
EG UK Computer Graphics & Visual Computing (2025), pp. 1–4
Y. Sheng and A. Slingsby (Editors)

GPU-accelerated cartoon representation for interactive flexible

docking

K.R.Holdsworth1 , G.Iakovou1,2, S.Hayward1 and S.D.Laycock 1

1School of Computing Sciences, University East Anglia, Norwich, NR4 7TJ, UK
2Digital Engineering, Aviva Plc, Norwich, Norfolk NR1 3NS, U.K.

Abstract

Molecular docking involves simulating the binding of two proteins and is widely used for structure-based drug design. There
are two main types of docking tools: automated and interactive. While automated tools are useful for reducing the search space
of ligands and identifying potential binding sites, interactive tools allow the user to guide the docking process and observe what
happens during docking. High computation speeds are required for interactive docking to handle both protein deformation
and user interaction in real time. The cartoon representation, not to be confused with cartoon style rendering, is a protein
representation that shows an abstracted view and is frequently used by structural biologists to not only identify a protein,
but also to identify key regions within a protein of interest. There are examples of GPU-accelerated methods to construct the
cartoon representation in real time. However, none of these methods achieve real-time assignment of secondary structure and
construction of the cartoon representation for a flexible molecule. This paper presents our method to achieve this, integrated
into an interactive docking tool with receptor flexibility. The methods outlined in this paper produced some promising results,
with proteins of up to 3,300 amino acid residues being constructed and rendered at 70 fps.
CCS Concepts

• Applied computing → Computational biology; • Computing methodologies → Modeling and simulation; Computer graph-
ics;

1. Introduction

Molecular docking tools are designed to simulate protein binding
in silico. Protein binding is the process by which two proteins join
together, this can cause or inhibit biochemical reactions, making it
ideal for structure-based drug design.

There are two types of molecular docking tools, automated and
interactive. Automated tools such as AutoDock and RosettaLigand
[MHL→09,LM12] use computational techniques to predict the bio-
logical binding pose, amongst a vast set of possibilities. This is use-
ful as a first stage, but there are few automated tools that take user
expertise into account or are able to model conformational change
on both a local and global scale during docking. Interactive tools
enable the user to refine the results from an automated tool and to
inspect different docking scenarios in detail. When incorporating
receptor flexibility the user can see how the receptor changes shape
in relation to a given position and orientation of a ligand. As they
interact the user can learn about the change in shape and which
parts of the molecules are key to causing receptor deformation dur-
ing binding.

This research contributes to an interactive docking tool, DockIT
[ILH22]. DockIT is designed to run with either keyboard and
mouse or VR device, and simulates flexible-receptor docking in
real time. This is vital for simulating protein binding accurately,

as proteins are naturally flexible. During the binding process, the
proteins undergo conformational change, where the protein can as-
sume a range of different poses.

Figure 1: Cartoon representation of a protein, produced with
DockIT.

For simulation on a screen, the minimum frame-rate needed is
30 fps but for VR this increases to 90 fps. To achieve real time de-
formation at these speeds, DockIT uses the results of a molecular
dynamics (MD) simulation to generate a trajectory of atomic fluc-
tuations. Using linear response theory this MD trajectory is used

submitted to EG UK Computer Graphics & Visual Computing (2025)



2 of 4 K.R.Holdsworth, G. Iakovou, S. Hayward& S.D.Laycock / GPU-accelerated cartoon representation

to model, in real time, deformation of the receptor in response to
interaction with a ligand [MKLH19]. Furthermore, the use of spa-
tial decomposition and GPU parallel processing allows DockIT to
handle docking scenarios with over 5000 atoms at 150 fps [ILH22].

DockIT already includes a number of different protein represen-
tations, such as space-fill, surface and ball-and-stick. These repre-
sentations all show the protein’s atoms, and in some cases bonds,
explicitly. The cartoon representation [Ric81] is more abstract and
shows the secondary structure of a protein. It is widely used for
protein identification and highlighting key regions. There are three
types of secondary structure used for the cartoon representation,
sheets which are represented by flat arrows, helices which are rep-
resented by spirals and coil, represented by thin tubes. The place-
ment of the helices and sheets is defined by hydrogen bonding pat-
terns [KS83], which require re-assigning as the protein deforms.

DockIT is one of few interactive docking tools that can simulate
docking with full flexible receptor. The novelty of this paper is the
real-time definition and construction of the cartoon representation
within a docking tool. To achieve this, the hydrogen bonds that are
used to assign the secondary structure must be updated and the ge-
ometry must be reconstructed every frame. Note, in this context, the
term cartoon representation does not refer to a style of rendering,
such as toon shading.

2. Background

The cartoon representation of protein structure indicates the three
main secondary structure types, !-helix, ∀-sheet and coil, and was
first proposed by Richardson in the early 1980s [Ric81]. Hand-
drawn sketches of the cartoon representation were common in text-
books and scientific articles, until the widespread use of molecu-
lar visualisation tools replaced these sketches with digitally ren-
dered images. The relative positions and orientations of these sec-
ondary structure types are displayed, providing a high level, ab-
stracted view. Using molecular graphics software, structural biol-
ogists use the cartoon depiction to recognise individual proteins
and, perhaps more importantly, to identify key regions within their
protein of interest. Proteins are made up of chains of amino acids,
linked together by peptide bonds. The structure of a protein, and
consequently its function, is largely determined by its sequence of
amino acids along the chain. The secondary structure of a protein
is defined by patterns of main-chain hydrogen bonds.

R

H

N

O

Cα 
C 

R

H

N

O

Cα 
C 

R

H

N

O

Cα 
C 

O

C 

H

N

Figure 2: Diagram of a segment of a protein chain, showing the
main-chain atoms as filled circles and the side chains as “R”. The
large dotted circle indicates an individual amino acid residue.

Figure 1 shows the result of the approach we present here to
construct and render the cartoon representation within DockIT. !-
helices are represented by coiled ribbons. ∀-sheets, which comprise
∀-strands, can be either parallel, if both strands are in the same
direction, or anti-parallel otherwise. ∀-strands are represented by

flat arrows. Connecting loop or coil regions are usually depicted by
thin tubes.

Although secondary structures can be defined based on the main-
chain # and ∃ angles, they are better defined by the hydrogen-
bonding properties of the main chain. The first algorithm to rig-
orously define secondary structures was called “Define Secondary
Structure of Proteins” (DSSP) [KS83]. It first finds main-chain hy-
drogen bonds which it then uses to identify elemental hydrogen-
bonded motifs, such as the “n-turn” and the “bridge”. Overlap-
ping 4-turns are used to assign !-helices, and bridges are used
to assign ∀-sheets. The DSSP approach has proved to be the
most popular method for assigning secondary structures and is
still used today for proteins deposited in the Protein Data Bank
(PDB) [BWF→00]. Since the development of DSSP, there have
been many different examples of rendering the cartoon represen-
tation [HOF04, KBE08, HGVPVA15].

The geometry involved in showing the cartoon representation is
much more complex compared to other representations. One effec-
tive way to reduce computation time is to use shaders to construct
the geometry. Krone et al [KBE08] developed a method for real-
time construction of the cartoon representation. Three versions of
this algorithm were developed, one for the CPU, one for the GPU
and a hybrid approach. The geometry shader was used to construct
the cartoon representation, using two B-Splines to approximate the
backbone shape and vectors around the control points to define the
helix and sheet surfaces. Separate geometry shaders were used for
helices, sheets and coils. Overall, the results show that the hybrid
was the fastest at the time.

Hermosilla et al. [HGVPVA15] built on this work, with a GPU-
based method for instant construction of the cartoon representation.
A B-Spline was also used for the backbone approximation. How-
ever, instead of using vectors to define the geometry, they defined
two surface patches oriented in opposite directions. Two surface
patches are generated on the CPU for each section of the backbone,
then they are displaced within the tessellation shader depending
on the secondary structure assignment. Different subdivision levels
were used depending on how far the geometry was from the viewer.
This is an effective method for reducing construction times.

While previous approaches are effective at constructing and ren-
dering the cartoon representation at real time speeds, they fail to
take into account conformational changes that can occur during
docking. One of the key aims of this work is to integrate the real
time construction of the cartoon representation into an interactive
docking tool. This involves more overhead, as DockIT not only ren-
ders the proteins, but also simulates flexible-receptor docking in
real time.

3. Methods

The geometry construction and secondary structure assignment for
the cartoon representation is based solely on the backbone atom po-
sitions. Data on a protein’s structure, such as atomic positions and
secondary structures, are stored in PDB-formatted files [BWF→00].
These files are loaded into DockIT by the user, but secondary struc-
ture assignments would only apply to the protein in its initial, un-
deformed conformation that appears upon loading into DockIT.

Figure 3 shows a diagram of how the code is structured between

submitted to EG UK Computer Graphics & Visual Computing (2025)



K.R.Holdsworth, G. Iakovou, S. Hayward& S.D.Laycock / GPU-accelerated cartoon representation 3 of 4

Load PDB file

Create buffers for
cartoon representation

Create regular grid

Populate regular grid

Find HBonds

Assign secondary
structure

Separate sheet, helix and
coil residues

Smooth sheets

Construct coils

Construct sheets

Construct helices

Colour kernel

Load PDB file

Ready to render

Construction kernels

Assignment kernels

Rendering 
loop

Figure 3: Flowchart outlining the method of constructing the car-
toon representation in DockIT. Assignment kernels shown in red,
construction kernels shown in green. Blue indicates parts run on
the CPU.

CPU and GPU processing. This begins with loading the PDB file
and extracting the atom information, which is stored in a common
buffer used by many different representations within DockIT. Once
all the atoms in the current molecule are loaded, the buffers for the
cartoon representation can be created. This only needs to happen
once, as the number of residues cannot change, so enough mem-
ory is reserved for the entire molecule. These buffers are then only
written to and read from by the GPU kernels where possible, to
minimise the amount of memory the CPU needs to read and write.

Within the rendering loop there are three main sections of GPU
kernels: assignment, construction and colour (see Figure 3). The as-
signment kernels assign either sheet, helix or coil to each residue.
This decision is made based on the DSSP rules [KS83], which
use hydrogen bonding patterns to assign the secondary structure.
This requires first assigning intramolecular hydrogen bonds, which
is done by calculating the electrostatic interaction energy between
hydrogen-bond donor atoms and hydrogen-bond acceptor atoms in
two residues. To reduce the number of residues that are tested for
hydrogen bonds, a regular grid is used to partition the molecule.
Using a grid means that residues that are far apart on the chain but
spatially close will be compared, without the need to check residues
that are distant.

Once the hydrogen bonds have been assigned, patterns of bonds
can be analysed for the existence of helices and sheets. To do this,
each thread checks a single residue for n-turns, bridges or high cur-
vature. This needs to be done on a per residue basis to avoid mem-
ory conflicts. Once each residue has been categorised, consecutive
runs of n-turns and bridges can be identified and used to assign
helices and sheets.

The construction kernels handle different aspects of the geom-
etry construction. Before the geometry itself is constructed, each
residue is written to either the helix, sheet or coil buffer, as they are
each constructed by separate kernels. This is carried out at the start
to prevent too many branches within the geometry kernels. After

this, the sheet smoothing kernel is run. This uses the method de-
scribed by Preistle [Pri88] to reduce the appearance of pleats in the
sheets over multiple iterations. Sheets are naturally pleated but it is
a matter of choice whether to depict them with a pleat and this is
an option in DockIT.

The geometry construction kernels all have similar features as
the geometry is constructed using Catmull-Rom splines or surfaces.
Catmull-Rom splines use four data control points but only connect
the middle two, using them as end points for the resulting curve.
This is similar for Catmull-Rom surfaces, as they require 16 control
points and connect the central four. Catmull-Rom has been chosen
over B-Spline as the resulting geometry will pass through every C!
position exactly.

The geometry kernels are each launched with a block of 8↑8
threads, equal to the number of points interpolated between the
start and end of the surface patch. Each block of threads works
on constructing one surface patch, using the atom positions from
four consecutive residues. The helix, sheet and coil buffers contain
the first residue position from this group to save memory. Each ker-
nel writes the vertex and triangle information to common buffers
which are then used for rendering.

3.1. Coil construction

The construction of coil segments uses a Catmull-Rom spline as
a base. The first stage of the kernel only uses thread 0, which is
treated as a set up thread and populates the geometry matrix used
for interpolation. This matrix only needs to be created once, as each
block of threads creates one surface patch. Then a set of 8 threads
interpolate the central points using this geometry matrix. This cre-
ates a thin spline which is used as a centre for the tube.

A ring of points is then created around each interpolated spline
position, each thread creating a single point which is then written to
the vertex buffer. The ring of points is created using a simple circle
equation, and is oriented to be perpendicular to the direction of the
coil. After this, the triangles are indexed, again using each thread
for one triangle.

(a) Diagram showing positions
used for surface construction.
Blue circles indicate C! posi-
tions, green circles indicate 16
control points, red square indi-
cates where surface constructed

(b) Single section of sheet surface
shown as interpolated points.

Figure 4: Helix and sheet construction diagrams
3.2. Helix and Sheet construction

The surface patches for helices and sheets both use Catmull-Rom
surfaces as the base. To get the 16 control points needed, the orig-

submitted to EG UK Computer Graphics & Visual Computing (2025)



4 of 4 K.R.Holdsworth, G. Iakovou, S. Hayward& S.D.Laycock / GPU-accelerated cartoon representation

inal 4 C! positions are duplicated. The direction between the car-
bonyl carbon and oxygen of each residue is used as an axis, and the
C! position is duplicated twice, in both the positive and negative
direction (see Figure 4a). The distance between the original posi-
tion and the duplicated points is constant, so all the surface patches
have the same width. These 16 points are then used to populate
three geometry matrices, for each dimension, that can be used by
each thread to interpolate a single point.

The resulting Catmull-Rom surface will span between the mid-
dle two C! positions, but is very thin. For some molecular visu-
alisation tools [Jmo], thin surfaces like these are used. However,
to match with Richardson’s original drawings and most modern
visualisation tools, 3D surface blocks are used. Each of the 8↑8
threads work on a single interpolated point, and displace it up and
down along the normal resulting in two surface patches (see Figure
4b). For the sheets, the displacement value is constant in order to
create a box shape, but helices require bevelled edges, so smaller
displacement values are used at the edges.

4. Results

Figure 5: Graph showing the results of timing experiments for he-
lix, sheet and coil construction kernels.

The main goal of this research was to achieve real-time flexi-
ble receptor docking with the cartoon representation. To quantify
the success of this implementation, the time taken for each kernel
to execute was recorded and averaged over 1000 runs. These tests
were run on an Intel i7 processor running at 3.8GHz and an Nvidia
GeForce RTX 2080. The OpenGL rendering pipeline was not mod-
ified for these tests, and standard back-face culling was applied.
Overall, the molecules shown in Figure 5 achieved between 70 and
100 fps whilst performing all of the steps required for DockIT, in-
cluding force calculations, deformation, cartoon construction and
rendering.

Figure 5 also shows the execution times for the geometry con-
struction kernels, which are generally stable. However, the near
constant kernel execution times are caused by the size of the files
used. The smaller files do not require enough work to reach maxi-
mum GPU occupancy. The larger files used show slightly longer
execution times as this occupancy barrier has been passed. VR
compatibility requires rendering speeds of 90 fps, which the ma-
jority of the current files tested achieve.

On average, the DSSP kernel was the least efficient, taking
around 3.5ms for the smaller PDB files. This is in part caused by
global memory reads of the regular grid. Each thread reads the con-
tents from the current cell and neighbouring cells. This will be ad-
dressed by utilising shared memory.

5. Conclusion

The methods outlined in this paper produced some promising re-
sults, with proteins of up to 3,300 residues being constructed and
rendered at 70 fps. Further work in this area will include optimisa-
tion of the DSSP kernel, to increase computation speeds even fur-
ther, and visual enhancements to highlight the deformation of the
backbone during docking. The end goal is to construct and render
the cartoon representation fast enough to be used with the molecu-
lar surface during docking.

References

[BWF→00] BERMAN H. M., WESTBROOK J., FENG Z., GILLILAND G.,
BHAT T. N., WEISSIG H., SHINDYALOV I. N., BOURNE P. E.: The
protein data bank. Nucleic acids research 28, 1 (2000), 235–242. URL:
www.rcsb.org. 2

[HGVPVA15] HERMOSILLA P., GUALLAR V., VINACUA PLA Á.,
VÁZQUEZ ALCOCER P. P.: Instant visualization of secondary structures
of molecular models. In Vcbm 15: eurographics workshop on visual
computing for biology and medicine (2015), European Association for
Computer Graphics (Eurographics), pp. 51–60. 2

[HOF04] HALM A., OFFEN L., FELLNER D.: Visualization of complex
molecular ribbon structures at interactive rates. In Proceedings. Eighth
International Conference on Information Visualisation, 2004. IV 2004.
(2004), pp. 737–744. doi:10.1109/IV.2004.1320224. 2

[ILH22] IAKOVOU G., LAYCOCK S. D., HAYWARD S.: Interac-
tive flexible-receptor molecular docking in virtual reality using dockit.
Journal of Chemical Information and Modeling (2022). URL:
https://doi.org/10.1021/acs.jcim.2c01274, doi:10.
1021/acs.jcim.2c01274. 1, 2

[Jmo] JMOL DEVELOPMENT TEAM: Jmol. http://jmol.sourceforge.net/
2016. URL: http://jmol.sourceforge.net/. 4

[KBE08] KRONE M., BIDMON K., ERTL T.: GPU-based visualisation
of protein secondary structure. TPCG (2008), 1–8. 2

[KS83] KABSCH W., SANDER C.: Dictionary of protein secondary
structure: pattern recognition of hydrogen-bonded and geometrical fea-
tures. Biopolymers: Original Research on Biomolecules 22 (1983),
2577–2637. 2, 3

[LM12] LEMMON G., MEILER J.: Rosetta Ligand docking with flexible
XML protocols. Springer, 2012, pp. 143–155. 1

[MHL→09] MORRIS G. M., HUEY R., LINDSTROM W., SAN-
NER M. F., BELEW R. K., GOODSELL D. S., OLSON A. J.:
Autodock4 and autodocktools4: Automated docking with selec-
tive receptor flexibility. Journal of Computational Chemistry
30 (2009), 2785–2791. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/jcc.21256, doi:https://
doi.org/10.1002/jcc.21256. 1

[MKLH19] MATTHEWS N., KITAO A., LAYCOCK S., HAYWARD S.:
Haptic-assisted interactive molecular docking incorporating receptor
flexibility. Journal of Chemical Information and Modeling 59 (10 2019),
2900–2912. doi:10.1021/acs.jcim.9b00112. 2

[Pri88] PRIESTLE J.: RIBBON: a stereo cartoon drawing program for
proteins. Journal of Applied Crystallography (1988), 572–576. 3

[Ric81] RICHARDSON J. S.: The Anatomy and Taxonomy of
Protein Structure, vol. 34. Academic Press, 1981. URL:
https://www.sciencedirect.com/science/article/
pii/S0065323308605203, doi:https://doi.org/10.
1016/S0065-3233(08)60520-3. 2

submitted to EG UK Computer Graphics & Visual Computing (2025)


