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Abstract
Code review increases reliability and improves reproducibility of research. As such, 
code review is an inevitable step in software development and is common in fields 
such as computer science. However, despite its importance, code review is notice-
ably lacking in ecology and evolutionary biology. This is problematic as it facilitates 
the propagation of coding errors and a reduction in reproducibility and reliability of 
published results. To address this, we provide a detailed commentary on how to effec-
tively review code, how to set up your project to enable this form of review and detail 
its possible implementation at several stages throughout the research process. This 
guide serves as a primer for code review, and adoption of the principles and advice 
here will go a long way in promoting more open, reliable, and transparent ecology and 
evolutionary biology.
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1  |  INTRODUC TION

Across scientific disciplines, researchers increasingly rely on code 
written in open-source software, such as R and Python, to clean, 
manipulate, visualize, and analyse data (Lai et al.,  2019; Mislan 
et al., 2016; Peikert & Brandmaier, 2021; Peikert et al., 2021). Such 
software allows for increased transparency and reproducibility 
compared with software that operates through point-and-click in-
terfaces (‘User Interface’ or ‘UI-based’), such as Minitab and SPSS 
(Obels et al.,  2020). One of the key benefits of this code-based 
software is flexibility, because researchers can tailor analyses to 
their specific research needs which would otherwise be unavail-
able. However, the flexibility of code comes at a cost, as it means 
that it can be more error-prone (Budd et al., 1998). These errors 
may be conceptual (e.g., implementing the wrong function for 
a given task), programmatic (e.g., indexing the wrong column of 
a data frame), or syntactic (e.g., the incorrect spelling of a state-
ment or function). Although UI-based software is also prone to 
conceptual errors, programmatic and syntactic errors are more 
common in code-based software. These errors can contribute to 
a lack of reproducibility or to the propagation of incorrect results 
(see Obels et al., 2020 for a review of code and data in psychol-
ogy). Indeed, several high-profile retractions have centred on these 
types of mistakes (Bolnick & Paull, 2009; Huijgen et al., 2012; Ma 
& Chang, 2007; Miller, 2006; Williams & Bürkner, 2020). One way 
to minimize potential errors, besides carefully annotating code and 
following best coding practices, is to undergo a process of code 
review. However, unlike in some disciplines (such as in computer 
science and software development) where code review is routinely 
implemented (Badampudi et al., 2019; Nelson & Schumann, 2004), 
it is noticeably absent from the research and publication processes 
in other academic disciplines that rely on code to make inferences 
and predictions (Indriasari et al., 2020), including ecology and evo-
lutionary biology.

To address this, we advocate for a fundamental shift in research 
culture that brings code review into all stages of the research pro-
cess, as reviewing of code is necessary to facilitate error correction 
and to confirm the reproducibility and reliability of reported results. 
This is particularly important as analyses are becoming ever more 
complicated, especially in the fields of ecology and evolutionary bi-
ology (Touchon & McCoy, 2016). But how can we implement code 
review? By whom, when, and how can it take place? In this paper, we 
provide some suggestions about how to conduct a code review and 
how to produce code that facilitates this form of review. Finally, we 
discuss the application of code review throughout the entire process 
of publication, from the early stages of pre-publishing right through 
to after work is published. Although we focus mainly on issues and 
techniques related to the R and Python coding languages due to 
their popularity in the fields of ecology and evolutionary biology (Lai 
et al., 2019; Mislan et al., 2016), the concepts and principles we dis-
cuss are widely applicable.

2  |  WHAT SHOULD CODE RE VIE W 
E VALUATE?

Code review is the process of either formally (as part of the peer-
review process) or informally (as co-authors or colleagues) checking 
and evaluating each other's code. It is critical to help avoid concep-
tual, programmatic, and syntactic errors in code and can take place 
at any stage of the research cycle; pre-submission, during formal 
peer review, or post-publication. Although the manner and scope in 
which code review occurs may vary depending on the position in the 
research cycle, the core priorities remain the same: to ensure code 
is as reported in the methods section, is able to successfully run, is 
reliable, and is able to reproduce stated results. Below we describe 
these key priorities as the four Rs of code review (Figures 1 and 2):

2.1  |  Is the code as reported?

Code is a key research output and a critical component of scientific 
methodology. As such, open code accompanying written methods 
sections is becoming more common, following similar pushes for 
Open and FAIR data (Lamprecht et al., 2020). Therefore, it is impera-
tive that code is checked for consistency when presented with the 
corresponding manuscript. These questions help us avoid concep-
tual errors in code. Does the code match the description of what is 
’Reported’ within the methods section (Figure 1, Box 1 in Data S1)? 
Ensuring code matches the methods reported is imperative to evalu-
ate whether the code is doing what is stated in the manuscript and 
what it is intended to do by the user. For instance, methods may state 
that an analysis uses a generalized linear model with Poisson error, 
but the code instead fits a Gaussian error distribution. Reviewing for 
this mismatch must be part of code review. In addition, and equally 
important for reproducibility is whether the relevant packages (with 

F I G U R E  1  The four ‘Rs’ of code review. Figure design by B.M.M.
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appropriate version numbers) are stated somewhere in the manu-
script. In general, it is good practice to, at the very least, list the 
packages (with version numbers) that are integral to the analysis or 
to visualization in the manuscript. These can be obtained by using 
the ‘citation()’ function in R or using the {setuptools} package in Py-
thon. A full list of all packages used (and versions), for instance those 
involved with cleaning and tidying of data, could be given elsewhere 
such as in an associated. R or .py file. Importantly, this will allow for 
any package or module with versions that are found to contain bugs 
or coding errors to be identified at a later stage. Packages such as 
{renv} (Ushey & Wickham, 2023; which replaces {packrat}, Ushey 
et al., 2022), {groundhog} (Simonsohn & Gruson, 2023), or {poetry} 
(Eustace, 2023) and {pipenv} (Pipenv Maintainer Team, 2023) in Py-
thon can help with ensuring a reproducible environment and allow 
for specific loading of desired package versions. Another option is 
containerization through the use of Docker (Boettiger, 2015; N.B. 
detailed tutorials already exist which highlight the use of this repro-
ducible method in far more detail than we will discuss here).

2.2  |  Does the code run?

Even if code matches the methodology reported in a paper, this does 
not mean the code is executable (i.e., can ‘Run’). Programmatic and 
syntactic errors can make code fail to rerun. For example, code will 
not be able to be run if it includes calls to libraries (or modules) that 
are not installed in the current computing environment or if there 
are spelling mistakes (Figure  1, Box 1 in Data  S1). Data sharing, 
where possible, should accompany code sharing, so that code can 
be fully rerun with the original data. If data sharing is not possible, 

simulated data or a data snippet should be provided so that the code 
can be rerun. In cases where it would take a long period of time to 
rerun code (for instance with some forms of Bayesian modelling), 
the code should be accompanied with appropriate model outputs 
(readily provided by the author, see below ‘Output reproducibility’).

2.3  |  Is the code reliable?

Errors can still propagate through code that runs and produces 
an output, because code can produce incorrect results in a repro-
ducible manner (i.e., every time the code is run). For example, if 
code selects or modifies the wrong column in a dataset, the code 
will still run, but produce a reproducible yet inaccurate result (i.e., 
the code is not ‘Reliable’; Figure 1, Box 1 in Data S1). This type of 
error could easily be conceptual, arising from a misunderstanding 
of the dataset, or programmatic, such as from indexing by number 
and producing a mistaken column order or from user-defined func-
tions. Although some coding techniques, such as explicitly indexing 
by column name or by performing unit testing of any user-defined 
function (see Cooper,  2017); relevant packages include {testthat}, 
(Wickham, 2011) in R or {pytest} in Python (Okken, 2022), can help 
avoid many of these mistakes, this type of error is common and also 
extremely difficult to pick up by anyone without deep familiarity 
with the dataset and code. In particular, these errors are thought to 
scale with the number of lines and complexity of code (Lipow, 1982). 
Although intrinsically linked to evaluating whether code can be run 
(the second ‘R’), evaluating code reliability means not only ensuring 
that the code runs to completion without error, but examining inter-
mediate outputs of the code to ensure there are no mistakes. The 
functions ‘identical()’ in R and ‘numpy.array_equal()’ in Python can be 
useful at this stage of code review to compare object similarity be-
tween newly generated and previously saved intermediate outputs.

2.4  |  Are the results reproducible?

The last ‘R’ of code review builds on the previous code review stages, 
and is perhaps the most fundamental: can the code produce the out-
put, and thus support the conclusions, given in the paper (Goodman 
et al., 2016; Figure 1, Box 1 in Data S1)? As several recent papers 
have highlighted (Archmiller et al., 2020; Errington et al., 2021; Mi-
nocher et al., 2021; Obels et al., 2020; Tiwari et al., 2021), reproduci-
bility in research results is often very low. Therefore, the final step of 
code review is ensuring that final outputs when code is rerun match 
those reported in the analysis and results sections (including any 
relevant figures and narrative text contained within these sections). 
With that said, at times obtaining the exact same result is not pos-
sible. Some level of tolerance must therefore be applied especially 
when dealing with stochastic methods in which parameter estimates 
will change between subsequent runs or with techniques that are 
computationally demanding and slow. This can occur for example if 
the ‘set. seed() function in R or ‘random.seed()’ function in Python 

F I G U R E  2  A basic workflow for reviewable code that can be 
adopted from the onset of a project. See Data S1 for a printable 
checklist of the points listed here. Figure and checklist design by 
B.M.M.
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has not been used prior to stochastic sampling. Providing model out-
puts can go some way in helping with this (see above); however, it 
does not allow for the code to be explicitly run to see if you can ob-
tain similar results as stated in the paper (regardless of potential time 
taken). In this case, newly generated results should be compared to 
the originally reported results. The assessment of how well these 
two match can then be done using different methods. For example, 
Archmiller et al.  (2020) suggest comparing the conclusion (the di-
rection and significance level) and the numbers (intervals matching 
within one significant figure) of the original and reproduced results. 
A useful example of this is given in Archmiller's et al.  (2020) sup-
plementary material, in which they state that a mean of 4.12 and 
interval of 3.45–4.91 reproduces the conclusion and numbers of a 
study with a mean of 4.00 and interval of 3.30–5.00. Similar conclu-
sions would be drawn if these means (and CIs) were higher (e.g., 6.5, 
6.0–7.0), but the numbers would not be considered quantitatively 
reproduced. However, the conclusions and numbers would not be 
reproduced if the model instead produced a mean of 4.10 with an 
interval of −1.00 to 8.40 (as the confidence interval here overlaps 
with 0). However, the use of one significant figure for comparison 
of quantitative reproducibility is highly dependent on scale. One al-
ternative, which is unaffected by differences in scale, is provided by 
Hardwicke et al.  (2021) (see also Kambouris et al., 2023) who sug-
gest using % error [PE = (new – original)/original × 100]. Error is then 
classified as non-existent when this value is 0, minor if between 0 
and 10 and major (and not reproducible) if 10+.

Importantly, as well as the overlap with 0 (or null hypothesis) 
not changing, the reported and reproduced estimate and intervals 
should not significantly differ from each other. With stochastic 
MCMC methods, the variation between chains is expected to be 
much lower than variation within chain (i.e., the credible intervals), 
and so similarly the reproduced value should be well within the 
stated uncertainty of the reported estimate. It is worth noting and 
mentioning in your review how closely the numbers and conclusion 
matched with the reported results.

3  |  SET TING UP YOUR CODE FOR 
EFFEC TIVE CODE RE VIE W

Code review should evaluate if code matches reported methods, 
whether code runs and is reliable, and lastly, if results can be re-
produced. But in order for these questions to be addressed, code 
must be written and shared in a way that it is possible for someone 
else to rerun an analysis; both to allow for code to be reviewed and 
to be reused in the future when properly maintained and contained 
(Boettiger, 2015). For this to happen, all necessary scripts must be 
shared along with appropriate metadata indicating how the scripts 
interact with one another, along with describing all other necessary 
software and appropriate versions. Often, researchers lack formal 
training in coding, and learn to code in an ad hoc fashion that ex-
cludes training on general styling, appropriate use of workflows, and 
project organization. As a result, researchers may often not be aware 

of the steps necessary to set up code for a project in a manner that 
reflects best coding practices. Therefore, below we list key princi-
ples (Figure 2) that will help make code reviewable at any stage of 
the research cycle.

3.1  |  Project organization

Every project needs some form of directory organization and folder 
structure. This is likely to be largely driven by the function and form 
that your research takes, but an efficient and transparent folder 
structure that keeps raw data separate from code and intermediate 
outputs should be created. This helps to ensure that raw data is not 
accidentally modified or overwritten if any data cleaning or wran-
gling techniques are applied. A simple folder and file structure such 
as this will go a long way to help researchers from all coding skill lev-
els understand the order and flow of the data analysis, particularly 
when the user creates sequentially labelled subfolders and scripts 
where someone following the code knows which order things must 
be run (e.g., files beginning with ‘01…’) in addition to dividing and 
naming folders to fit their purpose (e.g., data, scripts, function). Sev-
eral incredibly useful examples already exist (Alston & Rick, 2021; 
Chure, 2022; Cooper, 2017; see also https://coder​efine​ry.github.io/
repro​ducib​le-resea​rch/ and https://lakens.github.io/stati​stical_infer​
ences/​14-compu​tatio​nalre​produ​cibil​ity.html). Project code should 
be stored and available on any data or code repository. Another op-
tion for organizing a project is to use pipeline or workflow tools (for 
instance see https://github.com/pdito​mmaso/​aweso​me-pipeline), 
such as the {targets} (Landau,  2021) and {workflowr} R packages 
(Blischak et al., 2019) or the {luigi} package (The Luigi Authors, 2023) 
in Python (see https://www.marti​nalar​con.org/2018-12-31-a-repro​
ducib​le-scien​ce/). These tools allow users to automate the process 
of data analysis, taking a raw dataset through the steps necessary to 
produce data analysis and visualization. The advantage to the user 
is that the code is compartmentalized into logical steps (e.g., import 
raw data, data cleaning, data wrangling, data analysis, data visuali-
zation) and any changes to the code only affects the downstream 
steps. For example, if we change the type of analysis we do, we do 
not need to re-import the data or clean it again. This saves time in 
computation (especially important for complex, long-running pipe-
lines) but is also advantageous for reproducibility, and sharing and 
reuse of code. Reviewers can effectively rerun the steps needed 
to produce a data analysis or figure without having to rerun time-
consuming pre-processing steps.

3.2  |  Project and input metadata

Projects will instantly have better organization and increased re-
producibility when users know how they should work through the 
various folders and subfolders. A README text file and additional 
metadata gives users the signposts required to facilitate rerunning 
of code. This can contain information on the packages used (e.g., 
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the package name and version number), along with a detailed de-
scription of the various data files, project aim, contact information 
of the authors, and any relevant licences in place for code or for 
data (see https:/choos​ealic​ense.com/licen​ses/ for more informa-
tion). Furthermore, key information about source data is critical for 
reproducing analysis code. If sharing data are inappropriate to your 
study (for example when dealing with sensitive confidential data) or 
if data are so large it cannot be easily shared, then a user can pro-
vide a sample of simulated data or a primer so that the code can 
be checked and read (Hennessy et al., 2022; Quintana, 2020). How-
ever, if data are readily available, then providing detailed information 
about what the data are (preferably in an associated README) and 
where the data are (e.g., stored on a free data repository such as The 
Open Science Framework (OSF), Zenodo, or for ecology data, the 
Knowledge Network for Biocomplexity) should be provided. Meta-
data should include information, such as where the data come from, 
who the owners are, as well as what each column header entails, 
and any relevant acronyms or shorthand notation (ideally follow-
ing FAIR principles, so data are Findable, Accessible, Interoperable, 
and Reusable; see Lamprecht et al., 2020). This is particularly use-
ful when controlled vocabulary is used throughout, and R packages 
such as {codemeta} (Boettiger, 2017) and {dataReporter} (Petersen 
& Ekstrøm, 2019) or Python packages such as {CodeMetaPy} (van 
Gompel, 2023) and {cookiecutter} (Feldroy, 2022) can help with this. 
Lastly, it is also crucial to explain what data cleaning or curation oc-
curred before the analysis code. For instance, outlining what previ-
ous data manipulation or pre-processing steps have been taken to 
obtain the data in its current state or when an intermediate data file 
was used.

3.3  |  Code readability

Good readability of code is extremely important in enabling effec-
tive code review. Several quick solutions exist to provide increased 
clarity: (1) explicitly calling packages (via a package's namespace, e.g., 
package::function() in R or package.module.function() in Python); (2) 
using relative file paths (for instance using the {here} package (Mül-
ler, 2020) and preferably with an associated R project file, if using 
R and RStudio or in a virtual environment if using Python); (3) re-
moving redundant packages; and (4) writing analysis code with clear 
subheadings, intuitive coding comments, and easy-to-understand 
object names. Best practice coding tips can be implemented by R 
packages such as {styler} (Müller & Walthert, 2020) or {pycodestyle} 
in Python (Rocholl, 2022) and can format code in a number of stand-
ardized styles (e.g., Google, tidyverse in R, or PeP8 in Python) with a 
single line of code or a click of a button. Furthermore, the use of R/
Python Markdown, Quarto or the open-source integrated develop-
ment environment, Jupyter Notebook (or its extension, JupyterLab) 
enables users to present code in chunks which, along with suitably 
descriptive comments, allows for far easier readability. In addition, 
several recent guides and primers have been written that focus on 

increasing coding cleanliness (Filazzola & Lortie, 2022; Hunter-Zinck 
et al., 2021; Sweigart, 2020), so we urge the reader to consult these 
guidelines for tips and advice on improving code readability.

3.4  |  Output reproducibility

One of the key principles and requirements of code is the ability to 
correctly reproduce published graphs, statistics, and results. In order 
to do so, a user's code needs to provide a clear link between each 
section of the code and the various reported graphs and outputs to 
enable comparison of code to paper and to results. This should then 
facilitate checking that the results produced by the code match the 
stated results in the publication. In some cases, reproducing analysis 
from models can take considerable time to complete, for instance, 
when re-running complicated Bayesian models or other techniques 
involving long computational time. In this case the ‘exact’ reproduc-
ibility of results is not always possible if code must simulate a sto-
chastic process (e.g., Monte Carlo sampling methods). In this case, 
using set. seed() or saving simulation outputs still allows for repro-
ducible results (e.g., with the ‘saveRDS()’ function in R or the ‘pickle.
dump()’ function in Python) and can enable code reviewers to check 
the reproducibility of the reported results.

4  |  PRE- PUBLIC ATION: SET TING UP A 
CODE RE VIE W GROUP

Informal training coupled with insufficient time and incentives 
(Touchon & McCoy,  2016) means that coding and subsequent 
analysis are often the responsibility of a single member of a team 
throughout a project's entire lifetime. This is in stark contrast to 
the research-team wide collaboration typical when developing 
methodology and experimental design. The individual nature of 
writing research code is part of what makes pre-publication code 
review so unlikely, but even more critical. Although code review 
has a place in the formal peer-review process and post-publication, 
one of the most important places for code review to take place is 
before publication.

To achieve this, there must be a culture of peer code review 
among research teams. One of the most effective methods by which 
researchers can establish a culture of peer code review in research 
labs or among colleagues is by setting up a code review group. Here, 
we draw on our experience building a code review club (which we set 
up in collaboration with the Society for Open, Reliable, and Trans-
parent Ecology and Evolutionary Biology, SORTEE) to present tips 
for establishing this type of community. In particular, we focus on 
advice for removing the barriers people have towards sharing their 
code and receiving feedback; be these due to a lack of time and in-
centive, a lack of technical knowledge and unclear workflows, or due 
to social pressures and the fear of being judged by peers (Gomes 
et al., 2022).
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4.1  |  Encourage collaboration from the start of 
a project

Code review can begin as early as the first initiation of a project and 
play a role beyond publication; it is useful to keep continuous code 
collaboration at all stages of a manuscript. Collaboration can be fa-
cilitated through various code-sharing platforms, such as GitHub 
where users can submit and comment on pull requests (Braga 
et al., 2023). At SORTEE, we established a peer-review group and 
used GitHub issues to summarize discussion of an individual's code 
during an interactive zoom session (see https://github.com/SORTE​
E/peer-code-revie​w/issue​s/8 for an example including a summary). 
However, it is important to find a method of facilitating code review 
that works for your group.

4.2  |  Set clear goals for the review

Setting out what you want to achieve with each code review session 
is particularly important when it comes to organizing peer-review 
meetings. Is the focus on general learning and improving readabil-
ity or is it to error-check and scrutinize the reproducibility of your 
code? Having a clear structure and goal for each peer-review ses-
sion is important in order to focus comments and advice to address 
the precise reason for review. Similarly, unless the aim of a code re-
view is to evaluate different analytical options, it would be better 
to leave methodological questions aside to ensure code review is 
streamlined.

4.3  |  Normalize coding errors and establish a 
judgement-free environment

Code review volunteers often feel very anxious about showing code 
that may have errors. It is therefore vital to normalize the existence 
of errors and highlight that perfection is never possible. It is also use-
ful to stress that there is no such thing as bad code (Barnes, 2010) 
and there are usually multiple ways to approach the same problem 
(Botvinik-Nezer et al., 2020; Silberzahn et al., 2018). One of the most 
important statements for peer code review is that there is no sin-
gle way to code. It is important for code review not to get bogged 
down by modifying or homogenizing style; as long as code is read-
able, then coding diversity should be encouraged. It is important to 
create a relaxed environment where people can learn and correct 
mistakes without judgement or fear of failure and everyone in the 
peer-review group should have a chance to contribute and speak.

4.4  |  Carefully consider group size

Usually, a smaller group is a friendly starting point for peer code re-
view because it allows people to feel more comfortable speaking 
up and participating. Small peer-review groups (potentially even 

one-to-one) can better facilitate peer-to-peer learning and a more 
focused review of code. However, there are also times when larger 
groups are more effective, such as having wider discussions on gen-
eral themes and tips. It is worth considering the aims in establishing 
the group to help guide the ideal size. For instance, if your goal is 
to facilitate more general discussions, then a big group size is more 
likely to enable this. However, if your goal is to enable more focused 
review of code, then perhaps it is better to reduce the size of the 
peer-review group for this purpose.

4.5  |  Consider the incentives

Code review, outside of paper submission and the formal peer-
review process, can have a large impact on an individual's project, 
from error checking, to validation of appropriate statistical analyses. 
This then poses the question: what incentives should reviewers of 
code get? If deemed appropriate, the reviewer could be acknowl-
edged using the MeRIT (Method Reporting with Initials for Trans-
parency) system (Nakagawa et al.,  2023), ‘e.g., J.L.P. ran a linear 
mixed model with a Gaussian error distribution. Code was checked 
by E.I.C.’. In some circumstances, it may even be appropriate for the 
reviewer to obtain co-authorship of the paper, if the review funda-
mentally altered the project and subsequent paper. For instance, a 
situation may arise where a code reviewer(s) finds a major coding 
error which, when fixed after highlighting and reproducing the issue 
to the author(s), alters the subsequent results and conclusions of the 
manuscript. Ultimately, incentives should be relative to the impact of 
the reviewer on the project.

5  |  DURING PUBLIC ATION: FORMAL 
CODE RE VIE W

One of the most crucial aspects of code review can take place during 
the formal peer-review process. This is where reviewers are able to 
carefully follow and understand the logic of analyses, much like the 
flow of writing from the introduction to the discussion of a paper 
(Powers & Hampton, 2019). In some journals, such as The Royal So-
ciety (‘Data sharing and mining | Royal Society’, 2023), Behavioural 
Ecology and Sociobiology (Bakker & Traniello, 2020), and The Amer-
ican Naturalist (Bolnick,  2022) both code and data are requested 
for review at from the submission stage (although, based on our 
experience, this is not enforced). In some cases, such as in Journal 
of Open Source Software, the entire process of formal peer review, 
including that of code and manuscript is hosted on GitHub and im-
plemented via GitHub issues (see https://github.com/openj​ourna​ls/
joss-revie​ws/issues for several useful examples). This, as Fernández-
Juricic (2021) points out, has several benefits. For authors, provid-
ing code during peer review could lead to an increase in the quality 
of the manuscript, and for reviewers, available code allows for a far 
deeper insight into the manuscript as there is a clearer link between 
experimental methodology and statistical analysis (the First R; code 
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as ‘Reported’). These benefits are substantial and could ultimately 
contribute to the adoption of code review during the publication 
process by journals.

However, beyond the availability of code during submission, 
there are numerous other hurdles before effective and in-depth code 
review can be reasonably formalized as part of the peer-review pro-
cess. One of the most pressing issues is finding suitable individuals 
to review code given there is already a lack of willing reviewers in the 
current system. It is reasonable to expect reviewers to check that 
code is as reported, but anything more in depth could take up the 
time of already overworked academics, who may not necessarily have 
the exact expertise needed to check other people's code. Reviewers 
could be asked to state if they are competent to review the code is 
as reported, and the journal could ensure that at least one reviewer 
has checked the code. Another vital issue is how to provide code 
and data during peer review within a double-blind peer-review sys-
tem (which has been shown to significantly reduce peer-review bias; 
see Fox et al., 2023). There are several solutions to this. Anonymized 
data and code could be submitted directly to the journal during re-
view (e.g., as a zip file). Alternatively, the anonymized data and code 
could be uploaded to repositories such as figshare, the Open Science 
Framework (OSF), GitHub or Dryad (although we note the latter may 
not be freely available). These repositories allow the authors to pro-
vide an anonymized link for peer review (see also https://metho​ds-
blog.com/2023/08/23/doubl​e-anony​mous-peer-revie​w-frequ​ently​
-asked​-quest​ions/ for useful links to repositories that enable double-
blinding). While there are still issues that need to be fully considered 
before any kind of extended code review becomes a standard part of 
the peer-review process, the mandatory provision of code for peer 
review alongside the explicit expectation that at least one reviewer 
checks the code matches the reported methodology (i.e., Is the code 
as reported?) would make a strong start in shifting publication culture 
and increasing the reliability of published research.

6  |  POST-PUBLIC ATION: RE VIE WING 
CODE AF TER PUBLIC ATION

Reviewing code post-publication is another facet of code review 
that has been much less discussed. Although it does not prevent 
publication of incorrect results, it does enable checking if code is 
indeed adhering to the R's listed above (Figure 1). The initial ques-
tion is ‘has all code used to produce the results been made avail-
able’? An increasing number of journals are now requesting code 
be shared alongside scientific articles (Culina et al.,  2020), such 
as in supplemental materials or by linking to an online repository. 
This then allows for any open and shared code to be checked and 
verified alongside methods section statements (Light et al., 2014; 
Stodden, 2011). Unfortunately, unlike data, code is a lot less likely 
to be made available regardless of these mandatory journal poli-
cies. As Figure  2 from Culina et al.  (2020) shows, although the 
number of journals that possesses a mandatory code rule is in-
creasing (from 15% in 2015 to 79% in 2020) the number of articles 

that actually provide open code is still around 27% (although this 
number varies considerably among journals). This suggests that 
not many authors are adhering to this policy, which is an impedi-
ment to computational reproducibility (Culina et al., 2020). How-
ever, there is hope to be found here. As Culina et al. (2020) have 
shown, journals requiring code to be shared are increasing in num-
ber yearly, and as a field, we already have improved substantially 
(Jenkins et al., 2023; Mislan et al., 2016). In some cases, journals 
have implemented far stricter (and rightly so) data and code re-
quirements along with assigning corresponding data editors (Bol-
nick, 2022). However, the first necessary step is for all journals to 
make it a requirement for both code and data to be present from 
the very start of the submission stage (Fernández-Juricic,  2021; 
Powers & Hampton,  2019). But what happens if the code is not 
available? In this case, the main option is to reach out to the corre-
sponding author (or perhaps the journal itself) and ask if the code 
could be made available; similar to data being made available ‘upon 
reasonable request’.

The next part is relevant to the previous section above (‘What 
should code review evaluate?’). If you find that the code associated 
with a manuscript does not adhere to any of the ‘R's listed above, 
then the first step is to contact the corresponding author (or if the 
paper uses the MeRIT system (Nakagawa et al., 2023), the person 
who actually conducted the analysis). This could be in the form of 
a GitHub issue if there is a repository for the code or an email (see 
Figure 3). If there is indeed an error in code, and it is not due to dif-
ferences in software version (e.g., differences in R and package ver-
sions) or due to inherent stochasticity (e.g., simulations or MCMC 
sampling), then the authors should be given a chance to contact the 
journal themselves to highlight and correct their mistakes. For in-
stance, as per American Naturalist's stance (Bolnick, 2022) authors 
who contact the journal to correct code or data errors will not be 
penalized and corrections are encouraged (when warranted).

However, in cases where updated results would alter the narra-
tive of a published paper, corrections may be more difficult to ad-
dress without newer methods of documenting changes. Publication 
versioning or ‘living’ documents may present a solid first step in such 
a scenario (Kane & Amin,  2023). By encouraging post-publication 
code review, we can both decrease the proliferation of coding errors 
and also increase the reliability of published science.

7  |  CONCLUDING REMARKS

In this brief overview, we have provided a basic set of guidelines 
for peer code review, recommendations for producing reviewable 
code, and considerations for how it should be adopted at every level 
of research throughout the publication process. The principles and 
advice listed here should form a baseline for code review that should 
be improved upon. We hope that this encourages coders at all levels 
to try and promote more reproducible, transparent, and open coding 
practices. In addition, we hope that this provides a primer to start a 
code reviewing club of your own.
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