbreeding, or environmental stress on host fitness. 

The MHC was identified as a key factor shaping the GM in Chapter 3, but it was not 

identified as a significant locus in the GM genome-wide association study (GWAS) 

presented in Chapter 6. This is likely because the MHC is a highly repetitive region 

of the genome that is notoriously difficult to assemble and accurately map using 

standard short-read sequencing techniques (Vekemans et al., 2021). In the 

Seychelles warbler, the whole genome sequencing was performed with short-read 

sequencing. Thus, there are regions of the genome that are not assembled, and so 

it is impossible to include such regions in the GWAS. Therefore, while the nine 

genomic loci identified as being linked to GM variation in Chapter 6 highlight multiple 

genetic pathways by which the host genome may impact the GM, the true extent of 

host genetic influence on the GM may be underestimated. Future research using 

long-read whole-genome sequencing could assemble a better genome, improve 

mapping quality, and provide a more complete picture of these host-GM 

relationships. 

7.2.4 Decoupling of gut microbiome taxonomy and function 

While certain results showed agreement between differences in GM taxonomy and 

differences in GM function, other findings do not, highlighting discrepancies between 

the GM taxonomy and function. This is not surprising due to functional redundancy, 

where changes in taxa do not alter GM function because different taxa can carry the 

same genes/function or changes in function are not reflected in changes in taxa 

because many species can contribute to the functional change (Worsley, Mazel, et 
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al., 2024). For example, the increase in COG2801 (transposase) with age (see 

Chapter 2) was not linked to an increase in any one specific microbe. Therefore, the 

increase in COG2801 with age likely reflects shifts across multiple microbial 

species, with functional redundancy potentially masking these changes when 

examined solely from a taxonomic perspective. 

 In chapters three and five, taxonomic and functional GM composition were 

associated with different variables; taxonomic GM composition was associated with 

MHC-II diversity, whereas functional GM composition was associated with MHC-I 

diversity. Similarly, taxonomic GM composition was associated with the inbreeding 

coefficient of social fathers and mothers, whereas functional GM composition was 

associated with the inbreeding coefficient of the individual. These results indicate 

that taxonomic and functional GM composition can vary independently, suggesting 

that some taxa are able to functionally adapt to host requirements, while certain 

functions are maintained despite shifts in taxonomic composition. Whether the GM 

taxa or function changes likely depend on the selection pressures and the 

adaptability of the available bacterial species (Kohl et al., 2018; Petersen et al., 

2023). 

7.2.5 The benefits of metagenomics 

Metagenomic data provides valuable insights into the functional aspects of the GM, 

but its high cost often limits sample size. In contrast, the more cost-effective 16S 

data, with its larger dataset, can be crucial for building large sample sizes and 

detecting small effect sizes, which are characteristic of host-GM relationships in wild 

birds (see below). Using both synergistically can be a good strategy. This is evident 

in Chapter 3, where I first used 16S data to identify specific MHC loci, which were 

then validated with the more detailed metagenomic dataset. Interestingly, there 

were some discrepancies between 16S data and metagenomic taxonomy (e.g. 

MHC-I allele Ase-ua 11 was significant in 16S but not metagenomic taxonomy alpha 

diversity). This could be due to a few factors, such as primer bias in 16S sequencing, 

differing copy number variation of the 16S rRNA gene in bacteria, taxonomic 

resolution, and sample size. However, 16S data was also comparable to the 

metagenomic taxonomy data (e.g. ageing and MHC diversity), which is expected as 

both methods are comparing GM taxonomy. This combined approach allowed for 

deeper explorations that would have been missed with either dataset alone, 

demonstrating that both methods are essential but serve different, complementary 

purposes. 
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7.2.6 Peculiarities of the avian GM  

The effect sizes of GM associations were small in my studies compared to those 

reported in mammalian, reptiles and amphibian studies (Marsh et al., 2022; Mazel 

et al., 2024; Song et al., 2020; Tung et al., 2015). This is consistent with other wild 

avian GM studies, often reporting modest effect sizes (Bodawatta, Koane, et al., 

2021; Somers et al., 2023; Song et al., 2020). The effect sizes may also reflect the 

high variability of the GM both within and between individuals, which is likely driven 

by short gut retention times in passerines and a diverse insect-based diet in the 

Seychelles warbler (each type of insect carrying its unique microbiome) (Engel & 

Moran, 2013). Additionally, the GM may also be less important to a passerine 

compared to a ruminant that relies on the GM for digestion (Cholewińska et al., 

2020). The detection of significant associations in my studies—despite relatively 

small effect sizes—emphasises the importance of a large dataset to robustly detect 

true associations, as smaller sample sizes typically fail to detect such effects (Kelly 

et al., 2015; Serdar et al., 2021). These results underscore the need, at least in 

avian studies, for large, well-powered datasets such as the Seychelles warbler to 

reliably detect subtle host-GM relationships. 

7.2.7 Advances made 

Across chapters, I have identified a suite of variables that have shaped the GM. This 

thesis advances the field by demonstrating within-host temporal changes (Chapter 

2), host genetic influences (Chapters 3, 5, and 6) and social (Chapter 4) 

associations with the GM factors rarely integrated into a single wild vertebrate 

system. Synthesising these findings, I show that temporal variation consistently 

impacts the GM, and that composition offers a more powerful lens than alpha 

diversity for detecting host effects. Moreover, taxonomic and functional profiles often 

diverged due to redundancy, underscoring the need for integrative approaches. 

Together, these findings highlight the value of multi-faceted, longitudinal 

approaches and open new questions about the mechanisms driving GM stability, 

functional resilience, and their consequences for host fitness in natural populations. 

 

7.3 Limitations 

A central question I originally aimed to address—though ultimately decided I could 

not—was whether the GM contributes to reproductive success. The primary 
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limitation was sample size. The GM samples we collect linked to reproduction are 

largely restricted to the major breeding season (June to October), because the GM 

varies between the major and minor breeding seasons. Additionally, ideally, we 

would collect samples just before breeding begins to assess their predictive value. 

Post-breeding samples may reflect changes in the GM driven by behaviours like 

offspring care (Antwis et al., 2019; Sarkar et al., 2020, 2024). Compounding this, 

nest numbers were low during the years I participated in fieldwork, further limiting 

the availability of samples from successful breeders. In the larger 16S dataset, GM 

samples were available for 193 breeding birds, but only 16 of these successfully 

reproduced in the major season and had samples collected before reproduction. 

Hence, I decided to focus my energy elsewhere. However, the Seychelles warbler 

research project has continued to collect samples, thus, this idea may be possible 

once enough samples have been collected 

In the same vein, the final chapter had a small sample size for GWAS (n=205), as 

although we have GM samples, we do not have the whole genome sequencing data 

from recent Seychelles warblers. Most human GWAS studies have sample sizes 

>1000 (Hong & Park, 2012). Future research could incorporate more samples into 

a GM composition GWAS, which should identify a greater number of loci that are 

correlated with the GM. Nonetheless, my sample size was greater than the 

recommended 100 samples for a GWAS study (Hong & Park, 2012), and, while I 

recognise that some loci may have been missed, it does not undermine the fact that 

nine genomic regions that are strongly associated with the GM were detected. 

The correlative nature of this thesis is a key limitation, as the underlying causal 

mechanisms remain unknown. Future research should focus on uncovering the 

specific pathways through which each variable influences the GM. This is 

particularly relevant for Chapter 6, as each host genomic loci were associated with 

a different or multiple genes. Thus, pinpointing the causal gene(s) within these 

genomic regions could improve our understanding of how the host genome 

regulates the GM. Targeted resequencing of candidate regions in a larger sample 

panel would enhance resolution and validate the associations identified. 

Furthermore, experimental manipulations—such as transplanting GMs between 

hosts of different genotypes—could test whether specific taxa are selectively 

retained or excluded by the host genetics. 
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7.4 Future research 

I see several other promising directions for future research on the Seychelles 

warbler GM, which I did not have time to investigate. One intriguing avenue involves 

the relationship between breeding pair divorce in this socially monogamous species 

and the duration the GM remains the same. In Chapter 4, I found that breeding pairs 

tend to share more similar GM, raising the question: Does pair separation also lead 

to GM divergence, and to what extent is the shared GM retained after divorce? 

However, given that divorce is rare (14%) in this species (Speelman et al., 2024), 

this question may be better suited to a system where divorce occurs more 

frequently, such as Ciconiiformes (Jeschke & Kokko, 2008). Similarly, future 

research could explore GM retention following dispersal from a territory (i.e in 

offspring)—investigating how much of an individual’s GM remains the same when it 

moves to a new social and ecological environment. 

Additionally, the potential link between the GM and personality traits in the 

Seychelles warbler remains unexplored. In Seychelles warblers, how individuals 

explore novel environments and objects is associated with their dispersal patterns: 

males with higher exploratory tendencies often delay natal territory dispersal, 

whereas highly exploratory females tend to disperse farther from their natal territory 

(Cox et al., 2023). While an exploratory personality is not associated with Seychelles 

warbler fitness (Edwards et al., 2018), the personality differences could be 

associated with the GM, perhaps through the microbiome-gut-brain axis (Davidson 

et al., 2018). This research idea may elucidate the associations between specific 

GM profiles and behavioural syndromes or competitive phenotypes, offering insights 

into physiological fitness, health outcomes, and social hierarchy dynamics. 

An underexplored area of GM research is how microbial communities differ between 

growing and stable populations. A growing population may reflect an environment 

with higher resource availability and low competition, which may reduce conspecific 

social interactions, subsequently leading to reduced GM diversity (Archie & Tung, 

2015; Raulo et al., 2024). Additionally, growing populations may have healthier 

individuals, hence GM stability and resilience may be higher. While direct 

experimental manipulation is not currently feasible in the Seychelles warbler, natural 

translocations provide a valuable pseudo-experimental framework to examine how 

a growing population influences GM composition. One hypothesis is that individuals 

in growing populations—facing less competition and greater food availability—can 

select preferred dietary items, leading to a more diverse or beneficial GM. If such a 
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"healthier" GM can be identified, it could potentially be used in future translocations 

via faecal microbiota transplants to provide a microbial “kickstart,” supporting the 

health and growth of new populations. 

Epigenetics (such as telomere length and DNA methylation) has recently been 

bidirectionally associated with the GM (Pepke et al., 2024). GM metabolites may act 

as signalling molecules that can modify the host epigenome (Ha et al., 2025), and 

thus, may lead to differential host senescence patterns (Adams et al., 2025). 

Additionally, host epigenetics can influence the GM through a range of host genes 

and proteins (e.g. genes/proteins involved in gut barrier function, sirtuin proteins, 

and CHD1) (Pepke et al., 2024). In addition, recent tools such as Computel 

(Nersisyan & Arakelyan, 2015) and TelSeq (Ding et al., 2014) have enabled 

estimating telomere length from whole genome sequencing. In addition, the 

Seychelles warbler telomere length has also been estimated with quantitative 

polymerase chain reaction (qPCR) in past papers (Barrett et al., 2013; Bebbington 

et al., 2016; Sparks et al., 2022). Together, these approaches offer a promising 

research idea to explore how host biological age, mediated through epigenetic 

mechanisms, interacts with the GM to influence health, fitness, and ageing in the 

Seychelles warbler. 

A key goal for future work is to integrate all the identified variables—age, host 

genetics, sociality, and environmental factors—into a single, powerful model. This 

approach would allow for a direct comparison of the relative influence of each driver 

on the GM, providing a more complete picture of host-GM interactions. This kind of 

multi-faceted analysis would require significantly more data, but would also be the 

most powerful. Integrating longitudinal microbiome data with host genomic, 

epigenetic, and ecological covariates would enable partitioning of variance 

attributable to each factor and testing for interactions, revealing the relative and 

combined effects of multiple drivers on GM structure and function. Ultimately, this 

integrative approach could provide predictive insights into how host biology and 

environment jointly shape GM communities and influence fitness in natural 

populations. 

7.5 Final remarks 

In conclusion, the exceptional long-term Seychelles warbler project has provided – 

and will continue to provide – a unique opportunity to investigate the factors shaping 

the GM in a wild vertebrate population. Beyond identifying individual drivers, it offers 
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the potential to integrate these factors to improve the predictive power of GM 

models. Collectively, my findings demonstrate that age, host genetics, sociality, and 

environmental variables all contribute to variation in the Seychelles warbler GM. 

This thesis underscores the value of a detailed, fine-scale approach to studying the 

GM within a single, well-characterised wild population. More broadly, it highlights 

the importance of embracing the complex, multi-faceted relationship between hosts 

and their GM in natural systems. 

 

 

  



 362 

7.6 References 

Adams, D. M., Rayner, J. G., Hex, S. B. S. W., & Wilkinson, G. S. (2025). 
<scp>DNA</scp> Methylation Dynamics Reflect Sex and Status 
Differences in Mortality Rates in a Polygynous Bat. Molecular Ecology, 
34(9). https://doi.org/10.1111/mec.17745 

Antwis, R. E., Edwards, K. L., Unwin, B., Walker, S. L., & Shultz, S. (2019). Rare 
gut microbiota associated with breeding success, hormone metabolites and 
ovarian cycle phase in the critically endangered eastern black rhino. 
Microbiome, 7(1), 27. https://doi.org/10.1186/s40168-019-0639-0 

Archie, E. A., & Tung, J. (2015). Social behavior and the microbiome. Current 
Opinion in Behavioral Sciences, 6, 28–34. 
https://doi.org/10.1016/j.cobeha.2015.07.008 

Barrett, E. L. B., Burke, T. A., Hammers, M., Komdeur, J., & Richardson, D. S. 
(2013). Telomere length and dynamics predict mortality in a wild 
longitudinal study. Molecular Ecology, 22(1). 
https://doi.org/10.1111/mec.12110 

Bebbington, K., Spurgin, L. G., Fairfield, E. A., Dugdale, H. L., Komdeur, J., Burke, 
T., & Richardson, D. S. (2016). Telomere length reveals cumulative 
individual and transgenerational inbreeding effects in a passerine bird. 
Molecular Ecology, 25(12), 2949–2960. https://doi.org/10.1111/mec.13670 

Bodawatta, K. H., Freiberga, I., Puzejova, K., Sam, K., Poulsen, M., & Jønsson, K. 
A. (2021). Flexibility and resilience of great tit (Parus major) gut 
microbiomes to changing diets. Animal Microbiome, 3(1), 20. 
https://doi.org/10.1186/s42523-021-00076-6 

Bodawatta, K. H., Koane, B., Maiah, G., Sam, K., Poulsen, M., & Jønsson, K. A. 
(2021). Species-specific but not phylosymbiotic gut microbiomes of New 
Guinean passerine birds are shaped by diet and flight-associated gut 
modifications. Proceedings of the Royal Society B: Biological Sciences, 
288(1949). https://doi.org/10.1098/rspb.2021.0446 

Bolnick, D. I., Snowberg, L. K., Caporaso, J. G., Lauber, C., Knight, R., & Stutz, W. 
E. (2014). Major Histocompatibility Complex class IIb polymorphism 
influences gut microbiota composition and diversity. Molecular Ecology, 
23(19), 4831–4845. https://doi.org/10.1111/mec.12846 

Bonder, M. J., Kurilshikov, A., Tigchelaar, E. F., Mujagic, Z., Imhann, F., Vila, A. 
V., Deelen, P., Vatanen, T., Schirmer, M., Smeekens, S. P., Zhernakova, D. 
V., Jankipersadsing, S. A., Jaeger, M., Oosting, M., Cenit, M. C., Masclee, 
A. A. M., Swertz, M. A., Li, Y., Kumar, V., … Zhernakova, A. (2016). The 
effect of host genetics on the gut microbiome. Nature Genetics, 48(11), 
1407–1412. https://doi.org/10.1038/ng.3663 

Cholewińska, P., Czyż, K., Nowakowski, P., & Wyrostek, A. (2020). The 
microbiome of the digestive system of ruminants – a review. Animal Health 
Research Reviews, 21(1), 3–14. https://doi.org/DOI: 
10.1017/S1466252319000069 

Cotillard, A., Kennedy, S. P., Kong, L. C., Prifti, E., Pons, N., Le Chatelier, E., 
Almeida, M., Quinquis, B., Levenez, F., Galleron, N., Gougis, S., Rizkalla, 
S., Batto, J. M., Renault, P., Doré, J., Zucker, J. D., Clément, K., Ehrlich, S. 
D., Blottière, H., … Layec, S. (2013). Dietary intervention impact on gut 



 363 

microbial gene richness. Nature, 500(7464), 585–588. 
https://doi.org/10.1038/nature12480 

Cox, T., Sparks, A., Burke, T., Komdeur, J., Richardson, D., & Dugdale, H. (2023). 
Sex-specific covariation between exploratory behavior and natal dispersal 
strategies in a natural cooperative breeding passerine population. 
https://doi.org/10.32942/X21P4B 

Davidson, G. L., Cooke, A. C., Johnson, C. N., & Quinn, J. L. (2018). The gut 
microbiome as a driver of individual variation in cognition and functional 
behaviour. Philosophical Transactions of the Royal Society B: Biological 
Sciences, 373(1756), 20170286. https://doi.org/10.1098/rstb.2017.0286 

Davies, C. S., Worsley, S. F., Maher, K. H., Komdeur, J., Burke, T., Dugdale, H. 
L., & Richardson, D. S. (2022). Immunogenetic variation shapes the gut 
microbiome in a natural vertebrate population. Microbiome, 10(1), 41. 
https://doi.org/10.1186/s40168-022-01233-y 

Ding, Z., Mangino, M., Aviv, A., Spector, T., & Durbin, R. (2014). Estimating 
telomere length from whole genome sequence data. Nucleic Acids 
Research, 42(9), e75–e75. https://doi.org/10.1093/nar/gku181 

Edwards, H. A., Dugdale, H. L., Richardson, D. S., Komdeur, J., & Burke, T. 
(2018). Extra-pair parentage and personality in a cooperatively breeding 
bird. Behavioral Ecology and Sociobiology, 72(3), 37. 
https://doi.org/10.1007/s00265-018-2448-z 

Engel, P., & Moran, N. A. (2013). The gut microbiota of insects – diversity in 
structure and function. FEMS Microbiology Reviews, 37(5), 699–735. 
https://doi.org/10.1111/1574-6976.12025 

Ha, S., Wong, V. W.-S., Zhang, X., & Yu, J. (2025). Interplay between gut 
microbiome, host genetic and epigenetic modifications in MASLD and 
MASLD-related hepatocellular carcinoma. Gut, 74(1), 141–152. 
https://doi.org/10.1136/gutjnl-2024-332398 

Hernández-Gómez, O., Briggler, J. T., & Williams, R. N. (2018). Influence of 
immunogenetics, sex and body condition on the cutaneous microbial 
communities of two giant salamanders. Molecular Ecology, 27(8), 1915–
1929. https://doi.org/10.1111/mec.14500 

Hicks, A. L., Lee, K. J., Couto-Rodriguez, M., Patel, J., Sinha, R., Guo, C., Olson, 
S. H., Seimon, A., Seimon, T. A., Ondzie, A. U., Karesh, W. B., Reed, P., 
Cameron, K. N., Lipkin, W. I., & Williams, B. L. (2018). Gut microbiomes of 
wild great apes fluctuate seasonally in response to diet. Nature 
Communications, 9(1), 1786. https://doi.org/10.1038/s41467-018-04204-w 

Hong, E. P., & Park, J. W. (2012). Sample Size and Statistical Power Calculation 
in Genetic Association Studies. Genomics & Informatics, 10(2), 117. 
https://doi.org/10.5808/GI.2012.10.2.117 

Jeschke, J. M., & Kokko, H. (2008). Mortality and other determinants of bird 
divorce rate. Behavioral Ecology and Sociobiology, 63(1), 1–9. 
https://doi.org/10.1007/s00265-008-0646-9 

Kelly, B. J., Gross, R., Bittinger, K., Sherrill-Mix, S., Lewis, J. D., Collman, R. G., 
Bushman, F. D., & Li, H. (2015). Power and sample-size estimation for 
microbiome studies using pairwise distances and PERMANOVA. 
Bioinformatics, 31(15), 2461–2468. 
https://doi.org/10.1093/bioinformatics/btv183 



 364 

Kohl, K. D., Varner, J., Wilkening, J. L., & Dearing, M. D. (2018). Gut microbial 
communities of American pikas ( O chotona princeps): Evidence for 
phylosymbiosis and adaptations to novel diets. Journal of Animal Ecology, 
87(2), 323–330. https://doi.org/10.1111/1365-2656.12692 

Komdeur, J. (1992). Importance of habitat saturation and territory quality for 
evolution of cooperative breeding in the Seychelles warbler. Nature, 
358(6386). https://doi.org/10.1038/358493a0 

Leclaire, S., Strandh, M., Dell’Ariccia, G., Gabirot, M., Westerdahl, H., & 
Bonadonna, F. (2019). Plumage microbiota covaries with the major 
histocompatibility complex in blue petrels. Molecular Ecology, 28(4), 833–
846. https://doi.org/10.1111/mec.14993 

Liukkonen, M., Muriel, J., Martínez‐Padilla, J., Nord, A., Pakanen, V., Rosivall, B., 
Tilgar, V., van Oers, K., Grond, K., & Ruuskanen, S. (2024). Seasonal and 
environmental factors contribute to the variation in the gut microbiome: A 

large‐scale study of a small bird. Journal of Animal Ecology, 93(10), 1475–
1492. https://doi.org/10.1111/1365-2656.14153 

Loo, W. T., García-Loor, J., Dudaniec, R. Y., Kleindorfer, S., & Cavanaugh, C. M. 
(2019). Host phylogeny, diet, and habitat differentiate the gut microbiomes 
of Darwin’s finches on Santa Cruz Island. Scientific Reports, 9(1), 18781. 
https://doi.org/10.1038/s41598-019-54869-6 

Marsh, K. J., Raulo, A. M., Brouard, M., Troitsky, T., English, H. M., Allen, B., 
Raval, R., Venkatesan, S., Pedersen, A. B., Webster, J. P., & Knowles, S. 
C. L. (2022). Synchronous Seasonality in the Gut Microbiota of Wild Mouse 
Populations. Frontiers in Microbiology, 13. 
https://doi.org/10.3389/fmicb.2022.809735 

Mazel, F., Guisan, A., & Parfrey, L. W. (2024). Transmission mode and dispersal 
traits correlate with host specificity in mammalian gut microbes. Molecular 
Ecology, 33(1). https://doi.org/10.1111/mec.16862 

Montero, B. K., Uddin, W., Schwensow, N., Gillingham, M. A. F., Ratovonamana, 
Y. R., Rakotondranary, S. J., Corman, V., Drosten, C., Ganzhorn, J. U., & 
Sommer, S. (2021). Evidence of MHC class I and II influencing viral and 
helminth infection via the microbiome in a non-human primate. PLoS 
Pathogens, 17(11). https://doi.org/10.1371/journal.ppat.1009675 

Nersisyan, L., & Arakelyan, A. (2015). Computel: Computation of Mean Telomere 
Length from Whole-Genome Next-Generation Sequencing Data. PLOS 
ONE, 10(4), e0125201. https://doi.org/10.1371/journal.pone.0125201 

Pepke, M. L., Hansen, S. B., & Limborg, M. T. (2024). Unraveling host regulation 
of gut microbiota through the epigenome–microbiome axis. Trends in 
Microbiology, 32(12), 1229–1240. https://doi.org/10.1016/j.tim.2024.05.006 

Petersen, C., Hamerich, I. K., Adair, K. L., Griem-Krey, H., Torres Oliva, M., 
Hoeppner, M. P., Bohannan, B. J. M., & Schulenburg, H. (2023). Host and 
microbiome jointly contribute to environmental adaptation. ISME Journal, 
17(11), 1953–1965. https://doi.org/10.1038/s41396-023-01507-9 

Raulo, A., Bürkner, P.-C., Finerty, G. E., Dale, J., Hanski, E., English, H. M., 
Lamberth, C., Firth, J. A., Coulson, T., & Knowles, S. C. L. (2024). Social 
and environmental transmission spread different sets of gut microbes in 
wild mice. Nature Ecology & Evolution, 8(5), 972–985. 
https://doi.org/10.1038/s41559-024-02381-0 



 365 

Raulo, A., Ruokolainen, L., Lane, A., Amato, K., Knight, R., Leigh, S., Stumpf, R., 
White, B., Nelson, K. E., Baden, A. L., & Tecot, S. R. (2018). Social 

behaviour and gut microbiota in red‐bellied lemurs ( <scp>E</scp> ulemur 
rubriventer ): In search of the role of immunity in the evolution of sociality. 
Journal of Animal Ecology, 87(2), 388–399. https://doi.org/10.1111/1365-
2656.12781 

Risely, A., Schmid, D. W., Müller-Klein, N., Wilhelm, K., Clutton-Brock, T. H., 
Manser, M. B., & Sommer, S. (2022). Gut microbiota individuality is 
contingent on temporal scale and age in wild meerkats. Proceedings of the 
Royal Society B: Biological Sciences, 289(1981). 
https://doi.org/10.1098/rspb.2022.0609 

Risely, A., Wilhelm, K., Clutton-Brock, T., Manser, M. B., & Sommer, S. (2021). 
Diurnal oscillations in gut bacterial load and composition eclipse seasonal 
and lifetime dynamics in wild meerkats. Nature Communications, 12(1), 
6017. https://doi.org/10.1038/s41467-021-26298-5 

Sarkar, A., Harty, S., Johnson, K. V.-A., Moeller, A. H., Archie, E. A., Schell, L. D., 
Carmody, R. N., Clutton-Brock, T. H., Dunbar, R. I. M., & Burnet, P. W. J. 
(2020). Microbial transmission in animal social networks and the social 
microbiome. Nature Ecology & Evolution, 4(8), 1020–1035. 
https://doi.org/10.1038/s41559-020-1220-8 

Sarkar, A., McInroy, C. J. A., Harty, S., Raulo, A., Ibata, N. G. O., Valles-Colomer, 
M., Johnson, K. V.-A., Brito, I. L., Henrich, J., Archie, E. A., Barreiro, L. B., 
Gazzaniga, F. S., Finlay, B. B., Koonin, E. V., Carmody, R. N., & Moeller, A. 
H. (2024). Microbial transmission in the social microbiome and host health 
and disease. Cell, 187(1), 17–43. https://doi.org/10.1016/j.cell.2023.12.014 

Schmid, D. W., Capilla-Lasheras, P., Dominoni, D. M., Müller-Klein, N., Sommer, 
S., & Risely, A. (2023). Circadian rhythms of hosts and their gut 
microbiomes: Implications for animal physiology and ecology. Functional 
Ecology, 37(3), 476–487. https://doi.org/10.1111/1365-2435.14255 

Serdar, C. C., Cihan, M., Yücel, D., & Serdar, M. A. (2021). Sample size, power 
and effect size revisited: simplified and practical approaches in pre-clinical, 
clinical and laboratory studies. Biochemia Medica, 31(1), 27–53. 
https://doi.org/10.11613/BM.2021.010502 

Shreiner, A. B., Kao, J. Y., & Young, V. B. (2015). The gut microbiome in health 
and in disease. Current Opinion in Gastroenterology, 31(1), 69–75. 
https://doi.org/10.1097/MOG.0000000000000139 

Somers, S. E., Davidson, G. L., Johnson, C. N., Reichert, M. S., Crane, J. M. S., 
Ross, R. P., Stanton, C., & Quinn, J. L. (2023). Individual variation in the 
avian gut microbiota: The influence of host state and environmental 
heterogeneity. Molecular Ecology, 32(12), 3322–3339. 
https://doi.org/10.1111/mec.16919 

Sommer, F., Anderson, J. M., Bharti, R., Raes, J., & Rosenstiel, P. (2017). The 
resilience of the intestinal microbiota influences health and disease. Nature 
Reviews Microbiology, 15(10), 630–638. 
https://doi.org/10.1038/nrmicro.2017.58 

Song, S. J., Sanders, J. G., Delsuc, F., Metcalf, J., Amato, K., Taylor, M. W., 
Mazel, F., Lutz, H. L., Winker, K., Graves, G. R., Humphrey, G., Gilbert, J. 
A., Hackett, S. J., White, K. P., Skeen, H. R., Kurtis, S. M., Withrow, J., 
Braile, T., Miller, M., … Knight, R. (2020). Comparative Analyses of 



 366 

Vertebrate Gut Microbiomes Reveal Convergence between Birds and Bats. 
MBio, 11(1). https://doi.org/10.1128/mBio.02901-19 

Sparks, A. M., Spurgin, L. G., van der Velde, M., Fairfield, E. A., Komdeur, J., 
Burke, T., Richardson, D. S., & Dugdale, H. L. (2022). Telomere heritability 
and parental age at conception effects in a wild avian population. Molecular 
Ecology, 31(23), 6324–6338. https://doi.org/10.1111/mec.15804 

Speelman, F. J. D., Burke, T., Komdeur, J., Richardson, D. S., & Dugdale, H. L. 

(2024). Causes and consequences of divorce in a long‐lived socially 
monogamous bird. Ecology Letters, 27(12). 
https://doi.org/10.1111/ele.14471 

Suriano, F., Nyström, E. E. L., Sergi, D., & Gustafsson, J. K. (2022). Diet, 
microbiota, and the mucus layer: The guardians of our health. Frontiers in 
Immunology, 13. https://doi.org/10.3389/fimmu.2022.953196 

Tung, J., Barreiro, L. B., Burns, M. B., Grenier, J.-C., Lynch, J., Grieneisen, L. E., 
Altmann, J., Alberts, S. C., Blekhman, R., & Archie, E. A. (2015). Social 
networks predict gut microbiome composition in wild baboons. ELife, 4. 
https://doi.org/10.7554/eLife.05224 

Uren Webster, T. M., Consuegra, S., Hitchings, M., & Garcia de Leaniz, C. (2018). 
Interpopulation Variation in the Atlantic Salmon Microbiome Reflects 
Environmental and Genetic Diversity. https://doi.org/10.1128/AEM 

van Leeuwen, P., Mykytczuk, N., Mastromonaco, G. F., & Schulte‐Hostedde, A. I. 
(2020). Effects of captivity, diet, and relocation on the gut bacterial 

communities of white‐footed mice. Ecology and Evolution, 10(11), 4677–
4690. https://doi.org/10.1002/ece3.6221 

Vekemans, X., Castric, V., Hipperson, H., Müller, N. A., Westerdahl, H., & Cronk, 

Q. (2021). Whole‐genome sequencing and genome regions of special 
interest: Lessons from major histocompatibility complex, sex determination, 

and plant self‐incompatibility. Molecular Ecology, 30(23), 6072–6086. 
https://doi.org/10.1111/mec.16020 

Videvall, E., Song, S. J., Bensch, H. M., Strandh, M., Engelbrecht, A., Serfontein, 
N., Hellgren, O., Olivier, A., Cloete, S., Knight, R., & Cornwallis, C. K. 
(2020). Early-life gut dysbiosis linked to juvenile mortality in ostriches. 
Microbiome, 8(1), 147. https://doi.org/10.1186/s40168-020-00925-7 

Voigt, R. M., Forsyth, C. B., Green, S. J., Engen, P. A., & Keshavarzian, A. (2016). 
Circadian Rhythm and the Gut Microbiome (pp. 193–205). 
https://doi.org/10.1016/bs.irn.2016.07.002 

Williams, C. E., Hammer, T. J., & Williams, C. L. (2024). Diversity alone does not 
reliably indicate the healthiness of an animal microbiome. The ISME 
Journal, 18(1). https://doi.org/10.1093/ismejo/wrae133 

Worsley, S. F., Davies, C. S., Lee, C. Z., Mannarelli, M., Burke, T., Komdeur, J., 
Dugdale, H. L., & Richardson, D. S. (2024). Longitudinal gut microbiome 
dynamics in relation to age and senescence in a wild animal population. 
Molecular Ecology. https://doi.org/10.1111/mec.17477 

Worsley, S. F., Davies, C. S., Mannarelli, M.-E., Hutchings, M. I., Komdeur, J., 
Burke, T., Dugdale, H. L., & Richardson, D. S. (2021). Gut microbiome 
composition, not alpha diversity, is associated with survival in a natural 
vertebrate population. Animal Microbiome, 3(1), 84. 
https://doi.org/10.1186/s42523-021-00149-6 



 367 

Worsley, S. F., Davies, C. S., Mannarelli, M.-E., Komdeur, J., Dugdale, H. L., & 
Richardson, D. S. (2022). Assessing the causes and consequences of gut 
mycobiome variation in a wild population of the Seychelles warbler. 
Microbiome, 10(1), 242. https://doi.org/10.1186/s40168-022-01432-7 

Worsley, S. F., Mazel, F., Videvall, E., Harrison, X. A., Björk, J. R., & Wanelik, K. 
M. (2024). Probing the functional significance of wild animal microbiomes 
using omics data. 

Xu, X., & Zhang, Z. (2021). Sex- and age-specific variation of gut microbiota in 
Brandt’s voles. PeerJ, 9, e11434. https://doi.org/10.7717/peerj.11434 

Xue, Z., Zhang, W., Wang, L., Hou, R., Zhang, M., Fei, L., Zhang, X., Huang, H., 
Bridgewater, L. C., Jiang, Y., Jiang, C., Zhao, L., Pang, X., & Zhang, Z. 
(2015). The Bamboo-Eating Giant Panda Harbors a Carnivore-Like Gut 
Microbiota, with Excessive Seasonal Variations. MBio, 6(3). 
https://doi.org/10.1128/mBio.00022-15 

  

 

  

 

 

 

 

 

 

 

 

 

  



 368 

Appendix 1 |  

 

Published version of Box 1.1 

 

 

 



 

 

  



 370 

Appendix 2 |  

 

Published version of chapter 2 

 

 

 





 372 



 373 



 374 



 375 



 376 



 377 



 378 



 379 



 380 



 381 



 382 



 383 



 


	Abstract
	Access Condition and Agreement
	Acknowledgements
	Animal ethics
	Contents
	List of tables and figures
	Chapter contribution
	Chapter 1 |   General Introduction
	1.1 History of microbiome research
	1.2 Environmental factors affecting the GM
	1.2.1 Diet
	1.2.2 Temporal environmental factors
	1.2.3 Pathogens

	1.3 Intrinsic host factors and the GM
	1.3.1 Age
	1.3.2 Senescence
	1.3.3 Sex
	1.3.4 Host genetics and the GM
	1.3.4.1 Host and GM phylogenies
	1.3.4.2 Host immune system
	1.3.4.3 Host genetics
	1.3.4.4 Host inbreeding


	1.4 Transmission of the GM
	1.4.1 Vertical transmission of the GM
	1.4.2 Horizontal transmission of the GM

	1.5 Techniques used to characterise the GM
	1.5.1 Amplicon Sequencing
	1.5.2 Metagenomic Sequencing
	1.5.3 Other -omic options

	1.6 The Seychelles warbler as a model system
	1.6.1 Conclusions and Perspectives
	1.6.2: Thesis aims

	1.7 References

	Box 1.1. Preserving microbial functional biodiversity (Lee, 2025)
	Chapter 2 |   Metagenomic analyses of gut microbiome composition and function with age in a wild bird; little change, except increased transposase gene abundance
	2.1 Abstract
	2.2 Introduction
	2.3 Materials and Methods
	2.3.1 Study system and sample collection
	2.3.2 DNA extraction and sequencing
	2.3.3 Bioinformatics
	2.3.4 Gut microbiome analyses
	2.3.5 Taxonomic GM changes with age
	2.3.5.1 Taxonomic GM alpha diversity
	2.3.5.2 Taxonomic GM composition
	2.3.5.3 Taxonomic GM differential abundance analysis (DAA)

	2.3.6 Functional GM changes with age
	2.3.6.1 Functional GM alpha diversity
	2.3.6.2 Functional GM composition
	2.3.6.3 Functional GM differential abundance analysis (DAA)


	2.4 Results
	2.4.1 Taxonomic GM changes with age
	2.4.1.1 Taxonomic GM alpha diversity
	2.4.1.2 Taxonomic GM composition
	2.4.1.3 Taxonomic GM differential abundance analysis (DAA)

	2.4.2 Functional GM changes with age
	2.4.2.1 Functional GM alpha diversity
	2.4.2.2 Functional GM beta diversity
	2.4.2.3 Functional GM differential abundance analysis (DAA)


	2.5 Discussion
	2.6 References
	2.7 Supplementary material
	2.7.1 Supplementary methods
	2.7.1.1 Bioinformatics
	2.7.1.2 Post-hoc functional differential abundance analysis

	2.7.2 Supplementary Figures and Tables


	Chapter 3 |   Host immunogenetic variation and gut microbiome functionality in a wild vertebrate population
	3.1 Abstract
	3.2 Introduction
	3.3 Methods
	3.3.1 Study system
	3.3.2 Sample collection
	3.3.3 Molecular genotyping
	3.3.4 Gut microbiome screening
	3.3.5 Bioinformatics
	3.3.6 Statistical analysis
	3.3.6.1 GM diversity
	3.3.6.1.1 16S rRNA metabarcoding diversity
	3.3.6.1.2 Metagenomic taxonomic diversity
	3.3.6.1.3 Metagenomic functional diversity

	3.3.6.2 GM composition
	3.3.6.2.1 16S rRNA metabarcoding composition
	Metagenomic taxonomic composition
	3.3.6.2.3 Metagenomic functional composition

	3.3.6.3 Differential abundance analyses
	3.3.6.3.1 Differential abundance of metagenomic taxonomic species
	3.3.6.3.2 Differential abundance of metagenomic functional genes

	3.3.6.4 Network analysis
	3.3.6.4.1 Network analysis of metagenomic taxonomic species
	3.3.6.4.2 Network analysis of metagenomic functional genes



	3.4 Results
	3.4.1 GM diversity
	3.4.1.1 16S rRNA metabarcoding diversity
	3.4.1.2 Metagenomic taxonomic diversity
	3.4.1.3 Metagenomic functional diversity

	3.4.2 GM composition
	3.4.2.1 16S rRNA metabarcoding composition
	3.4.2.2 Metagenomic taxonomic composition
	3.4.2.3 Metagenomics functional composition

	3.4.3 Differential abundance analysis
	3.4.3.1 Differential abundance of metagenomic taxonomic species
	3.4.3.2 Differential abundance of metagenomic functional genes

	3.4.4 Network analysis
	3.4.4.1 Network analysis of metagenomic taxonomic species
	3.4.4.2 Network analysis of metagenomic functional genes


	3.5 Discussion
	3.6 References
	3.7 Supplementary material

	Chapter 4 |   Social interactions shape anaerobic, but not aerotolerant, gut microbiome composition in a cooperative breeding species
	4.1 Abstract
	4.2 Introduction
	4.3 Materials and Methods
	4.3.1 Study systems
	4.3.2 Sample collection
	4.3.3 Molecular methods
	4.3.4 Bioinformatics
	4.3.5 Statistics
	4.3.5.1 GM similarity within and between breeding groups
	4.3.5.1.1 Alpha diversity
	4.3.5.1.2 GM composition
	4.3.5.1.3 Aerotolerance

	4.3.5.2 The GM and social status categories
	4.3.5.2.1 Alpha diversity
	4.3.5.2.2 Overall GM composition
	4.3.5.2.3 Aerotolerance vs. Anaerobic GM composition



	4.4 Results
	4.4.1 GM similarity within versus between breeding groups
	4.4.1.1 Alpha diversity
	4.4.1.2 GM composition
	4.4.1.3 Aerotolerant vs. Anaerobic bacteria

	4.4.2 The GM and within-group social status categories
	4.4.2.1 Alpha diversity
	4.4.2.2 Overall GM composition
	4.4.2.3 Aerotolerant vs. Anaerobic GM composition


	4.5 Discussion
	4.6 References
	4.7 Supplementary material

	Chapter 5 |   Inbreeding, intergenerational inbreeding and the gut microbiome
	5.1 Abstract
	5.2 Introduction
	5.3 Methods
	5.3.1 Study system
	5.3.2 Sample collection
	5.3.3 Gut (bacterial) microbiome molecular methods
	5.3.4 Host genome molecular methods
	5.3.5 Bioinformatics
	5.3.6 Pedigree
	5.3.7 Statistical analysis
	5.3.7.1 Inbreeding and GM alpha diversity
	5.3.7.2 Inbreeding and GM composition
	5.3.7.3 Inbreeding and GM differential abundance analysis
	5.3.7.4 Inbreeding and GM stability


	5.4 Results
	5.4.1 Inbreeding and GM alpha diversity
	5.4.2 Inbreeding and GM composition
	5.4.3 Inbreeding and differential abundance analysis
	5.4.4 Inbreeding and GM stability

	5.5 Discussion
	5.6.1 Conclusion

	5.7 References
	5.8 Supplementary material

	Chapter 6 |   The holobiont and survival in a wild vertebrate population
	6.1 Abstract
	6.2 Introduction
	6.3 Method
	6.3.1 Study system
	6.3.2 Sample collection
	6.3.3 DNA extraction and sequencing
	6.3.4 Bioinformatics
	6.3.5 Statistical methods
	6.3.5.1 Genome wide association study (GWAS) of GM composition
	6.3.5.2 Determining ASVs associated with GM-associated SNPs
	6.3.5.3 GM-associated SNPs and host survival to the next season
	6.3.5.4 GM-associated SNPs and host survival (lifespan)


	6.4 Results
	6.4.1 Genome wide association study (GWAS) of GM composition
	6.4.2 Determining ASVs associated with GM-associated SNPs
	6.4.3 GM-associated SNPs and host survival to the next season
	6.4.4 GM-associated SNPs and direct host survival

	6.5 Discussion
	6.5.1 Host genomic regions and the GM
	6.5.2 Survival and GM-associated SNPs
	6.5.3 Conclusion

	6.6 References
	6.7 Supplementary material

	Chapter 7 |   General Discussion
	7.1 Overview
	7.2 Synthesis
	7.2.1 External environmental effects
	7.2.2 Gut microbiome diversity
	7.2.3 Gut microbiome composition
	7.2.4 Decoupling of gut microbiome taxonomy and function
	7.2.5 The benefits of metagenomics
	7.2.6 Peculiarities of the avian GM
	7.2.7 Advances made

	7.3 Limitations
	7.4 Future research
	7.5 Final remarks
	7.6 References

	Appendix 1 |   Published version of Box 1.1
	Appendix 2 |   Published version of chapter 2

