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Abstract

This thesis investigates the behaviour of signals in networked systems by
applying diffusion and reaction-diffusion equations on a variety of network
topologies, which include path graphs, tree graphs, Y-shaped graphs, and

square grid graphs.

We employ mathematical models, including the diffusion equation, the Fisher
equation, and the FitzHugh-Nagumo equations, to describe concentration and
excitation across networks. Using methods such as eigenvalue analysis, finite-
difference methods, and the Method of Lines (MOL), numerical simulations were
performed to solve these equations and analyse the impact of network topology

on signal propagation.

Key findings include the adaptation of continuous diffusion models to discrete
network structures, the successful application of the Crank-Nicholson method
for solving diffusion equations on networks, and the analysis of pulse dynamics
and stability in reaction-diffusion models. The FitzHugh-Nagumo model was
particularly useful for exploring excitable systems and the propagation of pulses

across networks, showing how topology influences wave formation and stability.
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Introduction

1.1 Motivation for the study

1.1.1  Calcium wave propagation in plant leaves

The motivation for this work originates from the experiments conducted by
Annalisa Bellandi, who investigated the propagation of diffusion waves in plant
leaves triggered by localised stimuli [4]. In her study, a needle was used to
induce a pressure disturbance at a specific point on a leaf, generating a calcium
wave that diffused across the entire leaf. The mechanism was attributed to the
diffusion and bulk flow of amino acid messengers, which activated
calcium-permeable channels as they travelled through the plant vasculature. In
this thesis, the focus shifts away from biological specifics to develop generalised
mathematical models of diffusion and reaction-diffusion processes on graphs.
This abstraction allows for the study of wave dynamics in a variety of contexts,

making the findings relevant beyond plant systems.

1.1.2 Broader applications of network diffusion models

Beyond the biological systems that motivated this study, diffusion processes on
networks find extensive applications across diverse fields where substances,
information, or influences propagate through interconnected structures. In

epidemiology, the spread of infectious diseases can be modelled as diffusion
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processes on social contact networks, where individuals represent vertices and
their interactions form edges, allowing researchers to predict outbreak patterns
and evaluate intervention strategies [29]. Social networks exhibit similar
diffusion phenomena in the propagation of information, opinions, or behaviours,
where ideas spread from person to person following network connectivity
patterns [17]. In neuroscience, the brain’s neural networks demonstrate
diffusion-like processes in the transmission of electrical signals and chemical
messengers between neurons, making network diffusion models valuable for
understanding cognitive processes and neurological disorders [10].  Urban
transportation systems represent another domain where diffusion models apply,
as traffic flow, congestion patterns, and public transport dynamics can be
analysed using network-based diffusion equations [3]. These diverse applications
highlight the fundamental importance of understanding diffusion dynamics on
networks, as the mathematical frameworks developed in this thesis—including

eigenvalue analysis, boundary conditions, and reaction-diffusion.

1.2 Background of diffusion on a network

Understanding the principle of diffusion processes is essential, which will serve
as a foundation for developing more generalised models of diffusion in networks.
Diffusion is the process by which particles move from areas of high
concentration to areas of low concentration due to molecular interactions
between the particles themselves [35]. These molecular interactions are what
drive the transfer of substances from one molecule to another, causing the
diffusion process to unfold. Although the essential mechanism is inherently
discrete and involves individual molecular collisions, diffusion is often modelled

as a continuous process for practical reasons.

One classical approach to modelling diffusion is Fick’s law, which treats diffusion
as a smooth, continuous process [25]. Although this continuous model is effective

in many scenarios, a more refined approach is needed when diffusion occurs in
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systems structured as networks, such as in Turing’s model of biological pattern
formation. In these cases, diffusion occurs between cells or nodes in a network,
with the medium represented as a set of discrete vertices and edges. This brings
us to the work of Alan Turing, who, in the early twentieth century, applied
diffusion processes between cells arranged in a network-like structure to explain

the formation of patterns in biological systems [43].

Our approach focusses on solving the diffusion equation for each individual edge
within the network. This differs from the finite-difference technique commonly
used in network diffusion studies, where the diffusion operator is discretised across
the entire network. Later in this chapter, we will provide a more detailed analysis
of this methodology and its differences from the approach we employ, but first, it
is essential to introduce some foundational concepts from graph theory that will

help us understand networks in this context.

1.3 Introduction to graph theory

In this section, we provide a basic overview of graph theory, which serves as
the mathematical framework for analysing networks in this thesis. We begin by
defining essential concepts, such as vertices, edges, and degrees, which form the
basis of the network structure. These definitions are crucial for understanding
how diffusion processes operate in networks, as the structure and properties of a
graph directly influence the dynamics of diffusion. In addition, we will explore

key graph types, including bipartite and directed graphs.

1.3.1 Definition and terminology

Graph theory provides a mathematical framework for studying networks, which
are made up of a set of vertices (or nodes) V and a set of edges E. Each edge
connects two vertices and represents a relationship or interaction between them.

In a directed graph (or digraph), each edge has a direction, indicating a one-way
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()
OO,

Figure 1.3.1: A simple undirected graph. FEach edge represents a bidirectional
relationship.

relationship from one vertex to another. Conversely, in an undirected graph, edges
do not have a direction, implying a bidirectional relationship between connected
vertices [45].

The degree of a vertex is the number of edges connected to it. In directed graphs,
we distinguish between the in-degree, which is the number of incoming edges, and
the out-degree, which is the number of outgoing edges [36]. These basic concepts
form the foundation for the analysis of more complex structures and behaviours
in networks.

A loop-less graph which will be the focus of this thesis, is defined as a graph that
contains no loops. A loop is characterised as an edge that connects a vertex to
itself, or equivalently as an edge whose endpoints are identical [7].

A bipartite graph G = (V, E) is a graph whose vertex set V' can be partitioned
into two non-empty subsets A and B (i.e., AUB =V and AN B = &) such that
each edge of GG has one endpoint in A and one endpoint in B. A bipartite graph
does not contain self-loops [40].

A path graph P, is a graph with n vertices and n — 1 edges that lie on a single
straight line [28], where vertex i is connected to vertex i+1 fori = 1,2,...,n—1.
A grid graph or a lattice is a regular tiling of the Euclidean space R™ that forms
a repetitive structure. These graphs are characterised by a group of bijective
transformations that map the graph onto itself. Examples of grid graphs include
the square grid graph and the triangular grid graph, each with distinct geometric
properties [37].

A regular graph is a graph that has the same number of vertex neighbours; in
other words, every vertex has the same degree [20].

A connected graph, any two vertices in the graph are connected by a path [46].
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Figure 1.3.2: A bipartite graph.

In a tree, there is exactly one edge connecting every distinct pair of vertices ¢ and

j on the graph, where i # j [5].

1.3.2 Relevance to network modelling

In the previous section, we introduced concepts such as vertices, edges, and
degrees, which play an essential role in modelling how substances or information
propagate through a network. The vertices represent the locations or entities
where diffusion occurs, and the edges represent the pathways for diffusion. The
structure of the graph, whether it is directed or undirected, and the degree
distribution of its vertices can significantly influence the dynamics of diffusion
[2]. Therefore, understanding these concepts of graph theory is essential for

effectively modelling and analysing diffusion in networks.

1.3.3 Edge directions and vertex degrees

The direction of the edges in a network determines the pathways through which
diffusion can occur. In a directed graph, diffusion can occur only along the
direction of the edges, which may lead to asymmetric diffusion patterns. For
instance, if the vertex A has an outgoing edge to the vertex B but not vice versa,

diffusion from A to B is possible, but the reverse is not [36].

The degree of a vertex plays a significant role in the diffusion process. Vertices

with a high degree, which means that they are connected to many other vertices,



Chapter 1: Introduction 6

JAVAY

Figure 1.3.3: A directed graph. Note that vertex B has both incoming edges
(in-degree) and outgoing edges (out-degree).

‘M

Figure 1.3.4: A high-degree vertex (common vertex) connected to multiple
vertices and a low-degree vertex (Boundary vertex) with limited connections.

are often referred to as common vertices. These common vertices serve as hubs,
facilitating rapid diffusion across the network by connecting different parts of the
graph. In contrast, low-degree vertices, known as boundary vertices, have fewer

connections and may act to slow down the diffusion process.

The distinction between in-degree and out-degree in directed graphs becomes
important. The in-degree refers to the number of incoming edges to a vertex,
while the out-degree refers to the number of outgoing edges. These properties
influence how substances or information accumulate or disperse from specific

vertices, shaping the overall dynamics of diffusion in the network [45].

Graph theory provides a framework for representing networks, but to
understand how processes such as chemical substances occur within these
networks, we must delve into the physical principles governing such phenomena.
Specifically, diffusion plays a central role in many network processes. Before
applying diffusion models to networks, we will review the core principles of

diffusion in a continuous medium.
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1.4 Diffusion on a graph literature review and novel

contribution

The mathematical modelling of diffusion processes on networks has evolved
through several distinct approaches, each offering unique insights into how
substances spread through discrete structures. Understanding these existing
methodologies is crucial for positioning our novel contributions within the
broader landscape of network diffusion theory. The following sections review the
primary approaches found in the literature, beginning with traditional
discretization methods before introducing the innovative edge-by-edge

analytical framework developed in this work.

1.4.1 Discretising approach

In most approaches, the network is represented as a graph, with each vertex
corresponding to a location (such as a cell) and each edge representing a
connection (such as a pathway between cells) [26]. A common method to
discretise the diffusion process in these graphs involves solving a diffusion
equation as follows:

ut = u:v:c;

where u represents the concentration of substance, u; represents the temporal
change in concentration, and u,, represents the spatial diffusion. On a simple
path graph denoted by P» where subscript 2 represents the number of vertices
of the graph (see Figure 1.4.1), the diffusion of a substance along the edges of
the graph from vertex ¢ to vertex j can be discretised by assigning
concentration values wu; to each vertex, where ¢ = 1,...,N. The second
derivative is approximated using finite differences:

Uit — 2U; + Ui
h2 ’
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)

Figure 1.4.1: Path graph P,

where h is the distance between adjacent vertices, essentially discretising the

network in terms of spatial steps.

More generally, for a graph structure, diffusion is modelled from each vertex to
its neighbours. Let D be the diffusion rate across the edge, then the amount of
substance that moves from vertex ¢ to vertex j over a time period dt is D(u; —u;)

and from vertex j to vertex i is D(uj — u;). then

dui
dt

du;
= D(u; —u;), —F=D(u; —w)

When considering diffusion to and from the vertex i, we must take into
consideration all the vertices of the graph. The connectivity of the graph is
represented by the adjacency matrix. Now for a simple graph we assume D =1,

then the rate at which w; is changing is given by :

N
dui

dt = ZAZJ(UJ — ui), (1.4.1)

Jj=1

where the sum is over all N vertices in the graph, and A;; is the adjacency matrix
and u; is the concentration at vertex i. The following form can be used to express

Equation (1.4.1):
N

N
dui
dt = Z Az-juj — Uj; Z AZ] (142)
j=1 i=1

The degree of vertex i, denoted d;, can be written in terms of the adjacency

matrix as d; = Z;\le A;; [35], the equation (1.4.2) can be expressed as:

dui N
dt = Z Ai]’u]' — Uidi, (143)
J=1
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We define the Kronecker delta, d;; [35], as follows

1 ifi=j

0 ifi#j.

5ij =

Using the Kronecker delta definition in equation (1.4.3), which leads to:

dus N N
dtl = Z Aijuj — Z 5¢jujdi.
j=1 7j=1

(Note that there is no implied summation over a repeated index here). Since
0ijd; = D;j;,this simplifies to:
dui N

= > (Aij = Dij)u;.
j=1

In vector form, this can be written as:

du
E - (A - D)uv

where u is the vector of concentration values at the graph vertices and D is the
degree matrix. Thus, the equation becomes:

du_

“_L
a

where L = A — D is the Laplacian matrix for the graph. We seek a solution in

the form

where a is a constant vector, and A is a constant. Substituting this into the
differential equation yields:

Aa = La

which implies that A is an eigenvalue of the Laplacian matrix L. Thus, in this

model, the decay rates over the network correspond to the eigenvalues of the
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Laplacian. This formulation of the equation is commonly referred to as the

diffusion equation on a graph or the graph Laplacian [35].

1.4.2 Random walks on a graph

A random walk on a graph is a stochastic process in which a walker moves from
one vertex to an adjacent vertex based on transition probabilities. This discrete
process can be viewed as an analogy to diffusion, where the spread of a substance
follows a continuous medium. Let G = (V, E) represent a graph, and let P denote

the transition matrix of the random walk, where:

T if(i,j) € E,
P;; =
0  otherwise,

where (i,j) € E indicates that there is an edge connecting vertices ¢ and j in the

graph [32].
For a graph G = (V, E), the normalised Laplacian Ly, is defined as:

Lnorm = D_I/QLD_I/Qa

where L = D — A is the combinatorial Laplacian, A is the adjacency matrix and
D is the degree matrix [19]. Substituting L = D — A into the expression for
Lyorm, we have:

Loorm = D™Y2(D — A)D™/2,

Expanding this expression:

Lnorm — D—1/2DD—1/2 . D_1/2AD_1/2.

Since D~Y/2DD /2 = I (the identity matrix), this simplifies to:

Lyom =1 - D Y2AD1/2,
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The random walk transition matrix P defined above can be written as:

P=D'A,

which describes the probabilities of transition between vertices in a random walk

[33]. To express P in terms of normalized matrices, we observe that:

P = D_l/g(D_l/QAD_l/Q)Dl/Q.

Let A* = D"Y2AD Y2, which is often referred to as the normalized adjacency

matrix. Substituting A* into P, we have:

P= D_1/2A*D1/2.

When we replace A* = D~1/2AD~1/2 in the Laplacian matrix, we obtain:

Lnorm =I-A"

Since A* = D~/2AD~1/2 and from the relation P = D! A, we observe that:

A" =1- Liorm-

Thus, substituting this into Ly, we finally obtain:

Lnorm =I-P.

This relationship highlights the intrinsic connection between random walks and
spectral graph theory [9], since the normalised Laplacian governs diffusion-like

processes on graphs as will be discussed in chapter 2.
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1.4.3 Metric graph

In this section, we introduce an approach to how we can structure a graph that
is similar to the approach we use in the thesis, which is a metric graph. A metric
graph is a mathematical structure in which each edge is treated as a continuous
interval, giving it a 1D geometric character rather than a purely combinatorial
one. Formally, a metric graph I' consists of a set V' of vertices and a set E of
edges, where each edge e € E is assigned a positive length I, € (0,00]. The
edge e is identified with an interval [0, l¢] of the real line, and a coordinate x. is
defined along the edge, with z. = 0 and x, = [, corresponding to the two vertices
connected by the edge. This representation introduces a natural topology and a

metric on the graph [31].

The finite metric graphs are graphs that have a finite number of vertices and
edges. The distances between two points are always finite, and the graph
structure can often be represented compactly. A path in a metric graph is a
sequence of connected edges {ej}jj‘il. The total length of the path is given by
the sum of the edge lengths Z]Ail le; [31].

1.4.4 Quantum graphs

Expanding on the concept of metric graphs, we present quantum graphs, which
are a natural extension of metric graphs used to study problems involving
differential operators on graphs. A quantum graph is a metric graph equipped
with a differential operator, such as the Laplacian, acting on functions defined
on the edges of the graph. These functions describe physical quantities like
wave functions or diffusion densities, making quantum graphs a framework for
solving various physical and mathematical problems which is similar to the

method that is used in this thesis.

A function f defined on a quantum graph can be expressed as a tuple (fe)ecr,

where each fe(x.) is a function defined on the interval [0, l¢] corresponding to the
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edge e. The Hilbert space of the quantum graph is given by

P (o, L)),

eck

where L?([0,1.]) is the space of square-integrable functions on the edge e. The

inner product of two functions f and g on this space is defined as

le

(f.9)=>_ | fr(we)ge(we) dae.

eckE 0

The simplest operator considered on a quantum graph is the Laplace operator,

which acts on each edge as
d2
dx?’
where z. is the coordinate along edge e. To solve problems on a quantum

graph, suitable boundary conditions must be imposed at the vertices to ensure

the operator is self-adjoint. Common boundary conditions include:

e Dirichlet conditions: The function f.(z.) vanishes at the endpoints of the

edge, i.e., fo(0) = fe(le) = 0.

e Neumann (natural) conditions: The function is continuous at vertices, and

the sum of the outgoing derivatives at each vertex is zero:

Zjﬁi(v):&

e~v
By solving the eigenvalue problem

&S,
dx?

= )\fea

subject to the chosen boundary conditions, one can determine the eigenvalues A

and eigenfunctions fe(z.), which describe the natural modes of the system [31].

While the approaches discussed above—discretization methods, random walks,
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and quantum/metric graphs—have provided valuable frameworks for
understanding diffusion on networks, they each possess inherent limitations.
Traditional discretization approaches sacrifice analytical precision for
computational tractability, random walk methods primarily capture stochastic
behaviour rather than deterministic concentration dynamics, and quantum
graph approaches, while mathematically elegant, often lack direct connections
to practical network applications. Recognizing these gaps in the existing
literature, this thesis develops a fundamentally different approach that
addresses these limitations through exact analytical solutions coupled with

systematic eigenvalue analysis.

1.4.5 Novel contributions of this work

This thesis introduces several new methodological approaches:

1. Exact edge-by-edge solutions: Unlike previous finite-difference approaches
that discretize across the entire network, we solve the diffusion equation
analytically on each individual edge, then couple solutions through vertex

conditions.

2. Modified Laplacian eigenvalue analysis: We develop a comprehensive
eigenvalue  analysis  using the modified Laplacian  matrix
L*(v) = A — cos(v)D, providing exact decay rates for arbitrary network

topologies—a systematic analysis not previously available in the literature.

3. Asymptotic theory for large networks: We derive asymptotic eigenvalue
behaviour for square grid graphs as network size approaches infinity,

extending Klopotek’s results [30] to diffusion problems.

4. Unified numerical framework: We integrate exact analytical solutions with
the method of lines for reaction-diffusion systems, enabling treatment of
both linear diffusion and non-linear Fisher and FitzZHugh-Nagumo dynamics

on the same network framework.
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These contributions provide new theoretical insights into how network topology
fundamentally affects diffusion dynamics, bridging the gap between discrete graph

theory and continuous PDE approaches.

1.5 Aim and outline

In this thesis, we explore the phenomenon of diffusion and reaction-diffusion in
networks, focussing on the structural properties of graphs. We use graph theory to
explain the network structure, employing concepts such as the adjacency matrix

and degree matrix.

Chapter 2 introduces the physical principles of diffusion and their application
to networks. It begins by defining key terms such as concentration, flux, and
diffusion coeflicient, followed by the derivation of the one-dimensional diffusion
equation using Fick’s Law. The chapter then extends these principles to network
structures, where diffusion occurs across discrete vertices and edges, unlike the
continuous media in physical space. The mathematical formulation of diffusion
on networks is developed, including the general case of diffusion across edges with
varying lengths and diffusivity constants. The chapter further explores boundary
and continuity conditions for solving diffusion equations and employs methods
such as separation of variables and eigenvalue analysis to understand the long-
term behaviour of diffusion processes in networks. Special attention is given to the
eigenvalue analysis of a modified form of the Laplacian matrix to reveal insights
into the structure of the network and the diffusion characteristics. The chapter
concludes with numerical examples and the asymptotic behaviour of diffusion in
square grid graphs, highlighting the significance of eigenvalues in determining the

decay rate of substances across networks.

In chapter 3, we employ a finite-difference method to numerically solve the
diffusion equation on networks. Instead of solving the diffusion equation exactly

on each edge and using eigenvalue analysis for decay rates, we discretise the
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problem using a set of equally spaced collocation points along each edge. This
approach provides a simplified framework that enables the subsequent inclusion
of non-linear terms in Chapters 4 and 5, facilitating the solution of the diffusion
equation with more complex dynamics in later stages of the study. We enforce
continuity conditions at the vertices and apply the Crank-Nicholson method to
evolve the system over time. The chapter begins with a brief introduction to
the finite-difference method, followed by the application of the Crank-Nicholson
method to simple network structures, such as a path graph with two vertices,
P,. The methodology is extended to more complex networks, such as a path
graph with three vertices P3 and a Y-shaped graph, ensuring the continuity of
concentration and flux at the common vertices. Numerical results are presented
for various network topologies, including square grid graphs, where the
concentration profiles and decay rates are compared with theoretical
predictions. The chapter concludes by generalising the approach to handle
networks with arbitrary numbers of vertices and edges, introducing fictitious
points to maintain continuity at common vertices, and extending the analysis to

large networks.

In chapter 4, we focus on solving reaction-diffusion equations on networks using
the Method of Lines (MOL). The chapter begins by discretising the spatial
domain into a grid, transforming the partial differential equations (PDEs) into a
system of ordinary differential equations (ODEs) that can be efficiently solved
using standard numerical integration techniques. We emphasise enforcing the
continuity of flux and concentration at the vertices and applying zero-flux
boundary conditions at the boundary vertices. Various network topologies are
considered, starting from simple path graphs and extending to more complex
structures. The chapter also explores the stability of steady-state solutions for
the reaction-diffusion equation, comparing numerical decay rates with
theoretical predictions introduced in Chapter 2. Additionally, the chapter
includes numerical simulations conducted using MATLAB to analyse the

dynamic behaviour of concentration, demonstrating the propagation and
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stabilisation of concentration profiles over time. The results provide an
understanding of both dynamic and steady-state behaviours of
reaction-diffusion systems on networks, offering insight into the stability

conditions and decay rates for different network structures.

In Chapter 5, we investigate the application of the Fitzhugh-Nagumo (FHN)
model to simulate pulse dynamics in network structures. This chapter is
motivated by experimental observations made by Annalisa, who identified
distinct pulse-like phenomena in calcium wave dynamics [4]. The
Fitzhugh-Nagumo model, consisting of two coupled reaction diffusion equations
that describe the membrane potential and recovery variables of neurones, is
used to explore the underlying mechanisms of pulse propagation within these
networks. We explore pulse propagation in simple network topologies, starting
with a path graph P, and extending to more complex structures, such as a
Y-shaped network. External forces are applied at the head node to initiate
pulse propagation, and the effects of this stimulation are observed in both
one-dimensional edge networks and more complex multi-edge networks. In
particular, the study examines how pulses split and propagate when they reach
a junction point, illustrating how the network topology influences the pulse
dynamics. The chapter also explores boundary conditions and introduces
numerical methods for solving the (FHN) equations, including the application
of finite-difference methods and time-stepping techniques. Finally, bifurcation
points and the stability analysis of pulse solutions are studied, with results
showing how the pulse propagation behaviour depends on the network structure

and parameter values. The thesis is then summarised with some conclusions.



Diffusion in networks: analysis and

asymptotic behaviour

In this chapter, we delve into the mathematical foundation for understanding
diffusion in networks, beginning with the concepts of concentration, flux, and the
diffusion coefficient. We will start by exploring the basic principles of diffusion,
including Fick’s Law, which leads to the derivation of the diffusion equation.
We use the concepts of graph theory to represent the network topologies by
vertices and edges. We then apply zero flux conditions at the boundary vertices
and continuity of flux and concentration at the common vertices. From there,
we solve the diffusion equation exactly on each edge of the network and then

formulate an eigenvalue problem for the decay rate.

2.1 Foundations of diffusion

In this section, we introduce the physical principles of diffusion, which govern
the spread of substances or information through a medium. These concepts are
critical for understanding how diffusion occurs in networks, where the medium is
represented by the connections between vertices. We will begin by defining key
terms such as concentration, flux, and diffusion coefficient. Then, we will derive
the one-dimensional diffusion equation based on Fick’s Law, which will serve as

the mathematical foundation for extending diffusion to more complex network
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structures in the following sections.

2.1.1 Basic concepts

Flux in Flux out
— —

©

Figure 2.1.1: The diffusion process showing concentration gradients and flux.

To understand diffusion processes, we begin by defining several key terms. The
concentration u(x,t) represents the quantity of a substance per unit length at
position z and time t. The flur ¢(z,t) denotes the rate at which the substance
flows through a point per unit time at a given position x and time ¢ . The
diffusion coefficient D is a proportionality constant that characterizes the rate of

diffusion in a particular medium, with units of m?/s [24].

2.1.2 Fick’s Law of diffusion

Fick’s First Law states that the flux ¢(x, t) is proportional to the negative gradient

of the concentration:
ou(z,t)

Q(l‘7t) =-D 856 )

(2.1.1)

where D is the diffusion coefficient. This relationship implies that the substance
flows from regions of high concentration to regions of low concentration, with the

rate of flow being higher where the concentration gradient is steeper [24].

2.1.3 Derivation of the one-dimensional diffusion equation

To derive the one-dimensional diffusion equation, consider the conservation of
mass within a differential element of length dx. The rate of change of the

concentration within this element is given by the difference between the flux
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entering and leaving the element:

ou(x,t) _8q(33, t)

= ) 2.1.2
ot ox ( )
Substituting Fick’s First Law into this equation yields:
2
ou(x,t) _ Dé? u(x,t). (2.13)

ot 0z2

This is the one-dimensional diffusion equation, which describes how the
concentration of a substance evolves over time in a given medium [24], forming

the basis for our subsequent analysis of diffusion on networks.

2.2 Diffusion on a network

In this section, we extend the principles of diffusion to networks built on both the
graph theory and diffusion foundations. While diffusion in physical space occurs
in continuous media, network diffusion involves discrete structures where vertices
and edges represent locations and connections, respectively. We will develop
the mathematical formulation of diffusion on networks and introduce boundary
and continuity conditions specific to network structures. The governing diffusion
equation for networks will then be derived, followed by an exploration of methods

to solve it, including separation of variables and eigenvalue analysis.

2.2.1 General case

In this section, we explore the diffusion of a chemical substance across a network,
which consists of vertices V' connected by edges E. The diffusivity constant D is
assumed to be uniform across all edges, while the length of each edge connecting
vertex ¢ to vertex j is denoted by L;;. The edges in the network can have different
lengths, allowing for a more generalized model of diffusion. We define e;; as the

edge connecting vertex ¢ to vertex j, where j > 4. In this structure, vertex ¢
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H T

Figure 2.2.1: A typical edge e;; in the network of length L;; with head H at
vertex ¢ and tail T at vertex j. The red arrow designates the positive direction
of flow.

is designated as the head (H), and vertex j as the tail (T), with the positive
direction of flow along the edge e;; being from head to tail, as depicted in Figure

(2.2.1).

2.2.2 Mathematical formulation

The concentration of the substance on edge e;; is denoted by w;;. The diffusion

equation governing the concentration over time is given by:

u(t,z)  _0%u(t,z)
5 = DY (2.2.1)

We will transform each edge of the network into an interval of canonical length
one. To achieve this, we introduce a new variable §, defined such that x = L;;§
with & € [0, 1] representing a scaled version of the position x along the edge,
and = € [0, L;;] corresponds to the actual position along the edge of length.

Substituting into equation (2.2.1), we obtain:

8u,;j(t,§) 82€uij(t7£)
— B 2.2.2
o i g (222
where §;; = % and D;; are the diffusivity constant specific to edge e;;. To
ij

analyse the mass of the chemical on edge e;;, we define:

1

where m;; represents the total mass of the substance along the edge, and u;;(§)

is the concentration at position ¢ [27]. Taking the positive direction of flow from
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H H

=0, E=0

O (2@
T T
=1 =1

Figure 2.2.2: A typical network where vertices i and k are boundary vertices, and
vertex j is a common vertex.

head to tail as indicated by the red arrow in Figure 2.2.1, we define the fluxes at

the head and tail of edge e;; as follows:

) 811,,] (t, f)

qg::—aw—i&i——a$£:0, (2.2.4)
du(t,
quz—aw“géf) at £ = 1, (2.2.5)
where
Dy
aU:LJ. (2.2.6)

(]
In this context, D;; remains the diffusivity constant, and L;; is the length of the

edge from vertex ¢ to vertex j.

2.2.3 Boundary and continuity conditions

To uniquely determine the solution to the network diffusion problem, appropriate
boundary and initial conditions must be imposed. Consider the network structure
depicted in Figure 2.2.2, where vertices ¢+ and k are boundary vertices connected
to a common vertex j via edges e;; and ej, respectively. In a network, vertices
can be classified as either boundary or common vertices. Boundary vertices are
those connected by only one edge, implying that the flux cannot extend beyond
these vertices (¢ = 0 if the boundary node is the head, and { = 1 if the boundary
node is the tail). Common vertices, on the other hand, are connected by two or
more edges, allowing flux to be continuous across them (£ = 1 when the vertex

is a tail or £ = 0 when the vertex is a head). Specifically:
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e Boundary vertex at head (£ = 0): For a boundary vertex connected as

the head of edge e;;, the zero-flux condition is:

auij

23

= 0. (2.2.7)

—ayj —
£=0

e Boundary vertex at tail ({ = 1): For a boundary vertex connected as

the tail of edge ej, the zero-flux condition is:

—auj aggk = 0. (2.2.8)

¢=1

Common vertices, such as vertex j in Figure 2.2.2, are connected by two or more
edges, allowing flux continuity across them. The conditions at a common vertex

are:

e Continuity of flux: The net flux into the common vertex must equal the

net flux out. For vertex j, this condition is:

8uij

ank
— ) 8§ —

= —ajk 8§

(2.2.9)

¢=1 £=0

e Continuity of concentration: The concentration must be continuous

across the common vertex. Thus, for vertex j:

= ujk(t,g)‘ . (2.2.10)

=1

£=0

These conditions ensure the proper diffusion dynamics across a network,

accounting for both boundary and common vertices.

2.2.4 Governing equation

Consider a network consisting of N vertices, where the diffusion process is
governed by a differential equation defined on each edge e;; connecting vertices 4

and j. Assuming a uniform network with diffusivity D and edge length L, the
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diffusion equation on edge e;; is given by:

8uij B 62uij 2 L2
o = %2,ﬁ<_57 (2.2.11)

,82

where u;;(§,t) represents the concentration of a substance at a scaled position

¢ €10,1] along the edge and at time ¢.

2.2.5 Separation of variables for network diffusion

To solve the diffusion equation on a network, we employ the method of separation
of variables. This approach assumes that the temporal behaviour of the solution
is uniform across the network, allowing us to express the concentration function
ui;(€,t) on any edge e;; as a product of a spatial function X;;(£) and a temporal
function T'(t):

wis(6,8) = Xy (©)T(2). (2.2.12)

Substituting this assumed form into the governing diffusion equation, we obtain

two ordinary differential equations (ODEs) by separating the variables:

d? X
e V2 X =0, (2.2.13)
dT
T pT =0, (2.2.14)

where v and p are separation constants with v = Bu. The ODE for the temporal

component, Equation (2.2.14), has a solution of the form:
Tii(t) = e #. (2.2.15)

The ODE for the spatial component, Equation (2.2.13), represents a second-order

linear homogeneous differential equation. The general solution is given by:

X4y (6) = —— (U, sin(u€) + Uy sin(v(1 — €))), (2.2.16)

sin v
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where U; and U; denote the concentrations at vertices ¢ and j, respectively. This
formula (2.2.16) holds unless sin(r) = 0 , which will be considered in the next
section (2.2.6). This form of X;;(&) is chosen to ensure continuity of concentration
across the network. By satisfying the boundary conditions at the endpoints of
each edge,

Xij(0) = Ui, Xi5(1) = Uj

the solution maintains a smooth transition of concentration between connected
edges, which is a necessary condition for physically realistic diffusion across the

network. Thus, the general solution for the concentration function on edge e;; is:

iy (€ 1) = e <UJ sin(v€) + Ussin(w(1 - s))) |

2.2.1
sin v ( 7)

This expression demonstrates how the diffusion evolves both spatially along each
edge and temporally over time, governed by the network’s structure and the

diffusion coefficients.

2.2.6 Special case

In certain cases, the general solution to the diffusion equation may require
modification due to special conditions, such as when sin(r) = 0. When this
occurs, the form of the solution needs to be adjusted to maintain consistency

with the boundary and continuity conditions.

1 ([Uj = U; cosv] sin(v€) + [U; sinv] cos(v€)) . (2.2.18)

sinv

Xi;(§) =
Taking the limit as v — k7 for integer k, the expression simplifies to:
Xi; (&) = U, cos(v€), (2.2.19)

where we must choose U; = (—1)kUj to maintain consistency.
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2.2.7 Flux conditions

In addition to solving the diffusion equation, it is important to ensure that the flux
is well defined. The flux conditions describe how the substance moves between
the vertices of the network, ensuring that the flow is continuous .The flux along

an edge e;;, connecting vertices ¢ and j, is defined by:

Ouij
H ij
il = —ay , (2.2.20)
=T e |,
s
T ij
gl = — i : (2.2.21)
T e |,

where «;; is the diffusion coefficient along the edge, and qg and q;‘g are the fluxes
at the head and tail of the edge, respectively. For a common vertex j, connected

by multiple edges, the flux into the vertex must equal the flux out:

blue Y qff — > qhi=0, (2.2.22)

keS(i)~ keS(i)*

where S(7)~ and S(i)" denote the sets of vertices connected to i with indices less
than or greater than i, respectively. The elements a;; of the adjacency matrix A

represent the connectivity of the network.

e S(i)- ={jeV:j<iand ay =1},

® S(Z)+:{J€Vj>zanda”:1}

2.3 Eigenvalue analysis and matrix formulation

In this section, we will explore the mathematical formulation of the diffusion
process on networks, specifically through matrix representation and eigenvalue
analysis. We will first introduce the matrix formulation of the diffusion equation,
representing the network’s structure using the adjacency and degree matrices.

This leads to an eigenvalue problem.We will apply Gershgorin’s Theorem, which
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offers a method for determining how network topology affects the eigenvalue

spectrum.

2.3.1 Matrix formulation and eigenvalue problem

The matrix formulation of the diffusion process on a network leads naturally to an
eigenvalue problem. By analysing the eigenvalues of this matrix, we gain insight

into the long-term behaviour of the diffusion process. We define a function
c(v) = vcosv,
and express the flux terms as:

gif = vUy — Ui, (2.3.1)

at: = cU; — vUy. (2.3.2)

Thus, the continuity condition becomes:

vl Y U+ Z Up | —c Z U; + Z U; | =0. (2.3.3)

keS(i)~ keS(i keS(i keS(i

Simplifying, we have:
v Y U+ > Ui | —edill; =0, (2.3.4)

where d; is the degree of vertex i. We can express this as the matrix equation

—cdy v v Uy
v —cdy v v U,
=0,
v o —edn—q v Un_1
v v —cdy| | Uy |



Chapter 2: Diffusion in networks: analysis and asymptotic behaviour 28

where the v’s occupy positions depending on the connectivity of the network.

This is made more clear by expressing the equation in the more succinct form

L*(v)z =0, (2.3.5)

where = (U1, Us,...,Unx)T, and
me:A—SD:A—a@mD. (2.3.6)

L*(v) = A —cos(v)D (2.3.7)

This formulation (2.3.7) is referred to as the modified Laplacian matriz, where A
denotes the adjacency matrix, and D represents the degree matrix of the network.

Before proceeding to these examples, we want to determine the values of v.

2.3.2 Generalized eigenvalue problem for v

To determine the values of v, we must solve the generalized eigenvalue problem
that arises from the matrix formulation discussed earlier (2.3.5). Specifically, we
solve the equation:

Az = ADz, (2.3.8)

To establish the relationship between the parameter v and the eigenvalue A,
we observe that, by comparing Equation (2.3.7) to the corresponding eigenvalue

expression, A is related to v through the equation
A = cos(v). (2.3.9)

meaning that for each eigenvalue A, there corresponds a countably infinite set of
values for v.This formulation provides insight into the spectral properties of the
network. To further analyse this relationship, we need to establish bounds on

the eigenvalues A\, which can be done effectively using Gershgorin’s Theorem. By
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applying this theorem, we can determine where the eigenvalues are located.

2.3.3 Eigenvalue analysis using Gershgorin’s theorem

As the matrix formulation of the diffusion process has been established, the next
step is to estimate the bounds of eigenvalues based on the entries of the matrix.
In this section, we will use Gershgorin’s Theorem to establish these bounds and

guide our understanding of the eigenvalue spectrum of L*.

Consider a loop-less graph G with n vertices. Let A denote its adjacency matrix,

which is an n X n square matrix defined as:

[ 0 ai2 Q1n
a1 0 a23 a2n
A= laz a3
A(n—1)n
|Anl  (Gn2 Ap(n—1) 0

where each entry a;; represents the edge weights between vertices ¢ and j, and

ay; = 0 since the graph is loop-less. Let D represent the degree matrix of the

graph, which is also an n x n diagonal matrix:

where d;; is the degree of vertex i (i.e., the sum of the weights of the edges

connected to vertex ).

dip 0 0
0 dos O 0
D=1]0 0
0
0 o0 0 dn,
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Eigenvalue equation

We seek to find the eigenvalues A € R that satisfy the following eigenvalue

equation for the adjacency matrix A and the degree matrix D:

Az = \Dz. (2.3.10)

Since the degree matrix D is diagonal and non-singular for connected graphs, we
can multiply both sides of this equation by D~! to simplify the problem. This

yields the modified eigenvalue equation:

D 'Azx = \x.

Let us define a new matrix B as:

B=D'A.

This allows us to rewrite the modified eigenvalue equation as:

Bx = )z,

indicating that A is an eigenvalue of B. The matrix B, which represents the

normalized adjacency matrix, can be written explicitly as:

aiz2 ain

0 4z . L. iz

a1 0 a3 a2n

da2 da2 da2
B = |1 a3
d3s  ds3

A(n—1)n
d(nfl)(nfl)
anl an?2 An(n—1) 0
_dnn d’?’L’I’L e dnn n
(27

Here, each off-diagonal entry represents the ratio of the edge weight between

di;

vertices 7 and j to the degree of vertex i.
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Applying Gershgorin’s theorem

We apply Gershgorin’s circle theorem to analyse the eigenvalues of B.
Gershgorin’s theorem states that every eigenvalue of a matrix lies within at
least one of the Gershgorin discs, centred at each diagonal element of the
matrix, with radius equal to the sum of the absolute values of the off-diagonal
elements in the corresponding row [13]. For each row i of the matrix B, the
diagonal element is 0 (since the graph is loop-less), and the radius R; of the

Gershgorin disc is:

T,
R; = -
— | dj;
7j=1
JFi

1 1
(1 _]7£7/ (23

Thus, each Gershgorin disc is centred at 0 with a radius of 1
Proof that the Eigenvalue )\ is Real
The generalized eigenvalue problem is given as follows:

Ax = \Dz, (2.3.11)

A and D are both real and symmetric matrices. First, we take the complex

conjugate of the eigenvalue equation (2.3.11):
Az = \Dz.

Since A and D are real matrices, their complex conjugates are equal to
themselves:

Az = \Dz.

Next, we transpose the equation to get:

z' AT = Xz DT,
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Because A and D are symmetric (A = A" and D = D7), we simplify this
expression to:

z'A =)' D.

Multiply both sides of the equation by & on the right:

' Az = \z' Dzx.

We can rearrange this to express A\ as:

1 Ax
' Dx’

>1
Il

From equation (2.3.11), we multiply both sides by &7 :

z' Az = \z' Dzx.

Thus, we express A as:
T Ax

A= L AT
T Dx

Since A and ) are both expressed as the same ratio, we conclude:

meaning that the eigenvalue A is real: A € R. According to Gershgorin’s Circle
Theorem, all eigenvalues of any loop-less graph are contained within a disc of
radius 1 centred at 0. Since we have proven that the eigenvalue A is real, it must

lie within the interval [—1,1]. Hence A € [—1,1].
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2.4 Singularity of the modified Laplacian matrix L*

and eigenvalue analysis

In the analysis of diffusion processes in networks, it is essential to determine the
values of v for which the matrix L* becomes singular. A matrix is singular if it
has at least one zero eigenvalue, which occurs when its determinant is zero. The

modified Laplacian matriz L* is defined as:
L*(v) = A — cos(v)D, (2.4.1)

where A is the adjacency matrix of the network, and D is the degree matrix.

2.4.1 Regular graph

Consider the case of a graph in which all vertices have the same degree. In such a
graph, the degree matrix D can be expressed as a scalar multiple of the identity

matrix:

D=(N-1I (2.4.2)

where NN is the total number of vertices in the graph. This structure occurs in
regular graphs, such as the complete graph or the cyclic graph, where each vertex
has a degree N — 1. Substituting the form of D (2.4.2) into equation (2.3.7) then
equation (2.3.5) yields:

Ax =yx

where v = (N —1) cos(v). This simplified equation reveals that 7 is an eigenvalue
of the adjacency matrix A. Consequently, the possible values of v are determined

by the spectrum of A, that is, the eigenvalues of the adjacency matrix.
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Figure 2.5.1: (a) Path graph with 4 vertices P;. (b) The eigenvalues A of the
modified Laplacian matrix L* of P;.

2.5 Numerical results for eigenvalue analysis of the

modified Laplacian matrix

In this section, we analyse the spectral properties of various graph topologies
using the modified Laplacian matrix L* as defined in Equation (2.4.1). The
adjacency matrix A is used to describe the connectivity of the graphs in
MATLAB, and the degree matrix D is calculated to obtain the eigenvalues for
the graphs.  The numerical results and visualisations for various graph
structures are presented, including all possible graphs with 4 vertices and
selected examples with 5 and 6 vertices. These results illustrate how eigenvalue

spectra vary between graph topologies.

2.5.1 Graphs with four vertices

e The path graph Py is one of the simplest graph structures, where vertices
are connected sequentially in a straight line. The topology of the path graph
is shown in Figure 2.5.1(a). The eigenvalues A of the modified Laplacian

matrix L* for this graph are presented in Figure 2.5.1(b).

e The square graph, depicted in Figure 2.5.2(a), is a cycle graph with 4

vertices. The eigenvalues A of the modified Laplacian matrix L* for this
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Figure 2.5.2: (a) Square graph with 4 vertices. (b) The eigenvalues A of the

modified Laplacian matrix L* of the square graph.
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Figure 2.5.3: (a) Y-shaped tree graph with 4 vertices. (b) The eigenvalues A\ of
the modified Laplacian matrix L* of the Y-shaped tree graph.

graph are presented in Figure 2.5.2(b).

e The Y-shaped graph is a type of tree graph where three paths converge

at a single vertex. The topology of this graph is shown in Figure 2.5.3(a).

The eigenvalues A of the modified Laplacian matrix L* for this graph are

presented in Figure 2.5.3(b).

e The complete graph of 4 vertices has a shape of triangular with a middle

vertex is a graph where three vertices form a triangle, and the fourth vertex

is connected to all three. The topology of this graph is shown in Figure

2.5.4(a). The eigenvalues A of the modified Laplacian matrix L* for this

graph are presented in Figure 2.5.4(b).
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Figure 2.5.4: (a) Triangular graph with 4 vertices and a middle vertex. (b) The
eigenvalues A\ of the modified Laplacian matrix L* of the graph.
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Figure 2.5.5: (a) Triangular graph with one edge added. (b) The eigenvalues A
of the modified Laplacian matrix L* of the graph.

e The graph consists of a triangle with an additional edge connecting one
of the triangle’s vertices to an external vertex. The topology of the graph
is shown in Figure 2.5.5(a). The eigenvalues A of the modified Laplacian

matrix L* are shown in Figure 2.5.5(b).

e Two connected triangles is a graph consisting of two triangles connected
by a shared edge. The topology of the graph is shown in Figure 2.5.6(a).
The eigenvalues A of the modified Laplacian matrix L* are shown in Figure

2.5.6(b).
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Figure 2.5.6: (a) Two connected triangles. (b) The eigenvalue A of the modified
Laplacian matrix L* of the graph.

2.5.2 Graphs with four vertices decay rate analysis

The smallest decay rate vy, for various graphs containing four vertices is
presented in Table 2.1. The table illustrates how the shape of the graph
influences the rate of decay of the substance. The graphs are ordered by

increasing decay rate.

2.5.3 Graphs with six vertices

e The tree graph (see Figure 2.5.7(a)) where every two vertices are connected
by exactly one path. The eigenvalues of the modified Laplacian matrix for

that graph are presented in Figure (2.5.7) (b).

e The triangular grid graph consists of vertices arranged in a triangular
lattice. Its topology is shown in Figure 2.5.8(a). The eigenvalues A of the

modified Laplacian matrix L* are presented in Figure 2.5.8(b).

2.5.4 Normalized Laplacian

There exists a relationship between the modified Laplacian matrix L* and the

normalized Laplacian matrix denoted as £, which we aim to establish. The
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Table 2.1: Minimum decay rate vy for graphs with four vertices, ordered by
increasing decay rate

Graph Shape Smallest Decay Rate

@@@@ Vmin = 1.0472

Y

Vmin = 1.3400

o

R P
Y

Vin = /2

Vin = 7/2

Vmin =7T/2

Vmin = 1.9106

normalized Laplacian matrix £ is defined as follows:

L=D:LD :=1-D :AD 2, (2.5.1)
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Figure 2.5.7: (a) Tree graph with 6 vertices and 5 edges. (b) The eigenvalue A of
the modified Laplacian matrix L* of that tree graph.
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Figure 2.5.8: (a) Triangular grid graph with 6 vertices. (b) The eigenvalues A of
the modified Laplacian matrix L* of the triangular grid graph.

where L = D — A is the combinatorial Laplacian [22], D is the degree matrix,

A is the adjacency matrix of the graph and D73 is a diagonal square matrix

defined as: ~ _
1
= 0 0 0 0
1
0 = 0 0 0
, 0 0 = 0 0
D2 = 3
_1
0 0 0 NG 0
1
o000 Vi,
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We refer to the generalized eigenvalue for the normalized Laplacian as 7. It
satisfies

Lx =T1Dz. (2.5.2)

Consider the generalized eigenvalue problem given as:
Ay = \Dy, (2.5.3)

where A is the eigenvalue corresponding to the eigenvector y. To transform this
equation into a form involving the normalized Laplacian, we multiply both sides

of equation (2.5.3) by D3
D 2Ay = ADzy. (2.5.4)

1 : . .
Now, assume that y = D™ 2x, where x is an eigenvector of the normalized

Laplacian. Substituting this into the above equation, we obtain:
D :AD iz = \z. (2.5.5)

From the eigenvalue equation of the normalized Laplacian Lz = 7, and

substituting the definition of £ we get:

(I-D :AD %)z = Tx. (2.5.6)
Expanding the left-hand side to get

Iz — D :AD iz = rx. (2.5.7)
Simplifying, and using (2.5.5),

T — )\ =Tz (2.5.8)
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We see that the eigenvalues A of the adjacency matrix and the eigenvalues 7 of

the normalized Laplacian are related by:

A=1-1. (2.5.9)

This relationship shows that the spectrum of the normalized Laplacian can be
used to infer the eigenvalues of our problem, that is the set of values A which
makes the modified Laplacian L* singular. In the next section we will exploit
this relationship to determine the relevant eigenvalues A for diffusion on a grid

graph.

2.6 Square grid graph

In this section we discuss diffusion over a grid network. In principle to do this
we must seek A such that L* is singular and in general this is a numerical task.
However, at the end of the previous section we established a connection between
A and the eigenvalues of the normalized Laplacian. We shall now use this to
calculate A for a grid graph. In particular we may appeal to recent work by
Klopotek [30] which provides an analytical treatment of the problem of
calculating the eigenvalues of the normalized Laplacian on a grid graph.
Leveraging Klopotek’s work, we aim to investigate diffusion processes on grid
graphs to construct a model that can reflect laboratory observations of diffusion
processes occurring in biological systems, such as a plant leaf exposed to a

localized stimulus, like a needle prick [4].

2.6.1 Klopotek’s results for a square grid graph

In this section, we apply results from Klopotek [30] to our diffusion problem
on grid graphs. Klopotek’s work provides analytical formulas for computing
eigenvalues and eigenvectors of normalised Laplacian on multidimensional grid

graphs. While Klopotek focused on the general spectral properties of grid graphs
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for clustering applications, our work extends his results specifically to analyse
diffusion processes and compute the dominant decay rates for biological modelling
applications. We leverage his eigenvalue formulas but develop new approaches

for solving the resulting larger systems and analysing asymptotic behaviour.

2 vertices.

we will discuss the eigenvalues for a square grid graph with n x n =n
An example of a 4 x 4 grid graph with n = 4 vertices is shown in Figure 2.6.3.
Klopotek’s [30] work provides essential formulas for determining the eigenvalues

of grid graphs. In particular, the normalized Laplacian eigenvalue 7 is given by

1
T=1+ 5(00551 + cos &2), (2.6.1)
T =14 cos& + tan(dy) sin &y, (2.6.2)
and
T =1+ cos &y + tan(dz2) sin 2. (2.6.3)
where
¢ = 2 (zﬂ > (2.6.4)
Toon—1\2 ) o
for j = 1,2. Here the z; (j = 1,2) are numbers to be chosen from the set
{0,1,2,.....,m — 1}, whereas, as mentioned above, n is the number of vertices.

While Klopotek provided these fundamental equations, he did not develop
systematic methods for solving them numerically or analyse their asymptotic

behaviour for large networks. Our contribution lies in:

e Developing robust numerical solution strategies using phase plots and

Newton’s method.
e Systematically analysing all possible (z1, z2) combinations.

e Extending the analysis to understand diffusion dynamics.

The §; are shift terms to be found along with the ;. Having selected a pair

(21, 22), we substitute (2.6.4) into (2.6.1)-(2.6.3) to eliminate the ;. We are then
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left with three non-linear algebraic equations to be solved for the three unknowns

T, 51, and (52.

Prior to doing this, however, it is convenient to first eliminate 7. To this end we

multiply (2.6.1) by 2 to obtain

27 = 2+ cos &) + cos &a. (2.6.5)

Adding (2.6.2) to (2.6.3) gives:

27 = 24 cos & + tan(dy) sin &y + cos & + tan(dz) sin &a. (2.6.6)

By subtracting (2.6.5) from (2.6.6), we obtain:

tan d1 sin &y + tan dg sin&s = 0,

which can be expressed as

—tan 01 sin &1 = tan s sin & (2.6.7)

Next we rewrite (2.6.2) and (2.6.3),by using equation (2.6.7), resulting in:

T —1=cos& + tan(d;) sin &y, (2.6.8)

and

T —1=cos& — tan(d1) sin&;. (2.6.9)

By subtracting these two equations and utilizing the result from (2.6.7), we find
that

cos &y = cos &y + 2tan dq sin &;. (2.6.10)
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Finally we eliminate the {; using (2.6.4), in which case (2.6.7) and (2.6.10) become

n—11L1 2

cos <n 3 : [?%ﬂ - 52]> = cos <ni1 [217” - 51D (2.6.12)

tan 41 sin <2 [M — (54) -+ tan s sin <2 [@ — 52]) =0, (2.6.11)
n

The goal now for a given grid size nxn is to solve (2.6.11) and (2.6.12) numerically,
for a chosen pair (21, 22), in order to determine §; and d2 and thus &;,&. Then
we use (2.6.1) to compute the eigenvalue 7. The following analysis of the solution
space and numerical methods represents our extension of Klopotek’s theoretical

framework to practical computation of eigenvalues for diffusion modelling.

General case for z; and 2z

It is important to note that the equations (2.6.11) and (2.6.12) are invariant

under the transformations:

(2’1,2’2) —> (2’2,2’1), (51,52) — (52,51).

This symmetry implies that we may restrict our calculations to the case z; > 29
without loss of generality. However, allowing all possible values of z; and zo

makes it easier to observe the multiplicities of eigenvalues.

If 21 = z9, the permutation (41, d2) + (d2,01) is valid. Hence, we expect that if

z1 = z9, both (d1,02) and (J2, 1) will yield solutions.

Note that (2.6.11) and (2.6.12) are also invariant under the transformations

Zi v+ 2z +2m,  6; — 0 +mm, (2.6.13)

where m € Z. This suggests that we can restrict the values of z; to z; € {0,1}.
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Thus, the pairs (z1, 22) can be chosen from the set:

S =1{(0,0),(1,0), (1,1)}. (2.6.14)

The equations (2.6.11) and (2.6.12) are also invariant under the transformation:

2w
51'_”514_2/(71—1) ie. 0= 0+ (1—n)m

We can limit our search for the values of §; and do to the interval:

D=0,(n—1)m) (2.6.15)

We will solve (2.6.11) and (2.6.12) numerically using Newton iterations and a
suitable initial guess. The initial guess can be selected by analysing the phase

behaviour of the complex function:

w(z) = (tan 01 sin &y +tan de sin&s) +i(— cos o +cos &y +2tandy sin&y), (2.6.16)

where z = 01 + id2, and the relationship (2.6.4) is used to eliminate the &; in
favour of the d; as before. The function w(z) vanishes when both (2.6.11) and
(2.6.12) are satisfied. To visualize where w(z) = 0, it is useful to plot its phase

¢, defined as :
¢ = arg(w)/m,

where ¢ € [—1,1]. This plot helps identify the correct starting values d1, do for
solving the system. An example is shown in figure( 2.6.1). The red dot indicates
the point where we expect to find w = 0 and therefore gives a guide as to an

appropriate initial guess for 41, ds.

In summary the task of solving (2.6.11) and (2.6.12) is fulfilled by selecting pairs
(21, 2z2) from the set S defined in (2.6.14) and then solving for d1, 2 numerically

using Newton’s method. Having done this we reconstruct the possible eigenvalues
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Figure 2.6.1: The initial guesses for the parameters §; and &2, with a red dot
indicating the point where the solution w = 0 is expected

7 using the formula (2.6.1), namely

case I: z1 = 29

In the case when z; = 23 = z, say, equations (2.6.11) and (2.6.12) reduce to

tan d; sin ( 2 [Z—W — 51}) + tan ds sin ( 2 [Z—W — 52}) =0, (2.6.18)

n—11L12 n—11L12
cos (nil [%_52]> o8 (nil [%_51]>
+ 2tan d; sin (nil [%—51]). (2.6.19)

If we assume that 1 = do = 4, say, these reduce to the single condition that

. 2 2T
tand sin (n 7 [7 — 6]) =0. (2.6.20)
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One option is to set tand = 0 in which case § = km, for integer k. Then (2.6.1)

yields with z =0 or z =1,

7(z = 0) = 1 + cos <n2]j7r1> . t(z=1)=1+ cos <(2’:L:11)”) :

So either way we get the eigenvalue set

T—1+Cos< an

=0,1,2,...,n—1. 2.6.21
) =012 (2.6.21)

This furnishes n of the normalised Laplacian’s n? eigenvalues. So there remains a
further n(n — 1) eigenvalues to be identified. Alternatively we could take z7m/2 —
0 = mm so that the sine term in (2.6.20) vanishes. This merely produces a subset
of the values already accounted for in (2.6.21). By way of example, consider the

square grid with n = 2. Then (2.6.21) yields

Let us now consider the case when §; # d2. Setting z = 0 in (2.6.18), (2.6.19)

yields

20 20
tan 01 sin ! + tan d9 sin 2 =0,
n—1 n—1

2 2
cos< %2 )zcos( ul >—2tan5151n< 201 )
n—1 n—1 n—1

These must be solved numerically for §;, d. Instead setting z = 1 in (2.6.18),

(2.6.19) yields

tan 47 sin ( 2 [E - 51}) + tan d9 sin <

n—112 n—1

NN BEE

[g - 51D . (2.6.23)
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These must be solved numerically for 41, ds.

Case II: 21 # 2o

As mentioned above, the values of z; and z; must be chosen from the set S

defined in (2.6.14), namely,

S = {(O, 0)? (170)7 (17 1)}

Therefore, by definition, we have §; # d2. For the case (z1, 2z2) = (1,0) equations
(2.6.11) and (2.6.12) become

tan 7 sin <n2 [f - (54) — tan do sin < 20 ) =0, (2.6.24)

n—1

252 _ 2 s
cos (n — 1> = cos <n—1 [5 - 51}> (2.6.25)
. 2 s
+2tan51 Sin <’n—1 [2—51]> .

In general, these equations must be solved numerically to find d; and Js.

We might try to seek a solution assuming that d; = do = 4, say. In this case

(2.6.24) and (2.6.25) require that sin&; = sin&,. Hence we have two possibilities:

(1) S=m-E, (it) : La=&

both to within an addition of an integer multiple of 27. Taking the second option

first, namely (ii), this requires cos s = cos¢; and (2.6.24) and (2.6.25) reduce to

tandsiné; =0 (2.6.26)

In this case (2.6.26) requires that § = mm or & = mn for integer m. The latter
implies 0 = (1 — 4m)m/2 so that tand = oo, so we disregard this possibility. The

former cannot be satisfied as it implies &1 # &o.
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Inserting the definitions of &; and &; into option (i), we require that

n2—51:7r_n31[g_6}’

1 1 =0
T n—1/) 7

which is only possible if n = 2. So this case only works for a 2 x 2 grid graph.

which rearranges to

Assuming n = 2 then, we have cos&s = —cos¢; and (2.6.24) and (2.6.25) reduce
to

1 = tan d tan 26.

Using the double angle formula for tan this simplifies to
1
tand = —. (2.6.27)

V3

Hence § = tan~'(1/+v/3) ~ 0.524. Then by (2.6.17) we have since cos &, = — cos &;

T =1.

To analyse the eigenvalue of 7 = 1, we consider the case (21, 22) = (1,0), where

the parameters &1 and & are defined as follows:

§1 = 2 (g—ﬁsl), fzznil(—fsz)-

By choosing &3 in terms of & such that £ + £, = —m, we obtain the relation:

T+ & = 6.

Given this choice, the eigenvalue 7 of the normalized Laplacian, represented by

equation (2.6.1), can be expressed by substituting the value of &, as:

=1+ %(cos& + cos(m +&1)).
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Since cos(m + &1) = — cos &1, the expression simplifies to:
T=1+ %(cos& —cos&) =1 (2.6.28)
Thus, the eigenvalue 7 = 1 is inherently satisfied when & + & = —m.
The Normalized Laplacian 7 which is equation (2.6.2) is:
T =1+ [cos&; + tan(d;) sin &y ]. (2.6.29)
Using the relation cos £, = — cos§;,into equation (2.6.3), we have:
7 =1+ [—cos& + tan(dz) sin &s]. (2.6.30)
Thus, under the condition m + &£ = —&», we find
sinéy = sin(r + &) = —sinéy, (2.6.31)
which leads to
T =1—[cos&; — tan(de) sin &y ]. (2.6.32)
By equating (2.6.29) and (2.6.32), the following relation holds:
tand; = — tan ds. (2.6.33)

Substituting the condition m+¢&; = —&; into the definition of £; and &2, we obtain:

Rearranging, this leads to:

s nm
—1+1) =
(n-1+1)= ",

™
P L
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o1

simplifying further gives:

51+52:% = 5 ="T_5,.

From equation (2.6.33), we can rewrite (2.6.11) as:
tan 01 sin&; — tan 41 sin &y = 0.
And from equation (2.6.12), we have:
cos& = cos &y + 2 tan dp sin &;.
Using relation where m + £, = —&3, we have:
cos(m + &1) = cos &y + 2tan oy sin&;.

Leads to

—cos&; = coséy + 2tand sin&;.

Rearranging, we have

0=2cos&; + 2tandy sin&;.

This leads to:

tand; = — cot &1,

where

tand, = — cot <n31 <g —51>> .

Defining A = - %~ and B = %51, and using the trigonometric identity:

n—1

tan A 4 tan B
tan(A+ B) = .
an(4 + B) 1 —-tanAtan B

In summary, to satisfy 7 = 1, the conditions §; + &2 = —7 and 1 + 2 = & must
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Square grid graph n x n, n =3 Square grid graph n xn, n=4
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Figure 2.6.2: Graphical solution for 7 = 1 in a square grid graph 4 x 4 to 6 x 6.
The intersections of tan(d;) (blue solid line) and — cot (L - %> (red dashed

n—1 n—1
line) represent the roots of the system. which is shows the multiplicity of the
eigenvalue of 7 = 1 on each graph

hold. This implies:

tand; = — tan do, (2.6.34)

and
tand; = —cot & = — cot (n 7_r 1~ n2i11) . (2.6.35)
Here, tan d; is periodic with 7, while — cot (% — %) has a period of w

The graphical solution for 7 = 1 is illustrated in Figure (2.6.2), which depicts

the intersections of the functions tan(é;) and — cot (ﬁ - %) for square grid
graphs with dimensions ranging from 4 x 4 to 6 x 6. The intersections represent
the roots of the system, corresponding to the multiplicity of the eigenvalue 7 = 1

in each graph.

The z-axis represents the normalized parameter d;/(m/2), while the y-axis
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shows the values of the functions tan(d;) (solid blue line) and
—cot (L — &> (dashed red line). The intersections indicate the values of ¢;

n—1 n—1

that satisfy both equations simultaneously.

For square grid graphs with an even number of vertices per side, the number of
intersections aligns with the number of vertices per side. In contrast, for grids
with an odd number of vertices, the intersections are fewer by one, with the
final point of intersection occurring asymptotically where the asymptotes of both

functions coincide.

Klopotek’s formulas for determining the eigenvalues of grid graphs. In particular,

the normalized Laplacian eigenvalue 7 is given by

T=1+ %(cos &1 + cos&2) (2.6.36)
To make 7 = 1 choose either

Case A: &+ & =—m, (2.6.37)

or

Case B: & —& = (2.6.38)

For the case where (z1,22) = (1,0), where the parameters £ and & are defined

as follows:

Then, for case A we can write §; to be

61:7—(52

and for case B we can write 69 — 01 to be

52*61:%*7&'
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Note that from case A we have :

tan d9 = tan (% — 51) = —tan (51 — %) )

From case B we have :
tan do = tan (%r -7+ 51) = tan (51 + n77r> )

Now we want to study the case where the number of vertices along one side of

the square grid graph are even.

CaseI: niseven;n=2k, keZ
For case A we have
tando = —tan(dy — km) = — tan g

For Klopotek’s equation we must solve

20
tand; = —tands tand; = —cot& = —cot T _ L
n—1 n-1

NB: Since 01, 62 periodic with period (n — 1)7 is the fact that 6, + d2 = &F +

m(n — 1), some integer m. For case B we have
tan do = tan (% + 51) = tand;
since n is even From equation (2.6.11)
tan 1 sin&; + tan do sin &y = 0,

and from (2.6.12)

cos & = cos&y + 2tan d; sin &
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Then from case B we know sin(§;) = sin(—n — &2), then we can say

siné; = —sinéy

we know from B that

cos(§1 — m) = cos&y + 2tan dp sin&;.

Leads to

—cosé&] = coséy + 2tandy sin ;.

Rearranging, we have

0 =2cos&; + 2tan 6y sin&;.

This leads to:

tand; = — cot &1,

i.e. is the same as A.
IN summary, for n even, solve tan d; = — cot & for 41 and then constrict do either
from

01+ 69 = %—Fm(n—l)w
or

dp — 01 = %T—I—m(n—l)ﬂ
e.g. for n=4:

(51+(52:27r+m(n—1)7r

52—51:7r+m(n—1)7r)

2.6.2 Eigenvalues of a square grid graph

In this section, we use MATLAB to compute the eigenvalues, denoted as A, of the

modified Laplacian for square grid graphs with sizes of 9, 16, 25, and 36 vertices.
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€12 €23 €34

Figure 2.6.3: A 4 x 4 square grid graph with 16 vertices.

For the 16-vertex grid, we further calculate the eigenvalues of the normalized
Laplacian, denoted as 7, using results from Section(2.5.4). Additionally, we apply
Klopotek’s main equation from Section(2.6.1) by selecting values for z; and zo

and solving for d; and do to validate these eigenvalues.

The square grid graph with 16 vertices is shown in Figure(2.6.3). To understand
its eigenvalues, we first establish that it is bipartite. According to bipartite graph
theory, the vertex set V' can be divided into two disjoint sets such that no edges
connect vertices within the same set; such graphs are also known as 2-colourable

134].

In this square grid graph G, we assign colours based on the parity of the sum of
the vertex coordinates (z,y). A vertex (z,y) is coloured gray if (x + y) is even
and white if (z + y) is odd. This ensures adjacent vertices always have different

colours, confirming that G is bipartite [39].
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Figure 2.6.4: Eigenvalues of square grid graphs of various sizes vs. A € [—1,1].

2.6.3 Key Observations on a Square Grid Graph

We analysed square grid graphs and performed experiments with both odd and

even numbers of vertices along one side of the grid, varying the grid size up to

100 x 100, resulting in 1000 vertices. Figure (2.6.4) shows some examples. Based

on these experiments, we made the following key observations:

e Zero Eigenvalue Multiplicity: The multiplicity of the zero eigenvalue

corresponds directly to the grid’s side length. For instance, in a 3 x 3

grid, the zero eigenvalue has a multiplicity of 3, while in a 4 x 4 grid, the

multiplicity is 4. This pattern is consistent with the results presented in

Section 2.6.1.

e Antisymmetry About Zero: The eigenvalues of our eigenvalue problem

matrix A exhibit antisymmetry around zero.

This indicates a balanced
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spectrum, with an equal distribution of positive and negative eigenvalues.

e Eigenvalue Range: The eigenvalues of the graph are bounded within
the interval [—1, 1], which aligns with the theoretical bounds established in

Section 2.3.3. These bounds were anticipated based on our analysis.

Additionally, since a square grid graph is bipartite, we observed that the
eigenvalue properties of our eigenvalue problem are similar to those of the
graph’s adjacency matrix, as noted in [12]. Specifically, bipartite graphs have
the property that if X\ is an eigenvalue, then —\ is also an eigenvalue with the
same multiplicity [12]. This antisymmetry is also evident in the eigenvalue
problem (2.3.10), where Az = ADz. This behaviour is confirmed by the

Matlab computations shown in some results in Figure 2.6.4.

A T multiplicity
-1.0000  2.0000 1
-0.7817  1.7817 2
-0.5000  1.5000 1
-0.3333  1.3333 2
0.0000  1.0000 4
0.3333  0.6667 2
0.5000  0.5000 1
0.7817 0.2183 2
1.0000  0.0000 1

Table 2.2: Eigenvalues of modified Laplacian A and Corresponding Normalized
Laplacian Eigenvalues 7 for a 16-Vertex Square Grid Graph

As established in Section (2.5.4), we derived a relationship between the
eigenvalues of the normalized Laplacian matrix, denoted by 7, and the modified
Laplacian eigenvalues, A. This relationship is expressed by the following
equation:

A=1-7 (2.6.39)

Table (2.2) presents the eigenvalues that were calculated using MATLAB for a
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square grid graph with 16 vertices. The first column, labelled X, contains the
eigenvalues directly computed from the graph’s modified Laplacian matrix. The
second column shows the corresponding normalized Laplacian eigenvalues
obtained by applying equation (2.6.39). According to this relationship, the

normalized Laplacian eigenvalues should fall within the interval [0, 2].

By using MATLAB to solve the non-linear equations derived by Klopotek
(2.6.7)-(2.6.10) discussed in Section (2.6.1) on a square grid graph, we explored
all possible values of z; and z2. In order to ensure the convergence of the
solution, we determined the initial values of d; and do by plotting the phases,
which allowed us to locate the regions where w(z) = 0. These initial values of §;

and d2 were then used in MATLAB to solve the system numerically.

Table (2.3) presents the chosen values of z1, z2, d1, and d2, and their corresponding

normalized Laplacian eigenvalues 7.

{21, 22} (61, 02) T
(0,0) (0,0) 2
(0,0) (0.80217 , 6.7762) 1.3333
(0,0)  (0.8021734 , 2.648612)  1.3333
(0,0) (2.6486 , 8.6226) 1.3333
(0,0) (2.6486 , 0.8022) 1.3333
(0,0) (6.7762 , 8.62260) 1.3333
(0,0) (6.7762 , 0.8022) 1.3333
(0,0) (8.6226 , 6.7762) 1.3333
(0,0) (8.6226 , 2.6486) 1.3333
(0,0) (3.1416 , 6.2832 ) 0.5
(0,0) (3.1416 , 3.1416) 0.5
(0,0) (6.2832 , 6.2832) 0.5
(0,0) (6.2832 , 3.1416) 0.5
(1,1) (27, 2m) 0
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{z1, 22} (61, 02) T
(1,1) (3.6346 , 7.0854) 0.6667
(1,1) (3.6346 , 5.4810 ) 0.6667
(1,1) (5.4810 , 8.9318) 0.6667
(1,1) (5.4810 , 3.6346 ) 0.6667
(1,1) (7.0854 , 8.9318) 0.6667
(1,1) (7.0854 , 3.6346) 0.6667
(1,1) (8.9318 , 7.0854) 0.6667
(1,1) (8.9318 , 5.4810) 0.6667
(1,1) (3.1416 , 3.1416) 15
(1,1) (0,m) 1.5
(1,0) (0.2083 , 8.9408) 1.781736
(1,0) (0.2083 , 0.48396) 1.781736
(1,0) (2.9333 , 8.9408) 1.781736
(1,0) (2.9333 , 0.48394) 1.781736
(1,0) (5.79923 , 6.07487) 0.21826
(1,0) (5.7992 , 3.3499) 0.21826
(1,0) (6.7671 , 3.3499)  0.21826
(1,0) (6.76714 , 6.0749)  0.21826
(1,0) (3.45575 , 6.59734) 1
(1,0) (3.4557 , 2.8274) 1
(1,0) (5.3407 , 8.4823) 1
(1,0) (5.3407 , 0.9425 ) 1
(1,0) (7.2257 , 8.4823) 1
(1,0) (7.2257 , 0.9425) 1
(1,0) (9.1106 , 6.5973 ) 1
(1,0) (9.1106 , 2.8274) 1

Table 2.3: Chosen values of z1, 29, 1, d2, and corresponding eigenvalues 7 for a

16-vertex grid graph.
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From these results, we observe that the eigenvalues computed using Klopotek’s
method, as shown in Table (2.3), are consistent with those obtained from the first
table (2.2), which were calculated using MATLAB’s internal eigenvalue solver,
specifically the eig command, to directly solve the eigenvalue problem for the grid
graph. However, the multiplicity of the eigenvalues was not accurately determined

using Klopotek’s method.

While it is possible to compute the eigenvalues of smaller networks directly,
understanding the behaviour of eigenvalues in large networks requires an
asymptotic approach. We will explore the asymptotic behaviour of eigenvalues

in square grid graphs as the network grows in size in the following section.

2.7 Asymptotic theory for a square grid graph

In this section, we analyse the asymptotic behaviour of the eigenvalues, denoted
by 7, for the normalized Laplacian of a square grid graph ni xno, where n; = ng =
M, representing the number of vertices along one dimension, and M is taken to be
large. The asymptotic behaviour of the eigenvalues is derived using the formulae
of Klopotek [30] that we used in the previous section. Our primary interest is in
computing the dominant decay rate, that is the first non-zero value of v. We recall
that A\ = cosv, and that, as was established in section (2.3.3), A € [-1,1]. Hence
we seek the eigenvalue A which is closest to unity. Furthermore, since A =1 — 7,
and 7 € [0, 2] for a normalized Laplacian,and considering that the eigenvalues of
a grid graph are symmetric about 7 = 1,due to the bipartite nature of the graph
as we discussed in section (2.6.2), we aim to find the eigenvalue closest to 7 = 2

as M become large.

In figure (2.7.1) we show the value of 7 closest to 2 for different values of n on a
square grid graph, together with the corresponding values of 4; and d5. For each
n the value of 7 was found by solving Klopotek’s equations (2.6.24) and (2.6.25)

for (z1,22) = (1,0) using Newton’s method. It can be seen that as n increases, T
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Figure 2.7.1: Value of 7 closest to the eigenvalue 2 for different values of n on a
square grid graph.

approaches 2 from below while d; and o both approach zero. We may conclude
that when n > 1, we calculate the slowest decay rate by choosing (21, z2) = (1,0)

and taking small values as the initial guesses for the d;.

The normalized Laplacian eigenvalue 7 is given by the following expressions:

1
T=1+ i(cos& + cos &2), (2.7.1)
T=1+cos{; +tand;sing; (j=1,2), (2.7.2)
where
o Z]'TI' — 2(53'
&= n—1

Based on the discussion above, we know that when n > 1, §; and 05 are both
small, and hence |¢;| is small. To approximate the eigenvalue nearest to 7 = 2,
then, we apply a Taylor expansion to both equations (2.7.1) and (2.7.2), yielding:

1 2 2 1
m1+2[(1-521>+< —521)]=2—4<5%+f§), (2.1.3)

£2 3
Tl+ (1 — 2J> + tan d; (gj - é) (2.7.4)

3 ,
:2+(tan5j)§j—§+... (j=1,2).
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2.7.1 Case I: (z1,2) = (0,1), or (z1,22) = (1,0)

We first consider the case where z; = 0 and zo = 1, or equivalently z; = 1 and
z9 = 0 due to symmetry, as discussed in Section (2.6.1). We aim to find the
second-largest eigenvalue, to get the growth rate v which is corresponding to the
eigenvalue nearest to 2. The eigenvalues of the normalized Laplacian lie within

the range [0, 2].

Let M =n — 1 and assume that M is large (M > 1). In this case, £ and & are

approximated as:

—261 T — 209

é.lzva 52: M .

We express §; and d9 in terms of M:
1 a 1 b
0 = iﬁlM s 0y = 552M s a,b > —1,

where (1 and [y are constants of order O(1). Substituting into &; and &2, we

have:

—b1 g T Ba

SRSV VAN Ve

Substituting these values of &1, & into equation (2.7.3) gives:

1 3? 2
722—4<W+W+ . (275)

Similarly, applying &; and & in (2.7.4) for j = 1 leads to the following expressions

for 7:
& L —
T=1+ (1 -5t > - {2&]\4 + ] (&1+..)
13 (—
T_2+M+... (2.7.6)

For j = 2 equation (2.7.4) leads to the following expressions for 7:

=1 _é% 1 —b
T=14(1-F )+ 252M o] (a4 )
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—94 %@M—b (% + ) _1 [1 + r

(3752)
M1+b

T=2+ 4= M2 4 (2.7.7)

To ensure consistency between these equations, we compare the powers of M

from (2.7.7) and (2.7.6). This gives the conditions:

L b=1.

N =

1+2a=1+b=2 = a=

Thus, d; and dy are given by:
1 _1 1 _
01 = 551M 2, 0= 552M !

Substituting the value of a and b into equation (2.7.5), we obtain:

T:Q—ZM—ZJF--- (2.7.8)
Similarly, equation (2.7.6) becomes:
1 1 5 9
T=2+ §7r52_§ﬂ- M=+ (2.7.9)
And for equation (2.7.7), we have:
[P

By comparing the coefficients of M~2 from equations (2.7.8) through (2.7.10),

we obtain the following relation:

As a result, we conclude
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Thus, in fact,

by:

2.7.2 Case II: (z1,2) = (1,1)

We now consider the case where z; = 29 = 1. The goal is to find the second-
largest eigenvalue, with 7 symmetric around 1. For large M, & and & are given

by:

77*251 5 7'('*2(52

M y 2 = .

&1 = 7

To ensure consistency between equations (2.7.3) and (2.7.4), we observe that

these only agree if ; = 0. This leads to the simplified expressions:

s
5] M’ ] 9

Substituting this value of ¢; into the expressions for 7 in equations (2.7.3) and

(2.7.4), we find that 7 can be expressed as:

Therefore, the asymptotic behaviour of 7 for large M for case (21, 22) = (1,1) is

given by:

2.7.3 Case III: (z1,25) = (0,0)

We now consider the case where z; = 29 = 0. The goal is to find the second-

largest eigenvalue, with 7 symmetric around 1. For large M, & and & are given
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by:
—20; —202

77 52: M

&1 =

To ensure consistency between equations (2.7.3) and (2.7.4), we observe that
these only agree if ; = 7. This leads to the simplified expressions:
4qr? )
&= 2 J=h2
Substituting this value of ¢; into the expressions for 7 in equations (2.7.3) and

(2.7.4), we find that 7 can be expressed as:

272

Therefore, the asymptotic behaviour of 7 for large M for case (z1,22) = (0,0) is
given by:
272

Ve

2.7.4 Results of asymptotic analysis

In this section, we present the results of the asymptotic analysis of the
eigenvalues of the normalized Laplacian 7 for a square grid graph. The analysis
builds upon the theoretical derivations discussed in Section (2.7), where the
eigenvalues of the normalized Laplacian were approximated asymptotically for
large grid sizes. Here, we will compare these asymptotic results with the actual
eigenvalues computed numerically for a square grid graph with sizes 3 x 3 to
20 x 20, which corresponds to a grid graph with 9 vertices to 400 vertices.
Specifically, we aim to validate the accuracy of the asymptotic expression,
particularly for the second-largest eigenvalue to study the growth rate v, as the
number of grid vertices, denoted by M, increases, with our chosen values for z;

and zs.
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1
2-72/4M?
The 2ed lagest of

Log(M)

Figure 2.7.2: The red line represents the second-largest eigenvalue of the
normalized Laplacian 7 for grid sizes ranging from M = 3 to M = 20. The blue
line shows the asymptotic approximation for the chosen values (z1,22) = (1,0)
over the same range of M.

Case I: (z1,22) = (0,1) = (1,0)

We derived the asymptotic expression for the eigenvalue closest to 7 = 2 when

(21,22) = (0,1) = (1,0) in Section (2.7) The result was:

where M is the number of vertices along one dimension in the grid. This

approximation is valid for large M.

Figure 2.7.2 obtained by using MATLAB, we computed the actual second-largest
eigenvalue of the normalized Laplacian for grid sizes ranging from M = 3 to
M = 20, and the asymptotic approximation and then plots them for comparison.

The plot displays:

e Red line: The second-largest eigenvalue of the normalized Laplacian for

each M from 3 to 20.

2

e Blue line: The asymptotic approximation 7 ~ 2 — 7.
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Figure 2.7.3: The red line represents the second-largest eigenvalue of the
normalized Laplacian 7 for grid sizes ranging from M = 3 to M = 20. The yellow
line shows the asymptotic approximation for the chosen values (z1,22) = (1,1)
over the same range of M.

Case II: (21, 22) = (1,1)

We derived the asymptotic expression for the eigenvalue closest to 7 = 2 when

(z1,22) = (1,1) in Section (2.7) The result was:

2

2M?’

T~2—

where M is the number of vertices along one dimension in the grid. This

approximation is valid for large M.

Figure 2.7.3 obtained by using MATLAB, we computed the actual second-largest
eigenvalue of the normalized Laplacian for grid sizes ranging from M = 3 to
M = 20, and the asymptotic approximation and then plots them for comparison.

The plot displays:

e Red line: The second-largest eigenvalue of the normalized Laplacian for

each M from 3 to 20.

2

e Yellow line: The asymptotic approximation 7 ~ 2 — 7.



Chapter 2: Diffusion in networks: analysis and asymptotic behaviour 69

T T T T T T T
2-272/M2 i
The 2ed lagest of 7

Log(7)

Log(M)

Figure 2.7.4: The red line represents the second-largest eigenvalue of the
normalized Laplacian 7 for grid sizes ranging from M = 3 to M = 20. The green
line shows the asymptotic approximation for the chosen values (z1,22) = (0,0)
over the same range of M.

Case III: (21, 22) = (0,0)

We derived the asymptotic expression for the eigenvalue closest to 7 = 2 when
(z1,22) = (0,0) in Section (2.7) The result was:

272
M2’

T~2—

where M is the number of vertices along one dimension in the grid. This

approximation is valid for large M.

Figure 2.7.4 obtained by using MATLAB, we computed the the actual
second-largest eigenvalue of the normalized Laplacian for grid sizes ranging
from M = 3 to M = 20, and the asymptotic approximation and then plots them

for comparison. The plot displays:

e Red line: The second-largest eigenvalue of the normalized Laplacian for

each M from 3 to 20.
2m2

e Green line: The asymptotic approximation 7 ~ 2 — 7.

Conclusion

The plot (2.7.2) demonstrates a high degree of agreement between the
computed  eigenvalues and the asymptotic approximation  when

(z1,22) = (0,1) = (1,0) , particularly as M increases. For larger grid sizes, the
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two curves essentially overlap, indicating that the asymptotic formula

accurately approximates the second-largest eigenvalue for large grids.



Diffusion on a network:

finite-difference approach

In this chapter we take a different approach to calculating diffusion on a network.
Rather than solving the diffusion equation exactly on each edge of the network
and then formulating an eigenvalue problem for the decay rate (as done in chapter
2), we instead develop a novel finite-difference discretization approach to solve

the full partial differential diffusion equation directly on the network structure.

Previous work on PDEs on metric networks has primarily focused on other
types of equations. For example, Bottcher and Porter [8] recently developed
spectral methods for solving Schrédinger, Poisson, heat, and wave equations on
metric networks, while Brio et al. [11] compared spectral, finite-difference, and
discontinuous Galerkin methods for Helmholtz and telegrapher’s equations.
However, to our knowledge, no previous work has specifically developed
finite-difference methods for the diffusion equation on networks with the

particular boundary conditions and vertex coupling conditions we consider here.

Our original contribution in this chapter is the development and
implementation of a Crank-Nicholson finite-difference scheme specifically
tailored for the diffusion equation on network structures. We discretize the
domain using equally spaced collocation points along each edge and develop
novel methods for enforcing continuity of flux and concentration conditions at

common vertices, as well as zero flux conditions at boundary vertices. This
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approach is fundamentally different from existing work because:

e 1. We focus specifically on the diffusion equation rather than other PDE

types.

We develop custom finite-difference stencils for network vertex conditions.

We use fictitious points to maintain second-order accuracy at vertices.

We validate our numerical decay rates against the eigenvalue analysis from

Chapter 2.

The evolution in time is computed using the Crank-Nicholson method, and we
demonstrate that our numerical results accurately capture the decay rates

predicted by the theoretical eigenvalue analysis.

3.1 Brief introduction to the finite difference method

The finite difference method (FDM) is an approximate solution to differential
equations. The fundamental idea behind finite difference methods, when
applied to boundary-value problems, is to replace the governing differential
equations and corresponding boundary conditions with suitable finite difference
equations. This is achieved by approximating the derivatives in the differential
equations using finite difference quotients, which are combinations of the
dependent (unknown) function values at specific values of the independent
variables. By formulating the difference equations at these specific values, we
are led to systems of simultaneous algebraic equations [21], which can be solved
using MATLAB, as will be demonstrated in this chapter. Therefore, a finite
difference method is understood as a numerical procedure that approximates
exact differential equations and boundary conditions [21], such as those in a
diffusion equation problem, which will be illustrated in this chapter for solving a

network graph. The resulting approximate equations can then be solved exactly
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D)

Figure 3.2.1: A path graph P, with two vertices.

or approximately to find the growth rate of our network. The Crank-Nicholson
method is a second-order method in numerical analysis used to solve diffusion
equations and similar partial differential equations [15]. In the next section, we
will apply that method to simple graphs to introduce the concept of solving

more complex graphs.

3.2 Crank-Nicholson method to solve the diffusion

equation on a network

In this section, we introduce the application of the Crank-Nicholson method for
solving the linear diffusion equation on various network structures. We begin with
the simplest case, a path graph P», to establish a foundational understanding of
solving the diffusion equation on a network with Neumann boundary conditions
applied at the boundary vertices. Next, we extend the analysis to a slightly
more complex path graph, Ps; , where we apply the principles of continuity of
concentration and flux at a common (interior) vertex. This ensures that the flux
transitions smoothly across the network. Finally, the concepts are generalized

and applied to larger, more complex networks.

3.2.1 Crank-Nicholson method to solve the diffusion equation for

path graph P,

In this section, we discuss the Crank-Nicholson method for solving the linear
diffusion equation on a simple path graph P, as shown in figure (3.2.1). The
diffusion equation, governing the spread of a substance over the graph, is
expressed as:
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where u(z,t) denotes the concentration of the substance at position z and time
t, and D is the diffusion coefficient. The domain considered is 0 < x < L, with

initial conditions prescribed as:

u(z,0) = f(z), (3.2.2)

where f(x) is some selected function.

We apply the Crank-Nicholson method to discretize the diffusion equation (3.2.1).
The discretization begins by defining a uniform grid of points over the path graph

P,. These points are distributed over the interval 0 < ¢ < 1 such that

&=(—-1h  i=1,...,N, (3.2.3)

where h = 1/N is the step length. We then denote by " the approximated value
of w at grid point &; at time level t = t,,, where t,, = n/At for some chosen time

step At. The finite difference discretisation for the diffusion equation is:

u ' —w? Dl = 20T ] LD uityy — 20 Uity
At 2

: L o : = > (3.2.4)

Multiplying both sides of equation (3.2.4) by At, we have:

DAt DAt
it = = o () = 20 )+ S (i — 2uf ) (3.25)
Defining & = ZZDTAJ, equation (3.2.5) becomes:
uftt ol = d(u?fll —2ut )+ a(ul - 2ul ol ) (3.2.6)

Thus, the discrete diffusion equation for the path graph P» is given by:

—auf ! + (14 20)u ! — aulf! = auf ) + (1 - 20)uf +aufy,  (3.2.7)

- 7

where u}' represents the numerical solution at the i-th grid point and n-th time
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level. Equation (3.2.7) leads to a system of equations, which will be detailed
further by taking into consideration the boundary conditions at the boundary
vertices. The following section will focus on the application of Neumann boundary

conditions.

Neumann boundary conditions on path graph P,

Neumann boundary conditions specify the derivative of the solution at the
boundaries of the domain [41]. For the path graph P5 on the interval 0 < x <1,

the Neumann boundary conditions are expressed as:

uz(0,1) = Q1,  uz(1,t) = Q2,

where @)1 and @) are specified fluxes. To approximate the derivative at the
boundaries, we use finite difference approximations. At the left boundary,in the
simplest implementation we use a forward difference:

Uz — Uy
h

=@Q1 = u—uz=—-hQ.

This method, however, is only first-order accurate with respect to h. In the
following section, we will explore the use of fictitious points at the boundaries
to achieve second-order accuracy, h?. Similarly, at the right boundary, we use a
backward difference:

UN —UN-1 _ QQ

. = un—_1—un = —hQ2

In equation (3.2.7) the Crank-Nicholson discretization can be represented in

matrix form as follows:
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1 -1 0 0| |upt?
—a 1+26 —d uh !
0 0

A A n+1
—a 1+2a —af |uy

+1
| 0 0 1 =1 [up" |
—h@Q1 0 0 0 u
a 1-2a & . : uf
= 0 0
a 1-2a Q Uy
L 0 cen 0 0 —hQQ_ L ’U,T]{f i
Here, & = % , and n and n + 1 denote the current and next time levels,

respectively. For the matrix representation, the first and last rows correspond to
the Neumann boundary conditions, while the interior rows correspond to the
diffusion equation discretization (3.2.7). To maintain the accuracy of the finite
difference method near the boundaries, we use fictitious points to allow us
consistent treatment of the boundary conditions while preserving the structure

of the numerical grid [23]. Further details will be discussed in the next section.

Fictitious points in finite differences for path graph P,

To impose boundary conditions at x = 0 and x = L on the path graph P», we

use fictitious points ugH and u?vtll, which lie outside the interval of interest. At

x = 0, the derivative is approximated by:

Solving for ugﬂ gives:

uptt = it — 21Q;. (3.2.8)
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The finite difference of the diffusion equation (3.2.7) at x = 0 is given by:

—aul ™+ (14 26)u™ — aul T = Gul + (1 — 26)uf + dul. (3.2.9)

Substituting the value of uj*! from (3.2.8) into the finite difference equation

(3.2.9), we obtain:

—G&(udt = 2hQ1) + (1 + 2&)uf ™ — Gui™ = a(ul — 2hQ1) + (1 — 2&)uf + Gub.
(3.2.10)

Simplifying and rearranging (3.2.10), we get

(1 +2&)uf™ — 2605 = —46hQ1 + (1 — 2&)ul + 26u3. (3.2.11)

At x = L, we similarly approximate the derivative and obtain a fictitious point

n+1 .
Uny: ) .
n+ n+
UNyr —Un—1
- Q27

2h

u:p|x:L =

where ()2 is an approximation for the derivative.Solving for u”NTl gives:

uith = uit = 2hQ. (3.2.12)

The finite difference of the diffusion equation (3.2.7) at = L is given by:
—auf + (L4 26)uly — auftl = éuly ) + (1 - 2&)ufy + duly,, (3.2.13)

Substituting the value of u%ﬁ_ll from (3.2.12) into the finite difference equation

(3.2.13), we obtain:

—aulth + (14 26)u Tt — a(2hQa + ulith)

= au_y + (1 — 28)u + &(2hQ0 +uly_y)  (3.2.14)
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Simplifying and rearranging (3.2.14), we get
—26ult + (1 + 2a)ultt = 4ahQo + 26y, + (1 — 2&)ufy (3.2.15)

Thus, using fictitious points, we arrive at the following system of equations in

matrix form:

[(14+2a) —2a 0 0 ] [urtt]
—a&  1+2a& —a 0 up
0
0 —& 1+2& —a uhtl
0 0 —2&  (1+24)| [u}™ ]
[ 46hQ, 22 1-2a ... o [ w]
& 1—2a ! 0 uy
= 0
0 ! 1-—26& & Uy _q
0 0 4a6hQ)y 24 1—2af | ufy |
Here, & = ghAQt, and n and n + 1 denote the current and next time levels,

respectively. The first and last rows of the matrix impose the Neumann
boundary conditions, while the remaining rows correspond to the discretized
diffusion equation on the path graph P,. The result of this analysis is explained

in the following section.

3.2.2 Numerical results for a path graph P,

This section presents the results obtained by MATLAB simulations of the
diffusion equation

U = Dy

on the path graph P» that represents the path graph P,, which consists of two

vertices connected by a single edge (see figure 3.2.2). We use a finite difference
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O——0O

Figure 3.2.2: A path graph P, with two vertices.

method; the simulation considers the interval [0,1] with Neumann boundary

conditions applied.

The adjacency and degree matrices characterise the network’s topology, enabling
analysis of diffusion dynamics. The growth or decay rate of the diffusion process
is theoretically determined by the eigenvalues of the modified Laplacian matrix,

L*, as discussed in detail in section (2.3.1) defined as:

L* = A — cos(v)D.

Here, cos(v) represents an eigenvalue A, such that from section (2.3.2) we know

cos(v) = A . By reformulating, the matrix can be expressed as:

L*=A - )\D.

For any given network, the eigenvalues of L* can be computed numerically. The
decay rate v is then determined using the relation cos™!(\) = v, as established
in section (2.3.2). The smallest positive decay rate corresponds to the slowest
diffusion mode and is compared with theoretical predictions obtained through

eigenvalue analysis.

The results obtained from MATLAB for the path graph P are illustrated in
Figure (3.2.3),with choosing values & = 0.76,dt = 0.0001 and h = 0.03 which

captures key aspects of diffusion dynamics:

e Figure (3.2.3)(a): shows the evaluation of the concentration profiles u(x,t)
of P, in different time steps t. The initial condition u(z,0) = cos(4mx)
(black curve) evolves over time. with intermediate steps in (blue curve),
the (red dots) indicate the exact solution. The numerical solution (blue

curve)is compared with the exact analytical solution(red dots) during the
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Figure 3.2.3: (

a): shows the concentration profile u(z,t) of P, along the network at different
time steps t, the black curve shows the initial condition, the blue curves
different time steps with cyan dotes that represent exact solution which indicate
the agreement of the numerical and theoretical solutions. , and the red line the
final step. (b): Maximum value v as a function of time, comparing numerical
(blue) and analytical solutions(red dots). (c): shows total mass conserved of the
system as a function of time. (d): logarithmic plot of maximum concentration =y
over time t (black line with dots), and analytical calculation of the smallest
positive eigenvalue of decay rate of the modified Laplacian v (red dash).

simulation, and both solutions show excellent agreement, the final state in
(cyan line). Mathematically, this behaviour aligns with the diffusion
equation’s tendency to minimise concentration differences across the

domain.

e Figure (3.2.3)(b): illustrates the temporal evolution of the maximum
value of u , v = max(u(z,t)). Two curves are presented numerically

computed maximum values (blue line) and (red dots) exact analytical
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Figure 3.2.4: Applying Crank—Nicholson discretization on path graph Ps

solution maximum values. As expected, the maximum value decreases

exponentially with time, which is characteristic of diffuse processes.

e Figure (3.2.3)(c): shows the total mass of the system over time. The
nearly constant mass confirms the numerical ability to preserve the total
quantity of the diffusing substance, a crucial property of correct numerical

implementations of diffusion equations.

e Figure (3.2.3)(d): shows v = max(u) on a logarithmic scale with time. This
logarithmic scale represents the decay of v, providing a clear visualisation
of the decay rate. The slope of the line in this graph corresponds to the rate
of exponential decay, which aligns with the theoretical prediction based on
the smallest positive decay of the modified Laplacian v. This plot serves as
a powerful confirmation of the agreement between numerical and analytical
approaches, showing that the decay behaviour of the system is accurately

captured by the Crank-Nicholson method.

To extend this analysis to more general cases, we begin by solving the diffusion
equation on a path graph with three vertices, denoted as P3. This will serve as
a foundational example, allowing us to later generalise the approach for solving

the diffusion equation on any loop-less graph structure.
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3.2.3 Crank—Nicholson method to solve diffusion equation for

path graph P;

In this section, we consider the domain 0 < z < 2L and apply the Crank-
Nicholson method for the numerical approximation of the diffusion equation on
a path graph Ps;. This path graph consists of three vertices and two edges,
representing a simple yet foundational graph structure for solving the diffusion
equation that contains a common vertex. To begin, we discretise the domain
into mesh points along the two edges of the path graph P; as depicted in figure
(3.2.4).

Neumann boundary condition for path graph P;

The boundary conditions for the vertices are imposed as follows. We begin with

the zero-flux boundary condition at the point x = 0, which is expressed as:
ulM =0 = 0.

This condition signifies that there is no flux across the boundary at x = 0,
meaning the derivative of u with respect to x is zero. Using a forward finite

difference approximation, we have:

M _ 0
2 =0 = o =u (3.2.16)

Next, we impose the zero-flux boundary condition at x = 2L, which is expressed
as:

U;(L-2)|z:2L = 0.

Using a backward finite difference approximation, we get:

2) 2
o,

h

= WP =ul. (3.2.17)
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Continuity conditions on common vertex for path graph Pj

The continuity of flux at the midpoint = L, which is the common vertex, implies
that:

_auﬁ(L‘l)|l‘:L =q1 on T(l), —@U;2)|$:L =gy oOn H(2)’

with the condition g3 — ¢ = 0 ensuring continuity of flux between the two edges.

Assuming « = 1, the forward finite difference approximation for flux is given as:

Pl

q1 = h , 42 = h

The condition g3 — ¢; = 0 gives:

Dl
h h ’
Simplifying, we obtain:
ufy) —uly —u +ul® = 0. (3.2.18)

Finally, we impose the continuity of concentration at the common vertex L:
uly = ul?. (3.2.19)

This continuity condition, combined with the previous flux condition, ensures

smooth behaviour of the diffusion process across the edges of the path graph Ps.

The matrix form for solving the diffusion equation on the path graph Ps,

incorporating the conditions from equations (3.2.16), (3.2.17), (3.2.18), and
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(3.2.19), is given by:

| 1 -1 0
—a 1+2a —a
0
0 0 -1
0 1
0
0
0
0 0
_—th 0
! 1-24&
0
0 0
= 0
0
0
0 0
Here, & = ghAQt,

o)

o)

0
1 -1
0
1424 —a
0
-1 0
0
1-2a &

0

0

0

0

u(l)n+1_

ujy
ufy
ul?
u?

1

)n+1
-1

)n+1
)n+1

)n+1

UN_q
(n

2)n

~hQ:)

_UN

with n and n 4+ 1 denoting the current and next time levels,

respectively. Superscripts (1) and (2) refer to the first and second edges on the

path graph, respectively. The first and last rows of the matrix correspond to

the Neumann boundary conditions at z = 0 and x = 2L. The remaining rows

represent the discretized diffusion equation for the path graph Ps.

Fictitious points on the continuity of flux for path graph P;

We now introduce the concept of fictitious points to handle the continuity of flux

conditions at the common points of the path graph Ps. According to Figure
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Figure 3.2.5: Applying Crank—Nicholson discretization on path graph Ps

(3.2.5), there is a common vertex, denoted by L, shared between two edges in
the graph. To enforce the continuity of flux condition at this common vertex,
fictitious points are applied. As illustrated in Figure (3.2.5), the common vertex
L is designated as the tail of the first edge, denoted by 7", and as the head of
the second edge, denoted by H (2). Here, the superscripts (1) and (2) correspond

to edges one and two, respectively.

The finite difference scheme of the diffusion equation at the fictitious point for

the first edges is given by:
—ault 4+ (14 2a)uytt — du’f\,trll —duly_1 — (1 —2&)uly — duRy = 0. (3.2.20)
Similarly, the finite difference at the fictitious point for the second edge is:

—duf ™t 4 (14 260)u ™ — aui ™ — Gul — (1 - 26)u} — auly = 0. (3.2.21)

At the tail of the first edge, the flux condition at = L implies —aug(cl)IJC:L.
Assuming o = 1, we can use the central difference method to obtain an expression

for this condition using a fictitious point. We can write:

un+l . un—i—l
ntl _ ZNHL N1 (3.2.22)

G 2h

At the head of the second edge, the flux condition at x = L implies —augg)]x: L.

Assuming « = 1, we can use the central difference method to obtain an expression
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for this condition using a fictitious point. We can write:

n+l _  n+l

n41 ’LL2 ’LLO
== - 2.2

To define the continuity of flux at the common vertex, we need to consider whether
it corresponds to a tail or a head on the segment. If it corresponds to a tail, we
take minus the flux, and if it corresponds to a head, we take plus the flux. This

means that for the node at x = L, we have:

gt — gttt =o. (3.2.24)

We substitute the value of (3.2.22) and (3.2.23) into (3.2.24) to obtain the

expression for the continuity of flux condition:

(it = uith) = (g™ =) = 0. (3225)

Next, we proceed by segregating the terms that involve the fictitious points to
the left-hand side of the equation, while retaining the remaining terms on the
right-hand side:

uith +ug =t st (3.2.26)

In addition, the expression for the previous time steps for equation (3.2.26) can

be expressed as follows:
U Fup = ui g+ ous. (3.2.27)
By adding equations (3.2.20) and (3.2.21), we obtain the following expression:

— a(uftl +ug™) = a(ufg +uf) = —(1+28)uy™ + aufty

+ (1 = 2&)uly + auly_q + aul ™ — (14 2&)uf™ + auf + (1 — 2a)ul. (3.2.28)

We define the non-fictitious part of the equation as R, which can be expressed as



Chapter 3: Diffusion on a network: finite-difference approach 87

follows:

R=—(1+2&)us™ + ault™ + (1 - 2&)ufy + auly_,

+auh ™ — (14 2a)u™ + auly + (1 — 2a)uf.  (3.2.29)

By utilizing the information provided by equations (3.2.26) and (3.2.27), we can
substitute the term involving fictitious points in equation (3.2.28) with the
corresponding expression from equations (3.2.26) and (3.2.27). This allows us to
obtain an expression that solely involves non-fictitious points, which can be

expressed as follows:

= &+ upth) = Gluly + up) = —(1+ 2a)ui + dui

+ (1 = 2&)uly + auly_q + aul ™ — (14 2&)uf™ + auf + (1 — 2a)ul.  (3.2.30)

We can then rearrange equation (3.2.30) to obtain the continuity of flux condition

at the common vertex on two edges as follows:

—2au = 26l + (14 28)uitt + (14 28)uft!

= 2aul; | + 26ul + (1 — 2a)ufy + (1 —2a)u}. (3.2.31)

The continuity of concentration at the common vertex (equation (3.2.19):
us\lf) = ugm) is enforced implicitly throughout our numerical scheme. When
implementing the finite difference method at the junction between edges, the
fictitious points (such as ug\lf)Jrl and u((f)) are introduced and then eliminated
using the flux continuity conditions. During this process, the concentration

values at the common vertex are treated as a single value across all connected

edges, which naturally enforces the concentration continuity.
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Figure 3.2.6: Directed path graph Ps with three vertices connected by two edges.

3.2.4 Numerical results for a path graph P;

This section presents the numerical solution of the diffusion equation

up = Dugy

on the path graph P; (see Figure (3.2.6), using the Crank-Nicholson method
with Neumann boundary conditions and continuity of flux and concentration at
a common vertex. The method and mathematical framework are consistent with
those applied in Section (3.2.2). The results are summarized in Figure (3.2.7),
choosing values & = 1.8, At = 0.01 and h = 0.0526 which highlights the diffusion

dynamics through the following key plots:

e Figure (3.2.7)(a): This plot illustrates the evolution of the concentration
profiles u(z,t) at different time steps ¢. The initial condition, represented
as a cosine wave black curve cos(%f), evolves over time toward
equilibrium, with intermediate states in blue and the final state in red.
This behaviour reflects the intrinsic property of the diffusion equation of

minimising concentration gradients across the domain.

e Figure (3.2.7)(b): This graph shows the maximum concentration value vy =
max(u) over time ¢, with the blue line representing the numerical solution
and the red dots indicating the exact solution. The red dashed line marks
the initial mass, which remains constant as expected as a result of mass

conservation.

e Figure (3.2.7)(c): The total mass M in the system is plotted over time,
which confirms mass conservation throughout the simulation. The black
line with dots demonstrates that the Neumann boundary conditions

maintain the system’s integrity since no mass is gained or lost.
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Figure 3.2.7: On the path graph Ps, figure (a): shows the concentration profile
u(z,t) along the network at different time steps ¢, the black cure shows the initial
condition, the blue cures different times, and the red curve the final step. (b):
displays the maximum concentration v over time ¢ The blue curve represents the
numerical solution, while red dots show the exact solution. (d): logarithmic plot
of maximum concentration y represent decay rate of y over time ¢ (black line with
dots), and theoretical calculation of the smallest positive eigenvalue of decay rate
of the modified Laplacian v.

e Figure (3.2.7)(d): This plot shows v = max(u) on a logarithmic scale with
time t. The logarithmic scale representation provides a clear view of the
decay rate, with the slope corresponding to the exponential decay rate. This
rate is closely aligned with theoretical predictions based on the smallest
positive decay rate of the modified Laplacian v, validating the numerical

approach and its consistency with the analytical framework.

The numerical convergence of our results is established in Figure 3.2.8 which

shows that convergence is achieved on reducing the size of the mesh spacing h,
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Figure 3.2.8: Numerical convergence study in h for the path graph P;. Showing
the maximum concentration v over time f. The blue curve represents the
numerical solution, while red dots show the exact solution. Comparison shown

for: (a) h = 0.5,6 = 0.02, At = 0.01, and (b) h = 0.005,& = 178.6, At = 0.01
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Figure 3.2.9: Numerical convergence study in At for the path graph P3. Showing
the maximum concentration ~ over time ¢t. The blue curve represents the
numerical solution, while red dots show the exact solution. Comparison shown
for: (a) h = 0.005,& = 178.6, At = 0.1, and (b) h = 0.005, & = 178.6, At = 0.001

and in figure 3.2.9 which shows that convergence is achieved for fixed h and

lowering At.
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3.2.5 The general formula of the fictitious point for the

continuity of flux condition for any network

Consider a network with a common vertex ¢ having more than two connected

edges. To ensure continuity of flux, we introduce the following condition:

G- > ahi=0 (3.2.32)

mes mest?

where the sets

S(_i):{jEV:j<i and a;; =1}

and

S_(:):{jEVj>Z and aij:]_}

where S(_i) and ng) represent the sets of vertices with indices less than and greater
than i, respectively, that are connected to vertex 7 via edges in the network. Here,
a;; is the ijth element of the adjacency matrix A for the network, and V' is the

set of all vertices in the network.

J,n
7

To discretise this condition, we introduce the notation u:", which represents the
concentration on edge j at time level ¢, at discretisation point ¢. Each edge is
discretised into N points so that point ¢ = 1 is in the head and ¢ = N is at the
tail. We can then write (3.2.32) in discrete form and introduce fictitious points
as follows: ‘ ‘ . ‘
uy" —up” URG1 ~ UN_y _ 5
jezc;f o EZCE o 0, (3.2.33)

where h is the grid spacing and

° C’,? denotes the set of elements with a vertex common to vertex k£ such that

this common vertex lies at the head of the edge.

° C’g denotes the set of elements with a vertex common to vertex k such that

this common vertex lies at the tail of the edge.
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Next we apply the diffusion equation at grid point i = N (the tail) on edge j to
obtain, using Crank- Nicholson:

W - D( W —2u%“+u’&“1>+D(u?m—%%u?v1>

Uy uy D [Unpr
h? 2 h?

dt 2

Reorganising the terms to bring all of the fictitious points to the left hand side,

we have

A J7n+1 A jvn — A ],TL+1 A ],TL+1 A j7TL A j?n
—GQuy | —auy = —(1+2&)uy " +auy | +auy +(1-20)uy (3.2.34)

where
,_diD
G R

Then, let R% denote the set of terms in the discretized diffusion equation that do

not involve fictitious points. Then, we can express Equation (3.2.34) as:

A J:n+1 A j?n — ]
—aQuy | — auy,, = Ry (3.2.35)

where we have moved all terms involving fictitious points to the left hand side.
Summing over all edges in C,? we obtain
A ]7n+1 A j,’I’L J— j
> (et - aul ) = RY (3.2.36)
jecF
Similarly we apply the diffusion equation at grid point ¢ = 1 (The head) on edge

j to obtain, using Crank- Nicholson:

nrl g D (ugﬂ —2u’f+1—|—u6‘+1> +2 <u§—2u’f—}—u8>
dt 2

Uy
h? 2 h?

Reorganising the terms to bring all of the fictitious points to the left hand side,

we have
—aul™ —aud" = —(1+2a)ud™ T+ aud™ T + aud” + (1 - 2@)ul" (3.2.37)
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Let Rgf denote the set of terms in the discretized diffusion equation that do not

involve fictitious points. Then, we can express Equation (3.2.37) as

aul™ — aul" = R); (3.2.38)

where, again, we have moved all terms involving fictitious points to the left hand

side. Summing over all edges in C’,f we obtain

> (—auft - auf”) = R)y (3.2.39)
jecH

Now, multiplying (3.2.33) by 2hd& and rearranging yields

-3 au” Z aully =—a | > uwdm+ YWkt (3.2.40)

S+ >l (3.2.41)

jeCH jeCF

Similarly, the next time level n + 1 can be expressed as:
Pptl=—a | >t >y W (3.2.42)
jeCH jecF
Next we add (3.2.39) to (3.2.36) to obtain
Z ( aug\,T_ll - aug\;ll) + Z (—dug’n+1 aud ) R]T + R] (3.2.43)
jecF jecH
Rearranging slightly, we have
— Z éyu?\’,Trll — Z A Jn“ Z auN+1 Z dué’n = R%«—I-R}'{.

jGC,z jEC,f ]ECT jEC,f
(3.2.44)

Using (3.2.41), (3.2.42) and (3.2.40) into (3.2.44), the continuity of flux condition
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for any common vertex in network with fictitious points becomes:

PP 4 PP = R} + R}, (3.2.45)

We consider the continuity of concentration as we discussed in section 3.2.3. This
condition is not explicitly imposed as a separate constraint at common vertices,
but rather is implicitly enforced when we formulate the flux continuity conditions.
When fictitious points (ug\][)Jrl or u(()j )) are introduced and then eliminated using

equations (3.2.32)-(3.2.45), the resulting numerical scheme naturally preserves

the concentration continuity at all common vertices.

3.2.6 Initial condition

In the next few sections we will present some numerical computations over
different networks including a Y-shaped graph, a 3 x 3 square grid graph, and a
6 x 6 square grid graph. In each case we choose an initial condition that
corresponds either to an eigenfunction of the eigenvalue problem discussed in

Chapter 2 or to a more general initial condition to be discussed below.

In the former case, selecting an initial condition at ¢ = 0 that corresponds to
an eigenfunction means that the time evolution in the numerical calculation will
follow that eigenfunction (to within numerical error) for all ¢ > 0. This is true
because the diffusion problem is linear. We can therefore use this as a check on
our numerical method to confirm that the decay rate computed numerically by
integrating forwards in time agrees with that computed by solving the normalised

Laplacian eigenvalue problem.

More generally, if we do not want to follow an eigenfunction throughout the
calculation, we may start from a general initial condition that does not correspond
to an eigenfunction. In setting this initial condition we must be careful to respect
the continuity conditions at the network vertices (including both common and

boundary vertices), that is our initial condition must satisfy continuity of flux and
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continuity of concentration; otherwise the numerical implementation discussed
earlier will simply propagate the discontinuity throughout the calculation. With
this in mind on each edge of the network we demand that the concentration on

the j edge of the network is equal to Up(£), 0 < ¢ < 1, where

Uo(&) = cos(2mj€) (3.2.46)

Note that initial condition (3.2.46) guarantees continuity at every vertex,
irrespective of the network structure, by setting the initial concentration at each
vertex to unity and the initial concentration gradient at each vertex equal to
zero. The index j is included in (3.2.46) to prevent it from coincidentally
conforming to an eigenfunction. For example for a Y-shaped graph as depicted
in Figure 3.2.10 one of the eigenvalues is v = 2m corresponding to the

eigenfunction (2.2.19), namely cos(27¢).

One practical issue with the initial condition (3.2.46) is that for a graph with
many edges j becomes potentially large and this creates an initial profile across
the network that is difficult to resolve without a large number of collocation
points. Therefore, for a graph with more than a certain number of edges we

prefer to impose the condition

Uo(&) = cos(2m5*€), (3.2.47)
where
1 ifj=2
j* =
0 if j#2.

This also precludes the possibility of the initial condition coinciding with an
eigenfunction whilst simultaneously restricting the size of the frequency of the

assumed cosine profile.
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Figure 3.2.10: Y-shape graph with four vertices and three edges

3.2.7 Numerical results for the Y-shaped graph

In this section, we extend our analysis to a Y-shaped graph (see figure 3.2.10).
The graph consists of a central common vertex connected to three boundary

vertices by three edges.

The method and mathematical framework are consistent with those applied in
Section (3.2.2).The methodology is adapted to the topology of the Y-shaped
graph by recalculating the modified Laplacian matrix L*. The eigenfunctions
and eigenvalues are computed for this topology, and the dynamics of the
diffusion process are analysed using both specific eigenfunctions and a general
initial condition. We also verify that the total mass, represented by the integral
of u(x,t) across the entire network, remains constant over time, confirming the
mass-preserving nature of the Crank-Nicholson method under Neumann
boundary conditions. The results of the analyses are discussed in the following

way:

e The eigenvalues of the modified Laplacian matrix, denoted as A, and their

corresponding decay rate are (see table 3.1):

e For the eigenvalue A = —1, we have the corresponding decay rate (v = ),
the eigenfunction corresponding to this eigenvalue was chosen as the initial
condition. The results in Figure (3.2.11) (a) show the concentration profile
of the diffusion equation on the Y-shaped graph. The black curve represents
the initial condition, the blue curves show intermediate time steps, and

the red curve represents the final time step. Figure 3.2.11 (b) shows the
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Figure 3.2.11: Numerical results for the diffusion process and decay rates on a Y-
shaped graph. (a, c, e): Concentration profiles u(z, t) for different eigenfunctions
and initial conditions. The black curve shows the initial condition, blue curves
represent intermediate time steps, and the red curve represents the final time
step. (b, d, f): Decay rates of the maximum concentration -y over time t. The
black line with dots represents the numerical decay rate, while the red dashed
line represents the theoretical decay rate. (b), A = —1,v = 7, the red dashed
line has slope —72. (d) A = 0,v = 7/2: the red dashed line has slope —72/4. (f)
Taking initial condition (3.2.46): the red dashed line has slope —v? = —72/4.
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A multiplicity v

-1 1 ™
0 2 /2
1 1 0

Table 3.1: The eigenvalue X of the modified Laplacian L* and their corresponding
v for square grid graph Y-shaped graph.

decay rate of the chosen eigenfunction, demonstrating excellent agreement
between the numerical decay rate (black line) and the theoretical prediction

(red line).

e For the eigenvalue A\ = 0, we have the corresponding decay rate (v = 7/2),
the eigenfunction corresponding to this eigenvalue was used as the initial
condition. The results, shown in Figure (3.2.11) (c), the concentration
profile of this case . Figure 3.2.11 (d) confirms the perfect match between

the numerical (black line with dots) and theoretical decay rates (red line).

o Figure 3.2.11 (e, f) shows the result for the initial condition (3.2.46) that
does not correspond to an eigenfunction. The concentration is shown in
Figure 3.2.11(e), while Figure 3.2.11(f) shows the decay of maximum
concentration v with time. Two points are striking in the latter panel.
First, the solid black curve eventually aligns with with red dashed curve.
The latter has slope equal to the smallest decay rate. Hence, the solution
ultimately settles to decay at the minimum decay rate. Second, the initial
slope of the black line is much steeper than that of the red dashed line,
suggesting that the initial decay is much more rapid than the ultimate
decay at the smallest value of v. This can be explained by noting that -,
the maximum concentration, can be expressed as a linear combination of

all of the eigenfunctions for the network, namely,

oo

2

Y= § Cn€ vnt
n=1
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for some coefficients ¢,,. Thus

dry B > 9
dt li=0 Z “ntn
n=1

(assuming the series converges). Then

dlogV’ _ dy/dt DD cnv?
dt li=o v l=0o > ¢,
This corresponds to the slope of the black line in Figure 3.2.11(f) at ¢ = 0.

Evidently
o0 2
> n—1 CnV,
Sn=l 7n ,/12_
Zn:l Cn

This holds because

o o0
> cavp > 1Y cn,
n=1

n=1

since V1 > g > U3---.

In conclusion, the decay rate of the chosen eigenfunctions agrees with the
theoretical decay rates, as the eigenfunctions correspond to specific eigenvalues
of the system’s Laplacian matrix, determining their respective decay rates in
the diffusion process. Furthermore, for a general initial condition, the function
is expressed as a linear combination of eigenfunctions, each decaying
independently at a rate determined by its eigenvalue. This results in an overall
decay dominated by the slowest-decaying mode in the long term.  The
agreement between the numerical results (black lines) and the theoretical
predictions (red lines) confirms the accuracy of the Crank-Nicholson method

and the theoretical framework.

3.2.8 Numerical results for square grid graph 3 x 3
In this section, we solve the diffusion equation

U = Dy,
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Figure 3.2.12: Square grid graph 3 x 3.

numerically on a square grid graph 3 x 3 (see Figure 3.2.12), using the Crank-
Nicholson method with Neumann boundary conditions and continuity of flux and
concentration at common vertices. The method and mathematical framework are

consistent with those applied on the Y-shaped graph.

To analyse the behaviour, we start by selecting specific eigenfunctions as initial
conditions. The eigenfunctions correspond to the eigenvalues of the modified
Laplacian matrix of the system L* = A — AD, where cos(v) = A. The results are

summarised as follows:

e The eigenvalues of the modified Laplacian matrix, denoted as A, and their

corresponding decay rate are (see table 3.2):

A multiplicity v

-1 1 T
-0.5774 2 2.1863

0 3 /2
0.5774 2 0.9553

1 1 0

Table 3.2: The eigenvalue X of the modified Laplacian L* and their corresponding
v for square grid graph 3 x 3.

e For the eigenvalue A = —1 (corresponding to v = 7), the eigenfunction
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that corresponds to that eigenvalue was chosen as the initial condition for
the calculation. The result in Figure (3.2.13)(a) shows the concentration
profiles u(z,t) at various time steps ¢. The initial condition, represented
as the black curve, evolves over time with intermediate states (blue) and
the final state (red). This behaviour reflects the tendency of the diffusion
equation to reduce concentration gradients. Figure (3.2.13)(b) shows
logarithmic plot of the maximum concentration 7 = max(u) over time,
revealing the decay rate. The slope corresponds to the exponential decay
rate, aligning with the theoretical prediction for the chosen eigenfunction.
This validates the ability of the Crank-Nicholson method to capture the

decay dynamics of the system accurately.

e For A = —0.5774 (corresponding to v = 2.1863), the other eigenfunction has
been chosen as an initial condition for the calculation. Figure (3.2.13)(c):
This plot shows the concentration profiles u(z,t) in various time steps t.
The initial condition, represented as a black curve , evolves over time, with
intermediate states in blue and the final state in red. Figure (3.2.13)(d):
The logarithmic plot of the maximum concentration v = max(u) over time
reveals the decay rate. The slope corresponds to the exponential decay rate,

aligning with the theoretical prediction for the chosen eigenfunction.

o Figure (3.2.13)(e,f) we use the same methodology as the Y-shaped graph
for the initial condition that does not correspond to the eigenfunction. we
set the initial condition to satisfy the continuity of flux and concentration
condition as we discussed in detailed on section (3.2.7). The concentration
is shown in Figure 3.2.13(e), while Figure 3.2.13(f) shows the decay of
maximum concentration v with time. Two points are striking in the latter
panel. First, the solid black curve eventually aligns with with red dashed
curve. The latter has slope equal to the smallest decay rate. Hence, the
solution ultimately settles to decay at the minimum decay rate. Second, the
initial slope of the black line is much steeper than that of the red dashed

line, suggesting that the initial decay is much more rapid than the ultimate
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decay at the smallest value of v that is explained in section (3.2.7).
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Figure 3.2.13: Numerical results for the diffusion process and decay rates on a
3 x 3 square grid graph. (a, c, e) are the concentration profile u(z,t) along the
network at different time steps t for different eigenfunction and initial condition.
The black cure shows the initial condition, blue curves represent intermediate
time steps, and the red curve represents the final time step. (b, d, f) are the
decay rates of maximum concentration 7 over time ¢. (black line with dots)
represents the numerical decay rate , and theoretical decay rates represented by
red dashed. (b) A = —1, and v = 7 , the red dashed line has slop —m2. (d)
A = —0.5774, and v = 2,1863, the red dashed line has slop —72. (f) the initial
condition (3.2.47) the red dashed line has a slope —(0.9553)2.
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3.2.9 Numerical results for square grid graph 6 x 6

In this section, we extend our analysis to a larger square grid graph 6 x 6. This

graph consists of 36 vertices and 60 edges. The diffusion equation

U = Dy,

is solved numerically using the Crank-Nicholson method, imposing Neumann
boundary conditions and ensuring the continuity of flux and concentration at

all common vertices.

We maintain the same methodology as for the 3 x 3 grid graph, but adapt the
system to account for the increased number of vertices and edges in the 6 x 6
graph. The modified Laplacian matrix L* is recalculated to reflect the new
topology, with the eigenfunctions and eigenvalues adjusted accordingly. We
analyse the dynamics using both eigenfunctions as initial conditions and general
initial conditions. Furthermore, we verify that the total mass, represented by
the integral of w(z,t) throughout the network, remains constant over time,
confirming that the Crank-Nicholson method preserves mass as expected for a

diffusion process governed by Neumann boundary conditions.

e The eigenvalues of the modified Laplacian matrix, denoted as A, and their

corresponding decay rate v are (see table 3.3):

e For the eigenvalue A = 0.8090 (corresponding to v = 0.6283), the
eigenfunction that corresponds to that eigenvalue was chosen as the initial
condition for the calculation. The result in Figure (3.2.14)(a) shows
logarithmic plot of the maximum concentration v = max(u) over time,
revealing the decay rate. The slope corresponds to the exponential decay
rate (black line with dots), aligning with the theoretical prediction for the
chosen eigenfunction (red dash).  the red dashed line has a slop

—(0.6283)2.
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A multiplicity v

-1 1 T
-0.9128 2 2.7209
-0.8090 1 2.5132
-0.6863 2 2.3272
-0.5621 2 2.1677
-0.4043 2 1.9870
-0.3090 1 1.8849
-0.2591 2 1.8329
-0.1562 2 1.7276

0 6 /2
0.1562 2 1.4140
0.2591 2 1.3087
0.3090 1 1.2567
0.4043 2 1.1546
0.5621 2 0.9739
0.6863 2 0.8144
0.8090 1 0.6283
0.9128 2 0.4207

1 1 0

Table 3.3: The eigenvalue X of the modified Laplacian L* and their corresponding

v for square grid graph 6 x 6.

e For A = 0.9128 (corresponding to v = 0.4208), the other eigenfunction has

been chosen as an initial condition for the calculation. Figure (3.2.14)(b)

The logarithmic plot of the maximum concentration 7 = max(u) over time

reveals the decay rate. The slope corresponds to the exponential decay rate

(black line with dots), aligning with the theoretical (red dash) prediction

for the chosen eigenfunction. the red dashed line has a slop —(0.4208)2.

e Figure (3.2.13)(c) we use the same methodology as the Y-shaped graph

for the initial condition that does not correspond to the eigenfunction. we
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Figure 3.2.14: Numerical results for a decay rates on a 6 x 6 square grid graph.
(a, b, ¢) are the decay rates of maximum concentration v over time ¢. (black
line with dots) represents the numerical decay rate , and theoretical decay rates
represented by red line dashed. (a) A = 0.8090, and v = 0.6283 , the red dashed
line has slope —(0.6283)2. (b) A = —1, and v = 7, the red dashed line has slop
—(m)? (c) the initial condition (3.2.46) the red dashed line has a slope —(0.4208)2.

set the initial condition to satisfy the continuity of flux and concentration
condition as we discussed in detail in section (3.2.7). The figure shows the
decay of maximum concentration v with time. Two points are striking in
the latter panel. First, the solid black curve eventually aligns with the
red dashed curve. The latter has a slope equal to the smallest decay rate.
Hence, the solution eventually settles and decays at the minimum decay
rate. Second, the initial slope of the black line is much steeper than that
of the red dashed line, suggesting that the initial decay is much more rapid
than the ultimate decay at the smallest value of v which is explained in

Section (3.2.7).
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In conclusion, the decay rate of the chosen eigenfunction agrees with the
theoretical decay rate because the eigenfunction corresponds to a specific
eigenvalue of the system’s Laplacian matrix, which determines the rate at which
that mode decays in the diffusion process. Furthermore, if the initial condition
is a general function, it can be expressed as a linear combination of the
eigenfunctions of the Laplacian matrix. Each eigenfunction will decay
independently at a rate determined by its corresponding eigenvalue.
Consequently, the overall decay behaviour of the system will be governed by a
combination of these rates, with the slowest decay mode (associated with the
smallest non-zero eigenvalue) dominating the long-term dynamics of the
diffusion process. This explains the observed agreement between the black line,
representing the decay rate of the chosen function, and the red line,

representing the theoretical calculation.



Reaction-diffusion equation on

network

In this chapter, we solve the reaction-diffusion equations in a network. We use
the method of lines to discretise the spatial domain into a grid and transform
the reaction-diffusion equation into a system of ordinary differential equations.
This allows us to efficiently solve the system using standard numerical integration
techniques. We focus on enforcing continuity of flux and concentration at common
vertices, as well as zero-flux boundary conditions at boundary vertices. The
approach is applied to various networks, starting from simple path graphs and

extending to more complex structures.

The numerical results for the dynamic behaviour of concentration are obtained
using MATLAB and analysed in detail. In particular, we explore the stability of
steady-state solutions for the reaction-diffusion equation. Numerical decay rates
obtained using the method of lines are compared with the theoretical predictions
derived from the eigenvalues of the modified Laplacian matrix, as discussed in
Chapter (2). This provides a comprehensive understanding of both the dynamic

and steady-state behaviours of reaction-diffusion systems on networks.
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4.1 Reaction diffusion equation

Reaction—diffusion equations have been used primarily in chemical physics to
model the evolution of concentration and temperature distributions in reactive
and diffusive systems. The theoretical foundations of reaction—diffusion waves
were established in the 1930s by works by Fisher and Kolmogorov, Petrovskii,
Piskunov on the propagation of the dominant gene, and Zeldovich,
Frank-Kamenetskii in combustion theory. They have introduced the scalar

reaction—diffusion equation:

up(x,t) = ugg(x,t) + f(u), (4.1.1)

where f(u) represents the reaction term [44]. This equation serves as the
foundation for understanding a wide variety of phenomena, including wave

propagation in biological, chemical, and physical systems.

The Fisher equation shows the interplay between non-linear reaction mechanisms
and spatial diffusion, which leads to phenomena such as wave propagation and
spatial patterning.

ug(x,t) = u(l —u) + Dugg(x,t), (4.1.2)

where u(x,t) represents the concentration of chemical, u(1—wu) is a given function
representing a reaction term which describes the growth dynamics, and D is the
diffusion [18]. We aim to solve this equation using the Method of Lines under
Neumann boundary conditions, continuity constraints, and continuity of flux at
common vertices , enabling the analysis of the dynamic behaviour throughout

the entire network.

Before presenting a discussion of the Method of Lines and its implementation for
a network, it is instructive to first discuss the possible equilibria and stability
thereof associated with the reaction-diffusion equation, and the particular form

of the Fisher equation. This we do in the next section.
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4.2 Steady-state and stability analysis for the

reaction-diffusion equation

In this section we discuss the possible steady states, for which u = wu(t), that can
occur for the reaction-diffusion equation. The next subsection is devoted to this

point. The following two subsections discuss stability.

4.2.1 Steady states for the reaction-diffusion equation

We consider the partial differential equation

u = f(u) + Dugy, (4.2.1)

For definiteness we examine the possibility of steady states, u(t), for the graph Ps,
that is over the domain 0 < z < 1. The boundary conditions u,(0,t) = uz(1,t) =
0 are imposed. In particular we investigate the behaviour of the solution as ¢
tends to infinity on a one-edge graph, namely P». In particular we wish to decide

whether or not the solution u(x,t) can approach a steady state.

Evidently a uniform steady state u = U*, a constant, is possible provided that

FU*) =0, (4.2.2)

and this depends on the existence of zeros for the function f. In any case our
particular interest here is in non-uniform, that is, spatially-varying, steady states

of the form u = U(x), for some U(z).

If such a steady state exists then it is the infinite time limit of the solution to
equation (4.2.1), i.e.
lim u(z,t) = U(z).

t—00

From (4.2.1) we have that

0= f(U)+DU", (4.2.3)
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where a prime denotes a derivative with respect to x.

We define the spatially-averaged value, m(t), of u(z,t) over the domain 0 < z < 1

to be

m = /1 u(zx,t) dx. (4.2.4)
0

Integrating equation (4.2.1) over the spatial domain, and making use of the
boundary conditions, we obtain an expression relating the time derivative of m

to the integral of f(u) over the domain

dm !
— = dz. 4.2.
O (4:25)
At steady state, we have
dm
|
dt ’

yielding from (4.2.5) the following equation

/ Uyde=o. (4.2.6)
0

It is clear from this result that f(U) must change sign in 0 < z < 1.

At this point we specialise to the particular case
fU)=U0(1-0), (4.2.7)

that is the form of the reaction term in the Fisher equation (4.1.2). In this case we
shall now show that no spatially non-uniform steady states can exist. Equation
(4.2.6) becomes

/0 U - vydr=o. (4.2.8)

In Figure 4.2.1 we sketch the integrand against U. Evidently for (4.2.8) to hold
we will need 0 < U < 1 over some portion of the domain 0 <z <1, and U > 1
over some other portion, in order to ensure that f changes sign (note that we do

not allow U < 0, which we consider to be unphysical). In Figure 4.2.2 we sketch
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Figure 4.2.1: Sketch of the Fisher equation reaction term f(U) = U(1—U) against
U showing regions where f(U) is positive (0 < U < 1) and negative (U < 0 and
U>1).
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Figure 4.2.2: Sketch of one conceivable steady state configuration U(x).

the type of scenario envisaged. Also included in the sketch is the sign of U”.
Now from (4.2.3) it must be the case that the sign of U” must be opposite to the
sign of f(U) (since D > 0). This means that in the region in Figure 4.2.2 where
U” < 0 we must have f(U) > 0. But, U > 1 in this region and, according to the
sketch in Figure 4.2.1, when U > 1 we have f(U) < 0 yielding a contradiction.
The same contradiction will be reached for any smooth U(z) and we conclude

therefore that no steady state is possible.

In the case of the Fisher reaction term f(U) = U(1 — U), then, the steady-state
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solution must be constant across the domain. There are two possible steady
states, and these are

U=0 and U=1. (4.2.9)

An important question now arises. Which of these two states is stable? This

question will be addressed in the next section.

4.2.2 Stability analysis for the reaction-diffusion equation on a

network

In (4.2.9) we noted that for the Fisher equation there are two possible steady
states, namely © = 0 and v = 1. While that section was devoted to the graph Ps,
it is clear that either of the steady states in (4.2.9) can be attained in principle
on any network. Therefore, in this section, we analyse the stability of the steady

states but broaden the discussion to encompass any network.

We maintain our focus on the Fisher equation, namely

up = u(l — u) + Dugy. (4.2.10)

Numerical calculations discussed later in this chapter suggest that in some cases
as t — 00, the concentration u tends to 1. This suggests that the steady state
u = 1 is stable, while v = 0 is possibly unstable. Herein we analyse carefully the
stability of both steady states. Our results will be compared with the results of

numerical calculations later in the chapter.

To analyse the stability near to u = 0, we assume v is small so that |u| < 1.

Linearising (4.2.10) on this basis we obtain

U = U+ Dugy. (4.2.11)

To solve, we consider a solution of the form u = elq(t,z), which leads upon
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substitution into (4.2.11) to:
elq+ elqy = elq + Delqyy.
Simplifying, we obtain the diffusion equation:
4t = Dz (4.2.12)

The decay rates of the diffusion equation on a network were discussed at length
in chapter (2). As discussed there, these are computed by first determining the
eigenvalues of the associated modified Laplacian matrix, L* — see section (2.3.1).
We know from section (2.2.5) that v = pf3, and g = %. Assuming D = L =1,
then 8 = 1 and the decay rate is given by v?, that is ¢ will behave like eVt

Consequently, u behaves as:

=20, (4.2.13)

If 1 — 2 > 0 for any network eigenvalue v, the steady state u = 0 is unstable;
otherwise if 1 — 2 < 0 for all network eigenvalues then the steady state v = 0
is stable. However, it is not possible that 1 — % < 0 for all eigenvalues across a
network. For we know that the diffusion problem on any network must have an
eigenvalue corresponding to the zero decay rate g = 0. In this case 1 —v? =1

which is positive.

To analyse the stability near to u = 1, we write v = 1 —u and aim to determine v.
In particular we will assume that v is small so that |v| < 1. Linearising (4.2.10)
on this basis we obtain

v = —U + Dvgg. (4.2.14)

To solve, we consider a solution of the form v = e q(t,z), which leads upon

substitution into (4.2.14) to:

—e'q+e g = —e g+ De g,
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Simplifying, we obtain the diffusion equation:
@ = Dz (4.2.15)

As mentioned above, the decay rates of the diffusion equation on a network were

discussed at length in chapter (2). However, it makes no difference to the outcome

—v2t

here since as ¢ behaves like e it follows that v behaves as

e~ (+2)t (4.2.16)

and hence, since 1 + % > 0 irrespective of the network eigenvalue v, the steady

state u = 1 is stable.

We can generalise this argument for any reaction-diffusion equation of the form
u = f(u) + Dugy, (4.2.17)

where f is a non-linear function of u. Suppose for illustration that f(u) = 0 is
satisfied by v = u*, a constant, i.e. u = u* is steady state of the system. In this

case the linearisation procedure carried out above will lead to the linearised form
v = f'(u*)v + Dugy. (4.2.18)

Making the same change of variable as before from v to ¢ we again obtain the

diffusion equation, and this time the conclusion that for large ¢, u behaves as

_2
e(m v )t7

where m = f/(u*). The stability then depends on the sign of m—v2. In particular,

if m — 12 is positive for any eigenvalue v then the steady state v = u* is unstable.

Network Shape Vinin Network topology

@—>@ us Path graph P
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Network Shape Vmin Network name

@—>@—>@ /2 Path graph P;

CD—> 2.0944 Triangle graph

SNpLe

@ /2 Y-shaped graph

/2 Square grid

( j \\<2> 1.0472 Butterfly graph
@—'@
()
@ @ 1.2929 Three Connected triangles

a 1.2310 Envelope graph

@ @ 0.8411 Tree graph with 6 vertices

Table 4.1: The smallest decay rate vy, for a range of different networks.

For a given network we can compute the smallest decay rate for the associated
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Figure 4.2.3: Numerical simulation of the Fisher equation (4.2.10) on a butterfly
network (see Table (4.1)). The coloured lines are explained in the text. Each
panel shows the concentration on a particular edge (for subset of all edges).

diffusion problem. Clearly if m < 0 then u* is stable since then m — v? < 0.
But if m > 0 then w* is unstable for the reason given above that v = 0 is
always an eigenvalue for any network. The latter alludes to the fact that any
spatially-independent concentration u = u(t) will grow over time away from a
steady state at which m > 0. If u = wu(t) the network structure is irrelevant.
However, we can attempt to quantify the rate of growth or decay for spatially-
varying perturbations away from a steady state. Of interest in this case is the

smallest v in absolute value. We call this v,;n.

Returning to the form of f for the Fisher equation, viz. f(u) = u(l — u), we
have m = f’(0) = 1 as noted above. In Table (4.1) we show values of vy, for an
assortment of networks. In figure 4.2.3 and 4.2.4 we show numerical simulations
for the Fisher equation over the butterfly and envelope networks, whose vp
value is given in Table (4.1). In each of these figures the initial condition is
shown as the red line, representing a perturbation away from the unstable steady
state v = 0. The blue lines indicate the concentration u on the edges of the
network at later times. The red line shows the final state at the end of the

simulation at ¢t = 75.0.
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Figure 4.2.4: Numerical simulation of the Fisher equation (4.2.10) on a envelope
network (see Table (4.1)). The coloured lines are explained in the text. Each
panel shows the concentration on a particular edge (for subset of all edges).

4.2.3 Stability analysis for P;.

In this section we present a particular case of the stability analysis for the graph

P,. The reaction-diffusion equation is given by:

ur = f(u) + Ugy. (4.2.19)

We assume steady states exist at u =0 and u = 1.

To explore their stability properties we introduce a small perturbation around

the steady-state solution.

For u = 0 we write u = 0 + n(x,t), where |n| < 1. This leads to the linearised
equation:

ne = f(0)n + Nz, (4.2.20)

where f7(0) is the derivative of the function f(u) evaluated at u = 0, denoted by

A. In the case of the Fisher equation, we have f(u) = u —u?, and f/(0) =1 = \.

By assuming 7 takes the form n(x,t) = eMg(x,t), we find that q(x,t) satisfies the
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diffusion equation:

dt = Qzzx- (4221)

We work on the domain [0, L] and assume Neumann boundary conditions at the

ends. We posit the solution in the form
q(z,t) = e_SQtv(:c), (4.2.22)
where s is to be determined, and v(x) satisfies the ordinary differential equation:
v 4 %0 = 0. (4.2.23)

The solution which satisfies the boundary conditions is

v(z) = cos(sz), (4.2.24)
provided that
nm
§=—.
L
We now have that
q(z,t) = e’ cos(sz). (4.2.25)
and hence
n(z,t) = e cos(sz),
where

2

say. In the case of the Fisher equation, A = 1, so that

To investigate stability, we analyse the sign of u. If u > 0, the perturbations
grow exponentially over time, indicating instability. If u < 0, the perturbations

decay exponentially, implying stability. When p = 0, there is neither growth nor
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decay, and the system is said to be neutrally stable.

2

When n = 1 we obtain py = 1 — 77 < 1. Therefore, if L > m, py is positive,
indicating instability. If L < m, uy is negative, indicating stability. The critical
value of L = 7 corresponds to a neutrally stable mode. When n = 0: In this case,
po = 1 > 0, indicating that the perturbations definitely grow, making the system
unstable, irrespective of the value of L. General case (n # 0 and n # 1): The
stability of the system depends on the values of pu, as determined by the domain
size L. In conclusion, this analysis indicates that the stability of the system is
influenced by the mode number n and the domain size L, and provides valuable

insight into the behaviour of perturbations around the steady-state solution.

In summary, as the domain size L increases, the decay rate of the perturbations
tends to converge to a slower rate, approaching a decay rate of 1. This behaviour

is a consequence of the stability analysis and the value of u,. Recall that u, =

A —s?, where A = 1 for the specific function f(u) = u—u? and s = T (where n is

the mode number). So, p, =1 — "2752. When L is large (compared to the mode

number n), "27{2 becomes small, and consequently pu, becomes close to 1. As pu,

approaches 1, the decay rate of the perturbations becomes slower, and the system

takes more time to stabilise. In contrast, when L is small (compared to the mode

n2m2
L2

number n), becomes large, and u, moves further away from 1. In this case,
the decay rate is faster and the system stabilizes more quickly. This behaviour is
a fundamental characteristic of the stability analysis and is consistent with the

behaviour of perturbations around the steady-state solution in the context of the

Fisher equation.

Note that the above analysis can be repeated for the steady state at u = 1, with

the result that the corresponding value of p is given by

p=1- (7)2 . (4.2.26)
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4.3 Method of Lines

The Method of Lines (MOL) is a numerical technique that simplifies the
solution of partial differential equations (PDEs) by discretizing the spatial
domain into discrete grid points while keeping the time variable continuous.
This approach transforms the original PDE into a system of ordinary
differential equations (ODEs), which can then be solved using established

time-integration methods [38].

For the Fisher equation:

up = u(l — u) + Dugy, (4.3.1)

consider a spatial domain [0, 1] that is divided into N grid points:

zi=@G—-1)h h=-—— i=12...,N. (4.3.2)

The equation is then approximated at each grid point using finite differences.

The second derivative u,, is discretized as:

Uit — 2u; + Ui
72

(4.3.3)

Ugpy <

where u;(t) denotes the value of u at the i-th grid point at time ¢. Substituting
this approximation into the Fisher equation (4.3.1) results in a system of ODEs

for the interior grid points:

dui
dt

2w Uiy
:ﬂmHJﬂH1}$+ul,z:Z“wN—L (4.3.4)

Boundary conditions are essential to ensure the physical realism of the solution.
We impose Neumann boundary conditions, which specify zero flux at the domain
boundaries:

uz(0,t) = A, and wu,(1,t) = B.
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4.3.1 Method of lines for path graph P,

To start applying the method of lines on the network, we will start with the
simple case P, (see 4.3.1), which contains two vertices connected by a single edge.
The boundary condition will be imposed on the vertices 1,2. The concentration

at spatial point is denoted by ugl), where 1 represents the edge index, and i
represents the spatial node within the element. This section details how boundary

conditions are incorporated into the numerical solution.

Boundary conditions

At vertex 1, the zero-flux boundary condition is imposed, expressed as:

du gl)
dt

= f (") + D% (= 2uf? + o), (4.3.5)

(1)

where u’ is a fictitious point outside the domain on edge ej2. To satisfy the

zero-flux condition, we impose:
u? —uf =0, (4.3.6)

which implies:
ulV) =iV (4.3.7)

Substituting this relation into Equation (4.3.5), we obtain:

1
dug )
dt

= 1 (u) + D% (28" — 2{"). (4.3.8)

At vertex 2, the zero-flux boundary condition is similarly expressed as:

du(l) 1 1 1 1 1
TQV =/ (“gv)) + D55 <U5v)+1 —2uly) + ugv)_l) : (4.3.9)
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Figure 4.3.1: A path graph P, with two vertices.
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Figure 4.3.2: Evaluation of concentration u(z,t) over time for a Fisher equation.

(1)

where upy’, is a fictitious point on the end of edge 1. To enforce the zero-flux

condition, we impose:

ulh, — ) =0, (4.3.10)
which implies:
1 1
ulh, =) (4.3.11)

Substituting this into Equation (4.3.9), we obtain:

d (1) 1
O = () Doy (<2 20 (4.3.12)

For the interior mesh point on that network, we will apply the discretised equation

(4.3.4).

4.3.2 Numerical results and analysis for path graph P,

For the path graph P», (see Figure 4.3.1), numerical simulations were performed

using the method of lines to solve the reaction-diffusion equation:

ug = u(l — u) + Dug,,
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Figure 4.3.3: Solution on a P, graph. (a) In the limit as time ¢ tends to infinity,
the maximum value of the concentration u, denoted as upax, approaches 1. (b)In
the limit as time ¢ tends to infinity, the complement of the maximum value of u,
denoted as 1 — upayx, approaches 0. (c) Plot provides a visual representation of
the decay behaviour of the logarithm of 1 — uy,x over time and compares it with
the red dashed expected decay rate. The red dashed line has slope —1 which
corresponds to the value of u given in (4.2.26) taking n = 0.

the topology of the graph was represented by its adjacency matrix. The following

parameters were used for the calculation:

Diffusivity (D): 1.0.

Number of grid points at the edge (INV): 80.

Length of edge (L): 1.0.

e Time span: 0 <t < 8.0.
The Neumann boundary conditions u;(0,t) = wu,(1,t) = 0 were applied. A
Gaussian pulse was chosen as the initial condition.

Figure (4.3.2) shows the evolution of concentration u(x,t) over time. The initial

Gaussian pulse (red curve) diffuses and reacts according to the Fisher equation.
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At intermediate times, the profile is shown in blue and as t — oo, the solution

approaches the final step (green line).

Figure (4.3.3) (a) shows the maximum concentration umay) that was tracked over
time. Initially, umax increases rapidly due to the dominating reaction term, before
gradually approaching v = 1. Figure (4.3.3) (b)In the limit as time ¢ tends
to infinity, the complement of the maximum value of u, denoted as 1 — Umax,
approaches 0. Figure (4.3.3) (c) is a plot of In(1 — umax) versus t that exhibits a
linear trend at large times, confirming the exponential convergence of the solution
to the steady state. The observed decay rate matches the theoretical prediction

(red dashed line) of —1, derived from the linearised reaction term at u = 1.

4.3.3 Method of Lines for path graph P;

In this section, we consider a path graph Ps (see Figure 4.3.4) consisting of three
vertices, which represent two edges to have a clear picture to start applying the
method of lines on the network. The boundary conditions are imposed at the two
boundary vertices (1 and 3), while vertex 2 serves as a common vertex between

(%)

the two edges. The concentration at each spatial point is denoted by u,"’, where
k represents the edge index, and ¢ represents the spatial discretization points
within the edge. This section details how boundary conditions and continuity

conditions are incorporated into the numerical solution.

€12 €23

Figure 4.3.4: path graph P; with three vertices connected by two edges.

Boundary vertices

At vertex 1, the zero-flux boundary condition is imposed, expressed as:

du) 1
= f (u) + Doy () = 20 +uf) (4.3.13)
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(1)

where u’ is a fictitious point outside the domain on edge ej2. To satisfy the

zero-flux condition, we impose:
uM —uf =0, (4.3.14)

which implies:

ult = V. (4.3.15)

Substituting this relation into Equation (4.3.13), we obtain:

dugl) (1) (1) 1)
at f( ) +Dh2 (2u2 = 2uj ) . (12.6)

At vertex 3, the zero-flux boundary condition is similarly expressed as:

duy (2) 2) 2 @
7_f( >+Dh2<N+1—2uN +uld,), (4.3.16)

(2)

where uy’,  is a fictitious point on edge 2. To enforce the zero-flux condition, we

impose:
uP —u) =0, (4.3.17)
which implies:
uPh, =P (4.3.18)

Substituting this into Equation (4.3.16), we obtain:

S () of (e en). e

Common vertex

At vertex 2, which is a common vertex between the two edges, the discretized
equations for the mesh points N on the first edge and 1 on the second edge are

given by:

(1)
duy (1) (1) )
A= f (uly >+Dh2 (ulhs = 20 +u,) (4.3.19)
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2
dug )

dt

=f ( (2)) + Dhl2 ( A L u(()2)> . (4.3.20)

(1)

Here, uy’ , on edge 1 and u( )

on edge 2 are fictitious points used to enforce

continuity of concentration and flux at the junction.

To ensure the continuity of concentration at vertex 2:
uly = ul?. (4.3.21)

As well as to ensure the continuity of flux at vertex 2, the following condition is
imposed:

1 2 2
ug\l,)Jrl - ug\,) 1= ué ) _ ué ), (4.3.22)

which simplifies to:

ul +uPy = ulf) |+ u?, (4.3.23)

Adding Equations (4.3.19) and (4.3.20), and using the continuity condition from

Equation (4.3.23), we obtain:

d (@ 2 1 2 2D 1 1 2 2
7 (ug\,) +u§ )> = (f <u§v)) +f (ug )>> + 7 (—ug\,) +u§v),1 —i—ug ) —ug )) )
(4.3.24)
Let R denote the right-hand side of Equation (4.3.24), such that:

R=(f(u{)+r(«?))+ 2;;( ul) +ul)y + el —ul?) . (43.25)

(1) _

Since uy’ = u( ) , the temporal evolution at the junction is given by:

dug\lf) 1
T iR' (4.3.26)
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e, ()

Figure 4.3.5: On the path graph Ps(a) the concentration profile u(z,t) over time
for a Fisher equation for P; on first edge. (b) the propagation of the concentration
u(x,t) to the second edge due to the continuity condition apply.

4.3.4 Numerical results and analysis for path graph P;

For the path graph Ps, (see Figure 4.3.4), the numerical simulation obtained

using the line method to solve the reaction-diffusion equation:

up = u(l —u) + Dugy

on P; with the following parameters used:

Diffusion coefficient D = 1.0.

Spatial discretization: 200 grid points per edge.

Edge length L = 10.0.

Time interval: ¢ € [0, 15].

The initial condition was a Gaussian pulse centred at x = 5 on the first edge.
The Neumann boundary conditions were applied on the boundary vertices, and
the continuity of flux and concentration was applied on the common vertex. The

results are as follows:

e Figure (4.3.5)(a,b) shows the evolution of the concentration u(x,t) over

time on the graph Ps. The initial Gaussian pulse, applied on the first
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Figure 4.3.6: On the path graph Ps,(a) In the limit as time ¢ tends to infinity,
the maximum value of the concentration u, denoted as umax, approaches 1. (b)In
the limit as time ¢ tends to infinity, the complement of the maximum value of u,
denoted as 1 — upayx, approaches 0. (c) Plot provides a visual representation of
the decay behaviour of the logarithm of 1 — uya over time and compares it with
the red dashed expected decay rate.

edge (red curve), undergoes diffusion and reaction according to the non-
linear diffusion equation. At intermediate times, the concentration profile
(blue) shows the smoothing and spreading effects of diffusion. As ¢t — oo,
the solution stabilises and approaches the final steady-state profile (green
line). Notably, the diffusion spreads to the second edge, as a result of
the continuity conditions for both concentration and flux imposed at the
common vertex. These conditions ensure a smooth transition and consistent

flux across the network.

e Figure (4.3.6) (a) shows the flux at the boundaries of the first edge
tracked over time. The flux initially oscillates as the concentration
stabilises before settling into a steady-state value. (b) illustrates the

maximum concentration umay on the first edge , which increases rapidly at
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Flux

Figure 4.3.7: On the path graph Ps, the black dots represent the flux entering
edge 2 through vertex 2 the tail of edge 1 and the blue curve shows the flux
entering edge 2 through its head vertex 2.

first due to the non-linear growth term, then gradually converges to u = 1.
(c) is a plot of In(1 — umax) versus ¢, showing a linear trend at large times.
This confirms the exponential convergence of the solution to the steady
state. The observed decay rate matches the theoretical prediction (red

dashed line) derived from the linearised equation at u = 1.

e Figure (4.3.7) shows the flux dynamics at the edge boundary over time.
The flux at the tail of the first edge is represented by the black dotted
line, while the flux at the head of the second edge is shown in blue.
Notably, the two flux profiles overlap perfectly, demonstrating the
accurate enforcement of flux continuity across the common vertex. This
result validates the implementation of both the continuity of flux and

concentration conditions in the numerical simulation.

4.3.5 Method of lines on general network

In this section, we analyse a network with N vertices. The boundary conditions
outlined in Section (4.3.3) remain applicable to this general network. Here, we
focus on interior mesh points along the edges, excluding the boundary grid points
and the common vertices. Additionally, we address the behaviour at common

vertices where more than two edges intersect. These will allow us to handle



Chapter 4: Reaction-diffusion equation on network 131

different network topologies.

Network common vertices

To enforce the continuity of flux at the common vertices 7, the flux balance

equation is written as:

a' - > a =0 (4.3.27)

kest) kes®
Here, qf and q,{ represent the head and tail fluxes for edges er; and e,

respectively, and where the sets:

. Sg) ={j eV :j>ianda;; =1} denotes the set of vertices connected to

node ¢ with indices greater than i.

o S = {j € V:j <iand a;; =1} denotes the set of vertices connected to

node ¢ with indices less than 3.

Here, a;; is the ij*™ element of the adjacency matrix A for the network, and V is
the set of all vertices in the network. Using the finite difference approximation

for the flux, we have:

| © _ | L O
For ng) gl = U — Yo Qhuo , For SV gl = —NHQh NoL

and e is the edge label. Substituting these into Equation (4.3.27), we obtain:
(e) (e) (e) (e)
Uy~ — U Unt1 — Un—1
- — - = 4.3.2
D T T 0, (4.3.28)

ecCH ecCl

where CiH and C’iT represent the edges group hosting vertex ¢ as either head or

tail at common vertex i, respectively.

At a common vertex i, the governing equation for the edges hosting node i as a
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head is:
du'”) @\, P (@ o, (@ H
L p(u) o (w20l ) foree CF, (4.3.29)
and as a tail is:
du'y) @\, D @ € , . (e T
7:f(uN)+ﬁ(uN+1_2uN —l—uN_1>, fore e C; . (4.3.30)

dt

Combining Equations (4.3.29) and (4.3.30), we can write the total contribution

to the flux balance as:

duge) dug\?)
— = 4.3.31
. =0, (4.3.31)
ecCH ecCl
where @ is given by:
0 3 (1) £ (-2
eECiH
e D e e
Y [f (u) + 2 (29 4 uls) 1)]
eEC’iT
D e e
o5 | 20 b+ D (4.3.32)
ecCH ecCT
From Equation (4.3.28), we can also express the flux continuity condition as:
S+ > Wl =5 (4.3.33)
ecCH ecCT
where:
(4.3.34)

S= e Sl
ecCH ecCT
ug\,) for all e € CH U CT, Equation (4.3.32) can be

: : (e) _
Using the equality ule =
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rewritten as:

Mdg) _y [f <u§e)> +D% (uge) _2u§e))}

ecCH
+ Z [f (ug\?)) +Dh— (—2uge) +u5\e,) 1)]
ecCT
+ 5, (4.3.35)

where M is the total number of edges hosting common vertex i.

4.3.6 Numerical results and analysis for general network

In this section, we present numerical solutions to the reaction-diffusion equation

up = u(l —u) + Dugy, (4.3.36)

on different network structures using the method of lines. To ensure consistency,
Neumann boundary conditions are applied at the boundary vertices (see Section
4.3.1) and continuity of concentration and flux is enforced at the common vertices,

as discussed in detail in Section (4.3.5) .

The connectivity of each network is described by its adjacency matrix A, and
the degree matrix D is calculated as a diagonal matrix where each diagonal
entry represents the degree of the corresponding vertex. The theoretical growth
or decay rate of the solution is determined by the eigenvalues of the modified

Laplacian matrix L*, defined as:

L* = A — cos(v)D. (4.3.37)

Here, cos(v) corresponds to an eigenvalue A such that cos(v) = A. Rewriting the
equation, we have:

L* = A — \D. (4.3.38)
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For any given network, the eigenvalues of the modified Laplacian matrix L* can be
calculated numerically. Then, using the relation cos™'()\) = v, we can compute
the decay rate v for any network by choosing the smallest positive decay rate ,
which corresponds to the slowest mode of diffusion in the network. Then, compare
it with the theoretical growth rate calculated using eigenvalue analysis. Now, we

will discuss two specific examples to demonstrate this approach.

Triangle graph

In this section, we extend our analysis to a triangle graph (see Figure 4.3.8) which
is a cycle graph with three vertices arranged as a triangle. The reaction diffusion
equation

up = u(l —u) + Dugy

is solved numerically using the method of lines. As all vertices are common
vertices, the continuity of flux and concentration is maintained at all the common

vertices. The following parameters used:

Diffusion coefficient D = 1.0.

Spatial discretization: 200 grid points per edge.

Edge length L = 15.0.

Time interval: ¢ € [0, 16].

h =0.0754

The numerical results of the calculation are as follows:

e Figure 4.3.9(a) The concentration profile of the Fisher equation on the
triangle graph where the Gaussian is set as the initial condition at the first
edge (red) and we can see the intermediate time (blue) until we approach
the steady state u = 1. (b, c¢) Propagation of the concentration from the

edge e1o to the other edges of the graph.
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Figure 4.3.8: Cycle graph with 3 vertices arranged as a triangle
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Figure 4.3.9: Solution on the triangle graph, (a) the concentration profile u(x,t)
over time for a Fisher equation for triangle graph,the initial condition (red), the
intermediate time steps (blue), and the final step (green). (b,c) the propagation
of the concentration u(x,t) to rest of the edges due to the continuity condition

apply.

e The numerical convergence of our results is established in Figure 4.3.10 (a)
which shows that convergence is achieved on reducing the size of the mesh
spacing h = 0.005 by reducing the edge length L = 1, and in figure 4.3.10
(b) which shows that convergence is achieved on increasing the size of the

mesh spacing h = 0, 15 by increasing the edge length L = 30.

e Figure 4.3.11(a) illustrates the plot of u,,, which represents the maximum
value of the concentration u, as a function of time on the first element.

This plot demonstrates the evolution of the maximum concentration value
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Figure 4.3.10: Numerical converge study in triangle graph. Showing the the
concentration profile u(x,t) over time for a Fisher equation for triangle graph on
edge ej9, condition (red), the intermediate time steps (blue), and the final step
(green). Comparison shown for: (a) h = 0.005, L =1, and (b) h = 0.15, L = 30.
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Figure 4.3.11: On the triangle graph,(a) In the limit as time ¢ tends to infinity,
the maximum value of the concentration u, denoted as umax, approaches 1. (b)In
the limit as time ¢ tends to infinity, the complement of the maximum value of u,
denoted as 1 — upayx, approaches 0. (c) Plot provides a visual representation of
the decay behaviour of the logarithm of 1 —umax over time and compares it with
the red dashed expected decay rate.

on the first element over time. In particular, as time approaches infinity, it

is evident that the concentration v tends to 1.

e Figure4.3.11(b) shows the behaviour of the function 1 —w, which represents
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Flux

Figure 4.3.12: The flux entering edge e23 through vertex 2 as a tail of edge e
(black dots) and as a head of edge ea3 (blue)

the complement of the maximum concentration wu, as a function of time.
This plot shows the evolution of the complement of the maximum value of
u over time. In particular, it is evident that the function tends to 0 as time

approaches infinity.

e Figure4.3.11(c) presents the plot of the natural logarithm of 1 — u as a
function of time. The dashed red line corresponds to the theoretical
calculation based on equation (4.2.16), which represents a linear decay

with time.

e Figure 4.3.12 shows the flux entering edge eo3 through vertex 2 as a tail
of edge ez (black dots) and as a head of edge e23 (blue) which shows
agreement of the flux as a result of continuity of concentration and flux

conditions applied.

Tree graph with 6 vertices

In this section, we extend our analysis to a tree graph with six vertices (see Figure

4.3.13). The reaction diffusion equation

up = u(l —u) + Dugy
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Figure 4.3.13: Tree graph with 6 vertices.

is solved numerically using the method of lines. The zero flux conditions are
applied on the boundary vertex, and the continuity of concentration and flux are

applied one the common vertices. The numerical result is obtained as follows:

e Figure (4.3.14)(a) The concentration profile of the Fisher equation on the
tree graph with 6 vertices and 5 edges, where the Gaussian is set as the
initial condition at the first edge (red) and we can see the intermediate time
(blue) until we approach the steady state u = 1. (b, ¢, d, e) Propagation

of the concentration from the edge e13 to the rest of edges of the graph.

e Figure (4.3.15(a)) illustrates the plot of u,,, which represents the maximum
value of the concentration u, as a function of time on the first element.
This plot demonstrates the evolution of the maximum concentration value
on the first element over time. In particular, as time approaches infinity, it

is evident that the concentration u tends to 1.

e (4.3.15(b)) shows the behaviour of the function 1 — u, which represents the
complement of the maximum concentration u, as a function of time. This
plot shows the evolution of the complement of the maximum value of u
over time. In particular, it is evident that the function tends to 0 as time

approaches infinity.

e (4.3.15(c)) presents the plot of the natural logarithm of 1—wu as a function of
time. The dashed red line corresponds to the theoretical calculation based

on equation (4.2.16), which represents a linear decay with time.
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Figure 4.3.14: the concentration profile u(z, t) over time for a Fisher equation for
tree graph with 6 edges. (a) on the first edge applied the initial condition (red),
the intermediate time (blue), the final time (green).(b,c,c,d,e) the propagation
of the concentration u(z,t) to the rest of edges on the graph as a result of the
continuity conditions apply.

e Figure (4.3.16) shows the flux distribution at vertex 4, where it acts as the
tail of edge ess (black dots) and the head of edges e45 (blue dots) and ey
(red dashed line). The flux originating from edge es4 is evenly distributed
between edges e45 and e44, demonstrating the accurate enforcement of the

continuity of both concentration and flux conditions at the common vertex.
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Figure 4.3.15: On the tree graph with 6 vertices,(a) In the limit as time ¢
tends to infinity, the maximum value of the concentration u, denoted as umax,
approaches 1. (b)In the limit as time ¢ tends to infinity, the complement of the
maximum value of u, denoted as 1 — umax, approaches 0. (c) Plot provides a
visual representation of the decay behaviour of the logarithm of 1 — upyax over
time and compares it with the red dashed expected decay rate.
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Figure 4.3.16: The flux entering edge e45 and ey through vertex 4 as a tail of
edge e34 (black dots) and as a head of edge e45 (blue dots) and e4p (red dashed).



The FitzHugh—Nagumo model:
simulation of pulse dynamics in

network

In this chapter, we use the Fitzhugh-Nagumo (FHN) model to simulate pulse
dynamics in network structures, inspired by Annalisa’s observations of
pulse-like phenomena in calcium wave dynamics. The model comprises two
coupled reaction-diffusion equations for membrane potential and recovery
variables, used to examine pulse propagation mechanisms in networks. Initial
exploration focuses on simpler network topologies like path graphs, extending to
complex configurations like Y-shaped networks. Pulses are initiated by external
forces at head nodes, and their propagation is studied in one-dimensional and
multi-edge networks. The chapter highlights how network topology affects pulse
splitting and propagation at junctures. Additionally, it addresses boundary
conditions, introduces numerical methods such as finite-difference and
time-stepping techniques for solving FHN equations, and investigates
bifurcation points and the stability of pulse solutions. The study concludes with

findings on how pulse behaviour depends on network structure and parameters.
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5.1 The FitzHugh—Nagumo model

In the 1960s, the FitzHugh-Nagumo (FHN) model was developed in neuroscience
as a simplified model to represent the behaviour of excitable neuron cells. Despite
its origins, this equation is also applicable in cardiac physiology, cell division,

population dynamics, electronics, and other natural phenomena [16].

The present work builds upon the foundational study by Argentina (2000) [1],
who investigated head-on collisions of pulses in the FitzHugh-Nagumo system
on infinite one-dimensional domains. Argentina demonstrated that for negative
values of parameter a, pulses can either annihilate or pass through each other
depending on the parameter values. We adopt their parameters and model
formulation as our starting point. However, our contribution extends this work

in several novel directions:

e Network extension: While Argentina studied pulse dynamics in infinite 1D
domains, we extend the FHN model to network structures, developing new

boundary conditions and continuity constraints at network vertices.

e Pulse splitting discovery: We demonstrate a new phenomenon where
pulses seamlessly split at network junctions, propagating along multiple
edges while preserving their shape and amplitude - a behaviour not

present in the original 1D setting.

e Network specific analysis: We develop new mathematical tools including
modified Laplacian matrices L* < (k) and network-adapted Chebyshev

methods to analyse pulse dynamics across different network topologies.

In this chapter, we use the one-dimensional form of that model with non-zero

diffusion coefficients for both species. The model is governed by two coupled
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reaction-diffusion equations [1]:

ou  0%u
0 0?
84: :)\(u—bv)+6a—;;, (5.1.2)

where u(z,t) represents the voltage in the axon and v(z,t) represents a recovery
variable which allows the axon to return to its rest state . The parameter A
indicates the relative time scales of these variables and typically acts as a small
parameter. The excitable dynamics are influenced by the parameter a, while the
diffusivity ratio is represented by § > 0 [1]. As is usual in the study of these
equations, we assume that A > 0 and b > 0. Normally the assumption is that
0 < a <1 (see, for example, [6]). Here, however, we will allow a to take either
sign. This step is motivated by the work of Argentina [1], who found complex and
interesting dynamics when a is negative. As is well known for the FHN system,
there exist pulse solutions which propagate at constant speed, and it has been
shown that the dynamics when two pulses are involved can pivot delicately on
the choice of parameter values and that, in particular, two pulses that approach
each other may either pass through each other or else annihilate, possibly leaving

behind a non-uniform equilibrium state.

We shall investigate the dynamics of pulse solutions to the FHN equations on
a network and determine non-uniform states and analyse their stability. The
parameter values from Argentina provide the excitable system necessary for our
network studies, but the phenomena we observe - particularly pulse splitting and
network-topology-dependent bifurcations - are entirely new contributions to the

field.

To study pulse dynamics on a network we employ the method of lines, as outlined
in chapter 4, adapting it to solve the set of non-linear equations inclusive of
the reaction term. This involves using discretization and explicit time-stepping

techniques. Our investigation seeks to understand the impact of network topology
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Figure 5.2.1: A path graph P, with two vertices.

on spatio-temporal pulse behaviour.

5.2 Numerical simulation of pulse dynamics

5.2.1 Forcing effects on a path graph P,

In this section, we solve the FitzHugh-Nagumo model
@—@—u(u—l)(u—a)—v (5.2.1)
ot 0x? ’ -
v 0%

— =Au—"> 0—= 5.2.2
o = A=) 05 (522)

on a path graph P, connecting two vertices (see figure 5.2.1), by using the method

of lines. Neumann boundary conditions are applied at both ends, and an external

3,—t

forcing function h(t) = —t°e~" is applied exclusively to the head vertex which

means setting the value of u; at x = 0 to be h(t).

stimulate the generation of a pulse solution.

The system is solved with the following specifications:

Spatial domain: [0, L] with L = 65

Spatial discretization: N = 100 points

Temporal domain: ¢ € [0, 80]

h = 0.6566

The final profile of the calculation (see figures 5.2.4 and 5.2.5).

This is done in order to

The parameters of the model a = 0.02, b = 0.01, ¢ = 0.01, A\=1, and § = 0.

When the

forcing ceases, the system returns to a stable homogeneous state. This
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Figure 5.2.2: on P, graph, pulse dynamics of u(z,t) under forcing at the head
vertex. The blue curve represents the voltage in the axon, The red line represents
the initial concentration, the black curve represents the final time profile of
concentration, and the blue curves show intermediate profiles over time.
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Figure 5.2.3: Recovery dynamics of v(z,t) on a P, under forcing at the head node.
The red line represents the initial concentration, the black curve represents the
final time profile of concentration, and the blue curves show intermediate profiles
over time.

behaviour highlights the localised impact of external stimuli on network

dynamics.

This asymmetric stimulation induces localised oscillations in both u and wv,
which propagate along the edge and decay as they move away from the
stimulus. Figures 5.2.2 and 5.2.3 illustrate the behaviour of u(z,t) and v(z,t)

over time, respectively.

Figure (5.2.6) displays the temporal evolution of the maximum amplitudes for
both the membrane potential (u) and recovery variable (v) as functions of time.
The membrane potential v exhibits an initial rapid increase, reaching its global
maximum shortly after ¢t = 0. The recovery variable v shows a delayed response,

consistent with its role as a slow variable in the system. The system approaches
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Figure 5.2.4: Final profile pulse of the voltage in the axon on P.
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Figure 5.2.5: Final profile of recovery dynamics of v(z,t) on a Ps.

a steady state as t — oo.

5.2.2 Forcing effects on a Y-shaped graph

In this section, we extend our analysis of pulse dynamics within a Y-shaped
graph, as illustrated in Figure (5.2.7). In that graph, a force function denoted
as h(t) = —t3e~! is applied to vertex 1 located at the head of the edge ejo. This
application of force to that edge initiates the propagation of a pulse over the
network as a result of the continuity of concentration and flux conditions that

are applied on the common vertex 2.

Upon reaching the common vertex (2) of that graph , the pulse seamlessly splits
into two parts, each continuing its journey along the two downstream edges.
This captivating phenomenon mirrors binary switching behaviours analogous to
neuronal axon potentials at synapses. Significantly, the pulse retains its shape,
speed, and amplitude after splitting, underlining the deterministic nature of the
network topology, which consistently divides the pulse equally between the two

branches see figure (5.2.8) and (5.2.9).
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Figure 5.2.6: Temporal evolution of maximum amplitudes for membrane potential
(u, blue) and recovery variable (v, black) over time.

Figure 5.2.7: Y-shape graph with four vertices and three edges

The results presented in Figures (5.2.10) and (5.2.11) show the temporal evolution
of the activator variable u and the inhibitor variable v across the network edges.
The black lines represent the values at the head vertex of each edge, while the
blue lines indicate the values at the tail vertex. For u, the initial Gaussian
pulse propagates through the network, and its amplitude decreases over time
due to dissipation. The inhibitor variable v follows behind wu, as dictated by
the FitzHugh-Nagumo model, and maintains a smaller amplitude compared to
u. These dynamics highlight the interaction between the activation and recovery
processes in the model. Additionally, the plots reveal how the network structure
influences the timing and magnitude of the signals, emphasising the importance
of continuity of concentration and flux conditions in ensuring smooth transitions

between edges.
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Figure 5.2.8: On the Y-shaped graph, the pulse which represent the voltage in
the axon seamlessly splits into two parts, each continuing its journey along the
two downstream edges. (a) shows the force function apply on vertex 1 at edge
e12 then we see (b,c) the pulse splits between other edges at common vertex 2
as a result of the continuity of concentrations and flux conditions.The final time
step (black), the intermediate time (blue) and the initial condition (red).

5.3 Spatial dynamics of FitzHugh-Nagumo system

5.3.1 Analysis of stationary solutions

In this section we discuss stationary solutions to the FitzHugh-Nagumo equations,
namely

u=—v—u(u—1)(u—a)+ Uz (5.3.1)

and

ve = AMu — bv) + dvgy (5.3.2)

Note that the v equation includes a diffusion term. To analyse the spatial

structure of stationary waves, we seek solutions where u; = v; = 0 for Equations
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Figure 5.2.9: On the Y-shaped graph, the pulse which represent the recovery
variable seamlessly splits into two parts, each continuing its journey along the
two downstream edges. (a) shows the force function apply on vertex 1 at edge
e12 then we see (b,c) the pulse splits between other edges at common vertex 2
as a result of the continuity of concentrations and flux conditions.The final time
step (black), the intermediate time (blue) and the initial condition (red).

(5.3.1) and (5.3.2) and define w = %. This yields the system:
Uge =V + f(u) (5.3.3)

and

Vgg = w(bv — u), (5.3.4)
where f(u) = u(u — a)(u — 1) represents the non-linear reaction term.

In order to calculate stationary solutions numerically, the following manipulations
are useful. We multiply equation (5.3.3) by wu, and equation (5.3.4) by v, yields

the following expressions:

Wl Ugy = WOUy + Wiy f(u) (5.3.5)
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Figure 5.2.10: On the Y-shaped graph, Time evolution of the voltage in the
axon variable u(z,t) for the edges in of the network. Each subplot represents
the temporal behaviour within a edge. The blue curve highlights the early time
evolution, while the black curve shows the progression toward steady-state. The
figure illustrates how excitation propagates and stabilizes over time.
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Figure 5.2.11: On the Y-shaped graph, Time evolution of the recovery variable
v(t) for different edges in the network. Each subplot represents the temporal
behaviour within an edge. The blue curve shows the early dynamics, while the
black curve represents the progression toward steady-state. The recovery variable
v(t) follows the excitation variable u(t), reflecting its inhibitory role in the system.

and

VpUzr = W(vgbv — vyu) (5.3.6)
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By subtracting equation (5.3.5) from equation (5.3.6), we obtain:
WUz Uy — VgpUze = W(VUy + U0y + ug f(u) — bvvy) (5.3.7)
By integrating equation (5.3.7) with respect to x, we obtain:
Lo 9 b o
g(wuw —v;) = w(vu + g(u) — QU+ K), (5.3.8)

where £ is constant, and the function g(u) = [ f(u) which is define as:

ut o1 . au?
= - (1 3
g(u) ) 3( +a)u’ + 5

To analyse the system numerically, we defined the following variables:

ur =1u, U2="1Ug, U3=TV, Uqy=7g

, Which is transforms the system into matrix form:

-le- | () ]
Uge | uz+ uip(ug —a)(ug — 1)
U3z Uy
| Udz | I wbug — uy) |

Alternatively the system can be expressed as:

Uy U2
Uy | = uz +u(ug —a)(up — 1)
U3y \/w(u% + bu3 — 2uqug — 29 — 2K)

Evaluating this system at x = 0 yields:

Uy unknown
us | — 0 )

Uus3 unknown
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Figure 5.3.1: In the FitzHugh-Nagumo model on a path graph P, with parameter
values a = —0.04344, A = 0.015, 6 = 1.25 and b = 3.5.(a) The spatial dynamics
evolution of excitation u (solid line) and the derivative of u (dashed line). (b)
The spatial dynamics evolution of recovery v (solid line) and the derivative of v
(dashed line).

with the boundary conditions u, = v, = 0 at = 0, the constraint becomes:

b2
uv+g(u)—|—m—%=0

This results in a quadratic equation in v:

b
§v2—uv—(/<a+g):0

Solving for v yields:

V= -

b
5 ut\fu?+4(k+g)=

5 (5.3.9)

The unknowns in this context are uy = u(0) and s, with vy = v(0) given by

equation (5.3.9). The boundary conditions at x = 0 and x = L are:

Uy = Uy = 0.

Using MATLAB and adjusting the parameters to a = —0.04344, A = 0.015,
6 = 1.25 and b = 3.5, and setting the length of the element to 60, we obtain the

following results for u as depicted in Figure 2 of Argentina’s paper [1]. Setting



Chapter 5: The FitzHugh—Nagumo model: simulation of pulse dynamics in
network 153

the initial value of ug = 0.32445 the corresponding vy calculated from equation
(5.3.9), we obtained spatial profiles for both variables on a domain of length 60.
Figure (5.3.1 (a)) shows the spatial profile of the excitation variable u (solid curve)
and its derivative (dashed curve), while Figure (5.3.1 (b)) shows the corresponding

profiles for the recovery variable v (solid curve) and its derivative (dashed curve).

5.3.2 Small amplitude stationary solutions on P,

In this subsection, we seek small amplitude stationary solutions to the time-

independent FitzHugh-Nagumo (FHN) system, namely,

e =+ flu) (5.3.10)

Mz = NMbv — u),
where f(u) = u(u —a)(u — 1) and f(0) = 0. We work on a path graph with
two vertices, P». The Neumann boundary conditions u;(0) = v;(0) = 0 and
uz(L) = vy(L) = 0 are imposed. We begin by noting that u = v = 0, for all z, is

a trivial solution, and then we seek bifurcations from this state.

To proceed, we linearise about the zero solution. Accounting for the boundary

condition at x = 0, we write

u = ¢cAcoskz, v =¢eBcoskz, (5.3.11)

where € < 1, and A and B are to be found. The boundary conditions at x = L

then require that

sinkL =0
and hence
nmw
k=— =k, .3.12
; (5:3.12)

for integer n.

Inserting into the main equations (5.3.10) we obtain the following linearised



Chapter 5: The FitzHugh—Nagumo model: simulation of pulse dynamics in
network 154

equations:

—Ak*=B+aA,  —6BEK?>=\(Bb— A). (5.3.13)

This leads to the matrix form:

a+ k? 1 A 0
-\ bA+K?| |B 0

Solving, we obtain:

Sk 4 (bA 4 ad)k* + A(1 + ab) = 0. (5.3.14)

With k = k,, where k, is given by (5.3.12), we may rearrange the preceding
expression to obtain the critical values of a, herein labelled a], at which stationary

states emerge:

W (0K DE2X + N)
af = = (5.3.15)

at which we expect a bifurcation to occur to a non-trivial state. Since, as was

noted above, A > 0 and b > 0, it is clear that

a < 0. (5.3.16)

C

5.3.3 Arbitrary amplitude stationary solutions on P,

In the previous subsection we computed values of the parameter a at which
we expect bifurcations to non-trivial stationary states to occur. Emerging from
these bifurcation points we expect to find solution branches that lead to arbitrary
amplitude stationary solutions. Such solutions cannot be found analytically and
must be computed numerically. We address the latter in the current subsection.
The computations will be done spectrally by expanding the unknown functions

in series of Chebyshev polynomials.
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Let us start by writing down the FitzHugh-Nagumo equations, viz,

u = —v —u(u—a)(u—1) + ug,
(5.3.17)
v = AMbv — u) + dvge,

where a, b, A\, and ¢ are given constants. Here we use £ as the independent

variable defined over the single edge of the P, graph, so that £ € [0, L].

In the steady state (uy = vy = 0), the equations reduce to:

0=—v—u(u—a)(u—1)+ug, (5.3.18)

0= Abv — u) + dvge.

We seek static solutions with Neumann boundary conditions at the domain ends:

u§(0) = u§(L) = 0, 1)5(0) = 'Ug(L) =0. (5.3.19)

Since we intend to use Chebyshev polynomials, which are defined canonically on
the domain [—1, 1], to prepare for the numerical method, we map the domain

€ €[0,L] to x € [—1,1] using the transformation:

=—=—1 5.3.20
r= (5:3.20)

Rewriting equation (5.3.18) in terms of x, we obtain:

2
0=—v—ulu—a)(u— 21) + (Z) Uga, -
0=Abv—u)+0 (i) Vg

We compute a solution numerically using a Chebyshev collocation method (e.g.

[14], [42]). The basic idea is to represent the solution as a Chebyshev series

N
w@) =Y anTo(z),  v(@)=> byTn(x) (5.3.22)
n=0
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for some truncation level N. We aim to compute the coefficients a,,. Note that
(5.3.22) is a polynomial of degree V. We introduce a set of collocation points over
[—1,1]. Since we are effectively performing an interpolation, instead of choosing
equally-spaced points, which are known to lead to disastrous results, we instead

select the Chebyshev points (also known as the Gauss-Lobatto points) (see [42])

szzcosﬁj, Qj:: 0 S‘jf;fv. (5;&23)

J7
N ?
The reason for doing this is twofold:

1. Equally-spaced points have terrible interpolation properties. Chebyshev
points cluster at the ends of the interval where interpolation problems are

usually focussed.

2. We can then exploit the fact that

T, (x) =cosnbf, x = cosé. (5.3.24)

Thus, evaluating (5.3.22) on the grid we have

N N .
u(xj) = ZanTn(:nj) = Zan cos (?) . (5.3.25)
n=0 n=0

Proceeding, we substitute (5.3.22) (and its v counterpart) into the governing
equations and apply at each collocation point to obtain a system of 2(NN + 1)
nonlinear algebraic equations in the unknown Chebyshev coefficients. In keeping

with (5.3.19) we also demand that
up(—1) =uzx(1) =0, wv(—1) =v,(1) =0. (5.3.26)
Differentiating T;,(z):
df  nsinnd

/ o w _
T (z) = nsm(n@)dx g (5.3.27)
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And we may differentiate again to get T)/(x). Expanding carefully about 6 = 0

and # = w, we can deduce that

T!(—1) = —n? cosn, T (1) = n?, (5.3.28)
1 1
T/ (-1) = §n?(n2 — 1) cosn, T/(1) = gn?(n2 —1). (5.3.29)

Using all of this, we solve the equations at the collocation points and the four

boundary condition equations using Newton’s method to get a solution.

The question arises immediately as to what initial guess to take for Newton’s
method to ensure that we latch onto a non-trivial state and don’t simply converge
to the known trivial solution ©u = v = 0. We choose to take the small amplitude

linear solution discussed in the previous section. That solution took the form

u = eAcoské, v =eBcoské,

with & = k, and k, given by (5.3.12) (note the shift in notation for the
independent variable from (5.3.11)). Unfortunately, this solution is written in
terms of trigonometric functions, whereas our numerical method utilises
Chebyshev polynomials. The one can be rationalised with the other, however.

Before doing this, we must convert the independent variable. Recall that from

(5.3.20)
2
T = fﬁ -1
Hence
€= é(:ﬂ +1).

Thus, since from (5.3.12), k = nw/L = ky,

cos k& = cos (ZL(l + x)) = cos (%T(l + x)) (5.3.30)
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nm nm . /nm\ . /nm
cos k§ = cos <7> cos (7:1;> — sin (7> sin (7:1;> . (5.3.31)
Therefore:

n odd :coskf = (—1)717+1 sin (Egg) ;
2 (5.3.32)

n even :coské = (—1)2 cos (%x) .

The next problem is to convert the trigonometric functions into Chebyshev

polynomials. From Wiinsche [47] eq. (3.20) we have

cosr€ = Jo(r) + 2 Z ™ Jom (1) Tom (€), (5.3.33)

sinr =23 (=)™ Jamp1 (r) Tomy1(€), (5.3.34)
m=0

where J,,(r) are the Bessel functions of the first kind.

5.3.4 Small amplitude stationary solutions on a network

Up to now we have treated the stationary FitzHugh-Nagumo problem on a path
graph P». More generally we would like to be able to determine solutions on any
network. With that in mind we herein consider small amplitude solutions on a

general network. The analysis essentially mimics that for a path graph P;.

On any edge in the network we have the system of equations

up = —v—ulu—a)(u—1)+ ugg,
(5.3.35)
vy = —A(bv — u) + vy,

where a, b, A, 0 are given constants, and z belongs to the interval [0,L]. We
transform each edge from [0, L] into [0, 1] to be consistent with our discussion of
networks earlier in the thesis (wherein each edge length was normalised to unity).
Writing

§=uz/L, (5.3.36)
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equations (5.3.35) become

u = —v —u(u —a)(u—1) + pug, (5.3.37)
v = —=A(bv — u) + dpvge, (5.3.38)

where
p=1/L% (5.3.39)

and & € [0,1]. The steady form of these equations is

puge = f(u,v), (5.3.40)
puge = g(u,v), (5.3.41)
in which
flu,v) =v+u(u—a)(u—1), (5.3.42)
g(u,v) = AM(bv — u), (5.3.43)
where we have defined
A=)\/0. (5.3.44)

We seek a solution on a network. The boundary conditions are

ue =ve =0 (5.3.45)

at a boundary vertex; and u, v, u¢, and vg¢ are all continuous at a common vertex.

We note that a solution is u = v = 0 everywhere.

If |ul,|v| < 1, we can Taylor expand the f, g terms as follows:

f(u,v) = f(0,0) + f.(0,0)u + f,(0,0)v + - -+, (5.3.46)

g(u,v) = ¢(0,0) + gu(0,0)u + g,(0,0)v + - - - (5.3.47)
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Here from (5.3.42) and (5.3.43) we compute

fu(ov 0) = a, f’U(07 0) = 17 (5348)

90(0,0) = =X\, g,(0,0) = Ab. (5.3.49)

Then (5.3.40) and (5.3.41) become (neglecting non-linear terms):

puge = au + v, (5.3.50)
PUee = A(bv — u) (5.3.51)
Let us introduce the vector u = (u,v)?. Then the linearised system takes the
form
puge = Ju, (5.3.52)
where
a 1
=1 | (5.3.53)
A b

To solve the system, we write the solution of the form

u = e*éq, (5.3.54)
for constant vector q and real wavenumber k, then we have

(J + pk*Iq = 0. (5.3.55)
We therefore require det(J + pk?I) = 0, so that

(a+ pk*)(Ab+ pk?) + A =0 (5.3.56)

and thus

P? Kt + (a + Ab)pk? + A(ab+1) = 0. (5.3.57)

This equation coincides with (5.3.14) on setting p = 1 and recalling the definition



Chapter 5: The FitzHugh—Nagumo model: simulation of pulse dynamics in
network 161

above that A = A/4.

The result (5.3.57) represents a quartic equation for the wavenumber /pk = k/L
on using (5.3.39). Given a value of \/p k it imposes a condition on the parameters
a, b and A for a bifurcation to a non-zero state to occur. Writing k = /pk,

(5.3.57) may be rewritten as F'(k) = 0, where
F(k) = k*+ Br? + C, (5.3.58)

where B = a + Ab and C = A(ab +1). Now (5.3.58) has real roots for x?2 if
B?2 —4C >0, ie. if (a+ Ab)2 — 4[A(ab+ 1)] > 0. The latter simplifies to

(a — Ab)? > 4. (5.3.59)

If (5.3.59) holds then x? € R, but it may be that x> < 0 for one or both of the

two roots. Evidently
Ii2 = *1 (—B + (B2 — 40)1/2)
2 ’

and we can clearly arrange to get at least one positive root, for example by
choosing parameters such that B > 0 and C' < 0 and selecting Ki > 0. Then

clearly xy > 0.

For illustration let us set the parameter values (we shall return to these values
later)

A=25 b=35  §=10. (5.3.60)

Then (5.3.59) requires
a < 5.588 or a > 11.912

Figure 5.3.2 shows F plotted against x2? for the parameter values (5.3.60) and

a = —5.0. Evidently the right-hand root is positive.
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Figure 5.3.2: Plot of the function F, defined in (5.3.58), against x? for the
parameter values a = —5, A = 2.5, b = 3.5, and § = 1.0. The red marker
points indicate the zeros where F' = 0.

Having said this, it is not sufficient to establish that real x and hence real k are
possible for certain parameter choices. We must also ensure that the selected
k value is such that the relevant boundary conditions across the network are
satisfied. This is to say that we must ensure continuity of concentration at every
vertex and continuity of flux at every vertex, as well as appropriate conditions at
the boundary vertices. To move forward therefore, we should first establish the
possible set of k values that are consistent with the network boundary conditions,
and then select parameter values a, b, A that, together with a k value chosen
from this set, satisfy (5.3.57). We discuss how to construct the set of acceptable

k values in the next section.

5.3.5 Small amplitude stationary solution on a network: wave

number compatibility

In the previous section we showed that it is possible to find parameter values
corresponding to bifurcation points onto a branch of steady solutions to the

FitzHugh-Nagumo equations on a network. However, we noted that the
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associated wavenumber must be consistent with the boundary conditions across
the network. Herein we address the latter point and construct the set of

allowable k.

Taking inspiration from the work in chapter 2 (specifically, see (2.2.16)), and
referring to (5.3.54), now replacing u with wu;; to represent the solution on edge

eij, we write, assuming sink # 0,
w;j(€) = (sink) 1 (Uj sin k& + U; sin k(1 — €)), (5.3.61)

where U; are the vertex values, i.e. u;;(0) = U; and w;;(1) = Uj;. Here U; =
(us, v;)T, where u;, v; are the values of u and v, respectively, at vertex i. The form
(5.3.61) satisfies the linearised governing equation (5.3.52) provided that (5.3.57)
holds and that U;, U; both satisfy (5.3.55). Thus we need all vertex vectors Uj;
to satisfy the constraint

(J + pk*U; = 0 (5.3.62)

fori =1,2,..., N, where N is the total number of vertices. It is via this constraint
that the independent variables (for Fitzhugh-Nagumo these are u and v) interact
with one another. From the definition for J in (5.3.53), the constraint (5.3.62)
becomes
a + pk? 1
R A U, =0. (5.3.63)
—-A Ab + pk?

To consider the case sin k = 0 it’s helpful to first rewrite (5.3.61) as
w;;(€) = (sink)HU; — U cos k] sin k€ + U; cos k€. (5.3.64)

This forces

U —U;cosk =0 = U, = (-1)"Uy, (5.3.65)

leaving the eigenfunction

w;j(€) = Uicoské,  U; = (—1)FU;. (5.3.66)
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and again we have the requirement that U; satisfies (5.3.62).

Let us now define the vertex concentration vectors

x, = (uy,uo,...,un)?, x, = (v1,vo,...,0n)7, (5.3.67)

where IV is the total number of vertices in the network. To correctly determine

these vectors two points need to be considered

(i) The concentrations must be compatible with all flux and continuity conditions

across the network.

(ii) The concentrations must be compatible with the dynamics imposed by the

FitzHugh-Nagumo system.

To address point (i) first we now apply the flux-continuity conditions to the vertex
concentrations u;, 1 = 1,2,..., N across the network. To do this, we know from

chapter 2 that the following condition must hold:

L*(k)x, =0, (5.3.68)

where

L*(k) = A — (cosk)D (5.3.69)

is the modified Laplacian for the network (see chapter 2 equation (2.3.7)).

Therefore the possible k values must satisfy the equation

det L* (k) = 0, (5.3.70)

whose precise form is dictated by the network structure.

Now that @, is determined (to within a multiplicative constant as is normal for

an eigenvector), to address point (ii) we fix the v; concentrations by choosing, at
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each vertex, v; such that (5.3.63) holds, namely

a + pk? 1 Ui
o —0. (5.3.71)
X b+ pk?

Uy

As noted above, this equation can hold only if (5.3.57) holds. Assuming it does, v;
is then determined in terms of u; via (5.3.71). Necessarily, each v; is proportional

to u;, for all = 1,2,..., N. Since the latter is true it follows that

and continuity of concentration and flux of v across the network is assured.

Summary

To recap and summarise:

1. We determine the set of acceptable wavenumbers, k, for the network by
solving (5.3.70), viz. det L*(k) = 0. We then determine the set of acceptable
concentration vectors x, for the network by solving L*(k)x, = 0. This problem

has already been discussed for various networks in chapter 2.

2. Once the set of possible k values is computed, we select one particular k value.
We then fix the parameter set {a,b, A, p} so that det(J + pk?I) = 0 holds, i.e.
(5.3.57) holds, viz

P*k* + (a + Ab)pk? + A(ab+1) = 0. (5.3.72)

3. Finally, the vertex concentration vector x, is found by solving (5.3.63) at each

vertex, namely

a + pk? 1 a + pk? 1 Uj
A U= o =0, (5.3.73)
—\ b+ pk? A A+pk)
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cos k

Figure 5.3.3: Demonstrating the set of possible k values for a given value of cos k.
The black dashed line indicates the value cosk = 0.6 for illustration. The red
dots indicate the values cos™1(0.6) = 0.9273 4 2n, for integer n. The white-filled
squares indicate the values cos™1(0.6) = 5.356 + 2n, for integer n.

fori=1,2,..., N.

In practice, we shall start by selecting a network structure (e.g. a Y-shaped
graph, for example), and then follow steps 1-3 as described above. Typically, we
will select values for b, A (= A/8) and p (= 1/L2), and use the relation (5.3.72)

to fix a, i.e. we set a = al, where

2kt + Abpk? + N
g = P AR A (5.3.74)
b + ph?

For a network with IV vertices the condition (5.3.70) fixes N possible (and possibly
repeated) values of cos k. Each value of cosk then corresponds to an infinite set

of possible k values, as is illustrated in Figure 5.3.3.
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5.3.6 Small amplitude stationary solution on a network:

examples

In this section we give a couple of examples of networks and compute the relevant

small amplitude solution according to the prescription laid out in the previous

section.

e Path graph P
In this case
A — , D =

In this case condition (5.3.70), namely det L*(k)x, = 0 requires

—cosk 1
=0 = cosk = =+1

1 —cosk

and so k = nm for integer n.

For k = 2nm (cosk = 1), the corresponding eigenvector satisfies

-1 1 Ui 0
1 —1 u9 0
We find
(5] 1
T, = =
u9 1
For k = (2n+ 1)m (cos k = —1) the corresponding eigenvector satisfies
11 (75} 0

(5.3.75)

(5.3.76)

(5.3.77)

(5.3.78)
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This yields

In either case we find x, by solving (5.3.63). Since if either k = 2nm or k =
(2n + 1)m we have sink = 0, the form of the eigenfunctions on the edge is given

by (5.3.66). So we have

u12(§) = Uy cos k¢, Uy = (-1)"Us,

e Path graph P

In this case

010 1 00
A=110 1], D=10 2 0o]. (5.3.79)
010 0 01
Thus we need
v 1 0
1 —2v 1|=0, (5.3.80)
0 1 —v

where v = cos k. Expanding, we find v(1 — v?) = 0. So

cosk =0,+£1 (5.3.81)

and thus k = nm/2 for integer n.

For k = nm with n even (v = cosk = 1), the eigenvector satisfies

(5.3.82)

—_
|
\)
—
<
[\
|
o e o
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We find
(5] 1
Ty = |ug | = 1|1
us 1
For k = nm with n odd (v = cosk = —1), the eigenvector satisfies
1 10 U1 0
12 1||lw|=]o0 (5.3.83)
011 u3 0
We find
Ul 1
Ty =|us | = | -1
U3 1

For k = nm/2 with n odd (v = cosk = 0), the eigenvector satisfies

010 U1 0
1 01 ug | = |0 (5.3.84)
010 us 0
We find
Uy 1
Ty = |uz | =1 0
U3 -1

5.3.7 Small amplitude stationary solution on a network: initial

guess for the numerical method

We will obtain the solution over a network numerically using a Chebyshev
expansion approach, similar to what we did earlier. To this end we need to map

¢ € [0,1] on each edge to the canonical interval z € [—1,1]. We do this by
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setting
1
r=26—1 = = 5(1 + ). (5.3.85)

Then (5.3.40) and (5.3.41) become
Pugs = f(u,v), (5.3.86)
PUzz = g(u,v), (5.3.87)
where 5 = (2/L)2.

To compute the static solution, we expand U(z) and V(z) as finite Chebyshev

N N
U(z) =Y UsTu(z), V(z)=> VaTu(),
n=0 n=0

where T, (x) are the Chebyshev polynomials of the first kind. By inserting these
expansions into the equation (5.5.7) and evaluating at M collocation points z;,

we obtain a system of 2/N non-linear algebraic equations,
f(U)+ DU,, = F(x) =0, (5.3.88)

where & = (U, Us, ..., Un,Vi,...,Vn)T and F € R?N. The static solution can

be found via Newton’s method, where each iteration proceeds as follows:
gt =" — HYF(2™), (5.3.89)

with the Jacobian matrix

ofi

H=J, where J;;= e
J

(5.3.90)

The initial guess for Newton’s method is constructed using the small amplitude
solution over a network discussed earlier. The complication in doing this is that

we must cross-refer between trigonometric functions and Chebyshev polynomials.
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Our eigenfunctions (5.3.61) or (5.3.66) contain terms sin k§ and cos k(. We note

that
k k ke .k . kx
cos k& = cos <2(1 + :E)) = €08 5 cos — —sin 5 sin —, (5.3.91)
and
sin k¢ = sin <2(1 + x)) = sin 5 cos — + cos 5 sin—- (5.3.92)
Thus the eigenfunction (5.3.64) is:
w;; = (sink) ! [U; — U cos k] sin k& + U cos k¢ (5.3.93)
k k
= A, COS?x + Agsin g, (5.3.94)
where
in(k/2
A= Smsi(né)(Uj — U, cosk) + cos(k/2)U; (5.3.95)
k/2
Ay = 82 U cos k) — sin(k/2)Us. (5.3.96)
sin k
The eigenfunction (5.3.66) is
kx kx

u;j = U;cos k€ = ACCOS7 + Agsin 5

with

Ac = U, cos(k/2), As = —U;sin(k/2).

The next problem is to convert the trigonometric functions into Chebyshev

polynomials. From Wiinsche [47] (eq. 3.20) we have, for constant s,

coskr = Jo(k) + 2 Z (=)™ Jom (k) Tom(x),

m=1
)

sinkr =2 ) (—1)"Jomy1(k)Toms1 ().

m=0
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5.4 Uniform solution on a network

In the previous sections, we have concentrated on computing non-uniform
stationary solutions of the FitzHugh-Nagumo equations on a general network.
In this section, we address the simpler problem of determining uniform
solutions, that is, solutions for which the concentrations v and v are everywhere
constant over the network. The problem is, of course, equivalent to determining
constant solutions to the FitzHugh-Nagumo equations on a single edge, the
geometry of the network being irrelevant since all of the network boundary

conditions (continuity of flux, etc.) are automatically satisfied.

To determine constant solutions, we require the functions f and g to vanish.
Recall that

flu,v) =v+ulu—a)(u—1)
g(u,v) = A\(bv — ).

Thus we require

v4+u(u—a)(u—1)=0 (5.4.1)
Abv —u) =0 (5.4.2)

Hence
u = bv. (5.4.3)

Using this result and simplifying the first equation, we obtain:

u (u2 ~(14a)u+a+ 2) =0, (5.4.4)

a cubic for u with, in general, three solutions. The trivial solution v = 0 gives

v = 0. Non-trivial solutions occur if the quadratic

1
uz—(l—i-a)u—}—a—l—gzo (5.4.5)
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has real solutions. This requires that

(1—a)*>

S| o~

This condition evidently holds if a is sufficiently large. In general the solutions

to the quadratic equation (5.4.5) are given by:

u:;a+coi;<aaf:>3 (5.4.6)

In the next two subsections we consider the cases of a large and positive/negative

separately.

Case l: a > 1.

We consider the case where a > 1 with a > 0. We can use the binomial expansion

to obtain the approximations

~a—— o~ 14— 5.4.7
Ty “ + ba ( )
Case Il: a = —k with kK > 1.
Now, let us examine the case where a = —x with xk > 1. Equation (5.4.6) takes
the form 1
1 1 4\ 2
= (1-r)+x-(Q+r)*-+) . 4.
u=p-wzg (e =) (5.4

Following a similar approach as before, we expand using the binomial theorem

to obtain

u+~1+%, U-~a= s (5.4.9)

valid when —a > 1.
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—v

Figure 5.4.1: The space of uniform solutions for the case b = 3.5. Note that there
is no uniform solution over the range —0.0690 < a < 2.069. The red dots indicate
the asymptotic approximations (5.4.7) and (5.4.9).

In Figure 5.4.1 we show the possible uniform solutions, given by (5.4.6) and
(5.4.3), for the case when b = 3.5. The values of v and v are shown plotted
against the remaining parameter, a. Note that there is no solution over the range

where (1 —a)? < 4/b, i.e.

2 2
l——<a<1l4—.

Vb Vb

This is because if a lies within this range then (5.4.6) yields a complex u. In
the present case this range is —0.0690 < a < 2.069. This appears as a gap
between the solution curves in the figure. The asymptotic approximations (5.4.7)
and (5.4.9) are also shown and can be seen to agree very well with the exact

solutions.

5.5 Stationary solutions on a network: stability

Having discussed stationary solutions to the FitzZHugh-Nagumo system on a

network at some length, we now turn our attention to the stability of such
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solutions.

We recall that the governing equations are
u = f(u,v) + uxx, vy = g(u,v) + dvxx, (5.5.1)

where the functions f(u,v) and g(u,v) have been stated several times, and are
repeated below for convenience. On any edge of the network we have X € [0, L].
To map the problem on each edge onto the canonical interval z € [—1,1], we
apply the transformation

2
=-X-1 5.9.2
r== (552

Under this transformation, the equations become
ur = f(u,v) + pugy, vy = g(u,v) + Povgy, (5.5.3)

where
92\ 2
p=1[—=] . 5.4
=(3) (5.5.4)

The non-linear functions f(u,v) and g(u,v) are given by
flu,v) =u(u—a)(l —u) — v, g(u,v) = A(u — bv). (5.5.5)
In vector form, the system (5.5.3) can be expressed as
up = f(u) + Dugy, (5.5.6)

where
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Assume that we have computed a static solution

where U = U(x) and V' = V (z), which satisfies the static form of the system:

0= f(U) + DU,,. (5.5.7)

To analyse the stability of the static solution, we perturb it by writing

u=U + en(x,t), (5.5.8)

where € < 1 and n is to be found. Stability is determined by the large time
behaviour of 7, i.e. if || — 0 as ¢ — oo then the static solution is stable, and if

|n| — oo as t — oo then the static solution is unstable.

Linearising around the static solution, we obtain

M = JN+ D1, (5.5.9)
where
a1 (9
J = (5.5.10)
B Bo
with
a(z) = fu(UV)=-3U%+21+a)U —a, (5.5.11)
az(z) = fu(U,V)=~1, (5.5.12)
Bi(z) = gu(U, V)=, (5.5.13)

Ba(x) = gu(U,V)=—=Mb. (5.5.14)
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Note that the elements of J in general depend on z. Assuming that we can

separate the variables, we write

nwt) = pla), po) = "
q(x)
This leads to the following eigenvalue problem
sp=Jp+ Dp", (5.5.15)
Written out in components this is
pp” + a1p + asq = sp, p8q" + Bip + Baq = sq. (5.5.16)

Stability hinges on the sign of s, which we must determine. To this end we express
p(z) and ¢(z) as Chebyshev series truncated at a finite level N, where N is to be

chosen:

N N
p(x) = anTn(:C)v Q(x) = anTn('I)? (5'5'17)
n=0 n=0

Inserting these into the stability equations (5.5.15), we obtain the generalized
eigenvalue problem:

Jw = sTw, (5.5.18)

where w = (p1,...,pN,q1,--.,qn)", and J was defined in (5.3.90). Note that

the Jacobian matrix J was already computed as part of Newton’s method for the
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static problem. We have also defined (for path graph P)
To(z1)  Ti(an) T (21) 0 0 - 0
0 0 e 0
r— | Tolea) Tilzar) Tn(zm) 0 0 ... 0
0 0 0 To(z1)  Ti(z1) Ty (z1)
0 0 0
0 0 . 0 To(zar) Ti(xar) T ()
(5.5.19)

The matrix 7' is obtained by replacing the rows in T' corresponding to the

boundary conditions with zeros.

In summary, to determine the stability we must solve the generalized eigenvalue

problem (5.5.18) for s.

5.5.1 Stability of the uniform state

Simplifications occur in the stability analysis when we consider the stability of
the uniform state discussed in section 5.4. In this case U and V are constants
and so the coefficients given in (5.5.11), and hence the elements of the Jacobian

matrix J, are constants. In this case the eigenvalue problem (5.5.15), namely,

sp=Jp+ Dp", (5.5.20)
can be solved exactly. We write
p=(p,qt =e*a, a=(A BT (5.5.21)
Then we have the matrix eigenvalue problem
_ A A
J(k) =5 (5.5.22)
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Here we have defined

5 mi1 Mo
Jk)=J kD = (5.5.23)

ms My
with matrix elements
mi = oq — pk?, my = —1, ms = A\, my = —Ab— pok?. (5.5.24)
Note that o was given in (5.5.11). The eigenvalues s hence satisfy
s% — (trJ)s + det J = 0, (5.5.25)
where

trJ = my4mg= (a1 — \b) — p(1+ 8)k?, (5.5.26)

detJ = mymg —moms = A — (o — pk?)(Ab + pok?). (5.5.27)

Formula (5.5.25) simplifies further if we specialise to the zero state U = V = 0.
In this case

a1 = fu(oao) = —a, Q2 = fU(O’O) = _1?

and

61 = gu(0,0) - )‘7 52 = gv(0,0) = —\b.

The quadratic (5.5.25) becomes
s*+ (a+ Ao+ p(1 + 8)k?)s + (a + pk*)(pok* + Ab) + A = 0. (5.5.28)
(As an aside we note that if s = 0 this becomes, writing k* = \/p k,

SE** + (Ab+ ad)k*® + X(1 + ab) = 0. (5.5.29)
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This quadratic for k*2 coincides with that for k2 given in (5.3.14). The latter
was the condition we derived for a small amplitude solution to exist and such a
solution occurs at the bifurcation to stationary branch. It is therefore coincident

with what is found via the present stability analysis when s = 0.)

Writing (5.5.28) in the form s + as + 3 = 0, the solution is

5= % <—a +/a? - 4ﬂ> , (5.5.30)

where

a=a+ o+ p(1+0k? B =(a+ pk?)(pok* + \b) + A

Stability is determined by the sign of the real part of s, which in general may be

complex depending on the sign of o — 473.

It is worth at this point to summarise where we are. We have obtained the
formula (5.5.30) for the stability about a uniform state and about the zero state.
This formula involves the parameters a, b, A, § and p and the wave number k.
The situation is now similar to that discussed at the end of section 5.3.5. We

proceed therefore via the following steps.
Step 1. We fix values of the parameters a, b, A, 6 and p.

Step 2. We ensure wave number compatibility of the ansatz (5.5.21) with the
network by solving det L*(k) = 0, where the modified Laplacian L* was defined
in (5.3.69). This determines the set K of k values that are compatible with the

concentration and flux continuity conditions across the network.

Step 3. We choose a k € K and solve for s either by solving (5.5.25) for a general

uniform state, or by utilising formula (5.5.30) for the zero state.

Step 4. For the given pair (k, s), and the parameters a, b, \, 6 and p fixed, the
vertex values of the perturbation eigenfunction for u are found by solving L*x,,,

where x,, is analogous to the vector defined in (5.3.67). The vertex values of the
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perturbation eigenfunction for v are then found by solving for a the equation
sa = (J — k*D)a.

Step 5. Finally, the perturbation eigenfunctions are constructed across the

network using either (5.3.64) or (5.3.66), depending on the value of k.

To determine stability of the uniform state at a particular set of parameter values

{a, b, A\, d, L}, we must determine the sign of

S)p — Inaxss.
keK

If sp; > 0 then the state is unstable; if sj; < 0 then the state is stable.

For example, in the simplest case of the graph with one edge, P», and choosing

the parameters

we have for the zero state U =V = 0 from (5.5.30),

s:%<—a:t\/a2—4ﬂ>,

where

a=a+\b+2k%  B=(a+E)(k*+ b))+ A

Then the discriminant is found be independent of k with o —43 = (bA+a)? — 4.
Then

1 1
sy =—k*+¢i(a,b,N),  ¢p= —5(atAb) £ 5\/(a+ Ab)2Z — 4A(1 + ab).

Evidently for a fixed parameter set {a, b, A, d, L}, the maximum value of s occurs

when £ = 0. Thus

SM = ¢+(a7 b, A)

We recall that A > 0. It follows that if 1 + ab > 0 then Re¢i+ < 0 so that
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Re sy < 0 and the zero state is stable. If 1 4+ ab < 0 then ¢4 > 0 and s3;r > 0
and the zero state is unstable. We note that the point where 1+ ab = 0 coincides
with the bifurcation to the non-zero uniform branch according to (5.5.29) (setting
kE* = 0 in that equation). We conclude that the zero state U = V = 0 is stable
to the right of the bifurcation to the non-zero uniform state, and unstable to the

left of it.

The non-zero uniform state is rather similar. We again fix 6 = L = 1. Solving
the quadratic (5.5.25), the discriminant is again found to be independent of k,
and we obtain

S5+ = _k2 + q;i(ay ba )\)

with

by = —é(al —\b) + %\/(oé1 — Ab)2 — 4X(1 — ayb).

Again the maximum growth rate occurs when k& = 0 so that
s = o4 (a,b,\). (5.5.31)

Notice that sy = 0 when 1 — a;b = 0, which corresponds to det J = 0, where
the Jacobian matrix for the spatially-independent stability problem, namely J =
J(0), where J(k) was defined in (5.5.23).

Following the preceding remarks, in figures 5.5.1 and 5.5.2 we show the stability
of the uniform state, using a solid line to indicate a stable part of a branch, and a
dashed line to indicate an unstable part of a branch. As can be seen the uniform

state is everywhere unstable.

Finally, we remark that it is possible to have a bifurcation at which s = 0 is
double. The eigenvalues s for a general uniform state satisfy the quadratic
equation (5.5.25). This has the form s? — (trJ)s + detJ = 0. So we have a
single eigenvalue s = 0 if detJ = 0, and a double eigenvalue s = 0 if both

det J = 0 and trJ = 0 simultaneously. From (5.5.26) and (5.5.27) the latter two
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Figure 5.5.1: Stability properties of the left branch of the non-zero uniform state,
with A = 2.5 and b = 3.5. The real and imaginary parts of the growth rate sy,

defined in (5.5.31) are shown.
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Figure 5.5.2: Stability properties of the right branch of the non-zero uniform
state, with A = 2.5 and b = 3.5. The real and imaginary parts of the growth rate

sy, defined in (5.5.31) are shown.

equations demand

a+ M\ +2pk* =0,

P*k* + (a + Ab)pk? + A(ab+1) = 0,

(5.5.32)

(5.5.33)
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respectively. Viewing A and k as being fixed we may solve this pair of equations
for a and b. Doing this we find

_ka—i—\/X

i) a=-pk*+ Vi b= .

(5.5.34)

or

\/i—,ok‘2

(i) a= —pk®— \/X7 b= ;

(5.5.35)

In choosing parameters later we will typically take b > 0, in which case option

(ii) is of greater interest.

5.6 Numerical results

In the previous sections we have shown how we may compute both uniform and
spatially-varying stationary solutions across an arbitrary network and how we can
determine their stability. For uniform stationary solutions the stability properties
are determined via relatively simple formula. For spatially-dependent stationary
solutions, the stability spectrum must be determined numerically. In this section
we present some numerical results to illustrate the application of the theory to

various networks.

We choose to use a as a bifurcation parameter. To this end we fix the other
parameters in the system, namely b, A, p and § and we vary a. Our strategy is as
follows. We know that the zero state u = v = 0 everywhere across the network)
is a solution to the Fitzhugh-Nagumo system. Varying a we expect to determine
a sequence of bifurcation points at which side branches to non-zero states occur.
These may be branches on which the solution is everywhere uniform across the

network, or side branches on which the solution is spatially varying.

Having selected a network structure, we determine the possible set K of wave

numbers & that are compatible with the network by solving det L*(k) = 0. From
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this finite set we may construct an extended, infinite set of K values by taking
k = arccos(cos(k)) + 2mn, neZ™. (5.6.1)

Bifurcations to non-zero states occur at values of a that satisfy in (5.5.29), namely
SE** + (Ab+ ad)k*® + X\(1 + ab) = 0. (5.6.2)

where k* = \/pk. Since this is linear in a there is only one possible a value for

given parameters. Call it a. = a(k*,b, A, ). Rearranging (5.6.2) we find

0K 4 AR 4 A
Sk*? + Ab

<0. (5.6.3)

Qe =

Starting at or near to a., we use the small amplitude solution constructed in
section 5.3.4 as an initial guess for Newton’s method in our numerical code
developed to handle solutions of arbitrary amplitude discussed earlier. In this
way we aim to latch onto the relevant side branch. Once this is achieved, the

remainder of the branch is computer via parameter continuation.

We start with a discussion of the simplest network choice, namely the path graph

Ps.

5.6.1 The path graph P,

We herein investigate the behaviour of solutions to the Fitzhugh-Nagumo
equations on a path graph P, illustrated in Figure 5.6.1. Recall that in this

case we have

01 1 0
A= , D= (5.6.4)
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O——O

Figure 5.6.1: A path graph P, with two vertices.

and det L*(k)x, = 0 requires that cosk = £1 and so k = nm = ky,, say, for

integer n. The critical values of the parameter a are given by (5.6.3), viz

W OPPKE 4 AbpRE + A
a, = —

0.
RN

We fix the following parameters

(Recall from that p = 1/L2.) Then we have

(ko, a2) = (0, —0.286),  (k1, al) = (r, —10.004) (5.6.5)

(ka, a?) = (27, —39.530), (k3, a3) = (3w, —88.852).  (5.6.6)

The bifurcation diagram for P, is shown in Figure 5.6.2. In this diagram we plot
|lu|| against the bifurcation parameter a. The diagram incorporates branches
corresponding to uniform solutions (corresponding to & = 0) (solid black lines)

and asymptotic behaviour for large |a| (dashed black lines).
the stability of the uniform solution branch discussed in subsection 5.5.1.

For the non-uniform branches, the dashed lines in the figure (5.6.2) indicate
instability for non-uniform branches, which is discussed in section 5.5 . Further

details of the diagram are as follows:

1. The leftmost black curve corresponds to the branch k = ky = 0 (uniform

solution). This curve bifurcates from the point a = a? = —0.286.

2. The blue curve corresponds to the branch k = k; = w. This curve bifurcates

from the point a = al = —10.004.
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Figure 5.6.2: Bifurcation diagram for the Fitzhugh-Nagumo equations on the path
graph P,. The plot shows ||u|| versus the parameter a when b = 3.5, A\ = 2.5,
0 = 1.0, L = 1.0. Solid black lines show exact uniform (k = 0) solutions; the
dashed black lines indicate the large |a| asymptotic behaviours for the uniform
solutions given by (5.4.7) and (5.4.9). The blue, purple, and red curves represent
first (k = k1 = ), second (k = ko = 2m), and third (k = k3 = 37) non-uniform
solutions, respectively. The dashed mean that bifurcation point is not stable

3. The purple curve corresponds to the branch k£ = ko = 27. This curve

bifurcates from the point a = a2 = —39.530.

4. The red curve corresponds to the branch k£ = k3 = 3w. This curve bifurcates

from the point a = a2 = —88.852.

These non-uniform solution branches demonstrate the system’s capacity to
support spatially non-uniform states, each characterised by distinct spatial
profiles and bifurcation points. The observed bifurcation structure elucidates
the rich dynamics of the Fitzhugh-Nagumo system on a P, graph, showcasing
the interplay between uniform and non-uniform solutions as the parameter a

varies.

5.6.2 The path graph P

We extend our analysis to show the behaviour of solutions to the Fitzhugh-

Nagumo equations on path graph P; (see figure 5.6.3). Recall that in this case
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we have
010 100
A=|[10 1|, D=]0 2 0] (5.6.7)
010 0 01

Then det L*(k) = 0 requires

—cosk 1 0
1 —2cosk 1 | =0 (5.6.8)
0 1 —cosk

This leads to cosk = £1, 0. Hence k, = nn/2 for integer n. The bifurcation

points are given by (5.6.3), namely

 8p%kh + Abpk2 + A
SPRZ+ N0

n _
a, =

We use the same parameter values as before, namely

and so p = 1. Then we have

(ko, a2) = (0, —0.286), (K1, al) = (7/2, —2.6902),
(ka, a?) = (m, —10.004), (k3 a2) = (37/2, —22.287),

(5.6.9)
(k4, at) = (27, —39.530), (ks, a2) = (57 /2, —61.72052),

(ke, al) = (3w, —88.852).

Comparing these with the k, values for P, given in (5.6.5) we see that, as
expected, the set of {k,} for P3 includes that for P». The bifurcation diagram
for P; is shown in Figure 5.6.4. In this diagram we plot ||u| against the
bifurcation parameter a. The diagram incorporates branches corresponding to
uniform solutions (corresponding to k = 0) (solid black lines) and asymptotic
behaviour for large |a| (dashed black lines), remains unchanged for any network

as it is from the previous section path graph P,, as detailed the reason in
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Figure 5.6.3: path graph Ps; with three vertices connected by two edges.
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Figure 5.6.4: On a path graph Ps, bifurcation diagram for the Fitzhugh-Nagumo
equations. The plot shows the norm of u versus the parameter a. Solid black
lines show exact solutions for £ = 0, and dashed black lines indicate asymptotic
behaviour for large |a| given by (5.4.7) and (5.4.9). The purple, blue, teal
green, orange, olive green, and dark red curves represent a non-uniform solutions.
Parameters: b = 3.5, A = 2.5, § = 1.0, L = 1.0 (domain length).The dashed curve
indicates that the bifurcation points unstable.

Section (5.4). Note that the uniform solution bifurcates from a = a? = —0.286
to create the left-hand solid black line in the figure. As is clear from the
discussion in section 5.4 and in particular from Figure 5.4.1 the right-hand

uniform branch does not bifurcate from the zero state.

The bifurcation diagram in Figure 5.6.4 highlights several key features:

1. The leftmost black curve corresponds to the branch k = kg = 0 (uniform

solution). This curve bifurcates from the point a = a? = —0.286.

2. The purple curve corresponds to the branch k¥ = k; = m/2. This curve

bifurcates from the point a = al = —2.6902.

3. The blue curve corresponds to the branch k = ko = 7. This curve bifurcates

from the point a = a2 = —10.004.
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4. The teal green curve corresponds to the branch k = k3 = 37 /2. This curve

bifurcates from the point a = a2 = —22.287.

5. The orange curve corresponds to the branch k¥ = k4 = 27w. This curve

bifurcates from the point a = a2 = —39.530.

6. The olive green curve corresponds to the branch k = ks = 57 /2. This curve

bifurcates from the point a = a2 = —61.721.

7. The dark red curve corresponds to the branch k£ = kg = 3w. This curve

bifurcates from the point a = a8 = —88.852.

The non-uniform solution branches demonstrate that all branches are unstable,
as indicated by the dashed curves in the bifurcation diagram. This observation
highlights the rich dynamical behaviour of the Fitzhugh-Nagumo system on the
P5 graph. Specifically, it reveals the interplay between uniform and non-uniform
solutions as the parameter a varies, emphasising the system’s tendency to favour

instability in spatially heterogeneous states.

5.6.3 The Y-shaped graph

We extend our analysis to show the behaviour of solutions to the Fitzhugh-
Nagumo equations on path graph Y-shaped graph (see figure 5.6.5). Recall that

in this case we have

0010 1000
0010 0100

A= , D= (5.6.10)
1101 0030
0010 0001
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Thus det L*(k) = 0 requires

—cosk 0 1 0

0 —cosk 1 0
=0. (5.6.11)

1 1 —3cosk 1

0 0 1 —cosk
This is leads to
—cosk 1 0 0 —cosk 0
—cosk| 1 —3cosk 1 |+ 1 1 |=0. (5.6.12)
0 1 —cosk 0 0 —cosk

Then, we have
det L* (k) = 3cos® k(cos® k — 1) = —3sin? kcos® k = —Z sin® 2k = 0.

Hence cosk =0, 0, +1; and k = nw/2 = k,, for integer n.

Despite the difference in the graph structure compared to the previous section,
we observe that the critical wave numbers k,, remain the same. This implies that
the bifurcation values for the parameter a are also identical. These values, al,

are given by

n _

0p%ky + Abpkp + A
§pk2 + b

As before we choose the parameter values

b=35 A=25 &6=10 L=10,

(and recall that p = 1/L?. Substituting these values, we compute the critical
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Figure 5.6.5: Y-shape graph with four vertices and three edges
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Figure 5.6.6: On a Y-shaped graph, bifurcation diagram for the Fitzhugh-Nagumo
equations. The plot shows the norm of u versus the parameter a. Solid black
lines show exact solutions for k = 0, and dashed black lines indicate asymptotic
behaviour for large |a| given by (5.4.7) and (5.4.9). The purple, blue, teal green,
dark orange, olive green, and dark red curves represent a non-uniform solutions.
Parameters: b = 3.5, A = 2.5, § = 1.0, L = 1.0 (domain length).The dashed curve
indicates that the bifurcation points unstable.

pairs (ky,al) as follows:
(ko,af) = (0.~0286),  (ku,a}) = (5, —2.6902),
9 3 3m
(kz,a2) = (m,~10.004), (ks a?) = ( 5, ~22.287 )
4 5 om
(ks af) = (2m,~39.530), (ks af) = ( 55, —61.721 ),

(kg,al) = (37, —88.852).

The consistency in the values of k, and al across different graph structures
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Figure 5.6.7: Square grid graph 3 x 3.
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highlights the robustness of the bifurcation analysis. Specifically:

e The uniform solution branch (kK = 0) remains unchanged, as it is

independent of the graph topology.

e The non-uniform branches (k, # 0) exhibit the same critical values al,
suggesting that the bifurcation structure is primarily governed by the wave

number k, rather than the graph’s shape.

5.6.4 Square grid graph 3 x 3

We extend our analysis to show the behaviour of solutions to the Fitzhugh-
Nagumo equations on a square grid graph 3 x 3 (see figure 5.6.7). Recall that

in this case we need to find the determinant of det L* = det(A — vD) = 0, as
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—2v 1 0 1 0 0 0 0 0

1 -3v 1 0 1 0 0 0 0
0 1 =2v 0 0 1 0 0 0
1 0 0 -3vr 1 0 1 0 0
0 1 0 1 —dv 1 0 1 0[=0
0 0 1 0 1 -3v 0 0 1
0 0 0 1 0 0o —-2vr 1 0
0 0 0 0 1 0 1 3v 1
0 0 0 0 0 1 0 1 —2v

where v = cos k. We use Matlab to obtain the determinant:
3908 — 150 + 7% — 1) =3 (v — 1) (v + 1)(3v* — 1)® = 0.

This leads to

1 1 1 1

v=cosk=0,0,0, 1, y =, )
V3 V3 3 3

So the general expression for k = k,, is given by:

nm/2 for cosk = +1,0,
e =

1 -+ 1L
=+ arccos (—3) +nm  for cosk = j:\/g,

where n € ZT.
The important value for parameter a are specified by (5.6.3), namely

0Pk, + Abpk + X
§pk2 + \b

n __
a. =

As in the previous cases we set the following parameter values
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Figure 5.6.8: On a 3 x 3 square grid graph, bifurcation diagram for the Fitzhugh-
Nagumo equations. The plot shows the norm of u versus the parameter a.
Solid black lines show exact solutions for £ = 0, and dashed black lines indicate
asymptotic behaviour for large |a| given by (5.4.7) and (5.4.9).The non-uniform
bifurcation points represent by 12 different colour. Parameters: b = 3.5, A = 2.5,
0 =1.0, L = 1.0 (domain length).The dashed curve indicates that the bifurcation

points unstable.

(Recall from that p = 1/L%.) Then we have

(ko, a2) = (0, —0.286),

(ko, a2) = (7/2, —2.6902),

(k4, al) = (7, —10.0039),

(ke, al) = (31/2, —22.2874),

(ks, a®) = (2w, —39.53025),
(10, al®) = (57/2, —61.72052),

(K12, al?) = (3w, —88.85206),

S

1
(ky, al) = (arccos ( 3) , —1.1714> ,
1

(k3, a2) <— arccos ) +m, —4.9646) ,

1
ks, a3) = ([ arccos [ —= | +, —16.8826> ,
(k5 af) = ((areeos (-
1
(kz, al) — arccos (3 + 2m, —28.4535> ,
1

(
(ko, al) = (arccos (3)
< 1

(k11, al') = | — arccos (\/g

5=

+or, —52.4368) ,

+ 3, —71.7629) ,

(5.6.13)

The bifurcation diagram in Figure 5.6.8 highlights several key features:

1. The leftmost black curve corresponds to the branch £ = ky = 0 (uniform
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solution). This curve bifurcates from the point a = a? = —0.286.

2. The green curve corresponds to the branch k = k; = arccos (%) This

curve bifurcates from the point @ = al = —1.1714.

3. The brown curve corresponds to the branch k = ko = /2. This curve

bifurcates from the point a = a2 = —2.6902.

4. The Orange curve corresponds to the branch & = k3 = — arccos (%) + .

This curve bifurcates from the point a = a® = —4.9646.

5. The red curve corresponds to the branch k = k4 = 37. This curve bifurcates

from the point a = a? = —10.0039.

6. The pink curve corresponds to the branch k = ks = arccos (7> + 7. This

curve bifurcates from the point a = a2 = —16.8826.

7. The gray curve corresponds to the branch k& = k¢ = 3w/2. This curve

bifurcates from the point a = a® = —22.287.

8. The light green curve corresponds to the branch k& = k7 = — arccos (%) +

27. This curve bifurcates from the point a = a’ = —28.4535.

9. The dark blue curve corresponds to the branch k = kg = 2w. This curve

bifurcates from the point a = a5 = —39.530.

10. The purple curve corresponds to the branch k¥ = kg9 = arccos (7) + 2.

This curve bifurcates from the point a = a2 = —52.4368.

11. The dark green curve corresponds to the branch k = kjg = 57/2. This

curve bifurcates from the point a = al® = —61.721.

12. The light blue curve corresponds to the branch k = k13 = — arccos ( ) +

Sl

3. This curve bifurcates from the point a = al' = —71.7629.

13. yellow curve corresponds to the branch k = k15 = 37. This curve bifurcates

from the point a = a!? = —88.852.
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The non-uniform solution branches demonstrate that all branches are unstable,
as indicated by the dashed curves in the bifurcation diagram. This observation
highlights the rich dynamical behaviour of the Fitzhugh-Nagumo system on the
3 x 3 square grid graph. Specifically, it reveals the interplay between uniform
and non-uniform solutions as the parameter a varies, emphasising the system’s

tendency to favour instability in spatially heterogeneous states.



Conclusion

6.1 Summary and conclusions

This thesis investigates the propagation of signals through networks modelled
by diffusion and by reaction-diffusion, the latter modelled using Fisher equation
and the FitzHugh-Nagumo system of equations. The primary objective of this
work was to explore the effects of network topology on signal dynamics, focusing
on diffusion processes and the excitable nature of reactions within networked
systems. By employing both analytical approaches and numerical simulations,
this study derived solutions for the diffusion equation, the Fisher equation, and
the FitzHugh-Nagumo model on various network structures, providing insights
into the dynamics of signals as they propagate and interact with their topological

structures.

The thesis begins with a detailed analysis of diffusion processes on networks as
discussed in chapter 2. The fundamental principles of diffusion, including
concentration, flux, and the diffusion coefficient, were presented through Fick’s
Law. The chapter derived the one-dimensional diffusion equation based on mass
conservation and adapted these continuous diffusion principles to a discrete
network structure. Special attention was given to solving the diffusion equation
on networks, where boundary and continuity conditions specific to network
structure were considered. A key method employed was eigenvalue analysis

using adjacency and degree matrices, with Gershgorin’s theorem providing
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bounds on eigenvalues. The results revealed the influence of network structure
on the diffusion process, especially in regular graphs and square grid graphs,
where eigenvalues were shown to play a key role in diffusion behaviour.
Computational techniques confirmed the theoretical findings, particularly in the

study of eigenvalue asymptotic as network size increases for square grid graphs.

Chapter 3 concentrates on the finite-difference method (FDM) for solving the
diffusion equation on networks. The chapter demonstrated how discretising the
spatial domain and enforcing continuity conditions for flux and concentration
could numerically solve the diffusion problem. The Crank-Nicholson method
was introduced as a second-order method for diffusion equations and applied to
path graphs P, and P5. The method was extended to more complex network
structures, including square grid and Y-shaped graphs. Numerical simulations
validated the approach, with results showing excellent agreement with
theoretical predictions for concentration profiles and decay rates. The method
proved effective for handling networks with multiple edges and vertices,

providing accurate solutions for concentration evolution and flux continuity.

The reaction-diffusion equation was applied to network structures, focusing on
the stability and dynamics of concentration profiles in chapter 4. The Method
of Lines (MOL) was used to numerically solve the Fisher equation on networks,
allowing for the study of concentration dynamics in reaction-diffusion systems.
Steady-state solutions were analysed, and the stability of these states was
assessed. It was found that the steady-state solutions for the Fisher equation
were constrained to be constant, either v = 0 or u = 1, with u = 1 being stable.
Numerical simulations of concentration dynamics on path and Y-shaped
networks demonstrated how external forcing at vertices could initiate pulse
propagation, which would subsequently propagate, split, and decay as it moved
through the network. The results showed that network topology significantly
influences the way pulses propagate and split, revealing the importance of

continuity conditions at network vertices.
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We extended the analysis in chapter 5 to the FitzHugh-Nagumo (FHN) model,
a system of coupled reaction-diffusion equations that model excitable systems,
such as neurons. The FitzHugh-Nagumo equations were solved on various
network structures, including path graphs and Y-shaped graphs, to investigate
pulse dynamics and the interaction between excitation and recovery variables.
Stationary solutions were derived, and their stability was analysed. The chapter
also explored small-amplitude and arbitrary-amplitude stationary solutions,
computed numerically using Chebyshev polynomials and Newton’s method.
The analysis of the FitzHugh-Nagumo model on networks demonstrated that
network topology significantly affects the dynamics of excitability and pulse
formation, with bifurcation diagrams revealing the transition from uniform to

non-uniform solutions as parameters varied.

In summary, this thesis provides a comprehensive exploration of how diffusion
and reaction-diffusion processes behave on networks. It integrates mathematical
techniques, such as eigenvalue analysis, finite-difference methods, and the
Method of Lines, to model and simulate the diffusion and reaction-diffusion
equations on various network topologies. The results highlight the profound
effect that network structure has on the propagation of signals, especially in
reaction-diffusion systems like the FitzHugh-Nagumo model, where network
topology can lead to complex phenomena such as pulse splitting and stable or
unstable states of bifurcation points. This work contributes to the
understanding of networked systems in biological, physical, and chemical
contexts, offering a foundation for further research on signal dynamics in

complex networks.

6.2 Future work

The thesis establishes a foundational understanding of diffusion and reaction-
diffusion processes on network structures, which can be interpreted through graph

theory. For future research, we need to identify numerous pathways to improve
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our understanding of network dynamics. While this thesis focused on relatively
simple network topologies such as tree graphs, Y-shaped graphs, and square grid
graphs, future research could extend to more complex network structures. This
could include networks with more intricate interactions between nodes, such as

feedback loops, adaptive connections, or hierarchical structures.

The models developed in this thesis can be applied to real-world networks, for
instance, neural or social networks, and adjusted with experimental data to
explore how network topology influences signal transmission in natural
systems.Also, exploring higher-dimensional networks, such as 2D or 3D grids,
would enhance the understanding of signal propagation in complex, spatially
organized systems. Future work could explore how dynamic changes in network
structure (e.g., adding/removing vertices or edges) affect the propagation of

signals, which is especially relevant for communication and biological networks.

In summary, future research could focus on extending the models to more complex
and dynamic networks, applying them to real-world systems, and incorporating
experimental data to refine predictions. These advancements would provide a

deeper understanding of signal dynamics in natural and artificial networks.



A

Find the eigenvalue of square grid

graph by applying Klopotek’s

equation

A.1 Case of 3 x 3 square grid graph

The following table is obtained by MATLAB calculation of the eigenvalue

problem. It shows the modified Laplacian eigenvalue A, the Normalized

Laplacian eigenvalue 7, and their multiplicity.

A multiplicity T
-1.000000000000000 1 2.000000000000000
-0.577350269189626 2 1.577350269189626
0.000000000000000 3 1.000000000000000
0.577350269189626 2 0.422649730810374

1.000000000000000 1

0.000000000000000

The following table is obtained by plotting the phases of (61, d2) € [0, (n—1)7) to

determine the initial values of these parameters. Subsequently, the eigenvalues

of the normalized Laplacian 7 are computed for a grid graph 3 x 3 for all cases

where (21, 292) = (1,0), (1, 1), or (0,0).
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{z1, 22} (01, 62) T
(0,0) (0,0) 2
(0,0) (0.7854 , 3.92699) 1
(0,0) (0.7854 , 2.3562) 1
(0,0) (2.3562 , 5.4978) 1
(0,0) (2.3562 , 0.7854) 1
(0,0) (3.92699 , 5.4978) 1
(0,0) (3.92699 , 0.7854) 1
(0,0) (5.4978 , 3.92699) 1
(0,0) (5.4978 |, 2.3562) 1
(0,0) (m, m) 0
(1,1) (0, m) 1
(1,1) (m, ) 1
(1,0) (0.2928 , 0.5236)  1.57735
(1,0) (0.2928 , 5.7596)  1.57735
(1,0) (2.8487 , 5.7596)  1.57735
(1,0) (2.8487 , 0.5236) 1.57735
(1,0) (3.4344 , 3.6652)  0.42265
(1,0) (3.4344 , 2.61799) 0.42265
(1,0) (5.9903 , 3.6652)  0.42265
(1,0) (5.9903 , 2.61799) 0.42265

A.1.1 Observation on the table for odd number of vertices along

one side n=3

For the square grid graph 4 x 4 we got the eigenvalue of the Normalized Laplacian

7 as follows:

e Right multiplicity when 7 = 2,0 where (z1,22) = (0,0)and(1,1),

respectively.
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e For case (z1,22) = (0,0) we got 7 = 1 with the following choices of

0.7854 — {2.3562, 3.92699},
2.3562 — {0.7854,5.4978},
51 — 52 :
3.92699 — {0.7854,5.4978},

5.4978 — {2.3562, 3.92699},

There is 8 multiplicity of this eigenvalue , but if we look to table we can
see 7 = 1 is appear when (z1,22) = (1,1) twice as well with the following

choices of

51—)522
T — T,

which lead to have 10 multiplicity while we just need 3 which means we can

reduce our search on the interval as

e Right multiplicity when 7 = 2,0 where (z1,22) = (0,0)and(1,0),

respectively.

e For case (z1,22) = (1,0) we got 7 = 1.57735 with the following choices of

0.2928 — {0.5236, 5.7596},
51 — 52 :

2.8487 — {0.5236,5.7596},

There is 4 multiplicity of this eigenvalue ,and we need only 2 multiplicity

to reduce our search on interval d1,d2 € [0, (n — 2)7].

e For case (z1,22) = (1,0) we got 7 = 0.42265 with the following choices of

3.4344 — {2.61799, 3.6652},
51 — 52 :

5.9903 — {2.61799, 3.6652},

There is 4 multiplicity of this eigenvalue ,and we need only 2 multiplicity

to reduce our search on interval d1,d2 € (m, (n — 1)m).
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A.2 Case of 4 x 4 square grid graph

The following table is obtained by MATLAB calculation of the eigenvalue
problem. It shows the modified Laplacian eigenvalue A, the Normalized

Laplacian eigenvalue 7, and their multiplicity.

A multiplicity T
-1.000000000000000 1 2.000000000000000
-0.781735959970572 2 1.781735959970572
-0.500000000000000 1 1.500000000000000
-0.333333333333333 2 1.333333333333333
-0.000000000000000 4 1.000000000000000
0.333333333333333 2 0.666666666666667
0.500000000000000 1 0.500000000000000
0.781735959970572 2 0.218264040029428
1.000000000000000 1 -0.000000000000000

The following table is obtained by plotting the phases of (41, d2) € [0, (n—1)7) to
determine the initial values of these parameters. Subsequently, the eigenvalues
of the normalized Laplacian 7 are computed for a grid graph 4 x 4 for all cases

where (21, 292) = (1,0), (1,1), or (0,0).

{z1, 22} (61,02) T
(0,0) (0,0) 2
(0,0) (0.80217 , 6.7762) 1.3333
(0,0)  (0.8021734 , 2.648612)  1.3333
(0,0) (2.6486 , 8.6226) 1.3333
(0,0) (2.6486 , 0.8022) 1.3333
(0,0) (6.7762 , 8.62260) 1.3333
(0,0) (6.7762 , 0.8022) 1.3333
(0,0) (8.6226 , 6.7762) 1.3333
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{z1, 22} (01, 02) T
(0,0) (8.6226 , 2.6486) 1.3333
(0,0) (3.1416 , 6.2832 ) 0.5
(0,0) (3.1416 , 3.1416) 0.5
(0,0) (6.2832 , 6.2832) 0.5
(0,0) (6.2832 , 3.1416) 0.5
(1,1) (27, 2m) 0
(1,1) (3.6346 , 7.0854) 0.6667
(1,1) (3.6346 , 5.4810 ) 0.6667
(1,1) (5.4810 , 8.9318) 0.6667
(1,1) (5.4810 , 3.6346 ) 0.6667
(1,1) (7.0854 , 8.9318) 0.6667
(1,1) (7.0854 , 3.6346) 0.6667
(1,1) (8.9318 , 7.0854) 0.6667
(1,1) (8.9318 , 5.4810) 0.6667
(1,1) ( 3.1416 , 3.1416) 1.5
(1,1) (0,m) 1.5
(1,0) (0.2083 , 8.9408) 1.781736
(1,0) (0.2083 , 0.48396) 1.781736
(1,0) (2.9333 , 8.9408) 1.781736
(1,0) (2.9333 , 0.48394) 1.781736
(1,0) (5.79923 , 6.07487) 0.21826
(1,0) (5.7992 , 3.3499) 0.21826
(1,0) (6.7671 , 3.3499) 0.21826
(1,0) (6.76714 , 6.0749) 0.21826
(1,0) (3.45575 , 6.59734) 1
(1,0) (3.4557 , 2.8274) 1
(1,0) (5.3407 , 8.4823) 1
(1,0) (5.3407 , 0.9425 ) 1
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{z1, 22} (61,02) T
(1,0) (7.2257 , 8.4823) 1
(1,0) (7.2257 , 0.9425) 1
(1,0) (9.1106 , 6.5973 ) 1
(1,0) (9.1106 , 2.8274) 1

A.2.1 Observation on the table for even number of vertices along

one side n=4

For the square grid graph 4 x 4 we got the eigenvalue of the Normalized Laplacian

7 as follows:

e Right multiplicity when 7 = 2,0 where (z1,22) = (0,0)and(1,1),

respectively.

e For case (z1,22) = (0,0) we got 7 = 1.3333 whith the following choices of

0.80217 — {2.6486,6.7762},
2.6486 — {0.80217,8.6226},
51 — 52 :
6.7762 — {0.80217, 8.6226},

8.6226 — {2.6486,6.7762},

There is 8 multiplicity of this eigenvalue while we just need 2 multiplicity
which means we can reduce our search on the interval as 41,92 € (0, (n —

3)7).

e For case (z1,22) = (0,0) we got 7 = 0.5 with the following choices of

m — {m, 2r},
(51 — (52 :

2w — {m, 2w},

There is 4 multiplicity of this eigenvalue while we just need 1 multiplicity
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which means we can reduce our search on the interval as 61, d2 € (0, (n—3)m].

e For case (z1,22) = (1,1) we got 7 = 0.6667 with the following choices of

3.6346 — {5.4810,7.0854},

5.4810 — {3.6346, 8.9318},
51 — 52 :

7.0854 — {3.6346,8.9318},

8.9318 — {5.4810, 7.0854},

There is 8 multiplicity of this eigenvalue while we just need 2 multiplicity
which means we can reduce our search on the interval as 61,02 € (7, (n —

2)7).

e For case (z1,22) = (1,1) we got 7 = 1.5 with the following choices of

0—>m
(51—)52:
™ — T,

There is 2 multiplicity of this eigenvalue while we just need 1 multiplicity
which means we can reduce our search on the interval as §; € [0, 7)anddy €

(0, 7].

e For case (z1,22) = (1,0) we got 7 = 1.781736 with the following choices of

0.2083 — {0.48396, 8.9408},
51 — 52 :

2.9333 — {0.48394, 8.9408 }

There is 4 multiplicity of this eigenvalue while we just need 2 multiplicity

which means we can reduce our search on the interval as d1, 02 € ("5, (n—

1)m).

e For case (z1,22) = (1,0) we got 7 = 0.21826 with the following choices of

5.79923 — {3.3499,6.07487},
51 — (52 :

6.7671 — {3.3499,6.07487}
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There is 4 multiplicity of this eigenvalue while we just need 2 multiplicity
which means we can reduce our search on the interval as 61, 02 € (=27, (n—

n—1

1)m).

e For case (z1,22) = (1,0) we got 7 = 1 with the following choices of

3.45575 — {2.8274,6.59734},
5.3407 — {0.9425, 8.4823},
(51 — 52 :
7.2257 — {0.9425, 8.4823},

9.1106 — {2.8274,6.5973},

There is 8 multiplicity of this eigenvalue while we just need 4 multiplicity
which means we can reduce our search on the interval as d; € (m,(n —

2)m),d2 € (0, (n — 2)7).

A.3 Case of 5 x 5 square grid graph

The following table is obtained by MATLAB calculation of the eigenvalue
problem. It shows the modified Laplacian eigenvalue X, the Normalized

Laplacian eigenvalue 7, and their multiplicity.
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A multiplicity T
-1.000000000000000 1 2.000000000000000
-0.868699110331574 2 1.868699110331574
-0.707106781186547 1 1.707106781186547
-0.552770798392567 2 1.552770798392567
-0.357745190713953 2 1.357745190713953
-0.218942434867536 2 1.218942434867536
-0.000000000000000 5 1.000000000000000
0.218942434867536 2 0.781057565132464
0.357745190713952 2 0.642254809286048
0.552770798392566 2 0.447229201607434
0.707106781186548 1 0.292893218813452
0.868699110331574 2 0.131300889668426

1.000000000000000

0.000000000000000

The following table is obtained by plotting the phases of (41, d2) € [0, (n—1)7) to

determine the initial values of these parameters. Subsequently, the eigenvalues

of the normalized Laplacian 7 are computed for a grid graph 5 x 5 for all cases

where (21, 29) = (1,0), (1,1), or (0,0).

{z1, 22} (61,02) T
(0,0) (0,0) 2
(0,0) (0.777156 , 2.7794) 1.55277
(0,0) (0.777156 , 9.7869) 1.55277
(0,0) (2.7794 , 0.777156) 1.55277
(0,0) (2.7794 , 11.7892) 1.55277
(0,0) (9.7869 ,0.777156) 1.55277
(0,0) (9.7869 , 11.7892) 1.55277
(0,0) (11.7892 , 2.7794) 1.55277
(0,0) (11.7892 , 9.7869) 1.55277
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{z1, 22} (01, 02) T
(0,0)  (1.04719755 , 5.23599) 1
(0,0) (1.0472 , 7.3304 ) 1
(0,0) (7, m) 1
(0,0) (m, 3m) 1
(0,0) (5.23599 , 1.0472) 1
0,00  (5.23599 , 11.5192) 1
(0,0) (7.3304 , 1.0472) 1
(0,0) (7.3304 , 11.5192) 1
(0,0) (37, m) 1
(0,0) (37, 3m) 1
0,00  (11.5192, 5.23599) 1
(0,0) (11.5192 , 7.3304) 1
(0,0)  (3.50375, 5.50603)  0.4472
(0,0) (3.50375 , 7.0603)  0.4472
(0,00  (5.50603 , 3.50375)  0.4472
(0,0) (5.50603 , 9.0626)  0.4472
(0,0) (7.0603 , 3.5038)  0.4472
(0,0) (7.0603 , 9.0626)  0.4472
(0,0) (9.0626 , 5.5060)  0.4472
(0,0) (9.0626 , 7.0603)  0.4472
(0,0) (27,2 ) 0
(1,1) (0 ,m) 1.7071
(1,1) (m, ) 1.7071
(1,1) (3.6652 , 5.7596) 1
(1,1) (3.6652 , 9.9484) 1
(1,1) (5.7596 , 3.6652) 1
(1,1) (5.7596 , 12.0428) 1
(1,1) (9.9484 , 3.6652) 1
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{z1, 22} (01,02) T
1,1 (9.9484 , 12.0428) 1
1,1 (12.0428 , 5.7596) 1
1,1 (12.0428 , 9.9484) 1
1,1 (27, 27) 0.29289
1,1 (27 , 3m) 0.29289
1,1 (3w, 2m) 0.29289
1,1 (37, 3m) 0.29289

—_

(0.1629 , 0.4473) 1.8687

—_

(0.1629 , 12.1191) 1.8687

—_

(2.9787 , 0.4473) 1.8687

—_

(2.9787 , 12.1191) 1.8687

—_

(3.4319 , 2.9048) 1.3577

—_

(3.4319 , 9.6616) 1.3577

—_

(12.2760 , 2.9048) 1.3577

(12.2760 , 9.6616) 1.3577

—_

(3.7828 , 5.3194) 0.78106

—_

(3.7828 , 7.2469) 0.78106

(11.9252 , 5.3195) 0.78106

—_

(11.9252 , 7.2469) 0.78106

—_

( 5.6420 , 0.9637) 1.2189

—_

( 5.6420 , 11.6027) 1.2189

—_

( 10.0659 , 0.96371) 1.2189

—_

( 10.0659 , 11.6027) 1.2189

—_

(15.9928 , 3.3784) 0.6423

—_

(15.9928 , 9.18799) 0.6423

—_

(19.71513 , 3.37838) 0.6423

—_

(19.71513 , 9.18799) 0.6423

AAAA/—\A/—\/—\A/—\AA/—\A/—\/—\/—\/—\/—\/—\/—\/—\/—\/—\AAAA
—_
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— —
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(6.4461 , 5.8359) 0.1313
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{z1, 22} (01,02) T
(1,0) (6.4461 , 6.7305)  0.1313
(1,0) (9.2618 , 5.8359 ) 0.1313
(1,0)  (9.2618,6.73048 )  0.1313

A.3.1 Case of 6 x 6 square grid graph

A multiplicity T
-1.000000000000000 1 2.000000000000000
-0.912769316065670 2 1.912769316065670
-0.809016994374948 1 1.809016994374948
-0.686259466680336 2 1.686259466680336
-0.562065445787390 2 1.562065445787390
-0.404270466768019 2 1.404270466768019
-0.309016994374948 1 1.309016994374947
-0.259129927208275 2 1.259129927208275
-0.156203793861273 2 1.156203793861273
-0.000000000000000 6 1.000000000000000
0.156203793861273 2 0.843796206138727
0.259129927208275 2 0.740870072791725
0.309016994374947 1 0.690983005625053
0.404270466768018 2 0.595729533231982
0.562065445787390 2 0.437934554212610
0.686259466680336 2 0.313740533319664
0.809016994374948 1 0.190983005625052
0.912769316065670 2 0.087230683934330

1.000000000000000

-0.000000000000000
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{z1, 22} (01,02) T
(0,0) (0,0) 2
(0,0) (1.0682 , 5.529) 1.1562
(0,0) (1.0682 , 10.1794)  1.1562
(0,0) (5.5285 , 1.0682) 1.1562
0,00  (5.5285 , 14.63976)  1.1562
(0,0)  (10.1794 , 1.068201)  1.1562
(0,0)  (10.1794 , 14.6398)  1.1562
(0,0) (14.6398 , 5.5285)  1.1562
(0,00  (14.6398 ,10.1794)  1.1562
(0,0) (0.7439 , 2.85319)  1.6862
(0,0) (0.7439 , 12.8548)  1.6862
(0,0)  (2.85319, 0.743889)  1.6862
(0,00  (2.85319 , 14.9641)  1.6862
(0,0) (12.8548 , 0.7439)  1.6862
(0,0)  (12.8548 ,14.9641)  1.6862
(0,0)  (14.9641,2.85319)  1.6862
(0,0)  (14.9641 , 12.8548)  1.6862
(0,0) (r, ) 1.30909
(0,0) (r , 47) 1.30909
(0,0) (47 , ) 1.30909
(0,0) (47 , 47) 1.30909
(0,0) (3.5384 , 5.7729) 0.7409
(0,00  (3.53837 ,9.93505)  0.7409
(0,0) (5.7729 , 3.5384) 0.7409
(0,00  (9.93505 , 3.53837)  0.7409
(0,0) (5.7729 , 12.1696)  0.7409
(0,0) (9.9350 , 12.1696)  0.7409
(0,00 (121696 , (5.7729)  0.7409
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{z1, 22} (01,02) T
(0,00 (121696 , (9.9350)  0.7409
(0,0) (27 , 2m) 0.19098
(0,0) (27 , 3m) 0.19098
(0,0) (37, 2r1) 0.19098
(0,0) (37, 3m) 0.19098
(1,1) (37, 3m) 0
(1,1) (6.5717 , 8.6809)  0.3137
(1,1) (6.5717 , 10.1687)  0.3137
(1,1) (8.6809 , 6.5717)  0.3137
(1,1)  (8.6809,12.27789)  0.3137
(1,1) (10.1687 , 6.5717)  0.3137
(1,1)  (12.27789 , 8.6809)  0.3137
(1,1)  (10.1687 , 12.277807)  0.3137
(1,1)  (12.27789, 10.1687)  0.3137
(1,1) (27 , 2m) 0.69098
(1,1) (27 , 4n) 0.69098
(1,1) (47 , 2m) 0.69098
(1,1) (47 , 4n) 0.69098
(1,1) (3.8962 , 8.3566)  0.8438
(1,1)  (3.8962, 10.49298)  0.8438
(1,1) (8.3566 ,3.8062 ) 0.8438
(1,1) (8.3566 ,14.9533 )  0.8438
(1,1) (1049298 3.8962 )  0.8438
(1,1)  (10.49298 , 14.9533)  0.8438
(1,1) (14.9533 , 8.3566)  0.8438
(1,1) (149533, 10.49298)  0.8438
(1,1) (3.6519 , 5.8864) 1.2591
(1,1) (3.6519 , 12.9631)  1.2591
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{z1, 22} (01,02) T
(1,1) (5.8864 , 3.6519)  1.2501
(1,1) (5.8864 , 15.1977 )  1.2501
(1,1) (12.9631 , 3.6519 )  1.2501
(1,1)  (12.9631 , 15.1976877)  1.2501
(1,1)  (15.19769 , 5.8864)  1.2501
(1,1) (15.19769 , 12.9631) 1.2591
(1,1) 0, ) 1.8090
(1,1) (r, ) 1.8090
(1,0) (5.7976 , 0.9532) 1.4043
(1,0) (5.7976 , 14.7547)  1.4043
(1,0) (13.0519 , 0.9532)  1.4043
(1,0)  (13.0519, 14.7547)  1.4043
(1,0)  (3.81479 , 5.60999) 1
(1,0)  (3.81479 , 10.09798) 1
(1,0) (6.0588 , 3.36599) 1
(1,0)  (6.0588 , 12.34197) 1
(1,0) (8.3028, 1.121997) 1
(1,0) (8.3028, 14.5857) 1
(1,0)  (10.5468 , 1.121997) 1
(1,0)  (10.5468 , 14.5857) 1
(1,0)  (12.7908 , 3.36599) 1
(1,0)  (12.7908 , 12.34197) 1
(1,0)  (15.0348 , 5.60999) 1
(1,0)  (15.0348 , 10.09798) 1
(1,0) (3.4051 , 2.9486) 1.5621
(1,0) (3.4051 , 12.7503)  1.5621
(1,0) (15.4444 , 2.9486)  1.5621
(1,0)  (15.4444 ,12.759 3)  1.5621
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equation
{z1, 22} (01,02) T
(1,0) (8.4716 , 3.6272) 0.5957
(1,0) (8.4716 , 12.0808) 0.5957
(1,0) (10.37799 , 3.62716) 0.5957
(1,0) (10.37799 , 12.0808) 0.5957
(1,0) (6.47616 , 6.0197) 0.4379
(1,0) (6.47616 , 9.6883) 0.4379
(1,0) (12.373 , 6.0197) 0.4379
(1,0) (12.373 , 9.6883) 0.4379
(1,0) (6.4174 , 9.00822) 0.0872
(1,0) (19.00822 , 6.4174) 0.0872
(1,0) (19.00822 , 9.29058) 0.0872
(1,0) (9.8413 , 6.4174) 0.0872
(0,1) (0.1342, 0.4166) 1.9128
(0,1) (0.1342, 15.2914) 1.9128
(0,1) (3.007396, 0.4166) 1.9128
(0,1) (3.007396, 15.2914) 1.9128
(0,1) (m, 0) 1.9128

A.3.2 Observation

e For (z1,22) = (0,0) on interval (41, d2) € [0, (n — 1)7) for all cases of n that

I tried I noticed that, If the correct multiplicity of eigenvalue is 2 I got 8

of multiplicity of eigenvalue with in that range. as well as if the correct

multiplicity of eigenvalue is 1. I got 4 of multiplicity of eigenvalue with in

that range. the exceptional of this observation that odd n produced 7 =1

when (z1, 2z2) = (0,0) with multiplicity (n x 2) 4+ 2 the correct multiplicity

when produced 7 = 1 for both n even or odd and only If n odd, 7 = 0 with

interval (01 = d2 = (n — 3)m) and the only exceptional in this interval is

case n = 3 where is (61 = Jy = 7).
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e For (z1,22) = (1,0), if n is even we will have double multiplicity of 7 = 1.
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