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Abstract

Tone mapping algorithms are used to compress dynamic
range, make image details more conspicuous and generally en-
hance the image for preference. Global tone mapping manipu-
lates the brightnesses of pixels by applying a single function -
or tone curve - to every pixel in the image. Tone curve genera-
tion algorithms often constrain the shape of their tone curves and
it has been argued that tone curves should be simple, meaning
they have one or zero inflexion points. In this work, we investi-
gate whether tone curves should be simplified even further. We
present our method which finds the zero inflexion tone curve -
which we call a Very Simple (VS) curve - that best approximates a
potentially complex tone curve. For the MIT-Adobe FiveK dataset,
comprising 25,000 expert tone adjustments, we calculate the best
VS approximations and find these curves produce visually similar
images compared with more complex counterparts.

Introduction

Arguably, lighting is a critical aspect of producing good im-
ages where details are conspicuous and represent the observer’s
perception of the scene. Accordingly, professional photographers
attempt to control the light when taking photos in the studio. Yet
cameras capture high dynamic range scenes where not all the de-
tails are illuminated well. A single image often contains deep
shadows and strong highlights - i.e. a very high dynamic range
of brightnesses - and it is impossible to physically reproduce
these on a display. Relighting the image so that all the detail is
pleasingly illuminated is a large area of research and there are al-
gorithms ranging from modern image-to-image trained networks
[1, 2], to theories based on modelling human vision [3] to tone-
mapping algorithms [4] which effectively rebalance the dynamic
range via tone-mapping operations.

For illustration, let us consider an example image taken from
TM-DIED [5] - The Most Difficult Image Enhancement Dataset
- displayed in Figure la (images in this data set are all default
tone-mapped poorly by the camera). We see that the image fore-
ground has a very dark appearance with the building and the area
in front barely conspicuous but detail in the sky is readily ob-
servable. Because the dynamic range of this scene is high the
image processing pipeline in the camera hasn’t been able to map
the shadow and highlight detail to be simultaneously visible. We
will now, for illustrative purposes, consider how we might make
the shadows brighter and, in so doing, make a new output that is
preferred to the input.

An enhanced image, O(x,y) is shown in Figure 1b where we
can see much more detail in the foreground which, to a large ex-
tent, has remedied the illumination problem that was present in
the initial image. In Figure 1c we show a light adjustment map,
L(x,y). The brightest pixel value in this image denotes ‘multi-
plying by 6’ and a pixel value of zero means ‘multiplying by 1°.
Figure 1b is the result of multiplying the input image by the illu-
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Figure 1: Demonstration of tone mapping a poorly illuminated
image. (a) Input, (b) Enhanced output, (c) Illumination map from
(a) to (b), (d) Enhanced with a tone curve.



mination map. Written as a formula,

O(x,y) = I(x,y) * L(x,y). M

Importantly, implementing light change as multiplication by
a light adjustment map is physically accurate. Adding more light
to the shadowed area of a scene would cause all the pixel values
recorded for that region to scale by the same multiplicative factor.
This said, often light adjustment is cast not as a multiplicative
process but as a tone map. In Figure 1d we show the tone mapped
output image Or (x,y) where T is the tone mapping function:

QT(xvy) = T(l(xvy))' 2)

A tone map is an increasing function of brightness that is
applied to an image. Tone maps effectively serve many purposes:
they attempt to map dynamic range (and relight an image), they
account for display non-linearities, and they enhance an image in
some respects. Whilst tone mapping functions can, in principle,
be arbitrary - except the function is increasing - in practice their
slopes are constrained [6]. They are not allowed to be too high
or too low. Equally, if there are good ‘whites’ and ‘blacks’ in an
image these are typically preserved after tone mapping [7].

Recently, compelling evidence has been given that tone
curves should also be simple: they should have no more than one
inflexion point [8]. The gradient of an S-shaped tone-curve, for
example, monotonically increases to an inflexion point and then
it monotonically decreases (and, so, has one inflexion point). A
wiggly tone curve is not simple: there will be many points where
the slope increases then decreases and vice versa (there are many
inflexion points).

In this paper, we ask the question whether tone curves might
be simplified even further. Rather than there being one or zero
inflexion points, we constrain tone curves to have zero inflexion
points. An example of a zero inflexion point curve is one where
the slope monotonically decreases across the function’s domain,
such as a fractional gamma curve. We call zero inflexion point
curves Very Simple tone curves or VS curves.

We present a simple optimisation method to approximate
an arbitrary tone curve with a VS counterpart. Where the new
method is a restriction of the previous simple tone curve formu-
lation [8] and has the advantage that it is much faster to compute.
In making our formulation we take care to generate tone curves
that do not have sharp gradient changes [9].

We carry out experiments with the MIT-Adobe FiveK
dataset. This dataset comprises 5,000 images that are then tone
adjusted by 5 experts giving a set of 25,000 tone mapped out-
put images to consider. Previous work has shown that almost all
of these output images can be well approximated using a simple
tone curve. In this paper, we wish to evaluate how well a VS
curve can work. Surprisingly, we find that VS-curves provide a
very good approximation to the more wiggly curves sometimes
used by photographers.

Finally, the results reported here are metric-based: we say
two images look equivalent if they meet a mean CIELAB AE
threshold (following from [10]).

Background
The MIT-Adobe FiveK (FiveK) Dataset: The FiveK dataset
[11] has been widely used in creating and evaluating automatic

tone mapping algorithms. The dataset comprises 5,000 images
that have been retouched by five experts who each made adjust-
ments according to their preference. The result is 25,000 input-
enhanced image pairs containing a diverse range of adjustments
which can broadly be approximated by a single global tone curve.
Let [ denote an input image and P denote the expert modified out-
put, expressed as a global tone curve adjustment [8]. For each
given pixel, at location (x,y), these images are denoted,

I(x,y) = [Lj af b7]" (3)
P(x.y) = Lp ap b

The photographer’s tone mapping operation only affects the
brightness aspect of an image (only L* is mapped): Ly = T (L}).
In this paper we are interested in finding a tone map 7" from input
to output subject to additional constraints, T'(L}) ~ L.
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Figure 2: Depiction of the four simple cases, red cross marks the
inflexion point

Simple Tone Curves: Previous work [8] has introduced the
concept of simple tone curves which are curves that have at most
one inflexion point. This leads to four cases of tone curve as
illustrated in Figure 2. CASE 1 and CASE 2 have zero inflex-
ion points with the former having an increasing gradient over the
whole curve and the latter a decreasing gradient. CASE 3 and
CASE 4 curves have one inflexion point which is marked with a
red cross in our illustration and whose location can vary over the
entire domain. A CASE 3 curve’s gradient increases up to the in-
flexion point then decreases afterwards and CASE 4 decreases to
and increases from the inflexion point.

In the context of this paper VS curves are CASE 1 and CASE
2 tone maps. That is, VS curves have zero inflexion points and
either have a monotonically increasing or decreasing gradient.



Importantly, previous work [8] analysed the 25,000 expert
manual tone adjustments in the FiveK dataset and found that all
expert tone curves were inherently simple or could be closely ap-
proximated (without any visually important difference).

Method

In Figure 3, we plot the actual tone curve that generated Fig-
ure 1d (red) and the simple (one inflexion point) approximation in
blue. The curves are almost identical but they are a little different
(see inset). In green we show the VS curve that the closest approx-
imation. The images created by tone mapping with the simple and
VS curves are shown in panels (a) and (b). Even though the tone
curves appear quite different the resulting tone mapped outputs
look similar.

Now let us develop a method that ‘solves for’ the best VS
approximation to a given tone curve. Let us sample the [by,b,]
input brightness domain using in » uniformly spaced values. We
can write this as the vector b = [b1,by,...,b,] |, where the super-
script | denotes the transpose operator. In this discrete represen-
tation, when we apply a tone function 7 the output is also a vector:
t = [T(by),T(by),...,T(by)]T. We seek a VS tone curve £ ~ t.
The derivative of the VS curve must be monotonically increas-
ing or decreasing (see CASE 1 or 2 in Figure 2) as this property
enforces the zero inflexion point requirement.

To find the derivative of an n-vector in the discrete domain
we apply an n x n matrix D defined as

Do =[-11]
Di,i*lti:[_l 1] s i€{2,3,...,l’l} (4)
and elsewhere D is zero. The meaning of the index ;;_;; is the

components in the ith row and the columns (i — 1) and i. Note that
the first two rows of D are the same and this implies we expect
the derivative to be constant at the boundary of the domain. An
increasing or decreasing derivative corresponds to a positive or
negative second derivative respectively. Hence, we calculate the
second derivative by differentiating twice,

D? =DD. 5)

We now find the CASE 2 VS curve that approximates a target
curve ¢ by minimising,

argfnin||f—t\| (6a)
i

Dz>0 (6b)

L dD2<0 (6¢)

fi =t (6d)

=1ty (6e)

This minimisation has a single quadratic objective and two
inequality and two equality constraints and therefore has a global
minimum that can be found using quadratic programming [12,
13]. Constraint (6b) requires the curve we are solving for to be in-
creasing. Note the new variable z that has been introduced which
is related to 7 by,

1 =Gz, (7)
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Figure 3: Target, Simple and Very Simple tone curve shown in top
panel. The simple (a) and very simple (b) renditions are similar
to one another.

where the n X n matrix G is a Gaussian smoothing matrix which is
defined in [9] (the standard deviation ¢ = 2 is used in the context
of the fact that we are representing tone curves as 100-component
vectors) to eliminate sharp corners from the tone curve which
could otherwise induce Mach bands in the tone mapped images
[14, 15]. The vector z can be thought of as a tone curve equiva-
lent to #, except that when multiplied by G, it smooths the curve
whilst preserving simplicity.

The second constraint (6¢) requires that the derivative is de-



creasing (CASE 2 curve). Constraints (6d) and (6e) respectively
ensure the approximate tone curve maps to the same range. We
can solve for a CASE 1 tone curve by substituting constraint (6¢)
for D%z > 0.

From Equation 3 we have the input images / and expert ad-
justed images P and we preprocess all the images by applying a
clamping function. The whites of both / and P are clamped to the
0.999 quantile of their L* value which removes spurious bright-
nesses affecting the tone curve. The blacks of P are clamped to
0.01 (where L* € [0,1]). We then use the methodology of [8] to
extract the global tone curve ¢. The tone curves used in the opti-
misation only concern the non-clamped values.

For each tone curve ¢, the optimisation of Equation (6) is
then solved. The VS curves # and are interchanged with func-
tion notation, yielding 7. This draws attention to the fact that we
have to interpolate our discrete tone curve in some way when we
apply a tone curve to an image. Here we use shape-preserving
monotone Piecewise Cubic Hermite Interpolating Polynomials
(PCHIP) [16]. When this curve is applied to every pixel of an
input image /, it generates P, where

E(x,y) = [T(L}) ap bp] " ®)

Results and Discussion

We have 25,000 input and photographer enhanced pairs
where each enhancement is encoded as a ground-truth tone curve.
We denote a ground-truth tone curve as ¢t and for each of these
we solve for its VS counterpart # using the optimisation set forth
in the last section. The photographers’ own adjustments can re-
sult in CASE 1 through 4 tone curves (0 or 1 inflexion point) or
the adjustment can require multiple inflexion points (and we call
these ‘wiggly’). In blue in Figure 4, we show the counts of each
type of photographer made adjustments. It is noteworthy that only
slightly more than a quarter are very simple and that about a third
are neither simple nor very simple. The VS curves, by defini-
tion, are all CASE 1 and 2. The frequency of the approximate VS
curves are shown in red. One can see that almost all of them are
CASE 2 (monotonically decreasing derivatives).

Of course, we should only use VS curves - as a proxy for a
photographer’s own more complex adjustments - if the images
they produce look similar to the experts’ output images. It is
often assumed that a pair of photographic images (of complex
scenes) are visually indistinguishable from one another if their
mean CIELAB AE is less than 3 [10, 17]. Quantitively, we com-
pare the 25,000 £ images to their corresponding expert adjustment
P by calculating their mean AE [18] colour difference. Figure
5 summarises these by showing the the histogram of the 25,000
mean AE values with the 50th, 90th and 99th quantiles shown.
We observe that 99% of adjustments have a mean AE of 3.52 or
less which is unlikely to be readily noticeable. There are just 63
adjustments where AE > 5 and the maximum is 10.4.

In Figure 6 we show the input /, expert adjusted image P,
and VS tone mapped image P, alongside the tone curves ¢ and 7
for several example images. The mean AE and case classification
for each of the images are recorded in Table 1.

For image D2158 the photographer themself makes a VS
(CASE 2) adjustment. Unsurprisingly, we find a VS curve works
very well. The mean AE in Table 1 is really very small and
the photographer’s own and the VS adjusted output (middle and
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Figure 4: Distribution of case classification for ground truth
curves T and VS curves 7.
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Figure 5: Histogram of mean AFE for all 25,000 tone adjustments
with 50th, 90th and 99th percentile shown. There are 63 results
AE > 5, with maximum at 10.4.

right) in Figure 6 are identical. Note, we do not find the pre-
cisely the same curve as the photographer as we have the addi-
tional Gaussian smoothing constraint in our problem formulation.
Images E4830 and A3067 are wiggly (photographer adjustments)
replaced by a VS curves of CASE 2 and 1. The mean AE is small
and the VS-curve and photographers’ adjustments look identical.

Image C3220 is represents the 90th percentile mean AE error
and the photographer’s adjustment is a CASE 3 curve which is ap-
proximated by a VS CASE 2 curve. Even for this 90th percentile
hard case the mean AE difference is just 1.26 and the images look
visually almost the same. There are a few images, such as A3905
which is the 15th worst image as ranked by the mean AE where a
VS curve does not approximate the ground truth target satisfacto-
rily. The best VS curve is CASE 2 but Pand P are 8.04 AE apart.
Here, the VS curve enhanced image is visually quite different to
that produced by the photographer’s own adjustment.

Each of the 5,000 input images are adjusted by 5 experts
and each expert creates an image rendition that can be notably
different from another expert. Per input image, we calculate the
median AE error to summarise how well a VS curve works across
the 5 expert renditions. We now, as before, calculate the histogram



Figure 6: Example results showing images (top-bottom) D2158, E4830, A3067, C3220 and A3905. From left to right, displays the input
image, a photographer’s own tone mapped output and an VS curve approximation.



Table 1: Statistics for images in Figure 6.

Image | Mean AE | M.AE Rank | Pcase | P case
D2158 0.0762 1129 2 2
E4830 | 0.279 13029 Wiggly 2
A3067 0.699 19549 Wiggly 1
C3220 1.264 22494 3 2
A3905 8.04 24995 3 2

for the 5,000 mean AE errors and this is shown in Figure 7. The
error statistics are even more favourable than before as almost all
images are less than the mean AE = 3 criterion [10, 17]. The
largest error is just 4.95. In summary, Figure 7 teaches that for all
images there are VS adjustments that produces a visually similar
result, on average.
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Figure 7: Histogram of mean AE for the for median expert adjust-
ment, showing 50th, 90th, 99th and 100th percentile.

Conclusion

Tone curves are an important tool in image processing
pipelines and can be used to manipulate brightnesses in images,
compressing dynamic range, making details more conspicuous
and the image more pleasing. Previous work has proposed that
tone curves should be simple (not wiggly) which is technically
expressed by the tone curve having no more than one inflexion
point (informally this means tone curves cannot be wiggly). In
this paper, we have proposed that only zero inflexion point tone
curves might be used - we call these very simple (VS) curves.
An optimisation was presented to find the VS tone curve that best
approximates an arbitrarily shaped target tone curve. With this
algorithm in hand, we can approximate a given tone curve (from
a user’s own adjustments or from an algorithms) with its best VS
curve approximation. We perform experiments on the MIT-Adobe
FiveK dataset which comprises 25,000 input and tone curve en-
hanced image pairs. We solve for the VS tone curve that best
approximates each of the 25,000 expert tone adjustments. Our
experiments show that a very simple VS tone curve can well ap-
proximate almost all of the tone adjustments made by experts. In
almost all cases - even when a photographer used a wiggly tone
curve - the best VS approximation looks visually almost indistin-
guishable from the photographer’s own enhancement.
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