
MEMBERSHIP PROBLEMS IN BRAID GROUPS

AND ARTIN GROUPS

ROBERT D. GRAY AND CARL-FREDRIK NYBERG-BRODDA

Abstract. We study several natural decision problems in braid groups
and Artin groups. We classify the Artin groups with decidable sub-
monoid membership problem in terms of the non-existence of certain
forbidden induced subgraphs of the defining graph. Furthermore, we
also classify the Artin groups for which the following problems are de-
cidable: the rational subset membership problem, semigroup intersec-
tion problem, and the fixed-target submonoid membership problem. In
the case of braid groups our results show that the submonoid member-
ship problem, and each and every one of these problems, is decidable in
the braid group Bn if and only if n ≤ 3, which answers an open prob-
lem of Potapov (2013). Our results also generalize and extend results
of Lohrey & Steinberg (2008) who classified right-angled Artin groups
with decidable submonoid (and rational subset) membership problem.

1. Introduction

Algorithmic problems are of central importance in the study of braid groups,
and more generally of Artin groups. For braid groups, the word and con-
jugacy problems are both decidable, and they have been studied exten-
sively from many different viewpoints in numerous important papers; see
e.g. [Art47,BKL98a,Deh97,EM94,Gar69,GKT02,GMV14]. For more back-
ground on braid groups, including the history and motivation for their study,
including connections with representation theory, algebraic geometry and
topology, and mathematical physics, we refer the reader to the book [KT08].

Artin groups, which are a natural generalization of braid groups closely
related to Coxeter groups, first appeared in the literature in the papers
[Del72,BS72], in which the word problem is also considered. Even after fifty
years of intensive study, Artin groups remain a highly mysterious class and in
general very little is known about the algorithmic properties of Artin groups;
see e.g. the survey articles [Bir74, GP12] and [McC17]. In particular, both
the word and conjugacy problems remain open in general for Artin groups.
A lot of work has been done in this area, and it continues to be a highly
active area of research. It is also known that finite type Artin groups (which
includes all braid groups) have nice algorithmic properties, and in particular
have decidable word and conjugacy problem [Del72,BS72]; it is also known
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that they are biautomatic [Cha92, Cha95] which gives very efficient solu-
tions to the word and conjugacy problems in these cases. Additional work
on the word and conjugacy problems in finite type Artin groups include
[BKL98b,BGGM07a,BGGM08,BGGM07b,GGM10b,GGM10a]. Other pa-
pers on Artin groups and their algorithmic properties include e.g. [BM00,
CGW09,HH23,HM99,HO20,HR15,HR13,HR12,MS17,Pic01]; for some re-
cent progress, we also refer the reader to [BGP22, BGCH+24, BGCMW22]
and references therein.

Finitely generated submonoids of Artin groups play an important part
in the study of their structure. Paris [Par02] proved that the positive sub-
monoid, called the Artin monoid, naturally embeds in its Artin group. For
some particular classes of Artin groups (e.g. those of spherical type) infor-
mation about the Artin monoid can be used to understand the Artin group.
Artin monoids have been studied e.g. in [BS72, BCMWR24, Mic99]. For
Artin groups in general there is currently no known way to translate in-
formation from the Artin monoid to the Artin group; see the introduction
of [BCMWR24] for further discussion of this.

When studying finitely generated submonoids of Artin groups certain
natural algorithmic problems naturally arise. The most fundamental of these
is the membership problem, which given a finitely generated submonoid of the
group asks whether there is an algorithm that, given an element of the group
(as a word over the generators), can decide whether that element belongs
to the submonoid. This generalizes the subgroup membership problem, also
sometimes called the generalized word problem, which asks about deciding
membership in a finitely generated subgroup.

In this article we will study the membership problem in finitely generated
submonoids, and more generally rational subsets, of Artin groups. We will
also investigate a range of other related membership-type decision problems
including the fixed-target submonoid membership problem and semigroup
intersection problem. Further motivation for studying the submonoid mem-
bership problem in Artin groups comes from the fact that the word problem
for Artin groups can be reduced to deciding membership in particular finitely
generated submonoids. For example, it is not hard to see that for any Artin
group if membership in the Artin submonoid of that Artin group is decidable
then it follows that the Artin group has decidable word problem. Indeed,
in this case to decide whether a given word equals the identity one can first
check whether it belongs to the Artin submonoid. If it does not belong to
the submonoid, then it is not equal to the identity element; and if it does,
then we can use the fact that the Artin monoid (trivially) has decidable word
problem to test whether the word equals the identity in the Artin monoid,
and hence in the group.

Membership problems in braid and Artin groups have already received
some attention in the literature. Makanina [Mak81] proved that Bn has
undecidable subgroup membership problem for n ≥ 5, and Potapov [Pot13]
proved that the submonoid membership problem in B3 is NP-hard when
n = 3. He left as an open question whether the submonoid membership
problem is decidable in the braid group B4. In a later paper of Ko &



MEMBERSHIP PROBLEMS IN BRAID GROUPS AND ARTIN GROUPS 3

Potapov [KP17] the submonoid membership problem in B4 is again men-
tioned as an open problem, and in relation to this problem they observe
that by a result of [Aki91] there is no embedding from a set of pairs of
words into B4, leading them to speculate that the submonoid membership
problem might be decidable for B4 since the proof that B5 has undecidable
submonoid membership problem, and many other undecidability results for
B5, essentially rely on finding an embedding from a set of pairs of words
into B5; see [Mak81,Pot13].

The first result we will prove in this paper is that, contrary to their
expectation, the braid group B4 in fact has undecidable submonoid mem-
bership problem. More precisely we shall show that B4 contains a fixed
finitely generated submonoid in which membership is undecidable. Com-
bined with Potapov’s results in [Pot13], this completes the classification of
braid groups with decidable submonoid membership problem as being pre-
cisely those braid groups Bn where n ≤ 3. The key new tool that we use
to establish this result for braid groups is to make use of the classification
of right-angled Artin groups (RAAGs) with decidable submonoid member-
ship problem [LS08] due to Lohrey & Steinberg, combined with a result
of Droms, Lewis & Servatius about embedding particular RAAGs into B4;
see Theorem 3.1. This result also shows that the same classification result
also determines the braid groups with decidable rational subset membership
problem.

The families of braid groups and of RAAGs, both belong to the larger class
of Artin groups. With the classification for braid groups with decidable sub-
monoid membership problem described in the previous paragraph in hand,
and also the corresponding result for RAAGs from [LS08], the next natural
question is whether we can classify the Artin groups with decidable sub-
monoid membership problem. It turns out that we can. In Theorem 4.4 we
shall completely classify the Artin groups with decidable submonoid mem-
bership problem in terms of the non-existence of certain forbidden induced
subgraphs of the defining graph.

One consequence of the results we prove in this paper is to show that for
Artin groups there is a close connection between the submonoid membership
problem and another well-studied notion in the literature called subgroup
separability (also called LERF). It will follow from our results, together
with the results from [AL21], that the class of Artin groups with decidable
submonoid membership problem coincides exactly with the class of Artin
groups that are subgroup separable. We stress that for finitely presented
groups there is in general no implication between these properties in the
sense that a subgroup separable group need not have decidable submonoid
membership problem, and vice versa. Indeed, finitely generated nilpotent
groups are subgroup separable by Mal’cev 1948 (see [Seg05, Exercise 11,
Chapter 1]) but there are nilpotent groups with undecidable submonoid
membership problem; see e.g. [Rom22]. For the other direction observe that
the Baumslag-Solitar group BS(1, 2) has decidable submonoid membership
problem by [CCZ20] but it is not subgroup separable by results from [BN74]
(see also [RV96, Proposition 1]).
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In addition to the submonoid membership problem, there are a range of
other natural membership-type problems in groups that have been intro-
duced and investigated including: rational subset membership, semigroup
intersection, the group problem, and the identity problem (see below for
definitions of these notions). The study of these decision problems has mo-
tivation coming from both mathematics and theoretical computer science,
and is a burgeoning field of research with a lot of recent intensive activity;
see e.g. the recent survey articles [Don23, Loh24] and also [Loh15]. For a
helpful diagram showing how all these decision problems relate to each other
we refer the reader to [Don23, Fig. 1]. In addition to the submonoid mem-
bership problem, we shall also consider these other decision problems listed
above for Artin groups. We will show that our classification of Artin groups
with decidable submonoid membership problem also gives a classification of
Artin groups with decidable rational subset membership problem, and with
decidable semigroup intersection problem; see Corollary 4.6.

We do not currently know if this extends to also classify the Artin groups
with decidable group problem or identity problem. In this direction in The-
orem 4.5 we identify some families of Artin groups for which the identity
problem and group problem are undecidable, and in the remaining cases
of our classification we show that a related problem is undecidable: the
fixed-target submonoid membership problem (that we shall define). These
results are established by proving several new undecidability results for the
right-angled Artin group A(P4), where P4 denotes the path graph on four
vertices, in Section 3.

In addition to presenting these algorithmic results on braid and Artin
groups, another aim of this paper is to bring to the attention to those working
on group and semigroup membership problems this method of embedding
A(P4) as an approach to proving undecidability results for groups that are
known not to contain F2 × F2. Indeed, it was recently proved in [FGNB24,
Corollary 6.4] that just embedding the trace monoid T (P4) into a group
is enough to yield undecidability of membership in rational subsets. We
believe that there are likely many more natural situations when pairs of
words cannot be embedded into a group, but A(P4) or T (P4) can, giving
rise to undecidability results. This is, for example, exactly what happens in
the case of one-relator groups and monoids; see [Gra20, FGNB24] and also
the related work [MV24].

The main results of the article are the following:

• We classify precisely when the submonoid (and rational subset) mem-
bership problem is decidable in braid groups (Theorem 3.1).
• We show that the fixed-target submonoid membership problem is

undecidable in B4 (Theorem 3.7).
• We classify precisely when the submonoid membership problem is

decidable in Artin groups in terms of the non-existence of certain
forbidden induced subgraphs of the defining graph (Theorem 4.4).
• We show that the same classification also applies for decidability of

other decision problems (the rational subset membership and the
semigroup intersection problem) in Artin groups (Corollary 4.6).
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• We identify some families of Artin groups for which the identity
problem and group problem are undecidable (Theorem 4.5).

Acknowledgements. We wish to thank the anonymous referees for their
careful reading of the article and useful comments.

2. Background

2.1. Monoid presentations and rational subsets. A finite set A =
{a1, . . . , an} is called an alphabet. The free monoid on A, i.e. the set of
all finite-length words on A with the operation concatenation, is denoted
A∗. Let A−1 denote a set in bijective correspondence with A via ai 7→ a−1i ,
and such that A ∩ A−1 = ∅. Then the free group FA on A is the set of all
freely reduced words over A∪A−1, i.e. words not containing subwords of the
form xx−1 or x−1x for any x ∈ A. If |A| = n, then the free group of rank
n is denoted Fn. For a set of relations R ⊆ FA × FA, a group presentation
〈A |R〉 is the quotient of FA by the least normal subgroup containing uv−1

for all (u, v) ∈ R. For more details on combinatorial group theory, we refer
the reader to [LS77].

A subset of A∗ is called a language. A finite automaton A (over the
alphabet A) consists of a finite set Q of states, a finite set ∆ ⊆ Q× A×Q
of transitions, a distinguished start state q0 ∈ Q, and a set F ⊆ Q of final
states. We will consider A as a directed graph, with vertex set Q and an

edge q
a−→ q′ whenever (q, a, q′) ∈ ∆. The language accepted by A, denoted

L(A), is the set of all words w ≡ a1a2 · · · an, where xi ∈ A, for which there

exist q1, . . . , qn ∈ Q such that for all 1 ≤ i ≤ n, we have (qi−1
ai−→ qi) ∈ ∆,

i.e. such that w labels a directed path from q0 to some state in F . Any
language R ⊆ A∗ such that R = L(A) for some finite automaton A is called
regular. To simplify some technical steps, we will also allow ε-transitions,

being edges of the form qi
ε−→ qj . This means that we can pass from state qi

to qj without reading any letter. It is well-known that the class of regular
languages is the same as the class of languages accepted by finite automata
allowing ε-transitions.

For a monoid M and a subset X ⊆ M , we denote by Mon(X) the sub-
monoid generated by X. The subsemigroup generated by X is denoted
Sgp(X). The set of rational subsets of M is the least subset of 2M such that
(i) any finite subset is rational; (ii) the union, product, resp. the submonoid
generated by a rational subset is again rational. Let A be a finite generating
set of a monoid G, and let π : A∗ → G be a surjective homomorphism. Then
it is classical to show (see [Loh15, Proposition 1]) that L ⊆ G is rational if
and only if there is a finite automaton A on A such that L = π(L(A)). In
particular, this definition does not depend on the choice of finite generating
set A or homomorphism π. If X ⊆ A∗, then if the context is clear we will
often write Mon(X) for Mon(π(X)), and analogously for Sgp(X).

2.2. Membership problems. There are many classical decision problems
in algebra, with the most fundamental example being the word problem,
which is the problem of deciding whether or not two words over some gen-
erating set of a (semi)group represent the same element. Another broad



6 GRAY AND NYBERG-BRODDA

class of decision problems that has distinguished itself as being of partic-
ular importance is the class of membership problems. In its most general
form, a membership problem for a monoid M takes as input a subset of
M (e.g. a submonoid), and an element of M (represented by a word), and
decides whether or not the element belongs to the subset. By fixing parts
of the input in this general membership problem, we obtain more restricted
problems: if the input word is fixed, we obtain a fixed-target membership
problem; and if the subset is fixed, then we obtain a non-uniform member-
ship problem (otherwise, it is uniform). Of course, if both the input word
and the subset are fixed, then the membership problem has no input and is
trivially decidable.

There are many actively studied decision problems which fall under these
umbrella terms. Let G be a group generated by a finite set A, with a sur-
jective homomorphism π : A∗ → G. The (uniform) submonoid membership
problem for G asks, on input a finite set X ⊆ A∗ of words, and a word
w ∈ A∗, whether or not π(w) ∈ Mon(X). The non-uniform submonoid
membership is the same problem, except the finite subset X is considered
fixed and not part of the input; similarly, the fixed-target submonoid mem-
bership problem fixes the word w, and only has X as part of the input. This
problem will thus be referred to as the “fixed-target submonoid membership
problem for w in M”. All the above terminology is retained if instead of
submonoids we consider membership in subsemigroups Sgp(X). A particu-
lar case of the fixed-target subsemigroup problem is when the fixed target
is 1, i.e. when we are given a set X and asked to decide if 1 ∈ Sgp(X). This
problem is known in the literature, e.g. [Don23], as the identity problem1.
Analogously, the (uniform) rational subset membership problem for G asks,
on input a finite automaton A over A and a word w ∈ A∗, whether or not
π(w) ∈ π(L(A)). The non-uniform version of this problem is the same, ex-
cept the automaton A is fixed, and not part of the input. In principle, one
could consider the fixed-target rational subset membership problem, fixing a
target element w, and leaving A as the only input. However, this can easily
seen to be equivalent to the (uniform) rational subset membership problem;
we thank C. Bodart for pointing out this fact to us.

Another important membership-type problem that will be studied herein
is the subsemigroup intersection problem, which asks, on input two finite
subsets X1, X2 ⊆ A∗, whether or not Sgp(X1) ∩ Sgp(X2) = ∅ in G. This
also has more and less uniform, as well as fixed-target, variants. For example,
one might fix one of the subsets Xi (making the problem less uniform), or
ask if some fixed element sits in the intersection (making the problem of
a fixed-target type). We remark that if a group G has decidable rational
subset membership problem, then we can also solve the identity problem and
the subsemigroup intersection problem in G. Indeed, the first is immediate,
and the latter follows from the fact that S1S

−1
2 is a rational subset of G for

any two finitely generated subsemigroups S1, S2. But S1 ∩ S2 6= ∅ if and
only if 1 ∈ S1S

−1
2 , and since we decide the latter, we can also decide the

former. Finally, another decision problem is the group problem, which takes

1The reader is warned that the terminology “identity problem” is somewhat unfortu-
nate, as this is also the classical name for the word problem, used e.g. by Dehn [Deh11].
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as input a finite set X of words and decides whether or not Sgp(X) is a
subgroup of G.

Decidability of any of the above decision problems does not depend on
the finite generating set chosen. Other decision problems, e.g. the subgroup
membership problem, are defined analogously. Decidability of the ratio-
nal subset membership problem is preserved by taking free products and
finite extensions of groups, see [Loh15, Theorem 15]. On the other hand,
decidability of the submonoid membership is not preserved by taking free
products, as recently shown by Bodart [Bod24].

Remark 2.1. The decision problems discussed in this section behave well
when passing from a finitely generated group to a finitely generated sub-
group. More precisely, let G be a finitely generated group and H ≤ G
a finitely generated subgroup, and suppose that P is any of the follow-
ing decision problems: submonoid membership problem, subgroup member-
ship problem, rational subset membership problem, fixed-target submonoid
membership problem with a fixed target element γ, subsemigroup intersec-
tion problem, group problem, and identity problem. Then it is straight-
forward to see that if P is decidable in G then P is also decidable in H.
This is an important tool for showing various problems are undecidable in
a group, by embedding a suitable group for which we know the problem is
undecidable.

2.3. Artin and braid groups. Let Γ be a finite simplicial graph with
edges labelled by natural numbers greater than or equal to 2. Then the
Artin group A(Γ) is the group defined by the presentation with generating
set the set V Γ of vertices of Γ and a defining relation

abab . . .︸ ︷︷ ︸
m-factors

= baba . . .︸ ︷︷ ︸
m-factors

for each edge that connects vertices a and b and is labelled m. We call a
subgraph ∆ of Γ induced if for any two vertices in ∆ if they are adjacent in
Γ then they are also adjacent in ∆.

In this article there are two particular families of Artin groups that will
play an important role, namely braid groups and right-angled Artin groups.
For n ≥ 3, the n-strand braid group Bn is defined to be the group

(1) Bn := 〈σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1, σiσj = σjσi〉,

with the first set of relations being taken for all 1 ≤ i < n−1, and the second
set only being taken for those i, j such that |i − j| ≥ 2. There is a natural
pictorial description of any element (braid) of a braid group, which also gives
rise to a simple way to multiply braids together; see [KT08, §1.2.2]. Clearly
the n-strand braid groups Bn are all Artin groups. For example, the braid
group B4 is the Artin group A(Γ) where Γ is a triangle with edges labelled
(2, 3, 3).

A right-angled Artin group is an Artin group with the property that every
edge in its defining graph Γ is labelled by the number 2. In this case, we
omit the edge labels: given a finite, undirected, simple graph Γ with vertices
V and edges E, the right-angled Artin group A(Γ) is thus the group with
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finite presentation

(2) A(Γ) := 〈V | vivj = vjvi if and only if (vi, vj) ∈ E〉.
Due to the form of their defining relations, right-angled Artin groups are
sometimes also called partially commutative groups. For a general introduc-
tion to right-angled Artin groups, see [Cha07]. Given a graph Γ the monoid
T (Γ) with the same presentation as in (2), but viewed as a monoid presen-
tation, is called the trace monoid with defining graph Γ. It is known [Par02]
that the trace monoid naturally embeds in the corresponding right-angled
Artin group.

3. Braid groups and right-angled Artin groups

As explained in the introduction, Potapov [Pot13] in his study of the
membership problem in braid groups left as an open problem the case of the
submonoid membership problem for B4, whereas the problem is decidable
in B3 and undecidable in Bn for n ≥ 5. We begin this section by presenting
a result that completes the classification of braid groups with decidable
submonoid membership problem, and shall also observe that the result also
characterizes those braid groups with decidable rational subset membership
problem.

Theorem 3.1. The braid group Bn has decidable submonoid membership
problem if and only n ≤ 3. Furthermore, if n ≤ 3 then Bn has decidable
rational subset membership problem, while if n ≥ 4 then Bn contains a fixed
finitely generated submonoid in which membership is undecidable.

Theorem 3.1 will be proved by applying several results from the literature
on right-angled Artin groups and their embeddings into braid groups. First,
we have the following result of Lohrey & Steinberg in which they classify the
right-angled Artin groups with decidable submonoid, and rational subset,
membership problem.

Theorem 3.2 (Lohrey & Steinberg [LS08, Theorem 1 and Corollary 3 ]). A
right-angled Artin group A(Γ) has decidable submonoid membership problem
if and only Γ does not contain C4 or P4 as an induced subgraph. Further-
more, if Γ does not contain C4 or P4, then A(Γ) has decidable rational subset
membership problem, while if Γ does contain C4 or P4 then A(Γ) contains a
fixed finitely generated submonoid in which membership is undecidable.

Here, and throughout this present article, C4 denotes the cycle graph on
four vertices, and P4 denotes the path graph on four vertices. As mentioned
in the introduction, there is no embedding of pairs of words, i.e. the trace
monoid T (C4), into B4, and hence the group A(C4) ∼= F2×F2 also does not
embed into the braid group B4. However, the following result of Droms,
Lewin & Servatius shows that the group A(P4) does embed into B4.

Theorem 3.3 (Droms, Lewin & Servatius [DLS91, Corollary 1]). The sub-
group of B4 generated by s22, (s2s3s2)

2, s23, s
2
1 is isomorphic to A(P4).

Proof of Theorem 3.1. The group B3 is isomorphic to the torus knot group
〈x, y | x2 = y3〉 (see e.g. [CP05, Proof of Theorem 5.1]), which is known
to have a finite index subgroup isomorphic to Fn × Z (see [NW01]). The
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group Fn×Z has decidable rational subset membership problem by [KSS07,
Theorem 6.5]. Since having decidable rational subset membership problem
is preserved by taking finite index extensions (see [Loh15, Section 5]) it
follows that B3 also has decidable rational subset membership problem, and
hence so does Bn for all n ≤ 3.

If n ≥ 4 then by Theorem 3.3 of Droms, Lewis & Servatius the group
Bn contains a subgroup isomorphic to the RAAG A(P4), and by Lohrey
& Steinberg’s Theorem 3.2 the group A(P4) contains a fixed finitely gener-
ated submonoid in which membership is undecidable. Hence, together with
Remark 2.1, it follows that for n ≥ 4 the braid group Bn contains a fixed
finitely generated submonoid in which membership is undecidable. �

In Section 4 we will extend Theorem 3.1 to general Artin groups, giving
the result Theorem 4.4 which provides a common generalization of both
Theorem 3.1 and the Theorem 3.2 of Lohrey & Steinberg for RAAGs.

Before turning our attention to general Artin groups, we shall investigate
some other decision problems for braid groups. Since B3 has decidable ratio-
nal subset membership problem it follows that the submonoid membership
problem, the subsemigroup intersection problem, group problem, identity
problem, and subgroup membership problems are all also decidable in B3.
By a classical result of Mikhailova [Mik58] A(C4) ∼= F2×F2 has undecidable
subgroup membership problem (in fact contains a fixed finitely generated
subgroup in which membership is undecidable), while Bell & Potapov [BP10]
have proved that A(C4) ∼= F2×F2 has undecidable identity problem. It fol-
lows from this that the identity problem, group problem, submonoid mem-
bership problem, and the semigroup intersection problem are all undecidable
in A(C4) ∼= F2×F2. But Makanina [Mak81] proved that there exists an em-
bedding F2×F2 ≤ Bn when n ≥ 5, and it follows that all of these problems
are also undecidable in in Bn with n ≥ 5; for the submonoid membership
problem this is immediate, and for the identity and group problems this was
proved by Potapov in [Pot13, Theorem 14].

This leaves the question of decidability of each of: the identity problem,
group problem, and the semigroup intersection problem in B4. Since F2×F2

does not embed into B4 one cannot get undecidability results in the same
way as for Bn with n ≥ 5. However, we know that A(P4) does embed in
B4, and in the rest of this section we explore the extent to which this can
utilized to gain insights into which of these problems is decidable for the
four-strand braid group B4.

3.1. A connection between rational subsets and submonoids. The
rational subset membership problem is undecidable in the right-angled Artin
group A(P4). In this section we will build on ideas of Lohrey & Steinberg
[LS08] (cf. also [FGNB24, Lemma 6.8]) to generalize this result somewhat
for our purposes. The proof of the following lemma follows similar lines of
the proof of [LS08, Lemma 11].

Lemma 3.4. Let G be any finitely generated group, and let F be the free
group with basis {x, y, z}. Then the following hold:
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(i) If the fixed-target submonoid membership problem for xy−1 in G ∗F
is decidable, then the rational subset membership problem in G is
decidable.

(ii) If the semigroup intersection problem is decidable in G ∗ F with re-
spect to the subsemigroup Sgp(xy−1), then the rational subset mem-
bership problem in G is decidable.

Proof. Let A be a finite generating set for G, and let X = {x, y, z}, assuming
without loss of generality that A ∩ X = ∅. Let Σ = A ∪ X, and let Σ =
Σ ∪ Σ−1. Let π : Σ

∗ → G ∗ F be the canonical surjective homomorphism.
Let R ⊆ Σ

∗
be any regular language, and let A be a finite state automaton

over Σ such that L(A) = R, allowing ε-edges; in particular, we may assume
without loss of generality that A = (Q,Σ, δ, q0, qf ) has a single initial state
q0 ∈ Q and a single accepting state qf ∈ Q, where q0 6= qf . Let

Q̃ = {x, y, zixz−i (1 ≤ i ≤ |Q| − 2)}

which is a finite set of size |Q|. We fix a bijection between the two sets Q

and Q̃ such that q0 7→ x and qf 7→ y. For q ∈ Q, let q̃ denote the image of q

in Q̃. Clearly, Q̃ generates a free subgroup of F of rank |Q|.
The idea is now to encode the transitions of the automaton A into ele-

ments of G ∗ F . To do this, we define the (finite) set

∆ = {p̃σq̃−1 | p σ−→ q is a transition in A}

and we will prove that

(3) 1 ∈ π(R) ⇐⇒ π(xy−1) ∈ Mon(∆).

Thus, proving that (3) holds clearly suffices to establish part (i) of the
lemma, for deciding whether 1 ∈ π(R) for any regular language R is equiva-
lent to solving the rational subset membership problem, as u ∈ π(R) if and
only if 1 ∈ u−1π(R) where u−1π(R) is a rational subset. Similarly, we will
also prove that

(4) Sgp(xy−1) ∩ Sgp(∆) 6= ∅ ⇐⇒ π(xy−1) ∈ Mon(∆).

This second part clearly implies part (ii) of the lemma. Indeed, taking
equations (3) and (4) together it follows that deciding Sgp(xy−1)∩Sgp(∆) 6=
∅ is equivalent to deciding 1 ∈ π(R) which, as explained in the previous
paragraph, is equivalent to solving the rational subset membership problem

To prove (3) and (4), and thereby establish the lemma, we will rely
on the following claim, which generalizes part of [LS08, Claim 1, proof of
Lemma 11]. We shall see that this claim will be sufficient to establish both
(3) and (4):

Claim. Suppose that in G ∗ F the equality

(5) (xy−1)M = (p̃1v1q̃1
−1)(p̃2v2q̃2

−1) · · · (p̃nvnq̃n−1)

holds for some M ≥ 1, where pi
vi−→ qi is a path in A for all 1 ≤ i ≤ n. Then

we have 1 ∈ π(R).

Proof of Claim. The proof will use a similar induction on n as in the proof
of [LS08, Claim 1, proof of Lemma 11]. If n = 1, then we have (xy−1)M =
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p̃nvnq̃n
−1 in G∗F , which by the normal form for free products clearly implies

that M = 1, which is the case dealt with in [LS08].
Thus, assume n > 1, and that the claim holds for n−1. There are several

subcases to consider. First, suppose qi = pi+1 for some i. In this case, we

can cancel these terms, and since we then have a path pi
vivi+1−−−−→ qi+1, we

can apply induction. On the other hand, if qi = pi and vi = 1 for some
1 ≤ i ≤ n, then we can of course eliminate p̃iviq̃i

−1 from (5) and obtain a
shorter expression, and we are done by induction. Thus, the last case to
consider is that qi 6= pi+1 and that pi = qi implies vi 6= 1 for all 1 ≤ i ≤ n.
Said otherwise, this says that the right-hand side of (5) is in normal form,
and hence, since the left-hand side is also in normal form, we must have
n = M , vi = 1 in G, as well as p̃i = x and q̃i = y for all 1 ≤ i ≤ n. In

particular, p1 = q0 and q1 = qf , and since p1
v1−→ q1, we have q0

1−→ qf . In
other words, we have 1 ∈ L(A), as required. �

Having proved the Claim, we now first establish that (3) holds. Indeed,
let us suppose first that 1 ∈ π(R), and let w ∈ R be some word such that
π(w) = 1. We can then write w ≡ σ1σ2 · · ·σn such that

q0
σ1−→ q1

σ2−→ q2
σ3−→ · · · σn−1−−−→ qn−1

σn−→ qn

is an accepting path in A, where σi ∈ Σ∪{ε} for all 1 ≤ i ≤ n. Thus we
have

π(xy−1) = π(xwy−1) = π (q̃0(σ1σ2 · · ·σn)q̃f )

= π
(
(q̃0σ1q̃1

−1)(q̃1σ2q̃2
−1) · · · (q̃n−1σnq̃f−1)

)
∈ π(∆∗),

as desired. To prove the other direction, suppose that π(xy−1) ∈ π(∆∗).
Then in G ∗ F we have the equality

xy−1 = q̃0q̃f
−1 = (q̃0σ1q̃1

−1) (q̃1σ2q̃2
−1) · · · (q̃n−1σnq̃f−1)

where q̃iσiq̃i ∈ ∆ for all 1 ≤ i ≤ n. Hence, by the Claim, we must have
1 ∈ π(R). This completes the proof of the equivalence (3), and hence also
part (i) of the lemma.

Let us now prove the equivalence (4), which will complete the proof of part
(ii) of the lemma, and thereby also the entire lemma. If π(xy−1) ∈ Mon(∆),
then clearly as xy−1 6= 1 in G ∗ F , we have that π(xy−1) ∈ Sgp(∆), and
hence Sgp(xy−1)∩Sgp(∆) 6= ∅ as required. Suppose next, for the converse,
that Sgp(∆)∩Sgp(xy−1) 6= ∅. Then some power of xy−1 lies in Sgp(∆), i.e.

(xy−1)M = (p̃1v1q̃1
−1)(p̃2v2q̃2

−1) · · · (p̃nvnq̃n−1)

in G ∗ F , where the pi
ai−→ qi are paths in A. By the above claim, we

have 1 ∈ π(L(A)). Hence, by (3), we have that π(xy−1) ∈ Mon(∆). This
completes the proof of (4), and hence also the proof of the lemma. �

3.2. Further undecidability in A(P4). In this section we shall state and
prove several undecidability results for the right-angled Artin group A(P4)
that are needed to prove the results about the braid group B4 in the next
section. We fix some notation throughout this section. We fix the following
presentation for A(P4):

(6) A(P4) = 〈a, b, c, d | ab = ba, bc = cb, cd = dc〉
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In order to apply Lemma 3.4 to the group A(P4) we first recall (Theorem 3.2)
that the rational subset membership problem in A(P4), and indeed in any
group containing a copy of A(P4), is undecidable. We now show undecid-
ability of both the fixed-target submonoid membership problem, and the
semigroup intersection problem, in the monoid A(P4); this proposition will
then be used to yield our undecidability results in B4.

To prove the proposition we shall need the following result which is a
special case of results proved in [DLS91]. For the convenience of the reader
we provide the details on how to deduce this lemma by applying results
from [DLS91].

Lemma 3.5. Let

G = A(P4) = 〈a, b, c, d | ab = ba, bc = cb, cd = dc〉.
For i ≥ 0 set

αi = (ad)i(aca−1)(ad)−i, βi = (ad)ib(ad)−i,

µi = (da)ic(da)−i, δi = (da)i(dbd−1)(da)−i.

Then these elements are all distinct in G and the subgroup H = 〈X〉 of G
generated by

X = {αi, βi, µi, δi : i ≥ 0}
is isomorphic to the RAAG A(P∞) where P∞ is the bi-infinite line

α2 β2 α1 β1 α0 β0 µ0 δ0 µ1 δ1 µ2 δ2

Proof. Since the words αi and µi have c-exponent sum 1 and the words βi
and δi have c-exponent sum zero it follows that no word from {αi, µi : i ≥ 0}
is equal in G to any word from {βi, δi : i ≥ 0}. Note that all the words in
the set {αi, µi : i ≥ 0} represent elements in the subgroup

〈a, d, c〉 ∼= 〈a〉 ∗ 〈c, d〉 ∼= Z ∗ (Z× Z)

of G. Using normal forms in this free product it then follows that distinct
words from the set {αi, µi : i ≥ 0} represent distinct elements of G. A
similar argument working in 〈a, b, d〉 ∼= (Z×Z)∗Z shows that distinct words
from the set {βi, δi : i ≥ 0} represent distinct elements of G. Hence the
words in the set X all represent distinct elements of the group G.

Clearly α0 = aca−1 commutes with β0 = b, which upon conjugation by
(ad)i implies that αi commutes with βi for all i. Also αi commutes with
βi+1 since c commutes with dbd−1. Conjugating these pairs by d implies
that µi commutes with δi, and that µi+1 commutes with δi. Together with
the fact that β0 = b commutes with µ0 = c this shows that words labelling
adjacent vertices in P∞ commute in G.

Now let N be the normal closure in G of the subset {b, c} ⊆ G. It follows
from [DLS91, Theorem 2] (see also the second paragraph of the proof of
Theorem 3 in [DLS91]) that N is isomorphic to a RAAG with generators
being the set of distinct conjugates C of b and c in G by elements from the
subgroup 〈a, d〉 ≤ G, and where the defining relators for the RAAG N are
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given by commutators for each pair of elements from C that commute with
each other in G. It is also proved in [DLS91, Theorem 2 and Theorem 3] that
the underlying graph Φ of the RAAG N is a forest. By definition all of the
elements from X belong to the set C. Hence, the subgroup H of G generated
by X is in fact the subgroup of A(Φ) generated by X. Since X ⊆ Φ, it thus
follows that H is isomorphic to the RAAG on the subgraph of Φ induced by
X, i.e. H is a special subgroup of A(Φ), see e.g. [Vog15, Lemma 3.2]. That is,
H is isomorphic to the RAAG with generating set X and defining relations
given by commutators for every pair of elements from X that commute in
A(Φ). Since Φ is a forest it follows that the only commutation relations
between pairs of elements in the set X are those corresponding to edges
in the graph P∞, since any additional edge would create a cycle. This
completes the proof that H ∼= A(P∞). �

Proposition 3.6. Let G = A(P4) be the right-angled Artin group (6). Then:

(i) The fixed-target submonoid membership problem for aca−1c−1 ∈ A(P4)
is undecidable.

(ii) The semigroup intersection problem is undecidable; indeed there is
no algorithm that takes a finite set X ⊆ A(P4) and decides whether
or not Sgp(X) ∩ Sgp(aca−1c−1) = ∅.

Proof. Let

G = A(P4) = 〈a, b, c, d | ab = ba, bc = cb, cd = dc〉.
Throughout the proof we use the same notation as in the statement of
Lemma 3.5. Let F = 〈α1, α0, µ0〉 ≤ G and let L = 〈µ1, δ1, µ2, δ2〉 ≤ G. It
follows from Lemma 3.5 that F is isomorphic to a free group of rank 3 with
basis {α1, α0, µ0}. It also follows from Lemma 3.5 that L is isomorphic to
the group A(P4), so by Theorem 3.2 the group L has undecidable rational
subset membership problem.

It then follows from Lemma 3.4(i) that the fixed-target submonoid mem-
bership problem for α0µ

−1
0 in L∗F is undecidable. Indeed, if the fixed-target

submonoid membership problem for α0µ
−1
0 in L ∗F were decidable then by

Lemma 3.4(i) it would follow that the rational subset membership problem
in L is decidable, which it is not as L ∼= A(P4).

Now let

Y = {α1, α0, µ0, µ1, δ1, µ2, δ2} ⊆ G
and let K = 〈Y 〉 ≤ G be the subgroup of G generated by Y . Then by
Lemma 3.5 we have

K = 〈Y 〉 = 〈α1, α0, µ0, µ1, δ1, µ2, δ2〉
∼= 〈α1, α0, µ0〉 ∗ 〈µ1, δ1, µ2, δ2〉 ∼= L ∗ F.

Since by the previous paragraph the fixed-target submonoid membership
problem for α0µ

−1
0 in L ∗ F is undecidable, and K ∼= L ∗ F vie the isomor-

phism described above it follows that the fixed-target submonoid member-
ship problem for α0µ

−1
0 in K is undecidable.

Note that by definition α0 = aca−1 and µ0 = c hence α0µ
−1
0 = aca−1c−1

in G. Since the fixed-target submonoid membership problem for α0µ
−1
0

in K is undecidable, and since K is a finitely generated subgroup of G,
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it then follows by the contrapositive of Remark 2.1 that the fixed-target
submonoid membership problem for α0µ

−1
0 in G is undecidable. But since

α0µ
−1
0 = aca−1c−1 in G this means that the fixed-target submonoid mem-

bership problem for aca−1c−1 in G is undecidable. This completes the proof
of part (i) of the proposition.

The proof of part (ii) of the proposition is dealt with in a similar way but
by applying Lemma 3.4(ii). The details are as follows.

Maintaining the same notation as earlier in the current proof, it follows
from Lemma 3.4(ii) that the semigroup intersection problem in L ∗ F with
respect to the subsemigroup Sgp(α0µ

−1
0 ) is undecidable. Indeed, if the semi-

group intersection problem were decidable in L ∗ F with respect to the
subsemigroup Sgp(α0µ

−1
0 ) then by Lemma 3.4(ii) it would follow that the

rational subset membership problem in L is decidable, which it is not as
L ∼= A(P4). Then since

K = 〈Y 〉 ∼= 〈α1, α0, µ0〉 ∗ 〈µ1, δ1, µ2, δ2〉 ∼= L ∗ F
it follows that the semigroup intersection problem in K with respect to the
subsemigroup Sgp(α0µ

−1
0 ) is undecidable.

Since the semigroup intersection problem in K with respect to the sub-
semigroup Sgp(α0µ

−1
0 ) is undecidable and since K is a finitely generated

subgroup of G, it then follows by the contrapositive of Remark 2.1 that
the semigroup intersection problem in G with respect to the subsemigroup
Sgp(α0µ

−1
0 ) is undecidable. In more detail suppose, seeking a contradiction,

that the semigroup intersection problem in G with respect to the subsemi-
group Sgp(α0µ

−1
0 ) is decidable. This would mean that there is an algorithm

that for any finite set of words W ⊆ {a, b, c, d, a−1, b−1, c−1, d−1}∗ can decide
whether or not

Sgp(α0µ
−1
0 ) ∩ Sgp(W ) = ∅.

But then in particular given any finite set of words U ⊆ (Y ∪ Y −1)∗ we can
rewrite these words via the substitutions

αi 7→ (ad)i(aca−1)(ad)−i, βi 7→ (ad)ib(ad)−i,

µi 7→ (da)ic(da)−i, δi 7→ (da)i(dbd−1)(da)−i

to a finite set of words U ′ ⊆ {a, b, c, d, a−1, b−1, c−1, d−1}∗ representing the
same set of elements of G as U . Then by assumption we can decide whether
or not

Sgp(α0µ
−1
0 ) ∩ Sgp(U ′) = ∅ in G.

But since Sgp(U ′) ≤ K and Sgp(α0µ
−1
0 ) ≤ K it follows that

Sgp(α0µ
−1
0 ) ∩ Sgp(U ′) = ∅ in G

if and only if
Sgp(α0µ

−1
0 ) ∩ Sgp(U) = ∅ in K

where U is the original finite subset U ⊆ (Y ∪ Y −1)∗ of words over the
generators of K. This shows that there is an algrothm that takes any finite
subset U ⊆ (Y ∪Y −1)∗ and decides whether or not Sgp(α0µ

−1
0 )∩Sgp(U) = ∅

in K = 〈Y 〉. This gives the required contradiction, since the semigroup
intersection problem in K with respect to the subsemigroup Sgp(α0µ

−1
0 ) is

undecidable.
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Finally, since α0µ
−1
0 = aca−1c−1 in G this means that the semigroup

intersection problem in G with respect to the subsemigroup Sgp(aca−1c−1)
is undecidable. This completes the proof of part (ii) of the proposition. �

3.3. Undecidability in the braid group B4. In this section we state
and prove several undecidability results about the braid group B4. Each
of the results will follow from the corresponding result for the group A(P4)
proved in §3 together with the fact (Theorem 3.3) that A(P4) embeds as a
subgroup of B4 and the fact (see Remark 2.1) that decidability of each of
these problems is inherited by finitely generated subgroups of groups.

Theorem 3.7. Let B4 be the braid group on four strands. Then in B4:

(i) The submonoid membership problem is undecidable; indeed, there is
a fixed finite subset X ⊆ B4 such that there is no algorithm deciding
membership in Mon(X) ≤ B4.

(ii) The fixed-target submonoid membership problem for γ0 ∈ B4 is un-
decidable, where γ0 is the braid in Figure 1, that is, there is no algo-
rithm that takes a finite set of braids X ⊆ B4 and decides whether
or not γ0 ∈ Mon(X).

(iii) The subsemigroup intersection problem is undecidable; indeed, there
is no algorithm that takes a finite set of braids X ⊆ B4 and decides
whether or not Sgp(X) ∩ Sgp(γ0) = ∅.

Figure 1. The braid γ0 from Theorem 3.7.

Proof. We prove each statement in turn.

(i) In [LS08] it is proved that there is a fixed finite subset X ⊆ A(P4)
such that there is no algorithm deciding membership in Mon(X) ≤
A(P4). Since A(P4) ≤ B4 by Theorem 3.3, the same undecidability
result is also true for B4.

(ii) By Theorem 3.3, A(P4) is isomorphic to the subgroup of B4 gener-
ated by σ22, (σ2σ3σ2)

2, σ23, σ
2
1, with the generators given in the same

order as in P4 and where the σi are the generators of B4 in (1).
Thus, by Proposition 3.6(i), taking a = σ22 and c = σ23, we get that
the fixed-target submonoid membership problem is undecidable for
γ0 = σ22σ

2
3σ
−2
2 σ−23 , which is precisely the element in Figure 1.

(iii) This follows from using the same element γ0 as in (ii) and applying
Proposition 3.6(ii).

�

Recall from §2.2 that the fixed-target subsemigroup membership prob-
lem for 1 ∈ B4 is usually called the identity problem. We do not know
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whether this problem is decidable in B4. However, Theorem 3.7(ii) shows
that if we consider the fixed-target subsemigroup membership problem for
γ0 rather than that for 1, then the problem becomes undecidable. This
might be regarded as evidence that identity problem may also be undecid-
able in B4. Other problems that remain open for B4 are the group problem
and the subgroup membership problem. Note that B4 is known to be inco-
herent [GLR04], i.e. it contains finitely generated subgroups which are not
finitely presented. This shows that the subgroup structure of B4 is already
complicated, and lends credence to the idea that the subgroup membership
problem may be undecidable in B4.

We end this section by remarking that all the decidability results proved
in this section for braid groups also hold true for a closely related object
called the pure braid group PBn. Indeed, it well-known and also clear from
equation (1) above (and the graphical representation of braids see [KT08,
§1.2.2]) that Bn surjects onto Sn. The kernel of this homomorphism is
called the pure braid group PBn, which hence has index n! in Bn. All of
the undecidability results above for Bn, were proved by means of embedding
certain right-angled Artin groups A(Γ) into Bn. However, the results are
equally valid for PBn, by the following reasoning. It follows from the main
result of [CP01] that if A(Γ) is a right-angled Artin group with generating
set V (defined by the presentation in equation (2)) then for any natural
number k ∈ N with k ≥ 2 the subgroup of A(Γ) generated by the set of
powers {vk : v ∈ V } is again isomorphic to the group A(Γ). Hence by
taking powers which are sufficiently large multiples of [Bn : PBn] = n! it is
not difficult to see that the following statement holds: for every finite graph
Γ, there is a subgroup of Bn that is isomorphic to A(Γ) if and only if there
is a subgroup of PBn that is isomorphic to A(Γ). Thus, all undecidability
results above for Bn with n ≥ 4 also hold for PBn with n ≥ 4. To see that
all the statements in Theorem 3.7 remain true for the pure braid group PB4,
it simply suffices to note that γ0 ∈ PB4. Similarly, when n ≤ 3, since Bn

has decidable rational subset membership problem and PBn ≤ Bn it follows
that the rational subset membership problem (along with all other decision
problems discussion in this section) is decidable in PBn when n ≤ 3.

4. Artin groups

In Theorem 3.7 above we give a list of undecidability results for B4 ob-
tained by applying the general results for A(P4) established earlier in the
paper. That result was the original motivation for the work done in this
article, which for the decision problems listed in that theorem shows that
the problem is decidable in Bn if and only if n ≤ 3. Somewhat surprisingly
it turns out that, using similar methods, for each of the decision problems
given in Theorem 3.7 we can classify exactly for which Artin groups the
given problem is decidable2. This classification will be given in terms of the
existence of certain subgraphs in the defining graph. This result provides

2The authors wish to thank Sang-hyun Kim (KIAS) for suggesting that our results and
methods above for B4 might also be applied successfully to other Artin groups, and for
other helpful discussions pertaining to right-angled Artin groups and braid groups.
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a common generalization of our characterization of braid groups with de-
cidable submonoid membership problem above, and the theorem of Lohrey
& Steinberg from [LS08] which characterizes the right-angled Artin groups
with decidable submonoid membership problem. As well as developing and
applying some of the ideas from [LS08], the other key ingredient for us is
the recent work of Almeida & Lima [AL21, AL24] who classified the sub-
group separable Artin groups. It will turn out that the conditions needed
for an Artin group to be subgroup separable exactly match the conditions
needed for it to have decidable submonoid (and rational subset) membership
problem. Recall that a group G is subgroup separable if for every finitely
generated subgroup H of G, and element g ∈ G \H there is a finite index
subgroup K of G, which contains H but g 6∈ K.

Following [AL21] we use A(S) to denote the smallest class of Artin groups
that contain all Artin groups of rank at most two, and has the following
properties

• A,B ∈ A(S)⇒ A ∗B ∈ A(S);
• A ∈ A(S)⇒ A× Z ∈ A(S).

It follows from recent work [AL21, Corollary A] that every subgroup sep-
arable Artin group lies in A(S). The first result we will establish is the
following.

Theorem 4.1. Every group in A(S) has decidable rational subset mem-
bership problem. In particular, every subgroup separable Artin group has
decidable rational subset membership problem.

In [KSS07, Theorem 3.1] it is shown that a finitely generated group G has
decidable rational subset membership problem if and only if the word prob-
lem for G with respect to A is RID (rational intersection decidable). Here
the word problem for the group is the set of all words over the finite generat-
ing set that are equal to the identity element of the group. In [LS08] Lohrey
& Steinberg introduce another class called SLI (semilinear intersection) lan-
guages, and corresponding class of SLI-groups. They prove [LS08, Lemma 4]
that this class is contained in the class of languages RID, so every SLI-group
is an RID-group and hence has decidable rational subset membership prob-
lem.

We will prove Theorem 4.1 by showing that every subgroup separable
Artin group is an SLI-group. This can be done by first verifying that all
rank 1 and rank 2 Artin groups are SLI-groups, and then applying some
closure properties from of SLI-groups from [LS08].

We will not need to define SLI-groups here but just list some examples
and basic properties in the following result. For a definition of SLI-group
we refer the reader to [LS08, Section 3].

Lemma 4.2. Let G and H be finitely generated groups.

(i) If G is an SLI-group, then G× Z is also an SLI-group.
(ii) If G and H are SLI-groups, then G ∗H is also an SLI-group.

(iii) If H is a finite index subgroup of G, and H is an SLI-group, then G
is an SLI-group.

(iv) Every finitely generated free group is an SLI-group.
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Proof. Parts (i), (ii) and (iii) are Lemmas 6, 7 and 3, respectively, in [LS08].
Part (iv) follows from (i) and (ii), together with the fact that the trivial group
has decidable rational subset membership problem so is an RID group and
thus an SLI-group; alternatively, one can use the fact that finite rank free
groups have decidable rational subset membership problem. �

Recall that an Artin group of rank two is known in the literature as
a dihedral Artin group. It is also well known that dihedral Artin groups
admit particularly simple presentations (see e.g. [CP05, Proof of Theorem
5.1]), namely one of the presentations:

〈a, b | (ab)ka = b(ab)k〉 ∼= 〈x, y | x2 = y2k+1〉, and(7)

〈a, b | (ab)k = (ba)k〉 ∼= 〈x, t | xky = yxk〉 ∼= BS(k, k)(8)

where k ≥ 1, and BS(k, k) denotes a (unimodular) Baumslag–Solitar group.

Lemma 4.3. Let A be an Artin group with rank at most 2. Then A is an
SLI-group.

Proof. An Artin group of rank 1 is Z and so is an SLI-group by Lemma 4.2.
Now suppose that A is an Artin group of rank 2. Then A is either isomorphic
to the group in (7), or (8). In the first case (7), A is isomorphic to a torus
knot group, and it is well-known (see e.g. [NW01, Theorem 2.1]) that every
such group is virtually Fl × Z. Hence by Lemma 4.2 it follows that in this
case A is an SLI-group. In the second case when A is given by (8), we have
A ∼= BS(k, k), which is also well-known to contain a finite index subgroup
isomorphic to Fl×Z; see e.g. [Lev15]. Hence, again by applying Lemma 4.2
it follows that in this case A is also an SLI-group. �

Proof of Theorem 4.1. By Lemma 4.3 every Artin group with rank at most
2 is an SLI-group. Together with Lemma 4.2, this yields that every group
in A(S) is an SLI-group. Hence by [LS08, Lemma 4] every group in A(S)
has decidable rational subset membership problem. By [AL21, Corollary A]
every subgroup separable Artin group is in A(S), completing the proof. �

The following theorem classifies the Artin groups with decidable sub-
monoid membership problem. Note that the classification of braid groups
with decidable submonoid membership problem we obtained above, and the
classification of right-angled Artin groups with decidable submonoid mem-
bership problem proved in [LS08], can both be recovered as special cases of
this general theorem for Artin groups.

Theorem 4.4. Let A = A(Γ) be an Artin group. Then the following are
equivalent:

(i) A has decidable submonoid membership problem;
(ii) A has decidable rational subset membership problem;

(iii) the graph Γ does not embed any of the following graphs as an induced
subgraph:
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(a) a (generalized) square of one of the following three forms

2

2

2 2

2

2

2 2
p

2

2

2 2

p

q

with p > 2 and q > 2,
(b) a triangle of the form

r

p q

where at most one of {p, q, r} is equal to 2, or
(c) a path of one of the following two forms

2 2 2 p q

where at most one of {p, q} is equal to 2.

Moreover, if Γ does embed one of the graphs in (a), (b) or (c) as an induced
subgraph then A(Γ) contains a fixed finitely generated submonoid in which
membership is undecidable.

Proof. ((iii) ⇒ (ii)) By [AL24, Theorem 1.1] (which is proved using the
main result of [AL21]) it follows that if Γ does not embed any of the graphs
in (a), (b), or (c) then A(Γ) is subgroup separable which by Theorem 4.1
implies that A has decidable rational subset membership problem. ((ii) ⇒
(i)) is trivial. ((i) ⇒ (iii)) Suppose that Γ does embed one of the graphs of
(a), (b) or (c) as an induced subgraph. Let us consider each case in turn.
Case (a): In this case by [CP01] the RAAG A(C4) ∼= F2 × F2 embeds into
A(Γ), which hence contains a fixed finitely generated submonoid (in fact
subgroup) in which membership is undecidable by [Mik58]. Cases (b) and
(c): In these cases it follows from the argument of the proof of [AL21, Lemma
4.2] that in each case A(Γ) contains3 the RAAG A(P4) and hence by [LS08]
it follows that A(Γ) contains a fixed finitely generated submonoid in which
membership is undecidable. �

In the same way as for braid groups in Theorem 3.7 above, for Artin
groups with undecidable submonoid membership problem we can apply our
results to identify other algorithmic problems that are also undecidable,
obtaining the following.

3We note that diagram (4.1) in the proof of [AL21, Lemma 4.2] there is an edge between
x and y that should not be there. Indeed, by the definition of R(B) in that paper for there
to be an edge between x and y one would need every vertex of {a, b} to be connected to
every vertex of {b, c} by a 2-labelled edge in the defining graph of the Artin group which
is not true. This does not affect the validity of the proof of [AL21, Lemma 4.2], or the
proof of Theorem 4.4 above, since the RAAG of the graph (4.1) with that edge removed
still contains an induced subgraph isomorphic to a path of length 4. Related to this, note
that since the braid group B4

∼= A(2, 3, 3) does not embed A(C4) = F2×F2 it follows that
(4.1) cannot contain a square as an induced subgraph.
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Theorem 4.5. Let A = A(Γ) be an Artin group with undecidable submonoid
membership problem, i.e. such that one of the graphs in (a), (b) or (c) from
the statement of Theorem 4.4 embeds into Γ.

(i) If one of the graphs in (b) or (c) embeds into Γ, then A(P4) em-
beds into A(Γ), and the following problems are all undecidable in
A(Γ): the rational subset membership problem, submonoid member-
ship problem, fixed-target submonoid membership problem, and the
subsemigroup intersection problem.

(ii) If one of the graphs in (a) embeds into Γ, then A(C4) embeds into
A(Γ), and all the problems listed in (i) are undecidable in A(Γ).
Additionally, all the following problems are undecidable in A(Γ): the
group problem, identity problem, and subgroup membership problem.

Corollary 4.6. Each and every one of the following problems is decidable
for an Artin group A = A(Γ) if and only if none of the graphs in (a), (b)
and (c) from the statement of Theorem 4.4 embeds into Γ: the rational sub-
set membership problem, submonoid membership problem, fixed-target sub-
monoid membership problem, and the subsemigroup intersection problem.

Just as for the braid group B4 we do not know exactly which Artin groups
have decidable identity problem or group problem. Similarly, it is unknown
exactly which Artin groups have decidable subgroup membership problem.
In particular, it remains open whether the braid group B4 has decidable
subgroup membership problem. Related to this, it follows from the proof
of [AL21, Lemma 4.2] that B4 contains A(C5), where C5 is a pentagon, and it
is also an open problem whether A(C5) has decidable subgroup membership
problem; see [LS08, Section 5].

A natural question arising from the results in this section is whether one
might also be able to classify the Coxeter groups with decidable submonoid
membership problem. One current obstacle to this is that there are many
Coxeter groups (even right-angled Coxeter groups) that are virtually hyper-
bolic surface groups (see e.g. [GLR04, Theorem 2.1]), and the rational and
submonoid membership problems are both currently open for hyperbolic
surface groups. In particular, it follows from [GLR04, Theorem 2.1] that
the right-angled Coxeter group of the pentagon with presentation

〈a0, a1, a2, a3, a4 | a2i = 1, aiai+1 = ai+1ai (i ∈ {0, 1, 2, 3, 4})〉
with subscripts taken modulo 5, contains a hyperbolic surface subgroup of fi-
nite index, so it would be interesting to determine whether or not this group
has decidable submonoid membership problem or rational subset member-
ship problem.
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[GGM10a] Volker Gebhardt and Juan González-Meneses, The cyclic sliding operation
in Garside groups, Math. Z. 265 (2010), no. 1, 85–114. MR 2606950

[GGM10b] , Solving the conjugacy problem in Garside groups by cyclic sliding,
J. Symbolic Comput. 45 (2010), no. 6, 629–656. MR 2639308

[GKT02] David Garber, Shmuel Kaplan, and Mina Teicher, A new algorithm for
solving the word problem in braid groups, Advances in Mathematics 167
(2002), no. 1, 142–159.

[GLR04] C.McA. Gordon, D.D. Long, and A.W. Reid, Surface subgroups of Coxeter
and Artin groups, Journal of Pure and Applied Algebra 189 (2004), no. 1,
135–148.

[GMV14] Juan González-Meneses and Enric Ventura, Twisted conjugacy in braid
groups, Israel journal of mathematics 201 (2014), 455–476.

[GP12] Eddy Godelle and Luis Paris, Basic questions on Artin-Tits groups, Con-
figuration Spaces: Geometry, Combinatorics and Topology, Springer, 2012,
pp. 299–311.

[Gra20] Robert D. Gray, Undecidability of the word problem for one-relator inverse
monoids via right-angled artin subgroups of one-relator groups, Inventiones
mathematicae 219 (2020), no. 3, 987–1008.

[HH23] Thomas Haettel and Jingyin Huang, New Garside structures and applica-
tions to Artin groups, arXiv preprint arXiv:2305.11622 (2023).

[HM99] Susan M. Hermiller and John Meier, Artin groups, rewriting systems and
three-manifolds, J. Pure Appl. Algebra 136 (1999), no. 2, 141–156.

[HO20] Jingyin Huang and Damian Osajda, Large-type Artin groups are systolic,
Proceedings of the London Mathematical Society 120 (2020), no. 1, 95–123.

[HR12] Derek F Holt and Sarah Rees, Artin groups of large type are shortlex au-
tomatic with regular geodesics, Proceedings of the London Mathematical
Society 104 (2012), no. 3, 486–512.

[HR13] , Shortlex automaticity and geodesic regularity in Artin groups,
Groups-Complexity-Cryptology 5 (2013), no. 1, 1–23.

[HR15] , Conjugacy in Artin groups of extra-large type, Journal of Algebra
434 (2015), 12–26.

[KP17] Sang-Ki Ko and Igor Potapov, Composition problems for braids: Mem-
bership, identity and freeness, Pre-print (2017), Available online at
arXiv:1707.08389.

[KSS07] Mark Kambites, Pedro V. Silva, and Benjamin Steinberg, On the rational
subset problem for groups, J. Algebra 309 (2007), no. 2, 622–639.

[KT08] Christian Kassel and Vladimir Turaev, Braid groups, vol. 247, Springer
Science & Business Media, 2008.

[Lev15] Gilbert Levitt, Generalized Baumslag–Solitar groups: rank and finite index
subgroups., Annales de l’Institut Fourier 65 (2015), no. 2, 725–762.



MEMBERSHIP PROBLEMS IN BRAID GROUPS AND ARTIN GROUPS 23

[Loh15] Markus Lohrey, The rational subset membership problem for groups: a sur-
vey, Groups St Andrews 2013, London Math. Soc. Lecture Note Ser., vol.
422, Cambridge Univ. Press, Cambridge, 2015, pp. 368–389.

[Loh24] M Lohrey, Membership problems in infinite groups, Conference on Com-
putability in Europe, Springer, 2024, pp. 44–59.

[LS77] Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergeb-
nisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and
Related Areas], Band 89, Springer-Verlag, Berlin-New York, 1977.

[LS08] Markus Lohrey and Benjamin Steinberg, The submonoid and rational subset
membership problems for graph groups, J. Algebra 320 (2008), no. 2, 728–
755.

[Mak81] T. A. Makanina, The occurrence problem for the braid group Bn+1 when
n + 1 ≥ 5, Mat. Zametki 29 (1981), no. 1, 31–33, 154.

[McC17] Jon McCammond, The mysterious geometry of Artin groups, Winter Braids
Lecture Notes 4 (2017), 1–30.

[Mic99] Jean Michel, A note on words in braid monoids, Journal of Algebra 215
(1999), no. 1, 366–377.

[Mik58] K. A. Mikhailova, The occurrence problem for direct products of groups,
Dokl. Akad. Nauk SSSR 119 (1958), 1103–1105.

[MS17] Jon McCammond and Robert Sulway, Artin groups of Euclidean type, In-
ventiones mathematicae 210 (2017), no. 1, 231–282.

[MV24] Ashot Minasyan and Motiejus Valiunas, Right-angled artin subgroups and
free products in one-relator groups, arXiv preprint arXiv:2404.15479 (2024).

[NW01] Graham A. Niblo and Daniel T. Wise, Subgroup separability, knot groups
and graph manifolds, Proc. Amer. Math. Soc. 129 (2001), no. 3, 685–693.

[Par02] Luis Paris, Artin monoids inject in their groups, Commentarii Mathematici
Helvetici 77 (2002), 609–637.

[Pic01] Matthieu Picantin, The conjugacy problem in small Gaussian groups,
Comm. Algebra 29 (2001), no. 3, 1021–1039. MR 1842395

[Pot13] Igor Potapov, Composition problems for braids, 33nd International Confer-
ence on Foundations of Software Technology and Theoretical Computer Sci-
ence, LIPIcs. Leibniz Int. Proc. Inform., vol. 24, Schloss Dagstuhl. Leibniz-
Zent. Inform., Wadern, 2013, pp. 175–187.

[Rom22] Vitaly Roman’kov, Undecidability of the submonoid membership problem for
a sufficiently large finite direct power of the heisenberg group, arXiv preprint
arXiv:2209.14786 (2022).

[RV96] E Raptis and Dimitrios Varsos, On the subgroup separability of the funda-
mental group of a finite graph of groups, Demonstratio Mathematica 29
(1996), no. 1, 43–52.

[Seg05] Daniel Segal, Polycyclic groups, no. 82, Cambridge University Press, 2005.
[Vog15] Karen Vogtmann, GL(n,Z), Out(Fn) and everything in between: automor-

phism groups of RAAGs, Groups St Andrews 2013, London Math. Soc. Lec-
ture Note Ser., vol. 422, Cambridge Univ. Press, Cambridge, 2015, pp. 105–
127. MR 3495649

School of Engineering, Mathematics & Physics, University of East Anglia,
Norwich NR4 7TJ, England, UK

Email address: Robert.D.Gray@uea.ac.uk

School of Mathematics, Korea Institute for Advanced Study (KIAS), Seoul
02455, Republic of Korea

Email address: cfnb@kias.re.kr


	1. Introduction
	Acknowledgements

	2. Background
	2.1. Monoid presentations and rational subsets
	2.2. Membership problems
	2.3. Artin and braid groups

	3. Braid groups and right-angled Artin groups
	3.1. A connection between rational subsets and submonoids
	3.2. Further undecidability in A(P4)
	3.3. Undecidability in the braid group B4

	4. Artin groups
	References

