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Abstract 

Cholesteatoma is a skin cyst that grows in the middle ear. It is rare, non-cancerous and locally 

invasive, frequently resulting in hearing loss due to destruction of the ossicles. Serious and 

life-threatening sequalae are possible, including facial nerve palsy, meningitis, and abscess of 

the brain. The only treatment is surgical excision, which can exacerbate hearing loss. There are 

several theories regarding the origin of cholesteatoma, but its biology is still uncertain. 

Although not typically considered a heritable disease, observations of family clustering 

suggest a genetic component. The primary aim of this thesis was to investigate genetic risk of 

cholesteatoma though genome-wide association study (GWAS) of UK BioBank whole exome 

data for 1,000 cholesteatoma cases. Single-variant, gene level and gene-set enrichment 

analyses were performed. This was supported by an epidemiological analysis of demographic 

factors associated with cholesteatoma and other middle ear disease and a review of global 

gene expression studies. No single genes or variants met genome-wide significance, but 

pathways related to cell adhesion, cytoskeletal organisation, ciliary function and calcium 

binding were enriched for low p-value variants. These results were supported by pathway 

analysis of summary statistics from a Finnish biobank (FinnGen) and a previous cholesteatoma 

whole exome study of affected families. Dynein binding was also enriched in UK BioBank whole 

exome data due to rare DNAH and DNAI family variants, which is promising as DNAH variants 

were also detected in our previous whole exome study and are known to contribute to similar 

pathologies such as primary ciliary dyskinesia. These results support the existence of a highly 

polygenic effect on cholesteatoma risk and indicate several pathways for further study. 
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1 Introduction 

1.1 Cholesteatoma Biology  

Cholesteatoma is locally invasive skin cyst occurring in the middle ear. The middle ear is the 

cavity in which the delicate bones of the ossicular chain are situated. These bones are 

responsible for conducting vibrations from the tympanic membrane (the ear drum), which 

separates the middle ear from the external auditory canal to the bony inner ear. The middle 

ear drains into the nasopharynx via the Eustachian tube, which is responsible for maintaining 

pressure equilibrium. Expansion of the cyst leads to destruction of the surrounding bone, most 

commonly the ossicles, resulting in conductive hearing loss. The middle ear is surrounded by 

the mastoid bone which contains many air cells. The cholesteatoma can invade and erode the 

mastoid, provoking mastoiditis, and can lead to infection of the brain if the bone is eroded 

through. The facial nerve passes through the bone close to the middle ear and can also be 

damaged by the cyst. Surgical removal of the cyst is the only known treatment and is usually 

performed via mastoidectomy which involves entry into the middle ear via an incision behind 

the ear, the removal of the cyst and well as the mastoid air cells to reduce risk of recurrence. 

1.1.1 Cholesteatoma histology, forms, and features 

Histologically, cholesteatoma resembles an epidermoid cyst1 and is composed of three main 

layers. The main sac of the cholesteatoma is called the matrix and is essentially ordinary 

epidermis, consisting of a basal, granular, and lucid layer. The sac is filled with cystic content 

comprising layered, anucleate keratin squames, sebaceous tissue and necrotic matter shed 

from the inner layer of the matrix (analogous to the outer layer of the skin) whose 

accumulation drives expansion of the cyst2. The cyst is typically surrounded by a layer of 

inflamed connective tissue called the perimatrix and has an outwardly pearly, smooth 

appearance and a layered, undulating structure1 (Figure 1c). 

Cholesteatoma is typically located behind the pars flaccida of the tympanic membrane (Figure 

1b) where it grows into the attic (the space above the ossicular chain, Figure 1a) but also 

behind the pars tensa2. Very rarely, cholesteatoma occurs between the layers of an intact 

tympanic membrane3 or in the external auditory canal; the latter may be confused with the 
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similar but distinct condition keratosis obturans4. Typically, only one ear is affected but disease 

may be bilateral1. 

Cholesteatomas are broadly classified into congenital and acquired types2. Congenital 

cholesteatoma is diagnosed when there is no history of tympanic retraction, perforation or 

surgery, comprises 4-24% of cholesteatoma cases5 and is typically seen in young children2. 

Acquired cholesteatoma is more common and is defined as cholesteatoma in a retraction 

pocket of the tympanic membrane (primary acquired), with tympanic perforation (secondary 

acquired) or following surgery (iatrogenic). 

Structurally, there is little difference between congenital and acquired cholesteatomas, 

although the dense fibrous layer of the perimatrix tends to be denser in adults whereas 

congenital cholesteatomas have more granulation tissue1. Congenital cholesteatomas may 

progress with fewer overt symptoms than adult acquired cholesteatoma1 but pathology is 

otherwise similar.  

  



16 

 

Figure 1. Anatomy of the middle ear, tympanic membrane, and cholesteatoma cyst. 

 A) Cross section of the right ear showing a typical location for cholesteatoma in the ‘attic’ of the 

middle ear, above the malleus and resting against the pars flaccida of the tympanic membrane. 

B) Lateral surface of tympanic membrane (ear drum). The ear drum consists of a thin membrane 

bordered by a tough ligamentous ring. The umbo is the concave point on the membrane where 

the malleus attaches to the anterior surface. The pars tensa is pulled taught while the pars 

flaccida is small and flaccid. C) the cholesteatoma cyst consists of three layers: the perimatrix, an 

inflamed granulation tissue with a dense connective layer towards the centre; the matrix, a sac 

of keratinizing stratified squamous epithelium with the basal layer contacting the perimatrix; 

and the cystic content, a collection of keratin, sebaceous and necrotic debris which makes up the 

bulk of the cyst. 
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1.1.2 Epidemiology 

Cholesteatoma affects between 6.8 and 18.8 people per 100,000 per year depending on the 

study population (Table 1). Cholesteatoma is more common in males by a factor of 

approximately 1.46 and annual incidence is highest in children around 9 years of age7.  Mean 

age of onset is >30 years of age and is later in females6,7. Congenital cholesteatoma is rarer 

than acquired and has a mean age of onset of 5.6 years2. Some studies7–9 have found 

decreasing rates over time, which Djurhuus et al. (2015)9 attribute to increasing treatment of 

childhood chronic otitis media with ventilation tubes. 

Table 1. Incidence of cholesteatoma in a selection of epidemiological studies 

Study 

Rate (per 100,000 

people per year) Country Year 

N 

cases Notes 

Im et al., 

(2020)8 
6.17-7.15 

South 

Korea 

2006-

2016 
42,705 

Surgically treated 

Rates decreasing 

Shibata et al. 

(2015)10 
6.8-10.0 Japan 2008 40 

Found no significant differences in age 

or sex, but only 40 cases and 175 

controls. 

Highest incidence in 60+ age group. 

Britze et al., 

(2017)11 
6.8 Denmark 

2002-

2005 
147 

Surgically treated 

10-year recidivism rate was 0.44 

Age < 15 more likely to have recidivism 

Kemppainen 

et al. (1999)6 
9.2 Finland 

1982-

1981 

500 

 

Rates decreased during study period 

Higher incidence in skilled/specialised 

workers 

Male:female ratio 1.4 

Median age 38 (males), 45 (females) 

22 (4.4%) bilateral 

Padgham et 

al., (1989)12 
9.4-18.8 Scotland 

1966-

1986 
 

Study of surgically treated children < 

15 

Rates stable during study period 

Djurhuus et 

al. (2010)7 

14.3 (males) 

9.1 (females) 
Denmark 

1977-

2007 
13,606 

Surgically treated, registry-based 

Age-specific peak at 9 years old (21.4 

male, 13.6 female). 

Male:female ratio 1.51. 

Median age was 32 for males and 35 

for females. 

Djurhuus et 

al. (2015) 9 
10-15 Denmark 

1977-

2010 
3874 

Surgically treated children 

Rates increased from 1977 to 2002 

and decreased from 2002-2010 

Cholesteatoma is thought to be more common in white populations and rare in Black and 

non-Indian Asian populations2,13,14, although original epidemiological data was not presented 

in the cited studies. Conversely, the annual incidences reported in Table 1 are similar for 
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European and East Asian populations. Ratnesar (1976)15 reports vanishingly rare 

cholesteatoma in the Innuit and Innu people of Newfoundland compared to white populations 

in the same region, despite otherwise high rates of chronic ear disease. Thornton et al. (2011)16 

report no difference in the rates of cholesteatoma amongst individuals with chronic otitis 

media of Tibeto-Mongolian and Indo-Caucasian ancestry in Nepal, nor any difference between 

geographical regions. 

Chronic otitis media (COM) is frequently seen with cholesteatoma, although to what extent 

COM precedes versus arises from cholesteatoma is unclear. Possibly, a background of chronic 

inflammation encourages cholesteatoma formation and is often a precursor to tympanic 

retraction or perforation. Alternatively, ears which are susceptible to chronic disease may also 

be susceptible to cholesteatoma for overlapping reasons. Symptoms such as inflammation and 

effusion can also arise from cholesteatoma, so it is possible that a diagnosis of COM indicates 

underlying cholesteatoma.  

There is also an increased risk of cholesteatoma in persons with primary ciliary dyskinesia, 

which can result in recurrent ear, sinus and lung infections17,18. Both COM and cholesteatoma 

are more common amongst individuals with some disorders affecting craniofacial 

morphology, including Down syndrome, Turner syndrome, Branchio-oto-renal syndrome and 

cleft lip and palate (orofacial cleft)18. Chronic ear disease is also more prevalent in males19, 

further suggesting a link between susceptibility to general ear disease and cholesteatoma. 

Whether COM raises the risk of cholesteatoma directly or through shared genetic or 

environmental factors is not known. 

1.1.3 Theories of formation 

It has not been conclusively demonstrated how or why cholesteatomas form. Notably, the 

cholesteatoma matrix consists of keratinising stratified squamous epithelium, or skin tissue, 

whereas the middle ear is lined with simple cuboidal mucosa. The tympanic membrane itself 

consists of three layers: an outer surface of stratified squamous epithelial tissue continuous 

with the skin of the auditory canal; an inner surface of mucosa continuous with the middle ear; 

and the lamina propria, a layer of connective tissue, between the two13 (Figure 2).  
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Figure 2. Cross section of tympanic membrane 

A cross-section of the tympanic membrane showing the external auditory canal to the viewer’s 

left and the middle ear space to the right. The tympanic membrane consists of stratified 

squamous epithelium on the external side, continuous with the external auditory canal, and 

mucosa on the inner side, continuous with the mucosa of the middle ear. The middle layer 

consists of tough connective tissue. 

 

 

 

There are four main theories for the origins of cholesteatoma epithelium in the middle ear. 

First, tympanic retraction (Figure 3a) theory or invagination theory proposes that 

accumulation of keratin debris in a retraction pocket of the tympanic membrane results in the 

formation of a cholesteatoma. Therefore, the epithelial tissue on the lateral surface of the 

tympanic membrane forms the matrix of the cholesteatoma. Retraction of the pars flaccida 

and less commonly the pars tensa can occur due to negative pressure in the ear resulting from 

chronic infection20. Usually, the tympanic membrane maintains a self-cleaning mechanism by 

the outwards migration of epithelial cells from the lateral surface of the tympanic membrane21. 

Louw (2010)21 proposes that this process is impaired in cholesteatoma, leading to collection 

of debris in the retraction pocket with a high turnover of epithelial cells which ultimately results 
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in cholesteatoma. Retraction pockets are common in chronic ear infection, but most will not 

proceed to cholesteatoma22,23. 

The invasion or migration theory (Figure 3b) suggests that epithelium from the margins of a 

tympanic perforation migrates through the ear drum into the middle ear2. Perforation may 

occur due to chronic infection, trauma, or surgery. Louw suggests that epithelium grows into 

the middle ear forming mucocutaneous junctions where it meets the middle ear mucosa. Then, 

rather than growing across the tympanic membrane to heal the perforation, the epithelium 

migrates inwards.  

The mucosal metaplasia (Figure 3c) theory proposes that the epithelial tissue does not 

originate in the epithelium of the tympanic membrane, rather that the mucosa of the tympanic 

membrane or middle ear undergoes metaplastic transformation into keratinising stratified 

squamous epithelium2. Metaplasia is a general term describing the conversion of any 

differentiated cell type to another and does not indicate the direct cause of transformation – 

in this case, the possible cause is unknown but subsequent expansion of the growth and 

repeated infection could lead to perforation, leading the appearance of typical acquired 

cholesteatoma2. 

Epidermal basal cell hyperplasia (Figure 3d) theory suggests that cholesteatoma microcysts 

formed in the pars flaccida invade the subepithelial tissue of the middle ear. Prolonged 

inflammation may provide the conditions stimulating epidermal hyperplasia and papillary 

cone formation; subject to intense inflammation in the perimatrix, cones become elongated 

and keratin desquamation towards the centre of the cones form micro-cholesteatomas which 

eventually fuse under pressure21. 
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Figure 3. Four theories of acquired cholesteatoma formation. Adapted from Kuo et al. 

(2014)20 

  

Finally, congenital cholesteatoma is thought to arise from a remnant of embryonic epithelium 

in the middle ear. Epithelial tissue may derive from viable epithelial cells in the amniotic fluid; 
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ectoderm from the external auditory canal may migrate into the middle ear during 

development; or an epithelial remnant present during early development persists to give rise 

to cholesteatoma21. Congenital epidermoid cysts may occur in the same manner and are most 

common in the brain and temporal bone, where they may also be described as congenital 

cholesteatomas24. 

Evaluation of theories of formation 

Aspects of each theory for acquired cholesteatoma have been demonstrated in animal 

models25. Common animal models include Mongolian gerbils, rats, chinchillas and guinea pigs; 

cholesteatoma can be very successfully induced by ligating the external auditory canal in the 

Mongolian gerbil, leading to the accumulation of keratin debris and a retraction-type 

cholesteatoma25. Meanwhile, injection of talcum powder and fibrin, dimethyl-

benzanthrancene, propylene glycol or cortisporin into the middle ear can induce chronic otitis 

media and cholesteatoma in a range of rodent models25. These models support obstructions 

to middle ear clearance and aberrations in epithelial migration as potential causes for 

cholesteatoma, though they are induced by rather extreme measures and may not reflect what 

occurs during a spontaneous cholesteatoma.  

Additionally, none of these theories have been conclusively demonstrated in humans. The 

presence of perforation or retraction as a requisite for acquired cholesteatoma diagnosis, and 

with most cholesteatomas being acquired, strongly supports the retraction and migration 

theories. Although it is possible that retraction and perforation may occur secondary to 

cholesteatoma, retraction pocket formation prior to cholesteatoma is supported by 

observation23,26. While tympanic perforation and retraction appear to be important in many 

cholesteatomas, they are not present in all cases (including congenital cholesteatomas), nor 

are they sufficient to cause cholesteatoma as most perforations and retractions resolve without 

causing it.  

However, the theories are not mutually exclusive and may contribute in different parts to 

different cholesteatomas: histological features amongst cholesteatomas taken from different 

individuals support different theories of formation with the presence of mucocutaneous 

junctions in some supporting invasion theory, while papillary cone-like keratin deposits in 

others support basal cell hyperplasia. Rarely, cholesteatoma occurs between the layers of an 
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intact tympanic membrane (intratympanic cholesteatoma); hyperplasia may explain a lack of 

perforation or retraction, although most intratympanic cholesteatomas are associated with ear 

trauma or surgery27. 

Parallels between the theories of cholesteatoma formation and other epidermoid cysts can be 

seen. Epidermoid cysts are mainly thought to occur when a skin follicle becomes blocked, 

resulting in build-up of keratin, or through traumatic introduction of epithelium into the 

dermis28. Rupture of an epidermoid cyst leads to inflammation in the surrounding tissue as a 

response to the presence of keratin28. External auditory canal cholesteatomas do not seem to 

fit well with any of these explanations, although they may be considered another form of 

epidermoid cyst which happens to arise in the ear canal. 

1.1.4 Pathology 

Key features of cholesteatoma pathology are progressive expansion of the cyst and 

destruction of the surrounding bone2. Cholesteatoma tissue is typically inflamed, though 

active infection may or may not be present; inflammation may be in response to spilling of the 

keratin contents of the cyst, with keratins acting as alarmins which signal an immune 

response29. Repeated infection and damage to the middle ear bony structures are responsible 

for symptoms including chronic discharge, hearing loss due to destruction or immobilisation 

of the ossicles, and facial nerve damage to due invasion of the mastoid. The drivers of 

expansion and precise mechanisms of bone resorption have not been conclusively 

demonstrated but may involve mechanical pressure, loss of extracellular matrix integrity, 

osteoclast activation and growth factors expressed in the context of chronic inflammation2,20. 

Paediatric acquired cholesteatoma may be more aggressive than adult cholesteatoma30, with 

greater extent and recidivism31, and childhood cases have been shown to express more 

inflammatory proteins32 and have relatively more granulation tissue33 although many studies 

do not distinguish between adult and childhood cases. 

Extracellular matrix breakdown 

The extracellular matrix (ECM) is the scaffold in which cells are organised within tissues such 

as epithelium. It provides physical structure and facilitates cell-cell communication, migration, 

and adhesion, and can coordinate proliferation and differentiation34. The perimatrix of 
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cholesteatoma is a type of granulation tissue – a connective tissue with inflammatory cell 

infiltration associated with wound repair which the ECM has an important role in coordinating. 

During wound-healing, the ECM is first broken down; cells proliferate and differentiate, new 

blood vessels form (angiogenesis) and tissue remodelling occurs, with apoptosis of old cells 

and replacement of old ECM collagens35.  

Cholesteatoma shows a degraded ECM in comparison to healthy skin and chronic otitis media 

granulation tissue36. Indeed, cholesteatoma has been described as an impaired wound-healing 

process2. ECM degradation could be involved in excess proliferation, inflammation and altered 

migration in cholesteatoma. Migration is an important feature because the origin of the 

epithelial tissue is suspected to be the external auditory canal or external surface of the 

tympanic membrane; therefore, it must migrate into the middle ear, either via a perforation or 

through failure to migrate out of a retraction pocket. Additionally, expression of matrix-active 

proteases such as the matrix metalloproteinases (several of which have been detected 

upregulated in cholesteatoma) may contribute to bone loss and invasiveness20.  

Osteoclasts 

Bone remodelling is a constant process consisting of breakdown by osteoclasts and generation 

of new bone by osteoblasts37. Osteoclast precursor cells are activated by binding of the RANK 

receptor by RANKL and proceed to release bone matrix-lytic enzymes, the most important 

being cathepsin-K (CATK) and tartrate-resistant acid phosphatase (TRAP)38. Osteoclast 

involvement in cholesteatoma is controversial: some studies suggest activation of osteoclasts39 

and depleted osteoblast populations40, though Koizumi et al.41 did not detect osteoclast 

activity in cholesteatoma-affected bone. 

Osteoporosis pathology arises from an imbalance in osteoclast and osteoblast activity leading 

to poor bone density37; as bone resorption in the middle ear associated with cholesteatoma 

may also be due to osteoclast activity, it is possible that the conditions are related. 

Thorsteinsson et al.42 found that treatment with bisphosphonates, a class of drugs given to 

improve bone density in osteoporosis, can also increase risk of external auditory canal 

cholesteatoma. These drugs interfere with osteoclast function to reduce the turnover rate of 

bone and also increase the risk of jaw osteonecrosis and atypical femur fracture.  
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Inflammation 

Cholesteatoma tissue is often inflamed, and affected individuals often have a history of chronic 

otitis media1 but the relationship between the conditions is not clear. Both may arise from 

shared risk factors, such as a poorly draining ear, or a history of repeated infection may directly 

raise cholesteatoma risk. Louw (2010)21 suggests that chronic inflammation may have a role in 

the initial establishment of cholesteatoma by triggering aberrant migration, hyperproliferation 

or mucosal metaplasia. 

Inflammation is also implicated in promoting tissue growth and bone loss, and the immune 

response in cholesteatoma has been described as overly-aggressive14. Possibly, inflammatory 

cytokines provoke excessive proliferation through a positive feedback loop; the keratinocytes 

of the matrix express several proinflammatory cytokines including interleukins IL1α, IL1β, IL6 

and IL8, and parathyroid-hormone-related protein. The matrix fibroblasts in turn produce 

growth factors including epidermal growth factor, platelet-derived growth factor, keratinocyte 

growth factor, and transforming growth factor alpha20.  Imai et al.39 suggest that inflammatory 

products activate osteoclasts via receptor activator of NF-κB ligand (RANKL) expressed in the 

perimatrix, possibly due to expression of tumour necrosis factor alpha (TNF- α), PGE2, IL6 and 

IL1β by the matrix fibroblasts and/or keratinocytes (Figure 4). 

Figure 4. Interaction between fibroblast, keratinocyte and osteoclast promoting 

hyperproliferation and bone loss. 

Fibroblasts and keratinocytes in the cholesteatoma matrix produce growth factors and 

inflammatory cytokines which act in a positive feedback loop promoting hyperproliferation. 

Production of RANKL and TGF-a promote osteoclast activation and bone resorption. Adapted 

from Kuo (2015)14 and Imai et al. (2019)39. 
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However, several inflammatory proteins widely expressed in cholesteatoma have been shown 

to be downregulated compared to granulation tissue from cholesteatoma-free chronic otitis 

media (COM)36, suggesting that inflammation is not excessive but a normal response to 

infection or tissue damage. Alternatively, under-expression of certain inflammatory proteins 

could suggest an inadequate or imbalanced immune response which could contribute to 

pathology. A notable example is SERPINB3, an inflammatory serine protease inhibitor which is 

expressed in cholesteatoma but downregulated compared to chronic otitis media tissue 

alongside other inflammatory proteinase inhibitors, possibly contributing to excessive 

proteinase action and tissue damage36.  

Specific microbes 

The middle ear is typically closed to external pathogens, bound by the tympanic membrane at 

one end and the Eustachian tube at the other, so the microbiome of the middle ear is distinct 

from both the external auditory canal and the adenoid region. The normal microbiota of the 

middle ear is not well established but typically dominated by Proteobacteria, Actinobacteria, 

Firmicutes and Bacteroidetes with child and adult ears varying significantly in the relative 

proportions43. Changes to the middle ear microbiome are noted in otitis media: Streptococcus 
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pneumoniae, Haemophilus influenzae and Moraxella catarrhalis have been detected in otitis 

media (OM) with effusion and tympanic perforation, though M. catarrhalis is not common 

when perforation is absent44. Minami et al.43 found no significant difference in the microbial 

composition of ears with and without cholesteatoma at the phylum level, while suppurative 

OM differed significantly from child and adult normal. They noted that Staphylococcus and 

Peptoniphilus dominated in some suppurative OM ears with Peptoniphilus being particularly 

frequent with cholesteatoma. Decreased relative abundance of some species in cholesteatoma 

including Acidovorax, Bacillus and Masillia species has also been demonstrated45. 

Human papillomavirus (HPV) is a group of very common human viruses causing abnormal skin 

growths called papillomas, including warts and pre-cancerous lesions46. Some epidermoid 

cysts have been found to show signs of HPV infection (termed verrucous cysts)47 and the 

typical hyperkeratotic lesion caused by the virus somewhat resembles cholesteatoma. 

However, the reported prevalence of HPV subtypes in cholesteatoma cysts varies greatly: Chao 

et al. (2000)48 and Franz et al. (2007)49 detected HPV DNA in 1 of 32 and 29 patients respectively 

corresponding to a prevalence of ~3%. Viana et al. (2021)50 failed to detect HPV or 

polyomavirus (another group of tumorigenic viruses) in any cholesteatoma samples (n=26). 

Skoulakis et al. (2018)51 report 48.3% prevalence (n = 62) compared to 0% prevalence amongst 

controls, while Rydzewski et al.52 detected HPV-6/11 in 70% of cholesteatoma cases (n=9) 

compared to 23% of non-cholesteatoma granulation tissue (n=29). This may be partly 

explained by differences in the specificity of HPV subtypes targeted by studies, although Viana 

et al. and Skoulakis et al. both targeted a broad spectrum of subtypes. 

Variable rates of HPV in cholesteatoma could also  reflect the variable rate of background 

infection although increased prevalence in comparison to a control group51,52 suggests a true 

increase in prevalence with cholesteatoma. It is possible that HPV provokes epithelial 

hyperplasia in the basal layer of the tympanic membrane consistent with hyperplasia theory 

and the presence of papillary cones in some cholesteatomas26.  
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Roles in pathology and aetiology 

As cholesteatoma tissue includes an inflamed granulation layer, a degree of ECM breakdown 

and inflammation is always present. Due to the roles of the ECM and inflammation in 

pathologically relevant processes such as cellular proliferation, migration and osteoclast 

activity, it is likely that these features are clinically important. Indeed, several inflammatory 

pathways have been suggested as potential therapeutic targets in cholesteatoma53. However, 

whether there is underlying dysfunction in these processes leading to cholesteatoma is not 

known – inflammation, ECM breakdown and osteoclast activity may be downstream of 

cholesteatoma establishment. The conflicting evidence for a role for HPV in cholesteatoma 

suggests that viruses may be involved in some cases, but it does not seem a likely causative 

agent in all cases; there is also little evidence to suggest any role for specific pathogens in 

pathology and cholesteatoma may or may not be actively infected.  

 

1.1.5 Potential for a genetic role 

Familial clustering 

Although cholesteatoma is not traditionally considered a heritable condition, there have been 

several observations of family clustering54–57, including three reports of congenital 

cholesteatomas in identical twins58–60. Furthermore, an online survey of 857 individuals found 

family history in 10.4% of cases61, while family history of cholesteatoma or chronic otitis media 

was reported in 64% of 12 cases in a Kibbutz of 3056 individuals62. A recent study of surgical 

records in Sweden indicated an increased risk of cholesteatoma amongst first-degree relatives 

of those already treated with an odds ratio of 3.963. Interestingly, many case reports of 

cholesteatoma within families are congenital cholesteatomas55,57–59 despite congenital 

cholesteatoma being the rarer form. Prinsley (2019)54 presents 15 families with multiple 

affected members, though he does not distinguish between congenital and acquired, noting 

most had tympanic abnormalities more consistent with the acquired form. Additionally, Collins 

et al. (2020)61 found a positive association between family history and bilateral disease with an 

odds ratio of 2.15. Therefore, it seems that both congenital and acquired cholesteatoma may 

have a hereditary aspect. 
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A potential genetic association via increased risk of cholesteatoma amongst persons with 

orofacial cleft is also possible: in a Danish study of 8,593 persons with orofacial cleft64, hazards 

of cholesteatoma were 20-fold whilst hazards of cholesteatoma in 6,989 siblings of persons 

with cleft lip/palate were increased 2.1-fold. The authors suggest that this is due to 

accumulation of sub-clinical muscular defects in these siblings, posing a genetic mechanism 

for increased susceptibility. 

Genetic studies 

Very few genetic studies of cholesteatoma have been performed to date. Outside of the 

Genetics of Cholesteatoma project, only three such studies have been performed. The earliest 

of these was a deletion in tumour suppressor APC identified in a single 6-year-old boy with 

familial adenomatous polyposis and cholesteatoma, and his mother65. Familial polyposis coli 

is a disease which causes multiple gut polyps and other cystic lesions, usually due to mutations 

in APC. As such, it is possible that this APC deletion was also associated with cholesteatoma 

in this case, but with a sample size of 1, this is a very low level of evidence. James et al.66 

identified the connexin gap junction genes GJB2 and GJB6 in a study of 98 affected children. 

Variants of these genes are associated with some forms of congenital deafness and 

hyperkeratosis67. However, the sample size was still small for a genetic study, the variant was 

not present in all cases, and there was no control population. A more recent study68 from 

identified 12 rare, deleterious variants in 1 of 6 whole-exome tested saliva samples from 

persons with COM with cholesteatoma. Affected genes were RTN4, RAB5A, CRYBG1, RGS22, 

APBB1IP, HEPHL1, BHLHE41, ARID3A, C5AR1, SPTLC3, CPT1B and FAM227A. The authors 

identified disrupted processes primarily related to endoplasmic reticulum function, including 

endocytosis, protein transport, apoptotic processes, and rhythmic processes. However, all 

variants were found in one individual: the remaining 5 samples had no qualifying variants 

according to their criteria. 

There have also been several studies of up- and down-regulated non-coding RNAs in 

cholesteatoma69–74. Non-coding RNAs target messenger RNA to regulate the translation of 

certain genes into proteins.  Jovanovic et al., 202275 reviewed eight studies of non-coding RNA 

in cholesteatoma and suggest that dysregulated miRNAs miR-21 and LET-7 are the ‘most 

highlighted’. miR-21 downregulates PTEN and PDCD4, suppressors of tumour formation and 
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progression, while LET-7 downregulates HMGA2 which has been hypothesised to balance 

reduction of PTEN/PDCD4 through increased apoptosis. This may contribute to the self-

sustained growth in cholesteatoma with a lack of malignancy. Other pathways thought to be 

disrupted by dysregulated non-coding RNAs include EGFR/Akt/NF-κB/cyclinD1 

and PI3K/Akt/PKB75.  

Cholesteatoma is typically non-cancerous and although some features are shared with 

neoplastic lesions (e.g. excessive growth and angiogenesis), malignance is very rare. In a case 

report of squamous cell carcinoma of the temporal bone arising from cholesteatoma which 

had been surgically removed 54 years prior, a total of 5 other similar cases were identified 

since 195176. Amongst these reports, most cases of carcinoma occurred many years after 

removal of cholesteatoma. The relationship is thought to be due to the impact of chronic 

inflammation rather than malignancy of the cholesteatoma itself76. Dysregulation of some 

tumour-associated genes has been detected77,78, however there is very little literature 

concerning cholesteatoma somatic mutations which would help differentiate it from cancerous 

lesions. Albino et al. (1998)79 found evidence for aneuploidy in only 1 of 10 cholesteatoma 

samples, concluding that there is little evidence for genomic instability consistent with 

malignant neoplasms. However, in a recent analysis of 17 middle ear cholesteatomas, somatic 

variants in MYC and NOTCH1 were detected in 14 samples and correlated with bone 

destruction80. MYC and NOTCH1 are proto-onco genes, genes involved in normal cellular 

growth and differentiation; mutation of these genes can contribute to cancer. Overall, 

cholesteatoma may display some cancer-like properties but shows less genomic instability 

than normal cancers and should not be considered a malignant nor pre-malignant neoplasm. 
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1.2 Genetics 

1.2.1 The role of Genetics in disease 

Many diseases have both genetic and environmental factors. The heritability of a trait is 

defined as the proportion of variance in the phenotype that is explained by genetic variance81. 

A highly heritable trait will have larger genetic contributions than environmental. Not only 

does heritability vary between diseases, but the number of genetic variants, their contribution 

to disease risk, the types and locations of the variants can also differ, from simple monogenic 

disorders where changes to a single gene will always result in disease, to complex, polygenic 

diseases encompassing many risk variants with small effect. The landscape of genetic variants 

underlying a disease can be described as its genetic architecture.  

Inheritance patterns for monogenic diseases 

Some diseases may be caused by deleterious variants in a single gene. A well-known example 

is cystic fibrosis (CF), which is caused by variants affecting the CFTR gene82.  CFTR encodes a 

transmembrane conductance regulator, a type of ion transporter. Damaging variants in CFTR 

prevent the proper function of the ion transporter, leading to decreased chloride secretion 

and sodium resorption by epithelial cells. This leads to thickened mucus secretion in all organs, 

with the lungs severely affected, increasing susceptibility to pulmonary disease. Because 

human genetic code is diploid, a single working copy of CFTR is adequate to prevent disease: 

two defective copies must be inherited, making this an autosomal recessive disease (Figure 

5b).  
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Figure 5. Dominant and recessive monogenic inheritance.  

Examples of family trees with dominant and recessive disease traits. Dominant genotypes are 

denoted with capital letters, recessive with lowercase.  A) Dominant inheritance occurs when the 

dominant allele (A) is causal. One copy of A is sufficient to cause disease. B) Recessive inheritance 

occurs when the recessive allele (b) is causal. Two copies are required to cause disease. 

 

 

An autosomal dominant disease requires only one defective copy of a causal gene (Figure 5a). 

One example is Huntingdon disease, which occurs when one defective copy of HTT is 

inherited83. The pathogenic allele encodes a protein with an expanded repeat region and the 

presence of this protein causes pathology: therefore, only one copy is required to cause 

disease. Huntingdon disease and cystic fibrosis are autosomal diseases because the causal 

genes are not located on the sex chromosomes. A sex-linked disease occurs when the causal 

variant is located on X or Y. Most examples are X-linked recessive, requiring that males carry 

a single copy while females must carry two copies of a causal variant. 

Although causal variants are often inherited, they may also occur spontaneously in the 

gametes, resulting in a de-novo mutation in the child. Both ‘variant’ and ‘mutation’ refer to a 

genetic sequence which differs amongst the population, but a variant is more likely be 

described as a mutation if it is rare or new. I refer to all mutations as variants. 
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Figure 6. Reduced penetrance of a dominant monogenic trait 

The disease allele (A) is dominant. However, some Aa individuals do not have the disease 

phenotype. The individual marked with * carries a copy of A but does not have disease; her 

daughter inherits a copy of A and does have disease. This is a disease with dominant inheritance 

and incomplete penetrance. 

 

 

 

Even simple monogenic disorders such as cystic fibrosis and Huntingdon disease may be 

caused by different variants affecting the same causal gene. For example, around 2000 

different CFTR variants have been identified in cystic fibrosis, although most of these are of 

uncertain relevance to disease and only about 200-300 may actually be pathogenic84,85. 

Different variants can lead to disease through multiple pathways, from production of 

functional CFTR which degrades too quickly to failure to synthesise any CFTR at all82. 

Furthermore, diseases may not be fully penetrant. Penetrance refers to the proportion of 

individuals with the disease genotype who show the phenotype (Figure 6). Cystic fibrosis 

generally has high penetrance with carriers of two defective copies of CFTR typically showing 

disease. However, this is not true for all monogenic disorders: some individuals with the same 

variants may show different forms of disease or none at all86. There are many reasons why 

penetrance may be reduced, and the following are some examples: there may be a large 

environmental component; different causal alleles may have different effects of phenotype 
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and interact differently; there may be age and sex-dependent effects; or there may be 

undiscovered causal loci, making the disease di-or oligogenic86,87. 

Complex, polygenic diseases 

Many common diseases such as type 1 and 2 diabetes, cardiovascular disease, and asthma are 

thought to have polygenic risk. Rather than a single or small number of genes causing disease, 

conditions may be associated with many variants across the genome, each of which contribute 

a small amount to disease risk88. High-risk individuals are those carrying many risk alleles, 

although they may or may not actually develop disease – such individuals are simply at 

elevated risk compared to the general population. Otosclerosis, a condition affecting the bone 

of the stapes, is inherited in an autosomal dominant-like pattern but family-based studies have 

failed to map disease to a single locus89. Recent meta-analysis of three biobanks identified 

1,452 common variants affecting 27 distinct loci associated with otosclerosis90. Meanwhile, 

over 200 susceptibility loci have been identified for coronary artery disease91.  

1.2.2 Types of genetic variant 

There are many different types of genetic variation. The simplest and most common is the 

single nucleotide polymorphism, or SNP (sometimes called single nucleotide variant, SNV) 

where only one base pair differs between individuals92. An indel is a short insertion or deletion 

of base pairs into the sequence (Figure 7). SNPs and indels are well-studied in disease and 

most reported trait associations are for these variant types – they are common, relatively easy 

to detect and well-represented on most genotyping arrays93. 

Figure 7. Common variant types affect a single or few bases. 
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Figure 8. Structural variants affect larger regions of the genomes. Some types of 

structural variants and illustrative examples are given. 

 

 

Structural variants are changes to larger stretches of DNA, approximately 1 kilobases or 

longer94. This can include deletion, duplication or inversion of entire genes or gene regions 

(Figure 8). Although they are poorly studied in comparison to SNPs and indels, up to 9.5% of 

the human genome is associated with copy number variation95 and there is evidence that they 

may be associated with diseases such as Crohn’s disease, type 1 diabetes and rheumatoid 

arthritis96.  

Coding variants 

For sequences inside protein-coding regions, each three bases constitute a codon, and 

corresponds to a different amino acid in the final protein. Because some amino acids can be 

encoded by multiple codons, some changes to the sequence do not alter the corresponding 

amino acid. These are synonymous variants. When the amino acid sequence is changed, the 

variant is missense. If a sequence change results in the stop codon, which signals the end of 

the protein, the final transcript will be truncated, causing a premature stop variant. Indels can 
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cause any of these variant types as well as a frameshift variant, where the number of bases 

inserted or deleted results in all following codons being shifted by one or two places, changing 

the entire following sequence. Any variant predicted to cause the protein to stop functioning 

is a loss-of-function variant. Conversely, gain-of-function variants are changes thought to add 

a new functionality to the final protein. 

Non-coding variants 

98% of the genome is non-coding, meaning it does not translate into a protein product.  About 

a quarter of non-coding DNA lies in the introns (non-coding regions within genes) and the 

rest is intergenic97. Non-coding DNA has many functions, including regulatory elements, non-

coding RNAs and ribosomal RNAs. However, there are large portions of DNA with no apparent 

function or whose function is unknown, including pseudogenes (non-functional remnants of 

genes), transposable elements and repeats, the latter being mostly found in the telomeres and 

centromeres95.   

As only ~2% of the genome codes for proteins, it may not be surprising that >90% of trait-

associated variants discovered by GWAS to date are non-coding98,99. However, their roles in 

disease are poorly described in comparison to coding variants, given the obscure function of 

many forms of non-coding DNA. Changes to regulatory elements in non-coding regions may 

alter gene expression and contribute to disease, although which genes are associated with 

regulatory elements is not always known. In an analysis of 920 publications covering 6,011 

trait-associated SNPs, Maurano et al. (2012)99 found that non-coding SNPs were enriched in 

regulatory elements, with most SNPs either affecting regulatory regions or in linkage 

disequilibrium with them.  

Linkage disequilibrium, the correlation of variants located physically close to each other, means 

that non-coding variants may also tag causal variants in coding regions if the two are linked. 

In a study of 21 common disease traits, Yong et al. (2020)100 created predictors which combined 

the effect of many SNPs across the genome. In their study, 50-60% of predictor SNPs were 

genic, and these SNPs explained 40-90% of predictor variance. This suggests that genic 

variants may have a greater relative contribution to phenotype than non-coding, but this is 

very variable depending on phenotype.  
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1.2.3 Genotyping data 

Genotyping  

There are two main approaches to genomic analysis: genotyping or microarray testing and 

next generation sequencing. Genotyping arrays consist of a number of probes (small stretches 

of DNA covering a region where there is known variation) and can only measure the presence 

or absence of a particular variant at the probed sites. Hundreds of thousands to a few million 

probes are typically included, mostly comprised of SNPs and short indels, although some 

arrays also detect some copy number variants93. Although arrays can only directly measure 

variants represented by their probe sets, many millions of additional variants can be imputed 

from high-coverage reference databases, including very rare variants with minor allele 

frequency < 0.5%93. However, imputation is an estimate and not likely to be completely 

accurate, and the rarest variants may be absent or poorly represented in reference databases 

and therefore difficult or impossible to impute. 

Next generation sequencing  

Next generation sequencing (NGS) involves directly measuring all base pairs in the genome or 

a subset of it. In the approach used by Illumina and similar technologies, this is achieved by 

fragmenting DNA into short pieces and annealing them to flow cells. Complementary DNA is 

synthesised using the polymerase chain reaction (PCR) with fluorescently tagged bases. These 

emit a flash of light as they are added to the growing complementary strand. A computer 

records the flashes which are coloured according to their nucleotide base and in this way reads 

the DNA sequence in each fragment. This process is used by Illumina 

The result of this process is a large number of short, overlapping segments of sequence (reads) 

which must be reassembled into a full genome. This is achieved by aligning them to a reference 

genome. The most recent reference genome assembly from the Genome Reference 

Consortium is GRCH38 and along with its predecessor GRCH37 form the standard for human 

genetics reference genomes. These reference genomes are not an average, nor a 

representation of a ‘disease-free’ genome, but were drawn from a small number of donors: 

93% of GRCh38 is drawn from approximately 11 individuals, with one male contributing to 

70% of the primary assembly101. However, these reference genomes include large gaps in 

hard-to-sequence regions such as the telomeres, and representation of large regions of 
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variability is poor102. For these reasons, new graph-based genomes representing all regions 

and multiple alternative haplotypes are being developed by the Telomere-to-Telomere 

consortium102 and Human Pangenome Consortium103. However, these are not yet in wide use 

and GRCH38 remains the standard. 

Variant calling for NGS data 

NGS always generates error and determining true variation from such errors is a non-trivial 

task. As reads are overlapping, most sites will be represented by multiple reads (the number 

being the read depth of that site, see Figure 9). A simple way to determine if a variant is real 

is to check the proportion of reads agreeing on the variant at the site. Quality metrics such as 

the site’s read depth may also be used to decide whether to call a variant, where poor quality 

sites are assumed not to be true variants. Methods such as FreeBayes104 and GATK105 use 

additional information from reference databases to determine the likelihood of variants being 

true based on the genetic background in which they usually appear. Because variant calling in 

NGS involves deciding whether there is sufficient evidence that the read sequence differs from 

the reference, sites with low read depth or large amounts of error may be considered to agree 

with the reference genome.  
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Figure 9. Alignment of reads to a reference genome can identify possible variants.  

Reads, short fragments of sequence determined from sample DNA, are aligned to a reference 

genome to reconstruct the original sequence. Where the reads vary from the reference genome, 

there may be a variant. However, not all reads may agree on the sequence at this site. The 

number of reads representing a given site is the read depth and generally a higher read depth 

means a greater certainty about the sequence at that site. 

 

 

1.2.4 Trio analysis and family studies 

Causal variants for simple, monogenic disorders can often be determined through family 

studies or trio analysis. Examining the affected individual alone is usually insufficient to 

determine which genetic variants are likely to be causal as a single individual carries many 

variants, of which a proportion are predicted to be deleterious – with no obvious ill effects for 

their carrier86. In a trio study, the genetics of an affected child and their parents are examined 

to determine the causal gene. For example, if disease acts in a dominant fashion but is due to 

a de novo mutation, the causal variant will be present in a child but not in their parents. If 

disease is recessive, the affected child will be homozygous for variants affecting a gene for 

which their parents are heterozygous106. 

Additional family members may also be used: if disease is autosomal dominant, variants must 

be present only in the affected family members and absent in unaffected family members 

      

    

    

    

                        

     

     

                 

  



40 

 

(variants co-segregate with disease). As large swathes of the genome are shared between 

family members, many variants can quickly be excluded.  

Family or trio studies may primarily be used to identify candidate genes when an individual 

has a rare disorder whose cause is not known106. Other families showing the same disease may 

also carry different risk variants. This is both a benefit and a drawback of family studies: it is 

beneficial as it removes genetic heterogeneity and allows easier identification of causal alleles, 

but different families may carry different causal variants. 

These types of studies work best when disease is based on few genes. Some digenic and 

pseudo-digenic disorders have been identified through family studies, where variants in two 

different genes are required for disease or where a second gene modifies disease appearance 

and behaviour107. When disease risk is raised by small or modest contributions from many 

genes (i.e. It is highly polygenic), family studies may fail to identify risk variants as large sample 

sizes are needed to detect these small effects.   

1.2.5 Genome-wide association studies 

The goal of the genome-wide association study (GWAS) is to test variants across the genome 

for statistical associations with a phenotype. GWAS is typically applied to common, complex 

diseases whose genetics cannot be easily established by family studies and whose case 

numbers are sufficient to provide statistical power for discovery. GWAS may be used to identify 

causal variants to explain the mechanisms of disease and indicate possible therapeutic targets. 

There has also been increasing interest in using genome-wide data for diagnosis and screening 

through the use of polygenic risk scores which sum the effects of a large number of variants 

across the genome108,109. 

The first GWAS was performed in 2005, and identified complement factor H as a risk locus for 

age-related macular degeneration, highlighting an immunological role in the disease110. Since 

then, over 5,000 GWAS have been performed and catalogued (EBI GWAS Catalog), identifying 

over 300,000 variant-trait associations. In most GWAS, each variant is tested individually for 

an association with the outcome with a linear (for continuous traits) or logistic (for binary traits) 

regression in the following general form: 

  

https://www.ebi.ac.uk/gwas/
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𝒀~ 𝑾𝜶 +  𝑿𝜷 + 𝒈 +  𝒆 

Uffelmann et al. (2021)88 

Where Y is the phenotype, W a matrix of covariates, X a vector of genotypes of all samples at 

a given locus, and g and e are error terms. 𝜶 and 𝜷 are calculated when fitting the regression 

and tells us the effect sizes of the covariates and genotypes88. This test is repeated across the 

genome, allowing calculation of effect sizes and p-values for all variants and identification of 

those most likely to be causal or contribute to risk. This makes GWAS suitable for discovery of 

causal variants where genetics is not yet known or expected to be complex.  

It is common to reduce the number of variants considered in a GWAS by filtering for impact 

and frequency. This reduces the number of variables being tested, therefore should reduce 

noise. Often, only variants with a minor allele frequency of at least 1-10%, depending on the 

size of the study population, are included to ensure sufficient sample size for statistical 

power88. Rare variants may require very large sample sizes or techniques to aggregate them 

at the gene level to provide sufficient power. This may be- in the form of a burden test, which 

calculates the sum of variants affecting a given gene, which works well when all variants in a 

gene have similar effects on phenotype111. Methods such as SKAT perform regressions for 

variants within each gene, allowing for different variants to have differing effect sizes112. The 

result is again a gene-level test but can account for differing effect sizes and directions. 

Because many statistical tests are being performed across the entire genome, false discovery 

is a risk and the p-value threshold for significance must be adjusted appropriately. A standard 

method is Bonferroni correction, which reduces the threshold p-value by the number of tests 

performed; as the human genome contains approximately 1 million independent variants, a 

p-value of 5x10-2 is adjusted to 5x10-8 (depending on factors such as the population size and 

the number of independent variants analysed)88. Variants are generally not independent from 

one another due to linkage disequilibrium, meaning variants located physically close to one 

another are often correlated. Rare variants are unlikely to be in linkage disequilibrium with 

common variants and so may represent a greater number of independent tests88.  
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Population stratification 

An important confounder in genetic studies is population stratification, which refers to 

differences in gene frequencies between populations. Stratification occurs on both a global 

scale, where gene frequencies differ between ancestries, and within populations reflecting 

historical human migration patterns, genetic drift and non-random mating113. This can result 

in false associations if the trait also varies in prevalence across the study population. Causal 

variants may also differ in frequency between populations, leading to the same trait being 

associated with different variants in different populations113. Population stratification is often 

controlled by taking the first genetic principal components and using these as covariates in 

the association test88,114.  Modern GWAS software such as REGENIE115 and SAIGE116 typically 

perform multiple steps to correct for population stratification as well as sample imbalance and 

other sources of error. An initial step fits a null model which captures the genetic background 

of the population and is used in the second step to correct the p-values accordingly (see 

Modern GWAS methods). 

1.2.6 Polygenic risk scores 

Genetic risk for complex diseases may comprise a small number of variants with high impact 

on outcome as well as a large number of variants with small contributions to disease risk. For 

common diseases, the polygenic component may outweigh the contributions of rare, highly 

penetrant mutations117. Researchers have sought to quantify this risk through the creation of 

polygenic risk scores (PRS). PRS combine the effects of variants across the genome by 

summing them with weights according to their effect size. PRS have been calculated for several 

common, complex conditions such as coronary artery disease, type 2 diabetes and 

inflammatory bowel disease118. Even where single or small sets of genes are known to explain 

a large proportion of genetic risk, for example BRCA1/2 and breast cancer, PRS have been 

found to classify a similar number of high-risk individuals on the population level, even if the 

individual effect is modest118. While some commercial companies offer polygenic testing for 

diseases like breast cancer, PRS are not widely used in any clinical setting. One exception is 

the ongoing HEART study119,120, which combines PRS with clinical data to identify persons with 

elevated risk of a cardiac event. Observational data from the UK BioBank suggests that PRS 

alone may be as good a predictor as known clinical risk factors and in combination led to re-
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classification of 13.7% of individuals between high and low risk categories121. Although such 

tests are not yet widespread in clinical settings, they demonstrate the ability of polygenic risk 

scores to quantify disease risk due to polygenic effects.  

Besides simple summation of weighted variants, machine learning approaches to disease 

classification can also describe disease risk with more complex genetic architecture. There are 

many approaches to classification, including support vector machines, Bayesian classifiers and 

neural networks122. A common approach in bioinformatics is Random Forest, where many 

decision trees are generated using random resampling of the data123 (see Random forests). 

Importantly, these methods use genetic data in combination rather than testing genes or 

variants separately. This makes them suitable when disease risk is based on a non-linear 

combination of risk variants. 

1.3 Study Aims and Wider Project 

1.3.1 The Genetics of Cholesteatoma Project 

Although cholesteatoma is not traditionally considered a heritable condition, recent 

observations of family clustering and family history in ~10 of cases61 support a significant 

genetic component in some individuals. Observations of such family clustering in East Anglia54 

led to the establishment of the Genetics of Cholesteatoma project (GoC) with the aim of 

studying cholesteatoma heritability.  

Two genetic studies have been performed by the GoC to date: Prinsley et al. (2019)124 identified 

rare loss of function variants of EGFL8 and BTNL9 in a multiply-affected family. EGLF8 is an 

epidermal growth factor-like protein and the variant identified by Prinsley et al. is associated 

with the hyperproliferative inflammatory skin condition psoriasis. This is particularly interesting 

as several gene expression studies have identified upregulated psoriatic proteins: this includes 

the S100A family of inflammatory proteins, PI3, DEFB4 and SERPINB4125. According to Macias 

et al. (2013)125, only two of fourteen psoriatic proteins have not been shown to be dysregulated 

in cholesteatoma. BTNL9 (butyrophilin-like protein 9) has signalling receptor binding activity 

and is involved in T-cell signalling and cytokine production. As inflammation may be intimately 

involved with cholesteatoma progression and pathology, changes to immune genes could 

contribute to disease risk. Several additional genes were detected with missense variants of 
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predicted moderate impact on protein function; however, as only one family was considered, 

it is difficult to draw conclusions that can be generalised. As neither of the variants detected 

were rare enough to be the sole causes of cholesteatoma, their involvement (if any) may be 

polygenic124. 

The recent GoC follow-up study126 of 21 individuals from 10 affected families identified 

additional candidate variants in NEB, DNAH7, DENND2C, NBEAL1, PRRC2C and SHC2. Gene 

ontology analysis in this study identified enriched deleterious variants in several pathways: 

calcium binding, microtubule function (primarily due to DNAH and KIF family variants), and 

extracellular matrix organisation. Deleterious variants affecting ECM proteins could result in 

improper ECM formation and aberrant downstream processes, consistent with cholesteatoma 

gene expression (see Semi-systematic review of global gene expression studies). Multiple 

families carried variants in DNAH7, one of a family of dynein axonemal heavy chain proteins 

involved in force generation on the cytoskeleton and ciliary/flagellar motility. Ciliary function 

may be important in cholesteatoma as it is involved in clearance of mucous and debris from 

the ear; impairment may lead to increased infection and possibly a failure of the tympanic 

membrane’s self-cleaning mechanism. Variants in DNAH1 and DNAH5 are associated with 

primary ciliary dyskinesia, which increases susceptibility to chronic otitis media and 

cholesteatoma17. Additional families carried variants in other DNAH family members and in 

some KIF family members – KIF genes encoding kinesins, force generating proteins on the 

cytoskeleton acting in the opposite direction. Interestingly, this study did not implicate 

immune function, suggesting that upregulated immune genes in cholesteatoma tissue are 

downstream of any possible genetic causes. 

As studies so far do not agree on a single set of genes or variants, penetrance is low, and risk 

factors are diverse, it is likely that cholesteatoma genetics are heterogeneous and complex. 

There is some evidence that cholesteatoma may be associated with defects in the 

inflammatory response, as it may be a direct sequalae of chronic ear inflammation, although 

the precise relationship between cholesteatoma and otitis media is not known. BTNL9, 

identified in the pilot study, had immune function124, although the second GoC study of a 

larger number of individuals did not identify this as an enriched process126. Meanwhile, gene 

expression studies point to breakdown of the ECM, while our whole exome study suggest a 

role for ciliary function. Genetically mediated risk factors are also known via chromosomal 
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disorders which affect craniofacial morphology18. With many potential pathways to disease, it 

is possible that different factors contribute different amounts to disease risk between affected 

individuals and families, making genetic analysis challenging and calling for larger genetic 

studies than have previously been performed to increase statistical power. 

 

1.3.2 Aims and objectives 

My PhD project will perform the first genome wide association study of cholesteatoma 

(excluding generic PheWAS which include cholesteatoma but do not report specifically on the 

disease). This is to identify variants, genes or pathways associated with cholesteatoma and to 

further investigate its genetic architecture. While previous studies in the GoC project have 

identified several candidate genes with diverse functions, these along with complex 

environmental risk factors, point to a complex, heterogeneous disease. Therefore, large, 

controlled genetic study is required. This project, which uses ~1,000 cases from UK BioBank 

(UKBB) data, will therefore provide much-needed insight into the mechanisms of disease which 

may lead to non-surgical preventative treatments or aid in targeted monitoring of at-risk 

individuals. 

The study’s aims are as follows: 

• To review current knowledge on molecular biology of cholesteatoma through 

systematic review of global gene expression studies. 

• To explore cholesteatoma epidemiology in the UK BioBank to identify important 

demographic factors and comorbid disease. 

• To identify genetic variants associated with cholesteatoma through genome-wide 

association study of whole exome data. 

• To identify affected processes and pathways through gene set enrichment analysis.  

• To use machine learning to classify cases and non-cases to explore genetic architecture 

and determine whether disease risk can be predicted from these genes. 

• To further understanding of the genetic mechanisms underpinning cholesteatoma risk 

and inform future study directions in cholesteatoma treatment and monitoring. 

  



46 

 

2 Semi-systematic review of global gene 

expression studies 

2.1 Background 

2.1.1 Rationale 

Differential gene expression analysis is a method used to identify differentially expressed 

genes (DEGs) between two or more sample sets. A range of methods are used to analyse the 

RNA or protein products in pathological specimens, comparing them to an appropriate 

healthy tissue to identify over- and under-expressed genes127. Differential gene expression 

analysis has been applied to cholesteatoma with the aim of understanding its pathological 

features, namely its aggressive, invasive growth and bone erosion. Changes in gene expression 

associated with disease may drive pathology or be a consequence of it; either way, these 

changes may provide insight into disease biology.  

Candidate gene-based approaches have investigated the expression of various genes 

including interleukins and matrix metalloproteinases (MMPs). Selection of targets in such 

studies may be based on knowledge of biology of similar diseases: an early study128 

investigating MMPs in cholesteatoma followed the discovery of a role for the protein family in 

other osteolytic diseases such as osteoarthritis. Likewise, study of RANKL in cholesteatoma 

follows knowledge of its role in osteoclast activity129. Fewer studies have taken an approach 

whereby a large number of genes are tested unselectively to identify those with the greatest 

differential expression. These studies may reveal previously unexplored genes with important 

roles in cholesteatoma biology. However, individual studies often have small sample sizes, 

meaning results may not be generalisable. Interpretation of the large number of differentially 

expressed genes detected within studies is often based on prior knowledge of cholesteatoma 

pathology, including gene expression studies of candidate genes, which may be both subject 

to publication bias and biased towards well-studied gene families. By performing a systematic 

review of global gene expression studies, the most consistently dysregulated genes can be 

determined and candidates which have yet to be studied may be identified. 
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2.1.2 Aims and objectives 

In this chapter, I reviewed nine papers where significant results for all genes tested were 

reported in order to determine which genes are consistently up- and down-regulated in 

cholesteatoma. This review was conducted in accordance with the PRISMA 2020 systematic 

review guidelines130. As I did not have a second researcher to aid in literature search, this review 

is semi-systematic rather than systematic. I then performed gene ontology analysis on the set 

of genes detected in two or more papers as well as up- and down-regulated genes compared 

to skin and mucosa to build a detailed profile of transcriptional changes characteristic of 

cholesteatoma. Expression studies often have small sample sizes and differ in their approaches, 

including choice of control tissue, which is of particular importance as it is unclear which tissue 

represents a healthy analogue to cholesteatoma due to its uncertain aetiology1. Comparing 

the changes in expression with different tissue controls can further enhance our understanding 

of cholesteatoma biology. Identification of any consistently up- or down-regulated genes 

across tissue comparisons may identify new genes to investigate as therapeutic targets or 

biomarkers for invasiveness and will complement the results of genetic investigations. 

The following questions were addressed in this review: 

• Which genes are consistently dysregulated across global gene expression studies?  

• Which pathways and processes are enriched amongst consistently dysregulated 

genes? 

• Which pathways and processes are enriched amongst up- and downregulated genes 

compared to skin and mucosa, and do these differ? 

2.2 Methods 

2.2.1 Data Collection 

Search strategy and eligibility criteria 

I performed a literature search on web of science for the term cholesteatoma AND 

(expression OR regulat*) AND (protein OR gene) using the web of science core collection 

and MEDLINE databases.  

To be included in this review, a study must meet the following criteria: 
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• Articles must be in the English language. 

• Studies must test gene expression of human middle ear cholesteatoma tissue compared 

to an appropriate control tissue. Genes tested must be associated with a specific protein 

product (i.e., not non-coding RNAs). 

• Studies must contain a global gene expression element: I define this as testing a large 

number of genes across the genome in order to screen for expression differences without 

applying any presupposed knowledge of cholesteatoma biology to select targets. Articles 

which were clearly testing only a specific set of gene or proteins based on title or abstract 

were excluded.  

• Studies must at least present a table of all significantly differentially expressed genes or 

proteins in the text body or as supplemental material.  

Studies may use any of several approaches to measuring differences in gene expression, e.g., 

by targeting RNA or performing proteomic analysis. I placed no early limit on date of studies, 

and the literature search was performed in June 2024. Abstract screening was performed to 

eliminate papers that did not test human cholesteatoma tissue or were not gene expression 

studies, and abstracts that specified that gene expression testing was performed for a specific 

set of genes. 

Data extraction  

I downloaded global gene expression results for papers where full data were provided as 

supplementary tables. For papers where results tables were given in text, I copied results tables 

into an excel file. I noted the comparison tissue, number of participants, type of study and any 

genotype arrays or other detection methods used. I assess risk of bias using a modified version 

of the Newcastle-Ottawa scale131, considering three main areas: selection of participants, 

comparability of case and control tissues, and data analysis (replacing the ascertainment of 

outcome in the Newcastle-Ottawa scale of case-control studies).  

2.2.2 Data synthesis 

For the eight papers where a table of significantly differentially expressed genes was given, I 

extracted genes and fold-changes meeting each paper’s significance criteria. Britze et al. 

present two levels of stringency for reporting, termed group A (identified in 3 of 3 tests, mean 
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fold change >= 2 times the standard error of the mean, p-value < 0.05) and group B (identified 

in 2 of 3 tests, individual fold change >= 2 times the standard error of the mean). I used both 

group A and B genes. Where possible, I converted all fold-changes to log2 fold changes and 

counted the number of papers and tissue comparisons for which each gene was differentially 

expressed. Log2 fold changes could not be calculated for Tokuriki et al. as fold change was 

not reported. I used the National Center for Biotechnology Information (NCBI) human genome 

release 38 version p14 (GRCh38) information file to convert gene symbols to their authoritative 

symbol for consistent naming across papers. 19 genes had ambiguous names; the symbol 

given was a synonym for one or more genes and it was not possible to determine which was 

the correct gene. Of these, 5 may have been present in 2-3 papers, depending on the actual 

identity of genes: LOR/LORICRIN/LOXL2 and BCL5/BCL6 may have been present in 3 papers 

each. The 19 ambiguous genes were excluded from further analyses. 

Processing of Shimizu raw data 

Raw data included gene barcode counts per cell for 3 individuals (cholesteatoma and skin 

samples were taken from each). I compared cholesteatoma and non-cholesteatoma gene 

counts across all cells for each individual by Wilcoxon rank sum test, (Mann-Whitney U test). 

The rank sum test is a non-parametric test for comparing distributions which is accurate even 

when data are not normally distributed. I calculated fold change by comparing the Poisson 

mean for case versus control tissue for each sample, then acquired the mean ratio across all 

three. I also fit a generalised linear model with logit link and Poisson distribution, using 

case/control status as the outcome and the participant of origin as a covariate. Analyses were 

performed in MATLAB 2023b132 using the ranksum, poissfit and fitglm functions. 

 I retained genes meeting the following criteria: 

• All samples showed a fold-change in the same direction between case and control and 

at least 2 of the distribution comparisons were significant according to Wilcoxon rank 

sum test (Bonferroni adjusted for the total number of genes tested (n=29213).  

• The gene was also significant according to generalized linear regression (adjusted for 

the total number of genes tested). This test was not used alone as many of the genes 

were poorly conditioned and returned warning messages from the fitglm function. 
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g:Profiler gene set analysis 

To identify the common disrupted processes in cholesteatoma, I performed gene set 

enrichment analysis (GSEA) with g:Profiler. Such analyses identify which pathways are 

overrepresented amongst the most significant results, aggregating the effects of genes 

involved in the same biological processes. G:Profiler performs a hypergeometric test to 

determine enriched pathways and corrects p-values using g:SCS, a method taking into account 

the hierarchical nature of GO terms and defined in Reimand et al. (2007)133. 

I tested for functional enrichment using g:Profiler for the following: 

• All genes detected in 3 or more papers regardless of comparison tissue or direction. 

• Genes detected in 2 or more papers with a consensus direction of expression for the 

same comparison tissue. The number of times a gene was up-regulated or down 

regulated a within a tissue were summed, with up-regulation counted as +1 and 

down-regulation as -1, so genes must have acquired >2 or a <-2 score to be counted. 

Because only skin and mucosa were tested multiple times, tests were performed for 

genes up- and down-regulated compared to mucosa and skin. 

Genes were analysed by g:Profiler as an unordered query using the Gene Ontology (GO) 

cellular compartment (CC), molecular function (MF), and biological process (BP) databases as 

well as the human phenotype ontology database. I used the g:Profiler web service available at 

https://biit.cs.ut.ee/gprofiler/. The g:Profiler version released on 13-02-2024 (reference 

genomes: Ensembl 111, Ensembl Genomes 57. GO release: 2024-01-17*) was used. 

GO terms are hierarchical, so enrichment in a given process is likely to result in enrichment of 

parent or child processes which can result in a large number of pathways being returned. To 

address this problem, g:Profiler highlights terms which drive significance in order to identify 

the most biologically relevant and I report highlighted terms only. More detail is given at 

g:Profiler – a web server for functional enrichment analysis and conversions of gene lists 

(ut.ee). 

 

* See https://github.com/geneontology/go-announcements/issues/665 for details 

https://biit.cs.ut.ee/gprofiler/page/docs#highlighting-description
https://biit.cs.ut.ee/gprofiler/page/docs#highlighting-description
https://github.com/geneontology/go-announcements/issues/665
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2.3 Results 

2.3.1 Selection of reports for inclusion in quantitative and 

qualitative analysis 

275 records were retrieved with no duplicates (Figure 10). Non-English language articles were 

excluded (n=19; abstracts also indicated no global gene expression component) and one 

retracted paper was also excluded. 233 records were excluded during screening for testing 

specific gene targets, testing non-human or non-cholesteatoma tissues, or being otherwise 

irrelevant. Of 22 reports selected for retrieval, 21 were available. Eight were excluded for either 

not containing any global gene expression component (n=3), performing a global element 

but only reporting a subset of validated proteins (n=4), or the global element was unclear or 

not reported in full (n=2). One was excluded for using the same data as a prior study. 2 

additional papers were excluded from quantitative analysis but contain useful information for 

qualitative comparison: Yoshikawa et al. (2006)134 compared cholesteatoma and skin 

fibroblasts before and after exposure to interleukin but not to each other, while Zeng et al. 

(2024)135 do not report the results of the global element of their study but do report pathway 

enrichment analysis of differentially expressed genes. 
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Figure 10. Identification of studies via database searches 
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Study characteristics 

The reports included for quantitative analysis used various methods including gel 

electrophoresis, western blot, mass spectrometry and RNAseq to test a wide array of genes 

for differential expression without first narrowing to a particular set of genes of interest (Table 

2).  Studies varied in number of participants between 3 and 21 and in the type of control tissue. 

Control tissues include retroauricular skin, external auditory canal skin, middle ear mucosa, 

tympanic membrane, non-cholesteatoma chronic otitis media (COM) granulation tissue, and 

congenital cholesteatoma. The total number of participants across all papers was 75, with 

cholesteatoma samples taken from each and a total of 131 control samples taken across all 

participants (67 skin, 20 mucosa; other tissues examined in one paper only). Eight papers 

reported lists of the significantly differentially expressed genes, while the remaining paper 

reported the raw data from which differentially expressed genes could be calculated. Raw data 

was only available for four papers.  
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Table 2. Summary of global differential gene expression/transcriptomic papers.  

Analyses aside from Jovanovic et al. were paired, drawing cholesteatoma and control tissue from 

the same patient. Where control tissues differed in sample size to number of participants, tissue 

N is given. The two studies that included a global gene expression component not suitable for 

quantitative analysis are marked with a dagger (†). Differentilly expressed gene (DEG) number 

calculated during synthesis marked with an asterisk (*) 

Paper 

N 

participants 

Control tissue 

(n where different) 

 

Method  N genes tested DEGs 

Tokuriki et al. 

(2003)136 

8 Retroauricular 

skin 

Microarray Atlas 1.2 array  1176 18 

Klenke et al. 

(2012)77 

17 External auditory 

canal skin 

Microarray Whole Human 

Genome (4x44)  

Oligo Microarray, 

~41,000 

(31,000 

genes) 

1,145 

Macias et al. 

(2013)125 

13  External auditory 

canal skin 

Microarray  3D-Gene Human 

Oligo chip 25k 

24,267 282 

Jovanovic et 

al. (2020)36  

2  

 

COM granulation 

tissue (n=4) 

Microarray Illumina iScan 

HumanHT-12 v4 

Expression 

BeadChip 

47,231 169 

Britze et al. 

(2014)78 

9 Tympanic 

membrane, 

External auditory 

canal skin, 

Neck of 

cholesteatoma, 

Middle ear 

mucosa 

Proteomic NanoLC-MS/MS 

MaxQuant 

(version 1.2.2.5) 

Andromeda search 

engine 

20,255 

protein 

sequences 

295 

Randall et al. 

(2015) 137 

12   Middle ear 

mucosa (n=8) 

Retroauricular 

skin (n=9) 

Bone (n=8) 

Proteomic NanoLC-MS/MS 

Proteome 

Discoverer 1.4 

540,261 

sequences 

58 

Gao et al. 

(2023)138 

 

8 Auditory canal 

skin 

Proteomic MS/MS with 

Proteome 

Discoverer 

20,395 

(including 

contaminants) 

923 

Shimizu et al. 

(2023)139 

3  Retroauricular 

skin 

 

scRNAseq Illumina NovaSeq 

6000 platform 

BD Rhapsody 

Analysis Pipeline 

 893* 

Baschal et al. 

(2019)140 

3 Middle ear 

mucosa (N=4) 

RNAseq   1,806 

Yoshikawa et 

al. (2006)134 † 

6 Non-IL 

stimulated 

cholesteatoma 

fibroblasts 

Microarray human genome 

U133A probe 

array (GeneChip),  

  

Zeng et al. 

(2024)135† 

3 Skin RNAseq FeatureCounts 

Deseq2 
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Certainty of evidence and risk of bias 

Per-paper bias assessment with modified Newcastle-Ottawa scale is given in supplementary 

information (SI Table 1). 

Selection: In all studies, case tissue was well-defined due to the obvious and recognisable 

nature of cholesteatoma. In all cases, participants were drawn from those undergoing surgery 

for middle ear disease, so may represent the more extreme end of disease severity. Most 

papers specified that acquired cholesteatoma tissue was taken but only Tokuriki et al. and 

Britze et al. reported age and sex, and Klenke et al. reported age. This may make results difficult 

to generalise and any differences based on sex, age or cholesteatoma type cannot be 

determined. Control tissue was generally taken from the same individual at the same time. For 

tissues in close proximity to cholesteatoma (e.g. mucosa, tympanic membrane), presence of 

disease may alter gene expression so these may not represent healthy control tissues. 

Appropriateness of controls: Aside from Jovanovic et al., all studies used paired control 

tissues drawn from the same individual, which should control for confounders such as age and 

sex of participants, as well as any lesser confounders. Jovanovic et al. did not provide age/sex 

of case and control participants, so it is unclear if any matching was performed to consider 

important confounders. 

Bias in analytical methods: Papers using genotyping arrays are only measuring a specific set 

of human genes which will tend to be biased towards well-studied genes. This was most 

notable in Tokuriki et al. where only 1,176 genes were tested by their microarray. Proteomic 

studies are similarly biased towards previously measured protein transcripts as all use UniProt 

databases to identify expressed proteins from mass spectrometry images and are less sensitive 

to small abundances than RNAseq. All studies were at low risk of reporting bias due to the 

hypothesis-free nature of global gene expression approaches. It is unlikely that a study will 

find no DEGs, though this is more likely to affect studies using small arrays. There may be some 

publication bias if a study does not detect any previously studied DEGs or has a specific 

hypothesis that a given pathway will be enriched amongst their global gene expression results 

but it is not. 
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2.3.2 Consistently dysregulated genes 

Across all papers, a total of 3,747 differentially expressed genes were reported (1,090 

upregulated compared to skin; 1,113 downregulated compared to skin), of which 624 were 

reported in more than 1 paper (Table 3). No differentially expressed genes (DEGs) were 

detected in all 9 papers, which may be due to differences in approach, including differences 

in the number of gene tested, tissue comparisons made, reporting criteria, small sample sizes, 

and variability of biological samples. However, 20 DEGs were detected in 4 or more papers: 

SERPINB3 was detected in 7; S100A7, S100A9 and S100A8 in 6; COCH, SERPINB4, CEACAM6 

and PI3 in 5; KRT8, KRT7, TNXB, BLMH, CTSC, SLPI, SPRR1B, LCN2, BPIFA1, SERPINB7, TACSTD2 

and MMP9 in 4 (Figure 11). 

Table 3. Number of papers differentially expressed genes/proteins were detected in, 

regardless of tissue comparison or direction.  

N 

papers 

N 

genes Genes 

7 1 SERPINB3 

6 3 S100A9, S100A7, S100A8 

5 4 COCH, SERPINB4, CEACAM6, PI3 

4 12 KRT8, KRT7, TNXB, BLMH, CTSC, SLPI, SPRR1B, LCN2, BPIFA1, SERPINB7, TACSTD2, MMP9 

3 

109 

FKBP10, SOD2, SLC25A5, AOC3, FLG2, DSC3, HMGCS1, COL3A1, COL6A6, COL1A2, BPIFB1, GDA, 

COL8A1, LUM, S100A7A, PRSS23, IGFBP2, S100A2, CARHSP1, BAX, RXRA, LAMA5, CAV1, 

HSPA1A, ASS1, GATA3, LONRF1, EPCAM, TFAP2C, PRXL2A, PLP1, RHPN2, PGM5, FOS, PHGDH, 

GPC3, FABP4, FGFBP2, SP5, KRT19, CDH1, ALDH1A3, MAL2, CLDN1, PIP, CXCL17, EYA2, PERP, 

SYBU, C1orf116, CRABP2, KLF4, FAM83A, CDS1, C9orf152, CXADR, CLDN7, MMP13, FMOD, 

PFN2, SERPINB12, RNASE7, CYB5R2, ATP5PD, CYB5A, CTSV, HAL, SERPINB13, SDR9C7, PSAPL1, 

ARG1, NCCRP1, GGH, KRT78, CALML5, KRT10, TAGLN, ANPEP, NPC2, AGRN, DCTN5, GAN, 

LGALS3BP, ACP3, CNFN, MAN2B1, LNPEP, BGN, SOD3, TTC39B, IL36G, GJB2, CASP14, CYCS, 

SERPINB2, TMPRSS11D, PNP, DAAM1, MAB21L4, SERBP1, EIF1AX, QPCT, TNS3, FAM83B, 

DEGS1, NIBAN1, YBX3, TCN1 

2 

495 

IDH2, TXNDC5, RPL14, MDH2, ELANE, CTSG, APCS, ACOT1, FLG, FABP5, MPZ, FTL, FADS2, FASN, 

ITGAM, KRT79, TPSAB1, OGN, FBN1, UPK1B, NIPBL, LAMP5, MS4A7, IGFL1, KRT16, CCN2, 

SFRP2, S100A12, SIX1, VCAN, CDH11, INHBA, UPP1, GLIPR1, CYTOR, PLBD1, SULF2, NBPF15, 

CLEC7A, NUCB2, PTN, RGS3, INMT, NUCKS1, SYNCRIP, FHL2, SLC25A45, HOOK2, PAK6, 

CDC42EP4, LYPD6B, ZFP36, ALDH2, H3-3B, EFS, TLCD3A, GARNL3, THEM5, MATN2, KRT15, 

HSPA2, PHLPP1, CLEC3B, GPC1, CCL15, ISOC1, APCDD1, ADIRF, SELENBP1, IRX5, COBL, SLC12A2, 

SLURP1, BCAT2, CGNL1, TFF3, INHBB, LRP4, EDNRB, RBP4, CFD, DNER, F10, DCT, TPPP3, OSR1, 

HMGCS2, TF, CRAT, PAMR1, ATP6V1B1, TYRP1, KRT2, PI16, GAL, STMN2, AGR2, CAPN13, 

MUC4, DEFB1, AKR1C2, VTCN1, MUC1, CDH3, ALDH3B2, FOXA1, PROM1, CYP4X1, C19orf33, 

ANXA8, GABRP, CFB, WFDC2, CYP24A1, MUC20, TFAP2A, SLC34A2, KLF5, VSIG2, PTPRF, ISL1, 

MMP10, CYP2F1, RAB25, PDZK1IP1, SLC4A11, CP, DSP, DUOX1, FGFR3, SOX2, MSMB, ADGRF1, 

SLC44A4, GSTA1, CDH6, ECRG4, CD24, RAB17, SAA1, PPL, AQP3, PLEKHS1, DST, SIX4, HAS3, 

LMO3, TP63, PAX9, SBSPON, SCARA5, CHI3L2, SPP1, CTSH, CTSD, ITGB1, PRDX2, ZFP36L1, KRT4, 
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N 

papers 

N 

genes Genes 

SBDS, NIT2, ASAH1, ACAT1, ITGB4, AK4, GSTM3, RPS12, CD59, DNAJB1, C1QBP, PGRMC2, 

ECM1, KRT77, TGM3, ACOX1, KRT23, TGM1, KRT80, PRELP, DMD, POF1B, CAVIN1, SPTBN1, 

LAMC1, FLNA, APOH, LMNB2, SULT1A1, COL18A1, ABI3BP, APOA2, RAP2C, SNU13, SAE1, NID2, 

AEBP1, COL4A2, STS, FBXO2, NIPSNAP2, SAP18, DTD1, CNN1, COL4A1, MYLK, HTRA1, GLRX, C6, 

ANK3, CDH13, CLIP1, NCKAP1, ITGA2, CUL3, IFI30, IMPA2, SDR16C5, KLK5, ARSF, KRTDAP, MBP, 

PPM1L, PRCP, TINAGL1, SCEL, TTLL12, TMOD1, CHI3L1, VWA1, GNAI1, NDUFA5, ITGA6, KRT18, 

DCN, LAMB2, OLFML1, F2, EHD2, MYO1C, FBLN5, BPIFC, HOPX, WFDC12, GGCT, KLK13, ELOVL4, 

GPLD1, KLK6, LYPD5, PTGER3, SERPINA12, LIPN, C5orf46, CSTA, CES1, MSMO1, ACER1, GSDMA, 

KLK11, KLK8, DBI, AADACL2, PEG10, IDE, SPRR1A, PDCD4, TOB2, MMP7, KLK7, EPHX3, PLXND1, 

SERPINB8, SPRR4, HPSE, NDRG2, TM7SF2, AFTPH, TOB1, YOD1, SPRR2D, ALOXE3, CDKN1A, 

FARP1, KLK10, WFDC5, CILP, TGM2, PAIP2B, CLPX, NRARP, RNF227, GATM, FOSL1, EMP2, JUNB, 

IGF2, KLK14, GNA15, TENT5C, GJB4, EPN2, ALDH1A1, RNF139, ABHD5, KEL, COL11A1, PHLDA1, 

ALOX12B, KIF21A, AVPR1A, IL1RN, ANXA9, GJB5, CSRNP1, IER2, ZNF740, ATP6V1G1, CHST1, 

PLEK, TMEM45B, NIPAL1, LCE1A, KLHL18, LGALSL, NLRX1, C15orf48, TMX4, NDFIP2, MEIS2, 

WDR3, STAB1, MMP15, IL36B, SIX2, SP6, SOWAHC, ENSA, CFI, ATP11B, EPHX1, RPS27A, 

SERPINA9, PSMA1, RDH12, IL18, LRRC2, EPS8L1, SLC16A7, IER3, QPRT, RARB, PRRG4, CPA4, 

RCOR1, DYNC1LI1, MALL, BCL2L1, TTC39A, NDUFS5, ANXA6, RBBP6, CLIC3, RPL37A, SERTAD1, 

PIP5K1B, NOP16, DUSP7, PSMB1, TUBB2A, PPP1R14C, GALNT1, SORBS3, EFNA1, TIFA, LONRF3, 

SELENOP, ID4, CRYBG1, LXN, VIM, C7, SCRIB, HNRNPAB, S100P, URB2, HPGD, RLIG1, GJB3, 

VPS4B, CCL27, KHDRBS3, IFFO2, SRSF3, KRT1, HMCES, EPOP, MDK, GOLM1, ITGB2, GMFG, 

NT5C3A, FBXO3, RAB5A, RAB38, LEO1, KCTD4, TNN, CDYL2, BAG1, LYZ, RET, CANX, RAPGEF1, 

CD38, EIF1, PSMB2, USP47, EVI2A, SMPDL3A, FGL2, TEX264, ITPKC, PDK4, IQCA1, TENT5B, 

DNAJA1, POLD1, PKDCC, ALDH3A2, LPAR6, TMEM230, DOCK5, CYP4F22, BCAS2, UPK3BL1, 

DMTN, AP1AR, CCDC6, BICD2, CERS3, PDE7B, MEMO1, KLF10, NOLC1, HEXIM1, GSN, TGFBR3, 

EIF5, CTSB, ANK2, DPT, AOX1, MFAP2, ITIH5, THY1, COBLL1, LAMB1, ANGPTL5, PNO1, BAG5, 

ARID2, IL33, RAI14, TPM1, ITPRID2, SLC25A4, RARRES1, F13A1, MMP11, C6orf132, CIRBP, 

SMARCD2, GPM6B, TRAFD1, NUP35, PYCR1, LMO7, FAT1, FHL1, CDC42BPG, SORBS1, CRABP1, 

NAT10, MYH11, LAMC2, PAX3, PTPRD, AHCYL2, HSPB6, MYL9, MGST2, MMP1, SYPL1, PRPH, 

BAK1 
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Figure 11. Differentially expressed genes detected in 4+ papers.  

The top panel shows which papers a given gene was detected in. The bottom panel shows log2-

fold expression change per tissue comparison on the bottom. The height of each stacked segment 

shows the average across that specific comparison tissue. Tokuriki data are included in the top 

panel but not in averages as fold changes were not available. 

 

While direction of differential expression was generally the same across papers with regards 

to the same control tissue (skin or mucosa), there was variation in direction of differential 

expression between control tissues. Many genes which were upregulated in cholesteatoma 

relative to normal skin or mucosa were downregulated in comparison to chronic otitis media 

tissues, including SERPINB3, SERPINB4, SERPINB7, LCN2, S100A7, CEACAM6, and SLPI. The 

most consistently upregulated genes compared to skin and mucosa were SERPINB3, S100A9, 

S100A7, S100A8, and PI3. The most consistently downregulated gene compared to skin and 
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mucosa was TNXB, while KRT8 was generally downregulated compared to skin, mucosa and 

bone with the exception of one paper where it was upregulated compared to skin. 

 

2.3.3 Dysregulated pathways and processes amongst genes common 

to multiple papers 

Dysregulated genes detected in 3 or more papers (regardless of tissue comparison or 

direction) were enriched for GO biological processes, molecular functions, and compartments 

with four main themes (Table 4):  

• Structural roles and the ECM (extracellular matrix structural constituent, extracellular 

region, collagen-containing extracellular matrix, collagen binding, collagen fibril 

organization, peptidase regulator activity, peptide cross-linking, Golgi lumen p=8.81x10-

26-0.0348) 

• Skin development (cornified envelope, structural constituent of skin epidermis, tissue 

development p=1.25x10-8-0.0356). 

• Cell lifecycle (tissue development, cell adhesion, cell migration, locomotion, autocrine 

signaling, cell population proliferation, regulation of apoptotic signaling pathway, 

regulation of cell motility p=0.00424-0.00448). 

• Immune response (RAGE receptor binding, defense response, tertiary granule lumen, 

p=0.00728-0.0135). 
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Table 4. Enriched processes amongst dysregulated genes detected in 3 or more papers 

regardless of direction or tissue comparison.  

Showing g:Profiler highlighted processes only. American spellings for GO terms are retained for 

consistency with original data sources. 

source Term Name 

Adjusted p-

value 

Term 

Size Genes 

G
O

:M
F 

peptidase regulator 

activity 

9.32x10-6 227 SERPINB3, SERPINB4, PI3, CTSC, SLPI, SERPINB7, CAV1, 

GPC3, SERPINB12, CTSV, SERPINB13, SERPINB2 

extracellular matrix 

structural 

constituent 

4.69x10-5 167 TNXB, COL3A1, COL6A6, COL1A2, COL8A1, LUM, 

LAMA5, FMOD, AGRN, BGN 

transition metal ion 

binding 

1.01x10-2 1124 S100A9, S100A7, S100A8, LCN2, MMP9, SOD2, AOC3, 

FLG2, GDA, S100A7A, S100A2, RXRA, GATA3, KLF4, 

MMP13, ARG1, ANPEP, LNPEP, SOD3, QPCT 

RAGE receptor 

binding 

1.35x10-2 10 S100A9, S100A7, S100A8 

collagen binding 3.48x10-2 69 COCH, TNXB, MMP9, LUM, MMP13 

structural 

constituent of skin 

epidermis 

3.56x10-2 36 PI3, KRT7, KRT78, KRT10 

G
O

:B
P

 

tissue development 

3.26x10-9 2010 SERPINB3, S100A7, KRT7, TNXB, SPRR1B, SERPINB7, 

TACSTD2, MMP9, FLG2, COL3A1, COL1A2, COL8A1, 

BAX, RXRA, LAMA5, CAV1, GATA3, EPCAM, PGM5, 

FOS, PHGDH, GPC3, KRT19, ALDH1A3, CLDN1, EYA2, 

CRABP2, KLF4, CXADR, MMP13, PSAPL1, KRT78, 

CALML5, KRT10, TAGLN, CNFN, BGN, GJB2, CASP14, 

YBX3 

response to biotic 

stimulus 

5.10x10-5 1586 S100A9, S100A7, S100A8, SERPINB4, PI3, KRT8, SLPI, 

LCN2, BPIFA1, MMP9, SOD2, BPIFB1, BAX, CAV1, 

HSPA1A, ASS1, GATA3, FOS, GPC3, FABP4, CDH1, 

CLDN1, KLF4, CXADR, RNASE7, ARG1, NPC2, IL36G, 

GJB2 

cell adhesion 

2.73x10-4 1512 S100A9, S100A8, CEACAM6, TNXB, TACSTD2, AOC3, 

FLG2, DSC3, COL3A1, COL6A6, COL8A1, IGFBP2, 

LAMA5, CAV1, ASS1, GATA3, EPCAM, PGM5, CDH1, 

CLDN1, PERP, KLF4, CXADR, CLDN7, ARG1, LGALS3BP, 

PNP 

regulation of 

peptidase activity 

3.52x10-4 244 SERPINB3, S100A9, S100A8, SERPINB4, MMP9, BAX, 

CAV1, PERP, KLF4, SERPINB13, CYCS 

response to toxic 

substance 

2.43x10-3 238 S100A9, BLMH, SOD2, BAX, ASS1, PRXL2A, FOS, CDH1, 

CLDN1, SOD3 

collagen fibril 

organization 

3.73x10-3 65 TNXB, FKBP10, COL3A1, COL1A2, LUM, FMOD 

regulation of 

apoptotic signaling 

pathway 

4.48x10-3 382 S100A9, S100A8, CTSC, MMP9, SOD2, SLC25A5, BAX, 

CAV1, HSPA1A, EYA2, CTSV, YBX3 

defense response 

7.28x10-3 1791 S100A9, S100A7, S100A8, SERPINB4, PI3, CTSC, SLPI, 

LCN2, BPIFA1, MMP9, AOC3, BPIFB1, CAV1, HSPA1A, 
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source Term Name 

Adjusted p-

value 

Term 

Size Genes 

ASS1, GATA3, PLP1, FOS, FABP4, CLDN1, CXCL17, KLF4, 

CXADR, RNASE7, ARG1, LGALS3BP, IL36G 

autocrine signaling 1.11x10-2 7 SERPINB3, S100A9, S100A8 

Locomotion 

1.68x10-2 1234 SERPINB3, S100A9, S100A7, S100A8, CEACAM6, TNXB, 

TACSTD2, MMP9, SOD2, COL3A1, LAMA5, CAV1, 

GATA3, PLP1, CDH1, CLDN1, CXCL17, KLF4, CXADR, 

CLDN7, PFN2 

cell population 

proliferation 

2.00x10-2 2006 SERPINB3, CEACAM6, TNXB, SERPINB7, TACSTD2, 

MMP9, SOD2, SLC25A5, COL3A1, COL8A1, IGFBP2, 

BAX, LAMA5, CAV1, HSPA1A, GATA3, EPCAM, TFAP2C, 

FOS, GPC3, CLDN1, KLF4, FAM83A, CLDN7, ARG1, 

NCCRP1, PNP, FAM83B 

cell migration 

3.12x10-2 1496 SERPINB3, S100A9, S100A7, S100A8, CEACAM6, TNXB, 

TACSTD2, MMP9, SOD2, COL3A1, S100A2, BAX, 

LAMA5, CAV1, GATA3, PLP1, GPC3, CDH1, CLDN1, 

CXCL17, KLF4, CXADR, PFN2 

peptide cross-linking 3.41x10-2 28 PI3, SPRR1B, COL3A1, KRT10 

regulation of cell 

motility 

3.54x10-2 996 SERPINB3, S100A7, CEACAM6, TNXB, TACSTD2, 

MMP9, SOD2, COL3A1, LAMA5, CAV1, GATA3, PLP1, 

CDH1, CLDN1, CXCL17, KLF4, CLDN7, PFN2 

G
O

:C
C

 

extracellular region 

8.81x10-26 4213 SERPINB3, S100A9, S100A7, S100A8, COCH, SERPINB4, 

CEACAM6, PI3, KRT8, KRT7, TNXB, BLMH, CTSC, SLPI, 

LCN2, BPIFA1, SERPINB7, TACSTD2, MMP9, SOD2, 

FLG2, DSC3, COL3A1, COL6A6, COL1A2, BPIFB1, 

COL8A1, LUM, S100A7A, PRSS23, IGFBP2, BAX, 

LAMA5, HSPA1A, ASS1, EPCAM, PRXL2A, PHGDH, 

FABP4, FGFBP2, KRT19, CDH1, ALDH1A3, MAL2, PIP, 

CXCL17, C1ORF116, CRABP2, CXADR, MMP13, FMOD, 

PFN2, SERPINB12, RNASE7, CTSV, SERPINB13, PSAPL1, 

ARG1, NCCRP1, GGH, KRT78, CALML5, KRT10, ANPEP, 

NPC2, AGRN, LGALS3BP, ACP3, MAN2B1, LNPEP, BGN, 

SOD3, IL36G, SERPINB2, TMPRSS11D, PNP, SERBP1, 

QPCT, NIBAN1, TCN1 

collagen-containing 

extracellular matrix 

9.22x10-12 425 S100A9, S100A7, S100A8, COCH, TNXB, CTSC, SLPI, 

MMP9, COL3A1, COL6A6, COL1A2, COL8A1, LUM, 

LAMA5, GPC3, FMOD, SERPINB12, AGRN, LGALS3BP, 

BGN, SOD3 

cornified envelope 

1.25x10-8 59 PI3, SPRR1B, FLG2, DSC3, SERPINB12, KRT10, CNFN, 

CASP14, SERPINB2 

lateral plasma 

membrane 

1.31x10-3 76 TACSTD2, EPCAM, CDH1, CLDN1, CLDN7, GJB2 

apicolateral plasma 

membrane 

2.27x10-3 23 KRT8, KRT19, CXADR, CLDN7 

tertiary granule 

lumen 

4.24x10-3 55 MMP9, FLG2, GGH, QPCT, TCN1 

Golgi lumen 7.58x10-3 103 LUM, GPC3, FMOD, AGRN, BGN, SOD3 
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source Term Name 

Adjusted p-

value 

Term 

Size Genes 

costamere 3.87x10-2 18 KRT8, PGM5, KRT19 

2.3.4 Enriched processes amongst up- and down-regulated genes vs 

skin and mucosa 

ECM disruption and enriched upregulated immune genes across tissues 

ECM-related terms were enriched in up- and down-regulated gene sets for both tissue 

comparisons (Table 5-Table 8). Collagen-containing extracellular matrix, extracellular matrix 

constituent and costamere were downregulated in both tissue comparisons, while extracellular 

region was upregulated compared to mucosa and downregulated compared to skin.  

Certain immune terms were enriched amongst upregulated genes for both tissue comparisons. 

Toll-like receptor 4 binding, neutrophil aggregation and RAGE receptor binding were enriched 

in upregulated genes compared to both skin and mucosa.  

Enriched pathways in DEGs compared to mucosa 

Terms enriched in the upregulated-vs-mucosa set included epidermal development terms 

such as structural constituent of skin epidermis, keratohyalin granule, cornified envelope and 

epidermis development (Table 6). Such terms were not enriched in the upregulated-vs-skin 

set.  

Few terms were enriched in the downregulated set of genes compared to mucosa (Table 5), 

probably because there were fewer mucosa comparisons to draw from. Negative regulation of 

wound healing, collagen metabolic process and negative regulation of fibrinolysis may support 

ECM dysregulation and disrupted cellular processes. 

 

Enriched pathways in DEGs compared to skin 

Metal ion binding terms were enriched in the set of genes upregulated compared to skin: this 

includes calcium-dependent protein binding, calcium ion binding, metal ion sequestering 

activity, and sequestering of zinc ion (also upregulated compared to mucosa) (Table 8). 
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Table 5. Enriched processes amongst downregulated genes compared to mucosa  

 Term 

Adjusted 

p-value 

Term 

size Genes N 

G
O

:B
P

 

multicellular organism 

development 

3.16x10-3 4643 KRT8, KRT19, COL1A2, APOH, AGRN, F2, APCS, OGN, 

ANPEP, TNXB 

10 

negative regulation of 

wound healing 

7.85x10-3 71 APOH, F2, APCS 3 

collagen metabolic 

process 

2.27x10-2 101 COL1A2, F2, TNXB 3 

negative regulation of 

fibrinolysis 

2.54x10-2 13 APOH, F2 2 

G
O

:M
F 

sulfur compound 

binding 

3.39x10-5 268 APOH, AGRN, F2, SULT1A1, TNXB 5 

extracellular matrix 

structural constituent 

2.81x10-4 167 COL1A2, AGRN, OGN, TNXB 4 

G
O

:C
C

 

collagen-containing 

extracellular matrix 

2.99x10-8 425 COL1A2, APOH, AGRN, F2, APCS, OGN, TNXB 7 

extracellular exosome 

6.45x10-8 2109 KRT8, KRT19, COL1A2, APOH, AGRN, F2, APCS, OGN, 

ANPEP, TNXB 

10 

Golgi lumen 1.65x10-3 103 AGRN, F2, OGN 3 

costamere 3.58x10-3 18 KRT8, KRT19 2 

apicolateral plasma 

membrane 

5.92x10-3 23 KRT8, KRT19 2 
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Table 6. Enriched processes amongst upregulated genes compared to mucosa 

 Term 

Adjusted 

p-value 

Term 

size Genes 

N 
G

O
:B

P
 

structural 

constituent of 

skin epidermis 

1.24x10-8 36 PI3, FLG, KRT78, KRT77, KRT80, KRT10 6 

RAGE receptor 

binding 

2.18x10-4 10 S100A7, S100A9, S100A8 3 

serine-type 

endopeptidase 

inhibitor activity 

3.45x10-4 103 SERPINB3, PI3, SERPINB7, SERPINB12, SERPINB13 5 

fatty acid 

binding 

5.34x10-4 48 S100A9, S100A8, FABP5, ACOX1 4 

Toll-like 

receptor 4 

binding 

6.71x10-3 4 S100A9, S100A8 2 

arachidonic acid 

binding 

2.34x10-2 7 S100A9, S100A8 2 

epidermis 

development 

7.51x10-

11 

393 S100A7, FLG2, FLG, FABP5, KRT78, CALML5, CNFN, KRT77, 

KRT80, KLK5, KRTDAP, SCEL, KRT10 

13 

intermediate 

filament 

organization 

2.62x10-4 73 KRT78, KRT77, KRT23, KRT80, KRT10 5 

G
O

:M
F 

autocrine 

signaling 

2.77x10-4 7 SERPINB3, S100A9, S100A8 3 

sequestering of 

zinc ion 

4.91x10-3 2 S100A9, S100A8 2 

neutrophil 

aggregation 

4.91x10-3 2 S100A9, S100A8 2 

peptide cross-

linking 

2.53x10-2 28 PI3, FLG, KRT10 3 

cornified 

envelope 

9.87x10-

12 

59 FLG2, PI3, FLG, SERPINB12, CNFN, KRT77, SCEL, KRT10 8 

G
O

:C
C

 

extracellular 

region 

1.38x10-8 4213 BLMH, S100A7, FLG2, SERPINB3, S100A9, S100A8, PI3, FABP5, 

SERPINB7, SERPINB12, CTSV, SERPINB13, PSAPL1, ARG1, 

NCCRP1, GGH, KRT78, CALML5, ACP3, LNPEP, KRT77, KLK5, 

KRTDAP, SCEL, KRT10 

25 

intermediate 

filament 

cytoskeleton 

6.96x10-4 254 S100A8, KRT78, KRT77, KRT23, KRT80, KRT10 6 

keratohyalin 

granule 

3.39x10-3 4 FLG2, FLG 2 
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Table 7. Enriched processes amongst downregulated genes compared to skin 

source Term Name 

Adjusted 

p-value 

Term 

Size Genes N  

G
O

:B
P

 

developmental 

process 

6.06x10-6 6453 TNXB, PRXL2A, PLP1, PGM5, PHGDH, FABP4, SP5, COCH, 

DSC3, ANPEP, KRT79, FBN1, CAV1, GPC3, ACAT1, 

COL18A1, COL4A1, MYLK, CDC42EP4, MATN2, KRT15, 

HSPA2, PHLPP1, GATA3, CLEC3B, APCDD1, ADIRF, IRX5, 

COBL, SLC12A2, LRP4, EDNRB, DCT, TPPP3, OSR1, 

HMGCS2, TYRP1, KRT2, PI16, STMN2, ITGB4, GSTM3, 

ABI3BP, ANK3, CDH13, ITGA6, GSN, ANK2, IL33, FHL1, 

MYH11, PAX3, HSPB6, FASN, RXRA, HSPA1A, TFAP2C, 

FOS, TACSTD2 

59 

supramolecular fiber 

organization 

1.52x10-2 842 TNXB, PGM5, KRT79, COL18A1, AEBP1, CDC42EP4, 

KRT15, COBL, CGNL1, RHPN2, TPPP3, KRT2, STMN2, 

CLIP1, GSN, DPT, SORBS1, MYH11, HSPA1A, TACSTD2 

20 

extracellular matrix 

organization 

1.66x10-2 324 TNXB, TPSAB1, CAV1, COL18A1, NID2, AEBP1, COL4A1, 

MATN2, ABI3BP, DPT, MYH11 

11 

cellular response to 

chemical stimulus 

5.81x10-7 2683 PRXL2A, FABP4, SP5, SOD3, FBN1, CAV1, COL4A1, MYLK, 

GNAI1, CDC42EP4, GATA3, CLEC3B, SLC12A2, BCAT2, 

EDNRB, OSR1, HMGCS2, AK4, GSTM3, ANK3, ITGA6, GSN, 

AOX1, IL33, SORBS1, FASN, RXRA, HSPA1A, FOS 

29 

ketone body metabolic 

process 

2.14x10-6 10 ACAT1, HMGCS2, TYRP1 3 

cytoskeleton 

organization 

5.76x10-4 1512 TNXB, PGM5, KRT79, GNAI1, CDC42EP4, KRT15, COBL, 

CGNL1, RHPN2, TPPP3, KRT2, STMN2, ANK3, CLIP1, GSN, 

ANK2, SORBS1, MYH11, HSPA1A, TACSTD2 

20 

nephric duct 

morphogenesis 

1.00x10-2 12 GPC3, GATA3, OSR1 3 

nephron epithelium 

development 

2.49x10-2 123 GPC3, ACAT1, GATA3, EDNRB, OSR1, TACSTD2 6 

farnesyl diphosphate 

biosynthetic process, 

mevalonate pathway 

2.66x10-2 2 HMGCS2, HMGCS1 2 

G
O

:M
F 

extracellular matrix 

structural constituent 

4.54x10-2 167 TNXB, COL6A6, FBN1, COL18A1, NID2, AEBP1, COL4A1, 

MATN2, ABI3BP, DPT 

10 

collagen binding 4.79x10-2 69 TNXB, COCH, NID2, AEBP1, ABI3BP 5 

hydroxymethylglutaryl-

CoA synthase activity 

4.81x10-2 2 HMGCS2, HMGCS1 2 

G
O

:C
C

 

collagen-containing 

extracellular matrix 

1.30x10-

10 

425 TNXB, SOD3, COCH, COL6A6, TPSAB1, FBN1, GPC3, 

COL18A1, NID2, AEBP1, COL4A1, MATN2, CLEC3B, ITGB4, 

ABI3BP, CDH13, DPT, ANGPTL5 

18 

extracellular region 3.16x10-

10 

4213 TNXB, PRXL2A, PHGDH, FABP4, FGFBP2, SOD3, COCH, 

DSC3, COL6A6, ANPEP, KRT79, TPSAB1, FBN1, ACAT1, 

COL18A1, NID2, AEBP1, COL4A1, GNAI1, NIBAN1, ALDH2, 

H3-3B, MATN2, KRT15, HSPA2, CLEC3B, ADIRF, SLC12A2, 

CFD, F10, PAMR1, KRT2, PI16, ITGB4, GSTM3, CD59, 

ABI3BP, CDH13, GSN, DPT, AOX1, ITIH5, ANGPTL5, IL33, 

MYH11, HSPB6, PRPH, FASN, HSPA1A, TACSTD2 

50 
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source Term Name 

Adjusted 

p-value 

Term 

Size Genes N  

anchoring junction 2.96x10-3 905 PGM5, DSC3, CAV1, CDC42EP4, CGNL1, ITGB4, CD59, 

ANK3, CDH13, ITGA6, GSN, ANK2, FHL1, SORBS1, HSPA1A 

15 

costamere 1.87x10-2 18 PGM5, ANK3, ANK2 3 

cytoplasm 2.93x10-2 12345 PRXL2A, PGM5, PHGDH, FABP4, SOD3, DSC3, ANPEP, 

KRT79, FBN1, CAV1, GPC3, ACAT1, COL18A1, AEBP1, 

COL4A1, MYLK, GNAI1, NIBAN1, AOC3, CDC42EP4, 

ALDH2, TLCD3A, GARNL3, KRT15, HSPA2, PHLPP1, 

CLEC3B, ISOC1, ADIRF, COBL, SLC12A2, BCAT2, RHPN2, 

CFD, F10, DCT, TPPP3, OSR1, HMGCS2, CRAT, TYRP1, 

KRT2, STMN2, AK4, GSTM3, CD59, ANK3, CDH13, CLIP1, 

NDUFA5, GSN, ANK2, AOX1, IL33, SLC25A4, CIRBP, FHL1, 

SORBS1, MYH11, HSPB6, PRPH, ACOT1, FADS2, FASN, 

RXRA, HSPA1A, LONRF1, TFAP2C, FOS, TACSTD2, ATP5PD, 

CYB5A, HMGCS1 

73 

protein complex 

involved in cell 

adhesion 

3.90x10-2 59 TNXB, PLP1, ITGB4, ITGA6 4 

 

Table 8. Enriched processes amongst upregulated genes compared to skin 

source Term Name 

Adjusted 

p-value 

Term 

Size Genes N 

G
O

:B
P

 

biological process 

involved in 

interspecies 

interaction 

between organisms 

1.06x10-6 1724 SERPINB3, S100A9, S100A8, PI3, SERPINB4, SLPI, 

BAX, LCN2, S100A7, RNASE7, IL36G, GJB2, UPK1B, 

S100A12, CLEC7A, NUCKS1, BPIFA1, NPC2, CTSB, 

MGST2, BAK1, BPIFB1 

22 

antimicrobial 

humoral response 

1.68x10-4 131 S100A9, PI3, SLPI, S100A7, RNASE7, S100A12, 

BPIFA1 

7 

autocrine signaling 1.52x10-3 7 SERPINB3, S100A9, S100A8 3 

defense response 2.31x10-3 1791 S100A9, S100A8, PI3, SERPINB4, SLPI, LCN2, S100A7, 

CTSC, RNASE7, IL36G, S100A12, INHBA, CLEC7A, 

PTN, BPIFA1, MGST2, BPIFB1, LGALS3BP 

18 

positive regulation 

of endopeptidase 

activity 

5.05x10-3 138 SERPINB3, S100A9, S100A8, BAX, CLEC7A, BAK1 6 

cellular response to 

X-ray 

7.09x10-3 11 NIPBL, SFRP2, NUCKS1 3 

proteolysis 9.28x10-3 1573 SERPINB3, S100A9, S100A8, SERPINB4, BAX, BLMH, 

CTSC, TMPRSS11D, CLEC7A, MMP13, HTRA1, CTSB, 

MMP11, MMP1, BAK1, PRSS23 

16 

collagen catabolic 

process 

1.59x10-2 45 MMP13, CTSB, MMP11, MMP1 4 

B cell negative 

selection 

1.61x10-2 2 BAX, BAK1 2 
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source Term Name 

Adjusted 

p-value 

Term 

Size Genes N 

sequestering of zinc 

ion 

1.61x10-2 2 S100A9, S100A8 2 

neutrophil 

aggregation 

1.61x10-2 2 S100A9, S100A8 2 

immune system 

process 

2.20x10-2 2776 S100A9, S100A8, PI3, SERPINB4, SLPI, BAX, LCN2, 

S100A7, CTSC, RNASE7, IL36G, S100A12, INHBA, 

IGFBP2, CLEC7A, PTN, BPIFA1, IFI30, PTPRD, BAK1, 

BPIFB1 

21 

regulation of 

apoptotic signaling 

pathway 

2.27x10-2 382 S100A9, S100A8, BAX, CTSC, SFRP2, INHBA, PYCR1, 

BAK1 

8 

cell migration 2.37x10-2 1496 SERPINB3, S100A9, S100A8, BAX, CEACAM6, 

S100A7, NIPBL, SFRP2, S100A12, CDH11, S100A2, 

CLEC7A, PTN, FAT1, LAMC2 

15 

cellular response to 

radiation 

2.48x10-2 182 BAX, NIPBL, SFRP2, NUCKS1, MMP1, BAK1 6 

positive regulation 

of programmed cell 

death 

3.37x10-2 532 S100A9, S100A8, BAX, CTSC, SFRP2, INHBA, CLEC7A, 

HTRA1, BAK1 

9 

post-embryonic 

camera-type eye 

morphogenesis 

4.83x10-2 3 BAX, BAK1 2 

G
O

:M
F 

RAGE receptor 

binding 

8.94x10-6 10 S100A9, S100A8, S100A7, S100A12 4 

calcium-dependent 

protein binding 

8.16x10-5 79 S100A9, S100A8, S100A7A, S100A7, S100A12, 

S100A2 

6 

serine-type 

endopeptidase 

activity 

6.92x10-4 180 CTSC, TMPRSS11D, MMP13, HTRA1, MMP11, 

MMP1, PRSS23 

7 

peptidase regulator 

activity 

3.21x10-3 227 SERPINB3, PI3, SERPINB4, SLPI, CTSC, SFRP2, 

RARRES1 

7 

calcium ion binding 6.12x10-3 726 S100A9, S100A8, S100A7A, S100A7, GJB2, S100A12, 

CDH11, S100A2, SULF2, MMP13, FAT1 

11 

Toll-like receptor 4 

binding 

2.97x10-2 4 S100A9, S100A8 2 

metal ion 

sequestering 

activity 

4.95x10-2 5 LCN2, S100A7 2 

G
O

:C
C

 

extracellular space 2.34x10-

21 

3303 SERPINB3, S100A9, S100A8, PI3, S100A7A, 

SERPINB4, SLPI, BAX, LCN2, CEACAM6, TCN1, BLMH, 

S100A7, CTSC, RNASE7, ASAH1, IL36G, TMPRSS11D, 

UPK1B, NIPBL, COL8A1, IGFL1, SFRP2, CDH11, 

INHBA, IGFBP2, GLIPR1, PLBD1, SULF2, PTN, BPIFA1, 

MMP13, NPC2, HTRA1, GLRX, CTSB, RARRES1, 

MMP11, FAT1, LAMC2, PTPRD, MMP1, BPIFB1, 

PRSS23, LGALS3BP 

45 



68 

 

source Term Name 

Adjusted 

p-value 

Term 

Size Genes N 

extracellular matrix 9.00x10-9 555 S100A9, S100A8, PI3, SLPI, S100A7, CTSC, COL8A1, 

SFRP2, MMP13, HTRA1, CTSB, MMP11, LAMC2, 

MMP1, LGALS3BP 

15 

BAK complex 2.16x10-3 2 BAX, BAK1 2 
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2.4 Discussion 

The studies identified in this review showed heterogeneity in tissue comparisons and analytical 

methods. The overlap between dysregulated genes detected across papers was small, perhaps 

as a result of these factors combined with the individually small sample sizes. Gene expression 

may also vary due to differences in cholesteatoma type (e.g., congenital or acquired), presence 

or absence of active infection, the size and location of cholesteatoma and the relative amounts 

of cell types sampled. For most studies, no such information was available. Shimizu et al. 

(2023)139 identified 11 different cell types within their cholesteatoma samples based on 

clustering analysis and suggest that cell types change over time. Therefore, different papers 

may have sampled different relative amounts of cholesteatoma cell types such as keratinocytes 

and fibroblasts. 

Terms related to ECM structure and function were enriched for both up- and downregulated 

gens compared to skin and mucosa, as was peptidase activity and regulation, suggesting 

widespread ECM dysfunction. Whilst inflammatory pathways were enriched across skin and 

mucosa tissue comparisons, several inflammatory proteins were also downregulated 

compared to chronic otitis media tissue.  

Upregulated genes compared to mucosa were enriched for pathways associated with 

epidermal development, but these were neither up- nor downregulated compared to normal 

skin consistent with the nature of cholesteatoma as stratified squamous epithelium. Zeng et 

al. (2024)135 also performed pathway enrichment analysis on a global gene expression with 

skin as the control tissue and found epidermis development, keratinocyte differentiation and 

keratinization were enriched in the downregulated gene set. Terms related to cell adhesion 

and cytoskeletal function were also downregulated in their study, whereas terms related to 

immune function, peptidase activity and chemokine activity were upregulated. 
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2.4.1 Consistently dysregulated genes across papers 

Inflammatory protease inhibitors: SERPINB3, SERPINB4, SERPINB7 and PI3 

SERPINB3 was detected in 7 out of 9 global gene expression studies, SERPINB4 in 5, and 

SERPINB7 in 4. The SERPINs are a family of inflammatory serine protease inhibitors, of which 

B3 and B4 are squamous cell carcinoma markers141. They regulate proteases involved in the 

response to tissue damage, including inflammation, response to tumour cells, and wound 

healing. SERPINB3 specifically has been investigated in cholesteatoma by Ho et al. 2012142 and 

2020143. In their 2012 paper, the authors found SERPIN B3 protein was localized in the 

epithelium of both cholesteatoma and retro-auricular skin but that three isoforms were 

overexpressed in cholesteatoma. In their 2020 study, the authors suggest that SERPINB3 

overexpression may promote cell proliferation and prevent autophagy. Yoshikawa et al. 

(2006)134 found that SERPINB2 and SERPINA8 were upregulated more strongly in 

cholesteatoma fibroblasts than skin fibroblasts in response to IL-1α, but the SERPINs identified 

in other gene expression analyses were not reported. 

Another inflammatory protease inhibitor, PI3, was upregulated compared to healthy skin and 

mucosa. Its product, elafin, is an elastase-specific inhibitor with anti-inflammatory properties, 

expressed as a normal part of wound healing and in inflammatory skin conditions such as 

psoriasis144. Chang et al. (1990)144 found that elafin was highly expressed during the early 

stages of wound healing and counteracted the infiltration of polymorphonuclear cells, while it 

remained constantly highly expressed in chronic wounds where polymorphonuclear cell 

infiltration was also present. SLPI, another antileukoproteinase, was upregulated in 

cholesteatoma in 4 studies and was also investigated by Lee et al. (2006)145 who detected 

higher expression in cholesteatoma than ordinary skin. 

Expression of protease inhibitors may be part of the normal immune-regulatory response to 

limit the tissue damage caused by inflammatory proteases146. Interestingly, Jovanovic et al. 

(2020)36 show that SERPINB3 and SLPI are downregulated in perimatrix compared to COM, 

perhaps indicating a failure to properly regulate the immune response resulting in excessive 

ECM breakdown. Indeed, imbalances in inflammatory elastases and their inhibitors such as PI3 

and SLPI have been implicated in excessive inflammatory responses in the respiratory 
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system147. Conversely, CTSC, an activator of granulocyte serine proteases148, was upregulated 

compared to skin and mucosa across 4 papers. 

S100 proteins 

S100A7, S100A8 and S100A9 were consistently upregulated in cholesteatoma compared to 

healthy skin, each being detected in 6 papers. The S100 proteins are a family of zinc and 

calcium-binding inflammatory proteins involved in recruitment of immune cells, epidermal 

differentiation and inflammation, and apoptosis. Pelc et al. (2003)149 showed that several S100 

proteins are also expressed in other cysts including epidermoid cysts and craniopharyngiomas 

and S100A3 is expressed in much greater quantities in cholesteatoma than other cyst types. 

S100A7, S100A8 and S100A9 were not measured Pelc et al.’s analysis, but Kim et al. (2008) 

found increased S100A7 expression in cholesteatoma150. Also known as psoriasin, S100A7 is 

an antimicrobial peptide highly expressed in psoriasis and atopic dermatitis151. 

Matrix metalloproteinases 

MMP9 dysregulation was detected in 4 papers; it was upregulated compared to COM tissue 

and skin, but downregulated compared to tympanic membrane, the neck of cholesteatoma 

and middle ear mucosa.  The matrix metalloproteinases (MMPs) are a family of proteases with 

structural collagenase and gelatinase activity, making them important degraders of the ECM 

with important roles in bone turnover152. For this reason, they have been investigated in 

degenerative bone diseases such as periodontal disease153 and arthritis154.  

Due to bone-destructive nature of cholesteatoma, several studies have investigated MMPs in 

its pathology. Some have shown MMP9 over expression155–157, although others have tested 

MMP9 and found no difference between cholesteatoma and control tissues158,159. MMP8, 

MMP13, and MMP2 have also shown to be overexpressed in cholesteatoma compared to 

normal skin158,160. Another consistently upregulated protein compared to skin, LCN2, forms a 

heterodimer with MMP9. Unlike MMP9, LCN2 was also downregulated compared to COM 

according to Jovanovic et al. (2020)36, who suggest that changes in the balance of MMP9/LCN2 

complex may be associated with changes in signalling events modulated by their receptors. 

Aside from bone loss, MMP and other protease activity may contribute to degradation of the 

tympanic basement membrane, facilitating invasion161. Interestingly, Britze et al. (2014)78 
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showed MMP9 to be downregulated in cholesteatoma compared to tympanic tissue, neck of 

cholesteatoma and middle ear mucosa. Either these tissues typically express high levels of 

MMPs, perhaps contradicting a role in cholesteatoma pathology, or expression is increased in 

persons with cholesteatoma – Britze et al. took these control tissues from the same individuals 

as cholesteatoma tissues, so we cannot say for sure that this level of expression is normal.  

 

CEACAM6, COCH and TNXB are consistently dysregulated but have not been 

individually investigated 

CEACAM6 and COCH were detected in 5 papers, while TNXB was detected in 4 papers with 

high consistency. These genes have not been subject to individual study in cholesteatoma. 

Both TNXB and COCH are downregulated across tissue comparisons while CEACAM6 is 

upregulated in most comparisons except cholesteatoma vs COM.  

CEACAM6 is a known biomarker for several cancer types. It is also expressed in normal. 

epithelia, granulocytes and monocytes but is overexpressed in cancers including colorectal 

cancer, where it is correlated with invasiveness; it predicts poor survival and may specifically 

mark aggressive cancer162.  

Cochlin (COCH) is a collagen-binding protein which interacts with proteins involved in 

cytoskeleton remodelling and has roles in cell shape and motility in the trabecular meshwork 

of the eye 163. Cochlin may also interact with cytoskeletal proteins in the ear and pathogenic 

variants are associated with sensorineural deafness. It has also been shown to have immune 

function in the inner ear164. Defective ciliary genes can cause defects in cochlin secretion165, 

posing a potential link to our previous genetic study of cholesteatoma suggesting ciliary 

dysfunction126. 

TNXB is one of two gene encoding tenascin-X, a matrix glycoprotein whose deficiency causes 

Ehlers-Danlos syndrome; the mechanism is thought to be via impaired deposition of collagen 

in the extracellular matrix166. Furthermore, tenascin-X is thought to play a role in matrix 

maturation during wound repair and, alongside other tenascins, act as modulators of cell 

activity with anti-adhesive properties167. Kajitani et al. (2019)168 showed that tenascin-deficient 

mice had increased osteoclast activity and subsequent bone loss. 



73 

 

 

2.4.2 Disrupted processes in cholesteatoma according to pathway 

enrichment analysis 

Structural proteins and ECM dysregulation 

Many enriched terms amongst DEGs from 3 or more papers, as well as in individual tissue 

comparisons, relate to ECM structure or degradation of the ECM. The extracellular space was 

enriched for up and down-regulated genes compared to both skin and mucosa; ECM proteins 

such as TNXB, COCH were downregulated and ECM-degrading proteases such as MMP9 and 

CTSC were upregulated. Some ECM protease inhibitors including PI3 and SLPI were also 

upregulated, indicating a complex and broad dysregulation of extracellular proteins. 

ECM dysregulation may be important to cholesteatoma pathology in several ways. First, bone 

tissue consists mainly of mineralised ECM, so dysregulation of ECM constituents and proteases 

may be associated with bone loss in cholesteatoma156,168. Second, the ECM has important roles 

in coordinating cell communication, migration and cell fate34.  Aberrant migration of 

epithelium is implied in retraction pocket and invasion theory, with basement membrane 

weakening suggested to permit invasion even if the tympanic membrane is not fully 

perforated21.  ECM degradation may therefore also contribute to cholesteatoma invasiveness 

and hyperproliferation. ECM remodelling is also a key feature of wound-healing tissue, a tissue 

which shares features with cholesteatoma such as cellular proliferation, migration and 

differentiation, as well as inflammation35. Failure of the ECM to mature in chronic wound tissue 

may have parallels to ECM dysfunction in cholesteatoma. 

Cell cycle and epidermal development 

DEGs were enriched for altered cell lifecycle processes, such as adhesion, migration, 

proliferation, and apoptosis, overlapping with processes associated with ECM function. 

Differential expression of genes indicating increased epithelial proliferation is not surprising 

given the hyperproliferative phenotype of cholesteatoma. Increased epithelial turnover within 

a retraction pocket is suggested by Louw (2010)21 to contribute to the initial formation of 

cholesteatoma.  
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Growth factor receptors and their binding proteins were not consistently detected: FGFBP2 

was downregulated compared to normal skin in 3 papers; insulin-like growth factor 2 (IGF2), 

insulin growth factor-like family member 1 (IGFL1) and IGF-binding protein 2 (IGFBP2) were 

upregulated in 2 papers each, although IGFBP2 was downregulated compared to COM. The 

IGF2-IGFBP2 complex is associated with osteoblast activation169, so upregulation compared to 

skin could represent increased bone turnover in cholesteatoma, but inadequate bone 

formation compared to COM. TGFBR3 (transforming growth factor beta receptor 3) was both 

up- and downregulated compared to normal skin. This complex picture is difficult to interpret 

and is not consistent with reviews of cholesteatoma etiopathology suggesting an important 

role for growth factors2,20. 

Apoptotic processes were also enriched in the set of genes upregulated in cholesteatoma 

compared to skin tissue (regulation of apoptotic signaling pathway and positive regulation of 

programmed cell death). Apoptosis has been suggested to play a role in cholesteatoma 

pathology: Olszewska et al. (2006) show increased apoptosis in cholesteatoma compared to 

ordinary skin and suggest this is associated with differentiation and accumulation of keratin in 

the middle ear170. 

Certain skin developmental terms were enriched in the upregulated DEGs compared to 

mucosa, but not skin. As cholesteatoma tissue consists of skin (meaning stratified keratinizing 

epithelium) and not mucosa, this is not surprising. However, several upregulated genes (for 

both skin and mucosa comparisons) are associated with hyperkeratotic skin conditions such 

as epidermal thickening and palmoplantar keratoderma (SI Table 2), consistent with excess 

keratin production in cholesteatoma. Additionally, some of the most consistently dysregulated 

genes were associated with keratinization: keratins KRT8 and KRT7, and cornifin SPRR1B, were 

detected in 4 papers each. While KRT8 and KRT7 were downregulated compared to skin and 

upregulated compared to mucosa, SPRR1B was upregulated compared to both. Yoshikawa et 

al. (2006)134 also found that SPRR1B was upregulated more in response to stimulation of IL-1α 

in cholesteatoma fibroblasts than skin fibroblasts. Cornifin-B is a keratinocyte envelope protein 

which forms a gene cluster called the epidermal differentiation complex along with profilagrin 

(FLG), loricrin (LORICRN) other SPRRs, and S100A genes; the complex is involved in terminal 

differentiation of keratinocytes171,172. Upregulation of SPRR1B, even in comparison to normal 

skin, supports abnormal differentiation of skin cells in cholesteatoma. 
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Interestingly, some DEGs in cholesteatoma are known cancer markers; prominent examples 

are CEACAM6 and TACSTD2173,174, which act as adhesion molecules. Cell adhesion is of known 

importance in cancer via changes in signalling and migration. Loss of cell-cell adhesion can 

result in increased adhesion of cells to the ECM, promoting migration, proliferation and 

invasiveness in cancer175. However, cholesteatoma not malignant and cancers arising from 

cholesteatoma tissue are exceedingly rare76 and likely coincidental. 

Immune response 

Cholesteatoma shows upregulation of inflammatory proteins: some of the most consistently 

reported differentially expressed genes have inflammatory roles including the SERPINs and 

S100A proteins. Enriched RAGE receptor binding and TLR-4 binding amongst upregulated 

genes compared to skin and mucosa were associated with S100A7, S100A8 and S100A9, which 

may act as damage-associated activators of innate immunity176. Furthermore, some matrix-

active peptidases including the MMPs and cathepsins (such as CTSC) act as inflammatory 

effectors161,177  

Given that cholesteatoma is surrounded by an inflamed perimatrix and often preceded by 

chronic otitis media, upregulation of inflammatory genes compared to healthy tissues is not 

surprising. Sustained inflammation could be a response to ongoing tissue damage caused by 

the expanding cyst and may contribute to further tissue damage, degradation of the ECM and 

bone resorption. 

Interestingly, many inflammatory proteins upregulated in cholesteatoma (including SERPINB3, 

S100A7 and SERPINB4) are downregulated in perimatrix compared to ordinary chronic otitis 

media tissue. This could indicate that these proteins do not have a direct role in cholesteatoma 

pathology but are simply expressed as part of the normal immune response to infection. 

However, it is also possible that under-expression of these proteins contributes to pathology, 

perhaps representing an inadequate or inappropriate immune response. Under-expression of 

protease inhibitors is particularly interesting as it may suggest a failure to limit the activity of 

ECM-active proteases in cholesteatoma. 
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Metal ion binding 

Ion binding, specifically calcium binding, was enriched amongst upregulated DEGs compared 

to skin. Calcium ion binding was also identified as an enriched process in our previous whole 

exome study of cholesteatoma variants126. The role of ion binding proteins in cholesteatoma 

is obscure: many proteins have ion-binding function and calcium ions are involved in diverse 

cellular processes. Possibly, these functions are enriched only because certain families which 

happen to bind calcium ions (such as the S100A family) are enriched.  

2.4.3 Limitations 

The different approaches taken by different studies reduces the likelihood of acquiring 

overlapping results. First, proteomic and transcriptomic studies do not measure identical 

outcomes due to complex post-transcriptional regulatory systems, meaning there is not a one-

to-one relationship between expressed RNAs and proteins178. Differences in analytical 

techniques will also affect which proteins/DEGs are measured depending on the number of 

probes within a microarray or the number of peptides in a proteome database, probably 

biasing results towards better-studied genes. 

The papers identified in this review had generally low risk of bias in analysis and controlled for 

confounders using a paired design. However, cases are likely to represent most severe disease 

and papers generally did not report age, sex or type of cholesteatoma, so may not be 

representative. Also, control tissue samples taken from middle ears with cholesteatoma may 

not represent true healthy controls. These issues are difficult to avoid as tissue can only be 

taken from the middle ear during surgery. 

Meta-analysis was not possible because most papers do not report raw data or the p-values 

of all genes tested, only those that are significant. Some genes may be sub-significant in 

individual studies but meta-analyses could reveal them to be significantly dysregulated, and 

vice versa. The individual studies are at high risk of type 1 and type 2 error due to their small 

sample sizes. By identifying the genes which appear in multiple papers, type 1 error is reduced; 

however, false negatives cannot be accounted for. 

GO terms are not a perfect indicator of protein function; many are phylogenetically inferred 

and data are sometimes incomplete. For example, the MMPs have calcium and zinc ion binding 
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function179 but were not included in the calcium-ion binding set of genes annotated by 

g:Profiler; nor did some keratins appear in epidermal development or structural protein 

categories. GO annotations are not evenly distributed through the genome, with a large 

number of annotations belonging to a small subset of well-studied genes180. 

This review may have missed some global gene expression studies where this was not the main 

objective of the study and so was not described within the title or abstract. Most abstracts 

were explicit when a specific set of genes were being tested only, and I checked the full reports 

for cases where there was ambiguity. As reviewing was performed by me alone, there may also 

be some bias in selection of studies based on my interpretation of their abstracts. Although 

global gene expression studies are hypothesis-free and therefore unlikely to be subject to 

publication bias due to a negative result, it is possible for a study using a small number of 

probes to fail to identify any DEGs. A negative result is also possible where global gene 

expression study formed part of a study with a wider hypothesis, such as the expectation that 

a certain pathway would be over expressed. 

 

2.5 Conclusion 

This was the first systematic review of global differential gene expression studies, which aimed 

to identify consistently dysregulated genes in cholesteatoma and their associated pathways. 

20 DEGs were reported in at least 4 of 9 studies, while 8 were present in 5 or more. SERPINB4, 

SERPINB3, several S100A proteins, TNXB, CEACAM6 and COCH were particularly consistently 

up- or downregulated and warrant further studies in cholesteatoma. ECM structural proteins 

and proteases were enriched in both up and downregulated gene sets compared to skin and 

mucosa, indicating broad ECM breakdown. Inflammatory genes were enriched amongst 

upregulated genes. Cholesteatoma shows upregulation of genes associated with epidermal 

differentiation compared to mucosa, though to a lesser extent compared to skin except for 

some genes in the epidermal differentiation complex.  

Dysregulated ECM forms a significant aspect of cholesteatoma biology. ECM dysfunction may 

affect diverse processes such as cellular migration, primarily through interaction with adhesins, 

proliferation and differentiation. Migratory processes are relevant to cholesteatoma which may 
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arise through impaired migration of tympanic epithelium associated with a retraction pocket 

or invasion through a perforation; a weakened basement membrane, possibly associated with 

protease action, may facilitate invasion. Furthermore, ECM degraders and downregulation of 

structural proteins may contribute to bone loss. Disrupted cell cycle processes such as 

proliferation and differentiation may be downstream of ECM dysregulation. Many 

inflammatory proteins have additional roles in ECM degradation and cellular development so 

may be central to pathology. Downregulation of certain inflammatory protease inhibitors 

compared to chronic otitis media tissue could indicate an overtly aggressive immune response 

and excess ECM and bone degradation.  
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3 Epidemiology of cholesteatoma in the UK 

Biobank 

3.1 Background 

While some risk factors for cholesteatoma are well established, including male sex, association 

with certain craniofacial dysmorphologies, and comorbid middle ear disease1,6,7,18,22,181, others 

are supported by little published epidemiological data. For example, cholesteatoma is 

generally reported to differ in prevalence between ethnicities but as discussed in the 

introduction to this thesis, original epidemiological data is lacking. Reviews1,2,13,14 may report 

highest incidence in white populations, low incidence in black populations, and rarity in Asian 

populations, although no original data is presented in the cited articles. A literature search for 

cholesteatoma epidemiology or prevalence only uncovered Ratnesar (1976)15, in which it is 

reported that cholesteatoma in Inuit and Innu populations of Newfoundland is extremely rare 

despite higher levels of chronic ear disease than white populations located nearby. Meanwhile,  

Thornton et al. (2011)16 found no difference in cholesteatoma prevalence between ethnicities 

in children with chronic otitis media in Nepal. This highlights another issue in cholesteatoma 

epidemiology: it significantly overlaps with other middle ear disease, and the nature of the 

relationship is uncertain. Does chronic inflammation lead to cholesteatoma development or 

arise from it? For example, cholesteatoma is more common in persons with orofacial cleft and 

had a male predominance, but the same is true for otitis media generally19. Exposure to 

cigarette smoke adversely impacts mucociliary function182,183, and there is evidence that 

passive exposure raises risk of cholesteatoma184,185, although this relationship is not always 

found186. Only one study has been performed on smoking and rates of cholesteatoma, finding 

that smokers had worse outcomes for ontological surgeries and higher rates of 

cholesteatoma187. 

Computerised databases of medical records in the forms of national registries and biobanks 

allow retrospective epidemiological studies of large populations. These are observational 

studies:  a cross-sectional study looks at data from a population at a single point in time where 

both exposure and outcome have already occurred, while a prospective study follows both 

exposures and outcomes over time.  Conversely, experimental studies involve the researcher 

applying the exposure of interest to an experimental group and comparing the outcome to a 
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control group. As many factors differ non-randomly between cases and controls in 

observational studies, they constitute a low level of evidence but are relatively quick and easy 

to perform and make good use of large volumes of existing data188.   

The UK BioBank is a large, ongoing study including 500,000 British participants. Because both 

lifestyle information drawn from questionnaires and health information is available, this allows 

for study of demographic features and diseases associated with cholesteatoma. Careful 

examination of the demographic risk factors shared by and distinguishing cholesteatoma from 

other middle ear disease will be useful for interpretation of later genetic studies. This will also 

provide further evidence for risk factors which are colloquially known but have limited 

published data.  

3.1.1 Aims and objectives 

This chapter aims to use retrospective data from the UK BioBank (UKBB) to characterise lifetime 

prevalence and demographic factors associated with cholesteatoma. To determine which risk 

factors are shared between cholesteatoma and other middle ear disease and which are unique, 

I compare cholesteatoma demographics to a control group with other middle ear disease as 

well as disease-free ears. I also use ICD-10 data to identify overlapping diseases and compare 

the results with statistics from a Finnish biobank, FinnGen. This study follows Strengthening 

the Reporting of Observational Studies in Epidemiology (STROBE) guidelines (SI Table 3). The 

results of these analyses have been published in Clinical Otolaryngology189. 

This chapter also serves as an introduction to the UKBB study population, identification of 

cholesteatoma cases from ICD-10 and OPC4 codes, and case-control matching as used in the 

remainder of this thesis. I also introduce the FinnGen biobank which provides both genetic 

summary statistics and demographics information and offers a comparison cohort for both 

epidemiological and genetic analyses. 
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3.2 Methods 

3.2.1 Study design and setting 

Participants  

This is a retrospective case-control study using UK BioBank data under project number 61632. 

UKBB contains lifestyle and health data on 502,408 participants from the United Kingdom, 

aged 40-69 during the recruitment period 2006-2010. Its rich phenotypic data has made UKBB 

a valuable and widely used resource for study of genetic and non-genetic health conditions 

worldwide190.  

Relevant to this and later chapters are four types of data held in UKBB: 

• Medical information in the form of ICD-10 and OPC-4 codes. The ICD-10 is an 

internationally standardised classification of diseases, diagnoses and medical findings. 

The OPC-4 is an equivalent recording operative procedures undergone by a patient. 

This data is used to identify cholesteatoma cases from medical records and identify 

overlapping diseases. This includes retrospective information (medical events prior to 

recruitment) and was updated with new events until the date of download in 2022 

(Figure 12). 

• Questionnaire responses, which include basic personal information such as sex and 

birth date, as well as demographic and lifestyle features such as economic deprivation 

and smoking status. These will be used for epidemiological analysis, case-control 

matching and/or as covariates in statistical models. Data were taken at recruitment 

(Figure 12). 

• Whole exome genetic data: 450,000 participants were sequenced with dual-indexed 

75 x 75 bp pared-end reads on Illumina NovaSeq 6000. Exomes were captured with the 

IDT xGen Exome Research panel v1.0. Sequencing was performed in two main batches: 

the first 50,000 samples used S2 flow cells while the remaining samples used S4 flow 

cells and a different IDT oligo lot to the initial batch. Whole exome sequences are 

available in CRAM format as well as in variant call format (VCF) called by DeepVariant191.  

• Microarray data: genotyping was performed using the UK BioBank Axiom Array, which 

directly measures ~850,000 variants. An additional ~90 million variants were imputed 
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using the Haplotype Reference Consortium and UK110K + 1000 Genomes reference 

panels190. This data covers the whole genome but cannot detect rare variants. The 

microarray data as provided has been filtered to remove markers that failed quality 

control, have a missingness of >5% and a MAF<0.0001190. 

Figure 12. Date of data collection for baseline, medical and genetic data. 

Date of data collection for different fields. Baseline statistics such as sex, deprivation and smoking 

status were taken at recruitment. Medical information was taken at recruitment and extends 

retrospectively, although there are few records before 1995, and were continually updated until 

the date of download. Genetic sequencing was performed on samples taken at recruitment. The 

initial 50,000 WES sequences were released in 2019 and the complete set were released by 2022. 

 

 

While the aim of UKBB is to provide data for the study of common diseases of later life, the 

large number of participants also makes it ideal for studying rarer diseases. Cholesteatoma is 

common enough that UKBB contains ~1,000 cases, a number which would otherwise be 

difficult to recruit given its low annual incidence. Furthermore, the cost of performing whole-

exome sequencing for these participants would be prohibitively expensive if performed 

specifically for this project. Although cholesteatoma is not as common as other conditions 

studied by UKBB, it is still an important cause of acquired hearing loss with potentially serious 

complications, thus is in line with their goals of improving public health.  

Ethical approval 

UK Biobank has obtained Research Tissue Bank (RTB) approval from its the Research Ethics 

Committee (approval number 16/NW/0274). Researchers can acquire UK BioBank data by 
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registering for access: (https://www.ukbiobank.ac.uk/enable-your-research/register). Publicly 

available demographic data and statistical results from FinnGen release 9 were accessed via 

Risteys (https://r9.risteys.finngen.fi/endpoints/H8_CHOLEASTOMA) in June 2023. 

Variables and processing of missing data 

Key demographic features used in this analysis are as follows: 

• Sex: There is a slight female bias in the UKBB cohort with a ratio of 1.19 females per 

male. One participant was missing sex data and was not included in this analysis, as all 

other covariates were also missing. 

• Ethnicity: UKBB is majority white ethnicity (456,284 participants). 893 participants were 

missing ethnicity information. These were grouped with do not know, any other 

ethnicity and prefer not to say into a single 'Other/Unknown' category. 

• Age: UKBB participants were between the ages of 51 and 85 (median 72) at the time 

of data download in November 2022.  

• Smoking status: Smoking data is a composite category of questionnaire results and 

indicates whether a person has ever smoked, regardless of frequency or 

discontinuation. 298,711 (59.5%) of all participants indicated a history of smoking while 

data were missing for 2,885 (0.57%) participants. For subsequent analyses, except for 

those specifically investigating smoking as a risk factor, these were assigned to an 

‘unknown’ category. 

• Deprivation: deprivation data is available in the forms of Townsend deprivation index 

and regional indices of multiple deprivation (IMDs). Townsend deprivation index is a 

measure of postcode deprivation based on employment rate, car and house ownership, 

and household crowdedness192. IMD is a measure of deprivation calculated by the 

governments of Scotland, Wales, England and Northern Ireland combining similar 

metrics such as income, employment and crime193. As each nation calculates IMD 

slightly differently, I use Townsend index as the primary measure of deprivation. 624 

samples were missing Townsend deprivation data. Where possible, deprivation was 

imputed using IMDs (available for 489,674 participants) by fitting a linear regression to 

the square root of IMD, 𝑇𝑜𝑤𝑛𝑠𝑒𝑛𝑑 = 𝑚√𝐼𝑀𝐷 + 𝑐, where m was found to be 1.431399 

and c = -6.852356 (R2 = 0.5306).  This regression was used to generate Townsend 

scores for those participants where only IMDs were available (Figure 13).  

https://www.ukbiobank.ac.uk/enable-your-research/register
https://r9.risteys.finngen.fi/endpoints/H8_CHOLEASTOMA
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Figure 13. Imputation of missing Townsend indices from indices of multiple deprivation.  

a) An example with the Scotland data showing the regression model fit to all Indices of Multiple 

Deprivation (IMDs). B) the residuals for all data used in the regression. C) Q-Q plot showing 

divergence from normality of residuals towards the upper end. Though the relationship between 

these indices was very noisy and did not have a perfectly linear relationship (either for IMD of 

square root of IMD), the small number of samples (0.12%) missing Townsend deprivation data 

meant that this would not affect overall distribution much and was preferable to mean imputing 

missing values. Only 23 participants were missing both measures of deprivation, and these were 

mean imputed. 

 

3.2.2 Case and control selection for epidemiology and genetic 

testing 

Identification of cholesteatoma cases 

UKBB data includes a list of ICD-10, ICD-9 and OPC-4 codes included in patient records. IPC-

9 and -10 are two recent versions of a system for assigning codes to clinical diagnoses, while 

OPC-4 is a recent system for identification of surgical procedures. These codes are assigned 

by hospitals for billing purposes. I accessed the OPC-4.9 via the NHS website 
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(classbrowser.nhs.uk), the ICD-10 via the WHO website (icd.who.int) and an archived copy of 

the ICD-9 from the CDC (cdc.gov). 

Billing codes are not directly assigned by doctors, so may not be completely accurate 

representations of diagnoses. Some codes, such as H71 cholesteatoma, are unambiguous and 

very likely to correctly identify a true case. However, this may not capture all cases if records 

are incomplete or inaccurate. Missing or inaccurate records may arise due to misdiagnosis, 

inaccurate translation into ICD/OPC codes, inaccurate translation from previous versions of 

the ICD or during transfer from physical to electronic form. Cholesteatoma is a rare disease, 

so it is vital that all possible cases are identified to increase numbers.  

Therefore, I expanded case criteria to include likely cases based on additional codes with 

guidance from clinicians Carl Philpott and Peter Prinsley. Because it is difficult to separate 

cholesteatoma from other middle ear conditions which often co-occur, the control group is 

filtered to exclude all individuals with middle ear disease. For epidemiological comparison, I 

also selected a cohort of non-cholesteatoma middle ear disease participants who were not 

part of the case group but who had any other ear disease (Table 9). This includes some non-

middle ear disease codes including otitis externa, otalgia and effusion. Otalgia and effusion 

are taken as indicators of underlying inflammation or disease of the ear. While otitis externa 

is not a middle ear disease, inflammation of the external auditory canal is likely to affect the 

tympanic membrane which is a likely origin of cholesteatoma tissue. Furthermore, the 

boundary between otitis externa and middle ear disease becomes less clear when there is 

tympanic perforation. Symptoms of middle ear inflammation and otitis externa may be difficult 

to discern and so it possible for an otitis media case to actually have middle ear inflammation, 

hence these participants cannot reliably be considered middle ear disease free. 

In this study, an individual is considered a cholesteatoma case if they meet the following 

criteria, set out in Table 9: 

• They have one of the confirmed codes, which unambiguously specify cholesteatoma. 

• They have one of the suspected OPC-4 codes, which indicate surgeries most likely 

performed to treat cholesteatoma, but not a suspected exclude code which offer 

plausible alternative explanations for these procedures. 

https://classbrowser.nhs.uk/#/book/OPCS-4.9
https://icd.who.int/browse10/2010/en#/H65-H75
https://www.cdc.gov/nchs/icd/icd9.htm
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• They have one of the mastoid ICD-10 codes but not a mastoid exclude code. This 

includes individuals with chronic mastoiditis likely to be caused by cholesteatoma with 

no acute explanation. 

This method increased the number of cholesteatoma cases from 654 to 1,151. Data were not 

granular enough to distinguish between congenital and acquired cholesteatoma; no 

distinction was made based on age of onset on severity in this analysis. 

 

Table 9. Case inclusion and exclusion criteria with rationales 

Filter Code Meaning Rationale 

Confirmed  H71 Cholesteatoma of the middle ear 

Unambiguous codes specify cholesteatoma 
H95.0 

Recurrent cholesteatoma of 

postmastoidectomy cavity 

Date H71 

diagnosed 
 

A separate column which contained some 

additional cases 

Mastoiditis  H70.1 Chronic mastoiditis Chronic mastoiditis most likely to result from 

cholesteatoma H70.9 Unspecified mastoiditis 

Suspected D10.1 Radical mastoidectomy NEC 

Surgeries used primarily for treatment of 

cholesteatoma and few other conditions (see 

exclude filter)  

D10.2 Modified radical mastoidectomy 

D10.6 Revision mastoidectomy 

D10.8 
Other specified exenteration of 

mastoid 

D10.9 
Other unspecified exenteration of 

mastoid 

D12.4 Exploration of mastoid 

D12.1 Obliteration of mastoid 

D12.2 Atticotomy 

D12.7 Atticoantrostomy 

D10.5 Excision of lesion of mastoid 
Probably indicates removal of cholesteatoma 

due to few other lesions affecting mastoid. 

Suspected 

exclude 

D33.3 Benign neoplasm of cranial nerve May indicate acoustic neuroma, alternative 

explanation for mastoidectomy. H93.3 Disorder of acoustic nerve 

H70.0 Acute mastoiditis Possible cause for mastoidectomy without 

cholesteatoma. H81.0 Meniere disease 

D02.3 Middle ear carcinoma 
Alternative explanation for excision of lesion 

of mastoid. 
D38.5 neoplasm of uncertain behaviour 

C30.1 Malignant neoplasm of middle ear 

D16.9 
Benign neoplasm of bone and 

articular cartilage 

To capture osteoma, alternative explanation 

for excision of lesion of mastoid. 

H65.0 Acute serous otitis media Exclude acute cases from mastoiditis group.  
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Filter Code Meaning Rationale 

Mastoid 

exclude  
H65.1 

Other acute nonsuppurative otitis 

media 

H66.0 Acute suppurative otitis media 

Other ear 

disease  

H65-H75 Diseases of middle ear and mastoid Include any middle ear disease  

H60 Otitis externa 
Inflammatory ear disease closely related to 

middle ear disease 

H92 Otalgia and effusion of ear 
Ear pain and discharge suggests underlying 

ear disease 

Propensity matching 

As the number of cases within UKBB is only 1,151, the case:control ratio is approximately 1:500.  

When uncontrolled, sample imbalance can result in biased models with large type 1 error 

rates194. Case matching to reduce this ratio was therefore performed, primarily for the later 

GWAS section of this thesis, but matched cases and controls were also used in epidemiological 

analyses. Because the same matching system was to be used for both epidemiological and 

genetics testing, samples were only included if they passed the following basic genetic quality 

controls: genetic data was available; there was no sex chromosome aneuploidy; stated sex 

matches measured chromosomal sex; and no close relatives were present. 

I used the MatchIt195 package for R to perform case/control matching. MatchIt first calculates 

propensity scores for each person which is the likelihood of being a case based on covariate 

values alone. Propensity can be calculated in a number of ways, but logistic regression in a 

common approach. A regression of outcome against covariates is performed and the 

predicted outcome (which for a binary variable is essentially the percent likelihood of being in 

the case group) is the propensity score. Matching is performed on propensity score rather 

than the covariates directly, which efficiently creates case and control groups of the desired 

ratio. The individual covariates may or may not be as well balanced as the total propensity 

score, which takes into account the fact that covariates contribute unequally to overall 

propensity.  

I trialled various matching options in MatchIt and present six high-performing methods: 

• Method 1: nearest neighbour propensity matching on data with estimated ancestry 

groupings (see Appendix: Ancestry Estimation) 

• Method 2: the same but with exact matching for all but deprivation 
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• Method 3: Exact matching on sex, smoking, ethnicity and age using UKBB ethnicities 

to the subgroup level 

• Method 4: Exact matching on sex, smoking and ethnicity using UKBB ethnicities to the 

subgroup level 

• Method 5: Exact matching on sex, ethnicity and age using UKBB ethnicities to the 

subgroup level 

• Method 6: exact matching on sex and ethnicity using UKBB ethnicities to the subgroup 

level 

For all subsequent matched analyses, I used method 6 as it was found to give the best 

improvement in balance with no loss of cases or controls (see Assessment of matching 

performance). 

3.2.3 Final division into case, control and non-cholesteatoma middle 

ear disease for epidemiological analysis 

For this section of the thesis, all ethnicities were retained and data were divided into cases, 

controls and non-cholesteatoma middle ear disease using the criteria outlined in Case and 

control selection for epidemiology and genetic testing. For association testing of demographic 

risk factors, the full set of data were used. For associations with other disease codes, 

cholesteatoma was compared to all controls and non-cholesteatoma middle ear diseases 

cases. Matched data were used for some validation analyses to test for the effects of case-

control imbalance (Figure 14). Case numbers are illustrated in, which also shows handling of 

missing data. 

  



89 

 

Figure 14. participant numbers and missingness information for cases and controls.  

One participant was excluded for missing all covariates. Deprivation was imputed from indices 

of multiple deprivation (IMD) where available. Where not available, Townsend deprivation index 

was mean imputed. 2,884 cases with missing smoking data were excluded from demographic 

analysis. 
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3.2.4 FinnGen comparison cohort 

FinnGen is a biobank containing ~500,000 samples from the Finnish population. Summary 

statistics for single-variant GWAS are released every six months as the number of samples 

sequenced increases. Phenotypes are determined by ICD-10, 9 and 8 codes and genotyping is 

performed using a GRCH37-aligned Thermo Fisher axiom genotype array, including ~500,000 

core GWAS markers and an additional ~200,000 markers enriched in the Finnish population 

or of special clinical interest196.  

Concurrent with these releases, phenotype and demographic information is released via the 

Risteys platform (https://risteys.finregistry.fi/). This includes endpoint definition, descriptive 

statistics such as age distribution and sex ratio, overlapping disease endpoints and Cox Hazard 

regressions for other disease endpoints. Unlike UKBB, FinnGen contains individuals of all ages. 

Release 9 sample size and endpoint definitions 

For all analyses in this thesis, release 9 data were used. Cholesteatoma was defined as 

containing ICD-10 H71, ICD-19 3853 or ICD-8 38700 as a hospital discharge code or cause of 

death. Controls were defined by individuals containing no ICD-10, 9 or 8 codes for any 

condition of the middle ear or mastoid. This is very similar to my UKBB definitions but does 

not use OPC codes and does use older definitions of the ICD, where abscess of the middle ear 

was included under the same definition as cholesteatoma. The number of cases was 1447, of 

which the majority (1167) were defined by ICD-10 H71. The number of middle ear disease-free 

controls was 376,139. 

Calculation of cox hazard regressions 

Cox Hazard regressions for FinnGen data were calcuilated by Risteys by selecting a random 

sample of 10,000 individuals from the pool of cases and controls 

(https://r9.risteys.finngen.fi/documentation).The start of follow-up was set to 1998 due to 

good coverage for all registries after this date. End of follow up was date of death of 

31/12/2019.  

https://risteys.finregistry.fi/
https://r9.risteys.finngen.fi/documentation
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3.2.5 Statistical analyses 

Logistic regressions for demographic factors 

I tested for associations with demographic factors for cholesteatoma vs control and 

cholesteatoma vs other middle ear disease by fitting logistic regression models using the 

fitglm function with binomial error distribution and logit link function in MATLAB R2020b197. 

Cholesteatoma was assigned the binary status 1 and control/other middle ear disease was 

assigned a status of 0. To obtain adjusted odds ratios, I included age, sex, smoking status, 

deprivation, and ethnicity as covariates. 1,140 cholesteatoma cases, 4,551 other middle ear 

disease cases and 493,832 controls were used. 2,884 individuals with missing smoking data 

were excluded. 

There is a large case-control imbalance, particularly for comparison of cholesteatoma to 

controls. Imbalance can bias regression estimates and inflate p-values; to test for this effect, I 

calculated unadjusted odds ratios for each covariate by testing them individually on data 

matched for the remaining covariates. Matching was performed using the package MatchIt 

(version 4.4.0)195 in R 4.1.3198 with ‘method 6’ outlined in Propensity matching: exact matching 

was used for sex and ethnicity and propensity score-based nearest neighbour matching for all 

remaining covariates. The regression includes no covariates; the matching process should have 

a similar effect to adjusting for the other covariates. 

Logistic regressions for disease-disease associations 

I also performed pairwise logistic regressions to test for association between ICD-10 codes. I 

collapsed ICD-10 codes to their parent code and removed non-relevant codes, such as those 

for medications or accidents (codes starting V, X, Y, Z, S, T or R). For these tests, I compared 

cholesteatoma to unmatched controls comprising the disease-free and other middle ear 

disease groups. Because I did not exclude missing smoking data for these tests, 1,151 cases 

and 501,256 controls were included. Each ICD-10 code was conditioned as a presence-absence 

binary status with cholesteatoma as a binary outcome and I again used fitglm to test for 

associations between each ICD-10 code and cholesteatoma, adjusting only for age and sex. I 

tested 1,312 codes, though only 751 codes had any overlap with cholesteatoma. The number 

of cases for each code varied between 1 and 151,022. 
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Cox Hazard regression for comparison to FinnGen 

I performed Cox Hazard regressions on the set of codes with significant hazard ratios in 

FinnGen. UKBB cholesteatoma cases with time to event information (n=650) were compared 

to ear disease-free controls (n=496,667) with age and sex used as covariates. The start date 

was set to 1995 due to poor ICD-10 coverage before this date, and the end date was November 

2022. Both hazards before and after cholesteatoma were calculated using the MATLAB 

function coxphfit, using age and sex as covariates. 

3.3 Results 

3.3.1 Propensity matching 

Assessment of matching performance 

I assessed the performance of six matching methods, focusing on balance of the standardised 

mean (the mean adjusted so that covariates with different scales are comparable) and variance 

ratio. Good improvements for propensity score were seen for all methods, mostly varying in 

the degree of balance improvement for the individual covariates (Figure 15, Table 10). 
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Figure 15. Balance improvement for standardised mean difference and variance ratio for 

six matching methods 
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Table 10.  Balance improvement for standardised mean difference (SMD) and variance 

ratio for matching methods 

  Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 

SM
D

 

Distance 100.00 98.85 100.00 99.93 99.17 99.98 

Age 83.30 100.00 100.00 74.69 100.00 78.11 

Deprivation 97.91 97.82 99.08 87.00 98.66 92.30 

Smoking 73.04 100.00 100.00 100.00 82.61 88.85 

V
ar

ia
n

ce
 r

at
io

 

Distance 99.434 89.27 92.02 99.78 65.25 99.78 

Age 41.13 98.63 98.63 14.80 98.63 39.93 

Deprivation 93.27 89.83 95.04 90.38 80.62 91.51 

 

Methods 1 and 2 used genetically estimated ancestry rather than ethnicity (see Appendix: 

Ancestry Estimation). Estimates were drawn from K-means clustering of the first 3 principal 

components. Method 2 outperformed method 1 with the better improvement in balance for 

most covariates, except for the overall propensity score. I then compared the original values 

for ethnicity, as matching was performed on ancestry estimates instead. This was to check if 

ethnicity was also well-balanced by this method. The matching is good but not 1:1 (Figure 

16). I decided not to use estimated ancestry in my final case selection.  

Method 3 performed very well. Propensity score SMD was improved 100% and variance ratio 

92%. However, two cases could be found controls and not all cases were matched to 5 controls. 

5548 controls were chosen, a ratio of 4.89 – slightly under the target of 5, meaning not all 

cases could be found 5 controls. Likewise, method 5 was unable to match 5 controls to each 

case and performed poorly for propensity score variance ratio improvement. 
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Figure 16. Ethnic composition of cases and controls when matched with ancestry 

 

 

 

Methods 6 and 4 were able to match all cases to 5 controls.  Method 6 outperformed method 

4 and had one of the best overall balance improvement scores (99.98% for standardized mean, 

99.78% for variance ratio) and balanced the individual covariates well (Table 11). Therefore, I 

chose to use method 6. After propensity matching with this method, propensity score 

distributions were almost identical (Figure 17). 
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Table 11. Balance before and after matching for method 6. Variance ratio improvement 

cannot be calculated for categorical variables sex, ethnicity and smoking.  

Balance improvement in is excellent for propensity score and most sub-categories except for age, 

where the initial difference was very small and the final similarity in distributions satisfactory. 

 Standardised mean difference Variance ratio 

 Before After % Improvement Before After Improvement 

Propensity 

score 

0.370 -0.0001 100.0 1.217 0.9996 99.8 

Sex 0.1526 0.0000 100    

Ethnicity -0.0122 0.0000 100    

Smoking 0.0114 -0.00054 88.82    

Age 0.171 -0.0374 78.1 0.949 1.0319 39.9 

Deprivation 0.200 0.0154 92.3 1.1441 0.9886 91.5 

Figure 17. Balance improvement in propensity score distribution for method 6.  

Cases and controls did not differ radically in propensity score distribution before matching (left). 

However, their distributions are almost identical after matching (right). 
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3.3.2 Demographics of cholesteatoma and other middle ear disease  

Total prevalence of cholesteatoma in UKBB was 0.22%, corresponding to approximately 1 in 

500 people. Prevalence was higher in males with a male:female ratio of 1:1.35. In comparison, 

the prevalence in FinnGen was 0.38% with a male:female ratio of 1:1.67. The median age of 

cholesteatoma and other middle ear disease cohorts in UKBB was 73 (IQR=12 for both), while 

the median age of controls was 72 (IQR=13). The median deprivation index of the 

cholesteatoma cohort was -1.40 (IQR=5.14); other middle ear disease -1.70 (IQR=4.82); and 

the controls -2.14 (IQR=4.18), where the higher scores indicate most deprivation. 

Significant associations with cholesteatoma incidence were found for sex (male AOR=1.33, 

p<0.001), deprivation (AOR=1.08, p<0.001), age (AOR=1.02, p<0.001), Black ethnicity 

(AOR=0.35, p=0.0035), and other/unknown ethnicity (AOR 0.48, p=0.042) (Table 12). The ORs 

obtained in sensitivity analysis for demographic factors generally agreed with the AORs 

obtained from the unmatched data except for the other/unknown ethnicity, showing that 

imbalance did not greatly affect the results (Table 13).  
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Table 12. Descriptive and inferential statistics of cholesteatoma in the UK Biobank.  

Prevalence and number of cases by demographic is shown alongside the total number of each 

demographic within the entire UK BioBank cohort. Adjusted odds ratios (AORs) and p-values 

acquired from logistic regression of demographic factors on case status compared to a middle 

ear disease-free control cohort and a non-cholesteatoma ear disease cohort are also shown. Bold 

indicates the comparison category. 

    Versus disease-free controls Versus other ear disease 

 Prevalence 

(%) N cases N total AOR 95% CI p AOR 95% CI p 

Total 0.22 1,151 502,407       

Female 0.20 533 271,839       

Male 
0.27 607 227,684 1.33 

1.179, 1.491 
<0.001 1.30 

1.142, 

1.486 
<0.001 

White 0.23 1,093 470,982       

Mixed 0 0 2,940 0.000 0, Inf 1 0.00 0, Inf 1 

Asian 0.31 30 9,769 1.237 0.857, 1.787 0.26 0.84 0.56, 1.268 0.41 

Black 0.10 8 7998 0.352 0.175, 0.71 0.0015 0.60 0.28, 1.28 0.19 

Chinese 
0.06 1 1,569 0.287 

0.04, 2.041 
0.21 0.17 

0.023, 

1.283 
0.086 

Other/unk

nown 
0.13 8 6,265 0.484 

0.241, 0.973 
0.042 0.45 

0.212, 

0.935 
0.033 

Non-

smokers 
0.21 420 200,812  

 
    

Smokers 
0.24 720 298,711 1.06 

0.934, 1.194 
0.38 0.98 

0.856, 

1.128 
0.80 

Deprivatio

n 
-- --  1.08 

1.059, 1.097 
<0.001 1.02 

1.001, 

1.042 
0.040 

Age -- --  1.02 1.011, 1.026 <0.001 1 0.99, 1.007 0.69 

 

Comparing cholesteatoma to other middle ear disease showed a similar male bias with an AOR 

of 1.3 (p<0.001), meaning the cholesteatoma group differed from other middle ear disease 

about as much as it differed from the controls (AOR = 1.33; Cases vs control; Figure 18b). The 

cholesteatoma and other ear disease cohorts did not differ significantly in age or smoking 

status (p>0.05) (Figure 18a,c). Deprivation was significantly associated with cholesteatoma 

but to a lesser extent than when compared to healthy ears (AOR 1.02, p=0.040) and the other 

middle ear disease group had a more similar distribution of deprivation to the cholesteatoma 

group than the controls (Figure 18e).  
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Table 13. Results of matched logistic regressions testing demographic factors 

Test P value OR 

Sex 0.00028 1.267 

White 0.0056 1.592 

Mixed -- 1.000 

Asian 0.98 0.994 

Black 0.00033 0.270 

Chinese 0.093 0.180 

Other 0.85 10.93 

Smoking 0.18 1.096 

Deprivation 3.57x10-15 1.079 

Age 1.02x10-5 1.019 

 

Comparison of other middle ear disease to disease-free controls 

I also compared other middle ear disease to disease-free controls. There was a significant 

difference in age and deprivation with similar odds ratios to the cholesteatoma vs control 

comparison (Table 14). Although smoking was not significant when comparing cholesteatoma 

to disease-free controls, there was a significant difference for other middle ear disease vs 

controls with a similar odds ratio. The cholesteatoma and other middle ear disease groups had 

similar proportions of smokers and non-smokers (Figure 18), so significance may be due to 

the larger size of the other middle ear disease group. Meanwhile, the effect of ethnicity was 

difficult to quantify due to small sample sizes. The Asian and Chinese groups had higher odds 

of non-cholesteatoma middle ear disease compared to controls, but their odds of 

cholesteatoma were not significantly increased. This may also be due to the differing sample 

sizes of cholesteatoma and other middle ear disease.   
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Table 14.  Logistic regression results for comparison of middle ear disease to middle ear 

disease-free controls 

 

Prevalence 

(%) N AOR 95% CI p 

 Total 0.91 4589    
Female 0.9 2,450    
Male 93 2,139 1.02 0.963, 1.083 0.49 

White 0.91 4,283    
Mixed 0.88 26 0.97 0.656, 1.427 0.87 

Asian 1.31 130 1.46 1.222, 1.746 3.23x10-5 

Black 
0.6 49 0.59 0.444, 0.791 3.88x10-4 

Chinese 1.46 23 1.714 1.133, 2.592 0.0107 

Unknown 1.06 78 1.0595 0.825, 1.36 0.650 

Non-

smokers 0.86 1,720    
Smokers 0.94 2,831 1.07  0.038 

Age   1.02 1.016, 1.024 2.97x10-25 

Deprivation   1.0557 1.046, 1.065 2.28x10-31 
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Figure 18. Demographics of cholesteatoma and non-cholesteatoma middle ear disease 

 

Demographics of unmatched cholesteatoma cases, non-cholesteatoma middle ear disease (NC-

MED) and ear disease-free controls showing a) age distributions, b) sex ratios, c) smoking status, 

d) prevalence of cholesteatoma and non-cholesteatoma ear disease by ethnicity, and e) 

Townsend Deprivation index distribution. Plots generated in R using ggplot2 package. 
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3.3.3 ICD-10 associations with cholesteatoma 

56 ICD-10 codes were significantly associated with cholesteatoma after Bonferroni multiple 

testing correction (p<0.05; Table 15). Hierarchical clustering of Jaccard distance between these 

codes reveals two main groups: common conditions, including chronic obstructive pulmonary 

disease (OR=2.03), disorders of lipoprotein metabolism & other lipidaemia (OR=1.48), and 

gastro-oesophageal reflux (OR=1.51); and diseases of the sinuses and middle ear and their 

complications (Figure 19).  

The strongest associations (all p-values < 0.001) were with other disorders of middle ear and 

mastoid (OR=242.12), other disorders of tympanic membrane (OR=163.63), suppurative and 

unspecified otitis media (OR = 144.54), otalgia and effusion of the ear (OR =78.22, p<0.001) and 

perforation of tympanic membrane (OR 76.07). The overlap with cholesteatoma for each of 

these conditions was 100-263 persons. Otitis externa (OR=34.97, p<0.001) and other diseases 

of inner ear (OR=6.04, p<0.001) were also associated with cholesteatoma. Known 

complications of cholesteatoma were also strongly associated, including sensorineural and 

conductive hearing loss (OR=25.81), other hearing loss (OR=9.94), facial nerve disorders 

(OR=10.10), and bacterial meningitis (OR=41.78).  

The most strongly associated non-ear code not known to be a cholesteatoma complication 

was F17, mental and behavioural disorders due to tobacco use with an OR of 2.34 (p<0.001), 

followed by chronic sinusitis, with an OR of 4.09 (p<0.001). Several other respiratory conditions 

are represented including chronic obstructive pulmonary disease, asthma, and chronic rhinitis 

with and without nasal polyps. Some congenital anomalies affecting the ear and head (Q17, 

Q16, Q75, Q96) were also strongly associated with cholesteatoma (OR=33.58-83.24, p≤0.011), 

although the number of overlapping cases was small (n=2-4). 
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Figure 19. Heatmap of Jaccard distance for ICD-10 codes significantly associated with 

cholesteatoma with hierarchical clustering.  

Jaccard distance between ICD-10 codes where odds ratio adjusted p-value for cholesteatoma 

association < 0.05. Colour scale indicates Jaccard distance with diagonals coloured blue. 

Hierarchical clustering using unweighted average distance/UPGMA (left) shows two main groups 

of disease codes: common diseases (cyan) and sinus/middle ear infections with their rare 

complications (red). Table 2 contains ICD-10 code full names and statistics for all codes with 

adjusted p-value < 0.05. Codes marked with an asterisk (*) have child codes used in the definition 

of the case group. 
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Table 15. Table of ICD-10 codes significantly associated with cholesteatoma. 

Code N N with 

Cholesteatoma 

Odds Ratio 95% CI Adjusted 

p-value 

% 

Overlap 

H66 Suppurative and unspecified otitis 

media 

1275 263 144.54 124.259, 

168.125 

<0.001 12.16 

H72 Perforation of tympanic membrane 1504 193 76.07 64.549, 89.646 <0.001 7.84 

H73 Other disorders of tympanic 

membrane 

570 142 163.63 133.92 9, 

199.912 

<0.001 8.99 

H74 Other disorders of middle ear and 

mastoid 

695 219 242.12 203.651, 

287.867 

<0.001 13.46 

H92 Otalgia and effusion of ear 911 126 78.22 64.143, 95.383 <0.001 6.51 

H95* Postprocedural disorders of ear and 

mastoid NEC (included in 

cholesteatoma definition) 

162 117 1249.85 880.243, 

1774.661 

<0.001 9.78 

H90 Conductive and sensorineural 

hearing loss 

2961 152 25.81 21.65, 30.774 <0.001 3.84 

H70* Mastoiditis 181 153 2809.55 1865.538, 

4231.256 

<0.001  

H65 Nonsuppurative otitis media 1587 100 30.80 24.924, 38.073 <0.001 3.79 

H91 Other hearing loss 10920 213 9.94 8.514, 11.608 <0.001 1.80 

H60 Otitis externa 1048 75 34.97 27.429, 44.577 <0.001 3.53 

H61 Other disorders of external ear 1741 88 23.73 18.972, 29.683 <0.001 3.14 

H93 Other disorders of ear NEC 1874 45 10.65 7.875, 14.407 <0.001 1.51 

G51 Facial Nerve disorders 1848 42 10.10 7.391, 13.793 <0.001 1.42 

G00 Bacterial meningitis NEC 186 16 41.78 24.919, 70.056 <0.001 1.21 

F17 Mental and behavioural disorders 

due to tobacco use  

24886 127 2.34 1.942, 2.813 <0.001 0.49 

J32 Chronic sinusitis 4446 41 4.09 2.993, 5.6 <0.001 0.74 

H83 Other diseases of inner ear 1591 22 6.04 3.946, 9.235 <0.001 0.81 

Q16 Congenital malformations of ear 

causing impairment of hearing 

25 4 82.05 28.032, 

240.146 

<0.001 0.34 

G96 Other disorders of central nervous 

system 

562 12 9.55 5.371, 16.968 <0.001 0.71 

H69 Other disorders of Eustachian tube 317 9 12.99 6.678, 25.288 <0.001 0.62 

I10 Essential (primary) hypertension 151022 478 1.53 1.355, 1.737 <0.001 0.32 

J44 Chronic obstructive pulmonary 

disease 

21261 103 2.03 1.653, 2.495 <0.001 0.46 

J45 Asthma 47150 172 1.71 1.454, 2.013 <0.001 0.36 

Q17 Other congenital malformations of 

ear 

42 3 36.73 11.312, 

119.238 

<0.001 0.25 

G04 Encephalitis, myelitis and 

encephalomyelitis 

426 8 8.06 3.991, 16.26 <0.001 0.51 

B96 Sequelae of other and unspecified 

infectious and parasitic diseases 

18715 84 1.92 1.534, 2.401 <0.001 0.42 

J34 Other disorders of nose and nasal 

sinuses 

9626 49 2.24 1.68, 2.984 <0.001 0.46 

F32 Other depressive episodes 29778 110 1.74 1.425, 2.114 <0.001 0.36 
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Code N N with 

Cholesteatoma 

Odds Ratio 95% CI Adjusted 

p-value 

% 

Overlap 

Q75 Other congenital malformations of 

skull and face bones 

17 2 59.42 13.526, 

261.048 

<0.001 0.17 

E78 Disorders of lipoprotein metabolism 

and other lipidaemias 

77039 262 1.48 1.28, 1.703 <0.001 0.34 

J47 Bronchiectasis 5742 34 2.46 1.741, 3.465 <0.001 0.50 

K21 Gastro-oesophageal reflux disease 54508 183 1.51 1.288, 1.771 <0.001 0.33 

G40 Epilepsy 6849 37 2.33 1.674, 3.231 <0.001 0.46 

K52 Other noninfective gastroenteritis 

and colitis 

25678 96 1.68 1.363, 2.074 0.002 0.36 

L40 Psoriasis 5499 31 2.40 1.68, 3.438 0.002 0.47 

H68 Eustachian salpingitis and 

obstruction 

28 2 33.08 7.82, 139.896 0.003 0.17 

H54 Visual impairment including 

blindness 

2813 20 2.92 1.869, 4.548 0.003 0.51 

N17 Acute renal failure 22036 92 1.69 1.357, 2.094 0.003 0.40 

B95 Streptococcus and staphylococcus 

as the cause of diseases classified to 

other chapters 

8860 44 2.07 1.529, 2.801 0.003 0.44 

G52 Disorders of other cranial nerves 158 4 10.83 4.005, 29.299 0.004 0.31 

H81 Disorders of vestibular function 3088 20 2.80 1.793, 4.359 0.008 0.47 

J18 Bronchopneumonia, unspecified 26445 103 1.61 1.309, 1.974 0.008 0.37 

L08 Other local infections of skin and 

subcutaneous tissue 

3198 21 2.71 1.759, 4.187 0.008 0.49 

G47 Sleep disorders 11734 53 1.89 1.43, 2.491 0.009 0.41 

Q96 Turner syndrome 45 2 25.18 6.078, 104.301 0.011 0.17 

C07 Malignant neoplasm of parotid 

gland 

179 4 9.50 3.519, 25.657 0.012 0.30 

E66 Obesity 35634 122 1.53 1.267, 1.846 0.012 0.33 

G08 Intracranial and intraspinal phlebitis 

and thrombophlebitis 

103 3 13.29 4.205, 42.001 0.014 0.24 

M19 Other arthrosis 45012 150 1.48 1.239, 1.757 0.016 0.33 

A09 Other gastroenteritis and colitis of 

infectious and unspecified origin 

19953 76 1.66 1.318, 2.102 0.025 0.36 

G09 Sequelae of inflammatory diseases 

of central nervous system 

104 3 11.97 3.788, 37.821 0.031 0.24 

N39 Other disorders of urinary system 38025 128 1.49 1.24, 1.798 0.032 0.33 

J31 Chronic rhinitis, nasopharyngitis and 

pharyngitis   

1743 13 3.22 1.862, 5.582 0.038 0.45 

J33 Nasal polyp 4670 26 2.28 1.545, 3.374 0.045 0.45 

B38 Coccidioidomycosis 4 1 119.72 12.384, 

1157.385 

0.047 0.09 
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3.3.4 Comparison to FinnGen significant associations 

Diseases occurring before cholesteatoma with significantly increased hazard ratios in both 

biobanks were otosclerosis and sleep apnoea (Table 16). Hazards of otosclerosis, epilepsy and 

chronic kidney disease were significantly increased after cholesteatoma in both biobanks. 
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Table 16. Comparison of UKBB odds ratios and hazard ratios to FinnGen 

Table showing Cox Hazard ratios computed by Risteys from FinnGen data where p<0.05 and 

equivalent Cox Hazard Ratios and p-values computed for UKBB data. Also shown are the 

uncorrected p-values and odds ratios drawn from logistic regressions for the closest equivalent 

ICD-10 codes. Phenotype definitions vary for the following: 1Showing H91, parent code of sudden 

idiopathic hearing loss (H91.2). 2Arthrosis combines parent categories M15-M19. 3Combination 

of eclampsia (O15) and pre-eclampsia (O14). No overlap with cases in UKBB. 4 Showing G47, 

parent code of sleep apnoea (G47.3). 5Hybrid category of several ICD-10 codes involving pain in 

FinnGen, not tested in UKBB 

  
FinnGen UKBB UKBB 

  
HR P value OR 

P value 
(uncorrected) 

HR 
[95% CI] P value 

B
ef

o
re

 c
h

o
le

st
ea

to
m

a 

Otosclerosis 
6.80 

[4.14, 11.18] 
<0.001 

5.18 
[2.144, 12.552] 

<0.001 
7.98 

[7.98, 31.998] 
 

0.003 
 

Sudden idiopathic 
hearing loss 

2.93 
[1.62, 5.31] 

<0.001 
9.94 

[8.514, 
11.608][1] 

<0.001 
 

0 
[0, 8.65x10171] 

 

0.974 
 

Arthrosis 
0.72 

[0.7,0.91] 
0.0062   

1.12 
[1.12, 1.545] 

 

0.974 
 

Pre-eclampsia or 
eclampsia[3] 

1.80 
[1.09,2.96] 

0.022     

Gonarthrosis 
0.71 

[0.53, 0.96] 
0.025 

0.98 
[0.796, 1.215] 

0.87 
0.78 

[0.78, 1.327] 
 

0.356 
 

Coxarthrosis 
0.59 

[0.37, 0.93] 
0.025 

0.96 
[0.739, 1.259] 

0.79 
0.88 

[0.88, 1.711] 
 

0.708 
 

Sleep apnoea 
1.38 

[1.04, 1.83] 
0.028 

1.88 
[1.43, 2.491][4] 

<0.001 
2.1 

[2.1, 4.065] 
 

0.029 
 

Pain[5] 
1.18 

[1.01, 1.38] 
0.036     

A
ft

er
 c

h
o

le
st

ea
to

m
a 

Otosclerosis 
6.06 

[3.41, 10.76] 
<0.001 

5.18 
[2.144, 12.552] 

<0.001 
8.7 

[8.7, 34.952] 
0.002 

Vascular dementia 
5.02 

[2.36, 10.68] 
<0.001 

3.66 
[0.217, 2.105] 

0.19 
0.93 

[0.93, 3.737] 
0.923 

Epilepsy 
1.79 

[1.09, 2.93] 
0.021 

1.47 
[1.869, 4.548] 

<0.001 
2.85 

[2.85, 4.733] 
<0.001 

Chronic kidney 
disease 

1.77 
[1.08, 2.92] 

0.025 
1.43 

[1.119, 1.812] 
0.0041 

 
1.5 

[1.5, 2.09] 
0.017 

Iron deficiency 
anaemia 

1.74 
[1.07, 2.82] 

0.026 
1.44 

[1.136, 1.829] 
0.0027 

 
1.17 

[1.17, 1.746] 
0.441 

Varicose veins 
0.59 

[0.35, 0.98] 
0.041 

1.061 
[0.776, 1.45] 

0.71 
 

1.01 
[1.01, 1.885] 

0.964 
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3.4 Discussion 

This chapter was a retrospective epidemiological study of cholesteatoma in the UK BioBank. I 

established demographic factors associated with cholesteatoma and compared these with 

factors associated with other middle ear disease. I replicated some associations found in other 

studies such as male sex, smoking, and deprivation. Generally, cholesteatoma and other 

middle ear disease were more demographically similar to each other than to disease-free 

controls, with cholesteatoma cases having slightly more extreme values. I also identified 

overlapping ICD-10 codes with cholesteatoma, which generally consisted of other 

inflammatory diseases of the middle ear and associated conditions. The cholesteatoma group 

also had higher rates of several common diseases. Associations with epilepsy and otosclerosis 

were repeated in the Finnish biobank FinnGen. 

3.4.1 Similarity of cholesteatoma risk factors to other middle ear 

disease 

Cholesteatoma and other middle ear disease are similar for age, deprivation and 

smoking 

The cholesteatoma and other middle ear disease groups did not differ significantly in age, 

deprivation or smoking status. Both the cholesteatoma and other middle ear disease groups 

were median one year older than controls with the AOR for age being 1.02 for cholesteatoma. 

This is probably because older individuals have had longer to contract disease.  

The prevalence of cholesteatoma amongst smokers was similar to the prevalence amongst 

other middle ear disease; while no significant effect for smoking could be detected in the 

cholesteatoma group, the increased rate of middle ear disease was significant for smokers, 

which may be due to the larger size of this group. Furthermore, a significant association with 

F17 mental and behavioural disorders due to use of tobacco was (OR 2.34) suggests that 

smoking does affect cholesteatoma risk. The category for ‘smokers’ includes people who 

smoke infrequently or have quit, indicating that the effect is strongest for heavy smokers. This 

agrees with Kaylie et. al. (2009)187 who found a higher rate of cholesteatoma and more severe 

disease in smokers with chronic ear problems, but that former smokers had similar outcomes 

to non-smokers >5 years after quitting. Smoking raises susceptibility to middle ear disease by 

impaired mucociliary function, which may also explain increased rates of cholesteatoma. 
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Median deprivation in the cholesteatoma group was -1.40 compared to -1.70 and -2.14 for 

other middle ear disease and controls respectively; the odds ratios for cholesteatoma 

compared to other middle ear disease and controls were 1.02 and 1.08 respectively but did 

not differ significantly from each other (Table 14). Deprivation is associated with risk 

behaviours such as smoking199,200, and the most disadvantaged are both more likely to require 

healthcare and less likely to access it201. These factors may contribute to greater rates of ear 

disease and cholesteatoma and may also explain the greater risk of other common diseases 

in the case group. However, it is also possible for deprivation to result from the economic 

impact of hearing loss and so the relationship may be reversed; deprivation was recorded at 

recruitment and cholesteatoma is likely to have occurred before this time. This highlights the 

inability to determine causality from observational data. 

Prevalence of cholesteatoma and middle ear disease vary with ethnicity 

Both rates of cholesteatoma and other middle ear disease varied between ethnicities in this 

analysis, with prevalence highest in the Asian and white groups. Black ethnicity was 

significantly associated with a decreased risk of both middle ear disease and cholesteatoma, 

but the risk of these two types of disease differed divergently for some other ethnicities. 

Middle ear disease was more prevalent in both the Asian and Chinese groups, but the relative 

rate of cholesteatoma was lower. However, most of these differences were non-significant, 

likely due to the small sample sizes of these groups. Rates of cholesteatoma have previously 

been reported to vary with ethnicity2, although original epidemiological data is rarely 

presented.  

Male sex differentiates cholesteatoma from other middle ear disease 

Male sex had an OR of 1.33 and there was a male predominance of 1:1.3 males:females in 

UKBB and 1:1.67 in FinnGen, which is well-established in the literatured6,7. However, there was 

no male-predominance in the non-cholesteatoma middle ear disease group. The adjusted 

odds ratio for cholesteatoma was effectively the same independent of whether the controls 

had middle ear disease or not, and there was no significant difference between the middle ear 

disease group and disease-free controls.  This makes male sex a major risk factor distinguishing 

cholesteatoma from other middle ear disease in this cohort. Either males are not at increased 
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risk of general ear disease, only of cholesteatoma; or that they are at increased risk of all forms 

of ear disease and at increased risk of sequelae, including cholesteatoma.  

3.4.2 Cholesteatoma is significantly associated with other 

inflammatory ear and respiratory disease  

An overlap between cholesteatoma and other middle ear disease is well known: Kemppainen 

et. al. (1999)6 report history of otitis media in 72.4% of cholesteatoma cases while Castle (2018)1 

reports common concurrent diseases including otic polyp and tympanosclerosis. Tympanic 

retraction is also a risk factor for cholesteatoma22,23. Meanwhile, Djurhuus et al. (2015)9 found 

that children with repeated ear infection requiring ventilation tube insertion are at increased 

risk of cholesteatoma. Although there is a possibility of iatrogenic cholesteatoma following 

ear surgery, the authors also showed that early ventilation tube insertion reduces risk of 

subsequent cholesteatoma and that national rates of cholesteatoma were decreasing7. This 

suggests that children at risk of cholesteatoma also have increased likelihood of requiring 

ventilation tube insertion. Whether chronic OM is a cause or symptom of cholesteatoma 

cannot be determined from this study design and so the nature of the relationship remains 

unknown.  

I also detected associations with certain respiratory diseases, including chronic sinusitis, 

asthma, and bronchiectasis. The recently introduced concept of ‘unified airway disease’ seeks 

to explain the frequent co-occurrence of upper and lower airway disease by considering the 

airways as a single system sharing immunological and pathophysiological features202. The 

middle ear is connected to the nasopharynx via the Eustachian tube which is responsible for 

middle ear drainage, pressure equalisation and protection against pathogens19. Therefore, it 

is possible that chronic inflammation of the upper airways may also contribute to susceptibility 

to middle ear disease by impacting on Eustachian tube function.  

3.4.3 New potential association with epilepsy 

Some known sequalae of cholesteatoma such as facial nerve palsy were represented amongst 

associated disease codes, as well as rare ones like meningitis203. Interestingly, epilepsy was 

associated with cholesteatoma in both biobanks. Epilepsy is very rarely described as a 

complication of cholesteatoma204,205 and can be triggered by intracranial infection206, which 
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may explain this relationship. Alternatively, epilepsy itself may be a risk factor, as it is often 

associated with a high burden of comorbid disease207.  

Although Cox Hazards regressions in both UKBB and FinnGen report increased hazards of 

otosclerosis both before and after cholesteatoma, this may not be a true association. Co-

occurrence of these conditions is extremely rarely reported208 and both have similar 

presentations, meaning misdiagnosis may occur. Otosclerosis is a disease of the labyrinth 

resulting from remodelling and overgrowth of the bone at the base of the stapes89 and while 

inflammation induced by cholesteatoma could feasibly contribute to risk, the small number of 

overlapping cases (n=5 in UKBB, 48 in FinnGen) makes it very possible that misdiagnosis is the 

true cause. 

3.4.4 Study limitations 

This study was limited by the retrospective case-control design and so shares its limitations 

with other studies of biobank data. Conclusions about causality cannot be drawn from 

observational data and there may be additional confounding variables that were not 

accounted for.  

The UKBB population is not necessarily representative of the wider UK population: it is biased 

towards females, has overall lower deprivation, and participants have fewer health problems 

than the general population209. Furthermore, the study population was majority White British, 

making it difficult to assess prevalence in other ethnicities. Demographic information reflects 

participants’ situations at the time of recruitment, not the time of disease diagnosis.  

Deprivation is based on postcode and may not reflect an individual’s actual status.  

Identification of cases was limited by the availability of ICD codes: ICD-10 was introduced in 

1995, so records prior to this date are generally not available. The older ICD-9 code for 

cholesteatoma also contains the unrelated otic abscess so was not useful for assigning cases. 

Records may also be missing due to a failure to translate paper records into electronic format 

or may contain inaccurate diagnoses. As ICD-10 codes are assigned for hospital billing 

purposes, and not by doctors themselves, they may not accurately reflect the actual diagnosis 

made; additionally, cholesteatoma may be misdiagnosed as other forms of otitis media. In 

order to maximise the number of cases detected, I used an expanded criteria which included 
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operative codes strongly suggestive of cholesteatoma such as mastoidectomy. Ultimately, the 

rate of cholesteatoma of 1 in ~500 persons was similar to what I expected, though it was less 

than in FinnGen. Lack of detailed information means it is not possible to determine if 

cholesteatoma was congenital or acquired, or uni- or bilateral. Additionally, date of diagnosis 

was only available for a subset of cases, meaning Cox Hazard regressions had less power. The 

date of diagnosis also may not represent the actual time of disease onset, only when attention 

was sought for the condition.  

Imbalance between cases and controls could introduce bias into estimates and inflate p-values. 

I tested for this effect by performing matched logistic regressions for demographic factors but 

did not perform such tests for all ICD-10 codes which may have had more extreme imbalance. 

Therefore, disease codes with small numbers of cases should be interpreted with caution. 

3.4.5 Future directions 

Although this study provides evidence of a higher incidence in white compared to non-white 

ethnicities in the UK (besides South Asian ethnicities) the sample size for non-white ethnicities 

in the UK Biobank is too small to be conclusive and differences between populations remain 

poorly characterised. Large, registry-based studies reporting age- and sex-specific rates may 

be required to clarify this.  

The demographic similarity between cholesteatoma and other middle ear disease for most risk 

factors suggests an overlap in pathology, whether both arise through common causes or one 

arises from the other. However, some risk factors were not shared between cholesteatoma and 

other middle ear disease. Experiments using controls with OM will acquire different results to 

studies using disease-free ears, as it seems that there are both overlapping and distinct risk 

factors. Many tissue-based studies, such as gene expression studies, necessarily compare 

cholesteatoma to ears with OM because the middle ear is inaccessible and tissue can only be 

acquired during surgery. 

3.5 Conclusions 

Risk factors are shared between cholesteatoma and other inflammatory middle ear disease, 

but male sex was a major risk factor distinguishing these groups. Cholesteatoma overlaps 

significantly with other inflammatory middle ear conditions, but it is difficult to disentangle 
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the factors contributing to ear disease in general from those contributing to cholesteatoma 

alone. Cholesteatoma was also positively associated with epilepsy and negatively associated 

with arthrosis in two biobanks. These relationships are unexplored in the literature and warrant 

further investigation.  

The results of these analyses must be considered in the following genetics studies of 

cholesteatoma, as the choice of control group affects the conclusions that can be drawn. The 

relationship between cholesteatoma and other chronic ear diseases may be due to shared 

environmental risk factors, shared genetic risk factors, or because one disease directly 

provokes the other. If cholesteatoma is a consequence of chronic middle ear disease, then 

using disease-free controls may essentially be studying susceptibility to ear disease in general, 

whereas using controls with non-cholesteatoma middle ear disease asks which factors govern 

cause some individuals to progress to cholesteatoma and not others. An issue with using other 

middle ear disease as controls is that a proportion of them may have cholesteatoma but lack 

specific ICD-10 codes indicating it; they may also go on to develop cholesteatoma in the 

future. It is better to compare cholesteatoma to disease-free controls and compare any results 

to what is known about the genetic risk factors for chronic ear disease in general. 
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4 Genome-wide association tests: Single 

variant, gene-based and gene set enrichment 

4.1 Background 

4.1.1 Rationale 

In the introduction to this thesis, I discussed evidence for genetic involvement in 

cholesteatoma, including several observations of family clustering54–57, family history in ~10% 

of cases61, and identification of some genes containing deleterious variants amongst 10 

affected families in a previous Genetic of Cholesteatoma (GoC) study126. In a review of 

cholesteatoma genetics including incidences of family clustering, Jennings et al. (2017)18 

concluded that there is weak evidence for an oligogenic mechanism with reduced penetrance. 

A total of five (2 GoC, 3 non-GoC)65,66,68,124,126 studies have performed gene sequencing and 

none have detected the same set of variants; however, there has been some overlap in the 

function of variants identified in these studies and dysregulated processes identified by gene 

expression analysis36,77,78,125,136–140 (see Semi-systematic review of global gene expression 

studies). Implicated processes include ECM organisation, immune function/inflammation, 

ciliary function, and calcium binding. It therefore seems likely that any genetic basis for 

cholesteatoma is complex, polygenic, and possibly heterogeneous.  

Studies so far have had limited power due to small sample sizes and lack of control 

populations. Hence this study uses UK BioBank whole exome data to perform genome-wide 

association tests (GWAS) for cholesteatoma using 1,000 European cases and 5,000 matched 

controls. Whole exome data are used for consistency with previous GoC studies and to capture 

rare variants which may not be represented on genotyping arrays. While this sample size is 

relatively small for a GWAS, it will be the largest cohort of cholesteatoma cases studied outside 

of phenome-wide association tests (PheWAS). There are several examples of PheWAS, which 

apply generic GWAS methods to produce summary statistics for hundreds or thousands of 

phenotypes, typically generated using ICD-10 codes. This includes a PheWAS of UK BioBank 

data called GeneBass (https://app.genebass.org/) and FinnGen, which contains 1,447 

cholesteatoma cases in its ninth release (defined by ICD-10, 9 and 8). FinnGen is notable for 

its large size as well as its curated control groups, excluding any participant with middle ear or 

https://app.genebass.org/
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mastoid disease from cholesteatoma GWAS controls. This makes the cohort useful for 

comparison to UK BioBank results. 

4.1.2 Modern GWAS methods 

A GWAS performs tests for individual variants across the genome to detect associations with 

an outcome. This is achieved by fitting a linear or logistic regression with the phenotype as 

the outcome and genotypes and covariates as independent variables. Linear regressions are 

used for continuous traits (e.g. height) and a logit link function is used to convert the 

regression to logistic for binary traits (e.g. cholesteatoma status). This was described in the 

thesis introduction in Genome-wide association studies, but I repeat the basic equation here: 

𝒀~ 𝑾𝜶 +  𝑿𝜷 + 𝒈 +  𝒆 

Uffelmann et al. (2021)88 

Where Y is a continuous phenotype, W is the genotype being tested and X is a matrix of fixed 

covariates (such as age or sex). The terms g and e capture error due to genetic and random 

effects. α and β, the effect sizes of the genotype and covariates respectively, are estimated by 

the model, and we are primarily interested in β. Genotype p-values are generated by 

comparing the model to a null model where genotype has no effect88. . Numerous software 

packages have been developed to perform GWAS with this regression at their heart. For 

example, the popular toolset PLINK210 performs GWAS with this simple regression. Other 

models extend or modify the regression to account for additional confounders. More 

sophisticated methods have recently been developed to handle non-random effects such as 

population stratification, sample imbalance and relatedness. These typically involve multiple 

steps to estimate parameters used to improve the final regression model. SAIGE194 and 

REGENIE115 are two examples of popular GWAS software packages which use multi-step 

methods to conduct single variant analysis and, in the case of SAIGE, downstream gene-based 

tests. 

REGENIE 

In the first step, the genome is broken up into blocks of N SNPs. Each block is used to perform 

ridge regression, which is similar to linear regression but incorporates a parameter called the 
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shrinkage factor. The shrinkage factor is used to reduce the coefficients of the predictors 

towards 0 to account for correlation of SNPs in a block: if two predictors are strongly 

correlated, the amount of information they impart is not as much as two independent 

predictors and their contribution towards the model must be reduced appropriately. This is 

done by penalising predictors with very large coefficients, which can arise out of correlation211. 

REGENIE randomly varies the shrinkage factor in each block to reflect that the true number of 

predictors is not known, resulting in a set of predicted outcomes for each block. A second 

ridge regression combines these predictors into a single predictor representing the entire 

genome115. The predictions from this step are used as a covariates in the logistic regression 

(step 2). 

SAIGE 

The first step of SAIGE involves fitting a null logistic model to a random sample of variants 

against phenotype and obtaining an estimate of the random effects for each individual. The 

variance of test statistic scores is compared for models performed with and without the error 

term included. The authors show that this variance ratio is consistent for variants with minor 

allele count (MAC) > 20. The variance ratio is used in when fitting the logistic regression (step 

2) to correct for random and non-random genetic effects, and the saddle-point approximation 

(SPA)212 is used to account for imbalance. SAIGE performs correction for population structure 

and controls the degree of structure seen within the European population well194. 

P-value correction 

Regressions usually use maximum likelihood estimates (MLE), which means they calculate how 

likely the given data is under a specific model and seek to configure the model to maximise 

this likelihood. Highly imbalanced data can bias these estimates, either because there is 

imbalance in the cases and controls, or certain observations are very rare. During step 2 of 

both SAIGE and REGENIE, additional p-value correction is applied to account for these effects 

using Firth (REGENIE) or SPA (SAIGE and REGENIE). Firth213 regression introduces a bias term 

into the function used to calculate MLE213 while SPA corrects p-values by substituting SPA for 

the normal approximation for calculating the null distribution of the test statistic214. Unlike the 

normal distribution, which only has parameters of mean and variance (the first two moments 
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of the function), SPA uses all moments (such as skewness) so can provide better estimates 

when assumptions of normality are broken194.  

Gene-based tests 

Analysing rare variants poses a challenge as they may require very large sample sizes for 

detection. Several approaches have been developed for the analysis of rare variants by 

aggregating them at the gene level to increase statistical power: 

• A gene-based collapsing or burden approach essentially sums the number of variants 

within a gene. This works under the assumption that different variants in the same gene 

or set of genes have similar impacts on disease111.  

• A combined multivariate and collapsing test collapses variants within subgroups 

according to criteria such as allele frequencies, and a multivariate test is performed 

within subgroups215. 

• SKAT112 is a supervised regression method to test for the joint effects of multiple 

variants in a region. The test aggregates weighted variant-score test statistics rather 

than clustering variants directly. This allows for SNP-SNP interactions and is particularly 

powerful when regions contain many protective, deleterious and non-causal variants. 

SKAT calculates a p value for each genome region (or gene) while adjusting for 

covariates such as age, sex, and population stratification. 

Burden-based tests have more power to detect associations when all variants in a region have 

the same directional effect on the trait and most are causal; non-burden tests like SKAT do not 

make these assumptions and can better handle variants with non-causal or opposing effects.  

SKAT-O216 is a unified burden and non-burden test, finding an optimal linear combination of 

SKAT and burden tests. When the burden test is more powerful, SKAT-O behaves more like a 

burden test and when SKAT is more powerful, it behaves more like SKAT.  

Gene set analysis 

The concept of gene set enrichment analysis (GSEA) was introduced in Semi-systematic review 

of global gene expression studies. Simply, GSEA identifies pathways whose members are 

overrepresented in a given set of genes compared to a set randomly selected from the 

genome. In Semi-systematic review of global gene expression studies, I applied this to 
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differentially expressed genes in cholesteatoma. GSEA can also be applied to genetic variant 

data to identify potentially disrupted pathways and processes; much as gene-level analysis 

aggregates variants at the gene level to increase power, GSEA aggregates variants at the 

pathway level. For many diseases, several genes are involved, and these may be linked via 

similar functional processes or pathways217; even if disease is highly polygenic or 

heterogeneous, it is likely to arise through the same set of pathways. GSEA can provide greater 

biological interpretability even when no individual variants meet genome-wide significance218. 

4.1.3 Types of genetic data 

There are two main approaches to genotyping for GWAS: genotyping microarray and next-

generation sequencing, which may cover the protein-coding regions of the genome (whole 

exome sequencing; WES) or the entire genome (whole genome sequencing; WGS). These 

approaches were described in the introduction to this thesis in Genotyping data. 

UK BioBank (UKBB) recently performed whole-exome sequencing of its participants, which 

covers all variants in protein-coding regions including rare variants. UKBB also offers 

genotyping data using the UK BioBank Axiom V2 array, which covers the entire genome but 

only measures variants included in its probe set (850,000 variants; an additional 90 million 

variants are imputed using the Haplotype Reference Consortium and UK10K + 1000 Genomes 

reference panels). Whole genome data is also available but was not released in full at the time 

of this study. 

Whole exome data was chosen for this analysis for consistency with previous whole exome 

family studies performed by GoC. Compared to genotyping array, whole exome has the benefit 

of detecting rare variants, which are increasingly considered an important source of missing 

heritability in common, complex disorders as well as in rare disease due to the possibility of 

stronger deleterious effects219,220. A drawback of whole exome data is the inability to detect 

variants in non-coding regions, which make up most of the genome and most trait-variant 

associations discovered to date98,99. Also, most associations detected by GWAS are non-causal 

and arise through linkage disequilibrium with causal variants, so this does not necessarily 

mean most causal variants are non-coding. Furthermore, it has been shown that protein-

coding variants can have a disproportionately high predictive power for polygenic 
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diseases100,221. As they directly affect protein structure, they may be more likely to impact 

disease risk and their consequences may be easier to interpret. 

4.1.4 Aims and objectives 

Based on the expectation of genetic complexity of cholesteatoma and the relatively small 

sample size of this study, I aim to perform association tests at the variant, gene and pathway 

levels. Testing at the gene level can account for the aggregate effects of rare variants, which 

are difficult to detect in small sample sizes. Meanwhile, pathway analysis can be useful where 

disease is polygenic or heterogeneous, as disease likely to arise through common mechanisms 

but individual variants may not be detected by an underpowered GWAS. Identification of 

variants, genes or pathways associated with cholesteatoma may provide insight into disease 

biology. Confirmation of these results in a comparison cohort, FinnGen, would provide further 

support the existence of a genetic component in cholesteatoma. 

In summary, the aims of this chapter are: 

• To compare the UKBB WES pipeline to the pipeline used by previous GoC studies to 

ensure results are comparable. 

• To perform association tests at the variant level and gene level for UKBB whole exome 

data.  

• To perform gene set enrichment analysis on UKBB single variant GWAS results to 

identify disrupted pathways and processes. 

• To perform the same pathway analysis on FinnGen summary statistics for comparison. 

• To perform post-hoc sensitivity analysis to determine study power and minimum 

detectable effect size 

• To validate results by performing GWAS using UKBB microarray data. 

4.2 Methods 

4.2.1 UK BioBank Whole Exome Data 

In this chapter, the primary data were variant call files generated by UK BioBank from whole 

exome sequencing data using DeepVariant, a neural network-based variant caller191. Whole 

exome sequencing was performed on the first 50,000 participants by Regeneron and 
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GlaxoSmithKline, with the remaining 450,000 sequenced by a consortium comprising 

Regeneron, AbbVie, Alnylam Pharmaceuticals, AstraZeneca, Biogen, Pfizer, Takeda and Bristol-

Myers Squibb. Exomes were captured using the IDT xGen Exome Research Panel v1.0 and 

sequenced on the Illumina Novaseq 6000 platform using S2 (for the initial 50,000 samples) 

and S4 flow cells (for the remaining 450,000). The initial 50,000 samples used a different IDT 

oligo lot to the remaining 450,000 samples and were selected for specific enrichment in 

disease traits resulting in a strong batch effect. UKBB recommends the 90pc_10dp filter to 

control for this effect (see Variant filtering for quality and impact) and I also included batch as 

a covariate in the final GWAS. This whole exome data covers protein-coding regions, including 

exon sequences, intronic variants and 3’ and 5’ UTRs, but does not include intergenic regions. 

Comparison of UK BioBank data generation to previous whole exome pipeline 

UKBB whole exome data are provided in CRAM format, a lossless file format from which the 

original fastq data can be reconstructed. A fastq is a text-based file containing the sequence 

data and quality scores per base. Several processing steps must be performed on raw 

sequence data to generate the CRAM file, including mapping, sorting and alignment against 

a reference genome. The tools used by UKBB to perform these steps are detailed in Figure 20 

and compared to those used in previous GoC cholesteatoma whole exome studies124,126. While 

many of the same tools are used (including bwa-mem222, which is the mapping algorithm used 

in cgpmap†), differences in pipelines may lead to slight differences in the final CRAM files. I 

expect this effect to be small and it should not affect comparability between this study and 

the previous GoC WES study.  

 

  

 

† Available at https://github.com/cancerit/dockstore-cgpmap 
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Figure 20. Comparison of UK Biobank and GoC pipelines for variant calling from whole 

exome data 
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UKBB also provides variant call format (VCF) files containing the variable sites identified from 

the sequence data using DeepVariant. Different variant callers are likely to affect the 

comparability of data far more than differences in earlier steps.  

DeepVariant performs very well for both sensitivity (proportion of true positives detected) and 

specificity (proportion of true negatives detected). In their 2018 paper191, Poplin et al. test 

DeepVariant against other callers on the precisionFDA Truth Challenge data set: DeepVariant 

outperformed all other methods tested for both SNPs and indels, closely followed by GATK (a 

variant caller used in the previous GoC WES study). DeepVariant had also won the 

precisionFDA Truth Challenge two years earlier, and in 2020 remained one of the top 

performing methods on multiple platforms223. DeepVariant and GLNexus were also tested by 

Yun et al. (2020)224 against WGS and WES samples from Genome in a Bottle project, Clinical 

Sequencing Evidence-Generating Research, and population Architecture Using Genomics and 

Epidemiology. They found that DeepVariant is somewhat overconfident about homozygous 

ALT calls (in comparison to GATK Best Practices V4.1.2.0) but is otherwise better calibrated 

across variant types. Precision and recall calculated separately for SNPs and indels were once 

again higher in DeepVariant than GATK and DeepVariant GQ (genotype quality) score 

distribution increases smoothly with sequence coverage whereas GATK oscillates below 99.  

To determine whether to re-process the exome sequencing data using the  GoC pipeline and 

perform variant calling consistent with previous GoC studies (Figure 20b) or use the 

DeepVariant VCFs, I reprocessed a sample of 46 randomly selected CRAMs with the GoC 

pipeline to compare the number and type of variants detected per person. Filtering for each 

call-set was performed according to the software’s recommendations (Table 17). 
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Table 17.  Description of filters applied to each data set. 

 Filter  

GATK SNPs QD > 2  

QUAL > 30 

SOR < 3 

FS < 60 

MQ > 40 

MQRankSum > -12.5 

ReadPosRankSum > -8 

QD: Variant Confidence/Quality by Depth 

QUAL: Phred-scaled quality 

SOR: Symmetric Odds Ratio of 2x2 contingency table to 

detect strand bias 

FS: Phred-scaled p-value using Fisher's exact test to detect 

strand bias 

MQ: Root mean square mapping quality  

MQRankSum: Z-score From Wilcoxon rank sum test of Alt 

vs. Ref read mapping qualities 

ReadPosRankSum: Z-score from Wilcoxon rank sum test of 

Alt vs. Ref read position bias 

GATK Indels QD > 2 

QUAL > 30 

FS < 200 

ReadPosRankSum > -20 

freebayes QUAL>5  

INFO/DP 

SAF > 0 & SAR > 0 

RPR > 1 & RPL > 1 

DP: Read depth  

QUAL: Phred-scaled qual score 

RPL/RPR: Reads placed left and reads placed right – read 

must have neighbouring reads. 

DeepVariant DP > 6 (SNPs) 

DP > 10 (Indels) 

VAF > 0.15 (SNPs) 

VAF > 0.2 (Indels) 

QUAL > 30 

DP: read depth 

VAF: Variant allele frequency, the proportion of reads at a 

site supporting the variant 

QUAL: Phred-scaled qual score 

DeepVariant + 

HWE 

All of the previous PLUS 

hwe > 1e-15 

Geno < -0.1 

90pc_10dp 

Hwe: hardy Weinberg p value  

Genotype variant missingness less than 10% 

90pc_10dp is a recommended filter for variant sites 

generated by UKBB to compensate for batch effects and 

difference in coverage between the initial 50k and 

remaining 450k exomes. A list of variants to exclude is 

provided. As an example, chr 2 starts with 1986436 

variants, reduced to 1524976 by this filter. 

DeepVariant+ 

Hwe+ 

Nonsyn 

All of the previous PLUS 

removal of synonymous 

variants 

Variants were annotated with SnpEff. Variant consequences 

were ordered by most severe to least severe. Where the 

most severe consequence of a variant was synonymous or 

less (intronic, upstream gene or downstream), the variant 

was removed. 

 

4.2.2 Filtering 

Sample QC 

Sample quality control has largely been performed by UK BioBank. Additional metrics were 

provided for further filtering. Samples were removed prior to case and control selection if: 



125 

 

• Stated sex did not match their sex chromosomes, or there was sex chromosome 

aneuploidy. While these samples may belong to intersex individuals or those whose 

gender identity differs from their chromosomal sex, this can also indicate poor sample 

quality and where no distinction has been made these samples cannot be included.  

• Participants with any close relatives in the same data set were removed. Cases with 

relatives were retained provided that relatives were not also cases, and their control 

relatives were removed. Controls were excluded if any relatives were present due to 

the large number of available controls for matching. 

• After case matching, samples were filtered for missingness. Samples with > 10% site 

missingness were to be removed, but none failed this test. 

Variant filtering for quality and impact 

Variant filtering is applied to genetic data to reduce the number of variants being tested, thus 

reducing the dimensionality of the data and the impact of type 1 error. Filtering can be done 

for quality metrics as well as predicted impact, which assumes that certain types of variants 

are more likely to contribute to disease.  

I performed filtering following Szustakowski et al. (2021)225 in their paper detailing the initial 

release of UKBB 200k exomes (Table 17). Variant sites were filtered to exclude sites which 

violate Hardy Weinberg equilibrium with p values of < 1x10-15 or have genotype missingness 

> 0.1. Also, the 90pc_10dp filter was applied, which removes variants with less than 90% 

coverage at 10 depth across the population. This was performed on the whole population of 

~500k participants.  

Additional filters for quality at the variant level (following the method set out in Szustakowski 

et al. (2021)225) were: 
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• Read depth > 6 (SNPs) or 10 (Indels). Requiring a minimum number of reads (read 

depth, DP) at a given site is a standard quality control metric. Sites with very few 

reads cannot easily be distinguished from errors and should be excluded. 

• Variant allele frequency > 0.15 (SNPs) or > 0.2 (Indels): Variant allele frequency 

(VAF) is a measure of the proportion of reads which support a given allele at a site 

and must be above a minimum threshold to strongly support a variant existing. A site 

may be covered by many reads but if there is no consensus on the base present at 

that position, their support for a variant is weak. A VAF of 0.5 suggests a 

heterozygote and a VAF of 1 a homozygous alt. For a SNP with four possible bases at 

a given site, a VAF of 0.15 may be sufficient to support a heterozygous alt at this 

position, but this cutoff must be higher for indels, which have more possible 

variations. 

• QUAL > 30: QUAL score in DeepVariant calls is a representative of the confidence with 

which the neural network called the variant. 

In addition, I filtered coding variants to remove synonymous, upstream and downstream 

variants. Synonymous variants do not change the polypeptide sequence so should not affect 

protein function. Although there is some evidence that synonymous variants may impact 

fitness in certain circumstances226,227, these findings are generally drawn from microbial 

experiments and the general applicability of this has been contested228. Importantly, removing 

synonymous variants will reduce variant numbers, reducing data dimensionality, noise, and 

type 1 error. This is particularly important given the small sample size.  

Variants were annotated with their predicted effect using SNPeff229. Any sites whose highest 

impact variant was predicted to be synonymous, upstream gene, or downstream gene was 

excluded. SNPeff considers upstream and downstream variants to be less impactful than 

synonymous variants as they should not affect protein coding or regulatory regions. In this 
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thesis, I describe retained variants as ‘non-synonymous’ to describe the exclusion of 

synonymous coding variants, but certain intronic and regulatory variants such as those in 

splice sites and 3’ and 5’ UTRs will also be retained. No maximum or minimum MAF filter was 

applied. 

Configuration of final pipeline 

Filtering for the DeepVariant VCFs was performed on the UK BioBank Research Access Platform 

and accessed using the python library dxpy (Figure 21,Box 1). 
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Figure 21. Overview of the filtering process performed at the variant level for selected 

cases and controls. 
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4.2.3 Genome-wide association testing and downstream analyses 
Box 1. Overview of the filtering process performed at the variant level for selected cases and 

controls. 

 

Merge batch: Start by merging all individuals within a batch of ~200 people, to avoid issues of 

merging too many files at once. Merged VCFs are split to chromosomes. 

 

Merge chr: Each 200-person chromosome VCF is merged with the other batches to generate a 

single file for all participants per chromosome. 

 

Filter chr: All sites are split to biallelic, first using bcftools norm -N -m. At any SNP-indel 

sites which also had a SNP or indel-only variant at that site will end up with repeated entries for 

those sites.  Then phenotype likelihood (PL) is removed to prevent issues with varying numbers 

of entries in the PL columns for multiallelics. All sites whose alt is <*> are removed using grep 

-v ‘<\*> as these are non-variants. Sites are collapsed back into multiallelics, ensuring that 

any previous SNP-indel sites are reunited with SNP or indel-only versions of that site. Sites are 

split into biallelic one more time using bcftools norm -N -m - -Oz -o. There will now 

be only one copy of each variant and each row will only contain one ALT. The VCF can now be 

split to SNPs and indels with bcftools view -v SNPs and bcftools view -V SNPs. The 

first includes SNPs only, the second excludes SNPs (so will include indels, MNPs and others). DP, 

VAF and QUAL filters are applied. 

 

SnpEff annotate: SnpEff annotates genes with predicted impact, starting with the most 

impactful consequence per gene. 

 

Make synonymous filter: Variants whose worst impact is synonymous, upstream, downstream, 

or intronic are selected to generate a filter, as we don’t expect these to impact protein function. 

To PLINK format: The ID column for SNPs and indels is filled with the CHR:POS:REF:ALT 

information. The filtered SNPs and indels are converted to PLINK format. Keep-allele-order is 

used to prevent REF being set to the major allele. This must be done every time plink is invoked.  

Apply filters: Indels and SNPs are treated separately. Plink extract is used to retain only the 

variants which passed HWE/missingness tests. Plink exclude is then used to remove all 

synonymous variants, using the text file generated in the make synonymous filter step. 

Generate BGEN: The SNP and indel plink files are merged. A VCF is generated for use in the 

following command, which uses –a1-allele to force A1 to be the REF from the VCF (ALT is A2). 

The resultant plink file is used to generate a BGEN file (set to 8 bit), the BGEN is indexed ready 

for input to SAIGE. 
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REGENIE Comparison 

To determine which software package to use, I ran the same set of data through SAIGE and 

REGENIE using the same covariates. SAIGE was configured as in Final SAIGE configuration for 

single variant tests, but chromosome X was not used (due to this being part of early 

prototyping). REGENIE [3.1.0] was run with default settings and the following covariates: age, 

sex, deprivation, smoking status, and the first 10 genetic principal components. 

Final SAIGE configuration for single variant tests 

The final GWAS was performed using filtered whole exome data for 1,000 European cases (see 

Appendix: Ancestry Estimation) and 5,000 matched controls (see Propensity matching) in 

SAIGE. Step 0 was performed using SAIGE version 2.0.1 with the default 2,000 randomly 

selected markers and relatedness cutoff of 0.125. Step 1 was performed with SAIGE 3.0.1 using 

age, sex, deprivation, smoking, batch and the first 10 genetic principal components as 

covariates. Default minor allele count (MAC) categories of 1,2,3,4,5,6-10,11-20 and >20 were 

used for variance ratios and the minimum minor allele frequency was 0.01. Step 2 was 

performed with SAIGE 3.0.1 (Figure 22). Different versions are due to the introduction of 

SAIGE-GENE (3.0.1) for step 2 gene-based tests and a relevant update to step 1 allowing for 

generation of the sparse sigma matrix and categorical allele frequency tests. Single-variant 

results were filtered to MAC > 20 for subsequent analyses besides gene-based tests.  

SAIGE-GENE 3.0.1 was used for gene-based analysis using the same data and output of steps 

0 and 1 as the single variant association tests. The minimum MAC for this stage was 0.5 

(essentially no lower cutoff – this may remove some imputed variants with very low certainty) 

and a maximum minor allele frequency of 0.05. These limits were chosen as the gene-based 

test is designed for rare variants. SAIGE-GENE performs SKAT, burden and SKAT-O tests for 

each gene defined by a group file listing all genes to be tested and the variants belonging to 

each gene. Genes were defined by Ensembl gene ID (ENSG number) using the National Center 

for Biotechnology Information (NCBI) human genome release 38 version p14 (GRCh38) 

boundaries. 
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Figure 22. SAIGE configuration used for final GWAS.  

 

 

I generated the group file by annotating all variants output by step 2 of the single variant 

association tests using Ensembl Variant Effect predictor (VEP).  As a single variant may affect 

multiple genes, variants may appear multiple times in the group file associated with different 

genes. Only protein-coding genes were considered in this analysis as the data is whole exome 

and focuses on protein-coding regions. However, VEP annotation includes many non-coding 

genes. These were removed by filtering for gene type ‘protein coding’ using the NCBI38 gene 

feature file*. Any synonymous, upstream, or downstream variants introduced by VEP 

annotation (possible because a missense variant affecting one gene may be upstream or 

downstream of another) were removed. 

Annotation of variants  

Variants were annotated with their reference SNP IDs (rsIDs), affected genes, consequence and 

predicted impact using VEP. Non-coding genes, synonymous, upstream, and downstream 

 

* Downloaded from 

ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz 

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz
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variants were removed in the same manner as generation of the group file. Repetition of 

removal of synonymous variants using two different variant effect predictors (VEP and SnpEff) 

ensures no synonymous variants are retained.  

Gene Set Enrichment Analysis 

I performed gene set enrichment analysis with g:Profiler133 using the results of the single 

variant analysis. Variants were filtered to MAC > 20 and p-value < 0.05. Genes containing at 

least one qualifying variant were ordered by the p-value of their most significant SNP. A total 

of 2,373 genes contained at least one significant SNP, with the majority (81%) containing only 

1 significant SNP.  The p-value ranked list was supplied as an ordered query to g:Profiler using 

the GO molecular functions, biological process, and cellular compartment databases. I used 

the package gProfiler2 version 0.2.3133 in R 4.1.3198 to access the g:Profiler API. The version 

released on 13-02-2024 (reference genomes: Ensembl 111, Ensembl Genomes 57. GO release: 

2024-01-17‡) was used. 

I also performed gene-set analysis on the gene-based test results for comparison. For this 

analysis, g:Profiler was supplied with of all genes with p-value <0.05, ordered by p-value. While 

the single-variant results consider all variants with MAC>20, the gene-based results only 

aggregate rare variants within genes. Genes with only one or two significant variants may not 

themselves be significant and single variants scattered across multiple genes belonging to the 

same pathway will not be detected. Therefore this approach may not reflect the actual 

enrichment of variants affecting certain pathways. For this reason, this result is presented as 

secondary to the main result of gene-set enrichment analysis performed on the variant-level 

results. 

 

‡ See https://github.com/geneontology/go-announcements/issues/665 for details 

https://github.com/geneontology/go-announcements/issues/665
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In order to reduce the number of enriched GO terms and identify driver terms, I performed a 

term-reduction process similar to the highlighting algorithm provided by g:Profiler: 

1. For all enriched terms, traverse the GO graph upwards until there are no more 

significant parent terms. 

2. Where a term has two or more significant parents, the most significant is followed. 

3. The top level of the hierarchy is noted.  

4. For all terms sharing the same top parent, the most significant child term is retained.  

This approach identifies the most significant term within unbroken ascending chains within 

the GO hierarchy. In contrast, the highlighting algorithm recursively searches subgraphs for 

the most significant term, eliminating its child and ancestor terms and re-running the query 

without any of the genes belonging to previously identified significant terms between each 

search. Highlighting cannot be performed for ordered queries due to the query being 

resubmitted.   

FinnGen comparison data 

FinnGen data release 9 summary statistics were downloaded from 

r9.finngen.fi/pheno/H8_CHOLEASTOMA. Genotyping was performed using a GRCH37-aligned 

Thermo Fisher axiom genotype array, including ~500,000 core GWAS markers and an 

additional ~200,000 markers enriched in the Finnish population or of special clinical interest196.  

GWAS was performed using REGENIE on a total of 1,447 cholesteatoma cases and 376,139 

controls. Cases were selected using ICD10, IC9 and ICD8 codes. Controls were selected by 

excluding any ICD code indicating middle ear or mastoid disease, similarly to the procedure 

for UKBB.  

https://r9.finngen.fi/pheno/H8_CHOLEASTOMA
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To remove imputed variants, I downloaded probe set information from FinnGen and filtered 

the summary statistics to only include variants that had been directly measured. Although 

variants were already annotated with their nearest gene, I re-annotated the results using VEP 

for consistency with my analysis of UKBB data. This included assigning variant consequences, 

which allowed for the removal of variants considered synonymous, upstream, or downstream. 

I also filtered to MAC>20 for consistency and removed any entries associated with non-

protein-coding genes in the same manner as for UKBB data. Gene set enrichment analysis was 

also applied in the same manner by filtering for genes containing at least one variant with p-

value < 0.05 and ordering them by the p-value of their most significant SNP. 

Comparison GWAS of microarray results 

The primary analysis was of whole exome variants for inclusion of rare variants but genotyping 

array data were also available from UK BioBank, providing a means of internal validation for 

GWAS results. Quality control for this data was carried out by Affymetrix and UKBB prior to 

release as outlined in Bycroft et al. (2018)190; hence the only filtering I performed was to remove 

synonymous variants. I used the same setting for SAIGE as in the whole exome analysis to 

perform single-variant association tests. I did not perform gene-based burden tests for this 

data due to a) the presence of intergenic variants and b) the lower frequency of rare variants. 

Reannotation was performed using VEP in the same manner as FinnGen results. The results of 

this analysis are to support the whole exome results and comparison to FinnGen data, which 

used a similar genotyping array. 

4.2.4 Post-hoc power calculation for sensitivity and ideal sample 

size 

The sample size for this study was limited by the number of cases present in UKBB (see 

Identification of cholesteatoma cases for case definitions). The number of cases (1,000) is small 

for a GWAS of complex a disease, so I performed post-hoc power calculation and sensitivity 

analyses, to determine the minimum genetic effect, number of cases, and overall sample size 
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necessary for achieving statistical significance at different risk allele frequencies. I used the 

Genetic Association Study (GAS) power calculator§230 to calculate power and sensitivity. 

Sensitivity 

I used GAS to determine the minimum genetic relative risk (GRR) which a truly significant 

variant would need to be detected at the traditional genome-wide significance level of 5x10-8 

with 80% power at minor allele frequencies of 0.005, 0.01, 0.05, 0.2, 0.3, 0.4 and 0.5. Sensitivity 

was also calculated for four hypothetical study designs (2,000, 5,000 and 10,000 cases, all 1:5 

case-control ratio). 

Power 

I also tested three allele frequencies (0.001, 0.01, 0.2) with a range of GRRs to calculate power 

under the current study design and to determine the minimum sample size to give 80% power. 

For all tests, disease prevalence was set to 0.02 (reflecting the prevalence in UKBB as a whole) 

and significance level was set to 5x10-8. Case-control ratio was set to 1:5 for all tests.  

Genotype relative risk to odds ratio conversion 

GRR is a risk ratio, which is the proportion of individuals with a given exposure who experience 

the outcome divided by the proportion of unexposed individuals who experience the 

outcome231. This ratio gives how many times more likely a person in the exposed group is to 

have the outcome. Because GRR is a risk ratio whereas the result of logistic regression is a log 

odds ratio, an estimate of the GRR for each variant must be calculated for comparison to GAS 

output. The simple formula for GRR is: 

𝐺𝑅𝑅 =
𝑃(𝑐𝑎𝑠𝑒|𝐷𝐷)

𝑃(𝑐𝑎𝑠𝑒|𝐷𝑑)
=

𝑃(𝑐𝑎𝑠𝑒|𝐷𝑑)

𝑃(𝑐𝑎𝑠𝑒|𝑑𝑑)
 

from Skol et al (2006)232 

 

§ Available at https://csg.sph.umich.edu/abecasis/gas_power_calculator/index.html 

1 
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where D is the effect allele and d the alternative allele. This is equal to the ratio of the 

probability of being in the case group when two effect alleles are present (𝑃(𝑐𝑎𝑠𝑒|𝐷𝐷)) versus 

the probability of the being in the case group when only one effect allele is present 

(𝑃(𝑐𝑎𝑠𝑒|𝐷𝑑)). This is equivalent to the ratio of disease risk for the Dd genotype compared to 

the dd genotype. In terms of allele counts, this is calculated as follows: 

𝐺𝑅𝑅 =
𝑁𝐶𝑎𝑠𝑒𝐷𝑁𝑇𝑜𝑡𝑎𝑙𝑑

𝑁𝐶𝑎𝑠𝑒𝑑𝑁𝑇𝑜𝑡𝑎𝑙𝐷
 

where 𝑁𝐶𝑎𝑠𝑒𝐷 and 𝑁𝐶𝑎𝑠𝑒𝑑 are the number of D or d alleles present amongst all cases at a 

given site (that is 2 x homozygotes + 1 x heterozygotes), and 𝑁𝑇𝑜𝑡𝑎𝑙𝐷 and 𝑁𝑇𝑜𝑡𝑎𝑙𝑑 are the 

alleles counts amongst the entire population (both case and control). When the GRR of a 

variant is calculated from raw allele counts, there will be no adjustment for covariates or 

population structure. An estimate of risk can also be calculated from the odds ratio according 

to Zhang & Yu (1998)233: 

𝑅𝑅 =
𝑂𝑅

[(1 − 𝑃0) + (𝑃0  ×  𝑂𝑅)]
 

Where 𝑃0 is the outcome prevalence amongst the unexposed group. To estimate risk ratio for 

each variant with MAC > 20 and p-value < 0.05, I use the following formula: 

𝑅𝑅 =
𝑒𝑥𝑝(𝛽)

[(1 −
𝑃(𝑐𝑎𝑠𝑒|𝑑𝑑)

𝑠 ) + (
𝑃(𝑐𝑎𝑠𝑒|𝑑𝑑)

𝑠 × exp(𝛽))]
 

Where 𝛽 is the odds ratio and 𝑃(𝑐𝑎𝑠𝑒|𝑑𝑑) is the proportion of dd genotypes who have disease. 

𝑠 is the factor by which cases are over-sampled. With an estimated prevalence of 0.02 amongst 

UKBB and a case/control ratio of 1/5, the value of s is 8.3. Cases are oversampled by a factor 

of 8.3, so this correction is applied to reflect prevalence amongst dd individuals in the 

population as a whole.  

I use equation 4 to calculate relative risk for each variant for comparison to the threshold risks 

calculated with GAS, using the absolute beta to ensure all risk ratios are in the positive 

direction. 

2 

3 

4 
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4.3 Results 

This GWAS used UK BioBank whole exome data from 1,000 cholesteatoma cases and 5,000 

matched controls to perform variant-level and gene-level association tests. I then used the 

single variant results to perform gene set enrichment analysis to identify disrupted pathways 

and processes in cholesteatoma. Comparison data from FinnGen was used to identify enriched 

pathways common to both data sets. Additional validation of single variant and pathway 

results was performed using UKBB microarray data.  

I also compared UKBB DeepVariant VCFs to variants identified by the pipeline used in our 

previous Genetics of Cholesteatoma (GoC) study, supporting the use of VCFs rather than re-

processing raw data. Results of filtering and quality control for genetic data are also provided 

in this section. 

4.3.1 Filtering and quality control 

Comparison of callers by number of variants per person 

To determine whether the UKBB OQFE pipeline with DeepVariant generated comparable call 

sets to the GoC pipeline using freebayes and GATK, I compared a sample of 45 UKBB whole 

exome CRAM files re-processed with the  GoC pipeline to the DeepVariant VCFs. 

The number of unfiltered variants called by freebayes and DeepVariant was of similar 

magnitude, though freebayes called a mean of 212,877 variants per person compared to 

109,902 per person by DeepVariant (Table 18). GATK called far fewer variants per person 

(2,663). The GATK best practices pipeline applies several quality checks and filters to produce 

a smaller set of higher confidence variants and was configured to remove more variants during 

the calling process in the GoC pipeline. When equivalent filters were applied, the number of 

variants called by DeepVariant was less than freebayes, though again of similar magnitude 

(65,840 for DeepVariant vs 52,991 for freebayes; Table 18). The GATK callset was only reduced 

by 24%, possibly due to more stringent quality checks throughout the calling process. As an 

additional filtering step, the GoC pipeline considers only the overlap between GATK and 

freebayes.  
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Table 18. Mean variants per person in filtered and unfiltered data re-processed via the 

GoC pipeline compared to DeepVariant calls. 

Variants 

Unfiltered Filtered 

GATK freebayes DeepVariant GATK freebayes DeepVariant +hwe nonsyn 

All 2,663 212,877 109,902 2,024 52,991 65,840 

 

23,059 

 

7,445 

SNPs 2,520 187,430 92,687 1,897 48,750 60,666 21,979 7,078 

Indels 142 25,446 17,215 

 

128 4,242 5,173 1,081 367 

‘Unfiltered’ refers to VCFs with no depth or quality filters applied, i.e. they are the direct output 

of the variant caller. ‘Filtered’ refers to the number of variants present after all filters from the 

appropriate pipeline have been applied (Table 17). DeepVariant counts were generated with a 

prototype filtering pipeline which differs slightly from the final version detailed in Configuration 

of final pipeline. The same approach is used in the final pipeline with some modification to order 

of steps to account for issues caused by specific variant types during VCF merging. 

 

Comparison of callers by overlap of variants 

Most variants (99.3% of SNPs and 93.4% of indels) called by the GoC pipeline were present in 

the DeepVariant callset (Table 19). In the GoC pipeline, variants were annotated using VEP234 

and Slivar235 and filtered for frequency and impact. When this process was also applied to the 

DeepVariant callset, the discrepancy in variant numbers called increased. The number of SNPs 

and indels called by the GoC pipeline was reduced to a mean 344.75 and 14.5 per person 

respectively, while the DeepVariant SNPs and indels were reduced to 13,219 and 863 

respectively. Now 100% of SNPs called by the GoC pipeline were present in DeepVariant data, 

but only 82.8% of indels.  

  



139 

 

Table 19. Variant overlap from UKBB and GoC pipelines 

Filter Low filter Strict filter 

Variants SNPS INDELS SNPS INDELS 

Pipeline  GoC UKBB  GoC UKBB  GoC UKBB  GoC UKBB 

Total 19,233.75 67,010.5 335.25 7778 344.75 13,219 14.5 863 

Exclusive 130.25 47,996 22 7464.75 0 12,873.25 2.5 850 

Overlap 19103,5 313.25 344.75 12 

Percent 99.3% 28.7% 93.4% 4% 100% 2.7% 82.8% 1.3% 

Low filter: FILTER = PASS and QUAL = 5 applied to UKBB variants, as performed in GoC pipeline 

for freebayes variants. No post-annotation filtering was applied. GoC pipeline variants are those 

generated by the overlap of freebayes and GATK best practices pipeline. 

Strict filter: FILTER = PASS, QUAL=30, DP= 7 for SNPs, DP = 10 for indels (as in 225) for UKBB 

variants. GoC pipeline variants are those generated by the overlap of freebayes and GATK best 

practices pipeline. Both are annotated with VEP and Slivar and filtered with the following criteria: 

impactful = TRUE, gnomad_af <0.01, variant.filter = PASS, topmed.af <0.01, variant.ALT[0]!=* 

 

Support for use of DeepVariant VCFs 

Because DeepVariant called almost all variants called by the GoC pipeline, and because 

DeepVariant has been shown to equal or outperform GATK in sensitivity and specificity 

studies223,224 I use the DeepVariant VCFs for genetic analyses rather than reprocessing the data 

at considerable computing cost. Previous GoC studies benefited from stricter filtering 

requirements and greater reduction of candidate variants due to the small number of cases. 

The larger number of variants in this study is acceptable due to the larger number of cases 

and matched controls.  

Overall reduction in variants due to population-level filters 

Population-level filters for Hardy-Weinberg violation, missingness and 90pc_10dp (90% 

coverage at 10 depth) resulted in a reduction of ~20% from all chromosomes (Table 20). Most 

chromosomes do not lose variants to the missingness filter, probably because the 90pc_10dp 

filter removes them first. The reduction in variants was largely consistent across the genome, 

except for the X and Y chromosomes. 
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Table 20.  Chromosome-level reduction in variants after application of population level 

filters 

 

Starting variants 

Variants removed 

Ending variants % reduction 90pc_10dp hwe Missingness 

1 2,687,650 562,184 14,391 0 2,111,075 21.45 

2 1,986,436 461,460 8,534 0 1,516,442 23.66 

3 1,572,602 356,178 6,659 0 1,209,765 23.07 

4 1,088,878 279,378 4,489 0 805,011 26.07 

5 1,200,708 280,428 5,342 0 914,938 23.80 

6 1,343,324 304,012 6,011 0 1,033,301 23.08 

7 1,290,944 283,616 6,354 0 1,000,974 22.46 

8 983,410 222,187 4,231 0 756,992 23.02 

9 1,160,259 243,966 5,501 0 910,792 21.50 

10 1,105,522 256,916 5,228 0 843,378 23.71 

11 1,589,220 297,235 7,541 0 1,284,444 19.18 

12 1,435,996 324,345 6,389 0 1,105,262 23.03 

13 485,358 118,804 1,874 0 364,680 24.86 

14 840,031 177,011 4,264 0 658,756 21.58 

15 936,831 208,664 4,616 0 723,551 22.77 

16 1,300,364 228,077 6,111 0 1,066,176 18.01 

17 1,565,159 280,248 7,236 0 1,277,675 18.37 

18 433,149 103,014 1,837 0 328,298 24.21 

19 1,791,970 262,420 10,646 0 1,518,904 15.24 

20 686,915 128,316 3,052 0 555,547 19.12 

21 289,748 62,683 1,451 0 225,614 22.13 

22 613,853 110,413 500,209 0 500,209 18.51 

Y 11,316 0 0 117 11,199 1.03 

X 652,035 0 4,282 9,795 642,240 1.50 

Post-filtering quality check 

After all population and individual level filters are applied, the total number of variants in the 

population is reduced from 27,051,678 to 796,596. Most retained variants were rare, with 90% 

having MAF < 0.05 (Figure 23). Sample missingness was good with the highest missingness 

for any sample being 0.0015. However, a small number of variants (N=16) had missingness > 

0.1 after case/control selection and filtering. This probably arose due to application of the 

missingness filter on a population level and subsequent sub-sampling; due to the large 

number of variants, it is likely for a small number to acquire higher missingness by chance.  

These variants were removed in subsequent analyses. 
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Figure 23. Quality control statistics for 796,596 variants.  

Sample missingness is calculated for all variants within a sample. Genotype missingness is 

calculated for each site across all samples. F-score is a measure of homozygosity calculated for 

each sample. minor allele frequency MAF shows minor allele frequencies of all variants amongst 

the population. Genotype missingness frequency and minor allele frequency include non-white 

participants as per-site information was calculated before their removal (n samples = 6,435). 

Sample missingness and F-scores are for the final 6,000 cases and controls. 

 

Heterozygosity was good with no samples showing F scores < 3 times the standard deviation 

below the mean (< -0.0501). F score indicates deviation from expected levels of homozygosity, 

where low homozygosity/high heterozygosity can indicate contamination. 15 samples showed 

F scores greater than 3 times above standard deviation from the population mean (>0.0534). 

Two samples (one case and one control) had much higher F scores than the rest of the 

population (0.2087 and 0.2838).  
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Comparison of GWAS methods shows good agreement between SAIGE and REGENEIE 

when MAC > 20 

During early prototyping, I trialled REGENIE as well as SAIGE and compared the results. When 

no minor allele count (MAC) cutoff was applied, p-values generated by SAIGE and REGENIE-

SPA were generally well-correlated (R2=0.85) but two large blocks of SNPs were in 

disagreement (Figure 24a). This effect was eliminated when a MAC cutoff of 20 was applied, 

and R2 increased slightly to 0.90 (Figure 24b). The MAC>20 cutoff was suggested by the 

authors of SAIGE and supported by results from this prototype, so MAC<20 variants were 

excluded from single-variant test results and downstream analyses, except for gene-based 

tests which are designed to accommodate rare variants. 
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Figure 24. p-value comparison for SAIGE and REGENIE using spa. a) when no MAC cutoff 

is applied, blocks of SNPs are in disagreement. B) filtering to MAC>20 eliminates this 

effect. 
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4.3.2 Genome-wide association test results 

No single variant associations of genome-wide significance 

Single variant analysis was performed for non-synonymous, coding SNPs in whole exome data. 

Manhattan plotting (Figure 25) shows no obvious signals or significant loci, and the most 

significant variants are scattered across the genome with no islands of linkage disequilibrium 

surrounding them. The traditional GWAS Bonferroni correction puts genome-wide significance 

at 5x10-8 88. However, whole exome studies may require different thresholds, which are not 

widely agreed upon. Fadista et al.(2016)236 suggest 3x10-7 for whole exome studies where 

variants of MAF>=0.05. No variants met this lower threshold in our analysis. The most 

significant variant was a missense variant in AMOTL2 (rsID rs139298691, p = 5.71x10-5). Genes 

containing top-scoring variants (Table 21) were associated with various biological processes, 

including actin filament-based motility (AMOTL2), RNA binding (RBM10), receptor activity 

(OR10A2, CMKLR1, PTH2R) and calcium channel activity (CACNA2D1, CACNA1G, ANK2) (Table 

22).  
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Figure 25. Manhattan plot of single variant results from whole exome data.  

Top 20 variants are labelled with gene symbol. A cluster of 5 OR10A2 variants is labelled once.  

 

Table 21. 20 most significant variants after single variant association tests in UKBB 

whole exome data 

SNP Gene Consequence rsID p-value BETA 

chr3:134365885:C:T AMOTL2 Missense rs139298691 5.71x10-5 1.776042 

chr11:6869882:A:G OR10A2 Missense rs3930075 0.000111 0.194158 

chrX:47186678:C:T RBM10 3 prime UTR - 0.000117 -1.66116 

chr1:227816138:C:T PRSS38 Missense rs79840641 0.000123 -0.26967 

chr11:6870527:A:C OR10A2 Missense rs7926083 0.000126 0.192911 

chr4:113353363:G:A ANK2 Missense rs138842207 0.000127 2.273013 

chr11:6870374:A:G OR10A2 Missense rs10839631 0.000128 0.192705 

chr11:6869715:A:G OR10A2 5 prime UTR rs4758142 0.000133 0.19224 

chr11:6869708:C:T OR10A2 5 prime UTR rs4758141 0.000136 0.191889 

chr17:35764321:G:C C17orf50 Missense rs145033564 0.000139 0.56336 

chr1:150308116:G:A MRPS21 Missense rs4845 0.000209 0.304099 

chr7:82443499:G:C CACNA2D1 5 prime UTR rs200428602 0.000219 1.674788 

chr12:108292772:A:G CMKLR1 Missense rs192034694 0.000221 1.027504 

chr17:19742625:A:C ALDH3A1 Missense rs887241 0.000232 -0.18776 

chr1:216421964:C:T USH2A Missense rs10779261 0.000241 0.198952 

chr2:208443511:G:T PTH2R Missense rs144641723 0.000267 1.724242 

chr4:67963391:C:T TMPRSS11A start lost rs977728 0.000304 0.238687 

chr17:50572702:G:A CACNA1G Missense rs201875227 0.000324 2.157344 

chr22:42644618:G:A CYB5R3 Intron rs578120569 0.000368 1.854875 

chr9:129895300:C:G 

 

FNBP1 

 

Intron rs17518373 

 

0.000385283 0.642503959 
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Table 22. Functions of genes containing top 20 significant variants. Brief descriptions of 

genes functions are taken from UniProt. 

Gene Description Description from UniProt  

(UniProt accession ID) 

AMOTL2 angiomotin like 2  Regulates translocation of phosphorylated SRC to cell matrix adhesion 

sites. Required for proper architecture of actin filaments, cell shape and 

area regulation. Inhibits Wnt/beta-catenin signaling pathway. May also be 

involved in endothelial migration, proliferation and polarity. (Q9Y2J4) 

OR10A2 olfactory receptor 

family 10 subfamily A 

member 2  

Odorant receptor. (Q9H208) 

RBM10 RNA binding motif 

protein 10  

May be involved in post-transcriptional regulation by mRNA splicing. 

(P98175) 

PRSS38 serine protease 38  No UniProt description (A1L453) 

ANK2 ankyrin 2  Essential for stabilisation of ion transporters and ion channels in various 

cell types, particularly cardiomyocytes and striated muscle cells. Bids 

dynactin to promote long-range motility of cells. Part of the 

ANK2/RABGAP1L complex which recycles fibronectin receptor. (Q01484) 

C17orf50 chromosome 17 open 

reading frame 50  

No UniProt description (Q8WW18) 

MRPS21 mitochondrial 

ribosomal protein S21  

No UniProt description (P82921) 

CACNA2D1 calcium voltage-gated 

channel auxiliary 

subunit alpha2delta 1  

Subunit of voltage-dependent calcium channel, regulates calcium current 

density (P54289). 

CMKLR1 chemerin chemokine-

like receptor 1  

Receptor for chemoattractant adipokine chemerin and E1 molecule. 

Induces secondary messenger pathways such as calcium mobilisation and 

MAPK activation. (Q99788) 

ALDH3A1 aldehyde 

dehydrogenase 3 

family member A1  

Major role in detoxification of alcohol-derived acetaldehyde (P30838) 

USH2A usherin  Part of USH2 complex involved in hearing (in growing stereocilia of 

cochlear hair cells) and vision (maintaining the periciliary membrane 

complex in photoreceptors). (O75445) 

PTH2R parathyroid hormone 

2 receptor  

Receptor for parathyroid hormone. May have a significant role in 

pancreatic function. May also function as neurotransmitter receptor. 

(P49190) 

TMPRSS11A transmembrane serine 

protease 11A 

Probable serine proteinase whose overexpression inhibits cell growth and 

induces G1 cell cycle arrest (Q6ZMR5) 

CACNA1G calcium voltage-gated 

channel subunit 

alpha1 G  

Subunit of voltage-dependent calcium channel mediating entry of calcium 

ions into excitable cells. Involved in a variety of calcium-dependent 

processes such as muscle contraction and hormone or neurotransmitter 

release. (O43497) 

CYB5R3 cytochrome b5 

reductase 3 

Catalyses reduction of cytochrome b5 using NADH electron donor. 

(P00387) 

FNBP1 

 

formin binding protein 

1  

May act as a link between RND2 signalling and actin cytoskeleton 

regulation. May coordinate membrane tubulation with actin cytoskeleton 

reorganisation during late stage clathrin-mediated endocytosis. (Q96RU3) 

https://www.uniprot.org/uniprotkb/Q9Y2J4/entry
https://www.uniprot.org/uniprotkb/Q9H208/entry
https://www.uniprot.org/uniprotkb/P98175/entry
https://www.uniprot.org/uniprotkb/A1L453/entry
https://www.uniprot.org/uniprotkb/Q01484/entry
https://www.uniprot.org/uniprotkb/Q8WW18/entry
https://www.uniprot.org/uniprotkb/P82921/entry
https://www.uniprot.org/uniprotkb/P54289/entry
https://www.uniprot.org/uniprotkb/Q99788/entry
https://www.uniprot.org/uniprotkb/P30838/entry
https://www.uniprot.org/uniprotkb/O75445/entry
https://www.uniprot.org/uniprotkb/P49190/entry
https://www.uniprot.org/uniprotkb/Q6ZMR5/entry
https://www.uniprot.org/uniprotkb/O43497/entry
https://www.uniprot.org/uniprotkb/P00387/entry
https://www.uniprot.org/uniprotkb/Q96RU3/entry
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Microarray validation agrees with WES where variants are overlapping 

There was very little overlap between WES variants and microarray probes. With no MAC filters, 

the total number of variants shared was 53,199 of 796,595 variants present in the WES data 

and 572,358 in the microarray data. For MAC>20, the overlap was 32,011 variants. Agreement 

between p-values for MAC>20 variants is very good (Pearson correlation coefficient = 0.96, R2 

= 0.92), with some scatter due to the inclusion of a random element within the SAIGE process 

and possibly some measurement/sequencing errors causing differing allele counts (Figure 

26).  

Figure 26. UKBBWES vs UKBB microarray p-values for overlapping variants, sorted by 

ascending WES p-value.  

Showing 32,011 variants present in both data sets with minor allele count>20. There is good 

agreement between methods with stronger scatter for high p-value (lower significance) variants. 

 

Microarray does not identify any additional significant loci and no rare variants are included 

which make up the most significant results in WES. 



148 

 

Gene level association tests find no genes reaching genome-wide significance 

Given there are approximately 20,000 protein-coding genes, genome-wide significance is set 

at 2.5x10-5 when Bonferonni correction is applied. The most significant gene was ABCC8 (ATP 

binding cassette subfamily C member 8) which had a significance close to the threshold 

(p=6.94x10-5). No other genes met genome-wide significance. The most significant genes have 

diverse functions, including intracellular transport (PLEKHA8, VPS36, BAIAP3, NXT1), 

cytoskeletal organisation (FER, TTLL12, FLNC), cell cycle (ESX1, TTLL12, PIMREG), transcription 

regulation (ESX1, VPS36, TTLL12, CREB5, TFEB), and neural development or function (BAIAP3, 

ADCYAP1, BCHE) (Table 23). 

Table 23. Gene-level GWAS results for UK BioBank whole exome data, 20 most 

significant genes. A brief description of protein function taken from UniProt is given alongside 

the UniProt accession number. Gene-level tests do not include a beta score. 

Symbol Name Description of function from UniProt (accession) P-value 

ABCC8 ATP binding cassette 

subfamily C member 8 

Beta-cell ATP-sensitive potassium channel subunit 

involved in insulin release (Q09428) 
6.94x10-5 

PLEKHA8 pleckstrin homology 

domain containing A8 

Cargo transport protein involved in trans-Golgi network 

transport, also required for cilium formation (Q96JA3)  
2.60x10-4 

RGSL1 regulator of G protein 

signalling like 1 

(A5PLK6) 
2.61x10-4 

ESX1 ESX homeobox 1 Involved in cell cycle progression and spermatogenesis, 

arrests cell cycle at early M phase. Cleaved form 

ESXR1-N acts as transcriptional repressor and ESXR1-C 

inhibits cyclin turnover. (Q8N693) 

8.95x10-4 

ANXA10 annexin A10 (Q9UJ72) 9.04x10-4 

ERLIN2 ER lipid raft associated 2 Forms complex with ERLIN2 to mediate endoplasmic 

reticulum-associated degradation of inositol 1,4,5-

triphosphate receptors. Involved in cholesterol 

homeostasis. (O94905) 

0.0013 

ETFBKMT electron transfer 

flavoprotein subunit beta 

lysine methyltransferase 

May regulate the function of EFTB in electron transfer 

from Acyl-CoA dehydrogenases to the main respiratory 

chain (Q8IXQ9) 

0.0013 

NXT1 nuclear transport factor 2 

like export factor 1 

Nuclear export protein; stimulates export of NES-

containing proteins and involved in transport of U1 

snRNA, tRNA and mRNA (Q9UKK6) 

0.0014 

PIMREG PICALM interacting mitotic 

regulator 

May be involved in controlling metaphase-anaphase 

transition during mitosis (Q9BSJ6) 
0.0014 

FER FER tyrosine kinase Has a role in regulation of actin cytoskeleton and cell 

migration downstream of cell surface receptors for 

growth factors, including EGFR, PDGFRA and PDGRFB. 

Also involved in insulin receptor signalling, mast cell 

degranulation and leucocyte recruitment. (P16591) 

0.0015 

https://www.uniprot.org/uniprotkb/Q09428/entry
https://www.uniprot.org/uniprotkb/Q96JA3/entry
https://www.uniprot.org/uniprotkb/A5PLK6/entry
https://www.uniprot.org/uniprotkb/Q8N693/entry
https://www.uniprot.org/uniprotkb/Q9UJ72/entry
https://www.uniprot.org/uniprotkb/O94905/entry
https://www.uniprot.org/uniprotkb/Q8IXQ9/entry
https://www.uniprot.org/uniprotkb/Q9UKK6/entry
https://www.uniprot.org/uniprotkb/Q9BSJ6/entry
https://www.uniprot.org/uniprotkb/P16591/entry
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Symbol Name Description of function from UniProt (accession) P-value 

HERC5 HECT and RLD domain 

containing E3 ubiquitin 

protein ligase 5 

Positively regulates innate antiviral response, also 

involved in bacterial clearance. (Q9UII4) 0.0015 

BCHE butyrylcholinesterase Broad specificity esterase involved in acetylcholine 

inactivation. Can degrade neurotoxic organophosphate 

esters. (P06276) 

0.0016 

BAIAP3 BAI1 associated protein 3 Involved in endosome to Golgi retrograde transport. 

May mediate endosome fusion to trans-Golgi network 

via interactions with SNARE. Involved in regulation of 

neurotransmitter and hormone secretion (O94812) 

0.0017 

VPS36 vacuolar protein sorting 36 

homolog 

Component of the ESCRT-II complex, involved in 

sorting of endosomal cargo proteins into multivesicular 

body formation. May be involved in transcription 

regulation. (Q86VN1) 

0.0018 

TTLL12 tubulin tyrosine ligase like 

12 

Negatively regulates post-transcriptional modifications 

of tubulin. Has a role in mitosis and maintaining 

chromosome number stability. (Q14166) 

0.0019 

CREB5 cAMP responsive element 

binding protein 5 

Activates transcription (Q02930) 
0.0021 

TFEB transcription factor EB Transcription factor, master regulator of lysosome 

biogenesis/exocytosis, autophagy, lipid catabolism and 

immune response. (P19484) 

0.0021 

ADCYAP1 adenylate cyclase 

activating polypeptide 1 

Stimulates adenylate cyclase in pituitary cells. 

Promotes neuron projection development. Induces 

long-lasting increases in intracellular calcium in 

chromaffin cells. Involved in glucose homeostasis by 

inducing insulin secretion by beta cells (P18509) 

0.0022 

PDGFB platelet derived growth 

factor subunit B 

Growth factor required for normal embryonic 

development, cell proliferation, migration, survival and 

chemotaxis. Potent mitogen for mesenchymal cells. 

Important in wound healing. (P01127) 

0.0022 

FLNC filamin C Muscle specific filamin, important for sarcomere 

assembly and organisation. (Q14315) 
0.0024 

 

Thirteen of thirty-six previously reported variants18,65,66,68,124 were detected in this GWAS. The 

variants were all rare with minor allele counts between 1 and 164 and generally had very small 

betas (median= -0.253) and non-significant p-values (median=0.4486). Only one DNAH7 

variant, rs115474479, had a p-value < 0.05. This variant had a beta of 3.1 with two 

heterozygotes in the case group and one heterozygote in the control group. 

  

https://www.uniprot.org/uniprotkb/Q9UII4/entry
https://www.uniprot.org/uniprotkb/P06276/entry
https://www.uniprot.org/uniprotkb/O94812/entry
https://www.uniprot.org/uniprotkb/Q86VN1/entry
https://www.uniprot.org/uniprotkb/Q14166/entry
https://www.uniprot.org/uniprotkb/Q02930/entry
https://www.uniprot.org/uniprotkb/P19484/entry
https://www.uniprot.org/uniprotkb/P18509/entry
https://www.uniprot.org/uniprotkb/P01127/entry
https://www.uniprot.org/uniprotkb/Q14315/entry
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Table 24. Comparison of genes and variants detected in previous studies with same 

genes in this GWAS. For each gene, the gene-based p-value (SKAT-O) is shown.  

The specific variants reported in each study are given where available. If the variant appeared 

within UKBB WES data, its beta and p-value are given. 

  Genes Variants 

Study Gene p-value Variant BETA p-value 

Lee et al. (2022)68 

RTN4 0.890    
RAB5A 0.463  

  

CRYBG1 0.712  

  

RGS22 0.025 rs993516236   

APBB1IP 0.036 rs750180116  
 

HEPHL1 0.808 rs756695159  
 

BHLHE41 0.839 rs371168594  
 

ARID3A 0.662 rs911982273  
 

C5AR1 0.546 rs145736934  
 

SPTLC3 0.620 rs749277943  
 

CPT1B 0.417 rs745528078  
 

FAM227A. 0.511   
 

Shaoul et al. (1999)65 APC 0.640  

  

Prinsley et al. 

(2019)124  

EGFL8 0.661 rs141826798 -0.253 0.440 

BTNL9 1.000 rs367635312 -0.055 0.796 

Cardenas et al. 

(2023)126 

NEB  
0.267 

 

rs201548700 -1.187 0.666 

rs114089598 -0.255 0.465 

rs764064217  
 

DNAH7 0.487 
rs201273652  

 

rs115474479 3.100 0.037 

DENND2C 0.350 
rs189506550  

 

rs61753528 0.224 0.469 

NBEAL1 
0.119 

0.119 

rs199629983 -0.510 0.552 

rs180771101 0.487 0.238 

PRRC2C 0.909 
rs148813704 -0.391 0.338 

rs138220849 -1.202 0.322 

SHC2 0.196 
rs201010410 1.928 0.280 

rs768095487  
 

James et al. (2010)66  GJB2 0.138 

rs80338939 -0.377 0.170 

rs111033196  
 

rs111033222   
 

rs72474224   
 

rs76838169   
 

rs1555046611   
 

rs35887622  -0.101 0.636 

rs2274084  
 

 

  

https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/?chr=13&from=20763710&to=20763710&gts=rs111033222&mk=20763710:20763710|rs111033222
https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/?chr=13&from=20763612&to=20763612&gts=rs72474224&mk=20763612:20763612|rs72474224
https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/?chr=13&from=20763113&to=20763113&gts=rs76838169&mk=20763113:20763113|rs76838169
https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/?chr=11&from=66282061&to=66282062&gts=rs1555046611&mk=66282061:66282062|rs1555046611
https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/?chr=13&from=20763620&to=20763620&gts=rs35887622&mk=20763620:20763620|rs35887622
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4.3.3 Gene set enrichment analysis of UK BioBank data 

Enriched processes in single variant analysis include adhesion, calcium transport, 

developmental processes and ciliary action via dyneins 

150 Gene Ontology (GO) terms were enriched amongst genes with at least one p<0.05 variant 

from UKBB single variant association tests, including 58 biological processes, 67 cellular 

compartments and 25 molecular functions (SI Table 4). The large number of enriched 

processes probably reflects both the large number of genes containing significant SNPs (2377) 

and the nested nature of GO terms. These terms were collapsed to the most significant parent 

term in each unbroken chain of significant terms (Table 25). Significantly enriched pathways 

included: 

• Cell adhesion (cell periphery, homophilic cell adhesion via plasma membrane adhesion 

molecules, cell junction, cell junction assembly, p=1.3x10-21 - 0.0134). 

• Cardiac action potential (membrane depolarization during cardiac muscle cell action 

potential, voltage-gated calcium channel activity involved in cardiac muscle cell action 

potential, cell-cell signalling involved in cardiac conduction, regulation of heart rate by 

cardiac conduction, cardiac muscle cell action potential involved in contraction, cardiac 

muscle cell contraction, p=7.38x10-3  - 0.0325). 

• Calcium binding and transport (calcium ion binding, calmodulin binding, calcium 

channel complex, calcium ion import across plasma membrane, calcium ion 

transmembrane import into cytosol p=4.83x10-15 - 0.0385). 

• Cytoskeleton organization (cytoskeleton, cytoskeleton organization, actin filament-

based process, cytoskeletal protein binding, cluster of actin-based cell projections, cell 

projection organization, p=1.34x10-8 - 0.0101) 

• Ciliary activity (minus-end-directed microtubule motor activity, dynein light chain 

binding, dynein intermediate chain binding, USH2 complex, stereocilia coupling link, 

dynein complex, p=5.57x10-7 - 0.043).  
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Table 25. Significantly enriched GO terms in UK BioBank whole exome single variant 

results.  

Showing the most significant term in each unbroken chain of significant terms ascending the 

hierarchy. Results are sorted by GO database: Biological processes (GO:BP), molecular functions 

(GO:MF) and cellular compartments (GO:CC) 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GO term Term ID p Size N Genes 

G
O

:B
P 

homophilic cell adhesion via plasma 

membrane adhesion molecules 

GO:0007156 2.87x10-21 168 61 

multicellular organismal process GO:0032501 6.77x10-9 7669 958 

cytoskeleton organization GO:0007010 1.10x10-7 1512 252 

anatomical structure development GO:0048856 6.12x10-7 5899 511 

actin filament-based process GO:0030029 1.16x10-5 805 139 

membrane depolarization during cardiac 

muscle cell action potential 

GO:0086012 7.38x10-4 21 3 

cellular glucuronidation GO:0052695 0.0019 21 11 

sensory perception of mechanical stimulus GO:0050954 0.0021 188 36 

detection of mechanical stimulus GO:0050982 0.0024 55 17 

cell-cell signaling involved in cardiac 

conduction 

GO:0086019 0.0027 32 3 

positive regulation of cellular component 

organization 

GO:0051130 0.0053 1116 162 

regulation of heart rate by cardiac 

conduction 

GO:0086091 0.0054 40 3 

supramolecular fiber organization GO:0097435 0.0061 842 136 

cell projection organization GO:0030030 0.0101 1613 239 

cardiac muscle cell action potential involved 

in contraction 

GO:0086002 0.0108 50 3 

cell junction assembly GO:0034329 0.0134 449 39 

calcium ion import across plasma membrane GO:0098703 0.0155 46 3 

transport GO:0006810 0.0167 4350 574 

cellular response to stimulus GO:0051716 0.0181 7394 911 

trans-synaptic signaling by BDNF GO:0099191 0.0308 5 5 

signaling GO:0023052 0.0322 6447 781 

cardiac muscle cell contraction GO:0086003 0.0325 72 3 

calcium ion transmembrane import into 

cytosol 

GO:0097553 0.0385 197 4 

retina homeostasis GO:0001895 0.0406 57 17 

striated muscle cell development GO:0055002 0.0497 73 16 

G
O

:C
C

 

cell periphery GO:0071944 1.30x10-21 6228 873 

cytoplasm GO:0005737 5.55x10-13 12345 1508 

plasma membrane bounded cell projection GO:0120025 6.34x10-12 2277 303 

membrane GO:0016020 4.71x10-11 9864 1229 

endomembrane system GO:0012505 3.09x10-9 4777 613 

cytoskeleton GO:0005856 1.34x10-8 2430 360 

intracellular vesicle GO:0097708 8.05x10-7 2518 347 

cell junction GO:0030054 1.24x10-4 2230 311 

bounding membrane of organelle GO:0098588 1.48x10-4 2203 296 
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                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GO term Term ID p Size N Genes 

cluster of actin-based cell projections GO:0098862 5.85x10-4 168 39 

cell leading edge GO:0031252 7.68x10-4 427 66 

USH2 complex GO:1990696 0.0027 4 4 

apical part of cell GO:0045177 0.0047 473 78 

I band GO:0031674 0.0048 149 29 

stereocilia coupling link GO:0002139 0.0066 8 5 

supramolecular polymer GO:0099081 0.0069 1062 137 

calcium channel complex GO:0034704 0.0144 84 3 

mismatch repair complex GO:0032300 0.0263 8 3 

midbody GO:0030496 0.0379 206 37 

dynein complex GO:0030286 0.0430 54 16 

extracellular region GO:0005576 0.0454 4213 428 

chiasma GO:0005712 0.0465 2 2 

 

early endosome membrane GO:0031901 0.0465 192 23 

G
O

:M
F 

calcium ion binding GO:0005509 4.83x10-15 726 139 

minus-end-directed microtubule motor 

activity 

GO:0008569 5.57x10-7 17 13 

cytoskeletal protein binding GO:0008092 1.04x10-4 1002 145 

dynein intermediate chain binding GO:0045505 1.05x10-4 37 17 

calmodulin binding GO:0005516 1.14x10-4 206 48 

adenyl ribonucleotide binding GO:0032559 3.53x10-4 1560 232 

voltage-gated calcium channel activity 

involved in cardiac muscle cell action 

potential 

GO:0086007 0.0024 5 2 

dynein light intermediate chain binding GO:0051959 0.0025 28 13 

protein-containing complex binding GO:0044877 0.0032 1752 245 

glucuronosyltransferase activity GO:0015020 0.0056 34 13 

GTPase regulator activity GO:0030695 0.0125 492 75 

structural constituent of muscle GO:0008307 0.0263 42 9 

Enriched pathways overlap with functions identified in previous GoC WES study 

Our previous GoC study126 used whole exome sequencing data from 21 individuals from 10 

affected families to identify potentially causative genes through two methods: family overlap 

analysis and gene burden/TRAPD analysis. In family overlap analysis, common variants shared 

by cholesteatoma cases within families were identified and the set of genes carrying variants 

which appeared in 2 or more families was analysed used g:Profiler. For burden analysis, 

TRAPD237 software was used to compare variant frequencies to frequencies recorded in public 

databases to identify variants which were significantly more common amongst affected 

families and the results subject to g:Profiler analysis. 17 significantly enriched GO terms were 

identified, of which 10 were also enriched in the full UKBB WES g:Profiler result (Table 26). 
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Processes with three main themes were enriched in both studies: calcium ion binding; dynein 

motor activity; and Gtpase activity.  

Table 26. Comparison of gene set enrichment analysis results of GoC WES family study 

and UK BioBank.  

Showing enriched GO terms only with columns showing p-value for family and burden tests from 

the GoC WES study as well as UKBB WES. Terms that were enriched in both the GoC WS study 

and UKBB WES single variant data are bolded. 

Terms Term ID Source 

Family 

overlap 

p-value 

Burden 

analysis p-

value 

UKBB WES p-

value 

Cation binding GO:0043169 GO:MF 0.00442 5.48x10-4 4.73x10-10 

Calcium ion binding GO:0005509 GO:MF 0.00988 0.00383 4.83x10-15 

Extracellular matrix structural 

constituent GO:0005201 GO:MF 
0.00608 3.00x10-4  

Ion binding GO:0043167 GO:MF 3.17x10-4 2.54x10-5 4.12x10-11 

Gtpase regulator activity GO:0030695 GO:MF 3.48x10-4  0.012512 

Nucleoside-triphosphatase 

regulator activity GO:0060589 GO:MF 
7.24x10-4  0.012512 

Gtpase activator activity GO:0005096 GO:MF 0.00608   

Guanyl-nucleotide exchange 

factor activity GO:0005085 GO:MF 
0.00581  0.012617 

Motor activity GO:0003774 GO:MF  1.05x10-5  

Cytoskeletal protein binding GO:0008092 GO:MF  0.00118 0.000104 

Cargo receptor activity GO:0038024 GO:MF  0.00764  

Metal ion binding GO:0046872 GO:MF  6.58x10-4 4.38x10-10 

Atp-dependent microtubule 

motor activity GO:1990939 GO:MF 
 4.19x10-5  

Microtubule motor activity GO:0003777 GO:MF  2.00x10-4 0.00856 

Dynein intermediate chain 

binding GO:0045505 GO:MF 
 2.36x10-4 0.000105 

Dynein light intermediate chain 

binding GO:0051959 GO:MF 
 1.08x10-4 0.00253 

Enriched pathways from gene-based tests do not have much direct overlap with single 

variant gene set enrichment 

Enrichment analysis of the gene-based tests generated a different, smaller set of enriched 

pathways- to the single variant-level enrichment tests (Table 27). There is some overlap in 

functions: the cell junction was an enriched compartment in both analyses and cell junction 

disassembly was enriched in gene-based test results. Different terms related to cell signalling 

were also enriched in both.  
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Table 27. Significantly enriched GO terms in UK BioBank whole gene-level variant 

results.  

Results are divided into GO Biological Processes, GO Cellular Compartment and GO Molecular 

Function. Due to the small number of results, they have not been collapsed to the most significant 

term in each unbroken chain.  
 

Pathway GO ID p-value 

Term 

size 

N 

Genes 

GO:BP vacuolar transport GO:0007034 0.0119 171 18 

regulation of smooth muscle cell differentiation GO:0051150 0.0181 36 8 

nerve growth factor signaling pathway GO:0038180 0.0302 13 2 

regulation of cAMP-dependent protein kinase 

activity 

GO:2000479 0.0319 12 4 

ISG15-protein conjugation GO:0032020 0.0483 6 2 

GO:CC cytoplasm GO:0005737 2.12x10-

06 

12345 531 

late endosome GO:0005770 0.00406 314 9 

membrane GO:0016020 0.00729 9864 402 

cell junction GO:0030054 0.0224 2230 84 

endoplasmic reticulum lumen GO:0005788 0.0479 313 23 

GO:MF protein binding GO:0005515 0.00101 14838 602 

ISG15 transferase activity GO:0042296 0.00647 4 2 

beta-1 adrenergic receptor binding GO:0031697 0.0332 3 2 

 

4.3.4 Enriched processes in FinnGen microarray data overlap with 

UK BioBank whole exome 

Amongst FinnGen single variants with p-value < 0.05, 959 terms were enriched (606 GO:BP, 

209 GO:CC, 144 GO:MF). This larger number is attributed to the greater number of genes 

containing significant SNPs due to the larger number of cases. 112 terms were enriched in 

both FinnGen and UKBB single variant data, meaning 75% of terms enriched in UKBB WES 

were also enriched in FinnGen, but only 12% of FinnGen terms were enriched in UKBB WES. 

Terms that were enriched in UKBB but not FinnGen were mostly cytoskeletal, ciliary or dynein 

related as well as terms related to cardiac regulation. 

FinnGen enriched pathways included terms related to cell-cell adhesion, with homophilic cell 

adhesion via plasma membrane adhesion molecules being the most significantly enriched 

process in both FinnGen and UKBB. Calcium ion binding and transport were also enriched 

(under terms localisation, small molecule binding, homeostatic process transporter activity and 
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cell adhesion in Table 28; p-value for calcium ion binding = 1.03x10-24; p-value  for calcium ion 

transport = 1.62x10-7). Many FinnGen enriched terms were related to neuronal development 

and function, although these are largely collapsed into developmental process and cell 

projection terms (Table 28). Cytoskeletal and ciliary function were also implicated in this data, 

including terms such as actin-filament-based process, cytoskeletal motor activity, GTPase 

regulator activity, and minus-end-directed microtubule motor activity. Unlike UKBB WES results, 

dyneins were not directly implicated.  
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Table 28.  Enriched terms in FinnGen data collapsed to most significant term within an 

unbroken ascending chain of enriched terms.  

P-value is corrected using g:SCS, a multiple testing correction method packaged with g:Profiler 

which accounts for the hierarchical nature of GO terms.  

 

source Pathway GO ID p Size N 

genes 

G
O

:B
P 

anatomical structure development GO:0048856 1.53E-61 5899 2224 

multicellular organismal process GO:0032501 2.53E-51 7669 2733 

cell adhesion GO:0007155 2.81E-47 1512 648 

plasma membrane bounded cell projection 

organization 

GO:0120036 8.43E-37 1570 610 

Transport GO:0006810 6.16E-35 4350 1611 

regulation of cell communication GO:0010646 9.25E-34 3443 1323 

regulation of signaling GO:0023051 9.41x10-34 3437 1321 

cellular response to stimulus GO:0051716 2.78x10-31 7394 2550 

cell junction organization GO:0034330 2.66x10-28 759 312 

cell motility GO:0048870 4.21x10-21 1709 562 

actin filament-based process GO:0030029 7.13x10-20 805 364 

cytoskeleton organization GO:0007010 1.34x10-19 1512 567 

locomotion GO:0040011 3.54x10-12 1234 363 

phosphate-containing compound metabolic 

process 

GO:0006796 1.74x10-11 2571 921 

growth GO:0040007 7.34x10-11 939 296 

supramolecular fiber organization GO:0097435 2.28x10-10 842 343 

protein modification process GO:0036211 8.12x10-10 3031 1046 

homeostatic process GO:0042592 6.53x10-9 1712 614 

extracellular structure organization GO:0043062 1.24x10-8 325 152 

external encapsulating structure organization GO:0045229 1.66x10-8 326 152 

organonitrogen compound metabolic process GO:1901564 2.28x10-8 5986 1946 

lipid metabolic process GO:0006629 2.70x10-8 1388 514 

cell population proliferation GO:0008283 2.62x10-6 2006 703 

microtubule-based process GO:0007017 4.68x10-6 953 336 

cognition GO:0050890 9.35x10-5 322 114 

membrane organization GO:0061024 0.000177 815 236 

cell recognition GO:0008037 0.000316 156 55 

cell death GO:0008219 0.000588 1988 513 

cellular glucuronidation GO:0052695 0.000982 21 15 

negative chemotaxis GO:0050919 0.0011 47 30 

ovulation cycle GO:0042698 0.002504 72 24 

sensory perception of sound GO:0007605 0.002986 165 50 

reproduction GO:0000003 0.00358 1552 483 

AV node cell action potential GO:0086016 0.004124 10 7 

immune response-activating signaling 

pathway 

GO:0002757 0.004789 465 182 
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source Pathway GO ID p Size N 

genes 

regulation of primary metabolic process GO:0080090 0.013761 5591 1723 

protein localization to postsynaptic 

specialization membrane 

GO:0099633 0.025999 28 11 

cell cycle process GO:0022402 0.032969 1276 418 

cellular component maintenance GO:0043954 0.038083 73 30 

visual perception GO:0007601 0.038612 219 84 

regulation of nitrogen compound metabolic 

process 

GO:0051171 0.039341 5440 1672 

Fc receptor mediated stimulatory signaling 

pathway 

GO:0002431 0.045374 32 21 

G
O

:C
C

 

cytoplasm GO:0005737 5.85x10-87 12345 4083 

cell periphery GO:0071944 1.05x10-78 6228 2314 

membrane GO:0016020 1.27x10-69 9864 3341 

cell junction GO:0030054 4.31x10-67 2230 895 

cell projection GO:0042995 3.16x10-66 2389 1041 

endomembrane system GO:0012505 5.78x10-43 4777 1713 

cytoskeleton GO:0005856 8.43x10-34 2430 928 

somatodendritic compartment GO:0036477 1.44x10-25 848 330 

vesicle GO:0031982 1.12x10-24 4004 1395 

cell leading edge GO:0031252 2.52x10-16 427 204 

apical part of cell GO:0045177 3.03x10-16 473 211 

monoatomic ion channel complex GO:0034702 5.68x10-13 346 165 

cell surface GO:0009986 7.65x10-13 903 339 

cell body GO:0044297 2.57x10-12 565 199 

nucleoplasm GO:0005654 1.00x10-11 4220 1345 

organelle subcompartment GO:0031984 1.79x10-10 1521 543 

supramolecular polymer GO:0099081 4.80x10-9 1062 365 

extracellular region GO:0005576 6.46x10-9 4213 1338 

site of polarized growth GO:0030427 2.03x10-8 174 74 

basal part of cell GO:0045178 3.52x10-8 300 129 

cluster of actin-based cell projections GO:0098862 1.89x10-7 168 79 

receptor complex GO:0043235 0.000175 523 141 

neurotransmitter receptor complex GO:0098878 0.000859 46 25 

protein complex involved in cell adhesion GO:0098636 0.000909 59 31 

guanyl-nucleotide exchange factor complex GO:0032045 0.003333 24 9 

collagen trimer GO:0005581 0.005474 91 44 

DNA repair complex GO:1990391 0.010103 22 15 

trans-Golgi network GO:0005802 0.038189 264 83 

G
O

:M
F 

ion binding GO:0043167 6.06x10-33 6146 2247 

protein binding GO:0005515 6.43x10-30 14838 4826 

ATP binding GO:0005524 5.61x10-24 1500 632 

carbohydrate derivative binding GO:0097367 1.25x10-20 2304 911 

transporter activity GO:0005215 8.36x10-15 1239 513 
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source Pathway GO ID p Size N 

genes 

GTPase regulator activity GO:0030695 1.09x10-11 492 225 

phosphotransferase activity, alcohol group as 

acceptor 

GO:0016773 1.00x10-9 697 292 

ATP-dependent activity GO:0140657 5.84x10-9 580 252 

protein-containing complex binding GO:0044877 1.49x10-7 1752 648 

cytoskeletal motor activity GO:0003774 4.70x10-6 115 59 

lipid binding GO:0008289 7.07x10-6 841 321 

glutamate receptor activity GO:0008066 7.30x10-6 27 19 

protein-macromolecule adaptor activity GO:0030674 0.000159 947 330 

extracellular matrix structural constituent GO:0005201 0.000189 167 81 

transmembrane receptor protein tyrosine 

phosphatase activity 

GO:0005001 0.000431 17 12 

minus-end-directed microtubule motor 

activity 

GO:0008569 0.00057 17 14 

metallopeptidase activity GO:0008237 0.005226 187 84 

phosphatidyl phospholipase B activity GO:0102545 0.007775 11 7 

syntaxin-1 binding GO:0017075 0.014796 19 12 

sulfur compound binding GO:1901681 0.018948 268 53 

structural constituent of presynaptic active 

zone 

GO:0098882 0.022389 5 5 

structural constituent of muscle GO:0008307 0.032047 42 22 

postsynaptic neurotransmitter receptor 

activity 

GO:0098960 0.033892 72 31 

 

Results are supported by UK BioBank microarray analysis 

The gene set enrichment analysis performed on UKBB microarray single variant results (SI 

Table 5) agrees with the FinnGen microarray results and includes more terms related to neural 

development and synapse function compared to UKBBWES. As in the FinnGen microarray 

results, ciliary terms were not enriched, supporting the absence of these terms being due to 

array-based approaches missing rare DNAH/DNAI variants.  

In total, 93 terms were enriched across all data sets (Figure 27). Of the 150 enriched terms in 

the whole exome data, 112 were also enriched in the UKBB microarray data (75%). Meanwhile, 

700 terms were enriched in the UKBB microarray data: only 16% of these terms were also 

enriched in the whole exome data. The UKBB microarray data shared more enriched terms 

with the FinnGen data (557 terms; 78% of UKBB microarray terms), suggesting that the 
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similarity of technologies made the results more comparable. Note that slight differences in 

the precise processes enriched can lead to very similar processes appearing across sectors in 

Figure 27:  the term cardiac muscle contraction is enriched in UKBB WES but not microarray, 

though the very similar term cardiac muscle cell contraction is enriched in both. For this reason, 

I give general descriptive terms of the types of pathways and processes enriched in different 

sectors of the diagram.  

Figure 27. Venn diagram showing number of overlapping terms in UKBB WES, UKBB 

Microarray and FinnGen. A qualitative description of common terms is given for each sector. 

 

 

Pathways common to all data sets included various developmental processes, cell signalling 

and communication processes, cell-cell adhesion, cytoskeletal processes, and calcium 

transport and binding. Some individual terms were also enriched in all three sets, such as 

minus-end-directed microtubule motor activity and the extracellular matrix cellular 

compartment. The terms unique to UKBB whole exome were largely dynein-related (while 
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some cardiac muscle terms were unique to UKBB whole exome, other similar terms were 

enriched in other data sets).  

4.3.5 Sensitivity analysis suggests study was underpowered for rare 

variants 

The size of this study was limited by the number of cases present in UKBB. I performed post-

hoc sensitivity analysis to determine power for different variant frequencies and effect sizes. I 

also determined the minimum effect size that would be detected under the current study 

design of 1,000 cases and 5,000 controls at 80% power. 

Sensitivity analysis suggests that the power to detect rare variants was very low (Table 29), 

although common variants with GRR > 1.5 should be detectable with >90% sensitivity. The 

best improvements in predicted power with study size occur for rare variants, with 

considerable improvements in sensitivity going from 2,000 to 5,000 and 5,000 to 10,000 cases. 

However, there is little improvement in sensitivity for common variants when going from 5,000 

to 10,000.  

Table 29. Power under current study design and minimum sample size required for 80% 

power for different minor allele frequencies and genotype relative risks  

 

Allele frequency 

Genotype  

relative risk* 

Power with 

1,000 cases 

Sample size 

for >0.8 power 

Ultra rare 

variants 

0.001 2 0 >100,000 

0.001 5 0.002 10,000 

0.001 7 0.013 5,000 

Rare variants  0.01 1.5 0 >100,000 

0.01 2 0.008 7,000 

0.01 5 0.990 700 

Common 

variants 

0.25 1.2 0.011 10,000 

0.25 1.5 0.904 900 

0.25 2 1 300 

The threshold detectable genetic risk ratio (GRR) was consistently higher than the GRRs 

calculated from single variant association test results (Figure 28), which was expected given 

the lack of significant results. We can only confidently state that no effects exist that are above 

this threshold: otherwise, the effect sizes cannot be distinguished from noise. If the effect sizes 

observed in this study were accurate, a sample size of 5,000 would be required to detect them 

statistically (Table 30).  
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Figure 28. Comparison of genetic risk ratio calculated from odds ratio for different minor 

allele frequencies, versus threshold GRR.  

The plot shows the genotype relative risks (GRRs) obtained from single variant whole exome 

analysis (scatter) plotted against the threshold detectable GRRs for 4 different sample sizes (line). 

Both the threshold GRR and calculated GRRs increase rapidly at low MAF. Rare variants have 

smaller effective sample sizes, making them more susceptible to larger variations in effect size 

estimate due to chance, leading to an increase in both the measured GRR and the threshold for 

significance. 

 

 

Table 30. Threshold detectable GRR for different minor allele frequencies at 80% power, 

with N cases and case:control ratio of 1:5  

Minor Allele frequency N cases 

1000 2000 5000 10,000 

0.005 5.9 3.74 2.42 1.9 

0.01 3.84 2.66 1.9 1.59 

0.05 1.93 1.6 1.35 1.25 

0.1 1.67 1.42 1.25 1.18 

0.2 1.5 1.3 1.18 1.11 

0.3 1.44 1.26 1.16 1.11 

0.4 1.42 1.24 1.15 1.1 

0.5 1.43 1.24 1.14 1.1 
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Overall, power analysis suggests this study is underpowered to detect very rare variants unless 

their effect sizes are very large, though this study should be capable of detecting common 

variants with GRR > 1.4.  

4.4 Discussion 

In this chapter, I performed single-variant and gene-level genome-wide association tests with 

UK BioBank whole exome (UKBB WES) data. I also performed pathway level analysis using 

g:Profiler to detect enriched processes amongst the genes carrying variants with p-value < 

0.05. I used FinnGen summary statistics for comparison and identified common pathways 

enriched across both biobanks. I also performed single-variant and gene set enrichment tests 

using UKBB microarray data for better comparison with FinnGen data. 

In this analysis, no single variant or gene met genome-wide significance. A lack of obvious 

signals in the Manhattan plot of results and no significant genes suggest that no individual 

loci have strong enough effects to identify with this cohort of 1,000 cholesteatoma cases. The 

top scoring genes and variants are associated with a variety of functions, making functional 

interpretation difficult. Power calculations support the need for a larger number of cases as 

this study’s power to detect rare variant associations was low. The small sample size means 

rare variants or those with small effect sizes cannot be detected, resulting in high risk of type 

2 error. 

However, gene set enrichment analysis of WES single variant results reveals several 

significantly enriched processes. Within UKBB WES data, this includes terms related to cell 

adhesion, cytoskeleton organisation, calcium binding, cardiac muscle regulation and 

developmental processes. Most of these were also enriched in UKBB microarray and FinnGen 

microarray data. The microarray results were also enriched for neural development terms, 

whereas dynein binding was specific to UKBB WES.  

The previous GoC whole exome study126 of twenty-one individuals from ten affected families 

identified an overlapping set of processes enriched for deleterious variants including calcium 

binding, extracellular matrix organisation and ciliary motility. The latter is particularly 

interesting as UKBB WES data and the GoC implicate axonemal dyneins specifically. 

Meanwhile, calcium binding was enriched in the UKBB whole exome single variant results, 
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previous GoC WES paper, and in FinnGen results; calcium binding is also an enriched process 

amongst dysregulated genes compared to skin from several expression studies (see Semi-

systematic review of global gene expression studies).  Agreement between studies regarding 

enriched pathways despite a lack of individually significant genes or variants suggests a 

genetic effect on cholesteatoma risk exists but it may be polygenic or heterogeneous. 

Our previous WES paper identified enriched deleterious variants associated with ECM 

degradation, which is consistent with gene expression studies showing dysregulated ECM 

proteins and upregulated proteases36,77,78,125. This study did not identify genes associated with 

ECM degradation in UKBB WES data. Microarray data from UKBB and FinnGen did show 

enrichment of some relevant terms such as extracellular structure organization, extracellular 

matrix structural constituent and enrichment of the extracellular region. However, the number 

of enriched terms related to these was small compared to other functions and was not 

repeated in the UKBB WES data.  

Cholesteatoma tissue also shows aberrant expression of immune genes and inflammation has 

been suggested to play a role in establishment and pathology21. Neither this nor our previous 

whole exome study identified enriched deleterious variants in immune pathways. Some 

immune-related terms were enriched in FinnGen, but the number was very small; no terms 

were present in the UKBB data. 

The much larger number of enriched terms in FinnGen compared to UKBB (959 vs 150) may 

be due to the larger sample size for FinnGen (n = 1,447 compared to 1000) leading to a greater 

number of p-value < 0.05 variants due to increased power. While most terms enriched in the 

UKBB data were also present in the FinnGen data, FinnGen contained many additional enriched 

processes with the large variability making them difficult to interpret.  

4.4.1 Enriched processes and associated genes 

Cell adhesion, actin organisation and migration 

Genes related to cell-cell adhesion and various terms associated with cytoskeletal organisation 

were enriched across both biobanks. Cell adhesion is mediated by membrane-bound adhesion 

molecules which form adhesion complexes including adherens junctions, gap junctions, 

desmosomes, hemidesmosomes175. Adhesion may be between cells or with the ECM and is 
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required for physical anchoring of tissues and cell communication. In cancer, loss of cell-cell 

adhesion can result in increased adhesion of cells to the ECM, promoting invasiveness175. On 

the intracellular side of adhesion complexes, the proteins interact with the cytoskeleton so can 

also mediate cytoskeletal processes175. The most significant single variant in UKBB WES data 

was in AMOTL2 (p=5.71x10-5, beta=1.78), which has roles in actin filament architecture and 

coupling to cell junctions238. The AMOTL2 protein forms a complex with the adhesion molecule 

E-Cadherin and regulates actin filament growth and organisation to maintain cellular 

geometry in epithelial tissue238. 

The cytoskeleton is primarily composed of microtubules, actin filaments, and intermediate 

filaments and is involved in processes related to cell shape, structure, and motility239. In this 

analysis, actin organisation terms were enriched specifically. A major role of actin is in 

amoeboid cell motility: this involves formation of focal adhesion points, changes in cell shape, 

and cell contraction239. Actin can form dynamic protruding structures such as lamellipodia240 

and produce contractile forces through interaction with myosin to propel cells across a 

substrate241. These contractile forces also result in morphological changes and ECM 

remodelling necessary for cell movement242. Taken together, enriched genetic variants 

affecting adhesion molecules and cytoskeleton organisation may indicate alterations in 

amoeboid cell motility.  

The actin cytoskeleton is also involved in exocytosis, endocytosis, and intracellular transport239. 

Interestingly, the second-best gene, PLEKH8 (p=2.60x10-4), encodes a cargo transport protein 

involved in transport from the Golgi complex, synthesis of glycosphingolipids, and in primary 

cilium formation243. Other top-scoring genes according to gene-based tests were VPS36, 

BAIAP3, which are also involved in cargo sorting and transport244,245. 

Enrichment of developmental and neurodevelopmental terms 

The enriched GO term system development may also be relevant to cholesteatoma via 

cranial/ear morphology promoting susceptibility to repeated infection and debris collection 

through poor ventilation. Conditions affecting cranial morphology are associated with higher 

rates of cholesteatoma, including Turner syndrome, Down syndrome, and cleft palate18. In fact, 

one study64 showed that the siblings of children with orofacial clefts were also at modestly 

increased risk of cholesteatoma, despite not having a cleft themselves, which the authors 



166 

 

suggest may be due to accumulation of subclinical muscular defects. Alternatively. The system 

development term may be relevant to cholesteatoma development via the behaviour of the 

cholesteatoma tissue itself, for example its increased cell turnover. However, enriched 

developmental processes in GSEA should be interpreted with caution as these are broad 

categories containing many genes, and many different processes can form part of tissue 

development. This does not necessarily mean they will have any influence on either the 

morphology of the head/ear or the behaviour of cholesteatoma tissue. 

Interestingly, both systems development and nervous system development were enriched terms 

in the primary analysis of single-variant results, while the analysis of gene-level association 

tests identified significant enrichment of beta-1 adrenergic receptor binding and nerve growth 

factor signalling pathways. Furthermore, several FinnGen enriched pathways were related to 

neural development or synaptic function and nervous system development was enriched in 

both FinnGen and UKBB. Findings of enriched genes in neurodevelopment and neural 

signalling pathways is reflected by findings in the epidemiology chapter of this thesis, where 

odds of epilepsy were increased amongst cholesteatoma cases in both UKBB and FinnGen. 

This suggests that increased rates of epilepsy in these cohorts may not only be as a side effect 

of invasive disease but may have a genetic basis. Possibly, epilepsy and cholesteatoma may 

be linked via developmental defects which may not cause any obvious syndromic appearance 

but subtly raise risk of both. However, it is also possible that the raised epilepsy rate in these 

groups is coincidental and may or may not be the cause of enriched terms related to neural 

development. Epilepsy with cholesteatoma is very rarely reported and has only occasionally 

been described as a complication of cholesteatoma204,205, making the nature of any possible 

association obscure.  

A role for calcium ions 

A role for calcium ions is supported by this study, our previous WES study, and gene expression 

studies reviewed in Semi-systematic review of global gene expression studies but interpretation 

of this finding is difficult due to the diverse functions of calcium in the body. In the UKBB WES 

data, enrichment of calcium binding was driven by variants in voltage-gated calcium channel 

subunits CACNA1G, CACNA2D1 and ion channel stabiliser ANK2 (p=0.00013-0.00032; 

beta=1.67-2.27). These were amongst the most significant single variants and also drove 
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enrichment of terms related to cardiac regulation. Voltage-gated calcium channels are 

involved in calcium homeostasis, signalling in neurons and calcium influx in cardiac muscle 

contraction. Defects in members of the CACNA family are also associated with cardiac and 

neural problems, including epilepsy246. 

Most calcium in the human body is found in skeleton, where it forms an integral part of the 

bone matrix247, which may be relevant to the bone loss seen in cholesteatoma. As a signalling 

molecule, calcium has important roles in immune function248 and wound-healing249. While 

immune function and inflammation are implicated in cholesteatoma pathology, there is little 

evidence of changes to immune genes being directly responsible from this or our previous 

whole exome study. Cholesteatoma also resembles wound-healing tissue with ECM 

degradation, increased migration and proliferation, and angiogenesis2,35. Impaired calcium 

signalling could be involved in provoking a chronic wound-like response. Interestingly, calcium 

localisation is also thought to be important in polycystic kidney disease, where low intracellular 

calcium leads to upregulated cAMP, driving increased fluid secretion and activation of the 

MAPK pathway250. Thus, while there are many ways in which calcium might be involved in 

cholesteatoma pathology, it is difficult to determine which are relevant. 

 

4.4.2 Ciliary dysfunction is implicated in cholesteatoma 

This study identified enrichment of several GO terms related to cytoskeletal motility, 

specifically via action of axonemal dynein. Terms including cell projection, cytoskeleton 

organisation, dynein complex and dynein intermediate chain binding were enriched, mostly 

due to rare DNAH and DNAI variants (SI Table 6). Our previous study also identified 

deleterious DNAH variants in multiple affected families.  

Dynein is a protein motor which moves towards the minus end of cytoskeletal microtubules. 

These are divided into cytoplasmic dyneins (DYN-) which transport vesicles along the 

microtubules, and axonemal dyneins (DNA-) which drive ciliary motility251. Enrichment of 

DNAH and DNAI variants, along with enrichment of protein products localised to the cell 

projection, suggests that ciliary function is important in cholesteatoma. Cilia have sensory and 

developmental roles, as well as physically clearing debris from the airways and middle ear. 
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Ciliopathies can present in a variety of ways but often result in developmental defects, with 

the retinal, renal and cerebral disease most common252. Polycystic kidney disease is an example 

of a ciliopathy resulting in the development of multiple fluid-filled renal cysts and is thought 

to arise through defects in calcium sensing via ion channels on the primary cilia250. Primary 

ciliary dyskinesia results in increased susceptibility to recurrent respiratory, ear, nose and sinus 

disease, and some forms are also associated with organ laterality defects or total situs 

inversus253. These arise through immobility of the primary cilia resulting in poor clearance of 

the ears, sinuses, and airways, as well as developmental anomalies through improper 

distribution of signalling molecules during embryogenesis254. DNAH1 and DNAH5 mutations 

are causal for some forms of primary ciliary dyskinesia17, highlighting the importance of 

dyneins in resistance to infection and developmental processes. Another interesting link is 

between PCD, bronchiectasis and sinus infection, which were increased amongst 

cholesteatoma cases in this cohort. PCD with bronchiectasis, sinus infection and chronic 

sinusitis is known as Kartagener’s syndrome17. The presence of these diseases in the case 

group further supports ciliary impairment (although probably not PCD itself as this is very 

rare).  

Another interesting feature common to both this analysis and our previous family study is the 

involvement of the USH2 complex. In the family study, the USH2 complex was enriched in 

variants detected in family overlap analysis due to variants in USH2A, ADGRV1, and WHRN: 

one family carried an ADGRV1 variant and an USH2A variant, while another family carried 2 

WHRN variants. A variant in USH2A, rs10779261, was one of the most significant single variants 

in my whole exome analysis, leading to enrichment of the USH2 complex in my gene set 

analysis. The USH2 complex is involved in stereocilia development; stereocilia are non-motile 

cell projections required for mechanotransduction in the middle ear255. Defects in the USH2 

complex result in Usher syndrome, a condition involving retinitis pigmentosa and deafness. In 

the eye, USH2A is associated with the photoreceptor ciliary complex, which consists of an outer 

and inner segment linked by connecting cilia. USH2A is localised to the inner segment, within 

a recesses surrounding the connecting cilia72. While stereocilia are actin-based, non-motile 

structures, the photoreceptor connecting cilium is an axonemal cilium256. Though primarily 

expressed in the retina and cochlea, usherin is present in the basement membranes of many 

tissues257. However, it has no established roles in the middle ear.  
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Ciliary function was also implicated in the FinnGen enriched terms, but dynein-binding was 

not implicated directly. The Finnish population is genetically distinct from other European 

populations due to recent bottlenecking258, so it is possible that different causal alleles vary in 

prevalence between these populations. However, this may also be due to the differences 

between microarray and exome data. While both data sets were processed to only consider 

non-imputed, non-synonymous variants in protein-coding regions, whole exome can capture 

rare variants whereas microarray methods can only capture variants represented by a given 

probe set. For example, 15 of 25 significant DNAH family variants in UKBB had allele 

frequencies less than 0.001 and only 6 of these variants were present in the FinnGen probe 

set. Generally, differences in the regions and variants measured by microarray compared to 

whole exome may affect which processes appear enriched by altering the overall distribution 

of p-values between pathways. 

4.4.3 Other functions of top-scoring genes and variants 

The most significant gene from gene-based SKAT-O tests was ABCC8 (p=6.94x10-5), which 

encodes a sulfonylurea receptor involved in insulin transport hence is primarily known for its 

role in diabetes259, so there is no obvious reason for an association with cholesteatoma. 

PDGFB was also amongst the top-scoring genes; this encodes platelet-derived growth factor 

subunit B, which may be relevant to cholesteatoma as one of the chemokines involved in the 

interaction between fibroblasts and keratinocytes promoting hyperproliferation20. 

4.4.4 Study limitations  

Limited sample size adversely affects sensitivity 

A major limitation of this study was its small size. The number of cases was constrained by the 

number present in UKBB, though efforts were made to identify all likely cases by expanding 

the case definition to include codes linked to cholesteatoma and its management. Sensitivity 

analysis suggests that this study was underpowered for detection of rare variants and variants 

with small effect sizes. Based on the effect sizes calculated in this study, power calculations 

indicated that 5,000 cases may be needed for any of the detected variants to achieve statistical 

significance. This presumes that a proportion of the variants have true effects which could not 

be detected due to underpowering and that the effect size estimates are accurate: however, 
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the effect size estimates have large confidence intervals due to the small sample size and 

effects may be detectable with <5,000 cases, whereas others may not be detectable with 

>5,000 cases.  

Notably, recent FinnGen releases (releases 10 and 11) have identified some significant variants 

and show loci with strong suggestive signals with only 1,548-1,710 cases. The Finnish 

population has low genetic diversity, high linkage disequilibrium, and is enriched for many 

variants at lower frequencies in the general European population, making them an ideal 

population for genetic studies258; a British population may require different sample sizes. 

Significant loci in subsequent FinnGen releases are described in Additional evidence from new 

FinnGen release. 

Accurate power analysis of GWAS is difficult as the power of a study is influenced by many 

factors, including disease prevalence, heritability, expected number of causal variants, and 

degree of polygenicity. As there are limited studies of cholesteatoma genetics and heritability, 

power calculation and estimation of ideal sample size is very difficult. Sensitivity analysis allows 

us to say that variants do not have a certain effect size or greater, but not whether there is or 

is not a true effect size smaller than the threshold genetic risk ratio (GRR). This study therefore 

suggests that there are no common variants with effects >1.4 (the threshold GRR for common 

variants). 

Gene set analysis limitations 

The gene-set enrichment analysis of single-variant results in this analysis did not overlap much 

with the gene-level tests. There are several possible reasons for this: the single variant results 

consider all variants with MAC>20 whereas the gene-level results only consider rare variants. 

The gene-level tests aggregate variants within a gene to determine its significance. If many 

genes within a pathway are individually affected by a small number of variants (such that no 

individual gene appear significant), this pathway is likely to appear enriched in the single-

variant data but not the gene-level data.  

There are some additional limitations associated with gene set analysis. Gene function 

databases are constantly updated with new information, so may change over time, affecting 

reproducibility. The cutoffs for inclusion of variants in gene set analysis may also affect the 
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results. For example, the FinnGen data contained many more p<0.05 SNPs than UKBB WES, 

resulting in more genes being supplied to g:Profiler. With enough p<0.05 SNPs, all genes 

would eventually be included. By supplying an ordered query, the ranking of genes is 

considered, so the test remains valid. However, different p-value cutoffs could affect results. 

GO terms are also biased towards well-studied genes and pathways. Broad terms containing 

many genes such as ‘tissue development’ should be interpreted with caution. This is discussed 

in more detail in Limitations in functional interpretation. 

4.5 Conclusion 

Genes bearing variants with p-values < 0.05 in UKBB WES data were enriched for biological 

pathways including cell adhesion and motility, specifically via cytoskeletal and ciliary 

involvement with a focus on the dynein family, and calcium binding. These processes agree 

with the known biology of cholesteatoma and are supported by data from FinnGen as well as 

previous genetic studies. This is evidence for a genetic effect which may be polygenic or 

heterogeneous. 

This study could not identify any variants or genes with genome-wide significance, nor any 

suggestive single variants although one gene, ABCC8, approached genome-wide significance. 

The highest-scoring genes and variants also were not detected in the previous GoC WES study 

nor other small genetic studies.  

Several genetic factors may increase cholesteatoma risk: ciliary impairment, perhaps affecting 

middle ear clearance leading to excessive build-up of debris, is also supported by enriched 

cytoskeletal and dynein processes in this study. Cell adhesion and motility were also 

implicated, which may be associated with cholesteatoma invasiveness. Morphology of the ear 

is known to contribute to disease risk, exemplified by increased risk amongst those with 

craniofacial developmental anomalies which may be supported by enriched variants affecting 

tissue development in this study.  

Immune genes and ECM degradation were not implicated in this study, suggesting that 

observed dysregulation in gene expression studies may be a later effect. An ear which does 

not properly drain may be more prone to infection without having an inadequate immune 

response, and inflammation may drive many subsequent changes to gene expression. Finally, 
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calcium-binding activity may be involved, supported by this and previous WES studies and 

gene expression analysis. Due to calcium’s many roles in the body, its relevance to 

cholesteatoma is unknown.  

Genetics may contribute to cholesteatoma risk through the above mechanisms, though the 

effect is probably not due to a small number of genes with large effects due to the failure of 

any two genetic studies to identify the overlapping candidate genes. However, variants in the 

DNAH family are of particular interest.  
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5 Polygenic risk scores and machine learning 

classification 

5.1 Background 

Owing to the significant enrichment of certain pathways and processes in single variant results 

despite lack of individually significant variants or genes, there is a possibility for a polygenic 

effect in cholesteatoma. This may be detectable if the combined effect of many variants with 

small effect sizes is large enough that it may be detected with 1,000 cases.  

A common and simple approach to aggregate effects of multiple variants is the polygenic risk 

score (PRS), which is a weighted sum of SNPs used to predict an elevated risk of disease 

compared to the general population260. Alternatively, machine learning (ML) classification 

approaches have the potential to capture complex genetics and are primarily used in multi-

omics contexts (where multiple types of data such as genetic and expression data are used)261; 

recent studies have also used deep learning to enhance disease prediction risk of PRS262,263. A 

popular algorithm in bioinformatics is the Random Forest (RF)123, which averages the output 

from a large number decision trees created from random re-samples of the data in order to 

predict an outcome, for example case or control status.  

In this chapter, I calculate PRS and use RF on variant-count data to investigate polygenic risk.  

While the primary aim of PRS and ML is to classify disease risk based on the variants present, 

these approaches can also be useful tools for understanding disease biology. For example, the 

number of variants included in a PRS may be informative about the degree of polygenicity. 

The genes considered important by RF may differ from those identified through GWAS and 

may reveal certain combinations of genes which are particularly powerful at predicting case 

status. Interrogation of RF models may also allow identification of genetic subtypes or 

clustering of participants, so can offer insight into heterogeneity. 

5.1.1 Polygenic risk score 

A polygenic risk score is a weighted sum of variants present in an individual where weights are 

the effect sizes of those variants drawn from a GWAS in a separate population118. At least two 

populations are required: the initial base population on which GWAS is performed and a target 
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population on which the PRS is developed, which must be of similar ancestry260. Because the 

effect size for an individual variant is its coefficient in a regression fit to the trait outcome, it 

reflects the difference in outcome when one, two or no copies are present (in the case of binary 

traits, this is the odds ratio). Therefore, by summing the effect sizes across the genome, the 

total gene-based risk can be calculated.  

A method to reduce the number of SNPs is also usually applied and the approach to shrinkage 

is the main aspect which differs between PRS methods. SNP shrinkage is required as the effect 

sizes of neighbouring SNPs are correlated according to linkage disequilibrium – if this is not 

corrected, disease risk will be exaggerated. SNP clumping is a common shrinkage method 

where the genome is split into clumps according to the degree of correlation between SNPs 

and the most significant SNP per clump is selected. The clump size may be set by manually 

choosing a threshold SNP-SNP correlation and different cutoffs for SNP significance may be 

applied118.  Also, a threshold p-value for variants is usually applied, such that the PRS only 

includes variants that meet a given threshold. Various p-value thresholds may be tested during 

PRS development. 

There are several tools for performing PRS scoring, such as PRSice264, PRSice-2265 and 

LDPred2266 and these generally only differ in the shrinkage method: PRSice uses the clumping 

and thresholding method, whereas LDPred2 directly models linkage disequilibrium and use 

this to control for correlation of SNPs. 

Properties and limitations of PRS 

PRS should be normally distributed amongst a population260. This property arises from the 

central limit theorem, which tells us that the summation of random effects results in a normal 

distribution267. If PRS are not normally distributed, this suggests confounding such as a 

difference between the base and target population. Cases should have a higher average PRS 

than controls, although the effect depends on which alleles are considered the effect allele. 

This is because the beta score used to weight the variants may be positive or negative 

depending on whether the effect allele was more or less common in cases than controls.  

Prediction performance may be assessed via the R2 of the model, which is the proportion of 

variability explained by the genetic risk according to the PRS calculated. For a continuous trait, 
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maximum R2 is determined by heritability so a PRS may be assessed by the proportion of 

heritability accounted for268. As sample sizes are finite and not all variants can be measured, 

R2 is likely to fall short of heritability but tends towards it with increasing sample size260. This 

is not true for binary traits as their distribution is not normal and so a ‘pseudo-R2’ is instead 

reported which cannot be directly compared to heritability269.  

PRS typically assume additive genetics and cannot consider any gene-gene or gene-

environment interactions118. Epistatic effects, where presence of one variant can modify, mask 

or enhance another, will not be captured. Generally, non-additive genetic effects are not 

expected to have a large impact on polygenic disease risk and there is evidence that complex 

disorders generally follow an additive pattern270, although it has also been shown that 

incorporating non-additive dominance effects can boost PRS performance271.  

While PRS are generally good at describing the risk of disease on a population level, their use 

for predicting disease risk in an individual or for population-level screening is controversial272. 

It has been suggested that PRS could be integrated into screening for complex diseases such 

as type 1 and 2 diabetes, coronary artery disease and breast cancer to identify high-risk 

individuals for further monitoring or interventions273. PRS are not yet used in any clinical 

settings although many commercial genetics companies offer PRS tests for common complex 

diseases118. 

5.1.2 Machine learning approaches 

Random forests 

Random Forest (RF) is a non-parametric machine learning method for regression and 

classification problems. An RF classifier builds several decision trees, each using a random 

subsample of the data, to predict an outcome. Each tree is constructed to be an optimal 

predictor for the subsample of data included in it. All trees vote on the outcome and the final 

decision is based on the consensus of all trees in the forest. This makes the method robust to 

overfitting and suitable for problems with high dimensional data and small sample sizes274. It 

is also particularly useful for non-linear problems with interactions between features. 

First, random sampling of objects and features (Figure 29a) is performed: both observations 

(sometimes referred to as objects) and features (also called variables) are sampled randomly. 
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The sampled data is called the in-bag fraction. Breiman’s original RF algorithm275, and typically 

the default setting, is to resample a 1:1 proportion of the data with replacement, which results 

in about 66% of observations and features being retained.  Figure 29b shows a single decision 

tree constructed from the sampled data. Trees are built by successively selecting the features 

which result in the greatest reduction of Gini impurity in child nodes276. Gini impurity is a 

measure of how dissimilar data are: low impurity would indicate that most of the data are of 

the same class, meaning each split is chosen to create the best distinction between classes 

until no further improvements can be made277. Not all sampled variables will be used: in Figure 

29, variable 1 was sampled but not used as features 3 and 4 were sufficient to split all 

observations into categories A or B. The performance of the decision tree is tested using the 

out of bag data (Figure 29c) and is given as out of bag error, or the proportion of out of bag 

observations the tree incorrectly classifies. The process is repeated with new random 

resamples of the original data, thus building a ‘forest’ of random classification trees. To 

perform classification on a new sample, it is passed through the forest with each tree voting 

on the outcome.  
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Figure 29.  Overview of Random Forest classification.  

A) Features and objects are randomly sampled with replacement from the population, resulting 

in approximately one third of data being included, or ‘in bag’ while the remaining data is ‘out of 

bag’. B) In bag data are used to construct a decision tree which can split the data according to 

its class. C) Tree performance is measured by testing on out of bag data. D) Many trees are 

constructed by randomly re-sampling data. Trees vote on the class of unseen data to perform 

classification tasks. 

 

 

Properties of Random Forests 

RF models can be developed with the goal of predicting the class of unseen data, but also 

have several properties which make them useful for exploring the features of the data itself. 

First, features can be assigned an importance, which is a measure of how well trees including 

the variable perform. Variable importance can identify which features have the best predictive 

power. The importance of an individual predictor is reliant on the other features used to build 
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trees: some features may be more useful when in combination with other features, for example 

if two variables in combination can split data well into case and control but either variable 

alone performs poorly. This dependence may be a better representation of underlying 

biological mechanisms than testing each gene individually by standard linear models as it can 

capture epistatic effects278. Conversely, variables which are highly correlated may have reduced 

importance as they are likely to reduce node impurity in a similar manner; once one variable 

has been used to split the data, the other imparts little additional information279. Resampling 

means that both variables will still be assessed, as not all variables are in-bag for a given tree. 

This reduces the impact of collinearity on the predictor, which is useful for classification, but 

harms interpretability of variable importance as correlated variables are assigned low 

importance regardless of possible biological relevance279. 

Resampling also provides robustness to overfitting, which occurs when too much information 

about a limited set of observations is used to train a classifier274. For example, if every 

observation had a unique combination of features, a classifier using every single variable could 

classify the training data perfectly. However, it would probably fail on new data as no actual 

pattern for discerning classes has been detected. RF avoids overfitting because the ensemble 

of classifiers, each trained on a random sub-sample of the data, votes on predicted class.  

Another useful feature of RF models are proximity scores, which are the proportion of trees in 

which a given pair of observations fall on the same terminal node123. A decision tree classifying 

observations as case or control may have many terminal nodes for each class. Observations 

appearing together on a terminal node have the same values for the features selected to form 

the decision tree. If observations appear together very often, they are likely to have the same 

the combinations of important features. This can help identify clustering or subtypes amongst 

cases. This may also provide insight into the mechanisms underlying a disease, as different 

combinations of genes or variants which act as good predictors of disease status can be 

identified.  

Feature selection 

Feature selection may be performed to improve model performance by reducing 

dimensionality by excluding features which are likely to be irrelevant or redundant280. Boruta281 

is a feature selection method for RF which assigns ‘tentative’ or ‘confirmed’ status to variable 
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importance by comparing performance to randomly shuffled ‘shadow features’ (Figure 30). 

Standard RF importance can be biased by correlations between individual trees in the forest. 

Random correlations between features can lead to chance associations with class, resulting in 

inflated importances. By creating shadow features, which are copies of the original variables 

with the observations randomly shuffled, the performance of actual features can be assessed 

by checking whether they have consistently better performance than the shadow features 

across many resamples. Essentially, it asks whether a feature’s predictive power is better than 

random. This makes it useful for both improving model performance and interpreting variable 

importance. 

Figure 30. Overview of Boruta feature selection method.  

A) features are permuted by randomly shuffling the values within each feature, creating ‘shadow 

features’. B) Random forest is performed using both the true features and shadow features. C) 

the performance of each feature is compared to the performance of the best shadow feature. 

This process is repeated many times and the frequency with which a feature outperformed all 

shadow features is used to determine its importance. 
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5.1.3 Aims and objectives 

In this chapter, I focus on the traditional PRS, calculated using PRSice-2265, and RF with Boruta  

feature selection. My aim is to explore the feasibility of these approaches rather than to 

produce a PRS or any other model which can be used to predict disease risk in any other 

population. I achieve this by: 

• Calculating genome-wide polygenic risk scores using FinnGen base data and UK 

BioBank WES variants. 

• Calculating genome-wide polygenic risk scores using a 10-fold cross-validation split 

on UK BioBank whole exome data. 

• Training RF models on 10-fold cross-validation split UK BioBank data using counts of 

SNPs per gene and pathway to assess model performance/predictive power. 

• Using Boruta to perform feature selection to identify important genes and pathways. 

• Training similar RF models on all UK BioBank data to interrogate model features 

including surrogate association and proximity scores. 

5.2 Methods 

5.2.1 Data 

10-fold cross validation partitioning for PRS and RF models 

For both PRS calculation and RF models, I used a k-fold cross-validation partition with k=10 

using the MATLAB cvpartition function. This assigns the data randomly to 10 partitions without 

replacement. Each fold uses 9 of the partitions as train data and the remaining partition is used 

as test data. 10-fold cross validation was chosen as it has been shown that better predictions 

of error are acquired for larger values of k, but larger values of k also increase the between 

training sets whilst reducing the size of testing sets. K=10 has also been found to show a good 

trade-off between bias in the estimate of error and computational cost282. Partitions were 

stratified by case status to ensure an equal case:control ratio in all partitions.  

For each of the ten cross-validation folds, GWAS was performed on the train set only. Settings 

were as in Final SAIGE configuration for single variant tests This was to allow train and test 



181 

 

partitions to be used as base and target data in PRS and to prevent information leakage in RF 

validation. 

Gene and pathway tables for Random Forests and Boruta 

For machine learning analyses, tables indicating the number of significant variants per gene 

were constructed for all participants. Non-synonymous, coding variants from whole exome 

data were used and filtered to MAC>20. Results were further filtered to retain SNPs with p-

value < 0.05, hereafter called significant SNPs (note they are not of genome-wide significance). 

For each person, the number of significant SNPs per gene was counted (using gene 

assignments from VEP as in the GWAS section). Reducing to significant SNPs only acts as a 

form of feature selection. 

To generate equivalent tables for cross-validation folds, the same processes was applied using 

the relevant GWAS p-values for each individual fold.  

To create equivalent data tables for pathways, I annotated genes with their pathways using 

GO definitions downloaded from the g:Profiler website for consistency with the previous gene 

set enrichment analysis (reference genomes: Ensembl 111, Ensembl Genomes 57. GO release: 

2024-01-17). Each gene was counted for all pathways it was associated with.  

5.2.2 Polygenic risk scoring 

The PRS method requires base data to acquire weights, which are the effect sizes of variants 

according to GWAS, and target data for which PRS are calculated. The proportion of variability 

in phenotype explained by the PRS in the target group is the model R2. A p-value for the PRS 

can be calculated by comparing the R2 to that of a null model. PRSice-2265 calculates the p-

value empirically by shuffling phenotypes randomly to acquire the null p-value for comparison. 

I used PRSice-2 v1.0.2265 to perform polygenic risk score analysis with default clumping (250kb, 

r2=0.1, p-value=1) and –beta option on (to account for reporting of beta scores rather than 

odds ratios in GWAS results). All covariates were as used in GWAS (age, sex, deprivation, 

smoking status, first 10 PCs) were used.  

I ran tests using both UKBB and FinnGen summary statistics as base data and UKBB WES and 

microarray data genotypes as target data.  
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10-fold cross validation with UKBB base data 

I used 10-fold cross-validation for UKBB WES data as both base and target data. I performed 

GWAS on each training partition (90% of the data) and used the summary statistics as base 

data. Target data were the test partitions for each fold (10% of the data).  

FinnGen base data 

I used FinnGen summary statistics from data freeze 9 as base data and UKBB WES or microarray 

data as target data. The FinnGen data is described in Genome-wide association testing and 

downstream analyses: FinnGen comparison data. All non-imputed SNPs were used with no 

minimum MAC cutoff.  

Because the reference allele must be the same between base and target data, I identified any 

mismatched between base and target and flipped the reference and effect size in the FinnGen 

base data to match the target. Also, FinnGen uses GRCH37 whereas UKBB uses GRCH38. To 

avoid performing a full liftover of the FinnGen data to GRCH38, I matched SNPs on rsID (which 

should be stable between versions) and assigned the chromosome and position to the base 

data by lifting the chromosome and position of the SNP from the target data. I removed any 

SNPs whose reference or alternate allele did not match (Table 31). 

Table 31. Target data parameters and number of mismatching or flipped SNPs 

compared to base data. 

Data Min MAC Coding only? overlap Flips Mismatches 

Microarray 20 No 194926 25289 234 

Microarray 0 No 200128 25293 248 

Microarray 20 Yes 90422 11018 68 

Microarray 0 Yes 94961 11021 79 

WES 20 Yes 5711 0 18 

WES 0 Yes 14935 0 278 

I used coding region, non-synonymous SNPs from WES as target data. For microarray, I used 

all SNPs and also tested coding region, non-synonymous SNPs separately. I ran versions with 

MAC>20 filter and no min mac. For whole exome data, rsID was assigned using VEP while 

probes on the microarray data were already labelled with rsID. 
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5.2.3 Random forests 

Feature selection using 10 cross-validation folds 

I performed feature selection using the train data for each fold with the Boruta R package283 

version 8.0.0. Feature selection was performed for both genes and pathways, where data were 

the count of p-value < 0.05 SNPs per gene or pathway. Features are assigned confirmed or 

tentative status depending on whether they consistently outperform randomly generated 

shadow features. I ran Boruta with the default settings with class weights of 1:5 for cases to 

account for class imbalance. All RF models were weighted in this manner during training. 

Model generation and validation using 10 cross-validation folds for gene-level data 

After feature selection, new RF models were constructed using the training data from each 

fold (90% of the total data), with only the genes determined to be tentative or confirmed by 

Boruta (hereafter called ‘important’) for that fold. Thus, each fold used a gene table containing 

only important genes for that fold and only counting presence/absence of SNPs meeting the 

p<0.05 threshold within that fold’s GWAS. I first ran 10 iterations of the model on the first fold 

to determine the number of trees required to attain maximum performance, judged by lowest 

out of bag error and used this number to construct RF models for each fold (n=500 trees). I 

used the treebagger function in MATLAB 2023b132, which performs RF in the same manner as 

Boruta (which constructs random forests using the ranger284 package) but provides a greater 

number of options for interrogating the results.  

The model created for a given fold was then validated using that fold’s test data. Test data 

consist of similar tables of counts of SNPs with p<0.05 per gene as the training data, but note 

that the p-value for SNPs is also drawn from the GWAS performed on the train data, not the 

test data itself. The data is supplied to the model which attempts to predict case-control status. 

I calculated sensitivity, specificity, total prediction error and mean squared error for each fold 

as well as the out of bag error for the model during training.  

Cross-validation methods typically use the same set of features for all folds in order to evaluate 

the performance of a specific model configuration. Feature selection and any other pre-

processing would be determined, and the validation folds used to determine variability in 

error. The final model configuration would then be tested on an independent data set. I did 
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not have enough data to perform proper validation and so do not aim to build a reliable 

classifier. My models instead use features computed for maximum importance within each 

fold. Validation is not meant to assess a specific classifier, but the general approach.  

Data exploration using a single RF model 

The 10-fold cross-validation gives an idea of the variability in performance of the RF method 

by using different subsets of the data to train and test the models. I then constructed a single 

model using all cases and controls to explore the features of the model itself and whether any 

insight into genetics can be drawn from it. I constructed the model using p-values of SNPs 

drawn from the GWAS of all cases and controls (presented in the previous chapter) and any 

gene with confirmed importance in 2 or more of the 10 folds, or tentatively important in over 

half of the folds. 

I also investigated the reliance of feature importance on other features by generating models 

which excluded each gene in turn and calculated the importance of the remaining features. 

While there was some reduction in OOB error from 200 to 500 trees, this was minimal. For 

performance reasons, I generated models using 200 trees. I repeated this 10 times and 

averaged the drop in performance for each predictor over the 10 runs. While this method only 

accounts for features pairs, it becomes computationally difficult to assess the interactions 

between 3 or more genes. 

Pathway-level Random Forest models 

To determine whether RF could return results similar to the gene-set enrichment results, I also 

performed tests on pathway level UKBB WES data. This was performed in the same manner as 

the gene-level data but included counts of SNPs per pathway rather than per gene. I 

performed several exploratory tests: 

A) I ran Boruta on the entire dataset then constructed an RF model using the confirmed 

and tentative features on the entire set with no test/train split. This was to investigate 

pathway relationships and compare important features to GSEA results. 

B) I performed Boruta on the 10-fold cross-validation sets then used the confirmed and 

tentative features to construct a model on the training data. I tested these models 

using the test data for each split. This was to test performance of this approach. 
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C) I performed a similar test to B but used only the pathways identified by gene set 

enrichment analysis instead of performing Boruta feature selection. This was for 

comparison to B. 

All models used 50 trees and weighted cases as in previously described models. 
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5.3 Results 

Due to the exploratory nature of this chapter, several tests were performed with different 

configurations (Table 32). PRS tests used both FinnGen base data and UKBB base data with a 

10-fold cross validation test/train split. For both gene-level and pathway-level RF models, data 

were counts of SNPs with p<0.05 present in each gene/pathway per person. For both gene 

and pathway-level analyses, 10-fold test/train splits were used to calculate error and a model 

was also constructed using all data with no testing holdout in order to investigate the 

properties of the model. 

Table 32. Summary of PRS and RF methods performed and their intended purpose.  

For polygenic risk score (PRS), base and target data are shown. For random  forest   (RF ) models, 

test and train data are shown. All UKBB data is drawn from whole exome single variant 

association test results, consisting of counts of p<0.05 SNPs per gene/pathway. 

 Base/train Data Target/test data Feature selection? Purpose 

FinnGen 

PRS  
FinnGen 

UKBB WES  Create PRS using distinct target and base 

data.  

Determine if polygenic risk can be 

translated between populations. 

UKBB Microarray  

UKBB PRS 

UKBB 10-fold 

cross validation 

testing sets  

UKBB 10-fold cross 

validation training 

sets 

 

Create PRS using same population as 

base and target data.  

Cross-validation of PRS approach.  

Ascertain model error on unseen data. 

Gene-

level RF 

UKBB 10-fold 

cross validation 

testing sets  

UKBB 10-fold cross 

validation training 

sets 

Boruta selected 

features for each fold 

Cross-validation of RF approach.  

Ascertain model error on unseen data. 

All data N/A 

Boruta selected 

features for each fold, 

features confirmed in 

>1 fold or tentative in 

>5 folds. 

Investigate properties of RF model, e.g. 

proximity scores 

Pathway-

level RF 

UKBB 10-fold 

cross validation 

testing sets  

UKBB 10-fold cross 

validation training 

sets 

Boruta selected 

pathways  

Validation 

Compare to other pathway level models. 

Using pathways 

identified by GSEA in 

previous chapter 

Validation 

Compare to other pathway level models. 

All data N/A Boruta selected 

pathways 

Investigate properties of RF model to 

determine relationships between 

pathways 

Compare selected pathways to GSEA 
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5.3.1 Polygenic risk scores with FinnGen and UKBB base data 

PRS using FinnGen base data 

The best PRS p-value using FinnGen base data was achieved for whole exome data with a 

minimum MAC of 20 (Table 33). The next best performing PRS used microarray target data 

with no MAC cutoff and not restricted to coding only. While the WES target data required only 

43 SNPs to achieve its best p-value of 0.0013, the microarray target data used essentially all 

SNPs overlapping between the base and target data and achieved a p-value of 0.003. The R2 

for both these methods was very small (<0.0031), indicating that most variability in disease 

outcome could not be explained by the genetic effect. As data are binary, R2 is approximated 

using the Nagelkirke method264. The SNPs used in the UKBB WES PRS were not present in the 

UKBB microarray probe set, so these models used different variants entirely.  

 

Table 33. PRS performance for whole exome and microarray data with different MAC 

cutoffs and coding/non-coding variants.  

Threshold column shows the maximum p-value of variants included in the polygenic risk score 

(PRS). PRS R2 is the proportion of variance in phenotype explained by the model (this is not 

equivalent to heritability for binary traits). Genotype refers to target data and is either UKBB whole 

exome (WES) or microarray. 

Genotype Set 

Min 

MAC 

Threshold 

p-value Coefficient PRS R2 

Standard 

Error p-value Num SNP 

WES Coding 20 0.0108 16.8712 0.003104 5.25 0.00130 43 

Microarray All 0 1 -1854.87 0.002463 626.61 0.00308 124659 

Microarray All 20 1 -1691.52 0.002127 614.74 0.00593 120064 

WES Coding 0 0.0108 30.8911 0.002142 11.47 0.00705 119 

Microarray Coding 20 0.0479 -129.182 0.001387 58.07 0.0261 4056 

Microarray Coding 0 0.0001 2.44164 0.001069 1.25 0.0508 4 

The PRS distribution for the best WES target data had a non-normal distribution with a long-

left tail (Figure 31a). While the difference in mean PRS for cases and controls was minimal 

(0.7692 and 0.7685 respectively), a comparison of PRS deciles shows a higher disease 

prevalence for higher PRS, although prevalence seems to decrease after the 8th decile (Figure 

31c). This may be due to random noise or an actual decrease. The UKBB microarray PRS was 

normally distributed (Figure 31c) but negative for both cases and controls. While difference in 

median PRS for cases and controls did not differ (-0.0015 for both), there was a decrease in 
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prevalence for higher deciles with prevalence decreasing from 0.1870 to 0.1469 between the 

first and tenth deciles. The reversed relationship is due to the negative PRS of the microarray 

data for both cases and controls, with cases being more extremely negative. The negative PRS 

indicates that both cases and controls carried more ‘protective’ alleles then causal ones. 

However, the direction of effect depends on which variant is considered the reference allele. 

In this case, I believe the wrong allele was considered the effect allele, resulting in overall 

negative PRS.  

Figure 31. PRS distributions and prevalence per centile for FinnGen base data with best-

performing UKBB target data.  

Target data are UKBB WES with minor allele count (MAC) > 20 (a, c) and UKBB microarray with 

no min MAC and all variant types (b, d). a) WES target data show highly skewed polygenic risk 

score (PRS) distributions with a large tail of lower-risk individuals. B) Microarray data are more 

normally distributed. Note that PRS are negative. C) Cholesteatoma prevalence generally 

increases with PRS centile, though appears to drop towards the 90th percentile. D) Cholesteatoma 

prevalence generally decreases with PRS centile although the relationship is very noisy. 
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PRS using 10 UKBB cross-validation folds 

I also performed PRS testing on UKBB test/train folds with the train fold used as base data to 

perform GWAS and acquire variants weights. The test fold was used as target data. The 

resultant PRS had p-values ranging from 0.0008 to 0.10 (median 0.0675; Table 34). Most were 

significant though with small R2 values (<0.02), suggesting a polygenic effect may exist but 

explaining a very small proportion of overall variability. The number of SNPs used by each PRS 

also varied greatly from 71 to 20,215 (median 205), with better performing models generally 

requiring fewer SNPs with a lower p-value cutoff. The coefficient also varied, sometimes being 

negative (indicating a lower PRS for cases) and sometimes positive (indicating a higher PRS 

for cases). 

Table 34. 10-fold PRS using UKBB WES test/train split shows highly variable results 

Fold 

Threshold SNP 

p value PRS R2 Coefficient 

Standard 

Error PRS p-value Num SNPs 

1 0.0844 0.0094 -276.17 150.68 0.067 3588 

2 0.0734 0.0102 -274.56 144.22 0.057 3066 

3 0.0027 0.0046 25.31 19.92 0.204 124 

4 0.0034 0.0043 -26.36 21.23 0.214 139 

5 0.2472 0.0288 -1091.41 342.50 0.001 10579 

6 0.0048 0.0198 72.83 27.98 0.009 210 

7 0.0002 0.0165 8.87 3.89 0.023 4 

8 0.0046 0.0096 49.39 27.07 0.068 200 

9 0.3709 0.0067 -730.89 473.99 0.123 15760 

10 0.0025 0.0070 31.93 20.45 0.119 110 

 

5.3.2 Boruta results for important genes and pathways 

Gene level Boruta results 

Feature selection was performed using Boruta to identify important variables for random forest 

classification. I performed feature selection on gene-level SNP counts for each training set of 

10 cross-validation folds. One gene (ESX1) was determined as important across all folds. 

AMOTL2, IL13RA2 and RBM10 were confirmed or tentative in 9 out of 10 training folds (Table 

35). Generally, the genes with high importance were those containing the most significantly 

associated SNPs such as ESX1, AMOTL2, RBM10, CANA2D1, CACNA1G, PTH2R and ANK2,, 
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which were represented amongst the top 20 most significant variants (see 4.3.2 Genome-wide 

association test results). 
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Table 35. Boruta confirmed and tentative features for all 10 folds where a feature was 

a confirmed important predictor in at least 2 folds or confirmed/tentative in more than 

5 folds.  

Confirmed features are shaded dark grey and labelled C. Tentative features are shaded light grey 

and labelled T. 232 genes were confirmed or tentative in at least one fold. 94 genes were 

confirmed or tentative in 2 or more folds. Ordered by number of times a gene was confirmed 

across folds. 

 Fold N 

Gene x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 C T Total 

ESX1 C C C C C C T C C C 9 1 10 

AMOTL2 C C C C C C  C C C 9 0 9 

IL13RA2 C T C T C C  C C C 7 2 9 

RBM10 C  C C T T C C C C 7 2 9 

CACNA2D1 C C C  C   C C C 7 0 7 

SLC25A46 C  C T C  C C  C 6 1 7 

ZNF41 C  C  C C   C C 6 0 6 

BIRC2 C C C  C T T C T  5 3 8 

CACNA1G C  C C T T C C   5 2 7 

TRPV5 C  C  C C T T  C 5 2 7 

ANK2 C C C  T C    C 5 1 6 

PTH2R  C  T  C  C C C 5 1 6 

TBC1D16 C    C  C C C  5 0 5 

CYB5R3 C C T C T  T C T  4 4 8 

RUNDC1   C C C T  C T T 4 3 7 

NIF3L1 C C C  T C     4 1 5 

TMEM207 C  C  C   T C  4 1 5 

IGF2R C C  C  C     4 0 4 

TSC1  C  C   C C   4 0 4 

COL4A6 C   C  T T T C T 3 4 7 

DKK1 C   T  C   C T 3 2 5 

CDKL5   C T   T C C  3 2 5 

UBQLNL T  C  C   C T  3 2 5 

TXNIP   T   C C C T  3 2 5 
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 Fold N 

Gene x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 C T Total 

MEGF11 C   C  T  C   3 1 4 

ACOX3    C  C   C T 3 1 4 

PRDM10 C       C  C 3 0 3 

ATG9B  C    C  C   3 0 3 

OR6T1   C   C  C   3 0 3 

MECP2 T C     T T  C 2 3 5 

WNT10A T T   C T   C  2 3 5 

PPP1R26 C   T    C   2 1 3 

RAPGEF2  C     T  C  2 1 3 

ALLC  C      C  T 2 1 3 

WFDC8   C     C  T 2 1 3 

AK8   C      C T 2 1 3 

SNX13     C C T    2 1 3 

POLN     C   T C  2 1 3 

MRPS25 C     C     2 0 2 

ANGPTL4 C  C        2 0 2 

SP140L C       C   2 0 2 

KBTBD13 C  C        2 0 2 

GPNMB   C       C 2 0 2 

IL3RA     C   C   2 0 2 

NECTIN1       C  C  2 0 2 

ATF6B       C C   2 0 2 

TBC1D10C         C C 2 0 2 

ZACN         C C 2 0 2 

FAM220A  T T T T T T T  C 1 7 8 

Pathway level Boruta results 

I also performed Boruta on all UKBB WES pathway-level SNP count data. I performed this both 

on individual training folds and on all data with no test/train split. The features identified from 

the individual train folds had very little overlap: out of a total 287 confirmed or tentative 
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pathways across all 10 folds, 72 were present in 2 or more and three terms were considered 

important in 7 of 10 folds (organic substance metabolic process, intracellular membrane-

bounded organelle and molecular function; SI Table 7). This may be because GO terms are 

hierarchical and each fold differed slightly in which level of the hierarchy was enriched; 

therefore, this is a suboptimal way of identifying which processes are generally important. 

I also performed feature selection on all data with no test/train (Table 36) to compare to the 

results of gene set enrichment analysis (GSEA). There was little direct overlap in terms between 

the g:Profiler GSEA (see 4.3.3 Gene set enrichment analysis) and Boruta results, although some 

general functions were similar such as cell motility and voltage-gated calcium channel activity. 

The results tended towards more broad/general GO terms than GSEA results, perhaps because 

larger terms had more genes and therefore more opportunities to split cases and controls. 

Table 36. Boruta confirmed and tentative pathways when performed on all data with 

no cross-validation or test/train split.  

The p-value of enriched terms in the full gene set enrichment analysis (GSEA) are also shown 

where p-value < 0.05, as g:Profiler was configured to return significant results only. 

Pathway ID GSEA p-value 

alcohol metabolic process GO:0006066 - 

anion binding GO:0043168 - 

Binding GO:0005488 - 

Biological process GO:0008150 - 

cardiac muscle cell membrane repolarization GO:0099622 - 

cell motility GO:0048870 - 

cellular anatomical entity GO:0110165 - 

cellular biosynthetic process GO:0044249 - 

cellular response to lipid GO:0071396 - 

cellular response to lipopolysaccharide GO:0071222 - 

Cellular component GO:0005575 - 

Cytoplasm GO:0005737 5.55492x10-13 

endoplasmic reticulum membrane GO:0005789 - 

establishment of cell polarity involved in ameboidal cell migration GO:0003365 - 

hydrolase activity, hydrolyzing N-glycosyl compounds GO:0016799 - 

intracellular anatomical structure GO:0005622 - 

intracellular membrane-bounded organelle GO:0043231 - 

intracellular organelle GO:0043229 - 

macromolecule metabolic process GO:0043170 - 

membrane-bounded organelle GO:0043227 - 

Molecular function GO:0003674 - 

neutrophil chemotaxis GO:0030593 - 
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Pathway ID GSEA p-value 

nitrogen compound metabolic process GO:0006807 - 

nuclear lumen GO:0031981 - 

nuclear outer membrane-endoplasmic reticulum membrane 

network GO:0042175 - 

Organelle GO:0043226 - 

organonitrogen compound metabolic process GO:1901564 - 

perinuclear theca GO:0033011 - 

phosphorus metabolic process GO:0006793 - 

positive regulation of biosynthetic process GO:0009891 - 

positive regulation of cellular process GO:0048522 - 

positive regulation of protein localization to cell surface GO:2000010 - 

primary metabolic process GO:0044238 - 

protein ubiquitination GO:0016567 - 

regulation of atrial cardiac muscle cell membrane depolarization GO:0060371 - 

regulation of cardiac muscle cell membrane repolarization GO:0099623 - 

regulation of cellular component organization GO:0051128 - 

regulation of developmental process GO:0050793 - 

regulation of phosphate metabolic process GO:0019220 - 

side of membrane GO:0098552 - 

Signaling GO:0023052 0.032177767 

terpenoid metabolic process GO:0006721 - 

ventricular cardiac muscle cell membrane repolarization GO:0099625 - 

voltage-gated calcium channel activity involved in cardiac muscle 

cell action potential GO:0086007 0.002392465 

voltage-gated calcium channel activity involved SA node cell action 

potential 

GO:0086059 

- 

5.3.3 Performance of Random Forest models using gene-level 

information 

Construction and validation on 10-fold data split 

For individual folds, I used Boruta-important features for that fold (SI Table 8) and p-values 

drawn from testing on the train data with GWAS. Fold 1 is used as an example: for this fold, 

36 features were confirmed important and 12 features were tentatively important. The RF 

model constructed using only the important features slightly outperformed a model trained 

on all features, with final out of bag error after 200 trees averaging 0.344 across 10 repeats 

(Figure 32). Continuing to increase the number of trees improved model accuracy up slightly 

with a performance of 0.339, although this is not much improvement over 200 trees. 
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Figure 32. Out of bag error indicates slightly improved performance when a reduced set 

of features are used.  

Graphs show out-of bag (OOB) error for 10 models trained on the fold 1 training set. a) The best 

mean performance across all models when all features were included was at 67 trees (OOB error 

= 0.382). OOB error drops rapidly before this and slowly increases afterwards, indicating some 

overfitting. b) Model performance is improved by using only the confirmed and tentative features 

and there is no overfitting at 200 trees. The minimum mean OOB error was 0.343 at 198 trees. 
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Cross-validation across all 10 folds shows variable performance with poor sensitivity 

and AUC 

Random forest models trained on tentative and confirmed features were constructed for each 

fold using 500 trees. The models performed overall poorly with a mean out of bag error of 

0.364 (Table 37). MSE varied between 172.44 and 178.83 (mean=175.01,). While specificity 

was generally high (~0.8), sensitivity was overall poor (~0.3) but occasionally reached as high 

as 0.79 (Figure 33). This reflects the model’s tendency to classify test data as control. The area 

under the curve (AUC) of the receiver operating characteristic (ROC) was also calculated. ROC 

plots the true positive rate against the false positive rate. The AUC of a classifier that randomly 

assigns case-control status equally is 0.5. For all folds, AUC was close to 0.5 (mean 0.506). Out 

of bag error for individual folds was generally lower than total prediction error (mean 0.35 vs 

mean 0.56), showing that out of bag error is not a good indicator of actual model performance. 

Figure 33. Sensitivity and specificity on testing data from 10 cross-validation folds. 

Random forest classifiers were trained on 90% of UKBB WES data (counts of p-value <0.05 SNPs 

per gene). The remaining 10% of data was used to test each classifier. Specificity and sensitivity 

were calculated with the predictions of the classifier on test data. 
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Table 37. Random forest performance across 10 folds using individually selected 

features for each fold.  

Mean squared error, sensitivity, specificity, total prediction error and AUC calculated on the 

testing set are shown. Out of bag error on the training set is also shown. 

Fold Mean squared error Sensitivity Specificity Total Error AUC 

Out of Bag 

error 

1 177.4264 0.30 0.838 0.653 0.520 0.338 

2 175.8483 0.73 0.809 0.312 0.523 0.355 

3 172.4374 0.28 0.834 0.648 0.493 0.346 

4 174.1039 0.24 0.831 0.662 0.492 0.347 

5 178.8347 0.30 0.842 0.672 0.524 0.343 

6 174.5274 0.72 0.863 0.413 0.463 0.329 

7 172.7369 0.33 0.850 0.688 0.544 0.371 

8 176.1374 0.30 0.825 0.602 0.489 0.327 

9 173.4517 0.28 0.831 0.637 0.498 0.339 

10 174.6137 0.79 0.824 0.295 0.510 0.364 

mean 175.0118 0.43 0.835 0.558 0.506 0.346 

Folds 2, 6 and 10 had higher sensitivity than other folds. This could have been because a single 

gene or set of genes had particularly good predictive power and performance is improved 

when these are well-distributed between case and control. However, these folds differed in 

which predictors were considered most important, suggesting this was not the case (Table 

37). 
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Table 38.  Most important genes for high-performing folds.  

Folds 2, 6 and 10 achieved sensitivity approaching 0.8; the most important genes within these 

folds do not overlap. Importance score is the out of bag permuted predictor error, which reflects 

the reduction in performance when a feature is randomly permuted.  

 Fold 2 Fold 6 10 

Rank Importance gene Importance gene Importance Gene 

1 -3.30953 AMOTL2 -2.45437 TRDMT1 -3.82596 ZC3H14 

2 -3.26448 NEK10 -2.42648 ZKSCAN1 -3.46661 HERC6 

3 -3.2487 SLC2A11 -2.40882 TXNIP -3.33528 ANK2 

4 -3.2486 CACNA2D1 -2.39952 ZSCAN32 -3.33065 TBC1D10C 

5 -3.24499 IGF2R -2.39314 KIAA0040 -3.32192 AMOTL2 

6 -3.19727 ESX1 -2.37577 CUX1 -3.31552 KCNT1 

7 -3.17116 CYB5R3 -2.3717 COL4A6 -3.30511 RUNDC1 

8 -3.14965 TMEM168 -2.34999 NIF3L1 -3.28167 ESX1 

9 -3.1376 TSC1 -2.34764 TBC1D10B -3.23144 TBC1D10B 

10 -3.09979 ALLC -2.34528 ST6GALNAC2 -3.18701 RAB6A 

 

5.3.4 Properties of a model using confirmed and tentative features 

on all training data 

Performance is similar to individual folds 

To investigate the relationships between genes in an RF classifier, I trained an additional model 

on all data (using GWAS summary statistics calculated on all cases and controls and Boruta-

important features from across multiple folds). This performed similarly to individual test/train 

folds with an out of bag error of 0.35, sensitivity of 0.54 and specificity of 0.896. The sensitivity 

and specificity are slightly better than were achieved for most individual folds (mean sensitivity 

= 0.43, mean specificity = 0.835). In this case, sensitivity and specificity were calculated on train 

data used to fit the model. They are therefore over-estimates of model performance. The poor 

sensitivity and AUC from individual test/train folds indicates that caution must be taken when 

interpreting these results. 
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Surrogate association between features, proximities and case clustering 

Surrogate association indicates whether features split data in a similar way: at each node in 

the decision tree, the best feature is chosen to split the data. For any given node, the ‘next 

best choice’ can also be determined. If features are often the next best choice for one another, 

they have high surrogate association. RAPGEF2 and PTH2R had high surrogate association 

(surrogate association = 0.0148, 0.0221; Figure 34). The next best pairing was BIRC2-KBTBD13 

with surrogate association 0.0043-0.010 and other pairings had only slightly elevated 

surrogate association compared to the mean (0.00014). Scores are not symmetrical and 

depend on which gene was selected for use in a decision split. 

Figure 34.  Surrogate association scores for important genes identified by Boruta from 

all UKBB WES gene level data.  
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Proximities indicate how often observations appear on the same terminal node, indicating that 

they have similar combinations of important features. There was no obvious clustering of cases 

according to proximity scores to suggest subtypes from this data. Some small clusters of 

individuals classified as cases were present, but these contained both cases and controls (SI 

Figure 1). A large proportion of case individuals (as well as control individuals) carried no 

variants in any important genes and thus were classified alongside each other in all trees, 

giving them a proximity of 1.  

5.3.5 Pathway level Random Forest models 

I trained models using both GSEA-important (highlighted terms enriched in UKBB WES results 

in Gene set enrichment analysis of UK BioBank data) and Boruta-important pathways (identified 

as confirmed or tentative by Boruta in all UKBB data). Out of bag error was worse for both 

models trained on data at the pathway level than models trained at the gene level: when GSEA-

important pathways were used, minimum out of bag error reached about 0.43 at 50 trees and 

began to steadily rise as trees were added (Figure 35a). A model of similar construction using 

Boruta-important features had similar performance but the increase in error after 50 trees was 

less steep (Figure 35b). I trained the final models on all data using 50 trees for both sets of 

features (GSEA-important and Boruta-important). Sensitivity was very poor for both models 

(<0.1), although slightly higher for the model trained on Boruta-important pathways. 

Conversely, AUC was slightly improved (GSEA-important mean AUC= 0.515, Boruta-important 

mean AUC = 0.541) but still poor.  

The features identified by Boruta were similar to the pathways identified by GSEA although 

more generic (Table 39). Due to the very poor performance of these models, there is little 

information that can be reliably drawn about pathway importance or surrogate associations. 

While some surrogate associations exist in the pathway data for both approaches (SI Figure 

2), these probably reflect the overlapping nature of GO terms.  

  



201 

 

Figure 35. OOB error across 10 repeats of Random Forest using pathway data.  

A) Only the pathways identified by gene set enrichment analysis are used. b) The pathways 

identified by Boruta performed on all data are used. a) and b) show 10 RF runs on the same data 

used to determine the ideal number of trees for training. c) and d) show sensitivity and specificity 

on testing data for validation folds using the features in a) and b) when RF models were fit with 

50 trees of training data for that fold. Both methods have some leakage as feature selection is 

based on results from all data. 

 

Table 39. Confirmed and tentative important pathways identified by Boruta using all 

UKBB WES data.  

Some functions resemble enriched processes identified by GSEA such as cell motility and terms 

related to cardiac action potential regulation. The terms identified by Boruta are more general 

than those identified by enrichment analysis. 

Symbol ID Confirmed/Tentative 

establishment of cell polarity involved in ameboidal cell migration GO:0003365 Confirmed 

molecular function GO:0003674 Confirmed 

binding GO:0005488 Confirmed 

cellular component GO:0005575 Confirmed 
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Symbol ID Confirmed/Tentative 

intracellular anatomical structure GO:0005622 Confirmed 

cytoplasm GO:0005737 Confirmed 

endoplasmic reticulum membrane GO:0005789 Confirmed 

alcohol metabolic process GO:0006066 Confirmed 

terpenoid metabolic process GO:0006721 Tentative 

phosphorus metabolic process GO:0006793 Confirmed 

nitrogen compound metabolic process GO:0006807 Confirmed 

biological process GO:0008150 Confirmed 

positive regulation of biosynthetic process GO:0009891 Confirmed 

protein ubiquitination GO:0016567 Tentative 

hydrolase activity, hydrolyzing N-glycosyl compounds GO:0016799 Tentative 

regulation of phosphate metabolic process GO:0019220 Confirmed 

signaling GO:0023052 Confirmed 

neutrophil chemotaxis GO:0030593 Confirmed 

nuclear lumen GO:0031981 Confirmed 

perinuclear theca GO:0033011 Tentative 

nuclear outer membrane-endoplasmic reticulum membrane network GO:0042175 Confirmed 

anion binding GO:0043168 Confirmed 

macromolecule metabolic process GO:0043170 Confirmed 

organelle GO:0043226 Confirmed 

membrane-bounded organelle GO:0043227 Confirmed 

intracellular organelle GO:0043229 Confirmed 

intracellular membrane-bounded organelle GO:0043231 Confirmed 

primary metabolic process GO:0044238 Confirmed 

cellular biosynthetic process GO:0044249 Confirmed 

positive regulation of cellular process GO:0048522 Confirmed 

cell motility GO:0048870 Confirmed 

regulation of developmental process GO:0050793 Confirmed 

regulation of cellular component organization GO:0051128 Confirmed 

regulation of atrial cardiac muscle cell membrane depolarization GO:0060371 Confirmed 

cellular response to lipopolysaccharide GO:0071222 Confirmed 

cellular response to lipid GO:0071396 Confirmed 

voltage-gated calcium channel activity involved in cardiac muscle cell 

action potential GO:0086007 Confirmed 

voltage-gated calcium channel activity involved SA node cell action 

potential GO:0086059 Confirmed 

side of membrane GO:0098552 Tentative 

cardiac muscle cell membrane repolarization GO:0099622 Confirmed 

regulation of cardiac muscle cell membrane repolarization GO:0099623 Confirmed 

ventricular cardiac muscle cell membrane repolarization GO:0099625 Confirmed 

cellular anatomical entity GO:0110165 Confirmed 

organonitrogen compound metabolic process GO:1901564 Confirmed 

positive regulation of protein localization to cell surface GO:2000010 Tentative 
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5.4 Discussion 

This chapter aimed to use two methods to investigate polygenic disease mechanisms: 

polygenic risk scoring using PRSice-2 and machine learning, employing Random Forests with 

Boruta. Due to the lack of data available for properly validating models, this analysis was highly 

exploratory. 

I performed PRS analyses with both FinnGen base data and UKBB WES data divided into test 

and train splits. PRS performance across all 10 UKBB test/train splits was variable with the 

number and p-value threshold for SNPs included also varying greatly. PRS models explained 

a small but significant amount of variance in several of the folds. A significant result was also 

acquired using FinnGen base data, the number of SNPs and p-value threshold varying 

depending on whether UKBB WES or microarray genotype was used as target data. Although 

the variable performance of these models mean they are not useful for classification of disease 

risk, they support the existence of a polygenic effect. The effect is likely small due to the very 

small R2 of all models produced (<0.02 for UKBB WES base data; < 0.003 for FinnGen base 

data). 

Random forest models performed using presence-absence of significant SNPs per gene did 

not perform well across validation folds and the best-performing folds did not agree on the 

most important predictors. This suggests that they performed well due to different 

combinations of genes being well distributed across test and train splits, which may indicate 

high heterogeneity. The most consistently important genes across folds according to Boruta 

include some where a single variant was amongst the most significant, such as ESX1, AMOTL2, 

CACNA2D1 and CACNA1G. A large number of cases contained no variants in any important 

genes. Random Forest models constructed on pathway-level data had even worse 

performance and were essentially unable to identify cases.  

The important pathways identified by Boruta when trained on all data with no test/train splits 

resembled the terms identified in gene set analysis, including cell motility and cardiac 

regulation, but were overall more generic. Identification of important pathways using Boruta 

may be possible but is not as specific as standard gene set enrichment analysis. Perhaps if 
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predictive power were better, important pathways and their relationships could be better 

identified.  

5.4.1 Significant polygenic risk scores support a polygenic effect, 

but results are variable due to inadequate sample size. 

Significant PRS acquired using FinnGen summary statistics as base data support the existence 

of a polygenic effect that can be detected across populations; if the best-scoring SNPs in a 

Finnish population are also associated with cholesteatoma in a British population, it is likely 

that a proportion of these SNPs have a real effect. Performance was best with UKBB whole 

exome target data filtered to minor allele count (MAC)>20 and the PRS used very few variants, 

which turned out to be rare variants absent from the UKBB microarray set. The next best 

performing method used UKBB microarray genotype data with no MAC filter and not reduced 

to coding only, where most SNPs were used to construct the PRS. For both methods, R2 was 

small (<0.003), suggesting that genetic contribution to risk is small compared to 

environmental effects, or poor power in the original GWAS. PRS distributions did not differ 

much between cases and controls, but higher disease prevalence was seen at higher PRS 

centiles, again supporting a small polygenic effect on risk. 

However, there are several important limitations with this approach. First, the base and target 

populations are from a different genetic background; the Finnish population is quite distinct 

from other European populations and due to recent bottlenecks is enriched for some 

variants258. The WES PRS were non-normally distributed, which can occur when the base and 

target population differ genetically. Since these are rare variants in UKBB but are common 

enough to be present on the Finnish array, it is likely that the difference between base and 

target allele frequencies is confounding the results. This problem may also apply to the 

microarray data, although the PRS are normally distributed for this result.  

For UKBB microarray target data, the most significant PRS occurred when all SNPs were used; 

this can be an indicator of inadequate power260. Additionally, the overlap between the SNPs 

on the UKBB array and FinnGen array is small compared to the total number of probes. Both 

biobanks used custom Axiom Array developed according to their research interests: the 

FinnGen array included additional probes around the major histocompatibility complex and 

probes for variants associated with certain diseases or known to be enriched in the Finnish 
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population196. The UKBB array likewise included probes for variants associated with certain 

diseases and rare variants. Whole exome data includes many even rarer variants, hence the 

overlap is even smaller. Therefore, the set of SNPs included in PRS for each method is bound 

by the overlap between the data sets, rather than by which SNPs are actually the best 

predictors. 

In the analysis using UKBB data only, each fold sampled 90% of the data to be used as ‘base’ 

data: this was used to calculate p-values and beta scores. PRS was fit on the remaining 10% of 

data. The high variability of results show that the PRS was very sensitive to the exact 

composition of base and target groups. For a variant to be highly predictive, it must be present 

in a large enough proportion of the base split to obtain a high p-value and also be present in 

enough of the target split to be predictive in PRS. Generally, the better performing PRS used 

fewer SNPs which could indicate the existence of a small set of variants with higher prediction 

power which must be distributed well between test and train.  These PRS also suffer from the 

initial UKBB GWAS being underpowered, exacerbated by only using 90% of the data. Also, the 

target data consisted of only 10% of the data, meaning results are likely to be particularly 

sensitive to the coincidental presence or absence of particularly predictive SNPs. The small size 

of the target data probably contributes to instability of the results. 

Good polygenic risk scores include sites reliably known to be associated with risk. For example, 

the recent release from UKBB of PRS for 53 diseases and traits uses sets of variants from meta-

analysis of many GWAS285. PRS are not yet used in any clinical setting, with the first trials 

combining genetic risk with clinical predictors in the ongoing HEART study120; notably, this is 

a predictor for coronary artery disease, a very common and well-studied disease. The GWAS 

of cholesteatoma in this thesis was underpowered for rare variants and did not identify any 

significant loci, whilst background knowledge of cholesteatoma genetics is extremely limited. 

Therefore, I could not generate a high quality PRS, nor draw any conclusions about PRS utility 

in diagnostics or monitoring for this disease.  

5.4.2 Poor prediction power from gene-level Random Forests 

This study does not include enough observations to create a reliable classifier, and neither 

gene-level nor pathway-level models had good predictive power on unseen data. Cross-

validation performed on 10 test-train splits of the gene-level data using features selected 
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individually for each fold shows high variability in performance on test data despite consistent 

and reasonable out of bag errors of around 0.35. Selection of the best features for each fold, 

rather than testing the same set of features on all folds., likely contributed to this variability. 

Generally, sensitivity was low and AUC was very close to 0.5: overall, classification of testing 

data was no better than a random 1:5 assignment of cases:controls. 

Good performance in some folds suggests there may be some individuals whose case/control 

status is more easily classified based on their genes, perhaps because a certain gene or set of 

genes is particularly predictive in a subset of people and performance depends on their 

assignment across test and train. This could indicate high polygenicity or heterogeneity. 

However, these genes are hard to identify and do not seem to be common to the three well-

performing folds. Alternatively, this may simply indicate overfitting as participants are likely to 

carry distinct combinations of variants whether case or control, and so a large enough decision 

tree could always identify all cases. Such a model would perform badly on unseen data, as was 

the case in this analysis. Random forests are supposed to be robust to overfitting, but we can 

see in the pathway analysis that performance begins to decrease after 50 trees, suggesting 

overfitting can occur. 

Sample proximities for a gene-level model do not reveal any obvious clustering. Small clusters 

containing both cases and controls probably just represent the fact that some cases and 

controls share variants in certain genes by chance. Also, a large proportion of both cases and 

controls contained no variants within any of the important genes and were always classified 

as controls. Overall, this seems to reflect that the best-performing genes are slightly enriched 

for variants in cases compared to controls, which we already knew because their p-values are 

<0.05. Not all genes containing top-ranked variants were represented, however, including 

OR10A2 (olfactory receptor 10A2) which contained several high-ranking SNPs. This may be 

due to high polymorphism in the olfactory receptors286; if a gene contains many different 

variants, it may be more likely to contain some significant ones by chance than a less 

polymorphic one. Also, the presence of many non-significant SNPs in a highly polymorphic 

gene could introduce noise and make the gene a less useful predictor. 

Two genes had stronger surrogate associations than other gene pairings: RAPGEF2 and PTH2R. 

These are on different chromosomes (4 and 2 respectively), so this is not due to linkage 



207 

 

disequilibrium between variants. PTH2R is a G-protein coupled receptor of parathyroid 

hormone with diverse functions in the central nervous system287 and RapGEF2 is a guanine 

exchange factor for Rap/Ras GTPases, also with roles in the central nervous system288. G-

protein coupled receptors are inactivated by GTPases, suggesting a possible link between 

these two genes which may explain their high surrogate association.  

Pathway-level models failed to classify most cases and were less informative than gene 

set enrichment analysis. 

Pathway-level models performed worse than gene-level ones, tending to classify all unseen 

data as control. Important pathways identified by Boruta were more generic than those 

identified in GSEA but some similar functions to GSEA were also detected, such as cell motility 

and voltage-gated calcium channel activity. The sorted query used in GSEA provides higher 

weight to more significantly associated SNPs whereas this analysis simply uses the number of 

p<0.05 SNPs per gene and then per pathway. As such, the effects of strongly associated SNPs 

may be diluted by the effects of weakly associated SNPs which are more likely to be associated 

by chance. As a result, the standard GSEA is probably a more powerful method for identifying 

important pathways for an underpowered GWAS.  

5.4.3 Limitations and possible improvements 

The main limitation of this analysis was a lack of data for training and validation, which affected 

both PRS and ML models. It is uncertain how many cases would be required to give adequate 

power to GWAS to construct reliable risk classification models or PRS. Little is known about 

cholesteatoma genetics, so its genetic architecture is difficult to estimate, and we cannot apply 

knowledge about established risk loci to improve prediction. Some improvements to RF 

models may have been possible by varying parameters, for example modifying feature 

selection or tree depth. Lower p-value cutoffs for SNP inclusion in RF models may reduce the 

dilution effect of non-significant SNPs being counted alongside significant SNPs within genes. 

However, the initially underpowered GWAS and poor performance of RF models meant I 

refrained from developing models further than was described.  
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5.5 Conclusion 

When classification problems are complex, classifiers need large amounts of data. This is true 

for both polygenic risk scores and other machine learning methods. First, the initial data set 

used to generate summary statistics must be large enough to distinguish signals from noise. 

Next, there must be enough data to split into test and train, as testing data is crucial for internal 

validation of the model. Finally, there should be additional, independent data sets for external 

validation. This is particularly true for PRS, which need separate base and target data as well 

as validation data. To mitigate these issues, I used base data from FinnGen for PRS, as well as 

dividing UKBB data into test/train splits, which were used for both machine learning and PRS 

base/target data.  

PRS acquired using FinnGen bas data provide some support for a polygenic role in 

cholesteatoma. However, use of non-British base data on British target data probably distorted 

the results due to enrichment of certain rare variants in the Finnish population. PRS calculated 

on cross-validation folds within UKBB were less significant and less consistent, varying greatly 

in the p-value and number of variants used. This was probably because GWAS was 

underpowered, resulting in inaccurate estimates of variant odds ratios which are particularly 

sensitive to the composition of the test and train groups.  

Random forest classification probably failed for a similar reason; poor performance may reflect 

high variability in the number and composition of risk variants carried by individuals, but this 

is difficult to tell from inadequate sample size.  Pathway-level models had even poorer 

performance, perhaps because assigning variants to the pathway level results in a ‘diffusion’ 

of their effects as they become grouped with other variants and spread across multiple 

features. As a result, little additional insight into genetic architecture could be learned. 
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6 Discussion 

6.1 Summary of findings 

In this thesis, I performed an epidemiological and genetic study of cholesteatoma in the UK 

BioBank using publicly available results from the Finnish biobank FinnGen for comparison and 

validation. 

I began with a semi-systematic review of global gene expression studies to make sense of a 

large volume of literature examining differential expression of various proteins in 

cholesteatoma and determine the genes and processes that are consistently implicated across 

studies. Most of these studies had small sample sizes (N=2-17) and differing approaches, but 

some genes were consistently detected as differentially expressed including the upregulation 

of SERPINB3 and SERPINB4, S100A7, S100A8, S100A9, and CEACAM6, and the downregulation 

of TNXB and COCH. Disrupted processes included tissue development, cell adhesion, 

extracellular matrix (ECM) constituents, metal ion binding and immune function, though many 

immune genes were downregulated compared to COM tissue. 

In my epidemiological study, I described the identification of cases and controls from UK 

BioBank data as used in this and later analyses and addressed some questions about 

demographic risk factors by performing adjusted logistic regression. I found additional 

evidence for some tentative and known risk factors including male sex, deprivation and 

smoking. I also found that the demographics of cholesteatoma and non-cholesteatoma 

middle ear disease were more similar to each other than to the population with disease-free 

ears in UKBB, except for sex ratio and ethnicity; the male predominance is not present for non-

cholesteatoma middle ear disease. Cholesteatoma prevalence was highest in White and Asian 

participants (in UKBB generally referring to Indian, Pakistani and Bangladeshi ethnicities) and 

lowest in Black participants.  

The epidemiological analysis also explored some of the overlap of cholesteatoma with other 

inflammatory ear disease, including suppurative, nonsuppurative and unspecified otitis media, 

otitis externa and mastoiditis. Though these associations were generally well-known, these 

analyses raise useful queries about what is being investigated when we compare 

cholesteatoma to other middle ear disease or disease-free controls. I also detected increased 
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rates of chronic sinusitis and respiratory disease such as asthma and bronchiectasis in 

cholesteatoma and identified a potentially new association with epilepsy replicated across 

UKBB and FinnGen. Meanwhile, an association with otosclerosis may be due to misdiagnosis 

due to the initial similarity of presentation and the fact that misdiagnosed ICD-10 codes are 

not removed from records.  

In my genetic analysis, I performed genome-wide association tests (GWAS) at the variant and 

gene level and used gene set enrichment analysis (GSEA) to identify pathways and processes 

disrupted in cholesteatoma. Although GWAS identified no single variants or genes meeting 

genome-wide significance thresholds (traditional GWAS threshold 5x10-8; WES rare variant 

threshold 3x10-7; gene-level threshold 2.5x10-6), GSEA of all whole exome variants with p-

values < 0.05 indicated enrichment in certain processes: cell-cell adhesion, cellular motility, 

ciliary function via dyneins, developmental processes, and calcium binding. Notably, neither 

ECM nor immune function were enriched. These results were replicated in FinnGen data except 

for the enrichment of dynein proteins, which was due to several rare DNAH and DNAI variants 

in UKBB WES data. Ciliary impairment and calcium binding were also implicated by our 

previous whole exome study of twenty-one individuals from ten family clusters126, with several 

DNAH genes containing rare, deleterious variants co-segregating with cholesteatoma. In the 

UKBB whole exome single analysis results, dynein motor processes were enriched due to both 

DNAH and DNAI family members.  

I explored possible methods for characterising polygenic risk including polygenic risk scoring 

(PRS) and Random Forest (RF) machine learning approaches. PRS and RF classification were 

not viable with this data set due to its small size and the need for separate validation sets. I 

experimented with using FinnGen base data for constructing PRS and acquired significant 

results; however, model R2 was always very small, and the results were very variable, showing 

that PRS explained a very small portion of phenotypic variance and was highly sensitive to 

composition of the base and target groups. PRS performed on ten cross-validation folds of 

UKBB data also showed highly variable results, with base/target splits varying in the number 

of SNPs used and significance of the PRS. RF classification was likewise poor at classifying 

testing data. Not much could be learned from these models due to lack of data and the 

probable complexity of disease, meaning no models could accurately classify cases and 

controls. 
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6.2 Cholesteatoma genetics in the context of middle ear 

disease 

6.2.1 Factors identified in both cholesteatoma and otitis media 

Possible direct causal links between cholesteatoma and OM 

My epidemiological analyses support a large overlap in cholesteatoma pathology and risk 

factors with other middle ear diseases. A history of otitis media (OM) is common in 

cholesteatoma and the symptoms overlap, involving inflammation, otalgia, and otorrhea1,6,9,23. 

OM is inflammation in the middle ear, commonly in response to bacterial or viral 

pathogens289,290. Most children experience at least one episode of otitis media with effusion 

but disease is usually self-limiting19. Chronic OM may directly contribute to cholesteatoma 

development, for example by causing tympanic retraction. Negative pressure in the middle 

ear due to poor ventilation pulls the tympanic membrane inwards, resulting in a small pocket 

on the exterior side which may accumulate keratin debris22. This debris may constitute a pre-

cholesteatomatous stage, which only proceeds to cholesteatoma in a small number of cases22. 

Additionally, destruction of collagen and elastin in the tympanic membrane due to chronic 

inflammation causes it to weaken, exacerbating the retraction181. Debris in the retraction 

pocket is thought to be the origin of primary acquired cholesteatoma according to 

invagination theory. Chronic inflammation may also result in perforation or provide conditions 

which provoke mucosal metaplasia or basal cell hyperplasia21. However, the symptoms of OM 

may also be caused by cholesteatoma, making it difficult to determine the temporal or causal 

relationship.  

The concept of endophenotypes, drawn largely from genetic studies of psychological 

phenomena, may be useful for understanding this relationship. An endophenotype is an 

intermediate phenotype which, in combination with other endophenotypes, increases risk of 

another phenotype291. Endophenotypes may be shared between similar diseases. For example, 

poor ciliary function or cranial morphology may be considered endophenotypes for 

cholesteatoma which also act as endophenotypes for OM, hence raise the risk of both. 

Whether OM itself is an endophenotype contributing to risk of cholesteatoma is not clear. 

There may be factors governing risk of OM, risk of OM becoming chronic, and risk of 

proceeding to cholesteatoma, as well as distinct risk factors for cholesteatoma independent 
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of OM. In my analysis, I excluded all ear disease from the controls, so there was no way to 

distinguish genetic effects contributing directly to cholesteatoma to those contributing to ear 

disease generally. Therefore, it is useful to compare the results of genetic analyses to the 

known genetics of OM. 

There are no accepted OM risk loci, and study of OM is complicated by its various forms (acute, 

chronic, with or without effusion, suppurative or non-suppurative).  However, genetic studies 

generally identify variants in the genes involved in the inflammatory response, mucin 

production and mucociliary transport, and development of the Eustachian tube289,290.  Given 

that OM arises from colonisation with pathogenic bacteria, variability in host immune response 

is thought to play a role in susceptibility with specific variants in several interleukin genes, 

HLA-A, TLR4 and TNF- α having been detected in individual GWAS289,292. However, my results 

did not indicate a strong role for immune/inflammatory genes in cholesteatoma.  

Mucociliary function in the middle ear is essential for preventing colonisation of pathogens 

through antimicrobials in the mucus, physical clearance, and recruitment of inflammatory 

cells293. Eustachian tube important for clearance of the middle ear and pressure equalisation; 

poorer Eustachian tube function in children compared to adults is one reason they are more 

susceptible to middle ear disease293. The evidence for a genetic involvement via morphological 

differences is mostly due to an association with chromosomal abnormalities289.  

Support for cilia in cholesteatoma but not variants in inflammatory response 

My data do suggest a role for ciliary dysfunction in cholesteatoma. Dynein binding proteins 

were enriched amongst UKBB WES results, primarily due to rare (MAF < 0.001) variants in 

DNAH and DNAI members. Along with the DNAL family, these genes encode components of 

axonemal dyneins, which act as motor proteins responsible for powering the movement of 

cilia. Variants in DNAH5, DNAH11, DNAH1, DNAI1, DNAI2, DNAL1, DNAAF1, DNAAF2, 

DNAAF3 are known to cause primary ciliary dyskinesia (PCD), which is associated with 

recurrent middle ear and respiratory infections253. In my epidemiological study of 

cholesteatoma, I found an association with chronic sinusitis and bronchiectasis which form a 

triad with situs inversus in Kartagener’s syndrome, a form of PCD17. This further supports a 

generally poor ciliary function in persons with cholesteatoma in UKBB. A role for dyneins in 

cholesteatoma is also supported by the previous GoC whole exome study126 where several 
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rare, deleterious DNAH variants that co-segregated with a diagnosis of cholesteatoma were 

identified in families with multiple cholesteatoma cases. 

6.2.2 Factors identified in cholesteatoma but not in OM 

Adhesion and cytoskeleton 

A role for cell adhesion is supported by gene expression studies as well as enriched terms from 

UKBB WES, microarray and FinnGen results. This overlaps with enrichment of cytoskeletal 

variants, particularly actin organization; both adhesion and reorganization of the actin 

cytoskeleton are required for amoeboid cell motility. Alteration of the balance between cell-

cell adhesion and cell-ECM adhesion can promote altered cellular migration and invasiveness 

in cancer175. CEACAM6 is an example of an adhesion molecule expressed by cholesteatoma 

which is also associated with invasiveness in cancer162. In some tympanic retractions, a pre-

cholesteatoma in the form of micro cysts in the propria lamina can develop, but this does not 

usually proceed to cholesteatoma22. Genetic differences promoting invasiveness could be 

important in determining whether the cholesteatoma continues to develop or fails to establish 

itself in the tympanic membrane. Furthermore, altered migration may adversely impact the 

self-cleaning mechanism of the tympanic membrane, which involves a continuous outwards 

migration of cells from the centre294. Cell migration is also implicated by the migration theory 

of cholesteatoma, where aberrant migration through a perforation is considered the origin of 

cholesteatoma epithelium21.   

Adhesion molecules also have signalling roles, including those downstream of fibroblast 

growth factor receptor and epidermal growth factor receptor175. Excessive growth of 

cholesteatoma cells may also contribute to establishment under several theories of 

cholesteatoma formation. 

Calcium binding 

Calcium ions act as an important signalling molecule in many processes including muscle 

contraction, neural signalling, cell growth, cell migration and cell death, making its role is 

cholesteatoma difficult to suggest. In polycystic kidney disease, low intracellular calcium is 

thought to drive cyst formation through upregulated cAMP, increased fluid secretion and 

activation of the MAPK pathway250. In this case, defective calcium localisation is thought to 
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arise through defective ciliary signalling. However, renal cysts have little in common with 

cholesteatoma (aside from a wider association between renal and otic disease295,296), as they 

are typically described as simple, fluid-filled sacs.  

Due to its signalling roles in processes such as cell migration, cell growth, and cell death, 

calcium also plays an important role during wound-healing. Cholesteatoma perimatrix is a 

granulation tissue resembling wound tissue, in that it displays inflammation, breakdown of 

ECM, cellular proliferation and remodelling. Calcium is essential for proper differentiation of 

keratinocytes and modulation of angiogenesis during wound-healing, and deficiency in 

animals is associated with higher rates of chronic wound formation249. Calcium binding is also 

another large term containing many genes, although unlike the developmental process terms, 

there is support from gene expression studies for a role in cholesteatoma.  

A major role of calcium is in the skeletal system and one report297 found increased rates of 

cholesteatoma with osteoporosis, though this was not replicated in UKBB data. Meanwhile a 

class of drug (bisphosphonates) used to treat osteoporosis, has occasionally been noted to 

induce external auditory canal cholesteatoma42. Although bone turnover is altered in 

cholesteatoma, this is not until after disease is established so seems unlikely to contribute to 

formation.  

6.2.3 Additional evidence from new FinnGen release 

Following the completion of genetic analyses in this thesis which used FinnGen Release 9, 

Release 11 was made public. In this release, there is a single significant variant and several loci 

approaching significance. The only individual significant result is for a rare (case AF 0.13%) 

intergenic variant near to the RP11-2P2.2 pseudogene (rs766961752) (OR=107.38, p-value 

6.4x10-10). This pseudogene was also strongly associated with cleft lip and palate in FinnGen 

(OR 4.73, p=7.4x10-17), suggesting an overlap between cholesteatoma and cleft lip and palate 

in this cohort. This association within FinnGen was also reported by Rahimov et al. (2024)298 , 

who attribute high incidence of cleft lip and palate in the Finnish population to intergenic 

variants near IRF6. 

There was also a strong peak in chromosome 16 due to common variants around LINC02131; 

the most significant was rs1117410, which was less common in the case group. LINC02131 lies 
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between NUDT7 and ADAMTS18 and was also strongly associated with decreased risk of 

diseases of middle ear and mastoid, suppurative and unspecified otitis media, chronic 

suppurative otitis media and acute suppurative otitis media within FinnGen. It is interesting 

that the variants at this locus tended to be associated with decreased disease risk; this of 

course depends on which allele is considered reference. The most strongly associated variants 

at this locus had frequencies ~50%, probably reflecting the common nature of middle ear 

disease. 

There are several other loci where signals seem to be emerging and these may become 

significant in future releases; I do not discuss these now as it is difficult to determine which 

genes are mostly likely to be involved due to linkage disequilibrium, though interestingly most 

of the nearby genes at these loci are not also associated with other middle ear disease 

according to FinnGen PheWAS. An additional interesting finding was a variant in DNAH7 

(rs1419900187) with p-value 8.5x10-7 (AF 0.000408); this was 10th most significant variant in 

FinnGen. 

Interesting, nonsuppurative otitis media, suppurative otitis media, acute suppurative otitis 

media, and otitis externa all have strong peaks around the MHC region in chromosome 6, 

indicating an immune role in these diseases. No such peak is present in cholesteatoma results, 

despite this peak being visible even in ‘acute otitis externa noninfective’, which only has 419 

cases. This is interesting as it further suggests that immune function does not have a major 

role in cholesteatoma susceptibility, even if it is involved in pathogenesis. 

6.3 Proposed genetic architectures 

6.3.1 Evidence of a polygenic effect 

This study did not identify any single genes or variants significantly associated with 

cholesteatoma, but several enriched processes were detected and supported by data from 

FinnGen and our previous whole exome study, suggesting a polygenic effect does exist. 

However, it is unclear whether individuals are enriched for variants in multiple processes, or if 

defects in just one pathway are sufficient to increase cholesteatoma risk.  
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Heritability cannot be estimated from this data, but the overall genetic effect does not appear 

to be large based on the small R2 of PRS calculated using both FinnGen and UKBB base data. 

However, a higher better R2 may be acquired with a better-powered GWAS for base data or 

better match between base and target populations. Meanwhile, power analysis of GWAS 

imposes a maximum possible risk ratio on single common variants of 1.4; this means a 

heterozygous carrier would be 40% more likely to have disease than a person with no variant. 

This largely discounts the possibility of a small number of variants with strong effects, although 

rare variants may have larger effect sizes and there is the possibility of type 2 error. Failure of 

previous genetic studies65,66,68,124,126 to identify any common genes or variants supports a lack 

of high-penetrance causal variants but the small sizes of these studies and lack of controls 

may also result in type 2 error.  

The omnigenic model suggests that all genes expressed in relevant tissues can be involved in 

disease due to complex regulatory networks. As a result, larger functional terms tend to explain 

more heritability than more functionally relevant terms. Boyle et al. (2017) suggest that genes 

under the omnigenic model can be sorted into ‘core genes’ which are directly relevant to 

phenotype and ‘peripheral genes’ affect phenotype indirectly via regulatory networks299. In 

this analysis, functions not directly related to cholesteatoma phenotype may include tissue 

development, neural development, and calcium binding. The omnigenic model may also 

explain the poor transferability of polygenic risk scores and variant effect sizes across 

populations as it is not only the effect of core genes that must be considered but of a large 

number of interacting peripheral genes which may be heterogeneous between populations300. 

Many enriched terms in genetic analysis of UKBB data had compelling links to cholesteatoma 

biology including ciliary function, cell adhesion, cytoskeletal organisation, and calcium 

binding. Some processes such as developmental processes and synaptic signalling have more 

obscure roles and could be considered peripheral, but further study would be required to 

determine this. 

6.3.2 Familial and non-familial forms of disease 

It is not unusual for diseases to have familial and sporadic forms. In such diseases, a portion 

of cases are due to a small number of highly penetrant genetic variants and run in families. 

The remaining portion are sporadic and have a less obvious genetic basis, seeming to be 
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dominated more by environmental factors. However, in some diseases it has been shown that 

non-familial cases can be influenced by genetics in a highly polygenic manner. For example, 

up to 10% of cases of breast cancer are due to highly pathogenic variants on a small number 

of genes, primarily BRCA1 and BRCA2. Meanwhile, over 100 different loci have been linked to 

individually small increases in breast cancer risk but can be combined in a polygenic risk score 

identifying up to a 3-fold increased risk due to polygenic effects301. Similarly, ALS has familial 

and sporadic forms, where the familial form (10% of cases) is typically associated with 

dominant inheritance of a variant affecting a single gene. Common causative genes are 

C9ORF72, SOD1, TARDBP and FUS, but many genes have been identified in familial ALS and 

are associated with different presentations of disease302. Genes associated with the sporadic 

cases are largely unknown, though a small number of individuals will also carry mutations in 

C9ORF72, SOD1, TARDBP or FUS. In both breast cancer and sporadic ALS, there is a large 

environmental risk factor. 

These cases highlight the complexity of diseases where different genetic architectures can have 

different presentations, penetrance, and heritability. In cholesteatoma, only 10% of cases 

reported a family history in an online survey posted to cholesteatoma support groups61. 

Though there is likely to be a degree of bias – persons with family history may have had better 

awareness of cholesteatoma and more likely to seek support groups, for example – this rate is 

a lot higher than we might expect due to chance if lifetime risk is 1 in 500. Affected families 

may share particularly high polygenic risk scores, important lifestyle factors, or specific variants 

with high penetrance. Our previous WES study did not identify any rare, deleterious variants 

which co-segregated with cholesteatoma in all 10 families, but some processes were enriched 

in the variants identified by TRAPD analysis and in the variants common to at least 2 families. 

This included microtubule motor function, ECM degradation and calcium ion binding, so it is 

possible that a familial form of cholesteatoma is based on a smaller number of higher risk 

variants affecting these processes, or individual risk variants unique to each family affecting 

similar processes. Due to the identification of DNAH variants in these families and enriched 

dynein-binding in UKBB WES results, I suggest that rare dynein variants specifically require 

further investigation in affected families. 
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6.4 Limitations 

The limitations of individual studies performed in this thesis are discussed in their relevant 

chapters. Here, I discuss some overarching limitations of the biobank approach. 

6.4.1 Difficulties due to rare disease and sample size 

A major limitation of this study was the sample size. Cholesteatoma is rare, so acquiring many 

cases is difficult and the number of cases was ultimately limited by the number in UKBB. In 

order to increase the sample size and study power, I used expanded criteria using ICD-10 and 

OPC codes to identify all putative cases, which almost doubled the number within UKBB. This 

may also have introduced some cases who were not actually cholesteatoma cases, although 

procedures such as mastoidectomy are unlikely to be performed for any other reason. 

However, ICD-10 codes are largely missing before 1995 and UKBB participants are above the 

age of peak incidence, meaning childhood cases may have been missed.  

Despite maximising the number of cases, I have shown that the study was underpowered for 

rare variants unless highly penetrant. This is particularly problematic given the evidence that 

rare dynein variants may be important. Also, if there are familial and sporadic forms of 

cholesteatoma, we can expect rare variants to have a greater role in familial disease. This is 

because familial cholesteatoma is rare, hence we would not expect common variants to be 

causal. Furthermore, rare variants may have stronger deleterious effects than common ones, 

as negative selection prevents them from becoming common219. Cholesteatoma genetics are 

likely complex, given that no studies have yet identified the same variants and disease risk is 

multifactorial.  

To reduce risk of type 1 error, I performed filtering to consider only non-synonymous coding 

variants in UKBB WES data and applied similar filters to microarray data for comparison. 

Alongside quality filtering, this reduces the number of variants and retains the highest quality 

variants most likely to be involved in disease. Generally, synonymous variants are not thought 

to contribute to disease228, so it is unlikely that this will exclude any causal variants. Type 2 

error is difficult to avoid, particularly given the small sample size. Type 2 error rate can be 

reduced by lowering p-value threshold, but this necessarily increases type 1 error. By 
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conducting enrichment analysis, the effects of variants not meeting genome-wide significance 

can still be assessed. 

Lack of data also severely restricted the polygenic risk score and machine learning analyses, as 

large volumes of test, train and validation data are required for accurate classification. The best 

PRS are built on foundations of good knowledge about genetic and environmental risk 

factors121,285,303, which are not well-known in cholesteatoma. Due to these issues, most 

examples of PRS are for common, well-studied conditions such as breast cancer, Alzheimer’s 

disease, coronary artery disease and type 1 diabetes304. 

6.4.2 Congenital cholesteatoma cannot be distinguished from 

acquired cholesteatoma in this study 

Lack of granularity in the UKBB data means it was impossible to distinguish congenital and 

acquired cholesteatoma. The discussion in this thesis focuses on acquired cholesteatoma as 

the more common form (estimates for congenital cholesteatoma are between 4 and 24%)5. 

However, they have distinct features which mean factors that I have suggested to play a role 

in acquired cholesteatoma may not apply to congenital cholesteatoma. For example, 

congenital cholesteatoma is not associated with inflammation, tympanic retraction, or 

perforation2. Ciliary variants, which may increase risk of OM and prevent proper clearance of 

debris from the middle ear, may not be relevant. Aberrant migration may still be involved as a 

possible origin for congenital cholesteatoma is migration from the developing auditory 

canal305. Likewise, tissue development processes could be involved if the origin is an epithelial 

remnant which is inappropriately retained in the middle ear306. However, there is less literature 

regarding congenital cholesteatoma causes, making it difficult to draw conclusions. 

6.4.3 Limitations in functional interpretation 

I used GO term enrichment to identify disrupted processes in both gene expression data and 

genetic variant data. However, our knowledge of the pathways and processes that genes are 

involved in, or the tissues in which they are expressed, is not exhaustive and annotations 

change over time as databases are amended with new information. Many annotations are 

inferred from structural similarity via automated processes and many annotations belong to a 

relatively small number of well-studied genes180. This can cause analysis to be biased towards 
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functions associated with well-studied genes and can also affect study replicability as GO terms 

are updated between studies. 

Additionally, there are limitations to the interpretation of individual variants both due to 

incomplete knowledge of gene functions and inability to determine causal loci. This is 

particularly relevant to microarray approaches where it is likely that causal variants are not 

directly measured, particularly if they are rare. Associations with non-causal variants can arise 

through linkage with causal variants, making it difficult to determine which genes are actually 

involved in pathology. When researchers wish to identify which variant in a region of strong 

linkage disequilibrium is causal, they may employ fine-mapping307. Fine-mapping was not 

indicated in this study as no significant variants or strong signals were identified to begin with.  

6.4.4 Wider ethical issues due to lack of diversity within biobanks 

This study is only relevant to white British populations due to the small number of non-white 

participants in UKBB. This is part of a wider issue with biobank-based studies, as many of them 

contain majority European background individuals due to the large number of North American 

and European companies involved308. Very few biobanks exist outside these regions. Amongst 

the European and American biobanks, some have a specific aim of including participants from 

diverse backgrounds (e.g. Our Future Health). However, the overall effect is that knowledge of 

genetic disease is concentrated on white populations in Europe and America; results may not 

apply to other ethnicities due to varying gene frequencies. This could lead to exacerbation of 

existing inequalities within and between countries. This effect is amplified by the fact that many 

non-genetic risk factors are also associated with different ethnicities within countries, as these 

are often linked with socioeconomic factors. 

6.5 Future study directions 

6.5.1 Future studies should be guided by clinical utility 

Studies should be informed by what type of information would provide the most benefit to 

patients. First, can genetic information be acted upon? In cholesteatoma, early identification 

and surgery are important to preserve hearing and reduce risk of recurrence309. A person at 

high risk could be monitored more closely, for example being checked for cholesteatoma 
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when experiencing otalgia or effusion but there are currently no non-surgical treatments that 

could be given to reduce risk. 

A 2022 review53 of the current state of medical interventions for cholesteatoma lists several 

drugs which have been or are under trial for treatment of inflammatory disorders which may 

have application in cholesteatoma. Most of these are anti-inflammatory drugs, many of them 

targeting TLR4 and/or RAGE receptor. TLR4 and RAGE are both pattern recognition receptors 

involved in the immune response; TLR4 is a major activator of innate immunity whose primary 

target is bacterial lipopolysaccharide, while RAGE has a broader repertoire including S100 

proteins. Of the suggested drugs, Ibudilast, Azeliragon, and Fenebrutinib are in phase 3 trials 

for other inflammatory conditions; however there have been few drugs tested on 

cholesteatoma.  

Some mouse and human studies have been performed: Uzun et al. (2021)310 investigated anti-

inflammatory drugs in cell culture and concluded that tacrolimus and imiquimod are 

candidates for further study due to decreased expression of inflammatory cytokines, 

decreased cholesteatoma cell viability, and minimal known ototoxicity. Earlier studies311,312 

identified the anti-inflammatory 5-fluorouracil as a potential treatment. Vitamin A has been 

studied in animal models of cholesteatoma, as vitamin A deficiency is linked to chronic otitis 

media: Nageris et al. (2001)198 report that both vitamin A and cortisporin reduced the rate of 

cholesteatoma formation in a gerbil model and Rao et al. (2009)313 report treating 5 patients 

with vitamin A and completely removing cholesteatomas in 4 of them. However, Boesoirie et 

al. (2023)314 found no difference in vitamin A or E for CSOM or CSOM with cholesteatoma in 

60 patients. Overall, there are still no non-surgical cholesteatoma treatments and no drugs in 

development as alternatives, despite several candidates being suggested.  

Any intervention based on genetic risk would currently amount to increasing awareness of 

disease, closer monitoring, and earlier intervention to preserve hearing. Whether genetic 

testing would offer any benefit over simply informing people of a familial risk would depend 

on the strength of the genetic effect, whether any non-surgical treatments become available, 

and whether any treatment course might be affected depending on which genes are involved.   



222 

 

Beyond genetic testing within high-risk families, the utility of PRS for predicting cholesteatoma 

risk is questionable. Even the most rigorously studied complex diseases do not generally have 

PRS in clinical use: the ongoing HEART study120 uses a combined PRS and clinical predictor for 

coronary artery disease121, one of the most common causes of death in the world, and has just 

passed its pilot phase. No other PRS are used for predictive purposes in a medical setting, and 

so are mostly offered by commercial companies offering private testing via at-home kits. PRS 

offered vary between companies, but include coronary artery disease, type 2 diabetes, various 

cancers, and Alzheimer’s disease. Yet these are not clinically tested, and while PRS are generally 

accepted to describe population-level risk well, their utility on an individual level is not known.  

PRS are continuous, so a somewhat arbitrary cutoff must be placed to determine ‘high risk’ or 

which people require further screening or preventative treatment. This means that the 

additional benefit from including PRS in screening for disease risk may be modest272 and will 

depend on the relative contribution of genetics to disease risk. Another concern is that 

emphasis on complex genetic risk factors draws attention away from well-known, highly 

impactful environmental risk factors such as smoking, obesity, and deprivation272. 

Aside from these issues, PRS generally are not constructed for rare diseases such as 

cholesteatoma. This is probably because sample size is often small, because rare diseases are 

not as widely studied as common diseases, are generally studied by methods other than 

GWAS, and because previous GWAS have mostly been microarray based (so have not captured 

rare variants). In short, we do not have reliable odds ratios for genetic variants associated with 

polygenic rare diseases. In order for a PRS to have any predictive power in a general 

population, much more about cholesteatoma biology would need to be known and there 

would need to be an effect size large enough to warrant investigation. PRS may be of more 

utility within groups already known to be a high risk, in this case when disease is in the family. 

However, it may be that familial cases are less polygenic; additional family studies are needed 

to provide insight into this matter. Future studies may also wish to compare cholesteatoma to 

disease-free ears, as well as to non-cholesteatoma middle ear disease.  

6.5.2 Strategies for increasing power of future studies 

Individual studies may struggle to acquire a large enough cohort of cholesteatoma patients 

for genetic testing. However, the large and increasing number of biobanks make meta-analysis 
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an attractive possibility. Rämö et al. (2023)90 recently performed such a meta-analysis for 

otosclerosis using results from UKBB, FinnGen and the Estonian Biobank. As more studies are 

performed on these biobanks and PheWAS results are generated, meta-analysis may become 

increasingly easy as summary statistics can be used. Biobanks such as FinnGen may release 

these results, or outside researchers may release them; several PheWAS browsers are available 

for UKBB, for example GeneBass (https://app.genebass.org/) and PheWeb 

(https://pheweb.sph.umich.edu/), while BioBank Japan compiles results from individual studies 

(https://pheweb.jp/). An additional benefit of PheWAS is the ability to check for phenotype 

associations for high-ranking genes which may offer more information on the reasons for a 

gene’s significance, for example the FinnGen R11 result for cholesteatoma also being 

associated with orofacial cleft. Such associations may not necessarily extend beyond the 

individual biobank being studied but could explain the associations within that biobank. 

Such studies may provide stronger evidence for a genetic basis of cholesteatoma risk and help 

to differentiate it from other middle ear disease. This knowledge could be used to guide family 

studies, as loci or pathways identified from the general public could be examined directly 

rather than sifting through the whole genome. In other diseases with sporadic and familial 

forms, there is often overlap in the genes involved in both forms302,315–317. A recent review of 

obesity genetics also identified common pathways between rare monogenic causes of severe 

obesity and common, polygenic risk of obesity318, so even if identical genes are not involved, 

there is likely to be similarity in disease pathways. Therefore, GWAS results should provide 

additional insight into familial cholesteatoma even if distinct familial and sporadic forms of 

disease exist. 

Power may also be increased if the binary outcome can be converted into a continuous trait, 

for example if a biomarker can be identified associated with severity319. Expression of the 

biomarker is measured, resulting in detection of expression quantitative trait loci (eQTLs)320. 

There are no cholesteatoma biomarkers at this time, though gene expression studies reveal 

several candidates. The matrix metalloproteins have often been studied in cholesteatoma and 

are thought to be involved in invasiveness and bone destruction: MMP expression has been 

correlated with increased destruction of bone156,158, and they are also expressed in the 

tympanic membrane where they may contribute to retraction pocket formation through 

https://pheweb.sph.umich.edu/
https://pheweb.jp/
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degradation of the lamina propria and loss of elasticity 181. Although several different MMPs 

have been detected in cholesteatoma, MMP9 is amongst the most frequently described. 

Khondoker et al. (2015)321 increased power of an Alzheimer’s disease GWAS using imaging 

data to measure cortical thickness and regional volume in different parts of the brain. 

Cholesteatoma can vary in the location and spread, extent of ossicular damage and invasion 

of other bony structures. They can easily be identified via MRI or CT scan322. This presents an 

alternative quantitative measurement for cholesteatoma. However, an issue with both this 

approach and the eQTL approach is cost effectiveness; biobanks do not typically contain large 

amounts of imaging data, nor are they likely to contain tissue samples from the middle ear, so 

participants would have to be recruited and these measurements taken. This reintroduces the 

issue of cholesteatoma incidence being low, making recruitment difficult as well as expensive. 

Another possible approach could be to use the presence of complications as biomarkers for 

cholesteatoma aggressiveness, for example using ICD-10 codes indicating recurrence or 

intracranial complications such as meningitis. 

6.5.3 Perform family studies focusing on affected pathways 

Family studies have the potential to better identify rare, highly penetrant variants323. First, other 

family members can be used as controls, reducing the number of candidate genes. If individual 

families carry distinct risk variants or combinations of risk variants, such studies may better 

identify them than population-level GWAS as the signal to noise ratio will be worse for the 

latter. A better estimate of heritability may be acquired from family studies, as although 

heritability can be estimated from large, unrelated populations, these methods require high 

power and are generally poor where rare SNPs are involved324. 

However, if candidate variants have low penetrance, family studies may lack power323. One 

issue is that many genes are likely to co-segregate with disease, meaning they must be filtered 

in some way to identify likely candidates. Our previous study used a combination of predicted 

impact filters, co-segregation analysis and TRAPD analysis, where the frequencies of variants 

are compared to the frequency in the general population. Filtering to genes associated with 

the functions identified in this GWAS may be one method to reduce multiple testing and 

further increase power of family studies.  
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Given that our family study detected rare, deleterious DNAH variants co-segregating with 

cholesteatoma in five out of ten families and the UKBB WES study detected enrichment of 

axonemal dyneins, I recommend further study of rare dynein variants within affected families. 

The known link between dynein variants and PCD, chronic ear disease and cholesteatoma is 

also convincing. In my study, the dynein variants were rare and therefore could not explain all 

cases, but they may be involved in a subset. 

6.5.4 Further investigation of epilepsy link 

The nature of the relationship between epilepsy and cholesteatoma in this study is unknown. 

Epilepsy may arise as a complication of intracranial infection or may be a risk factor itself. 

Another possibility is that anti-epileptic drugs may have an influence on cholesteatoma risk, 

as is seen with bisphosphonates given for osteoporosis. Cholesteatoma and other middle ear 

conditions are not amongst known side effects of anti-epileptic drugs, which mainly include 

nausea, headache, dizziness and cognitive effects. However, there are many anti-epileptic 

drugs and rarer adverse effects can involve various organs including the skin, causing 

conditions such as acne, rash, exfoliation and Stevens-Johnson syndrome325. While there is 

currently no established link between epilepsy or its treatments and raised risk of 

cholesteatoma, biobanks containing information about prescription medications could hold 

further insight into any potential relationship. 

6.6 Impact 

Little is known about what causes cholesteatoma. Although there are several convincing 

theories for formation, these do not explain all cases and many cases show features of multiple 

theories of formation. Nor is it known why these processes occur in some people and not 

others, despite similar conditions such as chronic inflammation and tympanic retraction. Until 

recent observations of family clustering, cholesteatoma has been considered non-genetic. This 

thesis supports a genetic role and suggests several pathways and processes which may be 

involved in cholesteatoma biology, which may be used to enhance future family-based studies. 

It also provides evidence that cholesteatoma risk is complex: it is not based on a single gene 

or variant, may be highly polygenic and/or heterogeneous, and the overall genetic effect 

within the general population is not large.  
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7 Conclusion 

Cholesteatoma is a complex disease with heterogeneous presentation and multifactorial 

environmental and genetic risk. Increased susceptibility may arise through a combination of 

factors contributing to increased risk of otitis media, and both separate and overlapping risk 

factors contributing to risk of development of cholesteatoma. Genetic risk factors may be 

heterogeneous, possibly with both familial (high-penetrance, less polygenic) and sporadic 

(low-penetrance, highly polygenic, highly environmental) forms.  

A major finding of his study was enrichment of pathways within UKBB whole exome single 

variant data with the following themes: cell adhesion, actin cytoskeletal organisation, tissue 

development, and calcium binding. These were supported by enrichment within the Finnish 

biobank FinnGen. Another important finding was enrichment of dynein binding processes 

within UKBB whole exome single variant data due to rare DNAH and DNAI variants; this was 

not replicated in the microarray-based FinnGen data nor UKBB microarray data due to rarity 

of these variants. As our previous whole exome study also identified rare DNAH variants within 

affected families, this supports a role for dynein function and therefore ciliopathy in 

cholesteatoma.  

Variants in these pathways may contribute to cholesteatoma risk directly or indirectly via risk 

of otitis media (Figure 36). Ciliary impairment may raise susceptibility to OM and prevent 

proper clearage of keratin debris from the middle ear. Altered cell motility due to adhesion 

and cytoskeletal variants may also contribute to dysfunctional epithelial turnover on the 

tympanic membrane or promote invasiveness.  

Poor Eustachian tube function has a known role in risk of chronic ear disease and chromosomal 

abnormalities have previously been shown to raise risk of otitis media and cholesteatoma, but 

it is unclear if enriched tissue development processes discovered in this analysis are associated 

with differences in Eustachian tube morphology.  A role for calcium in cholesteatoma seems 

well supported by genetic and gene expression studies. While immune genes are implicated 

in OM susceptibility, no immune involvement in cholesteatoma was detected in this thesis.  
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Figure 36. Diagram showing cholesteatoma risk factors (black) and pathological 

features (pink).  

 

 

Likewise, extracellular matrix dysfunction is implicated in cholesteatoma from gene expression 

studies. My semi-systematic review of global gene expression studies identified upregulated 

proteases and broad dysregulation of extracellular matrix structural components including 
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consistent downregulated TNXB and COCH. However, my genetic analysis did not implicate 

ECM function directly. 

Overall, this study supports the existence of a complex genetic component to cholesteatoma 

disease risk. Whether individuals have some combination of the identified genetic pathways 

or defects in just one is not known. Although very few genetic studies of cholesteatoma have 

been performed, evidence from this and our previous whole exome study support the dynein 

family of ciliary motor proteins as targets for future research. 
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8 Appendix: Ancestry Estimation 

To avoid confounding due to population structure, GWAS usually use participants of a 

homogenous genetic background. While it is possible to perform multi-ancestry GWAS, large 

numbers of each ancestry are required. The UKBB cohort includes individuals of a wide array 

of backgrounds but is majority White British. The metadata contains three methods for 

identification of genetic background: ethnicity, as stated by participants at recruitment; genetic 

principal components, from which genetic structure can be determined; and an indicator for 

genetically determined White British participants, determined by Bycroft et al. (2018)c using a 

combination of both. 

Use of genetically-determined ancestry may be more appropriate for genetic study, as the 

intent is to control for genetic factors. However, this may not be appropriate for 

epidemiological study where sociological factors are likely to be important. I investigated 

ancestry based on genetic principal components and compared it to ethnicity to determine 

whether ancestry or ethnicity provided better case-control matching for epidemiological and 

genetic study, and whether ethnicity would be a suitable proxy for genetic ancestry in genetic 

study. 

Ancestry estimation from ethnicity and k-means clustering 

K-means is a method for sorting multi-dimensional data into groups by calculating the 

position of the centroid of each cluster. The centroid is the coordinate at the centre of any 

given cluster. Individuals are clustered as to minimise the average distance to the centroid. 

This was performed on the genetic principal components supplied by UKBB. Genetics of 

different populations do not form self-contained, discrete clusters as populations are rarely 

entirely isolated. They are similar to neighbouring populations and may have significant 

admixture with other populations leading to the PCs forming continuous gradients between 
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more densely clustered regions (Figure 37). The clustering algorithm must create artificial 

cutoffs in order to assign individuals to a given cluster. 

Figure 37. Genetic principal components coloured by ethnicity given in UKBB 

questionnaire 

 

For this reason, K-means clustering fails when all individuals are supplied at once. I randomly 

sampled 5000 individuals at a time to assign them to 4 clusters with k-means using the first 

10 PCs. I chose 4 clusters to represent the 4 major continental ethnicities present In UKBB – 

European, African, South Asian and East Asian. Mixed and other ethnicities were assigned if 

the individual was above a threshold distance from their centroid (Figure 38b).  

  



231 

 

Figure 38. Genetic principal components of a) a random sample of individuals, coloured 

by ethnicity and b) the same individuals coloured by assigned cluster, showing selected 

cases and controls in black.  
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Use of ethnicity over ancestry in genetic studies 

In the GWAS section of this thesis, I use white ethnicity as a proxy for European ancestry. To 

check that this was a suitable approximation, I compared the selected cases and controls to 

the assigned ancestry by k-means. The points fell within the broader European cluster, though 

one or two could also have been placed in ‘other’, I decided this was a suitable approximation 

(Figure 38). This was beneficial to using Bycroft et al.’s definition of White British190 as it 

maintained a larger number of cases and allowed direct comparison to epidemiological 

analysis where ethnicity was a more appropriate variate. Also, matching performed better 

when ethnicity was used rather than ancestry (see Assessment of matching performance). 

Finally, approximating ancestry based on genetic principal components also involves assigning 

somewhat arbitrary cutoffs as the components form gradients between more densely 

clustered regions. 
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Glossary 

Abbreviations 

ALS Amyotrophic lateral sclerosis 

AOR Adjusted odds ratio 

CF Cystic fibrosis 

COM Chronic otitis media 

DEG Differentially expressed gene 

ECM Extracellular matrix 

ENSG Ensembl gene ID 

GO Gene ontology (GO:BP biological process; GO CC cellular compartment; GO MF 

molecular function) 

GoC Genetics of cholesteatoma 

GRR Genetic risk ratio 

GSEA Gene set enrichment analysis 

GWAS Genome-wide association study 

HPV Human papillomavirus 

HR Hazard ratio 

MAC Minor allele count 

MAF Minor allele frequency 

MLE Maximum likelihood estimate 

NCBI National Center for Biotechnology Information 

NGS Next generation sequencing 

OM Otitis media 

OR Odds ratio 

PCD Primary ciliary dyskinesia 

PheWAS Phenome-wide association study. 

PRS Polygenic risk score 

rsID Reference SNP cluster ID 

SNP Single nucleotide polymorphism 

SPA Saddle point approximation 

UKBB UK BioBank 

VCF Variant call file 

WES Whole exome sequencing 
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WGS Whole genome sequencing 
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Definitions 

Autosomal: (A variant carried on) non-sex chromosomes 

Connective tissue: A type of tissue with mostly structural function, consisting mostly of elastic 

and collagen fibres. 

Coverage: the percent of target bases represented by a minimum read depth 

Decision tree: A structured series of conditions used to split data into classes, consisting of 

nodes which represent the condition being tested and branches representing the outcome. 

Terminal nodes represent the class of data. 

Dominant: Genetic mechanism where one copy of a variant gene is sufficient to display 

phenotype 

Epithelial tissue / epithelium: A type of tissue made up of a thin layer of cells. Makes up the 

external and internal surfaces of the body. One of the four types of animal tissue. 

Genetic architecture: The number, location and effect size of variants contributing to a 

disease, as well as the genetic heterogeneity 

Genome-wide association study: A type of study where association tests are performed on 

variants across the genome. 

Genotype: The combination of genetic variants present in an individual 

Genotyping array: A microarray used to detect specific genetic variants using a number of 

'probes' (sequences complementary to the target sequences to be identified). 

Haplotype: A stretch of DNA or set of variants on a single (haploid) chromosome which tends 

to be the same amongst members of a population because it is inherited together from a 

parent.  

Indel: a type of genetic variant where a single or short stretch of bases have been inserted or 

deleted. 



236 

 

Labyrinth: The bony inner ear which includes the vestibule, semicircular canals and the 

cochlea. Involved in sensorineural hearing. 

Microarray: A chip that assays a large number of biological entities such as DNA or RNA 

fragments. See genotyping array. 

Minor allele count:  The number of the less common of a pair of possible alleles at a site. 

Minor allele frequency: The frequency of the less common of a pair of possible alleles at a 

site. 

Mucosa: A type of epithelial tissue consisting of simple cuboidal cells. 

Mutation: Any change in DNA from the wild type. While effectively synonymous with a variant, 

this word tends to be reserved for rare variants.  

Ossicular chain: The set of three small, delicate bones of the middle ear which transmit 

vibrations from the ear drum to the inner ear, involved in conductive hearing. The ossicular 

chain includes the incus, malleus and stapes. 

Penetrance: The proportion of individuals with a trait-associated genotype who have the trait 

Phenome-wide association study: a type of study where variants are searched for 

associations with a wide array of phenotypes. 

Phenotype: The observed traits of an individual 

Polymorphism: A naturally occurring variant which is common within a population. A 

polymorphic site is one which has multiple possible variants. 

Read: A small fragment of sequenced DNA usually <100 base pairs long. When DNA is 

sequenced, it is done so in numerous overlapping reads. 

Read depth: the number of overlapping reads representing a particular base/position in the 

gene sequence. 

Recessive: Genetic mechanism where two copies of a variant gene must be carried to display 

phenotype 
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Sex-linked: Where a causal gene for a trait is carried on a sex chromosome 

Single nucleotide polymorphism:  A type of variant where a single base is substituted for 

another. The terms single nucleotide polymorphism (SNP) and single nucleotide variant (SNV) 

refer to the same type of variation, though it is more appropriate to call the variant a 

polymorphism if variation at that site is common and a variant if it is rare. 

Single nucleotide polymorphism: A type of variant where only one base pair is changed. 

Stratified squamous epithelium: A type of epithelial tissue consisting of several layers of 

epithelial cells arranged on a basal membrane. Keratinising stratified squamous epithelium 

produces keratin and makes up the skin. 

Tympanic membrane: The ear drum, a tight membrane continuous with the wall of the ear 

canal separating it from the middle ear. It is responsible for conducting vibrations from sound 

waves to the ossicular chain. The lateral surface consists of keratinising stratified squamous 

epithelium, supported by a connective tissue layer. The interior surface is mucosa. 

Variant: Any change in a genetic sequence compared to a reference genome. This may be in 

the form of a change to a single base pair or the insertion or deletion of many bases. A rare 

variant may be called a mutation while a common variant may be considered a polymorphism. 
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