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Abstract: The Planckian locus is a curve on a chromaticity diagram that records the color of
a black body radiator for different temperatures. As temperature increases from 0 to oo, red,
orange, yellow, whitish, and bluish lights are generated, and these are broadly typical of the
colors of everyday illuminations. The red for very low temperatures is on the edge of the spectral
locus (it is monochromatic), but the bluest blue is in the middle of the chromaticity diagram,
far from being a pure color. The Wien locus is parameterised by a simpler equation than the
Planck locus and runs almost parallel to the Planckian locus. These two loci are so close together
that a temperature conversion brings the corresponding chromaticities into an almost complete
coincidence. However, the Wien locus is longer—extends more towards the short-wave part of
the chromaticity diagram—than the Planck locus for an infinite color temperature. In this paper,
we extend the Planck and Wien formulas to accommodate negative temperatures. The Planckian
locus extends only slightly and stops in the middle of the chromaticity diagram. However, the
Wien locus naturally extends all the way to intersect the spectral locus, at 360 nm. We show
that the extended Wien locus is continuous: negative and positive infinite-color temperatures
(the limit of the temperature as it tends to positive and negative o) converge to the same point.
However, there is a substantial discontinuity at the limit of the temperature as it tends to positive
and negative 0, evidenced by the large chromaticity difference between the violet and red ends
of the Wien locus. This mathematical framework provides a firmer theoretical basis for widely
used lighting indices such as correlated color temperature, thereby strengthening their practical
applicability. Theoretical and practical results of this research are discussed.
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1. Introduction

The Planckian locus, also known as the blackbody locus, is a curve that describes the path of the
color appearance of a blackbody radiator as its temperature 7' (in Kelvin) changes. This locus is
often shown in a standard chromaticity space (see Fig. 1). Here and throughout the paper, we
will use (1’,v") chromaticities and CIE(u’, v') chromaticity diagram, as it is more perceptually
relevant [1] than other choices such as CIE(x, y).

In daily life, most lights have a spectral shape that is not well described by the very smooth
lights generated by Planck’s equation. This is true both for natural light sources such as the sun
and sky (which are not as smooth) and artificial ones like incandescent and LED lamps (which are
not smooth at all). However, these non-Planckian illuminants can, in analogy to the temperature
defining Planckian lights, be characterized by their correlated color temperatures (CCT). The CCT
is the color temperature of the Planckian illuminant having the closest chromaticity coordinates
(in terms of CIE (u, v) [1]) to those of a given illuminant [2]. Of course, reducing the spectral
data to a single parameter such as CCT is inherently reductive. However, CCT is widely used in
applied domains such as architecture [3], illumination engineering [4], and specifically in the
most recent and modified version of calculating the Color Fidelity Index [4]. Regarding Color
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Fig. 1. (a) Planckian locus and its infinite-T point in CIE (u’, v") chromaticity diagram, (b)
Exact (1’,v”) coordinate of infinite-T of Planckian locus.

Fidelity, in general, lights that score highly tend to lie close to the Planckian locus thus ensuring
that CCT is actually a tolerable single-number summary of the color of a light. Importantly, the
CCT derived from the concept of color temperature (7'), and in this paper we work directly with
T, which underpins the CCT.

In Fig. 1, the deep red (the lowest possible temperature: T — 0%) light intersects the spectral
locus. Now, as the temperature of T increases, the perceived color of a Planckian black-body
radiator transits through the colors: orange, yellow, white and blue with the bluest light being
defined by an infinite color temperature (7' — co). However, the meaning of high temperatures,
represented by oo in the diagram, is not yet fully understood. So, this paper starts by deriving the
Planckian spectrum at infinite temperature and this facilitates the computation of exact color
coordinates, such as (u’,v’) and sRGB.

Robertson [5] reported the infinite 7-chromaticity of the Planckian locus in CIE 1960 (u, v)
diagram to be at (0.18006,0.26352). However, Robertson [5] did not explain how the point was
derived. For all practical purposes, we might suppose that 10'! Kelvin is sufficiently close to +oco
of the Planckian locus, so we can generate spectra and plot the corresponding (u’, v") coordinate.
A zoomed-in view of the Planckian +co is shown in Fig. 1(b). Notice that we transformed this
point to the CIE 1976 (1, v") chromaticity as (0.18006, 0.39528) which is (0.18006, 0.26352) (the
same as Robertson) in (&, v). In Subsection 3.2 we will analytically redetermine the chromaticity
of Planckian infinite-7 and we retrieve the same chromaticity coordinates as Robertson, and
our intuition that 7 = 10''K was large enough for all practical purposes is shown to be correct.
Potentially, we have re-invented Robertson’s method and yet our derivation is the first time—to
our knowledge—that this limit point has been published.

Keeping in mind the current Planckian locus, recently, the theory of Locus Filters [6] has been
proposed as a unique class of transmissive filters that map any Wien—Planckian light of color
temperature 77 to another of color temperature 75, while ensuring that the transformed spectrum
remains on the Wien—Planckian locus. An important aspect of the theory is that a given Locus
Filter (defined with reference to a given pair of lights) can be applied to any light on the Wien
locus and the filtered light is also on the Wien locus. The theory has been introduced on the
basis of Wien’s law, not the Planckian equation. So, in this paper, we say Wien light instead of
Wien-Planckian for convenience. Importantly, in [7], it was shown that we can adjust a given
Planckian temperature 7 to 7’ such that the spectrum produced by Wien’s equation for 7 has
almost the same spectral shape as the Planckian for 7. That is, we can use Wien’s equation
to generate—to a very good approximation—all Planckian lights. Thus, although Locus Filter
theory was introduced for Wien’s equation, it actually applies to Planckian lights [7].
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Let us illustrate how Locus Filters work. In Fig. 2, a Wien light of 77 = 5500K (red cross) is
filtered using a bluish Locus Filter (according to the theory [6]), producing another Wien light of
12222 K as the green circle. Both lights fall approximately (we say approximately as Wien and
Planck diverge at high temperatures [7]) along the Planckian locus, although they are defined by
Wien’s equation rather than the Planck function. However, applying the same Locus Filter again
generates a bluer light—the blue square—which now lies beyond the conventional Planckian
locus. This chromaticity—according to Locus Filter theory—can be produce by integrating a
Wien spectrum with a negative temperature of —55000K.
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Fig. 2. Illustration of Locus Filter theory [6]. A Wien light of T = 5500K (red cross) is
transformed by a blue Locus Filter with LFT = —10000K, yielding the green circle. Applying
the same Locus Filter for the second time produces the blue square, which lies beyond the
conventional Planckian locus.

We make several contributions in this paper. First, we derive (possibly rederive) the infinite—T
limits for Planck and Wien loci. We will see that the Wien locus pushes further into bluer lights
than possible with respect to Planck’s equation. As discussed in Locus Filter theory, negative
Wien’s equation using negative color temperature well describes Wien lights filtered by blue
filters whose chromaticities lie beyond the infinite Planckian chromaticity. We can also—as a
mathematical stratagem—insert negative temperatures into Planck’s equation. As our second
contribution, we investigate how the admission of negative temperatures extends the Planck and
Wien loci. We show that the extended Wien locus is continuous over any chromaticity diagram
and intersects the spectral locus such that it starts from the monochromatic red and ends in
the monochromatic violet. In comparison, the Planckian locus extends a little when negative
temperatures are admitted but it does not extend to the spectral locus (limiting it’s potential
utility). Moreover, the Planck extension only really makes sense in the chromaticity diagram
representation since negative power spectra are generated (which themselves have no physical
meaning). Finally, we discuss an application for the negative-7 Wien extension to describe real
blue-filtered lights. This is a not-unlikely scenario and pertains to when a bluish color correction
filter is applied to an already bluish light.

The remainder of the paper is organized as follows. In Section 2 we present the fundamental
equations that will be used. Before presenting the main equations, we summarize in Table 1
the notation and symbols used throughout this paper for clarity. In Section 3, we investigate
how negative temperatures extend both Wien and Planckian loci. The extended Wien locus,
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encompassing all temperatures except 0, is presented, and we prove its continuity in chromaticity
space. In Section 4 we show some results to demonstrate the usefulness of our research. The
paper ends with a brief conclusion.

Table 1. Table of symbols used in this paper.

Symbol Description

Ep(A,T) Spectral radiant emittance from Planck’s formula
EA,T) Spectral radiant emittance from Wien’s formula
T Color temperature (K), positive or negative in this extension
Mired Reciprocal color temperature (MK 1)

A Wavelength (m or nm)

c1 Radiation constant, 3.74183 x 10716 W.m?

(o) Radiation constant, 1.4388 x 102 m-K

k Scalar factor that modulates spectrum intensity
Ty Locus Filter Temperature (LFT)

Frocus Locus Filter Transmission Function

u,v CIE 1960 chromaticity coordinates

',V CIE 1976 chromaticity coordinates

U Absolute inverse of color temperature, U = 1/T
P; Color signal in the i channel

pi Chromaticity coordinate for the i channel

Ri(2) Color-matching function of the i channel

M(Q),N(Q) Weighting functions in Wien/Planck locus proofs

G(U) General ratio function used in continuity proofs

2. Background

For a blackbody radiator, the spectral radiant emittance Ep is calculated using Planck’s formula
as a function of wavelength A and color temperature 7 [1] (measured in Kelvin, K):

Ef(L.T) = ke d~5(e — 1) (1)

where ¢ and ¢, are two radiation constants equal to 3.74183 x 10~'Wm? and 1.4388 x 1072mK,
respectively. In addition, the scalar k modulates the intensity of the light spectrum.

Although color temperature 7T is conventionally expressed in kelvin, it could also be represented
using its reciprocal g, as Judd [8] suggested that reciprocal color temperature (say Mired),
expressed in reciprocal mega-kelvin (MK~!), would be a more convenient parameter for general
use than color temperature itself, since differences in reciprocal color temperature are proportional
to the corresponding chromaticity differences. However, since the main contributions of this paper
are representational—extending the locus and understanding both its intersection points with the
spectral locus and between positive and negative temperature loci, as well as its continuity—we
mainly stick with temperature 7 in kelvin. Mired units are also presented in Table 2 (our only
table of results).

Another formula is the Wien displacement law that also describes the blackbody radiation E
as [1]:

ELT) = keyA5e™ T )

The Wien and Planck functions describe similar spectra for low (say <4000 K) color
temperatures. However, the generated spectra become more different the higher the temperatures
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become. We show this in Fig. 3 by plotting two loci in the CIE(u’, v") diagram. Notice that in
Fig. 3, red text shows the temperature of the Planck locus, while blue text indicates the Wien
temperature. Here, to calculate the chromaticity of radiators with different temperatures (4000
to +00K), we use Planck’s and Wien’s laws and refer to them as Planckian and Wien loci. The
(u’,v") point for 4000K is almost coincident for Wien and Planck and so is plotted as a single
black point. When temperature increases, two loci diverge such that their infinite temperatures
are far from each other, resulting in a visually significant difference in chromaticity [9]. In
general, we see mismatch between the Planck and Wien loci for a given temperature such that
each point on the Wien locus is cooler than its corresponding point on the Planck locus. However,
Daneshvar et al [7], showed that a given Planckian temperature could be corrected to a Wien
counterpart so that the Wien spectrum defined with the corrected temperature is a close spectral
match to the desired Planckian. Let’s elaborate on the details of this correction method [7] in the
following subsection.

0.52
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0.46 = Planck Locus
= =Wien Locus
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O Wien light
042+
047 12 32033k
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Fig. 3. Common Planckian locus compared to the Wien locus in (u’, v") diagram.

2.1.  Temperature correction function

To mitigate the discrepancy between Planck and Wien spectra for a given temperature, a
temperature correction function [7] was defined that maps a Planckian temperature T to a
corrected Wien temperature 7’ = f(7) such that the resulting Wien spectrum more closely
approximates the desired Planck spectrum in terms of angular error between two spectra.

The correction problem can be stated formally as:

Ep(A,T) = a E(A,f(T)) (©))

where T’ = f(T) denotes the corrected Wien temperature. In practice, the mapping f(-) can be
constructed in different ways, including look-up-table, polynomial and arctangent functions [7].
Across all formulations, the corrected Wien temperature is always lower than the corresponding
Planckian temperature (7'<7T). Accordingly, for all practical purposes, we can use Wien’s
displacement formula to generate all Planckian spectra as long as a temperature conversion is
carried out [7].

Let’s assume that the infinite-T chromaticity of the Planck locus is effectively equal to the
chromaticity at 10!'K (see Fig. 1 for details). This very high temperature converted, using
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Look-up-table correction function of [7], to the Wien domain, it is just 32033 K, as shown in
Fig. 3.

In Fig. 4 we plot the 10''K Planckian (red line) and the 32033 Wien (blue dashed line). For
reference we also show the 10''K Wien (blue dotted line). All 3 curves have their maximum
power normalized to 1. For the same color temperature, the Wien equation always produces a
"bluer’ light than Planck’s equation, with relatively more power in the shorter wavelengths.
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09+ = =32033K Wien light
P N 10""K Wien light
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Fig. 4. The spectrum of a Planckian light (solid line) with its corrected Wien temperature
(dashed line), compared to an uncorrected Wien light (dotted line).

2.2. Locus filter theory

As we mentioned in the introduction, the motivation for this paper is the theory of locus filter
[6,10]. Here, we review the most fundamental equations related to our current research. In Locus
Filter theory, if we have a Wien illuminant with a temperature 7', applying the Locus Filter to
that obtains another Wien illuminant with a temperature 7. By dividing the spectra of these two
Wien lights provided by Eq. (2) we obtain a filter transmittance function Fr e, (/l, Tlf) that has
the property:

_2
Frocus (/L Tlf) =e 1" (€Y

where the Ty parameter is the main parameter of Locus Filter called Locus Filter Temperature
(LFT), and is equal to:

Ty=5—7 ®)

From Eq. (5), the LFT depends on two temperatures, T and 7>. Now, let’s apply Frc,s to a
third light that has a temperature 73 to make a new light spectrum as

Eﬁlt(/l, T4) = E[ighl(/l, TS)FL()CMS(/L Tlf) (6)

the new light Fll is also lies on the Wien locus with temperature T4 calculated as (see [6] for

details):
1
Ty= —— ™)

—_ + —_—

Ty T T3
Interestingly, it is immediate from Eq. (5) that LFTs can be negative. It follows that when we
apply a Locus Filter with a negative temperature, 74 could be negative depending on the value
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of T3. Fortunately, Wien’s law also works for negative temperatures. When 7 in Eq. (7) is
negative, the corresponding Wien light spectrum becomes bluer than the bluest Planckian light
possible. An important and necessary property of the Locus Filter theory—when negative color
temperatures are admissible—is that any given Locus Filter must map the entire Wien locus
onto itself. These properties of locus filter theory establish a mathematical framework that is
directly related to the concept of color temperature. In the following subsection, we review the
correlated color temperature (CCT), a widely used index in lighting science, to highlight how our
theoretical extension might provide a stronger basis for its definition.

2.3. Correlated color temperature

Correlated color temperature (CCT) is typically calculated by computing the smallest chromaticity
difference between the test light source and the Planckian locus in the CIE (u, v) chromaticity
diagram [2]. Several different methods have been used to calculate CCT based on the Planckian
locus [2,5,11-14]. All current methods for estimating CCT are applicable in a limited range of
temperature, beyond their accuracy decreases. For example, the widely used McCamy method
[2], which employs a cubic polynomial approximation based on CIE 1931 xy chromaticity
coordinates, provides reliable results only within approximately 2856—6504 K. In part because
of this range restriction, CCT remains an open research topic in color science and lighting
engineering. Significantly, CCT is being investigated in research forum RF-03, under the CIE’s
research strategy topic "Color Quality of Light Sources Related to Perception and Preference"
[15]. See also the proposal of a new definition of CCT (i.e., CIE DR 1-67 [16]). Together, RF-03
and DR 1-67 investigate how CCT is used in lighting practice, its theoretical basis, and how the
definition can be usefully extended.

Our work contributes to this active area by providing a firmer mathematical foundation on
which indices such as CCT might be defined and extended more consistently. In this sense, our
theoretical extension is directly linked to long-term practical goals: improving the reliability and
applicability of widely used lighting indices and ultimately supporting their further development
in standardization and engineering practice.

In the next section, we propose admitting negative temperatures into both the Wien and
Planckian equations. The admittance of negative temperatures allows Wien to generate a
continuous path over the chromaticity diagram, sweeping from monochromatic red to the violet
region. This new path, the extended Wien locus, describes Locus Filtered lights and almost all
available real/commercial blue lights, and also accounts for several that are not well modeled by
the conventional Planckian locus.

3. Theory: extending Wien and Planck loci

Let us begin by inserting negative temperatures into the Wien and Planck equations. The form of
Wien’s equation readily admits negative temperatures (see Eq. (2)). Whether T is positive or
negative e T is always all positive, so the Wien equation overall returns a all positive spectrum.
However, when negative temperatures are inserted into the Planck equation, we always obtain

negative values for the exponent (i.e., ;—fl <0). Further, when we calculate the exponential function,

the largest value we can obtain is 1, maxre(—co,0) e = 1. Substituting into Eq. (1), it follows
that over negative temperatures 0<eTi<1 which implies that Planckian spectra for negative
temperatures are all be negatives (which doesn’t make physical sense). So, to use negative
temperatures, we modify Planck’s equation:

c -1
ENA,T) = |kei A5 = 1) | 8)

where |.| denotes the absolute value function. In Fig. 5, we plot the relative energy of Wien and
Planck light with the color temperature of —20000K . Both have their dominant energy in the
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shorter wavelengths. We see that the —20000K Eg is bluer than the infinite Planckian, while the
—20000K Wien is the bluest in this figure, again indicating that Wien lights are always cooler
than the corresponding Planck lights (for the same temperature 7).

1r-

----- Infinite Planck light

09r -20000K modified Planck light
===|Infinite Wien light

08r ——-20000K Wien light

507+

=

© 06
c
0 05r

0 ‘ ‘ ‘ ‘
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Wavelength (nm)

Fig. 5. Spectra at negative temperatures compared to the infinite Planck and Wien lights.

The key concern of this paper is negative color temperatures that produce extended Wien and
Planck loci. In the next subsections, we will prove that both extended Wien and Planck loci start
from a chromaticity point coincident with their respective +oco temperature spectrum. For Wien
spectra, from —co (which has the same chromaticity point as +o0) as the temperature increases to
0~ colors become progressively bluer before eventually ending in monochromatic violet at the
spectral locus. The negative temperatures for Planck start at the infinity chromaticity point (which
again is the same for both +oc0 and —c0). As temperature increases from —oo the Planckian locus
extends to more bluish lights, but stops at the point corresponding to the infinite temperature for
Wien’s equation (which is far from the spectral locus). We also address the question of whether
these extended loci are continuous everywhere over the chromaticity diagram. If they are, what
is the intersection point of the positive (main locus) and negative (extended locus) loci?

3.1.  Properties of the Wien locus

Historically, Wien’s displacement law was superseded by Planck’s equation, as it fails to predict
blackbody spectra at long wavelengths [1]. In this paper, we do not use Wien’s formula as a
replacement for Planck’s law in radiometry. Indeed, we use it as a mathematical foundation in
chromaticity space. Unlike Planck’s law, Wien’s formulation admits negative temperatures and
extends naturally to the spectral locus, thus enabling a continuous curve of color temperature
across the entire visible domain. Furthermore, a recent study has demonstrated that using an
elegant temperature correction function, Wien’s law can closely approximate Planckian spectra
in the visible range [7]. Thus, while its physical accuracy is limited, Wien’s law provides a
unique theoretical framework for the chromaticity-based extension developed in this work.

3.1.1.  Wien locus continuity

By continuity, we refer to the absence of disruption in the chromaticity path that Wien’s law
generates. Although the Wien locus is, by this token, mostly well-ordered in T, there are a few
exceptions. Indeed, while lim7_,o+ and lim7_,o- make two different points (two ends of locus),
limy_,o+ and limy_,.- make the same point.
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Theorem: Wien locus is a continuous path in an arbitrary chromaticity diagram, and the
chromaticity coordinate of the infinite-T of Wien locus is equal to the chromaticity of the light
spectrum A7>.

Proof: Let’s rewrite Wien’s spectrum (Eq. (2)) in terms of absolute inverse temperature:

EU,A) = keydSe 3 )

where U = %

Now, we calculate the color signal of a Wien light, E, as:

P = / R(DE(U, 2)dA (10)

where R;(1) is the response function of the ith sensor for m-dimensional vision system and
integration is taken over the interval w.

A chromaticity is a color projected into a m — 1 dimensional space such that color signal
normalizes to the amount of color vector P.

P;
pilU) = o (11)
l 1 P

By substituting Eq. (9) and Eq. (10) in Eq. (11), we have
[ R(Dei a5 da
—cr U
L [Zm Ri(D) ] e1a~%e i da

Now, we are interested in finding limr_,.+ p;, and this statement is simply equal to find
limy_,0= p;. Let’s assume that color-matching functions—defined as R(1)—of any arbitrary kind
of observer are bounded positive functions of visible wavelength over a compact domain that
does not include A = 0, where Wien shows troublesome behavior (i.e., infinity). Therefore, it is
sufficient for continuity arguments that troublesome points (i.e., U=0) be investigated only for
the General ratio of Eq. (12). Thus, we define G as the general ratio of Eq. (12):

pi(U) =

12)

M(De 3 da
G(U) = /‘UL (13)

U
[ N@)e™Tda

where M(1) and N(Q) are positive weighting functions over the visible range. The factor 17>
has been folded into M(2) and N(Q) functions to make it clear that we expect no trouble from
wavelength. Note that M(2) will be different for each chromaticity coordinate. To evaluate the
limit of Eq. (13), the important part to consider is the exponential, exp, in Wien’s equation.
Remembering we are using U (absolute inverse temperature), the infinite-temperature limit
can be conveniently evaluated in the U domain, at U=0. There is no pathology, such as an
indeterminate form or directionality in the limit at U=0, so direct evaluation at U=0 suffices.
Thus, let’s determine the limit of Eq. (9) at U=0, so we have:
lim e_%/ =1
U—0* (14)
lim E (U, Q) = ke; A7
U—0*

Now, using the above limit, we calculate the limit of general ratio (i.e., Eq. (13)) for U — 0% as

d
lim G(U) = —/“’ M

= 15
U—0* [, N(D)da (15)
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Also the limit of general ratio for U — 0~ is equal to

[ M()da
HHOI, GU) =% —— (16)
U- [ N(2)da
Finally, for every chromaticity space, we have:
li ;= i ; 17
R an
Based on our first assumption, this equation is equal to
li ;= li ; 1
el T PGP (18)

As both limits are equal, we can almost say that the extended-Wien locus is continuous in U
everywhere in the domain of (—oo, +00) over the chromaticity space. The exception is the infinite
limit of U, which is the absolute zero of 7. In that limit, there is a substantial discontinuity
between the +7 and —T sides of 7' = 0. In chromaticity space, that gap comprises the two ends
of the extended-Wien locus.

Now we know that the Wien locus is continuous at the location of infinitely positive and
negative color temperatures, let us determine the corresponding chromaticity coordinate.

As we calculated the limit of the ratio in Eq. (15) and Eq. (16), now we write the special
ratios, at U = 0 that are the chromaticity coordinates of the infinite temperature limit of the Wien
blackbody. Now, rather than use the M and N functions, we rewrite the ratio in terms of the color
matching functions:

i [ R(1) A73dA
m p;=
T—oc0* Ll 7 Ri() 4751 dA

19)

So, the chromaticity of infinite temperature Wien light is equal to the chromaticity of light
spectrum—defined by w = [41, A2, ..., 4,], a 1 X n-vector in the visible range—to the power of
—5. Notice that this theorem holds true in any system, even a non-trichromatic one. To compute
Eq. (19) numerically, we used the CIE 1931 color-matching functions (2° observer) as the spectral
sensitivities R;(1) over the 360-830 nm range, in 1 nm wavelength steps [17]. Evaluating the
integral, we find that the chromaticity point corresponding to the infinite Wien color temperature
is (0.17613, 0.37104) in the CIE (u’,v’) diagram. Notice that the CIE 1931 color-matching
functions are used only as a representative example. The extended Wien locus that we propose is
continuous across all types of observers. This means that if alternative functions such as the CIE
1964 or cone fundamentals are used, the extension still holds and the general statements remain
unchanged.

3.1.2. Intersection of the Wien and Spectral loci

An interesting property of the Wien locus is that it appears to meet the two ends of the spectral
locus. Curiously, where it meets is governed by the lowest and highest wavelength where (here)
the color matching functions have a non-zero response in one color channel. In this paper
we integrated from 360 to 830 nanometers. So, these points on the spectral locus delimit the
extended Wien locus. If we had integrated only from (say) 361 to 379 then it would be at these
wavelengths where the extended locus would end. Let us prove this end points of the integration
interval property.

The CIE Standard 15:2004 [18] on standard colorimetric observers recommends that the CIE
tristimulus values of a color stimulus be obtained by multiplying at each wavelength the value of
the color stimulus function by that of each of the CIE color-matching functions and integrating
each set of products over the wavelength range corresponding to the entire visible spectrum, 360
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nm to 830 nm. The integration is calculated as a numerical summation at wavelength intervals,
AA, equal to 1 nm (the fundamental colorimetric tables are the 1 nm tables in CIE standards, and
all rigorous calculations should use these 1 nm tables) [18]. Therefore, according to the CIE
methodology, we simply change the integral to summation in Eq. (10), obtaining the color signal
(here, let’s say CIE-XYZ response to a standard illumination) in the discrete domain as:

p; = Z R{DE(U, )AL (20)
A

Now, in this domain, let’s consider wavelengths, A and A’, which are two wavelengths from
the integer interval (from 360 nm to 830 nm in 1 nm steps), and assume that the illuminant has
power only at one of these two wavelengths. We are interested in finding what happens at a single
wavelength of light in the context of the Wien locus and the negative Wien locus. To do this, we
calculate the limit of the ratio % expressed in terms of the discrete Delta function, to show
that the two ends of the Wien locus intersect with the spectrum locus.

To achieve this, we must demonstrate that as the temperature T approaches zero from the
positive side (i.e., U = 1/T — +o0), the ratio of the spectral energy at a longer wavelength to
that at a shorter one becomes unbounded (say infinity). That is, for 1>A1":

—cr U
EU, A ke A~ %+ (A=A")eyU
EOD _ iy KT iy o @)
v ) T 0m o s R v

The result of above limit depends on A and A’. Since A>1’, then Eq. (21) is equal to:

im M = 22)
T—0+ E(T, ")
This confirms that when 7' — 0%, longer wavelengths dominate. This means that the Wien
spectrum at longer wavelengths always dominates compared to shorter wavelengths.
We also find the limit of the aforementioned ratio as T approaches 0 from the negative side
(i.e., for the violet color), we have:

—cr U
E(U, A ke A3 =+ (A=)erU
i ( /) — lim_ Cl ei(zu _ lim_ ¢ /1/1’2 (23)
U—oo E(U,/l ) U—oo kcl/l‘SeT U—co
To ensure that the ratio in Eq. (23) tends to +oo, the exponent must again grow positively
without bound. This occurs if 1<A’, and so:

. E(T.2)
im ———— = +o0

T—0- E(T, ")
Hence, as T — 07, it is the shortest wavelength that dominates. Finally, from Eqgs. (22) and
(24), it follows that the spectrum behaves like a Dirac delta function in the limit as 7 — 0. Only
the lower and upper wavelength bounds (e.g., 360 nm and 830 nm) matter in the computation of

chromaticities (since the responses here are infinitely larger than the contribution of all other
wavelengths in the limit).

(24)

3.2.  Properties of the Planckian locus

Following the same procedure as with Wien, we apply negative temperatures to Planck’s law
and explore the resulting behavior of the Planckian locus. As —ve temperature Planckians result
in negative power spectra, we could use the modified Planck Eq. (8), which solves the negative
power problem by taking absolute values. However, if we are examining properties of the
Planckian locus (and a putative extension) we can also use Planck’s equation directly (as in
this case the numerator and denominator in the chromaticity calculation are both negative—for
negative temperatures—and so the negative cancels).
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3.2.1. Properties of the Planckian locus

In the literature related to illuminant color, the Planckian locus end chromaticity point—for bluish
colored lights—is for the infinite color temperature. Here, we demonstrate that, interestingly,
this end-point actually corresponds to both —co and +co. Unlike Wien, however, admitting —ve
temperatures does not extend the modified Planckian locus to the short-wave side of the spectral
locus though it does admit some bluer spectra but only so far as those described by positive
temperatures in the context of Wien’s Equation.

Theorem. The Planckian locus is continuous as the temperature transitions from —oo to +oo
where the limit spectrum in both cases is equal to 17,

Proof: In order to find the chromaticity of infinite (positive and negative) temperature light,
we replace Wien’s formula in Eq. (12) with Planck’s equation.

Ri(D)ei 75 — 1)7'da
- [, Ril)e1 275 Czu) 05)
LIZE Ri()]c1d3 (e —1)71dA

As in the Wien proof, we can further simplify Eq. (25) by writing the general ratio, G as:
U

Lo M@)(e T —1)71da
G(U) = U

LN - 1)7'da

(26)

where M(2) and N(A1) are bounded positive weighting functions over the visible range. But
equation is not as simple as Wien limit. Thus, one way to simplify this equation is replacing exp
function by its Maclaurin series expansion (we can use Maclaurin and not Taylor as the point of
interest is U = 0). Lets write the Maclaurin expansion of exp function as

7 3
q — - _—
e—1+q+2!+3!+ 27

where g = %, also the zero’th-order term is 1, and the first-order term g dominates and remains

(as U — 0, as temperature increases). Thus, using Eq. (27) near U = 0, we can write

el~1+gq
¢ 28
A
It follows by substituting the Maclaurin series
. 1Y -1 A
1 T =1 =— 29
Ul—r}(}i(e ) U ( )

Now, remembering that U = % and substituting in Eq. (1) (where we ignore the scaling term
ie. k=1)
Cl A
2 U
Now, we calculate the chromaticity coordinates at the infinite-temperature limit of the Planck
black-body equation:

lim E =
lim Ep (U, ) (30)

[ Ri(2) A7*da
lim+ pi = wm 1
T—oc0* Ll 7 Ri() 4741 dA
The final result is similar to the final Wien expression (Eq. (19)), except the Wien exponent

—5 becomes —4 in the Planck case. Accordingly, the chromaticity (in any system, even a
non-trichromatic one) of the infinite-temperature Planck radiator is the chromaticity of 174,

€19}
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When we evaluate this integral we find that the infinite color temperature chromaticity point
of Planckian locus is (0.18006,0.39528) in CIE (u’,v’) diagram. Notice that we only show five
decimal numbers to demonstrate that our derivation recovers the same chromaticity as Robertson
[S]. It is entirely possible that Robertson followed a similar line of reasoning to ourselves. In this
case, we are happy we can make his derivation available to the community.

3.2.2. Convergence point of Planckian and Wien loci

In this section, we show why the Planckian formula, Eq. (1), doesn’t reach the short-wave end of
the spectrum locus from a mathematical point of view. Through this, we determine to what extent
the original Planckian locus can be extended, helping to identify the chromaticity of limr_,o-
for the Planckian locus. In so doing, we show that the current Planckian locus can be slightly
extended.

Theorem: The chromaticity coordinate of the 0”K of Planckian locus is equal to the
chromaticity of the light spectrum 173.

Proof: Here, we simply need to determine the limit of Eq. (26) when U — co™. To solve this
equation, we should find the limit of Planck’s law in Eq. (1) when U — oo™ as

. ol
lim (e’ —1)7 =-1
U— o (32)
Jim_Ep (U, ) = -7
Now lets substitute Eq. (32) in Eq. (26) as
[ M(2)da
lim G(U) = “—— (33)
U—co~ [ N(@)da
Let’s convert to the temperature domain as 7 — 07:
[ Ri(A)A73dA
lim p; = © (34)

=0 L[S Ri() A5]dA

Now, we see that what we derived here as Eq. (34) is equal to Eq. (19) (chromaticity of Wien at
o). This statement confirms that Wien and Planck, after diverging at high temperatures, converge
again at the same point on the chromaticity diagram. Interestingly, for Planck, this coordinate
corresponds to a Planckian light with T — 07, while for Wien, it corresponds to a Wien light
with T — +oco.

4. Theoretical and experimental results
4.1. Extended Wien and Planck loci

Figure 6(a) shows the extended Planck and Wien loci in the CIE(x’, v") chromaticity space. Based
on our proof, we determine the chromaticity coordinates of both positive and negative infinite
temperature (both Wien and Planck loci) in the 2-dimensional CIE (u’,v") diagram. We see that
the positive and negative Planckian loci connect at the same (', v") point (0.18006, 0.39528),
shown as a cross. While positive and negative Wien loci connects at the same (u’,v") point
(0.17613, 0.37104), shown as a circle.

While both loci continuously start from the right at monochromatic red, the Wien locus ends
on the left with monochromatic violet, whereas the Planckian locus ends in the middle of the
chromaticity diagram with a non-saturated blue. Indeed, Wien locus from right to left the
temperature monotonically increases from limy_,o+ to limy_,.+. Also, in the extended Wien
locus, from left to right the temperature decreases from limz_,o- to limy_,«- to reach the original
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Fig. 6. (a) Wien and Planck loci with their extension, (b) Zoomed-in, convergence point
of Planck and Wien loci in chromaticity diagram (red text is for Planck and blue text is for
Wien temperatures).

Wien locus at infinity. Regarding the chromaticities for T — 0* and T — 07, these are indicated
as points respectively at 830 and 360 nanometers. We proved that as the temperature decreases
towards O the limits must be the chromaticities recorded for Delta functions at the max and min
wavelengths over which the spectral sensitivities of the visual system are defined.

In Table 2, we determine the CIE (u’,v") chromaticity coordinates with 5-decimal point
accuracy for both the Planck and Wien loci at the four troublesome color temperatures (T'), which
are crucial in describing the behavior of these loci. These temperatures include 0%, 0~, co™, and
oo”, corresponding to the positive and negative sides of the extreme points. In preparing this
table, we considered the wavelength range from 360 nm to 830 nm, with increments of 1 nm.

Table 2. CIE (v, v’) chromaticity coordinates for Planck and Wien loci at
troublesome temperatures T or Mired.

Mired (MK~1) T ) / Planck , , Wien ,

u % u v
oo™t o+ 0.62337 0.50650 0.62337 0.50650
0o~ 0~ 0.17613 0.37104 0.25890 0.01757
0* oot 0.18006 0.39528 0.17613 0.37104
0~ 00~ 0.18006 0.39528 0.17613 0.37104

We see that the Wien locus shows two distinct points for 0* and 0, with coordinates of
(0.62337, 0.50650) for 0* and (0.25890, 0.01757) for 0, indicating a discontinuity in 7 = 0.
Also, the Planckian locus has discontinuity in 7 = 0. However, for both loci, the chromaticity
coordinates at the positive and negative infinity points are identical, indicating the continuity of
the loci in CIE (u’,v") diagram.

4.1.1. Convergence of the Wien and Planck loci

We previously noted that the Planck and Wien loci are close at low temperatures; however, as the
temperature increases, they diverge [7]. The extent of this divergence has, to our knowledge, not
been well defined anywhere. In this paper, we quantify the magnitude of divergence and prove
that two loci ultimately meet at a common point (where positive and negative temperatures are
considered for Planck and only positive temperatures are used for Wien). In Fig. 6(b), we observe
that, despite the divergence at high temperatures, they reconverge at the (u’,v’) point (0.17613,
0.37104), which corresponds to the infinity of the Wien locus.
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4.2. Blue filtered Granada daylights

In this section, we run an experiment to show how the extended Wien locus can describe real
filtered lights that the Planckian locus cannot. Here, we use the Granada daylights (the entire
dataset contains 99 daylights) [19], and the convex hull of these lights is shown in red in Fig. 7.

05r
0.45
> /
0.4 4
0.35 —Wien Locus
-y 2R R Extended Wien Locus
= =Planck Locus
= Convex hull of Granada Lights
03l Convex hull of Blue-Filtered Granada Lights
0.15 0.2 0.25

u'

Fig. 7. The convex hull of Granada lights and Kodak-blue filtered Granada lights in CIE
(u’,v") chromaticity diagram.

In measurement, film and photographic applications it is common to place colored filters in
front of lights (to make them warmer or cooler in color), for example Wratten filters that modify
light in various ways are widely used in photography and scientific research. These filters are
categorized on the basis of their effects on the acquired image and are identified using a coding
system, where each filter is assigned a unique code.

Let us now consider how the Granada chromaticities shift when a *cooling’ color filter is
applied on the whole dataset. We use a blue Kodak Wratten filter, specifically the 80A, which
belongs to the color-conversion category. It is well known that color correction filters enable
significant adjustments to the color temperature of an illuminant, shifting it toward a cooler (as in
the case of the 80A) or a warmer tone. We apply the 80A filter to the daylight illuminants in the
Granada dataset, and the convex hull of the filtered lights is shown in green in Fig. 7. We see
that the hull exceeds the Planckian locus, indicating the need for another approach, such as our
extended Wien locus, to represent it more accurately.

4.3. Describing commercial lamps

As areal case study, we selected the spectral power distribution (SPD) of a blue lamp from a
dataset of spectra of commercial lamps [20,21]. This data set includes various types of real lights
such as LED, Metal Halide, and Neon lights. Figure 8(a) shows the relative energy of a blue
Neon lamp in the range 360—-830 nm with a 1 nm step; its peak indicates that it is a blue light.
The chromaticity of this lamp is shown as a red square on the CIE (u’,v") diagram in Fig. 8(b). It
is clear that this point lies outside the range of current CCT estimation methods, while being
very close to the extended Wien locus. To elaborate, we identified the closest Wien light to this
lamp by minimizing D,/,. The closest Wien light, shown as the green circle in Fig. 8(b), has
D,sv = 0.0189 to the Neon lamp, whereas the infinite point of the Planckian locus, given by
lim7_,+, has D,y = 0.2700, indicating a noticeable color difference [9]. According to our
calculation this light has a CCT of —2814 K.



=

Research Article Vol. 33, No. 23/17 Nov 2025/ Optics Express 48365

Optics EXPRESS

1r 06
0.9
0.5
0.8
50'7 I 04l
© 0.6
005 >03
=
S04
= 0.2
0.3
= Wien locus
0.2 o1t N\ /I Extended Wien locus
. = =Planck locus
0.1 o Neon lamp
0 Closest Wien (-2814 K)
0 h . . . : .
300 400 500 600 700 800 900 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Wavelength (nm) u'
(@ (b)

Fig. 8. (a) Relative energy of a blue Neon lamp [21], (b) CIE («’,v’) chromaticity of blue
Neon lamp.

5. Conclusion

The Planckian locus ‘stops’ for infinite color temperature. The infinite temperature Planckian
light spectrum, though bluish, is far from being either the bluest blue commercially available or
theoretically admissible lights. The Wien locus—which runs (almost) coincident to the Planckian
locus—only accounts for slightly bluer lights than those allowed by Planck’s equation. In this
paper we developed the extended Wien locus which can account for almost all typical lights from
monochromatic red, through oranges, yellows, whites, blues to monochromatic violet. A key
notion in our work is the idea of negative color temperature. The equation defining the Wien
displacement law naturally admits positive and negative temperatures in a way that concomitantly
extends the locus. The extended locus allows us to describe many more commercially available
lights by their correlated color temperatures than is currently possible and, moreover, allows us to
always determine the correlated color temperature of a light that is filtered by a bluish correction
filter; beyond this, our extended locus is a natural requirement of Locus Filter Theory [6,10].
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