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ABSTRACT: The substance Tris (2-amino-2-hydroxymethyl-1,3-propanediol, L £

CAS 77-86-1), and its protonated form TrisH*, are used in the preparation of S S
‘total’ pH buffers in artificial seawater media. The development of a chemical @

speciation model of the buffer solutions, using the Pitzer equations to calculate @ ! i k'
solute activity coefficients, is desirable in order to quantify the effects of

composition change, convert the total pH to other scales, and address metrological

requirements for traceability to the International System of Units. Here, in the 2 =

second of a series of studies, we present Harned cell measurements of potentials
and mean activity coefficients of HCI in solutions containing HCl, NaCl, and
TrisHCl for ionic strengths from 1.0 to 5.5 mol kg™' and from S to 40 °C. The
results at 25 °C are consistent with those of the literature studies of the two end-member solutions (aqueous HCI + NaCl, and HCI
+ TrisHCI). We also present results of measurements of buffer solutions containing equimolal Tris and TrisHCI (hence TrisH'),
and NaCl, at ionic strengths of 0.2, 1.0, and 4.0 mol kg_1 at the same temperatures. These are compared with literature data for Tris
buffers in an artificial seawater medium. Aspects of the development of a Pitzer model for these solutions are discussed.

,- §

Measurement of Cell Potentials (ll)

1. INTRODUCTION products of H" and CI7). This study is the second of a series
which involves the National Metrology Institutes of Japan
(hereinafter NMIJ), Germany, and the USA. Here we present
measurements of electrochemical potentials of aqueous HCI—
NaCl-TrisHC] mixtures, and Tris buffer in aqueous NaCl
solutions, over a range of temperatures and ionic strengths as a
further step toward developing a model of the pH buffer. The
results are compared with available data for aqueous HCl—
TrisHCl and HCI-NaCl solutions and for Tris buffer in
artificial seawater.

The seawater total hydrogen ion pH scale was established from
measurements of cell potentials of solutions of artificial
seawater acidified with HCI, and others containing equimolal
Tris and its conjugate acid TrisH® as a pH buffer.' (The
substance Tris is 2-amino-2-hydroxymethyl-1,3-propanediol,
and the acidic form TrisH" has a pK, that is close to the pH of
seawater.) Artificial seawaters, and natural seawater, consist of
about 90 mol % Na* and Cl” ions, plus smaller amounts of
Mg*, SO,*", Ca®, and K*. Other minor species present in
natural seawater” are generally omitted from artificial seawaters
because their molalities are too low to influence the activity

2. EXPERIMENTAL METHOD

coeflicients of other solutes. The development of a chemical Activity products of H" and Cl” ions were determined from
speciation model of these buffer solutions, yielding molalities measurements of the potential difference of the following
and activities of solute species for a range of salinities and electrochemical cell:

temperatures, and hence total pH, has a number of potential
benefits. These include the extension of the scale to a wider
range of temperatures and salinities, conversion to other forms (A)
such as “free” pH’ and conventional pH,* and improved
metrological traceability.”~”

Clegg et al.’ have developed a draft model of Tris buffer in
artificial seawater, using the Pitzer equations8 for the
calculation of activity coeflicients, and have tabulated the
unknown Pitzer interaction parameters that new thermody-
namic data are needed to quantify. As the first step toward
achieving this goal, Maksimov et al” have determined mean
activity coeflicients of HCI in aqueous HCl—TrisHCI mixtures
from measured potentials of Harned cells (which yield activity

Pt(), Hyp(1 atm)|H*, CI”inagq. soln.|Ag /AgCl

where the solutions in this study contain either H', Na®,
TrisH" and CI” ions, or equimolal TrisHCl and Tris (Tris
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Table 1. Chemicals Used in This Study

CAS molar
chemical  registry # mass (g) supplier or source
Tris” 77-86-1 121.135 FUJIFILM WAKO Pure Chemical Corp.
HCl 7647-01-0 36.4609  Kanto Chemical Co.
H,0 7732-18-S 18.0153  Milli-Q Ultrapure Water System (Merck)
NaCl 7647-14-S 584430  FUJIFILM WAKO Pure Chemical Corp.

“2-Amino-2-(hydroxymethyl)propane-1,3-diol, C,H;;NO;.

notes
used as NMIJ CRM 3012-a, purity 99.99 + 0.10%(k = 2) determined by
acidimetric coulometric titration

ultrapure grade aqueous HCI of 31.4 mass % (diluted with water and then
molality determined before use)

resistivity 18.2 MQ cm at 25 °C

used as NMIJ CRM 3008-a, purity 100.000 + 0.047%(k = 2)determined by
argentometric coulometric titration

Table 2. Cell Identifiers and Dates of Measurements

cells” mCl™ (mol kg™") date
73-74 0.2 (Tris buffer)” 11/10/17
75-76 1.0 (Tris buffer)” 11/10/17
77-78 4.0 (Tris buffer)” 11/10/17
79—84 3.5 13/11/17
85—90 4.0 20/11/17
91-96 45 27/11/17
97-102 5.0 05/12/17
103—108 55 11/12/17
1-6 1.0 20/02/23
7-12 L5 27/02/23
13-18 2.0 06/03/23

cells mHCI (mol kg™") date
A-F 0.01 21/08/17
G-L 0.01 24/08/17
M—-R 0.01 25/09/17
S—X 0.01 23/10/17
Al1-F1 0.01 14/12/17
Gl1-L1 0.01 06/06/22
M1-R1 0.01 23/01/23

“Cells 1—18 are different from those in our previous study that have the same numbers.” ®These are the solutions containing equimolal Tris and

TrisHCI in aqueous NaCl.

buffer) in aqueous NaCl. The presence of H' in the first set of
solutions (at a molality of 0.1 mol kg™") is sufficient to entirely
suppress the dissociation of TrisH". In the buffer solutions, the
H" molality is controlled by the dissociation of the conjugate
acid of Tris, TrisH*,” which yields a slightly alkaline solution.
The potential, E (V), of Cell A is given by the following
expression:

E = E° — (RT/F)-In(aH"-aCl") (1)
where E° (V) is the standard potential of the cell at the
temperature T (K) of interest, R (8.31446 J mol™ K™') is the
gas constant, F (96 485.332 C mol™") is Faraday’s constant,
and prefix a denotes activity. The activity product of the H*
and CI™ ions can also be written mH*-mCl -y, where the
prefix m indicates molality and yyc is the mean activity
coeflicient of H" and Cl™ ions in the solution.

A schematic of the Harned cell (Cell A) used at NMIJ is
shown in Figure 1 of Maksimov et al.” A flow of dry hydrogen
gas at a rate of 4 cm® min™" first passes through a set of three
presaturators all of which contain an aqueous solution of the
same composition as that being measured. The gas flow next
passes into the half-cell of the U-shaped measurement
compartment containing the platinum hydrogen electrode
and bubbles through the solution. The gas exits the cell via a
hydraulic trap designed to prevent any direct contact with the
air. This half-cell is connected, with a glass capillary tube, to
the other half-cell which contains the same solution and the
reference silver—silver chloride electrode. A set of six Harned
cells is used for each measurement run. The cells are immersed
in a water bath for temperature control.

A total of 18 Harned cells and 18 reference electrodes,
belonging to two separate sets, were used in this study. The 12
electrodes used for measurements carried out in 2017 were the
same as in our previous study,” and a further six were used for
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measurements made in 2023. The preparation of hydrogen and
reference electrodes is described by Bates,'’ and the specific
procedures used at NMIJ are summarized in the Supporting
Information to Maksimov et al.” The ancillary equipment used
(for temperature control, and measurement of pressure and
potential) is also listed by Maksimov et al., and the setup for
Harned cell measurements at NM]J is described in detail by
Ohata."!

2.1. Solution Compositions and Preparation. The
molal ionic strengths (I) of the HCI-NaCl—TrisHCI aqueous
solutions range from 1.0 to 5.5 mol kg™, with Na' cation
fractions yNa* (equal to mNa*/(mNa* + mTrisH")) of 0.3, 0.5
and 0.7, and a constant H* molality of 0.1 mol kg™". The Tris
buffer solutions contain stoichiometric molalities of 0.04 mol
kg™! Tris and TrisH" cation (the product of half-neutralization
of Tris by HCI) in an NaCl medium with ionic strengths of
0.2, 1.0, and 4.0 mol kg_l. The measurement of a wide range of
ionic strengths should enable unknown Pitzer model
interaction parameters for this mixture to be determined
accurately.

The chemicals used in the preparation of the solutions are
listed in Table 1. The solid Tris, the purity of which was
determined by acidimetric coulometric titration, was stored at
room temperature and used directly from sealed bottles
without additional drying. The concentrated HCI was diluted
with ultrapure water to produce stock solutions of lower
concentrations, and their exact molalities (3.6654 + 0.0014,
3.6603 + 0.0018, 5.7700 =+ 0.0035, and 7.4143 + 0.0044 mol
kg™') were determined by coulometric titration. The purity of
the NaCl reagent was determined by argentometric coulo-
metric titration. The salt was dried at 450 °C for 2 h and
cooled to room temperature in a desiccator with silica gel
before the preparation of NaCl stock solutions of molalities
3.0000 + 0.0031, 5.1025 =+ 0.0031, and 5.1279 =+ 0.0031 mol

https://doi.org/10.1021/acs.jced.5c00369
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kg™'. The concentration uncertainties were calculated from the
uncertainty of NaCl purity and the uncertainty of gravimetric
preparation.

All of the studied solutions were prepared gravimetrically as
weights in air of HCl and NaCl stock solution aliquots, solid
Tris, and water. Buoyancy corrections were carried out using
equations presented in Dickson et al,'” and assuming a
laboratory temperature of 20 °C. A density of solid Tris of
1.328 g cm™ (typical of those quoted by chemical suppliers)
was adopted for the calculation of the buoyancy correction.
Densities of aqueous HCI and NaCl solutions were taken from
Clegg and Wexler,"® and those of water from Kell.'* All of the
measured solutions were prepared in duplicate.

The standard potentials of the Harned cells are determined
from measurements of ~0.01 mol kg™ HCIl at each
temperature. The preparation of the dilute aqueous HCI
solutions used for measurements carried out in 2017 is
described in Section 2.1 of Maksimov.” For the measurements
carried out in 2023, the ~0.1 mol kg™' HCI stock solution was
gravimetrically diluted in the same way to obtain the required
0.01 mol kg™ solutions (0.01000012 and 0.00999946 mol kg™
in this work).

2.2. Measurements. Cell potentials were measured from 5
to 40 °C for all solutions. Identifiers for the individual cells
used, the chloride or HCI molalities of the solutions, and the
dates of measurement are listed in Table 2. As can be seen, the
measurements for the acidic solutions were carried out in two
groups: 3.5—5.5 mol kg™ ionic strength solutions in 2017, and
the lower molality solutions in 2023 (and the associated HCI
solutions for the determination of standard potentials in 2022
and 2023). All measurements of the 0.04 mol kg™ Tris buffers
in aqueous NaCl were made in 2017.

The Harned cells at NMIJ are routinely used for the
certification of buffer solutions of ionic strengths up to 0.1 mol
kg™!, and the measurements in this and our previous study
presented some additional difficulties. One of these is related
to the fact that the solubility of AgCl increases in solutions
containing high concentrations of chloride ions."” Gradual
degradation of the reference electrodes due to the dissolution
of the electrodeposited layer of silver chloride eventually
results in irreversible damage, and it was necessary to measure
the solutions in a relatively short space of time. The
measurements of solutions made in 2023 (HCI-NaCl—
TrisHCI solutions with ionic strengths 1.0—2.0 mol kg™')
were made with a comparatively old set of electrodes having in
addition a relatively small size of the original silver bulb. The
quicker deterioration of those electrodes appears to have
caused an offset in the measured cell potentials. This is
discussed in Section 4.1, and further details are given in the
Supporting Information. Also, during the measurements of
some of the most concentrated solutions at the highest
temperatures, salt deposition occurred in the first of the three
H, presaturator tubes due to loss of water to the dry H, gas
stream (see the Supporting Information). These measure-
ments, 11 in total, were discarded.

In dilute buffer solutions, the criterion of stability of cell
potential is a voltage drift not exceeding 10 4V h™". For the
HCI-NaCl—-TrisHCI solutions we observed a similar bias at
the lower temperatures S, 10, 15, and 20 °C, with the drift
rising to 50 uV h™' at 30 °C and to 90 uV h™' at 40 °C.
Compared to our previous study with HCI-TrisHCI
solutions,” the increase at the two last temperatures may
have been caused by a stronger impact (on the recorded
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voltage) of water evaporation from the more concentrated
media. This is despite the partial compensation from the
preceding set of three presaturators. For the 0.04 mol kg™" Tris
bufter in NaCl solutions, the voltage drift was within 10 uV
h™, rising slightly to 20 4V h™" at the final temperature of 40
°C.

3. TREATMENT OF THE DATA

The measured cell potentials, E,.,,, at the ambient H, partial
pressure in the cell are corrected to pH, equal to 1 atm using
the following relationship:10

E(pH,, latm) = E,..,, — RT/(2F)-In(pH,) (2)
where
pH, = P — pH,0 — pHCI + 0.4-p-h-g-C (3)

P (atm) is atmospheric pressure at the time of the
measurement, and pH,O (atm) and pHCl (atm) are the
equilibrium partial pressures of water and of HCI, respectively,
above the solution at the temperature of the measurement.
The final term in eq 3 is a further correction in which 0.4 is an
empirical factor,'® p (g cm™) is the density of the solution,
(mm) is the depth of immersion of the H, electrode, g (9.81 m
s7%) is the gravitational constant, and C (1/101 325 atm Pa™")
is a conversion factor from Pa to atm. The influences of the
different terms in eq 3 on the adjustment to the measured
potentials are given in Table 4 of Maksimov et al.” The
contribution of pHCI is very small at all temperatures (its
maximum calculated value for the acidic solutions measured in
this study is 1.9 X 107° atm). The values of pH,O are equal to
aH,0-p°(H,0), neglecting the small difference between partial
pressure and fugacity, where aH,O is the water activity of the
solution and p°(H,0) (atm) the vapor pressure of pure water
at the temperature of the measurement. The estimation of
pHCI, aH,0, and p and their associated uncertainties is
summarized in the Supporting Information.

3.1. Standard Potentials. Standard potentials, E°, of Cell
A at each temperature were obtained from the measurements
of 0.01 mol kg™' HCI solutions, adjusted to 1 atm pH,,
together with mean activity coefficients of HCI listed by Bates
and Robinson.'” The effects of the very small deviations of the
solution compositions from exactly 0.01 mol kg™' were
compensated for by adjusting the potentials E as described
in Section 3.1 of Maksimov et al.” Information concerning the
cells used to determine the standard potentials at each
temperature, and the values of E° (with uncertainties)
determined in this study, can be found in the Supporting
Information. The standard potentials of the cells used for
measurements made in 2017 are the same as those presented
by Maksimov et al.”

The potentials of the measurement solutions, after adjust-
ment to 1 atm pH,, were further adjusted as described by
Maksimov et al.” to be consistent with the standard potentials
of Bates and Bower'® (column 7 of their Table 1) for ease of
comparability. It is these adjusted potentials, E(adj.), that are
tabulated in this work.

3.2. Uncertainties. The overall uncertainty of the
measured potential is dominated by that of the voltage
measurement. In comparison with our previous study, we
estimate that the contribution of the uncertainty of the water
activity u(aH,0) to the total, for the most concentrated HCl—
NaCl-TrisHCI solutions at the highest temperatures, was
greater by about 2 orders of magnitude but was still equal to

https://doi.org/10.1021/acs.jced.5c00369
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only ~0.6% of the total uncertainty of the cell potential. The
uncertainty of the voltage measurement was calculated as a
combined value of cell potential drift (see Section 2.2 for its
numeric values) at the experimental temperature and the
standard deviation (SD) of two duplicate measurements:

u(E) = [(drift)" + (SD)’])""* o)
In general, the u(E) values for the HCI-NaCl-TrisHCI
solutions were found to be larger than the uncertainties of the
measurements in our previous study. They increase with
temperature, reaching quite a significant value of 200 yV at 40
°C for solutions with ionic strengths of 3.5 mol kg™ and
above. In addition to the more difficult nature of the
measurand, slight differences in the geometrical design of
duplicate cells (the diameter of the inner capillary tubes,
especially) seem likely to be an important influence on the
repeatability of measurements for concentrated solutions at
temperatures above 25 °C due to water evaporation and
transfer.

The u(E) for 0.04 mol kg™' Tris buffer in a NaCl medium
was approximately 100 yV for all studied temperatures.

4. RESULTS AND DISCUSSION

In this section, we discuss the results for the two types of
solutions and compare them with existing literature data and
with model calculations.

4.1. Aqueous HCI-NaCl-TrisHCl Solutions. Measured
cell potentials, corrected to pH, equal to 1 atm and adjusted to
be consistent with the standard potentials of Bates and
Bower,'® are listed in Tables 3 and 4 together with values of
Yuc) determined from the data. In Tables S6 and S7 of the
Supporting Information the original measured potentials are
listed, together with other information needed in eqs 2 and 3
to adjust the data to 1 atm pH,, and also the estimated
uncertainties in Yy

Results at 25 °C are shown in Figure 1, distinguishing the
data for each of the three Na* fractions (yNa*). The solid line
represents mean activity coeflicients for aqueous HCIl—
TrisHCI calculated using the same Pitzer model as Maksimov
et al.” in their Figure 2b. For compositions corresponding to
yNa* equal to unity, i.e., aqueous HCI-NaCl, we show model-
calculated values at low ionic strengths and also data from
several other studies, some of which derive from the
application of Harned’s rule to the original measurements
(cited in the caption to Figure 1). Our results in Table 4 for
low ionic strengths, plotted in the inset of Figure 1, show that
measured values (the solid symbols) are not equidistant
between the lines for the two end-member cases of yNa* equal
to zero and one. This appears to suggest that the substitution
of TrisH" by Na' in these dilute solutions yields a steep
increase in yyc that is not apparent in the measurements for
the higher ionic strengths, also shown in Figure I, that were
carried out several years before. This behavior is examined
below.

Figure 2, parts a—d, shows values of yy( at three different
temperatures, as a function of yNa* for fixed ionic strengths. At
ionic strengths and temperatures for which there are also data
for the end-member solutions (yNa* equal to zero and one),
dotted lines are used to link all the values. The results show
that yyc is the highest at the lowest temperatures, and the
slope with respect to yNa* increases with ionic strength.
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Figure 1. Measured and calculated mean activity coefficients yyc
(labeled y(HCI) for clarity) at 25 °C, plotted against the square root
of total CI™ molality (mCl™). All data are for solutions containing 0.1
mol kg™ of H'. Symbols: dot, solid triangle, and solid square — results
of this study at the three Na* cation fractions (yNa*) indicated on the
plot; inverted triangle — measurement from Maksimov et al.” for
aqueous HCl—TrisHCl (hence yNa* = 0). Other symbols are for
aqueous HCI—NaCl solutions (yNa* = 1): open circle — Macaskill et
al.*? (calculated using Harned’s rule coefficients in their Table II);
plus — from Harned’s rule coeflicients in Table 14-6-2 of Harned and
Owen;>* asterisk — from Harned’s rule coefficients in Table 1 of
Harned;** cross — measurements of Hawkins;*> diamond — from
Harned’s rule coefficients in Table 4 of Jiang.>® Solid symbols at low
chloride molalities are reduced in size for clarity. Lines: solid — for
aqueous HCI-TrisHCI (yNa* = 0) calculated using the Pitzer model
of Clegg et al’ including values of parameters Oy 1y and Wiy ryisr,c1 S
described in the text; dotted — for aqueous HCI—NaCl calculated
using the same Pitzer model. The inset shows the same results up to a
2.0 mol kg™' CI™ molality.

In Figure 2b we compare model-calculated yyc with
measured values at 25 °C and an ionic strength of 1.0 mol
kg™ as a typical example of the results at low ionic strengths.
The dashed-dotted line was calculated using Pitzer model
parameters for H*—Cl~, TrisH*—Cl~, and Na"—Cl~ inter-
actions only. The addition of ternary parameters for H'—Na*—
Cl™ interactions (as used by Clegg et al.®), and H*—TrisH"—
Cl™ interactions (from Bates and Macaskill'?), can be shown to
yield more accurate predictions of both end-member solutions.
However, our measured yy¢ for intermediate values of yNa*
are consistently higher than predicted, by about 0.0075, even
using recently determined parameters for Na'—TrisH"—CI~
interactions (J. Miladinovic, Pers. comm.). This is equivalent
to a difference in potential of about 0.5 mV. No plausible
values of the ternary mixture parameters in the Pitzer model
for these solutions seem able to account for the observed
difference, and we attribute it to the condition of the electrodes

https://doi.org/10.1021/acs.jced.5c00369
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Figure 2. Measured mean activity coefficients yy¢ (labeled y(HCI) for clarity) plotted against the Na* cation fraction yNa* for different
temperatures and ionic strengths as indicated on the plots. Symbols and ionic strengths: dot and open circle — 1.0; triangle — 1.5; square and solid
square — 2.0; solid triangle — 3.5; plus — 4.0; inverted triangle — 4.5; cross — 5.0; solid inverted triangle — 5.5 mol kg™". The open circles at }/NaJr =
0 are values from our previous study.” (a) Results at 25 °C, including measurements of Macaskill and Bates”” and Bates and Macaskill"” (solid
symbols at yNa* = 0.0), Harned** (solid square and circle at yNa* = 1.0), and Hawkins™® and Jiang®® (bold plus and cross at yNa* = 1.0). Dotted
lines are visual guides only. (b) Results for ionic strength 1.0 mol kg™ from plot (a). Lines were calculated using the model of Clegg et al.® as
follows: dash-dot — without ternary mixture parameters; solid — with ternary mixture parameters as described in the text. (c, d) Results at 10 and
40 °C, with symbols denoting different ionic strengths as in (a). Data for the other temperatures (S, 15, 20, and 30 °C) are similar and are not

shown.

used for the low ionic strength measurements, as noted in
Section 2.2.

Further examination of this behavior in Figure 3a shows,
first, that the offset of the measured yyc| from the predicted
values is similar at all three ionic strengths and does not appear
to have a relationship with yNa*. Second, the modeled yy, for
aqueous HCI-NaCl (i.e., yNa* equal to 1.0) at 2.0 mol kg™
ionic strength is lower than the measured value. Calculations
for higher ionic strengths (not shown) yield similar behavior,
which suggests that this underprediction may represent small

3623

errors in the model for H*'—Na*—Cl~ interactions, or perhaps
those for Na*—Cl~ (or H*—CI™ in the most concentrated
solutions). In Figure 3b we show the difference between
adjusted values of yy obtained from our measurements (at
yNa* equal to 0.3, 0.5, and 0.7) and modeled values. The
adjustment is equivalent to a change in the measured potential
by 0.5 mV, as determined from the data for the 1.0 mol kg™'
ionic strength and noted above. There is quite good
agreement, in most cases, to within about +0.002 in yy(
The fact that the deviations of Ay increase with yNa* for the

https://doi.org/10.1021/acs.jced.5c00369
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Figure 3. Measured and calculated mean activity coefficients yy;¢; (labeled y(HCI) for clarity) at 25 °C, for solutions with ionic strengths 1.0, 1.5,
and 2.0 mol kg™’ plotted against Na* cation fraction (yNa*). (a) Symbols: open circle, triangle, and square — results of this study for 1.0, 1.5, and
2.0 mol kg™ ionic strength as indicated; open circle at yNa* equal to 0 — measurement of Maksimov et al;” solid symbols at yNa* equal to 0 —
measurements of Macaskill and Bates”” (I = 1.0 mol kg™') and Bates and Macaskill"® (I = 2.0 mol kg™"); solid symbols at yNa* equal to 1.0 — from
Harned’s rule coefficients in Table I of Harned.”* Lines: calculated using the Pitzer model, including values of ternary mixture parameters as
described in the text. (b) The same data as in (a), but shown as the difference between measured and model-calculated activity coefficients
(Ay(HCI)), with the measurements from this study adjusted by an equivalent of 0.5 mV (a factor of about 0.99 in yy¢;). Values of yy, from other
studies (at yNa* equal to 0 and 1) are not adjusted. Symbols: circles, triangle, and square — all values for 1.0, 1.5, and 2.0 mol kg™ ionic strength,
respectively. The symbols for 1.0 mol kg™' (circles), the measurements from which the adjustment was determined, are enlarged and shaded to
contrast them with the other data. Error bars (Table S4) are included.

solutions at 2.0 mol kg™ ionic strength (relative to values at
the two lower ionic strengths) is consistent with the small error
in the model mentioned above. Past experience suggests that
the AE values that we observe here, related to the condition of
the electrodes, are likely to be roughly constant with
temperature. If this is so then these data will still be valuable
for constraining a future Pitzer model of these solutions.

Figure 4a—c shows the approximately linear change of
measured yyc with temperature at all ionic strengths for the
three values of yNa". Figure 4d, for yNa* equal to 0.5, presents
values of yyc; at each temperature divided by the
corresponding value at 40 °C. This normalization enables
the relative slopes of yyc with respect to temperature to be
compared across all ionic strengths. The change in yyc with
temperature, for constant composition, is greatest at the
highest ionic strength and appears to decrease smoothly: at
ionic strength 5.5 mol kg™ the value of yyq at S °C is about
1.14 times that at 40 °C, whereas at 1.0 mol kg™', the increase
is only a factor of about 1.0S.

4.2. Tris Buffer (Equimolal TrisHClI and Tris) in
Aqueous NaCl. For the aqueous HCI-NaCl-TrisHCl
solutions discussed above, the molalities of both H" and CI™
are known and eq 1 was used to calculate the mean activity
coefficient of HCI from the measured potentials. This is not
possible for the solutions containing Tris buffer (0.04 mol kg™*
TrisHCI and Tris). In these alkaline solutions, the H* content
of the solutions is determined from the very slight dissociation
of weak acid TrisH" (to yield H" and Tris), which is a function
of the values of the thermodynamic equilibrium constant and
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activity coeflicients of the three species. When considering the
results of the measurements for these solutions, it is therefore
helpful to define the following acidity function, Q, which can
be calculated directly from the measured cell potentials:

Q = In(mH"%,,*) = (E° — E)-(F/RT) — In(mCI")
(s)

Measured and adjusted cell potentials for these solutions are
given in Table S together with values of the acidity function
calculated from them. Table S8 of the Supporting Information
contains the estimated uncertainties in the acidity function and
information relevant to the adjustment of the measured
potentials. Note that this function is a natural logarithm rather
than decadal, and is without a reversal of sign so that all
calculated values are negative.

Figure Sa shows the acidity function (on a log;, basis) at all
temperatures, together with values determined from measure-
ments of DelValls and Dickson' for artificial seawater
containing the same stoichiometric molalities of TrisHCI and
Tris as in our work. The top axis indicates the nominal
practical salinities of artificial seawater corresponding to the
ionic strengths on the bottom x-axis. The line on the plot
represents values of the acidity function calculated for the Tris
buffer in aqueous NaCl over a very wide range of ionic strength
using the draft model of these solutions of Clegg et al.” This
includes parameters for the interaction of Tris with Na* and a
number of other ions, but not parameters for Na*—TrisH"—
Cl™ or H'-TrisH'—Cl™ interactions (the latter do not
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Figure 4. Measured mean activity coefficients yy¢; (labeled y(HCI) for clarity) plotted against temperature (t) for different cation fractions yNa*
and ionic strengths as indicated on the plots. Symbols and ionic strengths: open circle — 1.0; triangle — 1.5; square and solid square — 2.0; solid
triangle — 3.5; plus — 4.0; inverted triangle — 4.5; cross — 5.0; solid inverted triangle — 5.5 mol kg™". Plots (a)—(c): for yNa* = 0.30, 0.50, and 0.70,
respectively. (d) The ratio of each yy to its value at 40 °C (for the same ionic strength and yNa*), to show how the variation of yy¢ with

temperature increases with ionic strength.

influence the calculated acidity function for reasons explained
in the following section).

Figure Sb, which is for 25 °C only, demonstrates that our
results for the Tris buffer in aqueous NaCl are quite close to
those for an artificial seawater medium. The draft model yields
values of the acidity function that are slightly lower than
measured values, but the results are encouraging

4.3. Modeling. In this work, as in our previous study, we
do not attempt to develop a Pitzer model of the solutions from
the results. This is because such a model requires the
consideration of a large range of literature information, and
because further Harned cell data sets are still in preparation.
Here we summarize the requirements for Pitzer models of the
solutions studied in this work. In Table 6 we list the binary and
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ternary interactions for which the Pitzer model contains
parameters.

For aqueous HCl-NaCl—-TrisHCI, there are existing data
from which most interactions can be quantified, although in
two cases (TrisH'—CI~ and Na*—TrisH*—Cl™) the informa-
tion is mostly restricted to 25 °C. We note that Tishchenko™’
has developed a Pitzer chemical speciation model of Tris buffer
in aqueous NaCl, based largely on measurements made in the
same study. Some of the results of Tishchenko have been
examined by Lodeiro et al,”' and seem likely to be
erroneous—notably osmotic and activity coefficients of
aqueous Tris solutions—or were found to be inconsistent
with solubility measurements.

When considering a model for the Tris buffer in aqueous
NaCl solutions and what can be determined from Harned cell

https://doi.org/10.1021/acs.jced.5c00369
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Table 5. Harned Cell Results for 0.04 mol kg™' Tris Buffer in Aqueous NaCl at Ionic Strengths of 0.2, 1.0, and 4.0 mol kg™,

Including Values of the Acidity Function (Equation 5)“

cell t(°C) mCl” (mol kg™') mTris (mol kg') mTrisHCI (mol kg™') mNaCl (mol kg™") E(adj.) (V) u(E) b (mv) acidity function Q°  u(Q)
73 S 0.20 0.03998 0.04004 0.16000 0.76791 0.096 —20.6624 0.0042
74 5 0.20 0.04001 0.04001 0.16000 0.76778 0.096 —20.6567 0.0042
75 S 1.00 0.04001 0.04000 0.96004 0.73758 0.020 —21.0062 0.0014
76 S 1.00 0.04001 0.04001 0.96001 0.73757 0.020 —21.0060 0.0014
77 S 4.00 0.04001 0.03999 3.96013 0.70718 0.150 —21.1242 0.0064
78 S 4.00 0.03995 0.04003 3.96006 0.70697 0.150 —21.11585 0.0064
73 10 0.20 0.03998 0.04004 0.16000 0.76581 0.098 —20.2930 0.0042
74 10 0.20 0.04001 0.04001 0.16000 0.76568 0.098 —20.2872 0.0042
75 10 1.00 0.04001 0.04000 0.96004 0.7348S 0.021 —20.6334 0.0014
76 10 1.00 0.04001 0.04001 0.96001 0.73485 0.021 —20.6331 0.0014
77 10 4.00 0.04001 0.03999 3.96013 0.70370 0.140 —20.7430 0.0059
78 10 4.00 0.03995 0.04003 3.96006 0.70351 0.140 —20.7351 0.0059
73 15 0.20 0.03998 0.04004 0.16000 0.76368 0.110 —19.9414 0.0046
74 15 0.20 0.04001 0.04001 0.16000 0.76353 0.110 —19.9352 0.0046
75 15 1.00 0.04001 0.04000 0.96004 0.73210 0.021 —20.2790 0.0014
76 15 1.00 0.04001 0.04001 0.96001 0.73209 0.021 —20.2786 0.0014
77 15 4.00 0.04001 0.03999 3.96013 0.70021 0.110 —20.3809 0.0046
78 15 4.00 0.03995 0.04003 3.96006 0.70006 0.110 —20.3748 0.0046
73 20 0.20 0.03998 0.04004 0.16000 0.76145 0.110 —19.6039 0.0045
74 20 0.20 0.04001 0.04001 0.16000 0.76130 0.110 —19.5979 0.0045
75 20 1.00 0.04001 0.04000 0.96004 0.72927 0.130 —19.9394 0.0053
76 20 1.00 0.04001 0.04001 0.96001 0.72909 0.130 —19.9320 0.0053
77 20 4.00 0.04001 0.03999 3.96013 0.69671 0.100 —20.0365 0.0042
78 20 4.00 0.03995 0.04003 3.96006 0.69657 0.100 —20.0310 0.0042
73 25 0.20 0.03998 0.04004 0.16000 0.75912 0.110 —19.2810 0.0045
74 25 0.20 0.04001 0.04001 0.16000 0.75897 0.110 —19.2750 0.0045
75 25 1.00 0.04001 0.04000 0.96004 0.72638 0.140 —19.6157 0.0056
76 25 1.00 0.04001 0.04001 0.96001 0.72618 0.140 —19.6081 0.0056
77 25 4.00 0.04001 0.03999 3.96013 0.69312 0.067 —19.7075 0.0029
78 25 4.00 0.03995 0.04003 3.96006 0.69311 0.067 —19.7071 0.0029
73 30 0.20 0.03998 0.04004 0.16000 0.75672 0.110 —18.9706 0.0044
74 30 0.20 0.04001 0.04001 0.16000 0.75656 0.110 —18.9646 0.0044
75 30 1.00 0.04001 0.04000 0.96004 0.72341 0.150 —19.3048 0.0059
76 30 1.00 0.04001 0.04001 0.96001 0.72319 0.150 —19.2966 0.0059
77 30 4.00 0.04001 0.03999 3.96013 0.68930 0.100 —19.3856 0.0040
78 30 4.00 0.03995 0.04003 3.96006 0.68944 0.100 —19.3910 0.0040
73 40 0.20 0.03998 0.04004 0.16000 0.75180 0.110 —18.3919 0.0046
74 40 0.20 0.04001 0.04001 0.16000 0.75165 0.110 —18.3861 0.0046
75 40 1.00 0.04001 0.04000 0.96004 0.71744 0.170 —18.7277 0.0066
76 40 1.00 0.04001 0.04001 0.96001 0.71720 0.170 —18.7188 0.0066
77 40 4.00 0.04001 0.03999 3.96013 0.68159 0.490 —18.7856 0.0183
78 40 4.00 0.03995 0.04003 3.96006 0.68228 0.490 —18.8111 0.0183

“Column mCl~ contains rounded values, and exact molalities can be calculated from the listed mNaCl and mTrisHCI. Prefix “u

« o«

in the column

headers denotes an uncertainty. More complete results can be found in the Supporting Information. bCell potentials and their uncertainties are
listed here to a fixed S digits and 3 digits following the decimal point, respectively. This was done for simplicity. In some cases the removal of a final
zero in u(E) is preferred.”® “The acidity function Q is equal to In(mH* -y, see eq 5. In the same way as for E(adj.) and u(E) we report both Q

and u(Q) to a fixed 4 digits following the decimal point.

measurements, it is helpful to substitute for aH" in eq 1 as

follows:

E = E° — RT/F-In(K(TrisH")-(mTrisH"-mCl™/mTris)-
(6)

2
Prastict /Y
and, substituting from eq 5

Q — In(K(TrisH™)) = 1n((mTrisH+/mTris)-;/TriSHClz/}/TriS)
(7)
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where K(TrisH") (mol kg™") is the acid dissociation constant
of TrisH". The value of this dissociation constant is known,”
and the molalities of TrisH" and Tris at equilibrium will differ
very little from their stoichiometric values (known from the
preparation of the solutions). Consequently, the measured cell
potentials can be used in eq 6 or eq 7 to obtain the quantity
Yrasuct/ Ve The list of Pitzer model interactions in Table 6
for the Tris buffer solutions is longer than that for aqueous
HCI-NaCI-TrisHCI, but three of these interactions—the
ones involving H'—do not influence the calculated cell

https://doi.org/10.1021/acs.jced.5c00369
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Figure 5. Values of the acidity function quantity —Q/In(10) (equivalent to —log,o(mH"yyc*), see eq 5), calculated from measured potentials and
plotted against the square root of ionic strength I (mol kg™"). The upper x-axis is the salinity of an artificial seawater of the same ionic strength. (a)
Symbols (data from this study): solid diamond — § °C; cross — 10 °C; plus — 15 °C; solid triangle — 20 °C; square — 25 °C; triangle — 30 °C;
solid square — 40 °C. Symbols (data from DelValls and Dickson' for Tris buffer in artificial seawater): small circles — values at all the indicated
temperatures. Dotted line: values calculated using the model of Clegg et al.® for 25 °C as described in the text. (a) For temperatures from S to 40

°C, as indicated. (b) Results for 25 °C only.

Table 6. Binary and Ternary Interactions in the Pitzer
Model for the Two Solutions Studied

(1) aqueous HCI-NaCl-TrisHCI (2) Tris buffer in aqueous NaCl

- 1
interactions”

interactions data available” data available”
H'-CI” yes (H'-CI") yes
Na"—CI~ yes Na*—CI™ yes
TrisH"—CI™ yes® TrisH"*—CI™ yes®
H*-Na"-CI~ yes (H*-Na*-CI") yes
H*—TrisH -CI~ yes? (H*-TrisH'-CI") yes?
Na*—TrisH"—CI~ ¢ Na*—TrisH"—CI~ ¢
Tris—NaCl yes V
Tris—TrisHCI yes”

“A “yes” in this column means that there are published data from
which the Pitzer interaction parameters can be determined and/or
values of the parameters available in the literature. “The values in
parentheses are needed for a calculation of speciation in the solution,
but not for the cell potential (see eq 6). “Currently available for 25 °C
only.” “See study of Maksimov et al.” “Currently the subject of
isopiestic measurements to determine osmotic coefficients (J.
Miladinovic, pers. comm.), also studied by Tishchenko™® (see text).
fStudied by Lodeiro et al.*’

potential (although they are required to calculate the H*
molality).

The availability of data that can be used to determine the
value of the Pitzer model parameters for the various
interactions in the buffer solutions is similar to that for
aqueous HCI-NaCl-TrisHCl, as many interactions are
common to both (Table 6). The additional ones, involving
dissolved Tris, are either currently being measured (J.
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Miladinovic, pers. comm.), or have already been studied as a
part of our project.”'

The Harned cell measurements yield products and quotients
of activity coeflicients and, consequently, only sums and
differences of a number of the Pitzer model interaction
parameters can be determined from the data. We have listed
these in Table 7 for both solutions.

Typically, parameters for cation—anion interactions (e.g,
Na*—ClI~, TrisH*—Cl") will be known from other measure-
ments, but this is not always true for other types of interaction.
Consequently it is sometimes the case, for example in the
analysis of various types of data by Lodeiro et al.*" for solutions
containing Tris and/or TrisH', that only the total value of a
pair or set of three parameters can be determined. This must
be taken into account in the development of models of the
solutions.

5. CONCLUSIONS

We have measured cell potentials and obtained mean activity
coefficients of HCl in aqueous HCI-NaCl—TrisHCI solutions
at ionic strengths from 1.0 to 5.5 mol kg™ and from S to 40
°C. Our two sets of measurements—for ionic strengths up to
2.0 mol kg™!, and for 3.5 mol kg™! and above—were carried
out several years apart, and the lower ionic strength
measurements appear to have a small offset in the measured
potentials. This deviation is likely related to the condition of
the electrodes used for these particular solutions, and
calculations presented here suggest that this can be corrected
for. On the basis of comparisons made using data for 25 °C,
our results are consistent with literature data for aqueous

https://doi.org/10.1021/acs.jced.5c00369
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Table 7. Pitzer Interaction Parameters That Occur as Sums and Differences in the Expressions for the Activity Products in the

Equations for Cell Potentials

aqueous HCI-NaCl-TrisHCI

Tris buffer in aqueous NaCl

interactions
Na*—Cl~, Na*'—H"*
Na*—Cl~, Na*—H*—CI~
TrisH*—Cl~, TrisH'—H*
TrisH*—Cl~, TrisH*—H"'—CI~

parameters
0 a
ﬁr(\za),cl + HN:;,H
0 a
4CQa + Wanea
0 b
ﬁgrrgsH,Cl + Orenn

(0) b
4Criaa + Wi Tas,cl

Na*—CI~, Na*—TrisH*, Tris—Na*
Na*—ClI~, Na*—TrisH*, Tris—Na*—ClI~
Na*—TrisH"—CI~, Tris—Na*—CI~
TrisH*—Cl~, Tris—TrisH"—CI~

interactions parameters

(0) c
ﬂNa,Cl + gNn,TrisH - j’Tris,Na
(0) c
4CNact + WNaTriscl — CTrisNacl
d
WNa,TrisH,cl gTris,Na,Cl

(0) e
4Chinal — Crris Trist,Cl

“Already known, and parameters are available in the literature. “Can be determined from the study of Maksimov et al.,” and other data for aqueous
TrisHCI solutions. “Parameters Oy, 1 and Wi, o1 can be determined from osmotic coefficient measurements of NaCl—TrisHCI solutions
currently underway (J. Miladinovic, pers. comm.), and AN, and g c1 from measurements of solubilities in aqueous NaCl—Tris solutions.”’

These parameters occur as a sum because mTrisH" is equal to mTris in the solutions. “Parameters Arg g and S rrancr can be determined
from measurements of solubilities in aqueous TrisHCI—Tris solutions."

HCI-TrisHCIl and HCI-NaCl solutions. The mean activity
coefficients of HCI show smooth changes with temperature, as
expected, and values are greatest at the highest ionic strengths
and lowest temperatures.

We also measured cell potentials of a smaller number of
aqueous solutions of NaCl containing equal stoichiometric
molalities of Tris and TrisHCI, for the same range of
temperatures and ionic strengths as those of aqueous HCI—
NaCl-TrisHCL The results, expressed in terms of an acidity
function, are quite similar to those obtained for the same Tris
buffer in artificial seawater by DelValls and Dickson' and also
agree satisfactorily with values predicted by the draft Pitzer
model of Clegg et al.” We have summarized interactions in the
Pitzer model that apply to the solutions studied here, noting
whether the corresponding parameters in the model (or data
from which they can be determined) are available.

In combination with other literature data, including our
previous study,” these new measurements should enable a
Pitzer ion-interaction model of the HCI-NaCl-TrisHCI
solutions to be developed. This, together with the data for
Tris buffer in aqueous NaCl, is an important step toward the
development of a speciation model of acid—base equilibrium of
Tris buffers in NaCl media and in artificial seawater solutions.
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