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Abstract

Cholesteatoma is a skin cyst that grows in the middle ear. It is rare, non-cancerous and locally
invasive, frequently resulting in hearing loss due to destruction of the ossicles. Serious and
life-threatening sequalae are possible, including facial nerve palsy, meningitis, and abscess of
the brain. The only treatment is surgical excision, which can exacerbate hearing loss. There are
several theories regarding the origin of cholesteatoma, but its biology is still uncertain.
Although not typically considered a heritable disease, observations of family clustering
suggest a genetic component. The primary aim of this thesis was to investigate genetic risk of
cholesteatoma though genome-wide association study (GWAS) of UK BioBank whole exome
data for 1,000 cholesteatoma cases. Single-variant, gene level and gene-set enrichment
analyses were performed. This was supported by an epidemiological analysis of demographic
factors associated with cholesteatoma and other middle ear disease and a review of global
gene expression studies. No single genes or variants met genome-wide significance, but
pathways related to cell adhesion, cytoskeletal organisation, ciliary function and calcium
binding were enriched for low p-value variants. These results were supported by pathway
analysis of summary statistics from a Finnish biobank (FinnGen) and a previous cholesteatoma
whole exome study of affected families. Dynein binding was also enriched in UK BioBank whole
exome data due to rare DNAH and DNAI family variants, which is promising as DNAH variants
were also detected in our previous whole exome study and are known to contribute to similar
pathologies such as primary ciliary dyskinesia. These results support the existence of a highly

polygenic effect on cholesteatoma risk and indicate several pathways for further study.
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1 Introduction

1.1 Cholesteatoma Biology

Cholesteatoma is locally invasive skin cyst occurring in the middle ear. The middle ear is the
cavity in which the delicate bones of the ossicular chain are situated. These bones are
responsible for conducting vibrations from the tympanic membrane (the ear drum), which
separates the middle ear from the external auditory canal to the bony inner ear. The middle
ear drains into the nasopharynx via the Eustachian tube, which is responsible for maintaining
pressure equilibrium. Expansion of the cyst leads to destruction of the surrounding bone, most
commonly the ossicles, resulting in conductive hearing loss. The middle ear is surrounded by
the mastoid bone which contains many air cells. The cholesteatoma can invade and erode the
mastoid, provoking mastoiditis, and can lead to infection of the brain if the bone is eroded
through. The facial nerve passes through the bone close to the middle ear and can also be
damaged by the cyst. Surgical removal of the cyst is the only known treatment and is usually
performed via mastoidectomy which involves entry into the middle ear via an incision behind

the ear, the removal of the cyst and well as the mastoid air cells to reduce risk of recurrence.

1.1.1 Cholesteatoma histology, forms, and features

Histologically, cholesteatoma resembles an epidermoid cyst' and is composed of three main
layers. The main sac of the cholesteatoma is called the matrix and is essentially ordinary
epidermis, consisting of a basal, granular, and lucid layer. The sac is filled with cystic content
comprising layered, anucleate keratin squames, sebaceous tissue and necrotic matter shed
from the inner layer of the matrix (analogous to the outer layer of the skin) whose
accumulation drives expansion of the cyst®. The cyst is typically surrounded by a layer of
inflamed connective tissue called the perimatrix and has an outwardly pearly, smooth

appearance and a layered, undulating structure’ (Figure 1c).

Cholesteatoma is typically located behind the pars flaccida of the tympanic membrane (Figure
1b) where it grows into the attic (the space above the ossicular chain, Figure 1a) but also
behind the pars tensa®. Very rarely, cholesteatoma occurs between the layers of an intact

tympanic membrane® or in the external auditory canal; the latter may be confused with the
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similar but distinct condition keratosis obturans®. Typically, only one ear is affected but disease

may be bilateral’.

Cholesteatomas are broadly classified into congenital and acquired types®. Congenital
cholesteatoma is diagnosed when there is no history of tympanic retraction, perforation or
surgery, comprises 4-24% of cholesteatoma cases® and is typically seen in young children?.
Acquired cholesteatoma is more common and is defined as cholesteatoma in a retraction
pocket of the tympanic membrane (primary acquired), with tympanic perforation (secondary

acquired) or following surgery (iatrogenic).

Structurally, there is little difference between congenital and acquired cholesteatomas,
although the dense fibrous layer of the perimatrix tends to be denser in adults whereas
congenital cholesteatomas have more granulation tissue'. Congenital cholesteatomas may
progress with fewer overt symptoms than adult acquired cholesteatoma’ but pathology is

otherwise similar.
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Figure 1. Anatomy of the middle ear, tympanic membrane, and cholesteatoma cyst.

A) Cross section of the right ear showing a typical location for cholesteatoma in the ‘attic’ of the
middle ear, above the malleus and resting against the pars flaccida of the tympanic membrane.
B) Lateral surface of tympanic membrane (ear drum). The ear drum consists of a thin membrane
bordered by a tough ligamentous ring. The umbo is the concave point on the membrane where
the malleus attaches to the anterior surface. The pars tensa is pulled taught while the pars
flaccida is small and flaccid. C) the cholesteatoma cyst consists of three layers: the perimatrix, an
inflamed granulation tissue with a dense connective layer towards the centre; the matrix, a sac
of keratinizing stratified squamous epithelium with the basal layer contacting the perimatrix;
and the cystic content, a collection of keratin, sebaceous and necrotic debris which makes up the
bulk of the cyst.
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1.1.2 Epidemiology

Cholesteatoma affects between 6.8 and 18.8 people per 100,000 per year depending on the
study population (Table 1). Cholesteatoma is more common in males by a factor of
approximately 1.4° and annual incidence is highest in children around 9 years of age’. Mean
age of onset is >30 years of age and is later in females®’. Congenital cholesteatoma is rarer
than acquired and has a mean age of onset of 5.6 years®. Some studies’™ have found
decreasing rates over time, which Djurhuus et al. (2015)° attribute to increasing treatment of

childhood chronic otitis media with ventilation tubes.

Table 1. Incidence of cholesteatoma in a selection of epidemiological studies

Rate (per 100,000 N
Study people per year) Country Year cases Notes
Imetal., South 2006- Surgically treated
6.17-7.15 42,705 .
(2020)2 Korea 2016 Rates decreasing
Found no significant differences in age
Shibata et al. or sex, but only 40 cases and 175
10 6.8-10.0 Japan 2008 40
(2015) controls.
Highest incidence in 60+ age group.
) Surgically treated
Britze et al., 2002- o
6.8 Denmark 147 10-year recidivism rate was 0.44
(2017)11 2005 ) o
Age < 15 more likely to have recidivism
Rates decreased during study period
Higher incidence in skilled/specialised
Kemppainen ) 1982- 500 workers
9.2 Finland .
etal. (1999)° 1981 Male:female ratio 1.4
Median age 38 (males), 45 (females)
22 (4.4%) bilateral
Study of surgically treated children <
Padgham et 1966-
5, 94188 Scotland 15
al., (1989) 1986 ) .
Rates stable during study period
Surgically treated, registry-based
Age-specific peak at 9 years old (21.4
Djurhuus et 14.3 (males) 1977- male, 13.6 female).
Denmark 13,606 )
al. (2010)7 9.1 (females) 2007 Male:female ratio 1.51.
Median age was 32 for males and 35
for females.
) Surgically treated children
Djurhuus et 1977- .
10-15 Denmark 3874 Rates increased from 1977 to 2002
al. (2015) ° 2010

and decreased from 2002-2010

Cholesteatoma is thought to be more common in white populations and rare in Black and

2,13,14

non-Indian Asian populations , although original epidemiological data was not presented

in the cited studies. Conversely, the annual incidences reported in Table 1 are similar for
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European and East Asian populations. Ratnesar (1976)" reports vanishingly rare
cholesteatoma in the Innuit and Innu people of Newfoundland compared to white populations
in the same region, despite otherwise high rates of chronic ear disease. Thornton et al. (2011)
report no difference in the rates of cholesteatoma amongst individuals with chronic otitis
media of Tibeto-Mongolian and Indo-Caucasian ancestry in Nepal, nor any difference between

geographical regions.

Chronic otitis media (COM) is frequently seen with cholesteatoma, although to what extent
COM precedes versus arises from cholesteatoma is unclear. Possibly, a background of chronic
inflammation encourages cholesteatoma formation and is often a precursor to tympanic
retraction or perforation. Alternatively, ears which are susceptible to chronic disease may also
be susceptible to cholesteatoma for overlapping reasons. Symptoms such as inflammation and
effusion can also arise from cholesteatoma, so it is possible that a diagnosis of COM indicates

underlying cholesteatoma.

There is also an increased risk of cholesteatoma in persons with primary ciliary dyskinesia,
which can result in recurrent ear, sinus and lung infections'”'®, Both COM and cholesteatoma
are more common amongst individuals with some disorders affecting craniofacial
morphology, including Down syndrome, Turner syndrome, Branchio-oto-renal syndrome and
cleft lip and palate (orofacial cleft)’®. Chronic ear disease is also more prevalent in males™,
further suggesting a link between susceptibility to general ear disease and cholesteatoma.
Whether COM raises the risk of cholesteatoma directly or through shared genetic or

environmental factors is not known.

1.1.3 Theories of formation

It has not been conclusively demonstrated how or why cholesteatomas form. Notably, the
cholesteatoma matrix consists of keratinising stratified squamous epithelium, or skin tissue,
whereas the middle ear is lined with simple cuboidal mucosa. The tympanic membrane itself
consists of three layers: an outer surface of stratified squamous epithelial tissue continuous
with the skin of the auditory canal; an inner surface of mucosa continuous with the middle ear;

and the lamina propria, a layer of connective tissue, between the two' (Figure 2).
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Figure 2. Cross section of tympanic membrane

A cross-section of the tympanic membrane showing the external auditory canal to the viewer’s
left and the middle ear space to the right. The tympanic membrane consists of stratified
squamous epithelium on the external side, continuous with the external auditory canal, and
mucosa on the inner side, continuous with the mucosa of the middle ear. The middle layer
consists of tough connective tissue.
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\
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There are four main theories for the origins of cholesteatoma epithelium in the middle ear.
First, tympanic retraction (Figure 3a) theory or invagination theory proposes that
accumulation of keratin debris in a retraction pocket of the tympanic membrane results in the
formation of a cholesteatoma. Therefore, the epithelial tissue on the lateral surface of the
tympanic membrane forms the matrix of the cholesteatoma. Retraction of the pars flaccida
and less commonly the pars tensa can occur due to negative pressure in the ear resulting from
chronic infection®. Usually, the tympanic membrane maintains a self-cleaning mechanism by
the outwards migration of epithelial cells from the lateral surface of the tympanic membrane?'.
Louw (2010)*" proposes that this process is impaired in cholesteatoma, leading to collection

of debris in the retraction pocket with a high turnover of epithelial cells which ultimately results
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in cholesteatoma. Retraction pockets are common in chronic ear infection, but most will not

proceed to cholesteatoma®*?3,

The invasion or migration theory (Figure 3b) suggests that epithelium from the margins of a
tympanic perforation migrates through the ear drum into the middle ear?. Perforation may
occur due to chronic infection, trauma, or surgery. Louw suggests that epithelium grows into
the middle ear forming mucocutaneous junctions where it meets the middle ear mucosa. Then,
rather than growing across the tympanic membrane to heal the perforation, the epithelium

migrates inwards.

The mucosal metaplasia (Figure 3c) theory proposes that the epithelial tissue does not
originate in the epithelium of the tympanic membrane, rather that the mucosa of the tympanic
membrane or middle ear undergoes metaplastic transformation into keratinising stratified
squamous epithelium?. Metaplasia is a general term describing the conversion of any
differentiated cell type to another and does not indicate the direct cause of transformation —
in this case, the possible cause is unknown but subsequent expansion of the growth and
repeated infection could lead to perforation, leading the appearance of typical acquired

cholesteatoma®.

Epidermal basal cell hyperplasia (Figure 3d) theory suggests that cholesteatoma microcysts
formed in the pars flaccida invade the subepithelial tissue of the middle ear. Prolonged
inflammation may provide the conditions stimulating epidermal hyperplasia and papillary
cone formation; subject to intense inflammation in the perimatrix, cones become elongated
and keratin desquamation towards the centre of the cones form micro-cholesteatomas which

eventually fuse under pressure®'.
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Figure 3. Four theories of acquired cholesteatoma formation. Adapted from Kuo et al.
(2014)*°

a) Retraction theory E
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—
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1. Hyperproliferation of 2. Continued growth of 3. Fusion of micro cysts forms
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epithelium cholesteatoma microcysts

Finally, congenital cholesteatoma is thought to arise from a remnant of embryonic epithelium

in the middle ear. Epithelial tissue may derive from viable epithelial cells in the amniotic fluid;
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ectoderm from the external auditory canal may migrate into the middle ear during
development; or an epithelial remnant present during early development persists to give rise
to cholesteatoma?'. Congenital epidermoid cysts may occur in the same manner and are most
common in the brain and temporal bone, where they may also be described as congenital

cholesteatomas?.

Evaluation of theories of formation

Aspects of each theory for acquired cholesteatoma have been demonstrated in animal
models?. Common animal models include Mongolian gerbils, rats, chinchillas and guinea pigs;
cholesteatoma can be very successfully induced by ligating the external auditory canal in the
Mongolian gerbil, leading to the accumulation of keratin debris and a retraction-type
cholesteatoma®>. Meanwhile, injection of talcum powder and fibrin, dimethyl-
benzanthrancene, propylene glycol or cortisporin into the middle ear can induce chronic otitis
media and cholesteatoma in a range of rodent models®. These models support obstructions
to middle ear clearance and aberrations in epithelial migration as potential causes for
cholesteatoma, though they are induced by rather extreme measures and may not reflect what

occurs during a spontaneous cholesteatoma.

Additionally, none of these theories have been conclusively demonstrated in humans. The
presence of perforation or retraction as a requisite for acquired cholesteatoma diagnosis, and
with most cholesteatomas being acquired, strongly supports the retraction and migration
theories. Although it is possible that retraction and perforation may occur secondary to
cholesteatoma, retraction pocket formation prior to cholesteatoma is supported by
observation®?¢. While tympanic perforation and retraction appear to be important in many
cholesteatomas, they are not present in all cases (including congenital cholesteatomas), nor
are they sufficient to cause cholesteatoma as most perforations and retractions resolve without

causing it.

However, the theories are not mutually exclusive and may contribute in different parts to
different cholesteatomas: histological features amongst cholesteatomas taken from different
individuals support different theories of formation with the presence of mucocutaneous
junctions in some supporting invasion theory, while papillary cone-like keratin deposits in

others support basal cell hyperplasia. Rarely, cholesteatoma occurs between the layers of an
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intact tympanic membrane (intratympanic cholesteatoma); hyperplasia may explain a lack of
perforation or retraction, although most intratympanic cholesteatomas are associated with ear

trauma or surgery®’.

Parallels between the theories of cholesteatoma formation and other epidermoid cysts can be
seen. Epidermoid cysts are mainly thought to occur when a skin follicle becomes blocked,
resulting in build-up of keratin, or through traumatic introduction of epithelium into the
dermis®®. Rupture of an epidermoid cyst leads to inflammation in the surrounding tissue as a
response to the presence of keratin?. External auditory canal cholesteatomas do not seem to
fit well with any of these explanations, although they may be considered another form of

epidermoid cyst which happens to arise in the ear canal.

1.1.4 Pathology

Key features of cholesteatoma pathology are progressive expansion of the cyst and
destruction of the surrounding bone®. Cholesteatoma tissue is typically inflamed, though
active infection may or may not be present; inflammation may be in response to spilling of the
keratin contents of the cyst, with keratins acting as alarmins which signal an immune
response®. Repeated infection and damage to the middle ear bony structures are responsible
for symptoms including chronic discharge, hearing loss due to destruction or immobilisation
of the ossicles, and facial nerve damage to due invasion of the mastoid. The drivers of
expansion and precise mechanisms of bone resorption have not been conclusively
demonstrated but may involve mechanical pressure, loss of extracellular matrix integrity,
osteoclast activation and growth factors expressed in the context of chronic inflammation®%.
Paediatric acquired cholesteatoma may be more aggressive than adult cholesteatoma®, with
greater extent and recidivism®!, and childhood cases have been shown to express more
inflammatory proteins® and have relatively more granulation tissue® although many studies

do not distinguish between adult and childhood cases.

Extracellular matrix breakdown

The extracellular matrix (ECM) is the scaffold in which cells are organised within tissues such
as epithelium. It provides physical structure and facilitates cell-cell communication, migration,

and adhesion, and can coordinate proliferation and differentiation®**. The perimatrix of
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cholesteatoma is a type of granulation tissue — a connective tissue with inflammatory cell
infiltration associated with wound repair which the ECM has an important role in coordinating.
During wound-healing, the ECM s first broken down; cells proliferate and differentiate, new
blood vessels form (angiogenesis) and tissue remodelling occurs, with apoptosis of old cells

and replacement of old ECM collagens®.

Cholesteatoma shows a degraded ECM in comparison to healthy skin and chronic otitis media
granulation tissue®. Indeed, cholesteatoma has been described as an impaired wound-healing
process®. ECM degradation could be involved in excess proliferation, inflammation and altered
migration in cholesteatoma. Migration is an important feature because the origin of the
epithelial tissue is suspected to be the external auditory canal or external surface of the
tympanic membrane; therefore, it must migrate into the middle ear, either via a perforation or
through failure to migrate out of a retraction pocket. Additionally, expression of matrix-active
proteases such as the matrix metalloproteinases (several of which have been detected

upregulated in cholesteatoma) may contribute to bone loss and invasiveness®.

Osteoclasts

Bone remodelling is a constant process consisting of breakdown by osteoclasts and generation
of new bone by osteoblasts®’. Osteoclast precursor cells are activated by binding of the RANK
receptor by RANKL and proceed to release bone matrix-lytic enzymes, the most important
being cathepsin-K (CATK) and tartrate-resistant acid phosphatase (TRAP)®. Osteoclast
involvement in cholesteatoma is controversial: some studies suggest activation of osteoclasts®
and depleted osteoblast populations®, though Koizumi et al*' did not detect osteoclast

activity in cholesteatoma-affected bone.

Osteoporosis pathology arises from an imbalance in osteoclast and osteoblast activity leading
to poor bone density’’; as bone resorption in the middle ear associated with cholesteatoma
may also be due to osteoclast activity, it is possible that the conditions are related.
Thorsteinsson et al.* found that treatment with bisphosphonates, a class of drugs given to
improve bone density in osteoporosis, can also increase risk of external auditory canal
cholesteatoma. These drugs interfere with osteoclast function to reduce the turnover rate of

bone and also increase the risk of jaw osteonecrosis and atypical femur fracture.
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Inflammation

Cholesteatoma tissue is often inflamed, and affected individuals often have a history of chronic
otitis media’ but the relationship between the conditions is not clear. Both may arise from
shared risk factors, such as a poorly draining ear, or a history of repeated infection may directly
raise cholesteatoma risk. Louw (2010)*" suggests that chronic inflammation may have a role in
the initial establishment of cholesteatoma by triggering aberrant migration, hyperproliferation

or mucosal metaplasia.

Inflammation is also implicated in promoting tissue growth and bone loss, and the immune
response in cholesteatoma has been described as overly-aggressive'. Possibly, inflammatory
cytokines provoke excessive proliferation through a positive feedback loop; the keratinocytes
of the matrix express several proinflammatory cytokines including interleukins IL1a, IL1[B, IL6
and IL8, and parathyroid-hormone-related protein. The matrix fibroblasts in turn produce
growth factors including epidermal growth factor, platelet-derived growth factor, keratinocyte
growth factor, and transforming growth factor alpha®. Imai et al.** suggest that inflammatory
products activate osteoclasts via receptor activator of NF-«kB ligand (RANKL) expressed in the
perimatrix, possibly due to expression of tumour necrosis factor alpha (TNF- o), PGE2, IL6 and

IL1B by the matrix fibroblasts and/or keratinocytes (Figure 4).

Figure 4. Interaction between fibroblast, keratinocyte and osteoclast promoting
hyperproliferation and bone loss.

Fibroblasts and keratinocytes in the cholesteatoma matrix produce growth factors and
inflammatory cytokines which act in a positive feedback loop promoting hyperproliferation.
Production of RANKL and TGF-a promote osteoclast activation and bone resorption. Adapted
from Kuo (2015)™ and Imai et al. (2019)%.
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However, several inflammatory proteins widely expressed in cholesteatoma have been shown

TGF-o RANKL

to be downregulated compared to granulation tissue from cholesteatoma-free chronic otitis
media (COM)*, suggesting that inflammation is not excessive but a normal response to
infection or tissue damage. Alternatively, under-expression of certain inflammatory proteins
could suggest an inadequate or imbalanced immune response which could contribute to
pathology. A notable example is SERPINB3, an inflammatory serine protease inhibitor which is
expressed in cholesteatoma but downregulated compared to chronic otitis media tissue
alongside other inflammatory proteinase inhibitors, possibly contributing to excessive

proteinase action and tissue damage®.

Specific microbes

The middle ear is typically closed to external pathogens, bound by the tympanic membrane at
one end and the Eustachian tube at the other, so the microbiome of the middle ear is distinct
from both the external auditory canal and the adenoid region. The normal microbiota of the
middle ear is not well established but typically dominated by Proteobacteria, Actinobacteria,
Firmicutes and Bacteroidetes with child and adult ears varying significantly in the relative

proportions*. Changes to the middle ear microbiome are noted in otitis media: Streptococcus
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pneumoniae, Haemophilus influenzae and Moraxella catarrhalis have been detected in otitis
media (OM) with effusion and tympanic perforation, though M. catarrhalis is not common

t*. Minami et al.®* found no significant difference in the microbial

when perforation is absen
composition of ears with and without cholesteatoma at the phylum level, while suppurative
OM differed significantly from child and adult normal. They noted that Staphylococcus and
Peptoniphilus dominated in some suppurative OM ears with Peptoniphilus being particularly
frequent with cholesteatoma. Decreased relative abundance of some species in cholesteatoma

including Acidovorax, Bacillus and Masillia species has also been demonstrated®.

Human papillomavirus (HPV) is a group of very common human viruses causing abnormal skin
growths called papillomas, including warts and pre-cancerous lesions*. Some epidermoid
cysts have been found to show signs of HPV infection (termed verrucous cysts)*’ and the
typical hyperkeratotic lesion caused by the virus somewhat resembles cholesteatoma.
However, the reported prevalence of HPV subtypes in cholesteatoma cysts varies greatly: Chao
et al. (2000)*® and Franz et al. (2007)*° detected HPV DNA in 1 of 32 and 29 patients respectively
corresponding to a prevalence of ~3%. Viana et al (2021)*° failed to detect HPV or
polyomavirus (another group of tumorigenic viruses) in any cholesteatoma samples (n=26).
Skoulakis et al. (2018)°" report 48.3% prevalence (n = 62) compared to 0% prevalence amongst
controls, while Rydzewski et al.** detected HPV-6/11 in 70% of cholesteatoma cases (n=9)
compared to 23% of non-cholesteatoma granulation tissue (n=29). This may be partly
explained by differences in the specificity of HPV subtypes targeted by studies, although Viana

et al. and Skoulakis et al. both targeted a broad spectrum of subtypes.

Variable rates of HPV in cholesteatoma could also reflect the variable rate of background

infection although increased prevalence in comparison to a control group®"*?

suggests a true
increase in prevalence with cholesteatoma. It is possible that HPV provokes epithelial
hyperplasia in the basal layer of the tympanic membrane consistent with hyperplasia theory

and the presence of papillary cones in some cholesteatomas®.
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Roles in pathology and aetiology

As cholesteatoma tissue includes an inflamed granulation layer, a degree of ECM breakdown
and inflammation is always present. Due to the roles of the ECM and inflammation in
pathologically relevant processes such as cellular proliferation, migration and osteoclast
activity, it is likely that these features are clinically important. Indeed, several inflammatory
pathways have been suggested as potential therapeutic targets in cholesteatoma®. However,
whether there is underlying dysfunction in these processes leading to cholesteatoma is not
known — inflammation, ECM breakdown and osteoclast activity may be downstream of
cholesteatoma establishment. The conflicting evidence for a role for HPV in cholesteatoma
suggests that viruses may be involved in some cases, but it does not seem a likely causative
agent in all cases; there is also little evidence to suggest any role for specific pathogens in

pathology and cholesteatoma may or may not be actively infected.

1.1.5 Potential for a genetic role
Familial clustering

Although cholesteatoma is not traditionally considered a heritable condition, there have been

several observations of family clustering®>’

, including three reports of congenital
cholesteatomas in identical twins>®®°. Furthermore, an online survey of 857 individuals found
family history in 10.4% of cases®', while family history of cholesteatoma or chronic otitis media
was reported in 64% of 12 cases in a Kibbutz of 3056 individuals®®. A recent study of surgical
records in Sweden indicated an increased risk of cholesteatoma amongst first-degree relatives
of those already treated with an odds ratio of 3.9%. Interestingly, many case reports of
cholesteatoma within families are congenital cholesteatomas®™>"° despite congenital
cholesteatoma being the rarer form. Prinsley (2019)** presents 15 families with multiple
affected members, though he does not distinguish between congenital and acquired, noting
most had tympanic abnormalities more consistent with the acquired form. Additionally, Collins
et al. (2020)°" found a positive association between family history and bilateral disease with an

odds ratio of 2.15. Therefore, it seems that both congenital and acquired cholesteatoma may

have a hereditary aspect.
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A potential genetic association via increased risk of cholesteatoma amongst persons with
orofacial cleft is also possible: in a Danish study of 8,593 persons with orofacial cleft®, hazards
of cholesteatoma were 20-fold whilst hazards of cholesteatoma in 6,989 siblings of persons
with cleft lip/palate were increased 2.1-fold. The authors suggest that this is due to
accumulation of sub-clinical muscular defects in these siblings, posing a genetic mechanism

for increased susceptibility.

Genetic studies

Very few genetic studies of cholesteatoma have been performed to date. Outside of the
Genetics of Cholesteatoma project, only three such studies have been performed. The earliest
of these was a deletion in tumour suppressor APC identified in a single 6-year-old boy with
familial adenomatous polyposis and cholesteatoma, and his mother®. Familial polyposis coli
is a disease which causes multiple gut polyps and other cystic lesions, usually due to mutations
in APC. As such, it is possible that this APC deletion was also associated with cholesteatoma
in this case, but with a sample size of 1, this is a very low level of evidence. James et al.®®
identified the connexin gap junction genes GJB2 and GJB6 in a study of 98 affected children.
Variants of these genes are associated with some forms of congenital deafness and
hyperkeratosis®’. However, the sample size was still small for a genetic study, the variant was
not present in all cases, and there was no control population. A more recent study®® from
identified 12 rare, deleterious variants in 1 of 6 whole-exome tested saliva samples from
persons with COM with cholesteatoma. Affected genes were RTN4, RAB5A, CRYBG1, RGS22,
APBB1IP, HEPHL1, BHLHE41, ARID3A, C5AR1, SPTLC3, CPT1B and FAM227A. The authors
identified disrupted processes primarily related to endoplasmic reticulum function, including
endocytosis, protein transport, apoptotic processes, and rhythmic processes. However, all
variants were found in one individual: the remaining 5 samples had no qualifying variants

according to their criteria.

There have also been several studies of up- and down-regulated non-coding RNAs in
cholesteatoma®". Non-coding RNAs target messenger RNA to regulate the translation of
certain genes into proteins. Jovanovic et al., 2022" reviewed eight studies of non-coding RNA
in cholesteatoma and suggest that dysregulated miRNAs miR-21 and LET-7 are the ‘most

highlighted’. miR-21 downregulates PTEN and PDCD4, suppressors of tumour formation and
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progression, while LET-7 downregulates HMGAZ2 which has been hypothesised to balance
reduction of PTEN/PDCD4 through increased apoptosis. This may contribute to the self-
sustained growth in cholesteatoma with a lack of malignancy. Other pathways thought to be
disrupted by dysregulated non-coding RNAs include EGFR/Akt/NF-kB/cyclinD1
and PI3K/Akt/PKB".

Cholesteatoma is typically non-cancerous and although some features are shared with
neoplastic lesions (e.g. excessive growth and angiogenesis), malignance is very rare. In a case
report of squamous cell carcinoma of the temporal bone arising from cholesteatoma which
had been surgically removed 54 years prior, a total of 5 other similar cases were identified
since 19517, Amongst these reports, most cases of carcinoma occurred many years after
removal of cholesteatoma. The relationship is thought to be due to the impact of chronic
inflammation rather than malignancy of the cholesteatoma itself’®. Dysregulation of some

d’"’®, however there is very little literature

tumour-associated genes has been detecte
concerning cholesteatoma somatic mutations which would help differentiate it from cancerous
lesions. Albino et al. (1998)"° found evidence for aneuploidy in only 1 of 10 cholesteatoma
samples, concluding that there is little evidence for genomic instability consistent with
malignant neoplasms. However, in a recent analysis of 17 middle ear cholesteatomas, somatic
variants in MYC and NOTCHT1 were detected in 14 samples and correlated with bone
destruction®. MYC and NOTCH1 are proto-onco genes, genes involved in normal cellular
growth and differentiation; mutation of these genes can contribute to cancer. Overall,

cholesteatoma may display some cancer-like properties but shows less genomic instability

than normal cancers and should not be considered a malignant nor pre-malignant neoplasm.

30



1.2 Genetics

1.2.1 The role of Genetics in disease

Many diseases have both genetic and environmental factors. The heritability of a trait is
defined as the proportion of variance in the phenotype that is explained by genetic variance®'.
A highly heritable trait will have larger genetic contributions than environmental. Not only
does heritability vary between diseases, but the number of genetic variants, their contribution
to disease risk, the types and locations of the variants can also differ, from simple monogenic
disorders where changes to a single gene will always result in disease, to complex, polygenic
diseases encompassing many risk variants with small effect. The landscape of genetic variants

underlying a disease can be described as its genetic architecture.

Inheritance patterns for monogenic diseases

Some diseases may be caused by deleterious variants in a single gene. A well-known example
is cystic fibrosis (CF), which is caused by variants affecting the CFTR gene®. CFTR encodes a
transmembrane conductance regulator, a type of ion transporter. Damaging variants in CFTR
prevent the proper function of the ion transporter, leading to decreased chloride secretion
and sodium resorption by epithelial cells. This leads to thickened mucus secretion in all organs,
with the lungs severely affected, increasing susceptibility to pulmonary disease. Because
human genetic code is diploid, a single working copy of CFTR is adequate to prevent disease:
two defective copies must be inherited, making this an autosomal recessive disease (Figure

5b).
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Figure 5. Dominant and recessive monogenic inheritance.

Examples of family trees with dominant and recessive disease traits. Dominant genotypes are
denoted with capital letters, recessive with lowercase. A) Dominant inheritance occurs when the
dominant allele (A) is causal. One copy of A is sufficient to cause disease. B) Recessive inheritance
occurs when the recessive allele (b) is causal. Two copies are required to cause disease.

a) Dominant b) Recessive O Female,

no disease

Male, no

Bb Bb disease
Female,
disease

Male,

OO

An autosomal dominant disease requires only one defective copy of a causal gene (Figure 5a).

Bb

aa

One example is Huntingdon disease, which occurs when one defective copy of HTT is
inherited®. The pathogenic allele encodes a protein with an expanded repeat region and the
presence of this protein causes pathology: therefore, only one copy is required to cause
disease. Huntingdon disease and cystic fibrosis are autosomal diseases because the causal
genes are not located on the sex chromosomes. A sex-linked disease occurs when the causal
variant is located on X or Y. Most examples are X-linked recessive, requiring that males carry

a single copy while females must carry two copies of a causal variant.

Although causal variants are often inherited, they may also occur spontaneously in the
gametes, resulting in a de-novo mutation in the child. Both ‘variant’ and ‘mutation’ refer to a
genetic sequence which differs amongst the population, but a variant is more likely be

described as a mutation if it is rare or new. | refer to all mutations as variants.
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Figure 6. Reduced penetrance of a dominant monogenic trait

The disease allele (A) is dominant. However, some Aa individuals do not have the disease
phenotype. The individual marked with * carries a copy of A but does not have disease; her
daughter inherits a copy of A and does have disease. This (s a disease with dominant inheritance
and incomplete penetrance.

Female,
O no disease
Male, no
disease

Female,
disease

Male,
disease

aa

aa aa

Even simple monogenic disorders such as cystic fibrosis and Huntingdon disease may be
caused by different variants affecting the same causal gene. For example, around 2000
different CFTR variants have been identified in cystic fibrosis, although most of these are of
uncertain relevance to disease and only about 200-300 may actually be pathogenic®®.
Different variants can lead to disease through multiple pathways, from production of
functional CFTR which degrades too quickly to failure to synthesise any CFTR at all®.
Furthermore, diseases may not be fully penetrant. Penetrance refers to the proportion of
individuals with the disease genotype who show the phenotype (Figure 6). Cystic fibrosis
generally has high penetrance with carriers of two defective copies of CFTR typically showing
disease. However, this is not true for all monogenic disorders: some individuals with the same
variants may show different forms of disease or none at all®. There are many reasons why

penetrance may be reduced, and the following are some examples: there may be a large

environmental component; different causal alleles may have different effects of phenotype
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and interact differently; there may be age and sex-dependent effects; or there may be

undiscovered causal loci, making the disease di-or oligogenic®®.

Complex, polygenic diseases

Many common diseases such as type 1 and 2 diabetes, cardiovascular disease, and asthma are
thought to have polygenic risk. Rather than a single or small number of genes causing disease,
conditions may be associated with many variants across the genome, each of which contribute
a small amount to disease risk®. High-risk individuals are those carrying many risk alleles,
although they may or may not actually develop disease — such individuals are simply at
elevated risk compared to the general population. Otosclerosis, a condition affecting the bone
of the stapes, is inherited in an autosomal dominant-like pattern but family-based studies have
failed to map disease to a single locus®. Recent meta-analysis of three biobanks identified
1,452 common variants affecting 27 distinct loci associated with otosclerosis®. Meanwhile,

over 200 susceptibility loci have been identified for coronary artery disease”'.

1.2.2 Types of genetic variant

There are many different types of genetic variation. The simplest and most common is the
single nucleotide polymorphism, or SNP (sometimes called single nucleotide variant, SNV)
where only one base pair differs between individuals®. An indel is a short insertion or deletion
of base pairs into the sequence (Figure 7). SNPs and indels are well-studied in disease and
most reported trait associations are for these variant types — they are common, relatively easy

to detect and well-represented on most genotyping arrays®.

Figure 7. Common variant types affect a single or few bases.
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Figure 8. Structural variants affect larger regions of the genomes. Some types of
structural variants and illustrative examples are given.

Reference Gene A Gene C

duplication
Interspersed
L. Gene A Gene B Gene C Gene B
duplication
Translocation Gene A Gene C
Deletion Gene A Gene C

Structural variants are changes to larger stretches of DNA, approximately 1 kilobases or
longer®. This can include deletion, duplication or inversion of entire genes or gene regions
(Figure 8). Although they are poorly studied in comparison to SNPs and indels, up to 9.5% of
the human genome is associated with copy number variation® and there is evidence that they
may be associated with diseases such as Crohn’s disease, type 1 diabetes and rheumatoid

arthritis®®.

Coding variants

For sequences inside protein-coding regions, each three bases constitute a codon, and
corresponds to a different amino acid in the final protein. Because some amino acids can be
encoded by multiple codons, some changes to the sequence do not alter the corresponding
amino acid. These are synonymous variants. When the amino acid sequence is changed, the
variant is missense. If a sequence change results in the stop codon, which signals the end of

the protein, the final transcript will be truncated, causing a premature stop variant. Indels can
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cause any of these variant types as well as a frameshift variant, where the number of bases
inserted or deleted results in all following codons being shifted by one or two places, changing
the entire following sequence. Any variant predicted to cause the protein to stop functioning
is a loss-of-function variant. Conversely, gain-of-function variants are changes thought to add

a new functionality to the final protein.

Non-coding variants

98% of the genome is non-coding, meaning it does not translate into a protein product. About
a quarter of non-coding DNA lies in the introns (non-coding regions within genes) and the
rest is intergenic®’. Non-coding DNA has many functions, including regulatory elements, non-
coding RNAs and ribosomal RNAs. However, there are large portions of DNA with no apparent
function or whose function is unknown, including pseudogenes (non-functional remnants of
genes), transposable elements and repeats, the latter being mostly found in the telomeres and

centromeres®.

As only ~2% of the genome codes for proteins, it may not be surprising that >90% of trait-
associated variants discovered by GWAS to date are non-coding®%. However, their roles in
disease are poorly described in comparison to coding variants, given the obscure function of
many forms of non-coding DNA. Changes to regulatory elements in non-coding regions may
alter gene expression and contribute to disease, although which genes are associated with
regulatory elements is not always known. In an analysis of 920 publications covering 6,011
trait-associated SNPs, Maurano et al. (2012)*° found that non-coding SNPs were enriched in
regulatory elements, with most SNPs either affecting regulatory regions or in linkage

disequilibrium with them.

Linkage disequilibrium, the correlation of variants located physically close to each other, means
that non-coding variants may also tag causal variants in coding regions if the two are linked.
In a study of 21 common disease traits, Yong et al. (2020)*® created predictors which combined
the effect of many SNPs across the genome. In their study, 50-60% of predictor SNPs were
genic, and these SNPs explained 40-90% of predictor variance. This suggests that genic
variants may have a greater relative contribution to phenotype than non-coding, but this is

very variable depending on phenotype.

36



1.2.3 Genotyping data
Genotyping

There are two main approaches to genomic analysis: genotyping or microarray testing and
next generation sequencing. Genotyping arrays consist of a number of probes (small stretches
of DNA covering a region where there is known variation) and can only measure the presence
or absence of a particular variant at the probed sites. Hundreds of thousands to a few million
probes are typically included, mostly comprised of SNPs and short indels, although some
arrays also detect some copy number variants®. Although arrays can only directly measure
variants represented by their probe sets, many millions of additional variants can be imputed
from high-coverage reference databases, including very rare variants with minor allele
frequency < 0.5%%. However, imputation is an estimate and not likely to be completely
accurate, and the rarest variants may be absent or poorly represented in reference databases

and therefore difficult or impossible to impute.

Next generation sequencing

Next generation sequencing (NGS) involves directly measuring all base pairs in the genome or
a subset of it. In the approach used by Illumina and similar technologies, this is achieved by
fragmenting DNA into short pieces and annealing them to flow cells. Complementary DNA is
synthesised using the polymerase chain reaction (PCR) with fluorescently tagged bases. These
emit a flash of light as they are added to the growing complementary strand. A computer
records the flashes which are coloured according to their nucleotide base and in this way reads

the DNA sequence in each fragment. This process is used by lllumina

The result of this process is a large number of short, overlapping segments of sequence (reads)
which must be reassembled into a full genome. This is achieved by aligning them to a reference
genome. The most recent reference genome assembly from the Genome Reference
Consortium is GRCH38 and along with its predecessor GRCH37 form the standard for human
genetics reference genomes. These reference genomes are not an average, nor a
representation of a 'disease-free’ genome, but were drawn from a small number of donors:
93% of GRCh38 is drawn from approximately 11 individuals, with one male contributing to

101

70% of the primary assembly™'. However, these reference genomes include large gaps in

hard-to-sequence regions such as the telomeres, and representation of large regions of
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variability is poor'®, For these reasons, new graph-based genomes representing all regions
and multiple alternative haplotypes are being developed by the Telomere-to-Telomere
consortium'® and Human Pangenome Consortium'®. However, these are not yet in wide use

and GRCH38 remains the standard.

Variant calling for NGS data

NGS always generates error and determining true variation from such errors is a non-trivial
task. As reads are overlapping, most sites will be represented by multiple reads (the number
being the read depth of that site, see Figure 9). A simple way to determine if a variant is real
is to check the proportion of reads agreeing on the variant at the site. Quality metrics such as
the site’s read depth may also be used to decide whether to call a variant, where poor quality
sites are assumed not to be true variants. Methods such as FreeBayes'® and GATK'® use
additional information from reference databases to determine the likelihood of variants being
true based on the genetic background in which they usually appear. Because variant calling in
NGS involves deciding whether there is sufficient evidence that the read sequence differs from
the reference, sites with low read depth or large amounts of error may be considered to agree

with the reference genome.
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Figure 9. Alignment of reads to a reference genome can identify possible variants.
Reads, short fragments of sequence determined from sample DNA, are aligned to a reference
genome to reconstruct the original sequence. Where the reads vary from the reference genome,
there may be a variant. However, not all reads may agree on the sequence at this site. The
number of reads representing a given site is the read depth and generally a higher read depth
means a greater certainty about the sequence at that site.

Reference genome [ © (A | 1 [ ¢ ) ¢ | 7 |[A [4]
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1.2.4 Trio analysis and family studies

Causal variants for simple, monogenic disorders can often be determined through family
studies or trio analysis. Examining the affected individual alone is usually insufficient to
determine which genetic variants are likely to be causal as a single individual carries many
variants, of which a proportion are predicted to be deleterious — with no obvious ill effects for
their carrier®. In a trio study, the genetics of an affected child and their parents are examined
to determine the causal gene. For example, if disease acts in a dominant fashion but is due to
a de novo mutation, the causal variant will be present in a child but not in their parents. If
disease is recessive, the affected child will be homozygous for variants affecting a gene for

which their parents are heterozygous'®.

Additional family members may also be used: if disease is autosomal dominant, variants must

be present only in the affected family members and absent in unaffected family members
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(variants co-segregate with disease). As large swathes of the genome are shared between

family members, many variants can quickly be excluded.

Family or trio studies may primarily be used to identify candidate genes when an individual

has a rare disorder whose cause is not known'

. Other families showing the same disease may
also carry different risk variants. This is both a benefit and a drawback of family studies: it is
beneficial as it removes genetic heterogeneity and allows easier identification of causal alleles,

but different families may carry different causal variants.

These types of studies work best when disease is based on few genes. Some digenic and
pseudo-digenic disorders have been identified through family studies, where variants in two
different genes are required for disease or where a second gene modifies disease appearance
and behaviour'”. When disease risk is raised by small or modest contributions from many
genes (i.e. It is highly polygenic), family studies may fail to identify risk variants as large sample

sizes are needed to detect these small effects.

1.2.5 Genome-wide association studies

The goal of the genome-wide association study (GWAS) is to test variants across the genome
for statistical associations with a phenotype. GWAS s typically applied to common, complex
diseases whose genetics cannot be easily established by family studies and whose case
numbers are sufficient to provide statistical power for discovery. GWAS may be used to identify
causal variants to explain the mechanisms of disease and indicate possible therapeutic targets.
There has also been increasing interest in using genome-wide data for diagnosis and screening
through the use of polygenic risk scores which sum the effects of a large number of variants

across the genome'%1%,

The first GWAS was performed in 2005, and identified complement factor H as a risk locus for
age-related macular degeneration, highlighting an immunological role in the disease'™. Since

then, over 5,000 GWAS have been performed and catalogued (EBI GWAS Catalog), identifying

over 300,000 variant-trait associations. In most GWAS, each variant is tested individually for
an association with the outcome with a linear (for continuous traits) or logistic (for binary traits)

regression in the following general form:
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Y~Wa+ XB+g+ e
Uffelmann et al. (2021)%

Where Y'is the phenotype, Wa matrix of covariates, Xa vector of genotypes of all samples at
a given locus, and gand e are error terms. a and B are calculated when fitting the regression
and tells us the effect sizes of the covariates and genotypes®. This test is repeated across the
genome, allowing calculation of effect sizes and p-values for all variants and identification of
those most likely to be causal or contribute to risk. This makes GWAS suitable for discovery of

causal variants where genetics is not yet known or expected to be complex.

It is common to reduce the number of variants considered in a GWAS by filtering for impact
and frequency. This reduces the number of variables being tested, therefore should reduce
noise. Often, only variants with a minor allele frequency of at least 1-10%, depending on the
size of the study population, are included to ensure sufficient sample size for statistical
power®®. Rare variants may require very large sample sizes or techniques to aggregate them
at the gene level to provide sufficient power. This may be- in the form of a burden test, which
calculates the sum of variants affecting a given gene, which works well when all variants in a

gene have similar effects on phenotype'’

. Methods such as SKAT perform regressions for
variants within each gene, allowing for different variants to have differing effect sizes''®. The

result is again a gene-level test but can account for differing effect sizes and directions.

Because many statistical tests are being performed across the entire genome, false discovery
is a risk and the p-value threshold for significance must be adjusted appropriately. A standard
method is Bonferroni correction, which reduces the threshold p-value by the number of tests
performed; as the human genome contains approximately 1 million independent variants, a
p-value of 5x107 is adjusted to 5x10°® (depending on factors such as the population size and
the number of independent variants analysed)®. Variants are generally not independent from
one another due to linkage disequilibrium, meaning variants located physically close to one
another are often correlated. Rare variants are unlikely to be in linkage disequilibrium with

common variants and so may represent a greater number of independent tests®.
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Population stratification

An important confounder in genetic studies is population stratification, which refers to
differences in gene frequencies between populations. Stratification occurs on both a global
scale, where gene frequencies differ between ancestries, and within populations reflecting
historical human migration patterns, genetic drift and non-random mating'®. This can result
in false associations if the trait also varies in prevalence across the study population. Causal
variants may also differ in frequency between populations, leading to the same trait being
associated with different variants in different populations'". Population stratification is often
controlled by taking the first genetic principal components and using these as covariates in
the association test®®!*. Modern GWAS software such as REGENIE!*> and SAIGE® typically
perform multiple steps to correct for population stratification as well as sample imbalance and
other sources of error. An initial step fits a null model which captures the genetic background
of the population and is used in the second step to correct the p-values accordingly (see

Modern GWAS methods).

1.2.6 Polygenic risk scores

Genetic risk for complex diseases may comprise a small number of variants with high impact
on outcome as well as a large number of variants with small contributions to disease risk. For
common diseases, the polygenic component may outweigh the contributions of rare, highly
penetrant mutations'"’. Researchers have sought to quantify this risk through the creation of
polygenic risk scores (PRS). PRS combine the effects of variants across the genome by
summing them with weights according to their effect size. PRS have been calculated for several
common, complex conditions such as coronary artery disease, type 2 diabetes and
inflammatory bowel disease'®. Even where single or small sets of genes are known to explain
a large proportion of genetic risk, for example BRCA1/2 and breast cancer, PRS have been
found to classify a similar number of high-risk individuals on the population level, even if the
individual effect is modest®. While some commercial companies offer polygenic testing for
diseases like breast cancer, PRS are not widely used in any clinical setting. One exception is
the ongoing HEART study''®'®°, which combines PRS with clinical data to identify persons with
elevated risk of a cardiac event. Observational data from the UK BioBank suggests that PRS

alone may be as good a predictor as known clinical risk factors and in combination led to re-
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classification of 13.7% of individuals between high and low risk categories®?’. Although such
tests are not yet widespread in clinical settings, they demonstrate the ability of polygenic risk

scores to quantify disease risk due to polygenic effects.

Besides simple summation of weighted variants, machine learning approaches to disease
classification can also describe disease risk with more complex genetic architecture. There are
many approaches to classification, including support vector machines, Bayesian classifiers and
neural networks'®?. A common approach in bioinformatics is Random Forest, where many
decision trees are generated using random resampling of the data'®® (see Random forests).
Importantly, these methods use genetic data in combination rather than testing genes or
variants separately. This makes them suitable when disease risk is based on a non-linear

combination of risk variants.

1.3 Study Aims and Wider Project

1.3.1 The Genetics of Cholesteatoma Project

Although cholesteatoma is not traditionally considered a heritable condition, recent
observations of family clustering and family history in ~10 of cases®' support a significant
genetic component in some individuals. Observations of such family clustering in East Anglia>*
led to the establishment of the Genetics of Cholesteatoma project (GoC) with the aim of

studying cholesteatoma heritability.

Two genetic studies have been performed by the GoC to date: Prinsley et al. (2019)'** identified
rare loss of function variants of EGFL8 and BTNL9 in a multiply-affected family. EGLF8 is an
epidermal growth factor-like protein and the variant identified by Prinsley et al. is associated
with the hyperproliferative inflammatory skin condition psoriasis. This is particularly interesting
as several gene expression studies have identified upregulated psoriatic proteins: this includes
the ST00A family of inflammatory proteins, PI3, DEFB4 and SERPINB4'?>. According to Macias
et al (2013)'?*, only two of fourteen psoriatic proteins have not been shown to be dysregulated
in cholesteatoma. BTNL9 (butyrophilin-like protein 9) has signalling receptor binding activity
and is involved in T-cell signalling and cytokine production. As inflammation may be intimately
involved with cholesteatoma progression and pathology, changes to immune genes could

contribute to disease risk. Several additional genes were detected with missense variants of
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predicted moderate impact on protein function; however, as only one family was considered,
it is difficult to draw conclusions that can be generalised. As neither of the variants detected
were rare enough to be the sole causes of cholesteatoma, their involvement (if any) may be

polygenic'®.

126 of 21 individuals from 10 affected families identified

The recent GoC follow-up study
additional candidate variants in NEB, DNAH7, DENND2C, NBEAL1, PRRC2C and SHCZ2. Gene
ontology analysis in this study identified enriched deleterious variants in several pathways:
calcium binding, microtubule function (primarily due to DNAH and KIF family variants), and
extracellular matrix organisation. Deleterious variants affecting ECM proteins could result in
improper ECM formation and aberrant downstream processes, consistent with cholesteatoma
gene expression (see Semi-systematic review of global gene expression studies). Multiple
families carried variants in DNAH?7, one of a family of dynein axonemal heavy chain proteins
involved in force generation on the cytoskeleton and ciliary/flagellar motility. Ciliary function
may be important in cholesteatoma as it is involved in clearance of mucous and debris from
the ear; impairment may lead to increased infection and possibly a failure of the tympanic
membrane’s self-cleaning mechanism. Variants in DNAHT and DNAHS5 are associated with
primary ciliary dyskinesia, which increases susceptibility to chronic otitis media and
cholesteatoma'’. Additional families carried variants in other DNAH family members and in
some KIF family members — KIF genes encoding kinesins, force generating proteins on the
cytoskeleton acting in the opposite direction. Interestingly, this study did not implicate

immune function, suggesting that upregulated immune genes in cholesteatoma tissue are

downstream of any possible genetic causes.

As studies so far do not agree on a single set of genes or variants, penetrance is low, and risk
factors are diverse, it is likely that cholesteatoma genetics are heterogeneous and complex.
There is some evidence that cholesteatoma may be associated with defects in the
inflammatory response, as it may be a direct sequalae of chronic ear inflammation, although
the precise relationship between cholesteatoma and otitis media is not known. BTNL9,
identified in the pilot study, had immune function', although the second GoC study of a

larger number of individuals did not identify this as an enriched process'®

. Meanwhile, gene
expression studies point to breakdown of the ECM, while our whole exome study suggest a

role for ciliary function. Genetically mediated risk factors are also known via chromosomal

44



disorders which affect craniofacial morphology'®. With many potential pathways to disease, it
is possible that different factors contribute different amounts to disease risk between affected
individuals and families, making genetic analysis challenging and calling for larger genetic

studies than have previously been performed to increase statistical power.

1.3.2 Aims and objectives

My PhD project will perform the first genome wide association study of cholesteatoma
(excluding generic PheWAS which include cholesteatoma but do not report specifically on the
disease). This is to identify variants, genes or pathways associated with cholesteatoma and to
further investigate its genetic architecture. While previous studies in the GoC project have
identified several candidate genes with diverse functions, these along with complex
environmental risk factors, point to a complex, heterogeneous disease. Therefore, large,
controlled genetic study is required. This project, which uses ~1,000 cases from UK BioBank
(UKBB) data, will therefore provide much-needed insight into the mechanisms of disease which
may lead to non-surgical preventative treatments or aid in targeted monitoring of at-risk

individuals.
The study’s aims are as follows:

e To review current knowledge on molecular biology of cholesteatoma through
systematic review of global gene expression studies.

e To explore cholesteatoma epidemiology in the UK BioBank to identify important
demographic factors and comorbid disease.

e To identify genetic variants associated with cholesteatoma through genome-wide
association study of whole exome data.

e To identify affected processes and pathways through gene set enrichment analysis.

e Touse machine learning to classify cases and non-cases to explore genetic architecture
and determine whether disease risk can be predicted from these genes.

e To further understanding of the genetic mechanisms underpinning cholesteatoma risk

and inform future study directions in cholesteatoma treatment and monitoring.
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2 Semi-systematic review of global gene
expression studies

2.1 Background

2.1.1 Rationale

Differential gene expression analysis is a method used to identify differentially expressed
genes (DEGs) between two or more sample sets. A range of methods are used to analyse the
RNA or protein products in pathological specimens, comparing them to an appropriate
healthy tissue to identify over- and under-expressed genes'?’. Differential gene expression
analysis has been applied to cholesteatoma with the aim of understanding its pathological
features, namely its aggressive, invasive growth and bone erosion. Changes in gene expression
associated with disease may drive pathology or be a consequence of it; either way, these

changes may provide insight into disease biology.

Candidate gene-based approaches have investigated the expression of various genes
including interleukins and matrix metalloproteinases (MMPs). Selection of targets in such
studies may be based on knowledge of biology of similar diseases: an early study'?®
investigating MMPs in cholesteatoma followed the discovery of a role for the protein family in
other osteolytic diseases such as osteoarthritis. Likewise, study of RANKL in cholesteatoma
follows knowledge of its role in osteoclast activity'®®. Fewer studies have taken an approach
whereby a large number of genes are tested unselectively to identify those with the greatest
differential expression. These studies may reveal previously unexplored genes with important
roles in cholesteatoma biology. However, individual studies often have small sample sizes,
meaning results may not be generalisable. Interpretation of the large number of differentially
expressed genes detected within studies is often based on prior knowledge of cholesteatoma
pathology, including gene expression studies of candidate genes, which may be both subject
to publication bias and biased towards well-studied gene families. By performing a systematic
review of global gene expression studies, the most consistently dysregulated genes can be

determined and candidates which have yet to be studied may be identified.
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2.1.2 Aims and objectives

In this chapter, | reviewed nine papers where significant results for all genes tested were
reported in order to determine which genes are consistently up- and down-regulated in
cholesteatoma. This review was conducted in accordance with the PRISMA 2020 systematic

review guidelines'

. As | did not have a second researcher to aid in literature search, this review
is semi-systematic rather than systematic. | then performed gene ontology analysis on the set
of genes detected in two or more papers as well as up- and down-regulated genes compared
to skin and mucosa to build a detailed profile of transcriptional changes characteristic of
cholesteatoma. Expression studies often have small sample sizes and differ in their approaches,
including choice of control tissue, which is of particular importance as it is unclear which tissue
represents a healthy analogue to cholesteatoma due to its uncertain aetiology'. Comparing
the changes in expression with different tissue controls can further enhance our understanding
of cholesteatoma biology. Identification of any consistently up- or down-regulated genes

across tissue comparisons may identify new genes to investigate as therapeutic targets or

biomarkers for invasiveness and will complement the results of genetic investigations.
The following questions were addressed in this review:

e Which genes are consistently dysregulated across global gene expression studies?

e Which pathways and processes are enriched amongst consistently dysregulated
genes?

e Which pathways and processes are enriched amongst up- and downregulated genes

compared to skin and mucosa, and do these differ?

2.2 Methods

2.2.1 Data Collection

Search strategy and eligibility criteria

| performed a literature search on web of science for the term cholesteatoma AND
(expression OR regulat*) AND (protein OR gene) using the web of science core collection

and MEDLINE databases.

To be included in this review, a study must meet the following criteria:
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e Articles must be in the English language.

e Studies must test gene expression of human middle ear cholesteatoma tissue compared
to an appropriate control tissue. Genes tested must be associated with a specific protein
product (i.e.,, not non-coding RNAs).

e Studies must contain a global gene expression element: | define this as testing a large
number of genes across the genome in order to screen for expression differences without
applying any presupposed knowledge of cholesteatoma biology to select targets. Articles
which were clearly testing only a specific set of gene or proteins based on title or abstract
were excluded.

e Studies must at least present a table of all significantly differentially expressed genes or

proteins in the text body or as supplemental material.

Studies may use any of several approaches to measuring differences in gene expression, e.g.,
by targeting RNA or performing proteomic analysis. | placed no early limit on date of studies,
and the literature search was performed in June 2024. Abstract screening was performed to
eliminate papers that did not test human cholesteatoma tissue or were not gene expression
studies, and abstracts that specified that gene expression testing was performed for a specific

set of genes.

Data extraction

| downloaded global gene expression results for papers where full data were provided as
supplementary tables. For papers where results tables were given in text, | copied results tables
into an excel file. | noted the comparison tissue, number of participants, type of study and any
genotype arrays or other detection methods used. | assess risk of bias using a modified version

of the Newcastle-Ottawa scale™’

, considering three main areas: selection of participants,
comparability of case and control tissues, and data analysis (replacing the ascertainment of

outcome in the Newcastle-Ottawa scale of case-control studies).

2.2.2 Data synthesis

For the eight papers where a table of significantly differentially expressed genes was given, |
extracted genes and fold-changes meeting each paper’s significance criteria. Britze et al.

present two levels of stringency for reporting, termed group A (identified in 3 of 3 tests, mean
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fold change >= 2 times the standard error of the mean, p-value < 0.05) and group B (identified
in 2 of 3 tests, individual fold change >= 2 times the standard error of the mean). | used both
group A and B genes. Where possible, | converted all fold-changes to log2 fold changes and
counted the number of papers and tissue comparisons for which each gene was differentially
expressed. Log2 fold changes could not be calculated for Tokuriki et al. as fold change was
not reported. | used the National Center for Biotechnology Information (NCBI) human genome
release 38 version p14 (GRCh38) information file to convert gene symbols to their authoritative
symbol for consistent naming across papers. 19 genes had ambiguous names; the symbol
given was a synonym for one or more genes and it was not possible to determine which was
the correct gene. Of these, 5 may have been present in 2-3 papers, depending on the actual
identity of genes: LOR/LORICRIN/LOXL2 and BCL5/BCL6 may have been present in 3 papers

each. The 19 ambiguous genes were excluded from further analyses.

Processing of Shimizu raw data

Raw data included gene barcode counts per cell for 3 individuals (cholesteatoma and skin
samples were taken from each). | compared cholesteatoma and non-cholesteatoma gene
counts across all cells for each individual by Wilcoxon rank sum test, (Mann-Whitney U test).
The rank sum test is a non-parametric test for comparing distributions which is accurate even
when data are not normally distributed. | calculated fold change by comparing the Poisson
mean for case versus control tissue for each sample, then acquired the mean ratio across all
three. | also fit a generalised linear model with logit link and Poisson distribution, using
case/control status as the outcome and the participant of origin as a covariate. Analyses were

performed in MATLAB 2023b'*? using the ranksum, poissfit and fitglm functions.
| retained genes meeting the following criteria:

e All samples showed a fold-change in the same direction between case and control and
at least 2 of the distribution comparisons were significant according to Wilcoxon rank
sum test (Bonferroni adjusted for the total number of genes tested (n=29213).

e The gene was also significant according to generalized linear regression (adjusted for
the total number of genes tested). This test was not used alone as many of the genes

were poorly conditioned and returned warning messages from the fitglm function.
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g:Profiler gene set analysis

To identify the common disrupted processes in cholesteatoma, | performed gene set
enrichment analysis (GSEA) with g:Profiler. Such analyses identify which pathways are
overrepresented amongst the most significant results, aggregating the effects of genes
involved in the same biological processes. G:Profiler performs a hypergeometric test to
determine enriched pathways and corrects p-values using g:SCS, a method taking into account

the hierarchical nature of GO terms and defined in Reimand et al. (2007)"*3.
| tested for functional enrichment using g:Profiler for the following:

e All genes detected in 3 or more papers regardless of comparison tissue or direction.

e Genes detected in 2 or more papers with a consensus direction of expression for the
same comparison tissue. The number of times a gene was up-regulated or down
regulated a within a tissue were summed, with up-regulation counted as +1 and
down-regulation as -1, so genes must have acquired >2 or a <-2 score to be counted.
Because only skin and mucosa were tested multiple times, tests were performed for

genes up- and down-regulated compared to mucosa and skin.

Genes were analysed by g:Profiler as an unordered query using the Gene Ontology (GO)
cellular compartment (CC), molecular function (MF), and biological process (BP) databases as
well as the human phenotype ontology database. | used the g:Profiler web service available at
https://biit.cs.ut.ee/gprofiler/. The g:Profiler version released on 13-02-2024 (reference

genomes: Ensembl 111, Ensembl Genomes 57. GO release: 2024-01-17") was used.

GO terms are hierarchical, so enrichment in a given process is likely to result in enrichment of
parent or child processes which can result in a large number of pathways being returned. To
address this problem, g:Profiler highlights terms which drive significance in order to identify
the most biologically relevant and | report highlighted terms only. More detail is given at
g:Profiler — a web server for functional enrichment analysis and conversions of gene lists

(ut.ee).

* See https://github.com/geneontology/go-announcements/issues/665 for details
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2.3 Results

2.3.1 Selection of reports for inclusion in quantitative and
qualitative analysis

275 records were retrieved with no duplicates (Figure 10). Non-English language articles were
excluded (n=19; abstracts also indicated no global gene expression component) and one
retracted paper was also excluded. 233 records were excluded during screening for testing
specific gene targets, testing non-human or non-cholesteatoma tissues, or being otherwise
irrelevant. Of 22 reports selected for retrieval, 21 were available. Eight were excluded for either
not containing any global gene expression component (n=3), performing a global element
but only reporting a subset of validated proteins (n=4), or the global element was unclear or
not reported in full (n=2). One was excluded for using the same data as a prior study. 2
additional papers were excluded from quantitative analysis but contain useful information for
qualitative comparison: Yoshikawa et al (2006)"** compared cholesteatoma and skin
fibroblasts before and after exposure to interleukin but not to each other, while Zeng et al.
(2024)"* do not report the results of the global element of their study but do report pathway

enrichment analysis of differentially expressed genes.
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Figure 10. Identification of studies via database searches
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Study characteristics

The reports included for quantitative analysis used various methods including gel
electrophoresis, western blot, mass spectrometry and RNAseq to test a wide array of genes
for differential expression without first narrowing to a particular set of genes of interest (Table
2). Studies varied in number of participants between 3 and 21 and in the type of control tissue.
Control tissues include retroauricular skin, external auditory canal skin, middle ear mucosa,
tympanic membrane, non-cholesteatoma chronic otitis media (COM) granulation tissue, and
congenital cholesteatoma. The total number of participants across all papers was 75, with
cholesteatoma samples taken from each and a total of 131 control samples taken across all
participants (67 skin, 20 mucosa; other tissues examined in one paper only). Eight papers
reported lists of the significantly differentially expressed genes, while the remaining paper
reported the raw data from which differentially expressed genes could be calculated. Raw data

was only available for four papers.
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Table 2. Summary of global differential gene expression/transcriptomic papers.
Analyses aside from Jovanovic et al. were paired, drawing cholesteatoma and control tissue from
the same patient. Where control tissues differed in sample size to number of participants, tissue
N is given. The two studies that included a global gene expression component not suitable for
quantitative analysis are marked with a dagger (*). Differentilly expressed gene (DEG) number
calculated during synthesis marked with an asterisk (*)

N Control tissue
Paper participants  (n where different) Method N genes tested  DEGs
Tokuriki et al. 8 Retroauricular Microarray Atlas 1.2 array 1176 18
(2003)136 skin
Klenke et al. 17 External auditory = Microarray = Whole Human ~41,000 1,145
(2012)” canal skin Genome (4x44) (31,000
Oligo Microarray, genes)
Macias et al. 13 External auditory = Microarray =~ 3D-Gene Human 24,267 282
(2013)'% canal skin Oligo chip 25k
Jovanovic et 2 COM granulation | Microarray = lllumina iScan 47,231 169
al. (2020)3¢ tissue (n=4) HumanHT-12 v4
Expression
BeadChip
Britze et al. 9 Tympanic Proteomic = NanolLC-MS/MS 20,255 295
(2014)78 membrane, MaxQuant protein
External auditory (version 1.2.2.5) sequences
canal skin, Andromeda search
Neck of engine
cholesteatoma,
Middle ear
mucosa
Randall et al. 12 Middle ear Proteomic =~ NanoLC-MS/MS 540,261 58
(2015) 37 mucosa (n=8) Proteome sequences
Retroauricular Discoverer 1.4
skin (n=9)
Bone (n=8)
Gao et al. 8 Auditory canal Proteomic =~ MS/MS with 20,395 923
(2023)138 skin Proteome (including
Discoverer contaminants)
Shimizu et al. 3 Retroauricular scRNAseq lllumina NovaSeq 893*
(2023)139 skin 6000 platform
BD Rhapsody
Analysis Pipeline
Baschal et al. 3 Middle ear RNAseq 1,806
(2019)10 mucosa (N=4)
Yoshikawa et 6 Non-IL Microarray = human genome
al. (2006)34 ¥ stimulated U133A probe
cholesteatoma array (GeneChip),
fibroblasts
Zeng et al. 3 Skin RNAseq FeatureCounts
(2024)135* Deseq?2
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Certainty of evidence and risk of bias

Per-paper bias assessment with modified Newcastle-Ottawa scale is given in supplementary

information (Sl Table 1).

Selection: In all studies, case tissue was well-defined due to the obvious and recognisable
nature of cholesteatoma. In all cases, participants were drawn from those undergoing surgery
for middle ear disease, so may represent the more extreme end of disease severity. Most
papers specified that acquired cholesteatoma tissue was taken but only Tokuriki et al. and
Britze et al. reported age and sex, and Klenke et al. reported age. This may make results difficult
to generalise and any differences based on sex, age or cholesteatoma type cannot be
determined. Control tissue was generally taken from the same individual at the same time. For
tissues in close proximity to cholesteatoma (e.g. mucosa, tympanic membrane), presence of

disease may alter gene expression so these may not represent healthy control tissues.

Appropriateness of controls: Aside from Jovanovic et al, all studies used paired control
tissues drawn from the same individual, which should control for confounders such as age and
sex of participants, as well as any lesser confounders. Jovanovic et al. did not provide age/sex
of case and control participants, so it is unclear if any matching was performed to consider

important confounders.

Bias in analytical methods: Papers using genotyping arrays are only measuring a specific set
of human genes which will tend to be biased towards well-studied genes. This was most
notable in Tokuriki et al. where only 1,176 genes were tested by their microarray. Proteomic
studies are similarly biased towards previously measured protein transcripts as all use UniProt
databases to identify expressed proteins from mass spectrometry images and are less sensitive
to small abundances than RNAseq. All studies were at low risk of reporting bias due to the
hypothesis-free nature of global gene expression approaches. It is unlikely that a study will
find no DEGs, though this is more likely to affect studies using small arrays. There may be some
publication bias if a study does not detect any previously studied DEGs or has a specific
hypothesis that a given pathway will be enriched amongst their global gene expression results

but it is not.
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2.3.2 Consistently dysregulated genes

Across all papers, a total of 3,747 differentially expressed genes were reported (1,090
upregulated compared to skin; 1,113 downregulated compared to skin), of which 624 were
reported in more than 1 paper (Table 3). No differentially expressed genes (DEGs) were
detected in all 9 papers, which may be due to differences in approach, including differences
in the number of gene tested, tissue comparisons made, reporting criteria, small sample sizes,
and variability of biological samples. However, 20 DEGs were detected in 4 or more papers:
SERPINB3 was detected in 7; STO0A7, ST00A9 and ST00A8 in 6; COCH, SERPINB4, CEACAM6
and PI3in 5; KRT8, KRT7, TNXB, BLMH, CTSC, SLPI, SPRR1B, LCN2, BPIFA1, SERPINB7, TACSTDZ2
and MMP9 in 4 (Figure 11).

Table 3. Number of papers differentially expressed genes/proteins were detected in,
regardless of tissue comparison or direction.

N N

papers genes Genes

7 1 SERPINB3

6 3 S100A9, S100A7, S100A8

5 4 COCH, SERPINB4, CEACAMG6, PI3

4 12 KRT8, KRT7, TNXB, BLMH, CTSC, SLPI, SPRR1B, LCN2, BPIFA1, SERPINB7, TACSTD2, MMP9

3 FKBP10, SOD2, SLC25A5, AOC3, FLG2, DSC3, HMGCS1, COL3A1, COL6A6, COL1A2, BPIFB1, GDA,

COL8A1, LUM, SI00A7A, PRSS23, IGFBP2, SI00A2, CARHSP1, BAX, RXRA, LAMAS, CAV1,
HSPAIA, ASS1, GATA3, LONRF1, EPCAM, TFAP2C, PRXL2A, PLP1, RHPN2, PGMS5, FOS, PHGDH,
GPC3, FABP4, FGFBP2, SP5, KRT19, CDH1, ALDH1A3, MAL2, CLDN1, PIP, CXCL17, EYA2, PERP,
SYBU, Clorf116, CRABP2, KLF4, FAM83A, CDS1, C9orf152, CXADR, CLDN7, MMP13, FMOD,
PFN2, SERPINB12, RNASE7, CYB5R2, ATP5PD, CYB5A, CTSV, HAL, SERPINB13, SDR9C7, PSAPL1,
ARGI1, NCCRP1, GGH, KRT7/8, CALML5, KRT10, TAGLN, ANPEP, NPC2, AGRN, DCTN5, GAN,
LGALS3BP, ACP3, CNFN, MANZ2B1, LNPEP, BGN, SOD3, TTC39B, IL36G, GJB2, CASP14, CYCS,
SERPINB2, TMPRSS11D, PNP, DAAM1, MAB21L4, SERBP1, EIFIAX, QPCT, TNS3, FAMS83B,
109 DEGS1, NIBAN1, YBX3, TCN1

2 IDHZ2, TXNDCS5, RPL14, MDH2, ELANE, CTSG, APCS, ACOT1, FLG, FABP5, MPZ, FTL, FADS2, FASN,
ITGAM, KRT79, TPSAB1, OGN, FBN1, UPK1B, NIPBL, LAMP5, MS4A7, IGFL1, KRT16, CCN2,
SFRPZ2, S100A12, SIX1, VCAN, CDH11, INHBA, UPP1, GLIPR1, CYTOR, PLBD1, SULF2, NBPF15,
CLEC7A, NUCB2, PTN, RGS3, INMT, NUCKS1, SYNCRIP, FHL2, SLC25A45, HOOK2, PAK®,
CDC42EP4, LYPD6B, ZFP36, ALDHZ, H3-3B, EFS, TLCD3A, GARNL3, THEM5, MATNZ2, KRT15,
HSPA2, PHLPP1, CLEC3B, GPC1, CCL15, ISOC1, APCDD1, ADIRF, SELENBP1, IRX5, COBL, SLC12A2,
SLURP1, BCATZ, CGNL1, TFF3, INHBB, LRP4, EDNRB, RBP4, CFD, DNER, F10, DCT, TPPP3, OSR1,
HMGCS2, TF, CRAT, PAMR1, ATP6V1B1, TYRP1, KRT2, PI16, GAL, STMN2, AGR2, CAPN13,
MUC4, DEFB1, AKR1C2, VTCN1, MUC1, CDH3, ALDH3B2, FOXA1, PROM1, CYP4X1, C190rf33,
ANXAS8, GABRP, CFB, WFDC2, CYP24A1, MUC20, TFAP2A, SLC34A2, KLF5, VSIG2, PTPRF, ISL1,
MMP10, CYP2F1, RAB25, PDZK1IP1, SLC4A11, CP, DSP, DUOX1, FGFR3, SOX2, MSMB, ADGRF1,
SLC44A4, GSTA1, CDH6, ECRG4, CD24, RAB17, SAA1, PPL, AQP3, PLEKHS1, DST, SIX4, HAS3,

495 LMO3, TP63, PAX9, SBSPON, SCARAS, CHI3L2, SPP1, CTSH, CTSD, ITGB1, PRDX2, ZFP36L1, KRT4,
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SBDS, NIT2, ASAH1, ACAT1, ITGB4, AK4, GSTM3, RPS12, CD59, DNAJB1, C1QBP, PGRMC2,
ECM1, KRT77, TGM3, ACOX1, KRT23, TGM1, KRT80, PRELP, DMD, POF1B, CAVIN1, SPTBN1,
LAMCI1, FLNA, APOH, LMNB2, SULT1A1, COL18A1, ABI3BP, APOA2, RAP2C, SNU13, SAE1, NID2,
AEBP1, COL4A2, STS, FBXO2, NIPSNAP2, SAP18, DTD1, CNN1, COL4A1, MYLK, HTRA1, GLRX, C6,
ANK3, CDH13, CLIP1, NCKAP1, ITGA2, CUL3, IFI30, IMPA2, SDR16C5, KLK5, ARSF, KRTDAP, MBP,
PPM1L, PRCP, TINAGL1, SCEL, TTLL12, TMOD1, CHI3L1, VWA1, GNAI1, NDUFAS, ITGA6, KRT18,
DCN, LAMB2, OLFML1, F2, EHD2, MYO1C, FBLN5, BPIFC, HOPX, WFDC12, GGCT, KLK13, ELOVL4,
GPLD1, KLK6, LYPD5, PTGER3, SERPINA12, LIPN, C50rf46, CSTA, CES1, MSMO1, ACER1, GSDMA,
KLK11, KLK8, DBI, AADACL2, PEG10, IDE, SPRR1A, PDCD4, TOB2, MMP7, KLK7, EPHX3, PLXND1,
SERPINBS, SPRR4, HPSE, NDRG2, TM7S5F2, AFTPH, TOB1, YOD1, SPRR2D, ALOXE3, CDKN1A,
FARP1, KLK10, WFDC5, CILP, TGM2, PAIP2B, CLPX, NRARP, RNF227, GATM, FOSL1, EMP2, JUNB,
IGF2, KLK14, GNA15, TENT5C, GJB4, EPN2, ALDH1A1, RNF139, ABHDS5, KEL, COL11A1, PHLDA1,
ALOX12B, KIF21A, AVPRI1A, ILIRN, ANXAS, GJB5, CSRNP1, IER2, ZNF740, ATP6V1G1, CHSTI,
PLEK, TMEMA45B, NIPAL1, LCE1A, KLHL18, LGALSL, NLRX1, C150rf48, TMX4, NDFIP2, MEIS2,
WDR3, STAB1, MMP15, IL36B, SIX2, SP6, SOWAHC, ENSA, CFl, ATP11B, EPHX1, RPS27A,
SERPINAY, PSMA1, RDH12, IL18, LRRC2, EPS8L1, SLC16A7, IER3, QPRT, RARB, PRRG4, CPA4,
RCOR1, DYNC1LI1, MALL, BCL2L1, TTC39A, NDUFS5, ANXA6, RBBP6, CLIC3, RPL37A, SERTADI,
PIP5K1B, NOP16, DUSP7, PSMB1, TUBB2A, PPP1R14C, GALNTI1, SORBS3, EFNA1, TIFA, LONRF3,
SELENOP, ID4, CRYBG1, LXN, VIM, C7, SCRIB, HNRNPAB, S100P, URB2, HPGD, RLIG1, GJB3,
VPS4B, CCL27, KHDRBS3, IFFO2, SRSF3, KRT1, HMCES, EPOP, MIDK, GOLM1, ITGB2, GMFG,
NT5C3A, FBXO3, RAB5A, RAB38, LEO1, KCTD4, TNN, CDYL2, BAG1, LYZ, RET, CANX, RAPGEF1,
CD38, EIF1, PSMB2, USP47, EVI2A, SMPDL3A, FGL2, TEX264, ITPKC, PDK4, IQCA1, TENT5B,
DNAJA1, POLD1, PKDCC, ALDH3A2, LPAR6, TMEMZ230, DOCKS5, CYP4F22, BCAS2, UPK3BL1,
DMTN, AP1AR, CCDC6, BICD2, CERS3, PDE7B, MEMO1, KLF10, NOLC1, HEXIM1, GSN, TGFBR3,
EIF5, CTSB, ANK2, DPT, AOX1, MFAP2, ITIH5, THY1, COBLL1, LAMB1, ANGPTL5, PNO1, BAGS5,
ARID2, IL33, RAI14, TPM1, ITPRID2, SLC25A4, RARRES1, F13A1, MMP11, C6orf132, CIRBP,
SMARCD2, GPM6B, TRAFD1, NUP35, PYCR1, LMO7, FAT1, FHL1, CDC42BPG, SORBS1, CRABP1,
NAT10, MYH11, LAMC2, PAX3, PTPRD, AHCYL2, HSPB6, MYL9, MGST2, MMP1, SYPL1, PRPH,
BAK1



Figure 11. Differentially expressed genes detected in 4+ papers.
The top panel shows which papers a given gene was detected in. The bottom panel shows log2-

fold expression change per tissue comparison on the bottom. The height of each stacked segment
shows the average across that specific comparison tissue. Tokuriki data are included in the top
panel but not in averages as fold changes were not available.
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While direction of differential expression was generally the same across papers with regards

to the same control tissue (skin or mucosa), there was variation in direction of differential

expression between control tissues. Many genes which were upregulated in cholesteatoma

relative to normal skin or mucosa were downregulated in comparison to chronic otitis media

tissues, including SERPINB3, SERPINB4, SERPINB7, LCNZ2, ST00A7, CEACAM6, and SLPI. The

most consistently upregulated genes compared to skin and mucosa were SERPINB3, STO0A9,

ST00A7, ST00A8, and PI3. The most consistently downregulated gene compared to skin and
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mucosa was TNXB, while KRT8 was generally downregulated compared to skin, mucosa and

bone with the exception of one paper where it was upregulated compared to skin.

2.3.3 Dysregulated pathways and processes amongst genes common
to multiple papers

Dysregulated genes detected in 3 or more papers (regardless of tissue comparison or
direction) were enriched for GO biological processes, molecular functions, and compartments

with four main themes (Table 4):

e Structural roles and the ECM (extracellular matrix structural constituent, extracellular
region, collagen-containing extracellular matrix, collagen binding, collagen fibril
organization, peptidase regulator activity, peptide cross-linking, Golgi lumen p=8.81x10

26.0.0348)

e Skin development (cornified envelope, structural constituent of skin epidermis, tissue

development p=1.25x102-0.0356).

e Cell lifecycle (tissue development, cell adhesion, cell migration, locomotion, autocrine
signaling, cell population proliferation, regulation of apoptotic signaling pathway,

regulation of cell motility p=0.00424-0.00448).

e Immune response (RAGE receptor binding, defense response, tertiary granule lumen,

p=0.00728-0.0135).
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Table 4. Enriched processes amongst dysregulated genes detected in 3 or more papers

regardless of direction or tissue comparison.

Showing g:Profiler highlighted processes only. American spellings for GO terms are retained for

consistency with original data sources.

source

60

GO:MF

GO:BP

Term Name
peptidase regulator
activity
extracellular matrix
structural
constituent

transition metal ion
binding

RAGE receptor
binding

collagen binding
structural
constituent of skin
epidermis

tissue development

response to biotic
stimulus

cell adhesion
regulation of
peptidase activity
response to toxic
substance
collagen fibril
organization
regulation of
apoptotic signaling
pathway

defense response

Adjusted p-
value
9.32x10°

4.69x10°

1.01x107?

1.35x10%

3.48x107
3.56x1072

3.26x107°

5.10x10°

2.73x10*

3.52x10*

2.43x10°

3.73x10°3

4.48x10°3

7.28x10°3

Term
Size
227

167

1124

10

69
36

2010

1586

1512

244

238

65

382

1791

Genes

SERPINB3, SERPINB4, PI3, CTSC, SLPI, SERPINB7, CAV1,
GPC3, SERPINB12, CTSV, SERPINB13, SERPINB2

TNXB, COL3A1, COL6A6, COL1IA2, COL8AL, LUM,
LAMAS, FMOD, AGRN, BGN

S100A9, S100A7, S100A8, LCN2, MMP9, SOD2, AOC3,
FLGZ, GDA, S100A7A, SI00A2, RXRA, GATA3, KLF4,
MMP13, ARG1, ANPEP, LNPEP, SOD3, QPCT

S100A9, S100A7, S100A8

COCH, TNXB, MMP9, LUM, MMP13
PI3, KRT7, KRT78, KRT10

SERPINB3, SI00A7, KRT7, TNXB, SPRR1B, SERPINB?7,
TACSTD2, MMPSY, FLG2, COL3A1, COL1A2, COL8AL,
BAX, RXRA, LAMAS, CAV1, GATA3, EPCAM, PGM5,
FOS, PHGDH, GPC3, KRT19, ALDH1A3, CLDN1, EYAZ,
CRABP2, KLF4, CXADR, MMP13, PSAPL1, KRT7S,
CALML5, KRT10, TAGLN, CNFN, BGN, GJB2, CASP14,
YBX3

S100A9, S100A7, S1I00AS8, SERPINB4, PI3, KRTS, SLPI,
LCN2, BPIFA1, MMP9, SOD2, BPIFB1, BAX, CAV1,
HSPAIA, ASS1, GATA3, FOS, GPC3, FABP4, CDH1,
CLDN1, KLF4, CXADR, RNASE7, ARG1, NPC2, IL36G,
GJB2

S100A9, S100A8, CEACAME6, TNXB, TACSTD2, AOC3,
FLG2, DSC3, COL3A1, COL6A6, COL8AIL, IGFBP2,
LAMAS, CAV1, ASS1, GATA3, EPCAM, PGMS5, CDH1,
CLDN1, PERP, KLF4, CXADR, CLDN7, ARG1, LGALS3BP,
PNP

SERPINB3, S100A9, S100AS8, SERPINB4, MMP9, BAX,
CAV1, PERP, KLF4, SERPINB13, CYCS

S100A9, BLMH, SOD2, BAX, ASS1, PRXL2A, FOS, CDH1,
CLDN1, SOD3

TNXB, FKBP10, COL3A1, COL1A2, LUM, FMOD

S100A9, S100A8, CTSC, MMPS, SOD2, SLC25A5, BAX,
CAV1, HSPAIA, EYA2, CTSV, YBX3

S100A9, S100A7, S1I00AS8, SERPINB4, Pi3, CTSC, SLPI,
LCNZ2, BPIFA1, MMP9, AOC3, BPIFB1, CAV1, HSPAIA,



source

61

GO:CC

Term Name

autocrine signaling

Locomotion

cell population
proliferation

cell migration

peptide cross-linking

regulation of cell
motility

extracellular region

collagen-containing
extracellular matrix

cornified envelope
lateral plasma
membrane
apicolateral plasma
membrane

tertiary granule
lumen

Golgi lumen

Adjusted p-
value

1.11x107?
1.68x10?

2.00x107

3.12x1072

3.41x1072
3.54x107

8.81x10°%

9.22x10°1?2

1.25x10°®

1.31x10°

2.27x1073

4.24x10°3

7.58x1073

Term
Size

1234

2006

1496

28
996

4213

425

59

76

23

55

103

Genes

ASS1, GATA3, PLP1, FOS, FABP4, CLDN1, CXCL17, KLF4,
CXADR, RNASE7, ARG1, LGALS3BP, IL36G

SERPINB3, S100A9, S100A8

SERPINB3, S100A9, S100A7, S100A8, CEACAM6, TNXB,
TACSTD2, MMP9, SOD2, COL3A1, LAMAS, CAV],
GATA3, PLP1, CDH1, CLDN1, CXCL17, KLF4, CXADR,
CLDN7, PFN2

SERPINB3, CEACAM®6, TNXB, SERPINB7, TACSTDZ,
MMP9, SOD2, SLC25A5, COL3A1, COL8A1, IGFBP2,
BAX, LAMAS, CAV1, HSPA1A, GATA3, EPCAM, TFAP2C,
FOS, GPC3, CLDN1, KLF4, FAM83A, CLDN7, ARG1,
NCCRP1, PNP, FAMS83B

SERPINB3, SI00AY, S100A7, S100A8, CEACAM®6, TNXB,
TACSTD2, MMP9, SOD2, COL3A1, S100A2, BAX,
LAMAS, CAV1, GATAS3, PLP1, GPC3, CDH1, CLDN1,
CXCL17, KLF4, CXADR, PFN2

PI3, SPRR1B, COL3A1, KRT10

SERPINB3, SI00A7, CEACAMG6, TNXB, TACSTD2,
MMPSY, SOD2, COL3A1, LAMAS, CAV1, GATA3, PLP1,
CDH1, CLDN1, CXCL17, KLF4, CLDN7, PFN2

SERPINB3, S100A9, S100A7, S100A8, COCH, SERPINB4,
CEACAMG, PI3, KRTS8, KRT7, TNXB, BLMH, CTSC, SLPI,
LCN2, BPIFA1, SERPINB7, TACSTD2, MMPS9, SOD2,
FLG2, DSC3, COL3A1, COL6A6, COL1A2, BPIFBI,
COL8AI, LUM, SI00A7A, PRSS23, IGFBP2, BAX,
LAMAS, HSPA1A, ASS1, EPCAM, PRXL2A, PHGDH,
FABP4, FGFBP2, KRT19, CDH1, ALDH1A3, MAL2, PIP,
CXCL17, C10RF116, CRABP2, CXADR, MMP13, FMOD,
PFN2, SERPINB12, RNASE7, CTSV, SERPINB13, PSAPL1,
ARG1, NCCRP1, GGH, KRT78, CALML5, KRT10, ANPEP,
NPC2, AGRN, LGALS3BP, ACP3, MANZ2B1, LNPEP, BGN,
SOD3, IL36G, SERPINB2, TVIPRSS11D, PNP, SERBP1,
QPCT, NIBAN1, TCN1

S100A9, S100A7, S100A8, COCH, TNXB, CTSC, SLPI,
MMPSY, COL3A1, COL6A6, COL1A2, COL8AL, LUM,
LAMAS, GPC3, FMOD, SERPINB12, AGRN, LGALS3BP,
BGN, SOD3

PI3, SPRR1B, FLG2, DSC3, SERPINB12, KRT10, CNFN,
CASP14, SERPINB2

TACSTDZ2, EPCAM, CDH1, CLDN1, CLDN7, GJB2

KRTS, KRT19, CXADR, CLDN7

MMP9, FLG2, GGH, QPCT, TCN1

LUM, GPC3, FMOD, AGRN, BGN, SOD3



Adjusted p- Term
source  Term Name value Size Genes

-2
costamere 3.87x10 18 KRT8, PGMS5, KRT19

2.3.4 Enriched processes amongst up- and down-regulated genes vs
skin and mucosa

ECM disruption and enriched upregulated immune genes across tissues

ECM-related terms were enriched in up- and down-regulated gene sets for both tissue
comparisons (Table 5-Table 8). Collagen-containing extracellular matrix, extracellular matrix
constituent and costamere were downregulated in both tissue comparisons, while extracellular

region was upregulated compared to mucosa and downregulated compared to skin.

Certain immune terms were enriched amongst upregulated genes for both tissue comparisons.
Toll-like receptor 4 binding, neutrophil aggregation and RAGE receptor binding were enriched

in upregulated genes compared to both skin and mucosa.

Enriched pathways in DEGs compared to mucosa

Terms enriched in the upregulated-vs-mucosa set included epidermal development terms
such as structural constituent of skin epidermis, keratohyalin granule, cornified envelope and
epidermis development (Table 6). Such terms were not enriched in the upregulated-vs-skin

set.

Few terms were enriched in the downregulated set of genes compared to mucosa (Table 5),
probably because there were fewer mucosa comparisons to draw from. Negative regulation of
wound healing, collagen metabolic process and negative regulation of fibrinolysis may support

ECM dysregulation and disrupted cellular processes.

Enriched pathways in DEGs compared to skin

Metal ion binding terms were enriched in the set of genes upregulated compared to skin: this
includes calcium-dependent protein binding, calcium ion binding, metal ion sequestering

activity, and sequestering of zinc ion (also upregulated compared to mucosa) (Table 8).
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Table 5. Enriched processes amongst downregulated genes compared to mucosa

GO:BP

GO:MF

GO:CC

63

Term

multicellular organism
development
negative regulation of
wound healing
collagen metabolic
process

negative regulation of
fibrinolysis

sulfur compound
binding

extracellular matrix
structural constituent
collagen-containing
extracellular matrix

extracellular exosome
Golgi lumen

costamere
apicolateral plasma
membrane

Adjusted
p-value

3.16x1073
7.85x107
2.27x107
2.54x107
3.39x10°
2.81x10*
2.99x10°®

6.45x10%

1.65x103
3.58x1073
5.92x10°3

Term

size

4643

71

101

13

268

167

425

2109

103
18
23

Genes

KRT8, KRT19, COL1A2, APOH, AGRN, F2, APCS, OGN,
ANPEP, TNXB

APOH, F2, APCS

COL1AZ2, F2, TNXB

APOH, F2

APOH, AGRN, F2, SULTIAIL, TNXB

COL1A2, AGRN, OGN, TNXB

COL1A2, APOH, AGRN, F2, APCS, OGN, TNXB

KRT8, KRT19, COL1A2, APOH, AGRN, F2, APCS, OGN,

ANPEP, TNXB
AGRN, F2, OGN

KRTS, KRT19
KRTS, KRT19

10

10



Table 6. Enriched processes amongst upregulated genes compared to mucosa

Term
structural
constituent of
skin epidermis
RAGE receptor
binding
serine-type
endopeptidase
inhibitor activity
fatty acid
binding
Toll-like
receptor 4
binding
arachidonic acid
binding
epidermis
development
intermediate
filament
organization

GO:BP

autocrine
signaling
sequestering of
zincion
neutrophil
aggregation
peptide cross-
linking
cornified

GO:MF

envelope

extracellular
region
intermediate
filament
cytoskeleton
keratohyalin
granule

GO:CC

64

Adjusted
p-value
1.24x10°®

2.18x10*

3.45x10*

5.34x10*

6.71x1073

2.34x107?
7.51x10°
1
2.62x10™
2.77x10™
4.91x10°
4.91x10°3
2.53x107?
9.87x10°

1
1.38x10%

6.96x10*

3.39x107

Term
size
36

10

103

48

393

73

28

59

4213

254

Genes

PI3, FLG, KRT78, KRT77, KRT80, KRT10

S100A7, S100A9, S100A8

SERPINB3, PI3, SERPINB7, SERPINB12, SERPINB13

S100A9, S100A8, FABP5, ACOX1

S100A9, S100A8

S100A9, S100A8

S100A7, FLG2, FLG, FABP5, KRT78, CALMLS5, CNFN, KRT77,

KRT80, KLK5, KRTDAP, SCEL, KRT10

KRT78, KRT77, KRT23, KRT80, KRT10

SERPINB3, S100A9, S100A8

S100A9, S100A8

S100A9, S100A8

PI3, FLG, KRT10

FLG2, PI3, FLG, SERPINB12, CNFN, KRT77, SCEL, KRT10

BLMH, S100A7, FLGZ2, SERPINB3, S100A9, S100AS, PI3, FABPS,

SERPINB7, SERPINB12, CTSV, SERPINB13, PSAPL1, ARG1,
NCCRP1, GGH, KRT78, CALMLS5, ACP3, LNPEP, KRT77, KLK5,
KRTDAP, SCEL, KRT10

S100AS8, KRT78, KRT77, KRT23, KRT80, KRT10

FLG2, FLG

13

25



Table 7. Enriched processes amongst downregulated genes compared to skin

source

65

GO:BP

GO:MF

GO:CC

Term Name
developmental
process

supramolecular fiber
organization

extracellular matrix
organization
cellular response to
chemical stimulus

ketone body metabolic

process
cytoskeleton
organization

nephric duct
morphogenesis
nephron epithelium
development
farnesyl diphosphate
biosynthetic process,
mevalonate pathway
extracellular matrix
structural constituent
collagen binding

hydroxymethylglutaryl-

CoA synthase activity
collagen-containing
extracellular matrix

extracellular region

Adjusted
p-value
6.06x10°®

1.52x107?

1.66x107

5.81x107

2.14x10°®

5.76x10*

1.00x102

2.49x10?

2.66x1072

4.54x1072

4.79x10?
4.81x1072

1.30x10°
10

3.16x10°
10

Term
Size
6453

842

324

2683

10

1512

12

123

167

69

425

4213

Genes

TNXB, PRXL2A, PLP1, PGMS5, PHGDH, FABP4, SP5, COCH,
DSC3, ANPEP, KRT79, FBN1, CAV1, GPC3, ACAT],
COL18A1, COL4A1, MYLK, CDC42EP4, MATNZ2, KRT15,
HSPA2, PHLPP1, GATA3, CLEC3B, APCDD1, ADIRF, IRX5,
COBL, SLC12A2, LRP4, EDNRB, DCT, TPPP3, OSR1,
HMGCS2, TYRP1, KRT2, PI16, STMIN2, ITGB4, GSTM3,
ABI3BP, ANK3, CDH13, ITGA6, GSN, ANK2, IL33, FHL1,
MYH11, PAX3, HSPB6, FASN, RXRA, HSPA1A, TFAP2C,
FOS, TACSTD2

TNXB, PGM5, KRT79, COL18A1, AEBP1, CDC42EP4,
KRT15, COBL, CGNL1, RHPN2, TPPP3, KRT2, STMN2,
CLIP1, GSN, DPT, SORBS1, MYH11, HSPA1A, TACSTD2
TNXB, TPSAB1, CAV1, COL18A1, NID2, AEBP1, COL4A1,
MATNZ2, ABI3BP, DPT, MYH11

PRXL2A, FABP4, SP5, SOD3, FBN1, CAV1, COL4A1, MYLK,
GNAI1, CDC42EP4, GATA3, CLEC3B, SLC12A2, BCAT2,
EDNRB, OSR1, HMGCS2, AK4, GSTM3, ANK3, ITGA6, GSN,
AOX1, IL33, SORBS1, FASN, RXRA, HSPA1A, FOS

ACAT1, HMGCS2, TYRP1

TNXB, PGM5, KRT79, GNAI1, CDC42EP4, KRT15, COBL,
CGNL1, RHPN2, TPPP3, KRTZ2, STMNZ, ANK3, CLIP1, GSN,
ANKZ2, SORBS1, MYH11, HSPA1A, TACSTDZ2

GPC3, GATA3, OSR1

GPC3, ACAT1, GATA3, EDNRB, OSR1, TACSTDZ2

HMGCS2, HMGCS1

TNXB, COL6A6, FBN1, COL18A1, NID2, AEBP1, COL4A1,
MATNZ2, ABI3BP, DPT
TNXB, COCH, NID2, AEBP1, ABI3BP

HMGCS2, HMGCS1

TNXB, SOD3, COCH, COL6A6, TPSAB1, FBN1, GPC3,
COL18A1, NID2, AEBP1, COL4A1, MATNZ, CLEC3B, ITGB4,
ABI3BP, CDH13, DPT, ANGPTL5

TNXB, PRXL2A, PHGDH, FABP4, FGFBP2, SOD3, COCH,
DSC3, COL6A6, ANPEP, KRT79, TPSAB1, FBN1, ACATI,
COL18A1, NID2, AEBP1, COL4A1, GNAI1, NIBAN1, ALDHZ,
H3-3B, MATNZ, KRT15, HSPAZ, CLEC3B, ADIRF, SLC12A2,
CFD, F10, PAMRI1, KRT2, PI16, ITGB4, GSTM3, CD59,
ABI3BP, CDH13, GSN, DPT, AOX1, ITIH5, ANGPTLS5, IL33,
MYH11, HSPB6, PRPH, FASN, HSPA1A, TACSTD2

59

20

11

29

20

10

18

50



source

Term Name

anchoring junction

costamere

cytoplasm

protein complex
involved in cell
adhesion

Adjusted
p-value
2.96x10°3

1.87x107?
2.93x107

3.90x107

Term
Size
905

18
12345

59

Genes

PGM5, DSC3, CAV1, CDC42EP4, CGNL1, ITGB4, CD59,
ANK3, CDH13, ITGA6, GSN, ANK2, FHL1, SORBS1, HSPA1A
PGM5, ANK3, ANK2

PRXL2A, PGMS5, PHGDH, FABP4, SOD3, DSC3, ANPEP,
KRT79, FBN1, CAV1, GPC3, ACAT1, COL18A1, AEBP1,
COL4A1, MYLK, GNAI1, NIBAN1, AOC3, CDC42EP4,
ALDHZ2, TLCD3A, GARNL3, KRT15, HSPA2, PHLPP1,
CLEC3B, ISOC1, ADIRF, COBL, SLC12A2, BCATZ, RHPN2,
CFD, F10, DCT, TPPP3, OSR1, HMGCS2, CRAT, TYRP1,
KRT2, STMNZ2, AK4, GSTM3, CD59, ANK3, CDH13, CLIP1,
NDUFAS, GSN, ANK2, AOX1, IL33, SLC25A4, CIRBP, FHL1,
SORBS1, MYH11, HSPB6, PRPH, ACOT1, FADS2, FASN,
RXRA, HSPA1A, LONRF1, TFAP2C, FOS, TACSTD2, ATP5PD,
CYB5A, HMGCS1

TNXB, PLP1, ITGB4, ITGA6

Table 8. Enriched processes amongst upregulated genes compared to skin

source

GO:BP

66

Term Name
biological process
involved in
interspecies
interaction
between organisms
antimicrobial
humoral response
autocrine signaling

defense response

positive regulation
of endopeptidase
activity

cellular response to
X-ray

proteolysis

collagen catabolic
process

B cell negative
selection

Adjusted
p-value
1.06x10°®

1.68x10*

1.52x1073

2.31x10°3

5.05x1073

7.09x1073

9.28x107

1.59x10?

1.61x10?

Term
Size Genes N
1724  SERPINB3, S100A9, S100A8, PI3, SERPINB4, SLPI, 22
BAX, LCN2, S100A7, RNASE7, IL36G, GJB2, UPK1B,
S100A12, CLEC7A, NUCKS1, BPIFA1, NPC2, CTSB,
MGST2, BAK1, BPIFB1
131 S100AS, PI3, SLPI, ST00A7, RNASE7, S100A12, 7
BPIFA1
7 SERPINB3, S100A9, S100A8 3
1791 S100A9, S100A8, PI3, SERPINB4, SLPI, LCN2, S100A7, 18
CTSC, RNASE7, IL36G, S100A12, INHBA, CLEC7A,
PTN, BPIFA1, MGST2, BPIFB1, LGALS3BP
138 SERPINB3, S100A9, S100A8, BAX, CLEC7A, BAK1 6
11 NIPBL, SFRP2, NUCKS1 3
1573 SERPINB3, S100A9, S100A8, SERPINB4, BAX, BLMH, 16
CTSC, TMPRSS11D, CLEC7A, MMP13, HTRA1, CTSB,
MMP11, MMP1, BAK1, PRSS23
45 MMP13, CTSB, MMP11, MMP1 4
2 BAX, BAK1 2

15

73



source

GO:MF

GO:CC

67

Term Name
sequestering of zinc
ion

neutrophil
aggregation
immune system
process

regulation of
apoptotic signaling
pathway

cell migration

cellular response to
radiation

positive regulation
of programmed cell
death
post-embryonic
camera-type eye
morphogenesis
RAGE receptor
binding
calcium-dependent
protein binding
serine-type
endopeptidase
activity

peptidase regulator
activity

calcium ion binding

Toll-like receptor 4
binding

metal ion
sequestering
activity
extracellular space

Adjusted
p-value
1.61x107

1.61x107?

2.20x1072

2.27x1072

2.37x107?

2.48x107?

3.37x107?

4.83x102

8.94x10°®

8.16x10°

6.92x10*

3.21x1073

6.12x107

2.97x107

4.95x10?

2.34x10°
21

Term
Size

2776

382

1496

182

532

10

79

180

227

726

3303

Genes
S100A9, S100A8

S100A9, S100A8

S100A9, S100A8, PI3, SERPINB4, SLPI, BAX, LCN2,
S100A7, CTSC, RNASE7, IL36G, SI00A12, INHBA,
IGFBP2, CLEC7A, PTN, BPIFA1, IFI30, PTPRD, BAK1,
BPIFB1

S100A9, S100A8, BAX, CTSC, SFRP2, INHBA, PYCR1,
BAK1

SERPINB3, S100A9, S100A8, BAX, CEACAMS,
S100A7, NIPBL, SFRP2, S1I00A12, CDH11, S100A2,
CLEC7A, PTN, FAT1, LAMC2

BAX, NIPBL, SFRP2, NUCKS1, MMP1, BAK1

S100A9, S100A8, BAX, CTSC, SFRP2, INHBA, CLEC7A,
HTRA1, BAK1

BAX, BAK1

S100A9, S100A8, S100A7, S100A12

S100A9, S100A8, S100A7A, S100A7, S100A12,
S100A2

CTSC, TMPRSS11D, MMP13, HTRA1, MMP11,
MMP1, PRSS23

SERPINB3, PI3, SERPINB4, SLPI, CTSC, SFRP2,
RARRES1

S100A9, S100A8, S100A7A, S100A7, GJB2, S100A12,
CDH11, S100A2, SULF2, MMP13, FAT1

S100A9, S100A8

LCNZ2, S100A7

SERPINB3, S100AS9, S100AS, PI3, SI00A7A,
SERPINB4, SLPI, BAX, LCN2, CEACAM®6, TCN1, BLMH,
S100A7, CTSC, RNASE7, ASAH1, IL36G, TMPRSS11D,
UPK1B, NIPBL, COL8A1, IGFL1, SFRP2, CDH11,
INHBA, IGFBP2, GLIPR1, PLBD1, SULF2, PTN, BPIFA1,
MMP13, NPC2, HTRA1, GLRX, CTSB, RARRES],
MMP11, FAT1, LAMCZ2, PTPRD, MMP1, BPIFB1,
PRSS23, LGALS3BP

21

15

11

45



source

68

Term Name

extracellular matrix

BAK complex

Adjusted
p-value
9.00x107°

2.16x1073

Term
Size
555

2

Genes

S100A9, S100A8, PI3, SLPI, ST00A7, CTSC, COL8A1,
SFRP2, MMP13, HTRA1, CTSB, MMP11, LAMC2,
MMP1, LGALS3BP

BAX, BAK1

15



2.4 Discussion

The studies identified in this review showed heterogeneity in tissue comparisons and analytical
methods. The overlap between dysregulated genes detected across papers was small, perhaps
as a result of these factors combined with the individually small sample sizes. Gene expression
may also vary due to differences in cholesteatoma type (e.g., congenital or acquired), presence
or absence of active infection, the size and location of cholesteatoma and the relative amounts
of cell types sampled. For most studies, no such information was available. Shimizu et al.
(2023)™ identified 11 different cell types within their cholesteatoma samples based on
clustering analysis and suggest that cell types change over time. Therefore, different papers
may have sampled different relative amounts of cholesteatoma cell types such as keratinocytes

and fibroblasts.

Terms related to ECM structure and function were enriched for both up- and downregulated
gens compared to skin and mucosa, as was peptidase activity and regulation, suggesting
widespread ECM dysfunction. Whilst inflammatory pathways were enriched across skin and
mucosa tissue comparisons, several inflammatory proteins were also downregulated

compared to chronic otitis media tissue.

Upregulated genes compared to mucosa were enriched for pathways associated with
epidermal development, but these were neither up- nor downregulated compared to normal
skin consistent with the nature of cholesteatoma as stratified squamous epithelium. Zeng et
al. (2024)™ also performed pathway enrichment analysis on a global gene expression with
skin as the control tissue and found epidermis development, keratinocyte differentiation and
keratinization were enriched in the downregulated gene set. Terms related to cell adhesion
and cytoskeletal function were also downregulated in their study, whereas terms related to

immune function, peptidase activity and chemokine activity were upregulated.
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2.4.1 Consistently dysregulated genes across papers
Inflammatory protease inhibitors: SERPINB3, SERPINB4, SERPINB7 and PI3

SERPINB3 was detected in 7 out of 9 global gene expression studies, SERPINB4 in 5, and
SERPINB7 in 4. The SERPINs are a family of inflammatory serine protease inhibitors, of which
B3 and B4 are squamous cell carcinoma markers™'. They regulate proteases involved in the
response to tissue damage, including inflammation, response to tumour cells, and wound
healing. SERPINB3 specifically has been investigated in cholesteatoma by Ho et al. 2012'** and
2020, In their 2012 paper, the authors found SERPIN B3 protein was localized in the
epithelium of both cholesteatoma and retro-auricular skin but that three isoforms were
overexpressed in cholesteatoma. In their 2020 study, the authors suggest that SERPINB3
overexpression may promote cell proliferation and prevent autophagy. Yoshikawa et al.
(2006)"** found that SERPINB2 and SERPINA8 were upregulated more strongly in
cholesteatoma fibroblasts than skin fibroblasts in response to IL-1a, but the SERPINs identified

in other gene expression analyses were not reported.

Another inflammatory protease inhibitor, PI3, was upregulated compared to healthy skin and
mucosa. Its product, elafin, is an elastase-specific inhibitor with anti-inflammatory properties,
expressed as a normal part of wound healing and in inflammatory skin conditions such as
psoriasis™*. Chang et al. (1990)'* found that elafin was highly expressed during the early
stages of wound healing and counteracted the infiltration of polymorphonuclear cells, while it
remained constantly highly expressed in chronic wounds where polymorphonuclear cell
infiltration was also present. SLPI, another antileukoproteinase, was upregulated in
cholesteatoma in 4 studies and was also investigated by Lee et al (2006)'* who detected

higher expression in cholesteatoma than ordinary skin.

Expression of protease inhibitors may be part of the normal immune-regulatory response to
limit the tissue damage caused by inflammatory proteases'. Interestingly, Jovanovic et al.
(2020)*® show that SERPINB3 and SLPI are downregulated in perimatrix compared to COM,
perhaps indicating a failure to properly regulate the immune response resulting in excessive
ECM breakdown. Indeed, imbalances in inflammatory elastases and their inhibitors such as PI3

and SLPI have been implicated in excessive inflammatory responses in the respiratory
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system™’. Conversely, CTSC, an activator of granulocyte serine proteases'®, was upregulated

compared to skin and mucosa across 4 papers.

S$100 proteins

S100A7, STO0A8 and ST00A9 were consistently upregulated in cholesteatoma compared to
healthy skin, each being detected in 6 papers. The S100 proteins are a family of zinc and
calcium-binding inflammatory proteins involved in recruitment of immune cells, epidermal
differentiation and inflammation, and apoptosis. Pelc et al. (2003)™° showed that several S100
proteins are also expressed in other cysts including epidermoid cysts and craniopharyngiomas
and S100A3 is expressed in much greater quantities in cholesteatoma than other cyst types.
S100A7, ST00A8 and S100A9 were not measured Pelc et al’s analysis, but Kim et al. (2008)

150

found increased ST00A7 expression in cholesteatoma ™. Also known as psoriasin, ST00A7 is

an antimicrobial peptide highly expressed in psoriasis and atopic dermatitis'’.

Matrix metalloproteinases

MMP9 dysregulation was detected in 4 papers; it was upregulated compared to COM tissue
and skin, but downregulated compared to tympanic membrane, the neck of cholesteatoma
and middle ear mucosa. The matrix metalloproteinases (MMPs) are a family of proteases with
structural collagenase and gelatinase activity, making them important degraders of the ECM
with important roles in bone turnover™. For this reason, they have been investigated in

degenerative bone diseases such as periodontal disease' and arthritis'*.

Due to bone-destructive nature of cholesteatoma, several studies have investigated MMPs in

its pathology. Some have shown MMP9 over expression'">’

, although others have tested
MMP9 and found no difference between cholesteatoma and control tissues'™®'°. MMPS,
MMP13, and MMP2 have also shown to be overexpressed in cholesteatoma compared to
normal skin'>®'%°, Another consistently upregulated protein compared to skin, LCN2, forms a
heterodimer with MMP9. Unlike MMP9, LCN2 was also downregulated compared to COM
according to Jovanovic et al. (2020)*, who suggest that changes in the balance of MMP9/LCN2

complex may be associated with changes in signalling events modulated by their receptors.

Aside from bone loss, MMP and other protease activity may contribute to degradation of the

tympanic basement membrane, facilitating invasion'®. Interestingly, Britze et al. (2014)"
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showed MMP9 to be downregulated in cholesteatoma compared to tympanic tissue, neck of
cholesteatoma and middle ear mucosa. Either these tissues typically express high levels of
MMPs, perhaps contradicting a role in cholesteatoma pathology, or expression is increased in
persons with cholesteatoma — Britze et al. took these control tissues from the same individuals

as cholesteatoma tissues, so we cannot say for sure that this level of expression is normal.

CEACAMG6, COCH and TNXB are consistently dysregulated but have not been
individually investigated

CEACAM6 and COCH were detected in 5 papers, while TNXB was detected in 4 papers with
high consistency. These genes have not been subject to individual study in cholesteatoma.
Both TNXB and COCH are downregulated across tissue comparisons while CEACAMG6 is

upregulated in most comparisons except cholesteatoma vs COM.

CEACAMG is a known biomarker for several cancer types. It is also expressed in normal.
epithelia, granulocytes and monocytes but is overexpressed in cancers including colorectal
cancer, where it is correlated with invasiveness; it predicts poor survival and may specifically

mark aggressive cancer'®,

Cochlin (COCH) is a collagen-binding protein which interacts with proteins involved in
cytoskeleton remodelling and has roles in cell shape and motility in the trabecular meshwork
of the eye '®. Cochlin may also interact with cytoskeletal proteins in the ear and pathogenic
variants are associated with sensorineural deafness. It has also been shown to have immune
function in the inner ear'®. Defective ciliary genes can cause defects in cochlin secretion',
posing a potential link to our previous genetic study of cholesteatoma suggesting ciliary

dysfunction'®.

TNXB is one of two gene encoding tenascin-X, a matrix glycoprotein whose deficiency causes
Ehlers-Danlos syndrome; the mechanism is thought to be via impaired deposition of collagen
in the extracellular matrix'®®. Furthermore, tenascin-X is thought to play a role in matrix
maturation during wound repair and, alongside other tenascins, act as modulators of cell
activity with anti-adhesive properties'®’. Kajitani et al. (2019)'®® showed that tenascin-deficient

mice had increased osteoclast activity and subsequent bone loss.
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2.4.2 Disrupted processes in cholesteatoma according to pathway
enrichment analysis

Structural proteins and ECM dysregulation

Many enriched terms amongst DEGs from 3 or more papers, as well as in individual tissue
comparisons, relate to ECM structure or degradation of the ECM. The extracellular space was
enriched for up and down-regulated genes compared to both skin and mucosa; ECM proteins
such as TNXB, COCH were downregulated and ECM-degrading proteases such as MMP9 and
CTSC were upregulated. Some ECM protease inhibitors including PI3 and SLPI were also

upregulated, indicating a complex and broad dysregulation of extracellular proteins.

ECM dysregulation may be important to cholesteatoma pathology in several ways. First, bone
tissue consists mainly of mineralised ECM, so dysregulation of ECM constituents and proteases
may be associated with bone loss in cholesteatoma™®'®®, Second, the ECM has important roles
in coordinating cell communication, migration and cell fate®. Aberrant migration of
epithelium is implied in retraction pocket and invasion theory, with basement membrane
weakening suggested to permit invasion even if the tympanic membrane is not fully
perforated®’. ECM degradation may therefore also contribute to cholesteatoma invasiveness
and hyperproliferation. ECM remodelling is also a key feature of wound-healing tissue, a tissue
which shares features with cholesteatoma such as cellular proliferation, migration and
differentiation, as well as inflammation®”. Failure of the ECM to mature in chronic wound tissue

may have parallels to ECM dysfunction in cholesteatoma.

Cell cycle and epidermal development

DEGs were enriched for altered cell lifecycle processes, such as adhesion, migration,
proliferation, and apoptosis, overlapping with processes associated with ECM function.
Differential expression of genes indicating increased epithelial proliferation is not surprising
given the hyperproliferative phenotype of cholesteatoma. Increased epithelial turnover within
a retraction pocket is suggested by Louw (2010)*" to contribute to the initial formation of

cholesteatoma.
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Growth factor receptors and their binding proteins were not consistently detected: FGFBP2
was downregulated compared to normal skin in 3 papers; insulin-like growth factor 2 (/IGF2),
insulin growth factor-like family member 1 (IGFLT) and IGF-binding protein 2 (IGFBP2) were
upregulated in 2 papers each, although /IGFBP2 was downregulated compared to COM. The
IGF2-IGFBP2 complex is associated with osteoblast activation'®, so upregulation compared to
skin could represent increased bone turnover in cholesteatoma, but inadequate bone
formation compared to COM. TGFBR3 (transforming growth factor beta receptor 3) was both
up- and downregulated compared to normal skin. This complex picture is difficult to interpret
and is not consistent with reviews of cholesteatoma etiopathology suggesting an important

role for growth factors®%.

Apoptotic processes were also enriched in the set of genes upregulated in cholesteatoma
compared to skin tissue (regulation of apoptotic signaling pathway and positive regulation of
programmed cell death). Apoptosis has been suggested to play a role in cholesteatoma
pathology: Olszewska et al. (2006) show increased apoptosis in cholesteatoma compared to
ordinary skin and suggest this is associated with differentiation and accumulation of keratin in

the middle ear'’®.

Certain skin developmental terms were enriched in the upregulated DEGs compared to
mucosa, but not skin. As cholesteatoma tissue consists of skin (meaning stratified keratinizing
epithelium) and not mucosa, this is not surprising. However, several upregulated genes (for
both skin and mucosa comparisons) are associated with hyperkeratotic skin conditions such
as epidermal thickening and palmoplantar keratoderma (SI Table 2), consistent with excess
keratin production in cholesteatoma. Additionally, some of the most consistently dysregulated
genes were associated with keratinization: keratins KRT8 and KRT7, and cornifin SPRR1B, were
detected in 4 papers each. While KRT8 and KRT7 were downregulated compared to skin and
upregulated compared to mucosa, SPRR1B was upregulated compared to both. Yoshikawa et
al. (2006)"™* also found that SPRR1B was upregulated more in response to stimulation of IL-1a
in cholesteatoma fibroblasts than skin fibroblasts. Cornifin-B is a keratinocyte envelope protein
which forms a gene cluster called the epidermal differentiation complex along with profilagrin
(FLG), loricrin (LORICRN) other SPRRs, and S100A genes; the complex is involved in terminal
differentiation of keratinocytes' "2, Upregulation of SPRR1B, even in comparison to normal

skin, supports abnormal differentiation of skin cells in cholesteatoma.
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Interestingly, some DEGs in cholesteatoma are known cancer markers; prominent examples
are CEACAM6 and TACSTD2'"*" which act as adhesion molecules. Cell adhesion is of known
importance in cancer via changes in signalling and migration. Loss of cell-cell adhesion can
result in increased adhesion of cells to the ECM, promoting migration, proliferation and
invasiveness in cancer'”®. However, cholesteatoma not malignant and cancers arising from

cholesteatoma tissue are exceedingly rare’ and likely coincidental.

Immune response

Cholesteatoma shows upregulation of inflammatory proteins: some of the most consistently
reported differentially expressed genes have inflammatory roles including the SERPINs and
S100A proteins. Enriched RAGE receptor binding and TLR-4 binding amongst upregulated
genes compared to skin and mucosa were associated with ST00A7, STO0A8 and ST00A9, which
may act as damage-associated activators of innate immunity'’®. Furthermore, some matrix-
active peptidases including the MMPs and cathepsins (such as CTSC) act as inflammatory

effectors'®™ 177

Given that cholesteatoma is surrounded by an inflamed perimatrix and often preceded by
chronic otitis media, upregulation of inflammatory genes compared to healthy tissues is not
surprising. Sustained inflammation could be a response to ongoing tissue damage caused by
the expanding cyst and may contribute to further tissue damage, degradation of the ECM and

bone resorption.

Interestingly, many inflammatory proteins upregulated in cholesteatoma (including SERPINB3,
S100A7 and SERPINB4) are downregulated in perimatrix compared to ordinary chronic otitis
media tissue. This could indicate that these proteins do not have a direct role in cholesteatoma
pathology but are simply expressed as part of the normal immune response to infection.
However, it is also possible that under-expression of these proteins contributes to pathology,
perhaps representing an inadequate or inappropriate immune response. Under-expression of
protease inhibitors is particularly interesting as it may suggest a failure to limit the activity of

ECM-active proteases in cholesteatoma.
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Metal ion binding

lon binding, specifically calcium binding, was enriched amongst upregulated DEGs compared
to skin. Calcium ion binding was also identified as an enriched process in our previous whole
exome study of cholesteatoma variants'®. The role of ion binding proteins in cholesteatoma
is obscure: many proteins have ion-binding function and calcium ions are involved in diverse
cellular processes. Possibly, these functions are enriched only because certain families which

happen to bind calcium ions (such as the STOO0A family) are enriched.

2.4.3 Limitations

The different approaches taken by different studies reduces the likelihood of acquiring
overlapping results. First, proteomic and transcriptomic studies do not measure identical
outcomes due to complex post-transcriptional regulatory systems, meaning there is not a one-
to-one relationship between expressed RNAs and proteins'’®. Differences in analytical
techniques will also affect which proteins/DEGs are measured depending on the number of
probes within a microarray or the number of peptides in a proteome database, probably

biasing results towards better-studied genes.

The papers identified in this review had generally low risk of bias in analysis and controlled for
confounders using a paired design. However, cases are likely to represent most severe disease
and papers generally did not report age, sex or type of cholesteatoma, so may not be
representative. Also, control tissue samples taken from middle ears with cholesteatoma may
not represent true healthy controls. These issues are difficult to avoid as tissue can only be

taken from the middle ear during surgery.

Meta-analysis was not possible because most papers do not report raw data or the p-values
of all genes tested, only those that are significant. Some genes may be sub-significant in
individual studies but meta-analyses could reveal them to be significantly dysregulated, and
vice versa. The individual studies are at high risk of type 1 and type 2 error due to their small
sample sizes. By identifying the genes which appear in multiple papers, type 1 error is reduced;

however, false negatives cannot be accounted for.

GO terms are not a perfect indicator of protein function; many are phylogenetically inferred

and data are sometimes incomplete. For example, the MMPs have calcium and zinc ion binding
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function'® but were not included in the calcium-ion binding set of genes annotated by
g:Profiler; nor did some keratins appear in epidermal development or structural protein
categories. GO annotations are not evenly distributed through the genome, with a large

number of annotations belonging to a small subset of well-studied genes'.

This review may have missed some global gene expression studies where this was not the main
objective of the study and so was not described within the title or abstract. Most abstracts
were explicit when a specific set of genes were being tested only, and | checked the full reports
for cases where there was ambiguity. As reviewing was performed by me alone, there may also
be some bias in selection of studies based on my interpretation of their abstracts. Although
global gene expression studies are hypothesis-free and therefore unlikely to be subject to
publication bias due to a negative result, it is possible for a study using a small number of
probes to fail to identify any DEGs. A negative result is also possible where global gene
expression study formed part of a study with a wider hypothesis, such as the expectation that

a certain pathway would be over expressed.

2.5 Conclusion

This was the first systematic review of global differential gene expression studies, which aimed
to identify consistently dysregulated genes in cholesteatoma and their associated pathways.
20 DEGs were reported in at least 4 of 9 studies, while 8 were present in 5 or more. SERPINB4,
SERPINB3, several ST00A proteins, TNXB, CEACAM6 and COCH were particularly consistently
up- or downregulated and warrant further studies in cholesteatoma. ECM structural proteins
and proteases were enriched in both up and downregulated gene sets compared to skin and
mucosa, indicating broad ECM breakdown. Inflammatory genes were enriched amongst
upregulated genes. Cholesteatoma shows upregulation of genes associated with epidermal
differentiation compared to mucosa, though to a lesser extent compared to skin except for

some genes in the epidermal differentiation complex.

Dysregulated ECM forms a significant aspect of cholesteatoma biology. ECM dysfunction may
affect diverse processes such as cellular migration, primarily through interaction with adhesins,

proliferation and differentiation. Migratory processes are relevant to cholesteatoma which may
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arise through impaired migration of tympanic epithelium associated with a retraction pocket
or invasion through a perforation; a weakened basement membrane, possibly associated with
protease action, may facilitate invasion. Furthermore, ECM degraders and downregulation of
structural proteins may contribute to bone loss. Disrupted cell cycle processes such as
proliferation and differentiation may be downstream of ECM dysregulation. Many
inflammatory proteins have additional roles in ECM degradation and cellular development so
may be central to pathology. Downregulation of certain inflammatory protease inhibitors
compared to chronic otitis media tissue could indicate an overtly aggressive immune response

and excess ECM and bone degradation.
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3 Epidemiology of cholesteatoma in the UK
Biobank

3.1 Background

While some risk factors for cholesteatoma are well established, including male sex, association
with certain craniofacial dysmorphologies, and comorbid middle ear disease®®7822181 others
are supported by little published epidemiological data. For example, cholesteatoma is
generally reported to differ in prevalence between ethnicities but as discussed in the

introduction to this thesis, original epidemiological data is lacking. Reviews'#'*4

may report
highest incidence in white populations, low incidence in black populations, and rarity in Asian
populations, although no original data is presented in the cited articles. A literature search for
cholesteatoma epidemiology or prevalence only uncovered Ratnesar (1976)', in which it is
reported that cholesteatoma in Inuit and Innu populations of Newfoundland is extremely rare
despite higher levels of chronic ear disease than white populations located nearby. Meanwhile,
Thornton et al. (2011)® found no difference in cholesteatoma prevalence between ethnicities
in children with chronic otitis media in Nepal. This highlights another issue in cholesteatoma
epidemiology: it significantly overlaps with other middle ear disease, and the nature of the
relationship is uncertain. Does chronic inflammation lead to cholesteatoma development or
arise from it? For example, cholesteatoma is more common in persons with orofacial cleft and
had a male predominance, but the same is true for otitis media generally'. Exposure to

182,183

cigarette smoke adversely impacts mucociliary function , and there is evidence that

passive exposure raises risk of cholesteatoma'®*'®

, although this relationship is not always
found'®. Only one study has been performed on smoking and rates of cholesteatoma, finding
that smokers had worse outcomes for ontological surgeries and higher rates of

cholesteatoma'®’.

Computerised databases of medical records in the forms of national registries and biobanks
allow retrospective epidemiological studies of large populations. These are observational
studies: a cross-sectional study looks at data from a population at a single point in time where
both exposure and outcome have already occurred, while a prospective study follows both
exposures and outcomes over time. Conversely, experimental studies involve the researcher

applying the exposure of interest to an experimental group and comparing the outcome to a
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control group. As many factors differ non-randomly between cases and controls in
observational studies, they constitute a low level of evidence but are relatively quick and easy

to perform and make good use of large volumes of existing data'®.

The UK BioBank is a large, ongoing study including 500,000 British participants. Because both
lifestyle information drawn from questionnaires and health information is available, this allows
for study of demographic features and diseases associated with cholesteatoma. Careful
examination of the demographic risk factors shared by and distinguishing cholesteatoma from
other middle ear disease will be useful for interpretation of later genetic studies. This will also
provide further evidence for risk factors which are colloquially known but have limited

published data.

3.1.1 Aims and objectives

This chapter aims to use retrospective data from the UK BioBank (UKBB) to characterise lifetime
prevalence and demographic factors associated with cholesteatoma. To determine which risk
factors are shared between cholesteatoma and other middle ear disease and which are unique,
| compare cholesteatoma demographics to a control group with other middle ear disease as
well as disease-free ears. | also use ICD-10 data to identify overlapping diseases and compare
the results with statistics from a Finnish biobank, FinnGen. This study follows Strengthening
the Reporting of Observational Studies in Epidemiology (STROBE) guidelines (Sl Table 3). The

results of these analyses have been published in Clinical Otolaryngology'®.

This chapter also serves as an introduction to the UKBB study population, identification of
cholesteatoma cases from ICD-10 and OPC4 codes, and case-control matching as used in the
remainder of this thesis. | also introduce the FinnGen biobank which provides both genetic
summary statistics and demographics information and offers a comparison cohort for both

epidemiological and genetic analyses.
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3.2

Methods

3.2.1 Study design and setting

Participants

This is a retrospective case-control study using UK BioBank data under project number 61632.

UKBB contains lifestyle and health data on 502,408 participants from the United Kingdom,

aged 40-69 during the recruitment period 2006-2010. Its rich phenotypic data has made UKBB

a valuable and widely used resource for study of genetic and non-genetic health conditions

worldwide

190

Relevant to this and later chapters are four types of data held in UKBB:
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Medical information in the form of ICD-10 and OPC-4 codes. The ICD-10 is an
internationally standardised classification of diseases, diagnoses and medical findings.
The OPC-4 is an equivalent recording operative procedures undergone by a patient.
This data is used to identify cholesteatoma cases from medical records and identify
overlapping diseases. This includes retrospective information (medical events prior to
recruitment) and was updated with new events until the date of download in 2022
(Figure 12).

Questionnaire responses, which include basic personal information such as sex and
birth date, as well as demographic and lifestyle features such as economic deprivation
and smoking status. These will be used for epidemiological analysis, case-control
matching and/or as covariates in statistical models. Data were taken at recruitment
(Figure 12).

Whole exome genetic data: 450,000 participants were sequenced with dual-indexed
75 x 75 bp pared-end reads on lllumina NovaSeq 6000. Exomes were captured with the
IDT xGen Exome Research panel v1.0. Sequencing was performed in two main batches:
the first 50,000 samples used S2 flow cells while the remaining samples used S4 flow
cells and a different IDT oligo lot to the initial batch. Whole exome sequences are
available in CRAM format as well as in variant call format (VCF) called by DeepVariant™".
Microarray data: genotyping was performed using the UK BioBank Axiom Array, which

directly measures ~850,000 variants. An additional ~90 million variants were imputed



using the Haplotype Reference Consortium and UK110K + 1000 Genomes reference
panels'. This data covers the whole genome but cannot detect rare variants. The
microarray data as provided has been filtered to remove markers that failed quality

control, have a missingness of >5% and a MAF<0.0001'.

Figure 12. Date of data collection for baseline, medical and genetic data.

Date of data collection for different fields. Baseline statistics such as sex, deprivation and smoking
status were taken at recruitment. Medical information was taken at recruitment and extends
retrospectively, although there are few records before 1995, and were continually updated until
the date of download. Genetic sequencing was performed on samples taken at recruitment. The
initial 50,000 WES sequences were released in 2019 and the complete set were released by 2022.

1995 = m
Sex
Deprivation ICD10 codes
PIPIRUIREEY S1\oking status OPC4 codes Blood samples LT ide =Tt
Ethnicity
Birth year Genetic
sequencing

November 2022 === L — - — — — — — = = = = = = = ——— Download date

While the aim of UKBB is to provide data for the study of common diseases of later life, the
large number of participants also makes it ideal for studying rarer diseases. Cholesteatoma is
common enough that UKBB contains ~1,000 cases, a number which would otherwise be
difficult to recruit given its low annual incidence. Furthermore, the cost of performing whole-
exome sequencing for these participants would be prohibitively expensive if performed
specifically for this project. Although cholesteatoma is not as common as other conditions
studied by UKBB, it is still an important cause of acquired hearing loss with potentially serious

complications, thus is in line with their goals of improving public health.

Ethical approval

UK Biobank has obtained Research Tissue Bank (RTB) approval from its the Research Ethics

Committee (approval number 16/NW/0274). Researchers can acquire UK BioBank data by
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registering for access: (https://www.ukbiobank.ac.uk/enable-your-research/register). Publicly

available demographic data and statistical results from FinnGen release 9 were accessed via

Risteys (https://r9.risteys.finngen.fi/endpoints/H8 CHOLEASTOMA) in June 2023.

Variables and processing of missing data

Key demographic features used in this analysis are as follows:
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Sex: There is a slight female bias in the UKBB cohort with a ratio of 1.19 females per
male. One participant was missing sex data and was not included in this analysis, as all
other covariates were also missing.

Ethnicity: UKBB is majority white ethnicity (456,284 participants). 893 participants were
missing ethnicity information. These were grouped with do not know, any other
ethnicity and prefer not to say into a single 'Other/Unknown’ category.

Age: UKBB participants were between the ages of 51 and 85 (median 72) at the time
of data download in November 2022.

Smoking status: Smoking data is a composite category of questionnaire results and
indicates whether a person has ever smoked, regardless of frequency or
discontinuation. 298,711 (59.5%) of all participants indicated a history of smoking while
data were missing for 2,885 (0.57%) participants. For subsequent analyses, except for
those specifically investigating smoking as a risk factor, these were assigned to an
‘unknown’ category.

Deprivation: deprivation data is available in the forms of Townsend deprivation index
and regional indices of multiple deprivation (IMDs). Townsend deprivation index is a
measure of postcode deprivation based on employment rate, car and house ownership,
and household crowdedness'®?. IMD is a measure of deprivation calculated by the
governments of Scotland, Wales, England and Northern Ireland combining similar
metrics such as income, employment and crime'®. As each nation calculates IMD
slightly differently, | use Townsend index as the primary measure of deprivation. 624
samples were missing Townsend deprivation data. Where possible, deprivation was
imputed using IMDs (available for 489,674 participants) by fitting a linear regression to
the square root of IMD, Townsend = mVIMD + c, where m was found to be 1.431399
and ¢ = -6.852356 (R2 = 0.5306). This regression was used to generate Townsend

scores for those participants where only IMDs were available (Figure 13).


https://www.ukbiobank.ac.uk/enable-your-research/register
https://r9.risteys.finngen.fi/endpoints/H8_CHOLEASTOMA

Figure 13. Imputation of missing Townsend indices from indices of multiple deprivation.
a) An example with the Scotland data showing the regression model fit to all Indices of Multiple
Deprivation (IMDs). B) the residuals for all data used in the regression. C) Q-Q plot showing
divergence from normality of residuals towards the upper end. Though the relationship between
these indices was very noisy and did not have a perfectly linear relationship (either for IMD of
square root of IMD), the small number of samples (0.12%) missing Townsend deprivation data
meant that this would not affect overall distribution much and was preferable to mean imputing
missing values. Only 23 participants were missing both measures of deprivation, and these were
mean imputed.

b) Residuals vs Fitted
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a) Linear regression of Townsend score on all IMDs (showing Scotland only)
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3.2.2 Case and control selection for epidemiology and genetic
testing

Identification of cholesteatoma cases

UKBB data includes a list of ICD-10, ICD-9 and OPC-4 codes included in patient records. IPC-
9 and -10 are two recent versions of a system for assigning codes to clinical diagnoses, while
OPC-4 is a recent system for identification of surgical procedures. These codes are assigned

by hospitals for billing purposes. | accessed the OPC-49 via the NHS website
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(classbrowser.nhs.uk), the ICD-10 via the WHO website (icd.who.int) and an archived copy of

the ICD-9 from the CDC (cdc.gov).

Billing codes are not directly assigned by doctors, so may not be completely accurate
representations of diagnoses. Some codes, such as H71 cholesteatoma, are unambiguous and
very likely to correctly identify a true case. However, this may not capture all cases if records
are incomplete or inaccurate. Missing or inaccurate records may arise due to misdiagnosis,
inaccurate translation into ICD/OPC codes, inaccurate translation from previous versions of
the ICD or during transfer from physical to electronic form. Cholesteatoma is a rare disease,

so it is vital that all possible cases are identified to increase numbers.

Therefore, | expanded case criteria to include likely cases based on additional codes with
guidance from clinicians Carl Philpott and Peter Prinsley. Because it is difficult to separate
cholesteatoma from other middle ear conditions which often co-occur, the control group is
filtered to exclude all individuals with middle ear disease. For epidemiological comparison, |
also selected a cohort of non-cholesteatoma middle ear disease participants who were not
part of the case group but who had any other ear disease (Table 9). This includes some non-
middle ear disease codes including otitis externa, otalgia and effusion. Otalgia and effusion
are taken as indicators of underlying inflammation or disease of the ear. While otitis externa
is not a middle ear disease, inflammation of the external auditory canal is likely to affect the
tympanic membrane which is a likely origin of cholesteatoma tissue. Furthermore, the
boundary between otitis externa and middle ear disease becomes less clear when there is
tympanic perforation. Symptoms of middle ear inflammation and otitis externa may be difficult
to discern and so it possible for an otitis media case to actually have middle ear inflammation,

hence these participants cannot reliably be considered middle ear disease free.

In this study, an individual is considered a cholesteatoma case if they meet the following

criteria, set out in Table 9:

e They have one of the confirmed codes, which unambiguously specify cholesteatoma.
e They have one of the suspected OPC-4 codes, which indicate surgeries most likely
performed to treat cholesteatoma, but not a suspected exclude code which offer

plausible alternative explanations for these procedures.
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e They have one of the mastoid ICD-10 codes but not a mastoid exclude code. This

includes individuals with chronic mastoiditis likely to be caused by cholesteatoma with

no acute explanation.

This method increased the number of cholesteatoma cases from 654 to 1,151. Data were not

granular enough to distinguish between congenital and acquired cholesteatoma; no

distinction was made based on age of onset on severity in this analysis.

Table 9. Case inclusion and exclusion criteria with rationales

Filter

Confirmed

Mastoiditis

Suspected

Suspected
exclude
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Code
H71

H95.0

Date H71
diagnosed
H70.1
H70.9
D10.1
D10.2
D10.6

D10.8

D10.9

D12.4
D121
D12.2
D12.7

D10.5

D33.3
HS3.3
H70.0
H81.0
D02.3
D38.5
C30.1

D16.9

H65.0

Meaning
Cholesteatoma of the middle ear

Recurrent cholesteatoma of
postmastoidectomy cavity

Chronic mastoiditis

Unspecified mastoiditis

Radical mastoidectomy NEC
Modified radical mastoidectomy
Revision mastoidectomy

Other specified exenteration of
mastoid

Other unspecified exenteration of
mastoid

Exploration of mastoid
Obliteration of mastoid
Atticotomy

Atticoantrostomy
Excision of lesion of mastoid

Benign neoplasm of cranial nerve
Disorder of acoustic nerve

Acute mastoiditis

Meniere disease

Middle ear carcinoma

neoplasm of uncertain behaviour
Malignant neoplasm of middle ear
Benign neoplasm of bone and
articular cartilage

Acute serous otitis media

Rationale

Unambiguous codes specify cholesteatoma

A separate column which contained some
additional cases

Chronic mastoiditis most likely to result from
cholesteatoma

Surgeries used primarily for treatment of
cholesteatoma and few other conditions (see
exclude filter)

Probably indicates removal of cholesteatoma
due to few other lesions affecting mastoid.
May indicate acoustic neuroma, alternative
explanation for mastoidectomy.

Possible cause for mastoidectomy without
cholesteatoma.

Alternative explanation for excision of lesion
of mastoid.

To capture osteoma, alternative explanation
for excision of lesion of mastoid.

Exclude acute cases from mastoiditis group.



Filter Code Meaning Rationale

Mastoid HE5.1 Other acute nonsuppurative otitis
exclude ' media
H66.0 Acute suppurative otitis media
Other ear H65-H75 Diseases of middle ear and mastoid  Include any middle ear disease
disease . Inflammatory ear disease closely related to
H60 Otitis externa ) )
middle ear disease
Ear pain and discharge suggests underlyin
H92 Otalgia and effusion of ear p. ge suge ying
ear disease
Propensity matching

As the number of cases within UKBB is only 1,151, the case:control ratio is approximately 1:500.
When uncontrolled, sample imbalance can result in biased models with large type 1 error
rates'®. Case matching to reduce this ratio was therefore performed, primarily for the later
GWAS section of this thesis, but matched cases and controls were also used in epidemiological
analyses. Because the same matching system was to be used for both epidemiological and
genetics testing, samples were only included if they passed the following basic genetic quality
controls: genetic data was available; there was no sex chromosome aneuploidy; stated sex

matches measured chromosomal sex; and no close relatives were present.

| used the Matchlt'® package for R to perform case/control matching. Matchilt first calculates
propensity scores for each person which is the likelihood of being a case based on covariate
values alone. Propensity can be calculated in a number of ways, but logistic regression in a
common approach. A regression of outcome against covariates is performed and the
predicted outcome (which for a binary variable is essentially the percent likelihood of being in
the case group) is the propensity score. Matching is performed on propensity score rather
than the covariates directly, which efficiently creates case and control groups of the desired
ratio. The individual covariates may or may not be as well balanced as the total propensity
score, which takes into account the fact that covariates contribute unequally to overall

propensity.
| trialled various matching options in Matchlt and present six high-performing methods:

e Method 1: nearest neighbour propensity matching on data with estimated ancestry
groupings (see Appendix: Ancestry Estimation)

¢ Method 2: the same but with exact matching for all but deprivation
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¢ Method 3: Exact matching on sex, smoking, ethnicity and age using UKBB ethnicities
to the subgroup level

e Method 4: Exact matching on sex, smoking and ethnicity using UKBB ethnicities to the
subgroup level

e Method 5: Exact matching on sex, ethnicity and age using UKBB ethnicities to the
subgroup level

¢ Method 6: exact matching on sex and ethnicity using UKBB ethnicities to the subgroup

level

For all subsequent matched analyses, | used method 6 as it was found to give the best
improvement in balance with no loss of cases or controls (see Assessment of matching

performance).

3.2.3 Final division into case, control and non-cholesteatoma middle
ear disease for epidemiological analysis

For this section of the thesis, all ethnicities were retained and data were divided into cases,
controls and non-cholesteatoma middle ear disease using the criteria outlined in Case and
control selection for epidemiology and genetic testing. For association testing of demographic
risk factors, the full set of data were used. For associations with other disease codes,
cholesteatoma was compared to all controls and non-cholesteatoma middle ear diseases
cases. Matched data were used for some validation analyses to test for the effects of case-
control imbalance (Figure 14). Case numbers are illustrated in, which also shows handling of

missing data.
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Figure 14. participant numbers and missingness information for cases and controls.

One participant was excluded for missing all covariates. Deprivation was imputed from indices
of multiple deprivation (IMD) where available. Where not available, Townsend deprivation index
was mean imputed. 2,884 cases with missing smoking data were excluded from demographic

analysis.
N samples
n=502,408
Missing ethnicity Missing Townsend Missing Townsend
assigned | deprivation imputed |__| deprivation mean
unknown/other status from IMD imputed
n=892 n=603 n=21
l
Missing smoking
information removed
n=2,884
Demographics Disease associations Genetic QC pass
n=499,523 n=502,407 n=3385,37
Cholesteatoma | | Cholesteatoma || Cholesteatoma
n=1,140 n=1,151 n=1,104
NC-MED Controls
| | | | Controls + NC-MED (after matching)
=4,551 - y
n n=501,256 n=5570
L] Controls
n=493,832
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3.2.4 FinnGen comparison cohort

FinnGen is a biobank containing ~500,000 samples from the Finnish population. Summary
statistics for single-variant GWAS are released every six months as the number of samples
sequenced increases. Phenotypes are determined by ICD-10, 9 and 8 codes and genotyping is
performed using a GRCH37-aligned Thermo Fisher axiom genotype array, including ~500,000
core GWAS markers and an additional ~200,000 markers enriched in the Finnish population

or of special clinical interest'.

Concurrent with these releases, phenotype and demographic information is released via the

Risteys platform (https://risteys.finregistry.fi/). This includes endpoint definition, descriptive

statistics such as age distribution and sex ratio, overlapping disease endpoints and Cox Hazard

regressions for other disease endpoints. Unlike UKBB, FinnGen contains individuals of all ages.

Release 9 sample size and endpoint definitions

For all analyses in this thesis, release 9 data were used. Cholesteatoma was defined as
containing ICD-10 H71, ICD-19 3853 or ICD-8 38700 as a hospital discharge code or cause of
death. Controls were defined by individuals containing no ICD-10, 9 or 8 codes for any
condition of the middle ear or mastoid. This is very similar to my UKBB definitions but does
not use OPC codes and does use older definitions of the ICD, where abscess of the middle ear
was included under the same definition as cholesteatoma. The number of cases was 1447, of
which the majority (1167) were defined by ICD-10 H71. The number of middle ear disease-free

controls was 376,139.

Calculation of cox hazard regressions

Cox Hazard regressions for FinnGen data were calcuilated by Risteys by selecting a random

sample of 10,000 individuals from the pool of cases and controls

(https://r9.risteys.finngen.fi/documentation).The start of follow-up was set to 1998 due to
good coverage for all registries after this date. End of follow up was date of death of

31/12/2019.
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3.2.5 Statistical analyses
Logistic regressions for demographic factors

| tested for associations with demographic factors for cholesteatoma vs control and
cholesteatoma vs other middle ear disease by fitting logistic regression models using the
fitglm function with binomial error distribution and logit link function in MATLAB R2020b™".
Cholesteatoma was assigned the binary status 1 and control/other middle ear disease was
assigned a status of 0. To obtain adjusted odds ratios, | included age, sex, smoking status,
deprivation, and ethnicity as covariates. 1,140 cholesteatoma cases, 4,551 other middle ear
disease cases and 493,832 controls were used. 2,884 individuals with missing smoking data

were excluded.

There is a large case-control imbalance, particularly for comparison of cholesteatoma to
controls. Imbalance can bias regression estimates and inflate p-values; to test for this effect, |
calculated unadjusted odds ratios for each covariate by testing them individually on data
matched for the remaining covariates. Matching was performed using the package Matchlit
(version 4.4.0)"* in R 4.1.3"® with ‘'method 6’ outlined in Propensity matching: exact matching
was used for sex and ethnicity and propensity score-based nearest neighbour matching for all
remaining covariates. The regression includes no covariates; the matching process should have

a similar effect to adjusting for the other covariates.

Logistic regressions for disease-disease associations

| also performed pairwise logistic regressions to test for association between ICD-10 codes. |
collapsed ICD-10 codes to their parent code and removed non-relevant codes, such as those
for medications or accidents (codes starting V, X, Y, Z, S, T or R). For these tests, | compared
cholesteatoma to unmatched controls comprising the disease-free and other middle ear
disease groups. Because | did not exclude missing smoking data for these tests, 1,151 cases
and 501,256 controls were included. Each ICD-10 code was conditioned as a presence-absence
binary status with cholesteatoma as a binary outcome and | again used fitglm to test for
associations between each ICD-10 code and cholesteatoma, adjusting only for age and sex. |
tested 1,312 codes, though only 751 codes had any overlap with cholesteatoma. The number

of cases for each code varied between 1 and 151,022.
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Cox Hazard regression for comparison to FinnGen

| performed Cox Hazard regressions on the set of codes with significant hazard ratios in
FinnGen. UKBB cholesteatoma cases with time to event information (n=650) were compared
to ear disease-free controls (n=496,667) with age and sex used as covariates. The start date
was set to 1995 due to poor ICD-10 coverage before this date, and the end date was November
2022. Both hazards before and after cholesteatoma were calculated using the MATLAB

function coxphfit, using age and sex as covariates.

3.3 Results

3.3.1 Propensity matching
Assessment of matching performance

| assessed the performance of six matching methods, focusing on balance of the standardised
mean (the mean adjusted so that covariates with different scales are comparable) and variance
ratio. Good improvements for propensity score were seen for all methods, mostly varying in

the degree of balance improvement for the individual covariates (Figure 15, Table 10).
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Figure 15. Balance improvement for standardised mean difference and variance ratio for
six matching methods
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Table 10. Balance improvement for standardised mean difference (SMD) and variance
ratio for matching methods
Method 1 Method 2 Method 3 Method 4 Method 5 Method 6

Distance 100.00 98.85 100.00 99.93 99.17 99.98

Age 83.30 100.00 100.00 74.69 100.00 78.11

Deprivation 97.91 97.82 99.08 87.00 98.66 92.30
g Smoking 73.04 100.00 100.00 100.00 82.61 88.85
7 Distance 99.434 89.27 92.02 99.78 65.25 99.78
'rgu Age 41.13 98.63 98.63 14.80 98.63 39.93
g Deprivation 93.27 89.83 95.04 90.38 80.62 91.51
E

Methods 1 and 2 used genetically estimated ancestry rather than ethnicity (see Appendix:
Ancestry Estimation). Estimates were drawn from K-means clustering of the first 3 principal
components. Method 2 outperformed method 1 with the better improvement in balance for
most covariates, except for the overall propensity score. | then compared the original values
for ethnicity, as matching was performed on ancestry estimates instead. This was to check if
ethnicity was also well-balanced by this method. The matching is good but not 1:1 (Figure

16). | decided not to use estimated ancestry in my final case selection.

Method 3 performed very well. Propensity score SMD was improved 100% and variance ratio
92%. However, two cases could be found controls and not all cases were matched to 5 controls.
5548 controls were chosen, a ratio of 4.89 — slightly under the target of 5, meaning not all
cases could be found 5 controls. Likewise, method 5 was unable to match 5 controls to each

case and performed poorly for propensity score variance ratio improvement.
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Figure 16. Ethnic composition of cases and controls when matched with ancestry
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Methods 6 and 4 were able to match all cases to 5 controls. Method 6 outperformed method
4 and had one of the best overall balance improvement scores (99.98% for standardized mean,
99.78% for variance ratio) and balanced the individual covariates well (Table 11). Therefore, |
chose to use method 6. After propensity matching with this method, propensity score

distributions were almost identical (Figure 17).
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Table 11. Balance before and after matching for method 6. Variance ratio improvement
cannot be calculated for categorical variables sex, ethnicity and smoking.
Balance improvement in is excellent for propensity score and most sub-categories except for age,
where the initial difference was very small and the final similarity in distributions satisfactory.

Standardised mean difference Variance ratio
Before After % Improvement Before After Improvement
Propensity 0.370 -0.0001 100.0 1.217 0.9996 99.8
score
Sex 0.1526 0.0000 100
Ethnicity -0.0122 0.0000 100
Smoking 0.0114 -0.00054 88.82
Age 0.171 -0.0374 78.1 0.949 1.0319 39.9
Deprivation 0.200 0.0154 92.3 1.1441 0.9886 91.5

Figure 17. Balance improvement in propensity score distribution for method 6.
Cases and controls did not differ radically in propensity score distribution before matching (left).
However, their distributions are almost identical after matching (right).
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3.3.2 Demographics of cholesteatoma and other middle ear disease

Total prevalence of cholesteatoma in UKBB was 0.22%, corresponding to approximately 1 in
500 people. Prevalence was higher in males with a male:female ratio of 1:1.35. In comparison,
the prevalence in FinnGen was 0.38% with a male:female ratio of 1:1.67. The median age of
cholesteatoma and other middle ear disease cohorts in UKBB was 73 (IQR=12 for both), while
the median age of controls was 72 (IQR=13). The median deprivation index of the
cholesteatoma cohort was -1.40 (IQR=5.14); other middle ear disease -1.70 (IQR=4.82); and

the controls -2.14 (IQR=4.18), where the higher scores indicate most deprivation.

Significant associations with cholesteatoma incidence were found for sex (male AOR=1.33,
p<0.001), deprivation (AOR=1.08, p<0.001), age (AOR=1.02, p<0.001), Black ethnicity
(AOR=0.35, p=0.0035), and other/unknown ethnicity (AOR 0.48, p=0.042) (Table 12). The ORs
obtained in sensitivity analysis for demographic factors generally agreed with the AORs
obtained from the unmatched data except for the other/unknown ethnicity, showing that

imbalance did not greatly affect the results (Table 13).
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Table 12. Descriptive and inferential statistics of cholesteatoma in the UK Biobank.
Prevalence and number of cases by demographic is shown alongside the total number of each
demographic within the entire UK BioBank cohort. Adjusted odds ratios (AORs) and p-values
acquired from logistic regression of demographic factors on case status compared to a middle
ear disease-free control cohort and a non-cholesteatoma ear disease cohort are also shown. Bold
indicates the comparison category.

Versus disease-free controls  Versus other ear disease

Prevalence
(%) N cases Ntotal AOR 95% Cl p AOR 95% Cl p
Total 0.22 1,151 502,407
Female 0.20 533 271,839
Male 1.179, 1.491 1.142,
0.27 607 227,684 1.33 <0.001 1.30 <0.001
1.486
White 0.23 1,093 470,982
Mixed 0 0 2,940 0.000 0, Inf 1 0.00 0, Inf 1
Asian 0.31 30 9,769  1.237 0.857,1.787 026 0.84 0.56,1.268 0.41
Black 0.10 8 7998 0.352 0.175,0.71 0.0015 0.60 0.28,1.28 0.19
Chinese 0.04, 2.041 0.023,
0.06 1 1,569 0.287 0.21 0.17 0.086
1.283
Other/unk 0.241,0.973 0.212,
0.13 8 6,265 0.484 0.042 0.45 0.033
nown 0.935
Non-
0.21 420 200,812
smokers
Smokers 0.934,1.194 0.856,
0.24 720 298,711 1.06 0.38 0.98 0.80
1.128
Deprivatio 1.059, 1.097 1.001,
- -- 1.08 <0.001 1.02 0.040
n 1.042
Age - -- 1.02 1.011,1.026 <0.001 1 0.99,1.007 0.69

Comparing cholesteatoma to other middle ear disease showed a similar male bias with an AOR
of 1.3 (p<0.001), meaning the cholesteatoma group differed from other middle ear disease
about as much as it differed from the controls (AOR = 1.33; Cases vs control; Figure 18b). The
cholesteatoma and other ear disease cohorts did not differ significantly in age or smoking
status (p>0.05) (Figure 18a,c). Deprivation was significantly associated with cholesteatoma
but to a lesser extent than when compared to healthy ears (AOR 1.02, p=0.040) and the other
middle ear disease group had a more similar distribution of deprivation to the cholesteatoma

group than the controls (Figure 18e).
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Table 13. Results of matched logistic regressions testing demographic factors

Test P value OR

Sex 0.00028 1.267
White 0.0056 1.592
Mixed - 1.000
Asian 0.98 0.994
Black 0.00033 0.270
Chinese 0.093 0.180
Other 0.85 10.93
Smoking 0.18 1.096
Deprivation 3.57x10-15 1.079
Age 1.02x10-5 1.019

Comparison of other middle ear disease to disease-free controls

| also compared other middle ear disease to disease-free controls. There was a significant
difference in age and deprivation with similar odds ratios to the cholesteatoma vs control
comparison (Table 14). Although smoking was not significant when comparing cholesteatoma
to disease-free controls, there was a significant difference for other middle ear disease vs
controls with a similar odds ratio. The cholesteatoma and other middle ear disease groups had
similar proportions of smokers and non-smokers (Figure 18), so significance may be due to
the larger size of the other middle ear disease group. Meanwhile, the effect of ethnicity was
difficult to quantify due to small sample sizes. The Asian and Chinese groups had higher odds
of non-cholesteatoma middle ear disease compared to controls, but their odds of
cholesteatoma were not significantly increased. This may also be due to the differing sample

sizes of cholesteatoma and other middle ear disease.
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Table 14. Logistic regression results for comparison of middle ear disease to middle ear
disease-free controls

Prevalence
(%) N AOR 95% Cl P

Total 0.91 4589
Female 0.9 2,450
Male 93 2,139 1.02 0.963, 1.083 0.49
White 0.91 4,283
Mixed 0.88 26 0.97 0.656, 1.427 0.87
ASER 131 130 1.46 1.222,1.746 3.23x10°
ElEs 0.6 49 0.59 0.444,0.791 3.88x10"
Chinese 1.46 23 1714 1.133, 2.592 0.0107
Unknown 1.06 78 1.0595 0.825,1.36 0.650
Non-
smokers 0.86 1,720
Smokers 0.94 2,831 1.07 0.038
Age 1.02 1.016, 1.024 2.97x10°%5
Deprivation 1.0557 1.046, 1.065 2.28x103!
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Figure 18. Demographics of cholesteatoma and non-cholesteatoma middle ear disease
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Demographics of unmatched cholesteatoma cases, non-cholesteatoma middle ear disease (NC-
MED) and ear disease-free controls showing a) age distributions, b) sex ratios, c) smoking status,
d) prevalence of cholesteatoma and non-cholesteatoma ear disease by ethnicity, and e)
Townsend Deprivation index distribution. Plots generated in R using ggplot2 package.
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3.3.3 ICD-10 associations with cholesteatoma

56 ICD-10 codes were significantly associated with cholesteatoma after Bonferroni multiple
testing correction (p<0.05; Table 15). Hierarchical clustering of Jaccard distance between these
codes reveals two main groups: common conditions, including chronic obstructive pulmonary
disease (OR=2.03), disorders of lipoprotein metabolism & other lipidaemia (OR=1.48), and
gastro-oesophageal reflux (OR=1.51); and diseases of the sinuses and middle ear and their

complications (Figure 19).

The strongest associations (all p-values < 0.001) were with other disorders of middle ear and
mastoid (OR=242.12), other disorders of tympanic membrane (OR=163.63), suppurative and
unspecified otitis media (OR = 144.54), otalgia and effusion of the ear (OR =78.22, p<0.001) and
perforation of tympanic membrane (OR 76.07). The overlap with cholesteatoma for each of
these conditions was 100-263 persons. Otitis externa (OR=34.97, p<0.001) and other diseases
of inner ear (OR=6.04, p<0.001) were also associated with cholesteatoma. Known
complications of cholesteatoma were also strongly associated, including sensorineural and
conductive hearing loss (OR=25.81), other hearing loss (OR=9.94), facial nerve disorders

(OR=10.10), and bacterial meningitis (OR=41.78).

The most strongly associated non-ear code not known to be a cholesteatoma complication
was F17, mental and behavioural disorders due to tobacco use with an OR of 2.34 (p<0.001),
followed by chronic sinusitis, with an OR of 4.09 (p<0.001). Several other respiratory conditions
are represented including chronic obstructive pulmonary disease, asthma, and chronic rhinitis
with and without nasal polyps. Some congenital anomalies affecting the ear and head (Q17,
Q16, Q75, Q96) were also strongly associated with cholesteatoma (OR=33.58-83.24, p<0.011),

although the number of overlapping cases was small (n=2-4).
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Figure 19. Heatmap of Jaccard distance for ICD-10 codes significantly associated with
cholesteatoma with hierarchical clustering.

Jaccard distance between ICD-10 codes where odds ratio adjusted p-value for cholesteatoma
association < 0.05. Colour scale indicates Jaccard distance with diagonals coloured blue.
Hierarchical clustering using unweighted average distance/UPGMA (left) shows two main groups
of disease codes: common diseases (cyan) and sinus/middle ear infections with their rare
complications (red). Table 2 contains ICD-10 code full names and statistics for all codes with
adjusted p-value < 0.05. Codes marked with an asterisk (*) have child codes used in the definition
of the case group.

Heatmap of Jaccard distance between ICD-10 codes significantly overlapping cholesteatoma
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Table 15. Table of ICD-10 codes significantly associated with cholesteatoma.

Code

H66

H72
H73

H74

H92

HO5*

H90

H70*

H65
H91
H60
H61
H93
G51
(€10]0]
F17

132
H83
Q16

G96

H69
110
Ja4

145
Q17

G04

B96

134

F32

104

N

Suppurative and unspecified otitis 1275
media

Perforation of tympanic membrane 1504
Other disorders of tympanic 570
membrane

Other disorders of middle ear and 695
mastoid

Otalgia and effusion of ear 911
Postprocedural disorders of ear and 162
mastoid NEC (included in

cholesteatoma definition)

Conductive and sensorineural 2961
hearing loss

Mastoiditis 181
Nonsuppurative otitis media 1587
Other hearing loss 10920
Otitis externa 1048
Other disorders of external ear 1741
Other disorders of ear NEC 1874
Facial Nerve disorders 1848
Bacterial meningitis NEC 186

Mental and behavioural disorders 24886
due to tobacco use

Chronic sinusitis 4446
Other diseases of inner ear 1591
Congenital malformations of ear 25
causing impairment of hearing

Other disorders of central nervous 562
system

Other disorders of Eustachian tube 317
Essential (primary) hypertension 151022

Chronic obstructive pulmonary 21261
disease

Asthma 47150
Other congenital malformations of 42
ear

Encephalitis, myelitis and 426

encephalomyelitis

Sequelae of other and unspecified 18715
infectious and parasitic diseases

Other disorders of nose and nasal 9626
sinuses

Other depressive episodes 29778

N with Odds Ratio 95% Cl

Cholesteatoma

263 144.54 124.259,
168.125

193 76.07 64.549, 89.646

142 163.63 133929,
199.912

219 242.12 203.651,
287.867

126 78.22 64.143,95.383

117 1249.85  880.243,
1774.661

152 25.81 21.65,30.774

153 2809.55  1865.538,
4231.256

100 30.80 24.924,38.073

213 9.94 8.514, 11.608

75 34.97 27.429,44.577

88 23.73 18.972,29.683

45 10.65 7.875, 14.407

42 10.10 7.391, 13.793

16 41.78 24919, 70.056

127 2.34 1.942,2.813

41 4.09 2.993,5.6

22 6.04 3.946,9.235

4 82.05 28.032,
240.146

12 9.55 5.371, 16.968

9 12.99 6.678,25.288

478 1.53 1.355,1.737

103 2.03 1.653, 2.495

172 1.71 1.454,2.013

3 36.73 11.312,
119.238

8 8.06 3.991, 16.26

84 1.92 1.534, 2.401

49 2.24 1.68, 2.984

110 1.74 1.425,2.114

Adjusted
p-value
<0.001

<0.001
<0.001

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

<0.001

<0.001
<0.001

<0.001

<0.001

<0.001

<0.001

%
Overlap
12.16

7.84
8.99

13.46

6.51
9.78

3.84

3.79
1.80
3.53
3.14
1.51
1.42
1.21
0.49

0.74
0.81
0.34
0.71
0.62
0.32

0.46

0.36
0.25

0.51

0.42

0.46

0.36



Code

Q75

E78

147

K21
G40
K52

L40
H68

H54
N17

B9S5

G52
H81
J18

LO8

G47
Q96

C0o7

E66
GOS8

M19
A09

G09S

N39
J31

J33
B38

105

Other congenital malformations of 17
skull and face bones

Disorders of lipoprotein metabolism 77039
and other lipidaemias

Bronchiectasis 5742
Gastro-oesophageal reflux disease 54508
Epilepsy 6849
Other noninfective gastroenteritis 25678
and colitis

Psoriasis 5499
Eustachian salpingitis and 28
obstruction

Visual impairment including 2813
blindness

Acute renal failure 22036
Streptococcus and staphylococcus 8860

as the cause of diseases classified to
other chapters

Disorders of other cranial nerves 158
Disorders of vestibular function 3088
Bronchopneumonia, unspecified 26445
Other local infections of skin and 3198
subcutaneous tissue

Sleep disorders 11734
Turner syndrome 45
Malignant neoplasm of parotid 179
gland

Obesity 35634

Intracranial and intraspinal phlebitis 103
and thrombophlebitis

Other arthrosis 45012
Other gastroenteritis and colitis of 19953
infectious and unspecified origin

Sequelae of inflammatory diseases 104
of central nervous system
Other disorders of urinary system 38025

Chronic rhinitis, nasopharyngitis and 1743

pharyngitis
Nasal polyp 4670
Coccidioidomycosis 4

N with Odds Ratio 95% Cl
Cholesteatoma
2 59.42 13.526,
261.048
262 1.48 1.28,1.703
34 2.46 1.741, 3.465
183 1.51 1.288,1.771
37 2.33 1.674,3.231
96 1.68 1.363, 2.074
31 2.40 1.68, 3.438
2 33.08 7.82,139.896
20 2.92 1.869, 4.548
92 1.69 1.357, 2.094
44 2.07 1.529, 2.801
4 10.83 4,005, 29.299
20 2.80 1.793, 4.359
103 1.61 1.309, 1.974
21 2.71 1.759, 4.187
53 1.89 1.43,2.491
25.18 6.078, 104.301
4 9.50 3.519, 25.657
122 1.53 1.267, 1.846
3 13.29 4,205, 42.001
150 1.48 1.239,1.757
76 1.66 1.318, 2.102
3 11.97 3.788,37.821
128 1.49 1.24,1.798
13 3.22 1.862,5.582
26 2.28 1.545, 3.374
1 119.72 12.384,
1157.385

Adjusted
p-value
<0.001

<0.001

<0.001
<0.001
<0.001
0.002

0.002
0.003

0.003

0.003
0.003

0.004
0.008
0.008
0.008

0.009
0.011
0.012

0.012
0.014

0.016
0.025

0.031

0.032
0.038

0.045
0.047

%
Overlap
0.17

0.34

0.50
0.33
0.46
0.36

0.47
0.17

0.51

0.40
0.44

0.31
0.47
0.37
0.49

0.41
0.17
0.30

0.33
0.24

0.33
0.36

0.24

0.33
0.45

0.45
0.09



3.3.4 Comparison to FinnGen significant associations

Diseases occurring before cholesteatoma with significantly increased hazard ratios in both
biobanks were otosclerosis and sleep apnoea (Table 16). Hazards of otosclerosis, epilepsy and

chronic kidney disease were significantly increased after cholesteatoma in both biobanks.
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Table 16. Comparison of UKBB odds ratios and hazard ratios to FinnGen
Table showing Cox Hazard ratios computed by Risteys from FinnGen data where p<0.05 and
equivalent Cox Hazard Ratios and p-values computed for UKBB data. Also shown are the
uncorrected p-values and odds ratios drawn from logistic regressions for the closest equivalent
ICD-10 codes. Phenotype definitions vary for the following: 'Showing H91, parent code of sudden
idiopathic hearing loss (H91.2). ?Arthrosis combines parent categories M15-M19. ?*Combination
of eclampsia (015) and pre-eclampsia (O14). No overlap with cases in UKBB. * Showing G47,
parent code of sleep apnoea (G47.3). *Hybrid category of several ICD-10 codes involving pain in
FinnGen, not tested in UKBB

Otosclerosis

Sudden idiopathic

hearing loss

Arthrosis

eclampsial®

Gonarthrosis

Before cholesteatoma

Coxarthrosis

Sleep apnoea

Painb!

Otosclerosis

Epilepsy
Chronic kidney

disease

Iron deficiency
anaemia

After cholesteatoma

Varicose veins

107

Pre-eclampsia or

Vascular dementia

FinnGen
HR P value
6.80
(4.4, 11.18] 0001
2.93
(1.62,531] 0001
0.72
07051 00062
1.80
(1.09,206] 9%?
071
053,096 9%
059
037,093 9%
1.38
(104,183 0%
1.18
(101,138 03¢
6.06
(3.41,10.76] 0001
5.02
[2.36,10.68] 0001
1.79
(1.09,293 9%
1.77
(1.08,2.92] 0%
1.74
(1.07,2.82] 0%
059
035,098 O

UKBB
P value
(uncorrected)

OR

5.18
[2.144, 12.552]

9.94
[8.514,
11.608]™

0.98
[0.796, 1.215]

0.96
[0.739, 1.259]

1.88
[1.43,2.491]¥

5.18
[2.144, 12.552]
3.66
[0.217, 2.105]
1.47
[1.869, 4.548]
1.43
[1.119, 1.812]
1.44
[1.136, 1.829]
1.061
[0.776, 1.45)

<0.001

<0.001

0.87

0.79

<0.001

<0.001

0.19

<0.001

0.0041

0.0027

0.71

UKBB

HR
[95% Cl]
7.98

[7.98,31.998]

0

[0, 8.65x10%7Y]

1.12
[1.12, 1.545]

0.78
[0.78, 1.327]

0.88
[0.88, 1.711]

2.1
(2.1, 4.065]

8.7
8.7, 34.952]
0.93
[0.93, 3.737]
2.85
[2.85,4.733]
15
[1.5, 2.09]
1.17
[1.17, 1.746]
1.01
[1.01, 1.885]

P value

0.003

0.974

0.974

0.356

0.708

0.029

0.002

0.923

<0.001

0.017

0.441

0.964



3.4 Discussion

This chapter was a retrospective epidemiological study of cholesteatoma in the UK BioBank. |
established demographic factors associated with cholesteatoma and compared these with
factors associated with other middle ear disease. | replicated some associations found in other
studies such as male sex, smoking, and deprivation. Generally, cholesteatoma and other
middle ear disease were more demographically similar to each other than to disease-free
controls, with cholesteatoma cases having slightly more extreme values. | also identified
overlapping ICD-10 codes with cholesteatoma, which generally consisted of other
inflammatory diseases of the middle ear and associated conditions. The cholesteatoma group
also had higher rates of several common diseases. Associations with epilepsy and otosclerosis

were repeated in the Finnish biobank FinnGen.

3.4.1 Similarity of cholesteatoma risk factors to other middle ear
disease

Cholesteatoma and other middle ear disease are similar for age, deprivation and
smoking

The cholesteatoma and other middle ear disease groups did not differ significantly in age,
deprivation or smoking status. Both the cholesteatoma and other middle ear disease groups
were median one year older than controls with the AOR for age being 1.02 for cholesteatoma.

This is probably because older individuals have had longer to contract disease.

The prevalence of cholesteatoma amongst smokers was similar to the prevalence amongst
other middle ear disease; while no significant effect for smoking could be detected in the
cholesteatoma group, the increased rate of middle ear disease was significant for smokers,
which may be due to the larger size of this group. Furthermore, a significant association with
F17 mental and behavioural disorders due to use of tobacco was (OR 2.34) suggests that
smoking does affect cholesteatoma risk. The category for ‘smokers’ includes people who
smoke infrequently or have quit, indicating that the effect is strongest for heavy smokers. This
agrees with Kaylie et. al. (2009)'®” who found a higher rate of cholesteatoma and more severe
disease in smokers with chronic ear problems, but that former smokers had similar outcomes
to non-smokers >5 years after quitting. Smoking raises susceptibility to middle ear disease by

impaired mucociliary function, which may also explain increased rates of cholesteatoma.
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Median deprivation in the cholesteatoma group was -1.40 compared to -1.70 and -2.14 for
other middle ear disease and controls respectively; the odds ratios for cholesteatoma
compared to other middle ear disease and controls were 1.02 and 1.08 respectively but did
not differ significantly from each other (Table 14). Deprivation is associated with risk

199200 and the most disadvantaged are both more likely to require

behaviours such as smoking
healthcare and less likely to access it?®". These factors may contribute to greater rates of ear
disease and cholesteatoma and may also explain the greater risk of other common diseases
in the case group. However, it is also possible for deprivation to result from the economic
impact of hearing loss and so the relationship may be reversed; deprivation was recorded at

recruitment and cholesteatoma is likely to have occurred before this time. This highlights the

inability to determine causality from observational data.

Prevalence of cholesteatoma and middle ear disease vary with ethnicity

Both rates of cholesteatoma and other middle ear disease varied between ethnicities in this
analysis, with prevalence highest in the Asian and white groups. Black ethnicity was
significantly associated with a decreased risk of both middle ear disease and cholesteatoma,
but the risk of these two types of disease differed divergently for some other ethnicities.
Middle ear disease was more prevalent in both the Asian and Chinese groups, but the relative
rate of cholesteatoma was lower. However, most of these differences were non-significant,
likely due to the small sample sizes of these groups. Rates of cholesteatoma have previously
been reported to vary with ethnicity?, although original epidemiological data is rarely

presented.

Male sex differentiates cholesteatoma from other middle ear disease

Male sex had an OR of 1.33 and there was a male predominance of 1:1.3 males:females in
UKBB and 1:1.67 in FinnGen, which is well-established in the literatured®’. However, there was
no male-predominance in the non-cholesteatoma middle ear disease group. The adjusted
odds ratio for cholesteatoma was effectively the same independent of whether the controls
had middle ear disease or not, and there was no significant difference between the middle ear
disease group and disease-free controls. This makes male sex a major risk factor distinguishing

cholesteatoma from other middle ear disease in this cohort. Either males are not at increased
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risk of general ear disease, only of cholesteatoma; or that they are at increased risk of all forms

of ear disease and at increased risk of sequelae, including cholesteatoma.

3.4.2 Cholesteatoma is significantly associated with other
inflammatory ear and respiratory disease

An overlap between cholesteatoma and other middle ear disease is well known: Kemppainen
et. al. (1999)° report history of otitis media in 72.4% of cholesteatoma cases while Castle (2018)’
reports common concurrent diseases including otic polyp and tympanosclerosis. Tympanic
retraction is also a risk factor for cholesteatoma®?*>. Meanwhile, Djurhuus et al. (2015)° found
that children with repeated ear infection requiring ventilation tube insertion are at increased
risk of cholesteatoma. Although there is a possibility of iatrogenic cholesteatoma following
ear surgery, the authors also showed that early ventilation tube insertion reduces risk of
subsequent cholesteatoma and that national rates of cholesteatoma were decreasing’. This
suggests that children at risk of cholesteatoma also have increased likelihood of requiring
ventilation tube insertion. Whether chronic OM is a cause or symptom of cholesteatoma
cannot be determined from this study design and so the nature of the relationship remains

unknown.

| also detected associations with certain respiratory diseases, including chronic sinusitis,
asthma, and bronchiectasis. The recently introduced concept of ‘unified airway disease’ seeks
to explain the frequent co-occurrence of upper and lower airway disease by considering the
airways as a single system sharing immunological and pathophysiological features®®. The
middle ear is connected to the nasopharynx via the Eustachian tube which is responsible for
middle ear drainage, pressure equalisation and protection against pathogens'. Therefore, it
is possible that chronic inflammation of the upper airways may also contribute to susceptibility

to middle ear disease by impacting on Eustachian tube function.

3.4.3 New potential association with epilepsy

Some known sequalae of cholesteatoma such as facial nerve palsy were represented amongst
associated disease codes, as well as rare ones like meningitis®®. Interestingly, epilepsy was
associated with cholesteatoma in both biobanks. Epilepsy is very rarely described as a

204,205

complication of cholesteatoma and can be triggered by intracranial infection®®, which

110



may explain this relationship. Alternatively, epilepsy itself may be a risk factor, as it is often

associated with a high burden of comorbid disease®”’.

Although Cox Hazards regressions in both UKBB and FinnGen report increased hazards of
otosclerosis both before and after cholesteatoma, this may not be a true association. Co-
occurrence of these conditions is extremely rarely reported®® and both have similar
presentations, meaning misdiagnosis may occur. Otosclerosis is a disease of the labyrinth
resulting from remodelling and overgrowth of the bone at the base of the stapes® and while
inflammation induced by cholesteatoma could feasibly contribute to risk, the small number of
overlapping cases (n=5 in UKBB, 48 in FinnGen) makes it very possible that misdiagnosis is the

true cause.

3.4.4 Study limitations

This study was limited by the retrospective case-control design and so shares its limitations
with other studies of biobank data. Conclusions about causality cannot be drawn from
observational data and there may be additional confounding variables that were not

accounted for.

The UKBB population is not necessarily representative of the wider UK population: it is biased
towards females, has overall lower deprivation, and participants have fewer health problems
than the general population®®. Furthermore, the study population was majority White British,
making it difficult to assess prevalence in other ethnicities. Demographic information reflects
participants’ situations at the time of recruitment, not the time of disease diagnosis.

Deprivation is based on postcode and may not reflect an individual’s actual status.

Identification of cases was limited by the availability of ICD codes: ICD-10 was introduced in
1995, so records prior to this date are generally not available. The older ICD-9 code for
cholesteatoma also contains the unrelated otic abscess so was not useful for assigning cases.
Records may also be missing due to a failure to translate paper records into electronic format
or may contain inaccurate diagnoses. As ICD-10 codes are assigned for hospital billing
purposes, and not by doctors themselves, they may not accurately reflect the actual diagnosis
made; additionally, cholesteatoma may be misdiagnosed as other forms of otitis media. In

order to maximise the number of cases detected, | used an expanded criteria which included
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operative codes strongly suggestive of cholesteatoma such as mastoidectomy. Ultimately, the
rate of cholesteatoma of 1 in ~500 persons was similar to what | expected, though it was less
than in FinnGen. Lack of detailed information means it is not possible to determine if
cholesteatoma was congenital or acquired, or uni- or bilateral. Additionally, date of diagnosis
was only available for a subset of cases, meaning Cox Hazard regressions had less power. The
date of diagnosis also may not represent the actual time of disease onset, only when attention

was sought for the condition.

Imbalance between cases and controls could introduce bias into estimates and inflate p-values.
| tested for this effect by performing matched logistic regressions for demographic factors but
did not perform such tests for all ICD-10 codes which may have had more extreme imbalance.

Therefore, disease codes with small numbers of cases should be interpreted with caution.

3.4.5 Future directions

Although this study provides evidence of a higher incidence in white compared to non-white
ethnicities in the UK (besides South Asian ethnicities) the sample size for non-white ethnicities
in the UK Biobank is too small to be conclusive and differences between populations remain
poorly characterised. Large, registry-based studies reporting age- and sex-specific rates may

be required to clarify this.

The demographic similarity between cholesteatoma and other middle ear disease for most risk
factors suggests an overlap in pathology, whether both arise through common causes or one
arises from the other. However, some risk factors were not shared between cholesteatoma and
other middle ear disease. Experiments using controls with OM will acquire different results to
studies using disease-free ears, as it seems that there are both overlapping and distinct risk
factors. Many tissue-based studies, such as gene expression studies, necessarily compare
cholesteatoma to ears with OM because the middle ear is inaccessible and tissue can only be

acquired during surgery.

3.5 Conclusions

Risk factors are shared between cholesteatoma and other inflammatory middle ear disease,
but male sex was a major risk factor distinguishing these groups. Cholesteatoma overlaps

significantly with other inflammatory middle ear conditions, but it is difficult to disentangle
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the factors contributing to ear disease in general from those contributing to cholesteatoma
alone. Cholesteatoma was also positively associated with epilepsy and negatively associated
with arthrosis in two biobanks. These relationships are unexplored in the literature and warrant

further investigation.

The results of these analyses must be considered in the following genetics studies of
cholesteatoma, as the choice of control group affects the conclusions that can be drawn. The
relationship between cholesteatoma and other chronic ear diseases may be due to shared
environmental risk factors, shared genetic risk factors, or because one disease directly
provokes the other. If cholesteatoma is a consequence of chronic middle ear disease, then
using disease-free controls may essentially be studying susceptibility to ear disease in general,
whereas using controls with non-cholesteatoma middle ear disease asks which factors govern
cause some individuals to progress to cholesteatoma and not others. An issue with using other
middle ear disease as controls is that a proportion of them may have cholesteatoma but lack
specific ICD-10 codes indicating it; they may also go on to develop cholesteatoma in the
future. It is better to compare cholesteatoma to disease-free controls and compare any results

to what is known about the genetic risk factors for chronic ear disease in general.
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4 Genome-wide association tests: Single
variant, gene-based and gene set enrichment

4.1 Background

4.1.1 Rationale

In the introduction to this thesis, | discussed evidence for genetic involvement in
cholesteatoma, including several observations of family clustering>*’, family history in ~10%
of cases®!, and identification of some genes containing deleterious variants amongst 10
affected families in a previous Genetic of Cholesteatoma (GoC) study'®®. In a review of
cholesteatoma genetics including incidences of family clustering, Jennings et al. (2017)"®
concluded that there is weak evidence for an oligogenic mechanism with reduced penetrance.
A total of five (2 GoC, 3 non-Go()®>®668124126 st dies have performed gene sequencing and
none have detected the same set of variants; however, there has been some overlap in the
function of variants identified in these studies and dysregulated processes identified by gene
expression analysis®/7781251367140 (e Semi-systematic review of global gene expression
studies). Implicated processes include ECM organisation, immune function/inflammation,

ciliary function, and calcium binding. It therefore seems likely that any genetic basis for

cholesteatoma is complex, polygenic, and possibly heterogeneous.

Studies so far have had limited power due to small sample sizes and lack of control
populations. Hence this study uses UK BioBank whole exome data to perform genome-wide
association tests (GWAS) for cholesteatoma using 1,000 European cases and 5,000 matched
controls. Whole exome data are used for consistency with previous GoC studies and to capture
rare variants which may not be represented on genotyping arrays. While this sample size is
relatively small for a GWAS, it will be the largest cohort of cholesteatoma cases studied outside
of phenome-wide association tests (PheWAS). There are several examples of PheWAS, which
apply generic GWAS methods to produce summary statistics for hundreds or thousands of
phenotypes, typically generated using ICD-10 codes. This includes a PheWAS of UK BioBank

data called GeneBass (https://app.genebass.org/) and FinnGen, which contains 1,447

cholesteatoma cases in its ninth release (defined by ICD-10, 9 and 8). FinnGen is notable for

its large size as well as its curated control groups, excluding any participant with middle ear or
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mastoid disease from cholesteatoma GWAS controls. This makes the cohort useful for

comparison to UK BioBank results.

4.1.2 Modern GWAS methods

A GWAS performs tests for individual variants across the genome to detect associations with
an outcome. This is achieved by fitting a linear or logistic regression with the phenotype as
the outcome and genotypes and covariates as independent variables. Linear regressions are
used for continuous traits (e.g. height) and a logit link function is used to convert the
regression to logistic for binary traits (e.g. cholesteatoma status). This was described in the

thesis introduction in Genome-wide association studies, but | repeat the basic equation here:
Y~Wa+ XB+g+ e
Uffelmann et al. (2021)%8

Where Y is a continuous phenotype, W is the genotype being tested and X is a matrix of fixed
covariates (such as age or sex). The terms g and e capture error due to genetic and random
effects. a and B, the effect sizes of the genotype and covariates respectively, are estimated by
the model, and we are primarily interested in B. Genotype p-values are generated by
comparing the model to a null model where genotype has no effect®. . Numerous software
packages have been developed to perform GWAS with this regression at their heart. For
example, the popular toolset PLINK?'® performs GWAS with this simple regression. Other
models extend or modify the regression to account for additional confounders. More
sophisticated methods have recently been developed to handle non-random effects such as
population stratification, sample imbalance and relatedness. These typically involve multiple
steps to estimate parameters used to improve the final regression model. SAIGE'™ and
REGENIE'™ are two examples of popular GWAS software packages which use multi-step
methods to conduct single variant analysis and, in the case of SAIGE, downstream gene-based

tests.

REGENIE

In the first step, the genome is broken up into blocks of N SNPs. Each block is used to perform

ridge regression, which is similar to linear regression but incorporates a parameter called the
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shrinkage factor. The shrinkage factor is used to reduce the coefficients of the predictors
towards 0 to account for correlation of SNPs in a block: if two predictors are strongly
correlated, the amount of information they impart is not as much as two independent
predictors and their contribution towards the model must be reduced appropriately. This is
done by penalising predictors with very large coefficients, which can arise out of correlation®™.
REGENIE randomly varies the shrinkage factor in each block to reflect that the true number of
predictors is not known, resulting in a set of predicted outcomes for each block. A second
ridge regression combines these predictors into a single predictor representing the entire
genome'"™. The predictions from this step are used as a covariates in the logistic regression

(step 2).

SAIGE

The first step of SAIGE involves fitting a null logistic model to a random sample of variants
against phenotype and obtaining an estimate of the random effects for each individual. The
variance of test statistic scores is compared for models performed with and without the error
term included. The authors show that this variance ratio is consistent for variants with minor
allele count (MAC) > 20. The variance ratio is used in when fitting the logistic regression (step
2) to correct for random and non-random genetic effects, and the saddle-point approximation
(SPA)*"? is used to account for imbalance. SAIGE performs correction for population structure

and controls the degree of structure seen within the European population well %,

P-value correction

Regressions usually use maximum likelihood estimates (MLE), which means they calculate how
likely the given data is under a specific model and seek to configure the model to maximise
this likelihood. Highly imbalanced data can bias these estimates, either because there is
imbalance in the cases and controls, or certain observations are very rare. During step 2 of
both SAIGE and REGENIE, additional p-value correction is applied to account for these effects
using Firth (REGENIE) or SPA (SAIGE and REGENIE). Firth®' regression introduces a bias term

into the function used to calculate MLE?"

while SPA corrects p-values by substituting SPA for
the normal approximation for calculating the null distribution of the test statistic?'. Unlike the

normal distribution, which only has parameters of mean and variance (the first two moments
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of the function), SPA uses all moments (such as skewness) so can provide better estimates

when assumptions of normality are broken'®,

Gene-based tests

Analysing rare variants poses a challenge as they may require very large sample sizes for
detection. Several approaches have been developed for the analysis of rare variants by

aggregating them at the gene level to increase statistical power:

e A gene-based collapsing or burden approach essentially sums the number of variants
within a gene. This works under the assumption that different variants in the same gene
or set of genes have similar impacts on disease'"".

e A combined multivariate and collapsing test collapses variants within subgroups
according to criteria such as allele frequencies, and a multivariate test is performed
within subgroups?™.

e SKAT' is a supervised regression method to test for the joint effects of multiple
variants in a region. The test aggregates weighted variant-score test statistics rather
than clustering variants directly. This allows for SNP-SNP interactions and is particularly
powerful when regions contain many protective, deleterious and non-causal variants.
SKAT calculates a p value for each genome region (or gene) while adjusting for

covariates such as age, sex, and population stratification.

Burden-based tests have more power to detect associations when all variants in a region have
the same directional effect on the trait and most are causal; non-burden tests like SKAT do not
make these assumptions and can better handle variants with non-causal or opposing effects.
SKAT-0?"% is a unified burden and non-burden test, finding an optimal linear combination of
SKAT and burden tests. When the burden test is more powerful, SKAT-O behaves more like a

burden test and when SKAT is more powerful, it behaves more like SKAT.

Gene set analysis

The concept of gene set enrichment analysis (GSEA) was introduced in Semi-systematic review
of global gene expression studies. Simply, GSEA identifies pathways whose members are
overrepresented in a given set of genes compared to a set randomly selected from the

genome. In Semi-systematic review of global gene expression studies, | applied this to
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differentially expressed genes in cholesteatoma. GSEA can also be applied to genetic variant
data to identify potentially disrupted pathways and processes; much as gene-level analysis
aggregates variants at the gene level to increase power, GSEA aggregates variants at the
pathway level. For many diseases, several genes are involved, and these may be linked via
similar functional processes or pathways?’; even if disease is highly polygenic or
heterogeneous, it is likely to arise through the same set of pathways. GSEA can provide greater

biological interpretability even when no individual variants meet genome-wide significance®'®,

4.1.3 Types of genetic data

There are two main approaches to genotyping for GWAS: genotyping microarray and next-
generation sequencing, which may cover the protein-coding regions of the genome (whole
exome sequencing; WES) or the entire genome (whole genome sequencing; WGS). These

approaches were described in the introduction to this thesis in Genotyping data.

UK BioBank (UKBB) recently performed whole-exome sequencing of its participants, which
covers all variants in protein-coding regions including rare variants. UKBB also offers
genotyping data using the UK BioBank Axiom V2 array, which covers the entire genome but
only measures variants included in its probe set (850,000 variants; an additional 90 million
variants are imputed using the Haplotype Reference Consortium and UK10K + 1000 Genomes
reference panels). Whole genome data is also available but was not released in full at the time

of this study.

Whole exome data was chosen for this analysis for consistency with previous whole exome
family studies performed by GoC. Compared to genotyping array, whole exome has the benefit
of detecting rare variants, which are increasingly considered an important source of missing
heritability in common, complex disorders as well as in rare disease due to the possibility of
stronger deleterious effects?'¥??°. A drawback of whole exome data is the inability to detect
variants in non-coding regions, which make up most of the genome and most trait-variant
associations discovered to date®%. Also, most associations detected by GWAS are non-causal
and arise through linkage disequilibrium with causal variants, so this does not necessarily
mean most causal variants are non-coding. Furthermore, it has been shown that protein-

coding variants can have a disproportionately high predictive power for polygenic
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diseases'®??". As they directly affect protein structure, they may be more likely to impact

disease risk and their consequences may be easier to interpret.

4.1.4 Aims and objectives

Based on the expectation of genetic complexity of cholesteatoma and the relatively small
sample size of this study, | aim to perform association tests at the variant, gene and pathway
levels. Testing at the gene level can account for the aggregate effects of rare variants, which
are difficult to detect in small sample sizes. Meanwhile, pathway analysis can be useful where
disease is polygenic or heterogeneous, as disease likely to arise through common mechanisms
but individual variants may not be detected by an underpowered GWAS. Identification of
variants, genes or pathways associated with cholesteatoma may provide insight into disease
biology. Confirmation of these results in a comparison cohort, FinnGen, would provide further

support the existence of a genetic component in cholesteatoma.
In summary, the aims of this chapter are:

e To compare the UKBB WES pipeline to the pipeline used by previous GoC studies to
ensure results are comparable.

e To perform association tests at the variant level and gene level for UKBB whole exome
data.

e To perform gene set enrichment analysis on UKBB single variant GWAS results to
identify disrupted pathways and processes.

e To perform the same pathway analysis on FinnGen summary statistics for comparison.

e To perform post-hoc sensitivity analysis to determine study power and minimum
detectable effect size

e To validate results by performing GWAS using UKBB microarray data.

4.2 Methods

4.2.1 UK BioBank Whole Exome Data

In this chapter, the primary data were variant call files generated by UK BioBank from whole
exome sequencing data using DeepVariant, a neural network-based variant caller’®'. Whole

exome sequencing was performed on the first 50,000 participants by Regeneron and
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GlaxoSmithKline, with the remaining 450,000 sequenced by a consortium comprising
Regeneron, AbbVie, Alnylam Pharmaceuticals, AstraZeneca, Biogen, Pfizer, Takeda and Bristol-
Myers Squibb. Exomes were captured using the IDT xGen Exome Research Panel v1.0 and
sequenced on the Illumina Novaseq 6000 platform using S2 (for the initial 50,000 samples)
and S4 flow cells (for the remaining 450,000). The initial 50,000 samples used a different IDT
oligo lot to the remaining 450,000 samples and were selected for specific enrichment in
disease traits resulting in a strong batch effect. UKBB recommends the 90pc_10dp filter to
control for this effect (see Variant filtering for quality and impact) and | also included batch as
a covariate in the final GWAS. This whole exome data covers protein-coding regions, including

exon sequences, intronic variants and 3" and 5' UTRs, but does not include intergenic regions.

Comparison of UK BioBank data generation to previous whole exome pipeline

UKBB whole exome data are provided in CRAM format, a lossless file format from which the
original fastq data can be reconstructed. A fastq is a text-based file containing the sequence
data and quality scores per base. Several processing steps must be performed on raw
sequence data to generate the CRAM file, including mapping, sorting and alignment against
a reference genome. The tools used by UKBB to perform these steps are detailed in Figure 20
and compared to those used in previous GoC cholesteatoma whole exome studies'*'%¢, While
many of the same tools are used (including bwa-mem??, which is the mapping algorithm used
in cgpmap’), differences in pipelines may lead to slight differences in the final CRAM files. |
expect this effect to be small and it should not affect comparability between this study and

the previous GoC WES study.

" Available at https://github.com/cancerit/dockstore-cgpmap
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Figure 20. Comparison of UK Biobank and GoC pipelines for variant calling from whole

exome data
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b) MED pipeline
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UKBB also provides variant call format (VCF) files containing the variable sites identified from
the sequence data using DeepVariant. Different variant callers are likely to affect the

comparability of data far more than differences in earlier steps.

DeepVariant performs very well for both sensitivity (proportion of true positives detected) and
specificity (proportion of true negatives detected). In their 2018 paper'’, Poplin et al. test
DeepVariant against other callers on the precisionFDA Truth Challenge data set: DeepVariant
outperformed all other methods tested for both SNPs and indels, closely followed by GATK (a
variant caller used in the previous GoC WES study). DeepVariant had also won the
precisionFDA Truth Challenge two years earlier, and in 2020 remained one of the top
performing methods on multiple platforms??*. DeepVariant and GLNexus were also tested by
Yun et al. (2020)*** against WGS and WES samples from Genome in a Bottle project, Clinical
Sequencing Evidence-Generating Research, and population Architecture Using Genomics and
Epidemiology. They found that DeepVariant is somewhat overconfident about homozygous
ALT calls (in comparison to GATK Best Practices V4.1.2.0) but is otherwise better calibrated
across variant types. Precision and recall calculated separately for SNPs and indels were once
again higher in DeepVariant than GATK and DeepVariant GQ (genotype quality) score

distribution increases smoothly with sequence coverage whereas GATK oscillates below 99.

To determine whether to re-process the exome sequencing data using the GoC pipeline and
perform variant calling consistent with previous GoC studies (Figure 20b) or use the
DeepVariant VCFs, | reprocessed a sample of 46 randomly selected CRAMs with the GoC
pipeline to compare the number and type of variants detected per person. Filtering for each

call-set was performed according to the software’'s recommendations (Table 17).
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Table 17. Description of filters applied to each data set.

GATK SNPs

GATK Indels

freebayes

DeepVariant

DeepVariant +
HWE

DeepVariant+
Hwe+
Nonsyn

4.2.2 Filtering

Sample QC

Filter

Qb>2

QUAL > 30

SOR<3

FS <60

MQ > 40
MQRankSum >-12.5
ReadPosRankSum > -8
Qb >2

QUAL > 30

FS < 200
ReadPosRankSum >-20
QUAL>5

INFO/DP
SAF>0&SAR>0
RPR>1&RPL>1

DP > 6 (SNPs)

DP > 10 (Indels)

VAF > 0.15 (SNPs)

VAF > 0.2 (Indels)
QUAL > 30

All of the previous PLUS
hwe > 1e-15

Geno <-0.1
90pc_10dp

All of the previous PLUS
removal of synonymous
variants

QD: Variant Confidence/Quality by Depth

QUAL: Phred-scaled quality

SOR: Symmetric Odds Ratio of 2x2 contingency table to
detect strand bias

FS: Phred-scaled p-value using Fisher's exact test to detect
strand bias

MQ: Root mean square mapping quality

MQRankSum: Z-score From Wilcoxon rank sum test of Alt
vs. Ref read mapping qualities

ReadPosRankSum: Z-score from Wilcoxon rank sum test of
Alt vs. Ref read position bias

DP: Read depth

QUAL: Phred-scaled qual score

RPL/RPR: Reads placed left and reads placed right — read
must have neighbouring reads.

DP: read depth

VAF: Variant allele frequency, the proportion of reads at a
site supporting the variant

QUAL: Phred-scaled qual score

Hwe: hardy Weinberg p value

Genotype variant missingness less than 10%

90pc_10dp is a recommended filter for variant sites
generated by UKBB to compensate for batch effects and
difference in coverage between the initial 50k and
remaining 450k exomes. A list of variants to exclude is
provided. As an example, chr 2 starts with 1986436
variants, reduced to 1524976 by this filter.

Variants were annotated with SnpEff. Variant consequences
were ordered by most severe to least severe. Where the
most severe consequence of a variant was synonymous or
less (intronic, upstream gene or downstream), the variant
was removed.

Sample quality control has largely been performed by UK BioBank. Additional metrics were

provided for further filtering. Samples were removed prior to case and control selection if:
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e Stated sex did not match their sex chromosomes, or there was sex chromosome
aneuploidy. While these samples may belong to intersex individuals or those whose
gender identity differs from their chromosomal sex, this can also indicate poor sample

quality and where no distinction has been made these samples cannot be included.

e Participants with any close relatives in the same data set were removed. Cases with
relatives were retained provided that relatives were not also cases, and their control
relatives were removed. Controls were excluded if any relatives were present due to

the large number of available controls for matching.

e After case matching, samples were filtered for missingness. Samples with > 10% site

missingness were to be removed, but none failed this test.

Variant filtering for quality and impact

Variant filtering is applied to genetic data to reduce the number of variants being tested, thus
reducing the dimensionality of the data and the impact of type 1 error. Filtering can be done
for quality metrics as well as predicted impact, which assumes that certain types of variants

are more likely to contribute to disease.

| performed filtering following Szustakowski et al. (2021)** in their paper detailing the initial
release of UKBB 200k exomes (Table 17). Variant sites were filtered to exclude sites which
violate Hardy Weinberg equilibrium with p values of < 1x10™"* or have genotype missingness
> 0.1. Also, the 90pc_10dp filter was applied, which removes variants with less than 90%
coverage at 10 depth across the population. This was performed on the whole population of

~500k participants.

Additional filters for quality at the variant level (following the method set out in Szustakowski

et al. (2021)%%%) were:
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¢ Read depth > 6 (SNPs) or 10 (Indels). Requiring a minimum number of reads (read
depth, DP) at a given site is a standard quality control metric. Sites with very few

reads cannot easily be distinguished from errors and should be excluded.

e Variant allele frequency > 0.15 (SNPs) or > 0.2 (Indels): Variant allele frequency
(VAF) is a measure of the proportion of reads which support a given allele at a site
and must be above a minimum threshold to strongly support a variant existing. A site
may be covered by many reads but if there is no consensus on the base present at
that position, their support for a variant is weak. A VAF of 0.5 suggests a
heterozygote and a VAF of 1 a homozygous alt. For a SNP with four possible bases at
a given site, a VAF of 0.15 may be sufficient to support a heterozygous alt at this
position, but this cutoff must be higher for indels, which have more possible

variations.

e QUAL > 30: QUAL score in DeepVariant calls is a representative of the confidence with

which the neural network called the variant.

In addition, | filtered coding variants to remove synonymous, upstream and downstream
variants. Synonymous variants do not change the polypeptide sequence so should not affect
protein function. Although there is some evidence that synonymous variants may impact
fitness in certain circumstances®®??’, these findings are generally drawn from microbial
experiments and the general applicability of this has been contested®®®. Importantly, removing
synonymous variants will reduce variant numbers, reducing data dimensionality, noise, and

type 1 error. This is particularly important given the small sample size.

Variants were annotated with their predicted effect using SNPeff??°, Any sites whose highest
impact variant was predicted to be synonymous, upstream gene, or downstream gene was
excluded. SNPeff considers upstream and downstream variants to be less impactful than

synonymous variants as they should not affect protein coding or regulatory regions. In this
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thesis, | describe retained variants as ‘non-synonymous’ to describe the exclusion of
synonymous coding variants, but certain intronic and regulatory variants such as those in
splice sites and 3" and 5" UTRs will also be retained. No maximum or minimum MAF filter was

applied.

Configuration of final pipeline

Filtering for the DeepVariant VCFs was performed on the UK BioBank Research Access Platform

and accessed using the python library dxpy (Figure 21,Box 1).
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Figure 21. Overview of the filtering process performed at the variant level for selected
cases and controls.
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Box 1. Overview of the filtering process performed at the variant level for selected cases and
controls.

Merge batch: Start by merging all individuals within a batch of ~200 people, to avoid issues of
merging too many files at once. Merged VCFs are split to chromosomes.

Merge chr: Each 200-person chromosome VCF is merged with the other batches to generate a
single file for all participants per chromosome.

Filter chr: All sites are split to biallelic, first using bcftools norm -N -m. At any SNP-indel
sites which also had a SNP or indel-only variant at that site will end up with repeated entries for
those sites. Then phenotype likelihood (PL) is removed to prevent issues with varying numbers
of entries in the PL columns for multiallelics. All sites whose alt is <*> are removed using grep
-v <\ *> as these are non-variants. Sites are collapsed back into multiallelics, ensuring that
any previous SNP-indel sites are reunited with SNP or indel-only versions of that site. Sites are
split into biallelic one more time using bcftools norm -N -m - -0z -o. There will now
be only one copy of each variant and each row will only contain one ALT. The VCF can now be
split to SNPs and indels with bcftools view -v SNPsand bcftools view -V SNPs. The
first includes SNPs only, the second excludes SNPs (so will include indels, MNPs and others). DP,
VAF and QUAL filters are applied.

SnpEff annotate: SnpEff annotates genes with predicted impact, starting with the most
impactful consequence per gene.

Make synonymous filter: Variants whose worst impact is synonymous, upstream, downstream,
or intronic are selected to generate a filter, as we don't expect these to impact protein function.

To PLINK format: The ID column for SNPs and indels is filled with the CHR:POS:REF:ALT
information. The filtered SNPs and indels are converted to PLINK format. Keep-allele-order is
used to prevent REF being set to the major allele. This must be done every time plink is invoked.
Apply filters: Indels and SNPs are treated separately. Plink extract is used to retain only the
variants which passed HWE/missingness tests. Plink exclude is then used to remove all
synonymous variants, using the text file generated in the make synonymous filter step.

Generate BGEN: The SNP and indel plink files are merged. A VCF is generated for use in the
following command, which uses —a1-allele to force A1 to be the REF from the VCF (ALT is A2).
The resultant plink file is used to generate a BGEN file (set to 8 bit), the BGEN is indexed ready
for input to SAIGE.
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REGENIE Comparison

To determine which software package to use, | ran the same set of data through SAIGE and
REGENIE using the same covariates. SAIGE was configured as in Final SAIGE configuration for
single variant tests, but chromosome X was not used (due to this being part of early
prototyping). REGENIE [3.1.0] was run with default settings and the following covariates: age,

sex, deprivation, smoking status, and the first 10 genetic principal components.

Final SAIGE configuration for single variant tests

The final GWAS was performed using filtered whole exome data for 1,000 European cases (see
Appendix: Ancestry Estimation) and 5,000 matched controls (see Propensity matching) in
SAIGE. Step 0 was performed using SAIGE version 2.0.1 with the default 2,000 randomly
selected markers and relatedness cutoff of 0.125. Step 1 was performed with SAIGE 3.0.1 using
age, sex, deprivation, smoking, batch and the first 10 genetic principal components as
covariates. Default minor allele count (MAC) categories of 1,2,3,4,5,6-10,11-20 and >20 were
used for variance ratios and the minimum minor allele frequency was 0.01. Step 2 was
performed with SAIGE 3.0.1 (Figure 22). Different versions are due to the introduction of
SAIGE-GENE (3.0.1) for step 2 gene-based tests and a relevant update to step 1 allowing for
generation of the sparse sigma matrix and categorical allele frequency tests. Single-variant

results were filtered to MAC > 20 for subsequent analyses besides gene-based tests.

SAIGE-GENE 3.0.1 was used for gene-based analysis using the same data and output of steps
0 and 1 as the single variant association tests. The minimum MAC for this stage was 0.5
(essentially no lower cutoff — this may remove some imputed variants with very low certainty)
and a maximum minor allele frequency of 0.05. These limits were chosen as the gene-based
test is designed for rare variants. SAIGE-GENE performs SKAT, burden and SKAT-O tests for
each gene defined by a group file listing all genes to be tested and the variants belonging to
each gene. Genes were defined by Ensembl gene ID (ENSG number) using the National Center
for Biotechnology Information (NCBI) human genome release 38 version p14 (GRCh38)

boundaries.
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Figure 22. SAIGE configuration used for final GWAS.
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| generated the group file by annotating all variants output by step 2 of the single variant

association tests using Ensembl Variant Effect predictor (VEP). As a single variant may affect
multiple genes, variants may appear multiple times in the group file associated with different
genes. Only protein-coding genes were considered in this analysis as the data is whole exome
and focuses on protein-coding regions. However, VEP annotation includes many non-coding
genes. These were removed by filtering for gene type ‘protein coding’ using the NCBI38 gene
feature file. Any synonymous, upstream, or downstream variants introduced by VEP
annotation (possible because a missense variant affecting one gene may be upstream or

downstream of another) were removed.

Annotation of variants

Variants were annotated with their reference SNP IDs (rsIDs), affected genes, consequence and

predicted impact using VEP. Non-coding genes, synonymous, upstream, and downstream

* Downloaded from
ftp.ncbi.nlm.nih.gov/gene/DATA/GENE INFO/Mammalia/Homo sapiens.gene info.gz
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variants were removed in the same manner as generation of the group file. Repetition of
removal of synonymous variants using two different variant effect predictors (VEP and SnpEff)

ensures No synonymous variants are retained.

Gene Set Enrichment Analysis

3

| performed gene set enrichment analysis with g:Profiler'*® using the results of the single

variant analysis. Variants were filtered to MAC > 20 and p-value < 0.05. Genes containing at
least one qualifying variant were ordered by the p-value of their most significant SNP. A total
of 2,373 genes contained at least one significant SNP, with the majority (81%) containing only
1 significant SNP. The p-value ranked list was supplied as an ordered query to g:Profiler using
the GO molecular functions, biological process, and cellular compartment databases. | used
the package gProfiler2 version 0.2.3"* in R 4.1.3'® to access the g:Profiler API. The version
released on 13-02-2024 (reference genomes: Ensembl 111, Ensembl Genomes 57. GO release:

2024-01-17%) was used.

| also performed gene-set analysis on the gene-based test results for comparison. For this
analysis, g:Profiler was supplied with of all genes with p-value <0.05, ordered by p-value. While
the single-variant results consider all variants with MAC>20, the gene-based results only
aggregate rare variants within genes. Genes with only one or two significant variants may not
themselves be significant and single variants scattered across multiple genes belonging to the
same pathway will not be detected. Therefore this approach may not reflect the actual
enrichment of variants affecting certain pathways. For this reason, this result is presented as
secondary to the main result of gene-set enrichment analysis performed on the variant-level

results.

* See https://github.com/geneontology/go-announcements/issues/665 for details
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In order to reduce the number of enriched GO terms and identify driver terms, | performed a

term-reduction process similar to the highlighting algorithm provided by g:Profiler:

1. For all enriched terms, traverse the GO graph upwards until there are no more

significant parent terms.

2. Where a term has two or more significant parents, the most significant is followed.

3. The top level of the hierarchy is noted.

4. For all terms sharing the same top parent, the most significant child term is retained.

This approach identifies the most significant term within unbroken ascending chains within
the GO hierarchy. In contrast, the highlighting algorithm recursively searches subgraphs for
the most significant term, eliminating its child and ancestor terms and re-running the query
without any of the genes belonging to previously identified significant terms between each
search. Highlighting cannot be performed for ordered queries due to the query being

resubmitted.

FinnGen comparison data

FinnGen  data release 9  summary  statistics were  downloaded  from

r9.finngen.fi/pheno/H8 CHOLEASTOMA. Genotyping was performed using a GRCH37-aligned
Thermo Fisher axiom genotype array, including ~500,000 core GWAS markers and an
additional ~200,000 markers enriched in the Finnish population or of special clinical interest'®.
GWAS was performed using REGENIE on a total of 1,447 cholesteatoma cases and 376,139
controls. Cases were selected using ICD10, IC9 and ICD8 codes. Controls were selected by
excluding any ICD code indicating middle ear or mastoid disease, similarly to the procedure

for UKBB.
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To remove imputed variants, | downloaded probe set information from FinnGen and filtered
the summary statistics to only include variants that had been directly measured. Although
variants were already annotated with their nearest gene, | re-annotated the results using VEP
for consistency with my analysis of UKBB data. This included assigning variant consequences,
which allowed for the removal of variants considered synonymous, upstream, or downstream.
| also filtered to MAC>20 for consistency and removed any entries associated with non-
protein-coding genes in the same manner as for UKBB data. Gene set enrichment analysis was
also applied in the same manner by filtering for genes containing at least one variant with p-

value < 0.05 and ordering them by the p-value of their most significant SNP.

Comparison GWAS of microarray results

The primary analysis was of whole exome variants for inclusion of rare variants but genotyping
array data were also available from UK BioBank, providing a means of internal validation for
GWAS results. Quality control for this data was carried out by Affymetrix and UKBB prior to
release as outlined in Bycroft et al. (2018)®; hence the only filtering | performed was to remove
synonymous variants. | used the same setting for SAIGE as in the whole exome analysis to
perform single-variant association tests. | did not perform gene-based burden tests for this
data due to a) the presence of intergenic variants and b) the lower frequency of rare variants.
Reannotation was performed using VEP in the same manner as FinnGen results. The results of
this analysis are to support the whole exome results and comparison to FinnGen data, which

used a similar genotyping array.

4.2.4 Post-hoc power calculation for sensitivity and ideal sample
size

The sample size for this study was limited by the number of cases present in UKBB (see
Identification of cholesteatoma cases for case definitions). The number of cases (1,000) is small
for a GWAS of complex a disease, so | performed post-hoc power calculation and sensitivity

analyses, to determine the minimum genetic effect, number of cases, and overall sample size
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necessary for achieving statistical significance at different risk allele frequencies. | used the

Genetic Association Study (GAS) power calculator’® to calculate power and sensitivity.

Sensitivity

| used GAS to determine the minimum genetic relative risk (GRR) which a truly significant
variant would need to be detected at the traditional genome-wide significance level of 5x10°®
with 80% power at minor allele frequencies of 0.005, 0.01, 0.05, 0.2, 0.3, 0.4 and 0.5. Sensitivity
was also calculated for four hypothetical study designs (2,000, 5,000 and 10,000 cases, all 1:5

case-control ratio).

Power

| also tested three allele frequencies (0.001, 0.01, 0.2) with a range of GRRs to calculate power
under the current study design and to determine the minimum sample size to give 80% power.
For all tests, disease prevalence was set to 0.02 (reflecting the prevalence in UKBB as a whole)

and significance level was set to 5x10°®. Case-control ratio was set to 1:5 for all tests.

Genotype relative risk to odds ratio conversion

GRR is a risk ratio, which is the proportion of individuals with a given exposure who experience
the outcome divided by the proportion of unexposed individuals who experience the
outcome®'. This ratio gives how many times more likely a person in the exposed group is to
have the outcome. Because GRR is a risk ratio whereas the result of logistic regression is a log
odds ratio, an estimate of the GRR for each variant must be calculated for comparison to GAS

output. The simple formula for GRR is:

GRR = P(case|DD) _ P(case|Dd)
1 ~ P(case|Dd)  P(caseldd)

from Skol et al (2006)***

5 Available at https://csg.sph.umich.edu/abecasis/gas_power_calculator/index.html
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where D is the effect allele and d the alternative allele. This is equal to the ratio of the
probability of being in the case group when two effect alleles are present (P(case|DD)) versus
the probability of the being in the case group when only one effect allele is present
(P(case|Dd)). This is equivalent to the ratio of disease risk for the Dd genotype compared to

the dd genotype. In terms of allele counts, this is calculated as follows:

_ NCasepNTotaly

GRR =
2 NCasesNTotalp

where NCasep and NCase, are the number of D or d alleles present amongst all cases at a
given site (that is 2 x homozygotes + 1 x heterozygotes), and NTotal, and NTotal, are the
alleles counts amongst the entire population (both case and control). When the GRR of a
variant is calculated from raw allele counts, there will be no adjustment for covariates or
population structure. An estimate of risk can also be calculated from the odds ratio according

to Zhang & Yu (1998)%*:

RR = OR
3 [ =Po) + (P x OR)]

Where P, is the outcome prevalence amongst the unexposed group. To estimate risk ratio for

each variant with MAC > 20 and p-value < 0.05, | use the following formula:

R exp(5)
4 [(1 _ P(caseldd)) + (P(casseldd) y exp(ﬁ))]

S

Where g is the odds ratio and P(case|dd) is the proportion of dd genotypes who have disease.
s is the factor by which cases are over-sampled. With an estimated prevalence of 0.02 amongst
UKBB and a case/control ratio of 1/5, the value of s is 8.3. Cases are oversampled by a factor
of 8.3, so this correction is applied to reflect prevalence amongst dd individuals in the

population as a whole.

| use equation 4 to calculate relative risk for each variant for comparison to the threshold risks
calculated with GAS, using the absolute beta to ensure all risk ratios are in the positive

direction.
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4.3 Results

This GWAS used UK BioBank whole exome data from 1,000 cholesteatoma cases and 5,000
matched controls to perform variant-level and gene-level association tests. | then used the
single variant results to perform gene set enrichment analysis to identify disrupted pathways
and processes in cholesteatoma. Comparison data from FinnGen was used to identify enriched
pathways common to both data sets. Additional validation of single variant and pathway

results was performed using UKBB microarray data.

| also compared UKBB DeepVariant VCFs to variants identified by the pipeline used in our
previous Genetics of Cholesteatoma (GoC) study, supporting the use of VCFs rather than re-
processing raw data. Results of filtering and quality control for genetic data are also provided

in this section.

4.3.1 Filtering and quality control
Comparison of callers by number of variants per person

To determine whether the UKBB OQFE pipeline with DeepVariant generated comparable call
sets to the GoC pipeline using freebayes and GATK, | compared a sample of 45 UKBB whole
exome CRAM files re-processed with the GoC pipeline to the DeepVariant VCFs.

The number of unfiltered variants called by freebayes and DeepVariant was of similar
magnitude, though freebayes called a mean of 212,877 variants per person compared to
109,902 per person by DeepVariant (Table 18). GATK called far fewer variants per person
(2,663). The GATK best practices pipeline applies several quality checks and filters to produce
a smaller set of higher confidence variants and was configured to remove more variants during
the calling process in the GoC pipeline. When equivalent filters were applied, the number of
variants called by DeepVariant was less than freebayes, though again of similar magnitude
(65,840 for DeepVariant vs 52,991 for freebayes; Table 18). The GATK callset was only reduced
by 24%, possibly due to more stringent quality checks throughout the calling process. As an
additional filtering step, the GoC pipeline considers only the overlap between GATK and

freebayes.
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Table 18. Mean variants per person in filtered and unfiltered data re-processed via the
GoC pipeline compared to DeepVariant calls.

Unfiltered Filtered
Variants = GATK  freebayes DeepVariant = GATK  freebayes DeepVariant +hwe nonsyn
All 2,663 | 212,877 109,902 2,024 52,991 65,840 23,059 7,445
SNPs 2,520 | 187,430 92,687 1,897 48,750 60,666 21,979 7,078
Indels 142 25,446 17,215 128 4,242 5,173 1,081 367

‘Unfiltered’ refers to VCFs with no depth or quality filters applied, i.e. they are the direct output
of the variant caller. ‘Filtered’ refers to the number of variants present after all filters from the
appropriate pipeline have been applied (Table 17). DeepVariant counts were generated with a
prototype filtering pipeline which differs slightly from the final version detailed in Configuration
of final pipeline. The same approach is used in the final pipeline with some modification to order
of steps to account for issues caused by specific variant types during VCF merging.

Comparison of callers by overlap of variants

Most variants (99.3% of SNPs and 93.4% of indels) called by the GoC pipeline were present in
the DeepVariant callset (Table 19). In the GoC pipeline, variants were annotated using VEP**
and Slivar®®® and filtered for frequency and impact. When this process was also applied to the
DeepVariant callset, the discrepancy in variant numbers called increased. The number of SNPs
and indels called by the GoC pipeline was reduced to a mean 344.75 and 14.5 per person
respectively, while the DeepVariant SNPs and indels were reduced to 13,219 and 863
respectively. Now 100% of SNPs called by the GoC pipeline were present in DeepVariant data,

but only 82.8% of indels.
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Table 19. Variant overlap from UKBB and GoC pipelines

Filter Low filter Strict filter

Variants SNPS INDELS SNPS INDELS
Pipeline GoC UKBB GoC UKBB GoC UKBB GoC UKBB
Total 19,233.75 67,010.5 335.25 7778 344.75 13,219 14.5 863
Exclusive 130.25 47,996 22 7464.75 0 12,873.25 2.5 850
Overlap 19103,5 313.25 344.75 12

Percent 99.3% 28.7% 93.4% 4% 100% 2.7% 82.8% 1.3%

Low filter: FILTER = PASS and QUAL = 5 applied to UKBB variants, as performed in GoC pipeline
for freebayes variants. No post-annotation filtering was applied. GoC pipeline variants are those
generated by the overlap of freebayes and GATK best practices pipeline.

Strict filter: FILTER = PASS, QUAL=30, DP= 7 for SNPs, DP = 10 for indels (as in °*°) for UKBB
variants. GoC pipeline variants are those generated by the overlap of freebayes and GATK best
practices pipeline. Both are annotated with VEP and Slivar and filtered with the following criteria:
impactful = TRUE, gnomad_af <0.01, variant.filter = PASS, topmed.af <0.01, variant ALT[0]!=*

Support for use of DeepVariant VCFs

Because DeepVariant called almost all variants called by the GoC pipeline, and because
DeepVariant has been shown to equal or outperform GATK in sensitivity and specificity
studies®*?%* | use the DeepVariant VCFs for genetic analyses rather than reprocessing the data
at considerable computing cost. Previous GoC studies benefited from stricter filtering
requirements and greater reduction of candidate variants due to the small number of cases.
The larger number of variants in this study is acceptable due to the larger number of cases

and matched controls.

Overall reduction in variants due to population-level filters

Population-level filters for Hardy-Weinberg violation, missingness and 90pc_10dp (90%
coverage at 10 depth) resulted in a reduction of ~20% from all chromosomes (Table 20). Most
chromosomes do not lose variants to the missingness filter, probably because the 90pc_10dp
filter removes them first. The reduction in variants was largely consistent across the genome,

except for the X and Y chromosomes.
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Table 20. Chromosome-level reduction in variants after application of population level

filters
Variants removed

Starting variants 90pc_10dp hwe Missingness Ending variants % reduction

1 2,687,650 562,184 14,391 0 2,111,075 21.45
2 1,986,436 461,460 8,534 0 1,516,442 23.66
3 1,572,602 356,178 6,659 0 1,209,765 23.07
4 1,088,878 279,378 4,489 0 805,011 26.07
5 1,200,708 280,428 5,342 0 914,938 23.80
6 1,343,324 304,012 6,011 0 1,033,301 23.08
7 1,290,944 283,616 6,354 0 1,000,974 22.46
8 983,410 222,187 4,231 0 756,992 23.02
9 1,160,259 243,966 5,501 0 910,792 21.50
10 1,105,522 256,916 5,228 0 843,378 23.71
11 1,589,220 297,235 7,541 0 1,284,444 19.18
12 1,435,996 324,345 6,389 0 1,105,262 23.03
13 485,358 118,804 1,874 0 364,680 24.86
14 840,031 177,011 4,264 0 658,756 21.58
15 936,831 208,664 4,616 0 723,551 22.77
16 1,300,364 228,077 6,111 0 1,066,176 18.01
17 1,565,159 280,248 7,236 0 1,277,675 18.37
18 433,149 103,014 1,837 0 328,298 24.21
19 1,791,970 262,420 10,646 0 1,518,904 15.24
20 686,915 128,316 3,052 0 555,547 19.12
21 289,748 62,683 1,451 0 225,614 22.13
22 613,853 110,413 500,209 0 500,209 18.51
Y 11,316 0 0 117 11,199 1.03

X 652,035 0 4,282 9,795 642,240 1.50

Post-filtering quality check

After all population and individual level filters are applied, the total number of variants in the
population is reduced from 27,051,678 to 796,596. Most retained variants were rare, with 90%
having MAF < 0.05 (Figure 23). Sample missingness was good with the highest missingness
for any sample being 0.0015. However, a small number of variants (N=16) had missingness >
0.1 after case/control selection and filtering. This probably arose due to application of the
missingness filter on a population level and subsequent sub-sampling; due to the large
number of variants, it is likely for a small number to acquire higher missingness by chance.

These variants were removed in subsequent analyses.
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Figure 23. Quality control statistics for 796,596 variants.

Sample missingness is calculated for all variants within a sample. Genotype missingness is
calculated for each site across all samples. F-score is a measure of homozygosity calculated for
each sample. minor allele frequency MAF shows minor allele frequencies of all variants amongst
the population. Genotype missingness frequency and minor allele frequency include non-white
participants as per-site information was calculated before their removal (n samples = 6,435).
Sample missingness and F-scores are for the final 6,000 cases and controls.

Sample missingness frequency Genotype missingness frequency

log10(n)

4e-05 6.73e-05 9.46e-05 0.0001219 0.0001492 0.0001765 0 0.0095 0.019 0.0285 0.038 0.0475 0.057
Missingness Missingness

F scores MAF of variants

25

log10(n)
&

0.5

-0.06 -0.0531 -0.0462 -0.0393 -0.0324 -0.0255 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
F Statistic MAF

Heterozygosity was good with no samples showing F scores < 3 times the standard deviation
below the mean (< -0.0501). F score indicates deviation from expected levels of homozygosity,
where low homozygosity/high heterozygosity can indicate contamination. 15 samples showed
F scores greater than 3 times above standard deviation from the population mean (>0.0534).
Two samples (one case and one control) had much higher F scores than the rest of the

population (0.2087 and 0.2838).

141

0.1



Comparison of GWAS methods shows good agreement between SAIGE and REGENEIE
when MAC > 20

During early prototyping, | trialled REGENIE as well as SAIGE and compared the results. When
no minor allele count (MAC) cutoff was applied, p-values generated by SAIGE and REGENIE-
SPA were generally well-correlated (R°=0.85) but two large blocks of SNPs were in
disagreement (Figure 24a). This effect was eliminated when a MAC cutoff of 20 was applied,
and R? increased slightly to 0.90 (Figure 24b). The MAC>20 cutoff was suggested by the
authors of SAIGE and supported by results from this prototype, so MAC<20 variants were
excluded from single-variant test results and downstream analyses, except for gene-based

tests which are designed to accommodate rare variants.
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Figure 24. p-value comparison for SAIGE and REGENIE using spa. a) when no MAC cutoff

is applied, blocks of SNPs are in disagreement. B) filtering to MAC>20 eliminates this
effect.

SAIGE vs REGENIE SPA comparison (log10 p value), MAC>0
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4.3.2 Genome-wide association test results
No single variant associations of genome-wide significance

Single variant analysis was performed for non-synonymous, coding SNPs in whole exome data.
Manhattan plotting (Figure 25) shows no obvious signals or significant loci, and the most
significant variants are scattered across the genome with no islands of linkage disequilibrium
surrounding them. The traditional GWAS Bonferroni correction puts genome-wide significance
at 5x10°® 8 However, whole exome studies may require different thresholds, which are not
widely agreed upon. Fadista et al(2016)*° suggest 3x10” for whole exome studies where
variants of MAF>=0.05. No variants met this lower threshold in our analysis. The most
significant variant was a missense variant in AMOTL2 (rsID rs139298691, p = 5.71x107). Genes
containing top-scoring variants (Table 21) were associated with various biological processes,
including actin filament-based motility (AMOTL2), RNA binding (RBM10), receptor activity
(OR10A2, CMKLR1, PTH2R) and calcium channel activity (CACNA2D1, CACNAT1G, ANK2) (Table
22).
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Figure 25. Manhattan plot of single variant results from whole exome data.

Top 20 variants are labelled with gene symbol. A cluster of 5 ORT0AZ2 variants is labelled once.

Table 21. 20 most significant variants after single variant association tests in UKBB

whole exome data

SNP
chr3:134365885:C:T
chr11:6869882:A:G
chrX:47186678:C:T
chr1:227816138:C:T
chr11:6870527:A:C
chr4:113353363:G:A
chr11:6870374:A:G
chr11:6869715:A:G
chr11:6869708:C:T
chr17:35764321:G:C
chr1:150308116:G:A
chr7:82443499:G:C
chr12:108292772:A:G
chr17:19742625:A:C
chr1:216421964:C:T
chr2:208443511:G:T
chr4:67963391:C:T
chr17:50572702:G:A
chr22:42644618:G:A
chr9:129895300:C:G
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Gene
AMOTL2
OR10A2
RBM10
PRSS38
OR10A2
ANK2
OR10A2
OR10A2
OR10A2
C170rf50
MRPS21
CACNA2D1
CMKLR1
ALDH3A1
USH2A
PTHZR
TMPRSS11A
CACNALG
CYB5R3
FNBP1

Consequence
Missense
Missense

3 prime UTR
Missense
Missense
Missense
Missense

5 prime UTR
5 prime UTR
Missense
Missense

5 prime UTR
Missense
Missense
Missense
Missense
start lost
Missense
Intron

Intron

rsiD
rs139298691
rs3930075
rs79840641
rs7926083
rs138842207
rs10839631
rs4758142
rs4758141
rs145033564
rs4845
rs200428602
rs192034694
rs887241
rs10779261
rs144641723
rs977728
rs201875227
rs578120569
rs17518373

p-value
5.71x10°
0.000111
0.000117
0.000123
0.000126
0.000127
0.000128
0.000133
0.000136
0.000139
0.000209
0.000219
0.000221
0.000232
0.000241
0.000267
0.000304
0.000324
0.000368
0.000385283

BETA
1.776042
0.194158
-1.66116
-0.26967
0.192911
2.273013
0.192705
0.19224
0.191889
0.56336
0.304099
1.674788
1.027504
-0.18776
0.198952
1.724242
0.238687
2.157344
1.854875
0.642503959



Table 22. Functions of genes containing top 20 significant variants. Brief descriptions of
genes functions are taken from UniProt.

Gene

AMOTL2

OR10A2

RBM10

PRSS38
ANK2

C170rf50

MRPS21

CACNA2D1

CMKLR1

ALDH3A1

USH2A

PTH2R

TMPRSS11A

CACNA1G

CYB5R3

FNBP1
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Description

angiomotin like 2

olfactory receptor
family 10 subfamily A
member 2

RNA binding motif
protein 10

serine protease 38
ankyrin 2

chromosome 17 open
reading frame 50
mitochondrial
ribosomal protein S21
calcium voltage-gated
channel auxiliary
subunit alpha2delta 1
chemerin chemokine-
like receptor 1

aldehyde
dehydrogenase 3
family member A1
usherin

parathyroid hormone
2 receptor

transmembrane serine
protease 11A

calcium voltage-gated
channel subunit
alphal G

cytochrome b5
reductase 3

formin binding protein
1

Description from UniProt

(UniProt accession ID)

Regulates translocation of phosphorylated SRC to cell matrix adhesion
sites. Required for proper architecture of actin filaments, cell shape and
area regulation. Inhibits Wnt/beta-catenin signaling pathway. May also be
involved in endothelial migration, proliferation and polarity. (Q9Y2J4)
Odorant receptor. (Q9H208)

May be involved in post-transcriptional regulation by mRNA splicing.
(P98175)

No UniProt description (A1L453)

Essential for stabilisation of ion transporters and ion channels in various
cell types, particularly cardiomyocytes and striated muscle cells. Bids
dynactin to promote long-range motility of cells. Part of the
ANK2/RABGAP1L complex which recycles fibronectin receptor. (Q01484)
No UniProt description (Q8WW18)

No UniProt description (P82921)

Subunit of voltage-dependent calcium channel, regulates calcium current

density (P54289).

Receptor for chemoattractant adipokine chemerin and E1 molecule.
Induces secondary messenger pathways such as calcium mobilisation and
MAPK activation. (Q99788)

Major role in detoxification of alcohol-derived acetaldehyde (P30838)

Part of USH2 complex involved in hearing (in growing stereocilia of
cochlear hair cells) and vision (maintaining the periciliary membrane
complex in photoreceptors). (075445)

Receptor for parathyroid hormone. May have a significant role in
pancreatic function. May also function as neurotransmitter receptor.
(P49190)

Probable serine proteinase whose overexpression inhibits cell growth and
induces G1 cell cycle arrest (Q6ZMRS5)

Subunit of voltage-dependent calcium channel mediating entry of calcium
jons into excitable cells. Involved in a variety of calcium-dependent
processes such as muscle contraction and hormone or neurotransmitter
release. (043497)

Catalyses reduction of cytochrome b5 using NADH electron donor.
(P00387)

May act as a link between RND2 signalling and actin cytoskeleton
regulation. May coordinate membrane tubulation with actin cytoskeleton
reorganisation during late stage clathrin-mediated endocytosis. (Q96RU3)


https://www.uniprot.org/uniprotkb/Q9Y2J4/entry
https://www.uniprot.org/uniprotkb/Q9H208/entry
https://www.uniprot.org/uniprotkb/P98175/entry
https://www.uniprot.org/uniprotkb/A1L453/entry
https://www.uniprot.org/uniprotkb/Q01484/entry
https://www.uniprot.org/uniprotkb/Q8WW18/entry
https://www.uniprot.org/uniprotkb/P82921/entry
https://www.uniprot.org/uniprotkb/P54289/entry
https://www.uniprot.org/uniprotkb/Q99788/entry
https://www.uniprot.org/uniprotkb/P30838/entry
https://www.uniprot.org/uniprotkb/O75445/entry
https://www.uniprot.org/uniprotkb/P49190/entry
https://www.uniprot.org/uniprotkb/Q6ZMR5/entry
https://www.uniprot.org/uniprotkb/O43497/entry
https://www.uniprot.org/uniprotkb/P00387/entry
https://www.uniprot.org/uniprotkb/Q96RU3/entry

Microarray validation agrees with WES where variants are overlapping

There was very little overlap between WES variants and microarray probes. With no MAC filters,
the total number of variants shared was 53,199 of 796,595 variants present in the WES data
and 572,358 in the microarray data. For MAC>20, the overlap was 32,011 variants. Agreement
between p-values for MAC>20 variants is very good (Pearson correlation coefficient = 0.96, R
= 0.92), with some scatter due to the inclusion of a random element within the SAIGE process
and possibly some measurement/sequencing errors causing differing allele counts (Figure

26).

Figure 26. UKBBWES vs UKBB microarray p-values for overlapping variants, sorted by
ascending WES p-value.

Showing 32,011 variants present in both data sets with minor allele count>20. There is good
agreement between methods with stronger scatter for high p-value (lower significance) variants.

WES p-values vs WES p-values

-log10 microarray P-values

. | 1 I I ]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-log10 WES P-values

Microarray does not identify any additional significant loci and no rare variants are included

which make up the most significant results in WES.
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Gene level association tests find no genes reaching genome-wide significance

Given there are approximately 20,000 protein-coding genes, genome-wide significance is set
at 2.5x10™ when Bonferonni correction is applied. The most significant gene was ABCC8 (ATP
binding cassette subfamily C member 8) which had a significance close to the threshold
(p=6.94x107). No other genes met genome-wide significance. The most significant genes have
diverse functions, including intracellular transport (PLEKHA8, VPS36, BAIAP3, NXTT),
cytoskeletal organisation (FER, TTLL12, FLNC), cell cycle (ESX1, TTLL12, PIMREG), transcription
regulation (ESX1, VPS36, TTLL12, CREB5, TFEB), and neural development or function (BAIAP3,
ADCYAP1, BCHE) (Table 23).

Table 23. Gene-level GWAS results for UK BioBank whole exome data, 20 most
significant genes. A brief description of protein function taken from UniProt is given alongside

the UniProt accession number. Gene-level tests do not include a beta score.

Symbol Name Description of function from UniProt (accession) P-value
ABCC8 ATP binding cassette Beta-cell ATP-sensitive potassium channel subunit 6.94x10°
subfamily C member 8 involved in insulin release (Q09428)
PLEKHA8  pleckstrin homology Cargo transport protein involved in trans-Golgi network 5 60x10°
domain containing A8 transport, also required for cilium formation (Q96JA3)
RGSL1 regulator of G protein (ASPLK6) 4
signalling like 1 261x10
ESX1 ESX homeobox 1 Involved in cell cycle progression and spermatogenesis,
arrests cell cycle at early M phase. Cleaved form 8.95x10%
ESXR1-N acts as transcriptional repressor and ESXR1-C
inhibits cyclin turnover. (Q8N693)
ANXA10  annexin A10 (Q9UJ72) 9.04x10*
ERLIN2 ER lipid raft associated 2 Forms complex with ERLIN2 to mediate endoplasmic
reticulum-associated degradation of inositol 1,4,5- 0.0013
triphosphate receptors. Involved in cholesterol
homeostasis. (094905)
ETFBKMT  electron transfer May regulate the function of EFTB in electron transfer
flavoprotein subunit beta from Acyl-CoA dehydrogenases to the main respiratory  0.0013
lysine methyltransferase chain (Q8I1XQ9)
NXT1 nuclear transport factor 2 Nuclear export protein; stimulates export of NES-
like export factor 1 containing proteins and involved in transport of U1 0.0014
snRNA, tRNA and mRNA (QSUKK6)
PIMREG PICALM interacting mitotic =~ May be involved in controlling metaphase-anaphase 0.0014
regulator transition during mitosis (Q9BSJ6)
FER FER tyrosine kinase Has a role in regulation of actin cytoskeleton and cell
migration downstream of cell surface receptors for
growth factors, including EGFR, PDGFRA and PDGRFB. 0.0015
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Also involved in insulin receptor signalling, mast cell
degranulation and leucocyte recruitment. (P16591)


https://www.uniprot.org/uniprotkb/Q09428/entry
https://www.uniprot.org/uniprotkb/Q96JA3/entry
https://www.uniprot.org/uniprotkb/A5PLK6/entry
https://www.uniprot.org/uniprotkb/Q8N693/entry
https://www.uniprot.org/uniprotkb/Q9UJ72/entry
https://www.uniprot.org/uniprotkb/O94905/entry
https://www.uniprot.org/uniprotkb/Q8IXQ9/entry
https://www.uniprot.org/uniprotkb/Q9UKK6/entry
https://www.uniprot.org/uniprotkb/Q9BSJ6/entry
https://www.uniprot.org/uniprotkb/P16591/entry

Symbol
HERC5

BCHE

BAIAP3

VPS36

TTLL12

CREB5S

TFEB

ADCYAP1

PDGFB

FLNC

Name

HECT and RLD domain
containing E3 ubiquitin
protein ligase 5

butyrylcholinesterase

BAI1 associated protein 3

vacuolar protein sorting 36
homolog

tubulin tyrosine ligase like
12

cAMP responsive element

binding protein 5
transcription factor EB

adenylate cyclase
activating polypeptide 1

platelet derived growth
factor subunit B

filamin C

Description of function from UniProt (accession)
Positively regulates innate antiviral response, also
involved in bacterial clearance. (Q9UI14)

Broad specificity esterase involved in acetylcholine
inactivation. Can degrade neurotoxic organophosphate
esters. (P06276)

Involved in endosome to Golgi retrograde transport.
May mediate endosome fusion to trans-Golgi network
via interactions with SNARE. Involved in regulation of
neurotransmitter and hormone secretion (094812)
Component of the ESCRT-II complex, involved in
sorting of endosomal cargo proteins into multivesicular
body formation. May be involved in transcription
regulation. (Q86VN1)

Negatively regulates post-transcriptional modifications
of tubulin. Has a role in mitosis and maintaining
chromosome number stability. (Q14166)

Activates transcription (Q02930)

Transcription factor, master regulator of lysosome
biogenesis/exocytosis, autophagy, lipid catabolism and
immune response. (P19484)

Stimulates adenylate cyclase in pituitary cells.
Promotes neuron projection development. Induces
long-lasting increases in intracellular calcium in
chromaffin cells. Involved in glucose homeostasis by
inducing insulin secretion by beta cells (P18509)
Growth factor required for normal embryonic
development, cell proliferation, migration, survival and
chemotaxis. Potent mitogen for mesenchymal cells.
Important in wound healing. (P01127)

Muscle specific filamin, important for sarcomere
assembly and organisation. (Q14315)

P-value

0.0015

0.0016

0.0017

0.0018

0.0019

0.0021

0.0021

0.0022

0.0022

0.0024

Thirteen of thirty-six previously reported variants'#656668124 yyere detected in this GWAS. The

variants were all rare with minor allele counts between 1 and 164 and generally had very small
betas (median= -0.253) and non-significant p-values (median=0.4486). Only one DNAH7
variant, rs115474479, had a p-value < 0.05. This variant had a beta of 3.1 with two

heterozygotes in the case group and one heterozygote in the control group.
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https://www.uniprot.org/uniprotkb/Q9UII4/entry
https://www.uniprot.org/uniprotkb/P06276/entry
https://www.uniprot.org/uniprotkb/O94812/entry
https://www.uniprot.org/uniprotkb/Q86VN1/entry
https://www.uniprot.org/uniprotkb/Q14166/entry
https://www.uniprot.org/uniprotkb/Q02930/entry
https://www.uniprot.org/uniprotkb/P19484/entry
https://www.uniprot.org/uniprotkb/P18509/entry
https://www.uniprot.org/uniprotkb/P01127/entry
https://www.uniprot.org/uniprotkb/Q14315/entry

Table 24. Comparison of genes and variants detected in previous studies with same
genes in this GWAS. For each gene, the gene-based p-value (SKAT-0O) is shown.

The specific variants reported in each study are given where available. If the variant appeared
within UKBB WES data, its beta and p-value are given.

Genes Variants
Study Gene p-value Variant BETA p-value
RTN4 0.890
RAB5A 0.463
CRYBG1 0.712
RGS22 0.025 rs993516236
APBB1IP 0.036 rs750180116
HEPHL1 0.808 rs756695159
Lee et al. (2022)%®
BHLHE41 0.839 rs371168594
ARID3A 0.662 rs911982273
C5AR1 0.546 rs145736934
SPTLC3 0.620 rs749277943
CPT1B 0.417 rs745528078
FAMZ227A. 0.511
Shaoul et al. (1999)% APC 0.640
Prinsley et al. EGFL8 0.661 rs141826798 -0.253 0.440
(2019)* BTNL9 1.000 rs367635312 -0.055 0.796
0.267 rs201548700 -1.187 0.666
NEB ' rs114089598 -0.255 0.465
rs764064217
rs201273652
DNAH7 0.487
rs115474479 3.100 0.037
rs189506550
Cardenas et al. DENND2C 0.350
rs61753528 0.224 0.469
(2023)%2¢
0.119 rs199629983 -0.510 0.552
NBEAL1
0.119 rs180771101 0.487 0.238
rs148813704 -0.391 0.338
PRRC2C 0.909
rs138220849 -1.202 0.322
rs201010410 1.928 0.280
SHC2 0.196
rs768095487
rs80338939 -0.377 0.170
rs111033196
rs111033222
rs72474224
James et al. (2010)%¢ GJB2 0.138
rs76838169
rs1555046611
rs35887622 -0.101 0.636
rs2274084
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https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/?chr=13&from=20763710&to=20763710&gts=rs111033222&mk=20763710:20763710|rs111033222
https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/?chr=13&from=20763612&to=20763612&gts=rs72474224&mk=20763612:20763612|rs72474224
https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/?chr=13&from=20763113&to=20763113&gts=rs76838169&mk=20763113:20763113|rs76838169
https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/?chr=11&from=66282061&to=66282062&gts=rs1555046611&mk=66282061:66282062|rs1555046611
https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/?chr=13&from=20763620&to=20763620&gts=rs35887622&mk=20763620:20763620|rs35887622

4.3.3 Gene set enrichment analysis of UK BioBank data

Enriched processes in single variant analysis include adhesion, calcium transport,
developmental processes and ciliary action via dyneins

150 Gene Ontology (GO) terms were enriched amongst genes with at least one p<0.05 variant

from UKBB single variant association tests, including 58 biological processes, 67 cellular

compartments and 25 molecular functions (SI Table 4). The large number of enriched

processes probably reflects both the large number of genes containing significant SNPs (2377)

and the nested nature of GO terms. These terms were collapsed to the most significant parent

term in each unbroken chain of significant terms (Table 25). Significantly enriched pathways

included:
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Cell adhesion (cell periphery, homophilic cell adhesion via plasma membrane adhesion
molecules, cell junction, cell junction assembly, p=1.3x10%" - 0.0134).

Cardiac action potential (membrane depolarization during cardiac muscle cell action
potential, voltage-gated calcium channel activity involved in cardiac muscle cell action
potential, cell-cell signalling involved in cardiac conduction, regulation of heart rate by
cardiac conduction, cardiac muscle cell action potential involved in contraction, cardiac
muscle cell contraction, p=7.38x107% - 0.0325).

Calcium binding and transport (calcium ion binding, calmodulin binding, calcium
channel complex, calcium ion import across plasma membrane, calcium ion
transmembrane import into cytosol p=4.83x107"° - 0.0385).

Cytoskeleton organization (cytoskeleton, cytoskeleton organization, actin filament-
based process, cytoskeletal protein binding, cluster of actin-based cell projections, cell
projection organization, p=1.34x10%- 0.0101)

Ciliary activity (minus-end-directed microtubule motor activity, dynein light chain
binding, dynein intermediate chain binding, USH2 complex, stereocilia coupling link,

dynein complex, p=5.57x10"" - 0.043).



Table 25. Significantly enriched GO terms in UK BioBank whole exome single variant

results.

Showing the most significant term in each unbroken chain of significant terms ascending the

hierarchy. Results are sorted by GO database: Biological processes (GO:BP), molecular functions
(GO:MF) and cellular compartments (GO:CC)

GO:BP

GO:CC
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GO term

homophilic cell adhesion via plasma
membrane adhesion molecules
multicellular organismal process
cytoskeleton organization

anatomical structure development

actin filament-based process

membrane depolarization during cardiac
muscle cell action potential

cellular glucuronidation

sensory perception of mechanical stimulus
detection of mechanical stimulus

cell-cell signaling involved in cardiac
conduction

positive regulation of cellular component
organization

regulation of heart rate by cardiac
conduction

supramolecular fiber organization

cell projection organization

cardiac muscle cell action potential involved
in contraction

cell junction assembly

calcium ion import across plasma membrane
transport

cellular response to stimulus
trans-synaptic signaling by BDNF
signaling

cardiac muscle cell contraction

calcium ion transmembrane import into
cytosol

retina homeostasis

striated muscle cell development

cell periphery

cytoplasm

plasma membrane bounded cell projection
membrane

endomembrane system

cytoskeleton

intracellular vesicle

cell junction

bounding membrane of organelle

Term ID
G0:0007156

G0:0032501
G0:0007010
G0:0048856
G0:0030029
G0:0086012

G0:0052695
G0:0050954
G0:0050982
G0:0086019

G0:0051130

G0:0086091

G0:0097435
G0:0030030
G0:0086002

G0:0034329
G0:0098703
G0:0006810
G0:0051716
G0:0099191
G0:0023052
G0:0086003
G0:0097553

G0:0001895
G0:0055002
G0:0071944
G0:0005737
G0:0120025
G0:0016020
G0:0012505
G0:0005856
G0:0097708
G0:0030054
G0:0098588

p
2.87x10%

6.77x10°
1.10x107
6.12x107
1.16x10°
7.38x10*

0.0019
0.0021
0.0024
0.0027

0.0053

0.0054

0.0061
0.0101
0.0108

0.0134
0.0155
0.0167
0.0181
0.0308
0.0322
0.0325
0.0385

0.0406
0.0497
1.30x10%
5.55x10°13
6.34x1012
4.71x101
3.09x10°
1.34x10%
8.05x107
1.24x10*
1.48x10*

Size
168

7669
1512
5899
805
21

21
188
55
32

1116

40

842
1613
50

449
46
4350
7394

6447
72
197

57
73
6228
12345
2277
9864
4777
2430
2518
2230
2203

N Genes
61

958
252
511
139

11
36
17

162

136
239

39

574
911

781

17
16
873
1508
303
1229
613
360
347
311
296



GO term Term ID p Size N Genes
cluster of actin-based cell projections G0:0098862 5.85x10% 168 39
cell leading edge G0:0031252 7.68x10* 427 66
USH2 complex G0:1990696 0.0027 4 4
apical part of cell G0:0045177 0.0047 473 78
| band G0:0031674 0.0048 149 29
stereocilia coupling link G0:0002139 0.0066 8 5
supramolecular polymer G0:0099081 0.0069 1062 137
calcium channel complex G0:0034704 0.0144 84 3
mismatch repair complex G0:0032300 0.0263 8 3
midbody G0:0030496 0.0379 206 37
dynein complex G0:0030286 0.0430 54 16
extracellular region G0:0005576 0.0454 4213 428
chiasma G0:0005712 0.0465 2 2
early endosome membrane G0:0031901 0.0465 192 23
calcium ion binding G0:0005509 4.83x101° 726 139
minus-end-directed microtubule motor G0:0008569 5.57x107 17 13
activity
cytoskeletal protein binding G0:0008092 1.04x10* 1002 145
dynein intermediate chain binding G0:0045505 1.05x10* 37 17
calmodulin binding G0:0005516 1.14x10* 206 48
o adenyl ribonucleotide binding G0:0032559 3.53x10* 1560 232
g voltage-gated calcium channel activity G0:0086007 0.0024 5 2
= involved in cardiac muscle cell action
potential
dynein light intermediate chain binding G0:0051959 0.0025 28 13
protein-containing complex binding G0:0044877 0.0032 1752 245
glucuronosyltransferase activity G0:0015020 0.0056 34 13
GTPase regulator activity G0:0030695 0.0125 492 75
structural constituent of muscle G0:0008307 0.0263 42 9

Enriched pathways overlap with functions identified in previous GoC WES study

126 yused whole exome sequencing data from 21 individuals from 10

Our previous GoC study
affected families to identify potentially causative genes through two methods: family overlap
analysis and gene burden/TRAPD analysis. In family overlap analysis, common variants shared
by cholesteatoma cases within families were identified and the set of genes carrying variants
which appeared in 2 or more families was analysed used g:Profiler. For burden analysis,
TRAPD?’ software was used to compare variant frequencies to frequencies recorded in public
databases to identify variants which were significantly more common amongst affected

families and the results subject to g:Profiler analysis. 17 significantly enriched GO terms were

identified, of which 10 were also enriched in the full UKBB WES g:Profiler result (Table 26).
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Processes with three main themes were enriched in both studies: calcium ion binding, dynein

motor activity; and Gtpase activity.

Table 26. Comparison of gene set enrichment analysis results of GoC WES family study
and UK BioBank.
Showing enriched GO terms only with columns showing p-value for family and burden tests from
the GoC WES study as well as UKBB WES. Terms that were enriched in both the GoC WS study
and UKBB WES single variant data are bolded.

Family Burden
. UKBB WES p-
overlap analysis p-
value
Terms Term ID Source p-value value
Cation binding G0:0043169 GO:MF 0.00442 5.48x10* 4.73x10-%
Calcium ion binding G0:0005509 GO:MF 0.00988 0.00383 4.83x10"
Extracellular matrix structural
. 0.00608 3.00x10*
constituent G0:0005201 GO:MF
lon binding G0O:0043167 GO:MF 3.17x10™* 2.54x10°° 4.12x101
Gtpase regulator activity G0:0030695 GO:MF 3.48x10* 0.012512
Nucleoside-triphosphatase ]
o 7.24x10% 0.012512
regulator activity G0:0060589 GO:MF
Gtpase activator activity G0:0005096 GO:MF 0.00608
Guanyl-nucleotide exchange
. 0.00581 0.012617
factor activity G0:0005085 GO:MF
Motor activity G0:0003774  GO:MF 1.05x10°
Cytoskeletal protein binding G0:0008092 GO:MF 0.00118 0.000104
Cargo receptor activity G0:0038024 GO:MF 0.00764
Metal ion binding G0:0046872 GO:MF 6.58x10* 4.38x10710
Atp-dependent microtubule ]
. 4.19x10°
motor activity G0:1990939 GO:MF
Microtubule motor activity G0:0003777 GO:MF 2.00x10™* 0.00856
Dynein intermediate chain "
o 2.36x10 0.000105
binding GO0:0045505 GO:MF
Dynein light intermediate chain "
o 1.08x10 0.00253
binding G0:0051959 GO:MF

Enriched pathways from gene-based tests do not have much direct overlap with single
variant gene set enrichment

Enrichment analysis of the gene-based tests generated a different, smaller set of enriched
pathways- to the single variant-level enrichment tests (Table 27). There is some overlap in
functions: the cell junction was an enriched compartment in both analyses and cell junction
disassembly was enriched in gene-based test results. Different terms related to cell signalling

were also enriched in both.
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Table 27. Significantly enriched GO terms in UK BioBank whole gene-level variant

results.

Results are divided into GO Biological Processes, GO Cellular Compartment and GO Molecular

Function. Due to the small number of results, they have not been collapsed to the most significant

term in each unbroken chain.

GO:BP

GO:CC

GO:MF

Pathway

vacuolar transport
regulation of smooth muscle cell differentiation
nerve growth factor signaling pathway

regulation of cAMP-dependent protein kinase

activity

ISG15-protein conjugation

cytoplasm

late endosome

membrane

cell junction

endoplasmic reticulum lumen
protein binding
ISG15 transferase activity

beta-1 adrenergic receptor binding

GOID
G0:0007034

G0:0051150
G0:0038180
G0:2000479

G0:0032020
G0:0005737

G0:0005770
G0:0016020
G0:0030054
G0:0005788
G0:0005515
G0:0042296
G0:0031697

p-value
0.0119

0.0181
0.0302
0.0319

0.0483

2.12x10°

06

0.00406
0.00729
0.0224
0.0479
0.00101
0.00647
0.0332

Term
size
171
36
13
12

12345

314
9864
2230
313
14838

3

Genes
18

531

402
84
23
602

4.3.4 Enriched processes in FinnGen microarray data overlap with

UK BioBank whole exome

Amongst FinnGen single variants with p-value < 0.05, 959 terms were enriched (606 GO:BP,

209 GO:CC, 144 GO:MF). This larger number is attributed to the greater number of genes

containing significant SNPs due to the larger number of cases. 112 terms were enriched in

both FinnGen and UKBB single variant data, meaning 75% of terms enriched in UKBB WES

were also enriched in FinnGen, but only 12% of FinnGen terms were enriched in UKBB WES.

Terms that were enriched in UKBB but not FinnGen were mostly cytoskeletal, ciliary or dynein

related as well as terms related to cardiac regulation.

FinnGen enriched pathways included terms related to cell-cell adhesion, with homophilic cell

adhesion via plasma membrane adhesion molecules being the most significantly enriched

process in both FinnGen and UKBB. Calcium ion binding and transport were also enriched

(under terms localisation, small molecule binding, homeostatic process transporter activity and
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cell adhesion in Table 28; p-value for calcium ion binding = 1.03x10%*, p-value for calcium ion
transport = 1.62x107). Many FinnGen enriched terms were related to neuronal development
and function, although these are largely collapsed into developmental process and cell
projection terms (Table 28). Cytoskeletal and ciliary function were also implicated in this data,
including terms such as actin-filament-based process, cytoskeletal motor activity, GTPase
regulator activity, and minus-end-directed microtubule motor activity. Unlike UKBB WES results,

dyneins were not directly implicated.
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Table 28. Enriched terms in FinnGen data collapsed to most significant term within an

unbroken ascending chain of enriched terms.

P-value is corrected using g:SCS, a multiple testing correction method packaged with g:Profiler

which accounts for the hierarchical nature of GO terms.

source

GO:BP

157

Pathway

anatomical structure development
multicellular organismal process

cell adhesion

plasma membrane bounded cell projection
organization

Transport

regulation of cell communication
regulation of signaling

cellular response to stimulus

cell junction organization

cell motility

actin filament-based process

cytoskeleton organization

locomotion

phosphate-containing compound metabolic
process

growth

supramolecular fiber organization

protein modification process

homeostatic process

extracellular structure organization
external encapsulating structure organization
organonitrogen compound metabolic process
lipid metabolic process

cell population proliferation
microtubule-based process

cognition

membrane organization

cell recognition

cell death

cellular glucuronidation

negative chemotaxis

ovulation cycle

sensory perception of sound

reproduction

AV node cell action potential

immune response-activating signaling
pathway

GO ID

G0:0048856
G0:0032501
G0:0007155
G0:0120036

G0:0006810
G0:0010646
G0:0023051
G0:0051716
G0:0034330
G0:0048870
G0:0030029
G0:0007010
G0:0040011
G0:0006796

G0:0040007
G0:0097435
G0:0036211
G0:0042592
G0:0043062
G0:0045229
G0:1901564
G0:0006629
G0:0008283
G0:0007017
G0:0050890
G0:0061024
G0:0008037
G0:0008219
G0:0052695
G0:0050919
G0:0042698
G0:0007605
G0:0000003
G0:0086016
G0:0002757

1.53E%!
2.53E™!
2.81E%
8.43%

6.16E3

9.25F3

9.41x10->*
2.78x10-31
2.66x10-28
4.21x10-%
7.13x10-2°
1.34x10-%°
3.54x10-12
1.74x10-1

7.34x10-1
2.28x10-1°
8.12x10-10
6.53x10°
1.24x10°8
1.66x10°®
2.28x10°8
2.70x10°®
2.62x10°®
4.68x10°
9.35x10°
0.000177
0.000316
0.000588
0.000982
0.0011
0.002504
0.002986
0.00358
0.004124
0.004789

Size

5899
7669
1512
1570

4350
3443
3437
7394
759

1709
805

1512
1234
2571

939
842
3031
1712
325
326
5986
1388
2006
953
322
815
156
1988
21
47
72
165
1552
10
465

genes

2224
2733
648
610

1611
1323
1321
2550
312
562
364
567
363
921

296
343
1046
614
152
152
1946
514
703
336
114
236
55
513
15
30
24
50
483
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source

GO:CC

GO:MF
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Pathway

regulation of primary metabolic process
protein localization to postsynaptic
specialization membrane

cell cycle process

cellular component maintenance

visual perception

regulation of nitrogen compound metabolic
process

Fc receptor mediated stimulatory signaling
pathway

cytoplasm

cell periphery

membrane

cell junction

cell projection

endomembrane system

cytoskeleton

somatodendritic compartment

vesicle

cell leading edge

apical part of cell

monoatomic ion channel complex

cell surface

cell body

nucleoplasm

organelle subcompartment
supramolecular polymer

extracellular region

site of polarized growth

basal part of cell

cluster of actin-based cell projections
receptor complex

neurotransmitter receptor complex
protein complex involved in cell adhesion
guanyl-nucleotide exchange factor complex
collagen trimer

DNA repair complex

trans-Golgi network

ion binding

protein binding

ATP binding

carbohydrate derivative binding

transporter activity

GO ID

G0:0080090
G0:0099633

G0:0022402
G0:0043954
G0:0007601
G0:0051171

G0:0002431

G0:0005737
G0:0071944
G0:0016020
G0:0030054
G0:0042995
G0:0012505
G0:0005856
G0:0036477
G0:0031982
G0:0031252
G0:0045177
G0:0034702
G0:0009986
G0:0044297
G0:0005654
G0:0031984
G0:0099081
G0:0005576
G0:0030427
G0:0045178
G0:0098862
G0:0043235
G0:0098878
G0:0098636
G0:0032045
G0:0005581
G0:1990391
G0:0005802
G0:0043167
G0:0005515
G0:0005524
G0:0097367
G0:0005215

0.013761
0.025999

0.032969
0.038083
0.038612
0.039341

0.045374

5.85x10°®
1.05x1078
1.27x10°%°
4.31x10°%7
3.16x10°°°
5.78x10™%3
8.43x1073*
1.44x10%
1.12x10%4
2.52x10°16
3.03x107%
5.68x10°13
7.65x1013
2.57x10°12
1.00x10**
1.79x101°
4.80x107°
6.46x10°
2.03x10°®
3.52x10°8
1.89x107
0.000175
0.000859
0.000909
0.003333
0.005474
0.010103
0.038189
6.06x10733
6.43x10730
5.61x102*
1.25x10%°
8.36x10°%°

Size

5591
28

1276
73
219
5440

32

12345
6228
9864
2230
2389
4777
2430
848
4004
427
473
346
903
565
4220
1521
1062
4213
174
300
168
523
46
59
24
91
22
264
6146
14838
1500
2304
1239

genes

1723
11

418
30
84
1672

21

4083
2314
3341
895
1041
1713
928
330
1395
204
211
165
339
199
1345
543
365
1338
74
129
79
141
25
31

44
15
83
2247
4826
632
911
513



source Pathway GO ID P Size N
genes

GTPase regulator activity G0:0030695 1.09x101 492 225
phosphotransferase activity, alcohol groupas  G0:0016773 1.00x10° 697 292
acceptor
ATP-dependent activity G0:0140657 5.84x10° 580 252
protein-containing complex binding G0:0044877 1.49x107 1752 648
cytoskeletal motor activity G0:0003774 4.70x10°% 115 59
lipid binding G0:0008289 7.07x10° 841 321
glutamate receptor activity G0:0008066 7.30x10°® 27 19
protein-macromolecule adaptor activity G0:0030674 0.000159 947 330
extracellular matrix structural constituent G0:0005201 0.000189 167 81
transmembrane receptor protein tyrosine G0:0005001 0.000431 17 12
phosphatase activity
minus-end-directed microtubule motor G0:0008569 0.00057 17 14
activity
metallopeptidase activity G0:0008237 0.005226 187 84
phosphatidyl phospholipase B activity G0:0102545 0.007775 11 7
syntaxin-1 binding G0:0017075 0.014796 19 12
sulfur compound binding G0:1901681 0.018948 268 53
structural constituent of presynaptic active G0:0098882 0.022389 5 5
zone
structural constituent of muscle G0:0008307 0.032047 42 22
postsynaptic neurotransmitter receptor G0:0098960 0.033892 72 31

activity

Results are supported by UK BioBank microarray analysis

The gene set enrichment analysis performed on UKBB microarray single variant results (SI
Table 5) agrees with the FinnGen microarray results and includes more terms related to neural
development and synapse function compared to UKBBWES. As in the FinnGen microarray
results, ciliary terms were not enriched, supporting the absence of these terms being due to

array-based approaches missing rare DNAH/DNAI variants.

In total, 93 terms were enriched across all data sets (Figure 27). Of the 150 enriched terms in
the whole exome data, 112 were also enriched in the UKBB microarray data (75%). Meanwhile,
700 terms were enriched in the UKBB microarray data: only 16% of these terms were also
enriched in the whole exome data. The UKBB microarray data shared more enriched terms

with the FinnGen data (557 terms; 78% of UKBB microarray terms), suggesting that the
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similarity of technologies made the results more comparable. Note that slight differences in
the precise processes enriched can lead to very similar processes appearing across sectors in
Figure 27: the term cardiac muscle contraction is enriched in UKBB WES but not microarray,
though the very similar term cardiac muscle cell contraction is enriched in both. For this reason,
| give general descriptive terms of the types of pathways and processes enriched in different

sectors of the diagram.

Figure 27. Venn diagram showing number of overlapping terms in UKBB WES, UKBB
Microarray and FinnGen. A qualitative description of common terms is given for each sector.

Cilium-related terms
Cardiac muscle action

terms

UKBB WES UKBB MICROARRAY

Dynein terms
Some muscle/cardiac
terms

Cardiac terms
GABA signaling
Other neural signaling terms
Cargo shuttling

Developmental processes
Cell signaling and communication
Cell adhesion
Cytoskeleton organization and motility
Calcium transport and binding
+1ECM term

Neuron development Synaptic
Cilium related terms signaling terms
Uronic/glucouronic process Other development terms
Import/export Muscle contraction

FINNGEN MICROARRAY

Lipid location in cell membrane
Various systems development

Pathways common to all data sets included various developmental processes, cell signalling
and communication processes, cell-cell adhesion, cytoskeletal processes, and calcium
transport and binding. Some individual terms were also enriched in all three sets, such as
minus-end-directed microtubule motor activity and the extracellular matrix cellular

compartment. The terms unique to UKBB whole exome were largely dynein-related (while
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some cardiac muscle terms were unique to UKBB whole exome, other similar terms were

enriched in other data sets).

4.3.5 Sensitivity analysis suggests study was underpowered for rare
variants

The size of this study was limited by the number of cases present in UKBB. | performed post-
hoc sensitivity analysis to determine power for different variant frequencies and effect sizes. |
also determined the minimum effect size that would be detected under the current study

design of 1,000 cases and 5,000 controls at 80% power.

Sensitivity analysis suggests that the power to detect rare variants was very low (Table 29),
although common variants with GRR > 1.5 should be detectable with >90% sensitivity. The
best improvements in predicted power with study size occur for rare variants, with
considerable improvements in sensitivity going from 2,000 to 5,000 and 5,000 to 10,000 cases.
However, there is little improvement in sensitivity for common variants when going from 5,000

to 10,000.

Table 29. Power under current study design and minimum sample size required for 80%
power for different minor allele frequencies and genotype relative risks

Genotype Power with Sample size

Allele frequency relative risk* 1,000 cases for >0.8 power
Ultra rare 0.001 2 0 >100,000
variants 0.001 5 0.002 10,000

0.001 7 0.013 5,000
Rare variants 0.01 1.5 0 >100,000

0.01 2 0.008 7,000

0.01 5 0.990 700
Common 0.25 1.2 0.011 10,000
variants 0.25 1.5 0.904 900

0.25 2 1 300

The threshold detectable genetic risk ratio (GRR) was consistently higher than the GRRs
calculated from single variant association test results (Figure 28), which was expected given
the lack of significant results. We can only confidently state that no effects exist that are above
this threshold: otherwise, the effect sizes cannot be distinguished from noise. If the effect sizes
observed in this study were accurate, a sample size of 5,000 would be required to detect them

statistically (Table 30).
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Figure 28. Comparison of genetic risk ratio calculated from odds ratio for different minor
allele frequencies, versus threshold GRR.

The plot shows the genotype relative risks (GRRs) obtained from single variant whole exome
analysis (scatter) plotted against the threshold detectable GRRs for 4 different sample sizes (line).
Both the threshold GRR and calculated GRRs increase rapidly at low MAF. Rare variants have
smaller effective sample sizes, making them more susceptible to larger variations in effect size
estimate due to chance, leading to an increase in both the measured GRR and the threshold for

significance.
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Table 30. Threshold detectable GRR for different minor allele frequencies at 80% power,
with N cases and case:control ratio of 1:5

Minor Allele frequency N cases
1000 2000 5000 10,000

0.005 5.9 3.74 2.42 1.9
0.01 3.84 2.66 1.9 1.59
0.05 1.93 1.6 1.35 1.25
0.1 1.67 1.42 1.25 1.18
0.2 15 13 1.18 1.11
0.3 1.44 1.26 1.16 1.11
0.4 1.42 1.24 1.15 1.1
0.5 1.43 1.24 1.14 1.1
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Overall, power analysis suggests this study is underpowered to detect very rare variants unless
their effect sizes are very large, though this study should be capable of detecting common

variants with GRR > 1.4.

4.4 Discussion

In this chapter, | performed single-variant and gene-level genome-wide association tests with
UK BioBank whole exome (UKBB WES) data. | also performed pathway level analysis using
g:Profiler to detect enriched processes amongst the genes carrying variants with p-value <
0.05. | used FinnGen summary statistics for comparison and identified common pathways
enriched across both biobanks. | also performed single-variant and gene set enrichment tests

using UKBB microarray data for better comparison with FinnGen data.

In this analysis, no single variant or gene met genome-wide significance. A lack of obvious
signals in the Manhattan plot of results and no significant genes suggest that no individual
loci have strong enough effects to identify with this cohort of 1,000 cholesteatoma cases. The
top scoring genes and variants are associated with a variety of functions, making functional
interpretation difficult. Power calculations support the need for a larger number of cases as
this study’s power to detect rare variant associations was low. The small sample size means
rare variants or those with small effect sizes cannot be detected, resulting in high risk of type

2 error.

However, gene set enrichment analysis of WES single variant results reveals several
significantly enriched processes. Within UKBB WES data, this includes terms related to cell
adhesion, cytoskeleton organisation, calcium binding, cardiac muscle regulation and
developmental processes. Most of these were also enriched in UKBB microarray and FinnGen
microarray data. The microarray results were also enriched for neural development terms,

whereas dynein binding was specific to UKBB WES.

The previous GoC whole exome study'?

of twenty-one individuals from ten affected families
identified an overlapping set of processes enriched for deleterious variants including calcium
binding, extracellular matrix organisation and ciliary motility. The latter is particularly
interesting as UKBB WES data and the GoC implicate axonemal dyneins specifically.

Meanwhile, calcium binding was enriched in the UKBB whole exome single variant results,
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previous GoC WES paper, and in FinnGen results; calcium binding is also an enriched process
amongst dysregulated genes compared to skin from several expression studies (see Semi-
systematic review of global gene expression studies). Agreement between studies regarding
enriched pathways despite a lack of individually significant genes or variants suggests a

genetic effect on cholesteatoma risk exists but it may be polygenic or heterogeneous.

Our previous WES paper identified enriched deleterious variants associated with ECM
degradation, which is consistent with gene expression studies showing dysregulated ECM
proteins and upregulated proteases®®’"7812° This study did not identify genes associated with
ECM degradation in UKBB WES data. Microarray data from UKBB and FinnGen did show
enrichment of some relevant terms such as extracellular structure organization, extracellular
matrix structural constituent and enrichment of the extracellular region. However, the number
of enriched terms related to these was small compared to other functions and was not

repeated in the UKBB WES data.

Cholesteatoma tissue also shows aberrant expression of immune genes and inflammation has
been suggested to play a role in establishment and pathology?'. Neither this nor our previous
whole exome study identified enriched deleterious variants in immune pathways. Some
immune-related terms were enriched in FinnGen, but the number was very small; no terms

were present in the UKBB data.

The much larger number of enriched terms in FinnGen compared to UKBB (959 vs 150) may
be due to the larger sample size for FinnGen (n = 1,447 compared to 1000) leading to a greater
number of p-value < 0.05 variants due to increased power. While most terms enriched in the
UKBB data were also present in the FinnGen data, FinnGen contained many additional enriched

processes with the large variability making them difficult to interpret.

4.4.1 Enriched processes and associated genes
Cell adhesion, actin organisation and migration

Genes related to cell-cell adhesion and various terms associated with cytoskeletal organisation
were enriched across both biobanks. Cell adhesion is mediated by membrane-bound adhesion
molecules which form adhesion complexes including adherens junctions, gap junctions,
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desmosomes, hemidesmosomes'’>. Adhesion may be between cells or with the ECM and is
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required for physical anchoring of tissues and cell communication. In cancer, loss of cell-cell
adhesion can result in increased adhesion of cells to the ECM, promoting invasiveness'”®. On
the intracellular side of adhesion complexes, the proteins interact with the cytoskeleton so can
also mediate cytoskeletal processes'”®. The most significant single variant in UKBB WES data
was in AMOTL2 (p=5.71x10", beta=1.78), which has roles in actin filament architecture and
coupling to cell junctions®®. The AMOTL2 protein forms a complex with the adhesion molecule
E-Cadherin and regulates actin filament growth and organisation to maintain cellular

geometry in epithelial tissue®*®,

The cytoskeleton is primarily composed of microtubules, actin filaments, and intermediate
filaments and is involved in processes related to cell shape, structure, and motility239. In this
analysis, actin organisation terms were enriched specifically. A major role of actin is in
amoeboid cell motility: this involves formation of focal adhesion points, changes in cell shape,
and cell contraction®®. Actin can form dynamic protruding structures such as lamellipodia®®
and produce contractile forces through interaction with myosin to propel cells across a
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substrate™'. These contractile forces also result in morphological changes and ECM

remodelling necessary for cell movement®*

. Taken together, enriched genetic variants
affecting adhesion molecules and cytoskeleton organisation may indicate alterations in

amoeboid cell motility.

The actin cytoskeleton is also involved in exocytosis, endocytosis, and intracellular transport®°.
Interestingly, the second-best gene, PLEKH8 (p=2.60x10"), encodes a cargo transport protein
involved in transport from the Golgi complex, synthesis of glycosphingolipids, and in primary
cilium formation®*®. Other top-scoring genes according to gene-based tests were VPS36,

BAIAP3, which are also involved in cargo sorting and transport?*42**,

Enrichment of developmental and neurodevelopmental terms

The enriched GO term system development may also be relevant to cholesteatoma via
cranial/ear morphology promoting susceptibility to repeated infection and debris collection
through poor ventilation. Conditions affecting cranial morphology are associated with higher
rates of cholesteatoma, including Turner syndrome, Down syndrome, and cleft palate®. In fact,
one study® showed that the siblings of children with orofacial clefts were also at modestly

increased risk of cholesteatoma, despite not having a cleft themselves, which the authors
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suggest may be due to accumulation of subclinical muscular defects. Alternatively. The system
development term may be relevant to cholesteatoma development via the behaviour of the
cholesteatoma tissue itself, for example its increased cell turnover. However, enriched
developmental processes in GSEA should be interpreted with caution as these are broad
categories containing many genes, and many different processes can form part of tissue
development. This does not necessarily mean they will have any influence on either the

morphology of the head/ear or the behaviour of cholesteatoma tissue.

Interestingly, both systems development and nervous system development were enriched terms
in the primary analysis of single-variant results, while the analysis of gene-level association
tests identified significant enrichment of beta-1 adrenergic receptor binding and nerve growth
factor signalling pathways. Furthermore, several FinnGen enriched pathways were related to
neural development or synaptic function and nervous system development was enriched in
both FinnGen and UKBB. Findings of enriched genes in neurodevelopment and neural
signalling pathways is reflected by findings in the epidemiology chapter of this thesis, where
odds of epilepsy were increased amongst cholesteatoma cases in both UKBB and FinnGen.
This suggests that increased rates of epilepsy in these cohorts may not only be as a side effect
of invasive disease but may have a genetic basis. Possibly, epilepsy and cholesteatoma may
be linked via developmental defects which may not cause any obvious syndromic appearance
but subtly raise risk of both. However, it is also possible that the raised epilepsy rate in these
groups is coincidental and may or may not be the cause of enriched terms related to neural
development. Epilepsy with cholesteatoma is very rarely reported and has only occasionally
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been described as a complication of cholesteatoma , making the nature of any possible

association obscure.

A role for calcium ions

A role for calcium ions is supported by this study, our previous WES study, and gene expression
studies reviewed in Semi-systematic review of global gene expression studies but interpretation
of this finding is difficult due to the diverse functions of calcium in the body. In the UKBB WES
data, enrichment of calcium binding was driven by variants in voltage-gated calcium channel
subunits CACNATG, CACNA2DT1 and ion channel stabiliser ANK2 (p=0.00013-0.00032;

beta=1.67-2.27). These were amongst the most significant single variants and also drove
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enrichment of terms related to cardiac regulation. Voltage-gated calcium channels are
involved in calcium homeostasis, signalling in neurons and calcium influx in cardiac muscle
contraction. Defects in members of the CACNA family are also associated with cardiac and

neural problems, including epilepsy®*.

Most calcium in the human body is found in skeleton, where it forms an integral part of the
bone matrix**’, which may be relevant to the bone loss seen in cholesteatoma. As a signalling
molecule, calcium has important roles in immune function®® and wound-healing®®. While
immune function and inflammation are implicated in cholesteatoma pathology, there is little
evidence of changes to immune genes being directly responsible from this or our previous
whole exome study. Cholesteatoma also resembles wound-healing tissue with ECM
degradation, increased migration and proliferation, and angiogenesis*®. Impaired calcium
signalling could be involved in provoking a chronic wound-like response. Interestingly, calcium
localisation is also thought to be important in polycystic kidney disease, where low intracellular
calcium leads to upregulated cAMP, driving increased fluid secretion and activation of the
MAPK pathway®*°. Thus, while there are many ways in which calcium might be involved in

cholesteatoma pathology, it is difficult to determine which are relevant.

4.4.2 Ciliary dysfunction is implicated in cholesteatoma

This study identified enrichment of several GO terms related to cytoskeletal motility,
specifically via action of axonemal dynein. Terms including cell projection, cytoskeleton
organisation, dynein complex and dynein intermediate chain binding were enriched, mostly
due to rare DNAH and DNAI variants (SI Table 6). Our previous study also identified

deleterious DNAH variants in multiple affected families.

Dynein is a protein motor which moves towards the minus end of cytoskeletal microtubules.
These are divided into cytoplasmic dyneins (DYN-) which transport vesicles along the

21 Enrichment of

microtubules, and axonemal dyneins (DNA-) which drive ciliary motility
DNAH and DNAI variants, along with enrichment of protein products localised to the cell
projection, suggests that ciliary function is important in cholesteatoma. Cilia have sensory and

developmental roles, as well as physically clearing debris from the airways and middle ear.
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Ciliopathies can present in a variety of ways but often result in developmental defects, with
the retinal, renal and cerebral disease most common®?2, Polycystic kidney disease is an example
of a ciliopathy resulting in the development of multiple fluid-filled renal cysts and is thought
to arise through defects in calcium sensing via ion channels on the primary cilia®*°. Primary
ciliary dyskinesia results in increased susceptibility to recurrent respiratory, ear, nose and sinus
disease, and some forms are also associated with organ laterality defects or total situs
inversus®*3. These arise through immobility of the primary cilia resulting in poor clearance of
the ears, sinuses, and airways, as well as developmental anomalies through improper
distribution of signalling molecules during embryogenesis®**. DNAHT and DNAH5 mutations
are causal for some forms of primary ciliary dyskinesia'’, highlighting the importance of
dyneins in resistance to infection and developmental processes. Another interesting link is
between PCD, bronchiectasis and sinus infection, which were increased amongst
cholesteatoma cases in this cohort. PCD with bronchiectasis, sinus infection and chronic
sinusitis is known as Kartagener's syndrome'’. The presence of these diseases in the case
group further supports ciliary impairment (although probably not PCD itself as this is very

rare).

Another interesting feature common to both this analysis and our previous family study is the
involvement of the USH2 complex. In the family study, the USH2 complex was enriched in
variants detected in family overlap analysis due to variants in USH2A, ADGRV1, and WHRN:
one family carried an ADGRVT variant and an USH2A variant, while another family carried 2
WHRN variants. A variant in USH2A, rs10779261, was one of the most significant single variants
in my whole exome analysis, leading to enrichment of the USH2 complex in my gene set
analysis. The USH2 complex is involved in stereocilia development; stereocilia are non-motile
cell projections required for mechanotransduction in the middle ear®®®. Defects in the USH2
complex result in Usher syndrome, a condition involving retinitis pigmentosa and deafness. In
the eye, USH2A is associated with the photoreceptor ciliary complex, which consists of an outer
and inner segment linked by connecting cilia. USH2A is localised to the inner segment, within
a recesses surrounding the connecting cilia’”®. While stereocilia are actin-based, non-motile
structures, the photoreceptor connecting cilium is an axonemal cilium®®. Though primarily
expressed in the retina and cochlea, usherin is present in the basement membranes of many

tissues®’. However, it has no established roles in the middle ear.
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Ciliary function was also implicated in the FinnGen enriched terms, but dynein-binding was
not implicated directly. The Finnish population is genetically distinct from other European
populations due to recent bottlenecking®®? so it is possible that different causal alleles vary in
prevalence between these populations. However, this may also be due to the differences
between microarray and exome data. While both data sets were processed to only consider
non-imputed, non-synonymous variants in protein-coding regions, whole exome can capture
rare variants whereas microarray methods can only capture variants represented by a given
probe set. For example, 15 of 25 significant DNAH family variants in UKBB had allele
frequencies less than 0.001 and only 6 of these variants were present in the FinnGen probe
set. Generally, differences in the regions and variants measured by microarray compared to
whole exome may affect which processes appear enriched by altering the overall distribution

of p-values between pathways.

4.4.3 Other functions of top-scoring genes and variants

The most significant gene from gene-based SKAT-O tests was ABCC8 (p=6.94x10"), which
encodes a sulfonylurea receptor involved in insulin transport hence is primarily known for its

role in diabetes®, so there is no obvious reason for an association with cholesteatoma.

PDGFB was also amongst the top-scoring genes; this encodes platelet-derived growth factor
subunit B, which may be relevant to cholesteatoma as one of the chemokines involved in the

interaction between fibroblasts and keratinocytes promoting hyperproliferation®.

4.4.4 Study limitations
Limited sample size adversely affects sensitivity

A major limitation of this study was its small size. The number of cases was constrained by the
number present in UKBB, though efforts were made to identify all likely cases by expanding
the case definition to include codes linked to cholesteatoma and its management. Sensitivity
analysis suggests that this study was underpowered for detection of rare variants and variants
with small effect sizes. Based on the effect sizes calculated in this study, power calculations
indicated that 5,000 cases may be needed for any of the detected variants to achieve statistical
significance. This presumes that a proportion of the variants have true effects which could not

be detected due to underpowering and that the effect size estimates are accurate: however,
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the effect size estimates have large confidence intervals due to the small sample size and
effects may be detectable with <5,000 cases, whereas others may not be detectable with

>5,000 cases.

Notably, recent FinnGen releases (releases 10 and 11) have identified some significant variants
and show loci with strong suggestive signals with only 1,548-1,710 cases. The Finnish
population has low genetic diversity, high linkage disequilibrium, and is enriched for many
variants at lower frequencies in the general European population, making them an ideal
population for genetic studies®®; a British population may require different sample sizes.
Significant loci in subsequent FinnGen releases are described in Additional evidence from new

FinnGen release.

Accurate power analysis of GWAS is difficult as the power of a study is influenced by many
factors, including disease prevalence, heritability, expected number of causal variants, and
degree of polygenicity. As there are limited studies of cholesteatoma genetics and heritability,
power calculation and estimation of ideal sample size is very difficult. Sensitivity analysis allows
us to say that variants do not have a certain effect size or greater, but not whether there is or
is not a true effect size smaller than the threshold genetic risk ratio (GRR). This study therefore
suggests that there are no common variants with effects >1.4 (the threshold GRR for common

variants).

Gene set analysis limitations

The gene-set enrichment analysis of single-variant results in this analysis did not overlap much
with the gene-level tests. There are several possible reasons for this: the single variant results
consider all variants with MAC>20 whereas the gene-level results only consider rare variants.
The gene-level tests aggregate variants within a gene to determine its significance. If many
genes within a pathway are individually affected by a small number of variants (such that no
individual gene appear significant), this pathway is likely to appear enriched in the single-

variant data but not the gene-level data.

There are some additional limitations associated with gene set analysis. Gene function
databases are constantly updated with new information, so may change over time, affecting

reproducibility. The cutoffs for inclusion of variants in gene set analysis may also affect the
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results. For example, the FinnGen data contained many more p<0.05 SNPs than UKBB WES,
resulting in more genes being supplied to g:Profiler. With enough p<0.05 SNPs, all genes
would eventually be included. By supplying an ordered query, the ranking of genes is
considered, so the test remains valid. However, different p-value cutoffs could affect results.
GO terms are also biased towards well-studied genes and pathways. Broad terms containing
many genes such as ‘tissue development’ should be interpreted with caution. This is discussed

in more detail in Limitations in functional interpretation.

4.5 Conclusion

Genes bearing variants with p-values < 0.05 in UKBB WES data were enriched for biological
pathways including cell adhesion and motility, specifically via cytoskeletal and ciliary
involvement with a focus on the dynein family, and calcium binding. These processes agree
with the known biology of cholesteatoma and are supported by data from FinnGen as well as
previous genetic studies. This is evidence for a genetic effect which may be polygenic or

heterogeneous.

This study could not identify any variants or genes with genome-wide significance, nor any
suggestive single variants although one gene, ABCC8, approached genome-wide significance.
The highest-scoring genes and variants also were not detected in the previous GoC WES study

nor other small genetic studies.

Several genetic factors may increase cholesteatoma risk: ciliary impairment, perhaps affecting
middle ear clearance leading to excessive build-up of debiris, is also supported by enriched
cytoskeletal and dynein processes in this study. Cell adhesion and motility were also
implicated, which may be associated with cholesteatoma invasiveness. Morphology of the ear
is known to contribute to disease risk, exemplified by increased risk amongst those with
craniofacial developmental anomalies which may be supported by enriched variants affecting

tissue development in this study.

Immune genes and ECM degradation were not implicated in this study, suggesting that
observed dysregulation in gene expression studies may be a later effect. An ear which does
not properly drain may be more prone to infection without having an inadequate immune

response, and inflammation may drive many subsequent changes to gene expression. Finally,
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calcium-binding activity may be involved, supported by this and previous WES studies and
gene expression analysis. Due to calcium’s many roles in the body, its relevance to

cholesteatoma is unknown.

Genetics may contribute to cholesteatoma risk through the above mechanisms, though the
effect is probably not due to a small number of genes with large effects due to the failure of
any two genetic studies to identify the overlapping candidate genes. However, variants in the

DNAH family are of particular interest.

172



5 Polygenic risk scores and machine learning
classification

5.1 Background

Owing to the significant enrichment of certain pathways and processes in single variant results
despite lack of individually significant variants or genes, there is a possibility for a polygenic
effect in cholesteatoma. This may be detectable if the combined effect of many variants with

small effect sizes is large enough that it may be detected with 1,000 cases.

A common and simple approach to aggregate effects of multiple variants is the polygenic risk
score (PRS), which is a weighted sum of SNPs used to predict an elevated risk of disease
compared to the general population®?. Alternatively, machine learning (ML) classification
approaches have the potential to capture complex genetics and are primarily used in multi-
omics contexts (where multiple types of data such as genetic and expression data are used)®’,;
recent studies have also used deep learning to enhance disease prediction risk of PRS26#2%3 A
popular algorithm in bioinformatics is the Random Forest (RF)'?*, which averages the output

from a large number decision trees created from random re-samples of the data in order to

predict an outcome, for example case or control status.

In this chapter, | calculate PRS and use RF on variant-count data to investigate polygenic risk.
While the primary aim of PRS and ML is to classify disease risk based on the variants present,
these approaches can also be useful tools for understanding disease biology. For example, the
number of variants included in a PRS may be informative about the degree of polygenicity.
The genes considered important by RF may differ from those identified through GWAS and
may reveal certain combinations of genes which are particularly powerful at predicting case
status. Interrogation of RF models may also allow identification of genetic subtypes or

clustering of participants, so can offer insight into heterogeneity.

5.1.1 Polygenic risk score

A polygenic risk score is a weighted sum of variants present in an individual where weights are
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the effect sizes of those variants drawn from a GWAS in a separate population' . At least two

populations are required: the initial base population on which GWAS is performed and a target
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population on which the PRS is developed, which must be of similar ancestry®®. Because the
effect size for an individual variant is its coefficient in a regression fit to the trait outcome, it
reflects the difference in outcome when one, two or no copies are present (in the case of binary
traits, this is the odds ratio). Therefore, by summing the effect sizes across the genome, the

total gene-based risk can be calculated.

A method to reduce the number of SNPs is also usually applied and the approach to shrinkage
is the main aspect which differs between PRS methods. SNP shrinkage is required as the effect
sizes of neighbouring SNPs are correlated according to linkage disequilibrium — if this is not
corrected, disease risk will be exaggerated. SNP clumping is a common shrinkage method
where the genome is split into clumps according to the degree of correlation between SNPs
and the most significant SNP per clump is selected. The clump size may be set by manually
choosing a threshold SNP-SNP correlation and different cutoffs for SNP significance may be
applied®. Also, a threshold p-value for variants is usually applied, such that the PRS only
includes variants that meet a given threshold. Various p-value thresholds may be tested during

PRS development.

There are several tools for performing PRS scoring, such as PRSice®®, PRSice-2%° and
LDPred2%* and these generally only differ in the shrinkage method: PRSice uses the clumping
and thresholding method, whereas LDPred2 directly models linkage disequilibrium and use

this to control for correlation of SNPs.

Properties and limitations of PRS

PRS should be normally distributed amongst a population®®. This property arises from the
central limit theorem, which tells us that the summation of random effects results in a normal
distribution®®’. If PRS are not normally distributed, this suggests confounding such as a
difference between the base and target population. Cases should have a higher average PRS
than controls, although the effect depends on which alleles are considered the effect allele.
This is because the beta score used to weight the variants may be positive or negative

depending on whether the effect allele was more or less common in cases than controls.

Prediction performance may be assessed via the R* of the model, which is the proportion of

variability explained by the genetic risk according to the PRS calculated. For a continuous trait,
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maximum R? is determined by heritability so a PRS may be assessed by the proportion of

heritability accounted for?®®

. As sample sizes are finite and not all variants can be measured,
R? is likely to fall short of heritability but tends towards it with increasing sample size*®. This
is not true for binary traits as their distribution is not normal and so a ‘pseudo-R* is instead

reported which cannot be directly compared to heritability®*°.

PRS typically assume additive genetics and cannot consider any gene-gene or gene-
environment interactions''®. Epistatic effects, where presence of one variant can modify, mask
or enhance another, will not be captured. Generally, non-additive genetic effects are not
expected to have a large impact on polygenic disease risk and there is evidence that complex
disorders generally follow an additive pattern®’®, although it has also been shown that

incorporating non-additive dominance effects can boost PRS performance?’".

While PRS are generally good at describing the risk of disease on a population level, their use
for predicting disease risk in an individual or for population-level screening is controversial®’?,
It has been suggested that PRS could be integrated into screening for complex diseases such
as type 1 and 2 diabetes, coronary artery disease and breast cancer to identify high-risk
individuals for further monitoring or interventions®>. PRS are not yet used in any clinical

settings although many commercial genetics companies offer PRS tests for common complex

diseases'®.

5.1.2 Machine learning approaches
Random forests

Random Forest (RF) is a non-parametric machine learning method for regression and
classification problems. An RF classifier builds several decision trees, each using a random
subsample of the data, to predict an outcome. Each tree is constructed to be an optimal
predictor for the subsample of data included in it. All trees vote on the outcome and the final
decision is based on the consensus of all trees in the forest. This makes the method robust to
274‘ It

overfitting and suitable for problems with high dimensional data and small sample sizes

is also particularly useful for non-linear problems with interactions between features.

First, random sampling of objects and features (Figure 29a) is performed: both observations

(sometimes referred to as objects) and features (also called variables) are sampled randomly.
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The sampled data is called the in-bag fraction. Breiman's original RF algorithm?”>, and typically
the default setting, is to resample a 1:1 proportion of the data with replacement, which results
in about 66% of observations and features being retained. Figure 29b shows a single decision
tree constructed from the sampled data. Trees are built by successively selecting the features
which result in the greatest reduction of Gini impurity in child nodes®®. Gini impurity is a
measure of how dissimilar data are: low impurity would indicate that most of the data are of
the same class, meaning each split is chosen to create the best distinction between classes

until no further improvements can be made?®’’

. Not all sampled variables will be used: in Figure
29, variable 1 was sampled but not used as features 3 and 4 were sufficient to split all
observations into categories A or B. The performance of the decision tree is tested using the
out of bag data (Figure 29¢) and is given as out of bag error, or the proportion of out of bag
observations the tree incorrectly classifies. The process is repeated with new random
resamples of the original data, thus building a ‘forest’ of random classification trees. To

perform classification on a new sample, it is passed through the forest with each tree voting

on the outcome.
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Figure 29. Overview of Random Forest classification.

A) Features and objects are randomly sampled with replacement from the population, resulting
in approximately one third of data being included, or ‘in bag’ while the remaining data is ‘out of
bag’. B) In bag data are used to construct a decision tree which can split the data according to
its class. C) Tree performance is measured by testing on out of bag data. D) Many trees are
constructed by randomly re-sampling data. Trees vote on the class of unseen data to perform
classification tasks.
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Properties of Random Forests

RF models can be developed with the goal of predicting the class of unseen data, but also
have several properties which make them useful for exploring the features of the data itself.
First, features can be assigned an importance, which is a measure of how well trees including
the variable perform. Variable importance can identify which features have the best predictive

power. The importance of an individual predictor is reliant on the other features used to build
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trees: some features may be more useful when in combination with other features, for example
if two variables in combination can split data well into case and control but either variable
alone performs poorly. This dependence may be a better representation of underlying
biological mechanisms than testing each gene individually by standard linear models as it can

capture epistatic effects®’®

. Conversely, variables which are highly correlated may have reduced
importance as they are likely to reduce node impurity in a similar manner; once one variable
has been used to split the data, the other imparts little additional information®”®. Resampling
means that both variables will still be assessed, as not all variables are in-bag for a given tree.
This reduces the impact of collinearity on the predictor, which is useful for classification, but

harms interpretability of variable importance as correlated variables are assigned low

importance regardless of possible biological relevance?”.

Resampling also provides robustness to overfitting, which occurs when too much information
about a limited set of observations is used to train a classifier’”*. For example, if every
observation had a unique combination of features, a classifier using every single variable could
classify the training data perfectly. However, it would probably fail on new data as no actual
pattern for discerning classes has been detected. RF avoids overfitting because the ensemble

of classifiers, each trained on a random sub-sample of the data, votes on predicted class.

Another useful feature of RF models are proximity scores, which are the proportion of trees in

which a given pair of observations fall on the same terminal node'??

. A decision tree classifying
observations as case or control may have many terminal nodes for each class. Observations
appearing together on a terminal node have the same values for the features selected to form
the decision tree. If observations appear together very often, they are likely to have the same
the combinations of important features. This can help identify clustering or subtypes amongst
cases. This may also provide insight into the mechanisms underlying a disease, as different

combinations of genes or variants which act as good predictors of disease status can be

identified.

Feature selection

Feature selection may be performed to improve model performance by reducing
dimensionality by excluding features which are likely to be irrelevant or redundant®®°. Boruta®®'

is a feature selection method for RF which assigns ‘tentative’ or ‘confirmed’ status to variable
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importance by comparing performance to randomly shuffled ‘shadow features’ (Figure 30).
Standard RF importance can be biased by correlations between individual trees in the forest.
Random correlations between features can lead to chance associations with class, resulting in
inflated importances. By creating shadow features, which are copies of the original variables
with the observations randomly shuffled, the performance of actual features can be assessed
by checking whether they have consistently better performance than the shadow features
across many resamples. Essentially, it asks whether a feature’s predictive power is better than
random. This makes it useful for both improving model performance and interpreting variable

importance.

Figure 30. Overview of Boruta feature selection method.

A) features are permuted by randomly shuffling the values within each feature, creating 'shadow
features’. B) Random forest is performed using both the true features and shadow features. C)
the performance of each feature is compared to the performance of the best shadow feature.
This process is repeated many times and the frequency with which a feature outperformed all
shadow features is used to determine its importance.
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5.1.3 Aims and objectives

In this chapter, | focus on the traditional PRS, calculated using PRSice-2%%°, and RF with Boruta
feature selection. My aim is to explore the feasibility of these approaches rather than to
produce a PRS or any other model which can be used to predict disease risk in any other

population. | achieve this by:

e (Calculating genome-wide polygenic risk scores using FinnGen base data and UK
BioBank WES variants.

e Calculating genome-wide polygenic risk scores using a 10-fold cross-validation split
on UK BioBank whole exome data.

e Training RF models on 10-fold cross-validation split UK BioBank data using counts of
SNPs per gene and pathway to assess model performance/predictive power.

e Using Boruta to perform feature selection to identify important genes and pathways.

e Training similar RF models on all UK BioBank data to interrogate model features

including surrogate association and proximity scores.

5.2 Methods

5.2.1 Data

10-fold cross validation partitioning for PRS and RF models

For both PRS calculation and RF models, | used a k-fold cross-validation partition with k=10
using the MATLAB cvpartition function. This assigns the data randomly to 10 partitions without
replacement. Each fold uses 9 of the partitions as train data and the remaining partition is used
as test data. 10-fold cross validation was chosen as it has been shown that better predictions
of error are acquired for larger values of k, but larger values of k also increase the between
training sets whilst reducing the size of testing sets. K=10 has also been found to show a good
trade-off between bias in the estimate of error and computational cost®®. Partitions were

stratified by case status to ensure an equal case:control ratio in all partitions.

For each of the ten cross-validation folds, GWAS was performed on the train set only. Settings

were as in Final SAIGE configuration for single variant tests This was to allow train and test
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partitions to be used as base and target data in PRS and to prevent information leakage in RF

validation.

Gene and pathway tables for Random Forests and Boruta

For machine learning analyses, tables indicating the number of significant variants per gene
were constructed for all participants. Non-synonymous, coding variants from whole exome
data were used and filtered to MAC>20. Results were further filtered to retain SNPs with p-
value < 0.05, hereafter called significant SNPs (note they are not of genome-wide significance).
For each person, the number of significant SNPs per gene was counted (using gene
assignments from VEP as in the GWAS section). Reducing to significant SNPs only acts as a

form of feature selection.

To generate equivalent tables for cross-validation folds, the same processes was applied using

the relevant GWAS p-values for each individual fold.

To create equivalent data tables for pathways, | annotated genes with their pathways using
GO definitions downloaded from the g:Profiler website for consistency with the previous gene
set enrichment analysis (reference genomes: Ensembl 111, Ensembl Genomes 57. GO release:

2024-01-17). Each gene was counted for all pathways it was associated with.

5.2.2 Polygenic risk scoring

The PRS method requires base data to acquire weights, which are the effect sizes of variants
according to GWAS, and target data for which PRS are calculated. The proportion of variability
in phenotype explained by the PRS in the target group is the model R? A p-value for the PRS

2265

can be calculated by comparing the R? to that of a null model. PRSice- calculates the p-

value empirically by shuffling phenotypes randomly to acquire the null p-value for comparison.

| used PRSice-2 v1.0.2%%* to perform polygenic risk score analysis with default clumping (250kb,
r’=0.1, p-value=1) and —beta option on (to account for reporting of beta scores rather than
odds ratios in GWAS results). All covariates were as used in GWAS (age, sex, deprivation,

smoking status, first 10 PCs) were used.

| ran tests using both UKBB and FinnGen summary statistics as base data and UKBB WES and

microarray data genotypes as target data.
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10-fold cross validation with UKBB base data

| used 10-fold cross-validation for UKBB WES data as both base and target data. | performed
GWAS on each training partition (90% of the data) and used the summary statistics as base

data. Target data were the test partitions for each fold (10% of the data).

FinnGen base data

| used FinnGen summary statistics from data freeze 9 as base data and UKBB WES or microarray
data as target data. The FinnGen data is described in Genome-wide association testing and
downstream analyses: FinnGen comparison data. All non-imputed SNPs were used with no

minimum MAC cutoff.

Because the reference allele must be the same between base and target data, | identified any
mismatched between base and target and flipped the reference and effect size in the FinnGen
base data to match the target. Also, FinnGen uses GRCH37 whereas UKBB uses GRCH38. To
avoid performing a full liftover of the FinnGen data to GRCH38, | matched SNPs on rsID (which
should be stable between versions) and assigned the chromosome and position to the base
data by lifting the chromosome and position of the SNP from the target data. | removed any

SNPs whose reference or alternate allele did not match (Table 31).

Table 31. Target data parameters and number of mismatching or flipped SNPs
compared to base data.

Data Min MAC Coding only? overlap Flips Mismatches
Microarray 20 No 194926 25289 234
Microarray 0 No 200128 25293 248
Microarray 20 Yes 90422 11018 68
Microarray 0 Yes 94961 11021 79

WES 20 Yes 5711 0 18

WES 0 Yes 14935 0 278

| used coding region, non-synonymous SNPs from WES as target data. For microarray, | used
all SNPs and also tested coding region, non-synonymous SNPs separately. | ran versions with
MAC>20 filter and no min mac. For whole exome data, rsID was assigned using VEP while

probes on the microarray data were already labelled with rsID.
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5.2.3 Random forests
Feature selection using 10 cross-validation folds

| performed feature selection using the train data for each fold with the Boruta R package®:
version 8.0.0. Feature selection was performed for both genes and pathways, where data were
the count of p-value < 0.05 SNPs per gene or pathway. Features are assigned confirmed or
tentative status depending on whether they consistently outperform randomly generated
shadow features. | ran Boruta with the default settings with class weights of 1:5 for cases to

account for class imbalance. All RF models were weighted in this manner during training.

Model generation and validation using 10 cross-validation folds for gene-level data

After feature selection, new RF models were constructed using the training data from each
fold (90% of the total data), with only the genes determined to be tentative or confirmed by
Boruta (hereafter called ‘important’) for that fold. Thus, each fold used a gene table containing
only important genes for that fold and only counting presence/absence of SNPs meeting the
p<0.05 threshold within that fold’s GWAS. | first ran 10 iterations of the model on the first fold
to determine the number of trees required to attain maximum performance, judged by lowest
out of bag error and used this number to construct RF models for each fold (n=500 trees). |
used the treebagger function in MATLAB 2023b'*, which performs RF in the same manner as
Boruta (which constructs random forests using the ranger’®* package) but provides a greater

number of options for interrogating the results.

The model created for a given fold was then validated using that fold's test data. Test data
consist of similar tables of counts of SNPs with p<0.05 per gene as the training data, but note
that the p-value for SNPs is also drawn from the GWAS performed on the train data, not the
test data itself. The data is supplied to the model which attempts to predict case-control status.
| calculated sensitivity, specificity, total prediction error and mean squared error for each fold

as well as the out of bag error for the model during training.

Cross-validation methods typically use the same set of features for all folds in order to evaluate
the performance of a specific model configuration. Feature selection and any other pre-
processing would be determined, and the validation folds used to determine variability in

error. The final model configuration would then be tested on an independent data set. | did
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not have enough data to perform proper validation and so do not aim to build a reliable
classifier. My models instead use features computed for maximum importance within each

fold. Validation is not meant to assess a specific classifier, but the general approach.

Data exploration using a single RF model

The 10-fold cross-validation gives an idea of the variability in performance of the RF method
by using different subsets of the data to train and test the models. | then constructed a single
model using all cases and controls to explore the features of the model itself and whether any
insight into genetics can be drawn from it. | constructed the model using p-values of SNPs
drawn from the GWAS of all cases and controls (presented in the previous chapter) and any
gene with confirmed importance in 2 or more of the 10 folds, or tentatively important in over

half of the folds.

| also investigated the reliance of feature importance on other features by generating models
which excluded each gene in turn and calculated the importance of the remaining features.
While there was some reduction in OOB error from 200 to 500 trees, this was minimal. For
performance reasons, | generated models using 200 trees. | repeated this 10 times and
averaged the drop in performance for each predictor over the 10 runs. While this method only
accounts for features pairs, it becomes computationally difficult to assess the interactions

between 3 or more genes.

Pathway-level Random Forest models

To determine whether RF could return results similar to the gene-set enrichment results, | also
performed tests on pathway level UKBB WES data. This was performed in the same manner as
the gene-level data but included counts of SNPs per pathway rather than per gene. |

performed several exploratory tests:

A) |ran Boruta on the entire dataset then constructed an RF model using the confirmed
and tentative features on the entire set with no test/train split. This was to investigate
pathway relationships and compare important features to GSEA results.

B) | performed Boruta on the 10-fold cross-validation sets then used the confirmed and
tentative features to construct a model on the training data. | tested these models

using the test data for each split. This was to test performance of this approach.
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C) | performed a similar test to B but used only the pathways identified by gene set
enrichment analysis instead of performing Boruta feature selection. This was for

comparison to B.

All models used 50 trees and weighted cases as in previously described models.
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5.3 Results

Due to the exploratory nature of this chapter, several tests were performed with different

configurations (Table 32). PRS tests used both FinnGen base data and UKBB base data with a

10-fold cross validation test/train split. For both gene-level and pathway-level RF models, data

were counts of SNPs with p<0.05 present in each gene/pathway per person. For both gene

and pathway-level analyses, 10-fold test/train splits were used to calculate error and a model

was also constructed using all data with no testing holdout in order to investigate the

properties of the model.

Table 32. Summary of PRS and RF methods performed and their intended purpose.
For polygenic risk score (PRS), base and target data are shown. For random forest (RF) models,

test and train data are shown. All UKBB data is drawn from whole exome single variant

association test results, consisting of counts of p<0.05 SNPs per gene/pathway.

FinnGen
PRS

UKBB PRS

Gene-
level RF

Pathway-
level RF
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Base/train Data

FinnGen

UKBB 10-fold
cross validation
testing sets

UKBB 10-fold
cross validation
testing sets

All data

UKBB 10-fold
cross validation
testing sets

All data

Target/test data
UKBB WES

UKBB Microarray

UKBB 10-fold cross
validation training
sets

UKBB 10-fold cross
validation training
sets

N/A

UKBB 10-fold cross
validation training
sets

N/A

Feature selection?

Boruta selected
features for each fold

Boruta selected
features for each fold,
features confirmed in
>1 fold or tentative in
>5 folds.

Boruta selected
pathways

Using pathways
identified by GSEA in
previous chapter
Boruta selected
pathways

Purpose

Create PRS using distinct target and base
data.

Determine if polygenic risk can be
translated between populations.

Create PRS using same population as
base and target data.

Cross-validation of PRS approach.
Ascertain model error on unseen data.

Cross-validation of RF approach.
Ascertain model error on unseen data.

Investigate properties of RF model, e.g.
proximity scores

Validation
Compare to other pathway level models.

Validation
Compare to other pathway level models.

Investigate properties of RF model to
determine relationships between
pathways

Compare selected pathways to GSEA



5.3.1 Polygenic risk scores with FinnGen and UKBB base data
PRS using FinnGen base data

The best PRS p-value using FinnGen base data was achieved for whole exome data with a
minimum MAC of 20 (Table 33). The next best performing PRS used microarray target data
with no MAC cutoff and not restricted to coding only. While the WES target data required only
43 SNPs to achieve its best p-value of 0.0013, the microarray target data used essentially all
SNPs overlapping between the base and target data and achieved a p-value of 0.003. The R?
for both these methods was very small (<0.0031), indicating that most variability in disease
outcome could not be explained by the genetic effect. As data are binary, R? is approximated
using the Nagelkirke method®*. The SNPs used in the UKBB WES PRS were not present in the

UKBB microarray probe set, so these models used different variants entirely.

Table 33. PRS performance for whole exome and microarray data with different MAC
cutoffs and coding/non-coding variants.

Threshold column shows the maximum p-value of variants included in the polygenic risk score
(PRS). PRS R? is the proportion of variance in phenotype explained by the model (this is not

equivalent to heritability for binary traits). Genotype refers to target data and is either UKBB whole
exome (WES) or microarray.

Min  Threshold Standard
Genotype Set MAC p-value Coefficient PRS R? Error p-value Num SNP
WES Coding 20 0.0108 16.8712 0.003104 5.25  0.00130 43
Microarray All 0 1 -1854.87 0.002463 626.61  0.00308 124659
Microarray All 20 1 -1691.52 0.002127 614.74  0.00593 120064
WES Coding 0 0.0108  30.8911 0.002142 11.47  0.00705 119
Microarray ~ Coding 20 0.0479  -129.182 0.001387 58.07 0.0261 4056
Microarray  Coding 0 0.0001 2.44164 0.001069 1.25 0.0508 4

The PRS distribution for the best WES target data had a non-normal distribution with a long-
left tail (Figure 31a). While the difference in mean PRS for cases and controls was minimal
(0.7692 and 0.7685 respectively), a comparison of PRS deciles shows a higher disease
prevalence for higher PRS, although prevalence seems to decrease after the 8" decile (Figure
31c). This may be due to random noise or an actual decrease. The UKBB microarray PRS was
normally distributed (Figure 31c) but negative for both cases and controls. While difference in

median PRS for cases and controls did not differ (-0.0015 for both), there was a decrease in
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prevalence for higher deciles with prevalence decreasing from 0.1870 to 0.1469 between the
first and tenth deciles. The reversed relationship is due to the negative PRS of the microarray
data for both cases and controls, with cases being more extremely negative. The negative PRS
indicates that both cases and controls carried more ‘protective’ alleles then causal ones.
However, the direction of effect depends on which variant is considered the reference allele.

In this case, | believe the wrong allele was considered the effect allele, resulting in overall

negative PRS.

Figure 31. PRS distributions and prevalence per centile for FinnGen base data with best-
performing UKBB target data.

Target data are UKBB WES with minor allele count (MAC) > 20 (a, ¢c) and UKBB microarray with
no min MAC and all variant types (b, d). a) WES target data show highly skewed polygenic risk
score (PRS) distributions with a large tail of lower-risk individuals. B) Microarray data are more
normally distributed. Note that PRS are negative. C) Cholesteatoma prevalence generally
increases with PRS centile, though appears to drop towards the 90" percentile. D) Cholesteatoma
prevalence generally decreases with PRS centile although the relationship (s very noisy.

a) PRS distribution for FinnGen base data, WES target

b) PRS distribution for FinnGen base data, WES target
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PRS using 10 UKBB cross-validation folds

| also performed PRS testing on UKBB test/train folds with the train fold used as base data to
perform GWAS and acquire variants weights. The test fold was used as target data. The
resultant PRS had p-values ranging from 0.0008 to 0.10 (median 0.0675; Table 34). Most were
significant though with small R? values (<0.02), suggesting a polygenic effect may exist but
explaining a very small proportion of overall variability. The number of SNPs used by each PRS
also varied greatly from 71 to 20,215 (median 205), with better performing models generally
requiring fewer SNPs with a lower p-value cutoff. The coefficient also varied, sometimes being
negative (indicating a lower PRS for cases) and sometimes positive (indicating a higher PRS

for cases).

Table 34. 10-fold PRS using UKBB WES test/train split shows highly variable results

Threshold SNP Standard
Fold p value PRS R? Coefficient Error PRS p-value Num SNPs
1 0.0844 0.0094 -276.17 150.68 0.067 3588
2 0.0734 0.0102 -274.56 144.22 0.057 3066
3 0.0027 0.0046 25.31 19.92 0.204 124
4 0.0034 0.0043 -26.36 21.23 0.214 139
5 0.2472 0.0288 -1091.41 342.50 0.001 10579
6 0.0048 0.0198 72.83 27.98 0.009 210
7 0.0002 0.0165 8.87 3.89 0.023 4
8 0.0046 0.0096 49.39 27.07 0.068 200
9 0.3709 0.0067 -730.89 473.99 0.123 15760
10 0.0025 0.0070 31.93 20.45 0.119 110

5.3.2 Boruta results for important genes and pathways
Gene level Boruta results

Feature selection was performed using Boruta to identify important variables for random forest
classification. | performed feature selection on gene-level SNP counts for each training set of
10 cross-validation folds. One gene (ESX7) was determined as important across all folds.
AMOTLZ2, IL13RA2 and RBM10 were confirmed or tentative in 9 out of 10 training folds (Table
35). Generally, the genes with high importance were those containing the most significantly

associated SNPs such as ESX7, AMOTL2, RBM10, CANA2D1, CACNA1G, PTHZ2R and ANKZ2,
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which were represented amongst the top 20 most significant variants (see 4.3.2 Genome-wide

association test results).
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Table 35. Boruta confirmed and tentative features for all 10 folds where a feature was
a confirmed important predictor in at least 2 folds or confirmed/tentative in more than
5 folds.

Confirmed features are shaded dark grey and labelled C. Tentative features are shaded light grey
and labelled T. 232 genes were confirmed or tentative in at least one fold. 94 genes were
confirmed or tentative in 2 or more folds. Ordered by number of times a gene was confirmed
across folds.

ESX1 1
AMOTL2 0
IL13RA2 2
RBM10 2
CACNA2D1 0
SLC25A46 1
ZNF41 0
BIRC2 3
CACNA1G 2
TRPV5 2
ANK2 1
PTH2R 1
TBC1D16 0
CYB5R3 4
RUNDC1 3
NIF3L1 1
TMEM207 1
IGF2R 0
TSC1 0
COL4A6 4
DKK1 2
CDKL5 2
UBQLNL 2
TXNIP 2
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Fold N

Gene x1

MEGF11

ACOX3

PRDM10

ATGOB

OR6T1

MECP2 T

WNT10A T

PPP1R26

RAPGEF2

ALLC

WFDC8

AK8

SNX13

POLN

MRPS25

ANGPTL4

SP140L

KBTBD13

GPNMB

IL3RA

NECTIN1

ATF6B

TBC1D10C

ZACN

FAM220A

Pathway level Boruta results

| also performed Boruta on all UKBB WES pathway-level SNP count data. | performed this both
on individual training folds and on all data with no test/train split. The features identified from

the individual train folds had very little overlap: out of a total 287 confirmed or tentative
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pathways across all 10 folds, 72 were present in 2 or more and three terms were considered
important in 7 of 10 folds (organic substance metabolic process, intracellular membrane-
bounded organelle and molecular function; SI Table 7). This may be because GO terms are
hierarchical and each fold differed slightly in which level of the hierarchy was enriched;

therefore, this is a suboptimal way of identifying which processes are generally important.

| also performed feature selection on all data with no test/train (Table 36) to compare to the
results of gene set enrichment analysis (GSEA). There was little direct overlap in terms between
the g:Profiler GSEA (see 4.3.3 Gene set enrichment analysis) and Boruta results, although some
general functions were similar such as cell motility and voltage-gated calcium channel activity.
The results tended towards more broad/general GO terms than GSEA results, perhaps because

larger terms had more genes and therefore more opportunities to split cases and controls.

Table 36. Boruta confirmed and tentative pathways when performed on all data with
no cross-validation or test/train split.
The p-value of enriched terms in the full gene set enrichment analysis (GSEA) are also shown

where p-value < 0.05, as g:Profiler was configured to return significant results only.

Pathway ID GSEA p-value
alcohol metabolic process G0:0006066 -
anion binding G0:0043168 -
Binding G0:0005488 -
Biological process G0:0008150 -
cardiac muscle cell membrane repolarization G0:0099622 -
cell motility G0:0048870 -
cellular anatomical entity G0:0110165 -
cellular biosynthetic process G0:0044249 -
cellular response to lipid G0:0071396 -
cellular response to lipopolysaccharide G0:0071222 -
Cellular component G0:0005575 -
Cytoplasm G0:0005737 5.55492x10-13
endoplasmic reticulum membrane G0:0005789 -
establishment of cell polarity involved in ameboidal cell migration G0:0003365 -
hydrolase activity, hydrolyzing N-glycosyl compounds G0:0016799 -
intracellular anatomical structure G0:0005622 -
intracellular membrane-bounded organelle G0:0043231 -
intracellular organelle G0:0043229 -
macromolecule metabolic process G0:0043170 -
membrane-bounded organelle G0:0043227 -
Molecular function G0:0003674 -
neutrophil chemotaxis G0:0030593 -

193



Pathway ID GSEA p-value
nitrogen compound metabolic process G0:0006807 -

nuclear lumen G0:0031981 -

nuclear outer membrane-endoplasmic reticulum membrane

network G0:0042175 -

Organelle G0:0043226 -
organonitrogen compound metabolic process G0:1901564 -

perinuclear theca G0:0033011 -
phosphorus metabolic process G0:0006793 -

positive regulation of biosynthetic process G0:0009891 -

positive regulation of cellular process G0:0048522 -

positive regulation of protein localization to cell surface G0:2000010 -

primary metabolic process G0:0044238 -

protein ubiquitination G0:0016567 -

regulation of atrial cardiac muscle cell membrane depolarization G0:0060371 -

regulation of cardiac muscle cell membrane repolarization G0:0099623 -

regulation of cellular component organization G0:0051128 -

regulation of developmental process G0:0050793 -

regulation of phosphate metabolic process G0:0019220 -

side of membrane G0:0098552 -

Signaling G0:0023052 0.032177767
terpenoid metabolic process G0:0006721 -

ventricular cardiac muscle cell membrane repolarization G0:0099625 -
voltage-gated calcium channel activity involved in cardiac muscle

cell action potential G0:0086007 0.002392465
voltage-gated calcium channel activity involved SA node cell action ~ GO:0086059

potential -

5.3.3 Performance of Random Forest models using gene-level
information

Construction and validation on 10-fold data split

For individual folds, | used Boruta-important features for that fold (SI Table 8) and p-values
drawn from testing on the train data with GWAS. Fold 1 is used as an example: for this fold,
36 features were confirmed important and 12 features were tentatively important. The RF
model constructed using only the important features slightly outperformed a model trained
on all features, with final out of bag error after 200 trees averaging 0.344 across 10 repeats
(Figure 32). Continuing to increase the number of trees improved model accuracy up slightly

with a performance of 0.339, although this is not much improvement over 200 trees.
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Figure 32. Out of bag error indicates slightly improved performance when a reduced set
of features are used.

Graphs show out-of bag (OOB) error for 10 models trained on the fold 1 training set. a) The best
mean performance across all models when all features were included was at 67 trees (OOB error
= 0.382). OOB error drops rapidly before this and slowly increases afterwards, indicating some
overfitting. b) Model performance is improved by using only the confirmed and tentative features
and there is no overfitting at 200 trees. The minimum mean OOB error was 0.343 at 198 trees.

a) Out of bag error for all features across 200 trees
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Cross-validation across all 10 folds shows variable performance with poor sensitivity
and AUC

Random forest models trained on tentative and confirmed features were constructed for each
fold using 500 trees. The models performed overall poorly with a mean out of bag error of
0.364 (Table 37). MSE varied between 172.44 and 178.83 (mean=175.01,). While specificity
was generally high (~0.8), sensitivity was overall poor (~0.3) but occasionally reached as high
as 0.79 (Figure 33). This reflects the model's tendency to classify test data as control. The area
under the curve (AUC) of the receiver operating characteristic (ROC) was also calculated. ROC
plots the true positive rate against the false positive rate. The AUC of a classifier that randomly
assigns case-control status equally is 0.5. For all folds, AUC was close to 0.5 (mean 0.506). Out
of bag error for individual folds was generally lower than total prediction error (mean 0.35 vs

mean 0.56), showing that out of bag error is not a good indicator of actual model performance.

Figure 33. Sensitivity and specificity on testing data from 10 cross-validation folds.
Random forest classifiers were trained on 90% of UKBB WES data (counts of p-value <0.05 SNPs
per gene). The remaining 10% of data was used to test each classifier. Specificity and sensitivity
were calculated with the predictions of the classifier on test data.
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Table 37. Random forest performance across 10 folds using individually selected
features for each fold.

Mean squared error, sensitivity, specificity, total prediction error and AUC calculated on the
testing set are shown. Out of bag error on the training set is also shown.

Out of Bag

Fold  Mean squared error Sensitivity Specificity Total Error AUC error
1 177.4264 0.30 0.838 0.653 0.520 0.338

2 175.8483 0.73 0.809 0.312 0.523 0.355

3 172.4374 0.28 0.834 0.648 0.493 0.346

4 174.1039 0.24 0.831 0.662 0.492 0.347

5 178.8347 0.30 0.842 0.672 0.524 0.343

6 174.5274 0.72 0.863 0.413 0.463 0.329

7 172.7369 0.33 0.850 0.688 0.544 0.371

8 176.1374 0.30 0.825 0.602 0.489 0.327

9 173.4517 0.28 0.831 0.637 0.498 0.339

10 174.6137 0.79 0.824 0.295 0.510 0.364
mean 175.0118 0.43 0.835 0.558 0.506 0.346

Folds 2, 6 and 10 had higher sensitivity than other folds. This could have been because a single
gene or set of genes had particularly good predictive power and performance is improved
when these are well-distributed between case and control. However, these folds differed in
which predictors were considered most important, suggesting this was not the case (Table

37).
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Table 38. Most important genes for high-performing folds.
Folds 2, 6 and 10 achieved sensitivity approaching 0.8; the most important genes within these
folds do not overlap. Importance score is the out of bag permuted predictor error, which reflects

the reduction in performance when a feature is randomly permuted.

Fold 2 Fold 6 10
Rank Importance gene Importance gene Importance Gene
1 -3.30953 AMOTL2 -2.45437 TRDMT1 -3.82596 ZC3H14
2 -3.26448 NEK10 -2.42648 ZKSCAN1 -3.46661 HERC6E
3 -3.2487 SLC2A11 -2.40882 TXNIP -3.33528 ANK2
4 -3.2486 CACNA2D1  -2.39952 ZSCAN32 -3.33065 TBC1D10C
5 -3.24499 IGF2R -2.39314 KIAA0040 -3.32192 AMOTL2
6 -3.19727 ESX1 -2.37577 CUX1 -3.31552 KCNT1
7 -3.17116 CYB5R3 -2.3717 COL4A6 -3.30511 RUNDC1
8 -3.14965 TMEM168 -2.34999 NIF3L1 -3.28167 ESX1
9 -3.1376 TSC1 -2.34764 TBC1D10B -3.23144 TBC1D10B
10 -3.09979 ALLC -2.34528 ST6GALNAC2  -3.18701 RAB6A

5.3.4 Properties of a model using confirmed and tentative features
on all training data

Performance is similar to individual folds

To investigate the relationships between genes in an RF classifier, | trained an additional model
on all data (using GWAS summary statistics calculated on all cases and controls and Boruta-
important features from across multiple folds). This performed similarly to individual test/train
folds with an out of bag error of 0.35, sensitivity of 0.54 and specificity of 0.896. The sensitivity
and specificity are slightly better than were achieved for most individual folds (mean sensitivity
= 0.43, mean specificity = 0.835). In this case, sensitivity and specificity were calculated on train
data used to fit the model. They are therefore over-estimates of model performance. The poor
sensitivity and AUC from individual test/train folds indicates that caution must be taken when

interpreting these results.
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Surrogate association between features, proximities and case clustering

Surrogate association indicates whether features split data in a similar way: at each node in
the decision tree, the best feature is chosen to split the data. For any given node, the 'next
best choice’ can also be determined. If features are often the next best choice for one another,
they have high surrogate association. RAPGEF2 and PTHZR had high surrogate association
(surrogate association = 0.0148, 0.0221; Figure 34). The next best pairing was BIRC2-KBTBD 13
with surrogate association 0.0043-0.010 and other pairings had only slightly elevated
surrogate association compared to the mean (0.00014). Scores are not symmetrical and

depend on which gene was selected for use in a decision split.

Figure 34. Surrogate association scores for important genes identified by Boruta from
all UKBB WES gene level data.
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Proximities indicate how often observations appear on the same terminal node, indicating that
they have similar combinations of important features. There was no obvious clustering of cases
according to proximity scores to suggest subtypes from this data. Some small clusters of
individuals classified as cases were present, but these contained both cases and controls (SI
Figure 1). A large proportion of case individuals (as well as control individuals) carried no
variants in any important genes and thus were classified alongside each other in all trees,

giving them a proximity of 1.

5.3.5 Pathway level Random Forest models

| trained models using both GSEA-important (highlighted terms enriched in UKBB WES results
in Gene set enrichment analysis of UK BioBank data) and Boruta-important pathways (identified
as confirmed or tentative by Boruta in all UKBB data). Out of bag error was worse for both
models trained on data at the pathway level than models trained at the gene level: when GSEA-
important pathways were used, minimum out of bag error reached about 0.43 at 50 trees and
began to steadily rise as trees were added (Figure 35a). A model of similar construction using
Boruta-important features had similar performance but the increase in error after 50 trees was
less steep (Figure 35b). | trained the final models on all data using 50 trees for both sets of
features (GSEA-important and Boruta-important). Sensitivity was very poor for both models
(<0.1), although slightly higher for the model trained on Boruta-important pathways.
Conversely, AUC was slightly improved (GSEA-important mean AUC= 0.515, Boruta-important
mean AUC = 0.541) but still poor.

The features identified by Boruta were similar to the pathways identified by GSEA although
more generic (Table 39). Due to the very poor performance of these models, there is little
information that can be reliably drawn about pathway importance or surrogate associations.
While some surrogate associations exist in the pathway data for both approaches (Sl Figure

2), these probably reflect the overlapping nature of GO terms.
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Figure 35. OOB error across 10 repeats of Random Forest using pathway data.

A) Only the pathways identified by gene set enrichment analysis are used. b) The pathways
identified by Boruta performed on all data are used. a) and b) show 10 RF runs on the same data
used to determine the ideal number of trees for training. ¢) and d) show sensitivity and specificity
on testing data for validation folds using the features in a) and b) when RF models were fit with
50 trees of training data for that fold. Both methods have some leakage as feature selection is
based on results from all data.
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Table 39. Confirmed and tentative important pathways identified by Boruta using all

UKBB WES data.
Some functions resemble enriched processes identified by GSEA such as cell motility and terms
related to cardiac action potential regulation. The terms identified by Boruta are more general

than those identified by enrichment analysis.

Symbol ID Confirmed/Tentative
establishment of cell polarity involved in ameboidal cell migration G0:0003365 Confirmed
molecular function G0:0003674 Confirmed
binding G0:0005488 Confirmed
cellular component G0:0005575 Confirmed

201



Symbol

intracellular anatomical structure

cytoplasm

endoplasmic reticulum membrane

alcohol metabolic process

terpenoid metabolic process

phosphorus metabolic process

nitrogen compound metabolic process

biological process

positive regulation of biosynthetic process

protein ubiquitination

hydrolase activity, hydrolyzing N-glycosyl compounds
regulation of phosphate metabolic process

signaling

neutrophil chemotaxis

nuclear lumen

perinuclear theca

nuclear outer membrane-endoplasmic reticulum membrane network
anion binding

macromolecule metabolic process

organelle

membrane-bounded organelle

intracellular organelle

intracellular membrane-bounded organelle

primary metabolic process

cellular biosynthetic process

positive regulation of cellular process

cell motility

regulation of developmental process

regulation of cellular component organization

regulation of atrial cardiac muscle cell membrane depolarization
cellular response to lipopolysaccharide

cellular response to lipid

voltage-gated calcium channel activity involved in cardiac muscle cell
action potential

voltage-gated calcium channel activity involved SA node cell action
potential

side of membrane

cardiac muscle cell membrane repolarization

regulation of cardiac muscle cell membrane repolarization
ventricular cardiac muscle cell membrane repolarization
cellular anatomical entity

organonitrogen compound metabolic process

positive regulation of protein localization to cell surface
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ID

G0:0005622
G0:0005737
G0:0005789
G0:0006066
G0:0006721
G0:0006793
G0:0006807
G0:0008150
G0:0009891
G0:0016567
G0:0016799
G0:0019220
G0:0023052
G0:0030593
G0:0031981
G0:0033011
G0:0042175
G0:0043168
G0:0043170
G0:0043226
G0:0043227
G0:0043229
G0:0043231
G0:0044238
G0:0044249
G0:0048522
G0:0048870
G0:0050793
G0:0051128
G0:0060371
G0:0071222
G0:0071396

G0:0086007

G0:0086059
G0:0098552
G0:0099622
G0:0099623
G0:0099625
G0:0110165
G0:1901564
G0:2000010

Confirmed/Tentative
Confirmed
Confirmed
Confirmed
Confirmed
Tentative
Confirmed
Confirmed
Confirmed
Confirmed
Tentative
Tentative
Confirmed
Confirmed
Confirmed
Confirmed
Tentative
Confirmed
Confirmed
Confirmed
Confirmed
Confirmed
Confirmed
Confirmed
Confirmed
Confirmed
Confirmed
Confirmed
Confirmed
Confirmed
Confirmed
Confirmed

Confirmed

Confirmed

Confirmed
Tentative

Confirmed
Confirmed
Confirmed
Confirmed
Confirmed

Tentative



5.4 Discussion

This chapter aimed to use two methods to investigate polygenic disease mechanisms:
polygenic risk scoring using PRSice-2 and machine learning, employing Random Forests with
Boruta. Due to the lack of data available for properly validating models, this analysis was highly

exploratory.

| performed PRS analyses with both FinnGen base data and UKBB WES data divided into test
and train splits. PRS performance across all 10 UKBB test/train splits was variable with the
number and p-value threshold for SNPs included also varying greatly. PRS models explained
a small but significant amount of variance in several of the folds. A significant result was also
acquired using FinnGen base data, the number of SNPs and p-value threshold varying
depending on whether UKBB WES or microarray genotype was used as target data. Although
the variable performance of these models mean they are not useful for classification of disease
risk, they support the existence of a polygenic effect. The effect is likely small due to the very
small R? of all models produced (<0.02 for UKBB WES base data; < 0.003 for FinnGen base
data).

Random forest models performed using presence-absence of significant SNPs per gene did
not perform well across validation folds and the best-performing folds did not agree on the
most important predictors. This suggests that they performed well due to different
combinations of genes being well distributed across test and train splits, which may indicate
high heterogeneity. The most consistently important genes across folds according to Boruta
include some where a single variant was amongst the most significant, such as ESX7, AMOTL2,
CACNAZ2D1T and CACNAT1G. A large number of cases contained no variants in any important
genes. Random Forest models constructed on pathway-level data had even worse

performance and were essentially unable to identify cases.

The important pathways identified by Boruta when trained on all data with no test/train splits
resembled the terms identified in gene set analysis, including cell motility and cardiac
regulation, but were overall more generic. Identification of important pathways using Boruta

may be possible but is not as specific as standard gene set enrichment analysis. Perhaps if
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predictive power were better, important pathways and their relationships could be better

identified.

5.4.1 Significant polygenic risk scores support a polygenic effect,
but results are variable due to inadequate sample size.

Significant PRS acquired using FinnGen summary statistics as base data support the existence
of a polygenic effect that can be detected across populations; if the best-scoring SNPs in a
Finnish population are also associated with cholesteatoma in a British population, it is likely
that a proportion of these SNPs have a real effect. Performance was best with UKBB whole
exome target data filtered to minor allele count (MAC)>20 and the PRS used very few variants,
which turned out to be rare variants absent from the UKBB microarray set. The next best
performing method used UKBB microarray genotype data with no MAC filter and not reduced
to coding only, where most SNPs were used to construct the PRS. For both methods, R? was
small (<0.003), suggesting that genetic contribution to risk is small compared to
environmental effects, or poor power in the original GWAS. PRS distributions did not differ
much between cases and controls, but higher disease prevalence was seen at higher PRS

centiles, again supporting a small polygenic effect on risk.

However, there are several important limitations with this approach. First, the base and target
populations are from a different genetic background; the Finnish population is quite distinct
from other European populations and due to recent bottlenecks is enriched for some
variants®*®. The WES PRS were non-normally distributed, which can occur when the base and
target population differ genetically. Since these are rare variants in UKBB but are common
enough to be present on the Finnish array, it is likely that the difference between base and
target allele frequencies is confounding the results. This problem may also apply to the

microarray data, although the PRS are normally distributed for this result.

For UKBB microarray target data, the most significant PRS occurred when all SNPs were used;

this can be an indicator of inadequate power®®

. Additionally, the overlap between the SNPs
on the UKBB array and FinnGen array is small compared to the total number of probes. Both
biobanks used custom Axiom Array developed according to their research interests: the
FinnGen array included additional probes around the major histocompatibility complex and

probes for variants associated with certain diseases or known to be enriched in the Finnish
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population™®. The UKBB array likewise included probes for variants associated with certain
diseases and rare variants. Whole exome data includes many even rarer variants, hence the
overlap is even smaller. Therefore, the set of SNPs included in PRS for each method is bound
by the overlap between the data sets, rather than by which SNPs are actually the best

predictors.

In the analysis using UKBB data only, each fold sampled 90% of the data to be used as ‘base’
data: this was used to calculate p-values and beta scores. PRS was fit on the remaining 10% of
data. The high variability of results show that the PRS was very sensitive to the exact
composition of base and target groups. For a variant to be highly predictive, it must be present
in a large enough proportion of the base split to obtain a high p-value and also be present in
enough of the target split to be predictive in PRS. Generally, the better performing PRS used
fewer SNPs which could indicate the existence of a small set of variants with higher prediction
power which must be distributed well between test and train. These PRS also suffer from the
initial UKBB GWAS being underpowered, exacerbated by only using 90% of the data. Also, the
target data consisted of only 10% of the data, meaning results are likely to be particularly
sensitive to the coincidental presence or absence of particularly predictive SNPs. The small size

of the target data probably contributes to instability of the results.

Good polygenic risk scores include sites reliably known to be associated with risk. For example,
the recent release from UKBB of PRS for 53 diseases and traits uses sets of variants from meta-
analysis of many GWAS?®. PRS are not yet used in any clinical setting, with the first trials
combining genetic risk with clinical predictors in the ongoing HEART study'?’; notably, this is
a predictor for coronary artery disease, a very common and well-studied disease. The GWAS
of cholesteatoma in this thesis was underpowered for rare variants and did not identify any
significant loci, whilst background knowledge of cholesteatoma genetics is extremely limited.

Therefore, | could not generate a high quality PRS, nor draw any conclusions about PRS utility

in diagnostics or monitoring for this disease.

5.4.2 Poor prediction power from gene-level Random Forests

This study does not include enough observations to create a reliable classifier, and neither
gene-level nor pathway-level models had good predictive power on unseen data. Cross-

validation performed on 10 test-train splits of the gene-level data using features selected
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individually for each fold shows high variability in performance on test data despite consistent
and reasonable out of bag errors of around 0.35. Selection of the best features for each fold,
rather than testing the same set of features on all folds., likely contributed to this variability.
Generally, sensitivity was low and AUC was very close to 0.5: overall, classification of testing

data was no better than a random 1:5 assignment of cases:controls.

Good performance in some folds suggests there may be some individuals whose case/control
status is more easily classified based on their genes, perhaps because a certain gene or set of
genes is particularly predictive in a subset of people and performance depends on their
assignment across test and train. This could indicate high polygenicity or heterogeneity.
However, these genes are hard to identify and do not seem to be common to the three well-
performing folds. Alternatively, this may simply indicate overfitting as participants are likely to
carry distinct combinations of variants whether case or control, and so a large enough decision
tree could always identify all cases. Such a model would perform badly on unseen data, as was
the case in this analysis. Random forests are supposed to be robust to overfitting, but we can
see in the pathway analysis that performance begins to decrease after 50 trees, suggesting

overfitting can occur.

Sample proximities for a gene-level model do not reveal any obvious clustering. Small clusters
containing both cases and controls probably just represent the fact that some cases and
controls share variants in certain genes by chance. Also, a large proportion of both cases and
controls contained no variants within any of the important genes and were always classified
as controls. Overall, this seems to reflect that the best-performing genes are slightly enriched
for variants in cases compared to controls, which we already knew because their p-values are
<0.05. Not all genes containing top-ranked variants were represented, however, including
OR10A2 (olfactory receptor 10A2) which contained several high-ranking SNPs. This may be

due to high polymorphism in the olfactory receptors®®

; if a gene contains many different
variants, it may be more likely to contain some significant ones by chance than a less
polymorphic one. Also, the presence of many non-significant SNPs in a highly polymorphic

gene could introduce noise and make the gene a less useful predictor.

Two genes had stronger surrogate associations than other gene pairings: RAPGEF2 and PTHZR.

These are on different chromosomes (4 and 2 respectively), so this is not due to linkage
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disequilibrium between variants. PTH2R is a G-protein coupled receptor of parathyroid
hormone with diverse functions in the central nervous system®®’ and RapGEF2 is a guanine
exchange factor for Rap/Ras GTPases, also with roles in the central nervous system?%. G-
protein coupled receptors are inactivated by GTPases, suggesting a possible link between

these two genes which may explain their high surrogate association.

Pathway-level models failed to classify most cases and were less informative than gene
set enrichment analysis.

Pathway-level models performed worse than gene-level ones, tending to classify all unseen
data as control. Important pathways identified by Boruta were more generic than those
identified in GSEA but some similar functions to GSEA were also detected, such as cell motility
and voltage-gated calcium channel activity. The sorted query used in GSEA provides higher
weight to more significantly associated SNPs whereas this analysis simply uses the number of
p<0.05 SNPs per gene and then per pathway. As such, the effects of strongly associated SNPs
may be diluted by the effects of weakly associated SNPs which are more likely to be associated
by chance. As a result, the standard GSEA is probably a more powerful method for identifying

important pathways for an underpowered GWAS.

5.4.3 Limitations and possible improvements

The main limitation of this analysis was a lack of data for training and validation, which affected
both PRS and ML models. It is uncertain how many cases would be required to give adequate
power to GWAS to construct reliable risk classification models or PRS. Little is known about
cholesteatoma genetics, so its genetic architecture is difficult to estimate, and we cannot apply
knowledge about established risk loci to improve prediction. Some improvements to RF
models may have been possible by varying parameters, for example modifying feature
selection or tree depth. Lower p-value cutoffs for SNP inclusion in RF models may reduce the
dilution effect of non-significant SNPs being counted alongside significant SNPs within genes.
However, the initially underpowered GWAS and poor performance of RF models meant |

refrained from developing models further than was described.
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5.5 Conclusion

When classification problems are complex, classifiers need large amounts of data. This is true
for both polygenic risk scores and other machine learning methods. First, the initial data set
used to generate summary statistics must be large enough to distinguish signals from noise.
Next, there must be enough data to split into test and train, as testing data is crucial for internal
validation of the model. Finally, there should be additional, independent data sets for external
validation. This is particularly true for PRS, which need separate base and target data as well
as validation data. To mitigate these issues, | used base data from FinnGen for PRS, as well as
dividing UKBB data into test/train splits, which were used for both machine learning and PRS

base/target data.

PRS acquired using FinnGen bas data provide some support for a polygenic role in
cholesteatoma. However, use of non-British base data on British target data probably distorted
the results due to enrichment of certain rare variants in the Finnish population. PRS calculated
on cross-validation folds within UKBB were less significant and less consistent, varying greatly
in the p-value and number of variants used. This was probably because GWAS was
underpowered, resulting in inaccurate estimates of variant odds ratios which are particularly

sensitive to the composition of the test and train groups.

Random forest classification probably failed for a similar reason; poor performance may reflect
high variability in the number and composition of risk variants carried by individuals, but this
is difficult to tell from inadequate sample size. Pathway-level models had even poorer
performance, perhaps because assigning variants to the pathway level results in a 'diffusion’
of their effects as they become grouped with other variants and spread across multiple

features. As a result, little additional insight into genetic architecture could be learned.
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6 Discussion

6.1 Summary of findings

In this thesis, | performed an epidemiological and genetic study of cholesteatoma in the UK
BioBank using publicly available results from the Finnish biobank FinnGen for comparison and

validation.

| began with a semi-systematic review of global gene expression studies to make sense of a
large volume of literature examining differential expression of various proteins in
cholesteatoma and determine the genes and processes that are consistently implicated across
studies. Most of these studies had small sample sizes (N=2-17) and differing approaches, but
some genes were consistently detected as differentially expressed including the upregulation
of SERPINB3 and SERPINB4, ST00A7, ST00A8, ST00A9, and CEACAMS6, and the downregulation
of TNXB and COCH. Disrupted processes included tissue development, cell adhesion,
extracellular matrix (ECM) constituents, metal ion binding and immune function, though many

immune genes were downregulated compared to COM tissue.

In my epidemiological study, | described the identification of cases and controls from UK
BioBank data as used in this and later analyses and addressed some questions about
demographic risk factors by performing adjusted logistic regression. | found additional
evidence for some tentative and known risk factors including male sex, deprivation and
smoking. | also found that the demographics of cholesteatoma and non-cholesteatoma
middle ear disease were more similar to each other than to the population with disease-free
ears in UKBB, except for sex ratio and ethnicity; the male predominance is not present for non-
cholesteatoma middle ear disease. Cholesteatoma prevalence was highest in White and Asian
participants (in UKBB generally referring to Indian, Pakistani and Bangladeshi ethnicities) and

lowest in Black participants.

The epidemiological analysis also explored some of the overlap of cholesteatoma with other
inflammatory ear disease, including suppurative, nonsuppurative and unspecified otitis media,
otitis externa and mastoiditis. Though these associations were generally well-known, these
analyses raise useful queries about what is being investigated when we compare

cholesteatoma to other middle ear disease or disease-free controls. | also detected increased
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rates of chronic sinusitis and respiratory disease such as asthma and bronchiectasis in
cholesteatoma and identified a potentially new association with epilepsy replicated across
UKBB and FinnGen. Meanwhile, an association with otosclerosis may be due to misdiagnosis
due to the initial similarity of presentation and the fact that misdiagnosed ICD-10 codes are

not removed from records.

In my genetic analysis, | performed genome-wide association tests (GWAS) at the variant and
gene level and used gene set enrichment analysis (GSEA) to identify pathways and processes
disrupted in cholesteatoma. Although GWAS identified no single variants or genes meeting
genome-wide significance thresholds (traditional GWAS threshold 5x108; WES rare variant
threshold 3x107; gene-level threshold 2.5x10°®), GSEA of all whole exome variants with p-
values < 0.05 indicated enrichment in certain processes: cell-cell adhesion, cellular motility,
ciliary function via dyneins, developmental processes, and calcium binding. Notably, neither
ECM nor immune function were enriched. These results were replicated in FinnGen data except
for the enrichment of dynein proteins, which was due to several rare DNAH and DNA/ variants
in UKBB WES data. Ciliary impairment and calcium binding were also implicated by our
previous whole exome study of twenty-one individuals from ten family clusters'®, with several
DNAH genes containing rare, deleterious variants co-segregating with cholesteatoma. In the
UKBB whole exome single analysis results, dynein motor processes were enriched due to both

DNAH and DNAI family members.

| explored possible methods for characterising polygenic risk including polygenic risk scoring
(PRS) and Random Forest (RF) machine learning approaches. PRS and RF classification were
not viable with this data set due to its small size and the need for separate validation sets. |
experimented with using FinnGen base data for constructing PRS and acquired significant
results; however, model R? was always very small, and the results were very variable, showing
that PRS explained a very small portion of phenotypic variance and was highly sensitive to
composition of the base and target groups. PRS performed on ten cross-validation folds of
UKBB data also showed highly variable results, with base/target splits varying in the number
of SNPs used and significance of the PRS. RF classification was likewise poor at classifying
testing data. Not much could be learned from these models due to lack of data and the
probable complexity of disease, meaning no models could accurately classify cases and

controls.
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6.2 Cholesteatoma genetics in the context of middle ear
disease

6.2.1 Factors identified in both cholesteatoma and otitis media
Possible direct causal links between cholesteatoma and OM

My epidemiological analyses support a large overlap in cholesteatoma pathology and risk
factors with other middle ear diseases. A history of otitis media (OM) is common in
cholesteatoma and the symptoms overlap, involving inflammation, otalgia, and otorrhea'®*%,
OM is inflammation in the middle ear, commonly in response to bacterial or viral
pathogens®®?®, Most children experience at least one episode of otitis media with effusion
but disease is usually self-limiting'. Chronic OM may directly contribute to cholesteatoma
development, for example by causing tympanic retraction. Negative pressure in the middle
ear due to poor ventilation pulls the tympanic membrane inwards, resulting in a small pocket
on the exterior side which may accumulate keratin debris®. This debris may constitute a pre-
cholesteatomatous stage, which only proceeds to cholesteatoma in a small number of cases®.
Additionally, destruction of collagen and elastin in the tympanic membrane due to chronic
inflammation causes it to weaken, exacerbating the retraction'®’. Debris in the retraction
pocket is thought to be the origin of primary acquired cholesteatoma according to
invagination theory. Chronic inflammation may also result in perforation or provide conditions
which provoke mucosal metaplasia or basal cell hyperplasia®'. However, the symptoms of OM
may also be caused by cholesteatoma, making it difficult to determine the temporal or causal

relationship.

The concept of endophenotypes, drawn largely from genetic studies of psychological
phenomena, may be useful for understanding this relationship. An endophenotype is an
intermediate phenotype which, in combination with other endophenotypes, increases risk of
another phenotype®’. Endophenotypes may be shared between similar diseases. For example,
poor ciliary function or cranial morphology may be considered endophenotypes for
cholesteatoma which also act as endophenotypes for OM, hence raise the risk of both.
Whether OM itself is an endophenotype contributing to risk of cholesteatoma is not clear.
There may be factors governing risk of OM, risk of OM becoming chronic, and risk of

proceeding to cholesteatoma, as well as distinct risk factors for cholesteatoma independent
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of OM. In my analysis, | excluded all ear disease from the controls, so there was no way to
distinguish genetic effects contributing directly to cholesteatoma to those contributing to ear
disease generally. Therefore, it is useful to compare the results of genetic analyses to the

known genetics of OM.

There are no accepted OM risk loci, and study of OM is complicated by its various forms (acute,
chronic, with or without effusion, suppurative or non-suppurative). However, genetic studies
generally identify variants in the genes involved in the inflammatory response, mucin

289,290 Given

production and mucociliary transport, and development of the Eustachian tube
that OM arises from colonisation with pathogenic bacteria, variability in host immune response
is thought to play a role in susceptibility with specific variants in several interleukin genes,
HLA-A, TLR4 and TNF- o having been detected in individual GWAS?**#2 However, my results

did not indicate a strong role for immune/inflammatory genes in cholesteatoma.

Mucociliary function in the middle ear is essential for preventing colonisation of pathogens
through antimicrobials in the mucus, physical clearance, and recruitment of inflammatory
cells®®. Eustachian tube important for clearance of the middle ear and pressure equalisation;
poorer Eustachian tube function in children compared to adults is one reason they are more
susceptible to middle ear disease®®. The evidence for a genetic involvement via morphological

differences is mostly due to an association with chromosomal abnormalities®®.

Support for cilia in cholesteatoma but not variants in inflammatory response

My data do suggest a role for ciliary dysfunction in cholesteatoma. Dynein binding proteins
were enriched amongst UKBB WES results, primarily due to rare (MAF < 0.001) variants in
DNAH and DNAI members. Along with the DNAL family, these genes encode components of
axonemal dyneins, which act as motor proteins responsible for powering the movement of
cilia. Variants in DNAH5, DNAH11, DNAH1, DNAI1, DNAI2, DNAL1, DNAAF1, DNAAF2,
DNAAF3 are known to cause primary ciliary dyskinesia (PCD), which is associated with
recurrent middle ear and respiratory infections®®®. In my epidemiological study of
cholesteatoma, | found an association with chronic sinusitis and bronchiectasis which form a
triad with situs inversus in Kartagener's syndrome, a form of PCD". This further supports a
generally poor ciliary function in persons with cholesteatoma in UKBB. A role for dyneins in

126

cholesteatoma is also supported by the previous GoC whole exome study'= where several
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rare, deleterious DNAH variants that co-segregated with a diagnosis of cholesteatoma were

identified in families with multiple cholesteatoma cases.

6.2.2 Factors identified in cholesteatoma but not in OM
Adhesion and cytoskeleton

A role for cell adhesion is supported by gene expression studies as well as enriched terms from
UKBB WES, microarray and FinnGen results. This overlaps with enrichment of cytoskeletal
variants, particularly actin organization; both adhesion and reorganization of the actin
cytoskeleton are required for amoeboid cell motility. Alteration of the balance between cell-
cell adhesion and cell-ECM adhesion can promote altered cellular migration and invasiveness
in cancer'”. CEACAMG is an example of an adhesion molecule expressed by cholesteatoma
which is also associated with invasiveness in cancer'®. In some tympanic retractions, a pre-
cholesteatoma in the form of micro cysts in the propria lamina can develop, but this does not
usually proceed to cholesteatoma®. Genetic differences promoting invasiveness could be
important in determining whether the cholesteatoma continues to develop or fails to establish
itself in the tympanic membrane. Furthermore, altered migration may adversely impact the
self-cleaning mechanism of the tympanic membrane, which involves a continuous outwards
migration of cells from the centre®®*. Cell migration is also implicated by the migration theory
of cholesteatoma, where aberrant migration through a perforation is considered the origin of

cholesteatoma epithelium?'.

Adhesion molecules also have signalling roles, including those downstream of fibroblast
growth factor receptor and epidermal growth factor receptor'”. Excessive growth of
cholesteatoma cells may also contribute to establishment under several theories of

cholesteatoma formation.

Calcium binding

Calcium ions act as an important signalling molecule in many processes including muscle
contraction, neural signalling, cell growth, cell migration and cell death, making its role is
cholesteatoma difficult to suggest. In polycystic kidney disease, low intracellular calcium is
thought to drive cyst formation through upregulated cAMP, increased fluid secretion and

activation of the MAPK pathway®®. In this case, defective calcium localisation is thought to
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arise through defective ciliary signalling. However, renal cysts have little in common with
cholesteatoma (aside from a wider association between renal and otic disease®*?%), as they

are typically described as simple, fluid-filled sacs.

Due to its signalling roles in processes such as cell migration, cell growth, and cell death,
calcium also plays an important role during wound-healing. Cholesteatoma perimatrix is a
granulation tissue resembling wound tissue, in that it displays inflammation, breakdown of
ECM, cellular proliferation and remodelling. Calcium is essential for proper differentiation of
keratinocytes and modulation of angiogenesis during wound-healing, and deficiency in
animals is associated with higher rates of chronic wound formation®®. Calcium binding is also
another large term containing many genes, although unlike the developmental process terms,

there is support from gene expression studies for a role in cholesteatoma.

A major role of calcium is in the skeletal system and one report®®” found increased rates of
cholesteatoma with osteoporosis, though this was not replicated in UKBB data. Meanwhile a
class of drug (bisphosphonates) used to treat osteoporosis, has occasionally been noted to
induce external auditory canal cholesteatoma®. Although bone turnover is altered in
cholesteatoma, this is not until after disease is established so seems unlikely to contribute to

formation.

6.2.3 Additional evidence from new FinnGen release

Following the completion of genetic analyses in this thesis which used FinnGen Release 9,
Release 11 was made public. In this release, there is a single significant variant and several loci
approaching significance. The only individual significant result is for a rare (case AF 0.13%)
intergenic variant near to the RP11-2P2.2 pseudogene (rs766961752) (OR=107.38, p-value
6.4x107°). This pseudogene was also strongly associated with cleft lip and palate in FinnGen
(OR 4.73, p=7.4x10""), suggesting an overlap between cholesteatoma and cleft lip and palate
in this cohort. This association within FinnGen was also reported by Rahimov et al. (2024)*® ,

who attribute high incidence of cleft lip and palate in the Finnish population to intergenic

variants near IRF6.

There was also a strong peak in chromosome 16 due to common variants around LINC02131;

the most significant was rs1117410, which was less common in the case group. LINC02131 lies
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between NUDT7 and ADAMTS18 and was also strongly associated with decreased risk of
diseases of middle ear and mastoid, suppurative and unspecified otitis media, chronic
suppurative otitis media and acute suppurative otitis media within FinnGen. It is interesting
that the variants at this locus tended to be associated with decreased disease risk; this of
course depends on which allele is considered reference. The most strongly associated variants
at this locus had frequencies ~50%, probably reflecting the common nature of middle ear

disease.

There are several other loci where signals seem to be emerging and these may become
significant in future releases; | do not discuss these now as it is difficult to determine which
genes are mostly likely to be involved due to linkage disequilibrium, though interestingly most
of the nearby genes at these loci are not also associated with other middle ear disease
according to FinnGen PheWAS. An additional interesting finding was a variant in DNAH7
(rs1419900187) with p-value 8.5x10-7 (AF 0.000408); this was 10™ most significant variant in

FinnGen.

Interesting, nonsuppurative otitis media, suppurative otitis media, acute suppurative otitis
media, and otitis externa all have strong peaks around the MHC region in chromosome 6,
indicating an immune role in these diseases. No such peak is present in cholesteatoma results,
despite this peak being visible even in ‘acute otitis externa noninfective’, which only has 419
cases. This is interesting as it further suggests that immune function does not have a major

role in cholesteatoma susceptibility, even if it is involved in pathogenesis.

6.3 Proposed genetic architectures

6.3.1 Evidence of a polygenic effect

This study did not identify any single genes or variants significantly associated with
cholesteatoma, but several enriched processes were detected and supported by data from
FinnGen and our previous whole exome study, suggesting a polygenic effect does exist.
However, it is unclear whether individuals are enriched for variants in multiple processes, or if

defects in just one pathway are sufficient to increase cholesteatoma risk.
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Heritability cannot be estimated from this data, but the overall genetic effect does not appear
to be large based on the small R? of PRS calculated using both FinnGen and UKBB base data.
However, a higher better R> may be acquired with a better-powered GWAS for base data or
better match between base and target populations. Meanwhile, power analysis of GWAS
imposes a maximum possible risk ratio on single common variants of 1.4; this means a
heterozygous carrier would be 40% more likely to have disease than a person with no variant.
This largely discounts the possibility of a small number of variants with strong effects, although
rare variants may have larger effect sizes and there is the possibility of type 2 error. Failure of
previous genetic studies®>¢668124126 t5 jdentify any common genes or variants supports a lack
of high-penetrance causal variants but the small sizes of these studies and lack of controls

may also result in type 2 error.

The omnigenic model suggests that all genes expressed in relevant tissues can be involved in
disease due to complex regulatory networks. As a result, larger functional terms tend to explain
more heritability than more functionally relevant terms. Boyle et al. (2017) suggest that genes
under the omnigenic model can be sorted into ‘core genes’ which are directly relevant to
phenotype and 'peripheral genes’ affect phenotype indirectly via regulatory networks®®. In
this analysis, functions not directly related to cholesteatoma phenotype may include tissue
development, neural development, and calcium binding. The omnigenic model may also
explain the poor transferability of polygenic risk scores and variant effect sizes across
populations as it is not only the effect of core genes that must be considered but of a large
number of interacting peripheral genes which may be heterogeneous between populations®®.
Many enriched terms in genetic analysis of UKBB data had compelling links to cholesteatoma
biology including ciliary function, cell adhesion, cytoskeletal organisation, and calcium
binding. Some processes such as developmental processes and synaptic signalling have more

obscure roles and could be considered peripheral, but further study would be required to

determine this.

6.3.2 Familial and non-familial forms of disease

It is not unusual for diseases to have familial and sporadic forms. In such diseases, a portion
of cases are due to a small number of highly penetrant genetic variants and run in families.

The remaining portion are sporadic and have a less obvious genetic basis, seeming to be
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dominated more by environmental factors. However, in some diseases it has been shown that
non-familial cases can be influenced by genetics in a highly polygenic manner. For example,
up to 10% of cases of breast cancer are due to highly pathogenic variants on a small number
of genes, primarily BRCAT and BRCA2. Meanwhile, over 100 different loci have been linked to
individually small increases in breast cancer risk but can be combined in a polygenic risk score
identifying up to a 3-fold increased risk due to polygenic effects®®’. Similarly, ALS has familial
and sporadic forms, where the familial form (10% of cases) is typically associated with
dominant inheritance of a variant affecting a single gene. Common causative genes are
CI90ORF72, SOD1, TARDBP and FUS, but many genes have been identified in familial ALS and
are associated with different presentations of disease®”. Genes associated with the sporadic
cases are largely unknown, though a small number of individuals will also carry mutations in
CI90RF72, SOD1, TARDBP or FUS. In both breast cancer and sporadic ALS, there is a large

environmental risk factor.

These cases highlight the complexity of diseases where different genetic architectures can have
different presentations, penetrance, and heritability. In cholesteatoma, only 10% of cases
reported a family history in an online survey posted to cholesteatoma support groups®'.
Though there is likely to be a degree of bias — persons with family history may have had better
awareness of cholesteatoma and more likely to seek support groups, for example — this rate is
a lot higher than we might expect due to chance if lifetime risk is 1 in 500. Affected families
may share particularly high polygenic risk scores, important lifestyle factors, or specific variants
with high penetrance. Our previous WES study did not identify any rare, deleterious variants
which co-segregated with cholesteatoma in all 10 families, but some processes were enriched
in the variants identified by TRAPD analysis and in the variants common to at least 2 families.
This included microtubule motor function, ECM degradation and calcium ion binding, so it is
possible that a familial form of cholesteatoma is based on a smaller number of higher risk
variants affecting these processes, or individual risk variants unique to each family affecting
similar processes. Due to the identification of DNAH variants in these families and enriched
dynein-binding in UKBB WES results, | suggest that rare dynein variants specifically require

further investigation in affected families.
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6.4 Limitations

The limitations of individual studies performed in this thesis are discussed in their relevant

chapters. Here, | discuss some overarching limitations of the biobank approach.

6.4.1 Difficulties due to rare disease and sample size

A major limitation of this study was the sample size. Cholesteatoma is rare, so acquiring many
cases is difficult and the number of cases was ultimately limited by the number in UKBB. In
order to increase the sample size and study power, | used expanded criteria using ICD-10 and
OPC codes to identify all putative cases, which almost doubled the number within UKBB. This
may also have introduced some cases who were not actually cholesteatoma cases, although
procedures such as mastoidectomy are unlikely to be performed for any other reason.
However, ICD-10 codes are largely missing before 1995 and UKBB participants are above the

age of peak incidence, meaning childhood cases may have been missed.

Despite maximising the number of cases, | have shown that the study was underpowered for
rare variants unless highly penetrant. This is particularly problematic given the evidence that
rare dynein variants may be important. Also, if there are familial and sporadic forms of
cholesteatoma, we can expect rare variants to have a greater role in familial disease. This is
because familial cholesteatoma is rare, hence we would not expect common variants to be
causal. Furthermore, rare variants may have stronger deleterious effects than common ones,
as negative selection prevents them from becoming common?®’®. Cholesteatoma genetics are
likely complex, given that no studies have yet identified the same variants and disease risk is

multifactorial.

To reduce risk of type 1 error, | performed filtering to consider only non-synonymous coding
variants in UKBB WES data and applied similar filters to microarray data for comparison.
Alongside quality filtering, this reduces the number of variants and retains the highest quality
variants most likely to be involved in disease. Generally, synonymous variants are not thought
to contribute to disease®®, so it is unlikely that this will exclude any causal variants. Type 2
error is difficult to avoid, particularly given the small sample size. Type 2 error rate can be

reduced by lowering p-value threshold, but this necessarily increases type 1 error. By
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conducting enrichment analysis, the effects of variants not meeting genome-wide significance

can still be assessed.

Lack of data also severely restricted the polygenic risk score and machine learning analyses, as
large volumes of test, train and validation data are required for accurate classification. The best
PRS are built on foundations of good knowledge about genetic and environmental risk

factors121,285,303

, which are not well-known in cholesteatoma. Due to these issues, most
examples of PRS are for common, well-studied conditions such as breast cancer, Alzheimer's

disease, coronary artery disease and type 1 diabetes®*.

6.4.2 Congenital cholesteatoma cannot be distinguished from
acquired cholesteatoma in this study

Lack of granularity in the UKBB data means it was impossible to distinguish congenital and
acquired cholesteatoma. The discussion in this thesis focuses on acquired cholesteatoma as
the more common form (estimates for congenital cholesteatoma are between 4 and 24%)°.
However, they have distinct features which mean factors that | have suggested to play a role
in acquired cholesteatoma may not apply to congenital cholesteatoma. For example,
congenital cholesteatoma is not associated with inflammation, tympanic retraction, or
perforation®. Ciliary variants, which may increase risk of OM and prevent proper clearance of
debris from the middle ear, may not be relevant. Aberrant migration may still be involved as a
possible origin for congenital cholesteatoma is migration from the developing auditory
canal’®. Likewise, tissue development processes could be involved if the origin is an epithelial
remnant which is inappropriately retained in the middle ear*®. However, there is less literature

regarding congenital cholesteatoma causes, making it difficult to draw conclusions.

6.4.3 Limitations in functional interpretation

| used GO term enrichment to identify disrupted processes in both gene expression data and
genetic variant data. However, our knowledge of the pathways and processes that genes are
involved in, or the tissues in which they are expressed, is not exhaustive and annotations
change over time as databases are amended with new information. Many annotations are
inferred from structural similarity via automated processes and many annotations belong to a

relatively small number of well-studied genes'®. This can cause analysis to be biased towards
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functions associated with well-studied genes and can also affect study replicability as GO terms

are updated between studies.

Additionally, there are limitations to the interpretation of individual variants both due to
incomplete knowledge of gene functions and inability to determine causal loci. This is
particularly relevant to microarray approaches where it is likely that causal variants are not
directly measured, particularly if they are rare. Associations with non-causal variants can arise
through linkage with causal variants, making it difficult to determine which genes are actually
involved in pathology. When researchers wish to identify which variant in a region of strong
linkage disequilibrium is causal, they may employ fine-mapping®”’. Fine-mapping was not

indicated in this study as no significant variants or strong signals were identified to begin with.

6.4.4 Wider ethical issues due to lack of diversity within biobanks

This study is only relevant to white British populations due to the small number of non-white
participants in UKBB. This is part of a wider issue with biobank-based studies, as many of them
contain majority European background individuals due to the large number of North American

and European companies involved*®

. Very few biobanks exist outside these regions. Amongst
the European and American biobanks, some have a specific aim of including participants from
diverse backgrounds (e.g. Our Future Health). However, the overall effect is that knowledge of
genetic disease is concentrated on white populations in Europe and America; results may not
apply to other ethnicities due to varying gene frequencies. This could lead to exacerbation of
existing inequalities within and between countries. This effect is amplified by the fact that many

non-genetic risk factors are also associated with different ethnicities within countries, as these

are often linked with socioeconomic factors.

6.5 Future study directions

6.5.1 Future studies should be guided by clinical utility

Studies should be informed by what type of information would provide the most benefit to
patients. First, can genetic information be acted upon? In cholesteatoma, early identification
and surgery are important to preserve hearing and reduce risk of recurrence®®. A person at

high risk could be monitored more closely, for example being checked for cholesteatoma
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when experiencing otalgia or effusion but there are currently no non-surgical treatments that

could be given to reduce risk.

A 2022 review™ of the current state of medical interventions for cholesteatoma lists several
drugs which have been or are under trial for treatment of inflammatory disorders which may
have application in cholesteatoma. Most of these are anti-inflammatory drugs, many of them
targeting TLR4 and/or RAGE receptor. TLR4 and RAGE are both pattern recognition receptors
involved in the immune response; TLR4 is a major activator of innate immunity whose primary
target is bacterial lipopolysaccharide, while RAGE has a broader repertoire including S100
proteins. Of the suggested drugs, Ibudilast, Azeliragon, and Fenebrutinib are in phase 3 trials
for other inflammatory conditions; however there have been few drugs tested on

cholesteatoma.

Some mouse and human studies have been performed: Uzun et al. (2021)*'? investigated anti-
inflammatory drugs in cell culture and concluded that tacrolimus and imiquimod are
candidates for further study due to decreased expression of inflammatory cytokines,
decreased cholesteatoma cell viability, and minimal known ototoxicity. Earlier studies®'"*'2
identified the anti-inflammatory 5-fluorouracil as a potential treatment. Vitamin A has been
studied in animal models of cholesteatoma, as vitamin A deficiency is linked to chronic otitis

)'®® report that both vitamin A and cortisporin reduced the rate of

media: Nageris et al. (2001
cholesteatoma formation in a gerbil model and Rao et al. (2009)*" report treating 5 patients
with vitamin A and completely removing cholesteatomas in 4 of them. However, Boesoirie et
al. (2023)*'* found no difference in vitamin A or E for CSOM or CSOM with cholesteatoma in
60 patients. Overall, there are still no non-surgical cholesteatoma treatments and no drugs in

development as alternatives, despite several candidates being suggested.

Any intervention based on genetic risk would currently amount to increasing awareness of
disease, closer monitoring, and earlier intervention to preserve hearing. Whether genetic
testing would offer any benefit over simply informing people of a familial risk would depend
on the strength of the genetic effect, whether any non-surgical treatments become available,

and whether any treatment course might be affected depending on which genes are involved.
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Beyond genetic testing within high-risk families, the utility of PRS for predicting cholesteatoma
risk is questionable. Even the most rigorously studied complex diseases do not generally have

PRS in clinical use: the ongoing HEART study'®

uses a combined PRS and clinical predictor for
coronary artery disease'®’, one of the most common causes of death in the world, and has just
passed its pilot phase. No other PRS are used for predictive purposes in a medical setting, and
so are mostly offered by commercial companies offering private testing via at-home kits. PRS
offered vary between companies, but include coronary artery disease, type 2 diabetes, various
cancers, and Alzheimer’'s disease. Yet these are not clinically tested, and while PRS are generally
accepted to describe population-level risk well, their utility on an individual level is not known.
PRS are continuous, so a somewhat arbitrary cutoff must be placed to determine ‘high risk’ or
which people require further screening or preventative treatment. This means that the

t2’2 and will

additional benefit from including PRS in screening for disease risk may be modes
depend on the relative contribution of genetics to disease risk. Another concern is that
emphasis on complex genetic risk factors draws attention away from well-known, highly

impactful environmental risk factors such as smoking, obesity, and deprivation®’?.

Aside from these issues, PRS generally are not constructed for rare diseases such as
cholesteatoma. This is probably because sample size is often small, because rare diseases are
not as widely studied as common diseases, are generally studied by methods other than
GWAS, and because previous GWAS have mostly been microarray based (so have not captured
rare variants). In short, we do not have reliable odds ratios for genetic variants associated with
polygenic rare diseases. In order for a PRS to have any predictive power in a general
population, much more about cholesteatoma biology would need to be known and there
would need to be an effect size large enough to warrant investigation. PRS may be of more
utility within groups already known to be a high risk, in this case when disease is in the family.
However, it may be that familial cases are less polygenic; additional family studies are needed
to provide insight into this matter. Future studies may also wish to compare cholesteatoma to

disease-free ears, as well as to non-cholesteatoma middle ear disease.

6.5.2 Strategies for increasing power of future studies

Individual studies may struggle to acquire a large enough cohort of cholesteatoma patients

for genetic testing. However, the large and increasing number of biobanks make meta-analysis
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an attractive possibility. Ramé et al. (2023)*° recently performed such a meta-analysis for
otosclerosis using results from UKBB, FinnGen and the Estonian Biobank. As more studies are
performed on these biobanks and PheWAS results are generated, meta-analysis may become
increasingly easy as summary statistics can be used. Biobanks such as FinnGen may release
these results, or outside researchers may release them; several PheWAS browsers are available
for UKBB, for example GeneBass (https://app.genebass.org/) and PheWeb

(https://pheweb.sph.umich.edu/), while BioBank Japan compiles results from individual studies

(https://pheweb.jp/). An additional benefit of PheWAS is the ability to check for phenotype

associations for high-ranking genes which may offer more information on the reasons for a
gene’s significance, for example the FinnGen R11 result for cholesteatoma also being
associated with orofacial cleft. Such associations may not necessarily extend beyond the

individual biobank being studied but could explain the associations within that biobank.

Such studies may provide stronger evidence for a genetic basis of cholesteatoma risk and help
to differentiate it from other middle ear disease. This knowledge could be used to guide family
studies, as loci or pathways identified from the general public could be examined directly
rather than sifting through the whole genome. In other diseases with sporadic and familial
forms, there is often overlap in the genes involved in both forms®*>31>=17 A recent review of
obesity genetics also identified common pathways between rare monogenic causes of severe

obesity and common, polygenic risk of obesity®'

, so even if identical genes are not involved,
there is likely to be similarity in disease pathways. Therefore, GWAS results should provide
additional insight into familial cholesteatoma even if distinct familial and sporadic forms of

disease exist.

Power may also be increased if the binary outcome can be converted into a continuous trait,
for example if a biomarker can be identified associated with severity®'. Expression of the
biomarker is measured, resulting in detection of expression quantitative trait loci (eQTLs)*%°.
There are no cholesteatoma biomarkers at this time, though gene expression studies reveal
several candidates. The matrix metalloproteins have often been studied in cholesteatoma and
are thought to be involved in invasiveness and bone destruction: MMP expression has been

156,158

correlated with increased destruction of bone , and they are also expressed in the

tympanic membrane where they may contribute to retraction pocket formation through
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degradation of the lamina propria and loss of elasticity '®'. Although several different MMPs

have been detected in cholesteatoma, MMP9 is amongst the most frequently described.

Khondoker et al. (2015)**" increased power of an Alzheimer's disease GWAS using imaging
data to measure cortical thickness and regional volume in different parts of the brain.
Cholesteatoma can vary in the location and spread, extent of ossicular damage and invasion
of other bony structures. They can easily be identified via MRI or CT scan®®. This presents an
alternative quantitative measurement for cholesteatoma. However, an issue with both this
approach and the eQTL approach is cost effectiveness; biobanks do not typically contain large
amounts of imaging data, nor are they likely to contain tissue samples from the middle ear, so
participants would have to be recruited and these measurements taken. This reintroduces the
issue of cholesteatoma incidence being low, making recruitment difficult as well as expensive.
Another possible approach could be to use the presence of complications as biomarkers for
cholesteatoma aggressiveness, for example using ICD-10 codes indicating recurrence or

intracranial complications such as meningitis.

6.5.3 Perform family studies focusing on affected pathways

Family studies have the potential to better identify rare, highly penetrant variants®%, First, other
family members can be used as controls, reducing the number of candidate genes. If individual
families carry distinct risk variants or combinations of risk variants, such studies may better
identify them than population-level GWAS as the signal to noise ratio will be worse for the
latter. A better estimate of heritability may be acquired from family studies, as although
heritability can be estimated from large, unrelated populations, these methods require high

power and are generally poor where rare SNPs are involved**,

However, if candidate variants have low penetrance, family studies may lack power*?®. One
issue is that many genes are likely to co-segregate with disease, meaning they must be filtered
in some way to identify likely candidates. Our previous study used a combination of predicted
impact filters, co-segregation analysis and TRAPD analysis, where the frequencies of variants
are compared to the frequency in the general population. Filtering to genes associated with
the functions identified in this GWAS may be one method to reduce multiple testing and

further increase power of family studies.
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Given that our family study detected rare, deleterious DNAH variants co-segregating with
cholesteatoma in five out of ten families and the UKBB WES study detected enrichment of
axonemal dyneins, | recommend further study of rare dynein variants within affected families.
The known link between dynein variants and PCD, chronic ear disease and cholesteatoma is
also convincing. In my study, the dynein variants were rare and therefore could not explain all

cases, but they may be involved in a subset.

6.5.4 Further investigation of epilepsy link

The nature of the relationship between epilepsy and cholesteatoma in this study is unknown.
Epilepsy may arise as a complication of intracranial infection or may be a risk factor itself.
Another possibility is that anti-epileptic drugs may have an influence on cholesteatoma risk,
as is seen with bisphosphonates given for osteoporosis. Cholesteatoma and other middle ear
conditions are not amongst known side effects of anti-epileptic drugs, which mainly include
nausea, headache, dizziness and cognitive effects. However, there are many anti-epileptic
drugs and rarer adverse effects can involve various organs including the skin, causing
conditions such as acne, rash, exfoliation and Stevens-Johnson syndrome®®. While there is
currently no established link between epilepsy or its treatments and raised risk of
cholesteatoma, biobanks containing information about prescription medications could hold

further insight into any potential relationship.

6.6 Impact

Little is known about what causes cholesteatoma. Although there are several convincing
theories for formation, these do not explain all cases and many cases show features of multiple
theories of formation. Nor is it known why these processes occur in some people and not
others, despite similar conditions such as chronic inflammation and tympanic retraction. Until
recent observations of family clustering, cholesteatoma has been considered non-genetic. This
thesis supports a genetic role and suggests several pathways and processes which may be
involved in cholesteatoma biology, which may be used to enhance future family-based studies.
It also provides evidence that cholesteatoma risk is complex: it is not based on a single gene
or variant, may be highly polygenic and/or heterogeneous, and the overall genetic effect

within the general population is not large.
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7 Conclusion

Cholesteatoma is a complex disease with heterogeneous presentation and multifactorial
environmental and genetic risk. Increased susceptibility may arise through a combination of
factors contributing to increased risk of otitis media, and both separate and overlapping risk
factors contributing to risk of development of cholesteatoma. Genetic risk factors may be
heterogeneous, possibly with both familial (high-penetrance, less polygenic) and sporadic

(low-penetrance, highly polygenic, highly environmental) forms.

A major finding of his study was enrichment of pathways within UKBB whole exome single
variant data with the following themes: cell adhesion, actin cytoskeletal organisation, tissue
development, and calcium binding. These were supported by enrichment within the Finnish
biobank FinnGen. Another important finding was enrichment of dynein binding processes
within UKBB whole exome single variant data due to rare DNAH and DNAI variants; this was
not replicated in the microarray-based FinnGen data nor UKBB microarray data due to rarity
of these variants. As our previous whole exome study also identified rare DNAH variants within
affected families, this supports a role for dynein function and therefore ciliopathy in

cholesteatoma.

Variants in these pathways may contribute to cholesteatoma risk directly or indirectly via risk
of otitis media (Figure 36). Ciliary impairment may raise susceptibility to OM and prevent
proper clearage of keratin debris from the middle ear. Altered cell motility due to adhesion
and cytoskeletal variants may also contribute to dysfunctional epithelial turnover on the

tympanic membrane or promote invasiveness.

Poor Eustachian tube function has a known role in risk of chronic ear disease and chromosomal
abnormalities have previously been shown to raise risk of otitis media and cholesteatoma, but
it is unclear if enriched tissue development processes discovered in this analysis are associated
with differences in Eustachian tube morphology. A role for calcium in cholesteatoma seems
well supported by genetic and gene expression studies. While immune genes are implicated

in OM susceptibility, no immune involvement in cholesteatoma was detected in this thesis.
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Figure 36. Diagram showing cholesteatoma risk factors (black) and pathological
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Likewise, extracellular matrix dysfunction is implicated in cholesteatoma from gene expression
studies. My semi-systematic review of global gene expression studies identified upregulated

proteases and broad dysregulation of extracellular matrix structural components including
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consistent downregulated TNXB and COCH. However, my genetic analysis did not implicate

ECM function directly.

Overall, this study supports the existence of a complex genetic component to cholesteatoma
disease risk. Whether individuals have some combination of the identified genetic pathways
or defects in just one is not known. Although very few genetic studies of cholesteatoma have
been performed, evidence from this and our previous whole exome study support the dynein

family of ciliary motor proteins as targets for future research.
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8 Appendix: Ancestry Estimation

To avoid confounding due to population structure, GWAS usually use participants of a
homogenous genetic background. While it is possible to perform multi-ancestry GWAS, large
numbers of each ancestry are required. The UKBB cohort includes individuals of a wide array
of backgrounds but is majority White British. The metadata contains three methods for
identification of genetic background: ethnicity, as stated by participants at recruitment; genetic
principal components, from which genetic structure can be determined; and an indicator for
genetically determined White British participants, determined by Bycroft et al. (2018)c using a
combination of both.

Use of genetically-determined ancestry may be more appropriate for genetic study, as the
intent is to control for genetic factors. However, this may not be appropriate for
epidemiological study where sociological factors are likely to be important. | investigated
ancestry based on genetic principal components and compared it to ethnicity to determine
whether ancestry or ethnicity provided better case-control matching for epidemiological and
genetic study, and whether ethnicity would be a suitable proxy for genetic ancestry in genetic

study.

Ancestry estimation from ethnicity and k-means clustering

K-means is a method for sorting multi-dimensional data into groups by calculating the
position of the centroid of each cluster. The centroid is the coordinate at the centre of any
given cluster. Individuals are clustered as to minimise the average distance to the centroid.
This was performed on the genetic principal components supplied by UKBB. Genetics of
different populations do not form self-contained, discrete clusters as populations are rarely
entirely isolated. They are similar to neighbouring populations and may have significant

admixture with other populations leading to the PCs forming continuous gradients between
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more densely clustered regions (Figure 37). The clustering algorithm must create artificial

cutoffs in order to assign individuals to a given cluster.

Figure 37. Genetic principal components coloured by ethnicity given in UKBB
questionnaire
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For this reason, K-means clustering fails when all individuals are supplied at once. | randomly
sampled 5000 individuals at a time to assign them to 4 clusters with k-means using the first
10 PCs. | chose 4 clusters to represent the 4 major continental ethnicities present In UKBB —
European, African, South Asian and East Asian. Mixed and other ethnicities were assigned if

the individual was above a threshold distance from their centroid (Figure 38b).
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Figure 38. Genetic principal components of a) a random sample of individuals, coloured
by ethnicity and b) the same individuals coloured by assigned cluster, showing selected
cases and controls in black.
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Use of ethnicity over ancestry in genetic studies

In the GWAS section of this thesis, | use white ethnicity as a proxy for European ancestry. To
check that this was a suitable approximation, | compared the selected cases and controls to
the assigned ancestry by k-means. The points fell within the broader European cluster, though
one or two could also have been placed in ‘other’, | decided this was a suitable approximation
(Figure 38). This was beneficial to using Bycroft et al.'s definition of White British'® as it
maintained a larger number of cases and allowed direct comparison to epidemiological
analysis where ethnicity was a more appropriate variate. Also, matching performed better
when ethnicity was used rather than ancestry (see Assessment of matching performance).
Finally, approximating ancestry based on genetic principal components also involves assigning
somewhat arbitrary cutoffs as the components form gradients between more densely

clustered regions.
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Glossary

Abbreviations
ALS Amyotrophic lateral sclerosis
AOR Adjusted odds ratio
CF Cystic fibrosis
com Chronic otitis media
DEG Differentially expressed gene
ECM Extracellular matrix
ENSG Ensembl gene ID
GO Gene ontology (GO:BP biological process; GO CC cellular compartment; GO MF

molecular function)

GoC Genetics of cholesteatoma

GRR Genetic risk ratio

GSEA Gene set enrichment analysis
GWAS Genome-wide association study
HPV Human papillomavirus

HR Hazard ratio

MAC Minor allele count

MAF Minor allele frequency

MLE Maximum likelihood estimate
NCBI National Center for Biotechnology Information
NGS Next generation sequencing
oM Otitis media

OR Odds ratio

PCD Primary ciliary dyskinesia

PheWAS Phenome-wide association study.

PRS Polygenic risk score

rsiD Reference SNP cluster ID

SNP Single nucleotide polymorphism
SPA Saddle point approximation
UKBB UK BioBank

VCF Variant call file

WES Whole exome sequencing
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WGS Whole genome sequencing
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Definitions

Autosomal: (A variant carried on) non-sex chromosomes

Connective tissue: A type of tissue with mostly structural function, consisting mostly of elastic

and collagen fibres.

Coverage: the percent of target bases represented by a minimum read depth

Decision tree: A structured series of conditions used to split data into classes, consisting of
nodes which represent the condition being tested and branches representing the outcome.

Terminal nodes represent the class of data.

Dominant: Genetic mechanism where one copy of a variant gene is sufficient to display

phenotype

Epithelial tissue / epithelium: A type of tissue made up of a thin layer of cells. Makes up the

external and internal surfaces of the body. One of the four types of animal tissue.

Genetic architecture: The number, location and effect size of variants contributing to a

disease, as well as the genetic heterogeneity

Genome-wide association study: A type of study where association tests are performed on

variants across the genome.

Genotype: The combination of genetic variants present in an individual

Genotyping array: A microarray used to detect specific genetic variants using a number of

'‘probes’ (sequences complementary to the target sequences to be identified).

Haplotype: A stretch of DNA or set of variants on a single (haploid) chromosome which tends
to be the same amongst members of a population because it is inherited together from a

parent.

Indel: a type of genetic variant where a single or short stretch of bases have been inserted or

deleted.
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Labyrinth: The bony inner ear which includes the vestibule, semicircular canals and the

cochlea. Involved in sensorineural hearing.

Microarray: A chip that assays a large number of biological entities such as DNA or RNA

fragments. See genotyping array.
Minor allele count: The number of the less common of a pair of possible alleles at a site.

Minor allele frequency: The frequency of the less common of a pair of possible alleles at a

site.
Mucosa: A type of epithelial tissue consisting of simple cuboidal cells.

Mutation: Any change in DNA from the wild type. While effectively synonymous with a variant,

this word tends to be reserved for rare variants.

Ossicular chain: The set of three small, delicate bones of the middle ear which transmit
vibrations from the ear drum to the inner ear, involved in conductive hearing. The ossicular

chain includes the incus, malleus and stapes.
Penetrance: The proportion of individuals with a trait-associated genotype who have the trait

Phenome-wide association study: a type of study where variants are searched for

associations with a wide array of phenotypes.

Phenotype: The observed traits of an individual

Polymorphism: A naturally occurring variant which is common within a population. A

polymorphic site is one which has multiple possible variants.

Read: A small fragment of sequenced DNA usually <100 base pairs long. When DNA is

sequenced, it is done so in numerous overlapping reads.

Read depth: the number of overlapping reads representing a particular base/position in the

gene sequence.

Recessive: Genetic mechanism where two copies of a variant gene must be carried to display

phenotype
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Sex-linked: Where a causal gene for a trait is carried on a sex chromosome

Single nucleotide polymorphism: A type of variant where a single base is substituted for
another. The terms single nucleotide polymorphism (SNP) and single nucleotide variant (SNV)
refer to the same type of variation, though it is more appropriate to call the variant a

polymorphism if variation at that site is common and a variant if it is rare.
Single nucleotide polymorphism: A type of variant where only one base pair is changed.

Stratified squamous epithelium: A type of epithelial tissue consisting of several layers of
epithelial cells arranged on a basal membrane. Keratinising stratified squamous epithelium

produces keratin and makes up the skin.

Tympanic membrane: The ear drum, a tight membrane continuous with the wall of the ear
canal separating it from the middle ear. It is responsible for conducting vibrations from sound
waves to the ossicular chain. The lateral surface consists of keratinising stratified squamous

epithelium, supported by a connective tissue layer. The interior surface is mucosa.

Variant: Any change in a genetic sequence compared to a reference genome. This may be in
the form of a change to a single base pair or the insertion or deletion of many bases. A rare

variant may be called a mutation while a common variant may be considered a polymorphism.
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