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Abstract

This thesis investigates the behaviour of signals in networked systems by

applying diffusion and reaction-diffusion equations on a variety of network

topologies, which include path graphs, tree graphs, Y-shaped graphs, and

square grid graphs.

We employ mathematical models, including the diffusion equation, the Fisher

equation, and the FitzHugh-Nagumo equations, to describe concentration and

excitation across networks. Using methods such as eigenvalue analysis, finite-

difference methods, and the Method of Lines (MOL), numerical simulations were

performed to solve these equations and analyse the impact of network topology

on signal propagation.

Key findings include the adaptation of continuous diffusion models to discrete

network structures, the successful application of the Crank-Nicholson method

for solving diffusion equations on networks, and the analysis of pulse dynamics

and stability in reaction-diffusion models. The FitzHugh-Nagumo model was

particularly useful for exploring excitable systems and the propagation of pulses

across networks, showing how topology influences wave formation and stability.
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1

Introduction

1.1 Motivation for the study

1.1.1 Calcium wave propagation in plant leaves

The motivation for this work originates from the experiments conducted by

Annalisa Bellandi, who investigated the propagation of diffusion waves in plant

leaves triggered by localised stimuli [4]. In her study, a needle was used to

induce a pressure disturbance at a specific point on a leaf, generating a calcium

wave that diffused across the entire leaf. The mechanism was attributed to the

diffusion and bulk flow of amino acid messengers, which activated

calcium-permeable channels as they travelled through the plant vasculature. In

this thesis, the focus shifts away from biological specifics to develop generalised

mathematical models of diffusion and reaction-diffusion processes on graphs.

This abstraction allows for the study of wave dynamics in a variety of contexts,

making the findings relevant beyond plant systems.

1.1.2 Broader applications of network diffusion models

Beyond the biological systems that motivated this study, diffusion processes on

networks find extensive applications across diverse fields where substances,

information, or influences propagate through interconnected structures. In

epidemiology, the spread of infectious diseases can be modelled as diffusion
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processes on social contact networks, where individuals represent vertices and

their interactions form edges, allowing researchers to predict outbreak patterns

and evaluate intervention strategies [29]. Social networks exhibit similar

diffusion phenomena in the propagation of information, opinions, or behaviours,

where ideas spread from person to person following network connectivity

patterns [17]. In neuroscience, the brain’s neural networks demonstrate

diffusion-like processes in the transmission of electrical signals and chemical

messengers between neurons, making network diffusion models valuable for

understanding cognitive processes and neurological disorders [10]. Urban

transportation systems represent another domain where diffusion models apply,

as traffic flow, congestion patterns, and public transport dynamics can be

analysed using network-based diffusion equations [3]. These diverse applications

highlight the fundamental importance of understanding diffusion dynamics on

networks, as the mathematical frameworks developed in this thesis—including

eigenvalue analysis, boundary conditions, and reaction-diffusion.

1.2 Background of diffusion on a network

Understanding the principle of diffusion processes is essential, which will serve

as a foundation for developing more generalised models of diffusion in networks.

Diffusion is the process by which particles move from areas of high

concentration to areas of low concentration due to molecular interactions

between the particles themselves [35]. These molecular interactions are what

drive the transfer of substances from one molecule to another, causing the

diffusion process to unfold. Although the essential mechanism is inherently

discrete and involves individual molecular collisions, diffusion is often modelled

as a continuous process for practical reasons.

One classical approach to modelling diffusion is Fick’s law, which treats diffusion

as a smooth, continuous process [25]. Although this continuous model is effective

in many scenarios, a more refined approach is needed when diffusion occurs in
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systems structured as networks, such as in Turing’s model of biological pattern

formation. In these cases, diffusion occurs between cells or nodes in a network,

with the medium represented as a set of discrete vertices and edges. This brings

us to the work of Alan Turing, who, in the early twentieth century, applied

diffusion processes between cells arranged in a network-like structure to explain

the formation of patterns in biological systems [43].

Our approach focusses on solving the diffusion equation for each individual edge

within the network. This differs from the finite-difference technique commonly

used in network diffusion studies, where the diffusion operator is discretised across

the entire network. Later in this chapter, we will provide a more detailed analysis

of this methodology and its differences from the approach we employ, but first, it

is essential to introduce some foundational concepts from graph theory that will

help us understand networks in this context.

1.3 Introduction to graph theory

In this section, we provide a basic overview of graph theory, which serves as

the mathematical framework for analysing networks in this thesis. We begin by

defining essential concepts, such as vertices, edges, and degrees, which form the

basis of the network structure. These definitions are crucial for understanding

how diffusion processes operate in networks, as the structure and properties of a

graph directly influence the dynamics of diffusion. In addition, we will explore

key graph types, including bipartite and directed graphs.

1.3.1 Definition and terminology

Graph theory provides a mathematical framework for studying networks, which

are made up of a set of vertices (or nodes) V and a set of edges E. Each edge

connects two vertices and represents a relationship or interaction between them.

In a directed graph (or digraph), each edge has a direction, indicating a one-way
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A B

C D

E

Figure 1.3.1: A simple undirected graph. Each edge represents a bidirectional
relationship.

relationship from one vertex to another. Conversely, in an undirected graph, edges

do not have a direction, implying a bidirectional relationship between connected

vertices [45].

The degree of a vertex is the number of edges connected to it. In directed graphs,

we distinguish between the in-degree, which is the number of incoming edges, and

the out-degree, which is the number of outgoing edges [36]. These basic concepts

form the foundation for the analysis of more complex structures and behaviours

in networks.

A loop-less graph which will be the focus of this thesis, is defined as a graph that

contains no loops. A loop is characterised as an edge that connects a vertex to

itself, or equivalently as an edge whose endpoints are identical [7].

A bipartite graph G = (V,E) is a graph whose vertex set V can be partitioned

into two non-empty subsets A and B (i.e., A∪B = V and A∩B = ∅) such that

each edge of G has one endpoint in A and one endpoint in B. A bipartite graph

does not contain self-loops [40].

A path graph Pn is a graph with n vertices and n − 1 edges that lie on a single

straight line [28], where vertex i is connected to vertex i+1 for i = 1, 2, . . . , n−1.

A grid graph or a lattice is a regular tiling of the Euclidean space Rn that forms

a repetitive structure. These graphs are characterised by a group of bijective

transformations that map the graph onto itself. Examples of grid graphs include

the square grid graph and the triangular grid graph, each with distinct geometric

properties [37].

A regular graph is a graph that has the same number of vertex neighbours; in

other words, every vertex has the same degree [20].

A connected graph, any two vertices in the graph are connected by a path [46].
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A1

A2

A3

B1

B2

B3

B4

Figure 1.3.2: A bipartite graph.

In a tree, there is exactly one edge connecting every distinct pair of vertices i and

j on the graph, where i ̸= j [5].

1.3.2 Relevance to network modelling

In the previous section, we introduced concepts such as vertices, edges, and

degrees, which play an essential role in modelling how substances or information

propagate through a network. The vertices represent the locations or entities

where diffusion occurs, and the edges represent the pathways for diffusion. The

structure of the graph, whether it is directed or undirected, and the degree

distribution of its vertices can significantly influence the dynamics of diffusion

[2]. Therefore, understanding these concepts of graph theory is essential for

effectively modelling and analysing diffusion in networks.

1.3.3 Edge directions and vertex degrees

The direction of the edges in a network determines the pathways through which

diffusion can occur. In a directed graph, diffusion can occur only along the

direction of the edges, which may lead to asymmetric diffusion patterns. For

instance, if the vertex A has an outgoing edge to the vertex B but not vice versa,

diffusion from A to B is possible, but the reverse is not [36].

The degree of a vertex plays a significant role in the diffusion process. Vertices

with a high degree, which means that they are connected to many other vertices,
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A B

C D

E

Figure 1.3.3: A directed graph. Note that vertex B has both incoming edges
(in-degree) and outgoing edges (out-degree).

common

A

B

C

D

Boundary

Figure 1.3.4: A high-degree vertex (common vertex) connected to multiple
vertices and a low-degree vertex (Boundary vertex) with limited connections.

are often referred to as common vertices. These common vertices serve as hubs,

facilitating rapid diffusion across the network by connecting different parts of the

graph. In contrast, low-degree vertices, known as boundary vertices, have fewer

connections and may act to slow down the diffusion process.

The distinction between in-degree and out-degree in directed graphs becomes

important. The in-degree refers to the number of incoming edges to a vertex,

while the out-degree refers to the number of outgoing edges. These properties

influence how substances or information accumulate or disperse from specific

vertices, shaping the overall dynamics of diffusion in the network [45].

Graph theory provides a framework for representing networks, but to

understand how processes such as chemical substances occur within these

networks, we must delve into the physical principles governing such phenomena.

Specifically, diffusion plays a central role in many network processes. Before

applying diffusion models to networks, we will review the core principles of

diffusion in a continuous medium.
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1.4 Diffusion on a graph literature review and novel

contribution

The mathematical modelling of diffusion processes on networks has evolved

through several distinct approaches, each offering unique insights into how

substances spread through discrete structures. Understanding these existing

methodologies is crucial for positioning our novel contributions within the

broader landscape of network diffusion theory. The following sections review the

primary approaches found in the literature, beginning with traditional

discretization methods before introducing the innovative edge-by-edge

analytical framework developed in this work.

1.4.1 Discretising approach

In most approaches, the network is represented as a graph, with each vertex

corresponding to a location (such as a cell) and each edge representing a

connection (such as a pathway between cells) [26]. A common method to

discretise the diffusion process in these graphs involves solving a diffusion

equation as follows:

ut = uxx,

where u represents the concentration of substance, ut represents the temporal

change in concentration, and uxx represents the spatial diffusion. On a simple

path graph denoted by P2 where subscript 2 represents the number of vertices

of the graph (see Figure 1.4.1), the diffusion of a substance along the edges of

the graph from vertex i to vertex j can be discretised by assigning

concentration values ui to each vertex, where i = 1, . . . , N . The second

derivative is approximated using finite differences:

ui+1 − 2ui + ui−1

h2
,
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ui uj
D

Figure 1.4.1: Path graph P2

where h is the distance between adjacent vertices, essentially discretising the

network in terms of spatial steps.

More generally, for a graph structure, diffusion is modelled from each vertex to

its neighbours. Let D be the diffusion rate across the edge, then the amount of

substance that moves from vertex i to vertex j over a time period dt is D(ui−uj)

and from vertex j to vertex i is D(uj − ui). then

dui
dt

= D(ui − uj),
duj
dt

= D(uj − ui)

When considering diffusion to and from the vertex i, we must take into

consideration all the vertices of the graph. The connectivity of the graph is

represented by the adjacency matrix. Now for a simple graph we assume D = 1,

then the rate at which ui is changing is given by :

dui
dt

=
N∑
j=1

Aij(uj − ui), (1.4.1)

where the sum is over all N vertices in the graph, and Aij is the adjacency matrix

and ui is the concentration at vertex i. The following form can be used to express

Equation (1.4.1):

dui
dt

=
N∑
j=1

Aijuj − ui

N∑
j=1

Aij . (1.4.2)

The degree of vertex i, denoted di, can be written in terms of the adjacency

matrix as di =
∑N

j=1Aij [35], the equation (1.4.2) can be expressed as:

dui
dt

=
N∑
j=1

Aijuj − uidi, (1.4.3)
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We define the Kronecker delta, δij [35], as follows

δij =

 1 if i = j

0 if i ̸= j.

Using the Kronecker delta definition in equation (1.4.3), which leads to:

dui
dt

=
N∑
j=1

Aijuj −
N∑
j=1

δijujdi.

(Note that there is no implied summation over a repeated index here). Since

δijdj = Dij ,this simplifies to:

dui
dt

=
N∑
j=1

(Aij −Dij)uj .

In vector form, this can be written as:

du

dt
= (A−D)u,

where u is the vector of concentration values at the graph vertices and D is the

degree matrix. Thus, the equation becomes:

du

dt
= Lu,

where L = A −D is the Laplacian matrix for the graph. We seek a solution in

the form

u = eλta

where a is a constant vector, and λ is a constant. Substituting this into the

differential equation yields:

λa = La

which implies that λ is an eigenvalue of the Laplacian matrix L. Thus, in this

model, the decay rates over the network correspond to the eigenvalues of the
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Laplacian. This formulation of the equation is commonly referred to as the

diffusion equation on a graph or the graph Laplacian [35].

1.4.2 Random walks on a graph

A random walk on a graph is a stochastic process in which a walker moves from

one vertex to an adjacent vertex based on transition probabilities. This discrete

process can be viewed as an analogy to diffusion, where the spread of a substance

follows a continuous medium. Let G = (V,E) represent a graph, and let P denote

the transition matrix of the random walk, where:

Pij =


1
di

if (i, j) ∈ E,

0 otherwise,

where (i, j) ∈ E indicates that there is an edge connecting vertices i and j in the

graph [32].

For a graph G = (V,E), the normalised Laplacian Lnorm is defined as:

Lnorm = D−1/2LD−1/2,

where L = D−A is the combinatorial Laplacian, A is the adjacency matrix and

D is the degree matrix [19]. Substituting L = D − A into the expression for

Lnorm, we have:

Lnorm = D−1/2(D−A)D−1/2.

Expanding this expression:

Lnorm = D−1/2DD−1/2 −D−1/2AD−1/2.

Since D−1/2DD−1/2 = I (the identity matrix), this simplifies to:

Lnorm = I−D−1/2AD−1/2.
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The random walk transition matrix P defined above can be written as:

P = D−1A,

which describes the probabilities of transition between vertices in a random walk

[33]. To express P in terms of normalized matrices, we observe that:

P = D−1/2(D−1/2AD−1/2)D1/2.

Let A∗ = D−1/2AD−1/2, which is often referred to as the normalized adjacency

matrix. Substituting A∗ into P, we have:

P = D−1/2A∗D1/2.

When we replace A∗ = D−1/2AD−1/2 in the Laplacian matrix, we obtain:

Lnorm = I−A∗.

Since A∗ = D−1/2AD−1/2, and from the relation P = D−1A, we observe that:

A∗ = I− Lnorm.

Thus, substituting this into Lnorm, we finally obtain:

Lnorm = I−P.

This relationship highlights the intrinsic connection between random walks and

spectral graph theory [9], since the normalised Laplacian governs diffusion-like

processes on graphs as will be discussed in chapter 2.
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1.4.3 Metric graph

In this section, we introduce an approach to how we can structure a graph that

is similar to the approach we use in the thesis, which is a metric graph. A metric

graph is a mathematical structure in which each edge is treated as a continuous

interval, giving it a 1D geometric character rather than a purely combinatorial

one. Formally, a metric graph Γ consists of a set V of vertices and a set E of

edges, where each edge e ∈ E is assigned a positive length le ∈ (0,∞]. The

edge e is identified with an interval [0, le] of the real line, and a coordinate xe is

defined along the edge, with xe = 0 and xe = le corresponding to the two vertices

connected by the edge. This representation introduces a natural topology and a

metric on the graph [31].

The finite metric graphs are graphs that have a finite number of vertices and

edges. The distances between two points are always finite, and the graph

structure can often be represented compactly. A path in a metric graph is a

sequence of connected edges {ej}Mj=1. The total length of the path is given by

the sum of the edge lengths
∑M

j=1 lej [31].

1.4.4 Quantum graphs

Expanding on the concept of metric graphs, we present quantum graphs, which

are a natural extension of metric graphs used to study problems involving

differential operators on graphs. A quantum graph is a metric graph equipped

with a differential operator, such as the Laplacian, acting on functions defined

on the edges of the graph. These functions describe physical quantities like

wave functions or diffusion densities, making quantum graphs a framework for

solving various physical and mathematical problems which is similar to the

method that is used in this thesis.

A function f defined on a quantum graph can be expressed as a tuple (fe)e∈E ,

where each fe(xe) is a function defined on the interval [0, le] corresponding to the
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edge e. The Hilbert space of the quantum graph is given by

⊕
e∈E

L2([0, le]),

where L2([0, le]) is the space of square-integrable functions on the edge e. The

inner product of two functions f and g on this space is defined as

⟨f, g⟩ =
∑
e∈E

∫ le

0
f∗
e (xe)ge(xe) dxe.

The simplest operator considered on a quantum graph is the Laplace operator,

which acts on each edge as

− d2

dx2e
,

where xe is the coordinate along edge e. To solve problems on a quantum

graph, suitable boundary conditions must be imposed at the vertices to ensure

the operator is self-adjoint. Common boundary conditions include:

• Dirichlet conditions: The function fe(xe) vanishes at the endpoints of the

edge, i.e., fe(0) = fe(le) = 0.

• Neumann (natural) conditions: The function is continuous at vertices, and

the sum of the outgoing derivatives at each vertex is zero:

∑
e∼v

dfe
dxe

(v) = 0.

By solving the eigenvalue problem

−d2fe
dx2e

= λfe,

subject to the chosen boundary conditions, one can determine the eigenvalues λ

and eigenfunctions fe(xe), which describe the natural modes of the system [31].

While the approaches discussed above—discretization methods, random walks,
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and quantum/metric graphs—have provided valuable frameworks for

understanding diffusion on networks, they each possess inherent limitations.

Traditional discretization approaches sacrifice analytical precision for

computational tractability, random walk methods primarily capture stochastic

behaviour rather than deterministic concentration dynamics, and quantum

graph approaches, while mathematically elegant, often lack direct connections

to practical network applications. Recognizing these gaps in the existing

literature, this thesis develops a fundamentally different approach that

addresses these limitations through exact analytical solutions coupled with

systematic eigenvalue analysis.

1.4.5 Novel contributions of this work

This thesis introduces several new methodological approaches:

1. Exact edge-by-edge solutions: Unlike previous finite-difference approaches

that discretize across the entire network, we solve the diffusion equation

analytically on each individual edge, then couple solutions through vertex

conditions.

2. Modified Laplacian eigenvalue analysis: We develop a comprehensive

eigenvalue analysis using the modified Laplacian matrix

L∗(ν) = A − cos(ν)D, providing exact decay rates for arbitrary network

topologies—a systematic analysis not previously available in the literature.

3. Asymptotic theory for large networks: We derive asymptotic eigenvalue

behaviour for square grid graphs as network size approaches infinity,

extending Klopotek’s results [30] to diffusion problems.

4. Unified numerical framework: We integrate exact analytical solutions with

the method of lines for reaction-diffusion systems, enabling treatment of

both linear diffusion and non-linear Fisher and FitzHugh-Nagumo dynamics

on the same network framework.
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These contributions provide new theoretical insights into how network topology

fundamentally affects diffusion dynamics, bridging the gap between discrete graph

theory and continuous PDE approaches.

1.5 Aim and outline

In this thesis, we explore the phenomenon of diffusion and reaction-diffusion in

networks, focussing on the structural properties of graphs. We use graph theory to

explain the network structure, employing concepts such as the adjacency matrix

and degree matrix.

Chapter 2 introduces the physical principles of diffusion and their application

to networks. It begins by defining key terms such as concentration, flux, and

diffusion coefficient, followed by the derivation of the one-dimensional diffusion

equation using Fick’s Law. The chapter then extends these principles to network

structures, where diffusion occurs across discrete vertices and edges, unlike the

continuous media in physical space. The mathematical formulation of diffusion

on networks is developed, including the general case of diffusion across edges with

varying lengths and diffusivity constants. The chapter further explores boundary

and continuity conditions for solving diffusion equations and employs methods

such as separation of variables and eigenvalue analysis to understand the long-

term behaviour of diffusion processes in networks. Special attention is given to the

eigenvalue analysis of a modified form of the Laplacian matrix to reveal insights

into the structure of the network and the diffusion characteristics. The chapter

concludes with numerical examples and the asymptotic behaviour of diffusion in

square grid graphs, highlighting the significance of eigenvalues in determining the

decay rate of substances across networks.

In chapter 3, we employ a finite-difference method to numerically solve the

diffusion equation on networks. Instead of solving the diffusion equation exactly

on each edge and using eigenvalue analysis for decay rates, we discretise the
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problem using a set of equally spaced collocation points along each edge. This

approach provides a simplified framework that enables the subsequent inclusion

of non-linear terms in Chapters 4 and 5, facilitating the solution of the diffusion

equation with more complex dynamics in later stages of the study. We enforce

continuity conditions at the vertices and apply the Crank-Nicholson method to

evolve the system over time. The chapter begins with a brief introduction to

the finite-difference method, followed by the application of the Crank-Nicholson

method to simple network structures, such as a path graph with two vertices,

P2. The methodology is extended to more complex networks, such as a path

graph with three vertices P3 and a Y-shaped graph, ensuring the continuity of

concentration and flux at the common vertices. Numerical results are presented

for various network topologies, including square grid graphs, where the

concentration profiles and decay rates are compared with theoretical

predictions. The chapter concludes by generalising the approach to handle

networks with arbitrary numbers of vertices and edges, introducing fictitious

points to maintain continuity at common vertices, and extending the analysis to

large networks.

In chapter 4, we focus on solving reaction-diffusion equations on networks using

the Method of Lines (MOL). The chapter begins by discretising the spatial

domain into a grid, transforming the partial differential equations (PDEs) into a

system of ordinary differential equations (ODEs) that can be efficiently solved

using standard numerical integration techniques. We emphasise enforcing the

continuity of flux and concentration at the vertices and applying zero-flux

boundary conditions at the boundary vertices. Various network topologies are

considered, starting from simple path graphs and extending to more complex

structures. The chapter also explores the stability of steady-state solutions for

the reaction-diffusion equation, comparing numerical decay rates with

theoretical predictions introduced in Chapter 2. Additionally, the chapter

includes numerical simulations conducted using MATLAB to analyse the

dynamic behaviour of concentration, demonstrating the propagation and
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stabilisation of concentration profiles over time. The results provide an

understanding of both dynamic and steady-state behaviours of

reaction-diffusion systems on networks, offering insight into the stability

conditions and decay rates for different network structures.

In Chapter 5, we investigate the application of the Fitzhugh-Nagumo (FHN)

model to simulate pulse dynamics in network structures. This chapter is

motivated by experimental observations made by Annalisa, who identified

distinct pulse-like phenomena in calcium wave dynamics [4]. The

Fitzhugh-Nagumo model, consisting of two coupled reaction diffusion equations

that describe the membrane potential and recovery variables of neurones, is

used to explore the underlying mechanisms of pulse propagation within these

networks. We explore pulse propagation in simple network topologies, starting

with a path graph P2 and extending to more complex structures, such as a

Y-shaped network. External forces are applied at the head node to initiate

pulse propagation, and the effects of this stimulation are observed in both

one-dimensional edge networks and more complex multi-edge networks. In

particular, the study examines how pulses split and propagate when they reach

a junction point, illustrating how the network topology influences the pulse

dynamics. The chapter also explores boundary conditions and introduces

numerical methods for solving the (FHN) equations, including the application

of finite-difference methods and time-stepping techniques. Finally, bifurcation

points and the stability analysis of pulse solutions are studied, with results

showing how the pulse propagation behaviour depends on the network structure

and parameter values. The thesis is then summarised with some conclusions.



2

Diffusion in networks: analysis and

asymptotic behaviour

In this chapter, we delve into the mathematical foundation for understanding

diffusion in networks, beginning with the concepts of concentration, flux, and the

diffusion coefficient. We will start by exploring the basic principles of diffusion,

including Fick’s Law, which leads to the derivation of the diffusion equation.

We use the concepts of graph theory to represent the network topologies by

vertices and edges. We then apply zero flux conditions at the boundary vertices

and continuity of flux and concentration at the common vertices. From there,

we solve the diffusion equation exactly on each edge of the network and then

formulate an eigenvalue problem for the decay rate.

2.1 Foundations of diffusion

In this section, we introduce the physical principles of diffusion, which govern

the spread of substances or information through a medium. These concepts are

critical for understanding how diffusion occurs in networks, where the medium is

represented by the connections between vertices. We will begin by defining key

terms such as concentration, flux, and diffusion coefficient. Then, we will derive

the one-dimensional diffusion equation based on Fick’s Law, which will serve as

the mathematical foundation for extending diffusion to more complex network



Chapter 2: Diffusion in networks: analysis and asymptotic behaviour 19

structures in the following sections.

2.1.1 Basic concepts

Figure 2.1.1: The diffusion process showing concentration gradients and flux.

To understand diffusion processes, we begin by defining several key terms. The

concentration u(x, t) represents the quantity of a substance per unit length at

position x and time t. The flux q(x, t) denotes the rate at which the substance

flows through a point per unit time at a given position x and time t . The

diffusion coefficient D is a proportionality constant that characterizes the rate of

diffusion in a particular medium, with units of m2/s [24].

2.1.2 Fick’s Law of diffusion

Fick’s First Law states that the flux q(x, t) is proportional to the negative gradient

of the concentration:

q(x, t) = −D
∂u(x, t)

∂x
, (2.1.1)

where D is the diffusion coefficient. This relationship implies that the substance

flows from regions of high concentration to regions of low concentration, with the

rate of flow being higher where the concentration gradient is steeper [24].

2.1.3 Derivation of the one-dimensional diffusion equation

To derive the one-dimensional diffusion equation, consider the conservation of

mass within a differential element of length dx. The rate of change of the

concentration within this element is given by the difference between the flux
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entering and leaving the element:

∂u(x, t)

∂t
= −∂q(x, t)

∂x
. (2.1.2)

Substituting Fick’s First Law into this equation yields:

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
. (2.1.3)

This is the one-dimensional diffusion equation, which describes how the

concentration of a substance evolves over time in a given medium [24], forming

the basis for our subsequent analysis of diffusion on networks.

2.2 Diffusion on a network

In this section, we extend the principles of diffusion to networks built on both the

graph theory and diffusion foundations. While diffusion in physical space occurs

in continuous media, network diffusion involves discrete structures where vertices

and edges represent locations and connections, respectively. We will develop

the mathematical formulation of diffusion on networks and introduce boundary

and continuity conditions specific to network structures. The governing diffusion

equation for networks will then be derived, followed by an exploration of methods

to solve it, including separation of variables and eigenvalue analysis.

2.2.1 General case

In this section, we explore the diffusion of a chemical substance across a network,

which consists of vertices V connected by edges E. The diffusivity constant D is

assumed to be uniform across all edges, while the length of each edge connecting

vertex i to vertex j is denoted by Lij . The edges in the network can have different

lengths, allowing for a more generalized model of diffusion. We define eij as the

edge connecting vertex i to vertex j, where j > i. In this structure, vertex i
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i j
eij

H

ξ = 0

T

ξ = 1

Figure 2.2.1: A typical edge eij in the network of length Lij with head H at
vertex i and tail T at vertex j. The red arrow designates the positive direction
of flow.

is designated as the head (H), and vertex j as the tail (T), with the positive

direction of flow along the edge eij being from head to tail, as depicted in Figure

(2.2.1).

2.2.2 Mathematical formulation

The concentration of the substance on edge eij is denoted by uij . The diffusion

equation governing the concentration over time is given by:

∂u(t, x)

∂t
= D

∂2u(t, x)

∂x2
, (2.2.1)

We will transform each edge of the network into an interval of canonical length

one. To achieve this, we introduce a new variable ξ, defined such that x = Lijξ

with ξ ∈ [0, 1] representing a scaled version of the position x along the edge,

and x ∈ [0, Lij ] corresponds to the actual position along the edge of length.

Substituting into equation (2.2.1), we obtain:

∂uij(t, ξ)

∂t
= βij

∂2ξuij(t, ξ)

∂ξ2
, (2.2.2)

where βij =
Dij

L2
ij

and Dij are the diffusivity constant specific to edge eij . To

analyse the mass of the chemical on edge eij , we define:

mij =

∫ 1

0
uij(t, ξ) dξ, (2.2.3)

where mij represents the total mass of the substance along the edge, and uij(ξ)

is the concentration at position ξ [27]. Taking the positive direction of flow from
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Figure 2.2.2: A typical network where vertices i and k are boundary vertices, and
vertex j is a common vertex.

head to tail as indicated by the red arrow in Figure 2.2.1, we define the fluxes at

the head and tail of edge eij as follows:

qHij = −αij
∂uij(t, ξ)

∂ξ
at ξ = 0, (2.2.4)

qTij = −αij
∂uij(t, ξ)

∂ξ
at ξ = 1, (2.2.5)

where

αij =
Dij

Lij
. (2.2.6)

In this context, Dij remains the diffusivity constant, and Lij is the length of the

edge from vertex i to vertex j.

2.2.3 Boundary and continuity conditions

To uniquely determine the solution to the network diffusion problem, appropriate

boundary and initial conditions must be imposed. Consider the network structure

depicted in Figure 2.2.2, where vertices i and k are boundary vertices connected

to a common vertex j via edges eij and ejk, respectively. In a network, vertices

can be classified as either boundary or common vertices. Boundary vertices are

those connected by only one edge, implying that the flux cannot extend beyond

these vertices (ξ = 0 if the boundary node is the head, and ξ = 1 if the boundary

node is the tail). Common vertices, on the other hand, are connected by two or

more edges, allowing flux to be continuous across them (ξ = 1 when the vertex

is a tail or ξ = 0 when the vertex is a head). Specifically:
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• Boundary vertex at head (ξ = 0): For a boundary vertex connected as

the head of edge eij , the zero-flux condition is:

−αij
∂uij
∂ξ

∣∣∣∣
ξ=0

= 0. (2.2.7)

• Boundary vertex at tail (ξ = 1): For a boundary vertex connected as

the tail of edge ejk, the zero-flux condition is:

−αjk
∂ujk
∂ξ

∣∣∣∣
ξ=1

= 0. (2.2.8)

Common vertices, such as vertex j in Figure 2.2.2, are connected by two or more

edges, allowing flux continuity across them. The conditions at a common vertex

are:

• Continuity of flux: The net flux into the common vertex must equal the

net flux out. For vertex j, this condition is:

−αij
∂uij
∂ξ

∣∣∣∣
ξ=1

= −αjk
∂ujk
∂ξ

∣∣∣∣
ξ=0

. (2.2.9)

• Continuity of concentration: The concentration must be continuous

across the common vertex. Thus, for vertex j:

uij(t, ξ)

∣∣∣∣
ξ=0

= ujk(t, ξ)

∣∣∣∣
ξ=1

. (2.2.10)

These conditions ensure the proper diffusion dynamics across a network,

accounting for both boundary and common vertices.

2.2.4 Governing equation

Consider a network consisting of N vertices, where the diffusion process is

governed by a differential equation defined on each edge eij connecting vertices i

and j. Assuming a uniform network with diffusivity D and edge length L, the
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diffusion equation on edge eij is given by:

β2∂uij
∂t

=
∂2uij
∂ξ2

, β2 =
L2

D
(2.2.11)

where uij(ξ, t) represents the concentration of a substance at a scaled position

ξ ∈ [0, 1] along the edge and at time t.

2.2.5 Separation of variables for network diffusion

To solve the diffusion equation on a network, we employ the method of separation

of variables. This approach assumes that the temporal behaviour of the solution

is uniform across the network, allowing us to express the concentration function

uij(ξ, t) on any edge eij as a product of a spatial function Xij(ξ) and a temporal

function T (t):

uij(ξ, t) = Xij(ξ)T (t). (2.2.12)

Substituting this assumed form into the governing diffusion equation, we obtain

two ordinary differential equations (ODEs) by separating the variables:

d2Xij

dξ2
+ ν2Xij = 0, (2.2.13)

dT

dt
+ µ2T = 0, (2.2.14)

where ν and µ are separation constants with ν = βµ. The ODE for the temporal

component, Equation (2.2.14), has a solution of the form:

Tij(t) = e−µ2t. (2.2.15)

The ODE for the spatial component, Equation (2.2.13), represents a second-order

linear homogeneous differential equation. The general solution is given by:

Xij(ξ) =
1

sin ν
(Uj sin(νξ) + Ui sin(ν(1 − ξ))) , (2.2.16)
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where Ui and Uj denote the concentrations at vertices i and j, respectively. This

formula (2.2.16) holds unless sin(ν) = 0 , which will be considered in the next

section (2.2.6). This form of Xij(ξ) is chosen to ensure continuity of concentration

across the network. By satisfying the boundary conditions at the endpoints of

each edge,

Xij(0) = Ui, Xij(1) = Uj

the solution maintains a smooth transition of concentration between connected

edges, which is a necessary condition for physically realistic diffusion across the

network. Thus, the general solution for the concentration function on edge eij is:

uij(ξ, t) = e−µ2t

(
Uj sin(νξ) + Ui sin(ν(1 − ξ))

sin ν

)
. (2.2.17)

This expression demonstrates how the diffusion evolves both spatially along each

edge and temporally over time, governed by the network’s structure and the

diffusion coefficients.

2.2.6 Special case

In certain cases, the general solution to the diffusion equation may require

modification due to special conditions, such as when sin(ν) = 0. When this

occurs, the form of the solution needs to be adjusted to maintain consistency

with the boundary and continuity conditions.

Xij(ξ) =
1

sin ν
([Uj − Ui cos ν] sin(νξ) + [Ui sin ν] cos(νξ)) . (2.2.18)

Taking the limit as ν → kπ for integer k, the expression simplifies to:

Xij(ξ) = Ui cos(νξ), (2.2.19)

where we must choose Ui = (−1)kUj to maintain consistency.
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2.2.7 Flux conditions

In addition to solving the diffusion equation, it is important to ensure that the flux

is well defined. The flux conditions describe how the substance moves between

the vertices of the network, ensuring that the flow is continuous .The flux along

an edge eij , connecting vertices i and j, is defined by:

qHij = −αij
∂uij
∂ξ

∣∣∣∣
ξ=0

, (2.2.20)

qTij = −αij
∂uij
∂ξ

∣∣∣∣
ξ=1

. (2.2.21)

where αij is the diffusion coefficient along the edge, and qHij and qTij are the fluxes

at the head and tail of the edge, respectively. For a common vertex j, connected

by multiple edges, the flux into the vertex must equal the flux out:

blue
∑

k∈S(i)−
qHik −

∑
k∈S(i)+

qTki = 0, (2.2.22)

where S(i)− and S(i)+ denote the sets of vertices connected to i with indices less

than or greater than i, respectively. The elements aij of the adjacency matrix A

represent the connectivity of the network.

• S(i)− = {j ∈ V : j < i and aij = 1},

• S(i)+ = {j ∈ V : j > i and aij = 1}.

2.3 Eigenvalue analysis and matrix formulation

In this section, we will explore the mathematical formulation of the diffusion

process on networks, specifically through matrix representation and eigenvalue

analysis. We will first introduce the matrix formulation of the diffusion equation,

representing the network’s structure using the adjacency and degree matrices.

This leads to an eigenvalue problem.We will apply Gershgorin’s Theorem, which
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offers a method for determining how network topology affects the eigenvalue

spectrum.

2.3.1 Matrix formulation and eigenvalue problem

The matrix formulation of the diffusion process on a network leads naturally to an

eigenvalue problem. By analysing the eigenvalues of this matrix, we gain insight

into the long-term behaviour of the diffusion process. We define a function

c(ν) = ν cos ν,

and express the flux terms as:

qHik = νUk − cUi, (2.3.1)

qTki = cUi − νUk. (2.3.2)

Thus, the continuity condition becomes:

ν

 ∑
k∈S(i)−

Uk +
∑

k∈S(i)+
Uk

− c

 ∑
k∈S(i)−

Ui +
∑

k∈S(i)+
Ui

 = 0. (2.3.3)

Simplifying, we have:

ν

 ∑
k∈S(i)−

Uk +
∑

k∈S(i)+
Uk

− cdiUi = 0, (2.3.4)

where di is the degree of vertex i. We can express this as the matrix equation



−cd1 ν . . . . . . ν

ν −cd2 ν . . . ν

...
. . .

. . .
. . .

...

ν
. . .

. . . −cdN−1 ν

ν
. . .

. . . ν −cdN





U1

U2

...

UN−1

UN


= 0,
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where the ν’s occupy positions depending on the connectivity of the network.

This is made more clear by expressing the equation in the more succinct form

L∗(ν)x = 0, (2.3.5)

where x = (U1, U2, . . . , UN )T , and

L∗(ν) = A− c

ν
D = A− cos(ν)D. (2.3.6)

L∗(ν) = A− cos(ν)D (2.3.7)

This formulation (2.3.7) is referred to as the modified Laplacian matrix, where A

denotes the adjacency matrix, and D represents the degree matrix of the network.

Before proceeding to these examples, we want to determine the values of ν.

2.3.2 Generalized eigenvalue problem for ν

To determine the values of ν, we must solve the generalized eigenvalue problem

that arises from the matrix formulation discussed earlier (2.3.5). Specifically, we

solve the equation:

Ax = λDx, (2.3.8)

To establish the relationship between the parameter ν and the eigenvalue λ,

we observe that, by comparing Equation (2.3.7) to the corresponding eigenvalue

expression, λ is related to ν through the equation

λ = cos(ν). (2.3.9)

meaning that for each eigenvalue λ, there corresponds a countably infinite set of

values for ν.This formulation provides insight into the spectral properties of the

network. To further analyse this relationship, we need to establish bounds on

the eigenvalues λ, which can be done effectively using Gershgorin’s Theorem. By
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applying this theorem, we can determine where the eigenvalues are located.

2.3.3 Eigenvalue analysis using Gershgorin’s theorem

As the matrix formulation of the diffusion process has been established, the next

step is to estimate the bounds of eigenvalues based on the entries of the matrix.

In this section, we will use Gershgorin’s Theorem to establish these bounds and

guide our understanding of the eigenvalue spectrum of L∗.

Consider a loop-less graph G with n vertices. Let A denote its adjacency matrix,

which is an n× n square matrix defined as:

A =



0 a12 . . . . . . a1n

a21 0 a23 . . . a2n

a31 a32
. . .

. . .
...

...
...

. . .
. . . a(n−1)n

an1 an2 . . . an(n−1) 0


where each entry aij represents the edge weights between vertices i and j, and

aii = 0 since the graph is loop-less. Let D represent the degree matrix of the

graph, which is also an n× n diagonal matrix:

D =



d11 0 . . . . . . 0

0 d22 0 . . . 0

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 dnn


where dii is the degree of vertex i (i.e., the sum of the weights of the edges

connected to vertex i).
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Eigenvalue equation

We seek to find the eigenvalues λ ∈ R that satisfy the following eigenvalue

equation for the adjacency matrix A and the degree matrix D:

Ax = λDx. (2.3.10)

Since the degree matrix D is diagonal and non-singular for connected graphs, we

can multiply both sides of this equation by D−1 to simplify the problem. This

yields the modified eigenvalue equation:

D−1Ax = λx.

Let us define a new matrix B as:

B = D−1A.

This allows us to rewrite the modified eigenvalue equation as:

Bx = λx,

indicating that λ is an eigenvalue of B. The matrix B, which represents the

normalized adjacency matrix, can be written explicitly as:

B =



0 a12
d11

. . . . . . a1n
d11

a21
d22

0 a23
d22

. . . a2n
d22

a31
d33

a32
d33

. . .
. . .

...

...
...

. . .
. . .

a(n−1)n

d(n−1)(n−1)

an1
dnn

an2
dnn

. . .
an(n−1)

dnn
0


.

Here, each off-diagonal entry
aij
dii

represents the ratio of the edge weight between

vertices i and j to the degree of vertex i.
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Applying Gershgorin’s theorem

We apply Gershgorin’s circle theorem to analyse the eigenvalues of B.

Gershgorin’s theorem states that every eigenvalue of a matrix lies within at

least one of the Gershgorin discs, centred at each diagonal element of the

matrix, with radius equal to the sum of the absolute values of the off-diagonal

elements in the corresponding row [13]. For each row i of the matrix B, the

diagonal element is 0 (since the graph is loop-less), and the radius Ri of the

Gershgorin disc is:

Ri =

n∑
j=1
j ̸=i

∣∣∣∣aijdii

∣∣∣∣ =
1

dii

∑
j ̸=i

aij =
1

dii
· dii = 1.

Thus, each Gershgorin disc is centred at 0 with a radius of 1

Proof that the Eigenvalue λ is Real

The generalized eigenvalue problem is given as follows:

Ax = λDx, (2.3.11)

A and D are both real and symmetric matrices. First, we take the complex

conjugate of the eigenvalue equation (2.3.11):

Āx̄ = λ̄D̄x̄.

Since A and D are real matrices, their complex conjugates are equal to

themselves:

Ax̄ = λ̄Dx̄.

Next, we transpose the equation to get:

x̄TAT = λ̄x̄TDT .
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Because A and D are symmetric (A = AT and D = DT ), we simplify this

expression to:

x̄TA = λ̄x̄TD.

Multiply both sides of the equation by x on the right:

x̄TAx = λ̄x̄TDx.

We can rearrange this to express λ̄ as:

λ̄ =
x̄TAx

x̄TDx
.

From equation (2.3.11), we multiply both sides by x̄T :

x̄TAx = λx̄TDx.

Thus, we express λ as:

λ =
x̄TAx

x̄TDx
.

Since λ and λ̄ are both expressed as the same ratio, we conclude:

λ = λ̄,

meaning that the eigenvalue λ is real: λ ∈ R. According to Gershgorin’s Circle

Theorem, all eigenvalues of any loop-less graph are contained within a disc of

radius 1 centred at 0. Since we have proven that the eigenvalue λ is real, it must

lie within the interval [−1, 1]. Hence λ ∈ [−1, 1].
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2.4 Singularity of the modified Laplacian matrix L∗

and eigenvalue analysis

In the analysis of diffusion processes in networks, it is essential to determine the

values of ν for which the matrix L∗ becomes singular. A matrix is singular if it

has at least one zero eigenvalue, which occurs when its determinant is zero. The

modified Laplacian matrix L∗ is defined as:

L∗(ν) = A− cos(ν)D, (2.4.1)

where A is the adjacency matrix of the network, and D is the degree matrix.

2.4.1 Regular graph

Consider the case of a graph in which all vertices have the same degree. In such a

graph, the degree matrix D can be expressed as a scalar multiple of the identity

matrix:

D = (N − 1)I (2.4.2)

where N is the total number of vertices in the graph. This structure occurs in

regular graphs, such as the complete graph or the cyclic graph, where each vertex

has a degree N −1. Substituting the form of D (2.4.2) into equation (2.3.7) then

equation (2.3.5) yields:

Ax = γx

where γ = (N−1) cos(ν). This simplified equation reveals that γ is an eigenvalue

of the adjacency matrix A. Consequently, the possible values of ν are determined

by the spectrum of A, that is, the eigenvalues of the adjacency matrix.
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1 2 3 4
e12 e23 e34

(a)

(b)

Figure 2.5.1: (a) Path graph with 4 vertices P4. (b) The eigenvalues λ of the
modified Laplacian matrix L∗ of P4.

2.5 Numerical results for eigenvalue analysis of the

modified Laplacian matrix

In this section, we analyse the spectral properties of various graph topologies

using the modified Laplacian matrix L∗ as defined in Equation (2.4.1). The

adjacency matrix A is used to describe the connectivity of the graphs in

MATLAB, and the degree matrix D is calculated to obtain the eigenvalues for

the graphs. The numerical results and visualisations for various graph

structures are presented, including all possible graphs with 4 vertices and

selected examples with 5 and 6 vertices. These results illustrate how eigenvalue

spectra vary between graph topologies.

2.5.1 Graphs with four vertices

• The path graph P4 is one of the simplest graph structures, where vertices

are connected sequentially in a straight line. The topology of the path graph

is shown in Figure 2.5.1(a). The eigenvalues λ of the modified Laplacian

matrix L∗ for this graph are presented in Figure 2.5.1(b).

• The square graph, depicted in Figure 2.5.2(a), is a cycle graph with 4

vertices. The eigenvalues λ of the modified Laplacian matrix L∗ for this
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1 2

34

e12

e23

e34

e41

(a)

(b)

Figure 2.5.2: (a) Square graph with 4 vertices. (b) The eigenvalues λ of the
modified Laplacian matrix L∗ of the square graph.

1 2

3

4

e13 e23

e34

(a)

(b)

Figure 2.5.3: (a) Y-shaped tree graph with 4 vertices. (b) The eigenvalues λ of
the modified Laplacian matrix L∗ of the Y-shaped tree graph.

graph are presented in Figure 2.5.2(b).

• The Y-shaped graph is a type of tree graph where three paths converge

at a single vertex. The topology of this graph is shown in Figure 2.5.3(a).

The eigenvalues λ of the modified Laplacian matrix L∗ for this graph are

presented in Figure 2.5.3(b).

• The complete graph of 4 vertices has a shape of triangular with a middle

vertex is a graph where three vertices form a triangle, and the fourth vertex

is connected to all three. The topology of this graph is shown in Figure

2.5.4(a). The eigenvalues λ of the modified Laplacian matrix L∗ for this

graph are presented in Figure 2.5.4(b).
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1

2 3

4

e12

e23

e31

e34e24

e14

(a)

(b)

Figure 2.5.4: (a) Triangular graph with 4 vertices and a middle vertex. (b) The
eigenvalues λ of the modified Laplacian matrix L∗ of the graph.

2

3 4

1

e12

e12

e23

e31

(a)
(b)

Figure 2.5.5: (a) Triangular graph with one edge added. (b) The eigenvalues λ
of the modified Laplacian matrix L∗ of the graph.

• The graph consists of a triangle with an additional edge connecting one

of the triangle’s vertices to an external vertex. The topology of the graph

is shown in Figure 2.5.5(a). The eigenvalues λ of the modified Laplacian

matrix L∗ are shown in Figure 2.5.5(b).

• Two connected triangles is a graph consisting of two triangles connected

by a shared edge. The topology of the graph is shown in Figure 2.5.6(a).

The eigenvalues λ of the modified Laplacian matrix L∗ are shown in Figure

2.5.6(b).
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1

3 2

4

e12e13

e34 e24

e23

(a)
(b)

Figure 2.5.6: (a) Two connected triangles. (b) The eigenvalue λ of the modified
Laplacian matrix L∗ of the graph.

2.5.2 Graphs with four vertices decay rate analysis

The smallest decay rate νmin for various graphs containing four vertices is

presented in Table 2.1. The table illustrates how the shape of the graph

influences the rate of decay of the substance. The graphs are ordered by

increasing decay rate.

2.5.3 Graphs with six vertices

• The tree graph (see Figure 2.5.7(a)) where every two vertices are connected

by exactly one path. The eigenvalues of the modified Laplacian matrix for

that graph are presented in Figure (2.5.7) (b).

• The triangular grid graph consists of vertices arranged in a triangular

lattice. Its topology is shown in Figure 2.5.8(a). The eigenvalues λ of the

modified Laplacian matrix L∗ are presented in Figure 2.5.8(b).

2.5.4 Normalized Laplacian

There exists a relationship between the modified Laplacian matrix L∗ and the

normalized Laplacian matrix denoted as L, which we aim to establish. The
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Table 2.1: Minimum decay rate νmin for graphs with four vertices, ordered by
increasing decay rate

Graph Shape Smallest Decay Rate

1 2 3 4
νmin = 1.0472

2

3 4

1

νmin = 1.3400

1 2

34
νmin = π/2

1 2

3

4
νmin = π/2

1

3 2

4
νmin = π/2

1

2 3

4

νmin = 1.9106

normalized Laplacian matrix L is defined as follows:

L = D− 1
2LD− 1

2 = I −D− 1
2AD− 1

2 , (2.5.1)
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1 2

3

4

56

e13 e23

e34

e45e46

(a)
(b)

Figure 2.5.7: (a) Tree graph with 6 vertices and 5 edges. (b) The eigenvalue λ of
the modified Laplacian matrix L∗ of that tree graph.

1

4 6

2 3

5

e12 e13

e24 e25 e35 e36

e45 e56

e23

(a)
(b)

Figure 2.5.8: (a) Triangular grid graph with 6 vertices. (b) The eigenvalues λ of
the modified Laplacian matrix L∗ of the triangular grid graph.

where L = D −A is the combinatorial Laplacian [22], D is the degree matrix,

A is the adjacency matrix of the graph and D− 1
2 is a diagonal square matrix

defined as:

D− 1
2 =



1√
d1

0 0 0 . . . 0

0 1√
d2

0 0 . . . 0

0 0 1√
d3

0 . . . 0

0 0 0 1√
d4

. . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . 1√
dn


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We refer to the generalized eigenvalue for the normalized Laplacian as τ . It

satisfies

Lx = τDx. (2.5.2)

Consider the generalized eigenvalue problem given as:

Ay = λDy, (2.5.3)

where λ is the eigenvalue corresponding to the eigenvector y. To transform this

equation into a form involving the normalized Laplacian, we multiply both sides

of equation (2.5.3) by D− 1
2 :

D− 1
2Ay = λD

1
2y. (2.5.4)

Now, assume that y = D− 1
2x, where x is an eigenvector of the normalized

Laplacian. Substituting this into the above equation, we obtain:

D− 1
2AD− 1

2x = λx. (2.5.5)

From the eigenvalue equation of the normalized Laplacian Lx = τx, and

substituting the definition of L we get:

(I −D− 1
2AD− 1

2 )x = τx. (2.5.6)

Expanding the left-hand side to get

Ix−D− 1
2AD− 1

2x = τx. (2.5.7)

Simplifying, and using (2.5.5),

x− λx = τx. (2.5.8)
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We see that the eigenvalues λ of the adjacency matrix and the eigenvalues τ of

the normalized Laplacian are related by:

λ = 1 − τ. (2.5.9)

This relationship shows that the spectrum of the normalized Laplacian can be

used to infer the eigenvalues of our problem, that is the set of values λ which

makes the modified Laplacian L∗ singular. In the next section we will exploit

this relationship to determine the relevant eigenvalues λ for diffusion on a grid

graph.

2.6 Square grid graph

In this section we discuss diffusion over a grid network. In principle to do this

we must seek λ such that L∗ is singular and in general this is a numerical task.

However, at the end of the previous section we established a connection between

λ and the eigenvalues of the normalized Laplacian. We shall now use this to

calculate λ for a grid graph. In particular we may appeal to recent work by

Klopotek [30] which provides an analytical treatment of the problem of

calculating the eigenvalues of the normalized Laplacian on a grid graph.

Leveraging Klopotek’s work, we aim to investigate diffusion processes on grid

graphs to construct a model that can reflect laboratory observations of diffusion

processes occurring in biological systems, such as a plant leaf exposed to a

localized stimulus, like a needle prick [4].

2.6.1 Klopotek’s results for a square grid graph

In this section, we apply results from Klopotek [30] to our diffusion problem

on grid graphs. Klopotek’s work provides analytical formulas for computing

eigenvalues and eigenvectors of normalised Laplacian on multidimensional grid

graphs. While Klopotek focused on the general spectral properties of grid graphs
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for clustering applications, our work extends his results specifically to analyse

diffusion processes and compute the dominant decay rates for biological modelling

applications. We leverage his eigenvalue formulas but develop new approaches

for solving the resulting larger systems and analysing asymptotic behaviour.

we will discuss the eigenvalues for a square grid graph with n× n = n2 vertices.

An example of a 4 × 4 grid graph with n = 4 vertices is shown in Figure 2.6.3.

Klopotek’s [30] work provides essential formulas for determining the eigenvalues

of grid graphs. In particular, the normalized Laplacian eigenvalue τ is given by

τ = 1 +
1

2
(cos ξ1 + cos ξ2), (2.6.1)

τ = 1 + cos ξ1 + tan(δ1) sin ξ1, (2.6.2)

and

τ = 1 + cos ξ2 + tan(δ2) sin ξ2. (2.6.3)

where

ξj =
2

n− 1

(zjπ
2

− δj

)
, (2.6.4)

for j = 1, 2. Here the zj (j = 1, 2) are numbers to be chosen from the set

{0, 1, 2, ...., n − 1}, whereas, as mentioned above, n is the number of vertices.

While Klopotek provided these fundamental equations, he did not develop

systematic methods for solving them numerically or analyse their asymptotic

behaviour for large networks. Our contribution lies in:

• Developing robust numerical solution strategies using phase plots and

Newton’s method.

• Systematically analysing all possible (z1, z2) combinations.

• Extending the analysis to understand diffusion dynamics.

The δj are shift terms to be found along with the ξj . Having selected a pair

(z1, z2), we substitute (2.6.4) into (2.6.1)-(2.6.3) to eliminate the ξj . We are then
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left with three non-linear algebraic equations to be solved for the three unknowns

τ , δ1, and δ2.

Prior to doing this, however, it is convenient to first eliminate τ . To this end we

multiply (2.6.1) by 2 to obtain

2τ = 2 + cos ξ1 + cos ξ2. (2.6.5)

Adding (2.6.2) to (2.6.3) gives:

2τ = 2 + cos ξ1 + tan(δ1) sin ξ1 + cos ξ2 + tan(δ2) sin ξ2. (2.6.6)

By subtracting (2.6.5) from (2.6.6), we obtain:

tan δ1 sin ξ1 + tan δ2 sin ξ2 = 0,

which can be expressed as

− tan δ1 sin ξ1 = tan δ2 sin ξ2 (2.6.7)

Next we rewrite (2.6.2) and (2.6.3),by using equation (2.6.7), resulting in:

τ − 1 = cos ξ1 + tan(δ1) sin ξ1, (2.6.8)

and

τ − 1 = cos ξ2 − tan(δ1) sin ξ1. (2.6.9)

By subtracting these two equations and utilizing the result from (2.6.7), we find

that

cos ξ2 = cos ξ1 + 2 tan δ1 sin ξ1. (2.6.10)
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Finally we eliminate the ξj using (2.6.4), in which case (2.6.7) and (2.6.10) become

tan δ1 sin

(
2

n− 1

[z1π
2

− δ1

])
+ tan δ2 sin

(
2

n− 1

[z2π
2

− δ2

])
= 0, (2.6.11)

cos

(
2

n− 1

[z2π
2

− δ2

])
= cos

(
2

n− 1

[z1π
2

− δ1

])
(2.6.12)

+ 2 tan δ1 sin

(
2

n− 1

[z1π
2

− δ1

])
.

The goal now for a given grid size n×n is to solve (2.6.11) and (2.6.12) numerically,

for a chosen pair (z1, z2), in order to determine δ1 and δ2 and thus ξ1, ξ2. Then

we use (2.6.1) to compute the eigenvalue τ . The following analysis of the solution

space and numerical methods represents our extension of Klopotek’s theoretical

framework to practical computation of eigenvalues for diffusion modelling.

General case for z1 and z2

It is important to note that the equations (2.6.11) and (2.6.12) are invariant

under the transformations:

(z1, z2) 7→ (z2, z1), (δ1, δ2) 7→ (δ2, δ1).

This symmetry implies that we may restrict our calculations to the case z1 ≥ z2

without loss of generality. However, allowing all possible values of z1 and z2

makes it easier to observe the multiplicities of eigenvalues.

If z1 = z2, the permutation (δ1, δ2) 7→ (δ2, δ1) is valid. Hence, we expect that if

z1 = z2, both (δ1, δ2) and (δ2, δ1) will yield solutions.

Note that (2.6.11) and (2.6.12) are also invariant under the transformations

zi 7→ zi + 2m, δi 7→ δi + mπ, (2.6.13)

where m ∈ Z. This suggests that we can restrict the values of zi to zi ∈ {0, 1}.
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Thus, the pairs (z1, z2) can be chosen from the set:

S = {(0, 0), (1, 0), (1, 1)}. (2.6.14)

The equations (2.6.11) and (2.6.12) are also invariant under the transformation:

δi 7→ δi +
2π

2/(n− 1)
i.e. δi 7→ δi + (1 − n)π

We can limit our search for the values of δ1 and δ2 to the interval:

D = [0, (n− 1)π) (2.6.15)

We will solve (2.6.11) and (2.6.12) numerically using Newton iterations and a

suitable initial guess. The initial guess can be selected by analysing the phase

behaviour of the complex function:

w(z) = (tan δ1 sin ξ1 +tan δ2 sin ξ2)+i(− cos ξ2 +cos ξ1 +2 tan δ1 sin ξ1), (2.6.16)

where z = δ1 + iδ2, and the relationship (2.6.4) is used to eliminate the ξj in

favour of the δj as before. The function w(z) vanishes when both (2.6.11) and

(2.6.12) are satisfied. To visualize where w(z) = 0, it is useful to plot its phase

ϕ, defined as :

ϕ = arg(w)/π,

where ϕ ∈ [−1, 1]. This plot helps identify the correct starting values δ1, δ2 for

solving the system. An example is shown in figure( 2.6.1). The red dot indicates

the point where we expect to find w = 0 and therefore gives a guide as to an

appropriate initial guess for δ1, δ2.

In summary the task of solving (2.6.11) and (2.6.12) is fulfilled by selecting pairs

(z1, z2) from the set S defined in (2.6.14) and then solving for δ1, δ2 numerically

using Newton’s method. Having done this we reconstruct the possible eigenvalues
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Figure 2.6.1: The initial guesses for the parameters δ1 and δ2, with a red dot
indicating the point where the solution w = 0 is expected

τ using the formula (2.6.1), namely

τ = 1 +
1

2
cos

(
2

n− 1

[z1π
2

− δ1

])
+

1

2
cos

(
2

n− 1

[z2π
2

− δ2

])
. (2.6.17)

case I: z1 = z2

In the case when z1 = z2 = z, say, equations (2.6.11) and (2.6.12) reduce to

tan δ1 sin

(
2

n− 1

[zπ
2

− δ1

])
+ tan δ2 sin

(
2

n− 1

[zπ
2

− δ2

])
= 0, (2.6.18)

cos

(
2

n− 1

[zπ
2

− δ2

])
= cos

(
2

n− 1

[zπ
2

− δ1

])

+ 2 tan δ1 sin

(
2

n− 1

[zπ
2

− δ1

])
. (2.6.19)

If we assume that δ1 = δ2 = δ, say, these reduce to the single condition that

tan δ sin

(
2

n− 1

[zπ
2

− δ
])

= 0. (2.6.20)
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One option is to set tan δ = 0 in which case δ = kπ, for integer k. Then (2.6.1)

yields with z = 0 or z = 1,

τ(z = 0) = 1 + cos

(
2kπ

n− 1

)
, τ(z = 1) = 1 + cos

(
(2k − 1)π

n− 1

)
.

So either way we get the eigenvalue set

τ = 1 + cos

(
qπ

n− 1

)
, q = 0, 1, 2, . . . , n− 1. (2.6.21)

This furnishes n of the normalised Laplacian’s n2 eigenvalues. So there remains a

further n(n− 1) eigenvalues to be identified. Alternatively we could take zπ/2−

δ = mπ so that the sine term in (2.6.20) vanishes. This merely produces a subset

of the values already accounted for in (2.6.21). By way of example, consider the

square grid with n = 2. Then (2.6.21) yields

τ = 2 (q = 0);
3

2
(q = 1);

1

2
(q = 2); 0 (q = 3).

Let us now consider the case when δ1 ̸= δ2. Setting z = 0 in (2.6.18), (2.6.19)

yields

tan δ1 sin

(
2δ1
n− 1

)
+ tan δ2 sin

(
2δ2
n− 1

)
= 0,

cos

(
2δ2
n− 1

)
= cos

(
2δ1
n− 1

)
− 2 tan δ1 sin

(
2δ1
n− 1

)
.

These must be solved numerically for δ1, δ2. Instead setting z = 1 in (2.6.18),

(2.6.19) yields

tan δ1 sin

(
2

n− 1

[π
2
− δ1

])
+ tan δ2 sin

(
2

n− 1

[π
2
− δ2

])
= 0, (2.6.22)

cos

(
2

n− 1

[π
2
− δ2

])
= cos

(
2

n− 1

[π
2
− δ1

])

+ 2 tan δ1 sin

(
2

n− 1

[π
2
− δ1

])
. (2.6.23)
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These must be solved numerically for δ1, δ2.

Case II: z1 ̸= z2

As mentioned above, the values of z1 and z2 must be chosen from the set S

defined in (2.6.14), namely,

S = {(0, 0), (1, 0), (1, 1)}

Therefore, by definition, we have δ1 ̸= δ2. For the case (z1, z2) = (1, 0) equations

(2.6.11) and (2.6.12) become

tan δ1 sin

(
2

n− 1

[π
2
− δ1

])
− tan δ2 sin

(
2δ2
n− 1

)
= 0, (2.6.24)

cos

(
2δ2
n− 1

)
= cos

(
2

n− 1

[π
2
− δ1

])
(2.6.25)

+ 2 tan δ1 sin

(
2

n− 1

[π
2
− δ1

])
.

In general, these equations must be solved numerically to find δ1 and δ2.

We might try to seek a solution assuming that δ1 = δ2 = δ, say. In this case

(2.6.24) and (2.6.25) require that sin ξ1 = sin ξ2. Hence we have two possibilities:

(i) : ξ2 = π − ξ1, (ii) : ξ2 = ξ1

both to within an addition of an integer multiple of 2π. Taking the second option

first, namely (ii), this requires cos ξ2 = cos ξ1 and (2.6.24) and (2.6.25) reduce to

tan δ sin ξ1 = 0 (2.6.26)

In this case (2.6.26) requires that δ = mπ or ξ1 = mπ for integer m. The latter

implies δ = (1 − 4m)π/2 so that tan δ = ∞, so we disregard this possibility. The

former cannot be satisfied as it implies ξ1 ̸= ξ2.
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Inserting the definitions of ξ1 and ξ2 into option (i), we require that

2δ

n− 1
= π − 2

n− 1

[π
2
− δ
]
,

which rearranges to

π

(
1 − 1

n− 1

)
= 0,

which is only possible if n = 2. So this case only works for a 2 × 2 grid graph.

Assuming n = 2 then, we have cos ξ2 = − cos ξ1 and (2.6.24) and (2.6.25) reduce

to

1 = tan δ tan 2δ.

Using the double angle formula for tan this simplifies to

tan δ =
1√
3
. (2.6.27)

Hence δ = tan−1(1/
√

3) ≈ 0.524. Then by (2.6.17) we have since cos ξ2 = − cos ξ1

τ = 1.

To analyse the eigenvalue of τ = 1, we consider the case (z1, z2) = (1, 0), where

the parameters ξ1 and ξ2 are defined as follows:

ξ1 =
2

n− 1

(π
2
− δ1

)
, ξ2 =

2

n− 1
(−δ2).

By choosing ξ2 in terms of ξ1 such that ξ1 + ξ2 = −π, we obtain the relation:

π + ξ1 = −ξ2.

Given this choice, the eigenvalue τ of the normalized Laplacian, represented by

equation (2.6.1), can be expressed by substituting the value of ξ2 as:

τ = 1 +
1

2
(cos ξ1 + cos(π + ξ1)).
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Since cos(π + ξ1) = − cos ξ1, the expression simplifies to:

τ = 1 +
1

2
(cos ξ1 − cos ξ1) = 1. (2.6.28)

Thus, the eigenvalue τ = 1 is inherently satisfied when ξ1 + ξ2 = −π.

The Normalized Laplacian τ which is equation (2.6.2) is:

τ = 1 + [cos ξ1 + tan(δ1) sin ξ1]. (2.6.29)

Using the relation cos ξ2 = − cos ξ1,into equation (2.6.3), we have:

τ = 1 + [− cos ξ1 + tan(δ2) sin ξ2]. (2.6.30)

Thus, under the condition π + ξ1 = −ξ2, we find

sin ξ2 = sin(π + ξ1) = − sin ξ1, (2.6.31)

which leads to

τ = 1 − [cos ξ1 − tan(δ2) sin ξ1]. (2.6.32)

By equating (2.6.29) and (2.6.32), the following relation holds:

tan δ1 = − tan δ2. (2.6.33)

Substituting the condition π+ξ1 = −ξ2 into the definition of ξ1 and ξ2, we obtain:

π +
2

n− 1

(π
2
− δ1

)
=

2δ2
n− 1

.

Rearranging, this leads to:

2

n− 1
(δ1 + δ2) = π +

π

n− 1
=

π

n− 1
(n− 1 + 1) =

nπ

n− 1
,
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simplifying further gives:

δ1 + δ2 =
nπ

2
⇒ δ1 =

nπ

2
− δ2.

From equation (2.6.33), we can rewrite (2.6.11) as:

tan δ1 sin ξ1 − tan δ1 sin ξ2 = 0.

And from equation (2.6.12), we have:

cos ξ2 = cos ξ1 + 2 tan δ1 sin ξ1.

Using relation where π + ξ1 = −ξ2, we have:

cos(π + ξ1) = cos ξ1 + 2 tan δ1 sin ξ1.

Leads to

− cos ξ1 = cos ξ1 + 2 tan δ1 sin ξ1.

Rearranging, we have

0 = 2 cos ξ1 + 2 tan δ1 sin ξ1.

This leads to:

tan δ1 = − cot ξ1,

where

tan δ1 = − cot

(
2

n− 1

(π
2
− δ1

))
.

Defining A = π
n−1 and B = 2

n−1δ1, and using the trigonometric identity:

tan(A + B) =
tanA + tanB

1 − tanA tanB
.

In summary, to satisfy τ = 1, the conditions ξ1 + ξ2 = −π and δ1 + δ2 = nπ
2 must
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Figure 2.6.2: Graphical solution for τ = 1 in a square grid graph 4 × 4 to 6 × 6.

The intersections of tan(δ1) (blue solid line) and − cot
(

π
n−1 − 2δ1

n−1

)
(red dashed

line) represent the roots of the system. which is shows the multiplicity of the
eigenvalue of τ = 1 on each graph

hold. This implies:

tan δ1 = − tan δ2, (2.6.34)

and

tan δ1 = − cot ξ1 = − cot

(
π

n− 1
− 2δ1

n− 1

)
. (2.6.35)

Here, tan δ1 is periodic with π, while − cot
(

π
n−1 − 2δ1

n−1

)
has a period of (n−1)π

2 .

The graphical solution for τ = 1 is illustrated in Figure (2.6.2), which depicts

the intersections of the functions tan(δ1) and − cot
(

π
n−1 − 2δ1

n−1

)
for square grid

graphs with dimensions ranging from 4 × 4 to 6 × 6. The intersections represent

the roots of the system, corresponding to the multiplicity of the eigenvalue τ = 1

in each graph.

The x-axis represents the normalized parameter δ1/(π/2), while the y-axis
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shows the values of the functions tan(δ1) (solid blue line) and

− cot
(

π
n−1 − 2δ1

n−1

)
(dashed red line). The intersections indicate the values of δ1

that satisfy both equations simultaneously.

For square grid graphs with an even number of vertices per side, the number of

intersections aligns with the number of vertices per side. In contrast, for grids

with an odd number of vertices, the intersections are fewer by one, with the

final point of intersection occurring asymptotically where the asymptotes of both

functions coincide.

Klopotek’s formulas for determining the eigenvalues of grid graphs. In particular,

the normalized Laplacian eigenvalue τ is given by

τ = 1 +
1

2
(cos ξ1 + cos ξ2) (2.6.36)

To make τ = 1 choose either

Case A : ξ1 + ξ2 = −π, (2.6.37)

or

Case B : ξ1 − ξ2 = π. (2.6.38)

For the case where (z1, z2) = (1, 0), where the parameters ξ1 and ξ2 are defined

as follows:

ξ1 =
2

n− 1

(π
2
− δ1

)
, ξ2 =

2

n− 1
(−δ2).

Then, for case A we can write δ1 to be

δ1 =
nπ

2
− δ2

and for case B we can write δ2 − δ1 to be

δ2 − δ1 =
nπ

2
− π
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Note that from case A we have :

tan δ2 = tan
(nπ

2
− δ1

)
= − tan

(
δ1 −

nπ

2

)
.

From case B we have :

tan δ2 = tan
(nπ

2
− π + δ1

)
= tan

(
δ1 +

nπ

2

)
.

Now we want to study the case where the number of vertices along one side of

the square grid graph are even.

Case I: n is even; n = 2k, k ∈ Z

For case A we have

tan δ2 = − tan(δ1 − kπ) = − tan δ1

For Klopotek’s equation we must solve

tan δ1 = − tan δ2 tan δ1 = − cot ξ1 = − cot

(
π

n− 1
− 2δ1

n− 1

)

NB: Since δ1, δ2 periodic with period (n − 1)π is the fact that δ1 + δ2 = nπ
2 +

m(n− 1)π, some integer m. For case B we have

tan δ2 = tan
(nπ

2
+ δ1

)
= tan δ1

since n is even From equation (2.6.11)

tan δ1 sin ξ1 + tan δ2 sin ξ2 = 0,

and from (2.6.12)

cos ξ2 = cos ξ1 + 2 tan δ1 sin ξ1
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Then from case B we know sin(ξ1) = sin(−π − ξ2), then we can say

sin ξ1 = − sin ξ2

we know from B that

cos(ξ1 − π) = cos ξ1 + 2 tan δ1 sin ξ1.

Leads to

− cos ξ1 = cos ξ1 + 2 tan δ1 sin ξ1.

Rearranging, we have

0 = 2 cos ξ1 + 2 tan δ1 sin ξ1.

This leads to:

tan δ1 = − cot ξ1,

i.e. is the same as A.

IN summary, for n even, solve tan δ1 = − cot ξ1 for δ1 and then constrict δ2 either

from

δ1 + δ2 =
nπ

2
+ m(n− 1)π

or

δ2 − δ1 =
nπ

2
+ m(n− 1)π

e.g. for n=4:

δ1 + δ2 = 2π + m(n− 1)π

δ2 − δ1 = π + m(n− 1)π)

2.6.2 Eigenvalues of a square grid graph

In this section, we use MATLAB to compute the eigenvalues, denoted as λ, of the

modified Laplacian for square grid graphs with sizes of 9, 16, 25, and 36 vertices.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

e12 e23 e34

e56 e67 e78

e9,10 e10,11 e11,12

e13,14 e14,15 e15,16

e15 e26 e37 e48

e59 e6,10 e7,11 e8,12

e9,13 e10,14 e11,15 e12,16

Figure 2.6.3: A 4 × 4 square grid graph with 16 vertices.

For the 16-vertex grid, we further calculate the eigenvalues of the normalized

Laplacian, denoted as τ , using results from Section(2.5.4). Additionally, we apply

Klopotek’s main equation from Section(2.6.1) by selecting values for z1 and z2

and solving for δ1 and δ2 to validate these eigenvalues.

The square grid graph with 16 vertices is shown in Figure(2.6.3). To understand

its eigenvalues, we first establish that it is bipartite. According to bipartite graph

theory, the vertex set V can be divided into two disjoint sets such that no edges

connect vertices within the same set; such graphs are also known as 2-colourable

[34].

In this square grid graph G, we assign colours based on the parity of the sum of

the vertex coordinates (x, y). A vertex (x, y) is coloured gray if (x + y) is even

and white if (x + y) is odd. This ensures adjacent vertices always have different

colours, confirming that G is bipartite [39].
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Figure 2.6.4: Eigenvalues of square grid graphs of various sizes vs. λ ∈ [−1, 1].

2.6.3 Key Observations on a Square Grid Graph

We analysed square grid graphs and performed experiments with both odd and

even numbers of vertices along one side of the grid, varying the grid size up to

100× 100, resulting in 1000 vertices. Figure (2.6.4) shows some examples. Based

on these experiments, we made the following key observations:

• Zero Eigenvalue Multiplicity: The multiplicity of the zero eigenvalue

corresponds directly to the grid’s side length. For instance, in a 3 × 3

grid, the zero eigenvalue has a multiplicity of 3, while in a 4 × 4 grid, the

multiplicity is 4. This pattern is consistent with the results presented in

Section 2.6.1.

• Antisymmetry About Zero: The eigenvalues of our eigenvalue problem

matrix λ exhibit antisymmetry around zero. This indicates a balanced
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spectrum, with an equal distribution of positive and negative eigenvalues.

• Eigenvalue Range: The eigenvalues of the graph are bounded within

the interval [−1, 1], which aligns with the theoretical bounds established in

Section 2.3.3. These bounds were anticipated based on our analysis.

Additionally, since a square grid graph is bipartite, we observed that the

eigenvalue properties of our eigenvalue problem are similar to those of the

graph’s adjacency matrix, as noted in [12]. Specifically, bipartite graphs have

the property that if λ is an eigenvalue, then −λ is also an eigenvalue with the

same multiplicity [12]. This antisymmetry is also evident in the eigenvalue

problem (2.3.10), where Ax = λDx. This behaviour is confirmed by the

Matlab computations shown in some results in Figure 2.6.4.

λ τ multiplicity

-1.0000 2.0000 1

-0.7817 1.7817 2

-0.5000 1.5000 1

-0.3333 1.3333 2

0.0000 1.0000 4

0.3333 0.6667 2

0.5000 0.5000 1

0.7817 0.2183 2

1.0000 0.0000 1

Table 2.2: Eigenvalues of modified Laplacian λ and Corresponding Normalized
Laplacian Eigenvalues τ for a 16-Vertex Square Grid Graph

As established in Section (2.5.4), we derived a relationship between the

eigenvalues of the normalized Laplacian matrix, denoted by τ , and the modified

Laplacian eigenvalues, λ. This relationship is expressed by the following

equation:

λ = 1 − τ (2.6.39)

Table (2.2) presents the eigenvalues that were calculated using MATLAB for a
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square grid graph with 16 vertices. The first column, labelled λ, contains the

eigenvalues directly computed from the graph’s modified Laplacian matrix. The

second column shows the corresponding normalized Laplacian eigenvalues

obtained by applying equation (2.6.39). According to this relationship, the

normalized Laplacian eigenvalues should fall within the interval [0, 2].

By using MATLAB to solve the non-linear equations derived by Klopotek

(2.6.7)-(2.6.10) discussed in Section (2.6.1) on a square grid graph, we explored

all possible values of z1 and z2. In order to ensure the convergence of the

solution, we determined the initial values of δ1 and δ2 by plotting the phases,

which allowed us to locate the regions where w(z) = 0. These initial values of δ1

and δ2 were then used in MATLAB to solve the system numerically.

Table (2.3) presents the chosen values of z1, z2, δ1, and δ2, and their corresponding

normalized Laplacian eigenvalues τ .

{z1, z2} (δ1, δ2) τ

(0,0) (0 , 0) 2

(0,0) (0.80217 , 6.7762) 1.3333

(0,0) (0.8021734 , 2.648612) 1.3333

(0,0) (2.6486 , 8.6226) 1.3333

(0,0) (2.6486 , 0.8022) 1.3333

(0,0) (6.7762 , 8.62260) 1.3333

(0,0) (6.7762 , 0.8022) 1.3333

(0,0) (8.6226 , 6.7762) 1.3333

(0,0) (8.6226 , 2.6486) 1.3333

(0,0) (3.1416 , 6.2832 ) 0.5

(0,0) (3.1416 , 3.1416) 0.5

(0,0) (6.2832 , 6.2832) 0.5

(0,0) (6.2832 , 3.1416) 0.5

(1,1) (2π , 2π) 0
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{z1, z2} (δ1, δ2) τ

(1,1) (3.6346 , 7.0854) 0.6667

(1,1) (3.6346 , 5.4810 ) 0.6667

(1,1) (5.4810 , 8.9318) 0.6667

(1,1) (5.4810 , 3.6346 ) 0.6667

(1,1) (7.0854 , 8.9318) 0.6667

(1,1) (7.0854 , 3.6346) 0.6667

(1,1) (8.9318 , 7.0854) 0.6667

(1,1) (8.9318 , 5.4810) 0.6667

(1,1) ( 3.1416 , 3.1416) 1.5

(1,1) ( 0 , π) 1.5

(1,0) (0.2083 , 8.9408) 1.781736

(1,0) (0.2083 , 0.48396) 1.781736

(1,0) (2.9333 , 8.9408) 1.781736

(1,0) (2.9333 , 0.48394) 1.781736

(1,0) (5.79923 , 6.07487) 0.21826

(1,0) (5.7992 , 3.3499) 0.21826

(1,0) (6.7671 , 3.3499) 0.21826

(1,0) (6.76714 , 6.0749) 0.21826

(1,0) (3.45575 , 6.59734) 1

(1,0) (3.4557 , 2.8274) 1

(1,0) (5.3407 , 8.4823) 1

(1,0) (5.3407 , 0.9425 ) 1

(1,0) (7.2257 , 8.4823) 1

(1,0) (7.2257 , 0.9425) 1

(1,0) (9.1106 , 6.5973 ) 1

(1,0) (9.1106 , 2.8274) 1

Table 2.3: Chosen values of z1, z2, δ1, δ2, and corresponding eigenvalues τ for a
16-vertex grid graph.
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From these results, we observe that the eigenvalues computed using Klopotek’s

method, as shown in Table (2.3), are consistent with those obtained from the first

table (2.2), which were calculated using MATLAB’s internal eigenvalue solver,

specifically the eig command, to directly solve the eigenvalue problem for the grid

graph. However, the multiplicity of the eigenvalues was not accurately determined

using Klopotek’s method.

While it is possible to compute the eigenvalues of smaller networks directly,

understanding the behaviour of eigenvalues in large networks requires an

asymptotic approach. We will explore the asymptotic behaviour of eigenvalues

in square grid graphs as the network grows in size in the following section.

2.7 Asymptotic theory for a square grid graph

In this section, we analyse the asymptotic behaviour of the eigenvalues, denoted

by τ , for the normalized Laplacian of a square grid graph n1×n2, where n1 = n2 =

M , representing the number of vertices along one dimension, and M is taken to be

large. The asymptotic behaviour of the eigenvalues is derived using the formulae

of Klopotek [30] that we used in the previous section. Our primary interest is in

computing the dominant decay rate, that is the first non-zero value of ν. We recall

that λ = cos ν, and that, as was established in section (2.3.3), λ ∈ [−1, 1]. Hence

we seek the eigenvalue λ which is closest to unity. Furthermore, since λ = 1 − τ ,

and τ ∈ [0, 2] for a normalized Laplacian,and considering that the eigenvalues of

a grid graph are symmetric about τ = 1,due to the bipartite nature of the graph

as we discussed in section (2.6.2), we aim to find the eigenvalue closest to τ = 2

as M become large.

In figure (2.7.1) we show the value of τ closest to 2 for different values of n on a

square grid graph, together with the corresponding values of δ1 and δ2. For each

n the value of τ was found by solving Klopotek’s equations (2.6.24) and (2.6.25)

for (z1, z2) = (1, 0) using Newton’s method. It can be seen that as n increases, τ
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Figure 2.7.1: Value of τ closest to the eigenvalue 2 for different values of n on a
square grid graph.

approaches 2 from below while δ1 and δ2 both approach zero. We may conclude

that when n ≫ 1, we calculate the slowest decay rate by choosing (z1, z2) = (1, 0)

and taking small values as the initial guesses for the δj .

The normalized Laplacian eigenvalue τ is given by the following expressions:

τ = 1 +
1

2
(cos ξ1 + cos ξ2), (2.7.1)

τ = 1 + cos ξj + tan δj sin ξj (j = 1, 2), (2.7.2)

where

ξj =
zjπ − 2δj
n− 1

.

Based on the discussion above, we know that when n ≫ 1, δ1 and δ2 are both

small, and hence |ξj | is small. To approximate the eigenvalue nearest to τ = 2,

then, we apply a Taylor expansion to both equations (2.7.1) and (2.7.2), yielding:

τ ≈ 1 +
1

2

[(
1 − ξ21

2

)
+

(
1 − ξ21

2

)]
= 2 − 1

4
(ξ21 + ξ22), (2.7.3)

τ ≈ 1 +

(
1 −

ξ2j
2

)
+ tan δj

(
ξj −

ξ3j
6

)
(2.7.4)

= 2 + (tan δj)ξj −
ξ2j
2

+ . . . (j = 1, 2).
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2.7.1 Case I: (z1, z2) = (0, 1), or (z1, z2) = (1, 0)

We first consider the case where z1 = 0 and z2 = 1, or equivalently z1 = 1 and

z2 = 0 due to symmetry, as discussed in Section (2.6.1). We aim to find the

second-largest eigenvalue, to get the growth rate ν which is corresponding to the

eigenvalue nearest to 2. The eigenvalues of the normalized Laplacian lie within

the range [0, 2].

Let M = n− 1 and assume that M is large (M ≫ 1). In this case, ξ1 and ξ2 are

approximated as:

ξ1 =
−2δ1
M

, ξ2 =
π − 2δ2

M
.

We express δ1 and δ2 in terms of M :

δ1 =
1

2
β1M

−a, δ2 =
1

2
β2M

−b, a, b > −1,

where β1 and β2 are constants of order O(1). Substituting into ξ1 and ξ2, we

have:

ξ1 =
−β1
M1+a

, ξ2 =
π

M
− β2

M1+b
.

Substituting these values of ξ1, ξ2 into equation (2.7.3) gives:

τ = 2 − 1

4

(
β2
1

M2+2a
+ . . .

π2

M2
+ . . .

)
. (2.7.5)

Similarly, applying ξ1 and ξ2 in (2.7.4) for j = 1 leads to the following expressions

for τ :

τ = 1 +

(
1 − ξ21

2
+ ...

)
+

[
1

2
β1M

−a + ...

]
(ξ1 + ...)

τ = 2 +
1
2β1(−β1)

M1+2a
+ ... (2.7.6)

For j = 2 equation (2.7.4) leads to the following expressions for τ :

τ = 1 +

(
1 − ξ22

2
+ ...

)
+

[
1

2
β2M

−b + ...

]
(ξ2 + ...)
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= 2 +
1

2
β2M

−b
( π

M
+ ...

)
− 1

2

[ π
M

+ ...
]2

τ = 2 +
(12πβ2)

M1+b
+ ...− 1

2
π2M−2 + ... (2.7.7)

To ensure consistency between these equations, we compare the powers of M

from (2.7.7) and (2.7.6). This gives the conditions:

1 + 2a = 1 + b = 2 ⇒ a =
1

2
, b = 1.

Thus, δ1 and δ2 are given by:

δ1 =
1

2
β1M

− 1
2 , δ2 =

1

2
β2M

−1

Substituting the value of a and b into equation (2.7.5), we obtain:

τ = 2 − π2

4
M−2 + · · · (2.7.8)

Similarly, equation (2.7.6) becomes:

τ = 2 +

(
1

2
πβ2 −

1

2
π2

)
M−2 + · · · (2.7.9)

And for equation (2.7.7), we have:

τ = 2 − 1

2
β2
1M

−2 + · · · (2.7.10)

By comparing the coefficients of M−2 from equations (2.7.8) through (2.7.10),

we obtain the following relation:

1

2
β2
1 =

π2

4
= −1

2
π(β2 − π),

As a result, we conclude

β1 =
π√
2
, β2 =

π

2
.
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Thus, in fact,

δ1 ∼
π

2
√

2
M− 1

2 , δ2 ∼
π

4
M−1,

and the asymptotic behaviour of τ for large M for case (z1, z2) = (0, 1) is given

by:

τ ∼ 2 − π2

4M2

2.7.2 Case II: (z1, z2) = (1, 1)

We now consider the case where z1 = z2 = 1. The goal is to find the second-

largest eigenvalue, with τ symmetric around 1. For large M , ξ1 and ξ2 are given

by:

ξ1 =
π − 2δ1

M
, ξ2 =

π − 2δ2
M

.

To ensure consistency between equations (2.7.3) and (2.7.4), we observe that

these only agree if δj = 0. This leads to the simplified expressions:

ξj =
π

M
, j = 1, 2.

Substituting this value of ξj into the expressions for τ in equations (2.7.3) and

(2.7.4), we find that τ can be expressed as:

τ = 2 − π2

2M2
+ . . . .

Therefore, the asymptotic behaviour of τ for large M for case (z1, z2) = (1, 1) is

given by:

τ ∼ 2 − π2

2M2

2.7.3 Case III: (z1, z2) = (0, 0)

We now consider the case where z1 = z2 = 0. The goal is to find the second-

largest eigenvalue, with τ symmetric around 1. For large M , ξ1 and ξ2 are given
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by:

ξ1 =
−2δ1
M

, ξ2 =
−2δ2
M

.

To ensure consistency between equations (2.7.3) and (2.7.4), we observe that

these only agree if δj = π. This leads to the simplified expressions:

ξj =
4π2

M2
, j = 1, 2.

Substituting this value of ξj into the expressions for τ in equations (2.7.3) and

(2.7.4), we find that τ can be expressed as:

τ = 2 − 2π2

M2
+ . . . .

Therefore, the asymptotic behaviour of τ for large M for case (z1, z2) = (0, 0) is

given by:

τ ∼ 2 − 2π2

M2

2.7.4 Results of asymptotic analysis

In this section, we present the results of the asymptotic analysis of the

eigenvalues of the normalized Laplacian τ for a square grid graph. The analysis

builds upon the theoretical derivations discussed in Section (2.7), where the

eigenvalues of the normalized Laplacian were approximated asymptotically for

large grid sizes. Here, we will compare these asymptotic results with the actual

eigenvalues computed numerically for a square grid graph with sizes 3 × 3 to

20 × 20, which corresponds to a grid graph with 9 vertices to 400 vertices.

Specifically, we aim to validate the accuracy of the asymptotic expression,

particularly for the second-largest eigenvalue to study the growth rate ν, as the

number of grid vertices, denoted by M , increases, with our chosen values for z1

and z2.
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Figure 2.7.2: The red line represents the second-largest eigenvalue of the
normalized Laplacian τ for grid sizes ranging from M = 3 to M = 20. The blue
line shows the asymptotic approximation for the chosen values (z1, z2) = (1, 0)
over the same range of M .

Case I: (z1, z2) = (0, 1) = (1, 0)

We derived the asymptotic expression for the eigenvalue closest to τ = 2 when

(z1, z2) = (0, 1) = (1, 0) in Section (2.7) The result was:

τ ∼ 2 − π2

4M2
,

where M is the number of vertices along one dimension in the grid. This

approximation is valid for large M .

Figure 2.7.2 obtained by using MATLAB, we computed the actual second-largest

eigenvalue of the normalized Laplacian for grid sizes ranging from M = 3 to

M = 20, and the asymptotic approximation and then plots them for comparison.

The plot displays:

• Red line: The second-largest eigenvalue of the normalized Laplacian for

each M from 3 to 20.

• Blue line: The asymptotic approximation τ ∼ 2 − π2

4M2 .
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Figure 2.7.3: The red line represents the second-largest eigenvalue of the
normalized Laplacian τ for grid sizes ranging from M = 3 to M = 20. The yellow
line shows the asymptotic approximation for the chosen values (z1, z2) = (1, 1)
over the same range of M .

Case II: (z1, z2) = (1, 1)

We derived the asymptotic expression for the eigenvalue closest to τ = 2 when

(z1, z2) = (1, 1) in Section (2.7) The result was:

τ ∼ 2 − π2

2M2
,

where M is the number of vertices along one dimension in the grid. This

approximation is valid for large M .

Figure 2.7.3 obtained by using MATLAB, we computed the actual second-largest

eigenvalue of the normalized Laplacian for grid sizes ranging from M = 3 to

M = 20, and the asymptotic approximation and then plots them for comparison.

The plot displays:

• Red line: The second-largest eigenvalue of the normalized Laplacian for

each M from 3 to 20.

• Yellow line: The asymptotic approximation τ ∼ 2 − π2

2M2 .
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Figure 2.7.4: The red line represents the second-largest eigenvalue of the
normalized Laplacian τ for grid sizes ranging from M = 3 to M = 20. The green
line shows the asymptotic approximation for the chosen values (z1, z2) = (0, 0)
over the same range of M .

Case III: (z1, z2) = (0, 0)

We derived the asymptotic expression for the eigenvalue closest to τ = 2 when

(z1, z2) = (0, 0) in Section (2.7) The result was:

τ ∼ 2 − 2π2

M2
,

where M is the number of vertices along one dimension in the grid. This

approximation is valid for large M .

Figure 2.7.4 obtained by using MATLAB, we computed the the actual

second-largest eigenvalue of the normalized Laplacian for grid sizes ranging

from M = 3 to M = 20, and the asymptotic approximation and then plots them

for comparison. The plot displays:

• Red line: The second-largest eigenvalue of the normalized Laplacian for

each M from 3 to 20.

• Green line: The asymptotic approximation τ ∼ 2 − 2π2

M2 .

Conclusion

The plot (2.7.2) demonstrates a high degree of agreement between the

computed eigenvalues and the asymptotic approximation when

(z1, z2) = (0, 1) = (1, 0) , particularly as M increases. For larger grid sizes, the
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two curves essentially overlap, indicating that the asymptotic formula

accurately approximates the second-largest eigenvalue for large grids.



3

Diffusion on a network:

finite-difference approach

In this chapter we take a different approach to calculating diffusion on a network.

Rather than solving the diffusion equation exactly on each edge of the network

and then formulating an eigenvalue problem for the decay rate (as done in chapter

2), we instead develop a novel finite-difference discretization approach to solve

the full partial differential diffusion equation directly on the network structure.

Previous work on PDEs on metric networks has primarily focused on other

types of equations. For example, Böttcher and Porter [8] recently developed

spectral methods for solving Schrödinger, Poisson, heat, and wave equations on

metric networks, while Brio et al. [11] compared spectral, finite-difference, and

discontinuous Galerkin methods for Helmholtz and telegrapher’s equations.

However, to our knowledge, no previous work has specifically developed

finite-difference methods for the diffusion equation on networks with the

particular boundary conditions and vertex coupling conditions we consider here.

Our original contribution in this chapter is the development and

implementation of a Crank-Nicholson finite-difference scheme specifically

tailored for the diffusion equation on network structures. We discretize the

domain using equally spaced collocation points along each edge and develop

novel methods for enforcing continuity of flux and concentration conditions at

common vertices, as well as zero flux conditions at boundary vertices. This
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approach is fundamentally different from existing work because:

• 1. We focus specifically on the diffusion equation rather than other PDE

types.

• We develop custom finite-difference stencils for network vertex conditions.

• We use fictitious points to maintain second-order accuracy at vertices.

• We validate our numerical decay rates against the eigenvalue analysis from

Chapter 2.

The evolution in time is computed using the Crank-Nicholson method, and we

demonstrate that our numerical results accurately capture the decay rates

predicted by the theoretical eigenvalue analysis.

3.1 Brief introduction to the finite difference method

The finite difference method (FDM) is an approximate solution to differential

equations. The fundamental idea behind finite difference methods, when

applied to boundary-value problems, is to replace the governing differential

equations and corresponding boundary conditions with suitable finite difference

equations. This is achieved by approximating the derivatives in the differential

equations using finite difference quotients, which are combinations of the

dependent (unknown) function values at specific values of the independent

variables. By formulating the difference equations at these specific values, we

are led to systems of simultaneous algebraic equations [21], which can be solved

using MATLAB, as will be demonstrated in this chapter. Therefore, a finite

difference method is understood as a numerical procedure that approximates

exact differential equations and boundary conditions [21], such as those in a

diffusion equation problem, which will be illustrated in this chapter for solving a

network graph. The resulting approximate equations can then be solved exactly
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0 L
e0L

Figure 3.2.1: A path graph P2 with two vertices.

or approximately to find the growth rate of our network. The Crank-Nicholson

method is a second-order method in numerical analysis used to solve diffusion

equations and similar partial differential equations [15]. In the next section, we

will apply that method to simple graphs to introduce the concept of solving

more complex graphs.

3.2 Crank-Nicholson method to solve the diffusion

equation on a network

In this section, we introduce the application of the Crank-Nicholson method for

solving the linear diffusion equation on various network structures. We begin with

the simplest case, a path graph P2, to establish a foundational understanding of

solving the diffusion equation on a network with Neumann boundary conditions

applied at the boundary vertices. Next, we extend the analysis to a slightly

more complex path graph, P3 , where we apply the principles of continuity of

concentration and flux at a common (interior) vertex. This ensures that the flux

transitions smoothly across the network. Finally, the concepts are generalized

and applied to larger, more complex networks.

3.2.1 Crank-Nicholson method to solve the diffusion equation for

path graph P2

In this section, we discuss the Crank-Nicholson method for solving the linear

diffusion equation on a simple path graph P2 as shown in figure (3.2.1). The

diffusion equation, governing the spread of a substance over the graph, is

expressed as:

ut = Duxx (3.2.1)
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where u(x, t) denotes the concentration of the substance at position x and time

t, and D is the diffusion coefficient. The domain considered is 0 ≤ x ≤ L, with

initial conditions prescribed as:

u(x, 0) = f(x), (3.2.2)

where f(x) is some selected function.

We apply the Crank-Nicholson method to discretize the diffusion equation (3.2.1).

The discretization begins by defining a uniform grid of points over the path graph

P2. These points are distributed over the interval 0 ≤ ξ ≤ 1 such that

ξi = (i− 1)h, i = 1, . . . , N, (3.2.3)

where h = 1/N is the step length. We then denote by uni the approximated value

of u at grid point ξi at time level t = tn, where tn = n∆t for some chosen time

step ∆t. The finite difference discretisation for the diffusion equation is:

un+1
i − uni

∆t
=

D

2

(
un+1
i+1 − 2un+1

i + un+1
i−1

h2

)
+

D

2

(
uni+1 − 2uni + uni−1

h2

)
(3.2.4)

Multiplying both sides of equation (3.2.4) by ∆t, we have:

un+1
i − uni =

D∆t

2h2
(un+1

i+1 − 2un+1
i + un+1

i−1 ) +
D∆t

2h2
(uni+1 − 2uni + uni−1) (3.2.5)

Defining α̂ = D∆t
2h2 , equation (3.2.5) becomes:

un+1
i − uni = α̂(un+1

i+1 − 2un+1
i + un+1

i−1 ) + α̂(uni+1 − 2uni + uni−1) (3.2.6)

Thus, the discrete diffusion equation for the path graph P2 is given by:

−α̂un+1
i−1 + (1 + 2α̂)un+1

i − α̂un+1
i+1 = α̂uni−1 + (1 − 2α̂)uni + α̂uni+1 (3.2.7)

where uni represents the numerical solution at the i-th grid point and n-th time
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level. Equation (3.2.7) leads to a system of equations, which will be detailed

further by taking into consideration the boundary conditions at the boundary

vertices. The following section will focus on the application of Neumann boundary

conditions.

Neumann boundary conditions on path graph P2

Neumann boundary conditions specify the derivative of the solution at the

boundaries of the domain [41]. For the path graph P2 on the interval 0 ≤ x ≤ 1,

the Neumann boundary conditions are expressed as:

ux(0, t) = Q1, ux(1, t) = Q2,

where Q1 and Q2 are specified fluxes. To approximate the derivative at the

boundaries, we use finite difference approximations. At the left boundary,in the

simplest implementation we use a forward difference:

u2 − u1
h

= Q1 ⇒ u1 − u2 = −hQ1.

This method, however, is only first-order accurate with respect to h. In the

following section, we will explore the use of fictitious points at the boundaries

to achieve second-order accuracy, h2. Similarly, at the right boundary, we use a

backward difference:

uN − uN−1

h
= Q2 ⇒ uN−1 − uN = −hQ2

In equation (3.2.7) the Crank-Nicholson discretization can be represented in

matrix form as follows:
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

1 −1 0 . . . 0

−α̂ 1 + 2α̂ −α̂
. . .

...

0
. . .

. . .
. . . 0

...
. . . −α̂ 1 + 2α̂ −α̂

0 . . . 0 1 −1





un+1
1

un+1
2

...

un+1
N−1

un+1
N



=



−hQ1 0 0 . . . 0

α̂ 1 − 2α̂ α̂
. . .

...

0
. . .

. . .
. . . 0

...
. . . α̂ 1 − 2α̂ α̂

0 . . . 0 0 −hQ2





un1

un2
...

unN−1

unN



Here, α̂ = Ddt
2h2 , and n and n + 1 denote the current and next time levels,

respectively. For the matrix representation, the first and last rows correspond to

the Neumann boundary conditions, while the interior rows correspond to the

diffusion equation discretization (3.2.7). To maintain the accuracy of the finite

difference method near the boundaries, we use fictitious points to allow us

consistent treatment of the boundary conditions while preserving the structure

of the numerical grid [23]. Further details will be discussed in the next section.

Fictitious points in finite differences for path graph P2

To impose boundary conditions at x = 0 and x = L on the path graph P2, we

use fictitious points un+1
0 and un+1

N+1, which lie outside the interval of interest. At

x = 0, the derivative is approximated by:

ux|x=0 ≃
un+1
2 − un+1

0

2h
= Q1.

Solving for un+1
0 gives:

un+1
0 = un+1

2 − 2hQ1. (3.2.8)
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The finite difference of the diffusion equation (3.2.7) at x = 0 is given by:

−α̂un+1
0 + (1 + 2α̂)un+1

1 − α̂un+1
2 = α̂un0 + (1 − 2α̂)un1 + α̂un2 . (3.2.9)

Substituting the value of un+1
0 from (3.2.8) into the finite difference equation

(3.2.9), we obtain:

−α̂(un+1
2 − 2hQ1) + (1 + 2α̂)un+1

1 − α̂un+1
2 = α̂(un2 − 2hQ1) + (1 − 2α̂)un1 + α̂un2 .

(3.2.10)

Simplifying and rearranging (3.2.10), we get

(1 + 2α̂)un+1
1 − 2α̂un+1

2 = −4α̂hQ1 + (1 − 2α̂)un1 + 2α̂un2 . (3.2.11)

At x = L, we similarly approximate the derivative and obtain a fictitious point

un+1
N+1:

ux|x=L ≃
un+1
N+1 − un+1

N−1

2h
= Q2,

where Q2 is an approximation for the derivative.Solving for un+1
N+1 gives:

un+1
N+1 = un+1

N−1 − 2hQ2. (3.2.12)

The finite difference of the diffusion equation (3.2.7) at x = L is given by:

−α̂un+1
N−1 + (1 + 2α̂)un+1

N − α̂un+1
N+1 = α̂unN−1 + (1 − 2α̂)unN + α̂unN+1 (3.2.13)

Substituting the value of un+1
N+1 from (3.2.12) into the finite difference equation

(3.2.13), we obtain:

− α̂un+1
N−1 + (1 + 2α̂)un+1

N − α̂(2hQ2 + un+1
N−1)

= α̂unN−1 + (1 − 2α̂)unN + α̂(2hQ2 + unN−1) (3.2.14)
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Simplifying and rearranging (3.2.14), we get

−2α̂un+1
N−1 + (1 + 2α̂)un+1

N = 4α̂hQ2 + 2α̂unN−1 + (1 − 2α̂)unN (3.2.15)

Thus, using fictitious points, we arrive at the following system of equations in

matrix form:



(1 + 2α̂) −2α̂ 0 . . . 0

−α̂ 1 + 2α̂ −α̂ . . . 0

0
. . .

. . .
. . .

...

... 0 −α̂ 1 + 2α̂ −α̂

0 0 . . . −2α̂ (1 + 2α̂)





un+1
1

un+1
2

...

un+1
N−1

un+1
N



=



−4α̂hQ1 2α̂ 1 − 2α̂ . . . 0

α̂ 1 − 2α̂ α̂ . . . 0

0
. . .

. . .
. . .

...

... 0 α̂ 1 − 2α̂ α̂

0 0 4α̂hQ1 2α̂ 1 − 2α̂





un1

un2
...

unN−1

unN


Here, α̂ = D∆t

2h2 , and n and n + 1 denote the current and next time levels,

respectively. The first and last rows of the matrix impose the Neumann

boundary conditions, while the remaining rows correspond to the discretized

diffusion equation on the path graph P2. The result of this analysis is explained

in the following section.

3.2.2 Numerical results for a path graph P2

This section presents the results obtained by MATLAB simulations of the

diffusion equation

ut = Duxx

on the path graph P2 that represents the path graph P2, which consists of two

vertices connected by a single edge (see figure 3.2.2). We use a finite difference
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0 1
e01

Figure 3.2.2: A path graph P2 with two vertices.

method; the simulation considers the interval [0, 1] with Neumann boundary

conditions applied.

The adjacency and degree matrices characterise the network’s topology, enabling

analysis of diffusion dynamics. The growth or decay rate of the diffusion process

is theoretically determined by the eigenvalues of the modified Laplacian matrix,

L∗, as discussed in detail in section (2.3.1) defined as:

L∗ = A− cos(ν)D.

Here, cos(ν) represents an eigenvalue λ, such that from section (2.3.2) we know

cos(ν) = λ . By reformulating, the matrix can be expressed as:

L∗ = A− λD.

For any given network, the eigenvalues of L∗ can be computed numerically. The

decay rate ν is then determined using the relation cos−1(λ) = ν, as established

in section (2.3.2). The smallest positive decay rate corresponds to the slowest

diffusion mode and is compared with theoretical predictions obtained through

eigenvalue analysis.

The results obtained from MATLAB for the path graph P2 are illustrated in

Figure (3.2.3),with choosing values α̂ = 0.76, dt = 0.0001 and h = 0.03 which

captures key aspects of diffusion dynamics:

• Figure (3.2.3)(a): shows the evaluation of the concentration profiles u(x, t)

of P2 in different time steps t. The initial condition u(x, 0) = cos(4πx)

(black curve) evolves over time. with intermediate steps in (blue curve),

the (red dots) indicate the exact solution. The numerical solution (blue

curve)is compared with the exact analytical solution(red dots) during the
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(a) (b)

(c) (d)

Figure 3.2.3: (
a): shows the concentration profile u(x, t) of P2 along the network at different

time steps t, the black curve shows the initial condition, the blue curves
different time steps with cyan dotes that represent exact solution which indicate
the agreement of the numerical and theoretical solutions. , and the red line the
final step. (b): Maximum value γ as a function of time, comparing numerical

(blue) and analytical solutions(red dots). (c): shows total mass conserved of the
system as a function of time. (d): logarithmic plot of maximum concentration γ

over time t (black line with dots), and analytical calculation of the smallest
positive eigenvalue of decay rate of the modified Laplacian ν (red dash).

simulation, and both solutions show excellent agreement, the final state in

(cyan line). Mathematically, this behaviour aligns with the diffusion

equation’s tendency to minimise concentration differences across the

domain.

• Figure (3.2.3)(b): illustrates the temporal evolution of the maximum

value of u , γ = max(u(x, t)). Two curves are presented numerically

computed maximum values (blue line) and (red dots) exact analytical
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Figure 3.2.4: Applying Crank–Nicholson discretization on path graph P3

solution maximum values. As expected, the maximum value decreases

exponentially with time, which is characteristic of diffuse processes.

• Figure (3.2.3)(c): shows the total mass of the system over time. The

nearly constant mass confirms the numerical ability to preserve the total

quantity of the diffusing substance, a crucial property of correct numerical

implementations of diffusion equations.

• Figure (3.2.3)(d): shows γ = max(u) on a logarithmic scale with time. This

logarithmic scale represents the decay of γ, providing a clear visualisation

of the decay rate. The slope of the line in this graph corresponds to the rate

of exponential decay, which aligns with the theoretical prediction based on

the smallest positive decay of the modified Laplacian ν. This plot serves as

a powerful confirmation of the agreement between numerical and analytical

approaches, showing that the decay behaviour of the system is accurately

captured by the Crank-Nicholson method.

To extend this analysis to more general cases, we begin by solving the diffusion

equation on a path graph with three vertices, denoted as P3. This will serve as

a foundational example, allowing us to later generalise the approach for solving

the diffusion equation on any loop-less graph structure.
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3.2.3 Crank–Nicholson method to solve diffusion equation for

path graph P3

In this section, we consider the domain 0 ≤ x ≤ 2L and apply the Crank-

Nicholson method for the numerical approximation of the diffusion equation on

a path graph P3. This path graph consists of three vertices and two edges,

representing a simple yet foundational graph structure for solving the diffusion

equation that contains a common vertex. To begin, we discretise the domain

into mesh points along the two edges of the path graph P3 as depicted in figure

(3.2.4).

Neumann boundary condition for path graph P3

The boundary conditions for the vertices are imposed as follows. We begin with

the zero-flux boundary condition at the point x = 0, which is expressed as:

u(1)x |x=0 = 0.

This condition signifies that there is no flux across the boundary at x = 0,

meaning the derivative of u with respect to x is zero. Using a forward finite

difference approximation, we have:

u
(1)
2 − u

(1)
1

h
= 0 ⇒ u

(1)
1 = u

(1)
2 (3.2.16)

Next, we impose the zero-flux boundary condition at x = 2L, which is expressed

as:

u(2)x |x=2L = 0.

Using a backward finite difference approximation, we get:

u
(2)
N − u

(2)
N−1

h
= 0 ⇒ u

(2)
N−1 = u

(2)
N . (3.2.17)
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Continuity conditions on common vertex for path graph P3

The continuity of flux at the midpoint x = L, which is the common vertex, implies

that:

−αu(1)x |x=L = q1 on T (1), −αu(2)x |x=L = q2 on H(2),

with the condition q2− q1 = 0 ensuring continuity of flux between the two edges.

Assuming α = 1, the forward finite difference approximation for flux is given as:

q1 =
u
(1)
N − u

(1)
N−1

h
, q2 =

u
(2)
2 − u

(2)
1

h
.

The condition q2 − q1 = 0 gives:

u
(1)
N − u

(1)
N−1

h
− u

(2)
2 − u

(2)
1

h
= 0.

Simplifying, we obtain:

u
(1)
N − u

(1)
N−1 − u

(2)
2 + u

(2)
1 = 0. (3.2.18)

Finally, we impose the continuity of concentration at the common vertex L:

u
(1)
N = u

(2)
1 . (3.2.19)

This continuity condition, combined with the previous flux condition, ensures

smooth behaviour of the diffusion process across the edges of the path graph P3.

The matrix form for solving the diffusion equation on the path graph P3,

incorporating the conditions from equations (3.2.16), (3.2.17), (3.2.18), and
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(3.2.19), is given by:



1 −1 0 . . . . . . . . . . . . . . . 0

−α̂ 1 + 2α̂ −α̂
. . . . . . . . . . . . . . . 0

0
. . .

. . .
. . . 0 . . . . . . . . .

...

0 0 −1 1 1 −1 0 . . . 0

0 . . . 1 −1 0 . . . . . . . . .
...

... 0 . . . −α̂ 1 + 2α̂ −α̂ 0 . . .
...

0 . . . . . .
. . .

. . .
. . .

. . . . . .
...

0 . . . . . . . . .
. . .

. . .
. . .

. . . 0

0 0 . . . . . . . . . . . . 0 1 −1





u
(1)n+1
1

...

u
(1)n+1
N−1

u
(1)n+1
N

u
(2)n+1
1

u
(2)n+1
2

...

...

u
(2)n+1
N



=



−hQ1 0 0 . . . . . . . . . . . . . . . 0

α̂ 1 − 2α̂ α̂
. . . . . . . . . . . . . . . 0

0
. . .

. . .
. . . 0 . . . . . . . . .

...

0 0 0 1 −1 0 0 . . . 0

0 . . . 0 . . . 0 . . . . . . . . .
...

... 0 . . . α̂ 1 − 2α̂ α̂ 0 . . .
...

0 . . . . . .
. . .

. . .
. . .

. . . . . .
...

0 . . . . . . . . .
. . .

. . .
. . .

. . . 0

0 0 . . . . . . . . . . . . 0 0 −hQ2





u
(1)n
1

...

u
(1)n
N−1

u
(1)n
N

u
(2)n
1

u
(2)n
2

...

...

u
(2)n
N


Here, α̂ = D∆t

2h2 , with n and n + 1 denoting the current and next time levels,

respectively. Superscripts (1) and (2) refer to the first and second edges on the

path graph, respectively. The first and last rows of the matrix correspond to

the Neumann boundary conditions at x = 0 and x = 2L. The remaining rows

represent the discretized diffusion equation for the path graph P3.

Fictitious points on the continuity of flux for path graph P3

We now introduce the concept of fictitious points to handle the continuity of flux

conditions at the common points of the path graph P3. According to Figure
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Figure 3.2.5: Applying Crank–Nicholson discretization on path graph P3

(3.2.5), there is a common vertex, denoted by L, shared between two edges in

the graph. To enforce the continuity of flux condition at this common vertex,

fictitious points are applied. As illustrated in Figure (3.2.5), the common vertex

L is designated as the tail of the first edge, denoted by T (1), and as the head of

the second edge, denoted by H(2). Here, the superscripts (1) and (2) correspond

to edges one and two, respectively.

The finite difference scheme of the diffusion equation at the fictitious point for

the first edges is given by:

−α̂un+1
N−1 + (1 + 2α̂)un+1

N − α̂un+1
N+1− α̂unN−1− (1− 2α̂)unN − α̂unN+1 = 0. (3.2.20)

Similarly, the finite difference at the fictitious point for the second edge is:

−α̂un+1
0 + (1 + 2α̂)un+1

1 − α̂un+1
2 − α̂un0 − (1 − 2α̂)un1 − α̂un2 = 0. (3.2.21)

At the tail of the first edge, the flux condition at x = L implies −αu
(1)
x |x=L.

Assuming α = 1, we can use the central difference method to obtain an expression

for this condition using a fictitious point. We can write:

qn+1
1 =

un+1
N+1 − un+1

N−1

2h
. (3.2.22)

At the head of the second edge, the flux condition at x = L implies −αu
(2)
x |x=L.

Assuming α = 1, we can use the central difference method to obtain an expression
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for this condition using a fictitious point. We can write:

qn+1
2 =

un+1
2 − un+1

0

2h
(3.2.23)

To define the continuity of flux at the common vertex, we need to consider whether

it corresponds to a tail or a head on the segment. If it corresponds to a tail, we

take minus the flux, and if it corresponds to a head, we take plus the flux. This

means that for the node at x = L, we have:

qn+1
2 − qn+1

1 = 0. (3.2.24)

We substitute the value of (3.2.22) and (3.2.23) into (3.2.24) to obtain the

expression for the continuity of flux condition:

(un+1
N+1 − un+1

N−1) − (un+1
2 − un+1

0 ) = 0. (3.2.25)

Next, we proceed by segregating the terms that involve the fictitious points to

the left-hand side of the equation, while retaining the remaining terms on the

right-hand side:

un+1
N+1 + un+1

0 = un+1
N−1 + un+1

2 . (3.2.26)

In addition, the expression for the previous time steps for equation (3.2.26) can

be expressed as follows:

unN+1 + un0 = unN−1 + un2 . (3.2.27)

By adding equations (3.2.20) and (3.2.21), we obtain the following expression:

− α̂(un+1
N+1 + un+1

0 ) − α̂(unN+1 + un0 ) = −(1 + 2α̂)un+1
N + α̂un+1

N−1

+ (1 − 2α̂)unN + α̂unN−1 + α̂un+1
2 − (1 + 2α̂)un+1

1 + α̂un2 + (1 − 2α̂)un1 . (3.2.28)

We define the non-fictitious part of the equation as R, which can be expressed as
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follows:

R = −(1 + 2α̂)un+1
N + α̂un+1

N−1 + (1 − 2α̂)unN + α̂unN−1

+ α̂un+1
2 − (1 + 2α̂)un+1

1 + α̂un2 + (1 − 2α̂)un1 . (3.2.29)

By utilizing the information provided by equations (3.2.26) and (3.2.27), we can

substitute the term involving fictitious points in equation (3.2.28) with the

corresponding expression from equations (3.2.26) and (3.2.27). This allows us to

obtain an expression that solely involves non-fictitious points, which can be

expressed as follows:

− α̂(un+1
N−1 + un+1

2 ) − α̂(unN−1 + un2 ) = −(1 + 2α̂)un+1
N + α̂un+1

N−1

+ (1 − 2α̂)unN + α̂unN−1 + α̂un+1
2 − (1 + 2α̂)un+1

1 + α̂un2 + (1 − 2α̂)un1 . (3.2.30)

We can then rearrange equation (3.2.30) to obtain the continuity of flux condition

at the common vertex on two edges as follows:

− 2α̂un+1
N−1 − 2α̂un+1

2 + (1 + 2α̂)un+1
N + (1 + 2α̂)un+1

1

= 2α̂unN−1 + 2α̂un2 + (1 − 2α̂)unN + (1 − 2α̂)un1 . (3.2.31)

The continuity of concentration at the common vertex (equation (3.2.19):

u
(1)
N = u

(2)
1 ) is enforced implicitly throughout our numerical scheme. When

implementing the finite difference method at the junction between edges, the

fictitious points (such as u
(1)
N+1 and u

(2)
0 ) are introduced and then eliminated

using the flux continuity conditions. During this process, the concentration

values at the common vertex are treated as a single value across all connected

edges, which naturally enforces the concentration continuity.



Chapter 3: Diffusion on a network: finite-difference approach 88

1 2 3
e12 e23

Figure 3.2.6: Directed path graph P3 with three vertices connected by two edges.

3.2.4 Numerical results for a path graph P3

This section presents the numerical solution of the diffusion equation

ut = Duxx

on the path graph P3 (see Figure (3.2.6), using the Crank-Nicholson method

with Neumann boundary conditions and continuity of flux and concentration at

a common vertex. The method and mathematical framework are consistent with

those applied in Section (3.2.2). The results are summarized in Figure (3.2.7),

choosing values α̂ = 1.8,∆t = 0.01 and h = 0.0526 which highlights the diffusion

dynamics through the following key plots:

• Figure (3.2.7)(a): This plot illustrates the evolution of the concentration

profiles u(x, t) at different time steps t. The initial condition, represented

as a cosine wave black curve cos(πx2 ), evolves over time toward

equilibrium, with intermediate states in blue and the final state in red.

This behaviour reflects the intrinsic property of the diffusion equation of

minimising concentration gradients across the domain.

• Figure (3.2.7)(b): This graph shows the maximum concentration value γ =

max(u) over time t, with the blue line representing the numerical solution

and the red dots indicating the exact solution. The red dashed line marks

the initial mass, which remains constant as expected as a result of mass

conservation.

• Figure (3.2.7)(c): The total mass M in the system is plotted over time,

which confirms mass conservation throughout the simulation. The black

line with dots demonstrates that the Neumann boundary conditions

maintain the system’s integrity since no mass is gained or lost.
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(a) (b)

(c) (d)

Figure 3.2.7: On the path graph P3, figure (a): shows the concentration profile
u(x, t) along the network at different time steps t, the black cure shows the initial
condition, the blue cures different times, and the red curve the final step. (b):
displays the maximum concentration γ over time t The blue curve represents the
numerical solution, while red dots show the exact solution. (d): logarithmic plot
of maximum concentration γ represent decay rate of γ over time t (black line with
dots), and theoretical calculation of the smallest positive eigenvalue of decay rate
of the modified Laplacian ν.

• Figure (3.2.7)(d): This plot shows γ = max(u) on a logarithmic scale with

time t. The logarithmic scale representation provides a clear view of the

decay rate, with the slope corresponding to the exponential decay rate. This

rate is closely aligned with theoretical predictions based on the smallest

positive decay rate of the modified Laplacian ν, validating the numerical

approach and its consistency with the analytical framework.

The numerical convergence of our results is established in Figure 3.2.8 which

shows that convergence is achieved on reducing the size of the mesh spacing h,
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(a) (b)

Figure 3.2.8: Numerical convergence study in h for the path graph P3. Showing
the maximum concentration γ over time t. The blue curve represents the
numerical solution, while red dots show the exact solution. Comparison shown
for: (a) h = 0.5, α̂ = 0.02,∆t = 0.01, and (b) h = 0.005, α̂ = 178.6,∆t = 0.01

(a) (b)

Figure 3.2.9: Numerical convergence study in ∆t for the path graph P3. Showing
the maximum concentration γ over time t. The blue curve represents the
numerical solution, while red dots show the exact solution. Comparison shown
for: (a) h = 0.005, α̂ = 178.6,∆t = 0.1, and (b) h = 0.005, α̂ = 178.6,∆t = 0.001

and in figure 3.2.9 which shows that convergence is achieved for fixed h and

lowering ∆t.
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3.2.5 The general formula of the fictitious point for the

continuity of flux condition for any network

Consider a network with a common vertex i having more than two connected

edges. To ensure continuity of flux, we introduce the following condition:

∑
m∈S(i)

+

qHim −
∑

m∈S(i)
−

qTmi = 0 (3.2.32)

where the sets

S
(i)
− = {j ∈ V : j < i and aij = 1}

and

S
(i)
+ = {j ∈ V : j > i and aij = 1}

where S
(i)
− and S

(i)
+ represent the sets of vertices with indices less than and greater

than i, respectively, that are connected to vertex i via edges in the network. Here,

aij is the ijth element of the adjacency matrix A for the network, and V is the

set of all vertices in the network.

To discretise this condition, we introduce the notation uj,ni , which represents the

concentration on edge j at time level tn at discretisation point i. Each edge is

discretised into N points so that point i = 1 is in the head and i = N is at the

tail. We can then write (3.2.32) in discrete form and introduce fictitious points

as follows: ∑
j∈CH

k

uj,n2 − uj,n0
2h

−
∑
i∈CT

k

ui,nN+1 − ui,nN−1

2h
= 0, (3.2.33)

where h is the grid spacing and

• CH
k denotes the set of elements with a vertex common to vertex k such that

this common vertex lies at the head of the edge.

• CT
k denotes the set of elements with a vertex common to vertex k such that

this common vertex lies at the tail of the edge.
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Next we apply the diffusion equation at grid point i = N (the tail) on edge j to

obtain, using Crank- Nicholson:

un+1
N − unN

dt
=

D

2

(
un+1
N+1 − 2un+1

N + un+1
N−1

h2

)
+

D

2

(
unN+1 − 2unN + unN−1

h2

)

Reorganising the terms to bring all of the fictitious points to the left hand side,

we have

−α̂uj,n+1
N+1 − α̂uj,nN+1 = −(1 + 2α̂)uj,n+1

N + α̂uj,n+1
N−1 + α̂uj,nN−1 + (1−2α̂)uj,nN (3.2.34)

where

α̂ =
dtD

2h2

Then, let Rj
T denote the set of terms in the discretized diffusion equation that do

not involve fictitious points. Then, we can express Equation (3.2.34) as:

−α̂uj,n+1
N+1 − α̂uj,nN+1 = Rj

T (3.2.35)

where we have moved all terms involving fictitious points to the left hand side.

Summing over all edges in CT
k we obtain

∑
j∈CT

k

(
−α̂uj,n+1

N+1 − α̂uj,nN+1

)
= Rj

T (3.2.36)

Similarly we apply the diffusion equation at grid point i = 1 (The head) on edge

j to obtain, using Crank- Nicholson:

un+1
1 − un1

dt
=

D

2

(
un+1
2 − 2un+1

1 + un+1
0

h2

)
+

D

2

(
un2 − 2un1 + un0

h2

)

Reorganising the terms to bring all of the fictitious points to the left hand side,

we have

−α̂uj,n+1
0 − α̂uj,n0 = −(1 + 2α̂)uj,n+1

1 + α̂uj,n+1
2 + α̂uj,n2 + (1 − 2α̂)uj,n1 (3.2.37)
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Let Rj
H denote the set of terms in the discretized diffusion equation that do not

involve fictitious points. Then, we can express Equation (3.2.37) as:

−α̂uj,n+1
0 − α̂uj,n0 = Rj

H (3.2.38)

where, again, we have moved all terms involving fictitious points to the left hand

side. Summing over all edges in CH
k we obtain

∑
j∈CH

k

(
−α̂uj,n+1

0 − α̂uj,n0

)
= Rj

H (3.2.39)

Now, multiplying (3.2.33) by 2hα̂ and rearranging yields

−
∑
j∈CH

k

α̂uj,n0 −
∑
j∈CT

k

α̂uj,nN+1 = −α̂

 ∑
j∈CH

k

uj,n2 +
∑
j∈CT

k

uj,nN−1

 , (3.2.40)

We define

Pn
k = −α̂

 ∑
j∈CH

k

uj,n2 +
∑
j∈CT

k

uj,nN−1

 (3.2.41)

Similarly, the next time level n + 1 can be expressed as:

Pn+1
k = −α̂

 ∑
j∈CH

k

uj,n+1
2 +

∑
j∈CT

k

uj,n+1
N−1

 (3.2.42)

Next we add (3.2.39) to (3.2.36) to obtain

∑
j∈CT

k

(
−α̂uj,n+1

N+1 − α̂uj,nN+1

)
+
∑
j∈CH

k

(
−α̂uj,n+1

0 − α̂uj,n0

)
= Rj

T + Rj
H . (3.2.43)

Rearranging slightly, we have

−
∑
j∈CT

k

α̂uj,n+1
N+1 −

∑
j∈CH

k

α̂uj,n+1
0

+

−
∑
j∈CT

k

α̂uj,nN+1 −
∑
j∈CH

k

α̂uj,n0

 = Rj
T +Rj

H .

(3.2.44)

Using (3.2.41), (3.2.42) and (3.2.40) into (3.2.44), the continuity of flux condition
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for any common vertex in network with fictitious points becomes:

Pn+1
k + Pn

k = Rj
T + Rj

H (3.2.45)

We consider the continuity of concentration as we discussed in section 3.2.3. This

condition is not explicitly imposed as a separate constraint at common vertices,

but rather is implicitly enforced when we formulate the flux continuity conditions.

When fictitious points (u
(j)
N+1 or u

(j)
0 ) are introduced and then eliminated using

equations (3.2.32)-(3.2.45), the resulting numerical scheme naturally preserves

the concentration continuity at all common vertices.

3.2.6 Initial condition

In the next few sections we will present some numerical computations over

different networks including a Y -shaped graph, a 3 × 3 square grid graph, and a

6 × 6 square grid graph. In each case we choose an initial condition that

corresponds either to an eigenfunction of the eigenvalue problem discussed in

Chapter 2 or to a more general initial condition to be discussed below.

In the former case, selecting an initial condition at t = 0 that corresponds to

an eigenfunction means that the time evolution in the numerical calculation will

follow that eigenfunction (to within numerical error) for all t > 0. This is true

because the diffusion problem is linear. We can therefore use this as a check on

our numerical method to confirm that the decay rate computed numerically by

integrating forwards in time agrees with that computed by solving the normalised

Laplacian eigenvalue problem.

More generally, if we do not want to follow an eigenfunction throughout the

calculation, we may start from a general initial condition that does not correspond

to an eigenfunction. In setting this initial condition we must be careful to respect

the continuity conditions at the network vertices (including both common and

boundary vertices), that is our initial condition must satisfy continuity of flux and
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continuity of concentration; otherwise the numerical implementation discussed

earlier will simply propagate the discontinuity throughout the calculation. With

this in mind on each edge of the network we demand that the concentration on

the j edge of the network is equal to U0(ξ), 0 ≤ ξ ≤ 1, where

U0(ξ) = cos(2πjξ) (3.2.46)

Note that initial condition (3.2.46) guarantees continuity at every vertex,

irrespective of the network structure, by setting the initial concentration at each

vertex to unity and the initial concentration gradient at each vertex equal to

zero. The index j is included in (3.2.46) to prevent it from coincidentally

conforming to an eigenfunction. For example for a Y -shaped graph as depicted

in Figure 3.2.10 one of the eigenvalues is ν = 2π corresponding to the

eigenfunction (2.2.19), namely cos(2πξ).

One practical issue with the initial condition (3.2.46) is that for a graph with

many edges j becomes potentially large and this creates an initial profile across

the network that is difficult to resolve without a large number of collocation

points. Therefore, for a graph with more than a certain number of edges we

prefer to impose the condition

U0(ξ) = cos(2πj∗ξ), (3.2.47)

where

j∗ =


1 if j = 2

0 if j ̸= 2.

This also precludes the possibility of the initial condition coinciding with an

eigenfunction whilst simultaneously restricting the size of the frequency of the

assumed cosine profile.
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e13 e23

e34

Figure 3.2.10: Y-shape graph with four vertices and three edges

3.2.7 Numerical results for the Y-shaped graph

In this section, we extend our analysis to a Y-shaped graph (see figure 3.2.10).

The graph consists of a central common vertex connected to three boundary

vertices by three edges.

The method and mathematical framework are consistent with those applied in

Section (3.2.2).The methodology is adapted to the topology of the Y-shaped

graph by recalculating the modified Laplacian matrix L∗. The eigenfunctions

and eigenvalues are computed for this topology, and the dynamics of the

diffusion process are analysed using both specific eigenfunctions and a general

initial condition. We also verify that the total mass, represented by the integral

of u(x, t) across the entire network, remains constant over time, confirming the

mass-preserving nature of the Crank-Nicholson method under Neumann

boundary conditions. The results of the analyses are discussed in the following

way:

• The eigenvalues of the modified Laplacian matrix, denoted as λ, and their

corresponding decay rate are (see table 3.1):

• For the eigenvalue λ = −1, we have the corresponding decay rate (ν = π),

the eigenfunction corresponding to this eigenvalue was chosen as the initial

condition. The results in Figure (3.2.11) (a) show the concentration profile

of the diffusion equation on the Y-shaped graph. The black curve represents

the initial condition, the blue curves show intermediate time steps, and

the red curve represents the final time step. Figure 3.2.11 (b) shows the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2.11: Numerical results for the diffusion process and decay rates on a Y-
shaped graph. (a, c, e): Concentration profiles u(x, t) for different eigenfunctions
and initial conditions. The black curve shows the initial condition, blue curves
represent intermediate time steps, and the red curve represents the final time
step. (b, d, f): Decay rates of the maximum concentration γ over time t. The
black line with dots represents the numerical decay rate, while the red dashed
line represents the theoretical decay rate. (b), λ = −1, ν = π, the red dashed
line has slope −π2. (d) λ = 0, ν = π/2: the red dashed line has slope −π2/4. (f)
Taking initial condition (3.2.46): the red dashed line has slope −ν21 = −π2/4.
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λ multiplicity ν

-1 1 π

0 2 π/2

1 1 0

Table 3.1: The eigenvalue λ of the modified Laplacian L∗ and their corresponding
ν for square grid graph Y-shaped graph.

decay rate of the chosen eigenfunction, demonstrating excellent agreement

between the numerical decay rate (black line) and the theoretical prediction

(red line).

• For the eigenvalue λ = 0, we have the corresponding decay rate (ν = π/2),

the eigenfunction corresponding to this eigenvalue was used as the initial

condition. The results, shown in Figure (3.2.11) (c), the concentration

profile of this case . Figure 3.2.11 (d) confirms the perfect match between

the numerical (black line with dots) and theoretical decay rates (red line).

• Figure 3.2.11 (e, f) shows the result for the initial condition (3.2.46) that

does not correspond to an eigenfunction. The concentration is shown in

Figure 3.2.11(e), while Figure 3.2.11(f) shows the decay of maximum

concentration γ with time. Two points are striking in the latter panel.

First, the solid black curve eventually aligns with with red dashed curve.

The latter has slope equal to the smallest decay rate. Hence, the solution

ultimately settles to decay at the minimum decay rate. Second, the initial

slope of the black line is much steeper than that of the red dashed line,

suggesting that the initial decay is much more rapid than the ultimate

decay at the smallest value of ν. This can be explained by noting that γ,

the maximum concentration, can be expressed as a linear combination of

all of the eigenfunctions for the network, namely,

γ =

∞∑
n=1

cne−ν2nt
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for some coefficients cn. Thus

dγ

dt

∣∣∣
t=0

= −
∞∑
n=1

cnν
2
n

(assuming the series converges). Then

d log γ

dt

∣∣∣
t=0

=
dγ/dt

γ

∣∣∣
t=0

= −
∑∞

n=1 cnν
2
n∑∞

n=1 cn

This corresponds to the slope of the black line in Figure 3.2.11(f) at t = 0.

Evidently ∑∞
n=1 cnν

2
n∑∞

n=1 cn
> ν21 .

This holds because
∞∑
n=1

cnν
2
n > ν21

∞∑
n=1

cn,

since ν1 > ν2 > ν3 · · · .

In conclusion, the decay rate of the chosen eigenfunctions agrees with the

theoretical decay rates, as the eigenfunctions correspond to specific eigenvalues

of the system’s Laplacian matrix, determining their respective decay rates in

the diffusion process. Furthermore, for a general initial condition, the function

is expressed as a linear combination of eigenfunctions, each decaying

independently at a rate determined by its eigenvalue. This results in an overall

decay dominated by the slowest-decaying mode in the long term. The

agreement between the numerical results (black lines) and the theoretical

predictions (red lines) confirms the accuracy of the Crank-Nicholson method

and the theoretical framework.

3.2.8 Numerical results for square grid graph 3× 3

In this section, we solve the diffusion equation

ut = Duxx
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Figure 3.2.12: Square grid graph 3 × 3.

numerically on a square grid graph 3 × 3 (see Figure 3.2.12), using the Crank-

Nicholson method with Neumann boundary conditions and continuity of flux and

concentration at common vertices. The method and mathematical framework are

consistent with those applied on the Y-shaped graph.

To analyse the behaviour, we start by selecting specific eigenfunctions as initial

conditions. The eigenfunctions correspond to the eigenvalues of the modified

Laplacian matrix of the system L∗ = A−λD, where cos(ν) = λ. The results are

summarised as follows:

• The eigenvalues of the modified Laplacian matrix, denoted as λ, and their

corresponding decay rate are (see table 3.2):

λ multiplicity ν

-1 1 π

-0.5774 2 2.1863

0 3 π/2

0.5774 2 0.9553

1 1 0

Table 3.2: The eigenvalue λ of the modified Laplacian L∗ and their corresponding
ν for square grid graph 3 × 3.

• For the eigenvalue λ = −1 (corresponding to ν = π), the eigenfunction
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that corresponds to that eigenvalue was chosen as the initial condition for

the calculation. The result in Figure (3.2.13)(a) shows the concentration

profiles u(x, t) at various time steps t. The initial condition, represented

as the black curve, evolves over time with intermediate states (blue) and

the final state (red). This behaviour reflects the tendency of the diffusion

equation to reduce concentration gradients. Figure (3.2.13)(b) shows

logarithmic plot of the maximum concentration γ = max(u) over time,

revealing the decay rate. The slope corresponds to the exponential decay

rate, aligning with the theoretical prediction for the chosen eigenfunction.

This validates the ability of the Crank-Nicholson method to capture the

decay dynamics of the system accurately.

• For λ = −0.5774 (corresponding to ν = 2.1863), the other eigenfunction has

been chosen as an initial condition for the calculation. Figure (3.2.13)(c):

This plot shows the concentration profiles u(x, t) in various time steps t.

The initial condition, represented as a black curve , evolves over time, with

intermediate states in blue and the final state in red. Figure (3.2.13)(d):

The logarithmic plot of the maximum concentration γ = max(u) over time

reveals the decay rate. The slope corresponds to the exponential decay rate,

aligning with the theoretical prediction for the chosen eigenfunction.

• Figure (3.2.13)(e,f) we use the same methodology as the Y-shaped graph

for the initial condition that does not correspond to the eigenfunction. we

set the initial condition to satisfy the continuity of flux and concentration

condition as we discussed in detailed on section (3.2.7). The concentration

is shown in Figure 3.2.13(e), while Figure 3.2.13(f) shows the decay of

maximum concentration γ with time. Two points are striking in the latter

panel. First, the solid black curve eventually aligns with with red dashed

curve. The latter has slope equal to the smallest decay rate. Hence, the

solution ultimately settles to decay at the minimum decay rate. Second, the

initial slope of the black line is much steeper than that of the red dashed

line, suggesting that the initial decay is much more rapid than the ultimate
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decay at the smallest value of ν that is explained in section (3.2.7).
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(a) (b)

(c) (d)

(e) Concentration profiles for general
initial condition.

(f) Decay rate for general initial
condition.

Figure 3.2.13: Numerical results for the diffusion process and decay rates on a
3 × 3 square grid graph. (a, c, e) are the concentration profile u(x, t) along the
network at different time steps t for different eigenfunction and initial condition.
The black cure shows the initial condition, blue curves represent intermediate
time steps, and the red curve represents the final time step. (b, d, f) are the
decay rates of maximum concentration γ over time t. (black line with dots)
represents the numerical decay rate , and theoretical decay rates represented by
red dashed. (b) λ = −1, and ν = π , the red dashed line has slop −π2. (d)
λ = −0.5774, and ν = 2, 1863, the red dashed line has slop −π2. (f) the initial
condition (3.2.47) the red dashed line has a slope −(0.9553)2.
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3.2.9 Numerical results for square grid graph 6× 6

In this section, we extend our analysis to a larger square grid graph 6 × 6. This

graph consists of 36 vertices and 60 edges. The diffusion equation

ut = Duxx

is solved numerically using the Crank-Nicholson method, imposing Neumann

boundary conditions and ensuring the continuity of flux and concentration at

all common vertices.

We maintain the same methodology as for the 3 × 3 grid graph, but adapt the

system to account for the increased number of vertices and edges in the 6 × 6

graph. The modified Laplacian matrix L∗ is recalculated to reflect the new

topology, with the eigenfunctions and eigenvalues adjusted accordingly. We

analyse the dynamics using both eigenfunctions as initial conditions and general

initial conditions. Furthermore, we verify that the total mass, represented by

the integral of u(x, t) throughout the network, remains constant over time,

confirming that the Crank-Nicholson method preserves mass as expected for a

diffusion process governed by Neumann boundary conditions.

• The eigenvalues of the modified Laplacian matrix, denoted as λ, and their

corresponding decay rate ν are (see table 3.3):

• For the eigenvalue λ = 0.8090 (corresponding to ν = 0.6283), the

eigenfunction that corresponds to that eigenvalue was chosen as the initial

condition for the calculation. The result in Figure (3.2.14)(a) shows

logarithmic plot of the maximum concentration γ = max(u) over time,

revealing the decay rate. The slope corresponds to the exponential decay

rate (black line with dots), aligning with the theoretical prediction for the

chosen eigenfunction (red dash). the red dashed line has a slop

−(0.6283)2.
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λ multiplicity ν

-1 1 π

-0.9128 2 2.7209

-0.8090 1 2.5132

-0.6863 2 2.3272

-0.5621 2 2.1677

-0.4043 2 1.9870

-0.3090 1 1.8849

-0.2591 2 1.8329

-0.1562 2 1.7276

0 6 π/2

0.1562 2 1.4140

0.2591 2 1.3087

0.3090 1 1.2567

0.4043 2 1.1546

0.5621 2 0.9739

0.6863 2 0.8144

0.8090 1 0.6283

0.9128 2 0.4207

1 1 0

Table 3.3: The eigenvalue λ of the modified Laplacian L∗ and their corresponding
ν for square grid graph 6 × 6.

• For λ = 0.9128 (corresponding to ν = 0.4208), the other eigenfunction has

been chosen as an initial condition for the calculation. Figure (3.2.14)(b)

The logarithmic plot of the maximum concentration γ = max(u) over time

reveals the decay rate. The slope corresponds to the exponential decay rate

(black line with dots), aligning with the theoretical (red dash) prediction

for the chosen eigenfunction. the red dashed line has a slop −(0.4208)2.

• Figure (3.2.13)(c) we use the same methodology as the Y-shaped graph

for the initial condition that does not correspond to the eigenfunction. we
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(a) (b)

(c)

Figure 3.2.14: Numerical results for a decay rates on a 6 × 6 square grid graph.
(a, b, c) are the decay rates of maximum concentration γ over time t. (black
line with dots) represents the numerical decay rate , and theoretical decay rates
represented by red line dashed. (a) λ = 0.8090, and ν = 0.6283 , the red dashed
line has slope −(0.6283)2. (b) λ = −1, and ν = π, the red dashed line has slop
−(π)2 (c) the initial condition (3.2.46) the red dashed line has a slope −(0.4208)2.

set the initial condition to satisfy the continuity of flux and concentration

condition as we discussed in detail in section (3.2.7). The figure shows the

decay of maximum concentration γ with time. Two points are striking in

the latter panel. First, the solid black curve eventually aligns with the

red dashed curve. The latter has a slope equal to the smallest decay rate.

Hence, the solution eventually settles and decays at the minimum decay

rate. Second, the initial slope of the black line is much steeper than that

of the red dashed line, suggesting that the initial decay is much more rapid

than the ultimate decay at the smallest value of ν which is explained in

Section (3.2.7).
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In conclusion, the decay rate of the chosen eigenfunction agrees with the

theoretical decay rate because the eigenfunction corresponds to a specific

eigenvalue of the system’s Laplacian matrix, which determines the rate at which

that mode decays in the diffusion process. Furthermore, if the initial condition

is a general function, it can be expressed as a linear combination of the

eigenfunctions of the Laplacian matrix. Each eigenfunction will decay

independently at a rate determined by its corresponding eigenvalue.

Consequently, the overall decay behaviour of the system will be governed by a

combination of these rates, with the slowest decay mode (associated with the

smallest non-zero eigenvalue) dominating the long-term dynamics of the

diffusion process. This explains the observed agreement between the black line,

representing the decay rate of the chosen function, and the red line,

representing the theoretical calculation.



4

Reaction-diffusion equation on

network

In this chapter, we solve the reaction-diffusion equations in a network. We use

the method of lines to discretise the spatial domain into a grid and transform

the reaction-diffusion equation into a system of ordinary differential equations.

This allows us to efficiently solve the system using standard numerical integration

techniques. We focus on enforcing continuity of flux and concentration at common

vertices, as well as zero-flux boundary conditions at boundary vertices. The

approach is applied to various networks, starting from simple path graphs and

extending to more complex structures.

The numerical results for the dynamic behaviour of concentration are obtained

using MATLAB and analysed in detail. In particular, we explore the stability of

steady-state solutions for the reaction-diffusion equation. Numerical decay rates

obtained using the method of lines are compared with the theoretical predictions

derived from the eigenvalues of the modified Laplacian matrix, as discussed in

Chapter (2). This provides a comprehensive understanding of both the dynamic

and steady-state behaviours of reaction-diffusion systems on networks.
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4.1 Reaction diffusion equation

Reaction–diffusion equations have been used primarily in chemical physics to

model the evolution of concentration and temperature distributions in reactive

and diffusive systems. The theoretical foundations of reaction–diffusion waves

were established in the 1930s by works by Fisher and Kolmogorov, Petrovskii,

Piskunov on the propagation of the dominant gene, and Zeldovich,

Frank-Kamenetskii in combustion theory. They have introduced the scalar

reaction–diffusion equation:

ut(x, t) = uxx(x, t) + f(u), (4.1.1)

where f(u) represents the reaction term [44]. This equation serves as the

foundation for understanding a wide variety of phenomena, including wave

propagation in biological, chemical, and physical systems.

The Fisher equation shows the interplay between non-linear reaction mechanisms

and spatial diffusion, which leads to phenomena such as wave propagation and

spatial patterning.

ut(x, t) = u(1 − u) + Duxx(x, t), (4.1.2)

where u(x, t) represents the concentration of chemical, u(1−u) is a given function

representing a reaction term which describes the growth dynamics, and D is the

diffusion [18]. We aim to solve this equation using the Method of Lines under

Neumann boundary conditions, continuity constraints, and continuity of flux at

common vertices , enabling the analysis of the dynamic behaviour throughout

the entire network.

Before presenting a discussion of the Method of Lines and its implementation for

a network, it is instructive to first discuss the possible equilibria and stability

thereof associated with the reaction-diffusion equation, and the particular form

of the Fisher equation. This we do in the next section.
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4.2 Steady-state and stability analysis for the

reaction-diffusion equation

In this section we discuss the possible steady states, for which u = u(t), that can

occur for the reaction-diffusion equation. The next subsection is devoted to this

point. The following two subsections discuss stability.

4.2.1 Steady states for the reaction-diffusion equation

We consider the partial differential equation

ut = f(u) + Duxx, (4.2.1)

For definiteness we examine the possibility of steady states, u(t), for the graph P2,

that is over the domain 0 ≤ x ≤ 1. The boundary conditions ux(0, t) = ux(1, t) =

0 are imposed. In particular we investigate the behaviour of the solution as t

tends to infinity on a one-edge graph, namely P2. In particular we wish to decide

whether or not the solution u(x, t) can approach a steady state.

Evidently a uniform steady state u = U∗, a constant, is possible provided that

f(U∗) = 0, (4.2.2)

and this depends on the existence of zeros for the function f . In any case our

particular interest here is in non-uniform, that is, spatially-varying, steady states

of the form u = U(x), for some U(x).

If such a steady state exists then it is the infinite time limit of the solution to

equation (4.2.1), i.e.

lim
t→∞

u(x, t) = U(x).

From (4.2.1) we have that

0 = f(U) + DU ′′, (4.2.3)
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where a prime denotes a derivative with respect to x.

We define the spatially-averaged value, m(t), of u(x, t) over the domain 0 ≤ x ≤ 1

to be

m =

∫ 1

0
u(x, t) dx. (4.2.4)

Integrating equation (4.2.1) over the spatial domain, and making use of the

boundary conditions, we obtain an expression relating the time derivative of m

to the integral of f(u) over the domain

dm

dt
=

∫ 1

0
f(u) dx. (4.2.5)

At steady state, we have

dm

dt
= 0,

yielding from (4.2.5) the following equation

∫ 1

0
f(U) dx = 0. (4.2.6)

It is clear from this result that f(U) must change sign in 0 ≤ x ≤ 1.

At this point we specialise to the particular case

f(U) = U(1 − U), (4.2.7)

that is the form of the reaction term in the Fisher equation (4.1.2). In this case we

shall now show that no spatially non-uniform steady states can exist. Equation

(4.2.6) becomes ∫ 1

0
U(1 − U) dx = 0. (4.2.8)

In Figure 4.2.1 we sketch the integrand against U . Evidently for (4.2.8) to hold

we will need 0 < U < 1 over some portion of the domain 0 ≤ x ≤ 1, and U > 1

over some other portion, in order to ensure that f changes sign (note that we do

not allow U < 0, which we consider to be unphysical). In Figure 4.2.2 we sketch
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Figure 4.2.1: Sketch of the Fisher equation reaction term f(U) = U(1−U) against
U showing regions where f(U) is positive (0 < U < 1) and negative (U < 0 and
U > 1).
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Figure 4.2.2: Sketch of one conceivable steady state configuration U(x).

the type of scenario envisaged. Also included in the sketch is the sign of U ′′.

Now from (4.2.3) it must be the case that the sign of U ′′ must be opposite to the

sign of f(U) (since D > 0). This means that in the region in Figure 4.2.2 where

U ′′ < 0 we must have f(U) > 0. But, U > 1 in this region and, according to the

sketch in Figure 4.2.1, when U > 1 we have f(U) < 0 yielding a contradiction.

The same contradiction will be reached for any smooth U(x) and we conclude

therefore that no steady state is possible.

In the case of the Fisher reaction term f(U) = U(1 − U), then, the steady-state
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solution must be constant across the domain. There are two possible steady

states, and these are

U = 0 and U = 1. (4.2.9)

An important question now arises. Which of these two states is stable? This

question will be addressed in the next section.

4.2.2 Stability analysis for the reaction-diffusion equation on a

network

In (4.2.9) we noted that for the Fisher equation there are two possible steady

states, namely u = 0 and u = 1. While that section was devoted to the graph P2,

it is clear that either of the steady states in (4.2.9) can be attained in principle

on any network. Therefore, in this section, we analyse the stability of the steady

states but broaden the discussion to encompass any network.

We maintain our focus on the Fisher equation, namely

ut = u(1 − u) + Duxx. (4.2.10)

Numerical calculations discussed later in this chapter suggest that in some cases

as t → ∞, the concentration u tends to 1. This suggests that the steady state

u = 1 is stable, while u = 0 is possibly unstable. Herein we analyse carefully the

stability of both steady states. Our results will be compared with the results of

numerical calculations later in the chapter.

To analyse the stability near to u = 0, we assume u is small so that |u| ≪ 1.

Linearising (4.2.10) on this basis we obtain

ut = u + Duxx. (4.2.11)

To solve, we consider a solution of the form u = etq(t, x), which leads upon
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substitution into (4.2.11) to:

etq + etqt = etq + Detqxx.

Simplifying, we obtain the diffusion equation:

qt = Dqxx. (4.2.12)

The decay rates of the diffusion equation on a network were discussed at length

in chapter (2). As discussed there, these are computed by first determining the

eigenvalues of the associated modified Laplacian matrix, L∗ – see section (2.3.1).

We know from section (2.2.5) that ν = µβ, and β = L2

D . Assuming D = L = 1,

then β = 1 and the decay rate is given by ν2, that is q will behave like e−ν2t.

Consequently, u behaves as:

e(1−ν2)t. (4.2.13)

If 1 − ν2 > 0 for any network eigenvalue ν, the steady state u = 0 is unstable;

otherwise if 1 − ν2 < 0 for all network eigenvalues then the steady state u = 0

is stable. However, it is not possible that 1 − ν2 < 0 for all eigenvalues across a

network. For we know that the diffusion problem on any network must have an

eigenvalue corresponding to the zero decay rate µ = 0. In this case 1 − ν2 = 1

which is positive.

To analyse the stability near to u = 1, we write v = 1−u and aim to determine v.

In particular we will assume that v is small so that |v| ≪ 1. Linearising (4.2.10)

on this basis we obtain

vt = −v + Dvxx. (4.2.14)

To solve, we consider a solution of the form v = e−tq(t, x), which leads upon

substitution into (4.2.14) to:

−e−tq + e−tqt = −e−tq + De−tqxx.
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Simplifying, we obtain the diffusion equation:

qt = Dqxx. (4.2.15)

As mentioned above, the decay rates of the diffusion equation on a network were

discussed at length in chapter (2). However, it makes no difference to the outcome

here since as q behaves like e−ν2t it follows that v behaves as

e−(1+ν2)t, (4.2.16)

and hence, since 1 + ν2 > 0 irrespective of the network eigenvalue ν, the steady

state u = 1 is stable.

We can generalise this argument for any reaction-diffusion equation of the form

ut = f(u) + Duxx, (4.2.17)

where f is a non-linear function of u. Suppose for illustration that f(u) = 0 is

satisfied by u = u∗, a constant, i.e. u = u∗ is steady state of the system. In this

case the linearisation procedure carried out above will lead to the linearised form

vt = f ′(u∗)v + Dvxx. (4.2.18)

Making the same change of variable as before from v to q we again obtain the

diffusion equation, and this time the conclusion that for large t, u behaves as

e(m−ν2)t,

where m = f ′(u∗). The stability then depends on the sign of m−ν2. In particular,

if m−ν2 is positive for any eigenvalue ν then the steady state u = u∗ is unstable.

Network Shape νmin Network topology

1 2
π Path graph P2
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Network Shape νmin Network name

1 2 3
π/2 Path graph P3

1 2

3

2.0944 Triangle graph

1 2

3

4
π/2 Y-shaped graph

1 2

34

π/2 Square grid

1 2

3

4 5

1.0472 Butterfly graph

1 2 3

4 5

1.2929 Three Connected triangles

1 2

34

5

1.2310 Envelope graph

1 2

3

4

56
0.8411 Tree graph with 6 vertices

Table 4.1: The smallest decay rate νmin for a range of different networks.

For a given network we can compute the smallest decay rate for the associated
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Figure 4.2.3: Numerical simulation of the Fisher equation (4.2.10) on a butterfly
network (see Table (4.1)). The coloured lines are explained in the text. Each
panel shows the concentration on a particular edge (for subset of all edges).

diffusion problem. Clearly if m < 0 then u∗ is stable since then m − ν2 < 0.

But if m > 0 then u∗ is unstable for the reason given above that ν = 0 is

always an eigenvalue for any network. The latter alludes to the fact that any

spatially-independent concentration u = u(t) will grow over time away from a

steady state at which m > 0. If u = u(t) the network structure is irrelevant.

However, we can attempt to quantify the rate of growth or decay for spatially-

varying perturbations away from a steady state. Of interest in this case is the

smallest ν in absolute value. We call this νmin.

Returning to the form of f for the Fisher equation, viz. f(u) = u(1 − u), we

have m = f ′(0) = 1 as noted above. In Table (4.1) we show values of νmin for an

assortment of networks. In figure 4.2.3 and 4.2.4 we show numerical simulations

for the Fisher equation over the butterfly and envelope networks, whose νmin

value is given in Table (4.1). In each of these figures the initial condition is

shown as the red line, representing a perturbation away from the unstable steady

state u = 0. The blue lines indicate the concentration u on the edges of the

network at later times. The red line shows the final state at the end of the

simulation at t = 75.0.
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Figure 4.2.4: Numerical simulation of the Fisher equation (4.2.10) on a envelope
network (see Table (4.1)). The coloured lines are explained in the text. Each
panel shows the concentration on a particular edge (for subset of all edges).

4.2.3 Stability analysis for P2.

In this section we present a particular case of the stability analysis for the graph

P2. The reaction-diffusion equation is given by:

ut = f(u) + uxx. (4.2.19)

We assume steady states exist at u = 0 and u = 1.

To explore their stability properties we introduce a small perturbation around

the steady-state solution.

For u = 0 we write u = 0 + η(x, t), where |η| ≪ 1. This leads to the linearised

equation:

ηt = f ′(0)η + ηxx, (4.2.20)

where f ′(0) is the derivative of the function f(u) evaluated at u = 0, denoted by

λ. In the case of the Fisher equation, we have f(u) = u− u2, and f ′(0) = 1 = λ.

By assuming η takes the form η(x, t) = eλtq(x, t), we find that q(x, t) satisfies the
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diffusion equation:

qt = qxx. (4.2.21)

We work on the domain [0, L] and assume Neumann boundary conditions at the

ends. We posit the solution in the form

q(x, t) = e−s2tv(x), (4.2.22)

where s is to be determined, and v(x) satisfies the ordinary differential equation:

v′′ + s2v = 0. (4.2.23)

The solution which satisfies the boundary conditions is

v(x) = cos(sx), (4.2.24)

provided that

s =
nπ

L
.

We now have that

q(x, t) = e−s2t cos(sx). (4.2.25)

and hence

η(x, t) = eµt cos(sx),

where

µ = λ− s2 = λ−
(nπ
L

)2
= µn,

say. In the case of the Fisher equation, λ = 1, so that

µ = 1 −
(nπ
L

)2
.

To investigate stability, we analyse the sign of µ. If µ > 0, the perturbations

grow exponentially over time, indicating instability. If µ < 0, the perturbations

decay exponentially, implying stability. When µ = 0, there is neither growth nor
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decay, and the system is said to be neutrally stable.

When n = 1 we obtain µ1 = 1 − π2

L2 < 1. Therefore, if L > π, µ1 is positive,

indicating instability. If L < π, µ1 is negative, indicating stability. The critical

value of L = π corresponds to a neutrally stable mode. When n = 0: In this case,

µ0 = 1 > 0, indicating that the perturbations definitely grow, making the system

unstable, irrespective of the value of L. General case (n ̸= 0 and n ̸= 1): The

stability of the system depends on the values of µn as determined by the domain

size L. In conclusion, this analysis indicates that the stability of the system is

influenced by the mode number n and the domain size L, and provides valuable

insight into the behaviour of perturbations around the steady-state solution.

In summary, as the domain size L increases, the decay rate of the perturbations

tends to converge to a slower rate, approaching a decay rate of 1. This behaviour

is a consequence of the stability analysis and the value of µn. Recall that µn =

λ−s2, where λ = 1 for the specific function f(u) = u−u2 and s = nπ
L (where n is

the mode number). So, µn = 1 − n2π2

L2 . When L is large (compared to the mode

number n), n2π2

L2 becomes small, and consequently µn becomes close to 1. As µn

approaches 1, the decay rate of the perturbations becomes slower, and the system

takes more time to stabilise. In contrast, when L is small (compared to the mode

number n), n2π2

L2 becomes large, and µn moves further away from 1. In this case,

the decay rate is faster and the system stabilizes more quickly. This behaviour is

a fundamental characteristic of the stability analysis and is consistent with the

behaviour of perturbations around the steady-state solution in the context of the

Fisher equation.

Note that the above analysis can be repeated for the steady state at u = 1, with

the result that the corresponding value of µ is given by

µ = 1 −
(nπ
L

)2
. (4.2.26)
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4.3 Method of Lines

The Method of Lines (MOL) is a numerical technique that simplifies the

solution of partial differential equations (PDEs) by discretizing the spatial

domain into discrete grid points while keeping the time variable continuous.

This approach transforms the original PDE into a system of ordinary

differential equations (ODEs), which can then be solved using established

time-integration methods [38].

For the Fisher equation:

ut = u(1 − u) + Duxx, (4.3.1)

consider a spatial domain [0, 1] that is divided into N grid points:

xi = (i− 1)h, h =
1

N − 1
, i = 1, 2, . . . , N. (4.3.2)

The equation is then approximated at each grid point using finite differences.

The second derivative uxx is discretized as:

uxx ≈ ui+1 − 2ui + ui−1

h2
(4.3.3)

where ui(t) denotes the value of u at the i-th grid point at time t. Substituting

this approximation into the Fisher equation (4.3.1) results in a system of ODEs

for the interior grid points:

dui
dt

= f(ui) + D
ui+1 − 2ui + ui−1

h2
, i = 2, . . . , N − 1. (4.3.4)

Boundary conditions are essential to ensure the physical realism of the solution.

We impose Neumann boundary conditions, which specify zero flux at the domain

boundaries:

ux(0, t) = A, and ux(1, t) = B.
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4.3.1 Method of lines for path graph P2

To start applying the method of lines on the network, we will start with the

simple case P2 (see 4.3.1), which contains two vertices connected by a single edge.

The boundary condition will be imposed on the vertices 1, 2. The concentration

at spatial point is denoted by u
(1)
i , where 1 represents the edge index, and i

represents the spatial node within the element. This section details how boundary

conditions are incorporated into the numerical solution.

Boundary conditions

At vertex 1, the zero-flux boundary condition is imposed, expressed as:

du
(1)
1

dt
= f

(
u
(1)
1

)
+ D

1

h2

(
u
(1)
2 − 2u

(1)
1 + u

(1)
0

)
, (4.3.5)

where u
(1)
0 is a fictitious point outside the domain on edge e12. To satisfy the

zero-flux condition, we impose:

u
(1)
2 − u

(1)
0 = 0, (4.3.6)

which implies:

u
(1)
0 = u

(1)
2 . (4.3.7)

Substituting this relation into Equation (4.3.5), we obtain:

du
(1)
1

dt
= f

(
u
(1)
1

)
+ D

1

h2

(
2u

(1)
2 − 2u

(1)
1

)
. (4.3.8)

At vertex 2, the zero-flux boundary condition is similarly expressed as:

du
(1)
N

dt
= f

(
u
(1)
N

)
+ D

1

h2

(
u
(1)
N+1 − 2u

(1)
N + u

(1)
N−1

)
, (4.3.9)
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1 2
e12

Figure 4.3.1: A path graph P2 with two vertices.

Figure 4.3.2: Evaluation of concentration u(x, t) over time for a Fisher equation.

where u
(1)
N+1 is a fictitious point on the end of edge 1. To enforce the zero-flux

condition, we impose:

u
(1)
N+1 − u

(1)
N−1 = 0, (4.3.10)

which implies:

u
(1)
N+1 = u

(1)
N−1. (4.3.11)

Substituting this into Equation (4.3.9), we obtain:

du
(1)
N

dt
= f

(
u
(1)
N

)
+ D

1

h2

(
−2u

(1)
N + 2u

(1)
N−1

)
. (4.3.12)

For the interior mesh point on that network, we will apply the discretised equation

(4.3.4).

4.3.2 Numerical results and analysis for path graph P2

For the path graph P2, (see Figure 4.3.1), numerical simulations were performed

using the method of lines to solve the reaction-diffusion equation:

ut = u(1 − u) + Duxx,
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(a)

(b)

(c)

Figure 4.3.3: Solution on a P2 graph. (a) In the limit as time t tends to infinity,
the maximum value of the concentration u, denoted as umax, approaches 1. (b)In
the limit as time t tends to infinity, the complement of the maximum value of u,
denoted as 1 − umax, approaches 0. (c) Plot provides a visual representation of
the decay behaviour of the logarithm of 1−umax over time and compares it with
the red dashed expected decay rate. The red dashed line has slope −1 which
corresponds to the value of µ given in (4.2.26) taking n = 0.

the topology of the graph was represented by its adjacency matrix. The following

parameters were used for the calculation:

• Diffusivity (D): 1.0.

• Number of grid points at the edge (N): 80.

• Length of edge (L): 1.0.

• Time span: 0 ≤ t ≤ 8.0.

The Neumann boundary conditions ux(0, t) = ux(1, t) = 0 were applied. A

Gaussian pulse was chosen as the initial condition.

Figure (4.3.2) shows the evolution of concentration u(x, t) over time. The initial

Gaussian pulse (red curve) diffuses and reacts according to the Fisher equation.
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At intermediate times, the profile is shown in blue and as t → ∞, the solution

approaches the final step (green line).

Figure (4.3.3) (a) shows the maximum concentration umax) that was tracked over

time. Initially, umax increases rapidly due to the dominating reaction term, before

gradually approaching u = 1. Figure (4.3.3) (b)In the limit as time t tends

to infinity, the complement of the maximum value of u, denoted as 1 − umax,

approaches 0. Figure (4.3.3) (c) is a plot of ln(1 − umax) versus t that exhibits a

linear trend at large times, confirming the exponential convergence of the solution

to the steady state. The observed decay rate matches the theoretical prediction

(red dashed line) of −1, derived from the linearised reaction term at u = 1.

4.3.3 Method of Lines for path graph P3

In this section, we consider a path graph P3 (see Figure 4.3.4) consisting of three

vertices, which represent two edges to have a clear picture to start applying the

method of lines on the network. The boundary conditions are imposed at the two

boundary vertices (1 and 3), while vertex 2 serves as a common vertex between

the two edges. The concentration at each spatial point is denoted by u
(k)
i , where

k represents the edge index, and i represents the spatial discretization points

within the edge. This section details how boundary conditions and continuity

conditions are incorporated into the numerical solution.

1 2 3
e12 e23

Figure 4.3.4: path graph P3 with three vertices connected by two edges.

Boundary vertices

At vertex 1, the zero-flux boundary condition is imposed, expressed as:

du
(1)
1

dt
= f

(
u
(1)
1

)
+ D

1

h2

(
u
(1)
2 − 2u

(1)
1 + u

(1)
0

)
, (4.3.13)
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where u
(1)
0 is a fictitious point outside the domain on edge e12. To satisfy the

zero-flux condition, we impose:

u
(1)
2 − u

(1)
0 = 0, (4.3.14)

which implies:

u
(1)
0 = u

(1)
2 . (4.3.15)

Substituting this relation into Equation (4.3.13), we obtain:

du
(1)
1

dt
= f

(
u
(1)
1

)
+ D

1

h2

(
2u

(1)
2 − 2u

(1)
1

)
. (12.6)

At vertex 3, the zero-flux boundary condition is similarly expressed as:

du
(2)
N

dt
= f

(
u
(2)
N

)
+ D

1

h2

(
u
(2)
N+1 − 2u

(2)
N + u

(2)
N−1

)
, (4.3.16)

where u
(2)
N+1 is a fictitious point on edge 2. To enforce the zero-flux condition, we

impose:

u
(2)
N+1 − u

(2)
N−1 = 0, (4.3.17)

which implies:

u
(2)
N+1 = u

(2)
N−1. (4.3.18)

Substituting this into Equation (4.3.16), we obtain:

du
(2)
N

dt
= f

(
u
(2)
N

)
+ D

1

h2

(
−2u

(2)
N + 2u

(2)
N−1

)
. (12.8)

Common vertex

At vertex 2, which is a common vertex between the two edges, the discretized

equations for the mesh points N on the first edge and 1 on the second edge are

given by:

du
(1)
N

dt
= f

(
u
(1)
N

)
+ D

1

h2

(
u
(1)
N+1 − 2u

(1)
N + u

(1)
N−1

)
, (4.3.19)
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du
(2)
1

dt
= f

(
u
(2)
1

)
+ D

1

h2

(
u
(2)
2 − 2u

(2)
1 + u

(2)
0

)
. (4.3.20)

Here, u
(1)
N+1 on edge 1 and u

(2)
0 on edge 2 are fictitious points used to enforce

continuity of concentration and flux at the junction.

To ensure the continuity of concentration at vertex 2:

u
(1)
N = u

(2)
1 . (4.3.21)

As well as to ensure the continuity of flux at vertex 2, the following condition is

imposed:

u
(1)
N+1 − u

(1)
N−1 = u

(2)
2 − u

(2)
0 , (4.3.22)

which simplifies to:

u
(2)
0 + u

(1)
N+1 = u

(1)
N−1 + u

(2)
2 . (4.3.23)

Adding Equations (4.3.19) and (4.3.20), and using the continuity condition from

Equation (4.3.23), we obtain:

d

dt

(
u
(1)
N + u

(2)
1

)
=
(
f
(
u
(1)
N

)
+ f

(
u
(2)
1

))
+

2D

h2

(
−u

(1)
N + u

(1)
N−1 + u

(2)
2 − u

(2)
1

)
.

(4.3.24)

Let R denote the right-hand side of Equation (4.3.24), such that:

R =
(
f
(
u
(1)
N

)
+ f

(
u
(2)
1

))
+

2D

h2

(
−u

(1)
N + u

(1)
N−1 + u

(2)
2 − u

(2)
1

)
. (4.3.25)

Since u
(1)
N = u

(2)
1 , the temporal evolution at the junction is given by:

du
(1)
N

dt
=

1

2
R. (4.3.26)
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(a) (b)

Figure 4.3.5: On the path graph P3(a) the concentration profile u(x, t) over time
for a Fisher equation for P3 on first edge. (b) the propagation of the concentration
u(x, t) to the second edge due to the continuity condition apply.

4.3.4 Numerical results and analysis for path graph P3

For the path graph P3, (see Figure 4.3.4), the numerical simulation obtained

using the line method to solve the reaction-diffusion equation:

ut = u(1 − u) + Duxx

on P3 with the following parameters used:

• Diffusion coefficient D = 1.0.

• Spatial discretization: 200 grid points per edge.

• Edge length L = 10.0.

• Time interval: t ∈ [0, 15].

The initial condition was a Gaussian pulse centred at x = 5 on the first edge.

The Neumann boundary conditions were applied on the boundary vertices, and

the continuity of flux and concentration was applied on the common vertex. The

results are as follows:

• Figure (4.3.5)(a,b) shows the evolution of the concentration u(x, t) over

time on the graph P3. The initial Gaussian pulse, applied on the first
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(a)

(b)

(c)

Figure 4.3.6: On the path graph P3,(a) In the limit as time t tends to infinity,
the maximum value of the concentration u, denoted as umax, approaches 1. (b)In
the limit as time t tends to infinity, the complement of the maximum value of u,
denoted as 1 − umax, approaches 0. (c) Plot provides a visual representation of
the decay behaviour of the logarithm of 1−umax over time and compares it with
the red dashed expected decay rate.

edge (red curve), undergoes diffusion and reaction according to the non-

linear diffusion equation. At intermediate times, the concentration profile

(blue) shows the smoothing and spreading effects of diffusion. As t → ∞,

the solution stabilises and approaches the final steady-state profile (green

line). Notably, the diffusion spreads to the second edge, as a result of

the continuity conditions for both concentration and flux imposed at the

common vertex. These conditions ensure a smooth transition and consistent

flux across the network.

• Figure (4.3.6) (a) shows the flux at the boundaries of the first edge

tracked over time. The flux initially oscillates as the concentration

stabilises before settling into a steady-state value. (b) illustrates the

maximum concentration umax on the first edge , which increases rapidly at
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Figure 4.3.7: On the path graph P3, the black dots represent the flux entering
edge 2 through vertex 2 the tail of edge 1 and the blue curve shows the flux
entering edge 2 through its head vertex 2.

first due to the non-linear growth term, then gradually converges to u = 1.

(c) is a plot of ln(1 − umax) versus t, showing a linear trend at large times.

This confirms the exponential convergence of the solution to the steady

state. The observed decay rate matches the theoretical prediction (red

dashed line) derived from the linearised equation at u = 1.

• Figure (4.3.7) shows the flux dynamics at the edge boundary over time.

The flux at the tail of the first edge is represented by the black dotted

line, while the flux at the head of the second edge is shown in blue.

Notably, the two flux profiles overlap perfectly, demonstrating the

accurate enforcement of flux continuity across the common vertex. This

result validates the implementation of both the continuity of flux and

concentration conditions in the numerical simulation.

4.3.5 Method of lines on general network

In this section, we analyse a network with N vertices. The boundary conditions

outlined in Section (4.3.3) remain applicable to this general network. Here, we

focus on interior mesh points along the edges, excluding the boundary grid points

and the common vertices. Additionally, we address the behaviour at common

vertices where more than two edges intersect. These will allow us to handle
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different network topologies.

Network common vertices

To enforce the continuity of flux at the common vertices i, the flux balance

equation is written as: ∑
k∈S(i)

+

qHk −
∑

k∈S(i)
−

qTk = 0, (4.3.27)

Here, qHk and qTk represent the head and tail fluxes for edges eki and eik,

respectively, and where the sets:

• S
(i)
+ = {j ∈ V : j > i and aij = 1} denotes the set of vertices connected to

node i with indices greater than i.

• S
(i)
− = {j ∈ V : j < i and aij = 1} denotes the set of vertices connected to

node i with indices less than i.

Here, aij is the ijth element of the adjacency matrix A for the network, and V is

the set of all vertices in the network. Using the finite difference approximation

for the flux, we have:

For S
(i)
+ : qHk =

u
(e)
2 − u

(e)
0

2h
, For S

(i)
− : qTk =

u
(e)
N+1 − u

(e)
N−1

2h
,

and e is the edge label. Substituting these into Equation (4.3.27), we obtain:

∑
e∈CH

i

u
(e)
2 − u

(e)
0

2h
−
∑
e∈CT

i

u
(e)
N+1 − u

(e)
N−1

2h
= 0, (4.3.28)

where CH
i and CT

i represent the edges group hosting vertex i as either head or

tail at common vertex i, respectively.

At a common vertex i, the governing equation for the edges hosting node i as a
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head is:

du
(e)
1

dt
= f

(
u
(e)
1

)
+

D

h2

(
u
(e)
2 − 2u

(e)
1 + u

(e)
0

)
, for e ∈ CH

i , (4.3.29)

and as a tail is:

du
(e)
N

dt
= f

(
u
(e)
N

)
+

D

h2

(
u
(e)
N+1 − 2u

(e)
N + u

(e)
N−1

)
, for e ∈ CT

i . (4.3.30)

Combining Equations (4.3.29) and (4.3.30), we can write the total contribution

to the flux balance as:

∑
e∈CH

i

du
(e)
1

dt
+
∑
e∈CT

i

du
(e)
N

dt
= Q, (4.3.31)

where Q is given by:

Q =
∑
e∈CH

i

[
f
(
u
(e)
1

)
+

D

h2

(
u
(e)
2 − 2u

(e)
1

)]

+
∑
e∈CT

i

[
f
(
u
(e)
N

)
+

D

h2

(
−2u

(e)
N + u

(e)
N−1

)]

+
D

h2

 ∑
e∈CH

i

u
(e)
0 +

∑
e∈CT

i

u
(e)
N+1

 . (4.3.32)

From Equation (4.3.28), we can also express the flux continuity condition as:

∑
e∈CH

i

u
(e)
0 +

∑
e∈CT

i

u
(e)
N+1 = S, (4.3.33)

where:

S =
∑
e∈CH

i

u
(e)
2 +

∑
e∈CT

i

u
(e)
N−1. (4.3.34)

Using the equality u
(e)
1 = u

(e)
N for all e ∈ CH

i ∪ CT
i , Equation (4.3.32) can be
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rewritten as:

M
du

(e)
1

dt
=
∑
e∈CH

i

[
f
(
u
(e)
1

)
+ D

1

h2

(
u
(e)
2 − 2u

(e)
1

)]

+
∑
e∈CT

i

[
f
(
u
(e)
N

)
+ D

1

h2

(
−2u

(e)
1 + u

(e)
N−1

)]

+ S, (4.3.35)

where M is the total number of edges hosting common vertex i.

4.3.6 Numerical results and analysis for general network

In this section, we present numerical solutions to the reaction-diffusion equation

ut = u(1 − u) + Duxx, (4.3.36)

on different network structures using the method of lines. To ensure consistency,

Neumann boundary conditions are applied at the boundary vertices (see Section

4.3.1) and continuity of concentration and flux is enforced at the common vertices,

as discussed in detail in Section (4.3.5) .

The connectivity of each network is described by its adjacency matrix A, and

the degree matrix D is calculated as a diagonal matrix where each diagonal

entry represents the degree of the corresponding vertex. The theoretical growth

or decay rate of the solution is determined by the eigenvalues of the modified

Laplacian matrix L∗, defined as:

L∗ = A− cos(ν)D. (4.3.37)

Here, cos(ν) corresponds to an eigenvalue λ such that cos(ν) = λ. Rewriting the

equation, we have:

L∗ = A− λD. (4.3.38)
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For any given network, the eigenvalues of the modified Laplacian matrix L∗ can be

calculated numerically. Then, using the relation cos−1(λ) = ν, we can compute

the decay rate ν for any network by choosing the smallest positive decay rate ,

which corresponds to the slowest mode of diffusion in the network. Then, compare

it with the theoretical growth rate calculated using eigenvalue analysis. Now, we

will discuss two specific examples to demonstrate this approach.

Triangle graph

In this section, we extend our analysis to a triangle graph (see Figure 4.3.8) which

is a cycle graph with three vertices arranged as a triangle. The reaction diffusion

equation

ut = u(1 − u) + Duxx

is solved numerically using the method of lines. As all vertices are common

vertices, the continuity of flux and concentration is maintained at all the common

vertices. The following parameters used:

• Diffusion coefficient D = 1.0.

• Spatial discretization: 200 grid points per edge.

• Edge length L = 15.0.

• Time interval: t ∈ [0, 16].

• h = 0.0754

The numerical results of the calculation are as follows:

• Figure 4.3.9(a) The concentration profile of the Fisher equation on the

triangle graph where the Gaussian is set as the initial condition at the first

edge (red) and we can see the intermediate time (blue) until we approach

the steady state u = 1. (b, c) Propagation of the concentration from the

edge e12 to the other edges of the graph.
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1

2 3

e12

e23

e31

Figure 4.3.8: Cycle graph with 3 vertices arranged as a triangle

(a) (b)

(c)

Figure 4.3.9: Solution on the triangle graph, (a) the concentration profile u(x, t)
over time for a Fisher equation for triangle graph,the initial condition (red), the
intermediate time steps (blue), and the final step (green). (b,c) the propagation
of the concentration u(x, t) to rest of the edges due to the continuity condition
apply.

• The numerical convergence of our results is established in Figure 4.3.10 (a)

which shows that convergence is achieved on reducing the size of the mesh

spacing h = 0.005 by reducing the edge length L = 1, and in figure 4.3.10

(b) which shows that convergence is achieved on increasing the size of the

mesh spacing h = 0, 15 by increasing the edge length L = 30.

• Figure 4.3.11(a) illustrates the plot of um, which represents the maximum

value of the concentration u, as a function of time on the first element.

This plot demonstrates the evolution of the maximum concentration value
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(a) (b)

Figure 4.3.10: Numerical converge study in triangle graph. Showing the the
concentration profile u(x, t) over time for a Fisher equation for triangle graph on
edge e12, condition (red), the intermediate time steps (blue), and the final step
(green). Comparison shown for: (a) h = 0.005, L = 1, and (b) h = 0.15, L = 30.

(a)

(b)

(c)

Figure 4.3.11: On the triangle graph,(a) In the limit as time t tends to infinity,
the maximum value of the concentration u, denoted as umax, approaches 1. (b)In
the limit as time t tends to infinity, the complement of the maximum value of u,
denoted as 1 − umax, approaches 0. (c) Plot provides a visual representation of
the decay behaviour of the logarithm of 1−umax over time and compares it with
the red dashed expected decay rate.

on the first element over time. In particular, as time approaches infinity, it

is evident that the concentration u tends to 1.

• Figure4.3.11(b) shows the behaviour of the function 1−u, which represents
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Figure 4.3.12: The flux entering edge e23 through vertex 2 as a tail of edge e12
(black dots) and as a head of edge e23 (blue)

the complement of the maximum concentration u, as a function of time.

This plot shows the evolution of the complement of the maximum value of

u over time. In particular, it is evident that the function tends to 0 as time

approaches infinity.

• Figure4.3.11(c) presents the plot of the natural logarithm of 1 − u as a

function of time. The dashed red line corresponds to the theoretical

calculation based on equation (4.2.16), which represents a linear decay

with time.

• Figure 4.3.12 shows the flux entering edge e23 through vertex 2 as a tail

of edge e12 (black dots) and as a head of edge e23 (blue) which shows

agreement of the flux as a result of continuity of concentration and flux

conditions applied.

Tree graph with 6 vertices

In this section, we extend our analysis to a tree graph with six vertices (see Figure

4.3.13). The reaction diffusion equation

ut = u(1 − u) + Duxx
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Figure 4.3.13: Tree graph with 6 vertices.

is solved numerically using the method of lines. The zero flux conditions are

applied on the boundary vertex, and the continuity of concentration and flux are

applied one the common vertices. The numerical result is obtained as follows:

• Figure (4.3.14)(a) The concentration profile of the Fisher equation on the

tree graph with 6 vertices and 5 edges, where the Gaussian is set as the

initial condition at the first edge (red) and we can see the intermediate time

(blue) until we approach the steady state u = 1. (b, c, d, e) Propagation

of the concentration from the edge e13 to the rest of edges of the graph.

• Figure (4.3.15(a)) illustrates the plot of um, which represents the maximum

value of the concentration u, as a function of time on the first element.

This plot demonstrates the evolution of the maximum concentration value

on the first element over time. In particular, as time approaches infinity, it

is evident that the concentration u tends to 1.

• (4.3.15(b)) shows the behaviour of the function 1− u, which represents the

complement of the maximum concentration u, as a function of time. This

plot shows the evolution of the complement of the maximum value of u

over time. In particular, it is evident that the function tends to 0 as time

approaches infinity.

• (4.3.15(c)) presents the plot of the natural logarithm of 1−u as a function of

time. The dashed red line corresponds to the theoretical calculation based

on equation (4.2.16), which represents a linear decay with time.
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(a) (b)

(c) (d)

(e)

Figure 4.3.14: the concentration profile u(x, t) over time for a Fisher equation for
tree graph with 6 edges. (a) on the first edge applied the initial condition (red),
the intermediate time (blue), the final time (green).(b,c,c,d,e) the propagation
of the concentration u(x, t) to the rest of edges on the graph as a result of the
continuity conditions apply.

• Figure (4.3.16) shows the flux distribution at vertex 4, where it acts as the

tail of edge e34 (black dots) and the head of edges e45 (blue dots) and e46

(red dashed line). The flux originating from edge e34 is evenly distributed

between edges e45 and e46, demonstrating the accurate enforcement of the

continuity of both concentration and flux conditions at the common vertex.
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(a)

(b)

(c)

Figure 4.3.15: On the tree graph with 6 vertices,(a) In the limit as time t
tends to infinity, the maximum value of the concentration u, denoted as umax,
approaches 1. (b)In the limit as time t tends to infinity, the complement of the
maximum value of u, denoted as 1 − umax, approaches 0. (c) Plot provides a
visual representation of the decay behaviour of the logarithm of 1 − umax over
time and compares it with the red dashed expected decay rate.

Figure 4.3.16: The flux entering edge e45 and e46 through vertex 4 as a tail of
edge e34 (black dots) and as a head of edge e45 (blue dots) and e46 (red dashed).



5

The FitzHugh–Nagumo model:

simulation of pulse dynamics in

network

In this chapter, we use the Fitzhugh-Nagumo (FHN) model to simulate pulse

dynamics in network structures, inspired by Annalisa’s observations of

pulse-like phenomena in calcium wave dynamics. The model comprises two

coupled reaction-diffusion equations for membrane potential and recovery

variables, used to examine pulse propagation mechanisms in networks. Initial

exploration focuses on simpler network topologies like path graphs, extending to

complex configurations like Y-shaped networks. Pulses are initiated by external

forces at head nodes, and their propagation is studied in one-dimensional and

multi-edge networks. The chapter highlights how network topology affects pulse

splitting and propagation at junctures. Additionally, it addresses boundary

conditions, introduces numerical methods such as finite-difference and

time-stepping techniques for solving FHN equations, and investigates

bifurcation points and the stability of pulse solutions. The study concludes with

findings on how pulse behaviour depends on network structure and parameters.



Chapter 5: The FitzHugh–Nagumo model: simulation of pulse dynamics in
network 142

5.1 The FitzHugh–Nagumo model

In the 1960s, the FitzHugh-Nagumo (FHN) model was developed in neuroscience

as a simplified model to represent the behaviour of excitable neuron cells. Despite

its origins, this equation is also applicable in cardiac physiology, cell division,

population dynamics, electronics, and other natural phenomena [16].

The present work builds upon the foundational study by Argentina (2000) [1],

who investigated head-on collisions of pulses in the FitzHugh-Nagumo system

on infinite one-dimensional domains. Argentina demonstrated that for negative

values of parameter a, pulses can either annihilate or pass through each other

depending on the parameter values. We adopt their parameters and model

formulation as our starting point. However, our contribution extends this work

in several novel directions:

• Network extension: While Argentina studied pulse dynamics in infinite 1D

domains, we extend the FHN model to network structures, developing new

boundary conditions and continuity constraints at network vertices.

• Pulse splitting discovery: We demonstrate a new phenomenon where

pulses seamlessly split at network junctions, propagating along multiple

edges while preserving their shape and amplitude - a behaviour not

present in the original 1D setting.

• Network specific analysis: We develop new mathematical tools including

modified Laplacian matrices L∗ ↔ (k) and network-adapted Chebyshev

methods to analyse pulse dynamics across different network topologies.

In this chapter, we use the one-dimensional form of that model with non-zero

diffusion coefficients for both species. The model is governed by two coupled



Chapter 5: The FitzHugh–Nagumo model: simulation of pulse dynamics in
network 143

reaction-diffusion equations [1]:

∂u

∂t
=

∂2u

∂x2
− u(u− 1)(u− a) − v, (5.1.1)

∂v

∂t
= λ(u− bv) + δ

∂2v

∂x2
, (5.1.2)

where u(x, t) represents the voltage in the axon and v(x, t) represents a recovery

variable which allows the axon to return to its rest state . The parameter λ

indicates the relative time scales of these variables and typically acts as a small

parameter. The excitable dynamics are influenced by the parameter a, while the

diffusivity ratio is represented by δ > 0 [1]. As is usual in the study of these

equations, we assume that λ > 0 and b > 0. Normally the assumption is that

0 < a < 1 (see, for example, [6]). Here, however, we will allow a to take either

sign. This step is motivated by the work of Argentina [1], who found complex and

interesting dynamics when a is negative. As is well known for the FHN system,

there exist pulse solutions which propagate at constant speed, and it has been

shown that the dynamics when two pulses are involved can pivot delicately on

the choice of parameter values and that, in particular, two pulses that approach

each other may either pass through each other or else annihilate, possibly leaving

behind a non-uniform equilibrium state.

We shall investigate the dynamics of pulse solutions to the FHN equations on

a network and determine non-uniform states and analyse their stability. The

parameter values from Argentina provide the excitable system necessary for our

network studies, but the phenomena we observe - particularly pulse splitting and

network-topology-dependent bifurcations - are entirely new contributions to the

field.

To study pulse dynamics on a network we employ the method of lines, as outlined

in chapter 4, adapting it to solve the set of non-linear equations inclusive of

the reaction term. This involves using discretization and explicit time-stepping

techniques. Our investigation seeks to understand the impact of network topology
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0 1
e12

Figure 5.2.1: A path graph P2 with two vertices.

on spatio-temporal pulse behaviour.

5.2 Numerical simulation of pulse dynamics

5.2.1 Forcing effects on a path graph P2

In this section, we solve the FitzHugh-Nagumo model

∂u

∂t
=

∂2u

∂x2
− u(u− 1)(u− a) − v, (5.2.1)

∂v

∂t
= λ(u− bv) + δ

∂2v

∂x2
, (5.2.2)

on a path graph P2 connecting two vertices (see figure 5.2.1), by using the method

of lines. Neumann boundary conditions are applied at both ends, and an external

forcing function h(t) = −t3e−t is applied exclusively to the head vertex which

means setting the value of ux at x = 0 to be h(t). This is done in order to

stimulate the generation of a pulse solution.

The system is solved with the following specifications:

• Spatial domain: [0, L] with L = 65

• Spatial discretization: N = 100 points

• Temporal domain: t ∈ [0, 80]

• h = 0.6566

• The parameters of the model a = 0.02, b = 0.01, c = 0.01, λ = 1, and δ = 0.

The final profile of the calculation (see figures 5.2.4 and 5.2.5). When the

forcing ceases, the system returns to a stable homogeneous state. This
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Figure 5.2.2: on P2 graph, pulse dynamics of u(x, t) under forcing at the head
vertex. The blue curve represents the voltage in the axon, The red line represents
the initial concentration, the black curve represents the final time profile of
concentration, and the blue curves show intermediate profiles over time.

Figure 5.2.3: Recovery dynamics of v(x, t) on a P2 under forcing at the head node.
The red line represents the initial concentration, the black curve represents the
final time profile of concentration, and the blue curves show intermediate profiles
over time.

behaviour highlights the localised impact of external stimuli on network

dynamics.

This asymmetric stimulation induces localised oscillations in both u and v,

which propagate along the edge and decay as they move away from the

stimulus. Figures 5.2.2 and 5.2.3 illustrate the behaviour of u(x, t) and v(x, t)

over time, respectively.

Figure (5.2.6) displays the temporal evolution of the maximum amplitudes for

both the membrane potential (u) and recovery variable (v) as functions of time.

The membrane potential u exhibits an initial rapid increase, reaching its global

maximum shortly after t = 0. The recovery variable v shows a delayed response,

consistent with its role as a slow variable in the system. The system approaches
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Figure 5.2.4: Final profile pulse of the voltage in the axon on P2.

Figure 5.2.5: Final profile of recovery dynamics of v(x, t) on a P2.

a steady state as t → ∞.

5.2.2 Forcing effects on a Y-shaped graph

In this section, we extend our analysis of pulse dynamics within a Y-shaped

graph, as illustrated in Figure (5.2.7). In that graph, a force function denoted

as h(t) = −t3e−t is applied to vertex 1 located at the head of the edge e12. This

application of force to that edge initiates the propagation of a pulse over the

network as a result of the continuity of concentration and flux conditions that

are applied on the common vertex 2.

Upon reaching the common vertex (2) of that graph , the pulse seamlessly splits

into two parts, each continuing its journey along the two downstream edges.

This captivating phenomenon mirrors binary switching behaviours analogous to

neuronal axon potentials at synapses. Significantly, the pulse retains its shape,

speed, and amplitude after splitting, underlining the deterministic nature of the

network topology, which consistently divides the pulse equally between the two

branches see figure (5.2.8) and (5.2.9).
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Figure 5.2.6: Temporal evolution of maximum amplitudes for membrane potential
(u, blue) and recovery variable (v, black) over time.

1 3

2

4

e12 e23

e24

Figure 5.2.7: Y-shape graph with four vertices and three edges

The results presented in Figures (5.2.10) and (5.2.11) show the temporal evolution

of the activator variable u and the inhibitor variable v across the network edges.

The black lines represent the values at the head vertex of each edge, while the

blue lines indicate the values at the tail vertex. For u, the initial Gaussian

pulse propagates through the network, and its amplitude decreases over time

due to dissipation. The inhibitor variable v follows behind u, as dictated by

the FitzHugh-Nagumo model, and maintains a smaller amplitude compared to

u. These dynamics highlight the interaction between the activation and recovery

processes in the model. Additionally, the plots reveal how the network structure

influences the timing and magnitude of the signals, emphasising the importance

of continuity of concentration and flux conditions in ensuring smooth transitions

between edges.



Chapter 5: The FitzHugh–Nagumo model: simulation of pulse dynamics in
network 148

(a) (b)

(c)

Figure 5.2.8: On the Y-shaped graph, the pulse which represent the voltage in
the axon seamlessly splits into two parts, each continuing its journey along the
two downstream edges. (a) shows the force function apply on vertex 1 at edge
e12 then we see (b,c) the pulse splits between other edges at common vertex 2
as a result of the continuity of concentrations and flux conditions.The final time
step (black), the intermediate time (blue) and the initial condition (red).

5.3 Spatial dynamics of FitzHugh-Nagumo system

5.3.1 Analysis of stationary solutions

In this section we discuss stationary solutions to the FitzHugh-Nagumo equations,

namely

ut = −v − u(u− 1)(u− a) + uxx (5.3.1)

and

vt = λ(u− bv) + δvxx (5.3.2)

Note that the v equation includes a diffusion term. To analyse the spatial

structure of stationary waves, we seek solutions where ut = vt = 0 for Equations
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(a) (b)

(c)

Figure 5.2.9: On the Y-shaped graph, the pulse which represent the recovery
variable seamlessly splits into two parts, each continuing its journey along the
two downstream edges. (a) shows the force function apply on vertex 1 at edge
e12 then we see (b,c) the pulse splits between other edges at common vertex 2
as a result of the continuity of concentrations and flux conditions.The final time
step (black), the intermediate time (blue) and the initial condition (red).

(5.3.1) and (5.3.2) and define ω = λ
δ . This yields the system:

uxx = v + f(u) (5.3.3)

and

vxx = ω(bv − u), (5.3.4)

where f(u) = u(u− a)(u− 1) represents the non-linear reaction term.

In order to calculate stationary solutions numerically, the following manipulations

are useful. We multiply equation (5.3.3) by ωux and equation (5.3.4) by vx yields

the following expressions:

ωuxuxx = ωvux + ωuxf(u) (5.3.5)
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(a) (b)

(c)

Figure 5.2.10: On the Y-shaped graph, Time evolution of the voltage in the
axon variable u(x, t) for the edges in of the network. Each subplot represents
the temporal behaviour within a edge. The blue curve highlights the early time
evolution, while the black curve shows the progression toward steady-state. The
figure illustrates how excitation propagates and stabilizes over time.

(a) (b)

(c)

Figure 5.2.11: On the Y-shaped graph, Time evolution of the recovery variable
v(t) for different edges in the network. Each subplot represents the temporal
behaviour within an edge. The blue curve shows the early dynamics, while the
black curve represents the progression toward steady-state. The recovery variable
v(t) follows the excitation variable u(t), reflecting its inhibitory role in the system.

and

vxvxx = ω(vxbv − vxu) (5.3.6)



Chapter 5: The FitzHugh–Nagumo model: simulation of pulse dynamics in
network 151

By subtracting equation (5.3.5) from equation (5.3.6), we obtain:

ωuxuxx − vxvxx = ω(vux + uvx + uxf(u) − bvvx) (5.3.7)

By integrating equation (5.3.7) with respect to x, we obtain:

1

2
(ωu2x − v2x) = ω(vu + g(u) − b

2
v2 + κ), (5.3.8)

where κ is constant, and the function g(u) =
∫
f(u) which is define as:

g(u) =
u4

4
− 1

3
(1 + a)u3 +

au2

2

To analyse the system numerically, we defined the following variables:

u1 = u, u2 = ux, u3 = v, u4 = vx

, Which is transforms the system into matrix form:



u1x

u2x

u3x

u4x


=



u2

u3 + u1(u1 − a)(u1 − 1)

u4

ωbu3 − u1)


.

Alternatively the system can be expressed as:


u1x

u2x

u3x

 =


u2

u3 + u1(u1 − a)(u1 − 1)√
ω(u22 + bu23 − 2u1u3 − 2g − 2κ)


Evaluating this system at x = 0 yields:


u1

u2

u3

 =


unknown

0

unknown

 ,
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(a)

(b)

Figure 5.3.1: In the FitzHugh-Nagumo model on a path graph P2 with parameter
values a = −0.04344, λ = 0.015, δ = 1.25 and b = 3.5.(a) The spatial dynamics
evolution of excitation u (solid line) and the derivative of u (dashed line). (b)
The spatial dynamics evolution of recovery v (solid line) and the derivative of v
(dashed line).

with the boundary conditions ux = vx = 0 at x = 0, the constraint becomes:

uv + g(u) + κ− bv2

2
= 0

This results in a quadratic equation in v:

b

2
v2 − uv − (κ + g) = 0

Solving for v yields:

v =
1

b

[
u±

√
u2 + 4(κ + g)

b

2

]
(5.3.9)

The unknowns in this context are u0 = u(0) and κ, with v0 = v(0) given by

equation (5.3.9). The boundary conditions at x = 0 and x = L are:

ux = vx = 0.

Using MATLAB and adjusting the parameters to a = −0.04344, λ = 0.015,

δ = 1.25 and b = 3.5, and setting the length of the element to 60, we obtain the

following results for u as depicted in Figure 2 of Argentina’s paper [1]. Setting
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the initial value of u0 = 0.32445 the corresponding v0 calculated from equation

(5.3.9), we obtained spatial profiles for both variables on a domain of length 60.

Figure (5.3.1 (a)) shows the spatial profile of the excitation variable u (solid curve)

and its derivative (dashed curve), while Figure (5.3.1 (b)) shows the corresponding

profiles for the recovery variable v (solid curve) and its derivative (dashed curve).

5.3.2 Small amplitude stationary solutions on P2

In this subsection, we seek small amplitude stationary solutions to the time-

independent FitzHugh-Nagumo (FHN) system, namely,

uxx = v + f(u),

δvxx = λ(bv − u),

(5.3.10)

where f(u) = u(u − a)(u − 1) and f(0) = 0. We work on a path graph with

two vertices, P2. The Neumann boundary conditions ux(0) = vx(0) = 0 and

ux(L) = vx(L) = 0 are imposed. We begin by noting that u = v = 0, for all x, is

a trivial solution, and then we seek bifurcations from this state.

To proceed, we linearise about the zero solution. Accounting for the boundary

condition at x = 0, we write

u = εA cos kx, v = εB cos kx, (5.3.11)

where ε ≪ 1, and A and B are to be found. The boundary conditions at x = L

then require that

sin kL = 0

and hence

k =
nπ

L
≡ kn, (5.3.12)

for integer n.

Inserting into the main equations (5.3.10) we obtain the following linearised
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equations:

−Ak2 = B + aA, −δBk2 = λ(Bb−A). (5.3.13)

This leads to the matrix form:a + k2 1

−λ bλ + δk2


A
B

 =

0

0


Solving, we obtain:

δk4 + (bλ + aδ)k2 + λ(1 + ab) = 0. (5.3.14)

With k = kn, where kn is given by (5.3.12), we may rearrange the preceding

expression to obtain the critical values of a, herein labelled anc , at which stationary

states emerge:

anc = −(δk4n + bk2nλ + λ)

δk2n + bλ
. (5.3.15)

at which we expect a bifurcation to occur to a non-trivial state. Since, as was

noted above, λ > 0 and b > 0, it is clear that

anc < 0. (5.3.16)

5.3.3 Arbitrary amplitude stationary solutions on P2

In the previous subsection we computed values of the parameter a at which

we expect bifurcations to non-trivial stationary states to occur. Emerging from

these bifurcation points we expect to find solution branches that lead to arbitrary

amplitude stationary solutions. Such solutions cannot be found analytically and

must be computed numerically. We address the latter in the current subsection.

The computations will be done spectrally by expanding the unknown functions

in series of Chebyshev polynomials.
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Let us start by writing down the FitzHugh-Nagumo equations, viz,

ut = −v − u(u− a)(u− 1) + uξξ,

vt = λ(bv − u) + δvξξ,

(5.3.17)

where a, b, λ, and δ are given constants. Here we use ξ as the independent

variable defined over the single edge of the P2 graph, so that ξ ∈ [0, L].

In the steady state (ut = vt = 0), the equations reduce to:

0 = −v − u(u− a)(u− 1) + uξξ,

0 = λ(bv − u) + δvξξ.

(5.3.18)

We seek static solutions with Neumann boundary conditions at the domain ends:

uξ(0) = uξ(L) = 0, vξ(0) = vξ(L) = 0. (5.3.19)

Since we intend to use Chebyshev polynomials, which are defined canonically on

the domain [−1, 1], to prepare for the numerical method, we map the domain

ξ ∈ [0, L] to x ∈ [−1, 1] using the transformation:

x =
2ξ

L
− 1. (5.3.20)

Rewriting equation (5.3.18) in terms of x, we obtain:

0 = −v − u(u− a)(u− 1) +

(
2

L

)2

uxx,

0 = λ(bv − u) + δ

(
2

L

)2

vxx.

(5.3.21)

We compute a solution numerically using a Chebyshev collocation method (e.g.

[14], [42]). The basic idea is to represent the solution as a Chebyshev series

u(x) =
N∑

n=0

anTn(x), v(x) =
N∑

n=0

bnTn(x) (5.3.22)
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for some truncation level N . We aim to compute the coefficients an. Note that

(5.3.22) is a polynomial of degree N . We introduce a set of collocation points over

[−1, 1]. Since we are effectively performing an interpolation, instead of choosing

equally-spaced points, which are known to lead to disastrous results, we instead

select the Chebyshev points (also known as the Gauss-Lobatto points) (see [42])

xj = cos θj , θj =
jπ

N
, 0 ≤ j ≤ N. (5.3.23)

The reason for doing this is twofold:

1. Equally-spaced points have terrible interpolation properties. Chebyshev

points cluster at the ends of the interval where interpolation problems are

usually focussed.

2. We can then exploit the fact that

Tn(x) = cosnθ, x = cos θ. (5.3.24)

Thus, evaluating (5.3.22) on the grid we have

u(xj) =

N∑
n=0

anTn(xj) =

N∑
n=0

an cos

(
nπj

N

)
. (5.3.25)

Proceeding, we substitute (5.3.22) (and its v counterpart) into the governing

equations and apply at each collocation point to obtain a system of 2(N + 1)

nonlinear algebraic equations in the unknown Chebyshev coefficients. In keeping

with (5.3.19) we also demand that

ux(−1) = ux(1) = 0, vx(−1) = vx(1) = 0. (5.3.26)

Differentiating Tn(x):

T ′
n(x) = −n sin(nθ)

dθ

dx
=

n sinnθ

sin θ
. (5.3.27)



Chapter 5: The FitzHugh–Nagumo model: simulation of pulse dynamics in
network 157

And we may differentiate again to get T ′′
n (x). Expanding carefully about θ = 0

and θ = π, we can deduce that

T ′
n(−1) = −n2 cosnπ, T ′

n(1) = n2, (5.3.28)

T ′′
n (−1) =

1

3
n2(n2 − 1) cosnπ, T ′′

n (1) =
1

3
n2(n2 − 1). (5.3.29)

Using all of this, we solve the equations at the collocation points and the four

boundary condition equations using Newton’s method to get a solution.

The question arises immediately as to what initial guess to take for Newton’s

method to ensure that we latch onto a non-trivial state and don’t simply converge

to the known trivial solution u = v = 0. We choose to take the small amplitude

linear solution discussed in the previous section. That solution took the form

u = εA cos kξ, v = εB cos kξ,

with k = kn and kn given by (5.3.12) (note the shift in notation for the

independent variable from (5.3.11)). Unfortunately, this solution is written in

terms of trigonometric functions, whereas our numerical method utilises

Chebyshev polynomials. The one can be rationalised with the other, however.

Before doing this, we must convert the independent variable. Recall that from

(5.3.20)

x =
2ξ

L
− 1.

Hence

ξ =
L

2
(x + 1).

Thus, since from (5.3.12), k = nπ/L = kn,

cos kξ = cos

(
kL

2
(1 + x)

)
= cos

(nπ
2

(1 + x)
)

(5.3.30)
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Hence

cos kξ = cos
(nπ

2

)
cos
(nπ

2
x
)
− sin

(nπ
2

)
sin
(nπ

2
x
)
. (5.3.31)

Therefore:

n odd : cos kξ = (−1)
n+1
2 sin

(nπ
2
x
)

;

n even : cos kξ = (−1)
n
2 cos

(nπ
2
x
)
.

(5.3.32)

The next problem is to convert the trigonometric functions into Chebyshev

polynomials. From Wünsche [47] eq. (3.20) we have

cos rξ = J0(r) + 2

∞∑
m=1

(−1)mJ2m(r)T2m(ξ), (5.3.33)

sin rξ = 2
∞∑

m=0

(−1)mJ2m+1(r)T2m+1(ξ), (5.3.34)

where Jn(r) are the Bessel functions of the first kind.

5.3.4 Small amplitude stationary solutions on a network

Up to now we have treated the stationary FitzHugh-Nagumo problem on a path

graph P2. More generally we would like to be able to determine solutions on any

network. With that in mind we herein consider small amplitude solutions on a

general network. The analysis essentially mimics that for a path graph P2.

On any edge in the network we have the system of equations

ut = −v − u(u− a)(u− 1) + uxx,

vt = −λ(bv − u) + δvxx,

(5.3.35)

where a, b, λ, δ are given constants, and x belongs to the interval [0, L]. We

transform each edge from [0, L] into [0, 1] to be consistent with our discussion of

networks earlier in the thesis (wherein each edge length was normalised to unity).

Writing

ξ = x/L, (5.3.36)
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equations (5.3.35) become

ut = −v − u(u− a)(u− 1) + ρuξξ, (5.3.37)

vt = −λ(bv − u) + δρvξξ, (5.3.38)

where

ρ = 1/L2, (5.3.39)

and ξ ∈ [0, 1]. The steady form of these equations is

ρuξξ = f(u, v), (5.3.40)

ρvξξ = g(u, v), (5.3.41)

in which

f(u, v) = v + u(u− a)(u− 1), (5.3.42)

g(u, v) = λ̂(bv − u), (5.3.43)

where we have defined

λ̂ = λ/δ. (5.3.44)

We seek a solution on a network. The boundary conditions are

uξ = vξ = 0 (5.3.45)

at a boundary vertex; and u, v, uξ, and vξ are all continuous at a common vertex.

We note that a solution is u = v = 0 everywhere.

If |u|, |v| ≪ 1, we can Taylor expand the f , g terms as follows:

f(u, v) = f(0, 0) + fu(0, 0)u + fv(0, 0)v + · · · , (5.3.46)

g(u, v) = g(0, 0) + gu(0, 0)u + gv(0, 0)v + · · · (5.3.47)
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Here from (5.3.42) and (5.3.43) we compute

fu(0, 0) = a, fv(0, 0) = 1, (5.3.48)

gu(0, 0) = −λ̂, gv(0, 0) = λ̂b. (5.3.49)

Then (5.3.40) and (5.3.41) become (neglecting non-linear terms):

ρuξξ = au + v, (5.3.50)

ρvξξ = λ̂(bv − u) (5.3.51)

Let us introduce the vector u = (u, v)T . Then the linearised system takes the

form

ρuξξ = Ju, (5.3.52)

where

J =

 a 1

−λ̂ λ̂b

 . (5.3.53)

To solve the system, we write the solution of the form

u = eikξq, (5.3.54)

for constant vector q and real wavenumber k, then we have

(J + ρk2I)q = 0. (5.3.55)

We therefore require det(J + ρk2I) = 0, so that

(a + ρk2)(λ̂b + ρk2) + λ̂ = 0 (5.3.56)

and thus

ρ2k4 + (a + λ̂b)ρk2 + λ̂(ab + 1) = 0. (5.3.57)

This equation coincides with (5.3.14) on setting ρ = 1 and recalling the definition
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above that λ̂ = λ/δ.

The result (5.3.57) represents a quartic equation for the wavenumber
√
ρ k = k/L

on using (5.3.39). Given a value of
√
ρ k it imposes a condition on the parameters

a, b and λ̂ for a bifurcation to a non-zero state to occur. Writing κ =
√
ρ k,

(5.3.57) may be rewritten as F (κ) = 0, where

F (κ) = κ4 + Bκ2 + C, (5.3.58)

where B = a + λ̂b and C = λ̂(ab + 1). Now (5.3.58) has real roots for κ2 if

B2 − 4C ≥ 0, i.e. if (a + λ̂b)2 − 4[λ̂(ab + 1)] ≥ 0. The latter simplifies to

(a− λ̂b)2 ≥ 4λ̂. (5.3.59)

If (5.3.59) holds then κ2 ∈ R, but it may be that κ2 < 0 for one or both of the

two roots. Evidently

κ2± =
1

2

(
−B ± (B2 − 4C)1/2

)
,

and we can clearly arrange to get at least one positive root, for example by

choosing parameters such that B > 0 and C < 0 and selecting κ2+ > 0. Then

clearly κ+ > 0.

For illustration let us set the parameter values (we shall return to these values

later)

λ = 2.5, b = 3.5, δ = 1.0. (5.3.60)

Then (5.3.59) requires

a < 5.588 or a > 11.912

Figure 5.3.2 shows F plotted against κ2 for the parameter values (5.3.60) and

a = −5.0. Evidently the right-hand root is positive.
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Figure 5.3.2: Plot of the function F , defined in (5.3.58), against κ2 for the
parameter values a = −5, λ = 2.5, b = 3.5, and δ = 1.0. The red marker
points indicate the zeros where F = 0.

Having said this, it is not sufficient to establish that real κ and hence real k are

possible for certain parameter choices. We must also ensure that the selected

k value is such that the relevant boundary conditions across the network are

satisfied. This is to say that we must ensure continuity of concentration at every

vertex and continuity of flux at every vertex, as well as appropriate conditions at

the boundary vertices. To move forward therefore, we should first establish the

possible set of k values that are consistent with the network boundary conditions,

and then select parameter values a, b, λ̂ that, together with a k value chosen

from this set, satisfy (5.3.57). We discuss how to construct the set of acceptable

k values in the next section.

5.3.5 Small amplitude stationary solution on a network: wave

number compatibility

In the previous section we showed that it is possible to find parameter values

corresponding to bifurcation points onto a branch of steady solutions to the

FitzHugh-Nagumo equations on a network. However, we noted that the
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associated wavenumber must be consistent with the boundary conditions across

the network. Herein we address the latter point and construct the set of

allowable k.

Taking inspiration from the work in chapter 2 (specifically, see (2.2.16)), and

referring to (5.3.54), now replacing u with uij to represent the solution on edge

eij , we write, assuming sin k ̸= 0,

uij(ξ) = (sin k)−1(Uj sin kξ + Ui sin k(1 − ξ)), (5.3.61)

where Ui are the vertex values, i.e. uij(0) = Ui and uij(1) = Uj . Here Ui =

(ui, vi)
T , where ui, vi are the values of u and v, respectively, at vertex i. The form

(5.3.61) satisfies the linearised governing equation (5.3.52) provided that (5.3.57)

holds and that Ui, Uj both satisfy (5.3.55). Thus we need all vertex vectors Ui

to satisfy the constraint

(J + ρk2I)Ui = 0 (5.3.62)

for i = 1, 2, . . . , N , where N is the total number of vertices. It is via this constraint

that the independent variables (for Fitzhugh-Nagumo these are u and v) interact

with one another. From the definition for J in (5.3.53), the constraint (5.3.62)

becomes a + ρk2 1

−λ̂ λ̂b + ρk2

Ui = 0. (5.3.63)

To consider the case sin k = 0 it’s helpful to first rewrite (5.3.61) as

uij(ξ) = (sin k)−1[Uj −Ui cos k] sin kξ + Ui cos kξ. (5.3.64)

This forces

Uj −Ui cos k = 0 =⇒ Ui = (−1)kUj , (5.3.65)

leaving the eigenfunction

uij(ξ) = Ui cos kξ, Ui = (−1)kUj . (5.3.66)
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and again we have the requirement that Ui satisfies (5.3.62).

Let us now define the vertex concentration vectors

xu = (u1, u2, . . . , uN )T , xv = (v1, v2, . . . , vN )T , (5.3.67)

where N is the total number of vertices in the network. To correctly determine

these vectors two points need to be considered

(i) The concentrations must be compatible with all flux and continuity conditions

across the network.

(ii) The concentrations must be compatible with the dynamics imposed by the

FitzHugh-Nagumo system.

To address point (i) first we now apply the flux-continuity conditions to the vertex

concentrations ui, i = 1, 2, . . . , N across the network. To do this, we know from

chapter 2 that the following condition must hold:

L∗(k)xu = 0, (5.3.68)

where

L∗(k) = A− (cos k)D (5.3.69)

is the modified Laplacian for the network (see chapter 2 equation (2.3.7)).

Therefore the possible k values must satisfy the equation

detL∗(k) = 0, (5.3.70)

whose precise form is dictated by the network structure.

Now that xu is determined (to within a multiplicative constant as is normal for

an eigenvector), to address point (ii) we fix the vi concentrations by choosing, at
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each vertex, vi such that (5.3.63) holds, namely

a + ρk2 1

−λ̂ λ̂b + ρk2


ui

vi

 = 0. (5.3.71)

As noted above, this equation can hold only if (5.3.57) holds. Assuming it does, vi

is then determined in terms of ui via (5.3.71). Necessarily, each vi is proportional

to ui, for all i = 1, 2, . . . , N . Since the latter is true it follows that

L∗(k)xv = 0,

and continuity of concentration and flux of v across the network is assured.

Summary

To recap and summarise:

1. We determine the set of acceptable wavenumbers, k, for the network by

solving (5.3.70), viz. detL∗(k) = 0. We then determine the set of acceptable

concentration vectors xu for the network by solving L∗(k)xu = 0. This problem

has already been discussed for various networks in chapter 2.

2. Once the set of possible k values is computed, we select one particular k value.

We then fix the parameter set {a, b, λ̂, ρ} so that det(J + ρk2I) = 0 holds, i.e.

(5.3.57) holds, viz

ρ2k4 + (a + λ̂b)ρk2 + λ̂(ab + 1) = 0. (5.3.72)

3. Finally, the vertex concentration vector xv is found by solving (5.3.63) at each

vertex, namely

a + ρk2 1

−λ̂ λ̂b + ρk2

Ui =

a + ρk2 1

−λ̂ λ̂b + ρk2


ui

vi

 = 0, (5.3.73)
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Figure 5.3.3: Demonstrating the set of possible k values for a given value of cos k.
The black dashed line indicates the value cos k = 0.6 for illustration. The red
dots indicate the values cos−1(0.6) = 0.9273+2nπ, for integer n. The white-filled
squares indicate the values cos−1(0.6) = 5.356 + 2nπ, for integer n.

for i = 1, 2, . . . , N .

In practice, we shall start by selecting a network structure (e.g. a Y -shaped

graph, for example), and then follow steps 1-3 as described above. Typically, we

will select values for b, λ̂ (= λ/δ) and ρ (= 1/L2), and use the relation (5.3.72)

to fix a, i.e. we set a = anc , where

anc = −ρ2k4 + λ̂bρk2 + λ̂

λ̂b + ρk2
< 0. (5.3.74)

For a network with N vertices the condition (5.3.70) fixes N possible (and possibly

repeated) values of cos k. Each value of cos k then corresponds to an infinite set

of possible k values, as is illustrated in Figure 5.3.3.
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5.3.6 Small amplitude stationary solution on a network:

examples

In this section we give a couple of examples of networks and compute the relevant

small amplitude solution according to the prescription laid out in the previous

section.

• Path graph P2

In this case

A =

0 1

1 0

 , D =

1 0

0 1

 . (5.3.75)

In this case condition (5.3.70), namely detL∗(k)xu = 0 requires

∣∣∣∣∣∣∣
− cos k 1

1 − cos k

∣∣∣∣∣∣∣ = 0 =⇒ cos k = ±1 (5.3.76)

and so k = nπ for integer n.

For k = 2nπ (cos k = 1), the corresponding eigenvector satisfies

−1 1

1 −1


u1

u2

 =

0

0

 (5.3.77)

We find

xu =

u1

u2

 =

1

1

 .

For k = (2n + 1)π (cos k = −1) the corresponding eigenvector satisfies

1 1

1 1


u1

u2

 =

0

0

 (5.3.78)
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This yields

xu =

u1

u2

 =

 1

−1

 .

In either case we find xv by solving (5.3.63). Since if either k = 2nπ or k =

(2n + 1)π we have sin k = 0, the form of the eigenfunctions on the edge is given

by (5.3.66). So we have

u12(ξ) = U1 cos kξ, U1 = (−1)kU2,

• Path graph P3

In this case

A =


0 1 0

1 0 1

0 1 0

 , D =


1 0 0

0 2 0

0 0 1

 . (5.3.79)

Thus we need ∣∣∣∣∣∣∣∣∣∣
−ν 1 0

1 −2ν 1

0 1 −ν

∣∣∣∣∣∣∣∣∣∣
= 0, (5.3.80)

where ν = cos k. Expanding, we find ν(1 − ν2) = 0. So

cos k = 0,±1 (5.3.81)

and thus k = nπ/2 for integer n.

For k = nπ with n even (ν = cos k = 1), the eigenvector satisfies


−1 1 0

1 −2 1

0 1 −1



u1

u2

u3

 =


0

0

0

 (5.3.82)
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We find

xu =


u1

u2

u3

 =


1

1

1

 .

For k = nπ with n odd (ν = cos k = −1), the eigenvector satisfies


1 1 0

1 2 1

0 1 1



u1

u2

u3

 =


0

0

0

 (5.3.83)

We find

xu =


u1

u2

u3

 =


1

−1

1

 .

For k = nπ/2 with n odd (ν = cos k = 0), the eigenvector satisfies


0 1 0

1 0 1

0 1 0



u1

u2

u3

 =


0

0

0

 (5.3.84)

We find

xu =


u1

u2

u3

 =


1

0

−1

 .

5.3.7 Small amplitude stationary solution on a network: initial

guess for the numerical method

We will obtain the solution over a network numerically using a Chebyshev

expansion approach, similar to what we did earlier. To this end we need to map

ξ ∈ [0, 1] on each edge to the canonical interval x ∈ [−1, 1]. We do this by
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setting

x = 2ξ − 1 =⇒ ξ =
1

2
(1 + x). (5.3.85)

Then (5.3.40) and (5.3.41) become

ρ̃uxx = f(u, v), (5.3.86)

ρ̃vxx = g(u, v), (5.3.87)

where ρ̃ = (2/L)2.

To compute the static solution, we expand U(x) and V (x) as finite Chebyshev

series:

U(x) =

N∑
n=0

UnTn(x), V (x) =

N∑
n=0

VnTn(x),

where Tn(x) are the Chebyshev polynomials of the first kind. By inserting these

expansions into the equation (5.5.7) and evaluating at M collocation points xi,

we obtain a system of 2N non-linear algebraic equations,

f(U) + DUxx = F (x) = 0, (5.3.88)

where x = (U1, U2, . . . , UN , V1, . . . , VN )T and F ∈ R2N . The static solution can

be found via Newton’s method, where each iteration proceeds as follows:

xn+1 = xn −H−1F (xn), (5.3.89)

with the Jacobian matrix

H = J , where Jij =
∂fi
∂xj

. (5.3.90)

The initial guess for Newton’s method is constructed using the small amplitude

solution over a network discussed earlier. The complication in doing this is that

we must cross-refer between trigonometric functions and Chebyshev polynomials.
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Our eigenfunctions (5.3.61) or (5.3.66) contain terms sin kξ and cos kξ. We note

that

cos kξ = cos

(
k

2
(1 + x)

)
= cos

k

2
cos

kx

2
− sin

k

2
sin

kx

2
, (5.3.91)

and

sin kξ = sin

(
k

2
(1 + x)

)
= sin

k

2
cos

kx

2
+ cos

k

2
sin

kx

2
. (5.3.92)

Thus the eigenfunction (5.3.64) is:

uij = (sin k)−1[Uj −Ui cos k] sin kξ + Ui cos kξ (5.3.93)

= Ac cos
kx

2
+ As sin

kx

2
, (5.3.94)

where

Ac =
sin(k/2)

sin k
(Uj −Ui cos k) + cos(k/2)Ui (5.3.95)

As =
cos(k/2)

sin k
(Uj −Ui cos k) − sin(k/2)Ui. (5.3.96)

The eigenfunction (5.3.66) is

uij = Ui cos kξ = Ac cos
kx

2
+ As sin

kx

2
,

with

Ac = Ui cos(k/2), As = −Ui sin(k/2).

The next problem is to convert the trigonometric functions into Chebyshev

polynomials. From Wünsche [47] (eq. 3.20) we have, for constant κ,

cosκx = J0(κ) + 2
∞∑

m=1

(−1)mJ2m(κ)T2m(x),

sinκx = 2

∞∑
m=0

(−1)mJ2m+1(κ)T2m+1(x).
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5.4 Uniform solution on a network

In the previous sections, we have concentrated on computing non-uniform

stationary solutions of the FitzHugh-Nagumo equations on a general network.

In this section, we address the simpler problem of determining uniform

solutions, that is, solutions for which the concentrations u and v are everywhere

constant over the network. The problem is, of course, equivalent to determining

constant solutions to the FitzHugh-Nagumo equations on a single edge, the

geometry of the network being irrelevant since all of the network boundary

conditions (continuity of flux, etc.) are automatically satisfied.

To determine constant solutions, we require the functions f and g to vanish.

Recall that

f(u, v) = v + u(u− a)(u− 1)

g(u, v) = λ̂(bv − u).

Thus we require

v + u(u− a)(u− 1) = 0 (5.4.1)

λ̂(bv − u) = 0 (5.4.2)

Hence

u = bv. (5.4.3)

Using this result and simplifying the first equation, we obtain:

u

(
u2 − (1 + a)u + a +

1

b

)
= 0, (5.4.4)

a cubic for u with, in general, three solutions. The trivial solution u = 0 gives

v = 0. Non-trivial solutions occur if the quadratic

u2 − (1 + a)u + a +
1

b
= 0 (5.4.5)
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has real solutions. This requires that

(1 − a)2 >
4

b
.

This condition evidently holds if a is sufficiently large. In general the solutions

to the quadratic equation (5.4.5) are given by:

u =
1

2
(1 + a) ± 1

2

(
(1 − a)2 − 4

b

) 1
2

. (5.4.6)

In the next two subsections we consider the cases of a large and positive/negative

separately.

Case I: a ≫ 1.

We consider the case where a ≫ 1 with a > 0. We can use the binomial expansion

to obtain the approximations

u+ ∼ a− 1

ba
, u− ∼ 1 +

1

ba
. (5.4.7)

Case II: a = −κ with κ ≫ 1.

Now, let us examine the case where a = −κ with κ ≫ 1. Equation (5.4.6) takes

the form

u =
1

2
(1 − κ) ± 1

2

(
(1 + κ)2 − 4

b

) 1
2

. (5.4.8)

Following a similar approach as before, we expand using the binomial theorem

to obtain

u+ ∼ 1 +
1

ba
, u− ∼ a− 1

ba
, (5.4.9)

valid when −a ≫ 1.
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Figure 5.4.1: The space of uniform solutions for the case b = 3.5. Note that there
is no uniform solution over the range −0.0690 < a < 2.069. The red dots indicate
the asymptotic approximations (5.4.7) and (5.4.9).

In Figure 5.4.1 we show the possible uniform solutions, given by (5.4.6) and

(5.4.3), for the case when b = 3.5. The values of u and v are shown plotted

against the remaining parameter, a. Note that there is no solution over the range

where (1 − a)2 < 4/b, i.e.

1 − 2√
b
< a < 1 +

2√
b
.

This is because if a lies within this range then (5.4.6) yields a complex u. In

the present case this range is −0.0690 < a < 2.069. This appears as a gap

between the solution curves in the figure. The asymptotic approximations (5.4.7)

and (5.4.9) are also shown and can be seen to agree very well with the exact

solutions.

5.5 Stationary solutions on a network: stability

Having discussed stationary solutions to the FitzHugh-Nagumo system on a

network at some length, we now turn our attention to the stability of such
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solutions.

We recall that the governing equations are

ut = f(u, v) + uXX , vt = g(u, v) + δvXX , (5.5.1)

where the functions f(u, v) and g(u, v) have been stated several times, and are

repeated below for convenience. On any edge of the network we have X ∈ [0, L].

To map the problem on each edge onto the canonical interval x ∈ [−1, 1], we

apply the transformation

x =
2

L
X − 1. (5.5.2)

Under this transformation, the equations become

ut = f(u, v) + ρ̂uxx, vt = g(u, v) + ρ̂δvxx, (5.5.3)

where

ρ̂ =

(
2

L

)2

. (5.5.4)

The non-linear functions f(u, v) and g(u, v) are given by

f(u, v) = u(u− a)(1 − u) − v, g(u, v) = λ(u− bv). (5.5.5)

In vector form, the system (5.5.3) can be expressed as

ut = f(u) + Duxx, (5.5.6)

where

u =

u

v

 , f(u) =

f(u, v)

g(u, v)

 , D =

ρ̂ 0

0 ρ̂δ

 .
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Assume that we have computed a static solution

u = U =

U

V

 ,

where U = U(x) and V = V (x), which satisfies the static form of the system:

0 = f(U) + DUxx. (5.5.7)

To analyse the stability of the static solution, we perturb it by writing

u = U + ϵη(x, t), (5.5.8)

where ϵ ≪ 1 and η is to be found. Stability is determined by the large time

behaviour of η, i.e. if |η| → 0 as t → ∞ then the static solution is stable, and if

|η| → ∞ as t → ∞ then the static solution is unstable.

Linearising around the static solution, we obtain

ηt = Jη + Dηxx, (5.5.9)

where

J =

α1 α2

β1 β2

 (5.5.10)

with

α1(x) = fu(U, V ) = −3U2 + 2(1 + a)U − a, (5.5.11)

α2(x) = fv(U, V ) = −1, (5.5.12)

β1(x) = gu(U, V ) = λ, (5.5.13)

β2(x) = gv(U, V ) = −λb. (5.5.14)
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Note that the elements of J in general depend on x. Assuming that we can

separate the variables, we write

η(x, t) = estp(x), p(x) =

p(x)

q(x)

 .

This leads to the following eigenvalue problem

sp = Jp + Dp′′, (5.5.15)

Written out in components this is

ρ̂p′′ + α1p + α2q = sp, ρ̂δq′′ + β1p + β2q = sq. (5.5.16)

Stability hinges on the sign of s, which we must determine. To this end we express

p(x) and q(x) as Chebyshev series truncated at a finite level N , where N is to be

chosen:

p(x) =
N∑

n=0

pnTn(x), q(x) =
N∑

n=0

qnTn(x), (5.5.17)

Inserting these into the stability equations (5.5.15), we obtain the generalized

eigenvalue problem:

Jw = sT̂w, (5.5.18)

where w = (p1, . . . , pN , q1, . . . , qN )T , and J was defined in (5.3.90). Note that

the Jacobian matrix J was already computed as part of Newton’s method for the
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static problem. We have also defined (for path graph P2)

T =



T0(x1) T1(x1) · · · TN (x1) 0 0 · · · 0

...
...

. . .
... 0 0 · · · 0

T0(xM ) T1(xM ) · · · TN (xM ) 0 0 · · · 0

0 0 · · · 0 T0(x1) T1(x1) · · · TN (x1)

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0 T0(xM ) T1(xM ) · · · TN (xM )


.

(5.5.19)

The matrix T̂ is obtained by replacing the rows in T corresponding to the

boundary conditions with zeros.

In summary, to determine the stability we must solve the generalized eigenvalue

problem (5.5.18) for s.

5.5.1 Stability of the uniform state

Simplifications occur in the stability analysis when we consider the stability of

the uniform state discussed in section 5.4. In this case U and V are constants

and so the coefficients given in (5.5.11), and hence the elements of the Jacobian

matrix J , are constants. In this case the eigenvalue problem (5.5.15), namely,

sp = Jp + Dp′′, (5.5.20)

can be solved exactly. We write

p = (p, q)T = eikxa, a = (A,B)T . (5.5.21)

Then we have the matrix eigenvalue problem

J̃(k)

A

B

 = s

A

B

 . (5.5.22)
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Here we have defined

J̃(k) = J − k2D =

m1 m2

m3 m4

 (5.5.23)

with matrix elements

m1 = α1 − ρ̂k2, m2 = −1, m3 = λ, m4 = −λb− ρ̂δk2. (5.5.24)

Note that α1 was given in (5.5.11). The eigenvalues s hence satisfy

s2 − (trJ̃)s + det J̃ = 0, (5.5.25)

where

trJ̃ = m1 + m4 = (α1 − λb) − ρ̂(1 + δ)k2, (5.5.26)

det J̃ = m1m4 −m2m3 = λ− (α1 − ρ̂k2)(λb + ρ̂δk2). (5.5.27)

Formula (5.5.25) simplifies further if we specialise to the zero state U = V = 0.

In this case

α1 = fu(0, 0) = −a, α2 = fv(0, 0) = −1,

and

β1 = gu(0, 0) = λ, β2 = gv(0, 0) = −λb.

The quadratic (5.5.25) becomes

s2 + (a + λb + ρ̂(1 + δ)k2)s + (a + ρ̂k2)(ρ̂δk2 + λb) + λ = 0. (5.5.28)

(As an aside we note that if s = 0 this becomes, writing k∗ =
√
ρ̂ k,

δk∗4 + (λb + aδ)k∗2 + λ(1 + ab) = 0. (5.5.29)
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This quadratic for k∗2 coincides with that for k2 given in (5.3.14). The latter

was the condition we derived for a small amplitude solution to exist and such a

solution occurs at the bifurcation to stationary branch. It is therefore coincident

with what is found via the present stability analysis when s = 0.)

Writing (5.5.28) in the form s2 + αs + β = 0, the solution is

s =
1

2

(
−α±

√
α2 − 4β

)
, (5.5.30)

where

α = a + λb + ρ̂(1 + δ)k2, β = (a + ρ̂k2)(ρ̂δk2 + λb) + λ

Stability is determined by the sign of the real part of s, which in general may be

complex depending on the sign of α2 − 4β.

It is worth at this point to summarise where we are. We have obtained the

formula (5.5.30) for the stability about a uniform state and about the zero state.

This formula involves the parameters a, b, λ, δ and ρ̂ and the wave number k.

The situation is now similar to that discussed at the end of section 5.3.5. We

proceed therefore via the following steps.

Step 1. We fix values of the parameters a, b, λ, δ and ρ̂.

Step 2. We ensure wave number compatibility of the ansatz (5.5.21) with the

network by solving detL∗(k) = 0, where the modified Laplacian L∗ was defined

in (5.3.69). This determines the set K of k values that are compatible with the

concentration and flux continuity conditions across the network.

Step 3. We choose a k ∈ K and solve for s either by solving (5.5.25) for a general

uniform state, or by utilising formula (5.5.30) for the zero state.

Step 4. For the given pair (k, s), and the parameters a, b, λ, δ and ρ̂ fixed, the

vertex values of the perturbation eigenfunction for u are found by solving L∗xu,

where xu is analogous to the vector defined in (5.3.67). The vertex values of the
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perturbation eigenfunction for v are then found by solving for a the equation

sa = (J − k2D)a.

Step 5. Finally, the perturbation eigenfunctions are constructed across the

network using either (5.3.64) or (5.3.66), depending on the value of k.

To determine stability of the uniform state at a particular set of parameter values

{a, b, λ, δ, L}, we must determine the sign of

sM = max
k∈K

s.

If sM > 0 then the state is unstable; if sM < 0 then the state is stable.

For example, in the simplest case of the graph with one edge, P2, and choosing

the parameters

δ = 1.0, L = 1.0,

we have for the zero state U = V = 0 from (5.5.30),

s =
1

2

(
−α±

√
α2 − 4β

)
,

where

α = a + λb + 2k2, β = (a + k2)(k2 + λb) + λ

Then the discriminant is found be independent of k with α2−4β = (bλ+a)2−4λ.

Then

s± = −k2 + ϕ±(a, b, λ), ϕ± ≡ −1

2
(a + λb) ± 1

2

√
(a + λb)2 − 4λ(1 + ab).

Evidently for a fixed parameter set {a, b, λ, δ, L}, the maximum value of s occurs

when k = 0. Thus

sM = ϕ+(a, b, λ).

We recall that λ > 0. It follows that if 1 + ab > 0 then Reϕ± < 0 so that
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Re sM < 0 and the zero state is stable. If 1 + ab < 0 then ϕ+ > 0 and sM > 0

and the zero state is unstable. We note that the point where 1 +ab = 0 coincides

with the bifurcation to the non-zero uniform branch according to (5.5.29) (setting

k∗ = 0 in that equation). We conclude that the zero state U = V = 0 is stable

to the right of the bifurcation to the non-zero uniform state, and unstable to the

left of it.

The non-zero uniform state is rather similar. We again fix δ = L = 1. Solving

the quadratic (5.5.25), the discriminant is again found to be independent of k,

and we obtain

s± = −k2 + ϕ̃±(a, b, λ)

with

ϕ̃± ≡ −1

2
(α1 − λb) ± 1

2

√
(α1 − λb)2 − 4λ(1 − α1b).

Again the maximum growth rate occurs when k = 0 so that

sM = ϕ̃+(a, b, λ). (5.5.31)

Notice that s+ = 0 when 1 − α1b = 0, which corresponds to detJ = 0, where

the Jacobian matrix for the spatially-independent stability problem, namely J =

J̃(0), where J̃(k) was defined in (5.5.23).

Following the preceding remarks, in figures 5.5.1 and 5.5.2 we show the stability

of the uniform state, using a solid line to indicate a stable part of a branch, and a

dashed line to indicate an unstable part of a branch. As can be seen the uniform

state is everywhere unstable.

Finally, we remark that it is possible to have a bifurcation at which s = 0 is

double. The eigenvalues s for a general uniform state satisfy the quadratic

equation (5.5.25). This has the form s2 − (trJ̃)s + det J̃ = 0. So we have a

single eigenvalue s = 0 if det J̃ = 0, and a double eigenvalue s = 0 if both

det J̃ = 0 and trJ̃ = 0 simultaneously. From (5.5.26) and (5.5.27) the latter two
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Figure 5.5.1: Stability properties of the left branch of the non-zero uniform state,
with λ = 2.5 and b = 3.5. The real and imaginary parts of the growth rate sM ,
defined in (5.5.31) are shown.
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Figure 5.5.2: Stability properties of the right branch of the non-zero uniform
state, with λ = 2.5 and b = 3.5. The real and imaginary parts of the growth rate
sM , defined in (5.5.31) are shown.

equations demand

a + λ̂b + 2ρk2 = 0, (5.5.32)

ρ2k4 + (a + λ̂b)ρk2 + λ̂(ab + 1) = 0, (5.5.33)
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respectively. Viewing λ̂ and k as being fixed we may solve this pair of equations

for a and b. Doing this we find

(i) a = −ρk2 +
√

λ̂, b = −ρk2 +
√

λ̂

λ̂
(5.5.34)

or

(ii) a = −ρk2 −
√
λ̂, b =

√
λ̂− ρk2

λ̂
. (5.5.35)

In choosing parameters later we will typically take b > 0, in which case option

(ii) is of greater interest.

5.6 Numerical results

In the previous sections we have shown how we may compute both uniform and

spatially-varying stationary solutions across an arbitrary network and how we can

determine their stability. For uniform stationary solutions the stability properties

are determined via relatively simple formula. For spatially-dependent stationary

solutions, the stability spectrum must be determined numerically. In this section

we present some numerical results to illustrate the application of the theory to

various networks.

We choose to use a as a bifurcation parameter. To this end we fix the other

parameters in the system, namely b, λ, ρ̂ and δ and we vary a. Our strategy is as

follows. We know that the zero state u = v = 0 everywhere across the network)

is a solution to the Fitzhugh-Nagumo system. Varying a we expect to determine

a sequence of bifurcation points at which side branches to non-zero states occur.

These may be branches on which the solution is everywhere uniform across the

network, or side branches on which the solution is spatially varying.

Having selected a network structure, we determine the possible set K of wave

numbers k that are compatible with the network by solving detL∗(k) = 0. From
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this finite set we may construct an extended, infinite set of K values by taking

k = arccos(cos(k)) + 2πn, n ∈ Z+. (5.6.1)

Bifurcations to non-zero states occur at values of a that satisfy in (5.5.29), namely

δk∗4 + (λb + aδ)k∗2 + λ(1 + ab) = 0. (5.6.2)

where k∗ =
√
ρ̂ k. Since this is linear in a there is only one possible a value for

given parameters. Call it ac = a(k∗, b, λ, δ). Rearranging (5.6.2) we find

ac = −δk∗4 + λbk∗2 + λ

δk∗2 + λb
< 0. (5.6.3)

Starting at or near to ac, we use the small amplitude solution constructed in

section 5.3.4 as an initial guess for Newton’s method in our numerical code

developed to handle solutions of arbitrary amplitude discussed earlier. In this

way we aim to latch onto the relevant side branch. Once this is achieved, the

remainder of the branch is computer via parameter continuation.

We start with a discussion of the simplest network choice, namely the path graph

P2.

5.6.1 The path graph P2

We herein investigate the behaviour of solutions to the Fitzhugh-Nagumo

equations on a path graph P2, illustrated in Figure 5.6.1. Recall that in this

case we have

A =

0 1

1 0

 , D =

1 0

0 1

 (5.6.4)
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1 2
e12

Figure 5.6.1: A path graph P2 with two vertices.

and detL∗(k)xu = 0 requires that cos k = ±1 and so k = nπ = kn, say, for

integer n. The critical values of the parameter a are given by (5.6.3), viz

anc = −δρ̂2k4n + λbρ̂k2n + λ

δρ̂k2 + λb
< 0.

We fix the following parameters

b = 3.5, λ = 2.5, δ = 1.0, L = 1.0.

(Recall from that ρ̂ = 1/L2.) Then we have

(k0, a
0
c) = (0, −0.286), (k1, a

1
c) = (π, −10.004) (5.6.5)

(k2, a
2
c) = (2π, −39.530), (k3, a

3
c) = (3π, −88.852). (5.6.6)

The bifurcation diagram for P2 is shown in Figure 5.6.2. In this diagram we plot

∥u∥ against the bifurcation parameter a. The diagram incorporates branches

corresponding to uniform solutions (corresponding to k = 0) (solid black lines)

and asymptotic behaviour for large |a| (dashed black lines).

the stability of the uniform solution branch discussed in subsection 5.5.1.

For the non-uniform branches, the dashed lines in the figure (5.6.2) indicate

instability for non-uniform branches, which is discussed in section 5.5 . Further

details of the diagram are as follows:

1. The leftmost black curve corresponds to the branch k = k0 = 0 (uniform

solution). This curve bifurcates from the point a = a0c = −0.286.

2. The blue curve corresponds to the branch k = k1 = π. This curve bifurcates

from the point a = a1c = −10.004.
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Figure 5.6.2: Bifurcation diagram for the Fitzhugh-Nagumo equations on the path
graph P2. The plot shows ∥u∥ versus the parameter a when b = 3.5, λ = 2.5,
δ = 1.0, L = 1.0. Solid black lines show exact uniform (k = 0) solutions; the
dashed black lines indicate the large |a| asymptotic behaviours for the uniform
solutions given by (5.4.7) and (5.4.9). The blue, purple, and red curves represent
first (k = k1 = π), second (k = k2 = 2π), and third (k = k3 = 3π) non-uniform
solutions, respectively. The dashed mean that bifurcation point is not stable

3. The purple curve corresponds to the branch k = k2 = 2π. This curve

bifurcates from the point a = a2c = −39.530.

4. The red curve corresponds to the branch k = k3 = 3π. This curve bifurcates

from the point a = a3c = −88.852.

These non-uniform solution branches demonstrate the system’s capacity to

support spatially non-uniform states, each characterised by distinct spatial

profiles and bifurcation points. The observed bifurcation structure elucidates

the rich dynamics of the Fitzhugh-Nagumo system on a P2 graph, showcasing

the interplay between uniform and non-uniform solutions as the parameter a

varies.

5.6.2 The path graph P3

We extend our analysis to show the behaviour of solutions to the Fitzhugh-

Nagumo equations on path graph P3 (see figure 5.6.3). Recall that in this case
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we have

A =


0 1 0

1 0 1

0 1 0

 , D =


1 0 0

0 2 0

0 0 1

 . (5.6.7)

Then detL∗(k) = 0 requires

∣∣∣∣∣∣∣∣∣∣
− cos k 1 0

1 −2 cos k 1

0 1 − cos k

∣∣∣∣∣∣∣∣∣∣
= 0. (5.6.8)

This leads to cos k = ±1, 0. Hence kn = nπ/2 for integer n. The bifurcation

points are given by (5.6.3), namely

anc = −δρ̂2k4n + λbρ̂k2n + λ

δρ̂k2 + λb
.

We use the same parameter values as before, namely

b = 3.5, λ = 2.5, δ = 1.0, L = 1.0,

and so ρ̂ = 1. Then we have

(k0, a
0
c) = (0, −0.286), (k1, a

1
c) = (π/2, −2.6902),

(k2, a
2
c) = (π, −10.004), (k3, a

3
c) = (3π/2, −22.287),

(k4, a
4
c) = (2π, −39.530), (k5, a

5
c) = (5π/2, −61.72052),

(k6, a
6
c) = (3π, −88.852).

(5.6.9)

Comparing these with the kn values for P2 given in (5.6.5) we see that, as

expected, the set of {kn} for P3 includes that for P2. The bifurcation diagram

for P3 is shown in Figure 5.6.4. In this diagram we plot ∥u∥ against the

bifurcation parameter a. The diagram incorporates branches corresponding to

uniform solutions (corresponding to k = 0) (solid black lines) and asymptotic

behaviour for large |a| (dashed black lines), remains unchanged for any network

as it is from the previous section path graph P2, as detailed the reason in
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1 2 3
e12 e23

Figure 5.6.3: path graph P3 with three vertices connected by two edges.

Figure 5.6.4: On a path graph P3, bifurcation diagram for the Fitzhugh-Nagumo
equations. The plot shows the norm of u versus the parameter a. Solid black
lines show exact solutions for k = 0, and dashed black lines indicate asymptotic
behaviour for large |a| given by (5.4.7) and (5.4.9). The purple, blue, teal
green, orange, olive green, and dark red curves represent a non-uniform solutions.
Parameters: b = 3.5, λ = 2.5, δ = 1.0, L = 1.0 (domain length).The dashed curve
indicates that the bifurcation points unstable.

Section (5.4). Note that the uniform solution bifurcates from a = a0c = −0.286

to create the left-hand solid black line in the figure. As is clear from the

discussion in section 5.4 and in particular from Figure 5.4.1 the right-hand

uniform branch does not bifurcate from the zero state.

The bifurcation diagram in Figure 5.6.4 highlights several key features:

1. The leftmost black curve corresponds to the branch k = k0 = 0 (uniform

solution). This curve bifurcates from the point a = a0c = −0.286.

2. The purple curve corresponds to the branch k = k1 = π/2. This curve

bifurcates from the point a = a1c = −2.6902.

3. The blue curve corresponds to the branch k = k2 = π. This curve bifurcates

from the point a = a2c = −10.004.
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4. The teal green curve corresponds to the branch k = k3 = 3π/2. This curve

bifurcates from the point a = a3c = −22.287.

5. The orange curve corresponds to the branch k = k4 = 2π. This curve

bifurcates from the point a = a4c = −39.530.

6. The olive green curve corresponds to the branch k = k5 = 5π/2. This curve

bifurcates from the point a = a5c = −61.721.

7. The dark red curve corresponds to the branch k = k6 = 3π. This curve

bifurcates from the point a = a6c = −88.852.

The non-uniform solution branches demonstrate that all branches are unstable,

as indicated by the dashed curves in the bifurcation diagram. This observation

highlights the rich dynamical behaviour of the Fitzhugh-Nagumo system on the

P3 graph. Specifically, it reveals the interplay between uniform and non-uniform

solutions as the parameter a varies, emphasising the system’s tendency to favour

instability in spatially heterogeneous states.

5.6.3 The Y-shaped graph

We extend our analysis to show the behaviour of solutions to the Fitzhugh-

Nagumo equations on path graph Y-shaped graph (see figure 5.6.5). Recall that

in this case we have

A =



0 0 1 0

0 0 1 0

1 1 0 1

0 0 1 0


, D =



1 0 0 0

0 1 0 0

0 0 3 0

0 0 0 1


. (5.6.10)
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Thus detL∗(k) = 0 requires

∣∣∣∣∣∣∣∣∣∣∣∣∣

− cos k 0 1 0

0 − cos k 1 0

1 1 −3 cos k 1

0 0 1 − cos k

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (5.6.11)

This is leads to

− cos k

∣∣∣∣∣∣∣∣∣∣
− cos k 1 0

1 −3 cos k 1

0 1 − cos k

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
0 − cos k 0

1 1 1

0 0 − cos k

∣∣∣∣∣∣∣∣∣∣
= 0. (5.6.12)

Then, we have

detL∗(k) = 3 cos2 k(cos2 k − 1) = −3 sin2 k cos2 k = −3

4
sin2 2k = 0.

Hence cos k = 0, 0, ±1; and k = nπ/2 = kn, for integer n.

Despite the difference in the graph structure compared to the previous section,

we observe that the critical wave numbers kn remain the same. This implies that

the bifurcation values for the parameter a are also identical. These values, anc ,

are given by

anc = −δρ̂2k4n + λbρ̂k2n + λ

δρ̂k2n + λb
.

As before we choose the parameter values

b = 3.5, λ = 2.5, δ = 1.0, L = 1.0,

(and recall that ρ̂ = 1/L2. Substituting these values, we compute the critical



Chapter 5: The FitzHugh–Nagumo model: simulation of pulse dynamics in
network 192

1 2

3

4

e13 e23

e34

Figure 5.6.5: Y-shape graph with four vertices and three edges

Figure 5.6.6: On a Y-shaped graph, bifurcation diagram for the Fitzhugh-Nagumo
equations. The plot shows the norm of u versus the parameter a. Solid black
lines show exact solutions for k = 0, and dashed black lines indicate asymptotic
behaviour for large |a| given by (5.4.7) and (5.4.9). The purple, blue, teal green,
dark orange, olive green, and dark red curves represent a non-uniform solutions.
Parameters: b = 3.5, λ = 2.5, δ = 1.0, L = 1.0 (domain length).The dashed curve
indicates that the bifurcation points unstable.

pairs (kn, a
n
c ) as follows:

(k0, a
0
c) = (0,−0.286), (k1, a

1
c) =

(π
2
,−2.6902

)
,

(k2, a
2
c) = (π,−10.004), (k3, a

3
c) =

(
3π

2
,−22.287

)
,

(k4, a
4
c) = (2π,−39.530), (k5, a

5
c) =

(
5π

2
,−61.721

)
,

(k6, a
6
c) = (3π,−88.852).

The consistency in the values of kn and anc across different graph structures
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Figure 5.6.7: Square grid graph 3 × 3.

highlights the robustness of the bifurcation analysis. Specifically:

• The uniform solution branch (k = 0) remains unchanged, as it is

independent of the graph topology.

• The non-uniform branches (kn ̸= 0) exhibit the same critical values anc ,

suggesting that the bifurcation structure is primarily governed by the wave

number kn rather than the graph’s shape.

5.6.4 Square grid graph 3 × 3

We extend our analysis to show the behaviour of solutions to the Fitzhugh-

Nagumo equations on a square grid graph 3 × 3 (see figure 5.6.7). Recall that

in this case we need to find the determinant of detL∗ = det(A − νD) = 0, as
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follows ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−2ν 1 0 1 0 0 0 0 0

1 −3ν 1 0 1 0 0 0 0

0 1 −2ν 0 0 1 0 0 0

1 0 0 −3ν 1 0 1 0 0

0 1 0 1 −4ν 1 0 1 0

0 0 1 0 1 −3ν 0 0 1

0 0 0 1 0 0 −2ν 1 0

0 0 0 0 1 0 1 −3ν 1

0 0 0 0 0 1 0 1 −2ν

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

where ν = cos k. We use Matlab to obtain the determinant:

ν3(9ν6 − 15ν4 + 7ν2 − 1) = ν3(ν − 1)(ν + 1)(3ν2 − 1)2 = 0.

This leads to

ν = cos k = 0, 0, 0, ±1,
1√
3
,

1√
3
, − 1√

3
, − 1√

3
.

So the general expression for k = kn is given by:

kn =


nπ/2 for cos k = ±1, 0,

± arccos
(

1√
3

)
+ nπ for cos k = ± 1√

3
,

where n ∈ Z+.

The important value for parameter a are specified by (5.6.3), namely

anc = −δρ̂2k4n + λbρ̂k2n + λ

δρ̂k2 + λb
.

As in the previous cases we set the following parameter values

b = 3.5, λ = 2.5, δ = 1.0, L = 1.0.
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Figure 5.6.8: On a 3×3 square grid graph, bifurcation diagram for the Fitzhugh-
Nagumo equations. The plot shows the norm of u versus the parameter a.
Solid black lines show exact solutions for k = 0, and dashed black lines indicate
asymptotic behaviour for large |a| given by (5.4.7) and (5.4.9).The non-uniform
bifurcation points represent by 12 different colour. Parameters: b = 3.5, λ = 2.5,
δ = 1.0, L = 1.0 (domain length).The dashed curve indicates that the bifurcation
points unstable.

(Recall from that ρ̂ = 1/L2.) Then we have

(k0, a
0
c) = (0, −0.286), (k1, a

1
c) =

(
arccos

(
1√
3

)
, −1.1714

)
,

(k2, a
2
c) = (π/2, −2.6902), (k3, a

3
c) =

(
− arccos

(
1√
3

)
+ π, −4.9646

)
,

(k4, a
4
c) = (π, −10.0039), (k5, a

5
c) = (

(
arccos

(
1√
3

)
+ π, −16.8826

)
,

(k6, a
6
c) = (3π/2, −22.2874), (k7, a

7
c) =

(
− arccos

(
1√
3

)
+ 2π, −28.4535

)
,

(k8, a
8
c) = (2π, −39.53025), (k9, a

9
c) =

(
arccos

(
1√
3

)
+ 2π, −52.4368

)
,

(k10, a
10
c ) = (5π/2, −61.72052), (k11, a

11
c ) =

(
− arccos

(
1√
3

)
+ 3π, −71.7629

)
,

(k12, a
12
c ) = (3π, −88.85206),

(5.6.13)

The bifurcation diagram in Figure 5.6.8 highlights several key features:

1. The leftmost black curve corresponds to the branch k = k0 = 0 (uniform
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solution). This curve bifurcates from the point a = a0c = −0.286.

2. The green curve corresponds to the branch k = k1 = arccos
(

1√
3

)
. This

curve bifurcates from the point a = a1c = −1.1714.

3. The brown curve corresponds to the branch k = k2 = π/2. This curve

bifurcates from the point a = a2c = −2.6902.

4. The Orange curve corresponds to the branch k = k3 = − arccos
(

1√
3

)
+ π.

This curve bifurcates from the point a = a3c = −4.9646.

5. The red curve corresponds to the branch k = k4 = 3π. This curve bifurcates

from the point a = a4c = −10.0039.

6. The pink curve corresponds to the branch k = k5 = arccos
(

1√
3

)
+ π. This

curve bifurcates from the point a = a5c = −16.8826.

7. The gray curve corresponds to the branch k = k6 = 3π/2. This curve

bifurcates from the point a = a6c = −22.287.

8. The light green curve corresponds to the branch k = k7 = − arccos
(

1√
3

)
+

2π. This curve bifurcates from the point a = a7c = −28.4535.

9. The dark blue curve corresponds to the branch k = k8 = 2π. This curve

bifurcates from the point a = a8c = −39.530.

10. The purple curve corresponds to the branch k = k9 = arccos
(

1√
3

)
+ 2π.

This curve bifurcates from the point a = a9c = −52.4368.

11. The dark green curve corresponds to the branch k = k10 = 5π/2. This

curve bifurcates from the point a = a10c = −61.721.

12. The light blue curve corresponds to the branch k = k11 = − arccos
(

1√
3

)
+

3π. This curve bifurcates from the point a = a11c = −71.7629.

13. yellow curve corresponds to the branch k = k12 = 3π. This curve bifurcates

from the point a = a12c = −88.852.
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The non-uniform solution branches demonstrate that all branches are unstable,

as indicated by the dashed curves in the bifurcation diagram. This observation

highlights the rich dynamical behaviour of the Fitzhugh-Nagumo system on the

3 × 3 square grid graph. Specifically, it reveals the interplay between uniform

and non-uniform solutions as the parameter a varies, emphasising the system’s

tendency to favour instability in spatially heterogeneous states.



6

Conclusion

6.1 Summary and conclusions

This thesis investigates the propagation of signals through networks modelled

by diffusion and by reaction-diffusion, the latter modelled using Fisher equation

and the FitzHugh-Nagumo system of equations. The primary objective of this

work was to explore the effects of network topology on signal dynamics, focusing

on diffusion processes and the excitable nature of reactions within networked

systems. By employing both analytical approaches and numerical simulations,

this study derived solutions for the diffusion equation, the Fisher equation, and

the FitzHugh-Nagumo model on various network structures, providing insights

into the dynamics of signals as they propagate and interact with their topological

structures.

The thesis begins with a detailed analysis of diffusion processes on networks as

discussed in chapter 2. The fundamental principles of diffusion, including

concentration, flux, and the diffusion coefficient, were presented through Fick’s

Law. The chapter derived the one-dimensional diffusion equation based on mass

conservation and adapted these continuous diffusion principles to a discrete

network structure. Special attention was given to solving the diffusion equation

on networks, where boundary and continuity conditions specific to network

structure were considered. A key method employed was eigenvalue analysis

using adjacency and degree matrices, with Gershgorin’s theorem providing
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bounds on eigenvalues. The results revealed the influence of network structure

on the diffusion process, especially in regular graphs and square grid graphs,

where eigenvalues were shown to play a key role in diffusion behaviour.

Computational techniques confirmed the theoretical findings, particularly in the

study of eigenvalue asymptotic as network size increases for square grid graphs.

Chapter 3 concentrates on the finite-difference method (FDM) for solving the

diffusion equation on networks. The chapter demonstrated how discretising the

spatial domain and enforcing continuity conditions for flux and concentration

could numerically solve the diffusion problem. The Crank-Nicholson method

was introduced as a second-order method for diffusion equations and applied to

path graphs P2 and P3. The method was extended to more complex network

structures, including square grid and Y-shaped graphs. Numerical simulations

validated the approach, with results showing excellent agreement with

theoretical predictions for concentration profiles and decay rates. The method

proved effective for handling networks with multiple edges and vertices,

providing accurate solutions for concentration evolution and flux continuity.

The reaction-diffusion equation was applied to network structures, focusing on

the stability and dynamics of concentration profiles in chapter 4. The Method

of Lines (MOL) was used to numerically solve the Fisher equation on networks,

allowing for the study of concentration dynamics in reaction-diffusion systems.

Steady-state solutions were analysed, and the stability of these states was

assessed. It was found that the steady-state solutions for the Fisher equation

were constrained to be constant, either u = 0 or u = 1, with u = 1 being stable.

Numerical simulations of concentration dynamics on path and Y-shaped

networks demonstrated how external forcing at vertices could initiate pulse

propagation, which would subsequently propagate, split, and decay as it moved

through the network. The results showed that network topology significantly

influences the way pulses propagate and split, revealing the importance of

continuity conditions at network vertices.
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We extended the analysis in chapter 5 to the FitzHugh-Nagumo (FHN) model,

a system of coupled reaction-diffusion equations that model excitable systems,

such as neurons. The FitzHugh-Nagumo equations were solved on various

network structures, including path graphs and Y-shaped graphs, to investigate

pulse dynamics and the interaction between excitation and recovery variables.

Stationary solutions were derived, and their stability was analysed. The chapter

also explored small-amplitude and arbitrary-amplitude stationary solutions,

computed numerically using Chebyshev polynomials and Newton’s method.

The analysis of the FitzHugh-Nagumo model on networks demonstrated that

network topology significantly affects the dynamics of excitability and pulse

formation, with bifurcation diagrams revealing the transition from uniform to

non-uniform solutions as parameters varied.

In summary, this thesis provides a comprehensive exploration of how diffusion

and reaction-diffusion processes behave on networks. It integrates mathematical

techniques, such as eigenvalue analysis, finite-difference methods, and the

Method of Lines, to model and simulate the diffusion and reaction-diffusion

equations on various network topologies. The results highlight the profound

effect that network structure has on the propagation of signals, especially in

reaction-diffusion systems like the FitzHugh-Nagumo model, where network

topology can lead to complex phenomena such as pulse splitting and stable or

unstable states of bifurcation points. This work contributes to the

understanding of networked systems in biological, physical, and chemical

contexts, offering a foundation for further research on signal dynamics in

complex networks.

6.2 Future work

The thesis establishes a foundational understanding of diffusion and reaction-

diffusion processes on network structures, which can be interpreted through graph

theory. For future research, we need to identify numerous pathways to improve
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our understanding of network dynamics. While this thesis focused on relatively

simple network topologies such as tree graphs, Y-shaped graphs, and square grid

graphs, future research could extend to more complex network structures. This

could include networks with more intricate interactions between nodes, such as

feedback loops, adaptive connections, or hierarchical structures.

The models developed in this thesis can be applied to real-world networks, for

instance, neural or social networks, and adjusted with experimental data to

explore how network topology influences signal transmission in natural

systems.Also, exploring higher-dimensional networks, such as 2D or 3D grids,

would enhance the understanding of signal propagation in complex, spatially

organized systems. Future work could explore how dynamic changes in network

structure (e.g., adding/removing vertices or edges) affect the propagation of

signals, which is especially relevant for communication and biological networks.

In summary, future research could focus on extending the models to more complex

and dynamic networks, applying them to real-world systems, and incorporating

experimental data to refine predictions. These advancements would provide a

deeper understanding of signal dynamics in natural and artificial networks.



A

Find the eigenvalue of square grid

graph by applying Klopotek’s

equation

A.1 Case of 3× 3 square grid graph

The following table is obtained by MATLAB calculation of the eigenvalue

problem. It shows the modified Laplacian eigenvalue λ, the Normalized

Laplacian eigenvalue τ , and their multiplicity.

λ multiplicity τ

-1.000000000000000 1 2.000000000000000

-0.577350269189626 2 1.577350269189626

0.000000000000000 3 1.000000000000000

0.577350269189626 2 0.422649730810374

1.000000000000000 1 0.000000000000000

The following table is obtained by plotting the phases of (δ1, δ2) ∈ [0, (n−1)π) to

determine the initial values of these parameters. Subsequently, the eigenvalues

of the normalized Laplacian τ are computed for a grid graph 3 × 3 for all cases

where (z1, z2) = (1, 0), (1, 1), or (0, 0).
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{z1, z2} (δ1, δ2) τ

(0,0) (0 , 0) 2

(0,0) (0.7854 , 3.92699) 1

(0,0) (0.7854 , 2.3562) 1

(0,0) (2.3562 , 5.4978) 1

(0,0) ( 2.3562 , 0.7854) 1

(0,0) (3.92699 , 5.4978) 1

(0,0) (3.92699 , 0.7854) 1

(0,0) (5.4978 , 3.92699) 1

(0,0) (5.4978 , 2.3562) 1

(0,0) (π , π) 0

(1,1) (0 , π) 1

(1,1) (π , π) 1

(1,0) (0.2928 , 0.5236) 1.57735

(1,0) (0.2928 , 5.7596) 1.57735

(1,0) (2.8487 , 5.7596) 1.57735

(1,0) (2.8487 , 0.5236) 1.57735

(1,0) (3.4344 , 3.6652) 0.42265

(1,0) (3.4344 , 2.61799) 0.42265

(1,0) (5.9903 , 3.6652) 0.42265

(1,0) (5.9903 , 2.61799) 0.42265

A.1.1 Observation on the table for odd number of vertices along

one side n=3

For the square grid graph 4×4 we got the eigenvalue of the Normalized Laplacian

τ as follows:

• Right multiplicity when τ = 2, 0 where (z1, z2) = (0, 0)and(1, 1),

respectively.
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• For case (z1, z2) = (0, 0) we got τ = 1 with the following choices of

δ1 → δ2 :

0.7854 → {2.3562, 3.92699},

2.3562 → {0.7854, 5.4978},

3.92699 → {0.7854, 5.4978},

5.4978 → {2.3562, 3.92699},

There is 8 multiplicity of this eigenvalue , but if we look to table we can

see τ = 1 is appear when (z1, z2) = (1, 1) twice as well with the following

choices of

δ1 → δ2 :
0 → π,

π → π,

which lead to have 10 multiplicity while we just need 3 which means we can

reduce our search on the interval as

• Right multiplicity when τ = 2, 0 where (z1, z2) = (0, 0)and(1, 0),

respectively.

• For case (z1, z2) = (1, 0) we got τ = 1.57735 with the following choices of

δ1 → δ2 :
0.2928 → {0.5236, 5.7596},

2.8487 → {0.5236, 5.7596},

There is 4 multiplicity of this eigenvalue ,and we need only 2 multiplicity

to reduce our search on interval δ1, δ2 ∈ [0, (n− 2)π].

• For case (z1, z2) = (1, 0) we got τ = 0.42265 with the following choices of

δ1 → δ2 :
3.4344 → {2.61799, 3.6652},

5.9903 → {2.61799, 3.6652},

There is 4 multiplicity of this eigenvalue ,and we need only 2 multiplicity

to reduce our search on interval δ1, δ2 ∈ (π, (n− 1)π).
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A.2 Case of 4× 4 square grid graph

The following table is obtained by MATLAB calculation of the eigenvalue

problem. It shows the modified Laplacian eigenvalue λ, the Normalized

Laplacian eigenvalue τ , and their multiplicity.

λ multiplicity τ

-1.000000000000000 1 2.000000000000000

-0.781735959970572 2 1.781735959970572

-0.500000000000000 1 1.500000000000000

-0.333333333333333 2 1.333333333333333

-0.000000000000000 4 1.000000000000000

0.333333333333333 2 0.666666666666667

0.500000000000000 1 0.500000000000000

0.781735959970572 2 0.218264040029428

1.000000000000000 1 -0.000000000000000

The following table is obtained by plotting the phases of (δ1, δ2) ∈ [0, (n−1)π) to

determine the initial values of these parameters. Subsequently, the eigenvalues

of the normalized Laplacian τ are computed for a grid graph 4 × 4 for all cases

where (z1, z2) = (1, 0), (1, 1), or (0, 0).

{z1, z2} (δ1, δ2) τ

(0,0) (0 , 0) 2

(0,0) (0.80217 , 6.7762) 1.3333

(0,0) (0.8021734 , 2.648612) 1.3333

(0,0) (2.6486 , 8.6226) 1.3333

(0,0) (2.6486 , 0.8022) 1.3333

(0,0) (6.7762 , 8.62260) 1.3333

(0,0) (6.7762 , 0.8022) 1.3333

(0,0) (8.6226 , 6.7762) 1.3333
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{z1, z2} (δ1, δ2) τ

(0,0) (8.6226 , 2.6486) 1.3333

(0,0) (3.1416 , 6.2832 ) 0.5

(0,0) (3.1416 , 3.1416) 0.5

(0,0) (6.2832 , 6.2832) 0.5

(0,0) (6.2832 , 3.1416) 0.5

(1,1) (2π , 2π) 0

(1,1) (3.6346 , 7.0854) 0.6667

(1,1) (3.6346 , 5.4810 ) 0.6667

(1,1) (5.4810 , 8.9318) 0.6667

(1,1) (5.4810 , 3.6346 ) 0.6667

(1,1) (7.0854 , 8.9318) 0.6667

(1,1) (7.0854 , 3.6346) 0.6667

(1,1) (8.9318 , 7.0854) 0.6667

(1,1) (8.9318 , 5.4810) 0.6667

(1,1) ( 3.1416 , 3.1416) 1.5

(1,1) ( 0 , π) 1.5

(1,0) (0.2083 , 8.9408) 1.781736

(1,0) (0.2083 , 0.48396) 1.781736

(1,0) (2.9333 , 8.9408) 1.781736

(1,0) (2.9333 , 0.48394) 1.781736

(1,0) (5.79923 , 6.07487) 0.21826

(1,0) (5.7992 , 3.3499) 0.21826

(1,0) (6.7671 , 3.3499) 0.21826

(1,0) (6.76714 , 6.0749) 0.21826

(1,0) (3.45575 , 6.59734) 1

(1,0) (3.4557 , 2.8274) 1

(1,0) (5.3407 , 8.4823) 1

(1,0) (5.3407 , 0.9425 ) 1
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{z1, z2} (δ1, δ2) τ

(1,0) (7.2257 , 8.4823) 1

(1,0) (7.2257 , 0.9425) 1

(1,0) (9.1106 , 6.5973 ) 1

(1,0) (9.1106 , 2.8274) 1

A.2.1 Observation on the table for even number of vertices along

one side n=4

For the square grid graph 4×4 we got the eigenvalue of the Normalized Laplacian

τ as follows:

• Right multiplicity when τ = 2, 0 where (z1, z2) = (0, 0)and(1, 1),

respectively.

• For case (z1, z2) = (0, 0) we got τ = 1.3333 whith the following choices of

δ1 → δ2 :

0.80217 → {2.6486, 6.7762},

2.6486 → {0.80217, 8.6226},

6.7762 → {0.80217, 8.6226},

8.6226 → {2.6486, 6.7762},

There is 8 multiplicity of this eigenvalue while we just need 2 multiplicity

which means we can reduce our search on the interval as δ1, δ2 ∈ (0, (n −

3)π).

• For case (z1, z2) = (0, 0) we got τ = 0.5 with the following choices of

δ1 → δ2 :
π → {π, 2π},

2π → {π, 2π},

There is 4 multiplicity of this eigenvalue while we just need 1 multiplicity
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which means we can reduce our search on the interval as δ1, δ2 ∈ (0, (n−3)π].

• For case (z1, z2) = (1, 1) we got τ = 0.6667 with the following choices of

δ1 → δ2 :

3.6346 → {5.4810, 7.0854},

5.4810 → {3.6346, 8.9318},

7.0854 → {3.6346, 8.9318},

8.9318 → {5.4810, 7.0854},

There is 8 multiplicity of this eigenvalue while we just need 2 multiplicity

which means we can reduce our search on the interval as δ1, δ2 ∈ (π, (n −

2)π].

• For case (z1, z2) = (1, 1) we got τ = 1.5 with the following choices of

δ1 → δ2 :
0 → π

π → π,

There is 2 multiplicity of this eigenvalue while we just need 1 multiplicity

which means we can reduce our search on the interval as δ1 ∈ [0, π)andδ2 ∈

(0, π].

• For case (z1, z2) = (1, 0) we got τ = 1.781736 with the following choices of

δ1 → δ2 :
0.2083 → {0.48396, 8.9408},

2.9333 → {0.48394, 8.9408}

There is 4 multiplicity of this eigenvalue while we just need 2 multiplicity

which means we can reduce our search on the interval as δ1, δ2 ∈ ( n
n−1π, (n−

1)π).

• For case (z1, z2) = (1, 0) we got τ = 0.21826 with the following choices of

δ1 → δ2 :
5.79923 → {3.3499, 6.07487},

6.7671 → {3.3499, 6.07487}



Appendix A: Find the eigenvalue of square grid graph by applying Klopotek’s
equation 209

There is 4 multiplicity of this eigenvalue while we just need 2 multiplicity

which means we can reduce our search on the interval as δ1, δ2 ∈ ( n
n−1π, (n−

1)π).

• For case (z1, z2) = (1, 0) we got τ = 1 with the following choices of

δ1 → δ2 :

3.45575 → {2.8274, 6.59734},

5.3407 → {0.9425, 8.4823},

7.2257 → {0.9425, 8.4823},

9.1106 → {2.8274, 6.5973},

There is 8 multiplicity of this eigenvalue while we just need 4 multiplicity

which means we can reduce our search on the interval as δ1 ∈ (π, (n −

2)π), δ2 ∈ (0, (n− 2)π).

A.3 Case of 5× 5 square grid graph

The following table is obtained by MATLAB calculation of the eigenvalue

problem. It shows the modified Laplacian eigenvalue λ, the Normalized

Laplacian eigenvalue τ , and their multiplicity.
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λ multiplicity τ

-1.000000000000000 1 2.000000000000000

-0.868699110331574 2 1.868699110331574

-0.707106781186547 1 1.707106781186547

-0.552770798392567 2 1.552770798392567

-0.357745190713953 2 1.357745190713953

-0.218942434867536 2 1.218942434867536

-0.000000000000000 5 1.000000000000000

0.218942434867536 2 0.781057565132464

0.357745190713952 2 0.642254809286048

0.552770798392566 2 0.447229201607434

0.707106781186548 1 0.292893218813452

0.868699110331574 2 0.131300889668426

1.000000000000000 1 0.000000000000000

The following table is obtained by plotting the phases of (δ1, δ2) ∈ [0, (n−1)π) to

determine the initial values of these parameters. Subsequently, the eigenvalues

of the normalized Laplacian τ are computed for a grid graph 5 × 5 for all cases

where (z1, z2) = (1, 0), (1, 1), or (0, 0).

{z1, z2} (δ1, δ2) τ

(0,0) (0 , 0) 2

(0,0) (0.777156 , 2.7794) 1.55277

(0,0) (0.777156 , 9.7869) 1.55277

(0,0) (2.7794 , 0.777156) 1.55277

(0,0) (2.7794 , 11.7892) 1.55277

(0,0) (9.7869 ,0.777156) 1.55277

(0,0) (9.7869 , 11.7892) 1.55277

(0,0) (11.7892 , 2.7794) 1.55277

(0,0) (11.7892 , 9.7869) 1.55277
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{z1, z2} (δ1, δ2) τ

(0,0) (1.04719755 , 5.23599) 1

(0,0) (1.0472 , 7.3304 ) 1

(0,0) (π , π) 1

(0,0) (π , 3π) 1

(0,0) (5.23599 , 1.0472) 1

(0,0) (5.23599 , 11.5192) 1

(0,0) (7.3304 , 1.0472) 1

(0,0) (7.3304 , 11.5192) 1

(0,0) (3π , π) 1

(0,0) (3π , 3π) 1

(0,0) (11.5192 , 5.23599) 1

(0,0) (11.5192 , 7.3304) 1

(0,0) (3.50375 , 5.50603) 0.4472

(0,0) (3.50375 , 7.0603) 0.4472

(0,0) (5.50603 , 3.50375) 0.4472

(0,0) (5.50603 , 9.0626) 0.4472

(0,0) (7.0603 , 3.5038) 0.4472

(0,0) (7.0603 , 9.0626) 0.4472

(0,0) (9.0626 , 5.5060) 0.4472

(0,0) (9.0626 , 7.0603) 0.4472

(0,0) (2π , 2 π) 0

(1,1) (0 ,π) 1.7071

(1,1) (π , π) 1.7071

(1,1) ( 3.6652 , 5.7596) 1

(1,1) (3.6652 , 9.9484) 1

(1,1) (5.7596 , 3.6652) 1

(1,1) (5.7596 , 12.0428) 1

(1,1) (9.9484 , 3.6652) 1
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{z1, z2} (δ1, δ2) τ

(1,1) (9.9484 , 12.0428) 1

(1,1) (12.0428 , 5.7596) 1

(1,1) (12.0428 , 9.9484) 1

(1,1) (2π , 2π ) 0.29289

(1,1) (2π , 3π) 0.29289

(1,1) (3π , 2π) 0.29289

(1,1) (3π , 3π) 0.29289

(1,0) (0.1629 , 0.4473) 1.8687

(1,0) (0.1629 , 12.1191) 1.8687

(1,0) (2.9787 , 0.4473) 1.8687

(1,0) (2.9787 , 12.1191) 1.8687

(1,0) (3.4319 , 2.9048) 1.3577

(1,0) (3.4319 , 9.6616) 1.3577

(1,0) (12.2760 , 2.9048) 1.3577

(1,0) (12.2760 , 9.6616) 1.3577

(1,0) (3.7828 , 5.3194) 0.78106

(1,0) (3.7828 , 7.2469) 0.78106

(1,0) (11.9252 , 5.3195) 0.78106

(1,0) (11.9252 , 7.2469) 0.78106

(1,0) ( 5.6420 , 0.9637) 1.2189

(1,0) ( 5.6420 , 11.6027) 1.2189

(1,0) ( 10.0659 , 0.96371) 1.2189

(1,0) ( 10.0659 , 11.6027) 1.2189

(1,0) ( 5.9928 , 3.3784) 0.6423

(1,0) ( 5.9928 , 9.18799) 0.6423

(1,0) ( 9.71513 , 3.37838) 0.6423

(1,0) ( 9.71513 , 9.18799) 0.6423

(1,0) (6.4461 , 5.8359) 0.1313
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{z1, z2} (δ1, δ2) τ

(1,0) (6.4461 , 6.7305) 0.1313

(1,0) (9.2618 , 5.8359 ) 0.1313

(1,0) (9.2618 , 6.73048 ) 0.1313

A.3.1 Case of 6× 6 square grid graph

λ multiplicity τ

-1.000000000000000 1 2.000000000000000

-0.912769316065670 2 1.912769316065670

-0.809016994374948 1 1.809016994374948

-0.686259466680336 2 1.686259466680336

-0.562065445787390 2 1.562065445787390

-0.404270466768019 2 1.404270466768019

-0.309016994374948 1 1.309016994374947

-0.259129927208275 2 1.259129927208275

-0.156203793861273 2 1.156203793861273

-0.000000000000000 6 1.000000000000000

0.156203793861273 2 0.843796206138727

0.259129927208275 2 0.740870072791725

0.309016994374947 1 0.690983005625053

0.404270466768018 2 0.595729533231982

0.562065445787390 2 0.437934554212610

0.686259466680336 2 0.313740533319664

0.809016994374948 1 0.190983005625052

0.912769316065670 2 0.087230683934330

1.000000000000000 1 -0.000000000000000
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{z1, z2} (δ1, δ2) τ

(0,0) (0 , 0) 2

(0,0) (1.0682 , 5.529) 1.1562

(0,0) (1.0682 , 10.1794) 1.1562

(0,0) (5.5285 , 1.0682) 1.1562

(0,0) (5.5285 , 14.63976) 1.1562

(0,0) (10.1794 , 1.068201) 1.1562

(0,0) (10.1794 , 14.6398) 1.1562

(0,0) (14.6398 , 5.5285) 1.1562

(0,0) (14.6398 , 10.1794) 1.1562

(0,0) (0.7439 , 2.85319) 1.6862

(0,0) (0.7439 , 12.8548) 1.6862

(0,0) (2.85319 , 0.743889) 1.6862

(0,0) (2.85319 , 14.9641) 1.6862

(0,0) (12.8548 , 0.7439) 1.6862

(0,0) (12.8548 , 14.9641) 1.6862

(0,0) ( 14.9641 , 2.85319) 1.6862

(0,0) (14.9641 , 12.8548) 1.6862

(0,0) (π , π) 1.30909

(0,0) (π , 4π) 1.30909

(0,0) (4π , π) 1.30909

(0,0) (4π , 4π) 1.30909

(0,0) (3.5384 , 5.7729) 0.7409

(0,0) ( 3.53837 ,9.93505) 0.7409

(0,0) (5.7729 , 3.5384) 0.7409

(0,0) (9.93505 , 3.53837) 0.7409

(0,0) (5.7729 , 12.1696) 0.7409

(0,0) (9.9350 , 12.1696) 0.7409

(0,0) (12.1696 , (5.7729) 0.7409
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{z1, z2} (δ1, δ2) τ

(0,0) (12.1696 , (9.9350) 0.7409

(0,0) (2π , 2π) 0.19098

(0,0) (2π , 3π) 0.19098

(0,0) ( 3π , 2π ) 0.19098

(0,0) ( 3π , 3π ) 0.19098

(1,1) (3π , 3π) 0

(1,1) (6.5717 , 8.6809) 0.3137

(1,1) (6.5717 , 10.1687) 0.3137

(1,1) ( 8.6809 , 6.5717 ) 0.3137

(1,1) ( 8.6809 , 12.27789) 0.3137

(1,1) (10.1687 , 6.5717) 0.3137

(1,1) (12.27789 , 8.6809) 0.3137

(1,1) (10.1687 , 12.277897) 0.3137

(1,1) (12.27789, 10.1687) 0.3137

(1,1) (2π , 2π) 0.69098

(1,1) (2π , 4π) 0.69098

(1,1) (4π , 2π) 0.69098

(1,1) (4π , 4π) 0.69098

(1,1) (3.8962 , 8.3566) 0.8438

(1,1) (3.8962 , 10.49298) 0.8438

(1,1) (8.3566 ,3.8962 ) 0.8438

(1,1) (8.3566 ,14.9533 ) 0.8438

(1,1) (10.49298 ,3.8962 ) 0.8438

(1,1) (10.49298 , 14.9533) 0.8438

(1,1) (14.9533 , 8.3566) 0.8438

(1,1) (14.9533 , 10.49298) 0.8438

(1,1) (3.6519 , 5.8864) 1.2591

(1,1) (3.6519 , 12.9631) 1.2591
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{z1, z2} (δ1, δ2) τ

(1,1) (5.8864 , 3.6519 ) 1.2591

(1,1) (5.8864 , 15.1977 ) 1.2591

(1,1) (12.9631 , 3.6519 ) 1.2591

(1,1) (12.9631 , 15.1976877) 1.2591

(1,1) (15.19769 , 5.8864) 1.2591

(1,1) (15.19769 , 12.9631) 1.2591

(1,1) (0 , π) 1.8090

(1,1) (π , π) 1.8090

(1,0) (5.7976 , 0.9532) 1.4043

(1,0) (5.7976 , 14.7547) 1.4043

(1,0) (13.0519 , 0.9532) 1.4043

(1,0) (13.0519 , 14.7547) 1.4043

(1,0) (3.81479 , 5.60999) 1

(1,0) (3.81479 , 10.09798) 1

(1,0) (6.0588 , 3.36599) 1

(1,0) (6.0588 , 12.34197) 1

(1,0) (8.3028, 1.121997) 1

(1,0) (8.3028, 14.5857) 1

(1,0) (10.5468 , 1.121997) 1

(1,0) (10.5468 , 14.5857) 1

(1,0) (12.7908 , 3.36599) 1

(1,0) (12.7908 , 12.34197) 1

(1,0) (15.0348 , 5.60999) 1

(1,0) (15.0348 , 10.09798) 1

(1,0) (3.4051 , 2.9486) 1.5621

(1,0) (3.4051 , 12.7593) 1.5621

(1,0) (15.4444 , 2.9486) 1.5621

(1,0) (15.4444 , 12.759 3) 1.5621
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{z1, z2} (δ1, δ2) τ

(1,0) (8.4716 , 3.6272) 0.5957

(1,0) (8.4716 , 12.0808) 0.5957

(1,0) (10.37799 , 3.62716) 0.5957

(1,0) (10.37799 , 12.0808) 0.5957

(1,0) (6.47616 , 6.0197) 0.4379

(1,0) (6.47616 , 9.6883) 0.4379

(1,0) (12.373 , 6.0197) 0.4379

(1,0) (12.373 , 9.6883) 0.4379

(1,0) (6.4174 , 9.00822) 0.0872

(1,0) ( 9.00822 , 6.4174) 0.0872

(1,0) ( 9.00822 , 9.29058) 0.0872

(1,0) (9.8413 , 6.4174) 0.0872

(0,1) (0.1342, 0.4166) 1.9128

(0,1) (0.1342, 15.2914) 1.9128

(0,1) (3.007396, 0.4166) 1.9128

(0,1) (3.007396, 15.2914) 1.9128

(0,1) (π, 0) 1.9128

A.3.2 Observation

• For (z1, z2) = (0, 0) on interval (δ1, δ2) ∈ [0, (n− 1)π) for all cases of n that

I tried I noticed that, If the correct multiplicity of eigenvalue is 2 I got 8

of multiplicity of eigenvalue with in that range. as well as if the correct

multiplicity of eigenvalue is 1. I got 4 of multiplicity of eigenvalue with in

that range. the exceptional of this observation that odd n produced τ = 1

when (z1, z2) = (0, 0) with multiplicity (n× 2) + 2 the correct multiplicity

when produced τ = 1 for both n even or odd and only If n odd, τ = 0 with

interval (δ1 = δ2 = (n − 3)π) and the only exceptional in this interval is

case n = 3 where is (δ1 = δ2 = π).
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• For (z1, z2) = (1, 0), if n is even we will have double multiplicity of τ = 1.
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[13] I. Bárány and J. Solymosi. Gershgorin disks for multiple eigenvalues of non-

negative matrices. A Journey Through Discrete Mathematics, pages 123–133,

2017.

[14] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang. Spectral Methods:

Evolution to Complex Geometries and Applications to Fluid Dynamics.

Springer.

[15] T. Cebeci. Convective Heat Transfer. Springer Berlin Heidelberg, 2002.

[16] D. Cebŕıan-Lacasa, P. Parra-Rivas, D. Ruiz-Reynés, and L. Gelens. Six

decades of the fitzhugh-nagumo model: A guide through its spatio-temporal

dynamics and influence across disciplines. arXiv preprint arXiv:2404.11403,

2024.

[17] D. Centola. The spread of behavior in an online social network experiment.

science, 329(5996):1194–1197, 2010.

[18] V. Chandraker, Awasthi A., and S. Jayaraj. Implicit numerical techniques for

fisher equation. Journal of Information and Optimization Sciences, 39(1):1–

13, 2018.

[19] H. Chen and F. Zhang. Resistance distance and the normalized laplacian

spectrum. Discrete applied mathematics, 155(5):654–661, 2007.

[20] W. Chen. Graph theory and its engineering applications, volume 5. World

Scientific, 1997.



Appendix A: Find the eigenvalue of square grid graph by applying Klopotek’s
equation 221

[21] K. Chong, A. Boresi, S. Saigal, and J. Lee. Numerical methods in mechanics

of materials: with applications from nano to macro scales. CRC Press, 2017.

[22] F. Chung. Spectral graph theory, volume 92. American Mathematical Soc.,

1997.

[23] A. Coco and G. Russo. High order finite-difference ghost-point methods

for elliptic problems in domains with curved boundaries. arXiv preprint

arXiv:2405.13986, 2024.

[24] J. Crank. The Mathematics of Diffusion. Oxford University Press, Oxford,

1975.

[25] J. Enderle and J. Bronzino. Introduction to biomedical engineering.

Academic press, 2012.

[26] W. Gao, H. Wu, M. Siddiqui, and A. Baig. Study of biological networks

using graph theory. Saudi journal of biological sciences, 25(6):1212–1219,

2018.

[27] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford

University Press, Oxford, 2001.

[28] J. Gross and J. Yellen. Graph Theory and Its Applications, Second Edition

(Discrete Mathematics and Its Applications). Chapman & Hall/CRC, 2005.

[29] M. Keeling and K. Eames. Networks and epidemic models. Journal of the

royal society interface, 2(4):295–307, 2005.

[30] M. K lopotek. Spectral analysis of laplacians of an unweighted and weighted

multidimensional grid graph–combinatorial versus normalized and random

walk laplacians. arXiv preprint arXiv:1707.05210, 2017.

[31] P. Kuchment. Quantum graphs: an introduction and a brief survey. arXiv

preprint arXiv:0802.3442, 2008.

[32] L. Lovász. Random walks on graphs: A survey. pages 1–46, 1993.



Appendix A: Find the eigenvalue of square grid graph by applying Klopotek’s
equation 222

[33] F. Malliaros and M. Vazirgiannis. Clustering and community detection in

directed networks: A survey. Physics reports, 533(4):95–142, 2013.

[34] R. Marappan, S. Raja, Sh. Raja, and Sa. Raja. Check if a graph is bipartite

or not & bipartite graph coloring using java. International Journal of

Mathematical, Engineering, Biological & Applied Computing, pages 61–67.

[35] M. Newman. Networks: An Introduction. Oxford University Press, 2010.

[36] M. Newman. Networks: An Introduction. Oxford University Press, Oxford,

2018.

[37] S. Priyadarshini and S. Rodda. Geometric multi-way frequent subgraph

mining approach to a single large database. In Smart Intelligent Computing

and Applications, pages 233–244. Springer, 2020.

[38] W. Schiesser and G. Griffiths. A compendium of partial differential equation

models: method of lines analysis with Matlab. Cambridge University Press,

2009.

[39] B. Sennaiyan and T. Suresh. Graph coloring on bipartite graphs.

International Journal of Mathematical, Engineering, Biological & Applied

Computing, pages 56–60, 2022.

[40] Z. Shi, S. Watanabe, K. Ogawa, and H. Kubo. Structural Resilience in Sewer

Reconstruction - From Theory to Practice. 08 2017.

[41] M. Stone and P. Goldbart. Mathematics for Physics. Cambridge University

Press, Cambridge, 2004.

[42] N. Trefethen. Approximation Theory and Approximation Practice. SIAM.

[43] A. Turing. The chemical basis of morphogenesis. Philosophical Transactions

of the Royal Society B, 237(641):37–72, 1952.

[44] V. Volpert and S. Petrovskii. Reaction–diffusion waves in biology. Physics

of life reviews, 6(4):267–310, 2009.



Appendix A: Find the eigenvalue of square grid graph by applying Klopotek’s
equation 223

[45] D. West. Introduction to Graph Theory. Prentice Hall, Upper Saddle River,

NJ, 2001.

[46] R. Wilson. Introduction to Graph Theory. Pearson Education India, 1996.

[47] A. Wünsche. Duality between bessel functions and chebyshev polynomials

in expansions of functions. Advances in Pure Mathematics, 13(8):504–536,

2023.


	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Motivation for the study
	 Calcium wave propagation in plant leaves
	 Broader applications of network diffusion models

	Background of diffusion on a network
	Introduction to graph theory
	Definition and terminology
	Relevance to network modelling
	Edge directions and vertex degrees

	Diffusion on a graph literature review and novel contribution
	Discretising approach
	Random walks on a graph
	Metric graph
	Quantum graphs
	Novel contributions of this work

	Aim and outline

	Diffusion in networks: analysis and asymptotic behaviour
	Foundations of diffusion
	Basic concepts
	Fick's Law of diffusion
	Derivation of the one-dimensional diffusion equation

	Diffusion on a network
	General case
	Mathematical formulation
	Boundary and continuity conditions
	Governing equation
	Separation of variables for network diffusion
	Special case
	Flux conditions

	Eigenvalue analysis and matrix formulation
	Matrix formulation and eigenvalue problem
	Generalized eigenvalue problem for nu
	Eigenvalue analysis using Gershgorin's theorem

	Singularity of the modified Laplacian matrix L* and eigenvalue analysis
	Regular graph

	Numerical results for eigenvalue analysis of the modified Laplacian matrix
	Graphs with four vertices
	Graphs with four vertices decay rate analysis
	Graphs with six vertices
	Normalized Laplacian

	Square grid graph
	Klopotek's results for a square grid graph
	Eigenvalues of a square grid graph
	Key Observations on a Square Grid Graph

	Asymptotic theory for a square grid graph
	Case 1: (z1, z2) = (0, 1) or (z1, z2) = (1, 0)
	Case 2: (z1, z2) = (1, 1)
	Case 3: (z1, z2) = (0, 0)
	Results of asymptotic analysis


	Diffusion on a network: finite-difference approach
	Brief introduction to the finite difference method
	Crank-Nicholson method to solve the diffusion equation on a network
	Crank-Nicholson method to solve the diffusion equation for path graph P2
	Numerical results for a path graph P2
	Crank–Nicholson method to solve diffusion equation for path graph P3
	Numerical results for a path graph P3
	The general formula of the fictitious point for the continuity of flux condition for any network
	Initial condition
	Numerical results for the Y-shaped graph
	Numerical results for square grid graph 3 3
	Numerical results for square grid graph 6 6


	Reaction-diffusion equation on network
	Reaction diffusion equation
	Steady-state and stability analysis for the reaction-diffusion equation
	Steady states for the reaction-diffusion equation
	Stability analysis for the reaction-diffusion equation on a network
	Stability analysis for P2.

	Method of Lines
	Method of lines for path graph P2
	Numerical results and analysis for path graph P2
	Method of Lines for path graph P3
	Numerical results and analysis for path graph P3
	Method of lines on general network
	Numerical results and analysis for general network


	The FitzHugh–Nagumo model: simulation of pulse dynamics in network
	The FitzHugh–Nagumo model
	Numerical simulation of pulse dynamics
	Forcing effects on a path graph P2
	Forcing effects on a Y-shaped graph

	Spatial dynamics of FitzHugh-Nagumo system
	Analysis of stationary solutions
	Small amplitude stationary solutions on P2
	Arbitrary amplitude stationary solutions on P2
	Small amplitude stationary solutions on a network
	Small amplitude stationary solution on a network: wave number compatibility
	Small amplitude stationary solution on a network: examples
	Small amplitude stationary solution on a network: initial guess for the numerical method

	Uniform solution on a network
	Stationary solutions on a network: stability
	Stability of the uniform state

	Numerical results
	The path graph P2
	The path graph P3
	The Y-shaped graph
	Square grid graph 3  3


	Conclusion
	Summary and conclusions
	Future work

	Appendices
	Find the eigenvalue of square grid graph by applying Klopotek's equation
	Case of 33 square grid graph
	Observation on the table for odd number of vertices along one side n=3

	Case of 44 square grid graph
	Observation on the table for even number of vertices along one side n=4

	Case of 55 square grid graph
	Case of 66 square grid graph
	Observation



