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Abstract

Although half of Earth’s population reside in the wildland-urban interface, human
exposure to wildland fires remains unquantified. We show that population directly
exposed to wildland fires increased 40% globally from 2002-2021, despite a 26%
decline in burned area. Increased exposure was mainly driven by enhanced co-location
of wildland fires and human settlements, doubling the exposure per unit burned area.
We show that population dynamics accounted for one-quarter of the 440 million human
exposures to wildland fires. While wildfire disasters in North America, Europe, and
Oceania have garnered significant attention, 85% of global exposures occurred in
Africa. The top 0.01% of fires by intensity accounted for 0.6% and 5% of global
exposures and burned area, respectively, warranting enhanced efforts to increase fire
resilience in disaster-prone regions.
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Wildland fires — here defined as fires in vegetated land excluding commercial agriculture
areas — have increasingly impacted social and environmental systems in various
regions across the globe in recent years (1, 2), directly accounting for at least 2,500
human deaths and 10,500 injuries from 1990-2021 (3). Indirect impacts of wildland fires
are several-fold larger and extend for years after the burn (4). For example, an annual
1.53 million deaths around the globe are attributable to landscape-fire-induced air
pollution (5). Fire activity is directly linked with climate and weather (6), and climate
change has increased the number of days conducive to extreme fire behavior over
many fire-prone regions, culminating in a >54% increase in extreme fire weather from
1979-2022 globally (3), longer fire-weather seasons (7), and increased nighttime
flammability (8).

Human activities can compound or confound the climate change impacts on fire activity
(3, 9, 10). Human ignitions, both intentional and accidental, account for 84% of all
wildfires in the contiguous United States (77) and >90% in Mediterranean Europe (72).
Although lightning ignitions can dominate in more remote regions (13, 14), people
strongly modify the timing and locations of fires (771, 15). People also modify vegetation
type, structure, density and continuity, which, in turn, change regional fire regimes (76).
For example, the introduction of invasive species in deserts of North America resulted in
more frequent and larger wildfires (17), whereas agriculturally-induced land
fragmentation in African savannas reduced burned areas (718). Outside of the tropics,
humans commonly seek to limit burned area by suppressing fire, but as settlement
expands into previously wildland areas, causing the Wildland-Urban Interface (WUI) to
grow (719), human exposure to fire also grows (20). While the WUI covers only 4.7% of
the global land surface, nearly half of Earth’s population reside in WUI areas (27) and
regional and global WUIs have been expanding (22, 23).

The confluence of changing social and environmental controls of fires resulted in 26%
decline in global burned area in the past two decades, driven by trends in African
savannas (24), despite increased fire extent in temperate and boreal forests (25) and
increased occurrence of intense fire events (26). Here we examine the global and
regional patterns and trends of human exposure to wildland fires. We further probe the
characteristics of wildland fires that impact humans, and investigate the role of
population dynamics in the overall exposure patterns and trends. Additionally, we
investigate patterns, trends, and drivers of population exposure to intense fire events,
as exposure to such fires has been tied to fire disasters (2). We use 18.6 million
individual fire records from 2002-2021 from the MODIS-based Global Fire Atlas (18, 27)
and gridded population data from WorldPop (28). We also use MODIS-based land cover
and use (29), active fire records (30), and vegetation indices (37) to exclude non-
wildland fires in the Global Fire Atlas (27). Our approach does not exclude deforestation
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and other vegetation-clearing fires, hence does not differentiate between intentional fire
use and wildfires. We define human exposure to wildland fire as the number of people
who resided within the burned perimeters, noting that (a) burned perimeters include
unburned patches, (b) consequential human impacts from fires extend well beyond burn
perimeters, and (c) human and societal impacts of exposures to less frequent but more
intense fires (e.g., in Western North America) are different from those in the case of
frequent-low intensity fires (e.g., in African savannas). Exposure to wildland fires can be
harmful and devastating, resulting in loss of lives and damage to infrastructure, noting
that not all instances of exposure lead to negative outcomes.

Patterns of global exposure to wildland fire

A total of 440.2 million people were directly exposed to wildland fires globally from
2002-2021 (Fig. 1A), of which 85.6% occurred in Africa. While major wildfire disasters
occurred in Oceania, Europe, and North America in recent years, these three continents
cumulatively accounted for <2.5% of global exposures (Fig. 1B). Cumulative burned
area in these wildland fires from 2002-2021 was 49.2 million km? (Fig. 1C), of which
Africa accounted for 64.3% (Fig. 1D). Europe had the highest human exposure per unit
burned area — hereafter, exposure density (17.7 persons/km?), followed by Africa (11.9
persons/km?). The global exposure density was 8.9 persons/km? (Fig. S1B).

Spatial patterns of cumulative human exposure to wildland fire, cumulative burned area,
and per capita human exposure illustrate the variability in human relationships to fire
across latitudes and continents (Figs. 1A,C,E). The highest levels of per capita
exposure to wildland fire occurred in the tropical savannas of Africa (Fig. 1E; Figs. S2-
S3), characterized by frequent human- and lightning-started low intensity fires where
populations regularly use fire for land management and agricultural purposes (76). From
2002-2021, 1.8% of Africa’s population was exposed to wildland fire, more than an
order of magnitude larger than any other continent. Similarly, cumulative exposure to
fire was highest in regions such as tropical Africa (716) with five tropical African countries
accounting for half of the global exposures (Fig. 1A). High cumulative burned area in
tropical Australia and Brazil (Fig. 1C) reflect both naturally-started fires and widespread
intentional use of fire for regenerative and deforestation practices in low-to-unpopulated
areas, while moderate cumulative burned area in sparsely populated regions of northern
Russia and North America reflect increasing wildfire area burned associated with
climate change.

Top-quintile events in terms of size, perimeter, duration, speed, and spread rate
accounted for a majority of wildland fire exposures (see Section S1 and Figs. S4-S9).
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Trends of global exposure to wildland fire

Global annual exposure to wildland fire increased by 7.7 million people (+39.6%) from
2002-2021 (382,700 persons/year; p<10-; Fig. S1A). Africa accounted for nearly all of
the increase (373,000 persons/year; p<107; +46.3%). South America (+33.8%), North
America (+15.7%) and Asia (+2.8%) experienced non-significant increases in exposure
to wildland fire from 2002-2021, whereas Oceania (-47.3%) and Europe (-17.3%)
observed non-significant declines (Fig. S1A). Interannual variability of exposure to
wildland fire and age distribution of the exposed populations are discussed in Sections
S2 and S3 (Fig. S10), respectively.

Exposure density also increased globally, exposing an additional 6.2 (+93.4%) persons
per km? of burned area in two decades (p<10-%; Fig. S1B). All continents experienced
rising exposure density, with Africa and Europe showing the largest increases, exposing
an additional 7.9 (+90.4%) and 6.8 (+42.3%) persons per km? of burned area,
respectively, in two decades (p<10- and p=0.2, respectively; Fig. S1B).

Role of population dynamics in exposure to wildland fire

By applying fixed 2002 population patterns, we developed a counterfactual model to
account for the role of population dynamics versus fire dynamics in driving the observed
exposure trends. Population dynamics — i.e., population growth and migration during
2002-2021 — accounted for 111.3 million exposures to wildland fire in the past two
decades globally (25.3% of all global exposures; Fig. 2A). Without the effects of
population dynamics, cumulative exposure to wildland fire from 2002-2021 would have
been between 10.0% to 27.9% lower in Africa, Asia, North America, and South America,
but 5.0% and 2.3% higher in Europe and Oceania, respectively (Fig. 2). Counterfactual
trends in Europe and Oceania are driven by the marginal shrinking of the fire and
human settlement overlap from 2002-2021 due a variety of factors including migration
from rural to urban areas.

In the absence of population dynamics, the global exposure to wildland fire would have
decreased at a rate of 278,000 people/year (p<10%; 27.7% decline in two decades)
commensurate with the decline in burned area (Fig. 2A) — with counterfactual trends
primarily driven by declines in Africa (-250,000 people/year, p<10; -29.8%; Fig. 2E).

Without the population changes since 2002, exposure per unit burned area would be
rather stable globally (1.8% decline in two decades; -0.006 persons/km?/year; p=0.83),
indicating that human influences, including population increase in and migration to fire-
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prone areas, were the main driver of increasing exposures to wildland fires in the past
two decades.

Population exposure to intense wildland fires

Following Cunningham et al. (26), we define “intense” fires as events with cumulative
fire radiative power exceeding the 99.99t" percentile of all wildland fires globally (Fig.
3A). Intense fires had a disproportionately large impact, representing just 0.01% of all
wildland fires yet accounting for 0.6% of total population exposures (2.7 million people)
and 5.0% of the cumulative burned area (2.4 million km?) globally. Similar to all wildland
fires, 84.7% of global exposures to intense wildland fires occurred in Africa, while a
significantly higher proportion was observed in North America (6.0% for intense fires
compared to 1.2% for all wildland fires). Regional impacts of intense fires were
pronounced in North America, Oceania and Europe, accounting for 3.1% (14.1%), 2.7%
(15.2%), and 2.0% (4.1%) of all population exposures to wildland fire (burned area) in
each continent (Fig. S11). See Fig. S12 for the contribution of population dynamics to
exposure to intense fires.

Population exposure to intense fires remained stable globally from 2002-2021 (Fig. 3B),
with mixed non-significant trends in different continents (Fig. S11). Global burned area
declined both for intense fires (-47.2%; p=0.12) and other fires (-24.9%, p < 0.01) (Figs.
3B,C) in the past two decades. Regional trends, however, showed nuanced differences;
for example, burned area by intense fires increased significantly in North America and
South America from 2002-2021 (Fig. S11).

In wildfire disaster-prone regions (2) — Western North America, the Mediterranean, and
Southern Australia, where loss of life and property to wildfires has occurred several
times — 253,400 people were exposed to intense fires from 2002-2021, accounting for
32.0%, 4.1%, and 2.8%, of all exposures to wildland fire in each region, respectively
(Fig. S13), far in excess of the 0.6% of global exposures to intense fires. Population
exposure to intense fires showed non-significant increases in Western North America
and Southern Australia from 2002-2021 (Fig. S13).

Discussion

Fires are complex social-ecological phenomena, and using burned area alone — often a
common indicator of fire activity — fails to capture their full impact (20). The contrasting
trends of burned area and exposure to wildland fire indicate multidimensional
relationships between fire, humans, and landscapes (9, 10, 25, 32, 33). Specifically,
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land fragmentation (24) induced by increasing human presence and expanding
commercial agriculture in Africa reduced regional burned area, but co-located more
humans with wildland fires — including fire use — and increased their exposure (3).
Increasing human exposure to wildland fire in North America is due to both expansion of
the WUI (79) and increasing burned area (74), and declining exposures in Europe is
due to depopulation of rural areas (34), although climatic trends promoted more
extreme potential fire behavior in both regions (35-37). In South America and Asia,
population dynamics increased human exposure to wildland fire, despite a decline in
burned areas from 2002-2021.

We found an increasing co-location of wildland fire and human settlements globally and
in every continent. Global exposure density roughly doubled in the past two decades,
mostly driven by trends in Africa. These trends are in accord with the expansion of the
global WUI (22, 23). WUI expansion not only places humans at a higher risk to the
negative effects of fire (719), but also increases the number of anthropogenic ignitions of
fire (38).

Effects of intense fires were particularly significant in North America, Oceania, and
Europe coinciding with global hotspots in fire disasters (2). Various wildfire mitigation
strategies can be implemented in disaster-prone regions to reduce human impacts from
fire exposure (39), as well as to limit human-caused fires (40). In wildfire-prone WUI
areas, home hardening—incorporating structural and landscaping modifications to
enhance fire resistance—is essential. There is also a need for increased intentional fire
use as a vegetation management tool to mitigate wildfire disasters (471—43).

Our wildland fire exposure estimates focus solely on direct human exposure and do not
account for indirect impacts such as exposure to smoke and postfire debris flow and
flood (44). As a result, these figures are conservative, and the total number of people
affected by wildland fires—whether directly or indirectly—is likely much higher. We note
that extreme fire weather and fire behavior are expected to intensify in a warming
climate (45), and fires are projected to increasingly impact humans especially given the
population increases and WUI expansions (23).

Finally, our analysis indicates that the geography of wildfire disasters is distinctly
different from the geography of major human exposures to wildland fires globally (2).
Most wildfire disasters with the highest fatalities and societal losses has occurred in
areas with Mediterranean climates in Australia, Southern Europe, South Africa, Western
North America, and the west coast of South America (2, 26, 46). These wildfire disaster
regions are not global hotspots in human exposure to wildland fire. By contrast, our
analysis found the highest cumulative area burned and the highest human exposure to
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wildland fire (both cumulative exposure and exposure density) in regions that have had
relatively few wildfire disasters, such as in tropical Africa (2).
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Figure 1. Human exposure to wildland fires from 2002-2021. Cumulative human
exposure to wildland fires (A) and cumulative burned area (C) from 2002-2021 at the
country level. Share of continents in wildland fire exposure (B) and burned areas (D).
Percentage of population exposed to wildland fire from 2002-2021 in each country (E)
and continent (F). K stands for one thousand and M stands for one million.

Figure 2. Population dynamics’ contribution to wildland fire exposure. Observed
(black) and counterfactual constant-population scenario (purple) exposures to wildland
fire from 2002-2021 across the globe (A) and in each continent (B-G), respectively. In
observed exposures, both population and burned area data are dynamic; while in
counterfactual exposures, population is fixed at year 2002 but burned area is dynamic
as observed.

Figure 3. Population exposure to intense wildland fires. Location, occurrence year
and exposure to individual intense fires that exposed more than 100 people from 2002-
2021 (A), and share of continents in global population exposure to intense fires (B).
Trends in annual exposure to and burned area by intense fires globally (C-D).
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