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Abstract

The impact of liquid-coated solid bodies onto porous substrates, or equivalently the
impact of porous bodies onto shallow water layers, is considered. This study inves-
tigates the role of air cushioning in the pre-impact dynamics of a wetted particle
approaching a dry porous medium. By extending a shallow water air cushioning model,
we develop an asymptotic theory that couples flow in a lubricating air layer, with an
inviscid shallow water film and with Darcy air flow within the porous substrate. Two
distinct regimes are identified, namely shallow- and intermediate-depth substrates.
The formulated models are solved numerically to determine the influence of sub-
strates on impact pressure, bubble formation, and air escape mechanisms. Numerical
results, up to the instant of liquid—substrate impact, reveal that at high porosity the
substrate significantly reduces the impact pressure and can suppress bubble entrap-
ment. Permeability is shown generally to hasten the liquid film’s descent to the top
of the substrate (so-called ‘touchdown’) as the air gap is closed but, perhaps most
surprisingly, porosity can delay touchdown in the regime of shallow porous layers.
These findings enhance our understanding of impact mechanics on porous media and
offer insights into practical applications such as de-icing technologies and controlled
particle adhesion in manufacturing processes.
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1 Introduction

The impact of liquid-coated solid bodies or particles onto porous substrates are sce-
narios of significant interest across many scientific and engineering disciplines. These
range from industrial applications such as inkjet printing [1], soil erosion prevention
[2, 3] to natural processes like seed dispersal, and the fate of volcanic ash clouds [4].
Another broad context is the action of a breaking sea wave, which can transport a
load of solid debris and air in temporary suspension. In coastal waters, the sea wave
and its solid particles can violently impact a seawall, which is usually porous, causing
damaging collision forces. Including trapped air and wall porosity continues to be a
modelling difficulty or an expensive addition to computing such flows. See [5].

Of particular motivation for the current work is aircraft icing in which, as an aircraft
flies through clouds, droplets, and ice particles—some of which may be partially
melted—impact upon the wings and engine intakes, causing ice growth and possibly a
loss of lift or control [6]. Meltwater may also coat the wing and this surface is subject to
the impact of naturally occurring solid particles. Recent developments in de-icing and
anti-icing approaches have shifted from using traditional mechanical processes (an
inflatable boot at the leading edge of the wing that removes ice build up), and thermal
techniques (preventing formation or removing formed ice using hot engine air or
heater matts), to instead investigating engineered structured hydrophobic or ice-phobic
surfaces [7, 8]. The effectiveness of such surfaces has been demonstrated for low-
impact speeds, but it remains unclear at higher speeds where water can significantly
penetrate into the substrate. Whilst much work on icing prediction has focussed purely
on droplet impacts and subsequent splashing [9], there is an increasing awareness that
ice particles are also critical in understanding and predicting the threat [10, 11]. An
open question around ice particles, and of critical importance in engine intakes, is do
they rebound or stick to a surface after impact? [12].

Other scenarios include, for example, in food manufacture, when sprinkling moist
seeds (porous or not) onto edible substrates (porous or not) do they stick? It also
includes airborne ash. The very complicated fractal-like surface of sub-millimetre-
scale ash particles presents a region of flow which can be modelled as a porous layer—
porous to both air and any liquid film on an aircraft wing or other surface. The scientific
investigation of these phenomena includes the question: Does a particle fragment, melt,
bounce, or stick? Answers depend on the micro-mechanics of impact, which in turn is
sensitive to the size, depth, and porosity of both the incident particle and the substrate
struck.

Air cushioning prior to liquid—solid impacts has been much studied in recent years,
with experimental investigations highlighting substantial deformation of a liquid sur-
face just prior to impact and associated bubble entrapment (see [13—16] amongst a
wide body of literature). Various theoretical models, usually based on lubricating air
flow, have been proposed to explain deformation and predict bubble sizes, originating
with [17] for purely inviscid models and with [18] for study of viscous effects and
then extended to include surface tension ([19, 20]), compressibility effects [21, 22],
porous [23], and flexible substrates [24, 25], amongst many other features. Of par-
ticular interest in the current study is how does air cushioning affect a solid particle
(coated in a thin liquid film) impacting onto a porous substrate? Marked improvements
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in high-speed cameras have allowed much more detailed experimental investigations
of liquid impacts onto porous or structured substrates to be carried out [26-32]. In
particular, these studies demonstrate that porosity can significantly reduce splashing.
However, mathematical studies of such phenomena are comparatively sparse, leaving
gaps in understanding of the underlying mechanics.

The current work looks to extend the shallow water cushioning model originally
detailed in [33], to include the influence of an unsaturated porous substrate on the
impact of liquid-coated particles. This has significance on its own, as suggested above,
not least in the distinct behaviour identified when compared with droplet impact cush-
ioning. We also expect our work to lead to better theoretical descriptions and physical
insights into liquid impacts onto porous media, which are currently little understood
(see [34, 35]). In particular, the simpler model of a water layer presented here (in
contrast to the one for generic water-entry or droplet impacts [23]) offers perhaps
greater opportunity to understand the transition between pre-impact cushioning, post-
impact spreading, and splashing (see also [36] and Ross and Hicks [37]). Although
our focus in this paper is restricted to impact onto an unsaturated substrate, it is
important for understanding impacts onto both saturated and unsaturated porous sub-
strates, including modelling the longer-term mechanics and ultimate fate of impacting
particles.

Compared with collision between impermeable bodies, we make a case that intro-
ducing porosity to the surface of one body, can change dramatically all of the physical
measures of the impact, and some qualitative features too. Two examples from our
results: (i) we show a reduction in impact pressure due to the porosity of the substrate
and (ii) at high porosities, the substrate can allow air to flee from under the impact and
so remove a bubble which would otherwise be caught between the liquid film and the
substrate.

Section 2 below describes in detail our modelling approach, building an asymp-
totically based theoretical model of the air cushioning behaviour. The model
simultaneously couples shallow water flow in the liquid film, with a lubricating air
layer in the gap and with Darcy flow inside the porous substrate, all driven by the
descending solid particle moving very close to and towards the substrate. Two dis-
tinct critical limits of properties in the porous substrate are found. Section 3 presents
numerical solutions, and a discussion of the predicted behaviour in each of the two
identified limiting sub-cases, with particular attention focussed on the differences
between droplet impact and the wetted particle impacts considered here. Section 4
offers conclusions, and a discussion of further extensions to our model.

2 Modelling and Theory

2.1 Modelling assumptions

The physical problem is two-dimensional and left-right symmetric in space. See Fig.
1. We describe the approach towards impact of a circular cylinder of radius R, coated

with a thin film of water to a uniform depth ~*. The cylinder can stand for any rigid
body, and the radius R can stand for the radius of curvature of the body at its point of
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Lubricating air layer

* , Porous substrate = *

Impermeable boundary
Fig. 1 Diagram showing the various domains of coupled flow. At top is a rigid solid body descending
vertically at constant speed. The body is coated in a thin liquid film, whose lower boundary is an air—water
interface. The air layer contains a viscous lubrication flow and it in turn lies above a porous substrate whose
horizontal upper boundary is permeable to air entering from above or displaced air leaving from below. The
substrate’s lower boundary is also horizontal and impermeable

first contact. The cylinder descends vertically at constant speed U, in atmospheric air,
towards a dry rigid porous substrate. The permeable top surface of the substrate is flat
and coincides with the horizontal x*-axis of coordinates, whose origin is at the centre
of incipient impact. The y*-axis points vertically up, through the cylinder’s centre, and
is the line of left-right symmetry of the model. Throughout, a star-superscript denotes
a variable in physical units. The air-porous substrate lies in the region —H* < y* < 0,
where H* is its uniform depth and y* = — H™* is its impermeable bed. The substrate
is horizontally unbounded: —oo < x* < co. We assume that the transient air pressure
gradients generated by incipient impact allow us to use a Darcy air flow model in the
substrate. The substrate is uniform and isotropic, with constant permeability K.

We are interested in a region, with dimensions much shorter than R, close to the
origin where the impact pressures are high enough for the following to occur: (a)
deform the cylinder’s water film surface; (b) push air into and out of the substrate; and
(c) displace air already inside the substrate. Prior to the air gap reaching this order of
thinness, the velocities and pressure generated in the air are not large enough to affect
the liquid flow to leading order due to a typically high viscosity ratio and density ratio
of the water and air. A time-dependent air pressure field, p}(x*, y*, t*), is generated
by the cylinder as it nears the top of the substrate. The pressure rises dramatically to
ever larger magnitudes as time #* increases towards zero (the instant of liquid—solid
impact in vacuo). The local high pressure is associated with the vertical thinning of the
lubrication layer, and owing to conservation of mass, there is a horizontal acceleration
of the air in the layer. The air layer lies between y* = F*(x*, t*) > 0, and the top of
the substrate at y* = 0. The zone of high pressure occupies a small region near the
origin. We will find that the air layer and water layer pressure fields share the same
scalings for their magnitude (and their extent and duration).
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Throughout, we use subscripts a, w, and s to mark variables describing the air,
water, and substrate flows, respectively.

For wetted ice or other solid particles, radius R is in the range 0.1 mm to 1 cm.
The water film depth, i*, is typically only 1-3% of R. For wetted ice we envisage a
temperature range of 0-20 °C, a feature which affects the range of values of viscosities
of air and water. See Section 2 and Appendix A3 of Korobkin et al. [33].

If ¢ denotes the speed of sound in the fluid, then we assume that the Mach numbers
U /c in air and water are both much less than unity. Typical impact speeds are in the
range 10-30 m/s, making Ma < 0.1 for air and Ma < 0.002 for gas bubble-free
water. A more appropriate measure of the importance of compressibility in the thin air
layer is the ratio of the pressure increase in the gas induced by the approaching impact
to the ambient gas pressure (see Mandre et al. [38] or [22], for example). By this
measure, compressibility may be significant at the higher end of our velocity range.
However, for simplicity, we assume the gas is incompressible here, and as such we
exclude compressibility from our analysis of the Navier—Stokes equations for both the
air and water flows. Compressibility has been incorporated by Mandre et al. [38] and
Hicks and Purvis [22] for higher impact speeds into related models for deeper water.
If compressibility were included, we would expect the main difference to be slightly
smaller trapped bubble sizes.

The density ratio for air and water, p, /oy, is so small that we can use it to help us
argue for a neglect of inertia at relevant points whilst establishing our model equations
below.

On the air—water interface, we neglect capillarity, owing to the large value of the
Bond number Bo = (py, — pu)Rzg /vo for an interface between air and water of
surface tension coefficient . For a body with radius of curvature R = 1072 m, we
have Bo = 50. In addition, our small time scale is not part of the Bond number’s
definition—during the brief time of impact any surface tension force has little time to
move the interface compared with other interfacial stresses which we include in the
model. We also assume that near the site of impact the water surface’s slope is small
and that its vertical displacement is a negligible fraction of both the depth of water
and the thickness of the air layer below it.

We neglect gravity as it is tiny compared with fluid-surface-particle accelerations
experienced over short times in this work. The Froude number, Fr = U/\/gL, is
large compared with unity, where L is the combined air—water layer thickness (much
shorter than R) and the acceleration due to gravity is g. Alone, gravity has little time
to displace the two fluids a significant distance.

The viscosity of the air is important and we show that the air flows as a lubrication
layer. The water flow has a Reynolds number, Re,, = U R/v (where v is the kinematic
viscosity), which lies in the range 700 to 20, 000 for those particle sizes and speeds
that we treat. These large values of Re,, are in accord with our scaling and asymptotic
work below, needed to achieve a consistent balance amongst dominant terms and to
be able to neglect other relatively small terms. See Korobkin et al. [33].

The cylinder starts its descent from an elevation high enough above the substrate
for the air pressure to differ little, initially, from its uniform atmospheric value. But
as the cylinder falls and nears the substrate, the increasing air pressure has a growing

@ Springer



1 Page6of37 G. Moreton et al.

influence on the shape of the water surface coating the cylinder. As the cylinder—
substrate gap narrows, the air pressure rises locally under the cylinder. The three flow
regions of water, air, and the in-substrate air, all become intimately linked together. It
is from a description of this three-way interaction that we begin to establish in the next
section, ultimately, a set of coupled model equations, along with enough boundary
conditions and interfacial conditions to make this initial value problem well posed.

2.2 Model equations

We begin deriving our model equations with a two-dimensional, incompressible form
of the Navier—Stokes, for air and water:

uh + (- Vet = —p* IV pt 4 V2, (1)
V.-u* =0, (2)

where the velocity components of air and water are as follows:

Ut = O, Y, ), U, v, 1) and wyt = (e (0, yE, 1), vl (7, v, 1),
respectively. On the air—water interface we have the usual kinematic condition and a
normal stress condition:

ve = F+ul F! on y* = F¥*, 3)

F*x*x*
(1+ (Fre)?)

Pw =Dy to on y*=F*, 4)

[SI[%)

where the water surface under the lower half of the cylinder is y* = F*(x*, t*). In
this work, the Bond number is large enough for us to neglect capillarity. Equation (4)
simplifies to equality of pressures: see (11) below.

We assume the porous substrate is isotropic, has constant depth H* > 0, and
contains two-dimensional unsteady Darcy flow whose velocity components are given
by uy* = (u* (x*, y*, t*), v¥;(x*, y*, t*)), where we interpret the components as
air-volume flux per unit cross-sectional area of substrate. These velocity components
are governed by

K ap*

”?Z_,Taii’ 5)
a
K op*

v;fz-u—a’y’; : ©®)
a

where K is the dimensional permeability of the medium in units of length squared,
and the subscript s indicates variables in the substrate. We expect the pressure
and velocity to decay to zero in the far field; that is uf — 0 and p} — 0
as |x*| — oo. At the air-substrate boundary, we assume continuity of air pres-
sure, p,*(x*, 0, t*) = py*(x*, 0, t*), and continuity of vertical velocity component
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v (x*, 0, %) = vs*(x*, 0, t*). Regarding the horizontal velocities, from Beavers and
Joseph [39], we have a condition linking «; and its normal derivative:

K? ou?
y dy*

= u — Su*, 7

where the dimensionless constant y is the Beavers—Joseph coefficient, which depends
on the medium’s pore size and material properties. Also the switch constant § is such
that § = 1 corresponds to slip, and § = 0 corresponds to zero-slip on the substrate—air
interface. Saffman [40] concluded that u} is directly proportional to K, so that for
small K this term is negligible and one can then assume a zero-slip condition. But
here, we consider K not necessarily small, and we proceed with the full condition (7).

In summary, we have the following dimensional equations and boundary conditions:

i + (- V)u*t = —p* 'V p* 4+ 1*V2u*  inboth the air and water, 8)
V-u* =0 in both the air and water, 9)
ve = Fi+ul F on y* = F*, (10)
Pw = Pa on y* = F*, (11)
ur=u), and v =v) on y* = F*, (12)
R+ h*

F*(x*,t*)—>h*+R—Ut*—([R+h*]2—x*2)% for t* « —%, (13)

K ap*
W= g oy <, (14)

Maq Ox*

K op*
v=——P gy <o, (15)

Ma OY*
pa”(x*,0,1%) = ps*(x*,0,*)  ony =0, (16)
v 5 (x*,0,t") = v,"(x*,0,%)  ony=0, (17)

1
K2 u*

Sy syt ony* =0, (18)

y oy* ‘
v5,(x*, —H,t")=0 ony*=-H, (19)
ut, ps*, pa* — 0 as|x¥| = oo. (20)

Next, we simplify the equations by scaling the variables, then neglecting relatively
small terms, so making a dimensionless model.

2.3 Non-dimensionalisation

There are many physical parameters in model equations (8-20). So, to make analytical
progress, we next non-dimensionalise the relations to help establish which important
terms balance and identify the relatively small terms which we can neglect.

First, the velocity scale U drives the flows and induces below the wetted cylinder
an air velocity which is much faster horizontally than vertically.
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Second, the length scales in the air are € R horizontally and €2 R vertically, where
parameter € : 0 < € < 1 is found explicitly below. Here, €2R is the scale of height of
the air gap when the pressures are high enough to deform the liquid-air interface and
to force air into the substrate. We define a dimensionless water thickness by writing
h* = BRh(x,t) where h = O(1) and B8 <« 1. The scaling of water depth we choose
here is the physically interesting case, first studied by Korobkin et al. [33], where the
water behaves as a shallow water layer. The two other alternative choices of water layer
thickness are as follows: (a) if #* <« € R which reduces to solid—solid impact; (b), if
h* > €R then the flow would be, to leading order, like a droplet (e.g. of radius R),
impacting a porous substrate, with no influence from the solid cylinder, as discussed
by Hicks and Purvis [23]).

A third consideration for scaling is that in the air layer the significant time scale is
JTR. We defer the correct choice of pressure scaling, in terms of a power of € or 8, using
dimensional factors P, and Py, for which we find expressions below. Consequently,
the variables in the water and air layers are scaled by

2
€ €°R
(u*w, v, pa, XL YR, F*) = (EUuw, Uvy, Pypuw, €Rx, BRY, Tt’ ezRF> ,

2D

1 2 R,
(MZ, U:vp:v-x*sy*vt*’F*)z € Uuav Uvaypapa»eRx,e Ryv TI’E RF 5
(22)

where P,, and P, are dimensional constants that depend on € and or 8 in ways to be
found. The scalings in the water reflect the as yet unspecified thickness of the water
layer. Incidentally, the air’s horizontal acceleration scale equals the ratio of scales of
horizontal velocity to time: U?R~'e~3—the smallness of € makes this much greater
than acceleration due to gravity.

2.3.1 Equations modelling shallow water flow

The balance of terms that we achieve is supported by the lengthy discussion in Section
2.2 and Appendix 3 of Korobkin et al. [33]. Substitution of the scalings (21) into the
governing Eqgs. (8) and (9) for water gives

€2 Py -1 e’
Uy + E (uwuwx + le/lwy) = _Igmpwx + Re,, | wyy + Euw}'y , (23)
2 2 2
€ e P _ €
Uy + E (”wvwx + Uwva) = _Epw—z),zpwy + R‘ew1 <wax + FUWW) ’
(24)
Uyyx + Vwy = 0, (25)

where the water Reynolds number Re,, = p U R/ 4y > 1. In order to keep a leading
order balance here and to match with the flow in the air described below, we are
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required to take the pressure scale as
Po = Upup. (26)

In order to obtain the leading order shallow water behaviour in the liquid film, this
also fixes the size of our water film S as we also need in (23) that €28~! « 1 and
Re;, 1e2872 « 1. These are equivalent to the pair of double inequalities: €2 < S and
Rey, 12 « B < €. Under these assumptions, along with Re,, > 1, the nonlinear
inertial terms and the viscous terms in the governing Eqgs. (23) and (24) are negligible.

Assuming that we are within this regime, we obtain for the water flow the linear

shallow water equations:
Uyt Z_Pwm pu)yZOv uwx+va=0- (27)

We have the usual boundary conditions on the water—air interface, namely kinematic
condition (10) and normal stress condition (11). The normal stresses must balance so
P, = Py . The kinematic condition is

e =Fi+ul Fi  on  y = F"(x* "), (28)
where y* = F* is the air—water interface at the bottom of the shallow water layer.
Integrating the continuity equation in (10) with respect to y* across the shallow water

layer (applying the kinematic boundary condition and an impermeability condition on
the wall of the body), noting that « is independent of y*, we obtain

[vi]5. = BRuj, (29)

where BR is the average depth of the water layer and y* = S* is the impermeable
solid surface of the cylinder where v}, = —U. Substituting in the kinematic condition
(28) and rearranging we have

++U = BRuy, , —uy, Fy.. (30)
Applying the scales (21) we obtain at leading order:

Fi+1=u, on y=F(x,1). 31)

We differentiate (31) with respect to ¢ and substitute the horizontal component of (27)
to obtain
Fit = —pu,, on y=F(x,t). 32)

We next show how these model equations for water flow couple with a lubrication
flow in the air layer below it.
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2.3.2 Equations for the air

The terms of Egs. (8, 9) for the air layer are scaled using (22) and become

2 4
Ev:w (ta, + Uakta, + Valta,) = —Zfa lv]"z’ Pa, + le (ezua“ + uayy) .33
La (Ua + UqVq, + vava,) = _ipa + _Paba <va + ian) , 34)
Pw ! * ! Uzpw ? PwVw Rey = €2
Ua, + Va, = 0. 35)
From Eq. (33), in order to include the final term in a balance with the pressure
gradient at leading order, we must have % = Ri ~. We also know from (26) that

Py = Pw = U?pyp~". These relations give us

1 - M_wi (36)
Rey  1a B’

fixing the small-valued parameter € in terms of other parameters. It also clarifies the
validity of the model for 8 with the inequalities becoming as follows, written in terms
of physical variables:

2 1
Vo [Hw)? Ma 3
— ) «BK . (37)
UR (Ma) P <UR,0w)

These agree with the relationship quoted in Korobkin et al. [33] and can always be
satisfied for Re,, > 1.

Consequently, in (34) the pressure coefficient (O (e ~*)) is much greater than the
0 (e~ 2) coefficient of Vq,, in the final term (and in the other terms). As € formally tends
to zero, only the pressure gradient term remains. So this term must vanish: Pa, = 0;
hence, the air layer pressure depends at most on x and r. From now on, we write
Pa = Pa(x,1).

We next revisit (33) to check that the leading order terms balance and the other
terms are negligible. Using (36, 26), we have

%’O_“ (Ma, +uglq, + vauay) = —Ppa, + ezuam + ugq,,. (38)
€7 Pw
As discussed and exploited by Korobkin et al. [33] (see pp. 371, 388, and their
Appendix 3), for air and water the density ratio p, /oy = 0(1073) is much smaller
than typical € = 0(10_2). Therefore, we can neglect the inertia terms of LHS of (38),
compared with the lubrication theory balance between the horizontal pressure gradient
and the viscous shear force u,,,. The remaining term, ezuam , is also negligible.
Condition (36) tells us the regime of values of physical constants in which we must
sit. For air and water /g € [50, 100] over the temperature range [0, 20 °C] and
for fresh water p,/pw = O(1073). We consider U to be in the range 10 to 20 ms ™!
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and R to be in the interval [10~%, 1072 m]. At the lowest end of the range of values
of €, we find it takes the value €] = 0.004 (large, fast particles), at the highest end
€ = e = 0.03 (small, slow particles). We must dismiss the low end of the range of
€ because the Mach number of horizontal velocity component of flow, M, = U /e1c,
exceeds unity, at the high end U /e, = 30 m/s, corresponding to a small Mach number
of Ma = 0.08. The range of admissible € is narrow but embraces a wide range of
values of the physical variables, owing to the nonlinear dependence on €.

Now we choose a mid-range value of € = 1072 and 8 = 103 sothat€? < B < .
If we also suppose Re = O(10?) then we satisfy (37). The pressure scale has the high
value P, = P,, = 108 Nm~2 which is 1000 bar, over a timescale of 1078 s.

The above is in accord with assuming a large value of the water Reynolds number
dictated by (37): Rey, = Be *uauy' = 0(10%).

We now take the leading order terms of Egs. (38, 35) to make a lubrication model
for the air flow:

Pa. — ttay, =0, (39)
Ug, + Va, = 0, (40)

in the region 0 < y < F(x,t) in which p, = p,(x, ). These equations must be
solved subject to a no-slip condition of u, = 0 at y = F (due to scalings (21,22)
on the material—particle interface condition (12)), alongside boundary conditions at
y = 0, which will be discussed below for different substrates.

This completes the model in the air layer above the substrate and below the cylinder’s
wetting film. However, the flow in the air layer is coupled with the flow across the
air—substrate interface. In the next section we look at the air flow into, out of, and
inside the dry porous substrate.

2.3.3 Model Equations for the Porous Substrate

We need to link the velocity and pressure in the air layer, at the air—substrate interface.
At the bottom of the substrate is an impermeable base. Depending on the depth of
the porous substrate, different dynamics can be found. We will model two distinct
flow regimes: a shallow substrate and an intermediate-depth substrate. In order to
develop the model and complete the boundary conditions for the air lubrication layer,
we demonstrate that the thickness of the porous layer is important. We consider two
main regimes of layer thickness. First, we have a shallow substrate of dimensionless
depth Hgp, where H* = €2 R Hy,—the substrate’s depth is similar to the thickness of
the air layer above it. Second, we treat an intermediate-depth regime, where H* =
€ R Hy,, is comparable to the horizontal extent of the air layer, and where the significant
horizontal and vertical dimensions in the substrate flow domain have the same order
of magnitude. Also the influence of the impermeable bed is significant in that both
velocity components must be included. This second regime can also be extended to
treat a third (special) case of a deep porous substrate, Hj, — oo—a situation in
which the impermeable bed is too far down to affect the flow over the short timescales
considered here.
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I—Thin porous layer

We have assumed Darcy air flow in the substrate, Egs. (14, 15). The flow is driven
by balancing the normal component of stress at the substrate’s surface, which gives
us a boundary condition at y = 0:

ps (6™, 0,1%) = pg(x*,1%). (41)
Therefore, we must scale the substrate pressure p} in the same way as p} to maintain

this balance. We also have conservation of (incompressible) air mass in the substrate
(35), which in components is

duy vy
=0. 42
ax* + ay* “2)

We first consider a thin porous layer, whose thickness H* is comparable to the air
layer thickness €2 R. As such, we scale the substrate variables as follows:

R
(uk, v¥, pi,x*, y*, t*, H*) = (6_1Uus, Uvs, B~ U%puwps. €Rx, €*Ry, ezgt, EzRHsh) ,
43)

where Hy, is the dimensionless depth of the substrate domain of flow: —Hg, <y < 0.
These scalings lead to

oug  0vg
dx ay

—0. (44)

For brevity, we define an effective dimensionless permeability, k:

L PwUK

= , (45)
BRua
so that the scaled velocity components become
a
uy = —kL%, (46)
0x
k 0ps
=——=—. 47
vS 62 ay ( )

For a water layer on a cylinder of radius R € [1, 10] mm, impact speeds in the
range [1, 10]ms™! , and substrate permeability of K = 5 x 1072 m?, we find k lying
in the interval [0.4, 200], but we focus on values of k ~ 1.

At the interface of the air layer and the porous substrate, the Beavers—Joseph
condition (7), scaled and rearranged, gives

=u, — dug on y=0. (48)
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Substituting (46,47) into (44), we make a partial differential equation for p, (x, y, t):

azps 1 82175
axZ €2 9y?

=0, (49)

valid in the substrate. At the impermeable bottom of the porous layer v = 0; therefore,
a’ﬁ = 0 is the bed boundary condition for (49) on y = — Hgj,.

“Motivated by the disparate orthogonal length scales in (49) and the approach
of Knox et al. [41], we express the substrate pressure in the following asymptotic
expansion:

ps(x, v, 1) = pa(x, 1) + € Ps(x, y, 1) + O(%), (50)

which introduces a new function P. The form of (50) is chosen to ensure the leading
order pressure matches that in the air layer. We need this so that the normal stresses
balance (Eq. (41)) and so that we have a small (0(€?)) correction term. Substituting
(50) into (49), we obtain

92 2P, 9%P
Pa + 62 N + s
ax2 9x2 ay?

= 0(?). (51)

At leading order, we have a relation inside the substrate linking P (x, y, t) with the
surface pressure p,(x, t) that drives the flow:

92 P, 92
s _ pa. (52)
ay? dx2

Noting that the right side of (52) is independent of y, we integrate (52) with respectto y

from y = — Hg,. In doing this, we use the bottom-impermeability boundary condition
47):

d Py Vg

3y % on Yy sh (53)

From all this, we deduce from (52) that in the substrate

P, 32
5y =0+ Ha) 5 (54)

Using this we rewrite the Darcy flow velocity components at the top of the substrate
in terms of the air layer pressure, p,. At the leading order, we have expressions for
the two velocity components at y = O:

0
us(x, 0,1) = —k 24, (55)
aIx
82
v (x, 0, 1) = kHy =22 (56)
dx
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Owing to (41,50) and integrating (54) with respect to y, we find the following
expression for pressure in the substrate:

2
ps(x, ¥, 1) = pa(x, 1) — € (% + Hshy) Pag, (x, 1) + O(eh). (57)

We can now use the expression of velocity in the substrate to complete the model
equations in the air layer and link together the unknowns p, (x, t) and air—water inter-
face position y = F(x, t) when the porous layer is shallow. As derived above, we start
with (39, 40):

pax = Ma)-y, (58)
g, + g, = 0 (59)

and follow lubrication theory. We integrate (58) with respect to y twice in the air layer,
applying Beavers—Joseph condition (48), and kinematic condition (31) at the air—water
interface, at which the horizontal velocity of the air is negligible, to arrive at

Co-F) ((yF +k%) Y4k +2k7/8) -
s 2(vF+kE) ax

(60)

We then integrate (40) with respect to y, from y = 0 to y = F using (60), and apply
the kinematic condition (31). We find:

1
aF 1 9 F4 4+ 4kIF3 + 6kysF2 9 92
_ <V + + 6ky p“>+kHsh Pa ©1)

Bt 1209x )/F—i-k% ox axZ’

To summarise, the coupled equations for shallow water impact with a porous substrate
of thickness Hgy, and effective permeability k are (61) and

Fit = —pa,,- (62)

These are complemented by initial and boundary conditions. For large negative times
ast — —oo, we assume the liquid interface is initially undisturbed, so that F'(x, ) =
x2/2 — t and that the air gap is initially wide enough that p,(x, ) = 0. We also
assume that far enough away from the narrowing gap, the water film and pressure
remain unchanged. Hence from (13) expanded in powers of x*? /R* < 1), we have
Fx,t) — x2/2 —t and py(x,t) — 0, as x — =oo. The principal unknowns
of the model in this shallow substrate regime, consist of two self-contained coupled
equations for F(x, 1), p,(x, t), and from these ps(x, ¢) and the velocity fields can be
subsequently found.

In anticipation of the discussion of our results, we introduce further definitions here,
see Fig. 2 (left panels). For the entirety of our results discussion we will concentrate
solely on the right half of the symmetric domain with x > 0. Notice the water layer
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Free surace, (x8)

(a) Free-surface and pressure profiles for increasing ¢ as the water layer approaches the sub-
strate. A dashed curve corresponds to ¢t = 0, the touchdown time in the absence of air
cushioning. Profiles are drawn at times ¢t = —10, —8, —6, —4, —2, 0 then ¢ = 0.25. Touchdown
occurs at tg = 0.36.

Pressure,p

(b) As (a) detail of free surface tongue and nearby pressure close to touchdown. Profiles at
t =0,0.025,0.05,0.075, ...,0.325 before touchdown at t = tg = 0.36.

Fig. 2 Free surface and pressure profiles during the approach to impact with an impermeable substrate. A
dashed curve marks ¢t = O (touchdown time without air cushioning). a Free surface and pressure profiles
for increasing ¢ as the water layer approaches the substrate. A dashed curve corresponds to ¢t = 0, the
touchdown time in the absence of air cushioning. Profiles are drawn at times t = —10, —8, —6, —4, =2, 0,
then ¢ = 0.25. Touchdown occurs at #y = 0.36. b As (a) detail of free-surface tongue and nearby pressure
close to touchdown. Profiles at # = 0, 0.025, 0.05, 0.075, ..., 0.325 before touchdown at t = 7y = 0.36

deforms and descends as a lengthening ‘tongue’, and this tongue meets the substrate
at touchdown time #y. The horizontal air-volume flux is computed across a movable
vertical line segment x = /(¢) drawn from the lowest point of the tongue down to the
substrate at y = 0. The horizontal volume flux, HVF, is defined as

F(l,0
HVE(t) = / ug(,y,1)dy, (63)
0
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where y = F (I, t) is the position of the liquid’s lower surface. The vertical air-volume
flux, VVF, is also defined at the substrate’s upper boundary, y = 0, via

1(t)
VVE(r) = — / va(x, 0, 1) dx, (64)
0

where x = [(¢) is the position of the lowest point on the tongue.

We report in Fig. 10 that the two volume fluxes have similar magnitude whilst
growing in time towards their maximum values. Then, whilst the vertical flux continues
to rise, the horizontal flux decays to zero at t = #y. (It is a coincidence that the two
curves for HVF and VVF cross near ¢+ = 0.) Physically, the incipient bubble of free
air loses gas in two distinct ways:

(i) air escapes horizontally under the tongue (and interacting with the tongue by allow-
ing it to ‘skate’ on top of the air-lubricating layer) and (ii) escaping air is pushed down
into the substrate, where it and the displaced air are constrained by the impermeable
bed to move to the right, under the tongue.

II—Intermediate-depth porous substrate

For our second regime, we no longer restrict the substrate depth to be similar to the
water layer depth. Instead, we treat a regime in which the depth is comparable to the
horizontal extent (¢ R) of the lubrication region. This is the next critical asymptotic
balance. As such we write scalings in the substrate as follows:

2
€“R
(u;ka v;ka p;ka X*a y*a t*5 H*) = (UuSv UvS? :B_lU2IprS7 6Rx7 GRy, Tta GRHIH) ’
(65)
where Hj, is a new dimensionless depth of the intermediate-depth substrate. The
derivation of the air layer equations is almost unchanged. However, we have a slightly

different boundary condition from the Beavers—Joseph condition (7) because the hori-
zontal velocity scale is now the same size as the vertical velocity scale. Upon applying
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the scales, the air-substrate boundary condition, at y = 0, becomes

= ug, (66)

where k is defined in (45). (Factor § is absent from (66) because the term to which it
was attached is negligible compared to the dominant terms.) Thus, we find

=B ((vF+kE)y+k3F) 5,
2(yF+k%) o

Ug =

for 0<y< F(x,?). 67)

From the conservation of mass equation and by substituting in the Darcy veloc-
ities (5) and (6), we see that the substrate pressure must satisfy Laplace’s equation,
along with the following boundary conditions: pressure and vertical air velocities are
continuous on the air—substrate interface and zero normal velocity component on the
impermeable base. Thus we have

VZps(x, y, 1) =0, (68)
ps(-xvovt)zpa(-x’t)3 (69)
3
k225 (x,0, 1) = v, (x,0, 1), (70)
ay
3
DS (x, —Hip. 1) =0, (71)
dy
ps —> 0 as |x| — oo. (72)

This problem can be solved using complex analysis techniques. For brevity, the details
are in Appendix A. We obtain an integral equation for the unknown vertical velocity
in the porous layer, at the substrate surface:

_ 1 paé o kpag(é — x) + 2Hinvs
vs(x,0,1) = <][ £ /;OO € )2 +4Hi%1 d¢ ). (73)

=V(x,t) (74)

We proceed from Eq. (67) in the same way as for a shallow substrate. However, the
vertical component of air velocity must satisfy (73) with vs(x, 0, t) = V(x, 1) say, so
we have the following equation from the air layer theory:

IF 1 9 (yF*+4k1F3)
— (L p“)_ (75)

yF+kz Ox
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This is coupled with Eq. (32). However, we now have an explicit dependence on the
vertical component of air velocity at the top of the substrate. In order to calculate this
we must first solve for the substrate pressure using (68)—(72). This yields a system of
coupled equations more complicated than for a shallow substrate.

In summary, the coupled system for a shallow water layer and air impacting onto
an intermediate-depth porous substrate, of porosity k and depth Hjp, is

OF 19 (yF*+4k1F3
Wy =L (YR T0Pa) R (76)
at 12 ox yF +k2 0x
1{ >k 00 k(& — L 2H,V (£, 1
Vi) = — KPag d — / (& X)Pag 1n2 (&, )d§ : 77
ok € —x)? +4H2
Ftt = —Pay, x e R. (78)

As in the shallow substrate regime, for large negative times, we assume the liquid
interface is undisturbed so that F(x, r) = x2/2 — and that the air gap is initially wide
enough that p,(x, t) = 0. The principal unknowns of the model, in this regime, are
F(x,t), ps(x,y,t), pa(x,t) and from these the velocity fields can be found. There
are three parameters: k, Kl 2)/_1, and Hj,. In the numerical investigation that follows
we fix y, pick § = 1, and vary k and Hj,.

In order to investigate the limiting case of an infinitely deep porous layer, we simply
take the limit as Hj, — oo in (73) to obtain the effect of the substrate on the air. The
second integral of (73) then tends to zero, leaving just the Hilbert transform term:

V(x,t)=§][oo Pat e (79)

& —x

With this simpler expression, we recover an explicit relation between the vertical
component of air velocity on the substrate—air interface and the air layer pressure.
Therefore, we need not solve anything separately inside the substrate. The system
becomes

1 9 FY 443 F3 9
O i e k) ][ Pag s (80)
12 9x yF + k3 9x £ —
Fi = —Paxx x € R. (81)

This completes the theory. In the next section, we discuss a numerical method used
to solve the model’s equations and then present results from our computations.
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3 Numerical method and results
3.1 Numerical solution

Our problem of interest has now been reduced to two main cases. First, the thin porous
layer is governed by coupled equations (61) and (62), along with initial conditions on
the interface y = F(x, t) and the air pressure p,(x, t). We also require that the air—
water interface is undisturbed far from the site of impact, so that F'(x, t) ~ x2 /2 —t
and p,(x,t) — 0 as x — =£oo. In this regime, the flow inside the substrate is
essentially passive, driven by the pressure-continuity condition at y = 0. We are left
with a pair of coupled equations to solve first and then the induced substrate flow
can be calculated subsequently. The numerical method we adopted to compute the
solution uses a fourth-order finite-difference scheme to discretise the two differential
equations. The solution was found by iterating F and p, at each time step, with (62)
firstly giving an updated interface position F and (61) then updating the pressure, p,.
At each time step, it was found that fewer than five iterations are needed to achieve a
numerically converged solution, within a typical relative error of 107, The grid size
and time step size were typically 8x = 0.016 and 8 = 103, with smaller values
used as a numerical check. We truncated the domain in the far field when applying the
boundary conditions. It was found that x € [—32, 32] was a wide enough truncation to
no longer affect the solutions and encompass the decay towards zero in the air pressure
with increasing distance from the line of symmetry. Finally, the computations were
started at an early enough time, ¢t = —25; this value was checked to ensure solutions
were independent of the choice of start time.

For the second regime with intermediate-depth porous substrate governed by (76)—
(78), our approach was more elaborate. Attempting the same discretisation approach
detailed above, the numerics either failed to converge or required prohibitively small
grid sizes. Instead, a Fast Fourier Transform method for solving this system was
adopted which proved to be stable and close in computational speed to our method
for the first regime. We introduce the discrete Fourier expansions of the unknown
functions p,, F and vy, defined by

N .

Palx.) =) Pu(t)e' L, (82)
n=1
%2 N .

FOon == —t+) F0e T, (83)

n=1

N .

V=) Vaet, (84)
n=1
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where x = =£L is the limit of the truncated computational domain. From (73), we
have that

Vi = (p [T g R0,
’ T Vo —00 E — X —00 (é _ x)2 +4Hl%l
©  2H, V(1)
) /* o (E —x)? +4Hi%1dg)’ (85)

with the help of Gradshteyn and Ryzhik [42] to find exact expressions for the integrals,
we substitute the Fourier expansions (82)—(84) and write V), explicitly in terms of P,:

kln|m kln|m —2Hiplnlx —2HipInlz
Ve =— P, e L P,—e LV, (86)
L L
—2Hjy ||z kln|lm  kln|m =2Hplnix
<1+e i )V,,: e ) P (87)

Note that we have kept these expansions general at this stage to allow for non-
symmetric impacts, although in what follows we exploit the fact that F and p, are
even functions of x to reduce the number of unknown coefficients. At each time step,
we calculate the set of P, from the values at the previous time step, then use relation
(78) to update Fy,:

—— Py, (88)

where we discretise F},,, using standard fourth-order finite differences. We use these to
update V), via (87) and exploit relation (76) to update the pressure. We also monitor the
relative error between successive iterations. We iterate this process until it converges
to a relative error of less than &= 1076, Typically, we truncate to N = 2001 terms in
each series to give accurate resolution and less than five iterations were needed at each
time step to reach convergence. Full details of the discretisation and methods used can
be found in [36].

In the next two sections we present results for the two regimes’ theories: shallow-
and intermediate-depth substrates.

3.2 Shallow porous substrate results

In this section, we present results using the shallow substrate theory of Sect. 2.3.3 part
I, in which the substrate has depth H* = €2RHy,. We begin with the reference case
of a wholly impermeable substrate (k = 0). Then, we show results for a selection of
pairs of values of porosity k and shallow substrate depth Hg,. At the end, we draw
together some trends in the influence of porosity on the results and contrast them with
what happens for an impermeable plate.

We describe results for the right half only x > 0 of the symmetrical domain.
We plot in dimensionless units the free surface, pressure, and pressure gradients.
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Typically, a sequence of profiles is shown at unequally separated instants in time. The
computations start at t = —25 when the wetted body is far above the substrate, and
we show developments at times just before impact. We continue computing until the
interface is due to meet the substrate at a touchdown time denoted ¢t = f#y. In our
results 79 > 0 due to the pressurised air layer pushing up against the water film on the
cylinder and so delaying the arrival of the interface at y = 0 which in the absence of
air cushioning is at # = 0. When a bubble is captured in the interval between x = =+£ry,
its half width is ;. For short, we say a bubble has radius ry,.

As a test of our numerical methods and to show a baseline of results with which
to compare the porous substrates that follow, we first present the solution for impact
onto an impermeable substrate. Figure 2a shows the evolution of the free-surface and
pressure distribution for approach to impact against an impermeable plate at y = 0
(porosity k = 0). The interface descends and changes shape, capturing a pocket of
air against the plate to form a bubble of radius r, = 3.0 to two significant figures.
Considering only the right half of the domain, a tongue of liquid descends to define
the right-hand edge of the bubble and the tip of the tongue will reach the plate at a
positive instant ¢ = fy. Physically, touchdown is delayed due to film spreading and
air cushioning. The touchdown time is approximately #gp = 0.33. Figure 3 shows
the separation distance from the lowest point of the tongue down to the plate, as a
function of time. In vacuo, the trajectory shows constant speed of descent and is the
dashed straight line of slope —1. The plot shows an early deceleration (a reduction
in gradient), followed by an acceleration (high gradient) towards the time of impact
at the touchdown time ¢t = #y. This slowing down then speeding-up happens during
the short time when the interface is very close to the plate. As the interface descends
it sharpens into a falling tongue of water, as shown in Fig. 2a, b left panels. Figure
2a, b right panels show the simultaneous pressure distribution. The pressure is largest
inside the air pocket, with a global maximum pressure at x = 0 and spatially it declines
steeply near the tongue. Just before touchdown, an elevated pressure spike appears
close to the touchdown position. First identified in Korobkin et al. [33] which our
results recreate, this differs from reported behaviours during impact of air-cushioned
liquid droplets and deep-water layers, where more distinctive local pressure peaks
appear near touchdown.

Shallow substrate results are relatively insensitive to changes in Hg, because
the theory rests on scalings which make the influence of the substrate’s bed strong
everywhere—the air flow in the substrate is constrained to being predominantly hori-
zontal. So we fix the value Hgy, = 4 and, through the following examples, increase k
from k = 0 (impermeable, discussed above), up to k = 4.

What happens if the substrate is made slightly permeable? See Fig. 4. With £ = 0.25
and Hgy, = 4, the free surface captures a smaller bubble than the impermeable plate.
The bubble radius is about r, = 2.9. The bubble is smaller owing to a loss of air
pushed into the substrate and then away to the sides. Since the air in the model is
incompressible, it also exits the substrate, primarily at the tongue and just outside the
bubble, as an air jet. Equation (56) shows the link between p, ., and v,: Fig. 4 (lower-
right panel) shows a distinct and growing maximum in p, ., which marks the air jet.
The descending water tongue is slowed down by the air pressure. Its touchdown time
to = 1.6 is about four times later than for the impermeable plate, 7y = 0.33. Overall,
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25

Free surface, f(x,t)
Pressure, p

Position, x Position, x

Position, x Position, x

Fig. 4 Free-surface and pressures profiles for k = 0.25 and Hg, = 4, touchdown time #y = 1.6.

A dashed curve marks + = 0. Profiles drawn at times t+ = —10, -8, —-6,—4,—2,0 then t =
0,0.25,0.50, ..., 1.25, 1.50

the air pressure is reduced in the presence of substrate porosity: the maximum value
of p, occurs at x = 0, with magnitude of about 1.6, and still rising at the last time
computed.

What happens to the results if the substrate is made more permeable? See Fig. 5.
With k = 2 and Hy, = 4, the interface has caught a narrower and thinner bubble.
This tongue is the most slowed down of the examples computed, and its lowest point
makes touchdown time #p = 2.1 (see Fig. 7), (about six times the value of #yp = 0.36
for k = 0). Pressure is reduced further by this increase in permeability: the maximum
value occurs at x = 0, where p, = 0.6 (and rising) at the last time computed.

See Fig. 6. A further increase in permeability to k = 4 and Hy, = 4 gives the results
shown in Fig. 6. Now there is no bubble capture; the pressure maximum is only 0.4, and
the touchdown time is reduced to about 7y = 1.2. This marks a reduced deceleration
of the point of first contact on the interface, descending along the centreline. The air
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Free surface, f(x,t)
Pressure, p
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Position, x Position, x
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Fig. 5 Free-surface and pressures profiles for k = 2 and Hg,, = 4, touchdown time #y = 2.1. A dashed
curve marks 7 = 0. Profiles drawn at times t = —10, —8, ..., —2,0then = 0, 0.25, 0.50, ..., 2.0

flows mainly horizontally in both the air layer and inside the substrate. These flows
are also slower due to the reduced pressure gradients shown in panels 2,3,4 of Fig. 6.

See Figs. 7 and 8. We now pause to synthesise these shallow substrate results across
the two-dimensional parameter space of k, Hgy. In Fig. 7, we have contours of constant
(marked) touchdown time, fg. Note the ridge of elevated values in the middle-right
part of the plot where 79 > 2.2. For a fixed value of Hyy, if we increase k from zero
vertically up the plot, we find a local maximum in 7y for some value of k. From the
results discussed above #y can be as high as 2.3, for k = 1.4 and H, = 4. The shallow
substrate theory resolves a region of parameter space where #y has a local maximum
as a function of k and fixed Hg, > 1.5. This supplements the results reported by
Hicks and Purvis [23]; with an intermediate-depth theory and fixed depth, they report
a monotone decrease in to with increasing k.

Figure 8 shows a contour plot of the bubble’s radius, rp, as a function of k and
Hy, for the same region of parameter space. There is an unbounded region in the
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Fig.6 Free-surface and pressures profiles for k = 4 and Hg, = 4, touchdown time #y = 1.2. Profiles drawn
attimes t = —10, -8, ..., —=2,0thent =0,0.2,0.4, ..., 1.0

top-right corner of the plot, where kHy, > 10, in which there is no bubble. This
region corresponds to conditions in which the air layer can most easily escape the
descending water film, either to the sides or into and along the substrate. In Eq. (56),
the vertical component of air velocity into the substrate is directly proportional to
k Hg,. The presence or absence of a bubble has a strong influence on what will happen
next to the water impacting onto and into the substrate.

The boundary between bubble and no bubble occurs at about k Hg, = 10, according
to our shallow substrate computations. In the remaining region of the plot, a bubble is
caught when approximately k Hg, < 10. The bubble radius ry, is increased by reducing
k: the radius increases up to a maximum r; = 3.0 for the impermeable plate, k = 0.

Figure 9 shows another synthesis of results: the trajectory of the lowest free-surface
point. A broad conclusion is that (at a fixed depth of substrate) the effects of increasing
k are to relax the acceleration and deceleration of the approaching air—water interface.
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Fig.7 Contours of touchdown
time, fg, as a function of k
(vertical axis) and Hgp,

Permeabity, k

Fig.8 Contours of bubble
radius, rp, as a function of k
(vertical axis) and Hgp,

Permeabilty, k

1 15 2 25 3 35
Porous layer depth, H,,

The air finds it ever easier to escape into the pores of the substrate and or to move
sideways away from the descending tongue.

We also discuss plots of the air’s volume fluxes. See Fig. 10. The horizontal volume
flux, HVF, is defined as that crossing a geometrical vertical line segment, drawn from
the lowest point on the tongue to the top of the substrate (see Eq. (63)). Calculations
start when we begin to have a distinct tongue. As the descending minimum point of
the tongue moves to the right, x = I(¢) also moves to the right. The curve shows that
as time increases HVF increases from zero to a positive maximum, with flow to the
right; after which HVF declines. Also plotted in Fig. 10 is the vertically downward

@ Springer



1 Page 26 of 37 G. Moreton et al.

4 T T T T T

— |Mpermeable
k=4andH_=4
sh
— ——k=2andH_=4 R
sh
k=025andH_=4
sh

35

Separation distance
o o

o

0.5

0 L
-3 2 -1 0 1 2 3
Time, t

Fig. 9 In the shallow porous regime, separation distance between lowest point on free surface and top of
substrate: plots for various values of k and fixed Hgp, = 4

1 T T T T T

Porous - total flux

— — =Porous - horizontal flux

————— Porous - flux into substrate
Impemeable - horizontal flux

Flux out of bubble

0 ot 1 L L L L
0 0.5 1 15 2 25 3

Horizontal position of freesurface minimum

Fig. 10 For the shallow porous model, plots of horizontal volume flux, vertical volume flux out of the
bubble, and total flux, as functions of x-coordinate of the minimum of the liquid surface drawn for Hg,, = 4
and k = 0.5. Horizontal flux for impermeable substrate, k = 0, is also shown
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volume flux, VVF, computed at the top of the substrate between the centreline and the
tongue’s position (see Eq. (64)). VVF measures the volume of air entering the substrate
in the interval [0, /(¢)]. The main contribution comes from the falling tongue pushing
air into the substrate. The curve shows a monotone increase over time, from zero to a
maximum whose magnitude is similar to that of HVF. Both HVF and VVF have been
computed for k = 0 (impermeable) and k = 0.5 in shallow substrate Hg, = 4. By
considering a slightly porous substrate, we see that the main contribution to the total
flux (also plotted) is from the horizontal flux during the early approach to touchdown.
But as the film approaches impact, the air pressure in the bubble continues to rise,
allowing more air to be forced vertically down into the substrate, and the horizontal
flux declines. Increasing the porosity makes VVF become greater than HVF much
earlier.

Overall, under the water tongue there is a horizontal air flow to the right, caused by
the bubble (on the left side of the tongue) shrinking in volume due to the water layer
pushing down on it. Some air escapes under the tongue, then off to the right, and some
air penetrates the substrate.

3.3 Intermediate-depth porous substrate results

Here, the results come from theory Sect. 2.3.3 part II, in which the substrate depth
is H* = € RHj,. Unlike the previous section, we now have a fully two-dimensional
velocity field inside the substrate. The air is free to move in a region which is as deep
as it is broad, and whose length scale, € R, equals the width of the zone of high air
pressure for the wetted cylinder approaching the substrate. Figures 11, 12, 13, and 14
show various profiles, exploring significant parts of the k, H;, parameter space.

First, what happens if the substrate is made slightly permeable? Does the greater
depth scale of the theory make a significant change in the results? Let k = 0.25 and we
set Hij, = 0.25, which is already physically deeper than the cases of shallow substrate
presented in the previous Sect. 3.2. The top left panel in Fig. 11 shows that the free
surface captures a wide bubble. The tongue is slowed down by the air pressure and then
accelerates into touchdown. It will make contact with the substrate at time 79 = 1.1,
(about triple the value of tp = 0.33 for k = 0). The pressure in Fig. 11, top-right
panel, is reduced by the substrate: its maximum p, occurs at x = 0 and has magnitude
about 2.3 and still rising at the last time computed. The vertical velocity distribution
at y = 0 is sensitive to the second-x-derivative of pressure, and p,,, changes sign
either side of the descending tongue. Near the approaching touchdown point, x = 2.9,
air enters the substrate just inside the bubble and exits both at the tongue and just
outside the bubble. The nearby maximum vertical velocities are as follows. First, into
the substrate vy = —0.4; second, out of the substrate vy = 0.35. These maximal
speeds are similar, reflecting the notion that incompressible air entering the substrate
immediately displaces other air from inside the substrate, forcing the latter to exit.
This exit flow from the substrate is so narrow that we can call it an ‘air jet’ (or ‘air
splash’). Its speed, at the jet root, is still growing at the last time computed.

For the next case, we increase the permeability to k = 1 and maintain the depth at
Hin, = 1. See Fig. 12. The bubble radius r, = 2.8. The pressure’s spatial maximum is
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Fig. 11 Intermediate-depth porous model. Free surface, pressure, and pressure gradients for k = 0.25
and Hj, = 0.25. The dashed curve is at t+ = 0. Profiles drawn at times t = —6, —4, —2,0 then t =
0,0.25, 0.50, ..., 1.0. Touchdown occurs at fg = 1.1

about 2.2 and still rising. The vertical velocity at y = 0 is about +0.21. Touchdown
occurs at o = 1.3.

Next, we increase the permeability and reduce the depth: £ = 2 and H;, = 0.25.
See Fig. 13. The bubble radius is r; = 2.6. The still rising pressure maximum is about
1.7. The vertical velocity vg at y = 0 is about 0.9. Touchdown occurs at a later time
of tp = 1.4. Equation (56) shows the link between p, ., and v;: the lower-right panel
shows a distinct and growing maximum in p, ,,, which marks the air jet.

Finally, we treat an infinitely deep substrate using a suitably adapted numerical
method: k = 0.1 and Hj, — oo, as shown in Fig. 15. During its descent, the tongue
moves to the right, eventually capturing a bubble of radius r;, about 3.0. The growing
pressure reaches a maximum of about 1.9. The vertical velocity at y = 0 ranges
between about —1 (downward flow) and about 0.4 (upward-exiting flow). Touchdown
occurs at fp = 1.1. One contribution to the increase in fy is the initial height of that
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Fig. 12 Intermediate-depth porous model. Free surface, pressure, and pressure gradients for k = 1
and H;, = 0.25. The dashed curve is at t = 0. Profiles drawn at times t = —6, —4, —2,0 then

t =0,0.25,...,1.25. Touchdown is at fg = 1.3

part of the free surface which forms a tongue and descends onto the substrate. For
touchdown to occur at the centre, x = 0, we expect fy to have a smaller value than for
a bubble-capturing tongue, because the tongue needs more time to descend further to
reach the substrate.

4 Conclusions and further work
4.1 Conclusion
We established in Sect. 2 a mathematical model comprising symmetric two-

dimensional coupled flows (water film, air layer, and air-porous substrate) forced
by the descent of a wetted cylinder towards impact with a porous solid substrate. One
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Free surface, f(x,t)
Pressure, p

0 1 2 3 4 5
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Fig. 13 Intermediate-depth porous model. Free surface, pressure, and pressure gradients for k = 2
and H;, = 0.25. The dashed curve is at + = 0. Profiles drawn at times t = —6, —4, —2,0 then

t=20,02,04,..,12 wherety = 1.4

novel feature of our work is in identifying an asymptotic scaling for the model vari-
ables which achieves a consistent balance between the chief terms in the complicated
full equations of motion and boundary conditions. We solve the coupled equations
numerically with two methods: a fourth-order finite differences scheme and a Fourier
representation (spectral) method, truncated at 2001 terms. Both methods work effi-
ciently in that they are robust, quickly converge, and produce consistent accurate
estimates of the unique solution in each case.

The model has two independent dimensionless parameters: a substrate porosity k
and a substrate depth H (either Hg, or H;,). Regions of k, H space are explored through
case-by-case examples. The water film either captures no bubble or one bubble, with
an associated air flow forced into, and displaced out of, the substrate.

Ink, Hg, space, a contour plot of the half width (radius) ;, of the bubble makes clear
the regime of bubble capture and confirms a maximum value of r;, for impermeable
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Fig. 14 Intermediate-depth 4 T T T T T
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versus time. Note acceleration of y
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substrate. Figure 8 shows two regions: at lower left, bubbles are formed; at upper right
is a blank region of no bubble.

Figure 7 is a second contour plot in k, Hg, space, of touchdown time 7y (when the
water surface meets the substrate top) and this was explored. At fixed depth, as k rises
from zero, f( increases to a local maximum and then decreases. This is a new finding
and contrasts with a monotone decreasing o reported by Hicks and Purvis [23].

Computational results report examples of an impermeable, shallow (relative to the
width of the impact zone), intermediate-depth, and deep substrate. When an air bubble
occurs, it is captured between the water film and substrate by two symmetrically placed
tongues of water that descend faster than the rest of the initially parabolic water surface.
It is the lowest point of the tongues that first meets the substrate to define a touchdown
time, #yp. The spatial and temporal details of the tongues are well resolved by the
method.

Another new feature of the results is the presence of air jets. Air pushed into the
substrate can also exit as a jet, especially when Hg is small enough. The vertical
component of velocity at the substrate surface, v (x, 0, ¢), is greatest in a narrow x
interval that lies from under the tongue to just inside the bubble, where air is forced
in. And air exits most quickly just outside the bubble as an air jet. The maximum
magnitude of vy (x, 0, ¢) is no more than the particle’s speed of descent and is absolutely
small everywhere else.

When there is no bubble, the air is free enough to either go into the substrate or flee
to the sides, with little evidence of any air jet. Under these circumstances, the air layer
pressure is so low that it hardly affects the shape of the water surface and impedes
very little its descent towards the substrate. Without a bubble, touchdown occurs first
at the centre of the impact zone.
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Fig. 15 Infinite-depth substrate: profiles for k = 0.1. Profiles drawn at times t = —6, —4, —2, 0 then
t =0,0.25,0.50, ..., 1.0, where 1y = 1.1

Our model and results can equally well be interpreted for the descent towards
impact of a porous particle approaching the water surface of a liquid film coating an
impermeable substrate. Such a scenario is closer to a food manufacturing setting, e.g.
porous seeds sprinkled onto the top of a moist solid foodstuff.

4.2 Future research and open questions

We revisit the assumptions made in the modelling: (a) the high Bond number suggested
we neglect surface tension from the air—water interface. Including capillarity and small
pressure differences across the interface would not change our primary high-pressure
scaling balance of constants P, = P,,. Indeed, using the FFT representation, it is
straightforward to include the curvature term of capillarity in the free-surface shape.
Preliminary computations show that the influence of capillarity is to delay the arrival
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of the water tongue at the substrate and the right-hand tongue’s lower surface can skate
towards the right on top of a layer of high-pressure air. (b) Geometry: our model is
two-dimensional. An axisymmetric flow domain is more natural, e.g. for a spherical
ice particle impact, see Hicks et al. [43]. (c) Air compressibility: Hicks and Purvis
([22]) have looked at this for impermeable substrates. (d) Symmetry: the incident
particle could be impacting at an oblique angle away from approach along the normal
to the substrate. Moreton [36] showed that the approach must be close to horizontal
to see significant asymmetry in the pressure distribution for an impermeable plate. (e)
Substrate: Most real porous substrates are inhomogeneous and anisotropic. Both of
these can be accommodated within a Darcy flow model by making K into a matrix
of elements depending on position within the substrate. Pre-saturated substrates are
also of great practical interest, but offer a formidable challenge to model. (f) Dirty
liquid/gas: can micro-organisms and dust particles be driven into the substrate? (g)
Liquid viscosity: is there a regime in which the liquid film’s viscosity is significant?

This work can supply consistent initial conditions for future modelling of the impact
of a water layer onto and into a substrate. Where will the free air—water interface go
as an advancing wetting front? What new conditions pertain inside the substrate? We
anticipate that each bubble computed in the present work will strongly affect the subse-
quent motion of the wetting front inside the substrate. Our approach through modelling
a very shallow substrate in Sect. 2.3.3 part I has many simplifying advantages. Such a
model could relegate the vertical velocity component to satisfying the mass-continuity
equation and would allow us to predict a simple wetting front whose right half advances
to the right with a time-dependent depth-uniform horizontal velocity, coupled to a pres-
sure field that is primarily dependent on x. Film impact into an intermediate-depth
substrate (Sect. 2.3.3 part IT) would be much more difficult to model, owing to the fully
two-dimensional, time-dependent velocity field and its free-surface wetting front.

A major challenge remains describing the transition between pre-impact air cush-
ioning of the type described here and post-impact liquid flow into the porous substrate
and the lateral spreading of a splash jet. An initial attempt at modelling the equiva-
lent post-impact behaviour using only an ansatz boundary condition was carried out
in Moreton et al. [35]. Two important open questions are as follows: how does air
cushioning continue to influence the liquid flow once touchdown has occurred, both
inside the substrate and in the lubrication film? And what is the longer-term fate of
the air bubble?

Appendix A Integral equation for the Darcy flow in an
intermediate-depth substrate

Here, we present some complex analysis derivation of the integral equation for the
Darcy flow induced in the porous layer by the air layer pressure for the intermediate-
depth case defined by (68-72).

We use an image system to solve Laplace’s equation in the substrate. We solve it
in a rectangular region of depth Hj,, with zero normal component of velocity at the
base of the substrate (vy = 0 at y = — Hj,) and air pressures equal at the air—substrate
interface. We reflect this rectangle in the base of the substrate and use Cauchy’s integral
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Fig. 16 Diagrams showing the
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(b) The field point, z, is on the contour on the real axis at z = x

formula to derive an integral equation for v,. Let complex variable z = x +iy and we
define complex-valued function w(z, t) by

w(z, 1) =kps,(z, 1) +ive(z, t). (A1)

Here, w is analytic because k p,, and vy satisfy the Cauchy—Riemann relations. We
next use Cauchy’s integral formula with a contour of integration I' as shown in Fig.

16 and defined as the perimeter of a rectangular region described anticlockwise, we
have

1 w(g, 1)
w(z, 1) =5— ¢ ——dg, (A2)
2mi r —Z
The contribution from integrals at x = 400 is zero because, as we extend in the
horizontal direction the integrand tends to zero exponentially. Here, we have different
forms of this contour integral depending on whether the field point z lies on I" or not.
If z lies strictly inside I" then

b —® w(E, 1) o0 w(, 1)

If z = x, then we must deform I around this point, as shown in Fig. 16. From (A2),
the factor % changes to 1, accommodating the contribution from the semi-circular
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indentation shown in the figure, we have a principal value integral from taking the
limit of the radius of this indentation to zero. For more details, see Carrier et al. [44].

In (A3), we note that w is known on y = 0 and y = —2Hj,, from the boundary
data: kp,, + ivs (and its complex conjugate, due to reflection in the bed). We take
Im(z) = 0, because we are interested in the pressure and velocity at y = 0. So we
have

, 1 [~ kpag + iv % (kpag — iv5)(E — x + 2 Hini)
kpoy +ivy = — ][ Ldas+f S
00 §—x —00 & —x) +4Hin
(A4)

Here, we choose to take the imaginary part to obtain an integral relation between the
air velocity on the surface of the substrate and the pressure. (Taking the real part leads
to an equivalent expression without advantage.) This leaves the following integral
equation:

paé ®© —k(§ — X)Pag — 2Hinvs (8, 1)
s = . (A
ve(x, 1) = ][ . d& / €0l 3 a2 dé (AS)
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