1 Two Novel S-methyltransferases Confer Dimethylsulfide Production in

2	Actinomycetota
3	
4	Ruihong Guo, Zihua Guo, Yi Zhou, Yunhui Zhang, Haojin Cheng, Rebecca Devine,
5	Chuang Sun, Ronghua Liu, Yanfen Zheng, Andrew J. Gates, Jonathan D. Todd*,
6	Xiao-Hua Zhang*
7	
8	
9	R. Guo, Z. Guo, Y. Zhou, Y. Zhang, H. Cheng, R. Liu, J. D. Todd, XH. Zhang
10	Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College
11	of Marine Life Sciences, Ocean University of China, Qingdao, China
12	E-mail: jonathan.todd@uea.ac.uk; xhzhang@ouc.edu.cn
13	
14	R. Guo, XH. Zhang
15	Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science
16	and Technology Center, Qingdao, China
17	7 Cua V Thoma V II Thoma
18 19	Z. Guo, Y. Zhang, XH. Zhang Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and
20	Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao,
20	China
22	Cimie
23	R. Devine, C. Sun, A. J. Gates, J. D. Todd
24	John Innes Centre, Department of Molecular Microbiology, and Centre for Microbial
25	Interactions, Norwich Research Park, Norwich, United Kingdom
26	
27	C. Sun, A. J. Gates, J. D. Todd
28	School of Biological Sciences, University of East Anglia, Norwich Research Park,
29	Norwich, United Kingdom
30	
31	Y. Zheng
32	Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy
33	of Agricultural Sciences, Qingdao, China

34

35 Funding: National Natural Science Foundation of China (32370118, 42306115 and

36 42376101), National Key R&D Program of China (2025YFF0516900 and

37 2025YFF0516903), Shandong Provincial Natural Science Foundation

- 38 (ZR2023QD017), China Postdoctoral Science Foundation (2022M722975), the
- 39 Postdoctoral Innovation Program of Shandong Province (SDCX-ZG-202201016), the
- 40 Biotechnology and Biological Sciences Research Council, UK (BB/X005968), Natural
- 41 Environmental Research Council, UK (NE/P012671) and China Scholarship Council
- 42 (No. 202106330012).

43

- 44 Keywords: Dimethylsulfide, Methanethiol, Sulfide, S-methyltransferase,
- 45 Actinomycetota

46 47

Abstract

- Hydrogen sulfide (H₂S), methanethiol (MeSH) and dimethylsulfide (DMS) are abundant sulfur gases with crucial roles in global sulfur and nutrient cycling,
- 50 chemotaxis, and climate regulation. Microorganisms can S-methylate H₂S and MeSH,
- which can be cytotoxic, to yield non-toxic DMS via MddA or MddH enzymes in largely
- 52 terrestrial or marine environments, respectively. However, many important and
- 53 abundant bacteria, e.g. Actinomycetota, contain unknown Mdd enzymes, thus the
- 54 potential of these pathways is underestimated. Here, we identify two novel S-adenosine-
- methionine (SAM)-dependent H₂S and MeSH S-methyltransferases, MddM1 and
- MddM2, in the DMS-producing actinomycete Mycolicibacterium poriferae ZYF656,
- isolated from the Mariana Trench. M. poriferae ZYF656 MddM1 and MddM2 likely
- detoxify H₂S and MeSH and alleviate oxidative stress, since mddM1 and mddM2
- 59 transcription is induced by H₂S, MeSH and oxidative stress, and their expression in
- 60 Escherichia coli enhances H₂S, MeSH and oxidative stress tolerance. MddM1 and/or
- MddM2 are in > 50% of actinomycetota, including the model Streptomyces species, S.
- 62 venezuelae, but are also seen in some Chloroflexota, Acidobacteriota and
- 63 Proteobacteria. mddM1 is always more abundant than mddM2 in diverse environments
- and is prevalent in soils and marsh sediments. This study highlights the significance of
- 65 H₂S- and MeSH-dependent DMS production and, principally, of Actinomycetota in
- 66 global DMS production and sulfur cycling.

67 68

Ruihong Guo, Zihua Guo, Yi Zhou and Yunhui Zhang contributed equally to this work.

4	T 4		4 •	
	Intro	าสม	ctio	n

69

70 Dimethylsulfide (DMS) is Earth's major biogenic sulfur compound transferred from marine environments to the atmosphere, representing 13-37 Tg sulfur annually. [1-4] 71 Atmospheric DMS and related compounds, like methanethiol (MeSH), can be oxidized 72 to form cloud condensation nuclei (CCN) and impact the climate. [5-7] Furthermore, 73 DMS is a nutrient and a signaling molecule for diverse microorganisms.^[8-9] 74 In marine environments, most DMS is thought to arise from the microbial cleavage of 75 the abundant osmolyte dimethylsulfoniopropionate (DMSP) via diverse DMSP lyase 76 enzymes.^[10] However, DMS can also result from the enzymatic degradation of dimethyl 77 sulfoxide (DMSO), methoxyaromatic compounds. [11] or from S-methylation of MeSH 78 or hydrogen sulfide (H₂S).^[12-15] H₂S is a toxic volatile, often present in diverse 79 environments, e.g., hydrothermal vents and sediments, at millimolar concentrations.[16-80 ^{17]} MeSH, another toxic volatile, is a potentially abundant by-product of DMSP 81 demethylation, which accounts for up to 80% of marine DMSP catabolism (Figure 82 1A).^[18] In this pathway, DMSP is demethylated to 3-methylmercaptopropionate 83 (MMPA) via DmdA, predicted in 20% of marine bacteria. [19-20] MMPA can be further 84 processed to MeSH via dmdB/C/D gene products which are ubiquitous in marine and 85 terrestrial bacteria (Figure 1A).[19-20] MeSH can also result from DMS and methionine 86 (Met) degradation via DMS monooxygenase DmoA and Met-gamma-lyase enzymes 87 MegL, respectively (Figure 1A). [21-23] Thus, there are many DMSP-independent routes 88 to DMS, and the substrates for these pathways, particularly H2S and MeSH, are often 89 abundant in marine and terrestrial environments. 90 Previous studies identified TMT1A and TMT1B as thiol methyltransferase enzymes 91 capable of methylating H₂S in humans, other mammals and fish.^[24-25] Furthermore, 92 diverse microorganisms utilized enzymes, termed MddA and MddH, to S-methylate 93 H₂S and MeSH yielding DMS in reactions where S-adenosine methionine (SAM) was 94 the methyl donor (Figure 1A). [14-15] These Mdd enzymes were proposed to detoxify H₂S 95 and MeSH via production of non-toxic DMS.[14-15] MddA, a membrane-associated 96 enzyme, was predominantly found in terrestrial actinobacteria, cyanobacteria, 97 rhizobiales, pseudomonads, and some marine algae. [26] In contrast, MddH was shown 98

99	to be a cytoplasmic enzyme and widespread in diverse marine bacteria, especially
100	Gammaproteobacteria. [15] The genetic potential to S-methylate H ₂ S and MeSH was
101	found to be sizable in diverse marine (largely via MddH) and terrestrial (largely via
102	MddA) environments, particularly in sediments, where H ₂ S and MeSH concentrations
103	were likely higher. [16-17] Although mddH was abundant in marine multi-omics data, it
104	was never more abundant than DMSP lyase genes. ^[15] These findings implied that
105	microbial S-methylation of H ₂ S and MeSH played important roles in microbial stress
106	responses and global DMS production, but less so than DMSP cleavage in marine
107	settings. However, there were still bacteria which S-methylated H ₂ S and MeSH but
108	lacked MddA and MddH and thus contained novel enzymes. ^[12-13, 15]
109	Here, we screened cultivable bacteria from the Mariana Trench, previously reported to
110	exhibit high Mdd activity, ^[27] for isolates that S-methylated H ₂ S and MeSH. One such
111	isolate, the actinomycete Mycolicibacterium poriferae ZYF656, was able to S-
112	methylate H ₂ S and MeSH but lacked all known mdd genes, TMT1A and TMT1B,
113	implying it contained novel Mdd enzymes. We identified and characterized two novel
114	enzymes responsible for H ₂ S and MeSH S-methylation, their role in bacteria and
115	implied importance in stress tolerance, global DMS production and sulfur cycling.
116	
117	2 Results
118	2.1 DMS and MeSH production by Mycolicibacterium poriferae ZYF656
119	We noted that M. poriferae ZYF656, a new species isolated from the 9,600 m deep
120	Mariana Trench seawater, produced DMS when incubated with Met, MMPA, H ₂ S and
121	MeSH (Figure 1B). This actinobacterium did not produce DMSP even when grown in
122	the presence of Met (the universal DMSP precursor), and it failed to produce DMS or
123	MeSH when incubated with DMSP (Figure 1B). These data confirmed that S-
124	methylation of H ₂ S and MeSH, rather than DMSP-dependent pathways were the
125	source of DMS produced by this marine actinobacterium.
126	The M. poriferae ZYF656 genome (GenBank accession number: CP151154) lacked
127	both identifiable DMSP demethylase (dmdA) and DMSP lyase (ddd) genes (Figure 1A),

128	consistent with its absence of DMSP lyase and demethylation activity. However, M .
129	poriferae ZYF656 did contain megL and dmdB/AcuH, whose Met-gamma-lyase
130	(EC4.4.1.11) and DMSP demethylation pathway protein products can generate MeSH
131	from Met and MMPA, respectively (Figure 1A, Table S1, Supporting information).
132	These findings are consistent with the data shown in Figure 1B, supporting the proposed
133	role of Met and MMPA as precursors for DMS production via MeSH S-methylation.
134	Interestingly, the predicted <i>M. poriferae</i> ZYF656 proteome lacked any obvious MddA,
135	MddH, TMT1A or TMT1B homologues at ≥ 40% amino acid identity, implying that
136	this actinobacterium may utilize novel Mdd enzymes for H ₂ S and MeSH S-methylation.
137	
138	2.2 Identification of the novel enzymes MddM1 and MddM2
139	To identify the genes responsible for H ₂ S and MeSH S-methylation, a genomic library
140	of M. poriferae ZYF656 was constructed and screened in Escherichia coli JM109 for
141	Mdd activity. Two distinct clones with Mdd activity were identified and sequenced.
142	Each clone contained a distinct SAM-dependent methyltransferase, termed MddM1
143	(PP661493) and MddM2 (PP661494). When cloned and expressed in E. coli BL21
144	(DE3), mddM1 and mddM2 each conferred the ability to S-methylate H ₂ S to MeSH and
145	DMS, as well as MeSH to DMS (Figure 1C,D). Furthermore, cloned mddM1 and
146	mddM2 each also conferred MeSH-dependent DMS production from 1 mM MeSH and
147	H ₂ S to Corynebacterium glutamicum RES167, an actinobacterium lacking the Mdd
148	pathway (Figure S1A,B, Supporting information).
149	MddM1 and MddM2 were similar-sized proteins comprising 210 and 204 amino acids
150	with predicted molecular weights of ~23 kDa and ~21 kDa, respectively. However, their
151	theoretical pI values were quite different being 5.88 for MddM1 and 7.86 for MddM2.
152	MddM1 was an UbiG family (COG2227) SAM-dependent methyltransferase, predicted
153	by CELLO to be cytoplasmic with no signal peptide. Like MddH,[15] MddM2 was a
154	UbiE family SAM-dependent methyltransferase, but by contrast it was predicted to be
155	membrane-bound (by CELLO), like MddA,[14] with a transmembrane helix (by
156	TMHMM) and a SEC signal pentide whose cleavage site was likely between position

residues 41 and 42 as determined by SignalP 6.0.^[28] Indeed, M. poriferae ZYF656 157 MeSH S-methylation activity was found to be both cytosolic (1.34 \pm 0.32 pmol DMS 158 mg⁻¹ total protein h⁻¹) and membranous $(0.17 \pm 0.01 \text{ pmol DMS mg}^{-1} \text{ total protein h}^{-1})$, 159 160 consistent with the higher activity of the MddM1 protein and lower activity of the MddM2 protein. 161 Sequence alignment of MddM1 and MddM2 with other characterized SAM-dependent 162 S-methyltransferases, including microbial MddH and human TMT1A and TMT1B, 163 revealed that they shared extended residue similarity including the conserved GxGxG 164 motif for SAM binding (Figure S2A, Supporting information).^[15] Further structural 165 modelling, using AlphaFold3,^[29] showed MddM1 and MddM2 also shared structural 166 similarity with each other and with other characterized SAM-dependent 167 methyltransferases, but they have different N-terminal regions (Figure S2B, Supporting 168 information). While the N-terminal region of MddM1 is predicted to adopt similar 169 structure to MddH that is truncated relative to human SAM-dependent S-170 methyltransferases, [15] the N-terminal region of MddM2 is predicted to be an extended 171 172 unstructured peptide region containing the putative SEC signal sequence. As MddM1 and MddM2 adopt a MddH-like fold, both are structurally distinct to the microbial 173 integral membrane SAM-dependent S-methyltransferase MddA.^[26] 174

175

176

177

178

179

180

181

182

183

184

185

2.3 MddM1 and MddM2 are abundant in Actinomycetota

The distribution of mddM1 and mddM2 in genomes available on the UniprotKB and Swiss-Prot database was analyzed to predict organisms with the potential to S-methylate H₂S and MeSH. Candidate MddM1 and MddM2 proteins (E-value \leq e-30) were predominantly found in Actinomycetota, but also in some Proteobacteria (including Alpha-, Beta-, Gamma- and Delta-proteobacteria), Chloroflexota, Myxococcota, Acidobacteriota, Desulfuromonadia, and Candidatus Dormibacteraeota (Figure 2). These MddM1 homologues were predominantly from soil or marine environments, but were also seen, albeit less frequently, in bacteria from human, plant, animal, water and other sources. In contrast, only 24 MddM2 homologues were

186	identified, and all were Actinomycetota from human sources (Figure 2). Representative
187	candidate MddM1 and MddM2 homologues from Actinomycetota, Acidobacteriota,
188	Deltaproteobacteria and Chloroflexota were overexpressed in E. coli BL21 (DE3) and
189	all showed H ₂ S- and MeSH-dependent DMS production, confirming the activity of
190	these proteins (Table 1).
191	Focused analysis of 42,815 Actinomycetota genomes available on NCBI inferred H ₂ S
192	and MeSH dependent DMS production to be important in this phylum, with 51.02%,
193	21.60%, 4.58% and 1.16% predicted to contain MddM1, MddA, MddH or MddM2,
194	respectively (Figure S3, Supporting information). The majority of MddM1 homologues
195	were from Streptomyces, Mycobacterium and Mycolicibacterium genera (Figure S3,
196	Supporting information). Notably, Streptomyces are generally reported as fast growing
197	bacteria, widely distributed in diverse environments, particularly soils, and 19.75%
198	contained MddM1 (Figure S3, Supporting information). ^[30-31] These data implied that
199	the Actinomycetota, particularly Streptomyces in soil and human environments may be
200	significant producers of DMS via the S-methylation of H ₂ S and MeSH (Figure S3,
201	Supporting information). However, we found that the model Streptomyces, S.
202	venezuelae and its mddM1 mutant derivative (generated here), made no DMS, even
203	when incubated with Met or MeSH (Figure S1C,D, Supporting information). However,
204	DMS production was detected when <i>mddM1</i> was expressed under control of an ectopic
205	promoter in the S. venezuelae mddM1 ⁻ grown in the presence of Met or MeSH (Figure
206	S1C,D, Supporting information). These data implied that <i>S. venezuelae</i> did not express
207	and utilise MddM1 under the tested conditions, as is common in Streptomyces
208	secondary metabolite production systems. ^[32] It also further indicated the limitation of
209	functional predictions based only on genetic potential.
210	Since some eukaryotic algae contain MddA,[14] we probed the Marine Microbial
211	Eukaryote Transcriptome Sequencing Project (MMETSP) database with MddM1,
212	MddM2 and MddH sequences. ^[33] This identified 14 proteins clustered in a distinct
213	clade away from MddM1 and MddH, and no MddM2 homologs (Figure S4, Supporting
214	information). To establish if the distinct clade of Mdd-like proteins had H ₂ S or MeSH

S-methylation activity, a representative from a liverwort *Riccia sorocarpa* (MMETSP0818 10907|m. 27989) with 41.30% amino acid identity, 95% coverage and an E-value of 2.68e-34 to MddM1 (MDE3069982.1 *Acidobacteriota* bacterium), was chosen for characterisation. This candidate gene was codon optimized for expression in *E. coli*, cloned into pET-24a and expressed in *E. coli* BL21 (DE3), but despite a soluble protein product being overproduced, it conferred no H₂S or MeSH S-methyltransferase activity. The absence of S-methyltransferase activity in *E. coli* expressing the liverwort Mdd-like gene may have been due to the protein product not folding correctly and/or a lack of appropriate co-factors for activity in this heterologous host. Alternatively, these algal proteins may not constitute genuine Mdd enzymes, despite them containing the same methyltransferase family Pfam domain seen in MddH and MddM1. The function of these Mdd-like proteins remains unknown, requires further investigation and again highlights the importance of substantiating genomic predictions with functional analysis.

2.4 Characterization of recombinant MddM1 and MddM2

Since *M. poriferae* ZYF656 MddM2 proved problematic to purify, the functionally verified ^{Tb}MddM2 from *Thermobispora bispora* was selected for further analysis. Recombinant GST-tagged MddM1 and ^{Tb}MddM2 proteins were overexpressed in *E. coli* BL21 (DE3), and proteins of the expected molecular weight were purified (Figure S5A,B, Supporting information). Both proteins exhibited *in vitro* SAM-dependent *S*-methylation activity with either H₂S or MeSH to yield DMS. The optimal pH and temperature for MeSH *S*-methylation was 9.0 for MddM1 (**Figure 3A**) and 40°C (Figure 3B), respectively, whilst its optimal pH and temperature for H₂S was 7.6 (Figure 3A) and 30°C (Figure 3B), respectively. ^{Tb}MddM2 showed an optimum pH of 8.0 (**Figure 4A**) and temperature of 30°C for both substrates (Figure 4B). Notably, MddM1 and ^{Tb}MddM2 showed no *S*-methylation activity towards most other tested sulfur compounds including Coenzyme A (CoA), cysteine (L-Cys), glutathione (GSH), 2-mercaptoethanesulfonate (Coenzyme M) or the DMSP synthesis intermediates Met and

4-methylthio-2-hydroxybutyrate (MTHB) (Figure S5C,D, Supporting information). 244 Thiols, like ethanethiol and 1-propanethiol, could also serve as the substrates of 245 MddM1 and ^{Tb}MddM2, as was previously shown for MddH (Figure S5C,D, Supporting 246 information).^[15] 247 Enzyme kinetics studies showed MddM1 to have a \sim 1.6-fold higher K_m value for MeSH 248 (0.76 mM) than for H₂S (0.46 mM), and k_{cat} values that were ~5-fold higher for MeSH 249 (0.21 s⁻¹) (Figure 3C,E). Therefore, MddM1 was ~3-fold more efficient at S-250 methylating MeSH (k_{cat}/K_m : 274.33 M⁻¹ s⁻¹) than H₂S (k_{cat}/K_m : 90.30 M⁻¹ s⁻¹), indicating 251 a higher consumption rate of MeSH over its production rate in vitro. TbMddM2 252 exhibited comparable K_m values for H₂S (0.16 mM) and MeSH (0.22 mM), which were 253 considerably lower than for MddM1 (Figure 4C,E). Conversely, the k_{cat} values for 254 ^{Tb}MddM2 were ~ 3-fold higher for MeSH than H₂S (Figure 4). Thus, ^{Tb}MddM2 also 255 demonstrated greater efficiency in S-methylating MeSH ($k_{cat}/K_m \sim 272.73 \text{ M}^{-1} \text{ s}^{-1}$) than 256 H_2S ($k_{cat}/K_m \sim 125.00 \text{ M}^{-1} \text{ s}^{-1}$). Specific activity data showed MddM1 and Tb MddM2 257 exhibited similar activities towards MeSH, which were ~1.5-fold lower than for H₂S, 258 with ^{Tb}MddM2 having slightly higher activity. The MddM1 and ^{Tb}MddM2 specific 259 activities were substantially higher than for MddA, [14] but lower than MddH. [15] 260

261

262

263

264

265

266

267

268

269

270

271

272

2.5 Potential roles of MddM1 and MddM2 enzymes

Previous studies implied that the Mdd-driven conversion of toxic H₂S and MeSH to non-toxic DMS may be a cellular strategy for detoxifying these gases and had shown *mddA* and *mddH* transcription to be enhanced by H₂S and/or MeSH.^[14-15] Here, *M. poriferae* ZYF656 *mddM1* and *mddM2* transcription was also significantly enhanced by the addition of Met, MeSH and H₂S. Induction by Met implied that the bacterial Mdd pathways can efficiently remove excess MeSH released from Met via Metgamma-lyase enzymes when this amino acid is in excess. Note, transcriptional induction was always more prominent for *mddM2* (Figure 1E). Interestingly, *mddM1* and *mddM2* transcription was also enhanced by addition of H₂O₂ to mimic oxidative stress (Figure S6, Supporting information), something not previously linked to H₂S and

273 MeSH *S*-methylation.

The growth of *E. coli* expressing *mddM1* or *mddM2* was examined under stress conditions to study the role of these genes. MddM1 or MddM2 expression in *E. coli* enhanced growth in the presence of H₂S, MeSH and H₂O₂ (**Figure 5**), imping these methyltransferases can play a role in detoxification of H₂S and MeSH, and in oxidative stress protection. For protection against oxidative stress, we hypothesized that DMS might be produced as a source of the antioxidant DMSO,^[34] as *M. poriferae* ZYF656 contained the trimethylamine monooxygenase gene *tmm*, whose product can oxidize DMS to DMSO.^[35] Furthermore, *M. poriferae* ZYF656 was able to oxidise DMS, potentially generated from H₂S and MeSH, to DMSO (7.91 pmol mg⁻¹ protein min⁻¹). This strain was not able to utilize DMSO, DMSP, DMSO, MeSH or Met as a sole carbon or sulfur source supporting the role for DMS production in detoxification and/or oxidative stress tolerance and not assimilation.

2.6 The significance of Mdd systems in diverse environments

To infer the environmental importance of *mddM1*, *mddM2*, *mddA*, *mddH* and *dddP*, we assessed their relative gene abundance in diverse environmental multi-omics data. Focusing initially on Mariana Trench sediments, where H₂S and MeSH *S*-methylation was proposed to be important, [27] *mddM1* was detected at all depths within sediments from the Trench floor, but no *mddM2* homologues were identified (**Figure 6A**). The proportion of bacteria with *mddM1* homologues remained relatively stable throughout the gravity column core (1.78%-3.80%), with a peak at 78-81 cm (3.80%). *mddM1* was markedly less abundant than *mddA*, the major detected gene in this depth profile, but comparable to *mddH*, except at depths of 10-12 cm and 12-15 cm (Figure 6A). Surprisingly, the most abundant DMSP lyase gene, *dddP*, was predicted to be present in 0.26%-6.07% of bacteria in the Mariana Trench sediments, which was lower than for *mddM1* except in the two samples at 10-12 cm and 12-15 cm (Figure 6A). These data implied that MddM1 and more prominently other Mdd enzymes may play a more important role in DMS production compared to DMSP lyase pathways in Mariana

	TD 1	•	1.
302	Trench	marine	sediments
JUZ	TICHE	manne	Scamments

Analysis of metagenomes from other diverse environments showed mddM1 was present
in all, but was most abundant in soils (3.30%, Figure 6B), supporting the prediction of
H ₂ S- and MeSH-dependent DMS production being an important process in sedimentary
environments. ^[12, 26, 36] mddM1 was predicted in 0.02-0.58% marine bacteria, but its
prevalence decreased with increasing seawater depth (Figure 6B). In contrast, the
relative abundance of <i>mddM2</i> was particularly low in all environments (0-0.58%) and
no mddM2 genes were detected in marine water samples (≤ 200 m), cold spring or
hydrothermal vents within this dataset (Figure 6B). Cumulatively, the DMSP lyase
enzyme DddP was far more abundant than all mdd genes in most aquatic samples, but
not sediments, implying that DMSP cleavage is the predominant aquatic DMS source
(Figure 6B). Moreover, mddH also exhibited a wide distribution in various
environments (Figure 6B). The taxonomy of prokaryotic mdd genes beyond the
Terrabacteria group and Proteobacteria in many metagenomic samples remained
challenging. It was worth noting that most MAGs with mddM1 homologues were
annotated as Actinomycetota, and 100% of MAGs with mddM2 homologues were also
annotated as Actinomycetota, corroborating our above findings that the MddM1 and
MddM2 enzymes are primarily in Actinomycetota. In Tara Oceans samples from the
OM-RGC marine metagenome database, only two mddM1 homologous genes were
detected at extremely low abundance and exhibited a sparse distribution. ^[37] This low
level detection of mddM1 could be due to these actinomycetes being filamentous and
filtered out of Tara Oceans samples; or their preference to colonize marine sediments
rather than seawater and OM-RGC database comprising largely pelagic samples

3 Discussion

The important gas DMS can be biologically produced from many precursor molecules including H₂S, MeSH and DMSO, but DMSP was thought to be the major source. Here, we further highlight the potential importance of H₂S and MeSH dependent DMS production via the discovery and characterization of two novel Mdd enzymes, termed

331	MddM1 and MddM2. MddM1 was exceptionally common in Actinomycetota and in
332	terrestrial and marine sediment environments, the latter being known hotspots for DMS
333	production. ^[7]
334	$MddM1 \ and \ MddM2 \ encoded \ SAM\text{-}dependent \ H_2S \ and \ MeSH \ methyltransferases$
335	which were both taxonomically distinct to the previously identified MddA, MddH and
336	eukaryotic thiol methyltransferases (Figure 2; S2, Supporting information). ^[14-15, 26]
337	Despite their taxonomic disparity, MddM1, MddM2, MddH and human TMT1A and
338	TMT1B all shared extended residue similarity, the same conserved SAM-binding
339	domain and significant structural similarity (Figure 2; S2, Supporting information).
340	These data implied that these five S-methyltransferase enzymes may share a common
341	ancestor. In contrast, MddA bore no substantial sequence nor structural similarity to
342	MddM2, MddH, TMT1A or TMT1B, implying that it evolved independently.
343	Nevertheless, this study highlighted significant biodiversity in the Mdd enzyme family,
344	which was reminiscent of that observed with DMSP lyases. ^[10, 15, 38] These data lend
345	further weight to the hypothesis that the enzymatic evolution of H ₂ S and MeSH S-
346	methyltransferase and DMSP cleavage activities were far easier than for DMSP
347	demethylation for example. ^[10, 15, 38]
348	Met, H ₂ S, MeSH and, likely, MMPA are known to be toxic to cells by inhibiting the
349	mitochondrial electron transport chain. ^[39] These substances can be converted into the
350	harmless gas DMS through a combination of microbial Met-gamma-lyase, downstream
351	DMSP demethylation enzymes and ultimately Mdd-family S-methyltransferases. ^[14-15]
352	Our data reinforces the hypothesis that microbes with an Mdd enzyme, S-methylate H ₂ S
353	and MeSH (potentially from MMPA and/or Met degradation) to produce DMS as a
354	cellular detoxification strategy. In addition, oxidative stress is a continuous factor that
355	bacteria must cope with and a key mechanism associated with MeSH-induced cellular
356	damage. [40] Here, we provide the first evidence for Mdd pathways protecting against
357	oxidative stress through the host upregulating mdd genes in response to oxidative stress
358	(from H ₂ O ₂ addition), and the action Mdd proteins in its amelioration. Note, cells have
359	many methods to deal with oxidative stress, e.g. superoxide dismutase and catalase

360	production, but the specific antioxidant mechanisms of Mdd enzymes remain unknown.
361	It was interesting that there were both membrane-associated (MddA and MddM2) and
362	cyctosolic Mdd (MddH and MddM1) enzymes, perhaps implying extracellular or
363	intracellular sources of the toxic Mdd substrates. A membranous system might better
364	detoxify exterior molecules and vice versa for the cellular generated substrates.
365	Based on identification of Mdd-like proteins in the MMETSP database and the
366	subsequent finding that one candidate algal Mdd enzyme lacked S-methyltransferase
367	activity against the canonical substrates, it was possible that these proteins comprise a
368	clade of Mdd-like methyltransferase enzymes which evolved to methylate a substrate
369	distinct from H ₂ S or MeSH, and not necessarily related to sulfur cycling. As noted
370	above, it is also possible that the chosen candidate algal Mdd-like protein did not
371	properly fold when expressed in E. coli or that it required a missing co-factor for activity
372	Further studies are required on more representative proteins from this diverse clade to
373	draw robust conclusions on their role and environmental importance. Nevertheless, this
374	finding highlights the critical importance of coupling genomic predictions with
375	functional analyses and of the necessity of comprehensively considering potential
376	substrate range.
377	The significance of the Mdd pathways in global DMS production, with far-reaching
378	implications for atmospheric chemistry, climate, and sulfur cycling, has been
379	underestimated in the past. Here, we showed that the genetic potential for DMS
380	production via Mdd systems could be more prominent in the terrestrial and marine
381	sediments than DMSP-dependent systems, including those of the deep ocean where M .
382	poriferae ZYF656, the source of MddM1 and MddM2, was isolated. It is likely that
383	Met, MeSH and H ₂ S are more prominent in microoxic-anoxic sediments than in
384	seawater, perhaps explaining the abundance of mdd genes, particularly from
385	Actinomycetota, in these environments. This study builds on previous identification of
386	Mdd systems to further highlight the growing potential importance of Mdd and DMSP
387	systems to global DMS production in both marine and terrestrial settings.
388	There is a pressing need for more environmental measurements of MeSH, H ₂ S, DMSP

and other potential DMS sources, with DMSP- and Mdd-dependent DMS production rates and multi-omics (ideally metatranscriptomics and metaproteomics) to allow a better understanding of the relative importance of the microbes and pathways that generate DMS in diverse environments. Without such comprehensive studies it is very difficult to estimate the exact contribution of Mdd pathways, or any other pathway, to the global DMS production. Nevertheless, this study emphasizes that Mdd systems cannot automatically be ignored as insignificant contributors to global DMS production and introduces the *Actinomycetota* as potentially important contributors in diverse environments.

4 Conclusions

This study identified two novel SAM-dependent methyltransferases, MddM1 and MddM2, predominantly found in diverse marine and terrestrial actinomycetes, many of which were not previously thought to S-methylate H₂S and MeSH. Thus, it highlighted the large biodiversity in Mdd enzymes, with four distinct known Mdd enzymes, and implied that Mdd enzymes, like DMSP lyases, evolved multiple times. We confirmed the important role of Mdd proteins to detoxify cytotoxic H₂S and MeSH through their S-methylation yielding DMS, but also, for the first time, oxidative stress amelioration. Given over 50% of Actinomycetota contain mddM1 and the abundance of mdd genes in diverse soils and marsh sediments, this study implicates H₂S/MeSH-dependent S-methylation as a major and previously underestimated contributor to global DMS production and sulfur cycling. Future research must combine detailed multiomics studies with measurements of Mdd pathways and other DMS production and consumption processes to further elucidate the relative importance of these pathways in diverse marine and terrestrial environments.

5 Experimental Section

Bacterial strains, plasmids, and culture media. Strains and plasmids used in this study are listed in Table S2 (Supporting information). *M. poriferae* ZYF656 was grown

118	in 2216E complete medium (per liter seawater: 1 g yeast extract, 5 g peptone, 0.01 g
119	ferric phosphate, 20 g agar, pH 7.6) or MBM minimal medium with a mixed carbon
120	source ^[41] at 28°C, 170 r.p.m. for 24 h. <i>Escherichia coli</i> was cultured in LB complete
121	medium or M9 minimal medium at 37°C overnight. The composition of the M9
122	minimal medium was as follows (per 200 mL water): 40 mL $5 \times M9$ salt (per liter water:
123	64 g Na ₂ HPO ₄ ·7H ₂ O, 15 g KH ₂ PO ₄ and 2.5 g NaCl), 200 μL 0.1M CaCl ₂ , 400 μL 1M
124	MgSO ₄ , 200 μL 30 mg/mL Thiamine and 360 μL 50% glycerol. S. venezuelae wild-
125	type and mutant strains were cultured in MYM complete medium (per liter water: 4 g
126	maltose, 4 g yeast extract, 10 g malt extract, 18 g agar, pH 7.3) or MM minimal medium
127	(per liter water: 0.5 g L-asparagine, 0.5 g K ₂ HPO ₄ , 0.2 g MgSO ₄ ·7H ₂ O, 0.01g
128	FeSO ₄ ·7H ₂ O, 10 g glucose, 10 g agar, pH to 7.0-7.2) at 28°C, 170 r.p.m. for 48 h.
129	Throughout this study, 'water' refers to purified, deionized water used consistently for
130	all media preparations. When required for selection, antibiotics were added at the
131	following concentrations: ampicillin (50 μg/mL), chloramphenicol (25 μg/mL),
132	kanamycin (50 μg/mL).
133	
134	Isolation of M. poriferae ZYF656. M. poriferae ZYF656 was isolated from 9,600 m
135	depth seawater of the Challenger Deep of the Mariana Trench (11°20.605 N,

436

437

438

439

440

441

442

443

142°19.557′E), aboard the R/V Dong Fang Hong 2 on September, 2016. For the isolation of bacteria, seawater sample (1 mL) was diluted in gradient and spread on 2216E on board. All plates were incubated at 28°C for 5-7 days. Most colonies were picked, purified for three times and preserved at -80°C with glycerol (15%, v/v). The bacterial genomic DNA was extracted, and then amplified with the universal primers 27F/1492R for bacterial identification (Table S3, Supporting information). One isolate ZYF656, identified as M. poriferae, attracted our attention as it showed Mdd activity, but lacked all known mdd genes.

444

445

446

Sole carbon or sulfur source growth tests. M. poriferae ZYF656 cells were harvested, washed with MBM medium three times and used to inoculate fresh MBM medium

lacking a carbon or sulfur source. Met (Sigma Aldrich, USA; 5 mM), DMSP (TCI, 447 Shanghai, China; 5 mM), DMSO (Solarbio, Beijing, China; 2 mM), DMS (Sigma 448 Aldrich, USA; 1 mM), glycerol (Sinopharm, Shanghai, China; 10 mM), MeSH (Sigma 449 450 Aldrich, USA; 1 mM), glucose (Sinopharm, Shanghai, China; 2 mM), sucrose (Sinopharm, Shanghai, China; 2 mM), sodium succinate (Sigma Aldrich, USA; 2 mM) 451 or sodium pyruvate (Yuanye Bio-Technology Co., Ltd, Shanghai, China; 2 mM) were 452 added as the sole carbon. Where necessary, Met, DMSP, DMSO, DMS, MeSH, or 453 MgSO₄ (100 µM, respectively) were added as the sole sulfur source. Cultures were 454 incubated at 28°C, 170 r.p.m. for 10 days, and cell growth was followed by measuring 455 optical density at 600 nm (OD₆₀₀) using a WFJ 2100 spectrophotometer (Unico, 456 Shanghai, China). 457 Analysis of microbial DMS and MeSH production. M. poriferae ZYF656 Colonies 459

458

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

from fresh agar plates were picked and used to inoculate MBM medium (200 µL) containing Met (0.5 mM), MMPA (Tokyo Chemical Industry Co., Ltd., Tokyo, Japan; 0.5 mM), or MeSH (0.5 mM) in a 2 mL vial, which were incubated at 28°C, 170 r.p.m. for 24 h. To measure DMS and MeSH production from H₂S, strains were inoculated into 2216E medium without Fe³⁺ and incubated with H₂S (0.5 mM) at 28°C for a further 24 h. The S. venezuelae wild-type and its series of knockout, complemented, and overexpressing strains colonies from fresh MYM agar plates were inoculated into solid slants of MM medium (300 µL) containing the addition of Met (1 mM) or MeSH (1 mM) in 2 mL sealed GC vials and incubated at 28°C for 48 h. The production of MeSH and DMS was expressed in umol and nmol, respectively. All experiments were performed with three biological replicates. Headspace DMS and MeSH levels were directly monitored by gas chromatography (GC) using a flame photometric detector (Agilent 7890A GC fitted with a 7693 autosampler) and a HP-INNOWax 30 m × 0.320 mm capillary column (Agilent Technologies, J&W Scientific). Culture medium with and without substrate were used as negative controls. Calibration curves were generated as previously described. [42] The

476	detection limit for DMS and MeSH was 0.2 nmol and 5 nmol, respectively. Bacterial
477	cells were lysed by ultrasonication (JY92 IIN, Scientz, Ningbo, China) and total protein
478	was quantified by Bradford assays (BioRad, Hemel Hempstead, UK). Experiments
479	were conducted in triplicates and quantitative results were shown as mean \pm s.d.
480	
481	Analysis of microbial DMSO production. M. poriferae ZYF656 colonies from fresh
482	agar plates were picked and inoculated into MBM medium (200 μ L) containing DMS
483	(1 mM) in 2 mL sealed vials and incubated at 28°C, 170 r.p.m. for 24 h. All traces of
484	DMS were eliminated by opening the lid and heating the reaction vials in an 85°C water
485	bath for 2 h. Subsequently, vials were sealed immediately after the addition of stannous
486	chloride (100 $\mu L;880$ mM, 16.68 g in 100 mL of 37% HCl), and heated at 55°C for 90
487	min. DMS was quantified by gas chromatography, as described above.
488	
489	Genome sequencing of M. poriferae ZYF656. M. poriferae ZYF656 colonies were
490	provided to the Beijing Genomics institution (BGI; Wuhan, China) who collected
491	performed genomic DNA sequencing. Whole genome sequencing was done using the
492	Illumina Hiseq 4000 sequencer system with a 270 bp paired-end library and PacBio
493	RSII and a 20 kb library. Reads were assembled using Unicycle, sequencing data
494	correction was performed with Pilon v1.1, and artificial correction of ambiguous sites
495	was carried out with REAPR 1.0. Genome annotation was performed by the RASTtk
496	online service with default settings applied. ^[43] Ratified enzymes involved in DMSP/S
497	cycling, shown in Table S4 (Supporting information), were used as query sequences for
498	BLASTp.
499	
500	Construction of <i>M. poriferae</i> ZYF656 genomic library. A genomic library of <i>M</i> .
501	poriferae ZYF656 was constructed to identify novel Mdd enzymes. High quality M .
502	poriferae ZYF656 genomic DNA was partially digested with the restriction
503	endonuclease BamHI, and ligated into BamHI-digested and dephosphorylated plasmid
504	pUC18. Ligated mixes were transformed into E. coli JM109 to form a library with

approximately 10,000 clones, from which eight clones were randomly selected to determine the library quality and coverage. The eight chosen plasmids were analysed by restriction digestion with *Bam*HI, and all had 20-30 kbp of cloned DNA with distinct restriction digestion profiles and cloned sequences. To screen for clones conferring MeSH-dependnet DMS production, *E. coli* JM109 transformants were cultured in LB medium with ampicillin (50 μg/mL) at 28°C, 170 r.p.m. for 12-14 h, and diluted 1/50 into M9 medium containing MeSH (1 mM) and ampicillin (50 μg/mL). The strains were cultured at 37°C for 24 h, and screened by GC. *E. coli* JM109 with empty pUC18 vector and media only, with or without MeSH, were used as controls. Positive clones producing DMS above the negative controls were sequenced by Sangon Biotech (Shanghai, China).

General genetic manipulations. The primers used in this study are shown in Table S3 (Supporting information). Bacterial genomic DNA was isolated using a FastPure bacteria DNA isolation mini kit-Box2 (Vazyme, Nanjing, China). Plasmids purification and gel extraction used a E.Z.N.A. plasmid mini kit I and a E.Z.N.A. gel extraction kit (Omega, Georgia, USA), respectively. Routine restriction digestions and ligations were performed as described in Carrión et al. 2015. [26] Plasmids pXMJ19 with TbmddM2 and mddM1 were individually transferred to E. coli DH5α by transformation. Preparation of competent cells: C. RES167 was cultured overnight at 30°C, and subsequently inoculated into BHIS medium (per 200 mL water: 7.4 g brain heart infusion and 18.2 g sorbitol) until the OD₆₀₀ reached 1.75. The cells were harvested by centrifugation at 5,000 g for 20 min, resuspended in 20 mL precooled TG buffer (per 100 mL water: 1 mM Tris-HCl and 12 g 87% glycerol), and repeated this step twice. The TG buffer was then replaced with precooled glycerol (10%) and the procedure performed twice more. Finally, the cells were resuspended in 10% glycerol (1 mL) and dispensed into aliquots (150 µL) in cooled Eppendorf tubes. Plasmids were transformed into competent C. glutamicum RES167 by electroporation as previously described.^[44] To measure DMS production from MeSH or H₂S of RES167/pXMJ19-mddM1 and RES167/pXMJ19-

534	¹⁰ mddM2, these two strains were cultured in 2 mL sealed glass vials into M9 medium
535	(200 μ L) supplemented with MeSH (1 mM) or H ₂ S (1 mM), glucose (2 mM) and
536	chloramphenicol (25 $\mu g/mL$) at 30°C for 24h.
537	Full-length mddM1 from M. poriferae ZYF656 and TbmddM2 genes were PCR-
538	amplified from genomic DNA and individually cloned into the pGEX-4T-1 vector
539	(Miaoling Biology, Wuhan, China) for expression of GST-tagged enzymes in E. col
540	BL21 (DE3). Sequencing of all PCR-amplified products and plasmids was confirmed
541	by Sangon Biotech Co., Ltd.
542	
543	Protein bioinformatics and localization. The physical and chemical properties or
544	MddM1 and MddM2 were predicted using protParam
545	(<u>https://web.expasy.org/protparam/</u>). ^[45] CELLO v 2.5 (<u>http://cello.life.nctu.edu.tw/</u>
546	was used to predict Mdd protein subcellular localization. ^[46] The presence of signal
547	peptides in proteins and their cleavage sites were predicted through the SignalP 5.0
548	server (https://services.healthtech,dtu.dk/service/SignalP-5.0).[47] The transmembrane
549	helices in proteins were predicted by TMHMM-2.0
550	(<u>https://services.healthtech,dtu.dk/service/TMHMM-2.0</u>). ^[48] The membrane and
551	cytoplasmic proteins of M. poriferae ZYF656 were extracted using the Bacteria
552	Membrane Protein/Cytoplasmic Protein Extraction kit (Solarbio, Beijing, China) in
553	accordance with the manufacturer's instructions, yielding membrane proteins
554	(400.0 mg/mL) and cytoplasmic proteins (11.0 mg/mL). Given that M. porifero
555	ZYF656 is a Gram-positive bacterium, the cell lysis process was extended appropriately
556	typically for 2 to 4 hours. Subsequently, membrane proteins (10.0 mg) and cytoplasmic
557	proteins (1.2 mg) were each resuspended in Tris-HCl (pH 8.0) with MeSH (1 mM) and
558	SAM (1 mM) to a final volume (150 μ L), and incubated at 37°C for 3 h. DMS
559	production was quantified as described above.
560	
561	Protein expression and purification. Recombinant strains containing pGEX-4T-1
562	were cultured at 37°C overnight with shaking at 170 r.p.m. in LB medium (5 mL) with

563	ampicillin (50 μg/mL) for positive selection. Afterwards, the cultures were inoculated
564	into fresh LB medium and cultivated until OD600 reached 0.5. Isopropyl-D-
565	thiogalactopyranoside (IPTG) was added to cultures at a final concentration (0.1 mM),
566	which were then further incubated at 16°C for 14-16 h. Cells were harvested, washed
567	and resuspended in PBS buffer (140 mM NaCl, 2.7 mM KCl, 10 mM Na ₂ HPO ₄ , 1.8
568	mM KH ₂ PO ₄ , pH 7.3), lysed by sonication using an ultrasonic homogenizer JY92 IIN
569	(Scientz, Ningbo, China), and then centrifugated at 12,000 g for 10 min. Protein was
570	purified from cell supernatant by Glutathione Sepharose 4B affinity chromatography
571	(GE Healthcare, USA), and the bound proteins were eluted in the elution buffer (50
572	mM Tris-HCl, 10 mM reduced glutathione, pH 8.0). Purified proteins were analyzed
573	by SDS-PAGE, and stored at -80°C.
574	To determine the functionality of MddM1 and MddM2 homologues, candidate MddM1
575	homologous proteins sequences from Streptomyces sp. SAJ15 (A0A7M3LRJ1),
576	Planomonospora sphaerica (A0A161LM11), Acidobacteriota_bacterium
577	(MCZ6599416.1), Acidobacteriota_bacterium (MDE3069982.1),
578	Mycolicibacterium_litorale (A0A6S6P9F0), Deltaproteobacteria_bacterium
579	(TMB00698.1), Dictyobacter_kobayashii (WP_126557608.1),
580	Streptomyces_venezuelae (F2RA35) and the MddM2 homologous protein sequence
581	from T. bispora (D6Y5L2) were obtained from UniproKB (Table S5, Supporting
582	information), and synthesized by Sangon Biotech (Shanghai, China). They were
583	subcloned into pET-24a, and transformed into E. coli BL21 (DE3). The recombinant
584	strains were grown in LB with kanamycin (50 $\mu g/mL$) to an OD ₆₀₀ of 0.5, and then
585	cultured with IPTG (0.1 mM) at 28°C, 170 r.p.m. for 3 h. Cells containing
586	overexpressed protein were collected and sonicated as described above. Triplicate
587	sonicated mixture (200 μ L) of the supernatants and pellets were incubated with SAM
588	(1 mM) and MeSH (1 mM) or H ₂ S (1 mM) for 3 h before quantifying the MeSH and
589	DMS levels and protein concentrations.

In vitro characterization of Mdd enzymes. The enzymatic activity of MddM1 and ^{Tb}MddM2 were measured by detecting MeSH and DMS production as previously described.^[14] Reaction mixtures (200 µL) containing Tris-HCl (20 mM, pH9.0), purified protein (1 µg MddM1 or 2 µg ^{Tb}MddM2), SAM (1 mM) and MeSH (1 mM) or H₂S (1 mM) were incubated at 28°C for 30 min, and stopped by adding HCl (100 μL, 10%). The MeSH and/or DMS produced was monitored by GC. Enzyme-deficient reaction mixtures provided negative controls to ensure abiotic DMS formation was absent. To determine the optimal temperature, reaction mixtures were incubated at 4 to 60°C for 30 min. The optimum pH was conducted at the optimal temperature, and Tris-HCl was replaced with Britton-Robinson buffer (Boric acid, phosphoric acid and acetic acid, pH adjusted with NaOH) at pH values of 4 to 10.6. For kinetic parameter assays, K_m and k_{cat} values were determined by nonlinear regression analysis using purified proteins (1 µg MddM1 or 2 µg TbMddM2) and SAM (0-2.0 mM, fixed at 1 mM for MeSH kinetic work), MeSH or H₂S (0-2.0 mM, fixed at 1 mM for SAM kinetic work). The enzymatic activities were also examined under the optimum temperature and pH, and quenched by addition of HCl (100 µL, 10%). Enzyme activity was calculated by the amount of DMS production when using MeSH as substrate, and by the sum of MeSH and twice DMS production when using H₂S as substrate. Non-linear fitting of the data was performed by the Graphpad Prism8.

610

611

612

613

614

615

616

617

618

619

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

LC-MS analysis. LC-MS was used to confirm the conversion of SAM to *S*-adenosylhomocysteine (SAH) in enzyme assays with purified protein to verify substrate specificity. LC-MS was carried out on a QTRAP4500 liquid chromatograph mass spectrometer (SCIEX, Netherlands) with a SunFire C18 reversed-phase column (4.6 × 250 mm, 5 μm particle size, Waters, United States). The MS spray chamber conditions were as follows: curtain gas 35 psi, ion spray voltage 5,000 V, ion spray temperature 450°C, ion source gas1 40 psi, ion source gas1 45 psi, collision gas medium. Solvent A was ammonium acetate (50 mM, pH 5.5). Solvent B was 20% acetonitrile and 80% solvent A. The samples were eluted with a linear gradient of 95% solvent A to 95%

solvent B over 16 min at the flow of 0.8 mL/min. Prior to use, the solvent was subjected to ultrasonic shock for 20 mins to remove dissolved gases. The injection volume was 10 μL. All samples were centrifuged at 12,000 g for 15 min, after which, each sample (100 μL) was transferred to 2 mL glass vials equipped with internal cannulas. The targeted mass transitions corresponding to [M+H]⁺ of SAH and SAM were detected as previously described.^[49-50]

Determination of MddM1 and MddM2 activity in *E. coli. E. coli* BL21 strains containing cloned *mddM1* and *mddM2* genes or empty vector were cultured in LB medium (5 mL) containing ampicillin (50 μg/mL) until an OD₆₀₀ of 0.8 was reached. The cells were diluted 10-fold into M9 minimal medium (300 μL) with IPTG (0.1 mM) and MeSH (0.5 mM) or H₂S (0.5 mM), and incubated at 28°C for 18 h.^[26] DMS production, MeSH production and protein concentrations were determined as above.

A mutation of mddM1 (S. venezuelae $\Delta mddM1$) was constructed in S. venezuelae

Construction of Streptomyces venezuelae mutants

(GenBank accession number: NZ_CP018074.1). gRNA sequences to the target region were ordered as single stranded oligos with *Bbs* I overhangs from Integrated DNA technologies (IDT) and annealed at equal molarity in HEPES buffer by heating at 95°C for 5 min before cooling to 4°C (at 1°C/s). To assemble into the pCRISPomyces-2 vector, Golden Gate reactions were set up using purified backbone (100 ng) and insert (3μL) in the presence of T4 ligase buffer (2 μL), T4 ligase (1 μL), *Bbs* I (1 μL) and dH₂O up to total volume (20 μL). Around 1 kbp of flanking DNA from either side of the target gene was PCR amplified using Q5 DNA polymerase.

pCRISPomyces-2 containing the gRNA of interest was digested with *Xba* I and dephosphorylated with shrimp alkaline phosphatase to prevent re-ligation. Flanking DNAs were assembled into the digested vector backbones containing the gRNAs using Gibson Assembly. DNAs were incubated in a ratio of 1:3 (plasmid/insert) in the presence of Gibson Assembly master mix (NEB) at 50°C for 1 h. The resulting reaction

649	mix was then transformed into E. coli and plated on selective media at 37°C overnight
650	and the resulting colonies were screened by colony PCR.
651	Confirmed plasmids were transformed into E. coli ET12567 containing pUZ8002.
652	These were then grown overnight at 37°C, 200 r.p.m., sub-cultured 1:20 in fresh LB +
653	relevant antibiotics and grown to $OD_{600}\ 0.4$ - 0.6 . Pellets from culture (10 mL) were
654	washed twice with fresh LB to remove antibiotics. Meanwhile, S. venezuelae spores
655	(200 μ L) were pre-germinated in 2×YT (500 μ L; per litre water: 16 g tryptone, 10 g
656	yeast extract, 5 g NaCl, pH 7.0) at 52°C for 10 minutes. The two cell types were mixed,
657	resuspended in fresh LB and plated onto SFM medium (per litre water: 20 g soy flour,
658	20 g mannitol, 20 g agar) containing MgCl ₂ (10 mM) and incubated at room
659	temperature for 16 h. For selection of desired ex-conjugants, Nalidixic acid (0.5 mg)
660	and selection antibiotic was added in dH ₂ O (1 mL) to each plate and cultures returned
661	to the 30°C incubator for 2-3 days or until colonies appeared.
662	For overexpression, pIJ10257 containing the constitutive ErmE* promoter, was
663	digested with Nde I and Hind III and gel purified as described above. The gene of
664	interest was PCR amplified using Q5 Polymerase and plasmids were assembled using
665	Gibson assembly. Confirmed plasmids were transformed into E. coli ET12567
666	containing pUZ8002 for conjugation into both wild-type S. venezuelae or its mddM1
667	mutant. Resulting exconjugants were confirmed to contain the overexpression plasmid
668	by antibiotic selection and colony PCR using Biotaq red. All Streptomyces strains were
669	routinely grown on MYM medium at 30°C for 3 days until the green spore pigment was
670	visible indicating a complete life cycle. The plasmids and primers used are listed in
671	Tables S2 and S3 (Supporting information).
672	
673	Growth analyses of E. coli with mddM1 and mddM2 genes. E. coli BL21 strain
674	containing mddM1 gene, mddM2 gene or empty vector was cultured in LB medium
675	$(5mL)$ at 37°C overnight and the OD_{600} was adjusted to 0.5. The cells were then diluted
676	10-fold into fresh M9 minimal medium with MeSH (1 mM), H ₂ S (1 mM) or H ₂ O ₂ (2
677	mM) and ampicillin (50 μg/mL) in a 96-well microplate, and incubated at 37°C. ^[14] The

absorbance of the bacterial suspensions was measured at 600 nm using a Multiskan GO microplate reader (Thermo scientific, USA). An equal amount of distilled water was added to the bacterial suspensions instead of MeSH, H₂S or H₂O₂ as the negative control.

RT-qPCR analysis. *M. poriferae* ZYF656 was cultured in 2216E medium at 28°C until logarithmic growth phase was reached. Cells were diluted 10-fold into fresh MBM minimal medium containing Met (1 mM), H₂S (1 mM) or MeSH (1 mM) and incubated at 28°C, 170 r.p.m. for 8 h. Cells cultured in MBM medium without substrate were used as controls. Each sample was performed in triplicate, and collected by centrifugation at 5,000 *g* for 10 min. Total RNA was extracted using a RNeasy Mini kit (Qiagen, Germary), and reverse transcribed using a NZY First-Strand cDNA Synthesis kit (Nzytech, China). Fluorescence quantitative PCR was performed using a QuantStudioTM 5 System (Thermo Fisher Scientific, USA). Data were analyzed by the 2-\times\times^{CT} method, and *recA* was used as an internal standard. Forward and reverse primer pairs were designed as shown in Table S3 (Supporting information).

Bioinformatics analysis. BLASTp was used to identify candidate MddM1 and MddM2 homologues (identity ≥ 40%, E-value ≤ e-30, and coverage ≥ 70%) in the Uniprot (https://www.uniprot.org/) and NCBI NR (https://www.ncbi.nlm.nih.gov/) databases. [51] MddM1 and MddM2 of *M. poriferae* ZYF656 were used as the query sequences, respectively. The phylogenetic tree was constructed at IQ-TREE website (http://iqtree.cibiv.univie.ac.at/). The information for representative MddM proteins is shown in Table S6 (Supporting information). The amino acid sequences were aligned using MAFFT (https://mafft.cbrc.jp/alignment/server/) and uploaded to the Gblocks website (https://molevol.cmima.csic.es/castresana/Gblocks server) for gap removal. The maximum-likelihood method and the LG+F+G4 model of amino acid substitution were used with 1,000 bootstrap replications. The tree was visualized by Chiplot. [52] MddM1 homologous proteins shown in Table S4 (Supporting information) from distinct branches or bacterial clades were selected to further study to verify their Mdd activities.

707	To explore the distribution of MddM1, MddM2, MddA and MddH across the
708	Actinomycetota, ratified protein sequences of MddM1, MddM2, MddA and MddH were
709	used as query sequences to perform Hidden Markov Model (HMM)-based searches (E-
710	value \leq e-55) from all representative genomes of <i>Actinomycetota</i> from NCBI (42,815)
711	in total) using HMMER (v3.4) (https://github.com/EddyRivasLab/hmmer.git),
712	BLASTp searches against peptide databases from the genomes obtained in the previous
713	step, and set the alignment threshold to identity \geq 40% and coverage \geq 70%.
714	Metagenomes containing actinomycetes with at least 5% abundance were screened
715	from the Sandpiper 0.2.0 (http://sandpiper.qut.edu.au), and the biogeographic
716	distribution of the actinomycetes was plotted by R (v. 4.0.3) using scatterpie and
717	ggplot2.
718	To analyze the distribution of MddM1, MddM2, MddA, MddH and DddP in different
719	environmental metagenomes, we downloaded environmental metagenomes using the
720	online webserver from the Integrated Microbial Genomes & Microbiomes (IMG/M)
721	system ^[53] and NCBI SRA database, ^[54] and the genome information are shown in Table
722	S7 (Supporting information). Metagenomic sequencing and binning were performed as
723	previously described. ^[27] The MddM1, MddM2, MddA, MddH and DddP sequences
724	used for the metagenome analysis are detailed in Table S4 (Supporting information).
725	RecA sequences were extracted from Cheng et al. 2023. ^[27] HMM-based searches (E-
726	value \leq e-55) for Mdd homologues in metagenomes from different environments using
727	cutoff values of identity \geq 40%, E-value \leq e-55, and coverage \geq 70% were retrieved by
728	BLASTp. The abundance of <i>mdd</i> genes was calculated using the percentages of
729	bacterial harboring genes normalized to the single-copy housekeeping gene recA.
730	For Eukaryotes, homologues of MddM1, MddM2 and MddH were identified from re-
731	assemblies of the Marine Microbial Eukaryote Transcriptome Sequencing Project
732	(MMETSP) (https://doi.org/10.5281/zenodo.740440) using HMM searches with an E-
733	value of 1×10^{-30} for MddM1 and MddM2, and 1×10^{-80} for MddH. ^[33] The obtained
734	sequences were further refined with identity $\geq 35\%$ and coverage $\geq 70\%$. The
735	maximum-likelihood tree of eukarvotic Mdd homologues was constructed using IO-

736	TREE. The resulting tree w	as visualized in Itol. ^[55]
-----	----------------------------	--

737 738

Acknowledgements

- 739 This work was funded by the National Natural Science Foundation of China (32370118,
- 740 42306115 and 42376101), National Key R&D Program of China (2025YFF0516900
- 741 and 2025YFF0516903), Shandong Provincial Natural Science Foundation
- 742 (ZR2023QD017), China Postdoctoral Science Foundation (2022M722975), the
- Postdoctoral Innovation Program of Shandong Province (SDCX-ZG-202201016), the
- 744 Biotechnology and Biological Sciences Research Council, UK (BB/X005968), Natural
- 745 Environmental Research Council, UK (NE/P012671) and China Scholarship Council
- 746 (No. 202106330012).

747

748

Conflict of Interest

749 The authors declare no conflict of interest.

750

751

Author Contributions

- 752 X.-H.Z. and J.D.T. were responsible for the conceptualization of the study. Experiments
- vere carried out by R.H.G. and Y.Z. (identification and characterization of MddM,
- 754 genomic library construction and growth experiments), Z.H.G. (H₂S experiments,
- 755 candidate MddM expression and characterization, mutant strains construction,
- 756 membrane protein extraction, Y.H.Z. (screening and identification of novel Mdd strains,
- establishment of Mdd activity experimental method), R.D. (mutant construction), C.S.
- 758 (phenotypic experiments of the mutant strains) and Y.F.Z. (isolation of bacterial strains).
- Data analysis was carried out by R.H.G. (genetic taxonomy), Z.H.G. (genome and
- 760 MMETSP database alignment), H.J.C. (metagenome), R.H.L. (bioinformation) and
- 761 A.J.G. (enzymatic kinetics). X.-H.Z. and Y.H.Z. were accountable for the supervision
- of the study. The original draft of the manuscript was written by R.H.G., Z.H.G. and
- 763 Y.Z. Writing—Review and Editing was also performed by X.-H.Z., J.D.T., R.H.G.,
- 764 Z.H.G., Y.H.Z. and A.J.G.

766 Data Availability Statement

- All data needed to evaluate the conclusions in the paper are present in the paper and/or
- 768 the Supplementary information.

769

- Received: ((will be filled in by the editorial staff))
- 771 Revised: ((will be filled in by the editorial staff))
- Published online: ((will be filled in by the editorial staff))

773

774 **Reference**

- 775 [1] M. O. Andreae, Mar. Chem. 1990, 30 (1-3), 1, https://doi.org/10.1038/nature1058010.1016/0304-
- 776 <u>4203(90)90059-L</u>.
- 777 [2] J. Stefels, M. Steinke, S. Turner, G. Malin, S. Belviso, Biogeochemistry 2007, 83 (1-3), 245,
- 778 <u>https://doi.org/10.1007/s10533-007-9091-5</u>.
- 779 [3] A. R. J. Curson, J. D. Todd, M. J. Sullivan, A. W. B. Johnston, Nat. Rev. Microbiol. 2011, 9 (12),
- 780 849, https://doi.org/10.1038/nrmicro2653.
- 781 [4] K. B. Ksionzek, O. J. Lechtenfeld, S. L. McCallister, P. Schmitt-Kopplin, J. K. Geuer, W. Geibert,
- 782 B. P. Koch, Science **2016**, 354 (6311), 456, https://doi.org/10.1126/science.aaf7796.
- 783 [5] P. K. Quinn, T. S. Bates, *Nature* **2011**, 480 (7375), 51, https://doi.org/10.1038/nature10580.
- 784 [6] S. M. Vallina, R. Simó, Science 2007, 315 (5811), 506, https://doi.org/10.1126/science.1133680.
- 785 [7] F. E. Hopkins, S. D. Archer, T. G. Bell, P. Suntharalingam, J. D. Todd, Nat. Rev. Earth Env. 2023, 4
- 786 (6), 361, https://doi.org/10.1038/s43017-023-00428-7.
- 787 [8] G. A. Nevitt, F. Bonadonna, *Biol. Letters* **2005**, *I* (3), 303, https://doi.org/10.1098/rsbl.2005.0350.
- 788 [9] M. Steinke, J. Stefels, E. Stamhuis, *Limnol. Oceanogr.* **2006**, *51* (4), 1925,
- 789 https://doi.org/10.4319/lo.2006.51.4.1925.
- 790 [10] X. H. Zhang, J. Liu, J. Liu, G. Yang, C. X. Xue, A. R. J. Curson, J. D. Todd, Sci. China Life Sci.
- 791 **2019**, *62* (10), 1296, https://doi.org/10.1007/s11427-018-9524-y.
- 792 [11] E. G. Stets, M. E. Hines, R. P. Kiene, FEMS Microbiol. Ecol. 2004, 47 (1), 1,
- 793 https://doi.org/10.1016/S0168-6496(03)00219-8.
- 794 [12] O. Carrion, J. Pratscher, A. R. J. Curson, B. T. Williams, W. G. Rostant, J. C. Murrell, J. D. Todd,
- 795 ISME J. **2017**, 11 (10), 2379, https://doi.org/10.1038/ismej.2017.105.
- 796 [13] O. Carrion, J. Pratscher, K. Richa, W. G. Rostant, M. Farhan Ul Haque, J. C. Murrell, J. D. Todd,
- 797 Front. Microbiol. **2019**, 10, 1040, https://doi.org/10.3389/fmicb.2019.01040.
- 798 [14] C.-Y. Li, H.-Y. Cao, Q. Wang, O. Carrion, X.-Y. Zhu, J. Miao, P. Wang, X.-L. Chen, J. D. Todd, Y.-
- 799 Z. Zhang, ISME J. 2023, 17 (8), 1184, https://doi.org/10.1038/s41396-023-01430-z.
- 800 [15] Y. Zhang, C. Sun, Z. Guo, L. Liu, X. Zhang, K. Sun, Y. Zheng, A. J. Gates, J. D. Todd, X.-H. Zhang,
- 801 *Nat. Microbiol.* **2024**, (10), 2614, https://doi.org/10.1038/s41564-024-01788-6.
- 802 [16] W. Fei, M. C. Peter, Environ. Toxicol. Chem. 1999, 18, 2526,
- 803 <u>https://doi.org/10.1002/etc.5620181120</u>.
- 804 [17] Johnson, Beehler, Sakamoto-Arnold, Science 1986, 231 (4742), 1139.

- 805 [18] R. P. Kiene, L. J. Linn, Geochim. Cosmochim. Ac. 2000, 64 (16), 2797,
- 806 https://doi.org/https://doi.org/10.1016/S0016-7037(00)00399-9.
- 807 [19] C. R. Reisch, M. A. Moran, W. B. Whitman, J. Bacteriol. 2008, 190 (24), 8018,
- 808 https://doi.org/10.1128/JB.00770-08.
- 809 [20] X. Shao, H.-Y. Cao, F. Zhao, et al., Mol. Microbiol. 2019, 111 (4), 1057,
- 810 https://doi.org/10.1111/mmi.14211.
- 811 [21] Boden, Rich, Borodina, Elena, Wood, P. Ann, Kelly, P. Donovan, Murrell, J. Colin, J. Bacteriol.
- 812 **2011**, 193 (5), https://doi.org/10.1128/JB.00977-10.
- 813 [22] E. Borodina, D. P. Kelly, F. A. Rainey, N. L. Ward-Rainey, A. P. Wood, Arch. Microbiol. 2000, 173
- 814 (5-6), 425, https://doi.org/10.1007/s002030000165.
- 815 [23] R. Bentley, T. G. Chasteen, Chemosphere 2004, 55 (3), 291,
- 816 <u>https://doi.org/10.1016/j.chemosphere.2003.12.017.</u>
- 817 [24] B. J. Maldonato, D. A. Russell, R. A. Totah, Sci. Rep. 2021, 11 (1), 4857,
- 818 https://doi.org/10.1038/s41598-021-84218-5.
- 819 [25] J. M. González Dalmasy, C. M. Fitzsimmons, W. J. E. Frye, et al., Chem.-Biol. Interact. 2024, 394,
- 820 110989, https://doi.org/https://doi.org/10.1016/j.cbi.2024.110989.
- 821 [26] O. Carrión, A. R. J. Curson, D. Kumaresan, Y. Fu, A. S. Lang, E. Mercadé, J. D. Todd, Nat. Commun.
- 822 **2015**, *6*, https://doi.org/10.1038/ncomms7579.
- 823 [27] H. Cheng, Y. Zhang, Z. Guo, X. He, R. Liu, X.-Y. Zhu, J. Li, J. Liu, X.-H. Zhang, Appl. Environ.
- 824 *Microb.* **2023**, 89 (7), https://doi.org/10.1128/aem.00251-23.
- 825 [28] F. Teufel, J. J. Almagro Armenteros, A. R. Johansen, et al., Nat. Biotechnol. 2022, 40 (7), 1023,
- 826 https://doi.org/10.1038/s41587-021-01156-3.
- 827 [29] J. Abramson, J. Adler, J. Dunger, et al., Nature 2024, 630 (8016), 493,
- 828 <u>https://doi.org/10.1038/s41586-024-07487-w</u>.
- 829 [30] J. Ehrlich, Q. R. Bartz, R. M. Smith, D. A. Joslyn, P. R. Burkholder, Science 1947, 106 (2757), 417,
- 830 <u>https://doi.org/doi:10.1126/science.106.2757.417.</u>
- 831 [31] J. Ehrlich, D. Gottlieb, P. R. Burkholder, L. E. Anderson, T. G. Pridham, J. Bacteriol. 1948, 56
- 832 (4), 467, https://doi.org/doi:10.1128/jb.56.4.467-477.1948.
- 833 [32] K. S. Hwang, H. U. Kim, P. Charusanti, B. Palsson, S. Y. Lee, Biotechnol. Adv. 2014, 32 (2), 255,
- 834 <u>https://doi.org/10.1016/j.biotechadv.2013.10.008</u>.
- 835 [33] P. J. Keeling, F. Burki, H. M. Wilcox, et al., PLoS Biol. 2014, 12 (6), e1001889,
- 836 https://doi.org/10.1371/journal.pbio.1001889.
- 837 [34] H. L. Cui, *Molecules* **2022**, *27* (23), https://doi.org/10.3390/molecules27238480.
- 838 [35] Y. Chen, N. A. Patel, A. Crombie, J. H. Scrivens, J. C. Murrell, Proc. Natl. Acad.. Sci. 2011, 108
- 839 (43), 17791, https://doi.org/doi:10.1073/pnas.1112928108.
- [36] B. P. Lomans, A. J. P. Smolders, L. M. Intven, A. Pol, H. J. M. O. denCamp, C. vanderDrift, Appl.
- 841 Environ. Microb. 1997, 63 (12), 4741, https://doi.org/10.1128/Aem.63.12.4741-4747.1997.
- 842 [37] S. Sunagawa, L. P. Coelho, S. Chaffron, et al., Science 2015, 348 (6237), 1261359,
- 843 <u>https://doi.org/doi:10.1126/science.1261359</u>.
- 844 [38] C.-Y. Li, H.-Y. Cao, R. D. Payet, J. D. Todd, Y.-Z. Zhang, Ann. Rev. Microbiol. 2024, 78 (Volume
- 845 78, 2024), 513, https://doi.org/https://doi.org/https://doi.org/10.1146/annurev-micro-041222-024055.
- 846 [39] J. Wilms, J. Lub, R. Wever, Biochim. Biophys. Acta 1980, 589 (2), 324,
- 847 <u>https://doi.org/10.1016/0005-2728(80)90048-1</u>.
- 848 [40] J. Gea, A. Ferrer, R. Monforte, A. Torres, Med. Clin. 1986, 87 (8), 348.

- 849 [41] T. Xu, M. Yu, J. Liu, H. Lin, J. Liang, X.-H. Zhang, Appl. Environ. Microbiol. 2019, 85 (7),
- 850 <u>https://doi.org/10.1128/AEM.02844-18</u>.
- 851 [42] A. R. J. Curson, E. K. Fowler, S. Dickens, A. W. B. Johnston, J. D. Todd, Biogeochemistry 2012,
- 852 *110* (1-3), 109, https://doi.org/10.1007/s10533-011-9663-2.
- 853 [43] T. Brettin, J. J. Davis, T. Disz, et al., Sci. Rep. 2015, 5, 8365, https://doi.org/10.1038/srep08365.
- 854 [44] H. Chao, N. Y. Zhou, J. Bacteriol. 2013, 195 (7), 1598, https://doi.org/10.1128/JB.02216-12.
- 855 [45] H. C. Gasteiger E., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A, The proteomics
- protocols handbook, Humana press **2005**, 571.
- 857 [46] C.-S. Yu, Y. C. Chen, C.-H. Lu, J.-K. Hwang, *Proteins* **2006**, *64*, https://doi.org/10.1002/prot.21018.
- 858 [47] H. Nielsen, K. D. Tsirigos, S. Brunak, G. von Heijne, Protein J. 2019, 38 (3), 200,
- 859 <u>https://doi.org/10.1007/s10930-019-09838-3</u>.
- 860 [48] A. Krogh, B. Larsson, G. von Heijne, E. L. L. Sonnhammer, J. Mol.. Biol. 2001, 305 (3), 567,
- 861 https://doi.org/10.1006/jmbi.2000.4315.
- 862 [49] E. A. Struys, E. E. Jansen, K. de Meer, C. Jakobs, Clin. Chem. 2000, 46 (10), 1650,
- 863 <u>https://doi.org/10.1093/clinchem/46.10.1650</u>.
- 864 [50] J. Klepacki, N. Brunner, V. Schmitz, J. Klawitter, U. Christians, J. Klawitter, Clin. Chim. Acta 2013,
- 865 *421*, 91, https://doi.org/10.1016/j.cca.2013.03.003.
- 866 [51] T. L. M. Stephen F. Altschul, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, D.
- 867 J. Lipman, Nucleic Acids Res. 1997, 25 (17), 3389, https://doi.org/10.1093/nar/25.17.3389.
- 868 [52] J. M. Xie, Y. R. Chen, G. J. Cai, R. L. Cai, Z. Hu, H. Wang, *Nucleic Acids Res.* **2023**, *51* (W1),
- 869 W587, https://doi.org/10.1093/nar/gkad359.
- 870 [53] I. M. A. Chen, K. Chu, K. Palaniappan, et al., Nucleic Acids Res. 2021, 49 (D1), D751,
- 871 https://doi.org/10.1093/nar/gkaa939.
- 872 [54] X. Y. Dong, J. E. Rattray, D. C. Campbell, et al., Nat. Commun. 2020, 11 (1),
- 873 <u>https://doi.org/10.1038/s41467-020-19648-2</u>.
- 874 [55] I. Letunic, P. Bork, *Nucleic Acids Res.* **2021**, 49 (W1), W293, https://doi.org/10.1093/nar/gkab301.

875

876

Supporting Information

- Supporting Information is available from the Wiley Online Library or from the
- author.

879

881 Figure

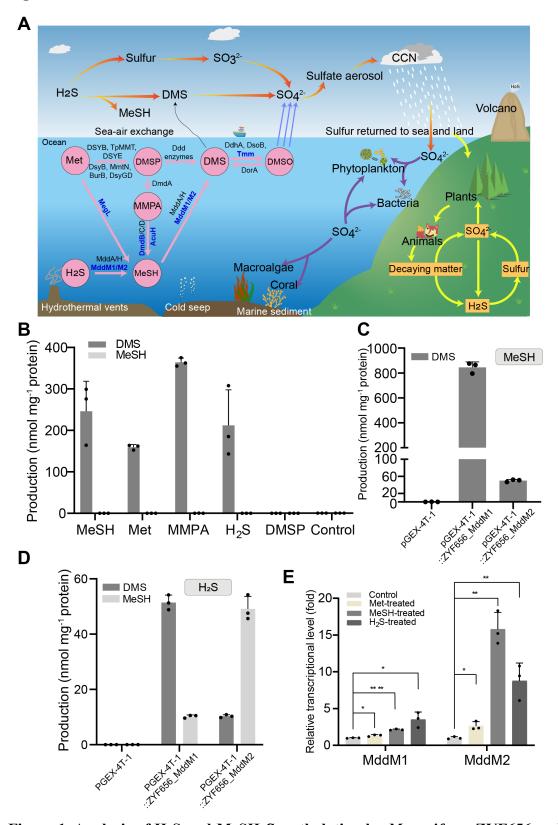
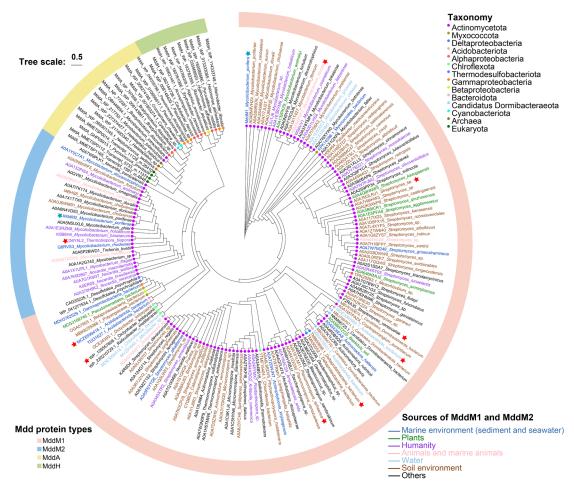



Figure 1. Analysis of H₂S and MeSH S-methylation by M. poriferae ZYF656 and its candidate Mdd enzymes. A) Simplified DMSP/DMS cycle and the key enzymes/pathways involved. Blue fonts predict enzymes/pathways in the strain M.

poriferae ZYF656. **B**) Gas chromatography detection of DMS and MeSH produced from M. poriferae ZYF656 when incubated with 0.5 mM Met, MeSH, MMPA, H₂S, DMSP or negative control. **C**) DMS production from E. coli BL21(DE3) with an empty vector or with clones expressing cloned mddM1, mddM2, when grown with 0.5 mM MeSH in M9 media. **D**) MeSH and DMS production from E. coli containing cloned mddM1, mddM2 or empty vector, when grown with 0.5 mM H₂S in M9 media. **E**) RT-qPCR analyses of mddM1 and mddM2 in M. poriferae ZYF656 grown with 0.5 mM Met, MeSH or H₂S. The values for DMS and MeSH production are shown as mean \pm s.d., and with three biological replicates for each strain. No DMS or MeSH was detected in the blank MBM media control (Data not shown). Significance was determined by Student's t-test (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).

Figure 2. Maximum-likelihood phylogenetic tree of MddM proteins. The tree was constructed using IQ-Tree using the general time reversible model with empirical frequencies and three rates (LG+F+G4), together with the proteins previously shown to have the expected S-methyltransferase enzyme activity for DMS production. The scale bar indicates 0.5 amino acid substitutions per site. MddM1 and MddM2 from M. poriferae ZYF656 are highlighted by a blue star. Methyltransferase enzymes with experimentally determined Mdd activity were highlighted with a red star. The evolutionary tree uses three distinct color schemes to represent different types of

information: The color blocks around the individual proteins indicate the different Mdd proteins. (See Mdd protein types). The round dots on the branches indicate the taxonomic classification of the bacterial strains (see Taxonomy Key). The color of the leaf labels (organism names) indicates the source of the sequences (see Source Key). The color blocks around the individual proteins indicate the different Mdd proteins.

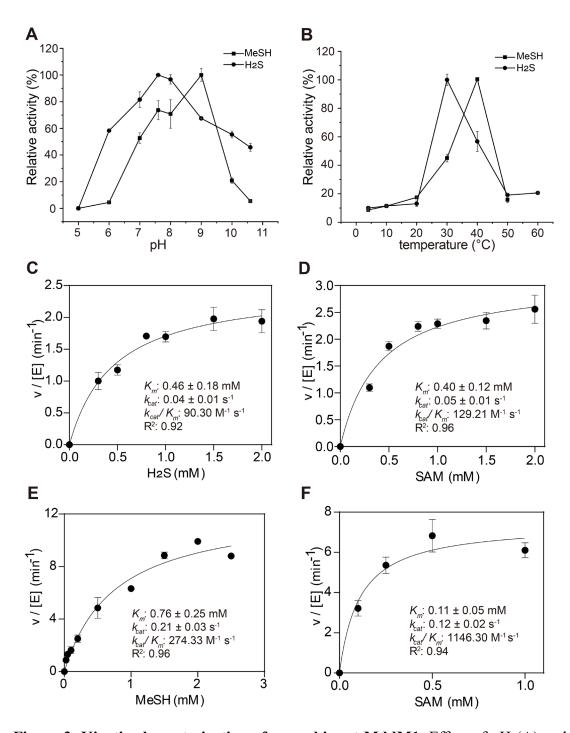
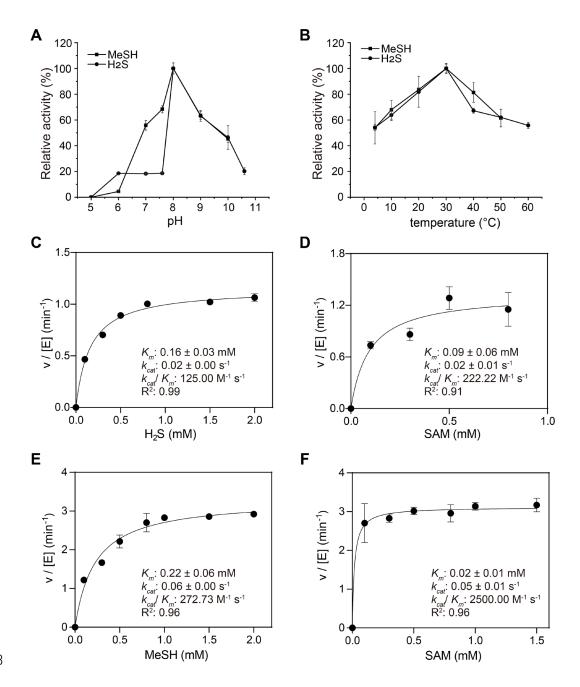
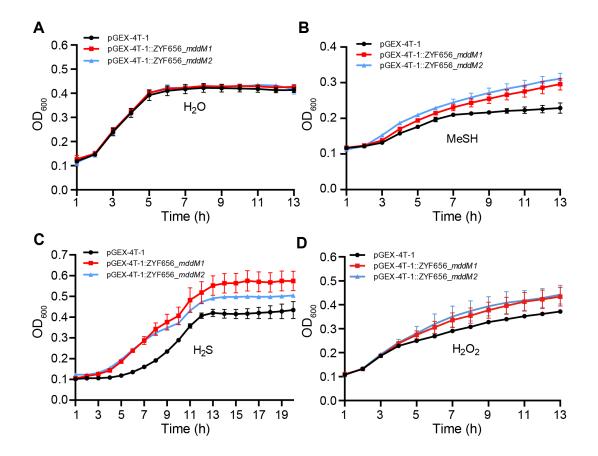




Figure 3. Kinetic characterization of recombinant MddM1. Effect of pH (A) and temperature (B) on the enzymatic activity of MddM1. The 100% activity values correspond to 251.19 and 286.16 nmol mg protein⁻¹ min⁻¹ for MeSH and H₂S,

respectively, at optimum pH, and to 209.12 and 194.66 nmol mg protein⁻¹ min⁻¹ at optimum temperature. Substrate-dependence of Mdd1 catalytic activity with varying H₂S concentration (C), or SAM (D)when using H₂S as co-substrate. Assays with H₂S used 1 µg MddM1 at pH 7.5 and 30°C. Substrate-dependence of MddM1 activity with varying MeSH concentration (E), or SAM (F) when using MeSH as co-substrate. Assays with MeSH used 1 µg MddM1 at pH 9.0 and 40°C. Kinetic constants reported in the data panels were obtained by non-linear fitting of data using the rectangular-hyperbola form of the Michaelis-Menten equation, where $v/[E] = k_{cat} \cdot [S]/(K_m + [S])$. The values for DMS production were shown as mean \pm s.d. for three biological replicates.

Figure 4. Kinetic characterization of recombinant Tb **MddM2.** Effect of pH (A) and temperature (B) on the enzymatic activity of Tb MddM2. The 100% activity values were 44.73 and 58.73 nmol mg protein⁻¹ min⁻¹ for MeSH and H₂S, respectively, at optimum pH, and 35.79 and 29.53 nmol mg protein⁻¹ min⁻¹ at optimum temperature. Substrate-dependence of Tb MddM2 catalytic activity with varying H₂S concentration (C), or SAM (D) when using H₂S as co-substrate. Substrate-dependence of Tb MddM2 catalytic activity with varying MeSH concentration (E), or SAM (F) when using MeSH as co-substrate. The kinetic parameters were obtained with 2 μg Tb MddM2 at pH 8.0 and 30°C. Kinetic constants reported in the data panels were obtained by non-linear fitting of data using the Michaelis-Menten equation as described in Figure 3. The values for DMS production were shown as mean ± s.d. for three biological replicates.

Figure 5. The impact of MddM1 and MddM2 on *E. coli* growth in response to H₂S, MeSH and oxidative stress. A) Growth of *E. coli* strains amended with H₂O (control) in M9 media. B) Growth of *E. coli* strains with 1 mM MeSH in M9 media. C) Growth of *E. coli* strains with 2 mM H₂O₂ in M9 media. D) Growth of *E. coli* strains with 1 mM H₂S in M9 media. Error bars represent the standard deviation from n=3 biological repeats.

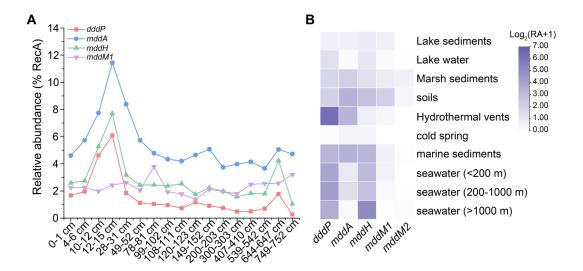
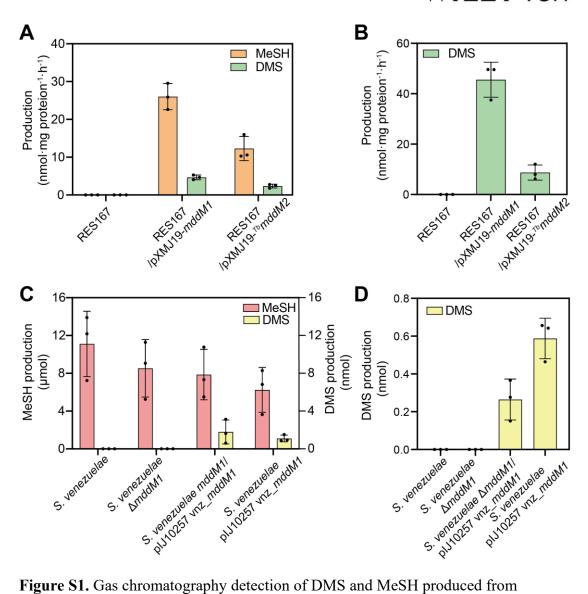
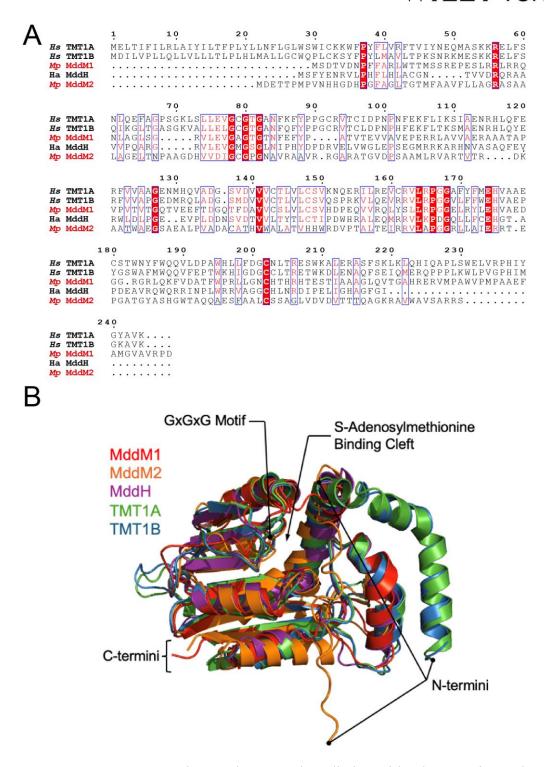


Figure 6. Distribution of dddP and mdd genes in selected environmental metagenomic datasets. A) Relative abundance of dddP, mddH, mddA, mddM1 and mddM2 in a sectioned Mariana Trench sediment core. B) Comparison of the relative abundance of dddP, mddH, mddA, mddM1 and mddM2 in different environmental metagenomes. The values represent the logarithm to base 2 of their gene abundance plus 1. RA: relative abundance. The numbers of all sequences were normalized to the number of RecA sequences in each metagenome.

Table 1. Activity of diverse MddH proteins expressed in *E. coli.* Diverse MddM proteins were cloned into pET-24a vector and expressed in *E. coli* BL21 (DE3) grown with 0.5 mM MeSH or with 0.5 mM H₂S. Sequences not highlighted in grey are MddM1 homologues. MddM2 homologue is highlighted in grey.


		MeSH	H ₂ S	
Accession Number	Source Organism	nmol DMS h ⁻¹	nmol MeSH h ⁻¹	nmol DMS h ⁻¹
		mg total protein ⁻¹	mg total protein ⁻¹	mg total protein ⁻¹
MCZ6599416.1	Acidobacteriota bacterium	33.23±0.46	33.16±0.82	10.65±0.29
MDE3069982.1	Acidobacteriota bacterium	597.19±6.01	27.22±3.73	9.18±0.79
A0A6S6P9F0	Mycolicibacterium litorale	107.41±22.41	43.02±3.52	14.57±0.35
TMB00698.1	Deltaproteobacteria bacterium	14.29±1.82	112.66±11.25	84.72±9.03
WP_126557608.1	Dictyobacter kobayashii	580.93±2.43	45.60±0.52	14.91±1.02
A0A7M3LRJ1	Streptomyces sp. SAJ15	26.86±2.88	0	8.79±0.97
A0A161LM11	Planomonospora sphaerica	48.97±4.54	30.38±2.89	7.92±0.35
F2RA35	Streptomyces venezuelae	76.03±4.16	7.84±0.86	4.89±0.17
D6Y5L2	Thermobispora bispora	26.28±0.43	51.77±5.36	7.37±0.16

The values for DMS or MeSH production are shown as mean \pm s.d. for three biological replicates.


Supporting Information

 $\label{eq:confer} \mbox{Two Novel S-methyltransferases Confer Dimethylsulfide Production in } Actinomyce tota$

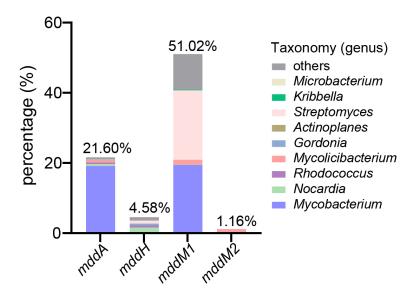

Ruihong Guo, Zihua Guo, Yi Zhou, Yunhui Zhang, Haojin Cheng, Rebecca Devine, Chuang Sun, Ronghua Liu, Yanfen Zheng, Andrew J. Gates, Jonathan D. Todd*, Xiao-Hua Zhang*

Figure S1. Gas chromatography detection of DMS and MeSH produced from *Corynebacterium glutamicum* RES167, *Streptomyces venezuelae* and their respective mutants. MeSH and DMS production from *C. glutamicum* RES167 containing cloned pXMJ19-mddM1, pXMJ19- $^{Tb}mddM2$ or empty vector, when grown with 1 mM H₂S (A) or MeSH (B). MeSH and DMS production from *S. venezuelae* wild type and its mutant strains with 1 mM Met (C) or 1 mM H₂S (D). The values for DMS and MeSH production are shown as mean \pm s.d.

Figure S2. Sequence comparison and structural prediction with other putative and known SAM-dependent methyltransferases. A) Multiple sequence alignment using ClustalW 2.1 and ESPript 3.0. The GxGxG motif and SAM binding cleft are indicated by boxes, and fully conserved residues are highlighted in white on a red background. B) Structural prediction for MddM1 (red), MddM2 (orange), MddH (purple), TMT1A (green) and TMT1B (blue) using AlphaFold3, with the GxGxG motif and SAM-binding cleft annotated. Structural image was generated using Pymol ver 3.0.0.

Figure S3. Distribution of *mddA*, *mddH*, *mddM1* and *mddM2* genes in all *Actinomycetota* genomes (n=42,815) downloaded from NCBI.

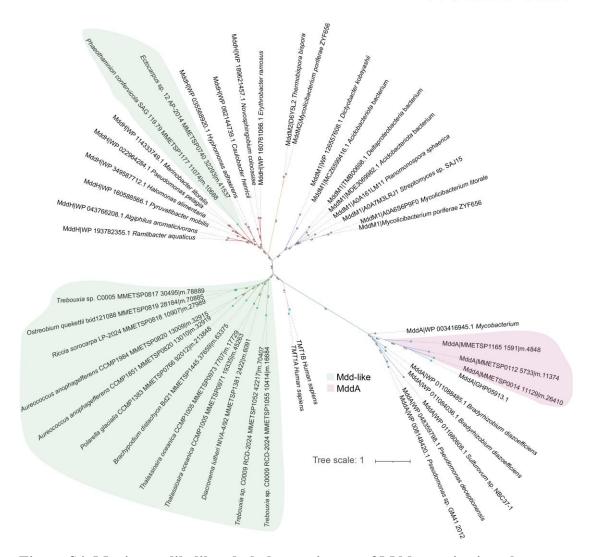


Figure S4. Maximum-likelihood phylogenetic tree of Mdd proteins in eukaryotes.

Branches are colored according to different Mdd proteins. Functional MddA sequences in eukaryotes (pink shading) were used as reference sequences. Mdd-like sequences (green shading) indicate matched Mdd proteins in eukaryotes. Lines are colored to distinguish different clusters. Blue and gray dots denote sequences from eukaryotic and prokaryotic organisms, respectively. The scale bar indicates 1 amino acid substitutions per site.

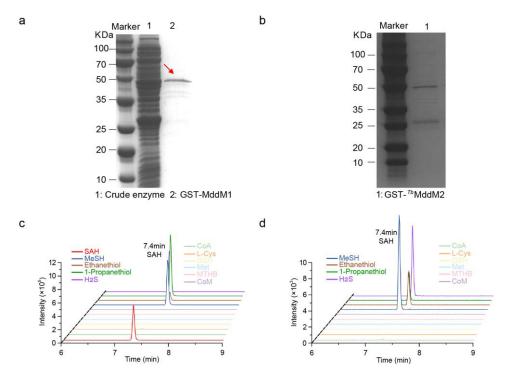


Figure S5. Characterization of the recombinant MddM1 and ^{Tb}MddM2. A) Properties of purified recombinant GST-tagged MddM1 from *M. poriferae* ZYF656 run on a 12% precast SDS-PAGE gel. Lanes: Marker, prestained protein ladder. Lane 1, lysate before purification; lane 2, purified protein (molecular weight: 50.02 kDa). B) Purified recombinant GST-tagged MddM2 of *Thermobispora bispora*. Lanes: Marker, prestained protein ladder. Lane 1, purified protein (molecular weight: 48.65 kDa). The larger band corresponds to the uncleaved protein, while the smaller band represents the processed form. The ability of MddM1 (C) and ^{Tb}MddM2 (D) to *S*-methylate a range of substrates (as detailed) as monitored by the formation of *S*-adenosyl-homocysteine (SAH) from *S*-adenosyl-methionine (SAM). MeSH, methanethiol; H₂S, Hydrogen sulfde; CoA, coenzyme A; L-Cys, cysteine; GSH, glutathione; Met, methionine; MTHB, 4-methylthio-2-hydroxybutyrate; CoM, Coenzyme M.

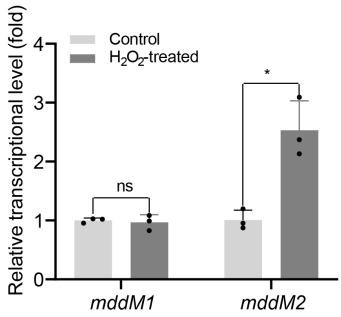


Figure S6. RT-qPCR analyses of mddM1 and mddM2 genes of M. poriferae **ZYF656** in the presence of 2 mM H₂O₂. The values were shown as mean \pm s.d. for three biological replicates. Significance was determined by Student's t-test (ns, not significant; *p<0.05).

Table S1. DMS cycling gene analysis of the *M. poriferae* ZYF656 genome by BLASTp against functional gene list.

ZYF656 gene ID	Clostest homologues	Homologue accession ID	Amio acid identity (%)	Evalue	Coverage (%)
PP625016	AcuH	AAV93475.1	64	5.05E- 117	99
PP661496	Tmm	ACK52489.1	61	0	100
PP661497	DmdB	WP_011047771.1	51	0	99
PP661492	MegL	AAO46884.1	42	5.77E- 100	84

Table S2. Strains and plasmids involved in this study.

Strains or plasmids	Description	Reference or source
Mycolicibacterium poriferae ZYF656	Wild-type isolate; Available from Zhang lab recA1 endA1 gyrA96 thi-1	This study; Zhang Lab
Escherichia coli JM109	hsdR17 supE44 Δ (lac-proAB/F) [traD36 proAB $^+$ lacIq lacZ Δ M15]	[1]
E. coli DH5α	Transformed cells for gene cloning	AngYu Biotechnologies (Shanghai, China)
E. coli BL21 (DE3)	Transformed cells for gene expression	AngYu Biotechnologies (Shanghai, China)
pUC18	Plasmid vectors for genomic library in <i>E. coli</i> DH5α, ampicillin-resistant	This study; Zhang Lab
pET-24a	Plasmid vector for cloning gene in <i>E</i> . coli DH5α, kanamycinresistant	This study; Zhang Lab
pUCm-T	Plasmid vector for cloning gene in <i>E. coli</i> DH5α, ampicillinresistant	Sangon Biotech
pGEX-4T-1	Plasmid vector for cloning gene in <i>E. coli</i> DH5α, ampicillinresistant	Miaoling Biology
pXMJ19	Plasmid vector for gene expression, chloramphenicol-resistant	This study; Zhang Lab
E. coli NEB5a	fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ) M15 gyrA96 recA1 relA1 endA1 thi- 1 hsdR17	New England Biolabs
E. coli ET12567	dam dcm hsdS	[2]
pCRISPomyces-2	oriT, reppSG5(ts), oriColE1, sSpcas9, synthetic guide RNA cassette, ampicillin-resistant	[3]
pUZ8002	RK2 derivative with a mutation in oriT, kanamycin-resistant	[4]
pIJ10257	oriT, ΦBT1attB-int, ermEp*, pMS81 backbone, hygromycin B-resistant	[5]
pIJ10257 vnz_mddM1	For the deletion of vnz_mddM1	This study; Jon. Lab
pCRISPomyces-2 vnz_mddM1	For the overexpression of vnz_mddM1	This study; Jon. Lab

Strains or plasmids	Description	Reference or source
pXMJ19::RES167_	pXMJ19 containing the <i>mddM1</i>	This study;
<i>mddM1</i> pXMJ19::RES167	gene of ZYF656 pXMJ19 containing the <i>mddM2</i>	Zhang Lab This study;
T^{b} mdd MI	gene of Thermobispora bispora	Zhang Lab
pGEX-4T-	pGEX-4T-1 containing the	This study;
1::ZYF656_ <i>mddM1</i> pGEX-4T-	mddM1 gene of ZYF656 pGEX-4T-1 containing the	Zhang Lab This study;
1::ZYF656_ <i>mddM2</i>	mddM2 gene of ZYF656	Zhang Lab
CEV AT 1 TI 1/11/12	pGEX-4T-1 containing the	This study;
pGEX-4T-1::Tb_MddM2	mddM2 gene of Thermobispora bispora	Zhang Lab
S. Venezuelae ∆mddM1	knockout strains	This study; Jon. Lab
S. venezuelae/pIJ10257 vnz mddM1	overexpressed strains	This study; Jon. Lab
S. venezuelae		
ΔmddM1/pIJ10257 vnz_ <i>mddM1</i>	complementary strains	This study; Jon. Lab

Table S3. Primers used in this study.

Gene name	Primer sequences (5' - 3')	Function and reference
27F	AGAGTTTGATCCTGGCTCAG	the universal primers for bacterial
1492R	GGTTACCTTGTTACGACTT	identification.
<i>mddM1-</i> pGEX4T1- BamHI-F	gatctggttccgcgtggatccATGAGCGACACAGTCGATAATCC	PCR amplification of <i>mddM1</i> from ZYF656
<i>mddM1-</i> pGEX4T1-EcoRI-R	ctcgagtcgacccgggaattcTCAGTCCGGCCGCACGGC	and cloning into pGEX-4T-1
<i>mddM2</i> -pGEX4T1- BamHI-F	gatctggttccgcgtggatccATGGACGAAACCACACCGATG	PCR amplification of <i>mddM2</i> from ZYF656
<i>mddM2</i> -pGEX4T1- EcoRI-R	ctcgagtcgacccgggaattcTCAGGACCGGCGCGCT	and cloning into pGEX-4T-1
^{Tb} mddM2-pGEX4T1- BamHI-F	gatetggttccgcgtggatccATGAGCGCGGCGGACGTT	PCR amplification of <i>mddM2</i> from <i>Thermobispora bispora</i> and cloning into
^{Tb} mddM2-pGEX4T1- EcoRI-R	ctcgagtcgacccgggaattcCGGACGGGTCGCGGTAAC	pGEX-4T-1
<i>mddM1-</i> pXMJ19-BamHI- F	cagg tcg act ctag agg at ccATGAGCGACACAGTCGATAATCC	PCR amplification of <i>mddM1</i> from ZYF656
mddM1-pXMJ19-EcoRI-R	caaaacagccaagctgaattcTCAGTCCGGCCGCACGGC	and cloning into pXMJ19
^{Fb} mddM2-pXMJ19- BamHI-F	cagg tegac tetag agg at ceATGAGCGCGGCGGACGTT	PCR amplification of <i>mddM2</i> from <i>Thermobispora bispora</i> and cloning into
^{Tb} mddM2-pXMJ19- EcoRI-R	caa aa cag ccaag ctgaattc CGGACGGGTCGCGGTAAC	pXMJ19
ZYF656_ <i>mddM1-</i> F	tgaggagttcaccgacggt	RT-qPCR amplification of <i>mddM1</i>
ZYF656_ <i>mddM1-</i> R	aaggtegegtegaegaactt	KT 41 CK ampinioadon of madivit
ZYF656_mddM2-F	accacgtcgtcgacatcg	RT-qPCR amplification of mddM2
ZYF656_mddM2-R	tegecaatgeceagaegt	Tel qi ete miipiiriomon or mwwiiiz
ZYF656_recA-F ZYF656_recA-R	cagttcctgcagttcaccgt tcacgcagattgggtgacag	RT-qPCR amplification of recA

Gene name	Primer sequences (5' - 3')	Function and reference
vnz_mddM1 KO-1F	gctcggttgccgccgggcgttttttaTCTAGAGCTCCGCGAGAGAAG	mddM1 deletion flank in Streptomyces venezuelae
LD ALVO 1D	GACACC	Ind 11 d of 1 d
vnz_ <i>mddM1</i> KO-1R	GCTGCTGCGACCAGGCGAGCTCGCCGGATGGTGGACA CGGGACG	mddM1 deletion flank in S. venezuelae
vnz <i>mddM1</i> KO-2F	GCGAGCTCGCCTGGTCGCAGCAGCCCGTCGTCGCCGT	mddM1 deletion flank in S. venezuelae
VIIZ_maaWIT KO-ZI	GCGTCC	mudivi i defetion mank in s. venezuetae
vnz <i>mddM1</i> KO-2R	gcaacgcggcctttttacggttcctggccTCTAGACGGTGCCGATGAC	mddM1 deletion flank in S. venezuelae
_	GAGCGC	
vnz_ <i>mddM1</i> gRNA-F	acgcGGCACGTCGAACGCCCGGTA	mddM1 deletion gRNA in S. venezuelae
vnz <i>_mddM1</i> gRNA-R	aaacTACCGGGCGTTCGACGTGCC	mddM1 deletion gRNA in S. venezuelae
vnz_ <i>mddM1</i> test-F	CGTGACGACGACGACC	mddM1 test primers in S. venezuelae
vnz_ <i>mddM1</i> test-R	GGACGCACGGCGACGG	mddM1 test primers in S. venezuelae
vnz_ <i>mddM1</i> test INT-F	GGAGGCAAGACGTGAAGAACC	mddM1 test primers in S. venezuelae
vnz_ <i>mddM1</i> test INT-R	CCTTCCAGAAGGCCAGCACG	mddM1 test primers in S. venezuelae
<i>mddM1</i> pIJ10257-F	gtctagaacaggaggccccatatgCAGACGACCGGGCTGAGGAG	mddM1 overexpression in S. venezuelae
<i>mddM1</i> pIJ10257-R	ct cat gaga acct aggat ccaa gett CGTATCTGAAGATCGGTCATG	mddM1 overexpression in S. venezuelae
	GCC	

Table S4. Accession numbers of the functional ratified enzymes involved in DMS cycling.

cling.				
Protein	Organism	Accession number		
	<i>Mycolicibacterium poriferae</i> ZYF656	PP661493		
	Streptomyces sp. SAJ15	A0A7M3LRJ1		
	Streptomyces venezuelae	F2RA35		
N / 1 1 N / 1	Dictyobacter kobayashii	WP 126557608.1		
MddM1	Deltaproteobacteria bacterium	TMB00698.1		
	Mycolicibacterium litorale	A0A6S6P9F0		
	Acidobacteriota bacterium	MDE3069982.1		
	Acidobacteriota bacterium	MCZ6599416.1		
	Planomonospora sphaerica	A0A161LM11		
MddM2	<i>Mycolicibacterium poriferae</i> ZYF656	PP661494		
	Thermobispora bispora	D6Y5L2		
	Pseudomonas deceptionensis	WP_048359798.1		
	Mycobacterium tuberculosis	-		
	H37Rv	NP_217755.1		
	<i>Bradyrhizobium diazoefficiens</i> USDA 110 Blr1218	NP_767858.1		
	<i>Bradyrhizobium diazoefficiens</i> USDA 110 Blr5741	NP_772381.1		
	Cyanothece sp. ATCC 51142	YP_001803274.1		
	Bradyrhizobium sp. YR681	WP_008143861.1		
	Pseudomonas sp. GM41	WP_008148420.1		
MddA	Crocosphaera chwakensis	WP_008274188.1		
(EC	Pseudomonas fragi	WP_010655917.1		
2.1.1.334)	Mycobacterium intracellulare	OBH46854.1		
	Neptunicoccus sediminis	WP_069301345.1		
	Haladaptatus sp. W1	WP_217493340.1		
	Haladaptatus sp. PSR5	WP_227374427.1		
	Pycnococcus provasolii	GHP05913.1		
	Chrysocystis fragilis CCMP3189	MMETSP1165_Transcript_1591		
	em yaceyana yi uguna e emire res	m.4848		
	Nitzschia sp. RCC80	MMETSP0014_Transcript_1112		
		9 m.26410		
	Lotharella globose CCCM811	MMETSP0112_Transcript_5733 m.11374		
	Algiphilus aromaticivorans DG1253	WP_043766208.1		
	Marinobacter litoralis Sw-45	WP_114333749.1		
	Pseudomonas pelagia CL-AP6	WP_022964284.1		
MddH	Hyphomonas adhaerens MHS-3	WP_035568920.1		
(EC 2.1.1)	Pyruvatibacter mobilis CGMCC_1.15125	WP_160588566.1		
	Novosphingobium colocasiae KCTC 32255	WP_189621457.1		
	Erythrobacter ramosus DSM 8510	WP_160761066.1		

Protein	Organism	Accession number
	Ramlibacter aquaticus LMG 30558	WP_193782355.1
	Caulobacter henricii CB4	WP 062144739.1
	Halomonas alimentaria EF61	WP_013333065.1
	Prymnesium parvum CCAP946/6	-
	Chrysochromulina tobin CCMP291	KOO32714
DCVD	Lingulodinium polyedrum CCMP1936	-
DSYB	Alexandrium tamarense ATSP1-	
(EC 2.1.1.373)	В	-
2.1.1.3/3)	Acropora cervicornis	-
	Fragilariopsis cylindrus CCMP1102	OEU17621
	Symbiodinium microadriaticum CCMP2467	OLQ07620
TpMMT (EC 2.1.1.67)	Thalassiosira pseudonana CCMP1335	Tp23128
	Labrenzia aggregata IAM 12614	WP_006937642
	Labrenzia aggregate LZB033	WP_075282486
	Pseduooceanicola batsensis HTCC2597	WP_009805585
DsyB	Pelagibaca bermudensis HTCC2601	WP_007801186
(EC 2.1.1.373)	Sediminimonas qiaohouensis DSM 21189	WP_026756701
	Thalassobaculum salexigens DSM 19539	WP_084618911
	Sagittula stellate E-37	WP 005854984
	Amorphus coralli DSM 19760	WP 018697905
	Novosphingobium sp. MBES04	WP 052321947
	Croceicoccus mobilis	WP 066775518
	Thalassospira sp. HJ	WP_044830103
	Thalassospira sp. MCCC_1A01148	WP_062957385
	Thalassospira indica	WP 064788038
	Thalassospira tepidiphila MCCC 1A03514	WP_064780488
	Thalassospira australica	WP 033070178
MmtN	Thalassospira lucentensis	WP 022734010
(EC 2.1.1)	Thalassospira sp. MCCC 1A02898	WP_063085993
	Thalassospira profundimaris sp. DSM17430	WP_008888945
	Labrenzia sp. OB1	WP 068409229
	Roseovarius indicus 01	WP 064261696
	Roseovarius indicus 02	WP 057814729
	Roseovarius indicus 03	KRS18724.1
	Rhodobacter aestuarii	WP 076485456
	Saccharothrix syringae	WP 033429235

Protein	Organism	Accession number
	Micromonospora nigra	WP_091090849
	Agrobacterium vitis	WP_071204336
	Nocardiopsis chromatogenes	WP_017624909
	Streptomyces mobaraensis NBRC 13819	EME99407
	Ruegeria pomeroyi DSS-3	AAV95190
	Pelagibacter ubique HTCC1062	WP_011281570
	Dinoroseobacter shibae DFL 12	WP_012178987
DmdA (EC	marine gammaproteobacterium HTCC2080	WP_007233625
2.1.1.269)	Candidatus Pelagibacter sp. HTCC7211	WP_008546106
	Candidatus Puniceispirillum marinum IMCC1322	WP_013044947
	Marinomonas sp. MWYL1	ABR72937
DddD	Oceanimonas doudoroffii DSM 7028	AEQ39135
(EC 2.8.3)	Psychrobacter sp. J466	ACY02894
(EC 2.6.3)	Halomonas sp. HTNK1	ACV84065
	Burkholderia ambifaria AMMD	WP_011659284
	Pseudomonas sp. J465	ACY01992
	Sulfitobacter sp. EE-36	ADK55772
	Rhodobacter_sphaeroides	WP_011336734
	Rhodobacter sphaeroides 2.4.1	YP_351475
DddL	Fulvimarina_pelagi	WP_007067665
(EC 4.4.1.3)	Loktanella_vestfoldensis	WP_019955302
	Pseudooceanicola_batsensis	WP_009805827
	Labrenzia aggregata LZB033	AKS25183
	Labrenzia aggregate LZD062	KP639183
	Roseovarius nubinhibens ISM	EAP77700
	Ruegeria pomeroyi DSS-3	WP_044029245
DddP (EC 3.4)	Oceanimonas doudoroffii DSM 7028	AEQ39091
(Le 3.1. ·)	Oceanimonas doudoroffii DSM 7028	AEQ39103
	Fusarium graminearum PH-1	XP_389272
	Ruegeria pomeroyi DSS-3	WP_011047333
	Roseovarius nubinhibens ISM	EAP76002
	Roseovarius nubinhibens ISM	EAP76001
DddQ (EC 4.4.1.3)	Ruegeria lacuscaerulensis ITI- 1157	WP_005978225
	GOS databases	ECW91654
	GOS databases	EBP74803
	GOS databases	ECX82089
DddW	Ruegeria pomeroyi DSS-3	AAV93771
(EC 4.4.1.3)	Roseobacter sp. MED193	EAQ44306.1
DddY	Alcaligenes faecalis M3A	ADT64689
(EC 4.4.1.3)	Shewanella putrefaciens CN-32	ABP77243
(LC 7.7.1.3)	Desulfovibrio acrylicus	SHJ73420

Protein	Organism	Accession number
	Ferrimonas kyonanensis DSM 18153	WP_028114584
	Acinetobacter bereziniae	ENV21217
	Candidatus Pelagibacter ubique HTCC1062	AAZ21215
	Alphaproteobacterium HIMB5	AFS47241
DddK	Candidatus Pelagibacter ubique HTCC9022	WP_028037226
(-)	Pelagibacteraceae bacterium BACL20 MAG-120920-bin64	KRP06000
	Candidatus Pelagibacter ubique	WP_006997514
	Candidatus Pelagibacter ubique	WP_027306832
	Candidatus Pelagibacter ubique	WP_018413735
Almal	Emiliania huxleyi CCMP1516	XP_005784450
(EC 4.4.1.3)	Emiliania huxleyi CCMP1516	XP_005763983
(EC 4.4.1.3)	-	sp P0DN22
	Psychrobacter sp. (56811)	7CM9_1
DddX	Psychrobacter sp. P11G5	WP_068035783
(-)	Sporosarcina sp. P33	WP_081242855
	Roseobacteraceae	WP_109384856
	Marinobacterium jannaschii	WP_084332639
	Ruegeria faecimaris DSM 28009	WP_142638590.1
	Phaeobacter inhibens P66	WP_058277181.1
	Aliiroseovarius pelagivivens KCTC 42459	WP_108856353.1
DddU (-)	Pseudaestuariivita atlantica MCCC 1A09432	WP_050532617.1
	Amylibacter cionae H-12	WP 188671731.1
	Shimia sediminis ZQ172	WP 127114513.1
	Leisingera aquimarina DSM 24565	WP_027260001.1
AcuH	Ruegeria lacuscaerulensis ITI- 1157	EEX08788.1
(EC 4.2.1.17)	Ruegeria pomeroyi DSS-3	AAV93475.1
DmdB	Ruegeria pomeroyi	WP_011047771
(EC 6.2.1.44)	Ruegeria pomeroyi	WP_011046428
(EC 0.2.1.44)	Candidatus Pelagibacter ubiqu	WP_011281571
	Ruegeria pomeroyi	WP_011049476
	Burkholderia thailandensis	WP_009892931
DmdC	Ruegeria lacuscaerulensis ITI- 1157	EEX10128
(EC	Ruegeria pomeroyi	WP_011048615
(EC 1.3.99.41)	Pseudomonas	WP_003114720
1.3.77.41)	Pseudomonas	WP_003114561
	Burkholderia thailandensis	WP_009889880
	Ruegeria lacuscaerulensis ITI- 1157	EEX08676
DmdD	Ruegeria pomeroyi DSS-3	Q5LLW6.1

Protein	Organism	Accession number
(EC		
4.2.1.155)		
DorA (-)	Rhodobacter Capsulatus	1DMR_A
DsoB	Acinetobacter sp.	BAA23331.1
(EC		
1.14.13.245)		
	Ruegeria pomeroyi DSS-3	AAV94838.1
	Methylophaga aminisulfidivorans	WP_007144064
Tmm	Methylocella silvestris BL2	ACK52489.1
(EC	Roseovarius sp. 217	EAQ26624.1
1.14.13.148)	Candidatus Pelagibacter ubique	EAS85405.1
1.17.13.170)	HTCC1002	
	Candidatus Pelagibacter sp.	EDZ59919.1
	HTCC7211	
DdhA	Sagittula stellata E-37	EBA07058.1
(EC 1.8.5.3)	Rhodovulum sulfidophilum	AAN46632.1
DmoA	Hyphomicrobium sulfonivorans	6AK1_A
(EC		
1.14.13.131)		
	Hyphomicrobium sp.	ATJ26742.1
	Methylophaga thiooxydans	WP_008290534
	Ruegeria pomeroyi	WP_011242048
MTO	Hyphomicrobium denitrificans	ADJ22562.1
(EC 1.8.3.4)	ATCC 51888	
	Pseudovibrio ascidiaceicola	WP_093522951
	Methylococcus capsulatus str.	AAU90430.1
	Bath	

Table S5. List of candidates MddM proteins with their accession numbers.

Organism and enzymes	Candida te protein	Accession number	Lengt h (aa)	Identit y (%)	Evalu e	Coverag e (%)
Streptomyces sp. SAJ15	MddM1	A0A7M3LRJ1	224	47	2e-58	98
Planomonospora sphaerica	MddM1	A0A161LM11	219	48	8e-44	97
Acidobacteriota bacterium	MddM1	MCZ6599416.1	220	42.23	1e-30	95
Acidobacteriota bacterium	MddM1	MDE3069982.1	216	43.6	3e-39	99
Mycolicibacterium litorale	MddM1	A0A6S6P9F0	209	68.4	7.41e -94	100
Deltaproteobacteria bacterium	MddM1	TMB00698.1	216	47.47	8e-49	99
Dictyobacter kobayashii	MddM1	WP_126557608	213	41.12	3e-31	90
Streptomyces venezuelae	MddM1	F2RA35	221	47.4	4.21e -45	94
Thermobispora_bispor a	MddM2	D6Y5L2	204	58.6	8.4e- 80	99

Table S6. Protein sequences used in the molecular phylogenetic analysis of MddM proteins.

Mycolicibacterium chubuense A0A0J6WP30 77.5 8.45E- 110 97 Streptomyces caatingaensis A0A0K9XKP9 46 4.15E- 44 98 Streptomyces acidiscabies A0A0L0KEK7 45.5 4.05E- 43 96 Mycolicibacterium fortuitum A0A0N9YFI5 70.9 7.80E- 100 99 4 13E- 43E- 43E- 43E-	Strain	Accession number	Identity (%)	Evalue	Coverage (%)
Mycolicibacterium chubuense A0A0J6WP30 77.5 110 97 4.15E-44 44 4.15E-44 44 4.15E-44 4.15	Mycolicibacterium llatzerense	A0A0D1LHS4	66		98
AUAUK9AKP9	Mycolicibacterium chubuense	A0A0J6WP30	77.5		97
Streptomyces acidiscables AOAOLOKEK/ 45.5 43 96 Mycolicibacterium fortuitum AOAON9YFI5 70.9 7.80E-100 99 Streptomyces sp. AOAOU3N707 42.9 4.13E-44 44 Streptomyces kanasensis AOA117IX25 46.3 4.27E-46 93 Streptomyces longwoodensis AOA117QQW5 44.5 4.06E-43 43 93 Streptomyces regalis AOA124G714 43 3.95E-43 92 41 92 Mycolicibacterium wolinskyi AOA132PKZ9 73.7 73.7 101 96 99 Planomonospora sphaerica AOA16ILM11 48.1 3.99E-42 93 44.48E-96 98 Micromonospora siamensis AOA1C5K1J4 49 4.37E-48 98 99 43.37E-98 98 Mycobacterium holsaticum AOA1BSTYS 44.5 44.5 44.5 44.5 44.6 93 44.12E-93 44.12E-93 44.12E-93 44.12E-95 44.12E-95 44.12E-95 44.12E-95 44.12E-95 <	Streptomyces caatingaensis	A0A0K9XKP9	46		98
Mycolicibacterium fortulum A0A0N9YFIS 70.9 100 99 Streptomyces sp. A0A0U3N707 42.9 4.13E-44 94 Streptomyces kanasensis A0A117IX25 46.3 4.27E-46 93 Streptomyces longwoodensis A0A117QQW5 44.5 4.06E-43 93 Streptomyces regalis A0A124G714 43 3.95E-41 92 Mycolicibacterium wolinskyi A0A132PKZ9 73.7 7.89E-101 96 Planomonospora sphaerica A0A161LM11 48.1 3.99E-42 93 Micromonospora siamensis A0A1C5HYN6 49 4.48E-49 98 Micromonospora inositola A0A1C5K1J4 49 4.37E-48 99 Streptomyces rubrolavendulae A0A1BEXTIS 44.5 4.12E-48 93 Mycobacterium holsaticum A0A1E3RYM9 72.2 7.87E-101 100 Streptomyces agglomeratus A0A1E8Q0C4 70.7 7.38E-95 95 Mycobacterium grossiae A0A1E8Q0C4 70.7 7.38E-95 95	Streptomyces acidiscabies	A0A0L0KEK7	45.5		96
Streptomyces sp. A0A0U3N/07 42.9 44 94 Streptomyces kanasensis A0A117IX25 46.3 4.27E-46 93 Streptomyces longwoodensis A0A117QQW5 44.5 4.06E-43 93 Streptomyces regalis A0A124G714 43 3.99E-41 92 Mycolicibacterium wolinskyi A0A132PKZ9 73.7 7.89E-101 96 Planomonospora sphaerica A0A161LM11 48.1 3.99E-42 93 Micromonospora siamensis A0A1C5HYN6 49 4.48E-49 98 Micromonospora inositola A0A1C5K1J4 49 4.37E-49 99 Streptomyces rubrolavendulae A0A1BFX15 44.5 44.5 44 93 Mycobacterium holsaticum A0A1E3RYM9 72.2 7.87E-101 100 7.38E-93 95 Mycobacterium grossiae A0A1E8Q0C4 70.7 7.38E-95 93 412E-44 96 Mycobacterium grossiae A0A1BSQC4 70.7 3.97E-44 96 Streptomyces indicus A0A1H5TMW <td>Mycolicibacterium fortuitum</td> <td>A0A0N9YFI5</td> <td>70.9</td> <td></td> <td>99</td>	Mycolicibacterium fortuitum	A0A0N9YFI5	70.9		99
Streptomyces kanasensis A0A117IX25 46.3 46 93 Streptomyces longwoodensis A0A117QQW5 44.5 4.06E-43 93 Streptomyces regalis A0A124G714 43 3.95E-43 92 Mycolicibacterium wolinskyi A0A132PKZ9 73.7 101 96 Planomonospora sphaerica A0A161LM11 48.1 3.99E-101 93 Micromonospora siamensis A0A1C5HYN6 49 4.48E-48E-48 49 Micromonospora inositola A0A1C5K1J4 49 4.37E-48 48 99 Streptomyces rubrolavendulae A0A1D8FX15 44.5 41.12E-44 93 Mycobacterium holsaticum A0A1E3RYM9 72.2 7.87E-100 100 Streptomyces agglomeratus A0A1E5PFA8 44.3 42 91 Mycobacterium grossiae A0A1E8Q0C4 70.7 7.38E-93 95 Streptomyces indicus A0A1G8ZYS7 43.1 4.12E-44 96 A0A1H5TMW 44.9 4.33E-96 42 42 96	Streptomyces sp.	A0A0U3N707	42.9		94
Streptomyces longwoodensis A0A11/QQWS 44.5 43 93 Streptomyces regalis A0A124G714 43 3.95E-41 92 Mycolicibacterium wolinskyi A0A132PKZ9 73.7 7.89E-101 96 Planomonospora sphaerica A0A161LM11 48.1 3.99E-42 93 Micromonospora siamensis A0A1C5HYN6 49 4.48E-49 98 Micromonospora inositola A0A1C5K1J4 49 4.37E-48 99 Streptomyces rubrolavendulae A0A1BFX15 44.5 41.2E-48 93 Mycobacterium holsaticum A0A1E3RYM9 72.2 7.87E-100 101 100 Streptomyces agglomeratus A0A1E8Q0C4 70.7 7.38E-95 95 Mycobacterium grossiae A0A1E8Q0C4 70.7 7.38E-95 95 Streptomyces indicus A0A1E8CYS7 43.1 4.12E-96 A0A1H5TMW 44.9 4.13E-96 Streptomyces radiopugnans A0A1H9DTD7 45.5 42 Streptomyces aidingensis A0A1IGACS4 42.9	Streptomyces kanasensis	A0A117IX25	46.3		93
Streptomyces regalis A0A124G/14 43 41 92 Mycolicibacterium wolinskyi A0A132PKZ9 73.7 7.89E-101 96 Planomonospora sphaerica A0A161LM11 48.1 3.99E-42 93 Micromonospora siamensis A0A1C5HYN6 49 4.48E-49 98 Micromonospora inositola A0A1C5K1J4 49 4.37E-48 99 Streptomyces rubrolavendulae A0A1B8FX15 44.5 4.12E-48 93 Mycobacterium holsaticum A0A1E3RYM9 72.2 7.87E-101 100 Streptomyces agglomeratus A0A1E5PFA8 44.3 3.99E-93 91 Mycobacterium grossiae A0A1E8Q0C4 70.7 7.38E-95 95 Streptomyces indicus A0A1G8ZYS7 43.1 4.12E-96 A0A1H5TMW 44.9 4.13E-96 44 Streptomyces adiopugnans A0A1H9DTD7 45.5 3.97E-42 Streptomyces aidingensis A0A1IJ6R3 44.7 4.10E-44 Actinomadura madurae A0A1IGACS4 42.9 3.86E-99<	Streptomyces longwoodensis	A0A117QQW5	44.5		93
Mycolicibacterium wolinskyi A0A132PRZ9 73.7 101 96 Planomonospora sphaerica A0A161LM11 48.1 3.99E-42 93 Micromonospora siamensis A0A1C5HYN6 49 4.48E-49 98 Micromonospora inositola A0A1C5K1J4 49 43.37E-48 99 Streptomyces rubrolavendulae A0A1D8FX15 44.5 41.12E-48 93 Mycobacterium holsaticum A0A1E3RYM9 72.2 7.87E-101 100 Streptomyces agglomeratus A0A1E5PFA8 44.3 3.99E-42 91 Mycobacterium grossiae A0A1E8Q0C4 70.7 7.38E-95 93 Streptomyces indicus A0A1G8ZYS7 43.1 4.12E-44 96 Thermomonospora echinospora A0A1H5TMW 44.9 4.13E-44 96 Streptomyces radiopugnans A0A1H9DTD7 45.5 3.97E-42 96 Streptomyces aidingensis A0A1IJ6R3 44.7 4.10E-44 95 Actinomadura madurae A0A1ISJN64 44.9 4.11E-44 44 Amyc	Streptomyces regalis	A0A124G714	43		92
Planomonospora sphaerica A0A161LM11 48.1 42 93 Micromonospora siamensis A0A1C5HYN6 49 4.48E-49 98 Micromonospora inositola A0A1C5K1J4 49 4.37E-48 99 Streptomyces rubrolavendulae A0A1D8FX15 44.5 4.12E-48 44 93 Mycobacterium holsaticum A0A1E3RYM9 72.2 7.87E-101 100 10	Mycolicibacterium wolinskyi	A0A132PKZ9	73.7		96
Micromonospora siamensis A0A1C5HYN6 49 49 49 Micromonospora inositola A0A1C5K1J4 49 4.37E- 48 99 Streptomyces rubrolavendulae A0A1D8FX15 44.5 41.2E- 44 93 Mycobacterium holsaticum A0A1E3RYM9 72.2 7.87E- 101 100 Streptomyces agglomeratus A0A1E5PFA8 44.3 3.99E- 42 91 Mycobacterium grossiae A0A1E8Q0C4 70.7 7.38E- 93 95 Streptomyces indicus A0A1G8ZYS7 43.1 4.12E- 44 96 Thermomonospora echinospora A0A1H5TMW 6 44.9 4.13E- 44 96 Streptomyces radiopugnans A0A1H9DTD7 45.5 3.97E- 42 96 Streptomyces aidingensis A0A1IJ6R3 44.7 4.10E- 44 95 Actinomadura madurae A0A1I5JN64 44.9 4.11E- 44 89 Amycolatopsis arida A0A1I6ACS4 42.9 3.86E- 99	Planomonospora sphaerica	A0A161LM11	48.1		93
Micromonospora inositola A0A1C5K1J4 49 48 99 Streptomyces rubrolavendulae A0A1D8FX15 44.5 4.12E-44 93 Mycobacterium holsaticum A0A1E3RYM9 72.2 7.87E-101 100 Streptomyces agglomeratus A0A1E5PFA8 44.3 3.99E-42 91 Mycobacterium grossiae A0A1E8Q0C4 70.7 7.38E-95 95 Streptomyces indicus A0A1G8ZYS7 43.1 4.12E-44 96 Thermomonospora echinospora A0A1H5TMW 44.9 4.13E-44 96 Streptomyces radiopugnans A0A1H9DTD7 45.5 3.97E-42 96 Streptomyces aidingensis A0A1IJ6R3 44.7 4.10E-42 4.11E-42 95 Actinomadura madurae A0A1ISJN64 44.9 4.11E-42 44 95 Amycolatonsis arida A0A1I6ACS4 42.9 3.86E-99 99	Micromonospora siamensis	A0A1C5HYN6	49		98
Streptomyces rubrolavendulae A0A1D8FX15 44.5 44 93 Mycobacterium holsaticum A0A1E3RYM9 72.2 7.87E-101 100 Streptomyces agglomeratus A0A1E5PFA8 44.3 3.99E-42 91 Mycobacterium grossiae A0A1E8Q0C4 70.7 7.38E-95 93 95 Streptomyces indicus A0A1G8ZYS7 43.1 4.12E-44 96 Thermomonospora echinospora A0A1H5TMW 6 44.9 4.13E-44 96 Streptomyces radiopugnans A0A1H9DTD7 45.5 3.97E-42 96 Streptomyces aidingensis A0A1I1J6R3 44.7 4.10E-42 95 Actinomadura madurae A0A1I5JN64 44.9 4.11E-42 44 Amycolatonsis grida A0A1I6ACS4 42.9 3.86E-99	Micromonospora inositola	A0A1C5K1J4	49		99
Mycobacterium holsaticum A0A1E3RYM9 72.2 101 100 Streptomyces agglomeratus A0A1E5PFA8 44.3 3.99E-42 91 Mycobacterium grossiae A0A1E8Q0C4 70.7 7.38E-95 93 Streptomyces indicus A0A1G8ZYS7 43.1 4.12E-44 96 Thermomonospora echinospora A0A1H5TMW 6 44.9 4.13E-44 96 Streptomyces radiopugnans A0A1H9DTD7 45.5 3.97E-42 96 Streptomyces aidingensis A0A1IIJ6R3 44.7 4.10E-41 95 Actinomadura madurae A0A1I5JN64 44.9 4.11E-41 89 Amycolatorsis arida A0A1I6ACS4 42.9 3.86E-99	Streptomyces rubrolavendulae	A0A1D8FX15	44.5		93
Streptomyces agglomeratus A0A1ESPFA8 44.3 42 91 Mycobacterium grossiae A0A1E8Q0C4 70.7 7.38E-95 93 95 Streptomyces indicus A0A1G8ZYS7 43.1 4.12E-44 96 Thermomonospora echinospora A0A1H5TMW 6 44.9 4.13E-44 96 Streptomyces radiopugnans A0A1H9DTD7 45.5 3.97E-42 96 Streptomyces aidingensis A0A1I1J6R3 44.7 4.10E-44 95 Actinomadura madurae A0A1I5JN64 44.9 4.11E-44 89 Amycolatopsis arida A0A1I6ACS4 42.9 3.86E-99	Mycobacterium holsaticum	A0A1E3RYM9	72.2		100
Mycobacterium grossiae A0A1E8Q0C4 70.7 93 95 Streptomyces indicus A0A1G8ZYS7 43.1 4.12E-44 96 Thermomonospora echinospora A0A1H5TMW 6 44.9 4.13E-44 96 Streptomyces radiopugnans A0A1H9DTD7 45.5 3.97E-42 96 Streptomyces aidingensis A0A1IJ6R3 44.7 4.10E-44 95 Actinomadura madurae A0A1I5JN64 44.9 4.11E-44 89 Amycolatonsis arida A0A1I6ACS4 42.9 3.86E-90	Streptomyces agglomeratus	A0A1E5PFA8	44.3		91
Streptomyces indicus A0A1G8ZYS7 43.1 44 96 Thermomonospora echinospora A0A1H5TMW 6 44.9 4.13E-44 96 Streptomyces radiopugnans A0A1H9DTD7 45.5 3.97E-42 96 Streptomyces aidingensis A0A1IJ6R3 44.7 4.10E-44 95 Actinomadura madurae A0A1I5JN64 44.9 4.11E-44 89 Amycolatonsis arida A0A1I6ACS4 42.9 3.86E-99	Mycobacterium grossiae	A0A1E8Q0C4	70.7		95
Thermomonospora echinospora 6 44.9 44 96 Streptomyces radiopugnans A0A1H9DTD7 45.5 3.97E-42 96 Streptomyces aidingensis A0A1I1J6R3 44.7 4.10E-44 95 Actinomadura madurae A0A1I5JN64 44.9 4.11E-44 89 Amycolatonsis arida A0A1I6ACS4 42.9 3.86E-99	Streptomyces indicus	A0A1G8ZYS7	43.1		96
Streptomyces radiopugnans A0A1H9D1D/ 45.5 42 96 Streptomyces aidingensis A0A1I1J6R3 44.7 4.10E- 44 95 Actinomadura madurae A0A1I5JN64 44.9 4.11E- 44 89 Amycolatonsis arida A0A1I6ACS4 42.9 3.86E- 99	Thermomonospora echinospora		44.9		96
Streptomyces aidingensis A0A111J6R3 44.7 44 95 Actinomadura madurae A0A115JN64 44.9 4.11E-44 89 Amycolatonsis arida A0A116ACS4 42.9 3.86E-99	Streptomyces radiopugnans	A0A1H9DTD7	45.5		96
Actinomadura madurae A0A115JN64 44.9 44 89 Amycolatonsis arida A0A116ACS4 42.9 3.86E- 99	Streptomyces aidingensis	A0A1I1J6R3	44.7		95
Amycolatopsis arida $\Delta 0.5116.5$ $\Delta 0.5116.5$ $\Delta 0.5116.5$ $\Delta 0.5116.5$ $\Delta 0.5116.5$ $\Delta 0.5116.5$	Actinomadura madurae	A0A1I5JN64	44.9		89
	Amycolatopsis arida	A0A1I6ACS4	42.9	3.86E-	99

Strain	Accession number	Identity (%)	Evalue	Coverage (%)
Cryptosporangium aurantiacum	A0A1M7PAZ4	47.8	4.48E- 49	97
Streptomyces sp.	A0A1Q5L9W3	46.2	4.27E- 46	94
Frankia soli	A0A1S1Q4Q4	46.7	4.24E- 46	95
Mycolicibacterium fallax	A0A1X1QXP6	66.7	7.15E- 90	99
Mycobacterium celatum	A0A1X1RHM3	68.9	7.40E- 94	98
Mycobacterium doricum	A0A1X1T427	68.9	7.62E- 97	99
Mycobacterium dioxanotrophicus	A0A1Y0C0J6	68.3	7.53E- 96	97
Streptomyces alboflavus	A0A1Z1W640	43.3	3.92E- 41	92
Streptomyces albireticuli	A0A1Z2LAT5	44.3	4.21E- 45	92
Plantactinospora sp.	A0A248YMX7	50.7	4.50E- 50	98
Streptomyces sp.	A0A2B8AU63	45.9	4.27E- 46	95
Streptomyces cinnamoneus	A0A2G1XLL5	46	4.13E- 44	92
Streptomyces sp.	A0A2G9DWW 0	43.1	3.99E- 42	96
Streptomyces carminius	A0A2M8MC47	50	4.34E- 47	93
Streptomyces lunaelactis	A0A2R4SY05	42.7	3.95E- 41	94
Streptomyces tirandamycinicus	A0A2S1SSA7	44.5	3.93E- 41	93
Streptomyces solincola	A0A2S9PP34	45.5	4.24E- 46	99
Actinoplanes italicus	A0A2T0KFI6	46.9	4.31E- 47	94
Micromonospora sp.	A0A317DKQ9	48.3	4.41E- 48	99
Streptomyces armeniacus	A0A345XTR3	46	4.38E- 48	96
Geodermatophilus sp.	A0A366ZGR4	48.3	4.41E- 48	96
Blastococcus sp.	A0A367AEG0	50.2	4.40E- 48	95
Geodermatophilus sp.	A0A372J006	54.6	4.55E- 51	95
Mycolicibacterium tokaiense	A0A378TMP4	69.8	7.19E- 91	100

Strain	Accession number	Identity (%)	Evalue	Coverage (%)
Bailinhaonella thermotolerans	A0A3A4B515	48.3	4.46E- 49	98
Streptomyces klenkii	A0A3B0BAP6	46	4.16E- 44	85
Streptomyces luteoverticillatus	A0A3Q9FYC4	46.7	4.27E- 46	93
Streptomyces xinghaiensis	A0A3R7J2V2	44.2	4.19E- 45	93
Mycolicibacterium aurum	A0A3S4S664	78.9	8.59E- 112	99
Streptomyces sp.	A0A401MW77	44.2	4.31E- 47	92
Streptomyces netropsis	A0A445N4Q1	45.8	4.26E- 46	93
Herbihabitans rhizosphaerae	A0A4Q7L474	47.5	4.03E- 43	84
Streptomyces kasugaensis	A0A4Q9HNW 5	44.5	4.07E- 43	95
Kribbella turkmenica	A0A4R4XDQ2	46.2	3.98E- 42	96
Actinomadura rubrisoli	A0A4R5B5Q5	46.3	4.23E- 46	99
Streptomyces gardneri	A0A4Y3RE30	46.4	4.07E- 43	95
Actinomadura hallensis	A0A543IEA8	49.8	4.19E- 45	99
Streptomyces qinzhouensis	A0A5B8ICR1	47.2	4.39E- 48	88
Baekduia soli	A0A5B8TZG5	49.5	3.83E- 40	88
Streptomyces alkaliterrae	A0A5P0YTG6	44.7	4.31E- 47	94
Mycolicibacterium vanbaalenii	A0A5S9R976	79.4	8.85E- 116	99
Streptomyces jumonjinensis	A0A646KMU2	44.5	4.28E- 46	93
Streptomyces sp.	A0A6B2RY25	45	4.02E- 42	93
Streptomyces taklimakanensis	A0A6G2BIV8	48.1	4.15E- 44	95
Streptomyces coryli	A0A6G4TSL1	46	4.03E- 43	95
Saccharopolyspora sp.	A0A6H1RBJ1	46.1	4.08E- 43	97
Streptomyces sp.	A0A6I4NL08	43.3	4.05E- 43	94
Phytoactinopolyspora halotolerans	A0A6L9SDV5	47.6	4.44E- 49	99

Strain	Accession number	Identity (%)	Evalue	Coverage (%)
Mycolicibacterium poriferae	A0A6N4VHZ4	97.1	1.06E- 141	100
Mycolicibacterium litorale	A0A6S6P9F0	68.4	7.41E- 94	100
Actinomadura verrucosospora	A0A7D3ZXH9	45.9	4.21E- 45	94
Nocardia wallacei	A0A7G1KM99	46.8	4.02E- 42	91
Streptomyces finlayi	A0A7G7BW12	44.1	4.11E- 44	94
Streptomyces genisteinicus	A0A7H0HNM6	49.3	4.42E- 48	95
Streptomyces xanthii	A0A7H1BFP7	46.2	4.25E- 46	95
Streptomyces sp.	A0A7H8IHW3	43.9	4.22E- 45	91
Mycolicibacterium duvalii	A0A7I7JU27	76.4	8.14E- 105	99
Mycolicibacterium arabiense	A0A7I7S6A3	71.5	7.82E- 100	98
Mycobacterium botniense	A0A7I9XYW0	65.4	7.33E- 93	97
Streptomyces fulvorobeus	A0A7J0C1G3	44.1	4.13E- 44	91
Streptomyces smaragdinus	A0A7K0CPV8	44.1	4.11E- 44	97
Actinomadura litoris	A0A7K1LCR6	43.6	4.04E- 43	99
Streptomyces sp.	A0A7K2KZZ4	45.9	4.02E- 42	92
Streptomyces sp.	A0A7L4XYF5	46.4	6.20E- 48	95
Streptomyces ferrugineus	A0A7M2T152	45.5	4.31E-	100
Streptomyces sp.	A0A7M3LRJ1	46.7	47 4.44E-	94
Thermomonospora cellulosilytica	A0A7W3N0P9	45.4	49 4.11E-	96
Streptomyces griseostramineus	A0A7W7M248	44.6	44 3.92E-	92
Streptomyces olivoverticillatus	A0A7W7PJM2	46.4	41 4.33E-	93
Lipingzhangella halophila	A0A7W7RMV	46.9	47 4.27E-	98
Streptomyces morookaense	1 A0A7Y7B221	45	46 4.20E-	93
- ,			45 3.91E-	
Actinophytocola xinjiangensis	A0A7Z0WJN7	44.9	41	96

Strain	Accession number	Identity (%)	Evalue	Coverage (%)
Planomonospora venezuelensis	A0A841DG50	46.8	4.07E- 43	94
Streptosporangium sandarakinum	A0A852UZM3	46.9	4.16E- 45	99
Spirilliplanes yamanashiensis	A0A8J3YCH6	49.3	4.43E- 49	98
Catenulispora acidiphila	C7QBD5	44.4	3.88E- 40	93
Streptomyces venezuelae	F2RA35	47.4	4.21E- 45	94
Patulibacter medicamentivorans	H0E464	49.8	4.97E- 57	99
Streptomyces davaonensis	K4R6D4	44	4.26E- 46	91
Mycobacterium sp.	L0J1J6	72.7	7.81E- 100	98
Mycolicibacterium cosmeticum	W9AVV1	67.8	7.40E- 94	100
Myxococcales bacterium	KPK14096.1	65.57	3.00E- 79	86
Candidatus Dormibacteraeota bacterium	MBV9100674.1	48.8	3.00E- 52	98
Deltaproteobacteria bacterium	TMB00698.1	47.47	8.00E- 49	99
Acidobacteriota bacterium	MBI4470031.1	47.57	6.00E- 48	96
Deltaproteobacteria bacterium	TMA50552.1	47.47	2.00E- 47	99
Mesorhizobium sp.	TPN29283.1	44.76	5.00E- 44	98
Chloroflexota bacterium	TMF15404.1	44.39	8.00E- 41	96
Acidobacteriota bacterium	MDE3069982.1	43.6	3.00E- 39	99
Candidatus Dormibacteraeota bacterium	MBJ7597971.1	47.09	1.00E- 37	80
Chloroflexota bacterium	MDE3094418.1	41.84	1.00E- 33	90
Candidatus Dormibacteraeota bacterium	MBO0684770.1	46.67	3.00E- 33	83
Desulfotalea psychrophila	WP_041277534	41.81	3.00E- 32	81
Pseudomonadales bacterium	MCG3169746.1	44.07	4.00E- 32	81
Desulfotalea psychrophila	CAG35225.1	41.81	6.00E- 32	81
Reticulibacter mediterranei	WP_220210729 .1	43.01	1.00E- 31	85

			AG AG 2009 199	
Strain	Accession number	Identity (%)	Evalue	Coverage (%)
Polyangiaceae bacterium	MBK8255068.1	43.09	2.00E- 31	83
Betaproteobacteria bacterium	OGA07993.1	42.63	2.00E- 31	87
Dictyobacter kobayashii	WP_126557608	41.12	3.00E- 31	90
Microbacter sp.	MVZ91645.1	43.81	4.00E- 31	90
Acidobacteriota bacterium	TDI31627.1	43.16	1.00E- 30	87
Acidobacteriota bacterium	MCZ6599416.1	42.23	1.00E- 30	95
Candidatus Dormibacteraeota bacterium	NNM96725.1	44.26	2.00E- 30	86
Candidatus Dormibacteraeota bacterium	MDA8393919.	40.29	4.00E- 30	96
Dictyobacter kobayashii	GCE24393.1	43.18	8.00E- 30	80
Mycolicibacterium chubuense	A0A0J6WM91	67	7.01E- 88	90
Mycolicibacterium fortuitum	A0A0N9XRF5	61.2	6.47E- 80	97
Mycolicibacterium wolinskyi	A0A132PIS4	60.9	1.4E-80	98
Mycobacterium sp.	A0A1A2G740	61.2	1.00E- 80	96
Mycobacterium holsaticum	A0A1E3RZN9	62.3	7.2E-86	99
Mycobacterium doricum	A0A1X1T7X9	65.8	5.4E-86	98
Mycobacterium fragae	A0A1X1UPL1	56.7	5.80E- 70	96
Mycobacterium dioxanotrophicus	A0A1Y0C7A1	61.2	2.8E-80	97
Nocardia mexicana	A0A370H9K2	57.3	1.9E-71	98
Mycobacterium helveticum	A0A557XZW2	55.7	2.5E-58	99
Mycolicibacterium phlei	A0A5N5UXL6	57.9	6.02E- 75	95
Mycolicibacterium vanbaalenii	A0A5S9R517	66	1.6E-94	99
Mycolicibacterium poriferae	A0A6N4VD83	94.1	7.9E- 138	99
Trebonia kvetii	A0A6P2BWD1	50.8	3.4E-60	94
Nocardia wallacei	A0A7G1KM37	52.7	4.5E-65	99
Mycolicibacterium duvalii	A0A7I7K174	61.9	1.6E-82	99
Nocardia macrotermitis	A0A7K0D867	51.2	3.2E-65	99
Nocardia transvalensis	A0A7W9PLK1	55.1	1.2E-66	98
Mycolicibacterium smegmatis	A0QVN1	59	8.5E-78	97
Thermobispora bispora	D6Y5L2	58.6	8.4E-80	99
Mycolicibacterium rhodesiae	G8RVS3	59.9	6.41E- 79	97
Mycobacterium chubuense	I4BHS8	65.8	6.8E-91	99
Nocardia brasiliensis	K0ER09	53.8	5.31E- 62	96

Strain	Accession number	Identity (%)	Evalue	Coverage (%)
Mycolicibacterium hassiacum	K5B8H4	59.9	6.21E- 76	93
Mycolicibacterium poriferae	ZYF656_4275 U	32.231	1.24E- 09	54

Table S7. Environmental metagenomes used in this study.

Metagenome	Genome ID	Gene count
	3300021365	
	3300017799	
	3300020175	
	3300023086	
	3300021416	
	3300032691	
Seawaters (<200 m)	3300037872	
	3300032559	
	3300032630	
	3300035205	
	3300024336	
	3300032480	
	3300037871	
	3300032673	
	3300040813	
	3300037866	
	3300028045	
	3300023276	
	3300027861	
	3300022916	
	3300037802	
G (200 1000)	3300037870	-1 -0- 000
Seawaters (200-1000 m)	3300037801	51,527,838
	3300027996	
	3300040814	
	3300035163	
	3300035206	
	3300035100	
	3300023112	
	3300035403	
	3300037621	
	3300035400	
	3300035404	
	3300034629	
	3300034654	
G (1000)	3300037581	
Seawaters (>1000 m)	3300035399	
	3300037573	
	3300034655	
	3300037557	
	3300035402	
	3300034628	
	3300035401	
	3300035286	
	3300009788	
Marine sediment	3300034302	50,135,914
Marine Seament	3300037450	<i>))- = -</i>

Metagenome	Genome ID	Gene count
	3300038548	
	3300037246	
	3300005590	
	3300027828	
	3300005920	
	3300009529	
	3300027967	
	3300024263	
	3300038629	
	3300034301	
	3300045144	
	3300029268	
	3300021092	
	3300043465	
	3300045010	
	3300044987	
Lake water	3300045018	8,514,210
	3300020220	
	3300043775	
	3300037829	
	3300031884	
	3300032881	
	3300045009	
	3300035198	
	3300031999	
	3300016621	
Lake sediment	3300036761	6,922,166
	3300031834	
	3300016581	
	3300016609	
	3300031643	
	3300031351	
	3300037399	
Marsh sediment	3300031537	2.752.065
Marsh sediment	3300031585	2,753,065
	3300031653	
	3300031276	
	3300031551	
	3300020795	
	3300020909	
	3300026481	
C - 11-	3300043690	(222 5(1
Soils	3300030606	6,333,561
	3300034170	
	3300036859	
	3300036827	
II 1 41 1 4	3300019457	202.001
Hydrothermal vent	3300019450	383,001

Metagenome	Genome ID	Gene count	
	3300019455		
	3300019447		
	3300019452		
	3300019446		
	3300019453		
	3300019448		
	3300019443		
	3300019439		
	3300019440		
	3300019456		
	3300019454		
	3300019451		
	3300019395		
Cold spring	SRR12623522 (S7)		
	SRR12623521 (S6)	11,423,434	
	SRR12623520 (S5)		
	SRR12623519 (S4)		

Reference

- 1. C. Yanisch-Perron, J. Vieira, and J. Messing, Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. *Gene*, 1985. 33(1): 103-19.
- 2. D. J. MacNeil, J. L. Occi, K. M. Gewain, et al., Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. *Gene*, 1992. 115(1-2): 119-25.
- 3. R. E. Cobb, Y. Wang, and H. Zhao, High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. *ACS Synthetic Biology*, 2015. 4(6): 723-8.
- 4. S. Sioud, B. Aigle, I. Karray-Rebai, et al., Integrative Gene Cloning and Expression System for Streptomyces sp. US 24 and Streptomyces sp. TN 58 Bioactive Molecule Producing Strains. *BioMed Research International*, 2009. 2009(1): 464986.
- 5. H.-J. Hong, M. I. Hutchings, L. M. Hill, M. J. Buttner, The Role of the Novel Fem Protein VanK in Vancomycin Resistance in Streptomyces coelicolor. *Journal of Biological Chemistry*, 2005. 280(13): 13055-13061.