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ABSTRACT
Dietary restriction (DR) robustly increases lifespan across taxa. However, in humans, long-term DR is difficult to maintain, lead-
ing to the search for compounds that regulate metabolism and increase lifespan without reducing caloric intake. The magnitude 
of lifespan extension from two such compounds, rapamycin and metformin, remains inconclusive, particularly in vertebrates. 
Here, we conducted a meta-analysis comparing lifespan extension conferred by rapamycin and metformin to DR-mediated 
lifespan extension across vertebrates. We assessed whether these effects were sex- and, when considering DR, treatment-specific. 
In total, we analysed 911 effect sizes from 167 papers covering eight different vertebrate species. We find that DR robustly extends 
lifespan across log-response means and medians and, importantly, rapamycin—but not metformin—produced a significant 
lifespan extension. We also observed no consistent effect of sex across all treatments and log-response measures. Furthermore, 
we found that the effect of DR was robust to differences in the type of DR methodology used. However, high heterogeneity and 
significant publication bias influenced results across all treatments. Additionally, results were sensitive to how lifespan was re-
ported, although some consistent patterns still emerged. Overall, this study suggests that rapamycin and DR confer comparable 
lifespan extension across a broad range of vertebrates.

1   |   Introduction

Dietary restriction (DR) is a classical approach to lifespan ex-
tension through the reduction of food intake without entering 
a malnourished state. DR and its lifespan-extending effects 
have been the source of study for over 100 years (Osborne 
et al. 1917; McCay et al. 1935; Selman 2014; although see also 
Speakman and Mitchell  2011) and have been shown to ro-
bustly increase the lifespan of numerous different taxonomic 

groups, from invertebrate species, such as nematode worms 
(Caenorhabditis elegans) or fruit flies (Drosophila melanogas-
ter), to vertebrate species, such as mice and primates (Bodkin 
et  al.  2003; Anderson et  al.  2009; Fontana et  al.  2010; see 
Nakagawa et al. 2012 for a previous meta-analysis on lifespan 
extension across model and non-model organisms). Despite 
this, the effects appear to not always be universally positive 
(Harper et  al.  2006; Sohal et  al.  2009) and in humans, such 
an imposed and long-term reduction in caloric intake is often 
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associated with low adherence (Scheen 2008; Barte et al. 2010; 
Selman 2014; Di Francesco et al. 2024). As a result, substances 
that mimic a DR response without the need for an active re-
duction in caloric intake, called DR mimetics, have been put 
forward as possible alternatives (Mattson et al. 2001; Ingram 
et al. 2006; Mouchiroud et al. 2010).

Two of the most widely used compounds that have been the 
focus of much research on lifespan extension to date are rapa-
mycin and metformin. Rapamycin (or Sirolimus) was identified 
and isolated from Easter Island soil bacteria in 1975 (Vézina 
et  al.  1975) and has been used primarily as an food and drug 
administation-approved immunosuppressant for kidney trans-
plants and cardiac stents (Kaeberlein et al. 2023). It is an inhib-
itor of the mechanistic target of rapamycin (mTOR) pathway 
and has been shown to extend lifespan and reduce epigenetic 
ageing across a wide variety of organisms in a manner similar 
to DR (Harrison et al. 2009; Miller et al. 2011; Swindell 2017; 
Horvath et al. 2019). Rapamycin has also been found to have a 
number of benefits in reducing age-related diseases in humans 
(Lee et al. 2024). However, in some species, this positive effect 
is not present, for instance on epigenetic ageing in the common 
marmoset (Horvath et al. 2021) or rates of ageing in mice (Neff 
et al. 2013).

The second popular DR mimetic, Metformin (or dimethylbigu-
anide) is used to combat type II diabetes as it reduces levels of 
circulating glucose and improves insulin sensitivity in the body 
(Bailey and Turner 1996). Metformin is an activator of adenos-
ine monophosphate-activated protein kinase (AMPK) and has 
been shown to extend lifespan in diverse species, from nema-
todes (Onken and Driscoll 2010) to mice (Anisimov et al. 2005). 
It has also been shown to decelerate ageing in male cynomo-
lgus monkeys (Yang et  al.  2024). However, the overall effects 
of metformin on lifespan remain inconclusive (Selman  2014; 
Mohammed et al. 2021). This highlights the urgent need to (1) 
reassess the degree to which these two DR mimetics promote 
a lifespan extension and (2) compare the effects of these two 
compounds with that of DR. Focusing on these two questions 
in vertebrate species will allow us to conclusively state which of 
these two mimetics has the greatest potential as a substitute for 
long-term DR in humans.

To this end, we performed a systematic review and meta-
analysis to assess the degree of lifespan extension in vertebrate 
species under three well-established longevity treatments: DR 
(two different types of DR, fasting and caloric reduction) and 
two well-known DR-mimetics, metformin and rapamycin. We 
also tested two other important moderators: (1) the sex of the an-
imals subjected to each treatment to assess whether the effects 
were sex-specific and (2) for DR specifically, the form of meth-
odology used to test whether DR-specific lifespan extension was 
sensitive to how DR was implemented.

2   |   Methods

Note, where appropriate we follow MERIT guidelines as per 
Nakagawa, Ivimey-Cook, et  al.  (2023). All data and code are 
available from Zenodo 10.5281/zenodo.15673918.

2.1   |   Search and Screening

EIC performed a systematic literature search following Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA; see Moher et  al.  2011), using the databases Scopus 
and Web of Science first searched in July 2023 and then updated 
in December 2024 using the search strings found in Table  S1 
(N.B. searches included both published and unpublished stud-
ies via the Web of Science databases). For the searches from 
July 2023, EIC and ZS manually screened the papers in Rayyan 
(Ouzzani et al. 2016). We also included references in our filter-
ing that were not found in the original search but were in five 
papers that appeared in our search (namely, Everitt et al. 2005; 
Mair and Dillin 2008; Colman et al. 2014; Speakman et al. 2016; 
Ingram and de Cabo  2017; Selvarani et  al.  2021). For the up-
dated search in December 2024, EIC manually screened papers 
using the metRscreen application (Ivimey-Cook 2025) after re-
moving duplicates between the 2023 and 2024 searches using 
the {synthesisr} v. 0.3.0 package (Westgate and Grames  2020). 
See Figure  S1 for a Prisma diagram of searching, screening 
and filtering. Furthermore, we followed the PRISMA-EcoEvo 
checklist created by O'Dea et al. (2021) (Table S2) and checked 
our meta-analysis with the MATES (Meta-analysis Appraisal 
Tool for Environmental Sciences) checklist for meta-analysis 
reporting quality (Morrison et al. 2025; Table S3). In all cases 
we chose studies where there was an experimental group (typi-
cally a control or a treatment without the lifespan intervention) 
along with a corresponding treatment group (with the lifespan 
intervention). We only focused on studies that involved verte-
brates, provided a measure of lifespan (either mean, median or 
present in a survival curve), provided some measure of sample 
size, standard deviation or standard error (and sample size), or 
in the particular case of studies with survival curves, had sur-
vival curves that crossed 50% for the control and experimental 
cohorts (see Figure S1).

2.2   |   Data Extraction

If raw data was not available (as in most cases) EIC and ZS ex-
tracted mean and median lifespan from all accepted papers. EIC 
then double-checked all extracted data. ZS checked the repro-
ducibility of the model code. Mean data was initially favoured; 
however, upon screening several papers, it became apparent 
that a large proportion of papers simply provided median val-
ues of lifespan or presented data in survival curves (with no raw 
data archived). As a result, we extracted both. If values were 
provided in table or text, we extracted these directly from the 
source paper. However, if survival curves were present, EIC 
and ZS extracted the median lifespan (where survival curves 
reached 50%) using WebPlotDigitizer (Rohatgi 2017) and, where 
suitable (for instance when boxplots were present) using meta-
Digitise v.1.01 (Pick et al. 2018). Where possible, EIC and ZS also 
extracted a corresponding standard error or standard deviation 
(for means), or, if these were unavailable (or were medians), a 
sample size for the control and treatment groups. Any miss-
ing standard deviations were then calculated prior to analysis 
(see below). If any raw data was present, we directly calculated 
medians along with mean values and corresponding standard 
deviations. Note that if raw data was presented separately per 
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sex, we did not combine these to create a ‘mixed’ sex grouping. 
In addition, if censoring were involved, where possible we ex-
cluded those that were censored. Lastly, following Ivimey-Cook 
et al.  (2023), EIC and ZS recorded all locations of the lifespan 
data from each source paper.

2.3   |   Moderators

For each paper, EIC and ZS also extracted two different moder-
ators, namely:

1.	 Treatment (Rapamycin, metformin or DR. In the case 
of DR we noted whether the form of DR was a reduc-
tion in intake, removal of food or fasting, we did not 
include isocaloric reduction in protein or other macro-
molecules). In all cases, we included a control group (or 
a treatment without the lifespan intervention) alongside 
an experimental group that received the added longevity 
treatment. We also noted if there were any other envi-
ronmental variables that were used in the study, for in-
stance, the addition of radiation or use of a disease model 
of mouse. For the DR group only, we recorded whether 
the experiment involved a percent reduction in calo-
ries or food intake (‘Percent Reduction’) or whether the 
vertebrate was fasted (meaning simply without food for 
a period of time; ‘Fasted’). Only in one case did a study 
explicitly test the effect of reduction in food and fasting 
(‘Percent Reduction and Fasted’).

2.	 Sex of the studied vertebrate (if no sex was mentioned we 
assumed that both males and females were combined and 
classed this as ‘mixed’).

2.4   |   Statistical Analysis

All analyses and visualisation used R v. 4.4.2 (R Core 
Team  2024). EIC calculated the log-response ratio of means 
or medians which were adjusted for small-moderate sample 
size bias following Lajeunesse (2015). Then, using the rma.mv 
function from {metafor} v. 4.6–0 (Viechtbauer 2010), EIC ran 
two multi-level different models where each effect size was 
weighted based on the inverse variance–covariance matrix 
using different approaches to replace missing standard de-
viations, all cases and missing cases following Nakagawa, 
Lagisz, et  al.  (2023) note we changed the tested distribution 
to t distribution throughout, in addition where appropriate to 
allow convergence we also changed the optimiser to ‘Nelder–
Mead’ using the ‘optim’ optimiser). As there were no quali-
tative differences were detected between the two methods 
used to replace missing standard deviations, so we present the 
results from the ‘all cases’ method here (for overall effect of 
treatment using missing cases, see Figure S2). As there were 
no qualitative differences between types of approaches, we 
present all results using the all-cases method. All models had 
the fixed moderator of treatment type, and the random effects 
of species, paper (to account for non-independence of effects, 
as in many cases multiple effect sizes originated from the 
same paper), and an observation level ID to absorb residual 
variance (Nakagawa and Santos 2012). We then fit a variety of 

multi-level models according to the moderators listed above. 
Average marginal effects from the {emmeans} v. 1.10.6 pack-
age (Lenth et  al.  2019) were then displayed either using the 
{orchaRd} v. 2.0 (Nakagawa et  al.  2020; Nakagawa, Lagisz, 
et  al.  2023) or {ggplot2} v. 3.5.1 (Wickham  2011) plotting 
packages alongside the {gt} v. 0.11.1 table package (Iannone 
et  al.  2025). We present data from the model that combines 
study means and median values together but also, where ap-
propriate, discuss the separate effects. Lastly, publication bias 
was tested and adjusted for by fitting a model with the inverse 
of effective sample size (small-study bias) and mean-centred 
year (time-lag bias) as covariates (see Nakagawa et al. 2021). 
Lastly, following the methodology of Nakagawa, Lagisz, 
et al. (2023), we also performed a Geary test to assess adher-
ence of the log-response ratio of means to a normal distribu-
tion following Lajeunesse  (2015). As only five out of all 911 
effect sizes (0.5%) failed this test, we present results with these 
five included.

3   |   Results

3.1   |   Effect Sizes

In total, we extracted 911 effect sizes (k) from 167 papers (n) 
(McCay et  al.  1935; Kibler and Johnson  1966; Leveille  1972; 
Kendrick 1973; Drori and Folman 1976; Fernandes et al. 1976, 
1997; Merry and Holehan 1979; Weindruch and Walford 1982; 
Yu et al. 1982, 1985, 2019; Cheney et al. 1983; Davis et al. 1983; 
Lloyd 1984; Kohno et al. 1985; Weindruch et al. 1986; Horáková 
et al. 1988; Masoro et al. 1989, 1995; Goodrick et al. 1990; Harris 
et al. 1990; Snyder et al. 1990; Koizumi et al. 1992; Shimokawa 
et  al.  1993, 2003, 2015; Thurman et  al.  1994; Murtagh-Mark 
et  al.  1995; Sheldon et  al.  1995; Willott et  al.  1995; Hursting 
et  al.  1997; McCarter et  al.  1997; Yoshida et  al.  1997; Pugh 
et al. 1999; Turturro et al. 1999; Lingelbach and McDonald 2000; 
Sell et al. 2000; Sogawa and Kubo 2000; Wolf et al. 2000; Bartke 
et al. 2001; Jolly et al. 2001; Kealy et al. 2002; Tanaka et al. 2002; 
Tsao 2002; Bodkin et al. 2003; Sharp 2003; Dhahbi et al. 2004; 
Lee et al. 2004; Anisimov, Berstein, et al. 2005, 2011; Anisimov, 
Egormin, et al. 2005, 2010; Anisimov et al. 2008, 2015; Anisimov, 
Piskunova, et al. 2010; Anisimov, Zabezhinski, et al. 2010, 2011; 
Hamadeh et  al.  2005; Ikeno et  al.  2005; Lawler et  al.  2005; 
Hamadeh and Tarnopolsky 2006; Harper et al. 2006, 2010; Ma 
et al. 2007; Cai et al. 2008; Chen et al. 2008; Garcia et al. 2008; 
Inness and Metcalfe  2008; Li et  al.  2008, 2017; McDonald 
et al. 2008; Merry et al. 2008; Pearson et al. 2008; Zha et al. 2008; 
Arum et  al.  2009; Harrison et  al.  2009, 1984; Buschemeyer 
et  al.  2010; Flurkey et  al.  2010; Liao et  al.  2010, 2016; Rikke 
et  al.  2010; Smith et  al.  2010; Yamaza et  al.  2010; Herranz 
et al. 2011; Miller et al. 2011, 2014; Aires et al. 2012; Cameron 
et al. 2012; Comas et al. 2012; Komarova et al. 2012; Mattison 
et al. 2012; Ramos et al. 2012; Martin-Montalvo et al. 2013; Neff 
et al. 2013; Ramsey et al. 2014; Sun et al. 2013; Vera et al. 2013; 
Chiba et  al.  2014; Colman et  al.  2014; Fok et  al.  2014; Hasty 
et  al.  2014; Khapre et  al.  2014; López-Domínguez et  al. 2015; 
Mercken et  al.  2014; Popovich et  al.  2014; Zhang et  al.  2014; 
Christy et al. 2015; Hurez et al. 2015; Johnson et al. 2015; Huang 
et al. 2015; Meissner et al. 2015; Arriola Apelo et al. 2016; Kawai 
et al. 2016; Koopman et al. 2016; Mitchell et al. 2016, 2019; Patel 
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et al. 2016; Richardson et al. 2016; Sataranatarajan et al. 2016; 
Strong et  al.  2016, 2020; Derous et  al. 2017; Felici et  al.  2017; 
Guo et al. 2017; Someya et al. 2017; Wang et al. 2017, 2024; Xie 
et al. 2017; Deepa et al. 2018; Fang et al. 2018; Pifferi et al. 2018; 
Prokhorova et  al.  2018; Reifsnyder et  al.  2018; Correia-Melo 
et  al.  2019; Yamauchi et  al.  2019; Ferrara-Romeo et  al.  2020; 
Palliyaguru et  al.  2020; Parihar et  al.  2020, 2021; Pomatto 
et  al.  2020; Wei et  al.  2020; Liang et  al.  2021; Unnikrishnan 
et al. 2021; Zhu et al. 2021; Acosta-Rodríguez et al. 2022; Dhillon 
et  al.  2022; McKay et  al.  2022; Reijne et  al.  2022; Tibarewal 
et  al.  2022; Zaradzki et  al.  2022; Duregon et  al.  2023; Tseng 
et  al.  2023; Baghdadi et  al.  2024; Di Francesco et  al.  2024; 
Sowers et al. 2024; Vermeij et al. 2024; Merry and Holehan 1981; 
Blackwell et al. 1995; Fernandes et al. 1997; Berrigan et al. 2002; 
Turturro et  al. 2002; Black et  al. 2003; Chiba and Ezaki 2010; 
Harper et  al. 2010; Bhattacharya et  al. 2012; Bitto et  al. 2016; 
Mattison et al. 2017; Birkisdóttir et al. 2021; Mitchell et al. 2023; 
Wang et al. 2024) which comprised 354 means (n = 81) and 557 
(n = 160) medians. Unsurprisingly, DR was the most common ef-
fect size of the lifespan-extending treatments (k = 677, n = 115) 
followed by rapamycin (k = 188, n = 38) and metformin (k = 46, 
n = 17). Of these, the most represented species was the mouse 
(k = 787, n = 127), followed by the rat (k = 83, n = 32), the rhesus 
macaque (k = 23, n = 4), the dog (k = 6, n = 2), the redtail killifsh 
(k = 5, n = 2), the turquoise killifsh (k = 4, n = 1), the stickle-
back (k = 2, n = 1) and, lastly, the mouse lemur (k = 1, n = 1). The 
sex that was most studied was male (k = 428, n = 114) followed 
by female (k = 380, n = 77), with several effect sizes originating 
from mixed-sex groups (k = 103, n = 35). For DR, the most com-
mon method was through a percent reduction in caloric intake 
(k = 610, n = 103), followed by fasting (k = 63, n = 18), while a 
combination of both was far less used (k = 4, n = 1). Across all 

dietary treatments (and when looking across all measures, 
means and medians combined), the total heterogeneity (I2; or the 
total variance both between and within studies; Nakagawa et al. 
2023) across effect sizes was very high (96.5%) suggesting high 
variability or inconsistency among effects (Yang et al. 2023). The 
effect of study ID or the between-study heterogeneity was less 
38.5% than the effect of observation ID or the within-study effect 
58.0%. Lastly, the species effect explained 0% heterogeneity. All 
other model heterogeneity is given in the supplementary model 
outputs. Note in all cases, results are presented in the following 
order: p value; estimate (lower confidence interval, higher con-
fidence interval).

3.2   |   Publication Bias

Overall, there was no evidence of small-study bias or time-
lag bias influencing the average effect of the longevity treat-
ments across all measures (means and medians combined; 
p = 0.878; −0.018 [−0.242, 0.207] and 0.232, −0.001 [−0.004, 
0.001]; Figure  1 and Figure  S3). However, when looking at 
log-response mean and median values separately, there was 
significant evidence of small study and time lag bias operat-
ing on log-response means but not medians (indicated by a 
significant covariate of inverse of effective sample size and 
mean-centred year). In particular, small study bias and time-
lag bias were found to be underestimating the overall average 
effect for each treatment (mean small-study bias: p < 0.001; 
−0.635 [−0.857, −0.413]; mean time-lag bias: p = 0.011; −0.002 
[−0.004, −0.001]). As a result, we interpret results from both 
measures separately and combined, with and without publica-
tion bias adjustment.

FIGURE 1    |    The mean effect of dietary restriction, metformin and rapamycin across vertebrate species. Each treatment has a mean effect size 
with surrounding 95% confidence intervals. A positive mean effect indicates an overall lifespan-extending effect of the treatment, whereas a neg-
ative is the opposite. Means and errors are shown from models unadjusted (black) or adjusted (purple) for publication bias, as well as originating 
from models with only medians (squares), only means (triangles) or using both measures combined (circle). Points represent individual effect sizes 
scaled by precision (1/standard error), shapes denote measure type and colour denotes species (black = dogs, orange = mice, light blue = mouse lemur, 
green = rats, yellow = rhesus monkeys, dark blue = sticklebacks, dark orange = redtail killifish and pink = turquoise killifish). Silhouettes created us-
ing rphylopic v. 1.50 (Gearty and Jones 2023). Attribution: All silhouettes available under creative commons licence CC0 1.0 (dog = Margot Michaud, 
redtail killifish = Ryan Cupo, turquoise killifish = Tetsuo Kon, rhesus monkey = Ben Murrell, mouse lemur = Arpat Ozgul) and CC BY-NC-SA 3.0 
(stickleback = Milton Tan). Figure by EIC and ZS.
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3.3   |   Effect of Longevity Treatment

Both the DR and rapamycin treatments were significantly different 
from zero both with and without adjusting for publication bias in 
the models when both medians and mean values were combined 
(with adjustment DR: p < 0.001; 0.172 [0.132, 0.213]; with adjust-
ment rapamycin: p < 0.001; 0.216 [0.152, 0.279]; without adjustment 
DR: p < 0.001; 0.177 [0.143, 0.210]; without adjustment rapamycin 
p < 0.001; 0.204 [0.147, 0.261]; Figure 1 and S3) but did not differ 
from each other (with adjustment: p = 0.221; 0.044 [−0.026, 0.114]; 
without adjustment: p = 0.406; 0.028 [−0.038, 0.093]; Figure 1 and 
S3), despite rapamycin having a consistently greater average lifespan 
extension compared to DR. This suggests that these two treatments 
produced similar degrees of lifespan extension across all measures. 
In contrast, the metformin treatment overlapped zero in both models 
(with adjustment: p = 0.069, 0.086 [−0.007, 0.178]; without adjust-
ment: p = 0.088; 0.078, [−0.012, 0.168]; Figure 1 and S3), suggesting 
overall weak support for metformin as a drug to extend lifespan in 
vertebrates. In both models, metformin was significantly different 
from rapamycin (with adjustment: p = 0.017; 0.130 [0.023, 0.237] 
and without adjustment: p = 0.021; 0.126 [0.019, 0.232]; Figure  1 
and S3), and from DR when unadjusted from publication bias (with 
adjustment: p = 0.081; 0.086, [−0.011, 0.184] and without adjust-
ment: p = 0.044; 0.098 [0.003, 0.194]; Figure 1 and S3). This pattern 
remained robust when only looking at studies that used mice (the 
most represented species; Figure S18) and even, for DR, when effect 
sizes were limited according to the 900-day rule (Pabis et al. 2024; 
Figure  S18; although note that the number of effect sizes for  
metformin was significantly reduced), which was suggested 
in order to increase the robustness of intervention out-
comes. However, the log- response ratio of means for rapamy-
cin, unadjusted and adjusted for publication bias, overlapped  
zero when only using individuals that passed the 900-day  
rule (Fig. S18).

In all cases, (log-response means and medians, with and without 
adjustment for publication bias), DR was found to extend lifes-
pan (means with adjustment: 0.164 [0.118, 0.209]; means with-
out adjustment: 0.124 [0.075, 0.173]; medians with adjustment: 
0.168 [0.124, 0.212]; medians without adjustment: 0.186 [0.149, 
0.222]; all p < 0.001; Figure 1 and S3–S5). The opposite was true 
for metformin, as only when looking at log-response means, ad-
justed for publication bias, did the average effect of metformin 
not overlap zero (Figure 1 and S3–S5). For rapamycin, a lifespan-
extending effect was apparent when looking overall, as well as 
log-response medians (unadjusted and adjusted) and log-response 
means adjusted for publication bias (Figure 1 and S3–S5). Using 
only log-response means caused both rapamycin and metformin 
to produce a similar lifespan extension as DR (with adjustment: 
p = 0.796; −0.011 [−0.092, 0.071] and 0.994; 0.0004 [−0.112, 
0.113]; and without adjustment: p = 0.274; −0.051 [−0.142, 0.040] 
and 0.627; −0.030 [−0.153, 0.092]; Figure 1 and S4). The average 
effect of DR was also not significantly different from rapamycin 
in both models involving medians, adjusted and unadjusted for 
publication bias (with adjustment: p = 0.166; 0.053 [−0.022, 0.127] 
and without adjustment: p = 0.282; 0.039 [−0.032, 0.109] Figure 1 
and S5). The effect of dietary restriction was significantly different 
from metformin when looking at unadjusted log-response medi-
ans but not when adjusted for publication bias (with adjustment: 
p = 0.071; −0.101 [−0.210, 0.009] and without adjustment: p = 
0.040; -0.114 [−0.222, −0.0054]; Fig 1 and S5).

3.4   |   Effect of Sex and Dietary Methodology

For most models, across all lifespan treatments, the sexes  
did not significantly differ from each other (Figure 2 and S6–
S14). Only in one model for metformin, did publication bias 

FIGURE 2    |    The mean effect of sex under different lifespan-extension 
techniques, dietary restriction, metformin and rapamycin across verte-
brate species. Each treatment has a mean effect size with surrounding 95% 
confidence intervals. A positive mean effect indicates an overall lifespan-
extending effect of the treatment, whereas a negative is the opposite. Means 
and errors are shown from models unadjusted (black) or adjusted (purple) 
for publication bias, as well as originating from models with only medians 
(squares), only means (triangles) or using both measures combined (circle). 
Points represent individual effect sizes scaled by precision (1/standard er-
ror), shapes denote measure type and colour denotes species (black = dogs,  
orange = mice, light blue = mouse lemur, green = rats, yellow = rhesus 
monkeys, dark blue = stickleback, dark orange = redtail killifish and 
pink = turquoise killifish). Silhouettes created using rphylopic v. 1.50 
(Gearty and Jones 2023), attribution given under Figure 1. Figure by EIC 
and ZS.
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adjusted medians and means combined suggest that males dif-
fered significantly from females (p = 0.043; 0.113 [0.004, 0.223]).

When testing whether males, females or a combination of both 
produced a significant lifespan extension, similar variability 
was found both across treatments and measures. For rapamycin, 
both adjusted and unadjusted mean values suggested no influ-
ence on either sex (adjusted M: −0.083 [−0.269, 0.103]; adjusted 
F: −0.092 [−0.266, 0.083]; adjusted Mixed: −0.024 [−0.209, 
0.160]; unadjusted M: 0.058 [−0.040, 0.156]; unadjusted F: 0.054 
[−0.290, 0.137]; unadjusted Mixed: 0.106 [−0.023, 0.235]; all 
p > 0.05. Figure 2 and S7). When looking at unadjusted median 
values, all studied sex groupings were different from zero (unad-
justed M: 0.246 [0.131, 0.362]; unadjusted F: 0.271 [0.155, 0.386]; 
unadjusted Mixed: 0.262 [0.132, 0.392]; all p ≤ 0.001; Figure  2 
and S8), which mirrors the overall unadjusted effect with mea-
sures combined (unadjusted M: 0.238 [0.126, 0.350]; unadjusted 
F: 0.257 [0.146, 0.369]; unadjusted Mixed: 0.255 [0.133, 0.376]; 
all p < 0.001; Figure  2 and S6). After adjusting for publication 
bias, no sex groupings were different from zero both when look-
ing at log-response medians and overall (Figure 2 and S6–S8). 
When looking at metformin, in most circumstances, metformin 
did not extend the life of either sex (Figure 2 and S9–S11). Only 
two models, unadjusted means and overall, produced evidence 
of significant lifespan extension in females (unadjusted means: 
p = 0.038; 0.100 [0.006, 0.193]; Figure 2 and S9,S10) and males 
(unadjusted overall: p = 0.015; 0.134 [0.027, 0.241]; and adjusted 
overall: p = 0.048; 0.162 [0.0014, 0.323]; Fig 2 and S9–10). Once 
again suggesting weak support for universal lifespan extension 
in metformin. For DR, a much simpler pattern was observed. 

Across models with means, medians and both measures com-
bined, both adjusted and unadjusted for publication bias, DR 
was found to produce a lifespan extension in females, males and 
mixed sex groupings (Figure 2 and S12–S14). Only when looking 
at unadjusted mean values was there no lifespan extension in 
the mixed sex group (p = 0.102; 0.117 [−0.023, 0.256]; Figure 2 
and S13).

In addition, both methods of DR with sufficient sample size 
(percent reduction, and fasting) produced a lifespan extension 
(Figure  3 and S15–S17). For the singular study which used a 
method of both, only when measures were adjusted for publi-
cation bias did the method produce a significant lifespan exten-
sion (although note that this is based on very few effect sizes). 
However, there were no significant differences between meth-
odologies both overall and when comparing just means or me-
dians adjusted or unadjusted for publication bias (Figure 3 and 
S15–S17).

4   |   Discussion

The overall aim of this meta-analysis was to compare the effect 
of two widely-studied DR mimetics (rapamycin and metformin) 
with DR across vertebrates. First, we replicate the general ob-
servation found across the animal kingdom that DR promotes 
robust lifespan extension (Nakagawa et al. 2012) with analogous 
effects across both males, females and mixed groupings along 
with no difference in the type of DR methodology employed. 
Second, we also find compelling evidence that rapamycin, but 

FIGURE 3    |    The mean effect of dietary restriction methodologies, Fasting, Percent Reduction and a combination of the two across vertebrate spe-
cies. Each treatment has a mean effect size with surrounding 95% confidence intervals. A positive mean effect indicates an overall lifespan-extending 
effect of the treatment, whereas a negative is the opposite. Means and errors are shown from models unadjusted (black) or adjusted (purple) for pub-
lication bias, as well as originating from models with only medians (squares), only means (triangles) or using both measures combined (circle). Points 
represent individual effect sizes scaled by precision (1/standard error), shapes denote measure type and colour denotes species (black = dogs, or-
ange = mice, light blue = mouse lemur, green = rats, yellow = rhesus monkeys, dark blue = stickleback, dark orange = redtail killifish and pink = tur-
quoise killifish). Silhouettes created using rphylopic v. 1.50 (Gearty and Jones 2023), attribution given under Figure 1. Figure by EIC and ZS.
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not metformin, significantly extends lifespan, in most cases sim-
ilar to that of DR, and that this was robust in mice to the removal 
of short-lived controls when looking at medians and overall es-
timates (Pabis et al. 2024; although note that the log-response 
means were not significant). However, we find significant het-
erogeneity in effects between and within studies as well as, and 
most notably, we show that lifespan effects can be sensitive to 
the type of measure reported (i.e., mean vs. median lifespan). 
Most notably, the positive effect of rapamycin disappears when 
looking at the log-response ratio of means, although both met-
formin and DR appear robust to differences in measure. We also 
find evidence that publication bias may be obscuring the aver-
age effect of these treatments, which after adjusting for small-
study and time-lag bias, caused the effect of rapamycin to differ 
significantly from zero in all measures.

The contrasting effects of rapamycin and metformin (in addition 
to the robust effect of DR) may in part be due to mechanistic dif-
ferences in the mediating pathways (Figure 4). Although both 
DR-mimetics are classified as mTOR inhibitors, their mode of 
action is subtly different (Aliper et al. 2017). Whereas rapamycin 
directly inhibits TOR signalling through the mTORC1 complex, 
metformin acts indirectly through the activation of the adenos-
ine monophosphate-activated protein kinase (AMPK), which in 
turn inhibits TOR signalling (Aliper et al. 2017). Whether a mi-
metic compound acts directly or indirectly to inhibit TOR signal-
ling may contribute to the differing degrees of lifespan extension 
reported in this meta-analysis and, in addition, may explain the 
added increase in lifespan when both metformin and rapamycin 

are taken synergistically (Strong et al. 2016; Wolff et al. 2020). 
Therefore, future work should aim to uncover the precise mech-
anistic explanation for the observed differences in lifespan ex-
tension between these two DR mimetics and how they relate to 
the various mediating pathways of DR. This is particularly vital 
as although similar pathways have been identified, the precise 
mechanisms of action have been shown to differ, particularly 
between rapamycin and DR (Miller et al. 2014). Finally, DR is 
known to affect additional pathways beyond AMPK and mTOR, 
such as growth hormone signalling and insulin/IGF1 signalling 
pathways, which may explain why DR has more robust effects 
compared to rapamycin and metformin (Green et al. 2022).

We also explored whether sex was an important modulator 
of lifespan extension, as previous research had suggested a 
decreased efficacy of DR in males in comparison to females 
(Nakagawa et  al.  2012). We found no consistent differences 
in lifespan extension between all sex groupings and across all 
treatments, although we note the one significant positive effect 
of males in metformin when accounting for publication bias in 
combined log-response means and median. However, overall, 
the lack of consistent sex effect (particularly in DR) could be 
due to differences in taxonomic groups studied (across verte-
brates and invertebrates in their study and simply vertebrates 
here) and the calculated effect size (natural log of hazard ratio 
in their study vs. log-response means and medians in ours). 
Nevertheless, we provide evidence of a robust lifespan exten-
sion via dietary restriction acting on males, females and mixed 
sexes. For metformin, as with the general lack of overall effect, 

FIGURE 4    |    Molecular pathways involved with dietary restriction, metformin or rapamycin. Arrows imply activation; bars denote inhibition. 
Figure designed by ZS using BioRe​nder.​com.
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there was little evidence of a general sex effect (although note 
the aforementioned exception), suggesting that regardless of the 
sex of organism studied, a lifespan extension is unlikely to be 
found. When observing the effect of sex on rapamycin the re-
sults are less clear. Whereas rapamycin had unadjusted median 
and overall values suggesting an equal lifespan extension act-
ing across all levels of the sex moderator, correcting for publica-
tion bias appeared to diminish the positive effect of rapamycin 
in both sexes. This clearly highlights the need to further assess 
the sex-specific efficacy of rapamycin, particularly as the effects 
have been found to differentially affect males and females across 
a variety of species across the tree of life (Harrison et al. 2009; 
Bjedov et  al.  2010; Miller et  al.  2014; Lind et  al.  2016; Raynes 
et al. 2024).

We also found that the type of DR technique used did not sig-
nificantly influence the degree of lifespan extension, with two 
of the main types of DR methodology (percent reduction and 
fasting) producing a significant extension in lifespan. We note 
that the third technique, the mixture of both fasting and per-
cent reduction, also produced a significant lifespan extension 
after adjusting for publication bias. Overall, this is unsurprising 
as in many cases, aside from the few studies where individuals 
were withheld from food for prolonged periods, the effects of 
diet reduction and fasting were often inadvertently entangled. 
For instance, in several studies, food was restricted to a percent-
age below ad libitum but also with a corresponding reduction to 
the time period that the subject had to feed (or put another way, 
increasing the time between feeding periods as typically they 
were fed only once per day) (see Cheney et al. 1983; Horáková 
et al. 1988; Black et al. 2003; Chiba and Ezaki 2010; Cameron 
et al. 2012; Mitchell et al. 2019; Duregon et al. 2021). Only in one 
study was the reduction in intake and increase in time between 
feeding explicitly part of the experimental design (Acosta-
Rodríguez et al. 2022). In order to fully distinguish the effects 
of restricting diet from the effects of fasting, a more appropriate 
design would be simply to match the timing or duration of feed-
ing of the restricted group with the ad libitum, although study 
subjects may increase feeding rate to compensate for the reduc-
tion in calories. However, regardless of the method used, this 
further highlights the robust lifespan extension that manifests 
as a result of restricting caloric intake across all studied verte-
brate species.

Importantly, we also found that the number of effect sizes orig-
inating from median values (k = 557) was much larger than 
from means (k = 354). Under a normal distribution, means and 
median values will be identical; however, medians are often 
considered a better measure of central tendency than means 
when data is right-skewed (frequent low values with a declin-
ing number of higher values) or if right censoring has taken 
place (Bonett and Price 2019), which is often the case for sur-
vival data. An obvious easy solution would be for all papers to 
report both the median and mean survival statistics alongside 
the provision of raw data in order to more easily conduct meta-
analyses of this type in the future. Whilst not ideal, as median 
values do not readily provide measures of variance around 
them, techniques exist to impute missing standard deviations 
based on existing data (see Nakagawa, Yang, et al.  2023). As 
a result, simply ignoring median values, which appear to be 
far more prevalent in literature surrounding DR and related 

mimetics, risks drawing pre-emptive conclusions based on a 
reduced sample of purely log-response ratio of means. We note 
that in the log-response ratio of means, publication bias (here 
in the form of the moderator of the inverse of effective sam-
ple size and mean-centered year of pulbication) was found to 
be significantly influencing the reported lifespan extension 
of all three techniques. Despite this, consistent patterns were 
observed, namely, DR promoted a robust increase in lifespan 
across all measures, whereas most measures suggested a sig-
nificant lifespan extension for rapamycin, and a lack of it for 
metformin.

Lastly, whilst we provide compelling evidence for the lifespan-
extending efficacy of rapamycin, we emphasise the need for 
much further research. Firstly, this meta-analysis was con-
fined to a small number of vertebrate species studied mostly 
under laboratory conditions. As a result, there is a need for ad-
ditional studies to explore the generalizability and applicability 
of these DR mimetics across other vertebrate species, particu-
larly in humans (although early indications of rapamycin and 
DR appear positive; Aversa et al. 2024; Lee et al. 2024), and in 
species that can be studied both in the laboratory and in their 
natural environments. Secondly, there is a need to investigate 
the heterogeneity in effects that exists across different strains 
of the same species exposed to the same treatment (Harrison 
and Archer 1987; Rikke et al. 2010). In particular, why there 
appears to be large genotype-specific variation in response 
to reduced caloric intake or DR mimetics, with some strains 
showing positive effects while others exhibiting the opposite 
(Liao et al. 2010; Swindell 2012, 2017). Answering these out-
standing questions will provide far deeper insights into the 
mechanisms and ubiquity of DR- or DR-mimetic-mediated 
lifespan extension.
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