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In Brief
Metaproteomics emerges as a
valuable tool for studying the
human gut microbiome. This
article explores proteome and
protein annotation coverage in
published human gut
metaproteomics datasets. It
emphasizes the importance of
improving proteome coverage
and enhancing functional
annotation. The analysis
advocates the adoption of
peptide-centric analysis and
underscores the necessity to
improve the integration of
taxonomic and functional data in
metaproteomic research.
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• Evaluate the proteome and protein annotation coverage in human gut metaproteomics.

• Compare the taxonomy of metaproteomics datasets with the metagenomics database.

• Advocate the use of metaproteomics for studying functionally unknown proteins.

• Assess the feasibility of applying peptide-centric analysis in metaproteomics.

• Propose refining the taxon scope and conducting taxon-function cross-analysis.
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PERSPECTIVE
The Landscape and Perspectives of the Human
Gut Metaproteomics
Zhongzhi Sun1,2, Zhibin Ning1, and Daniel Figeys1,2,*
The human gut microbiome is closely associated with
human health and diseases. Metaproteomics has
emerged as a valuable tool for studying the functionality of
the gut microbiome by analyzing the entire proteins pre-
sent in microbial communities. Recent advancements in
liquid chromatography and tandem mass spectrometry
(LC-MS/MS) techniques have expanded the detection
range of metaproteomics. However, the overall coverage
of the proteome in metaproteomics is still limited. While
metagenomics studies have revealed substantial micro-
bial diversity and functional potential of the human gut
microbiome, few studies have summarized and studied
the human gut microbiome landscape revealed with met-
aproteomics. In this article, we present the current land-
scape of human gut metaproteomics studies by re-
analyzing the identification results from 15 published
studies. We quantified the limited proteome coverage in
metaproteomics and revealed a high proportion of anno-
tation coverage of metaproteomics-identified proteins.
We conducted a preliminary comparison between the
metaproteomics view and the metagenomics view of the
human gut microbiome, identifying key areas of consis-
tency and divergence. Based on the current landscape of
human gut metaproteomics, we discuss the feasibility of
using metaproteomics to study functionally unknown
proteins and propose a whole workflow peptide-centric
analysis. Additionally, we suggest enhancing meta-
proteomics analysis by refining taxonomic classification
and calculating confidence scores, as well as developing
tools for analyzing the interaction between taxonomy and
function.
Applying Metaproteomics to Study the Human Gut
Microbiome

The human gut microbiome has complex interactions with
the host, and the taxonomic composition and functional ac-
tivity of the gut microbiome have been closely associated with
human health and diseases (1). Proteins are the foundations of
most biological processes, comprising about 50% of the dry
mass of a cell across different species (2). Their quantification
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is instrumental in assessing the biomass contributions of
different bacterial species within a community (3). Conse-
quently, a comprehensive analysis of the entire protein com-
plement in the microbiome is critical for unraveling host-
microbiome interactions.
Metaproteomics was first proposed by Wilmes and Bond in

2004, defined as the “Large-scale characterization of the
entire protein complement of environmental microbiota at a
given point in time” (4). Initially, metaproteomics involved
separating proteins on a 2D gel and manually selecting indi-
vidual protein spots for mass spectrometric analyses, which
was experimentally demanding and low throughput (5). During
this early stage of metaproteomics, approximately 2000 pro-
teins could be detected in a microbial community (6). Although
it is still in its early stages, the liquid chromatography and
tandem mass spectrometry (LC-MS/MS)-based bottom-up
metaproteomics is now able to detect approximately 50,000
~ 70,000 protein groups in a single study using different
techniques (7, 8), showcasing the rapid technological
advancement over the past 2 decades.

The Advantage of Metaproteomics Compared to Other
Omics

Metaproteomics measures the presence and abundance of
proteins, thereby revealing gene expression dynamics within
microbial communities (9). Additionally, by assigning proteins to
individual species or higher taxa, metaproteomics offers insights
into the taxonomic composition of the microbiota (9, 10). How-
ever,metaproteomicsencompassesmuchmore thanmeasuring
gene expression and species biomass within microbial com-
munities (10).Whencomparedwith other high-throughput omics
techniques—including amplicon sequencing, metagenomics,
metatranscriptomics, and metabolomics—metaproteomics has
several unique advantages.
Firstly, metaproteomics is more likely to reveal the real

functionality of the microbial community. This contrasts with
DNA-based metagenomics and metatranscriptomics, which
only suggest the potential functional capabilities of microbial
communities. The reason for this disparity lies in the fact that
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not all DNA (genes) are transcribed into RNA, and not all RNA
transcripts are subsequently translated into proteins. Sec-
ondly, metaproteomics enables the study of post-translation
modifications (PTMs) in microbes. PTMs play a crucial role
in modulating protein activity, structural conformation, and
interactions, significantly influencing bacterial behavior within
the microbiome and in interactions with the host (11). Such
modifications, critical for understanding complex biological
processes, remain elusive in other high-throughput omics
analyses.
In addition, metaproteomics has advantages for studying

host-microbe interactions, as both human proteins and mi-
crobial proteins are able to be identified and quantified. Hu-
man proteins, which constitute approximately 15% of the
biomass in metaproteomic samples (12) are pivotal in medi-
ating these interactions. Moreover, metaproteomics can also
analyze isotope content, which helps determine carbon
sources and provides a deeper understanding of metabolism
in microbial communities (13). Overall, metaproteomics
distinctively enhances our comprehension of the human gut
microbiome, offering insights that are not readily obtainable
through other omics technologies.
Discoveries Achieved Through Metaproteomics

Metaproteomics has emerged as a powerful tool for
unraveling the pathogenesis of various diseases and for
identifying potential biomarkers. Its application ranges from
unraveling the microbial contribution to oxidative stress in
inflammatory bowel disease (14) to uncovering the interplay
between gut microbiota and the development of type 1 dia-
betes (15). Metaproteomics has also been applied to exploring
host-microbiome interactions underlying other diseases, such
as cancer (16, 17), obesity (18, 19), and COVID-19 (20, 21). A
comprehensive overview of the clinical applications of meta-
proteomics has been provided by Wolf et al. (22).
Despite these strides, metaproteomics confronts ongoing

challenges. While numerous reviews have offered compre-
hensive insights into research methods (9, 23), accomplish-
ments (22, 24), challenges (25, 26), and future directions (12,
27), few studies offer guidance for advancing meta-
proteomics based on data from previous studies. Although the
protein landscape of human gut bacterial species identified in
metaproteomics has been preliminarily explored (28), certain
important areas, such as proteome coverage demand further
exploration.
In this article, we systematically reanalyzed the identified

peptides and proteins from 15 human gut metaproteomics
studies compiled in the MetaPep (29) database. Notably, all
raw files in our dataset utilized HCD-FTMS for MS2 scans,
offering superior resolution and accuracy. All the peptide and
protein identification results were acquired from MetaLab-
MAG (30), a user-friendly publicly accessible meta-
proteomics data analysis platform, ensuring the reproducibility
2 Mol Cell Proteomics (2024) 23(5) 100763
of our findings and paving the way for integrating additional
datasets in subsequent research.
CURRENT LANDSCAPE OF HUMAN GUT METAPROTEOMICS

Proteome Coverage in Metaproteomics

In the metaproteomics community, it is widely acknowl-
edged that there is still room for enhancing the depth of
proteome coverage (31–33). Although ultra-deep proteomics
methods have shown promise in detecting nearly the entire
proteome of single-species bacteria, identifying up to 75 to
77% of open-reading frames (34, 35), the issue of limited
proteome coverage becomes more significant when dealing
with complex microbial communities in metaproteomics.
Previous research indicated that increased species diversity
reduced the number of identified protein groups, and with the
current state of metaproteomics technology, the estimated
species and proteome coverage in a complex sample con-
taining around 300 bacterial species is about 20% and 5%,
respectively (31). From a more intuitive standpoint, the current
stage ultra-deep metaproteomics techniques detected an
average of 69,280 peptides, and 30,686 protein groups per
microbiome sample (7), these numbers represent a mere
2.34% of the theoretical microbiome proteome, based on an
estimated 1,310,000 coding sequences (CDS) (12). These
studies suggest that a significant portion of proteins and
species remain undetected in metaproteomic analyses,
aligning with our previous observations that bacteria with less
than 0.5% biomass are difficult to detect using current met-
aproteomics workflows (36).
While full quantification of all proteins is not necessary to

study responses in microbiome networks (37), achieving more
comprehensive proteome coverage remains crucial, given its
current limitations. To date, total coverage of metaproteomics
across human gut bacterial species and functions has not
been thoroughly investigated. Recently, MetaPep (29)
compiled identified peptides from over 2000 human gut met-
aproteomics raw files from 15 published studies, allowing us
to comprehensively evaluate the extent of proteome coverage
and the scope of detectable proteins within the meta-
proteomics field. These peptides were identified by searching
raw files from each study with MetaLab-MAG. During the
search, MetaLab-MAG integrated a human proteome fasta file
from UniProt into the search space. Carbamidomethyl[C] was
set as a fixed modification, with Oxidation[M] and Acetyl
[ProteinN-term] as variable modifications. All other parame-
ters were kept at their default settings. To refine our focus on
microbial peptides, peptides exclusively found in the human
proteome were excluded. Out of the compiled 1,163,940
peptides in MetaPep, only 2837 were found in both bacterial
and human proteomes.
Peptide-Level Proteome Coverage–We first directly inves-

tigate the proteome coverage at the peptide level. To be
specific, peptides identified in human gut metaproteomic
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studies were mapped to the species or lowest common
ancestor (LCA) of human gut bacteria from the UHGG (Unified
Human Gastrointestinal Genome) dataset as described in the
original MetaPep publication (29). These peptides were further
mapped to the phylogenetic tree of representative bacterial
species from the UHGG dataset (38) and visualized with iTOL
(39). Our analysis revealed several interesting patterns.
First, we noted an uneven phylogenetic distribution of

identified peptides across human gut bacteria (Fig. 1). Out of
the total 1,163,940 peptides from MetaPep, 293,181 (25.2%)
FIG. 1. Phylogenetic distribution of identified peptides in metapr
bacterial species extracted from the UHGG dataset. From the inner to the
peptides assigned to genus-level lowest common ancestors (LCA), and p
serve as references for the number of peptides: red dash line (1000 pe
indicated by different colors in both the phylogenetic tree and the color
could be assigned to 4110 of the 4744 representative pro-
karyotic species (4716 bacterial and 28 archaeal) in the UHGG
database. These peptides that were found exclusively in one
prokaryotic species are referred to as genome-distinct pep-
tides. In contrast to the high proportion (84.5%) of genome-
distinct peptides among all in-silico digested peptides of
UHGG representative genomes (29), the ratio of genome-
distinct peptides in MetaPep is much lower. This difference
is reasonable because genome-distinct peptides, unlike pep-
tides shared by multiple species, are expected to have a lower
oteomics studies. The innermost is the phylogenetic tree of 4716
outer circle, 3 bar plots show the number of genome-distinct peptides,
eptides assigned to family-level LCA for each node/clade. Dashed lines
ptides), purple dash line (10,000 peptides). Phylum-level taxonomy is
strip on the outermost ring.
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abundance in real microbial samples. This lower abundance
makes it more challenging to detect genome-distinct pep-
tides, resulting in fewer of them being collected in MetaPep.
Focusing on the analysis of MetaPep compiled peptides, the
number of genome-distinct peptides of each bacterial species
varied from 0 to 9093. Peptides assigned to higher taxonomic
levels, such as genus and family, were also incorporated into
the phylogenetic mapping (Fig. 1). For peptides assigned to
genus level LCA, five genera (Bacteroides, Prevotella, Pho-
caeicola, Parabacteroides, Blautia_A, and Faecalibacterium)
have >10,000 peptides. For peptides assigned to family level
LCA, three families (Lachnospiraceae, Bacteroidaceae, and
Enterobacteriaceae) have >10,000 peptides. Species from
these taxonomic units also had a larger number of genome-
specific peptides (Fig. 1), indicating these bacteria were
frequently identified from human gut metaproteomics. While it
is essential to consider these taxonomic units with numerous
identified peptides, it is equally important to note that many
bacterial species (2198) were represented by only a limited
number of genome-distinct peptides (≤5), including 646 spe-
cies that had no identifiable genome-distinct peptides. These
2198 species accounted for 46.6% of the 4716 representative
bacterial species in the UHGG database. At the family level,
the most represented sources of these species were Cor-
iobacteriaceae (566), Acutalibacteraceae (104), Oscillospir-
aceae (99), UBA660 (91), and CAG-508 (40). At the genus
level, the most represented were Collinsella (564), Strepto-
coccus (41), Veillonella (28), CAG-1427 (25), and CAG-269
(23). There was no overlap between the taxa with the highest
number of identified peptides and those with the most species
lacking identifiable peptides, highlighting the uneven phylo-
genetic distribution of identified peptides across species and
indicating that some bacterial taxa are rarely detected in the
compiled metaproteomics datasets.
Second, we observed that the number of identified peptides

for each bacterial species in metaproteomics constitutes only
a small fraction of that species' entire proteome. Phocaeicola
dorei, for example, has the highest number of genome-distinct
peptides (9093) in MetaPep, with 60 additional species also
having more than 1000 genome-distinct peptides each
(Fig. 1). Focusing on P. dorei, 38,293 peptides from MetaPep
could be assigned to this bacteria species, as more peptides
assigned to higher taxonomic levels could also be found in
this species. However, these 38,293 peptides only account for
9.71% of all 394,374 in silico-digested peptides of this species
(in-silico digestion parameters: minimum peptide length = 7,
maximum missed cleavage = 2). For the other 60 species with
over 1000 genome-distinct peptides, an average of 12,748
peptides from MetaPep corresponded to 1.61 to 9.58% of
each species' in-silico digested peptides. This indicates that
even for species with the most identified peptides, only a small
proportion of their theoretical proteome is detected. The
number of identified peptides for all bacterial species is shown
in Supplemental Table S1.
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Protein-Level Proteome Coverage–We also investigated
proteome coverage at the protein level by re-examining pro-
tein identification results from metaproteomics studies
collected in MetaPep (29). In total, 306,413 unique head pro-
teins were extracted from all identified protein groups across
15 studies. The head protein, which is the first protein listed in
a protein group identified by MetaLab-MAG (30), shares
identified peptides with all other proteins in the group. The
overall landscape of metaproteomics studies, as revealed by
analyzing these head proteins, was similar to the findings at
the peptide level.
First, similar to the peptide-level analysis, an uneven

phylogenetic distribution was observed among the identified
proteins. The head proteins from identified protein groups
originated from 4288 of the 4744 representative prokaryotic
species in the UHGG, and the number of identified proteins
per species varied widely, from 0 to 2282 (Fig. 2). Consistent
with peptide-level results, in protein-level analysis, the same
five genera (Bacteroides, Prevotella, Phocaeicola, Para-
bacteroides, Blautia_A) had the most identified head proteins,
exceeding 10,000 each. At the family level, the same three
families (Lachnospiraceae, Bacteroidaceae, Ruminococca-
ceae) had the most identified head proteins, with two other
families Enterobacteriaceae and Oscillospiraceae, also having
more than 10,000 identified head proteins. In parallel with taxa
with numerous identified proteins, a significant number of
bacterial species and taxa were represented by only a limited
number of identified proteins (Fig. 2).
Second, the number of identified proteins covered a limited

portion of the proteome of bacterial species. Similar to the
peptide-level coverage results, at the protein level, P. dorei
also has the largest number of identified head proteins (2282),
covering 50.5% of the species proteome (all 4522 CDS).
However, the majority of species (3655) exhibited limited
proteome coverage (<5%), with fewer species showing higher
coverage (199 genomes with 10 to 20% coverage, 83 ge-
nomes with 20 to 50% coverage, and only two genomes with
≥50% coverage). The number of identified head proteins of
each bacterial species is also shown in Supplemental
Table S1. While it is hard to estimate how many in-silico
digested peptides are present in the sample (40), it is well-
established that the majority of bacterial coding sequences
are indeed expressed as proteins (41, 42). Compared to
peptide-level analysis, analyzing at the protein level provides a
more intuitive understanding of proteome coverage.

Comparison of Taxonomic Composition Between Bacterial
Species Identified in Metaproteomics Studies and the
Species in the Metagenomics Reference Database

In addition to only focusing on the metaproteomics dataset,
we further compared the taxonomic composition of bacterial
species identified in metaproteomics studies and the species
in the metagenomics reference database. We extracted the
taxonomic composition at various taxonomic ranks from the



FIG. 2. Phylogenetic distribution of identified proteins in metaproteomics studies. The innermost is the phylogenetic tree of 4716
bacterial species extracted from the UHGG dataset. The bar plot shows the number of identified proteins from each bacterial species. Dashed
lines serve as references for the number of proteins: red dash line (100 proteins), purple dash line (1000 proteins). Phylum-level taxonomy is
indicated by different colors in both the phylogenetic tree and the color strip on the outermost ring.
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metagenomics reference database, UHGG (38), as presented
in Figure 3A. On the other hand, the number of identified
peptides collected in the MetaPep and their taxonomic sour-
ces at different taxonomic ranks are shown in Figure 3B.
At higher taxonomic ranks, the overarching taxonomic

composition of the bacterial species identified in meta-
proteomic analysis aligns with the composition of represen-
tative genomes derived from the UHGG (Fig. 3, A and B). At
the phylum level, the predominant groups—Firmicutes_A,
Bacteroidota, Proteobacteria, Firmicutes, and Actino-
bacteriota—were not only the most genome-rich in the UHGG
but also yielded the highest number of identified peptides in
MetaPep. However, their relative abundances vary between
the metagenomic reference database and metaproteomic
datasets. For instance, Bacteroidota comprises approximately
15% of the UHGG's genomes but contributes around 34.6%
of MetaPep's peptides. Conversely, Actinobacteriota ac-
counts for about 18% of UHGG genomes, but only3.7% of
peptides in MetaPep. The top taxa at the class and order
levels were generally consistent between the two datasets,
with minor exceptions (Fig. 3, A and B).
At the family and genus levels, however, this congruity

wanes, with only two taxa shared across the five most rep-
resented taxa in the metagenomics reference database and
Mol Cell Proteomics (2024) 23(5) 100763 5



FIG. 3. Comparison of taxonomic composition of bacterial species identified in metaproteomic studies and the species in the met-
agenomics reference database, UHGG. A, taxonomic affiliation of the bacterial species collected in the UHGG at different taxonomic ranks. B,
taxonomic affiliation of the metaproteomics-identified peptides (peptides compiled in MetaPep) at different taxonomic ranks. The legend only
depicts the five most highly represented taxa per rank.

Human Gut Metaproteomics: Landscape and Perspectives
metaproteomics datasets (Family level: Bacteroidaceae and
Lachnospiraceae; Genus level: Bacteroides and Prevotella).
Notable discrepancies include Collinsella, which, despite
6 Mol Cell Proteomics (2024) 23(5) 100763
possessing the highest number of genomes at the genus level
in the UHGG database (584, representing 12.3%), accounts
for a mere 0.6% of peptides (5745) in MetaPep. Similarly,
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Streptococcus, while being the third most genome-abundant
genus (54, or 1.1% of UHGG genomes), corresponds to only
0.3% of MetaPep's peptides. In contrast, Parabacteroides,
with only 27 genomes in the UHGG, constitutes 2.9% of the
peptides (27,279) in MetaPep. The differences in the taxo-
nomic composition at the family and genus levels were also
observed when considering more representative taxa units.
Among the 30 families and 30 genera with the highest number
of identified peptides in metaproteomics studies, 17 families
and 13 genera overlapped with taxa units that had the highest
number of genomes in the UHGG.
In summary, while there are consistent representations of

higher taxonomic ranks (phylum, class, and order) across both
the metagenomic reference database and metaproteomic
datasets, substantiating their abundance in the human gut
microbiome, discrepancies at lower taxonomic ranks highlight
the unique insights afforded by metaproteomic analysis.
These differences underscore the value of metaproteomics in
providing a complementary angle for analyzing the structure of
microbial communities by assessing species biomass (3).

Metaproteomics View of Unannotated Proteins

Importance of Protein Functional Annotation–Protein
functional annotation is fundamental for the understanding of
biological processes, unfortunately, many genes from the
microbiome are not or are poorly annotated and we need new
approaches to address this challenge. The advent of
sequencing technologies has resulted in the discovery of a
plethora of new gene sequences, while, the experimental
characterization of their protein products and function remains
unaddressed, leading to a widening sequence-to-function gap
(43). Even for well-studied organisms like Homo sapiens and
Escherichia coli, 10% (44) and 7.2% (45) of proteins, respec-
tively, remain unannotated. The challenge is more pronounced
in the complex human gut microbiota, where many species
lack cultured representatives, and a larger fraction of microbial
proteins lack functional annotation. The UHGG database
highlights this issue, revealing that 27.3% of genes do not
match any functional database, and an additional 14.2% of
genes match COG (Cluster of Orthologous Groups) categories
with unknown functions (38), resulting in a total of 41.5% of
genes poorly annotated. It is likely that considering ~50,000
metabolites potentially produced by the gut microbiome (46),
some proteins are moonlighting which might not be captured
in their annotation (47, 48).
Impact of Unannotated Proteins on Metaproteomics–The

unannotated proteins have two significant impacts on meta-
proteomics studies. The first impact is that most meta-
proteomics analyses rely on protein database searches for
peptide and protein identification. However, existing pro-
karyotic gene prediction tools accurately detect only 60 to
70% of start codons for specific bacterial species (49), leading
to potential misannotations or omissions. This directly impacts
the results of sequence database searches. The second
impact is on the interpretation of metaproteomics data. Similar
to other high-throughput omics studies, most metaproteomics
studies start with pathway or network analysis to identify
biological processes that significantly changed, where func-
tional annotations of proteins are crucial. Annotation biases
can result in a skewed understanding, focusing on a limited
set of annotated proteins while overlooking the functions of
many others (50). Indeed, some unannotated proteins have
been implicated in disease development and may have
essential roles (51, 52).
Unannotated Proteins in Genomics and Metaproteomics

Datasets–Annotation coverage of different bacterial species
has been systematically investigated in genomics data, with
an average of 52 to 79% of the coding sequences in bacterial
genomes could be functionally annotated, and the annotation
coverage ranging from 14% in some species to 98% in others
(53). This disparity suggests that taxonomy is a major factor
influencing annotation completeness. However, the annota-
tion coverage of proteins identified in metaproteomics studies
has not been systemically investigated. Here, we revisited the
annotations of 306,413 identified head proteins, sourced from
studies collected in MetaPep (29). We discovered that 78,474
(25.6%) of these proteins have neither KEGG ko (54) nor Gene
Ontology (GO) annotation (55, 56). Among these proteins,
28,100 (9.17%) proteins either had no COG category anno-
tation or were assigned to COG category S (Function un-
known), indicating limited functional information available for
these proteins.
Interestingly, a higher proportion of proteins identified in

metaproteomics have functional annotations compared to the
overall gene datasets in UHGG. While 41.5% of genes in
UHGG are poorly annotated, only 9.17% of metaproteomics-
identified proteins lack annotations. Notably, among the
28,100 unannotated metaproteomics proteins, 2342 were
highly abundant (within the top 10% of total intensity in spe-
cific studies), suggesting that these functionally unknown
proteins could play significant biological roles. This underlines
the potential of metaproteomics in investigating the functions
of these enigmatic proteins.
When we analyze the ratio of annotated proteins among

those identified from each bacterial species, we observe that
the majority of identified proteins from different species
already have functional annotations (see Supplemental
Table S1). For species with at least 100 identified proteins,
the percentage of proteins with annotations ranges from 79.0
to 100% of all the identified proteins. Notably, Bacteroides
sp900765785 and Bacteroides fragilis have the lowest pro-
portions of annotated proteins among the identified proteins,
at 79.0% and 79.9%, respectively.

Peptide-Centric Analysis

Challenges of Protein Inference and the Advantages of
Peptide-Centric Analysis–Protein inference poses another
challenge in metaproteomics. Within a complex microbial
Mol Cell Proteomics (2024) 23(5) 100763 7
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community, a single peptide could be shared by hundreds of
different proteins, complicating the precise attribution of the
peptide to its parent protein. As a result, in metaproteomics,
protein inference usually does not yield a list of proteins, but
rather a list of protein groups. These protein groups can
encompass proteins from various bacterial species with
different functions, resulting in the loss of valuable information
during protein inference (57). Moreover, different protein
inference algorithms can produce protein group lists with
substantial differences (58, 59). All these factors in protein
inference further impact subsequent taxonomic and functional
analysis.
Since mass spectrometry intrinsically identifies peptides,

not proteins, a peptide-centric approach for functional and
taxonomic analysis emerges as a logical alternative in meta-
proteomics. Tools such as Unipept (60, 61), PepFunk (62), and
MetaGOmics (63) facilitate this approach, linking peptides
directly to their functional and taxonomic attributes. This
method bypasses the protein inference step, building the
microbial community profile based on peptide identifications
and quantifications. Research indicates that peptide-centric
analysis can offer enhanced sensitivity and uncover details
that protein-level analysis might miss (64, 65). Moreover, our
recent work on MetaPep (29) also substantiated the feasibility
of initiating peptide-centric analysis by searching a peptide
sequence database. Notably, this database is significantly
smaller than its protein counterpart, offering a considerable
advantage in terms of reducing search times throughout the
peptide-centric analysis workflow.
Feasibility of Peptide-Centric Analysis–The feasibility of

peptide-centric taxonomic analysis was demonstrated with
the introduction of the first tryptic peptide-based meta-
proteomics biodiversity analysis method, Unipept (60), in
2012. Since then, peptide-centric taxonomic analysis has
gained widespread adoption in metaproteomics (15, 16, 66),
with subsequent developments in Unipept enabling functional
analysis via GO terms and EC numbers (61). However, con-
cerns have been raised about the limited sequence length of
peptides and their capacity to convey meaningful functional
information (67, 68). A proposed solution involves tailoring the
protein sequence collection for in-silico digestion, ensuring
that each peptide correlates to a protein with a specific
function. Customized or research-specific databases for
peptide digestion have been shown to enhance functional
resolution in peptide-centric metaproteomics analyses (69).
To verify the feasibility of peptide-centric function analysis

for human gut metaproteomics studies, we performed a pre-
liminary test on the UHGG database for annotating in-silico
digested peptides from the database to specific functions.
Out of the 10,234,935 proteins from 4744 representative
prokaryotic species within the UHGG database, 8,277,932
(80.9%) of them had specific COG family functional annota-
tions. We collected proteins from each COG family, along with
proteins lacking COG annotations, for in-silico digestion. This
8 Mol Cell Proteomics (2024) 23(5) 100763
process yielded a total of 392,459,520 peptides, with
385,535,220 being unique peptide sequences. After digestion,
325,260,860 (84.3%) of these unique peptides were exclu-
sively found in proteins from specific COG families and
55,404,896 (14.4%) were exclusive to proteins without COG
family annotations. And these peptides were referred as to
functional-distinct peptides. The remaining 4,869,464 unique
peptides were shared among proteins from multiple COG
families, accounting for only 1.3% of the total unique pep-
tides. These findings suggest that a substantial majority of
identifiable peptides can be confidently associated with spe-
cific functional categories.
PERSPECTIVES OF THE HUMAN GUT METAPROTEOMICS

Improving the Coverage of Human Gut Metaproteomics

Scaling up Metaproteomic Studies–The limitation in meta-
proteomics coverage was not only confined to individual
studies but was also reflected in the overall limited number of
metaproteomics studies. Despite an uptick in the quantity of
metaproteomic research, there remains a stark contrast when
compared to metagenomics. According to the search results
from the Web of Science, during the past 10 years
(2013–2022), 12,298 papers with topics in metagenomics
have been published, while only 770 papers with topics in
metaproteomics were published.
The human gut microbiome research has seen substantial

expansion in gene catalogs such as IGC (70), UHGG (38),
UNITN (71), and so on. In contrast, there is a paucity of efforts
directed toward curating and reanalyzing peptides and pro-
teins from available metaproteomic datasets in repositories
like PRIDE (72), and ProteomeXchange (73). While Stamoulian
et al., examined over a thousand metaproteomics raw files to
identify generalist species expressed across all samples and
specialist species that are highly expressed in a small subset
of samples associated with a certain phenotype (28), their
article does not focus on the proteome coverage of each
microbial species. Conversely, our recently developed Meta-
Pep (29) dataset, which compiled identification results from
over 2000 raw files across 15 published metaproteomics
studies, may serve as a robust resource to enhance our un-
derstanding of metaproteomic coverage. The expectation is
that the assembly of more extensive peptide and protein
datasets will further enrich our knowledge of the human gut
metaproteome.
Advancing Coverage with DIA and Emerging Technologies–

Instrumental limitations notably affect metaproteomic
coverage. Traditional mass spectrometry's capability to ac-
quire tandem mass spectra within a given time frame is
inherently limited. Even given enough scanning time, not all
digested peptides in the sample are detected by mass
spectrometry. MS-based proteomics tends to identify pro-
teotypic peptides (38). For instance, in conventional data-
dependent acquisition (DDA) methods typically, less than
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1% of incoming precursor ions are fragmented and identified
by MS2 (74).
Data-independent acquisition (DIA) metaproteomics, has

shown improvements in proteome coverage, reproducibility,
and accuracy in quantification over DDA methods (75). Instead
of acquiring MS/MS scans with narrow isolation windows
centered on peptide precursors detected in an MS scan in the
traditional DDA, DIA acquires MS/MS scans with wide isola-
tion windows that do not target any particular precursor (76).
Additionally, the cutting-edge DIA-PASEF (Parallel
Accumulation-Serial Fragmentation) is in theory sampling up
to 100% of the peptide precursor ion (74). The application of
DIA-PASEF in mouse microbiome studies, which potentially
doubled protein identifications, underscores its promise (77).
However, the application of such advanced methodologies to
human gut microbiome studies is in its infancy, hindered by
the nascent state of requisite bioinformatics pipelines and the
complexity inherent in the technique.
However, it should be noted that DIA-based meta-

proteomics is only going to make a small dent in the dark field
of the metaproteome. Novel enrichment techniques specif-
ically designed for the human gut microbiome will likely be
necessary to obtain a larger coverage of the metaproteome.
For instance, the application of activity-based probes (ABPs)
has facilitated the enrichment of proteins possessing distinct
functionalities, thereby enabling the identification and quanti-
fication of proteins that are present at levels below conven-
tional detection thresholds (78). Furthermore, various
enrichment strategies also have substantially elevated the
number of small proteins that are typically challenging to
detect through standard metaproteomic methodologies (79).

Enhancing Protein Annotation Through Metaproteomics

Biochemical and genetic experiments are traditional
methods for elucidating protein functions. In the absence of
experimental data, proteins that have not been characterized
are often assumed to have the same functions as proteins that
have been experimentally characterized and share high
sequence similarity. Surpassing traditional alignment-based
techniques, recent advances have introduced machine
learning and deep learning approaches to bolster protein
function annotation (80, 81). Additionally, protein structure
families based on clustering the predicted structure of nearly
every known protein have expanded the dimensions of the
protein universe, revealing that most protein structures are not
functionally dark, shedding light on the functional annotation
of a broader array of proteins (82, 83).
Proteomics data has been suggested as a valuable

resource for enhancing protein functional annotation (37, 84).
A study has cataloged the proteome-wide protein abundance
of E. coli in response to more than 100 genetic perturbations,
casting light on the modulation of functionally linked proteins
and providing mechanistic insights into this model organism
(85). Similarly, metaproteomics data can also contribute to
protein function annotation by identifying proteins with
consistent changes in abundance under different treatments.
These changes indicate similarities or connections in their
roles. However, in the analysis of metaproteomics samples, it
is important to consider the abundance changes of different
taxa. Given the presence of numerous functionally unknown
proteins with high abundances in metaproteomics samples,
mining metaproteomics data holds the potential to uncover
the functions of these mysterious entities.

Performing Peptide-Centric Analysis in Metaproteomics

Our findings in this article demonstrate that confining the
search space to meticulously curated such as the UHGG
representative prokaryotic species, enables the comprehen-
sive annotation of most peptides with detailed functional and
taxonomic information. This outcome, coupled with the
demonstrated utility of peptide-centric analysis tools like
UniPept (61), pepFunk (62), and MetaGOmics (63) reinforces
the feasibility of peptide-centric analysis in metaproteomics.
Nevertheless, the current peptide-centric analysis mainly

focuses on downstream analysis after the sequence database
search, while most metaproteomics studies still search protein
sequence databases. Given that the identified peptides only
account for a small part of all in-silico digested peptides from
proteins (86), searching a protein database increases
computational complexity. To achieve a comprehensive
peptide-centric analysis workflow and reduce computing
resource consumption, a refined and well-annotated peptide
sequence database is required. Fortunately, the advent of
innovative methodologies for predicting peptide detectability
(87, 88) holds promise for condensing the search space,
transitioning from an exhaustive protein sequence database to
a more concise peptide sequence database. Implementing a
complete peptide-centric analysis workflow initiated with
searching a peptide database search, is anticipated to expe-
dite metaproteomics data processing and enable more
expansive studies in this field.

Enhancing Taxonomic and Taxon-Function Interplay
Analysis

Refining Taxon Scope and Calculating Confidence Scores
to Improve Taxonomic Analysis–The choice of protein
sequence databases is known to significantly impact the
outcome of metaproteomics (89). Moreover, the delineation of
the search space establishes distinct parameters for analyzing
the taxonomic composition of the sample. Employing pre-
liminary amplicon sequencing, metagenomics, or using met-
aproteomics data alone for predetermining and refining the
taxonomic scope could enhance the precision of taxonomic
analyses within metaproteomics. However, the current meta-
proteomics analysis pipelines lack the flexibility to customize
the taxonomic scope. The incorporation of this capacity is
likely to enhance not just the detail of taxonomic resolution but
also the efficiency of metaproteomics searches.
Mol Cell Proteomics (2024) 23(5) 100763 9
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In addition, when applying metaproteomics to study com-
plex microbiome samples with multiple species, inferring the
presence of taxa based on identified peptides can be a
complex endeavor. While existing metaproteomics analysis
platforms such as MetaLab MAG employ Occam's razor for
species referencing, the reliability of identified bacterial spe-
cies remains largely unknown. A confidence score calculation
method has been applied for strain-level taxonomic assign-
ment of viral proteome samples (90). Developing meaningful
confidence scores represents a promising direction for rein-
forcing the metaproteomic toolkit's ability to dissect microbial
community structures.
Advancing Tool Development for Taxon-Function Crosstalk

Analysis– In the realm of omics analyses, simply compiling a
list of microbial taxa and gene/protein abundances is
increasingly recognized as insufficient. Going beyond this, the
identification of microbes and their corresponding functional
contributions to the microbial community provides novel in-
sights (91, 92). While tools such as BURRITO (93) and Meta-
Func (94), have bridged taxonomic and functional data, the
broader scientific community still faces challenges when
attempting to conduct taxon-function crosstalk analysis. Such
analyses are invaluable as peptides/proteins inherently
embody both taxonomic and functional data. Therefore, the
development of analytical tools and methodologies aimed at
linking taxonomic identity with functional activity is a vital di-
rection for advancing metaproteomic research.
SUMMARY

This paper presents a comprehensive analysis of the pro-
teome coverage of human gut bacterial species identified in
metaproteomics studies. To address the challenge of limited
proteome coverage, there is a growing need for expanded
metaproteomic research and the advancement of innovative
methodologies. We also highlight the high annotation
coverage of proteins identified through metaproteomics,
indicating the significant potential of metaproteomics in
improving protein annotation. Additionally, we demonstrate
the feasibility of peptide-centric analysis as a promising
approach to reduce computational demands in meta-
proteomics data analysis. The paper discusses various per-
spectives on enhancing the reliability of taxonomic analysis
and facilitating taxon-function interactions in metaproteomics.
These combined efforts aim to leverage metaproteomics in
enhancing our understanding of microbial ecosystems and
their complex interactions with host systems.
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