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Abstract

Effective coastal exposure assessments are crucial for adaptively managing threats from
sea-level rise (SLR). Despite recent advances, global and regional assessments are
constrained by omitting critical factors like land-use change, failing to disaggregate
potential impacts by land uses and oversimplifying land subsidence. Here we address
these gaps by developing context-specific scenarios to 2100 based on a comprehensive
analysis of Chinese coastal development policies. We integrate high-resolution
simulations of population and land system changes with inundation exposure
assessments that incorporate SLR, land subsidence, tides, and storm surges, offering a
more nuanced understanding of coastal risks. Across our plausible set of downscaled
SSP-RCP scenarios, policy decisions have a bigger effect on what is exposed to coastal
flooding in 2100 than the magnitude of SLR. Hence, coastal policy decisions largely
influence coastal risk and adaptation needs to 2100, demonstrating the necessity of

appropriate policy design to manage coastal risks.
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Main text

Coastal zones are on the front line when it comes to facing the increasing threats
associated with climate change!>. Coastal scenario analysis and risk assessments are
important tools for advancing knowledge and guiding policy—providing, for example,
estimates of populations and assets exposed to flooding®® and weighing anticipated
economic losses against costs of adaptation®. However, coastal risk is multifaceted.
Climate change affects SLR and the frequency and intensity of storms, combining to
raise extreme sea levels in certain areas’; land subsidence driven by human activity
such as groundwater extraction increases relative SLR in populated coastal lowlands
often at rates much higher than that caused by climate change alone™®; and coastal
development and adaptation actions determine who and what are exposed and
vulnerable to flooding, salinization, or erosion.

So far, limited advances have been made in global and regional coastal inundation
exposure assessments and management using the scenario frameworks of the Shared
Socioeconomic and Representative Concentration Pathways (SSPs and RCPs). They,
for instance, mostly 1) do not disaggregate impacts on different land uses and sectors
(see ref.? for recent advances in Europe); 2) do not consider all components driving
exposure (see ref.’); and 3) have coarse spatial resolution (see refs.!!! for recent
improvements to the commonly-applied Dynamic and Interactive Vulnerability
Assessment [DIVA] modelling framework). Recent assessments for China have

12,13 or have failed to consider in detail how land

ignored the effects of land subsidence
use planning and development dynamics interact with SLR to affect coastal exposure®!°.
Such omissions could result in underestimates of exposure and/or overemphasis on
climate change and SLR as its main driver, leading to misjudgments in the urgency of
adaptation and/or confusion as to which actors have agency and responsibility.

Here, we assess how Chinese coastal development plans interact with relative SLR

and extreme events to determine exposure of multiple coastal zone functions across a

range of scenarios. This is done by simulating land system changes for the entire coastal
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zone of mainland China and Hainan for five development policy scenarios and
combining this with estimates of land subsidence and extreme sea levels across three
SLR scenarios. For the land use and population scenarios, we use the CLUMondo
model to spatially simulate future land system changes based on an analysis of 114
national and provincial coastal zone plans and policies. The scenarios capture policy
elements that are oriented towards economic development (ECON), ecological
protection (ECOL), or the middle road. For the ECON and ECOL scenarios, we also
considered variants that differ in the intensity of the policies applied. The subsequent
inundation exposure assessment advances previous attempts by including all relevant
components (SLR, land subsidence, and tides and storm surges) and an improved
geometric inundation model that considers spatial connectivity and attenuation (Fig. 1).

Extreme events have the greatest effect on potential inundation area, with land
subsidence and SLR amplifying the effect. However, coastal development scenarios
have a greater effect on which land system functions are exposed than do SLR scenarios.
These findings indicate that disaster preparedness, land subsidence mitigation, and
improved adaptation planning are the most important measures for coastal flood risk
management in China, to be complemented by emissions reductions that will reduce
the SLR effect globally, as well as along China’s coastline. Our findings also suggest
that the set of futures in the SSP-RCP framework used for global and regional scenario
analyses does not cover the full range of possible futures that can be shaped by local
and national policies. Our approach enables the integration of development policies and
land system change into the analysis and could be used to explore detailed coastal

adaptation scenarios in future work in China and elsewhere.

Results
China has been subject to coastal flooding due to tide/storm surge effects
throughout its history and large areas are currently threatened by flooding and depend

on defenses to maintain current functions'®. Our high-resolution disaggregated analysis
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reveals that future exposure of different coastal zone functions depends not only upon
the SLR scenario, but largely also on the policy pathways. Land system changes vary
greatly across policy pathways (Supplementary Note 1; Extended Data Fig. 1) and,
under all SLR scenarios, a transition in coastal policy from strictest ecological
protection (“ECOL high”) to most aggressive economic development (“ECON high”)
significantly increases the development intensity of urban and industrial land exposed
to flooding (Fig. 2). The top land system types exposed shifts from sub-urban area (SU),
agriculture-hinterland village (AV), high-intensity agriculture area (HA), and wetlands
(WTL) in the ECOL high scenario to coastal and inland industrial areas (CTI, ILI) and
low-density urban areas (LDU) in the ECON high scenario (Fig. 2). This indicates that
impacts, should flooding occur, will not happen uniformly across all land systems (as
aggregated GDP calculations assume) and that it is the policy scenario and not the SLR
scenario that mostly determines which land system types will be exposed.

By contrast, the SLR scenario influences the total inundation area and depths in
different land systems (Fig. 2; Extended Data Figs. 2—4; Supplementary Note 2). By
2100, the area potentially exposed to inundation under extreme sea levels could reach
29,290 km? (5.84% of the analysed coastal zone) in the low-end scenario; 34,400 km?
(6.86%) in the mid-range; and 49,370 km? (9.85%) in the high-end scenario, assuming
current flood protection standards and an interactive effect between climate change and
extreme events equal to 10% of SLR (CCEx,,; please see Methods for details). The
overwhelming majority of the potential inundation extent is driven by tides and storm
surges (i.e., extreme events), while SLR alone and in combination with land subsidence
are not high enough to exceed current protection standards anywhere along the coast
(Extended Data Fig. 4). When considering no flood protection, the effect of land
subsidence on inundation extent by 2100 is over 14 times that of SLR alone in the low-
end scenario and about 1.5 times greater in the high-end scenario (Extended Data Fig.
4). The largest effect on inundation extent caused by increasing the magnitude of

interaction between SLR and extreme events is about 17% in 2100, with current
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protection (Extended Data Fig. 4; Supplementary Note 2). The presence of flood
protection reduces the maximum potentially inundated area in 2100 by around 18-19%
compared to no protection, depending upon scenario, but the relative patterns remain
very similar (Supplementary Note 3).

To gauge the potential impacts of flooding on different land system functions in
China’s coastal zone, we calculated five indicators within the potentially inundated
areas: 1) human population, 2) monetary value of ecosystem services, 3) grain
production, 4) (terrestrial) aquaculture production, and 5) GDP. The first four of these
were calculated from spatial simulations using CLUMondo, while GDP was calculated
based on each land system’s contribution to total GDP in the coastal zone (although we
did not employ discount rates, so future absolute values should be considered
underestimates). Our assessment indicates a complicated interaction between
development policy scenarios and their effect on land system patterns, on the one hand,
and SLR scenarios and their interaction with land elevation, on the other.

Population and GDP exposure are, unsurprisingly, highest in the high-end SLR
scenario and ECON high policy scenario (Fig. 3a-b, m-n; Extended Data Figs. 5 and 6).
Population exposure increases in the coming decades under all scenarios. This is despite
continual declines in total coastal zone population from 2020 onwards in the ECOL and
MID policy scenarios (Supplementary Table S2), indicating population concentration
in exposed areas near the coastline. Most scenario combinations show a slight decline
in population exposure towards the end of the century due to population decline (Fig.
3a-b). By contrast, exposure of GDP continues to rise under all scenarios even at the
end of the century (Fig. 3m-n). When considering the results for a 10% interaction
between SLR and extreme events and assuming current flood protection standards: by
2050, 6.8% (ECOL high | Low-end) to 8.9% (ECON low | High-end) of the population,
and 7.5% (ECOL low | Low-end) to 12.1% (ECON high | High-end) of GDP, within
our delineated coastal zone will be exposed to inundation. By 2100, these ranges

increase to between 9.5% (ECOL low | Low-end) and 19.1% (ECON high | High-end)
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160  for population and 11.9% (ECOL low | Low-end) to 22.2% (ECON high | High-end)
161  for GDP.

162 In terms of food, grain production exposure is consistently higher under the ECOL
163 and MID scenarios than the ECON scenarios (Fig. 3h; Extended Data Fig. 7). Between
164  4.0% (ECON high | Low-end) and 7.4% (ECOL low | High-end) of grain production in
165  the coastal zone could be exposed by 2050; again assuming current protection and a 10%
166  SLR interaction with extreme events. These fractions increase to 5.8% (ECON high |
167 Low-end) and 13.5% (ECOL low | High-end), respectively, by 2100. Aquaculture is
168  exposed to much greater inundation depths than all other land system functions we
169  analyzed (Extended Data Fig. 8). As much as 19.2% (ECOL low | High-end) of
170  aquaculture production in the coastal zone could be exposed to inundation depths of 2
171  mor more by 2050. Exposure of aquaculture production peaks around 2050 in all policy
172 scenarios, then declines towards 2100 (Fig. 3k). However, as inundation depth and
173  extent continue to increase under high-end SLR, as much as 11.9% of aquaculture
174  production will be exposed to inundation depths of 3.5 m or more in the ECON low
175  scenario (Extended Data Fig. 8). In contrast to grain, aquaculture exposure is
176  consistently highest under the ECON high development scenario (Fig. 3k).

177 Exposure of absolute ESV is consistently higher in the ECOL policy scenarios,
178  while the MID and ECON scenarios are similar (Fig. 3h). Between 5.8% (ECON high
179 | Low-end) and 7.2% (ECOL high | High-end) of monetary ESV in the coastal zone is
180  projected to be exposed by 2050 (with same assumptions as above). By 2100, ECON
181  high | High-end has the highest proportional exposure (13.7%) with ECOL high | Low-
182  end the lowest (8.2%). In our calculations, ESV is higher in natural ecosystems than in
183  others, and these may tolerate some level of inundation—particularly wetlands, for
184  example—so the depth (Extended Data Fig. 9) and duration of inundation of ESV may
185  be important to consider.

186 Our analyses enable us to determine whether policy scenarios or SLR scenarios

187  have a greater effect on the potential impacts on different coastal zone functions. For

7



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

215

population and grain production exposure to flooding, the sets of SLR and policy
scenarios show increasingly similar ranges by the end of the century (Fig. 3a-c, g-i),
indicating relatively similar long-term influences of policy and SLR scenarios on
exposure, although development uncertainty caused by different policies plays a much
larger role in the coming decades (Fig. 3c, 31). The increased role of development policy
is also evident for aquaculture and GDP exposure, and this continues at least until 2100
(Fig. 3j-0). The effect is particularly large for aquaculture (Fig. 31). By contrast, from
2090, variation in ecosystem service value exposure depends more on the SLR scenario
than on the policy scenario (Fig. 3f). Regionally, in the three strategic zones in China,
the Bohai Rim and Greater Bay display even greater effects of policy scenarios on
exposure, whereas the Yangtze River Delta displays a much greater effect of SLR
scenarios for exposure of population, GDP, grain production, and ESV by the end of

the century (Extended Data Figs. 3 and 10).

Discussion

Our analysis unpacks the differential effects of the various factors contributing to
coastal flood exposure. Whether changing exposure is driven mainly by land
subsidence, SLR, or development in the floodplain, for example, determines what the
best management strategy might be and who has agency and responsibility for that
strategy. Our results reveal that inundation exposure of land in China is mostly affected
by extreme sea levels associated with tides and storm surges. These are natural
phenomena, although climate change and higher seas are expected to amplify them in
certain areas and reduce them in others”!*!> Adaptation measures such as early-
warning systems, floodplain zoning, and/or flood protection measures are necessary to
deal with extreme events. Ecosystem-based approaches, such as seagrass meadows and
mangroves, may be effective in buffering storm surges and reducing their energy'®!7,

including hybrid approaches combined with dikes. In certain places along the Chinese

coast, land subsidence happens much faster than mean SLR, exacerbated by
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groundwater extraction, dense construction, and disconnection of alluvial plains from
river flooding and sedimentation. Regulating groundwater extraction is essential to
mitigate and avoid worst-case-scenario land subsidence, particularly in deltas'®,
Sedimentation enhancement strategies are also promising adaptation solutions in
deltas'®?, although may be limited in highly developed areas where land is fully used
and temporary flooding with sediment-laden water is not appropriate. China, being
among the world’s highest greenhouse-gas emitting countries, also has a great deal of
agency and responsibility when it comes to mitigating climate change and associated
SLR, so emissions reductions are also in the country’s best interest when it comes to
minimizing coastal risk up to and beyond 2100.

Beyond the physical determinants of relative SLR and extreme events, coastal
development also drives flood exposure’. Our results reveal that for certain land
functions, exposure is determined more by how the Chinese coastal zone is developed
than by the magnitude of SLR. China's coastal land development tends to expand
toward the shoreline, and land reclamation is common, but policies focused on
economic or ecological priorities will significantly influence what is potentially
exposed. For at least the next 50 years, the range across the government's existing
planning policies surpasses the differences between various global climate models.
Thus, policymakers have a great deal of agency in mitigating risk through land planning,
particularly in strategic areas (Extended Data Figs. 3 and 10), as well as through
emissions reductions. We recommend our integrated assessment findings be
incorporated into China’s medium- and long-term development strategies as a critical
scientific basis for coastal planning at all levels. Specifically, these results should
inform urban master planning, the delineation of ecological protection redlines, and the
approval of land use changes. At the subnational level, coastal provinces and
prefecture-level cities should develop dedicated medium- and long-term adaptation

plans based on the assessment findings. These plans should specify adaptive measures
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including land-use transitions in high-risk zones and the implementation of managed
retreat strategies to complement engineered protection.

Flood protection is currently the dominant adaptation strategy in China’s coastal
zone, but this comes with risks such as the “levee effect”—where risk is increased due
to development behind levees that are meant to reduce risk—and can be short-sighted,
obscuring long-term alternatives such as managed retreat®!. Our results show as much
as a 60% increase in potential impacts to land system functions when comparing current
protection standards to no protection (Supplementary Note 3)—indicating the
magnitude of the “levee effect” and the risk posed should protection fail. As of 2017,
China has constructed 14,500 km of levees but their completion times, lifespans, and
standards vary across regions. Shanghai is the only city with a tide protection standard
as high as 1 in 500 years, depending on location, while other parts of the coastline
adhere to as low as a 1 in 20-year standard. Furthermore, the construction quality
compliance rate is only 42.5%%2. Our findings reinforce the urgency of improving
standards for extreme flood protection and reconsidering the reliance on protection
alone for development. In particular, long-term consideration of managed retreat is
necessary. The absence of retreat in any of the planning documents we reviewed is
concerning, and research is required on future adaptation pathways that include
alternatives to protection, such as retreat, accommodation, and ecosystem-based
adaptation?.

Scenario assessments are useful for dealing with future uncertainty and have been
widely deployed in climate change contexts. Our analysis contributes to advancing
regional and global scenario assessments in three ways: 1) improving existing coastal
inundation exposure methodologies; 2) revealing that climate scenarios alone likely
underestimate the range of possible futures in terms of coastal flood exposure; and 3)
opening the door for the development of detailed adaptation scenarios for coasts (and
other areas). Methodologically, DIVA?*% has been a leading vector-based framework

for regional and global coastal flood risk assessments for over 15 years* %26, Our high-
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resolution raster-based framework enables much finer and disaggregated assessments
that support spatial planning. Further, our methods can be coupled to other modelling
frameworks, including DIVA, to extend the analysis with more detailed spatial
adaptation scenarios, such as defend, advance, retreat, and accommodate®*. By adapting
the rules in CLUMondo (e.g., for spatial constraints), future work using our approach
could explore such things as floodplain exclusion zoning or targeted hard protection in
different adaptation scenarios.

Our analysis deals with multiple sources of uncertainty (and agency), including in
SLR and its interaction with extreme events; in development policies and their potential
to shape different future land systems; in the interactive effects of climate and land
system changes on land subsidence; and in the presence or absence of coastal flood
protection measures. Our findings support others that emphasize the importance of
considering the range of uncertainty in sets of simulated futures of coastal exposure?’,
as well unpacking what is really driving risk and what can be done to manage it. Our
future projections span until 2100. It is imperative to recognize the longer-term risks
due to climate change induced SLR. The Sixth IPCC assessment report (AR6, WG-I)
finds that under the highest emissions to 2150, SLR of 2 m is possible and at the high-
end 5 m cannot be ruled out. Certainly, SLR continues for centuries and high-end global
SLR has been estimated at 2.5 m in 2300 under SSP1-2.6 and up to 10.4 m in 2300
under SSP5-8.52—why planned retreat must be considered. Importantly, our SLR
scenarios omit marine ice sheet and ice cliff instability, which could produce large SLR
especially after 2100 under high emissions?’. General policy responses to such long-
term uncertainties are difficult and adaptive policy methods may provide a response
framework>®, which can be supported by our analysis and approach. Ultimately, urgent

emissions reductions and prudent adaptive spatial planning are required to reduce risk.
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Figure Captions

Fig. 1. Improved coastal exposure assessment framework covering multiple
components. (a) We combine land system change affected by coastal development
policies alongside mean SLR, land subsidence, and tides and storm surges. (b) We
combine the effects of economic- (ECON), ecological- (ECOL), and middle road-
focused (MID) policy scenarios with enhanced relative SLR scenarios spanning the
broad set of SSP-RCP scenarios and including land subsidence. (c) We evaluate
potential impacts to multiple land system functions, as well as population and GDP, by
considering potential flood exposure to different water depths over time under different
scenarios. Policy scenarios have a median effect on exposure (solid lines), around
which SLR scenarios create uncertainty (shaded bands). Similarly (though not
illustrated), SLR scenarios have a median effect around which policy scenarios create
uncertainty. The combined analysis reveals the sensitivity of exposure outcomes to both

policy decisions and climatic trajectories.
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Fig. 2. Inundation areas of the top five exposed land system types by water depth
under different policy and SLR scenarios in 2050 and 2100, assuming current
flood protection standards and an interactive effect of 10% of SLR on extreme
events. Columns from left to right show the SLR scenarios of low-range (2050 and
2100), mid-range (2050 and 2100), and high-range (2050 and 2100). Rows show policy
scenarios. The percentage value in each panel indicates the fraction of the total
inundation area represented by the top five land systems shown. Land system
abbreviations: AS = aquaculture system, AV = agricultural hinterland village, CTI =
coastal industrial area, HA = high-intensity agricultural area, ILI = inland industrial
area, LA = low-intensity agricultural area, LDU = low-density urban area, MA =
medium-intensity agricultural area, SU = sub-urban area, TSA = towns and semi-dense

areas, WTL = wetlands.
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Fig. 3. Projected exposure of coastal zone functions by scenario combinations,
assuming current flood protection standards. Exposed functions include (a—c)
population, (d-f) ecosystem service value (ESV), (g-i) grain production, (j-1)
aquaculture production, and (m—o) gross domestic product (GDP). Left panels (a, d, g,
j, m): Solid lines show median exposure across three SLR scenarios, with uncertainty
bands showing the effects of five policy scenarios. Middle panels (b, e, h, k, n): Solid
lines represent median exposure across three policy scenarios, uncertainty bands
showing the effects of three SLR scenarios. Right panels (¢, f, i, I, 0): Red bars show
decadal variability (range) around SLR scenarios driven by policy; blue bars show
decadal variability (range) around policy scenarios driven by SLR. Points represent the
range around each of the three scenario combination sets; bar heights indicate the

average of the three.
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Methods

We conducted our analysis over the entire coastal zone of mainland China and
Hainan. The coastal zone is defined as all coastal prefecture level cities (spatial
administrative areas at the level below province and above county) with 10 km buffer

zones along the coastline, covering a land area of 501,300 km?.

Policy review and scenario development
Our previous studies have demonstrated that coastal policies in China play a

significant role in shaping landscape patterns and land use’!'™

, emphasizing the
transformative effects of “top-down” policy changes on local landscapes. Thus, here
we reviewed coastal zone policies issued from national and provincial authorities that
can affect local land system change’!.

First, we collected 15 national and 99 provincial coastal zone plans and policies
published from 2000 to 2020 (Supplementary Data 1) through extensive searches of
government websites and records, which included central and provincial agencies
responsible for coastal zones and covered more than two-thirds of prefectural cities
along the coastal zone. Along with other attributes, we recorded each policy's
orientation as either a) development-oriented, b) (ecological) protection-oriented, or c)
middle road orientation or unspecified. Development-oriented policies focus on socio-
economic development, protection-oriented policies focus on ecological protection, and
middle road orientation or unspecified balance both objectives and/or have no dominant
priority. The classification of policy orientations was based on specific criteria such as
policy titles, keyword frequency (e.g., protection, development, coordination), and
stated policy priorities.

Next, we identified 54 of the 114 documents that contained explicit scenarios
beyond 2030. From these, we extracted and analyzed their specified a) planning
objectives, b) spatial strategies, and c) spatial constraints. Planning objectives include

value constraints (e.g., target values, growth rates, minimum values) and directional
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semantic descriptions (e.g., steady growth, rapid growth, no less than the status quo).
Spatial strategies guide the direction and focus of land development (e.g., urban
expansion, industrial zones, and port layouts). Spatial constraints define protected areas
such as nature reserves and heritage sites.

From the analyzed planning objectives, spatial strategies, and spatial constraints,
we developed our set of five policy scenarios that are quantitatively characterized by
sets of objective parameters (Supplementary Tables S1) and spatial rules. These
objective parameters and spatial rules were defined by the authors’ expert judgement
based on the characteristics of the specific scenarios in the policies analyzed and
through iterative modelling experiments (Supplementary Note 4). The policy scenarios
were broadly defined as economic development-oriented (“ECON”), ecological
protection-oriented (“ECOL”), and middle road (“MID”). The ECON and ECOL
scenarios were divided into high and low variants to represent different intensities and

stringencies of the policy pathways.

Projection of land system changes

We developed a specialized land system classification for the coastal zone of China,
consisting of 21 land system types at a 1 km? resolution, and used the CLUMondo
model to simulate future land system changes under different policy scenarios
(Supplementary Note 4). Land systems denote mosaic land use and land cover patterns
caused by a combination of natural and human forces®*. In the CLUMondo model, land
system changes are driven by regional demand for goods and services and influenced
by local driving factors that either promote or constrain land changes®®. Model inputs
include multi-objective parameters, driving factors, and spatial rules. Our multi-
objective parameters and spatial rules were derived from our policy analysis and
scenario development (Supplementary Fig. S7), while the driving factors were selected

h36,37

based on previous researc and statistical analyses (Supplementary Note 4;

Supplementary Tables S4 and S5).
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We selected population, grain production, aquaculture production, and ecosystem
services value (ESV) as the multi-objective parameters based on the requirements of
the CLUMondo model (Supplementary Table S2; Supplementary Note 4). These values
were determined by considering the quantitative policy scenarios (Supplementary
Table S1), as well as the coastal zone's development expectations and its role in the
national context.

Spatial constraints include conversion rules, neighborhood matrix, and area
restrictions. The conversion rules encompass the difficulty of converting one land
system to the others (conversion resistance), whether the conversion from one type to
the other is allowed (conversion matrix), and the priority of a land system to be given
when allocating for the demand (conversion order). These rules were carefully designed
to reflect different policy preferences and trajectories and their details are contained
within the model code provided. The matrix of neighborhood weights (Supplementary
Table S3) was calibrated to capture the centripetal forces of urban expansion®®. The
area restrictions indicate areas where land changes are restricted (such as natural
reserves), and the special areas allowed for conversion (e.g., coastal industry will only

appear within a 10 km buffer along the coastline).

Projection of vertical land subsidence rates

We developed a 1 km? raster map of land subsidence in 2020 for our entire coastal
zone using a machine learning model and then projected localized land subsidence
under different future scenarios. In our model, future land subsidence is affected by
both the policy scenario and the climate scenario. The policy scenario affects land
subsidence via different rates depending on the land system in each grid cell, while the
climate scenario affects land subsidence via different rates depending on climate
variables in the model.

We constructed a dataset of 6,203 sample points of reported subsidence rates,

georeferenced from 40 published studies, encompassing major subsidence hotspots
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along China's coast (Supplementary Data 2; Supplementary Note 5). Maps provided in
these studies were digitized, and subsidence locations along with their respective rates
were extracted. The compiled dataset, primarily covering the period 2017-2021,
included 4,417 subsidence points (>0 mm/year) and 1,786 non-subsidence points (=0
mm/year), ensuring a reasonably balanced representation. The sample data represents
the most recent and available land subsidence records.

We employed a Random Forest (RF) Regressor to generate maps of localized
subsidence. Predictions are made as an ensemble estimate from multiple decision trees
based on bootstrap samples (bagging), which helps minimize model overfitting. For
model input, we selected 19 explanatory variables representing hydrological, climatic,
topographic, geological, and anthropogenic factors known to influence subsidence
rates’®# (Supplementary Table S7). These variables were originally available at
different spatial and temporal resolutions, so all of them were resampled to a 1 km?
resolution and aligned with coastal land areas. Model hyperparameters were optimized
through nested cross-validation, utilizing an inner loop for tuning and an outer loop for
performance evaluation. Each RF regressor is repeated 20 times using different training
and validation samples to evaluate prediction variability and quantify model uncertainty.

Model validation was conducted by comparing predicted and observed subsidence
rates at sample points and compared with other recent global studies (Supplementary
Note 5). We evaluated the model’s accuracy using Mean Absolute Error (MAE = 3.77
+ 0.268 [mean + SD]), and Root Mean Squared Error (RMSE=7.525 + 1.124) and
coefficient of determination (R*=0.6 + 0.08), which are acceptable given observed
subsidence rates as high as 240 mm/year.

Finally, projection of future land subsidence under the various scenario
combinations was done by replacing the current land system and climate explanatory
variables with their future projections in each 1 km? grid cell. The land system type was
taken from the projected land system maps under each policy scenario. The most

influential land systems on land subsidence in our best performing RF model was
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coastal industry, followed by urban, suburban, and inland industry (Supplementary Fig.
S15). The four most influential bioclimatic variables from the best performing RF
model were precipitation seasonality, precipitation in the wettest quarter, temperature
diurnal range, and mean annual temperature (Supplementary Figs. S15 and S16); these
were replaced with projected values from the MRI-ESM2-0 model*'. Because these
climate data are available in 20-year intervals, we used the RF model to produce maps
of annual land subsidence rate (in mm) for 2030, 2050, 2070, and 2090. The annual
subsidence rate (mm) for each 1 km? pixel was accumulated yearly using each period’s
initial rate: 2020’s rate for 2020-2029, then adding 2030’s rate for 2030-2049, 2050°’s
rate for 2050-2069, and so on. We assumed that the relationships among features in the

RF model remain constant over time.

Projections of extreme relative sea levels

Our analysis includes the important components of mean SLR, land subsidence,
and transient extreme events due to high tides and storm surges corresponding to the 1
in 100 return period. This approach was selected from a maximum risk management
perspective—that is, reflecting the maximum risk from extreme events with potential
for extensive impacts. From a policy maker's perspective, it is often useful to adopt a
cautious approach and prepare for the worst-case scenario, even if the probabilities are
low*.

To integrate long-term SLR with short-term extreme events, we express the future

extreme sea level (ESL, or extreme coastal water level) in year t as a linear combination,

as shown in Equation 1:

ESL, = MSL + SLR, + TS + CCEx;p, (1)

Where MSL is Mean Sea Level, specified by the vertical datum of the data used. SLR;

is the amount of SLR in year t, excluding relative land motion. The values of Tides and
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Storm Surges (7) are extremes obtained for a specific return period based on historical
records. CCEx;y,, is a factor capturing the interactive effect between climate change
and extreme events.

We calculated the ESL projections in different SLR scenarios up to 2100. The SLR
projections are derived from IPCC AR6 data*’, incorporating various components of
future SLR, such as steric SLR, dynamic sea-level change, contributions from glaciers
and ice caps, and land-water storage. To avoid double-counting land subsidence effects,
we use values of the 'novlm' (no vertical land motion) version with median confidence.
We took three scenarios from the AR6 data: SSP1-2.6 (5™ percentile from the model
ensemble; “low-end”), SSP2-4.5 (median from the model ensemble; “mid-range”), and
SSP5-8.5 (95™ percentile from the model ensemble; “high-end”). We chose the 5™ and
95™ percentiles of the low-and high-end scenarios, respectively, to cover the wide range
of possible futures. While SLR differences are primarily associated with RCP (climate)
differences, SSPs can, for example, alter land water storage effects. Importantly, we do
not include key features of potential SLR, such as marine ice cliff instability (MICI)
and marine ice sheet instability (MISI). These factors could substantially modulate the
potential end-of-century SLR outcomes, but they are not well understood and are
considered low confidence in ARG6.

Climate change not only affects SLR, but also extreme events, and understanding

4 have revealed

these effects presents significant challenges. Previous studies
seemingly contradictory effects: extreme events can either amplify with SLR due to
decreased bottom friction effects, or diminish due to reduced surface wind stress or
deeper water columns. Such complexity underscores that the SLR-extreme-event
interaction is not simply additive but involves complex hydrodynamic interactions that
can produce counterintuitive outcomes, strongly modulated by local characteristics
such as coastal geometry, bathymetry, tidal regime, and freshwater inputs*’. Notably,

the response of tidal constituents—such as mean high water (MHW) and tidal range—

is often disproportionate to the magnitude of SLR. In many locations, MHW exhibits a
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super-proportional response, suggesting an amplifying effect of tidal dynamics under
higher sea levels*®. For instance, in China’s Pearl River Delta, tidal amplification may
exceed 0.5 meters under a projected SLR of 2.1 meters, primarily due to depth-induced
reductions in bottom friction**. A European analysis spanning 1960 to 2018 found that
trends in surge extremes closely tracked mean sea level changes, influenced by both
internal climate variability and anthropogenic forcing*’. Global analyses have found the
effect of climate change on extreme sea levels is mostly driven by SLR and an
interactive effect of SLR with TS”!>. While increased intensity storms can have a
relatively large contribution to extreme events in some areas, their interactive effect
with SLR can be reversed in others, leading to minimal regional contributions of storm
surges (see Fig. 6 in ref.!®). In the Yangtze River Estuary, for example, SLR could lead
to a 1-meter increase in water depth, which in turn may reduce the maximum storm
surge by approximately 0.15 meters*®.

Given the complexities in the climate change-extreme event interaction, we
conducted multiple analyses to capture uncertainty. First, we calculated our future
extreme sea levels with the CCEx;,,; factor set to zero. Next, we assessed the effects of
increasing this factor incrementally as 10% and 30% of SLR in each cell——more than
covering the maximum 25% found in the Chinese case studies we examined**. The
main text contains the water depth results for CCEx;,; = 0.1SLR (Fig. 2) while water
depth results for CCEx;,; =0 and CCEx;, = 0.3SLR can be found in
Supplementary Note 2. All combinations of these scenarios are captured in the
variability analyses in Fig. 3. Note that we do not analyze a potential overall reduction
in ESL through this interaction term, which would lower the exposure caused by SLR
scenarios.

The land elevation data was defined by CoastaDEM*’, whose vertical datum is the
EGMO96 geoid. The tidal surge (TS) data were sourced from the Coastal Dataset for the
Evaluation of Climate Impact (CoDEC) dataset’. To convert the vertical datum of the

CoDEC extremes from Mean Sea Level (MSL) to EGM96, we referred to previous
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studies® and used the Mean Dynamic Ocean Topography (MDT) CNES-CLS22 data

for conversion®!. Localized land subsidence was taken from the RF model.

Coastal flood exposure

Coastal flood exposure assessments are often conducted using a simple bathtub
model, which overestimates inundated area by not accounting for hydrodynamics®?. We
used an improved geometric inundation model that considers hydrological connectivity
and attenuation to project coastal flood exposure caused by SLR, land subsidence, and
extreme sea levels. The modeling process begins at pixels that represent the current
land-ocean border and iteratively spreads inward (Supplementary Note 6). Ocean water
propagates from current oceans and inundates neighboring cells whose elevation is
below a specific value subtracting the attenuation coefficient from ESL, with iterations
until no cells can be inundated. It aims to minimize the overestimation of unrealistic
inundation extents or depths compared to a conventional bathtub model*.

The water depth W, ; of the inundated pixel i at year t is computed using
Equation (2):

ESL,; — H.; —a;;) C;;, ESL,; > H,; ;
W, = {( t,i t,i at,z) t,i t,i ti T Qg 2)

O, ESLt,i < Ht,i + at’i

Where:

e [ESL.; is the projected extreme sea level for pixel i at year t;

e H,; refers to the difference between the original elevation and the projected
land subsidence for pixel i at year t;

e a;; denotes attenuation, accounting for the diminishing impact of water as it
moves inland from the coastal starting point to pixel i at year t (see
Supplementary Note 6 for sensitivity analysis);

e C;; is a binary parameter, representing whether the pixel i is connected to

water (=1) or not (=0) at year t, using the cardinal and diagonal connectivity

rule.
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To perform a localized assessment of the projected ESL values along the land-ocean
border, we first extracted a high-resolution ocean mask using CoastalDEM and our land
cover classification products (see Supplementary Note 6), which includes fully
interconnected river mouths. The spatial resolution of the Coastal DEM was resampled
from 90 m to 100 m to align with the land system’s resolution of 1000 m. We used the
Inverse Distance Weighting (IDW) interpolation algorithm to downscale various data
sets to a 100-m resolution, thereby matching the resolution needed for localized
projections. The datasets include 1°x1° IPCC SLR data and 0.25°x0.25° MDT data in
raster format, as well as 100-return period CoDEC data in point format. The raster data
were converted to points using ‘Raster to Point’ function in ArcGIS. The CoDEC points
were used as control points in the IDW interpolation to create a 100-meter resolution
SLR map for each component. The spatial mask and raster to be snapped were set as
the derived ocean mask. Finally, we used the ‘Plus’ function in ArcGIS to sum the
values on a cell-by-cell basis.

We compared results for all subsequent analyses using both a simple bathtub model
(attenuation factor = 0) and our improved geometric inundation model (attenuation
factor > 0) based on inspection of inundation maps across a range of attenuation factors
(Supplementary Fig. S21). Our findings presented in the main text use an attenuation
factor = 0.01 and are consistent with the rank-order results from the simple bathtub
model (Supplementary Fig. S22), although absolute values differ.

We adjusted inundation exposure extents based on current coastal protection
standards along the Chinese coast. These standards vary considerably by city and
county, from >200-year return period in major cities to less than 50-year return period
along most of the coastline (and as low as 20-year return period in some very vulnerable
parts). We used the flood protection level map from ref.>* to overlay protection
standards (in return period) for cities and counties throughout our coastal zone. Since
our water depth calculations used the 1 in 100-year extreme event, we assumed grid

cells are inundated wherever protection standards are less than the 100-year return
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period. Wherever protection standards were >100-year return period, we assumed
complete and successful implementation of the protection standards and, therefore, no
inundation. This is likely an overestimate of real protection levels, since standards are
not always met in reality, so we also conducted the full analysis assuming no protection,

which gives us the best and worst cases in terms of coastal protection.

Potential impact evaluation

We analyzed the potential impacts associated with inundation assuming current
coastal protection standards are met, as well as assuming no protection. The functions
supported by different land systems include human habitation (population), GDP, grain
production, aquaculture, and ecosystem service value (ESV). Population, grain and
aquaculture production, and ESV were calculated for each pixel directly from
CLUMondo. GDP was estimated from the land system map for each policy scenario
each year. First, the average GDP per pixel of each land system type in 2020 was
calculated from the 2020 land system map and a downscaled 2020 GDP grid. Then, for
each scenario, the number of inundated pixels of each land system type was calculated
and multiplied by the average per-pixel GDP for that land system type. This accounts
for future changes in GDP based on our land system changes, but it does not account
for future GDP growth, currency decline, nor discount rates. Thus, our absolute values
of GDP and ESV exposure should be considered underestimates for the future.
However, the absolute values of these metrics are not of primary concern when
considering the relative effects of SLR scenarios versus policy scenarios, as we do here,
since any growth and discounting functions would have the same relative effect on the
metrics under both sets of scenarios.

To quantify and categorize different levels of potential SLR impacts, we classified
inundation depths based on their distribution characteristics into five categories: 0-1 m,
1-2 m, 2-3.5 m, 3.5-5 m, and 5 m or more. To comprehensively assess exposure across

different scenarios, we overlaid land system data with coastal flooding projections at a
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spatial resolution of 1 km?. This analysis was conducted across the full range of policy
and SLR scenario combinations over time.

To compare the magnitude of variation in exposure between policy and SLR
scenarios, we calculated the exposure of different functions for each policy scenario
overlaid with the inundation ranges of each SLR scenario, as well as the exposure for
each SLR scenario overlaid with each policy scenario. For instance, to assess the range
of variation in exposure due to SLR scenarios under the middle road policy, we overlaid
the land system map of the middle road scenario with inundation maps representing
low-end, mid-range, and high-end SLR scenarios for each year. We then calculated the
multi-functional exposure. The range of variation was determined by the difference
between the maximum and minimum values of these three observations, representing
the exposure variation attributable solely to changes in SLR scenarios within the middle
road policy scenario, for that year. The same approach was applied to the other four
policy scenarios to obtain a complete range of variation due to SLR scenarios. Similarly,
the variation attributable to policy scenarios was calculated by sequentially combining
the same SLR scenario with different policy scenarios. In this way, we could identify
whether SLR or policy scenarios had the largest effect on exposure for each land system

function.

Data availability

The projected land system maps for five policy scenarios, together with associated
validation datasets and sampling points for projecting land subsidence, are available on
Figshare at https://doi.org/10.6084/m9.figshare.29263130 (ref.>®). The input data used
in CLUMondo for land system change simulations are cited throughout the paper, with
full details provided in Supplementary Note 4 and Supplementary Table S4. The SLR
data were obtained from the IPCC ARG6 database (https://zenodo.org/records/6382554),
while tide and surge data were sourced from the CoDEC dataset

(https://zenodo.org/records/3660927). The CoastalDEM were acquired from Climate
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Central (https://go.climatecentral.org), and MDT data were obtained from AVISO
(https://doi.org/10.24400/527896/a01-2023.003). Sources for explanatory factors used
in predicting land subsidence rates are listed in Supplementary Table S7. All source

data supporting this study are provided with the paper.

Code availability

The CLUMondo model is publicly available on GitHub
(https://github.com/VUEG/CLUMondo). Python scripts used for projecting land
subsidence and generating figures can be accessed via Figshare at
https://doi.org/10.6084/m9.figshare.29263130 (ref.>®). The improved geometric
inundation model, which incorporates hydrological connectivity and attenuation, is
available on GitHub (https://github.com/geoye/attenuated bathtub). Additional code
supporting the findings of this study is available from the corresponding author upon

reasonable request.
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