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Abstract

Representations of p-adic groups have deep applications to
number theoretic questions via the conjectured Langlands
correspondence.  While the complex representation theory is
well-understood in a wide variety of cases, the /[-modular theory
for | # p is still largely unsolved. For the case of GL,, a block
decomposition is known, as is a description of the irreducible
representations in each block, but the full structure of the blocks
remains open. Recent developments in the categorification of the
Langlands correspondence have suggested that it is in fact the
study of the derived category that is of central interest.

We obtain, for the derived unipotent [-modular block
D},(Hi(G)) of G = GL,(F) for a p-adic field F, an explicit
classical generator V. In the process, we also obtain an analogous
result in the case of G = GL, (k) for k a finite field. The proof
proceeds in two parts. Firstly, we show that another
representation (), which plays a key role in the underived
[-modular representation theory, is a classical generator. This
requires establishing various finiteness properties for the unipotent
block B;1(G), namely that it is Noetherian and possesses a certain
subcategory B (G) of finite global dimension. Secondly, we relate
the two classical generators using the theory of irreducible
[-modular representations of GL,, (k).

Using this classical generator, we give a (triangulated, linear)
equivalence from D% (H1(G)) to the perfect complexes over a dg
Schur algebra. This is a derived [-modular analogue for the result
in the complex setting that the unipotent block is equivalent to
modules over the Iwahori-Hecke algebra. We conclude with a

composition formula for the dg Schur algebra.



Access Condition and Agreement

Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights,
and duplication or sale of all or part of any of the Data Collections is not permitted, except that material
may be duplicated by you for your research use or for educational purposes in electronic or print form.
You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions
only apply where a deposit may be explicitly provided under a stated licence, such as a Creative
Commons licence or Open Government licence.

Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly
stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or
reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder
themselves) and UEA reserves the right to take immediate ‘take down’ action on behalf of the copyright
and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in
this database has been supplied on the understanding that it is copyright material and that no quotation
from the material may be published without proper acknowledgement.



Contents

Introduction

1.1 Background . . . . . . .. ...
1.1.1 Representation Theory and the Langlands Program . . .
1.1.2 Complex Representations of Finite and p-adic Groups
1.1.3 [-modular Representation Theory . . . . .. .. .. ..
1.1.4 Derived Representation Theory . . . . . . ... .. ..

1.2 Results . . . . . . .

1.3 Organisation of the Thesis . . . . . . . ... ... ... ....

Groups, Algebras, and their Representation Theory
2.1 Notation and Conventions . . . . . . . . . . . . ... ... ..

2.2 Projective Representations, Blocks, Idempotents, and

Endomorphisms . . . . . . ...
2.3 [-Modular Reduction . . . . . . ... ...
2.4 Induction and Restriction . . . . . ... ...
2.5 Reductive Groups . . . . . ...

2.6 Parabolic Induction for Finite Groups . . . . . . . .. .. ...



Contents 3

2.7 Topological Groups and Smooth Representations . . . . . . . . 23
2.8 Parahoric Subgroups . . . . .. ... 26
2.9 Parabolic and Parahoric Induction for p-adic Groups . . . . . . 28
2.10 Complexes, Derived Categories, and dg Algebras . . . . . . .. 29
2.11 Affine Cellular Algebras . . . . . . . . ... .. ... ... .. 33

3 [-Modular Unipotent Representations of Finite Reductive

Groups 36
3.1 Definitions and Notation . . . . . . . .. ... ... ... ... 36
3.2 Classical Generators for Finite GL,, . . . ... ... ... ... 38
33 Finite GL,forl|g—1 . .. ... ... ... .. ... 43
331 Example:n=1 ... ... ... ... ... . ..... 44

34 Finite GL, forl|¢° =1, e>% . ... ... ... ... ... . 44
341 Example: n=2 . ... ... ... .. 50

4 [-Modular Unipotent Representations of p-adic Groups 58
4.1 Definitions and Notation . . . . . . . . .. ... ... ... .. 58
4.2  The Unipotent Block of p-adic GL,,, . . . . . . ... ... ... 59
4.3 The Noetherian Property and Second Adjunction . . . . . . . | 60
4.4  The Iwahori-Hecke and Schur Algebras . . . . . . . . . .. .. 62
4.5 The Global Dimension of the Schur Algebra . . . . . . . . . .. 64

4.6 Aside: Affine Cellular Structures for the Schur and Hecke Algebras 67

4.7 A Classical Generator for p-adic GL,, . . . . ... .. ... .. 72

5 Describing the Derived [-Modular Unipotent Block 74



Contents 4

5.1 A Second Classical Generator for p-adic GL,,, . . . .. ... .. 74
511 Example: n=1 . .. ... ... ... ... ... . 79
5.2 The dg Schur Algebra . . . . . . . .. ... 79

52.1 Example: n=1 . .. ... ... ... ... ... . 84



Contents 5

Acknowledgements

| would like to thank the Engineering and Physical Sciences Research Council,
grant T00046, for funding my PhD studentship, which has enabled all of this
research. | am extremely grateful to my supervisors, Professors Vanessa
Miemietz and Shaun Stevens, for helping me learn my way around this
complex and evolving field, and providing constant feedback and support. |
would also be remiss not to mention Vincent Sécherre and Robert Kurinczuk,

who offered some very enlightening discussions.

| would also like to thank my girlfriend Marlow, her girlfriend Hazel, and my
ex-girlfriend Bee for keeping me sane and bringing me joy, and my sister Liana
for trying to keep me out of trouble. | am also indebted to my close friends
and fellow mathematicians Aberdeen and Alexis for letting me bounce ideas off

them and providing valuable feedback.



Introduction

Synopsis

We summarise the history of the study of p-adic groups, from
classical problems to the Langlands program, and establish the state
of the art of both the complex and /-modular representation theory,
as well as modern categorical and derived approaches. We then
summarise the key results of this thesis, and lay out the structure

of how we will go about presenting our argument.

1.1 Background

1.1.1 Representation Theory and the Langlands Program

The ideas of reciprocity and class field theory date back hundreds of years (see
Cox [2022] for a modern summary). The former was used to find prime solutions
to integer equations, and provided an equivalence between the existence of nth
roots modulo different primes, which could be computed effectively. Class field
theory extended this to the problem of determining when certain prime ideals in
a number field split over an abelian extension, and in this setting reciprocity was
generalised to an isomorphism between the class group and the galois group of

an (unramified) abelian extension.

In Langlands [1970], Langlands proposed a series of conjectures massively
generalising reciprocity and class field theory to the non-abelian case. In
particular, he proposed a reciprocity between automorphic forms of reductive

groups over number fields (which generalise class groups) and representations
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over a hypothetical object called the Weil group, which he proposed to be
closely related to the Galois group of the number field. These would allow for
the solution of equations which relate to non-abelian extensions, and hence

would have far-reaching applications throughout number theory.

One insightful method is to localise the conjectured correspondence for a
single prime p, that is, to work over a p-adic field. This provides numerous
advantages, most notably, that the Weil group in this setting has an explicit
definition, and that the automorphic forms become ordinary irreducible
(smooth) representations of the reductive p-adic groups, allowing for the
introduction of techniques from representation theory. We refer to Kaletha

[2023] for an overview.

Group representation theory has been extensively studied since the 19th century,
with much of the theory focusing on finite groups of lie type and real lie groups.
Both of these classes of groups provide techniques that have analogues for p-adic
groups, allowing for the automorphic side of the local Langlands correspondence
to be described in detail.

Historically, the theory for p-adic groups drew from the theory of real lie groups,
but more recently purely algebraic methods have been developed which connect
to the theory of finite groups of lie type. In particular, the representation theory
of reductive finite groups forms in many ways a special case of that of p-adic
groups, and proofs of results for p-adic groups often proceed by reducing to the

case of finite groups.

1.1.2 Complex Representations of Finite and p-adic

Groups

Let F' be a non-archimedean local field, with residue field k& of characteristic
p and cardinality ¢, and let G (respectively G¢) be the F-points (respectively

k-points) of a reductive algebraic group over F' (respectively k).

The theory of representations of both G and Gy with complex coefficients is
well-understood. The latter was classified in general by Lusztig in Lusztig [1984,
1988], and this was recently translated into a Langlands-compatible language
in Imai and Jr [2025], Imai [2025]. Work is still underway to provide a p-adic

analogue for the geometric methods used in the finite case (Chan and Ivanov
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[2021] provides such a construction for inner forms of GL,,).

This classification can be formulated in the language of supercuspidal support
(also known as Harish-Chandra series) and Hecke algebras. Namely, there is a
partition of the irreducible representations of Gy according to their
supercuspidal support. The summand generated by an equivalence class of
such representations is then equivalent to modules over a finite Hecke algebra
of some explicit Coxeter group. A key ingredient in the proof of this result is
showing that the summand corresponding to a given supercuspidal support is
equivalent to a summand arising from a unipotent supercuspidal support of
some other group. In this form it is known to be generalisable to the p-adic

setting.

By Bernstein [1984], the category of smooth complex representations of G is
known to decompose into blocks, which are parameterised by inertial
supercuspidal support. Furthermore, in many cases the supercuspidal
representations, and hence the blocks, can be parameterised via the theory of
types. This was done first for GL,, in Bushnell and Kutzko [1999], and has
since been shown for inner forms of GL,, in Sécherre and Stevens [2012], for
tamely ramified groups in Fintzen [2021b,a] (when p does not divide the order
of the Weyl group), for classical groups in Miyauchi and Stevens [2014] (when
p is odd), or for depth zero representations in Moy and Prasad [1996].

In these cases, the types give an explicit progenerator for the block, whose
endomorphisms are a twisted affine Hecke algebra, and furthermore, the Hecke
algebra often has an explicit description in terms of generators and relations
(for example Adler et al. [2024b,a] for tamely ramified groups, Morris [1993]
for blocks of depth zero, and Miyauchi and Stevens [2014] for certain cases of

classical groups), and a well-understood representation theory.

These blocks are often equivalent to each other. For example, there is a
reduction to depth zero blocks for tamely ramified groups in Adler et al.
[2024a). In particular, for GL,, there is a single unipotent block B;(G),
namely the block containing the trivial representation 1, which has
progenerator P = ind¥1 (I an lwahori subgroup) and Hecke algebra Hp(n)
extended affine of type A,_;1. It was shown, first in Bushnell and Kutzko
[1999] and expanded on in Dat [2017], that each block of GL,(F) is
equivalent to some B;(H), where H is a finite product of general linear

groups over finite extensions of F'.
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1.1.3 /-modular Representation Theory

While complex representations already contain a great deal of information, they
are in a sense the simplest kind of representations. Algebraically, they are split
(irreducible representations are absolutely irreducible) and for finite groups they
are semisimple (indecomposable representations are irreducible). Furthermore,
they are amenable to geometric and analytic methods. A more complete picture
of the representation theory can be obtained by generalising to other coefficient
rings, but the techniques that may be used become more restrictive, and the

theory becomes more complicated.

The next natural case to consider is [-modular representation theory, that is,
representations over algebraically closed fields of characteristic | # 0.
Representations in this setting remain split, but additional complexity can arise
from [ no longer being invertible (for finite groups, for example, semisimplicity
can fail). The case where [ = p displays a very different structure to the
complex case, and is beyond the scope of discussion for this thesis. We shall

henceforth focus on the case where [ # p.

The simplest case is when [ is banal, which means that it does not divide the
index of any compact open subgroup of G or G in any larger compact open
subgroup. For Gy, this case remains semisimple, and so the representation
theory is the same as the complex case. The representation theory is expected to
be the same as the complex case for G also. Indeed, Bernstein's decomposition
still holds (Dat et al. [2024b]). It is likely that the equivalence of the blocks with
modules over Hecke algebras also holds via the arguments from the complex
case (in the cases where the types are known), but the author does not know

anywhere this has been written down.

When [ is not necessarily banal, the situation becomes different. The
construction of types in the known cases still holds and gives every
supercuspidal representation (Fintzen [2022], Kurinczuk and Stevens [2020],
Minguez and Sécherre [2014]).  However, while the subcategories of
Bernstein's decomposition are still well-defined, in general they are not direct
summands, such as for SL, (Cui [2022]), or even disjoint, such as for Spyg
(Dat [2018b]). Blocks are instead expected to be unions of Bernstein
subcategories. These unions have been found explicitly in some cases, such as

for inner forms of classical groups when p # 2 (Helm et al. [2024]).
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Surprisingly, it is shown in Vignéras [1998] that, for G = GL,,(F), Bernstein's
block decomposition still holds. Indeed, this is also known to be true for inner
forms of GL,, also (Sécherre and Stevens [2016]), though we shall not consider
that case here. The decomposition for G is also known explicitly (Fong and
Srinivasan [1982]), though, like in the complex case, it is finer than the Bernstein
decomposition. It thus makes sense to ask, for G = GL,, if these blocks are
related to the modules over the Hecke algebra associated to their type, and if

they are equivalent to a unipotent block.

We address the latter question first. For G = GL,(F), there is still a single
unipotent block B;(G), which contains 1, and the same equivalence of an
arbitrary block to Bi(G) for some product of GL,,(F). To the author's
knowledge, this has not been recorded anywhere. As such, we interrupt the

introduction to provide a proof, at least over F,.

Theorem 1.1.1. Let F be a p-adic field, B a block of the category of
representations of GL,,(F) with coefficients in F;. Then B is equivalent to the
principal block (that is, the block containing the trivial representation) of
representations of some [ [, GL,,,(E;), where E; are degree d; extensions of I
such that ) . m;d; = n.

Proof. By Chinello [2018], we may reduce to the case where B has depth zero.
We wish to conclude by Dat [2018a]; however, Dat works over Z;. We may
think of any representation over IF; as a representation over Z; via inflation,
that is, taking the maximal ideal m of 7, to act as zero. Furthermore, by Helm
[2016], each block over T, is exactly the subcategory of a block of Z; consisting
of those representations where m acts as zero. Thus it suffices to show that
Dat’s equivalence restricts to an equivalence of the corresponding blocks over
;.

To this end, it suffices to show that Dat’s equivalence is Z;-linear. To see this
suffices, observe that, given a representation V' over 7, by considering scalar
multiplication by elements of Z; as endomorphisms of V, the equivalence being
Zy-linear would imply that m acts as zero on one side of the equivalence if and
only if it acts as zero on the other side. Hence the equivalence would then

restrict to the blocks over ;.

To see that Dat's equivalence is linear, we inspect its construction. In Theorem

4.2.2 of Dat [2018a] Dat first gives an equivalence between a depth zero block
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and a category of certain modules over a multi-object Hecke algebra, sending
a representation V' to, at each object, a space of invariant vectors. This is
manifestly Z;-linear. Then in Theorems 4.3.8 and 4.3.9 of the same paper
Dat gives a Morita equivalence between two such categories over multi-object
Hecke algebras, where one is equivalent to a principal block via the previous

equivalence. But Morita equivalences are always linear. O

It seems likely to the author that one could also show directly that Dat's proof

works over more general coefficient rings.

We return to the former question of whether the blocks are equivalent to
modules over their Hecke algebra: the answer is negative. While we can still
define the representation P = ind¥1 and the Hecke algebra
Hr(n) = Endg(P) from the type as in the complex case, the equivalence of
B1(G) with the category of modules over Hg(n) fails. Specifically, P fails to

be a generator (and when [ divides ¢ — 1 it also fails to be projective).

For example, consider [ odd and dividing ¢ + 1, and Gy = GLy(k). Then
B (G) contains two irreducible representations, but the Hecke algebra only
has one irreducible module (James [1986]). A similar argument on the
subcategories of fixed central character (Minguez and Sécherre [2014]) shows
that the equivalence also fails for G = GLy(F) in this case.

Despite this, for GL,,, a great deal is still known. Most notably, all the
irreducible representations of GGy have been classified by Richard Dipper and
Gordon James (Dipper [1985], James [1986], Dipper and James [1986]),
extending the classification of Lusztig in the complex case, and a similar
method describes the irreducible representations of G (Minguez and Sécherre
[2014]).

A description of the full category of representations, instead of just the
irreducible representations, has however proven elusive. The state of the art
can be found in Vignéras [2003], building on the result of Takeuchi [1996] for
Gy. Vignéras defines for G a subcategory Bj(G) of Bi(G) given by the
representations annihilated by 7 = Annyg) P, where H(G) is the global
Hecke algebra of G.

She then shows two things. Firstly, that some power of Z annihilates B (G).

This implies that B](G) generates B;(G) under extensions, and so in particular
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contains all irreducible representations. Secondly, she shows that B;(G) is
equivalent to the category of modules over the Schur algebra Sg(n), an algebra

closely related to Hg(n) but with a richer I-modular structure.

Vignéras achieves this result by giving an explicit progenerator @) of B (G),
whose endomorphisms give Sg(n). However, she also observes that Sg(n) is
the endomorphisms of a much simpler representation V', whose annihilator is
Z, but which is not projective or a generator in 3}(G) in general. Note that,
as ever, all of this holds analogously for Gy as well as for G. Thus, while we

know a great deal, we do not have a complete description of B1(G).

1.1.4 Derived Representation Theory

One may recall that the local Langlands correspondence concerned only
irreducible representations, so at first it might not seem obvious why an
understanding of the full category would be useful. = However, beyond
independent interest, the (local) Langlands correspondence has been
categorified in Fargues and Scholze [2024] into an equivalence between certain
derived categories of sheaves on stacks corresponding to p-adic groups and
their Langlands parameters. In particular, for a given quasi-split G, the
automorphic side of the categorical local Langlands correspondence has a
semi-orthogonal decomposition into the derived categories of representations

of the inner forms of the Levi subgroups of G.

Thus, for applications to the Langlands program, it is the derived category of
representations that is of primary interest. In the complex case, the detailed
understanding of the underived theory naturally extends to the derived setting.
However, in the [-modular setting, it may be possible to provide a complete
description of the derived setting using only the partial structure results known

in the underived setting. This is the goal of this thesis.

1.2 Results

Recall that we consider representations over an algebraically closed field of
characteristic different from p. Write D} (Hi(G)) for the bounded derived

category of finitely generated unipotent representations, and for a triangulated
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category 7 with object G write (G)7 for the subcategory classically generated
by G. The main result of this thesis is the following theorem:

Theorem 1.2.1. For G = GL,(F), and for V and Q) as in the previous
subsection, we have that DY (H(G)) = (@) e ) = VDot vy

This allows us to describe D% (H;(G)) via the theory of dg algebras. Let V* be a
projective resolution of V' in B;(G), and write dg-End for the dg endomorphism

algebra of a complex and per for the perfect complexes over a dg algebra.

Corollary 1.2.2.  There is a triangulated equivalence
Ds’cg(Hl(G)) ~ per(dg-End,(V*)).

Now, dg-End(V*) has zeroth cohomology Sg(n), and so can be seen as a dg
enhancement of the latter. Due to the relative simplicity of V', we can describe
the composition law of dg-End(V'*) explicitly in terms of resolutions on the

finite group, analogously to the composition law for Sg(n).

To establish that @ classically generates D% (Hi(G)), we use the results of
Dat [2009] to show that the categories under consideration are Noetherian, and
extend a result of Cui [2015] to show a further key finiteness property, which is

implicit in the literature but spelled out explicitly for the first time herein:

Lemma 1.2.3. For any n, the Schur algebra Sg(n) has finite global dimension.

To show an equivalence between the categories generated by ) and V', we use
the unipotent block B;(Gy) of the finite reductive quotient Gy = GL, (k). It
contains certain finite analogues Py, Zy, Q¢ and Vy of P, Z, Q and V. This
allows us to use the structure theory of G, found in James [1986] to describe
the composition factors of V; and )y. Thus we may show a finite version of
our main theorem:

Lemma 1.2.4. D?Q(Hl(Gf)) = <Qf>D5’cg(H1(Gf)) = <Vf>D;g(H1(Gf))-

We then attempt to lift this equivalence into the p-adic setting. However, a
barrier occurs, as () is not a priori parahorically induced from Q). We prove
equality by showing inclusion in each direction. To show one direction, we prove

the following property of Z;:

Lemma 1.2.5. 7, C 7.
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We show this by giving an abstract argument that works for any reductive group.

To show the other direction, we use the structure theory of Z; given in Takeuchi
[1996], Dipper and James [1989] to show the following:

Theorem 1.2.6. Q) is a direct sum of submodules of P;.

We also give many examples of these theorems, such as in the case of cyclic
defect group, where the results are more readily apparent. It would be interesting
to see if a direct proof of the theorem could be achieved via the classification
of Minguez and Sécherre [2014].

1.3 Organisation of the Thesis

Section 2 of this thesis recalls the relevant background theory of finite and p-adic
groups and their representations. In particular, we recall notions of parabolic and
parahoric subgroups and induction and restriction along them, as well as blocks,

projective covers, affine cellular algebras, dg algebras, and derived categories.

Section 3 features our arguments for the finite group G'y. We recall the structure
theory of Dipper and James, and use it to prove our results about V; and ;.
Section 4 recalls the results of Vignéras, and then uses the work of Dat and Cui
to show that the category of smooth representations is Noetherian and that the

Schur algebra has finite global dimension.

In section 5, we combine the results of the previous sections, together with our
result on the relationship between the annihilators, to show our main theorem.
Finally, we investigate the structure of the dg algebra dg-End(V'*), and provide
a composition formula using results on double cosets of extended affine Weyl

groups.



2

Groups, Algebras, and their

Representation Theory

Synopsis

We review the general theory of representations of algebras,
including the relations between projective representations,
idempotents, and blocks, as well as the operations of induction
and restriction. We also explore certain particular types of
algebras, namely the group algebras of reductive, topological, and
p-adic groups, which have the further operations of parabolic and
parahoric induction. Finally, we review the theory of complexes
and dg algebras, as well as the definition of an affine cellular
algebra.

2.1 Notation and Conventions

We shall throughout take R to be a commutative ring, and A a (not necessarily
commutative or unital, but associative) R-algebra. In particular, we do not

assume that subalgebras have the same unit, even when they are unital.

All modules and representations will be left modules and left representations.
We will assume that all A-modules M are nondegenerate, that is, that AM =
M. We write Mod(A) for the category of (nondegenerate) modules over A.
When A = R[G] is a group algebra, we will just write G instead of R[G| when
it appears as a decoration, such as Mod(G) and Homg instead of Mod(R[G])

and Hompgg) respectively.
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Whenever G is a topological group, we will assume that all representations of
G are smooth (see Section 2.7 for the definition). In particular, in this case

Mod(G) shall denote the category of smooth representations.

We write the trivial representation of a group G over R as l¢, or simply 1

when G is clear from context.

We write the indicator function of S C X, that is, the function X — R which
is1on S and0on X\S, as 1g.

We use the term p-adic field to denote any non-archimedean local field F
with residual characteristic P, without assuming F' has characteristic zero. We

endow p-adic fields with the topology arising from their local field structure.

2.2 Projective Representations, Blocks,

Idempotents, and Endomorphisms

Suppose that that A is idempotent (that is, that A% = A).

Definition 2.2.1. We say that two indecomposable A-modules are in the same
block if they are equivalent under the equivalence relation generated by M ~ N
if Homa (M, N) # 0.

The blocks of Mod(A) are the closure under direct sums of the above

equivalence classes.

Mod(A) has a block decomposition if, writing C; for the block of Mod(A), we
have that each M € Mod(A) decomposes as M = P, M; for M, € C;.

Observe in particular that if M and N are in different blocks then
Homs(M,N) = 0. When a block decomposition exists, we may then
decompose A as a direct sum of left ideals €D, A; for A; € C;. We call the
ideals A; the block algebras.

For a € A, we have module maps A; =+ A = P, A; given by a’ — d'a. By
composing with the projection maps and using that Homa(A;, A;) = 0 for
© # 7, we can see that this map must have image contained in A;. Thus the

A; are also right ideals, and so in particular the A; are (non-unital) algebras
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themselves, with A;4; = 0 for i # j. Thus, by taking the summands of A?
and A in each C; and using that A? = A, we must also have A? = A;, that is,
that the A; are idempotent.

Given an A-module M, write M = @, M; for M; € C;. Then for m € M;,
the map A; — M, given by a — am must be zero for i # j. Thus A;M; =0
for i # j. Thus, by taking summands of AM and M in each C; and using
that AM = M, we must also have that A;M; = M;, and hence also that
A;M = M,;.

Thus, the C; are exactly the full subcategories of modules M such that A;M =
M, and C; = Mod(A4;) by restricting the A-action on such M to an A;-action.

We now restrict to the case where R is an algebraically closed field and A is

unital and finite dimensional over R, and follow Assem et al. [2006].

In this case, we can decompose the identity element 1 € Aasasum 1 =)_¢,
for e; € A;. Then e; is the identity element of A;, and the e; form a set of
primitive orthogonal central idempotents, such that ;A = A; and e;M = M.
We call e; the central idempotent of the block C;.

A has a module decomposition into indecomposable modules €,_, Py, and
any two such module decompositions must contain the same modules up to
isomorphism with the same multiplicities. In particular, as indecomposable
modules must lie in a single block, we have A; = @PkeMod(Ai) P... Furthermore,
the P are projective, and every projective indecomposable module is isomorphic
to some P,. There is a unique idempotent e, for each k such that P, = Aey,
and conversely any set of primitive orthogonal idempotents e;, with >, e, =
1 gives a decomposition A = @Zzl Aey, with the P, = Ae; projective and
indecomposable. If P is in the block C; then e, € A;, and conversely. We call

er the idempotent generating Py.

By considering the left action of 1 = > ¢, on A = @,_, Aej, we may
further decompose A = @Z,l:1 e;Aey,. We have ¢ : e;Aey, — Homy(Aey, Aey)
by sending an element to its right multiplication action. Thus, we may evaluate
the left action of a € Aonp € Py byas >7;, &' (¢(ar)d(pm)) where
a=) g an for ay € ey Aey and p =370 | py, for p,, € ey Ae;.

P, possesses a unique maximal submodule, and hence a unique simple quotient

L. All simple modules are the quotient of some P, and Pj is the projective
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cover of L.

2.3 [-Modular Reduction

Here we follow Linckelmann [2018].

Definition 2.3.1. An [-modular system is a complete discrete valuation ring
O with residue field R algebraically closed of characteristic [ and fraction field

K of characteristic zero.

Suppose that A is the extension R ®p, Op of some unital Ok-algebra Op
that is finite free as an Ox-module. Let B = K ® Op, and suppose that B is
split semisimple, that is, that every simple B-module M is projective and has
Endg(M) = K.

For a simple B-module M, there exists a Op-module Oy, with M = K ®¢,
O, Given such an @y, we call M = R®0, O an l-modular reduction of M.
Note that /-modular reductions are not in general unique. Given also a simple
A-module N, call the decomposition number dy;n of N in M the multiplicity
of NV in some (hence any) composition series for M. This is independent of the
choice of Oy,.

The decomposition matrix of Op is the matrix with rows indexed by simple B-
modules M, columns by simple A-modules N, and (M, N)-entry dy;n. Where
Op is clear, we shall often abuse notation and simply speak of the decomposition

matrix of A.

Conversely, given such M and N, there exists a primitive idempotent e of Op
such that Ae is the projective cover of N. Then M has multiplicity dyn in
any composition series of Be. Thus, N’ occurs in any composition series for

Ae with multiplicity Y, dynrdpn.

2.4 Induction and Restriction

We again follow Linckelmann [2018]. Suppose A and A’ are both R-algebras
with f: A — A’ a R-algebra homomorphism.
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Definition 2.4.1. Restriction of scalars res?} : Mod(A’) — Mod(A) is the
functor sending M € Mod(A’) to the A-module with the same underlying R-
module as M and A-action (a,m) — f(a)m where the right-hand side is the
A’-action of M.

Induction ind4 : Mod(A) — Mod(A’) is the functor A’ ®4 —. Note that in
the case of topological groups, we shall instead use this notation for compact

induction (see Section 2.7).

Both functors are R-linear and transitive, that is, functorial in f up to coherent

natural isomorphism.

Now suppose further that A and A’ are unital.

Al

! .
4" Furthermore, res’y is

By Frobenius Reciprocity, indﬁl is left adjoint to res’

exact.

Proposition 2.4.2. Suppose f has a right adjoint g. If g is exact then f

preserves projective modules.

. ’ - .
Hence, mdﬁ always preserves projective modules.

We adopt the standard convention that ind%, and res% are reserved for when
f: R[H] — R|[G] is induced by an inclusion of groups H < G, and that we
instead call them co-inv$ and infl$ respectively when f : R[G] — R[H] is
induced by a quotient of groups G — H with kernel K.

In the case of an H — G, as R[G] is free over R[H], it follows that ind? is also
exact. In the particular case that H is a finite index subgroup of G, Frobenius
reciprocity also gives that ind% is right-adjoint to res%, and so res% preserves

projective modules.

We may also identify ind% (M) with the H-equivariant functions G — M
whose support is a finite union of left- H-cosets, where we give G a left-H-

1z, and the

action via (h,z) — xh™! and a right-G-action via (x,g) — g~
left-G-action on ind$ (M) is induced by the right-G-action on G. The element
g®@m € ind% (M) is identified with the unique map with support gH such that
g — m. In particular, ind% (1) has basis 1, for z € G/H, where g € G sends

1xH to 1gmH-

If K and H are both subgroups of G, then the Mackey Decomposition gives
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an isomorphism

G: 1G ~ s 1H gKg~1!
respind M = @ ind g g1 T€S 0 -1

geEHgK

M9

1 with the same underlying R-module

where MY is the representation of g K g~
as M and action (z,m) — (g~ 'xg)m, where the right-hand side is the K-action

of M.

In the case of a quotient G — H with kernel K, we may identify co-inv% (M)
with the quotient M /K M, where KM denotes the R-module spanned by km
for k € K and m € M. In particular, gK ® m is identified with gm + K M.
If |K| is finite and invertible in R, then M/KM can be identified with the
R-submodule of K-invariant elements of M via m + KM — |71\ > kex km.
Thus, in this case, co—invg is also right adjoint to inﬂg, and hence is exact,
and so inﬂfl preserves projective modules. In particular, if |G| invertible in R,

then by inflating from the trivial group we get that 1 is projective.

By the third isomorphism theorem, if G has normal subgroup K, and L is a

subgroup of GG containing K, then there is a natural isomorphism indginﬂf/K i
. H . H/K
mﬂH/KlndL//K.

2.5 Reductive Groups

We follow Milne [2017]. Let F' be a field, and G be an affine algebraic group
over F', that is, a group object in the category of affine schemes. For a field
extension E of F, write the extension of scalars of G to E as Gg. Write 28

for the algebraic closure of F'.

Definition 2.5.1. We say that G is unipotent if may be obtained by a finite

number of extensions from subgroups of the additive algebraic group F over F.

The unipotent radical of G is the largest smooth connected unipotent normal

algebraic subgroup over F'. This is well-defined.

We say that G is reductive if it is smooth, connected, and the unipotent radical

of Gpap is trivial.

Henceforth, we assume that G is reductive.
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Definition 2.5.2. A split torus in G is any algebraic subgroup S isomorphic to
F*", where F* is the multiplicative algebraic group over F.

Let Ng(—) and Zg(—) denote respectively the normaliser and the centraliser
in G.

Let S be a maximal split torus in G. Then the (finite) Weyl group of G is
Wy = Ng(S)/Za(S). This does not depend on S.

A parabolic subgroup of G is a smooth algebraic subgroup C over F' such
that the quotient G/C (which is always a quasi-projective scheme over F') is

projective.

The quotient of C by its unipotent radical U is a reductive group over F'. We
call any splitting M of this quotient a Levi subgroup of C. Every parabolic

subgroup has a Levi subgroup.

The Levi subgroups of parabolic subgroups C of G are precisely the subgroups
of the form Z(S) for S a split torus in G. Furthermore, S is maximal exactly

when C is minimal.

A parabolic subgroup C of G containing a maximal split torus S has a unique

Levi subgroup containing S, which is Zq(Sg) for some split torus Sy C S.

Given a parabolic C with Levi M, there exists a unique parabolic C with Levi
M whose intersection with C is exactly M. We call C the opposite parabolic of
C with respect to M.

Let C be a minimal parabolic subgroup of G with Levi subgroup M = Z(S)
for some maximal split torus S in G. The Bruhat decomposition says that the
map Wy = Ng(S)/Zc(S) = C\G/C given by w — CwC'is a bijection.

Definition 2.5.3. Let S be a maximal split torus in G. We write X (S) for the

set of morphisms S — F* of algebraic groups over F.
Write F'**P for the separable closure of F.

Suppose G is split, that is, that we can choose S so that Sps is a maximal
split torus in Gpser. For a € X(S), a root group U, of G with respect to S is
an algebraic subgroup of G over F' such that
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e S normalises U,
e there is an isomorphism of algebraic groups u,, : U, — F, and

e under u, the conjugation action of s € S is sent to multiplication by

a(s).

Note that U, is unique when it exists, but there can be many possible choices

for u,. We call any o which has a root group a root.

Suppose now G is not necessarily split. Then for any maximal split torus S,
there exists an algebraic subgroup T of G containing S such that Tpse is a
maximal split torus in Gpgse. Fix such a S and T. A root of G with respect to
S is any nonzero av € X (S) that is the restriction to S of a root 5 of Gpser with

respect to T psep.

For a root «, the group generated by the Ug for all 3 that restrict to a « is the
extension of scalars to F**P of a unique algebraic subgroup U, of G. We call

U, the root group of a.

Neither the roots nor the root groups depend on the choice of T, and they

agree with the previous definition in the case that G is split.

A base for the roots is a set A of roots such that

1l.ifa,f € Athen o+ 5 ¢ A, and

2. every root is a Z-linear combination of roots in A with all coefficients of

the same sign.

We call roots in A simple with respect to A. We also call a root positive with

respect to A if the coefficients in (2) above are all non-negative.

Let C be a minimal parabolic subgroup of G with Levi subgroup M = Z(S).
Then there exists a unique base A for the roots with respect to S such that
the unipotent radical U of C is generated by root groups U, for a positive
with respect to A. Conversely, the positive roots with respect to some base
A for the roots with respect to S will generate the U of some unique minimal

parabolic subgroup of G with Levi subgroup Zg(S).
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2.6 Parabolic Induction for Finite Groups

We now follow Dipper and Fleischmann [1992] and Hiss [1993]. We now suppose
that F'is a finite field, and continue to let G be an affine algebraic group over
F.

Fix a parabolic subgroup C with Levi subgroup M. Write G = G(F') for the
F-points of G, and similarly for C, M, and U.

Definition 2.6.1. Parabolic induction from M to G along C' is the functor
i o = indZinfl§; : Modg(M) — Mod(G).

Parabolic restriction from G to M along C is the functor 1§, » = co-inv§,resg :

Mod(G) — Modg(M).
i%,c is exact. As C has finite index in G, we have that r]\GLC is left adjoint to

i§7.c, 50 1§ o preserves projective modules.

Furthermore, if M has index in C' which is invertible in R, then 1"?4,0 is also
right adjoint to i ., so rf; - is exact and i - preserves projective modules.
As the index of M in C' is the order of U, which is a power of the characteristic

p of F', this holds precisely when p is invertible in R.

Definition 2.6.2. We call an irreducible G-representation V' cuspidal if
Homg (i oW, V') = 0 for all irreducible M-representations V.

The cuspidal support of an irreducible GG-representation V' is a Levi subgroup M
and an irreducible cuspidal M-representation W such that Hom(;(iﬁ]’CVV7 V) #
0.

Every irreducible G-representation V' has a cuspidal support (L, W), and

furthermore it is unique up to G-conjugacy.

2.7 Topological Groups and Smooth

Representations

We follow Vignéras [1996]. We now let G be a (Hausdorff) topological group,

and furthermore assume that it is locally compact and totally disconnected,
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that is, that it has a neighbourhood basis of the identity given by compact open

subgroups.

Definition 2.7.1. A representation V' of G is smooth if every element v € V
is fixed by an open subgroup of G.

A Haar measure on GG is a nonzero R-valued map p on the compact open

subgroups of GG that is

e finitely additive, that is, u(A U B) = u(A) + u(B), and

e left-G-invariant, that is, u(gA) = u(A) for all g € G.

A Haar measure always exists in the case where we can take the neighbourhood
base of the identity to have pro-order invertible in R, and in this case any
compact open subgroup of invertible pro-order will have nonzero Haar measure.

Haar measures are unique up to multiplication by elements of R*.

Definition 2.7.2. Fix a Haar measure ;o on GG. The global Hecke algebra H(G)
of G is the (non-unital) algebra whose underlying R-module is the space of
compactly supported maps f : G — R with that are right-and-left-U-invariant

for some compact open subgroup U. Composition is given by convolution:

@) =p@) D fl9fg )

gesupp(f)/U

where U is any compact open subgroup fixing f and f’ on the right and left

respectively. This does not depend on the choice of U.

H(G) is idempotent. Note that when G is discrete, H(G) is isomorphic to R[G|
via 1, — p(1)g.

Let V € Mod(G), let v € V and f € H(G), and let U be a compact open
subgroup of K fixing v and fixing f on the right. We define an action of H(G)
on V by
fo=uU) f(k)kv.
kesupp(f)/U
Then Mod(G) is isomorphic to Mod(H(G)) by mapping V' € Mod(G) to the

same underlying R-module equipped with the above action.

Definition 2.7.3. Let I be a compact open subgroup of G. The Hecke algebra
of G with respect to I is the R-algebra Hg(G, I) = End(ind§'1)°".
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By Frobenius reciprocity, Hg(G, I) is isomorphic to the algebra of the left-and-

right-I-invariant functions G — R with multiplication given by convolution:

(fx9) =D flx)

zeG/I

The indicator functions of /-double cosets give a R-basis of Hg(G, I), and it is
unital with identity 1;.

If I is normal, then Hg(G,I) is isomorphic to R[G/I] via 1,7 — g. When
wu(I) # 0, Hr(G, I) is isomorphic to the subalgebra 1;H(G)1; of H(G) via
=2

A closed subgroup H of G is also locally compact and totally disconnected.
The functor res$, sends smooth representations to smooth representations. If

H is open, indg also sends smooth representations to smooth representations.

Definition 2.7.4. The smooth part of a representation V' of GG is the subset
of all v € V that is fixed by an open subgroup of G. It is a smooth

subrepresentation.

For H a closed subgroup of a locally compact and totally disconnected
topological  group G, compact  induction is  the  functor
ind% : Mod(H) — Mod(G) sending M to the smooth part of the space of
H-equivariant maps f : G — M whose support is contained in KH for K

compact.

Compact induction is exact and preserves smooth modules, and agrees with
induction whenever H is open in G. Furthermore, if G/H is compact, then
compact induction is right adjoint to res$;, and so res$; preserves projective

modules.

When H is an open subgroup of G, we can pick a Haar measure on H that
is the restriction of the Haar measure on G. We then have an inclusion of
global Hecke algebras H(H) — H(G) by considering H(H) as the subset of
functions whose support is contained in H. In this case, res:gg)) = res$, and

ind:gg)) = indg.

Similarly, if K is a closed normal subgroup, the quotient H = G/K is locally
compact and totally disconnected. The functors infl and co-inv% both send

smooth representations to smooth representations. If K is open and compact
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with p(K) # 0, then co-inv% M can be identified with the R-submodule of
K-invariant elements of M via m + KM > e 3/ km, where K
is an open compact subgroup of K fixing m. Thus, in this case, co-inv% is
also right adjoint to infl¢, and hence is exact, and so inﬂfl preserves projective

modules.

If K is open, compact, and normal in G with u(K) # 0, p also gives a

Haar measure on K. Then H(H) = R[H] = Hg(G,K) = 1xH(G)1k via

fe= wK)f = w(K)f — f. In particular, we have a map H(G) — H(H)
G H(H)

given by f — ﬁl;{flK, and then indmg)) = co-inv}; and reSyicy = inﬂg.

2.8 Parahoric Subgroups

We follow Kaletha and Prasad [2023]. We now take G = G(F'), for F' a p-adic
field with valuation v and residue field k£, and G a reductive group over F. Let

S be the F-points of a maximal split torus S of G.

Suppose that G is split, that is, that Sgse is @ maximal split torus in Gpse. In
particular, this is true for GL,,. This assumption is only for simplicity, and there

is a definition for the compact torus and parahoric subgroups for any reductive

group.

Definition 2.8.1. The compact torus Ij as the intersection of the kernels of all
v for A € X(S). Note that this is an abstract subgroup of S, not an algebraic
group over F'.

Write Y (S) for the morphisms F* — S of algebraic groups over F'.

There is a perfect pairing X (S) x Y(S) — Z given by (\,¢) = n where
Ap = (=)": FX 5 FX,

Let v € R®z Y (S). Then the perfect pairing X (S) x Y(S) — Z extends to a
pairing X (S) x R ®z Y (S) — R. Thus we may define a(v) € R for any root
a of G with respect to S.

Given such a root «, there exist unique u/,u” € U_, such that
So = vuz'(1)u” € Ng(S)(F). For all roots o and 3, we have that
satig (1)s;" € U, for some root 7. A weak Chevalley system is a choice for
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the u, such that the above element is equal to u;'(£1) for some choice of
sign. Note that for a weak Chevalley system, it is in fact the case that

u' = u" = u”}(41) for some choice of sign.

Definition 2.8.2. Let v € R ®z Y(5) and let (u,) be a weak Chevalley
system. Define the subgroup U, o of U, as the preimage of [—a(v), o] under
vu,. Again, note that this is an abstract subgroup of U,, not an algebraic

subgroup over F'.

A parahoric subgroup of G is the group .J generated by I, and the U, for all
roots «, for some choice of v and (u,).

A minimal parahoric subgroup is called an Iwahori subgroup.

Parahoric subgroups .J are open and compact. Furthermore, there exists a
unique group scheme J over O such that Jp = G and J(O) = J, and which
retains both of these properties over any unramified extension of F'. Then 7, is
a smooth connected algebraic group over k. We define the pro-p radical J! of
J to be the preimage under J = J(O) — J (k) = Ji(k) of the k-points of the
unipotent radical of J;,. Then J! is the maximal normal open pro-p subgroup
of J. The quotient of 7 by its unipotent radical is reductive, and we call it the
reductive quotient of J. Its k-points are in bijection with J/J! in the obvious

way.

All split groups are unramified, that is, they are the extension of scalars to F'
of a (not necessarily unique) reductive group scheme over O. If we fix G some
such choice of reductive group scheme over O, then G is in fact the group

scheme of a maximal parahoric of G.
Definition 2.8.3. The Iwahori-Weyl group of G is the group
W = Na(S)(F)/Io.

If I is an lwahori subgroup of GG containing Iy, the lwahori decomposition says
that the map W — I\G/I given by w — [wl is a bijection.
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2.9 Parabolic and Parahoric Induction for p-adic

Groups

We continue to follow Vignéras [1996]. We now take G = G(F') for I’ a p-adic
field and G a reductive group over F'. Then G is locally compact and totally

disconnected, and has a neighbourhood basis of the identity of pro-p subgroups.

Fix a parabolic subgroup C with Levi subgroup M. Write G = G(F’) for the
F-points of G, and similarly for C, M, and U. Then C, U, and M are closed
subgroups of G.

Definition 2.9.1. Parabolic induction from M to G along C' is the functor
i§ 0= ind$infl§; : Modg(M) — Mod(G). Note that we are using compact

induction.

Parabolic restriction from G to M along C'is the functor r§; . = co-inv{resZ :

Mod(G) — Modg(M).

Both functors respect smooth representations, and i%c is exact. Furthermore,
G/C is compact, and so 1 is left adjoint to if; -, and r{; . preserves

projectives.

Now let K be a parahoric subgroup of G with pro-p radical K, and write
Gy = K/K". Recall that both K and K' are open and compact.

Definition 2.9.2. Parahoric induction from G to G along K is the functor
IgﬁK = ind]G(inﬂgf.

Parahoric ~ restriction from G to Gy along K is the functor

G enineK 1ecG
Ré, x = co-invg resi.

Both functors preserve smooth representations. IgﬁK is exact and left adjoint

to Rgf K-

When p is invertible in R we have that G has a Haar measure p such that

pw(K*') # 0. In this case Rgny is exact, and so Igf’K preserves projectives.

Viewing smooth representations of Gy, K and G as modules over H(G ), H(K)
and H(G) respectively, and choosing Haar measures as in the previous section,
we have Igva = H(G) ®n(x) — and Rgf,K =H(Gy) Qn) —-
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2.10 Complexes, Derived Categories, and dg
Algebras

Here we follow Keller [2006].

Definition 2.10.1. A complex over A is a Z-graded A-module M*® together
with a graded module homomorphism d’ of degree 1, the differential, such that
d” = 0. The shift operator [1] on complexes (M*, d') is given by M[1]" = M"*!
and d'[1] = —d' (note the — sign). The cohomology of M* is the graded A-
module H*(M*) = ker(d')/im(d’).

Let (M*®,d') and (N°®,d") be A-complexes. The R-complex of dg morphisms
dg-Hom 4 (M*®, N*) has in degree n the graded A-module homomorphisms f :
M*® — N°* of degree n, with differential

df .=d"f — (=1)"fd
for all f: M® — N* of degree n.

A morphism of complexes is a dg morphism f of degree 0 that lies in ker(d),
that is, such that d"f = fd'.

A homotopy of morphisms of complexes f, g : M* — N* is a dg morphism h of
degree —1 such that dh = f — g, that is, such that f — g = d"h — hd'. If such
an h exists we say f and g are homotopic. This gives an equivalence relation

on morphisms of complexes.

Write K(A)(M?*, N*) for the homotopy equivalence classes of morphisms of
complexes  f : M — N. We  have that
H"(dg-Hom , (M*,N*)) = K(A)(M*, N*[n]).

A dg algebra over R is an R-complex (B, d) whose underlying graded R-module
is a graded algebra over R, satisfying the graded Leibniz rule

d(fg) =d(f)g + (=1)"fd(g)
for all f € B of degree n and g € B.

We think of an ordinary (ie non-dg) algebra as a dg algebra with all elements

having degree 0.
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The dg endomorphism algebra dg-End 4, (M*) is the dg algebra whose complex is

dg-Hom 4 (M*®, M*), with multiplication given by componentwise composition.

A dg module over B is an R-complex (M?*,d’) with a graded module action of
B of degree 0, extending the R-action, such that

d'(fv) = (df)v+ (=1)"f(d'v)
for all f € B of degree n and v € M*.

Let (M*,d') and (N°*,d") be dg modules. The complex of dg morphisms
of dg modules dg-Homg(M?®, N*®) is the subcomplex of dg-Hompg(M®, N°*)
consisting of those dg morphisms that are also B-module homomorphisms.
When B = A is an ordinary algebra, the two notions of dg-Hom 4(M*®, N*)

agree.

Morphisms (respectively homotopies of morphisms) of dg modules are the dg
morphisms of dg modules that are also morphisms (respectively homotopies of

morphisms) of complexes.

Write K (B) for the category whose objects are dg modules over B and whose

morphisms are homotopy equivalence classes of morphisms of dg modules.

A morphism of dg modules M* — N°® is a quasi-isomorphism if the induced
morphism of graded modules H*(M®) — H*(N*) is an isomorphism.

The derived category of dg modules over B, written D(B), is the localisation

of K(B) with respect to the quasi-isomorphisms.

Let 0 — L* L M* % N* = 0 be an exact sequence of morphisms of dg
modules that is split as a sequence of morphisms of graded B-modules, with
splitting 0 — N°* S M* L L* — 0. Then h := pd'i is a morphism of dg
modules N°®* — L°[1], and we take as our distinguished triangle
(L®, M*,N°* f,g,h). With these distinguished triangles, K(B) is a
triangulated category. This induces a triangulated structure on D(B).

For any short exact sequence of morphisms of dg modules 0 — L*® ERSYIER
N*® — 0 there exists a morphism of dg modules h : N* — L*[1] such that
(L*, M*,N*, f,g,h) is a distinguished triangle in D(B).

In particular, if two dg modules in a short exact sequence of morphisms of dg
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modules both live in a full triangulated subcategory of D(B), then so does
the third, and hence such categories are closed under kernels, cokernels, and

extensions in the category of dg modules.

Definition 2.10.2. A resolution of a module M is a complex M*® such that
M? =0 fori >0 and

M, i=0

0, #0.

H'(M?*) =

A resolution is finitely generated (respectively, projective) if it is a complex of
finitely generated modules (respectively, projective modules). The length of a
complex is tmax — tmin — 1, Where 4., and i, are respectively the largest and
smallest indices 4 such that M® # 0.

Let M* be a projective resolution of M in Mod(A). Then
H"(dg-End 4 (M?*)) = Hompa)(M, M[n]).

Definition 2.10.3. We say a set of objects G of a triangulated category T'
classically generates a triangulated subcategory 7" of T"if T" is the smallest full
triangulated subcategory of T' closed under isomorphisms and direct summands
and containing G. We also write 7" = (G).

The triangulated category per(B) of perfect objects in D(B) is (B) p(p).

Observe that, in the case that B is an ordinary algebra A, then per(A) is the full
subcategory of D(A) consisting of objects isomorphic to finite length complexes

of finitely generated projective A-modules.

We write DY (A) for the subcategory of D(A) consisting of objects isomorphic
to finite length complexes of finitely generated A-modules. This is a triangulated

subcategory of D(A) that is closed under direct summands in D(A).

Theorem 2.10.4. Let T be a full triangulated subcategory of D(A) that is
closed under direct summands, let M be an object in both Mod(A) and T,

such that (M)7 =T, and let M* be a projective resolution of M in Mod(A).
Then there is a triangulated equivalence

T ~ per(dg-End 4 (M*)).
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Proof. We seek to apply Theorem 3.8(b) of Keller [2006], so we must check
that all the conditions of said theorem hold. Section 3.6 of the same
establishes that D(B) is algebraic, and hence so is 7, as it is a triangulated
subcategory. Furthermore, Section 3.5 of the same establishes that D(B) is
idempotent-complete (as it has arbitrary coproducts), and hence, as T is
closed under direct summands, 7 is also idempotent-complete. Finally, as
H"(dg-End 4 (M*®)) = Hosz}g(A)(M,M[nD and 7 is full, we get
H™(dg-End 4(M*)) = Homy (M, M[n]). Thus all the conditions of Theorem
3.8(b) hold. [

Definition 2.10.5. An object M in Mod(A) is a generator if every object in
Mod(A) is the quotient of a direct sum of copies of M.

A finitely generated projective generator is called a progenerator.

Proposition 2.10.6. Suppose M is a progenerator of Mod(A). Then M

classically generates per(A).

Proof. As finitely generated projective modules are precisely the direct
summands of finite direct sums of A, we have per(4) = (A)per(a).
Furthermore, as a progenerator is finitely generated and projective, we have
M € per(A). It thus suffices to show that A € (M),er(a). But as M is a
generator, A is the quotient of a direct sum of copies of M. As A is finitely
generated, this direct sum may be taken to be finite, and as A is projective,
the quotient splits, so A is a direct summand of a finite direct sum of copies
of M. O

We shall also need the following general homological observations.

Proposition 2.10.7. If A is noetherian and of finite global dimension, then
every finitely generated A-module M has a finite length finitely generated

projective resolution.

Proof. As A is noetherian and M is finitely generated we know by Rotman
[2009] Lemma 7.19 that M has a finitely generated projective resolution. But
as A has finite global dimension, say n, replacing the n-th term with the (n—1)th
syzygy gives, by Rotman [2009] Proposition 8.6, a finitely generated projective

resolution of length n. ]



Chapter 2: Groups, Algebras, and their Representation Theory 33

Proposition 2.10.8. /f M* is a finite length complex of A-modules, and each
M? has a finite length finitely generated projective resolution, then M* is quasi-

isomorphic to a finite length complex of finitely generated projective modules.

Proof. For each i, write P for a choice of finite length finitely generated

projective resolution of M.

By Gelfand and Manin [2003] Lemma I11.7.12, M* is quasi-isomorphic to the
complex T'* whose terms are T% = ®,,;,—,PY. As M* has finite length, each
T* is a finite direct sum of finitely generated projective modules, and hence is
finitely generated and projective. Furthermore, as M*® and all of the P have
finite length, T also has finite length. m

2.11 Affine Cellular Algebras

We follow Koenig and Xi [2012]. In this section, R will be a noetherian
domain and A will be unital and have an involution ¢ (that is, an R-linear

anti-automorphism).

Definition 2.11.1. A 2-sided ideal J in A such that ¢(J) = J is called an

affine cell ideal if there are

e a free R-module V of finite rank,
e a finitely generated commutative R-algebra B with involution o,

e and a left A-module structure on A =V ®p B that commutes with the

regular right B-module structure,

such that, if we define a right A-module structure on A’ = B®gr V by za =
77 1(i(a)T(x)) where 7 : A’ — A, b®@v — v ® b, there is an isomorphism
of A-A-bimodules o : J - A®p A’ =V ®r B ®g V' making the following

diagram commute:

J == V®rB®rV
zl lv@b@v’i—)v’@a(b)@v
J T) V@RB®RV
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A is said to be affine cellular if there is an R-module decomposition A =
@~ Ji such that, for all k, we have that i(J;) = J/, and furthermore that
Jp = @),_, Ji. is a 2-sided ideal in A such that J, = Ji/J;_, is an affine cell
ideal in A/Jk_1.

Write V), and By, for the V and B as above that give an affine cell ideal structure
for J}..

An affine cellular algebra is said to be idempotent affine cellular if, for all &k, we

have that J; is generated as a 2-sided ideal in A/.J,_1 by a nonzero idempotent.

Let A be affine cellular with notation as above. If, as a 2-sided ideal in A/ J;_1,
we have that J;? = J; and J, contains a nonzero idempotent e, then e generates
J}, as a 2-sided ideal in A/Jj_;.

Proposition 2.11.2. Suppose e is an idempotent in A.

1. Ifi(e) = e, and if A is affine cellular, with notation as above, then so is

eAe, with the same By, and J;, replaced with eJ,e.

2. If AeA = A, then restriction of scalars gives a Morita equivalence from
A to eAe.

3. If j € eAe generates a 2-sided ideal J in A, then it generates e Je in eAe.

Proof. The first claim is Yang [2014], Lemma 3.3, and the second is Proposition

2.4 from the same paper.

The third claim is a quick direct calculation:

eJe =eAjAe
(2.11.1)
= eAejeAe

where the last line follows as j € eAe. n

Let R’ be a noetherian domain that is an R-algebra, A an (idempotent) affine

cellular R-algebra. Then R'®g A is an (idempotent) affine cellular algebra with
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affine cellular structure induced from that on A by taking the tensor product
throughout by R'.

Definition 2.11.3. The global dimension of A, written gl dim(A), is the
smallest m € NU {oo} such that any A-module M has a projective resolution

of length at most m. If m € N then we say A has finite global dimension.

Theorem 2.11.4. Suppose A is idempotent affine cellular, with notation as
above, and suppose rad(By) = 0 and gl dim(By) < oo for all k. Then
gl dim(A) < oo.

Proof. This is Theorem 4.4(b) of Koenig and Xi [2012]. O



3

[-Modular Unipotent
Representations of Finite

Reductive Groups

Synopsis

We prove the finite version of our main theorem: that
D}, (Hi(Gy)) for Gy = GL, (k) is classically generated by the two
representations (s and V;. We also prove that () is a direct sum
of subrepresentations of the representation Py, which will allow us
to lift this theorem to the p-adic setting in Chapter 5. We proceed
by first defining all the relevant objects, then using the theory of
l-modular representations of GL, (k) to describe the composition
factors of Q¢ and V;. We then explore various special cases,
where the results and reasoning can be seen more explicitly, and

which provide intuition for the general case.

3.1 Definitions and Notation

Let R be an algebraically closed field of characteristic [, let k£ be a finite field
of characteristic p # [ and cardinality ¢, and let G be a (connected) reductive
algebraic group over k. Write Gy = G(k) for the k-points of G.

Fix in G a minimal parabolic subgroup /. For GL,,, we may without loss of
generality take I; to be the upper triangular matrices. Similarly, we write I}
for the unipotent radical of I, which is then the unipotent upper triangular
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matrices. Fix also a maximal split torus 7' in Iy, which for GL,, we again take
without loss of generality to be the diagonal matrices. Let f} be the unipotent
radical of the opposite parabolic of Iy with respect to T, which is then the
unipotent lower triangular matrices. Furthermore, for GL, the Weyl group
Wy = N(Ty)/T} is isomorphic to &,,, the symmetric group on {1,...,n}, and
has a canonical splitting sending each permutation in G,, to the corresponding

permutation matrix in N(7) C Gy.
Definition 3.1.1. Write H(G) for the group algebra of G4 over R.

Write Mod(G'y) for the category of G y-representations over R, that is, modules
over H(Gy).

Write Py = ind?;f]l.

Let B1(G) be the full subcategory of Mod(Gs) consisting of all representations
all of whose irreducible subquotients are subquotients of ;. Note that this is a
direct summand of Mod(Gy) (see eg Vignéras [2003] D12), and hence a direct
sum of blocks. We call the blocks in this summand, as well as the representations
in the summand, unipotent. Note this is is the correct definition for GL,,, but
does not agree with the usual definition of unipotent for other groups. Write

B.1(Gy) for the direct sum of all non-unipotent blocks.

Denote the corresponding direct sums of block algebras of H(Gy) by Hi(Gy)
and H.;(Gy) respectively.

We call the block containing the trivial representation 1 the principal block.

Observe that the principal block is unipotent, and that both Py and 1 are

unipotent and finitely generated.

Let J; be the set of parabolic subgroups of Gy containing I;. Elements of
Jy are called standard parabolic subgroups. For J; € J;, let MJf be the Levi
subgroup of .J; containing Ty. Let U, be the unipotent radical of a minimal
parabolic subgroup of M;,. Then U;, corresponds to a base for the roots of
M, with respect to Ty. Let X, be the set characters of U, that are nontrivial

on all simple root groups in U, but trivial on all other positive root groups.
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Definition 3.1.2. Write

_ .Gf . MJf

JreJdr x5, €X5,

Let Z; be the annihilator of P in H(G¢). Then put Q; = I';/Z¢I'f, and put
Hi(Gy) = H(Gy) /T

Put B} (Gy) the full subcategory of Mod(G) consisting of representations M
with Z;M = 0.

Observe that, as Py is unipotent, Z; contains Hﬂ(Gf), and so )y is also
unipotent, and H}(Gy) (resp Bi(Gy)) is a quotient (respectively subcategory)
of Hi(Gy) (resp B1(Gy)).

Definition 3.1.3. Write

Vi = P indj’1.
JreJy

Observe that V} is a finite direct sum of submodules of Py, and so is unipotent

and finitely generated.

We seek to establish two facts which shall enable us to describe the p-adic

setting:

Theorem 3.1.4. For G = GL,,,

1. Qy is a direct sum of subrepresentations of Py

2. <Qf>Dl;g(H1(Gf)) = <Vf>Dl;g(H1(Gf)) = D?g(Hl(Gf»

Note that the latter result is of independent interest, and provides an analogue

for finite groups of the main theorem of this thesis.

3.2 Classical Generators for Finite GL,,

Henceforth, we shall assume that G = GL,,. Note that in this case, for fixed J,
M

all x;, € X, are conjugate, and so all indUJJffXJf are isomorphic (see Vignéras

[2003], Section 5.6).
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Proposition 3.2.1. The unipotent part of I'; is a progenerator for B1(Gy).

Proof. The proof mirrors Theorem 5.13(1) and 5.10 of Vignéras [2003] (see
also Takeuchi [1996] for another proof). ' is by construction finitely generated
and projective, and for any unipotent irreducible representation we may apply
Property H1 of Vignéras [2003] to show that it has a nonzero vector invariant
under a certain unipotent subgroup, which implies that it is a quotient of I'f
by 5.4(3) of the same source. Hence we conclude by said source's Corollary
3.7. O

Corollary 3.2.2. Qs is a progenerator of B} (G).

Our proof proceeds by describing () s using the work of Dipper and James (James
[1986], Dipper and James [1989]). Recall that a partition A of a nonnegative
integer m is a non-increasing tuple ()\;) of positive integers with sum n. The
dominance order on partitions is the partial order where \ > u precisely when

T A\ > S for all i. We associate to each partition A a standard
parabolic J¢(\) of G, namely the upper block triangular matrices with the ith

block having size \;.

In Theorem 8.1 of James [1986], it is shown that there is a bijection from
partitions A\ of n to unipotent irreducible representations D(\). As this claim
holds for any choice of R algebraically closed of characteristic [ # p, it is also

true for an algebraically closed field K of characteristic 0.

We thus fix an [-modular system O with fraction field K and residue field R,
such that the group algebra K[G] is split semisimple. Theorem 8.1 of James
[1986] gives a canonical choice S(\) for an I-modular reduction of the unipotent

irreducible representation over K corresponding to .

Lemma 3.2.3. S(\) and D(\) are objects in B} (Gy).

Proof. It is shown in Theorem 8.1 of James [1986] that each S(\) is a
submodule of ind?ff(/\)ﬂ, and that D()) is a quotient of S(\). Hence S(\)
and D(\) are subquotients of Pj. O

We now introduce the finite Schur algebra, whose decomposition matrix is
deeply entwined with that of Gy. In later chapters, we shall see a p-adic

analogue, which we shall simply call the Schur algebra, hence the use of the



Chapter 3: [-Modular Unipotent Representations of Finite Reductive Group40

qualifier ‘finite’ for this version (perhaps it would be better to call the p-adic
version the ‘lwahori-Schur’ algebra, but we have not seen this convention

anywhere).

Definition 3.2.4. The finite Schur algebra Sg(n) is the endomorphism algebra
Endui,) (Vy).

Observe that, while we have defined this over R, by considering endomorphisms
of induced representations over a general ring, this definition would make sense
over K and Ok. Indeed, by Theorem 2.24 and Note 2.18(ii) of Dipper and
James [1989], the finite Schur algebras over K and R are the extensions of
scalars of the finite Schur algebra over Ok, and by Dipper and James [1991]
the finite Schur algebra over O is free, so we may speak of [-modular reduction
of modules over the finite Schur algebra. The surprising property of Si(n) s that

makes it relevant for us is the following:

Proposition 3.2.5. Endyq,)(Qy) is Morita equivalent to Sg(n);.

Proof. This is part (a) of the theorem in the introduction of Takeuchi [1996]
(see also Theorem 5.8 of Vignéras [2003)]). O

With this we may now show the first part of Theorem 3.1.4. Write P(u) for
the projective cover of D(u) in By (Gy).

Theorem 3.2.6. Q) is a direct sum of subrepresentations of P;.

Proof. Let (dy,) denote the submatrix of the decomposition matrix of H(G)
corresponding to the S(\) and D(p).

As () is a progenerator of B1(Gy), there is an induced equivalence of categories
between B;(G) and the category of modules over Si(n)s. By parts (b) and (c)
of the theorem in the introduction of Takeuchi [1996], this equivalence identifies
the S(\) with the [-modular reduction of the simple modules of Sk (n) ¢, and the
D(p) with the simple modules of Sg(n)s. Thus (d,,) is the full decomposition
matrix of Sg(n);.

Write P’(u) for the projective cover of D(u) in Bj(Gy). Then
P'(p) = P(p)/Zs P (). Furthermore, as B (Gy) is equivalent to modules over
Skr(n)s, and the latter has decomposition matrix (dy,), we have that D(v)

occurs in any composition series for P’() with multiplicity Y, dx,dy,.
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In Theorem 3.8 of Dipper and James [1989] they construct a quotient of P(u),
which we shall call Y (u), which is a submodule of P, and such that D(v) occurs
in any composition series for Y (x) with multiplicity >, dy,dy,. The former
property implies that Z;Y (1) = 0, and hence that the quotient P(1) — Y (1)
factors through P’(u). But the latter property says that P’(x) and Y (1) have

the same composition factors. Hence they must in fact be isomorphic.

Thus every projective indecomposable representation in Bj(Gy) is a
subrepresentation of P;. But @)y is projective in B} (Gy), and so )y must be a
direct sum of the Y (u). O

To show that <Qf>D;g(H1(Gf)) = (Vf>D;g(H1(Gf)) = D% (H1(Gy)), we proceed
by showing that the first two categories contain every unipotent irreducible
representation. This in fact suffices, as the next lemma shows. Let & be the

set of all unipotent irreducible representations, that is, the set of all D(\).

Lemma 3.2.7. D} (Hi(Gy)) = (2)pr,_mi(c))-

Proof. As the D(\) are finitely generated and unipotent, we know that
<.@>D?9(H1(Gf)) C DY, (Hi(Gy)). But all finitely generated representations of
G+ have finite length, and so all objects of D?9<H1(Gf)) arise from objects in
2 via finitely many distinguished triangles. O]

Thus it is enough to show that <Qf>DlJz.g(H1(Gf)) and <Vf>Dl;g(H1(Gf)) contain Z.
We first consider Vy, for which we make use of the explicit structure theory of
the D()).

Lemma 3.2.8. 2 C <Vf>D;g(H1(Gf))-

Proof. We show D(k) € <Vf>D; (Hi(c,)) by decreasing induction along the
g

dominance order for . First, observe that ind?ff(ﬁ)]l is a summand of V, and

. Gy
so def(n)]l = <Vf>D‘}g(H1(Gf))'

Next, by Theorem 7.19(iii) of James [1986], ind?ff(ﬁ)ﬂ has a composition
series with all factors of the form S(\) with A > &, in which S(k) occurs with
multiplicity 1. But by Theorem 8.1 of James [1986], S()) itself has a
composition series with all factors of the form D(u) with © > A, in which

D(\) occurs with multiplicity 1. Thus ind?ff(n)ﬂ has a composition series with
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all factors of the form D(u) with © > &, in which D(k) occurs with
multiplicity 1.

But by the inductive hypothesis, all D(u) with © > & are in <Vf>D;g(H1(Gf))-
Thus, by considering the sequence of distinguished triangles giving the
composition  series ind?ff(ﬁ)ﬂ in terms of D(u), we see that
D(r) € (Vi) i p))- o

To show the same for (), we make use of the following property, which comes

from deep results about Sg(n);.

Lemma 3.2.9. Si(n); has finite global dimension.

Proof. By Theorem 3.7.2 of Cline et al. [1990] (see also the main theorem of
Du et al. [1998]), a family of algebras Sp(N,n); (written S, (N, n, R) in their
notation) are quasi-hereditary. By Theorem 3.6(a) of Cline et al. [1990] any
quasi-hereditary algebra over a field has finite global dimension. But by Theorem
2.24 of Dipper and James [1989] and Lemma 1.3 of Dipper and James [1991]
Sr(N,n)s and Sg(n); are Morita equivalent whenever N > n. O

This allows us to conclude by a purely formal argument.

Lemma 3.2.10. @ g <Qf>Dl}g(H1(Gf))'

Proof. Q¢ is a progenerator of B}(Gy), so by Proposition 2.10.6 we have that
<Qf>D;g(B;(Gf)) = per(Bj(Gy)). But, as B} (Gy) is equivalent to modules over
Sr(n)s, and the latter has finite global dimension, and is furthermore Noetherian
(as it is a finite dimensional algebra over a field), we have by Proposition 2.10.7
that per(5}(Cy)) = D, (B4(G)). Thus 2 € D (B4(G)) = per(B,(C) =
(@r)py 5160 o

Thus we have the second part of Theorem 3.1.4.

Theorem 3.2.11. <Qf>D;g(H1(Gf)) = <Vf>D;g(H1(Gf)) = D} (Hi(Gy)).

While the above proof works in general, the next sections provide further insight
into the structure of various special cases, where the main theorem can be shown

more directly.
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3.3 Finite GL,, for [ | ¢—1

For this section, we shall assume that the characteristic [ of R divides ¢ — 1,
and that [ > n. This case behaves somewhat differently to the other cases, as

the Schur algebra is semisimple, and so it merits special consideration.

Lemma 3.3.1. The only unipotent block is the principal block.

Proof. By Theorem 7.11 of Dipper and James [1989], each block contains
exactly those D(\) which have the same fixed 1-core. But all A have the same

1-core, namely the empty partition. O]

Lemma 3.3.2. P is a direct sum of the D(p).

Proof. This is Ackermann [2006], Proposition 4.22, and its proof. The point
is that in this case the endomorphisms of Py are just the group algebra of
S, and as | > n this is semisimple. Hence Py is a direct sum of irreducible

representations. But any such representation must be unipotent, and hence is
some D(u). O

Corollary 3.3.3. Every D(u) is a summand of Py.

Proof. The D(p) are by definition the irreducible subquotients of Py. But
is a direct sum of irreducible representations, so every D(u) must occur as a

summand of Ps. O

Corollary 3.3.4. If = H?gl(Gf) D rad(Hl(Gf)).

Proof. As Pj is unipotent, every element of H;(G) annihilates it. It remains

to see which elements of H;(G) annihilate P;.

Now, rad(H;(Gy)) is the intersection of the annihilators of all irreducible
Hy(Gf)-modules, that is, all D(x). But each D(u) is a summand of P, and
Py is a direct sum of D(u). Thus its annihilator in Hi(Gy) is exactly
rad(H;(Gy)). O

Corollary 3.3.5. Q; is a direct sum of the D(yu). Every D(p) is a summand
Ofo.
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Proof. As Z; contains H.1(G), the summand of Z;I'; in B (Gy) is the same
as the summand of I'y in B1(G). As the unipotent part of I'; is a progenerator
of B1(Gy), it will be a direct sum of P(u), and every P(u) will be a summand
of it. As P(u) is finitely generated and H;(Gy) is Artinian, we have that
rad(Hi(G))P(p) = rad(P(p)), and so P(u)/rad(Hi(Gy))P(p) = D(p).
Thus the quotient @)y will be a direct sum of D(yu), and all D(u) will be a
summand of Q. n

In particular, as both Q) and P are direct sums of the D(u), and all D(p)
are summands of both (); and Py, it is clear that (); is a direct sum of
submodules of Py, and that

(@r) oy tucp) = (Prhoy uapn = Vi) oy e = Dig(Hi(Gy)).

3.3.1 Example: n =1

We give the case n = 1 explicitly, as it is instructive for the case of general n.
In this setting, I; = G and [} =1 Thus, P =V;=1and I'y = indff]l =

deGf /r.g = O}’

H(Gf). Hence we can explicitly calculate Z; = {decf reg
and so Q¢ = 1.

Thus, for n = 1, we see directly that the only unipotent block is the principal
block, containing a single irreducible representation 1. Furthermore, we can see
that Py and @y are not just direct sums of D(1) = 1, but are in fact both
exactly 1. In particular, Theorem 3.2.6 and Theorem 3.2.11 both tautologically
hold in this case: 1 is a direct sum of submodules of itself, and generates the

same derived category as itself.

3.4 Finite GL, for [ |¢°—1,e> 5

For this section, we shall take n > 2, and we shall further assume that the

characteristic [ of R divides ¢° — 1 for some e > %, but not ¢¢ — 1 for any
¢/ < e. This is exactly the case of cyclic defect, and in this case the full structure

of the blocks is well-understood.

Lemma 3.4.1. The principal block has e simple representations L, ..., L..

Write their respective projective covers as Py ..., P,. Then the P, have the
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following subrepresentation lattices:
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Furthermore, all other blocks are either of this form, in which case we say they
are blocks of cyclic defect, or are semisimple (that is, contain a unique projective

indecomposable representation, which is also irreducible).

Notice that we have named a certain subrepresentation (); of each P;, and that
P/Q; = Qi for 2 <i < n.

Proof. Theorem 4.2 of Ackermann [2006] says that any block with cyclic defect
group is of this form. The initial remarks from Section 4.2 of the same source
establish that all blocks have cyclic or trivial defect group for the n and e we

consider. O

Now observe that, as [ does not divide g or ¢ — 1, we have that P is projective.
We also have by definition that Py € B1(G). Hence Py is a direct sum of the

P(p).

Recall from Section 2.6 the notions of cuspidal representation and cuspidal

support.

Proposition 3.4.2. All unipotent representations have one of the following
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two cuspidal supports: either (Ty,1r,), or (M, C) = (GL(k) X GL,_c(k), 0 %

LG, .(k)), where o is the unique cuspidal unipotent representation of GL.(k).

Proof. This is Proposition 2.2 of Ackermann [2006]. O

Proposition 3.4.3. There is a bijection between unipotent blocks with cyclic
defect group and unipotent representations with cuspidal support (M, C'), given
by sending a block with irreducible representations D, ..., D, as above to D..
We may parameterise these blocks by partitions v of n — e, and in each block
we have that D; = D(u;) for puq, ..., p. the unique partitions of n with e-core

v such that py, ..., lt. is in decreasing lexicographical order.

Proof. By Proposition 2.2 of Ackermann [2006], with r = 1 and s = n — e,
the irreducible representations D(p) with cuspidal support (M, C) are exactly
those for which p ends with at least e copies of 1. To get the e-core of such a
partition we can remove the final e copies of 1: this is indeed the e-core as the
resulting partition has size n — e < e. Conversely, given an arbitrary partition
v of size n — e, we can form a partition of size n by adding e copies of 1 to
the end. The above maps are mutually inverse and so give a bijection between

e-cores v and representations D(p) with cuspidal support (M, C').

Meanwhile, the same proposition with » = 0 and s = n gives that the irreducible
representations D () with cuspidal support (T, 1) come exactly from the y that
are e-regular. Thus, either p has e-core i, which is thus not equal to the e-core
of any other partition, or it has e-core v of size n — e, and there is a unique
p with e-core p such that D(p) has cuspidal support (M, C'). Furthermore, as
we can always form an e-regular ;1 from a partition v of size n — e by adding ¢
to the first entry, each D(p) with cuspidal support (M, C') shares an e-core v
with at least one D(u) with cuspidal support (7%, 1).

Now, by Proposition 4.1 and Theorem 4.2 of Ackermann [2006] (recall also
the previously-mentioned Theorem 7.11 of Dipper and James [1989]), two
partitions are in the same block precisely when they have the same e-core.
Furthermore, the same source also gives that the blocks are either semisimple
or have e irreducible representations, and in the latter case the order is given
by decreasing lexicographical order on the partitions. Thus, either the block
contains a single D(p) with cuspidal support (7%, 1) and e-core p, and is

semisimple, or it contains a single D(p) with cuspidal support (M, ), as well
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as at least one D(y) with cuspidal support (T, 1), both with e-core v. In the
latter case the block must hence contain exactly e irreducible representations,
and the partition of minimal lexicographical order is the one corresponding to
the D(p) with cuspidal support (M, C), so this D(p) must be D.. O

Corollary 3.4.4. Every P(u), except for the P, of each unipotent block with

cyclic defect, is a summand of Pj.

Proof. Every irreducible D(p) in a unipotent block, except the D, of a block
with cyclic defect, has cuspidal support (7%, 17,), meaning exactly that it is a
quotient of Ps. But as Py is projective, the corresponding P (1) must hence be
a summand of P;. Thus, every P(u) except the P, must be a summand. [J

As in Section 2.2, we may decompose H;(Gy) as a direct sum (with
multiplicities) of the P(u), and furthermore, by identifying an element of
Hy(G) with its right multiplication action on the P(y), this sum then further
decomposes into a direct sum of all homomorphisms between the P(u) in the
first sum. This identifies each copy of P(u) in the first sum with the space of
all morphisms P(v) — P(u) running over all P(v) in the first sum. We may
thus consider the left action of h € H(Gy) on p € P(u) as precomposing the
sum of morphisms P(v) — P(u) corresponding to p with the sum of
morphisms P(k) — P(\) corresponding to h.

Let Hy .(G) be the linear span of all h € H{(G) corresponding to morphisms
whose domain and codomain are both isomorphic to the P, of some unipotent

block of cyclic defect. This does not depend on the choice of decomposition.

Corollary 3.4.5. 7; = H.,1(Gy) @ rad(H1.(Gy)).

Proof. As Py is unipotent, its annihilator contains all of H.(Gy). It thus
remains to see which elements of H;(G) annihilate P;. We may consider the

summand in each unipotent block separately.

Consider first a block of cyclic defect. Then Py is a direct sum of the F;, and
so we may consider its elements as morphisms of the P;, on which H(G), also
thought of as morphisms of UPIRs, acts by precomposition. From
Lemma 3.4.1 we can see that the only morphisms of UPIRs that annihilate via
precomposition every P; apart from P, are the morphisms with domain and

codomain isomorphic to P., and whose image is contained in ).. This is
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exactly the nilpotent morphisms with domain and codomain isomorphic to P,
which is rad(H; .(Gy)).

The case of a semisimple block is much simpler, as here no nonzero morphism
annihilates the unique P(;) = D(y) in the block, and so the part of Z; in the

block is zero. ]

Lemma 3.4.6. Q; is a direct sum of P(u) not isomorphic to the P, of some
unipotent block of cyclic defect, and representations isomorphic to the P,/Q.
of some unipotent block of cyclic defect. All said representations occur in the

sum.

Proof. As Iy contains H.1(G), the summand of Z;I'; in B (Gy) is the same
as the summand of 'y in B4 (G). As the unipotent part of I'f is a progenerator
of Bi(Gy), it is a direct sum of the P(u), and every P(u) is a summand of it.
The unipotent part of Z; is rad(H; .(G)). Considering these as morphisms of
UPIRs as before, and considering each unipotent block separately, we can see
that rad(H; .(Gy))P(r) = 0 for all P(p) apart from the P, of a block of cyclic
defect, where rad(H;(Gy))P. = Q.. Thus the quotient Q; will be a direct
sum of P(u) except for the P., and of representations isomorphic to P,/Q).,

and all such representations will occur in the sum. O

Note that P./Q. = Q._1. Thus we can see directly the first part of the theorem.

Corollary 3.4.7. Q) is a direct sum of subrepresentations of Pr.

Proof. Every summand of Q) is either a P(u) that isn't a P., which is a
summand of Py, or Q).—1, which is a subrepresentation of F._; and hence a

subrepresentation of Pj. O

We now turn to the second part of the theorem. Let v be a partition of n — e.
To v we associate the partition s of n given by adding e to the first element of
v. Then k has e-core v, and is lexicographically the largest « with this property.
Hence D(k) is the Dy of the block of cyclic defect associated to v. Because of

this, we can expand the reasoning used in the proof of Theorem 3.2.11.

Lemma 3.4.8. The D, of the block associated to v is a summand ofind?ff(ﬁ)ﬂ.
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Proof. We know that D; is D(k). By Theorem 8.1 of James [1986], this is
the unique simple quotient of an indecomposable module S(x), all of whose
other irreducible subquotients are D(yu) for po > k. But since & is the greatest
partition in its block with respect to the lexicographical order, and hence also
for the dominance order, D; cannot have any nontrivial extensions by such a

representation. Thus in fact D; = S(k).

Now, again by Theorem 8.1 of James [1986], S(k) is in turn a submodule of
.Gy
def(K)
has a composition series by S(\) with multiplicities zero unless A > &, in which

1, and then applying Theorem 7.19(iii) of the same gives that ind?ff(n)]l

S(k) = D(k) occurs with multiplicity one. But all the irreducible subquotients
of S(A) for A > k are D(p) for p > A > &, and hence lie in different blocks to
D(k), so they cannot have nontrivial extension with D(k). Thus, D; = D(k)

is a summand of ind%’ 1. O
Jy (k)

Thus we can give a much more explicit proof of Theorem 3.2.11.

Theorem 3.4.9. <Qf>Dl;g(H1(Gf)) - <Vf>Dl;g(H1(Gf)) = D?Q(Hl(Gf))-

Proof. We shall show that both <Qf>Dz} (Hi(Gy)) and (Vf)D? (Hi(G;)) contain
every D(pu).

Both @; and V; contain as summands P(y) apart from the P, of the blocks
of cyclic defect. In particular, they both contain every D(u) in a semisimple

block. It thus remains to consider a block of cyclic defect.

Observe that, if some triangulated and idempotent-complete subcategory of
D%,(H1(Gy)) contains D; and P, then it must contain D;_; and D;yy. This
is because taking the quotient of the inclusion D; — P; and then the kernel of
the quotient P;/D; — D; gives D; 1 ® D;;.

Now, V} has summands isomorphic to Dy and to P;,..., P._;. Hence by the

above claim <Vf>D;g(H1(Gf)) contains all irreducible representations Dy, ..., D..

Next, observe that the kernel of the inclusion ); — P; is ();_1, so any

triangulated category containing P; and (); must contain );_1.

Hence, as (); has summands isomorphic to Q.1 and P,..., P._y, by the

above claim <Qf>DI} (Hi(Gy)) contains Q1. But the quotient of the inclusion of
g
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Q1 in Py is Dy, so <Qf>D? (Hi(G,)) contains Dy, and so by the previous case
g

<Qf>D?g(H1(Gf)) contains all irreducible representations Dy, ..., D.. O

3.4.1 Example: n =2

We explore in more depth the simplest case, namely when n = 2. Hence
I|¢>—1butlfqg—1andlfgq, orin other words [ is odd and I | ¢ + 1.

Here, Lemma 3.4.1 and its corollaries tell us that the principal block contains
two irreducible representations D; = 1 and D, cuspidal, with projective covers

Py and P, respectively, such that P, a summand of P but P, is not.

In fact, by Frobenius reciprocity, we get Homg, (Pf, 1) = Homy, (1, 1), and so
P; has a trivial quotient. Thus we can see directly that Py must contain P, as

a summand.

Furthermore, by  Frobenius reciprocity again, we have that
Homg, (Py, P) = Homlf(ll,resIfoPf). Applying the Mackey decomposition
and using the Bruhat decomposition Gy = I; U I;(9})1; we hence obtain
Homg, (Py, Py) = Homy, (1,1) & Homy,(1,indy 1) =
Homy, (1, 1) ® Homg, (1, 1). Hence End(P%) is two-dimensional.

But, by Lemma 3.4.1, End(P) is already two-dimensional, so we in fact must
have equality Py = P;. In particular, this also directly shows that P; is not
a summand of P;. Now, as the unipotent blocks are those whose irreducible
representations are subquotients of P, and the only subquotients of Py = P,
are Dy and D,, we can see directly also that the principal block is the only
unipotent block. We could also have seen this by noting that (2) and (1,1) are
the only two partitions of 2, and both have empty 2-core, so there is indeed

only one unipotent block, containing two irreducible representations.

Furthermore, as P, = Py = indIfoll, we may thus describe D5 explicitly: D5 is

the quotient of rad(Py) = {decf/lf g9 deaf/lf re = O} by the relation ~
such that deGf/If rqeg ~ 0 if and only if r, = r, for all ¢, ¢’

Now, in this case, we have the explicit description Qf = Pi®Q; = Prdrad(Py),
which is not equal to V; = Py © 1. Nonetheless, () is manifestly a direct sum

of submodules of Pf, and we can see that <Qf>D;g(H1(Gf)) = (Vf)D;g(Hl(Gf)) =



Chapter 3: I-Modular Unipotent Representations of Finite Reductive Group51

DY ,(H1(Gy)) via the short exact sequences

=
[a]

0 —— rad(Py) > Py

and

0 > 1 > rad(P) > Dy

v
e

We can also describe the structure of 7 = H..1 (G ) @ rad(H; .(Gy)) explicitly
in this case. Write H{(G) as a direct sum of P(y), and fix a copy of P, in this
sum. Henceforth, P, shall be considered as a subrepresentation of H;(Gy) via
the inclusion of the summand we have fixed. We can see from Lemma 3.4.1
that rad(H; .(Gy)) is generated by any element ~y corresponding to a morphism
Py — P, with image ()5. It is possible to give an explicit description of such a

~. For simplicity of exposition, we assume p # 2.

Write e for the central idempotent of the unipotent block. Note that e; =
ﬁ delf g is idempotent and has H(Gf)ﬁ delf g = P;. Thus P, = Py is
generated by e;. Write ey for the primitive idempotent generating P;.

Consider now the quadratic extension &’ of k gained by adjoining a square root
of a nonsquare element ¢, and let x + /ey for x,y € k generate the [-torsion in
E"*. Note that, as there is no [-torsion in k (by our assumption that | does not
divide ¢ — 1), but there is nontrivial I-torsion in £’* (as [ does divide ¢ + 1 and
hence ¢> — 1) we have that z and y are both nonzero: if not, then (z + /ey)?
lies in k, and hence x + /ey has order dividing 2(¢ — 1), which has no I-torsion,
a contradiction. Write " for the order of x + /ey in k', noting that » > 0 by

the previous discussion.

We shall also make use of the following two conjugacy classes in G¢: the
conjugacy class in G of (1) will be denoted C}, and the conjugacy class of
(&y %) will be denoted Cy. Also write 1 = (§{) for the identity matrix in G;.

We make the initial observation that

1 0 1—ab
Cy = ack*Su w.
a 1 —ab®> 1+ab
b ey’ —(z—b)*
02 - a
a 2r-—20>

aeer,bek:}

and

aekx,bek}.



Chapter 3: I-Modular Unipotent Representations of Finite Reductive Group$2

To see this, note that, for two-by-two matrices, any noncentral matrices sharing
a characteristic polynomial must lie in the same conjugacy class. Hence, as the
matrices listed have characteristic polynomials (X — 1)? and (X — x)? — ey?
respectively, and are not central, they do indeed lie in C} and C respectively.
But it is known (see for example Digne and Michel [1991], Chapter 15 Table 1)
that the sizes of C; and C5 are ¢ — 1 and ¢(q — 1) respectively, so we have in

fact obtained the entire class.

We finally write Zy = —=>_ . g+ > cc, 9 + AL

Lemma 3.4.10. There exists some (necessarily unique) A € R such that we

can take 7y to be ey 7).

Proof. By Paige [2014], Proposition 2.6, P; is the extension of scalars to R of
a representation 152 over Ok, which, when extended to K, decomposes as a
direct sum of irreducible representations: the Steinberg representation 7y and

each of the supercuspidal lifts 7; of Dy, for ¢ in the range 0 < ¢ < ZT_I

From the final remarks of Section 2 on page 363 and the opening remarks of
Section 4 on page 368 of Paige [2014], there is an injective homomorphism
Y : End(BPy) < K@ZTTH, given by sending the endomorphism v to a tuple
(uo, u;) where uy and wu; are the induced actions of v on 7y and 7; respectively

(necessarily scalar as 7y and m; are irreducible).

Write Hp,. (Gy) for the group algebra of Gy over Ok. Then, by those same
remarks, the natural map 7 : Z(Ho, (Gf)) — End(P,), sending an element of

the centre of the group algebra to its action by multiplication, is surjective.

Then, by Theorem 4.11 and Remark 1 in section 4 of Paige [2014], we see that
End(P,) is generated as an algebra by 7y for some Y € Z(Ho,.(Gy)), and that
P(ry) = (2, + ") = (2,¢" + ("), for ¢ a primitive ["th root of unity.

To find an explicit description for a Y with this tuple, we make repeated use of
Lemma 4.1 from Paige [2014], which says that, if C'is a conjugacy class in G,
then ¢(rzgecg) = |C|(T§;3(WCO)), Tzl(;;(f))). We combine this with the character

table information from Digne and Michel [1991] Chapter 15 Table 1, which says
that
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Cong. class 1 4 Cy
Size L | (g+D(g—=1)| alg—1)

Tr(mo) q 0 —1
Tr(m;) qg—1 —1 —(" ="

Using this, and that Tr(7(1)) = dim 7 for any representation 7 over K, we get

that (1., s) = (0, (g 1)), that Y(rg, o, ¢) = (—(g=1), —a(¢'+ ),
and that () = (1, 1).

Thus we find t‘hat a valid choice~ is Y = % > e 9= % > gec, 9+ %1, as then
Y(ry) = (2,¢" 4+ ¢*), and as Y is a sum of sums over conjugacy classes it is
central. Now, as Y is central, we have that the left action of Y and the right
action of esY ey = e, on Py = Ho, (Gy)es define the same endomorphism of

P,, and hence the right action of e,Y also generates End(pg).

Recall that End(P,) & e;Ho, (G)%Pey and End(Py) = e;H(Gf)%ey. Thus we
get a surjective map End(P;) = esHo, (G)%Pey — eaH(Gf)%Pey = End(Py)
induced by the quotient Ho, (G ;) — H(G/). Hence the right action of e,Y €
eaH(Gy)es generates End(2).

Define Y = =% o g+ decg g. As ¢+ 1 =0 and ¢ is invertible in R, and
since the right action of e;Y generates End(F,), the right action of e;Y also
generates End(P,). Observe that Y is also central.

Fix some 7' € End(Ps) with image Q2. Then End(FP,) = esH(Gf)es is spanned
by e, and the positive powers of 7'. Thus, there exists some unique \ such that
eaZ) = ex(Y + Al) is a linear combination of strictly positive powers of +/.
But if the image of e;Z) is a strict subset of ()5, then it must in fact be a
linear combinations of 4k for k > 2, and so Y = —A1+ >, ., 77" cannot
generate the endomorphism 7/, a contradiction. Thus e 7, must have image

(22, and so is a valid choice for 7. O]

Lemma 3.4.11. We can write Z,—1 = >, jpuicizizi+>_; v3d; (1) y; for some
¢, d; € I}, some x;,y; € Ty, some z; € I_} and some p;,v; € R. Furthermore,
we may choose this sum such that it satisfies ) _; ji;c; = 0 and ). v;d; = 0.

Proof. We proceed by factorising each g in C; U (Y into one of the forms pcxz
or vd (94)y for c,d € I}, r,y € Ty, z € I}, and y,v € R. We shall make
repeated use of the following formula:
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1 xz7! w—ayz b 0 1 _
if 2#£0
(w x) 0 1 0 2] \yz7t 1
y z 1 wy ! 01
Y Y if2=0, y+£0
\ 0 1 10 T

observing that these are respectively of the two above forms.

We start with g € C;. First, note that (19) € I_} for all @ € k*, and so

summing over the ¢ — 1 terms in C; of this form we get Zaekx 21,04 for

Next, let a € k*, b € k be such that 1+ ab £ 0. Then
l—ab a c 1 a(l+ab)™? Tff_}.
—ab®> 1+ ab 0 1

Now, observe that a(1 +ab)™! = (a=' +b)~!, and so we have two cases:

If b =0, then in fact we just have

1—ab a (1 a
—ab* 14+ab) \0 1
Hence summing the ¢ — 1 terms we get by varying a over k* gives > .. (§1).

If b # 0, then 1 + ab = 0 precisely when a = —b~!, so fixing b and varying a
over kX\{—b"'} means (a~! +b)~! takes every value a’ in k a single time (by
setting a = (a/ — b)™!) except 0 (which would need a = —b~') and b~' (which
would need = 0). Hence summing these ¢ — 2 terms gives

a
, -
D wer -1y (0% ) T1pa 21,0 for some z1p 0 € T and 21400 € I;.

Meanwhile, if 1 + ab = 0, we observe that necessarily b # 0, and that if we fix
such a b then there is exactly one a satisfying this relation, namely @ = —b~1.

Now, we have that

(1—ab a )E (1 (1—ab)(—ab2)_1> (o 1) n.
—ab® 1+ ab 0 1 10
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Simplifying gives (1 — ab)(—ab®)~! = 20!, and varying b over k* means 2b~!
takes every value a’ € k* a single time (by setting b = 2a’~!). Hence summing

these ¢ — 1 terms gives > cpx (§4) (98) 1,00 for some yy o € T}

Now we consider g € (5. Let a € k* and b € k, and suppose first that

2¢ —b# 0. Then
ey?—(z=b)” e’ —(2=b)?
b o c 1 a(2z—b) Tf]'_l
a 2xr—0b 0 1 !

Now, note that ey? — (x — b)? # 0 as ¢ is by assumption not a square. Hence

.- . . 2_(m_p)\2

fixing b and varying a over k* means % takes every value a’ € k™ a
2_(m_PB)2 . .

single time (by setting a = %) Hence summing these ¢ — 1 terms gives

Za’ekX ((1) al’ ) T2b,a’ 22,b,a! for some T9pa' € Tf and Zobal € I}

The remaining case is when 2z — b = 0, noting there is exactly one such b,

namely 2z, and that it is not zero, since x cannot be zero and [ # 2. Then

bM€1ba—1 01\,
o 22—b 0 1 10/

and so varying a over k* means ba~! takes every value a’ € k* a single time

(by setting a = ba'™!). Hence summing these ¢ — 1 terms gives

Dwerx (69)(98) Yo for some a0 € Ty

Now, we recall that we have Z, | = — decl g+ decz g+ (g —1)1. Hence,
putting all our results together, we have that

Zg1=— Z 21,00 — Z (5¢) — Z Z (§9) Trpa?1pa

ackX ackX bek* a’ek*\{b—1}

=GOt D DY (1) rapa b

a’ kX bek\{2z} a’€kX

+ 3 GOy + @D ()

which is of the form ). piCiiZi + >, id; (95) y; for some ¢;, d; € I}, some
z;,y; € Ty, some z; € I}, and some u;,v; € R. It remains to check that
> i mici =0and > v;d; = 0.
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Considering first Ej vjd;, we can see that we get

Now we consider > . p;c;. This is

DI EDIIED DD DL

ackX €kX bekx a’ek*\{b—1}

+ > Y GO+ @-0uY

bek\{2z} a’ k>

=(~(@-D+@=-))ED+ Y (1-(@=2)+@-D)({ET)

a’'ek*

O

)

= 0.

The above calculation allows us to find the value of \ such that v = es 7).

Lemma 3.4.12. (e — e1)Z,_1 € I;.

Proof. We shall directly calculate (e — e;)Z,—1 P, and observe that it is zero.

Now, eP; = Py, so it in fact suffices to show that (1 —e;)Z,_1F; = 0. Thus,
we need to show for any g € G that (1 —e1)Z,_1g Zbelf b =0, that is, that
Zg-19 Zbelf b is left-1 -invariant.

By the Bruhat decomposition, we may without loss of generality take g = 1w
for i € Iy and w either 1 or (9}). But i commutes with Z,_; as the latter is
central, and s0 Zy_19 ) ey, b= iZg1w Y e, b. Thus we may without loss of

generality take ¢ = 1, and show that Z, jw Zbelf b is left-I¢-invariant.

Now, we can write I; = I;Tj. Observe first that T; commutes with w, and
also with Z,_; as Z,_; is central. Thus, if i € T}, then iZ,_ w Zbelf b =
Zy_wi Zbelf b= Z, qw Zbelf b, so Z,_qw Zbelf b is left-T'-invariant. Thus,

it only remains to prove that Z, jw Zbelf b is left Ij-invariant.

We shall divide this into two cases depending on the value of w, respectively 1
and (93).
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Consider the first case. Then Z, jw Zbelfb = Zy Ebelf b. As Z, 4 is
central, I} commutes with Z,;, so if i €  I; then
121 Zbelf b= Z, 1i Zbelf b= 72, Zbelf b, so we have left-I}-invariance.

For the second case, we use that, by Lemma 3.4.11, we have
Zyr = ZZL“%C%%Z% + >, vd; (14)y; for some ¢;,d; € I}, some x;,y; € T¥,
some z; € I}, and some /i, ; € R, such that ), uic; = 0 and Zj vid; = 0.
Now, we have that I}w = wI} C wly, so zzw € wl;. Additionally,
Tyw = wTy Cwly, so z;w,y;w € wlg. Thus,

Zyqw Z b= ZMQ%Z@'WZ b+ Z vid; (98) yw Z b

bEIf % bEIf i beff
— 1
—E Mz‘CﬂUE b+§:’/jdj((1)o)w§ b
i bely J bely

=0

where the last equality follows as _, yc; = 0 and > v;d; = 0. As in fact

Zgqw Zbelf b = 0 in this case, it is certainly in particular Ieft—[}—invariant. O

Corollary 3.4.13. v = ey Z,_;.

Proof. We have that (e —e;)Z,_1 € Zy, and hence esZ, 1 = ez(e —e1)Z,—1 €
Z;. But then for all A # ¢ — 1 we have that e;Z\P; = ea(A — (¢ — 1)) Py is
one-dimensional and spanned by (3, so e2Z) ¢ Z;. Thus as v € Z; we must
have v = €3 Z,_1. O

Henceforth we shall simply write Z for Z,_;.

Lemma 3.4.14. (e — e1)Z generates the unipotent part of Z;.

Proof. We know that (e — e1)Z € Z;. Furthermore, we have that v = ey Z =
ea(e — e1)Z and that vy generates the unipotent part of Zy. Hence so does
(e—e1)Z. O

We thus have an explicit description of Z;, namely that it is generated by
the non-unipotent elements plus a single unipotent element (e — e1)Z, where
Z == ec, § t 2 gcc, 9+ (¢ — 1)1 for certain conjugacy classes C and
(s in Gy, whose elements we have given explicitly. These results generalise to
the case n = e > 2 by considering a degree n extension instead of a quadratic

extension, with appropriate choices of C', C5 and A.
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[-Modular Unipotent

Representations of p-adic Groups

Synopsis

We establish the first part of the main theorem of this thesis,
namely that () classically generates Dg’cg(Hl(G)). This essentially
amounts to showing that various finiteness and generation results
from the finite setting continue to hold in the p-adic setting. After
defining relevant objects, we present Vignéras's p-adic version of
Takeuchi's results on generators, as well as two key finiteness
properties: that Mod(G) is Noetherian, and that Sg(n) has finite
global dimension. The ingredients for both already exist in the
literature, but they nonetheless require some care to rigorously
prove. In particular, the former involves the property of second
adjunction, and the latter employs the theory of affine cellular
algebras. We then use these to give the first part of the main

theorem.

4.1 Definitions and Notation

Let F' denote a p-adic field, with ring of integers O, uniformiser w, and residue
field k. Let G be a (connected) reductive algebraic group over F', and write
G = G(F) for its F-points, which we consider as a topological group via the
topology on F'. For simplicity of exposition we will assume that G is unramified,

that is, it is the extension of scalars to F' of a reductive group scheme over O.
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Moreover, we will fix such a reductive group scheme over O, and also write it
as G. For GL,, we simply take G = GL,, over O.

Let K = G(O). Recall that this is a maximal parahoric subgroup. Let K' be
its pro-p radical. For GL,,, we therefore have that K* = 1+ wM,, ,,(O). Write
Gy for the reductive quotient of K, that is, G(k). We retain the notation from

the previous chapter for the various subgroups and representations of G ;.

Inside K, fix an lwahori subgroup I. We may without loss of generality take
I to be the preimage of I; under the quotient K — G¢. We fix a split torus
S, which we can take without loss of generality for GL, to be the diagonal
matrices. We write Iy for the compact part of S, which is the intersection
of S and I. For GL,, the Iwahori-Weyl group W = N(S)/I, is isomorphic
to Z" x G,,, where G,, acts on Z" by permuting the entries. Furthermore,
W has a canonical splitting by sending &,, to the permutation matrices and

(i1,...,1,) € Z" to the diagonal matrix with (j, j)th entry w®.

Let R be a commutative ring in which p is invertible. Recall from Section 2.7
that we write Mod(G) for the category of smooth representations of G over R,
and that Mod(G) is isomorphic to the category of nondegenerate modules over
the global Hecke algebra H(G). We fix a Haar measure on G with pu(K*') =1,

4.2 The Unipotent Block of p-adic GL,

For this section only, R shall be an algebraically closed field of characteristic
different from p, and G shall be GL,,. Many of the properties of Gy used in
the previous chapter to establish the finite version of the main theorem can be
proven in an analogous manner for (G. We first recall Vignéras's generalisation
of Takeuchi [1996].

Definition 4.2.1. We call the block of Mod(G) containing the trivial
representation 1 the unipotent block. Write B;(G) for the direct sum of all

non-unipotent blocks.

Write H;(G) and H(G) for the corresponding direct sums of block algebras
of H(G).

For a representation M, write M; for its summand in the unipotent block.
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Let P =1§, Py = ind7 1.
Let Z be the annihilator in H(G) of P.

Let H(G) = H(G)/Z, and let Bj(G) be the category of H(G)-modules
annihilated by Z, that is, the category of modules over H} (G).

Let 7 be the set of all parahoric subgroups containing I and contained in K,
that is, the preimages of J; € J; under the quotient K — G;. We call those

parahoric subgroups in 7 standard.

. . . M
Let I' = Igf’KFf = D,es @Xjfefo 1nd§lnﬂ]{4jf1HdUijX(]f, and let Q =
I'/IT.

Remark. In Vignéras [2003], the definition of J is larger: it is the set of all J
containing I, not just those contained in K. Hence, her definition of I' contains
more summands of the form I'; = ind?inﬂJMJf ind%‘;f X.J;- However, for GL,,,
all J containing I are conjugate to some J’ containing I and contained in K,
and hence each summand I'; of her I' is isomorphic to some summand I'; of
our I'. Hence, her notions of 'y and () are progenerators if and only if ours
are, and the two notions have Morita equivalent endomorphism algebras and

classically generate the same category.

By Section 5.12 of Vignéras [2003], we have that P € B;(G). Hence the
quotient H(G) — H/(G) factors through H(G), and so B} (G) is a subcategory

of B1(G). We can now state Vignéras's result.
Proposition 4.2.2. There exists some positive integer N such that TV B, (G) =

0. Furthermore, B1(G) has progenerator ), and I" has progenerator I';.

Proof. These are respectively Theorem 5.13 (3), Proposition 5.10, and Theorem
5.13 (1) of Vignéras [2003]. O

4.3 The Noetherian Property and Second
Adjunction

We return to the case of R a general commutative ring (in which p is invertible)

and G a general reductive group. To prove the first part of our main theorem,
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we need analogues for G of two finiteness properties that are known for G¢. The
first is that Mod(G) is Noetherian. For Mod(G¥) this is immediate as H(G) is
a finite dimensional algebra over a field. For Mod(G) this is essentially already

known. We shall nonetheless be fully explicit in our exposition.

Definition 4.3.1. Let 0 : G — R be the map d¢(g) = u(gK'g™).

We say that G has second adjunction over R if, for all parabolic subgroups C

of G and all Levi subgroups M of C, we have that parabolic induction i} . is

G

M. where recall that C is the opposite parabolic of C with

left adjoint to dor
respect to M.

Proposition 4.3.2. Suppose R is Noetherian, and suppose that G has second
adjunction over R. Then Mod(G) is Noetherian.

Proof. This is Dat [2009] Theorem 1.3. O

Theorem 1.5 of Dat [2009] then gives that GL,,, alongside several other families
of groups, have second adjunction. Since then, the result has been proven in

full generality for any reductive group over F'.

Proposition 4.3.3. G has second adjunction over R.

Proof. This is Dat et al. [2024a], Corollary 1.3. O

Remark. In fact, Dat et al. [2024a] establishes second adjunction via even
stronger finiteness conditions on various Hecke algebras associated to G,

which are proven in full generality in Dat et al. [2024b].

Corollary 4.3.4. Suppose R is Noetherian. Then Mod(G) is Noetherian.

In particular, when R is an algebraically closed field of characteristic not p,
B1(G) and By (G) are Noetherian. The former is equivalent to the category of
modules over Sg(n) by Proposition 4.2.2, so Sg(n) is Noetherian. Similarly, the
latter is equivalent to the category of modules over End(T';), and so End(I')
is Noetherian. But being Noetherian is preserved by Morita equivalences of
non-unital rings with enough idempotents (Anh and Marki [1987], Proposition
3.3), and so H)(G) and H;(G) are Noetherian. Thus, the ideal Z; in H;(G) is
finitely generated.
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4.4 The lwahori-Hecke and Schur Algebras

The other finiteness property we need to prove the first part of the main theorem
is that a p-adic version of Sg(n)s has finite global dimension. To define this

algebra, we first need to introduce the lwahori-Hecke algebra.

Definition 4.4.1. The lwahori-Hecke algebra of GG over R is the Hecke algebra
Hr(G, 1) of G with respect to I, as defined in Section 2.7. Thus, it is the

algebra Endg(P)°P. For GL,, we shall also write the lwahori-Hecke algebra as
HR(H)

Recall again from Section 2.7 that Hgr(G, I) is isomorphic to the R-algebra
spanned by indicator functions 17,7, with multiplication given by convolution.
Thus, by the Iwahori decomposition, it has R-basis {T,, | w € W}, where
Tw = Lrwr-

The structure of W can be used to give explicit generators and relations for
Hr(G,I). Write [ for the length function of W, and S for the simple affine
reflections in W. For simplicity, we only recall their definitions for GL,, (see
for example Morris [1993] for the definition in full generality). Write X, for
the 7th standard basis element of Z", and write elements of &,, using cycle
notation. Let oo = (@ i+ 1) for i« € {l,....n — 1}, let
09 = Op_1...020109...0,1(X1X;!), and let 7 = s,.1...5:X;. Then
S = {04]0 <i<n-—1}, and the length [(w) of w € W is the minimal

number of o; required to express w as a product of o; and 7.

Using this, we can give explicitly the relations defining Hg(G, I):
Proposition 4.4.2. Hi(G, I) is generated by the T,, forw € W subject to the
relations
TwT. = Ty forw,w’ € W with l(ww') = l(w) + I(w)
T? =(q—1)T,+q forses

Proof. This is Theorem 2.1 of Vignéras [2016]. O

Definition 4.4.3. Write Z[q] for polynomials in q. Write H,(G, I) for the
Z|q]-algebra with the generators and relations of Proposition 4.4.2, where ¢ is
replaced with q. We call this the lwahori-Hecke algebra of G over Z[q]. For

GL,, we shall also write it as Hq(n).
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Note that, by Remark 2.4(1) of Vignéras [2003], Hr(G, I) = R ®zq Hq(G, I),
where we make R a Z[q]-algebra by sending q — g.

Recall that W} denotes the Weyl group of Gy. As G is unramified, this is the
same as the (finite) Weyl group W; C W of G. Recall that for GL,, this is
6, CZ" x 6,,. Write S for the simple reflections in W;. For GL,, these are
the transpositions o; for 1 < ¢ < n —1. For each subset P of S¢, let W5 denote
the subgroup of 1, generated by P, and let zp = ) | T,

weWp T w-

Definition 4.4.4. The Schur algebra of G over R is the R-algebra Si(G, 1)
defined by

SR(G,[> = EndHR(G,I) @ IPHR(G, [)

PCSy
where the endomorphisms are of right Hg(G, I)-modules.

The Schur algebra S,(G,I) of G over Z[q] is similarly defined by replacing
Hr(G,I) with Hy (G, I) in the above definition.

For GL,,, we also denote the Schur algebras over R and Z[q] as Sg(n) and

Sq(n) respectively.

Again by Remark 2.4(1) of Vignéras  [2003], we  have
Sr(G,I) = R®yq Sq(G, I). Furthermore, as x5 = 1, the endomorphisms of
the z5HR(n) summand of Sg(G,I) (respectively the z4H,(n) summand of
Sq(G, 1)) are canonically isomorphic to Hr(G,I) (respectively H (G, 1)) by
identifying an element of the latter with its action by left scalar multiplication
on the former. Thus, Hgr(G,I) (respectively H,(G,I)) is an idempotent
subalgebra of Sg(G, I) (respectively, S4(G, I)).

As in the finite case, the importance of Sg(n) comes from the following

surprising property:

Proposition 4.4.5. Let G = GL,. Then Endg(Q) is Morita equivalent to
SR(n)

Proof. This is Proposition 5.8 of Vignéras [2003]. O

For GL,,, we can describe the subsets of Sy in a more explicit way.
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Definition 4.4.6. A composition of n is a tuple A = (Aq,..., Ay) of positive

integers that sums to n.

Given a composition A, define P(\) to be the subset of Sy of all (i ¢ + 1) with
Yo A < i< Zz,ill A for some m. This gives a bijection between

compositions of n and subsets of S;.

4.5 The Global Dimension of the Schur Algebra

We now assume that G = GL,. We also assume, without changing our
notation, that Hy(n) and Sq(n) are defined over 2 = Z[q*2], and that R is a
% -algebra (with q — ¢ as before). Note that this requires a choice of q% € R.

Remark. This mild additional assumption is in order to draw on results from
the literature. It would be interesting to investigate what happens without this
assumption. For example, Du et al. [1998] show that Sg(n); is quasi-hereditary
and has finite global dimension without this assumption, and it seems likely

similar methods could be used for Sg(n).

Recall that Sg(n); was shown to have finite global dimension by giving the
Morita equivalent algebra Sp(IV, n) the structure of a quasi-hereditary algebra.
We wish to show that Sg(n) has finite global dimension. Hence we proceed
analogously to the finite case by finding a Morita equivalent algebra that has a

well-behaved affine cellular structure.

Firstly, we give another presentation for the Hecke algebra: the Bernstein
presentation. This is taken as the definition of the Hecke algebra in much of

the literature on Schur algebras, in particular in McGerty [2003].

Proposition 4.5.1. H,(n) has a presentation with generatorsT;,1 < i < n—1,
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and Xiﬂ, 1 < ¢ <n, and relations

T} =(a—-1)T+q
LT = T T
TT; =TT, if |i — j| > 1
X X =1= XX,
XX, = X;X;
X1 = aXin
T,X; = X;T, ifj ¢ {i,i+1}.

Furthermore, T; =T, for1 <7 <n —1.

Proof. This is Theorem 1.4 of Vignéras [2006], which also contains a statement
of the Bernstein decomposition for a general G, and a definition of the X; in

terms of the T,. O

The proof in the finite case used the family of algebras Sg(NV,n)s. These have

a p-adic analogue.

Definition 4.5.2. Fix some N > n. An N-composition of n is an N-tuple of
nonnegative integers that sum to n. Write the set of all N-compositions of n
as A(N,n).

For A € A(N,n) we define P()\) to be P(\') where X" is the composition of n

given by deleting all the zero entries from .

Definition 4.5.3.

Sq(N,n) = Endy, ) @ zp(nHq(n)
AEA(N,n)

Let Ag(N,n) denote the elements of A(N,n) where all zero entries occur
after every nonzero entry. There is thus a bijection between Ay(N,n) and
compositions of n. Write A(P) for the element of Ag(N,n) corresponding to
the composition A with P(A\) = P. Then P(A(P)) = P. Thus, by gluing the

identity maps apHq(n) —  apne)Hq(n), we obtain an inclusion
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@Pgsfpoq(n) C  @ieavm reyHq(n), and  hence an inclusion
Sq(n) € Sq(N;n).

By the theory of affine cellular algebras, which we will expand on in the next
section, Sy(IV, n) is known to have finite global dimension, and this is preserved

under reasonable extensions of scalars.

Proposition 4.5.4. Let R be a Noetherian domain of finite global dimension.
Then Sy(N,n) ®# R has finite global dimension.

Proof. In Section 1.10 of Lusztig [1999], Lusztig defines an algebra Sq(N, n)
(written $,, v n.2 in his notation). In Cui [2015], Theorem 4.7 (see also
Nakajima [2015]), Sq(N,n) ®» R is shown to have finite global dimension.
Note that they only claim that gq(N, n) ®z R has finite global dimension, but
their proof in fact holds for S((N,n) ®» R, as their proof that Sy(N,n) is

affine cellular over Z in fact shows that it is affine cellular over &. But

A

Sq(N,n) is isomorphic to Sq(N,n) by Pages 2 and 3 of McGerty [2003]. [

As in the finite case, we show that S,(N,n) ®# R and Sg(n) are Morita
equivalent. Let e denote the identity of S,(n), that is, the sum of the identities

on each zp(\p))Hq(n). It is an idempotent in Sy (N, n), and we have Sy(n) =
eSq(N,n)e.

Lemma 4.5.5. S (N,n)eSy(N,n) = Sq(N,n).

Proof. The identity map on xp(y)Hq(n) is gef, where f and g are the identity

f
maps Zp(nHq(n) &= zpey)Hg(n). Thus Sq(N,n)eSq(NN,n) contains the
g

identity of S,(N,n), and thus is all of Sq(N, n). O

Theorem 4.5.6. Let R be a Noetherian domain of finite global dimension.

Then Sg(n) has finite global dimension.

Proof. S,(n) is Morita equivalent to S,(/N, n) by Proposition 2.11.2, and hence
Sr(n) is Morita equivalent to Sq(N,n) ®» R. But the latter has finite global

dimension. O
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4.6 Aside: Affine Cellular Structures for the
Schur and Hecke Algebras

We retain the assumptions of the previous section. We have so far treated the
finite global dimension of S (N, n) ® R as a black box. However, analogously to
the finite case, this property is a single consequence of a much richer structure
theory of S,(NN,n): it is an affine cellular algebra. In this aside we will transfer

this affine cellular structure to Sq(n) and Hy(n).

Remark. While the affine cellular structures we give are transferred from
Sq(N,n), it should in principle be possible to attempt to construct them
directly on Sq(n) or Hy(n) using analogous methods to the construction for
Sq(N,n). It would be interesting to know whether this affine cellular

structure, if it exists, is the same one that we construct here.

We first expand on the affine cellular structure of S, (N, n).

Proposition 4.6.1. S, (N, n) is idempotent affine cellular. Using the notation
of Definition 2.11.1, we furthermore have that:

1. Sq(N,n) has a basis e, where A are certain Z-by-Z matrices.
2. The involution i on Sq(N,n) is given by i(es) = ea:.

3. For all X\ € A(N,n), we have that eging(\) is the identity map on
xp(Hq(n), where we write diag(\) for the Z-by-Z matrix which is
N-by-N-block-diagonal, with each diagonal block itself diagonal with
mth entry \,.

4. For each k, the module J;; contains the element l, = eg;,5\v)), Where

M®) € A(N,n) has decreasing entries.

5. lyesa = ey for any A = (a;;) with row(A) = A& where

row(A) = (Zjel aij)

6. For each k, By, is of the form Z[X1,... ,ka,Xal, o ’Xi;i] for some
{is, .. in, } C{L,...,my}.

1<i<N

Proof. By Cui [2015], Theorem 4.7 (see also Nakajima [2015]), the algebra

Sq(N,n) defined in Section 1.10 of Lusztig [1999] is idempotent affine cellular.



Chapter 4: I-Modular Unipotent Representations of p-adic Groups 63

Again, they only claim that it is affine cellular over Z, but in fact their proof
shows it is affine cellular over 2. But as we observed in the last section,

Sq(N,n) is isomorphic to S,(N,n) by Pages 2 and 3 of McGerty [2003].

The details of this structure are collated in Sections 3 and 4 of Deng and Yang
[2016]:

The first claim is their Definition 3.1.
The second claim is their Equation 4.6 (they call the involution 7).
The third claim is their Equation 8.4.

Their Proposition 4.3, meanwhile, defines certain sets ¢, for every
A € A(N,n) with decreasing entries. Then, by their Equation 4.7 and the
preceding paragraphs on Page 443, the J; are spanned by certain cyx). (In

their notation, the modules .J; are written as C7).

From their Definition 3.1, for any A € A(N,n), there is the element I, =
€diag()- | heir Proposition 4.1 says that there is some other element, written
{l,}, equal to ly. Then their Equation 4.3 says that {/,} € ¢, when the entries

of A\ are decreasing. Thus we get the fourth claim.
The fifth claim is their Equation 3.6.

In their Equation 4.8, they define, for every A € A(N,n) with decreasing
entries, rings B\=2[X1,... ,X,\I,Xijl, e ,Xi;l] where i; = Ay — A\j41 and
we set Ayy1 = 0. Their Proposition 4.4 then gives a generalised matrix
algebra structure on the J;, with coefficients in Byx). But their Remark 2.2
says that this is exactly an affine cellular structure, with By, = Byx). Thus we

have the sixth claim. O
To reduce to Sy(n), we need some further properties of the idempotents.
Lemma 4.6.2. For all k, we have that I, lies in S,(n), and l}; is an idempotent

generating the affine cell ideal J;..

Proof. Now we observe that every decreasing tuple in A(N,n) is an element of
Ao(N,n), and that by Claim (4) of Proposition 4.6.1 [}, = €gj,e( () and M) is
decreasing. Thus I}, € Sq(n).
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Finally, by Claim (5) of Proposition 4.6.1 we have that /; is idempotent, and
as Sq(NN,n) is idempotent affine cellular the J;, are idempotent, so [, generates
Jp.. ]

Recall from the previous section that e is the identity element of S, (n).

Lemma 4.6.3. Both e and the egjag () are fixed under the involution.

Proof. By definition, e is the sum of the identity maps on each of the summands
in Definition 4.4.4. But, by claim (3) of Proposition 4.6.1, these are precisely the
Cdiag(r) for A € Ag(IN,n). It thus suffices to show that the egiag(2) are preserved
under i. But diag()\) is a diagonal matrix, and by Claim (2) of Proposition 4.6.1

we have that 7 sends e4 to ex:. ]

Using these we can reduce to our Schur Algebra.

Theorem 4.6.4. S,(n) is idempotent affine cellular. For each k, we have that
By, is of the form Z'[Xy, ..., X, X; ..., X '] for some {iy,... in} C

11 ? an]

{1,...,my}. The ideals eJ} e are generated by .

Proof. We know S,(N,n) is idempotent affine cellular with the By of the
stated form by Proposition 4.6.1. We want to apply Claims (1) and (3) of
Proposition 2.11.2. But, by Lemma 4.6.3 and Lemma 4.6.2, the conditions of
Proposition 2.11.2 hold. O

To use this structure to show finite global dimension, we need some properties
of the Bk.

Lemma 4.6.5. Let R be a commutative ring. Fix some m € N and some set
{i1, ... i} C{1,...,m}.

1. If R is a domain, then rad(R[X,,..., X, X; 5, X, 1]) = 0.

11 in

2. If gl dim(R) < oo, then gl dim(R[X1,..., X, X;,', X)) < o0
Proof. We show the first result by proving that if A is a domain then A|x]
and Az, z7!] are domains with zero Jacobson radical. That A[z] is a domain

follows as the leading coefficients of any nonzero polynomials must multiply to
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give a nonzero leading coefficient for the product. To see that rad(A[z]) = 0,
note that if p(z) € rad(A[z]) then 1+ zp(x) must be a unit, so p(z) = 0. The
logic for Alx, '] is identical except that we now must consider 1+ x*p(z) for

k large enough that z*p(z) only has terms of strictly positive degree.

The second follows from the Hilbert Syzygy Theorem, which gives the
polynomial case (see Rotman [2009] Theorem 8.37). The case for Laurent
series follows as localisation is exact and preserves projective modules.
Alternatively, it is a special case of McConnell and Robson [2001], Theorem
7.5.3 (iii) and (iv). O

With this we can give an alternate proof of Theorem 4.5.6.

Theorem 4.6.6. Let R be a Noetherian domain such that gl dim(R) < oc.
Then gl dim(Sg(n)) < oco.

Proof. By Theorem 4.6.4, S.(n) is idempotent affine cellular, and hence so is
Sgr(n). But by Lemma 4.6.5 we have rad(By) = 0 and gl dim(By) < co. Thus
we may apply Theorem 2.11.4. O]

We now use the affine cellular structure we have obtained on the Schur algebra

to obtain an affine cellular structure on the Hecke algebra.

Lemma 4.6.7. H,(n) is of the form IS (n)l (equivalently, IS (N,n)l) for
some idempotent | € Sq(n) such that i(l) = l. Thus, H,(n) is affine cellular,
with ideals .Jil, and By, of the form 2 [ Xy, ..., X, , X;l, . ,Xi;i] for some
{in,«ooyin, } C{1,...,my}.

Proof. Let | = €giag(1,..1,0,..0- Then, as P(1,...,1,0,...,0) = &, we have
that [ is the identity map on the z4H,(n) summand. This is idempotent, and

[S4(n)l is precisely the H,(n)-endomorphisms of 24H,(n), which we canonically
identified with H,(n).

Furthermore, by Lemma 4.6.3, [ is fixed by the involution .

Thus, by Proposition 2.11.2 and Theorem 4.6.4, H,(n) is affine cellular with
ideals [J;,l and Bj, of the stated form. O
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For every P C S, the Poincare series of P is defined to be Ap(q) = Zwewp q'®),
where W5 is the subgroup of W; generated by P. We write A(q) for Ag,(q).
For every P, Ap(q) is a factor of A(q) (Humphreys [1990], Section 5.12).

Proposition 4.6.8. Suppose A(q) is invertible in R and that R is a Noetherian
domain. Then

1. Hgr(n) and Sg(n) are Morita equivalent.

2. The two-sided ideal .Jil of Hr(n)/lJx_1l is generated by the idempotent
_ 1
I§€ - Ap()(k))(‘]) Tr(A®)-

3. Hg(n) is idempotent affine cellular.

4. If furthermore gl dim(R) < oo, then gl dim(Hg(n)) < oc.

Proof. The first claim is Deng and Yang [2016], Appendix Lemma 1.4, which
they prove via Claim (2) of Proposition 2.11.2 by showing that Sg(n)ISg(n) =

SR(n)

We now show the second claim. We know that J, is generated by [, that is,
by the identity map on wp(,w)Hgr(n), by Lemma 4.6.2 and Claim (4) of
Proposition 4.6.1. Consider the embedding ¢, : xp()\(k))HR(n) — Hg(n), and
the projection ¢y : Hp(n) — wpw)Hr(n) given by left multiplication by
Tp(zk). Then the element ¢yl lives in both Hgr(n) and Ji, and hence in

[Jil. But this element is just Tp(Ak))- Hence x, also lives in [.Jil.

Now Deng and Yang [2016] Equation 8.9 gives that ¢a¢y = Ap )y (q)lx. Hence

1
$I2 — {L'2 "
K Ap(w))(q)2 PO)

1
S S !
Ap(/\(k))<q)2 ¢1 k¢2¢1 k¢2

1
=l
Appraon(g) (4.6.1)
1

= — 0!
Ap(x(k))(@) P12

1
< TpAk)
Ap(xk))(CI) PO

o /
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so x, is idempotent. Furthermore,

b 1
P2y 01 = —AP()\(k))(Q)¢2¢llk¢2¢l (4.6.2)

= AP(A(k))(Q>lk

and hence, as [;, generates all of J; as a 2-sided ideal in Sg(n)/Ji_1, so does

x}.. Thus we are done by Proposition 2.11.2.

The third and fourth claims follow from the second and Lemma 4.6.7, together
with Lemma 4.6.5. O

When A(q) is not invertible, we cannot define all the idempotents z}.. It seems

unlikely that Hg(n) is idempotent affine cellular in this case.

4.7 A Classical Generator for p-adic GL,

We continue to assume G = GL,,, and further assume that R is an algebraically
closed field of characteristic different from p. We now have everything we need
to prove the first part of the main theorem, in the same manner as we did in

the finite case.

Lemma 4.7.1. D% (H(G)) = per(H;(Q)).

Proof. By Proposition 4.2.2, B} (G) has progenerator (). Thus, H|(G) is Morita
equivalent to Sp(n). Hence it suffices to show D% (Sg(n)) = per(Sg(n)).
Now, Sg(n) has finite global dimension by Theorem 4.5.6, and it is Noetherian
by Corollary 4.3.4. Thus by Proposition 2.10.7 and Proposition 2.10.8, every
object of DY (Sg(n)) is isomorphic to an object in the subcategory per(Sg(n)).
But as these are both isomorphism-closed subcategories of D(Sg(n)), they must

agree. ]

Lemma 4.7.2. D}, (Hi(G)) = (Db, (Hi(G))) oy, ()

Proof. Inclusion of the right side in the left is immediate as all H}(G)-modules
are H;(G)-modules.
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Let M* be an object in D% (H;(G)). Without loss of generality we can thus
take it to be a complex of finitely generated unipotent representations. Then by
Proposition 4.2.2, we have some finite N such that ZVM*® = 0. Observe that,
as M* is a complex of unipotent representations, we have that Z:M*® = Z¢ M*®
for any ¢+ > 0. Now, by Corollary 4.3.4, we have that Z; is finitely generated,
and M* is a complex of finitely generated representations, so the Z'M*® are
also complexes of finitely generated representations for all ¢ > 0. Hence the
quotients Z'M*® /"' M* are objects in DY (H{(G)). Thus M* is a repeated
extension of complexes in D?g(H’l(G)), andsoisin <D?fg(H/1(G))>D;g(H1(G))- O

Theorem 4.7.3. D} (H,(G)) = (@) e, (6))-
Proof. By Proposition 4.2.2, () is a progenerator for B{(G). Thus by

Proposition 2.10.6 we have that per(H|(G)) = (Q)pex(rr(c)). Thus we are
done by Lemma 4.7.1 and Lemma 4.7.2. O]



5

Describing the Derived /-Modular
Unipotent Block

Synopsis

We finish the proof of the main theorem by establishing that
V is a classical generator of D% (H(G)) for G = GL,(F), and
hence that D% (H(G)) is equivalent to perfect complexes over
dg-End(V*®). We do this by combining the first part of the main
theorem from Chapter 4 with the finite version of the main theorem
from Chapter 3. Lifting the finite version of the theorem to the p-
adic setting requires the additional result from Chapter 3 as well a
further result showing, essentially, that Zy is a subset of Z. This
involves careful coset calculations in the global Hecke algebra. We
then explore the structure of the dg Schur algebra dg-End(V*),
giving a composition formula in terms of resolutions on the finite
group GL, (k).

5.1 A Second Classical Generator for p-adic GL,

We retain the notation of the previous chapter. Furthermore, we assume
throughout that R is an algebraically closed field of characteristic [ different
from p, and that G = GL,,.

Definition 5.1.1. Let V =1¢ ,V;. Thus, V =@, , indj1.

We seek to establish that DY (Hi(G)) = <V>D1}9(H1(G))- The idea is to lift the
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finite version of this result, that is, the second claim of Theorem 3.1.4, from
Gy to G. To do this, we first relate B1(Gy) and B, (G):

Proposition 5.1.2. Let 7; € Mod(Gy). If ny € Bi(Gy), then 1g g7y €
Bi(G). Conversely, if m; € B41(Gy), then 1¢, ey € Bi(G).

Proof. This is Vignéras [2003], Lemma D14 (a;) and (ag), noting that
Conjecture Hj in said paper is stated to hold for G = GL,,(F). O

Corollary 5.1.3. V and IgvaQf are both finitely generated and unipotent.

Proof. V and Igf’KQf are the image under parahoric induction of V; and Q)
respectively. Both V; and ) are unipotent and finitely generated, and parahoric

induction preserves both properties. O

Thus both V' and Igf(Qf) are in D} (Hi(Gy)). Now we are ready to lift the

finite version of the main theorem to G.

Corollary 5.1.4. (I (Qy))

v o) = Vo e

Proof. Parahoric induction is exact, so this is immediate from the second claim
of Theorem 3.1.4. O

We want to conclude by Theorem 4.7.3, which says that
DY, (Hi(G)) = (Q>D?9(H1(G)). Unfortunately, IgﬁKQf = F/(IgvaIfFf) is not
a priori equal to @ = I'/ZT'. It thus remains to show that IgﬁKQf and @ are
in fact equal, that is, that Igf’KIfFf = ZT. The first claim of Theorem 3.1.4

is exactly enough to show one inclusion:

Lemma 5.1.5. 71§ ,Q; = 0.

Proof. By the first claim of Theorem 3.1.4, @y is a direct sum of
subrepresentations of Pr. Hence IgvaQf is a direct sum of subrepresentations
of Igf,KPf = P, and subrepresentations of P are annihilated by
Z = Ann(P). O

Corollary 5.1.6. 7T C IS, Z;T.
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Proof.

0=TIg xQy
=Z(V/(1g, kZ;T))
= (II'+ Igf,KIfFf)/(Igf,KIfFf)

]

To show the reverse inclusion, it is simplest to work with H(G)-modules. Recall
from Section 2.7 that we may view H(K') as the subalgebra of H(G) consisting
of functions supported on K, and that the image of the endomorphism of H(K)
given by f = 1x1 f1x1 may be identified with H(G) via g <> 1 1. Also recall
that, viewing representations of Gy, K and G as modules over H(Gy), H(K)
and H(G) respectively, parahoric induction is then just H(G) ®n(x) —, where
H(G) and H(Gy) are viewed as H(K )-algebras via the aforementioned maps.

Using this, we may rewrite IgﬁKIfI‘f and ZT" as
16, kZiTs = H(G) @ni) LT (5.1.1)
and
IT = IH(G) @nex) Iy = T @uere) H(GH)T'y (5.1.2)

respectively.

Hence, it will suffice to show that H(G) ®n k) Zy lies inside Z @) H(G), as
subsets of H(G) ®ux) H(GY).

There are a series of simplifications that can be made to this picture. First,
recall that, by the Iwahori decomposition, P = ind?]l is generated by elements
of the form 1;,; for w € W and i € I, and H(G) acts on these elements by
convolution on the left. Thus we may view P as a left ideal in H(G). Hence,
if Z € H(G), then Z € Z if and only if, for all i € [ and w € W, we have that
Zliwr = 0.

Similarly, by the Bruhat decomposition, Py = indIfoll is generated by the
elements twI; for wy € Wy and ¢ € Iy, and H(Gy) acts on these elements by
left multiplication, so P can be analogously viewed as a left ideal in H(G/).
Thus, if Z € H(Gy), then Z € Z; if and only if, for all i € Iy and w; € Wy,



Chapter 5: Describing the Derived [-Modular Unipotent Block 77

we have that Ziwsl; =0 .

Next, observe that the map g — 1,k identifies H(G) with a subalgebra of
H(K'), and thus of H(G). This identifies the element iw;l; € Py with 15,1 €
H(G), and furthermore identifies Z; C H(G/) as a subset of H(G). Therefore,
if Z € Iy, then, for all i € Iy and wy € Wy, we have that Z1;,,.; = 0.

Furthermore, the above map is a splitting of the quotient map H(K') — H(Gy),
and so in H(G) ®n(x)H(G) the element f®g is equal to the element f1,1®1.
Hence, H(G) ®nx) Zy = H(G)Zy ® 1. Now, Z is a left ideal in H(G), and so
to show H(G)Z; ® 1 C Z ®uk) H(Gy) it is enough to show that 7, ® 1 C
T ®nx)H(Gy) as subsets of H(G) ®@ux) H(G). Thus, in particular, it suffices
to show that 7 C 7.

Lemma 5.1.7. H(G) OH(K) If C I®H(K) H(Gf).

Proof. By the previous remarks, it suffices to show that forany Z € Z;, w € W,
and ¢ € I, we have Z1;,; = 0.

First, observe that Z € H(Gy), and so Z is a linear combination of terms of
the form 1,x:. Now, as u(Kl) = 1 by our convention for normalisation, we
have Z = Z1g1, and so 21,1 = Z1g1l,,1.

Now, by the convolution formula,

Lt Lir () = p(K* Miwlw ™7t > 11 (B)1jr (')

keK1/(K'Nniwlw—1i—1)

= [Kl : Kl ﬂiwlw_li_l]_llKuwI.
As K' is a pro-p group, ¢ = [K' : K' niwlw™i7!]~! is well-defined and

nonzero in R, so Z1i11,,1 = cZ1 k1401

Let wy be a minimal length coset representative for w in W;\W. Hence w =

wyrwy for some wy € Wy

As wy € Wy C K, wy normalises K. Similarly, as i € I C K, we have that ¢

also normalises K. Hence Z1x1,,; = Z i Kwol -

Now, by Lemma 3.19 and Variant 3.22 of Morris [1993], we have that K (K N

wolwo_l) is a standard parahoric subgroup, and so in particular contains I.
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Multiplying by wgI on the right thus gives

Twol € K'Y (K Nwolwy )wel
g K1<Kw0[ N w()I)
= Kt wol.

Thus we have K'wol C Twol C K'wyl, so we have equality Twol = K'wql.

Hence Z 1w, ktwor = Z Liw;Twor-

Now, we write Z = deGf
normalise K C I, so iwslwgl is left-K'-invariant. Thus, as u(K') =1, the

rglgi1 for some 1y € R. Recall that 7 and wy

convolution formula gives Z 15y, 1w = deGf T Lgiw; Twol-

By definition, Z € Z;. But recall that, by the previous remarks, this means
that Z1,,,; = 0, that is, that
coset kI of I in K, we have that

per Tglgiw,r = 0. In particular, for any fixed

ng:().

gGGf
klI=giwsl

Hence

E 7aglgiu)flwol = g g Ty 1k1w01

9g€Gy keK/I geGy
kl=giwgl

:ZO

keK/I

=0

Putting this all together, we obtain Z1;,; = 0. ]

Thus we get our desired equality.

Corollary 5.1.8. () = IgvaQf.

Proof. By Lemma 5.1.7, together with Equation 5.1.1 and Equation 5.1.2, we
have that Igf’KIfFf C IT'. But by Corollary 5.1.6, the converse is true. Thus
IgvaIfFf =7T, and so IngQf = F/(IgijIfFf) =T/IT' = Q. O
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We now have all the ingredients to prove our main theorem.

Theorem 5.1.9. D% (H(G)) = (V) pe 1, (c)

fg

Proof. We already know from Theorem 473 that

D},(Hi(G) = (@ e i), and  from  Corollary 514 that
<Igf,K(Qf)>Dl}g(H1(G)) = <V>D’}g(H1(G)) But by C0r0||ary 5.1.8 we have

Corollary 5.1.10. Let V'* be a projective resolution of V' in Mod(G). There
is a triangulated equivalence D% (Hi(G)) ~ per(dg-End,(V*)).

Proof. This follows applying Theorem 2.10.4 to the category D} (H:(G)) and

its classical generator V. O

5.1.1 Example: n=1

When n =1 and [ | ¢ — 1, we can be more explicit. In this case we have that
I' = IgﬁKFf = ind$. 1, and V = P = IgvaQf = ind% 1. In particular, we
can see directly that IIgﬁKQf =7P =0,s0Z1I' C Igf’KIfFf.

Recall that Z; = {decf 99|12 gec, To = O}. This case is made simpler as
G = F* is abelian. Observe that K = O* and W = {w@'|i € Z}. Hence, by

the lwahori decomposition, a basis for P is given by x; = 1_ipx for ¢ € Z. By

commutativity, gx; = x; for any g € K. Hence for r = ) r99 € Ly, we

gEGf
have rz; = deof regT; = T; deGf rg = 0. Thus we indeed have Z; C 7,

and hence the exact equality ) = IgﬁKQf =V.

5.2 The dg Schur Algebra

Now that we have our main theorem, we wish to describe the structure of
dg-End(V*®), as this will give us information about the structure of
D%,(Hi(G)). We start by unwinding the definition of V*.

Definition 5.2.1. For J € J, let 1% be a projective resolution of 1; in the

category of smooth .J-representations.
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Then we may put V* = @, ind§ 1%, as this is indeed a projective resolution
of V=@P,.,ind51,.

Definition 5.2.2. We define the dg Schur Algebra to be S = dg-End(V*).

The following proposition justifies the choice of name.

Proposition 5.2.3. Si(n) = H°(S).

Proof. H°(S) is just the endomorphism algebra of V', which is Sg(n) by
Vignéras [2003], Theorem 2.3. O

Sr(n) has a natural basis, which can then be used to give a composition formula.

We perform an analogous decomposition for S.

Definition 5.2.4. We introduce, for J,M € J and g € GG, the complex
S = dg-Hom (res‘] 1% res? M9 (13,)9)
MgJ = dg JNg—1Mg Jng= Mgt Y88 g —1prg\ )7 )

Proposition 5.2.5. There is an isomorphism of complexes

FS%@ @ SMgJ

LMEeT geM\G/J
Proof. By factoring over the direct sums comprising VV*, we have

S= @ dg-Homg(ind§13,ind§,13,)
JMeT

as complexes of R-modules. Now, via Frobenius reciprocity (which preserves

the differential) and the Mackey Decomposition,

dg-Hom,, (ind§ 1%, ind$,1%,)
>~ dg-Hom,, (1%, resGind$, 13,)

~ . . -1Mm .
=~ dg-Hom ;(19, @ mdj;mg_lMgresf’}mg_lgMg(ILM)g)
geEM\G/J

~ ° M .
= @ dg-Hom (19, 1ndﬁmg_1N[gres§mg_1gMg(]lM)g)
geEM\G/J

~ J ° g Mg e \g
= @ dg-Hom jg-1p7(resng-1 7, 15, resy = (15,)7)
geM\G/J

~ P Suy

geM\G/J
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In particular, we obtain the isomorphism of R-modules

H(F) = D D H(Suw).

JMeJ ge M\G/J

Furthermore, we have that

—1
H(Snigs) = Hom jng—114(res 17,1, resgmg%gMg(lM)g)

= HomJﬁg—lMg<1Jﬂg_1Mg7 ﬂng—lMg)-

Thus, every element of H°(S),s) is a scalar multiple of the identity map id s,

on I]_ngflMg.

Continuing our analogy with Sg(n), we describe composition on the Sy ;.
Given an element f* € Sy, We can pass along the three-step isomorphism
F ! of Proposition 5.2.5 to find the element of S which is sent to it under F:

f.
Frobenius Reciprocity\
L 7

velS—[jed— f(jv)

Mackey Decomposition\
L 4

| (5.2.1)
vE 1Y [z € G myf(av)lags(z)]

Frobenius Reciprocity\
L 7

(Zﬁ c lIld?I]_} — |z eG— Z m;pyflf.(jxy*1¢<y))1MgJ(xy_l)
yeJ\G

where, for x € Mg.J, we fix a decomposition x = m,gj,. Note that the choice
of decomposition does not affect the isomorphism.

Definition 5.2.6. For f? € S145 and f5 € Sy, write f3* f7 for the element
F(FH)FHS)) of Dangys Smgr-

To describe x, we shall need the following sets.
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Definition 5.2.7. Let M, L,J € J, and fix double cosets LgJ, Mg'L, MgJ

in G. Then we set

chisr L ={je(Ing'Ly)\J|g € Mg Lgj}.

We may also symmetrically define

CM g = {m € M/(M N g'Lg™)

ge mg’LgJ} .

With these we can give a general formula for composition in the dg-case:

Lemma 5.2.8. Let [} € S14s and f3 € Syyr. Then the projection of f3 % f}

in Snrgy Is the map

vety s S0 mpUsGY)

MgJ

jecﬂifI”LgJ

where g = mg'lgj.

Proof. By applying Equation 5.2.1 to f? and f3, we know that F~1(f3)F1(f?)

is the following morphism in S:

¢ € ind§1% =z € G
7 gy fs (Lot Y et 3 Gpe18(2)) 1ga (2™ | Laggrn(ay™)
yEL\G 2€J\G

1

where gjyi = mxyflg/lmyfl and yzfl = lyzflgjyzfl.

Now, to get the projection of fs* f2 = F(F 1 (f3)F (f1)) in Swngs, we apply

Equation 5.2.1 in reverse:
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Frobenius Reciprocity

vely—relG—
Yo > iy Uyt S Gy 12015(2))) Liga(y2 ™) gy ™)
yEL\G z€J\G
=velS—relG—
> g1 13 (ol 7 (540)) Lrgs (W) Lasgr (2 ™)

yeL\G

Mackey Decomposition, project onto Sprgs
i AN

vely—jel—

> mgiy£3 (g1, £ (5y0) Lrgs (W) sy (355"
yeL\G

Frobenius Reciprocity\

velLs = Y mgi f3 (g1l fr (Gy0)) Ligs (W) Largn(3y™")
yeL\G

ey Y mpsGY)

. MgJ
]ecl\/lg’L,LgJ

Note that the above map may also be written as

velys S mAUfGY)

5MgJ
mec]\/lg’L,LgJ

where g = mg'lgj.

In particular, taking zeroth cohomology shows that the composition map on
Sr(n) is exactly convolution of the idys,;, so we recover the composition
formula for Sg(n).
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5.2.1 Example: n =1

In this case J contains the single element K = O*. Recall also that W =
{=@']i € Z}, and that, by the lwahori decomposition, W indexes the double
cosets KgK. We thus fix W as the indexing set for K-double cosets going
forward. Furthermore, as G = F'* is abelian, we have that K N ¢ 'Kg = K,
and hence that

Skgr = dg-Hom (1, 1% ).

In particular, for all g, we have that S gk is isomorphic to Sk k.

G being abelian also implies that

CKgK o {1}7 g€ Kg/g
ool g, g ¢ Kg'g

As we are using W as our indexing set, we can see that g € K¢'g if and only
if g = gg’. Thus, the composition f3 % f? of [T € Skgx and f5 € Sky i has
zero projection in all Sk except for Sk 4x. Again using the abelian property
and that ¢'g = 1¢'1¢1, we get that the projection of f3 % f? in Sky gk is the
map fafi.

Thus we may define a map Sk1x @r Sr(n) = S via f ®idgyx — f € Skyxk,
and our previous work shows that, equipping the left hand side with
componentwise composition, this is an isomorphism of dg algebras.
Furthermore, Sg(n) is isomorphic to the polynomial ring R [w]. It remains to

describe Sk

By Ackermann [2006], Proposition 4.24, the projective cover Py of lg, has a
totally ordered submodule lattice of length [", where 7 is maximal such that
" | ¢ — 1, with all subquotients isomorphic to Lg,. Fix an endomorphism « of
Z5f with kernel 1. Then, inflating to K without changing notation, a minimal

projective resolution 13- of 1x has period 2 and is as follows:

~ 1" -1 ~
= > Pf - > Pf

~
)

Thus, an element of Sk of degree 7 is zero in degree 7 > —i, and in each
degree 5 < —i is a linear combination of {a’“|0 <k< l’"}. These compose

subject to the relation o/ = 0, and no other relations.
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