
A Novel AI Temporal-Spatial Analysis Approach
for GNSS Error Source Recognition

Kit-Lun Tong∗, Yi Ren∗, Xin Shi†, Zhaohui Chen †, Xu Zhang∗
∗School of Computing Sciences, University of East Anglia, Norwich, United Kingdom

†CHC Tech Limited, Norwich, United Kingdom
∗{k.tong, e.ren, x.zhang27}@uea.ac.uk, †{xin shi, zoe chen}@chcnav.com

Abstract—Global navigation satellite systems (GNSS) error
source analysis is crucial for identifying factors that affect the
accuracy of positioning, navigation, and timing services (PNT).
Detecting and correcting these factors is essential for enhancing
overall service accuracy. Traditional methods primarily focus
on surface-level receiver output data, which may overlook
underlying factors. Additionally, analyzing daily generated data
is expensive and requires advanced proficiency. This research
uses a novel temporal-spatial analysis approach to analyze GNSS
error sources with artificial intelligence (AI) model support.
We develop a noise segments dataset categorized into six types,
with a particular focus on ionospheric disclosure, a deeper-level
receiver data calculating PNT result. By applying clustering
combined with a z-score normalization filter (ZFilter), we
identify highly consistent noise segments in daily data, which
aids in understanding potential causes. We then employ a multi-
model deep learning approach to classify the noise segments,
as opposed to relying on a single baseline model. Additionally,
we experiment with semi-supervised learning through pseudo-
labeling to improve classification performance. Our experiments
show that our classifier achieves approximately 84% accuracy
in identifying the noise segments.

Index Terms—GNSS error source, PNT, Clustering, Deep
learning

I. INTRODUCTION

Global navigation satellite systems (GNSS), including the
global positioning system (GPS), have been developed to offer
comprehensive positioning, navigation, and timing (PNT)
services with worldwide coverage. In these systems, L-band
radio-frequency signals are transmitted from satellites and
received by ground-based GNSS receivers. By processing
these signals, the receivers calculate their distances from the
observed satellites, enabling them to determine an accurate
PNT solution. Nevertheless, the accuracy of PNT solutions
heavily depends on the quality of the GNSS observable, which
is affected by various GNSS error sources [1]. These include
satellite clock and ephemeris errors, atmospheric delays, cycle
slips, interference and jamming, etc. All of these errors can
be expressed in units of distance, and must be detected and
corrected to improve accuracy [2].

Conventional error detection methods encounter several
limitations. Firstly, methods such as those described by [3]
[4] typically focus on analyzing common receiver output
parameters like elevation, observation data, signal-to-noise
ratio (S/N), and PNT results. However, these methods are
superficial compared to a more comprehensive analysis of the

parameters involved in calculating PNT [5]. Next, the PNT
system generates an enormous volume of data daily, making
it highly challenging to extract consistent error segments. It
is essential to identify these segments for diagnosing the root
causes of errors and enhancing the overall accuracy of the
PNT system [6] [7]. Lastly, when applying AI models for
noise classification tasks, traditional works such as [3] and
[8] primarily employ a single baseline model on mono-angle
instances, which may be limited in their ability to capture the
complexity of diverse noise types.

In this paper, we propose an artificial intelligence (AI)-
based temporal-spatial approach for the automatic recognition
of noise types in segments using a multi-model classification
strategy. However, training these models typically requires
manual labeling of noise data, which is both costly and
demands significant expertise. To address this, we perform
clustering to group highly similar noise segments, then apply
a z-score normalization filtering (ZFilter) strategy to select the
tightest cluster. This approach not only extracts segments with
high consistency but also assists in building a pseudo-labeled
dataset for model training.

We make the following contributions. First, rather than
analyzing surface-level receiver data, we focus on ionospheric
misclosure [9] [10], a deeper-level PNT parameter, to develop
new GNSS error detection methods. We categorize six types
of noise in our dataset, each representing different poten-
tial errors. Next, to analyze noise segments, we employ a
temporal-spatial analysis approach that considers both time
sequences and value distributions. Then, to identify consistent
error segments within large volumes of daily data, we apply
clustering, using the ZFilter strategy to pinpoint segments that
closely resemble our reference records. Meanwhile, instead
of relying on a single baseline model for automatic noise
classification, we use multiple models to extract deep features
and build a hybrid model for the classification task. Finally,
to reduce the need for manually labeled data, we experiment
with generating a pseudo-labeled dataset from the clustering
model, aiming to enhance classification performance through
semi-supervised learning.

The rest of this paper is organized as follows. Related
works are surveyed in Section II. Section III introduces the
noise types in our dataset and the AI temporal-spatial analysis
approach. Section IV presents our evaluation results, followed
by conclusions and future work in Section V.

0.0 0.1 0.2 0.3

−0.2

−0.1

0.0
0: Convergence

0.0 0.5 1.0 1.5

−1

0

1

2

1: Disturbance

0.0 0.1 0.2 0.3

−0.2

−0.1

0.0
2: Divergence

0.00 0.05 0.10 0.15
0

1

2

3

4
3: Outliers

0 1 2 3
−4

−3

−2

−1

0
4: Shimmering

0.0 0.5 1.0

−0.6

−0.4

−0.2

0.0
5: Step

Hours

Io
no

sp
he

re
 M

isc
lo

su
re

Fig. 1. The noise types in the GNSS error source dataset.

II. RELATED WORKS

Traditional research (e.g., [3], [4], [8], [11]) commonly
considers surface-level data output by the receiver. The au-
thors in [3] utilized elevation, S/N, and user speed as features
in their machine-learning models to characterize multipath
error distributions, [4] employed S/N for jamming detection,
[8] analyzed signal strength and pseudorange residue for
multipath detection, and [11] perform signal analysis for
radio frequency interference (RFI). However, the surface-level
data often provide an incomplete view compared to deeper-
level data like [12], which employs the cross ambiguity
function to detect GNSS spoofing. Here, we consider the
ionosphere misclosure, which is a deeper-level parameter used
to calculate the PNT result.

Previous studies (e.g., [3], [8], [11], [12]) primarily focus
on single baseline models for AI-based classification tasks
in GNSS error analysis. [3] employed a neural network to
classify multipath noise, while [8] utilized a support vector
machine. [11] classified RFI using a convolutional neural
network (CNN). Similarly, [12] used a CNN to identify
spoofing signals and a Gaussian mixture model to cluster and
summarize the number of signals. In this research, we employ
a multi-model classification approach to categorize noise
segments based on different potential causes. Additionally,
we experiment with clustering models using a ZFilter strategy
to identify highly consistent noise segments and generate a
pseudo-labeled dataset.

III. NOISE TYPE AND METHODOLOGY

In this research, we extract noise segments from the iono-
sphere misclosure, which refers to the discrepancies between
the estimations and observations of the regional ionosphere.
The noise segments are derived from data collected over four
days by 53 ground stations and approximately 90 satellite
units, including GPS, Galileo, and Beidou systems. We sum-
marize six types of noise that frequently occur, as illustrated
in Fig. 1. The scale and magnitude of the noise segments vary,
with each type caused by different physical factors. Below,
we present some potential examples:

• Convergence occurs as a result of model recalculation
when tracking is lost or when clock or ephemeris errors
are detected.

TABLE I
CLASS SIZES IN THE GNSS ERROR SOURCE DATASET

Labeled DL Unlabeled DU Total
Type (Y) 0 1 2 3 4 5

Size 140 540 504 526 569 515 2114 4906

• Disturbance caused by interference from multiple sys-
tems or jamming by other equipment.

• Divergence arises from a mismatch between the error
model and the observation.

• Outliers may result from incorrect carrier-phase ambigu-
ity fixes.

• Shimmering can occur as a consequence of repeated
carrier-phase ambiguity fixes, especially in the presence
of atmospheric delays.

• Steps caused by cycle slips due to signal delays and
distortions from ionospheric irregularities.

Denote our dataset D = {Di} = {(Xi, Yi)} and the index
set I = {i|i ∈ [0, |D|)}. The dataset D contains the noise
segments X = {Xi} and their corresponding labels Y =
{Yi}. Each segment is a sequence Xi = (Xi[j]|j ∈ [0, |Xi|))
consisting of ordered real-valued observations that may have
different lengths, with Xi[j] ∈ (−∞,+∞). We manually
label a subset of the segments by their indices IL ⊂ I to
create a labeled dataset DL = {Di|i ∈ IL}, where the labels
Yi ∈ [0, p) if i ∈ IL, here p = 6 as shown in Fig. 1. The
remaining indices IU = I\IL form an unlabeled dataset
DU = {Di|i ∈ IU}, with labels Yi = −1 if i ∈ IU . Table I
lists the sizes of each class.

Fig. 2 illustrates our approach, which comprises three key
components: a temporal pipeline for processing 1D sequential
data, a spatial pipeline for handling 2D binary images, and
a main pipeline that integrates both temporal and spatial
information. Each pipeline follows four processing stages:
Stage 1 (S1): preprocessing noise segments of varying sizes
to standardize them into uniform input dimensions for the
models; Stage 2 (S2): constructing a referral distance ma-
trix (RDM) to extract similarity features between segments;
Stage 3 (S3): clustering segments to identify consistent noise
patterns and generate a pseudo-dataset with minimal manual
labeling; Stage 4 (S4): training a classifier to identify different
noise types. In the following sections, we will detail each of
these stages.

A. Preprocessing (S1)

Since the range and length of each noise segment Xi can
vary, it is necessary to normalize the range and standardize the
length of the segments to ensure uniform contribution from
each segment and maintain consistent characteristics across
them. Given a sequence s of any size and length, we apply
the min-max normalization to obtain s̃:

s̃ =
s−min(s)

max(s)−min(s)
(1)

Noise Clustering and Pseudo-labelingReferral Distance Matrix Noise ClassificationPreprocessing

Temporal
Pipeline

Spatial
Pipeline

Main
Pipeline

Convolution

Histogram

Sum Pooling

1D Sequence

2D Image

Noise
Segments

Pseudo
LabelingZFilter

S1 S2 S3 S4

Fig. 2. Process pipeline of the temporal-spatial approach.

Furthermore, a uniform function UF is defined to standardize
it into a length l:

UF (s, l) =

{
EP (s̃, l), if |s| < l.

LS(s̃, l), otherwise.
(2)

When |s| is shorter than l, edge padding (EP) will be applied
to extend the sequence. Otherwise, linear spacing (LS) will
be applied to down-sample the sequence. Next, we divide the
process into temporal, spatial, and main pipelines:

1) Temporal Pipeline: To standardize the noise segments
of varying sizes and values, we apply (2) to uniform Xi

into sequential data Xτ
i = UF (Xi, 128). Therefore, Xτ

i =
{Xτ

i [j]}1×128 where Xτ
i [j]|j∈[0,128) ∈ [0, 1].

2) Spatial Pipeline: We further transform Xτ
i into a 2D

space to generate a binary image Xς
i = {Xς

i [h,w]}128×128

where with height and width indices h ∈ [0, 128), w ∈
[0, 128). Each pixel value Xς

i [h,w] ∈ {0, 1}, enabling the
extraction of distributional information.:

Xς
i [h,w] =

{
1, if h = ⌊Xτ

i [w]× 127⌋.
0, otherwise.

(3)

3) Main Pipeline: By applying (1) to normalize each Xi

into X̃i, a normalized segment set X̃ = {X̃i} is obtained.
After preprocessing is complete, the min-max normalized

segments X̃ , the temporal segments Xτ , and the spatial
images Xς are ready for the next stage.

B. Referral Distance Matrix (S2)

A global distance matrix compares the distances between
segment pairs as a similarity feature during feature extraction.
However, calculating all distances becomes inefficient when
the dataset is large. We randomly select a subset of segments
from labeled dataset as references DR ⊆ DL. The RDM
M ||D|×|DR| can then be computed:

M(X,Dist)[i, r] = Dist(Xi, X
R
r) (4)

where XR
r is a reference segment, r ∈ [0, |DR|), and

Dist ∈ {Eucl,DDTW} is the metric used to compare
distances. Depending on the pipelines, we apply either Eu-
clidean distance (Eucl) or derivative dynamic time warping
(DDTW) [13].

1) Temporal Pipeline: We use Xτ as the input. We apply
convolution with a kernel ν = {1}|1×5 to smooth the
sequence Xτ

i and further uniform it to X̂τ
i |1×32 by (2).

Therefore, X̂τ
i = UF ((Xτ

i ∗ ν)|Xτ
i |, 32). After that, we

compute the temporal RDM Mτ = M(X̂τ , DDTW) via (4),
using DDTW distance.

2) Spatial Pipeline: We use Xς as the input. We apply
sum-pooling (SP) [14] with a kernel of 16× 16 to illustrate
the distribution of the binary image Xς

i , then flatten into

X̂ς
i |1×64, which X̂ς

i = Flatten

(
SP (Xς

i)
128

)
. After that, we

compute the spatial RDM M ς = M(X̂ς , Eucl) via (4), using
Euclidean distance.

3) Main Pipeline: We directly extract a 10-bin histogram
from X̃ and compute the difference in value distribution using
Euclidean distance.

MH = M

({
Histogram(X̃i)

|X̃i|

}
, Eucl

)
. (5)

This is then concatenated with Mτ and M ς to obtain the
hybrid RDM MΦ = [MH ,M ς ,Mτ].

The temporal RDM Mτ , the spatial M ς , the histogram
RDM MH , and the hybrid RDM MΦ are used as inputs for
the remaining stage.

C. Noise Clustering and Pseudo-labeling (S3)

It is necessary to identify consistent noise to ensure ac-
curacy and precision in PNT. However, the daily generation
of large amounts of unlabeled data complicates the analysis
process. By giving a small set of manually labeled examples,
this data can be compared using the clustering approach to
identify similar noise patterns. Additionally, pseudo-labels
could be assigned to the unlabeled data, which would facilitate
further training through semi-supervised learning.

Clustering is performed to group similar segments into
clusters C = {Ck|k ∈ [0, |C|)} along with the corresponding
index set Ik ⊂ I . Here, Di ∈ Ck if a segment Xi belongs to
the k-th cluster, which implies that i ∈ Ik as well. Note that
each segment belongs to only one cluster but some segments
may not fit into any cluster (i.e. k < 0) and are excluded
from consideration. Moreover, the number of clusters |C|
should be sufficiently large to ensure that the segments within
each cluster are as similar as possible. Mτ , M ς , and MΦ

are the inputs to the clustering algorithm, generating the

temporal cluster Cτ , spatial cluster Cς , and hybrid cluster
CΦ, respectively.

To select the clusters with higher consistency segments, we
apply ZFilter to identify more confident clusters. Firstly, the
average intra-cluster distance δk is calculated to assess the
tightness within Ck using the corresponding RDM features
M [i]:

δk =

∑
i∈Ik

Eucl(M [i],M [Ik])

|Ik|
(6)

where |Ik| and M [Ik] denote the size and centroid of Ck,
respectively. Following this, a z-normalized confidence score
Zk ∈ [0, 1] is computed based on δk for each Ck, along
with the overall mean µ and standard deviation σ. The score

Zk = CDF

(
δk−µ

σ

)
is normalized using the cumulative

distribution function. A smaller Zk indicates that the segments
within the cluster Ck are more similar. Therefore, we can
define a threshold Z ′ ∈ [0, 1] to filter the clusters.

A pseudo-labeled dataset D́ ⊂ DU , can also be generated
from unlabeled dataset DU using the ZFilter strategy applied
to the labeled dataset DL, thereby increasing the sample
size during classification model training. For each cluster Ck,
we compute the label score LSk|1×6, which represents the
weightings for each noise type:

LSk =

{∑
i∈(Ik∩IL) Ÿi, if Zk ≤ Z ′

{0}|1×6, otherwise.
(7)

where Ÿi is the one-hot encoded Yi. Finally, we construct the
pseudo-labeled dataset as D́ =

⋃
k∈[0,|C|){Di|i ∈ (Ik ∩ IU)}

by ensuring that Zk ≤ Z ′ and
∑

LSk > 0.
Label smoothing will also be applied to adjust the weight-

ing of the pseudo-labels, helping to prevent the model from
becoming overly confident in the predictions:

Ÿi =


Ÿi, if i ∈ IL

(1− α) ∗ LSk∑
LSk

+ α
6 if Di ∈ D́, i ∈ Ik

{0}|1×6, otherwise.

(8)

where α is a hyperparameter that determines the amount of
smoothing.

Afterward, we can generate the temporal pseudo-labeled
dataset D́τ , the spatial pseudo-labeled dataset D́ς , and the
hybrid pseudo-labeled dataset D́Φ, using Cτ , Cς , and CΦ,
respectively.

D. Noise Classification (S4)

Traditionally, the baseline model outputs the classification
result based on individual instances. In a multi-model ap-
proach, the deep features learned by the baseline model are
extracted and concatenated to form a new instance, which is
then used to train a hybrid model.

To classify noise segments, we experimented with various
deep-learning models. Fig. 3 illustrates the architectures of
our baseline models, including the multilayer perceptron
(MLP) in Fig. 3a, long short-term memory (LSTM) Fig. 3b,

c. CNN
OutputHiddenInput

2x2
Max Pooling Flatten

2x2
Max Pooling

32x32
ReLU CNN

16x16
ReLU CNN

1x64
ReLU

Dense Ext

1x6
Softmax

Dense Cls

a. MLP
Input

4x128
ReLU
Dense

Hidden Output
1x64
ReLU

Dense Ext

1x6
Softmax

Dense Cls

b. LSTM

3x128
tanh

LSTM

Input OutputHidden
1x64
ReLU

Dense Ext

1x6
Softmax

Dense Cls

Fig. 3. The baseline classification models.

and CNN in Fig. 3c, designed to process RDM, sequences,
and binary images, respectively. While each model received
different input types and had distinct hidden layer con-
figurations, they all shared a common output structure: a
rectified linear unit (ReLU) activated dense layer serving as a
feature extractor, outputting a list of deep features denoted
as Ext|1×64, followed by a final softmax-activated dense
layer that produces the classification result with probabilities
denoted as Cls|1×6, for each instance input.

Each pipeline utilizes different baseline models. In the
temporal pipeline, we input Mτ into the MLP or Xτ into
the LSTM, the procedures are referred to as ‘TMLP’ or
‘TLSTM’, respectively. In the spatial pipeline, we input M ς

into the MLP or Xς into the CNN, referred to as ‘SMLP’
or ‘SCNN’, respectively. In the main pipeline, we input MH

into the MLP, named ‘HMLP’.
To perform temporal-spatial classification with multi-

models, we use the deep features output from the baseline
models: ExtH from HMLP, Extτ from TMLP or TLSTM,
and Extς from SMLP or SCNN. These features are combined
to generate a hybrid deep RDM, denoted as DMΦ||D|×|DR|:

DMΦ = M(XΦ, Eucl),

where XΦ = [ExtH , Extτ , Extς]
(9)

Finally, we input DMΦ into the MLP model to train a hybrid
classifier, denoted as ClsΦ as shown in Fig. 2. Combining
the models in Fig. 3, four ClsΦ are trained: ‘TMLP SMLP’,
‘TLSTM SMLP’, ‘TLSTM SCNN’, and ‘TMLP SCNN’.

IV. EVALUATION

The experiment runs on an Ubuntu 18.04 server with an
R9-5950x CPU, 32GB RAM, and RTX3090 GPU. It uses
Python 3.10 and Tensorflow 2.17. The RDM reference sizes
are set to 60. All models in Fig. 3 employ categorical focal
cross-entropy loss. The models are trained for 100 epochs
with restored best weights based on loss.

0.2 0.4 0.6
0.4

0.5

0.6

0.7

0.8
Ac

cu
ra

cy
Baseline Models

TMLP
TLSTM
SMLP
SCNN
HMLP

0.2 0.4 0.6

0.65

0.70

0.75

0.80

0.85
Hybrid Models

TMLP_SMLP
TLSTM_SMLP
TLSTM_SCNN
TMLP_SCNN

0.2 0.4 0.6
0.3

0.4

0.5

0.6

0.7

F1
_m

ac
ro

TMLP
TLSTM
SMLP
SCNN
HMLP

0.2 0.4 0.6
0.55

0.60

0.65

0.70

0.75

0.80

TMLP_SMLP
TLSTM_SMLP
TLSTM_SCNN
TMLP_SCNN

Training Size

Fig. 4. The comparison of accuracy and F1-macro score among baseline
and hybrid models using different training sizes.

In the following section, we first evaluate the noise classi-
fiers, then experiment with noise clustering, and finally test
the classifiers using the pseudo-labeled dataset.

A. Evaluation of Baseline and Hybrid Noise Classification

Fig. 4 presents the average results from 10 trials based
on classification accuracy and F1-macro score using only
the labeled dataset. To evaluate the minimal manual labeling
condition, the training size ranges from 0.05 to 0.7 of the
labeled dataset, with the rest as the test set. In the baseline
models, TMLP outperforms the others when the training size
is below 0.3 for both metrics. The end-to-end methods, includ-
ing TLSTM and SCNN, demonstrate better performance when
the training size exceeds 0.5, with over 70% accuracy. Among
the hybrid models, the RDM-based model ‘TMLP SMLP’
leads the others in both metrics, achieving approximately 84%
accuracy and 80% F1-macro score when the training size
increases to 0.7. Meanwhile, the differences of the models di-
minish as the training size increases. Compared to the baseline
models, hybrid models generally outperform by at least 5% in
both accuracy and F1-macro, demonstrating that multi-model
approaches can enhance classification performance.

Fig. 5 shows the normalized confusion matrices comparing
the true labels with the predicted targets of the hybrid models
when the training size is 0.7. According to the results,
shimmering and step are generally easy for the models to
detect. On the other hand, the predictions for convergence
segments are less accurate due to dataset imbalance. Introduc-
ing data augmentation or Balanced Batch Sampling may help
address this issue. Overall, ‘TLSTM SCNN’ demonstrates
more balanced predictions across the classes than the other
models.

B. Evaluation of Noise Clustering

Table II presents the results of the clustering experiments
by adjusting Z ′. The training size is set to 0.2, and the
testing data is mixed with the unlabeled data to generate
the pseudo-labeling dataset. The evaluation focuses on two

0 1 2 3 4 5

0
1

2
3

4
5

0.57 0.14 0.16 0.00 0.09 0.05

0.01 0.76 0.08 0.06 0.09 0.01

0.01 0.02 0.86 0.04 0.03 0.04

0.00 0.03 0.02 0.87 0.02 0.06

0.00 0.07 0.02 0.01 0.85 0.04

0.01 0.01 0.01 0.05 0.03 0.88

TMLP_SMLP

0 1 2 3 4 5

0
1

2
3

4
5

0.51 0.13 0.07 0.02 0.13 0.13

0.01 0.77 0.03 0.02 0.16 0.01

0.00 0.09 0.80 0.03 0.04 0.05

0.00 0.10 0.02 0.82 0.03 0.03

0.00 0.06 0.01 0.02 0.88 0.03

0.01 0.01 0.00 0.01 0.09 0.88

TLSTM_SMLP

0 1 2 3 4 5

0
1

2
3

4
5

0.36 0.09 0.27 0.00 0.18 0.11

0.02 0.79 0.03 0.01 0.13 0.03

0.02 0.04 0.84 0.05 0.04 0.02

0.00 0.05 0.04 0.85 0.04 0.02

0.02 0.02 0.04 0.01 0.88 0.03

0.01 0.01 0.02 0.03 0.02 0.91

TMLP_SCNN

0 1 2 3 4 5

0
1

2
3

4
5

0.53 0.20 0.09 0.02 0.04 0.11

0.01 0.86 0.02 0.01 0.09 0.01

0.00 0.05 0.86 0.02 0.04 0.03

0.01 0.05 0.03 0.83 0.02 0.06

0.00 0.05 0.01 0.03 0.86 0.04

0.01 0.00 0.04 0.04 0.05 0.87

TLSTM_SCNN

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0: Convergence 1: Disturbance 2: Divergence 3: Outliers 4: Shimmering 5: Step
Prediction

Tr
ut

h

Fig. 5. Normalized confusion matrices of the hybrid models.

TABLE II
THE COMPARISON OF ACCURACY AND DATA INCREMENT OF CLUSTERING

MODELS.

Accuracy Increment
Z′ Model HDBSCAN Hierarchical KMeans HDBSCAN Hierarchical KMeans

0.1

Cτ 0.958 0.974 1 0.378 0.526 0.172

Cς 1 0.992 1 0.498 0.535 0.401

CΦ 1 0.979 1 0.397 0.543 0.259

0.3

Cτ 0.967 0.95 0.916 0.523 0.926 0.535

Cς 0.973 0.95 0.984 0.689 1.055 0.695

CΦ 0.971 0.935 1 0.512 0.965 0.584

0.5

Cτ 0.943 0.88 0.897 0.664 1.474 1.229

Cς 0.944 0.867 0.894 0.87 1.659 1.263

CΦ 0.973 0.915 0.986 0.645 1.523 0.896

0.7

Cτ 0.917 0.86 0.856 0.833 2.025 2.105
Cς 0.892 0.822 0.851 1.132 2.279 2.145

CΦ 0.942 0.858 0.929 0.815 2.462 1.792

0.9

Cτ 0.889 0.799 0.795 1.084 2.707 3.087
Cς 0.84 0.78 0.765 1.611 3.32 3.354

CΦ 0.903 0.828 0.855 1.184 3.279 3.145

metrics: the accuracy of the labeled testing data and the
overall increase in the number of generated pseudo-labels.
We test three clustering models: HDBSCAN, hierarchical
clustering, and KMeans. Both hierarchical clustering and
KMeans are configured to cluster the segments into 1000
classes, which is close to the number of clusters generated
by HDBSCAN.

According to Table II, as Z ′ increases, the overall number
of pseudo-labels increases, but accuracy decreases. Consid-
ering the clustering models, HDBSCAN is more accurate,
while hierarchical clustering generates more pseudo-labels.
From the perspective of the pipelines, CΦ is relatively more
accurate, whereas Cς generates more pseudo-labels. Overall,
the noise segments extracted using the clustering method
with ZFilter exhibit greater consistency than those obtained
through classification.

C. Noise Classification Experiment Using Pseudo-Labeling

Fig. 6 displays the experimental results on noise classi-
fication using hybrid models with pseudo-labeling datasets

0.2 0.4 0.6

0.725

0.750

0.775

0.800

0.825

0.850 a. TMLP_SMLP

Without Pseudo-labeling
Spatial @ Z'=0.5
Temporal @ Z'=0.5
Hybrid @ Z'=0.5

0.2 0.4 0.6

0.65

0.70

0.75

0.80

b. TLSTM_SMLP

Without Pseudo-labeling
Spatial @ Z'=0.5
Temporal @ Z'=0.5
Hybrid @ Z'=0.5

0.2 0.4 0.6

0.65

0.70

0.75

0.80

c. TLSTM_SCNN

Without Pseudo-labeling
Spatial @ Z'=0.5
Temporal @ Z'=0.5
Hybrid @ Z'=0.5

0.2 0.4 0.6
0.65

0.70

0.75

0.80

d. TMLP_SCNN

Without Pseudo-labeling
Spatial @ Z'=0.5
Temporal @ Z'=0.5
Hybrid @ Z'=0.5

0.2 0.4 0.6

0.725

0.750

0.775

0.800

0.825

0.850

Without Pseudo-labeling
Spatial @ Z'=0.7
Temporal @ Z'=0.7
Hybrid @ Z'=0.7

0.2 0.4 0.6

0.65

0.70

0.75

0.80

0.85

Without Pseudo-labeling
Spatial @ Z'=0.7
Temporal @ Z'=0.7
Hybrid @ Z'=0.7

0.2 0.4 0.6

0.65

0.70

0.75

0.80

0.85

Without Pseudo-labeling
Spatial @ Z'=0.7
Temporal @ Z'=0.7
Hybrid @ Z'=0.7

0.2 0.4 0.6
0.65

0.70

0.75

0.80

Without Pseudo-labeling
Spatial @ Z'=0.7
Temporal @ Z'=0.7
Hybrid @ Z'=0.7

0.2 0.4 0.6

0.725

0.750

0.775

0.800

0.825

0.850

Without Pseudo-labeling
Spatial @ Z'=0.9
Temporal @ Z'=0.9
Hybrid @ Z'=0.9

0.2 0.4 0.6

0.65

0.70

0.75

0.80

Without Pseudo-labeling
Spatial @ Z'=0.9
Temporal @ Z'=0.9
Hybrid @ Z'=0.9

0.2 0.4 0.6

0.65

0.70

0.75

0.80

Without Pseudo-labeling
Spatial @ Z'=0.9
Temporal @ Z'=0.9
Hybrid @ Z'=0.9

0.2 0.4 0.6
0.65

0.70

0.75

0.80

Without Pseudo-labeling
Spatial @ Z'=0.9
Temporal @ Z'=0.9
Hybrid @ Z'=0.9

Training Size

Ac
cu

ra
cy

Training Size

Ac
cu

ra
cy

Training Size

Ac
cu

ra
cy

Training Size

Ac
cu

ra
cy

Fig. 6. Experimental results on noise classification with pseudo-labeling.

based on HDBSCAN. The α in (8) is set to 0.2. We compare
Z ′ values of 0.5, 0.7, and 0.9. As shown in the results,
pseudo-labeling enhances the performance of TMLP SMLP
and TLSTM SMLP by approximately 3% when the training
size is low. Notably, when the training size is less than 0.2,
the accuracy of TMLP SMLP increases from around 78% to
over 82% when Z ′ = 0.5. Generally, the performance of D́τ

and D́Φ outperforms D́ς . When comparing the case where
Z ′ = 0.9 with the others, it generates more pseudo-labels,
but this results in reduced performance due to the inclusion
of more inaccurate data. The results indicate that ZFilter
effectively selects the most similar noise segments, enhancing
the model’s performance when the labeled dataset is small.
To further improve performance, incorporating additional
unlabeled data can help generate more pseudo-labels.

V. CONCLUSIONS

In conclusion, we developed an innovative AI approach
utilizing temporal-spatial features for GNSS error source
analysis. Our noise segments dataset is based on regional
ionospheric misclosure, which is derived from deep-level
receiver data rather than the traditional surface-level data. To
handle the large volume of daily data, we applied clustering
along with the ZFilter to extract consistent noise segments,
which also creates a pseudo-labeled dataset to improve per-
formance by around 3% in low-training-data scenarios. Our
hybrid classification model achieved an accuracy of 84% in
identifying noise types within segments, outperforming the
common baseline models by at least 5%.

There are several potential future research directions. More
deep-level parameters, such as orbit clock update residuals
and tropospheric misclosure, can be considered to achieve a
deeper characterization of error sources, including multipath
interference, tropospheric delays, and receiver clock errors.
Error forecasting can be performed by considering additional

factors like ionospheric activity and tropospheric conditions.
Consistent noise data can also be used to validate and enhance
existing GNSS error models.

REFERENCES

[1] A. Leick, L. Rapoport, and D. Tatarnikov, GPS satellite surveying,
4th ed. Wiley, 2015.

[2] P. Teunissen and O. Montenbruck, Springer Handbook of Global
Navigation Satellite Systems. Springer, 2017.

[3] H. No and C. Milner, “Machine learning based overbound modeling
of multipath error for safety critical urban environment,” in Proc. 34th.
ION GNSS+ 2021, 10 2021.

[4] S. Jada, M. Psiaki, S. Landerkin, S. Langel, A. Scholz, and M. Joerger,
“Evaluation of PNT situational awareness algorithms and methods,” in
Proc. 34th. ION GNSS+, 2021, pp. 816–833.

[5] W. Stock, R. T. Schwarz, C. A. Hofmann, and A. Knopp, “Survey on
opportunistic PNT with signals from LEO communication satellites,”
IEEE Commun. Surv. Tutor., pp. 1–1, 2024.

[6] J. Zidan, O. Alluhaibi, E. I. Adegoke, E. Kampert, M. D. Higgins, and
C. R. Ford, “3D mapping methods and consistency checks to exclude
GNSS multipath/NLOS effects,” in Proc. UCET, 2020, pp. 1–4.

[7] R. Sun, L. Fu, Q. Cheng, K.-W. Chiang, and W. Chen, “Resilient
pseudorange error prediction and correction for GNSS positioning in
urban areas,” IEEE Internet Things J., vol. 10, pp. 9979–9988, 2023.

[8] L.-T. Hsu, “GNSS multipath detection using a machine learning ap-
proach,” in Proc. 20th ITSC, 2017, pp. 1–6.

[9] S. Schaer, G. Beutler, L. Mervart, M. Rothacher, and U. Wild, “Global
and regional ionosphere models using the GPS double difference phase
observable,” in Proc. IGS Workshop, 1995, pp. 77–92.

[10] Z. Nie, P. Zhou, F. Liu, Z. Wang, and Y. Gao, “Evaluation of orbit,
clock and ionospheric corrections from five currently available SBAS
L1 services: Methodology and analysis,” Remote Sens., vol. 11, no. 4,
2019.

[11] A. Elango, S. Ujan, and L. Ruotsalainen, “Disruptive GNSS signal
detection and classification at different power levels using advanced
deep-learning approach,” Proc. ICL-GNSS, pp. 1–7, 2022.

[12] P. Borhani-Darian, H. Li, P. Wu, and P. Closas, “Detecting GNSS
spoofing using deep learning,” EURASIP J. Adv. in Sig. Pr., vol. 2024,
no. 1, 1 2024.

[13] E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping,” in
Proc. SDM, 2001.

[14] N. Akhtar and U. Ragavendran, “Interpretation of intelligence in CNN-
pooling processes: a methodological survey,” Neural Comput. and
Appl., vol. 32, no. 3, pp. 879–898, 7 2019.

