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 A B S T R A C T

This paper examines the effect of a period of quiet wakefulness (an ‘‘offline wake’’ state) on the performance 
of a decision making task. An initial feedback-based learning period using a subset of stimuli, was followed by 
(i) a ‘‘pre-test’’ phase using both ‘‘old’’ and ‘‘new’’ stimuli without feedback, (ii) a delay period of either active 
or offline wakefulness, and (iii) a ‘‘post-test’’ period, again without feedback. Behaviourally, we found that 
offline wakefulness significantly improved generalization — the ability to apply learned knowledge to novel 
stimuli. However, we did not find any EEG-based neural correlates of this generalization improvement. Rather, 
we found that task-relevant representations emerged only after the delay period, independently of whether the 
delay was active or offline.
1. Introduction

Recent experiments in humans have shown that a period of Quiet 
Wakefulness, also known as ‘‘Quiescence’’ or ‘‘Offline Wake State’’, has 
beneficial effects on performance across a broad range of cognitive 
tasks. One body of work has focused on the effects of a period of 
Quiescence on memory for recently learned information. Memory per-
formance of the Quiescence group is usually compared to an ‘‘Active’’ 
group who, instead of resting after learning, complete a distractor 
cognitive task. Findings revealed an improved memory performance in 
the Quiescence group, such as an increased memory strength (Dewar, 
Alber, Butler, Cowan, & Della Sala, 2012) or fine details within recently 
learned stories (Craig & Dewar, 2018). Overall, memory performance 
degrades over time but less so for participants assigned to Offline versus 
Active wake groups. This body of work extends previous studies which 
have shown that periods of sleep benefit memory when compared to 
typical waking activities (Axmacher, Elger, C., & Fell, 2008; Graveline, 
Y., Wamsley, & E., 2017; Lewis & Durrant, 2011; Löwe, Petzka, Tzegka, 
& Schuck, 2024; Petzka, Chatburn, Charest, Balanos, & Staresina, 2022; 
Petzka, Zika, Staresina, & Cairney, 2023; Schapiro et al., 2018).

Possible mechanisms underlying memory stabilization through qui-
escence have recently been uncovered by functional imaging exper-
iments. These studies have, for example, found that neuronal acti-
vation patterns detected during encoding are reactivated during Of-
fline Wake states (Tambini & Davachi, 2019a). These analyses were 
motivated by the findings of ‘‘pattern replay’’ (a temporally ordered 
sequence of reactivations) observed in rodent studies (Foster, 2017) 
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that promote synaptic plasticity. Moreover, Neuroimaging studies have 
shown that memory reactivation during quiescence increases connec-
tivity between cortical areas which is thought to distribute and re-
organize memory representations across hippocampal and neocortical 
networks (Schlichting, L., Preston, & A., 2014; Tompary & Davachi, 
2017).

A more recent body of work investigates the effects of Quiescence 
on cognitive tasks beyond memory (Tambini & Davachi, 2019b; Wams-
ley & Collins, 2024; Wamsley & J., 2019). Reactivation of encoded 
elements during quiescence is thought to facilitate feature selection, 
similarity extraction and pattern recognition, thereby promoting gen-
eralization and improvement in performance (Tambini & Davachi, 
2019b). These improvements are supported by the learning of low 
dimensional representations that are useful for the task at hand, for ex-
ample, a new discriminatory feature (Craiget al., 2018), a new cognitive 
map (Craig & Wolberset al., 2018), or a new higher-order rule (Quentin 
et al., 2020). Building upon these insights, our recent work in the 
lab (Menghi, Silvestrin, Pascolini, & Penny, 2023) employed EEG and 
Representational Similarity Analysis (Kriegeskorte, Mur, & Bandettini, 
2008) to describe the neural dynamics of representations emerging 
during a decision-making task. We found that a low-dimensional, task-
relevant representations emerged from 700 ms after stimulus presen-
tation and are associated with performance. However, the role of 
quiescence in the development of these representations remains elusive.
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Fig. 1. (A) Training Trial structure. (B) Testing Trial structure. (C) Stimuli (D) Stimulus-Outcome Mappings (E) Feature Values (F) Procedure (A) Each trial started with a 
fixation cross. Afterwards, two pies appeared (the ‘‘stimulus’’) and participants had up to 2.5 s to respond. Confirmation of the choice was then given and feedback was provided. 
(B) Test blocks were identical to training blocks except that feedback was not provided. (C) Experimental stimuli. Each pie on the left side can be combined with each pie on the 
right side, creating 25 unique configurations (stimuli), 13 of which are used during training and testing phases, and 12 during the testing phases only. (D) The gray scale image 
plots the Sun Outcome probability (given button press ‘‘sun’’), as a function of the number of red slices in the right side pie, 𝑢1, and left side pie, 𝑢2. (E) The task structure can 
be described by a one-dimensional manifold determined by the subtraction feature value computed over the number of slices of the two pies, 𝑢1 and 𝑢2. (F) Shows the overall 
experimental structure.
1.1. Current study

The main goal of the current study was to assess the effects of 
an offline-wake period on generalization and memorization. Addition-
ally, we wanted to investigate the differences in the emergence of 
task-relevant representations, reflecting abstraction processes and rules 
extraction, during quiescence and active periods. The task used in the 
present study is adapted from the ‘‘subtraction’’ task previously used in 
the lab (Menghi et al., 2023). Briefly, participants learnt associations 
between configurations of virtual pies and a weather outcome (sun 
or rain) as shown in Fig.  1D. The structure of this mapping is shown 
in Fig.  1D and participants should learn to choose ‘‘Sun’’ when the 
number of slices of the two pies presented is similar. Good performance 
in this task can be achieved by learning a new representation which 
could take the form of (i) a logical or verbal rule (Ballard, Miller, 
Piantadosi, & Goodman, 2017), (ii) identification of a discriminatory 
feature (𝑢1-𝑢2) (Menghi, Kacar, & Penny, 2021), or (iii) identification of 
homogeneous clusters of exemplars (one along the diagonal, and one 
on either side) (Sanborn, Griffiths, & Navarro, 2010).

In more detail, participants were trained on a set of pies (Training) 
and then tested (Pre-Test) on the same set (old configurations) plus 
a new test set (new configurations; Fig.  1A and B). Participants were 
assigned either to the offline wake group, in which case they closed 
their eyes and were asked to rest during the delay block, or to the active 
wake group, in which case they did a spot-the-difference task during 
the delay block. Then, participants completed a final test (Post-Test; 
Fig.  1E). During the testing blocks, participants received no feedback.

Since participants were tested on configurations of pies they were 
trained on (‘‘old stimuli’’), and new configurations of pies they had not 
seen before (‘‘new stimuli’’), it was possible to separately assess both 
memorization and generalization performance.

We hypothesized that the active wake condition would disrupt 
the representation learning process that results in generalization and 
2 
that this would be reflected both in behavioural performance and 
the emergence of task-based representations. We also expected that 
memory performance, and accuracy for old configurations, would be 
less degraded in the offline wake condition.

2. Materials and methods

2.1. Participants

A total of 42 volunteers from the University of East Anglia (mean 
age = 25.07, SD = 7.15, 15 male, 27 female) were recruited through 
the SONA System (https://uea-uk.sona-systems.com/); 21 assigned to 
Active Wake, 21 to Offline Wake. Data from 3 participants were dis-
carded because they did not respond to more than 20% of the trials. 
Data from a further 3 participants were discarded from behavioural 
analyses because their performance was below chance level during the 
first testing session. Analyses were performed on 36 participants, 18 
assigned to Active Wake and 18 to Offline Wake (mean age = 25.41, 
SD = 7.42, 13 male, 23 female). Of the 18 participants assigned to the 
Active Wake condition, the first 5 participants completed the spot-the-
difference task for 15 min due to a coding error. After identifying this 
issue, the task duration was corrected to 10 min for the remaining 13 
participants. Data from a further participant belonging to the active 
wake condition was excluded from the EEG data analyses because of 
poor EEG data quality. All participants were naive to the purpose of the 
experiment. At the end of the experiment, participants received credits 
for their participation. The study was approved by the University of 
East Anglia School of Psychology Research Ethics Committee (PSY-
REC) and all participants provided consent at the beginning of the 
experiment.

2.2. EEG acquisition and preprocessing

A BrainProduct actiCAP was used to record EEG signals from 32 
electrodes, placed according to the standard 32-channel  arrangement, 
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FT9 was used as hEOG, electrode impedances were kept below 25 kΩ, 
signals were recorded at a sampling rate of 1000 Hz, and preprocessing 
was carried out using the Fieldtrip toolbox for MATLAB (Oostenveld, 
Fries, Maris, & Schoffelen, 2011). Continuous data were highpass fil-
tered at 0.5 Hz and re-referenced to the common average. The data 
were epoched from 500 ms before the onset of the stimulus (see Fig. 
1A) to 1.5 s following it. We visually inspected these epochs to remove 
trials containing muscle activity or electrical artefacts and identified 
bad electrodes which were then interpolated to the weighted average 
of neighbouring electrodes. On average 7% of the 341 total trials 
were discarded. A maximum of 2 non-neighbouring electrodes were 
interpolated per participant. Fast Independent Component Analysis 
(fastICA) (Comon, 1994) was then applied to the epoched data, compo-
nents were visually inspected to reject eye blinks, eye movements and 
sustained high-frequency noise. EEG epochs were then low-pass filtered 
with a cut-off of 30 Hz. Furthermore, we performed baseline correction 
based on the pre-onset period. Finally, we visually reinspected the 
epochs to ensure no artefact remained. Rejected trials and EOG signals 
were excluded from all further analyses.

2.3. Apparatus and stimuli

The experiment was performed in a dimly lit room with partic-
ipants seated approximately 60 cm away from a computer display. 
Stimuli were presented on a 23-inch HP Elite Display 240c monitor 
using the Psychophysics Toolbox (http://psychtoolbox.org/) (Brainard, 
1997) for Matlab (Mathworks) running on Windows 7. Two virtual 
‘‘pies’’, equidistant from the fixation point, were displayed. Each pie 
was divided into six slices with from one up to five slices that could be 
filled with red colour making a total of twenty-five combinations, see 
Fig.  1 (panel A). The stimuli were presented on a dark grey background.

2.4. Procedure

The overall experimental procedure is shown in Fig.  1F. The ex-
periment comprised one training block (91 trials with 7 repetitions of 
the 13 different training stimuli), and two test blocks; one before the 
delay period (‘‘pre-test’’) and one after (‘‘post-test’’). Each test block 
comprised 125 trials with 5 repetitions of each training stimulus, and 
5 repetitions of each test stimulus. During the delay period half of the 
participants were assigned to the distractor task (‘‘Active Wake’’), the 
other half to a period of quiescence (‘‘Offline Wake’’).

In Fig.  1 (panel A), in the training block, each trial started with a 
black fixation cross presented at the centre of the screen for 1000 ms. 
Afterwards, the stimuli appeared and stayed on screen for 2500 ms, or 
until response. Responses were made on a standard keyboard, the ‘‘a’’ 
indicated sun prediction and ‘‘l’’ indicated rain. Responses not given 
within the required time constitute ‘‘missed trials’’. After button press, 
confirmation of the choice, by highlighting choice in red, was given 
for 500 ms. Finally, feedback was provided, indicating ‘‘correct’’ if the 
prediction was correct, ‘‘incorrect’’ if it was not and ‘‘too slow’’ if they 
missed the trial. In the pre-test and post-test blocks, the trial structure 
was identical to the training block but without feedback (see Fig.  1 
panel B). Participants were explicitly instructed to maintain their gaze 
fixed on the central fixation cross throughout the task. This instruction 
was reinforced before the task began, and participants were reminded 
to avoid unnecessary eye movements.

During the delay, subjects in the quiescence condition were asked 
to close their eyes and relax for 10 min (Craiget al., 2018). Offline, 
using an automatic sleep stage model (Perslev et al., 2021), we checked 
if participants fell asleep during this time. Three participants spent 
more than 5 min in sleep stage N2 during the quiescence period. 
The remaining fifteen participants spent the whole quiescence period 
awake. Subjects in the active condition completed a distractor task, a 
spot the difference task similar to that described in Craiget al. (2018). 
On each trial, participants were presented with a pair of real-world 
3 
photos on the computer screen which were identical other than for two 
discrete differences and participants were asked to find these differ-
ences and indicate them with the mouse. After the delay participants 
were presented with the instructions for the final test block (post-test) 
and were asked to press a button to start. The overall experiment took 
about thirty minutes to complete.

We assess the effect of Offline versus Active Wake conditions using 
a between-subjects design in which 18 participants were assigned to 
the offline group and 18 participants to the active group. During train-
ing, 13 configurations of stimuli were presented and subjects received 
feedback about whether their decisions were correct or not. There were 
7 repetitions of each trial type making 91 trials in all. During testing 
(both pre-test and post-test), these same stimuli were again presented 
(‘‘old stimuli’’) along with 12 new stimuli that had not been presented 
during training (‘‘new stimuli’’) in a random order. Each trial type 
was repeated 5 times making 125 trials in all. A ‘‘memorization’’ score 
could then be computed based on the correct decision rate over old 
stimuli categorized with feedback in the initial training phase, and a 
‘‘generalization’’ score on the correct decision rate over new stimuli.

In previous work Menghi et al. (2023) participants were trained 
on 10 repetitions of each of the 25 different stimuli, making 250 
training trials in total, whereas in the current study the training period 
comprised only 91 trials (7 repetitions of the 13 ‘‘old’’ stimuli). We 
specified this reduced training regime for two reasons (i) so participants 
did not reach ceiling thereby giving them room for improvement during 
the delay period and (ii) to hold out some stimuli for testing so that we 
could separately measure generalization versus memorization.

2.5. Stimulus-outcome mappings

The probabilistic structure of the task, 𝑦𝑡, was defined by making 
the log-odds of the outcome a quadratic function of stimulus charac-
teristics, 𝑢𝑡 (number of red slices) resulting in the mapping shown in 
Fig.  1 panel D.

log
[

𝑝(𝑦𝑡 = 1)
𝑝(𝑦𝑡 = 0)

]

= (𝑢𝑡 − 𝜇)𝑇𝑊 (𝑢𝑡 − 𝜇) +𝑤0 (1)

𝑊 = 2.4 ×
[

−0.71 0.70
0.70 −0.71

]

𝜇 = [3, 3]𝑇

𝑤0 = 4

𝑢𝑡 = [𝑢𝑡(1), 𝑢𝑡(2)]𝑇

If, for each cue, subjects choose the option with the highest probability, 
then the correct classification rate would be 95%. This map is identical 
to that used in our previous work Menghi et al. (2023) (referred to 
as the ‘‘subtraction’’ task) and can be approximately described by the 
verbal rule ‘‘choose Sun if the pies have a similar number of slices’’. 
The above parameters 𝜇, 𝑊  and 𝑤0 have been set to produce the 
stimulus-outcome mapping shown in Fig.  1, panel D.

3. EEG data analysis

3.1. ERP

We performed three cluster-based permutation tests contrasting 
ERPs for within condition new versus old cues and between conditions 
active wake and offline wake and the interaction between old and new 
cues in the two delay conditions. Cluster-based permutation testing on 
all the electrodes and the whole epoch was implemented using the 
FieldTrip software (Maris & Oostenveld, 2007). The cluster-forming 
threshold and the threshold for statistical testing were both set to a two-
tailed alpha level of 0.05. Condition labels were randomly permuted 
1000 times with the Monte Carlo method, following the default method 
implemented in FieldTrip. This provides an automatic method for 
finding significant clusters, corrected for multiple comparisons, that 
does not depend on a priori selection of time window and electrodes.

http://psychtoolbox.org/
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3.2. Representational similarity analysis

As shown in Fig.  1, our experiment used 13 different stimulus 
configurations (𝐶) during training and 𝐶 = 25 during test, each being 
a unique combination of number of slices in the left and right ’pies’. 
We used Representational Similarity Analysis (RSA) (Kriegeskorte et al., 
2008) to identify the relationship between these configurations and 
the multivariate (31-channel) EEG signals as they evolved over time. 
We downsampled the EEG epochs to 250 Hz and selected the peri-
stimulus signal from −200 ms to 1500 ms with respect to stimulus 
onset. Here we first compute a dissimilarity matrix (DM) for the task-
representation model, 𝐷𝑇 , and the stimulus-representation model, 𝐷𝑆 . 
The 𝑖, 𝑗th entry in these matrices is the Euclidian distance between 
stimulus 𝑖 and stimulus 𝑗 in the 1-dimensional feature space for 𝐷𝑇
(see Fig.  1, Panel E), and the 2-dimensional input space for 𝐷𝑆 .

For example, consider the point 𝑖 at [𝑢1, 𝑢2] = [4, 5] and the point 
𝑗 at [𝑢1, 𝑢2] = [1, 2]. Here the distance in input space is 𝐷𝑆 (𝑖, 𝑗) =
√

(4 − 1)2 + (5 − 2)2 = 4.24. Whereas the distance in task-representation 
space is 𝐷𝑇 (𝑖, 𝑗) = 1 − 1 = 0 (both 𝑖 and 𝑗 have feature value 1 as 
indicated by the purple shading in Fig.  1, Panel E).

We then computed a neural DM for each subject’s ERP data at each 
point in peristimulus time, with the 𝑖, 𝑗th entry now being the Euclidian 
distance between the 31-dimensional ERP vectors (for stimulus 𝑖 and 𝑗). 
Finally, we computed the Spearman correlation over subjects between 
neural DMs and the model DMs (partialling out the effect of the other 
model DM). For all time points, statistical significance was determined 
non-parametrically at the group level by a cluster-based permutation 
approach (cluster-forming threshold of 𝑝 < 0.05 two tailed), corrected 
significance level 𝑝 < 0.05 (two tailed) (Maris & Oostenveld, 2007). We 
calculated the clusters of time points in which configurations could be 
discriminated.

4. Results

To assess the emergence of task representation in offline and active 
wake period, we divided the analysis into two parts. First, in our anal-
ysis of the behavioural data, we compared participant ‘‘improvement 
scores’’, post-test minus the pre-test scores, computed separately for 
memorization and generalization. We expected that an offline wake pe-
riod, as compared with a period of active wake, would facilitate consol-
idation, thereby promoting memory and generalization. Second, for our 
analysis of the EEG data, we employed RSA to establish links between 
the neural representations and participants’ behavioural results.

4.1. Behavioural results

Improvement score were computed as the difference in proportion 
of correct responses over trials in the post-test minus the pre-test, com-
puted separately for old (memorization) and new (generalization) stim-
uli. We performed a 2x2 mixed-design ANOVA, with between-subjects 
factor the group (Active Wake and Offline Wake) and within-subject 
factor the novelty (Old vs New) on the improvement scores. We found a 
significant interaction (F(1,34) = 4.559,p = 0.040), but no main effects 
(Group: F(1,1) = 0.321,p = 0.574; Novelty: F(1,34) = 0.0006,p = 0.98). 
To explore the source of the interaction, we conducted follow-up t-
tests. While participants memorization for old configurations was not 
affected by the different wake conditions (𝑡(34) = −0.7743, 𝑝 = 0.444), 
participants in the offline wake conditions showed a trend towards 
an improvement in generalization compared to the participants in the 
active wake condition (𝑡(34) = 1.72, 𝑝 = 0.094), such effect would 
be significant with a one-sided test in the direction of the hypothesis 
(𝑝 = 0.047.), as motivated by previous studies (see introduction) (see 
Fig.  2).

4.2. ERP analysis of novelty effect in pre and post-delay test epoch

In our investigation, we conducted five cluster-based permutation 
tests during stimulus epochs. We tested for the effect of old  versus 
4 
Fig. 2. Improvement Scores The figure shows the improvement scores for old and new 
stimuli for both Offline and Active Wake groups. Changes in accuracy related to new stimuli 
correspond to generalization effects, and old stimuli to memorization effects. The error bars 
indicate the standard error of the mean.

new averaged over pre versus post epochs. We also tested for this 
effect in each of the different phases (pre and post). Between-subject 
conditions at the averaged activity of different wake conditions and 
their interaction with novelty. We did not find any significant clusters.

4.3. Representation similarity analysis

We analysed the neural similarity between stimulus-bound rep-
resentations of the stimuli during the pre-test and post-test phases. 
Fig.  3 shows the correlation between the neural, stimulus-bound and 
task-relevant dissimilarity matrices during the testing sessions. Impor-
tantly, these results are based on data from all subjects in the study 
(i.e. both active and offline wake groups). Before and just after stimu-
lus presentation, grand average decoding accuracy fluctuated around 
the chance level. During pre-test, the stimulus-bound representation 
reached significance 337 ms (337–361 ms), followed by five signifi-
cant clusters (373–401 ms; 481–501 ms; 581–621 ms; 1219–1243 ms; 
1411–1431 ms). The task-relevant representation did not reach signifi-
cance. During post-test, the stimulus-bound representation reached sig-
nificance 120 ms (120–145 ms), followed by three significant clusters 
(305–341 ms; 1187–1223 ms; 1367–1387 ms). The task-relevant rep-
resentation reached significance at 577 ms (577–650 ms), followed by 
three significant clusters (962–990 ms; 1195–1243 ms; 1379–1399 ms). 
We did not find any difference between groups (active versus offline 
wake) in the emergence of stimulus-bound or task-representations. 
Furthermore, we split participants within each group into good and 
bad performers based on their behavioural outcomes and compared 
these subgroups. This analysis also revealed no significant differences, 
possibly because of the reduced sample size.

Thus, multivariate analysis of EEG data revealed the temporal dy-
namics of the task representation. First, a stimulus-bound representa-
tion emerges, providing a reconstruction of the stimulus map. This is 
evident during both test phases of the experiment. Second, a task-based 
representation emerges but only in the post-test epoch (not pre-test).

5. Discussion

This study investigated the impact of an offline versus online wake 
period on both generalization and memorization. Behaviourally, we 
found better generalization performance, represented by better accu-
racy for novel stimuli, in the active wake group compared to the 
offline wake group. This result supports our hypothesis that general-
ization processes are facilitated by an offline wake period. Contrary 
to expectations, we did not observe improved memory retention in 
the Offline group compared to the Active group. This finding is in-
consistent with prior research indicating enhanced memory recall in 
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Fig. 3. Stimulus-bound and task-relevant representations Time course of the correlation between neural and stimulus-bound dissimilarity matrices (green) and neural and task-relevant 
dissimilarity matrices (pink). The two panels show separate results for pre-test and post-test epochs. These results are based on data from all subjects in the study (i.e. both active and offline 
wake groups).
similar contexts (Craig & Dewar, 2018; Dewar et al., 2012). This 
inconsistency may be due to differences in task design. While previous 
studies utilized tasks such as story recall (Dewar et al., 2012) or picture 
recognition (Craig & Dewar, 2018), our paradigm studied associations 
between stimuli (combinations of symbols in a combinatorial space) 
and optimal responses to those stimuli. Additionally, our experimental 
design encouraged participants to learn the underlying structure of 
the task rather than simply memorizing individual configurations. This 
might lead participants to use such representation for both old and new 
stimuli. However, this would suggest a similar performance between 
old and new stimuli, that we did not find (see supplementary mate-
rials). Finally, while our findings are consistent with the hypothesis 
that quiet rest facilitates generalization, it is important to interpret 
these results with caution given the risk of both Type II and Type I 
errors associated with small sample sizes as suggested in prior meta-
analytic work on the effects of rest on verbal memory (see Humiston, 
Tucker, Summer, and Wamsley (2019)), our design may have been 
underpowered to reliably detect such effects.

With regard to the EEG data, we did not find any EEG-based neural 
correlates associated with the observed improvement in generalization. 
First, we did not find any ERP differences between active versus wake 
conditions, novel versus old stimuli, or the interaction between group 
and novelty. The lack of a novelty effect may be due to the high degree 
of similarity among stimulus configurations. Second, we did not find 
any group-related differences in the RSA analyses. One potential expla-
nation for the lack of findings is that this study may be underpowered, 
having 18 participants in each group compared to, for example, 30 in 
Craig et al. (2018).

More positively, we found that task-relevant representations eme-
rged after the delay period and that this occurred regardless of whether 
participants were in the active or offline groups. Notably, task-relevant 
representations emerged at comparable latencies to those observed 
in previous work (from 600 ms) (Menghi et al., 2023). Moreover, 
consistent with both our prior research and other studies (Luyckx, Nili, 
Spitzer, & Summerfield, 2019; Menghi et al., 2025), we observed both 
faster (stimulus-bound) and slower (task-relevant and abstracted) pro-
cesses. Here, the stimulus-bound representations were observed both 
before and after the delay, whereas the task-relevant representations 
could only be detected after the delay.

In our previous study (Menghi et al., 2023) we found that task-
relevant representations emerged during the training period whereas 
this was not the case in the current study. However, in that previous 
work participants were trained on more repetitions of each stimulus 
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(10 versus 7) and more stimuli (25 versus 13). One reason for reducing 
the training regime in the current study was to avoid ceiling effects so 
that participants had room for improvement during the delay period. 
However, in retrospect, it may have been better to continue training for 
each participant until they reached a specific threshold of performance 
(e.g. 65% correct). It could also be that one factor governing the 
emergence of task-relevant representations is the number of configu-
rations to be learned. A larger number of configurations might prompt 
participants to focus on learning the task’s structure, while a smaller 
set may facilitate memorization of associations.

In this paper, and in earlier work in the field, ‘‘offline’’ and ‘‘online’’ 
states have been operationalized using cognitive tasks or a lack thereof, 
such as spot-the-difference (‘‘online’’) versus eyes-close rest (‘‘offline’’). 
However, more recent studies acknowledge the high degree of temporal 
variability in factors such as the internal versus external focus of atten-
tion and show that offline versus online states can be more precisely 
defined using electrophysiological measures. For example, Wamsley 
et al. (2024) (Wamsley & Collins, 2024) use machine learning based on 
data from EEG, pupil diameter, reaction time and occasional subjective 
reports to identify two types of offline states. Similarly,  Lacaux et al. 
(2021) use spectral analyses of EEG data and find that participants who 
entered the N1 stage of sleep (but not deeper) spontaneously improve 
on a number reduction task. Future work based on the experimental 
paradigm in this paper might therefore benefit from having a single par-
ticipant group but with offline versus online states identified post-hoc 
using electrophysiological measures.

Concluding, we found that offline wake periods enhanced gen-
eralization. No EEG correlates were associated with generalization 
improvements, possibly due to methodological constraints. However, 
task-relevant representations emerged post-delay independently of the 
delay condition.
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