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ABSTRACT
Enterococcus spp. some of which are pathogenic, are common gut microbiota members, including 
also infants. Infants may be more susceptible to Enterococcus due to their developing gut ecosys
tems. It is unclear whether antibiotic resistance genes (ARGs) and certain genomic traits in 
enterococci are restricted to the human subpopulation or more widespread. Furthermore, the 
correlation between these traits and geographic variation is poorly understood. Therefore, we 
sequenced 100 strains isolated from full-term healthy infants’ fecal samples from two geographi
cally distant European cohorts (MAMI in Spain and LucKi from the Netherlands) to explore the 
diversity of Enterococcus spp. within the infant’s gut microbiome and assess cohort-specific traits 
such as ARGs. Most isolates were E. faecalis and E. gallinarum, with a total of 11 species identified. 
We found a rich reservoir of ARGs, plasmids, prophages and virulence factors in the infant strains, 
with minimal cohort-specific differences in resistome profiles. In addition, Epx, a pore-forming 
toxin associated with pathogenicity, was found in E. hirae strains. While metabolic profiles were 
similar across cohorts, E. faecalis strains harbored more virulence genes and prophages compared 
to other species. An analysis of public Enterococcus genomes revealed that multi-drug resistant 
(MDR) strains exist without any significant geographic or temporal pattern. Phenotypic resistance 
analysis indicated that 28% of MAMI strains were gentamicin resistant, compared to 5% of the 
strains from the LucKi cohort, though LucKi isolates were also resistant to other antibiotics. We also 
selected ten E. faecalis isolates with varying virulence gene repertoires for phenotypic virulence 
testing in Caenorhabditis elegans and found them killing at various rates, however no clear pattern 
emerged in correlation with any specific genetic determinant. Overall, our results suggest that 
Enterococcus spp. including ARGs, are highly mobile across Europe and beyond. Their adaptability 
likely facilitates long-distance dissemination, with strains being acquired early in life from commu
nity environments.
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Introduction

The Enterococcus genus is highly versatile, found in 
a wide range of habitats, and known for its resili
ence in surviving harsh conditions.1 Enterococcus is 
also one of the first colonizers of the newborn gut, 
and remains a ‘core’ member of the human gut 
microbiota across life; typically representing ~1% 
of the fecal microbial community and accounting 
for between 104 to 106 microorganisms per gram 

wet weight.2,3 While some Enterococcus strains 
have beneficial properties and are even used as 
probiotics,4 many are opportunistic pathogens, 
commonly found in both human and animal guts. 
Currently, 63 valid Enterococcus species have been 
published, with 14 additional species awaiting 
validation.5

Globally, antimicrobial resistance (AMR) is 
recognized as one of the major ‘One Health’ 
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issues.6 Enterococcus, being widely distributed in 
nature, with its persistence, occurrence, and preva
lence, is an important target to study AMR from the 
One Health perspective. Often, it is considered as an 
indicator of human and animal fecal contamination 
in the environment.7,8 The rise of enterococci as 
nosocomial pathogens is likely linked to their 
increase in virulence determinants.9 Brooks et al.10 

emphasized determinants of the early gut micro
biome as ‘hospital rooms’ along with diet, mode of 
delivery, and antibiotics use. For instance, they 
found some strains in hospitalized infants across 
cohorts and years, which were also present in sinks 
and surfaces in the hospitals. Thus, besides others, 
significant risk factors for enterococcal infections 
include hospital stays, antibiotic exposure and 
immunocompromised patients and patients with 
cancer, diabetes, urinary tract infections, abdominal 
surgery and chronic kidney disease.11 Once the gas
trointestinal tract (GIT) is compromised, the risk of 
enterococcal infection is increased.12

The ecological adaptation of the enterococci 
causes their presence in various other niches, for 
example including the human bladder,13 wild 
birds,14 wastewater treatments,15 and in foods as 
well,16 to name a few. Some enterococci tolerate 
high salt concentrations7 and they are found for 
instance in Turkey’s traditional cheeses.17 For 
spreading genetic determinants in the genus (and 
beyond), plasmid, and other mobile genetic ele
ments (MGEs) play an important role.18 Thus, 
exemplary, many different virulence determinants 
are seen in clinical E. faecalis and E. faecium in 
Bulgaria19 and elsewhere. Various Enterococcus 
ssp. have been reported in Australian poultry, 
which has been suggested as reservoir.20 Similarly, 
on the other side of the globe, Enterococcus were 
found associated to disease in French poultry.21 

Taken together, generalist to specialist enterococcal 
species were described, including 18 previously 
unknown species in an analysis of Enterococcus 
across wide range of hosts within different ecosys
tems and geographies. These findings conclusively 
demonstrate the high diversity and the huge trans
missibility of this genus and its genes.22

Pregnancy and early life represent periods of 
particularly high antibiotic use, particularly for 
treating infections in premature infants. This anti
biotic exposure disrupts the developing gut 

microbiome, sometimes leading to overgrowth of 
potentially pathogenic strains such as 
Enterococcus,23 and increasing the risk of second
ary infections.24 Antibiotic treatment can also 
influence the overall antimicrobial ‘resistome’ of 
the gut microbiome, which represents an ideal 
‘melting pot’ for genetic exchange,25 where antimi
crobial resistance genes (ARGs) can persist even 
after cessation of antibiotics, including in 
Enterococcus spp.26–28 Previous work indicates 
that some factors, such as birth mode, influence 
the resistome of full term infants, and multi-drug 
resistant (MDR) bacteria from the environment, 
particularly hospitals, may further contribute to 
colonization with these bacteria.29 Besides AMR, 
these bacterial genomes may also encode phages 
and virulence factors like adhesions, toxins and 
capsule genes. These genes contribute to enhanced 
colonization of such strains in the gut, since they 
allow a more effective competition against their 
commensal rivals.30–32 A recent study identified 
Enterococcus’ pore-forming toxins (Epxs): Epx1 
and Epx3 in E. faecalis, Epx2 and Epx7 in 
E. faecium, and Epx4, Epx5, Epx6, and Epx8 in 
basically all E. hirae strains. Such pore-forming 
toxins are aggregated into the common class of 
bacterial toxins. While Epx2 and Epx3 recognize 
human’s MHC-I, but also from equine, bovine, and 
porcine, the MHC-I of mice is not.33 In the past, 
the nematode C. elegans was found to be a suitable 
model organism to study host-microbe interactions 
including virulence4,34,35 and we also use this 
model to obtain information about the overall viru
lence of selected strains.

To combat the growing threat of AMR, it is 
important to explore the resistome of particular 
gut microbes in infants, and understand how 
ARGs are acquired and shared. While, many stu
dies have focused on preterm infants with high 
antibiotic exposure, healthy full term infants, who 
typically receive minimal antibiotics, are understu
died in the context of Enterococcus. Given the role 
of this genus as a reservoir for MDR strains and its 
involvement in serious infections, we sought to 
determine strain level diversity, the wider genomic 
landscape, AMR genotypes and phenotypes in two 
healthy infant populations. For this study, we ana
lyzed Enterococcus isolates from the fecal samples 
of two geographically distinct European cohorts: 
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MAMI (Spain) and LucKi (the Netherlands). We 
conducted metabolic estimation and predicted 
enriched functions for E. faecalis, the most promi
nent and pathogenic species, to understand deter
minants and mechanisms of adaptation, 
persistence, and resistance. In addition, to under
stand ‘global’ trends, we incorporated public 
Enterococcus genomes from various locations and 
hosts. Finally, since AMR and virulence factors 
should be tested phenotypically, we assessed anti
biotic resistance via broth microdilution and viru
lence using C. elegans.

Methods

Cohort description

Two European birth cohorts were used in this 
study (Supplementary Table S1). The MAMI birth 
cohort focused on mother-infant microbiota dur
ing early life and located in the Spanish- 
Mediterranean area.36 We obtained a subset of 18 
infants’ fecal samples, which were collected at 
a single time point, i.e., 4 months. Infants’ data 
was collected using questionnaires on health and 
medication. The MAMI study was approved by all 
participating hospital’s Hospital ethics committees 
(HECs) and Atención Primaria – Generalitat 
Valenciana (CEIC-APCV) and registered on 
ClinicalTrial.gov under NCT03552939.

The second cohort, the LucKi-Gut Study, is an 
ongoing longitudinal birth cohort study aiming at 
determinants of early-life microbiome develop
ment and the association with childhood health 
outcome. Questionnaires were used to collect, 
among others, data on infant’s lifestyle, health, 
medication use, as well as on maternal health (dur
ing pregnancy), medication use, and diet. For the 
present study, we included 58 stool samples from 
35 infants, collected at 8 weeks, 6 months, and 11  
months. The LucKi-Gut Study was approved by the 
Maastricht University Medical Centre’s Medical 
Ethical Committee (METC 15–4–237).

Samples and bacterial isolation

All infant fecal samples were used to isolate bac
teria (Suppl. Table S1). A 10-µl loop of the fecal 
material was suspended in phosphate buffer saline 

(PBS) and used to produce ten-fold serial dilutions. 
An aliquot of 100 μL of the diluted samples from 
10−3 and 10−4 were plated on Brain Heart Infusion 
(BHI) agar plates and incubated aerobically at 37 
°C for 24 h. From those plates, colonies were ran
domly picked and streaked to purity on BHI. Pure 
cultures were stored at −80 °C as glycerol stocks.

DNA extraction and sequencing

DNA was extracted from pure bacterial cultures 
using MP Bio FastDNA™ SPIN Kit according to 
manufacturer’s guidelines for 16S rRNA gene 
sequencing. PCR was conducted using a mix of 
universal forward primer FD1 (5'-AGA GTT TGA 
TCC TGG CTC AG-3’), FD2 (5'-AGA GTT TCA 
TGG CTC AG-3') together with reverse primer 
RP1 (5'-ACG GTT ACC TTG TTA CGA CTT- 
3').37 These primers are comparable to 27F and 
1492 R,38 producing a near full-length 16S rRNA 
gene amplicon. PCR products were sent to 
Eurofins (Ebersberg, Germany) for Sanger sequen
cing. Sequences were aligned against the nucleotide 
sequence database nr in GenBank using BLASTn, 
to confirm whether the isolated strain belonged to 
Enterococcus. A total number of 21 and 79 
Enterococcus spp. isolates from MAMI and LucKi 
were obtained, respectively. DNA of confirmed 
Enterococcus spp. was subjected to shotgun whole 
genome sequencing on Illumina NextSeq platform 
at the Quadram Institute Bioscience (Norwich, 
UK).39

Genome assembly, annotation, and search for 
prophages

Fastp v0.23.2 was used for initial raw data cleanup 
using raw sequencing reads.40 Bacterial genomes 
were assembled using UniCycler v0.4.9.41 CheckM 
v1.2.0 was used for information on contamination 
and completeness.42 Following Bowers et al.,43 we 
kept genomes with a completeness >99%, contam
ination <5% and coverage ≥55×. GTDB-Tk v2.3.2 
provided bacterial taxonomic classification.44 

Enterococcus genomes were annotated by Prokka 
v1.14.6 for identifying features of interest.45 The 
genomic features were determined using a shell 
script.46 PHASTEST was used to detect prophages. 
For this, a “completeness score” is assigned based on 
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proportion of phage genes in identified region. The 
score above 90 is taken as “complete” or “intact”, 
while 70–90 is taken as “questionable” (if intact) and  
<70 as “incomplete” phages.47–49 FastANI v1.33 is 
used for average nucleotide identity (ANI) analysis50 

(Suppl. Table S2). Isolates were considered identical 
above 99.99% threshold values and duplicate strains 
were removed prior to further analysis. During the 
submission of genome sequences to NCBI, the 
Prokaryotic Genome Annotation Pipeline (PGAP) 
was run and revealed that three of our unidentified 
strains were E. entomosocium.51

Sequence typing using multi-locus sequence typing 
(MLST)

Sequence typing was conducted for E. faecalis and 
E. faecium. Here, we used MLST v2.0.9 from the 
Center for Genomic Epidemiology (CGE), run online 
(19 Oct 2023) on each individual genomes. This tool 
uses BLAST-based ranking method for best matching 
MLST alleles of specified MLST scheme. The scheme 
is based on combination of the following seven genes 
with dispersed locations on the chromosome (i.e., 
minimal distance between loci, 137 kb) for 
E. faecalis as following: gdh (glucose-6-phosphate 
dehydrogenase), gyd (glyceraldehyde-3-phosphate 
dehydrogenase), pstS (phosphate ATP binding cas
sette transporter), gki (putative glucokinase), aroE 
(shikimate 5-dehydrogenase), xpt (shikimate 5-dehy
drogenase), and yiqL (acetyl-coenzyme 
A acetyltransferase). For E. faecium, it includes gdh 
and gyd, as before in E. faecalis, but also other genes as 
adk (adenosine kinase), atpA (ATP synthase, subunit 
alpha), ddl (D-alanine – ligase), pstS (phosphate- 
binding protein), and purK (N5- 
carboxyaminoimidazole ribonucleotide synthase).52

Genomics analysis

A tree was created using Mashtree v1.2.0 based on 
mash distances (i.e., based on distances between any 
two genomes) using the fasta assembled genomes as 
input.53 Further, as outgroup, we added a strain from 
same taxonomic order, but of a different genus (i.e., 
Clostridium perfringens). Whole genome sequencing 
data was used for prediction of putative AMR pro
files. Here, ABRicate v1.0.0 was used for screening of 
ARGs.54 For the AMR detection, minimum coverage 

and identity were set at 95% each. ABRicate uses pre- 
downloaded databases and we selected CARD 
(Comprehensive Antibiotic Resistance Database), 
which is ontology based and provides information 
on AMR genes and their classes.55 Virulence factors 
were searched using Virulence Factors Database 
(VFDB) at 90% identity and 80% coverage.56,57 

Finally, plasmids were detected using ABRicate’s 
PlasmidFinder at 80% identity and 50% coverage. 
Sequences, which were indicated to contain 
a plasmid replicon by PlasmidFinder in our isolates 
were verified using BLAST with the nr database of 
Genbank. Almost all hits were plasmids indeed 
(Suppl. Table S3). The presence of Epxs (Exp1 to 
Exp8) were detected using BLAST using their refer
ence sequences from NCBI against all infant and 
public genomes (Supplementary Table S4a).

Comparative genomics for public genomes

The same approach as before was executed to study 
all available complete and high-quality genomes at 
NCBI, using the same parameters for the tree as 
above (Suppl. Table S4b). About 30,000 records 
were available as of October 2023. These were qual
ity-screened with CheckM and > 90% completeness 
and < 5% contamination criteria were used, which 
left 622 entries with complete and high quality gen
omes. Genomes with an ANI above 99.99% were 
considered identical and removed (Suppl. Table 
S5). After that, 587 genomes were retained that 
were considered to be of sufficiently high quality.43 

This dataset (designated “public”) was used for phy
logenomic analysis concerning ARGs, plasmids and 
virulence factors. A tree was built using both our 100 
isolates’ genomes and the 587 public Enterococcus 
genomes. Of note, for the public genomes, the asso
ciated metadata are sometimes limited concerning 
the health status of the hosts from which the isolates 
were obtained. Otherwise, genomes stored in RefSeq 
and their meta data were downloaded (19 Oct 2023) 
using the packages ncbi-genome-download v0.3.3 
and datasets v15.24.0 from NCBI respectively.58,59

Pangenomic analysis of E. faecalis (our infant 
strains)

The pipeline anvi’o v8 was used to generate the 
pangenome of E. faecalis.60 A text file was created 
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on the information of our sets of genomes to gen
erate a genome storage database. We then com
puted the pangenome using the program ‘anvi- 
pan-genome’ (parameters – minbit 0.5 –mcl- 
inflation 10 –use-ncbi-blast).61–63 Later we used 
‘anvi-display-pan’ to visualize the pangenome 
along with an ANI dendogram. To calculate the 
number of accessory and core genes, we applied 
‘anvi-script-compute-bayesian-pan-core’.64 The 
contigs and genome database generated using 
anvi’o was enriched with several annotation 
sources including COG (Cluster of Orthologous 
Genes), KEGG (Kyoto Encyclopedia of Genes and 
Genomes), KOfam (a database of KEGG 
Orthologs; KO), and CAZyme (Carbohydrate 
Active enZymes).

Metabolic estimation and functional enrichment of 
E. faecalis (our infant strains)

As basis for this analysis, we firstly used the 
dataset of all E. faecalis genomes available in 
this study. We calculated the path-wise complete
ness for a given KEGG module65,66 in using ‘anvi- 
estimate-metabolism’.67 A heat map was made 
using visualization module of anvi’o with a path- 
wise completeness matrix. First, a Newick tree 
was generated with ‘anvi-matrix-to-newick’ and 
name, category, subcategory, and class of each 
module with groups (of the genomes) were 
added as an additional layer. This was imported 
to our profile database and later used for visuali
zation in interactive mode. Next, ‘anvi-compute- 
functional-enrichment’ determined whether 
a given module is present in a particular genome 
or group (i.e., MAMI vs. LucKi) by fitting 
a binomial generalized linear model (GLM). For 
finding enriched genes or gene functions, the 
unadjusted p-values were used. Later, the enrich
ment score is displayed along with p-values.68 

Afterward, ‘anvi-script-gen-function-matrix- 
across-genomes’ was used to analyze the pre
sence/absence of functions in each of the gen
omes across groups. Both, metabolic estimations 
and functional matrices were visualized using 
‘anvi-interactive’ and ‘anvi-display’ functions, 
respectively. Only 30 enriched functions that 
had p-values less than 0.05 were considered and 
visualized.

Phenotypic screening of antibiotic resistance

For resistance screening, the broth microdilution 
method was employed using gentamicin, vancomy
cin, amoxicillin, and linezolid.69 Briefly, minimum 
inhibitory concentration (MIC) testing is carried out 
in 96-well microtiter plate using twofold method. 
Diluting an overnight broth culture of the required 
organisms accordingly to 0.5× McFarland Standard 
results in about 1.5 × 108 CFU/ml. The antibiotic 
stock was diluted from 64 µl to 0.25 µl for all anti
biotics, but gentamicin; this was diluted from 256 µl 
to 1 µl. A positive control, without antibiotic, and 
a negative control, without inoculum, were included. 
MICs were calculated and interpreted according to 
European Committee on Antimicrobial Susceptibility 
Testing (EUCAST) guidelines.70

Phenotypic virulence testing of selected E. faecalis 
strains using nematodes

Based on virulence gene profiles, ten E. faecalis pro
viding a diverse range of different virulence genes 
were selected. C. elegans N2 were synchronized as 
follows. Ten milliliters of a freshly prepared alkaline 
hypochlorite solution (2:5 12% NaOCl to 2 M NaOH) 
was added to a suspension of gravid worms in 10 ml 
sterile water. The mixture was vortexed for about 30 
s and left on a rocking platform at room temperature. 
After 6 min, 30 ml of M9 buffer was added. The tubes 
were then centrifuged for 1 min at 12,500×g, and the 
resulting egg pellet was washed in M9 buffer twice. 
The egg pellet is taken up in 1 ml M9 buffer and 
amounts are transferred to an empty 35-mm NGM 
agar plate and incubated at 22°C for 24 h until L1 
larvae hatch. These larvae enter L1 diapause due to 
the absence of food. Arrested L1 are transferred onto 
NGM agar plates with E. coli OP50 and incubated at 
22°C for 3 d until the nematodes reach stage L4. Ten 
35-mm NGM agar plates were prepared with the 
bacteria and ten worms per plate were added (i.e., in 
total 100 worms per Enterococcus strain). Worms 
were transferred each day to freshly prepared plates 
until they were dead. Worms were considered dead if 
they did not respond to touch. Missing worms or 
worms killed by handling were not considered. The 
TD50 was determined by calculating the daily per
centage of dead worms and fitting a sigmoidal curve 
using drc71 in R v4.3. Using the Rhea R scripts, 
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correlations between the number of virulence factors, 
plasmids, and prophages were computed against 
observed TD50.72

Results

Isolation of Enterococcus spp. from the infant 
cohorts

Of all 100 isolates, eleven distinct species, i.e., 
E. faecalis (60), E. gallinarum (9), E. casseliflavus (7), 
E. avium (5), E. faecium (3), E. gilvus (3), 
E. entomosocium (3), E. durans (3), E. lactics (3), 
E. hirae (2), and E. raffinosus (2) were obtained 
from the healthy infants’ fecal samples. All assembled 
Enterococcus genomes had an average of 58 contigs 
and genome sizes range from an estimated 2.6 Mbp to 
4.3 Mbp. Genomes displayed an average GC content 
of 38.4%, with a minimum of 36.5% for E. hirae and 
the highest observed value at 42.7% for 
E. casseliflavus. However, only three species were iso
lated from the MAMI cohort, namely E. faecalis, 
E. gallinarum and E. faecium, but all eleven above 
mentioned species were found in the LucKi cohort. 
Of note, the samples of the LucKi cohort comprised 
more time points compared to the MAMI cohort 
(Suppl. Table S6).

Only a small number of infants from MAMI, 
e.g., 3 out of 18 (either at day 7 or 15) and only 6 
from 35 LucKi received antibiotics (either in 9th or 
11th month); all unrelated to gut issues. The socio- 
economic background and geographical locations 
of both cohorts differ significantly,36,73 leading us 
to expect substantial differences in strains isolated 
from each cohort.

In both cohorts, E. faecalis was the prevalent species 
with a total of 60 isolates, followed by E. gallinarum (9 
strains) and E. casseliflavus (7 strains, but only present 
in LucKi). The sequence type was determined for 
E. faecalis and E. faecium using multi-locus sequence 
typing (MLST). The 60 E. faecalis isolates were classi
fied into 24 sequence types (ST) including some 
unknown ST types not previously observed. The 
types most frequently found were ST179 (22 isolates), 
ST191 (5 isolates), ST16 (5 isolates), and further 3 
isolates were indicated as ‘unknown ST’. In addition, 
the three isolated E. faecium strains, each belonged to 
a different ST type, namely ST80, ST214, and a further 
unknown ST (Suppl. Table S6).

Phylogenetic relatedness of the infant strains

We conducted a genome analysis of all infant 
Enterococcus isolates to understand their phyloge
netic relationships, and to get an overview of resis
tome, virulence factors, plasmids, and prophages 
diversity, all of which contribute to the pathogeni
city of this genus. We compared genomic 
sequences of the 100 infant strains, with the addi
tion of the 11 type strains for each species present 
(Suppl. Table S7). A distance-based association tree 
(Figure 1), enriched with the datasets concerning 
resistance genes, plasmids, virulence genes, and the 
number of prophages, showed no clear distinction 
between traits, cohorts, or reference genomes. 
Interestingly, we observed that across both cohorts, 
all vaginally born infants harbored had the same 
species. In contrast, two infants from LucKi, which 
were born by Cesarean-section (C-section) dis
played a different set of species, but E. gilvus was 
common for the C-section children.

The most prevalent species, E. faecalis, showed 
a number of subclades, which was different com
pared to the other species, which mainly showed 
a single branch in the tree (e.g., E. gallinarum, 
E. casseliflavus, E. faecium, E. lactis, E. hirae, 
E. durans, E. gilvus, and E. avium), but this could 
be due to the lower number of strains isolated. 
Only E. raffinosus seems to have diverged less 
from the common ancestor.

Prediction of AMR in infant strains

Genomic analysis for resistance determinants pre
dicted a range of different AMR genes for the 
majority of isolates (83%), across both cohorts. 
Most AMR genes conferred predicted resistance 
to aminoglycosides, glycopeptides, macrolides, tet
racylines, and fluoroquinolones. E. faecalis had the 
highest abundance of AMR genes compared to any 
other species (Suppl. Table S6).

The in silico prediction of aac(6’)-aph(2’’) genes 
validated the phenotypically confirmed gentamicin- 
resistance in ten E. faecalis strains (see below). 
Notably, the most abundant plasmid, DOp1, was 
present in most E. faecalis strains, including all phe
notypically gentamicin-resistant strains, alongside 
several ARGs (specifically tet(M)) in resistant strains. 
However, the DOp1 plasmid appears to have no 
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direct relationship with gentamicin resistance, but 
with the presence of the tet(M) gene. No amoxicillin 
resistance genes were detected in silico, all E. gilvus 
and E. faecium strains displayed phenotypic resis
tance to this antibiotic (Figure 2). Vancomycin 
Resistant Enterococci (VRE) associated with severe 
outbreaks normally carry vanA and vanB, but these 
genes were absent.74 However, we detected the vanC 
gene and its variants (vanC1XY, vanC2XY, vanC4XY, 
but also vanRC, vanSC, and vanTC) in nine 
E. gallinarum strains (Figure 1), all of which exhibited 
phenotypic vancomycin resistance (see below).

Virulence factors in infant strains

All Enterococcus genomes were examined for 
known virulence genes. In total, we detected 
43 different virulence factors across 9 categories 

including capsule, adhesin protein, aggregation, 
response proteins, gelatinase, cytolysin, pilus 
proteins, and cell wall anchor proteins. The 
presence of ebpA-C, acm, scm, cpsA-K, efaA 
and sgrA indicates a potential pathogenic capa
city in strains carrying these determinants, as 
these genes are associated with functions like 
collagen adhesion, endocarditis specific antigen, 
and biofilm-associated proteins. The number of 
virulence factors varied between species and 
strains. Interestingly, E. faecalis had the highest 
number of virulence genes, ranging from 30 to 
36, which were largely absent from other spe
cies. Since E. faecalis contained an extensive 
array of virulence factors, including sprE and 
gelE – both known to increase killing in 
nematodes75 these strains may possess 
a significant, albeit opportunistic, virulence 

Figure 1. Left, cladogram (rooted at midpoint) using mash distances, based on distances between any two genomes of Enterococcus, 
using C. perfringens as outgroup. The tree is color coded for the species. Next, columns indicate birth mode – vaginal (light green), 
C-emergency (dark green) and C-elective (black); the cohort genomes for MAMI (black), LucKi (red) and reference genomes (yellow); 
the number of total and intact prophages (darker color, more prophages). The matrix to the right shows, presence (color) or absence 
(no color) for antimicrobial resistance genes, according to CARD (pink); plasmids, according to PlasmidFinder (purple); and virulence 
genes according to VFDB (brown).
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potential, despite the generally healthy status of 
infants in the cohorts. Among all genomes ana
lyzed, 31 strains did not possess any virulence 
genes. These strains belonged to species such as 
E. gallinarum, E. casseliflavus, E. avium, 
E. hirae, E. entomosocium, and E. gilvus. When 
comparing isolates from both cohorts, 41 viru
lence factors were common between them, while 
1 was unique to each group (scm in MAMI and 
asa1 in LucKi). The virulence gene acm (col
lagen binding adhesion), which is considered to 
be of lesser importance in infections, was pre
sent in only about 6% of E. faecium and E. lactis 
strains. The adhesion-conferring gene scm, was 
only found in one E. faecium strain. In addition, 
we detected two Epxs that belong to a family of 
the recently detected novel Enterococcus pore- 
forming toxins. We found Epx7 and Epx8 in 
one of our E. hirae strains (i.e., LH-NE-35). 
This strain, however, does not have any other 
known virulence factors. However, it contains 
few ARGs, phages, and a plasmid.

Plasmid carriage in infant strains

Plasmids play a key role in bacterial ecology, often 
acting as vectors for the transfer of ARGs. We 
found 28 different plasmids across 76 out of 100 
strains. Interestingly, eight of these plasmids were 
present in both cohorts. DOp1 was the most abun
dant plasmid, followed by pMG2200 and pS86. In 
the MAMI cohort, 10 plasmids were detected in 15 
MAMI strains, accounting for 31 occurrences. In 
contrast, LucKi cohort strains had 26 different 
plasmids, with 118 occurrences in 61 strains. 
Thus, when a strain carries one plasmid, there is 
a 50% chance it carries a second plasmid; a pattern 
observed in both cohorts. Four species were found 
to be notorious for carrying a second plasmid: 
E. faecalis, E. faecium, E. durans, and E. lactis. 
The plasmids frequently carried AMR-associated 
genes, for instance, lsa(A), aac(6’)-aph(2”), and tet
(M), which confer resistance to lincomycin, clinda
mycin, gentamicin, amikacin, tetracycline, 
doxycycline, and minocycline. In addition, some 
pheromone-responsive plasmids were detected, 

Figure 2. Phenotypic antibiotics resistance profiles of enterococci from the two cohorts. All strains were sensitive to linezolid. (a) 
Number of resistant isolates within each species, broken down into antibiotics (non-susceptible species against each antibiotics are 
not shown); black asterisk to indicate MAMI and red asterisk for LucKi; for gentamicin – its MAMI (pink) and LucKi (checkered pink). (b) 
Comparison of resistant strains concerning cohorts for tested antibiotics. Black; MAMI and Red; LucKi.
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which trigger expression of virulence determinants 
like cytolysin and pili, such as pAM373, pAD1, 
pTEF2, and pCF10, thereby contributing to the 
pathogenicity of the bacterial host.76 Figure 1 sum
marizes the plasmid findings.

Two isolates (E. lactis and E. faecalis) carried five 
plasmids each, including a shared plasmid 
pAMbeta, the highest number of plasmids identi
fied in a single strain. Only two isolates from the 
LucKi cohort (E. casseliflavus and 
E. entomosocium) shared the same plasmid 
(pVEF3), which was associated with glycopeptide 
resistance. Interestingly, E. entomosocium, from 
three different LucKi infants also exhibited glyco
peptide resistance, with two of these strains show
ing phenotypic vancomycin resistance. The 
plasmid DOp1 confers resistance to tetracycline, 
while pVEF provides vancomycin resistance with 
pVEF3 detected in four out of six phenotypic- 
vancomycin resistant enterococci. Additionally, 
pVEF3 was found in E. entomosocium and 
pDOp1 in E. faecalis, both isolated from infants 
born by C-section. Notably, 24 strains did not 
carry any plasmids (8 E. faecalis, 5 E. gallinarum, 
3 each of E. gilvus and E. avium, 2 each of 
E. casseliflavus and E. raffinosus, lastly 1 
E. entomosocium). From these 24 strains without 
any plasmid, 14 also lacked any known virulence 
genes, suggesting they are likely nonpathogenic.

Prophages in infant strains

Phages play a crucial role in bacterial evolution and 
are often associated with the presence of resistance 
genes and virulence factors. We identified prophages 
in nearly all Enterococcus isolates (97 of 100). Over 
time, prophages may lose some or all of their func
tionality, which is why phages were characterized as 
either intact, questionable (if intact), or incomplete 
(see Methods). Only seven genomes were found to 
carry all their prophages in an intact state, with six and 
one strains possessing three and four intact phages, 
respectively (Suppl. Table S6). Overall, intact pro
phages were found in 92% of the genomes. 
Interestingly, a minority of strains (~20%) carried 
75% of the different intact prophages identified. 
Additionally, five genomes were found to harbor 
only partial prophages, despite having at least one 
prophage identified (Figure 1).

Phenotypic antibiotic resistance profiling of infant 
strains

All isolated Enterococcus strains were tested phenoty
pically against four important commonly used anti
biotics, namely gentamicin, vancomycin, amoxicillin, 
and linezolid (Figure 2). These antibiotics are com
monly prescribed in Europe by clinicians in neonatal 
care.77–79 Pre-term infants often receive antibiotics 
due to the likely cause of infection, however full- 
terms also receive it as a prevention measure.79 As 
a part of ESKAPE group and under WHO pathogen 
priority list, Enterococcus faecium makes vancomycin 
very relevant.80 There have been VRE outbreaks in all 
over the Europe and we checked for VRE in our 
collection.81 Among aminoglycosides, gentamicin is 
most widely used in neonatal care and high-level 
resistance is quite common in Enterococcus.79 

Resistance to β-lactams antibiotics is another major 
concern as these antibiotics are used either alone or in 
combination for enterococcal infections.82 Lastly, 
there is an increasing emergence of LRE among chil
dren’s infected with Enterococcus, which is then diffi
cult to treat.83,84 Hence, besides detection AMR 
genetically, we focused on phenotypic verification 
using the above mentioned.

Among the 21 MAMI isolates, 29% were resis
tant to gentamicin, while resistance in the 79 LucKi 
strains was observed for amoxicillin, vancomycin, 
and gentamicin at rates of about 2%, 11%, and 5%, 
respectively. All vancomycin-resistant isolates were 
from the LucKi cohort, and belonged to three dif
ferent species (5 E. gallinarum, 2 E. entomosocium, 
and 1 E. casseliflavus) with MIC values between 
8 µg/ml for most strains and reaching 16 µg/ml 
for two strains. However, no resistance genes 
were found in silico for E. entomosocium and 
E. casseliflavus, despite their phenotypic resistance 
when stringent parameters were used for minimum 
coverage and minimum identity (i.e., 95%). 
However, we found vanC genes for both species 
when loose parameters were used (Suppl. Table 
S8). Notably, all gentamicin-resistant strains were 
E. faecalis, with MIC values at or above 256 µg/ml. 
Additionally, E. gilvus and E. faecium each were 
resistant to amoxicillin, although no corresponding 
resistance genes were identified in silico. All strains 
were sensitive to linezolid , but no resistance genes 
were detected (Table 1).
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Phenotypic virulence profiles of selected E. faecalis 
on the nematode Caenorhabditis elegans

The nematode C. elegans emerged as a versatile 
in vivo, yet less expensive and free-of-ethics 
model.85 This nematode is used successfully for 
many years as model organism for bacterial 
pathogenesis,86 e.g., studying the interaction of pro
biotic Enterococcus with pathogenic E. coli.4 Also 
commensal microorganisms, such as E. faecalis, pos
sess antibiotic-resistant genes and virulence factors 
that enhance their ability to induce pathogenicity in 
nematodes. Such determinants are linked to noso
comial epidemics and capable of causing 
infections,87 which we sought to test in some of 
our strains using nematodes. As said, E. faecalis 
was the most prominent species, possessing a high 
number of virulence genes, plasmids, and pro
phages. We aimed to determine whether the mere 
presence of these genetic markers could predict the 

pathogenic potential of these strains. Of note, all 
infants from which the enterococci were isolated, 
were generally healthy. Thus, we selected ten differ
ent strains (five from each cohort), each encoding 
a greater variety of virulence factors, phages, and 
plasmids, and tested them using nematode killing 
assays (Table 2). In these assays, nematodes were fed 
with the selected strains until death was observed. 
One strain, E. faecalis LH-Sp-12, particularly shor
tened the lifespan for the nematodes, with a time-to- 
death for 50% of the population (TD50) of just 2.4  
days. In contrast, nematodes fed with LH-NE 
-78 had a TD50 of 8.3 days, while the control 
worms fed with E. coli OP50 lived an average of 
11.4 days. Thus, all selected Enterococcus strains 
killed nematodes more quickly than the normal 
bacterial feed, with strains from the MAMI cohort 
showing a slightly shorter mean TD50 (4.8 days) 
compared to the LucKi strains (5.9 days), though 

Table 1. Resistant isolates with their MIC values. Strains not listed had no resistance.
Classification Isolate No. Antibiotic MIC values [µg/ml]

E. faecalis LH-Sp-1 Gentamicin >512
E. faecalis LH-Sp-26 Gentamicin 256
E. faecalis LH-Sp-29 Gentamicin 256
E. faecalis LH-Sp-38 Gentamicin >128
E. faecalis LH-Sp-42 Gentamicin >256
E. faecalis LH-Sp-50 Gentamicin >128
E. faecalis LH-NE-98 Gentamicin >512
E. faecalis LH-NE-114 Gentamicin 512
E. faecalis LH-NE-168 Gentamicin 512
E. faecalis LH-NE-192 Gentamicin 512
E. gilvus LH-NE-22 Amoxicillin >64
E. faecium LH-NE-49 Amoxicillin >64
E. casseliflavus LH-NE-5 Vancomycin 8
E. entomosocium LH-NE-39 Vancomycin 8
E. entomosocium LH-NE-44 Vancomycin 8
E. gallinarum LH-NE-42 Vancomycin 16
E. gallinarum LH-NE-63 Vancomycin 8
E. gallinarum LH-NE-136 Vancomycin 16
E. gallinarum LH-NE-158 Vancomycin 8
E. gallinarum LH-NE-164 Vancomycin 8

Table 2. TD50 with number of virulence genes, prophages, plasmids, and virulence factors corresponding to 
each of ten E. faecalis strains.

Strain
TD50 Prophages

Plasmids Virulence factors(days) Intact All Total

LH-Sp-01 5.6 2 6 2 29 37
LH-Sp-09 6.3 3 5 2 24 31
LH-Sp-12 2.4 1 6 2 25 33
LH-Sp-33 5.8 3 4 2 24 30
LH-Sp-44 4.0 2 3 2 13 18
LH-NE-61 4.6 0 2 0 24 26
LH-NE-78 8.3 0 2 2 16 20
LH-NE-116 4.4 1 4 1 35 40
LH-NE-182 7.2 1 5 4 22 31
LH-NE-192 5.0 1 7 3 24 34
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this difference was not statistically significant 
(p-value >0.05). Despite this general finding, we 
did not observe any significant correlation between 
the observed TD50 and the total number of viru
lence genes, plasmids, or prophages, nor any specific 
genetic determinant. A weak association was 
observed with the presence of some prophages 
(data not shown). Thus, the combination of viru
lence genes, plasmids, and prophages, contributing 
to pathogenicity and nematode killing remains to be 
defined.

Pangenome and metabolic estimation of E. faecalis

Since E. faecalis was the most prevalent infant- 
associated species, with 60 out of 100 strains iden
tified, we performed a detailed genomic analysis for 
this species. We determined the pangenome 
including the type strain. In total, 5640 gene clus
ters were found across the 61 genomes, of which 
2238 were considered ‘core genes’ and 3402 were 
‘accessory genes’. All genomes shared 1845 gene 
clusters, representing a sum of 112,545 genes 
(Figure 3).

We examined the metabolic capacity of the 60 
E. faecalis strains in this study to gain a deeper 
understanding of their potential pathogenicity 
and impact on the human host. We concen
trated on differences between strains from the 
two geographically distinct cohorts to assess 
regional influences. Overall, we found limited 
differences in metabolic pathways (related to 
heme biosynthesis, carbohydrate metabolism, 
and vitamin/cofactor metabolism; Figure 4). 
Notably, distinct variations emerged only in spe
cific pathway modules, such as methionine 
degradation, D-galactonate degradation, glucur
onate pathways, and the malonate semialdehyde 
pathway. Furthermore, certain signature mod
ules, including tetracycline resistance-efflux 
pump Tet38, multidrug resistance-efflux pump 
AbcA and vancomycin resistance of the D-Ala- 
D-Lac type, varied between cohort strains. 
Despite these differences, most strains exhibited 
highly similar metabolic capacities, with only 
a few pathways differing, such as dermatan and 
chondroitin sulfate degradation absent in some 
strains.

Interestingly, while Enterococcus spp. typically 
encode a rich repertoire of ARGs, modules related 
to “drug resistance”, “aromatics degradation” and 
“glycosaminoglycan metabolism” were either 
absent or displayed a low completeness score. 
This suggests that these genomes share only 
a limited KOs (KEGG Orthologues), which contri
bute to several pathways (Suppl. Table S9). Taken 
together, the metabolic profiles of E. faecalis from 
both cohorts share major metabolic pathways, 
including pathways for lysine, pyrimidine desoxyr
ibonucleotide and coenzyme A biosynthesis, as 
well as glycolysis (Supplementary Figure S1). 
These pathways were not species-specific, under
scoring the metabolic consistency of E. faecalis 
across different geographic regions.

Functional enrichment for genomes of E. faecalis

To further investigate potential differences 
between strains from the two cohorts, we analyzed 
the presence and absence of metabolic functions 
and pathways. We found a higher occurrence of 
different functions in LucKi strains, which corre
lates with the higher number of isolates. However, 
the number of enriched functions was conversely. 
Here we found 25 enriched functions in MAMI 
strains, while only 5 functions were enriched in 
LucKi strains (Figure 5). In summary, while we 
expected more pronounced differences between 
the strains from each cohort, our findings indicate 
only subtle variations in metabolic functions 
between all strains, suggesting that the geographic 
influence on strain-specific metabolism is relatively 
minor.

Examining Enterococcus’ global diversity using 
public genomes

We were surprised by the relatively low regional 
variation observed among our cohort isolates. 
To explore this further, we expanded our ana
lysis to identify broader geographic and tem
poral patterns. We obtained high-quality 
complete genome sequences of Enterococcus 
spp. from public datasets, focusing on complete 
genomes. While a large number of Enterococcus 
strains had been sequenced, only 587 genomes 
(representing 15 known species and 1 
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unidentified) met sufficient quality thresholds 
(see Methods). Unfortunately, for many of 
these genomes, detailed metadata (such as host 
type, disease status, and age of host) were lack
ing, with only a small number apparently iso
lated from healthy individuals. Most strains 
originated from North America, Asia, and 
Europe, with fewer from Australia, the Middle 
East, and South America – likely reflecting 

sampling and sequencing effort biases. Notably, 
120 isolates lacked any geographic region data 
but were distributed throughout the phyloge
netic tree without forming distinct clusters. We 
constructed a phylogenetic tree from the 587 
public genomes and our 100 infant isolates. 
Seven species were common to both 
(Figure 6a). This expanded dataset was the ana
lyzed for plasmids, phages, and virulence genes.

Figure 3. Pangenome of 61 genomes of E. faecalis (showing gene presence/absence) revealing 5,640 gene clusters of 3402 accessory 
and 2238 core genes in our isolates plus the type strain (E. faecalis DSM 20478, GCF_000392875.1). The blue heatmap with dendogram 
displayed above the pangenome presents the average nucleotide identity (ANI); below this are layers representing number of gene 
clusters, singletons, redundancy, GC content and total length. Outer rings represent core genes, total genes in gene cluster, combined, 
functional and geometric homogeneity index and functional annotations (CAZyme, COG20, KOfam and KEGG). Functional homo
geneity indicates how conserved aligned amino acid residues across genes are. Geometric homogeneity compares the positions of 
gaps in the aligned residues without considering specific amino acids.
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Since plasmids play a crucial role in disseminat
ing ARGs and virulence genes, we focused on their 
prevalence first. We identified 82 different plas
mids across the 515 out of 587 public isolates, 28 
of which were also common in our isolates. These 
plasmids were found in 11 species (including 1 
unidentified spp.) from 22 hosts, with 6 species 
with plasmids shared between the public dataset 
and our cohort. The top ten plasmids, analyzed in 
a presence/absence matrix (Figure 6a, second inner 

ring), encoded ARGs conferring resistance to 
a range of antibiotics. Glycopeptide resistance was 
the most prevalent (28%), followed by aminoglyco
side (23%) and tetracycline resistance (14%; 
Figure 6b) (Suppl. Table S10). Despite biases in 
regional sampling, Asia, Europe, and North 
America had the highest carriage of different 
ARGs, with the most common conferring resis
tance to glycopeptides, aminoglycosides, fluoroqui
nolone/macrolide/rifamycin (FMR), macrolide/ 

Figure 4. Heatmap indicating presence of functional modules along with their completeness concerning each biochemical pathway in 
the E. faecalis metabolism (excerpt, full heatmap in supplementary Figure S1). On top, the cohort is indicated: black, MAMI; red, LucKi, 
while the yellow labeled genome indicates the reference genome of E. faecalis. The class of the pathway is also indicated by shades of 
teal: lighter teal refers to ‘pathway modules’ (functional units of gene sets in metabolic pathways, including molecular complexes), 
while darker teal refers to ‘signature modules’ (functional units of gene sets that characterize phenotypic features). In the heatmap 
itself, darker shades indicate complete or near complete pathways, while lighter shades indicate a low percent pathway completeness. 
Thus, only a few genes are shared concerning a specific pathway found in the KEGG database (KO).

Figure 5. The bar plot illustrates the enriched functions identified by anvi-compute-functional-enrichment program using four 
different sources: cog20_function, KEGG_Module, KEGG_Britte, and KOfam. Each bar represents a specific function (terms of molecular 
function, cellular component and biological process) with the bar length indicating the enrichment score and the significance denoted 
by the color-coded p-value; <0.05 was considered to be significant.
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lincosamide/streptomycin (MLS) and tetracycline. 
Among the most frequently detected genes were 
AAC(6’)-li, efmA, dfrE, IsaA, efrA, efrB, emeA, 
tetM, dfrF, and dfrG. In both the public and our 
infant cohorts, E. faecalis was the most resistant 
species, harboring the highest number of ARGs.

Phages were found in 93.2% of isolates, with 
6.8% containing more than five prophages. All 15 
species from the public dataset contained pro
phages. A total of 127 isolates had intact prophages 
(ranging from 1 to 8 per genome), with those 
carrying more than 5 mostly isolated from humans. 
Interestingly, three isolates, namely two E. mundtii 
and one E. casseliflavus, lacked any genetic 

determinants of ARGs, virulence factors and pro
phages. In terms of virulence, three species, namely 
E. faecalis, E. faecium, and E. lactis, encoded the 
highest abundance of virulence genes across data
sets (Suppl. Table S11). In contrast, E. raffinosus, 
E. durans, and another unidentified Enterococcus 
strain, had fewest virulence factors. We also found 
three different Epxs in two public E. hirae strains, 
namely Epx4 and Epx7 in genome 
GCF_002278015.2, which was isolated from 
a human, and Epx6 in GCF_016727265.1 from an 
unknown source. However, comparable to our 
E. hirae strains from the infants, they also do not 
carry any known virulence factors. In contrast, 

Figure 6. Global Enterococcus diversity and distribution (a) midpoint rooted tree of 687 Enterococcus genomes (587 public genomes 
and 100 genomes from this study). A total of 15 species are found in public genomes from over 30 countries, with the first isolate from 
1900 until 2023. Ten highly prevalent plasmids (DOp1, pNb2354p1, pRE25, pRUM, pB82, pE1p13, pAmalpha1, pAD1, p200B, and 
pQY003) were selected and a presence/absence matrix is shown as inner circle next to cohorts (black, presence; pink, absence); the 
number of total and intact prophages (darker color, more prophages; next bar is of continents followed by dates of collection. (b) 
Resistance of all public Enterococcus from panel a sorted for prevalence. (c) Host distribution among different Enterococcus species 
(public and infants) with highest number of hosts occupied by E. faecalis and E. faecium. (d) A world map shows the prevalence of 587 
public strains in each region.
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ARGs, phage, and plasmids are present. Here, the 
latter public strain carries Epx6 on a large conju
gative plasmid. Of the 41 virulence genes found in 
the public isolates, 39 were shared with our cohort 
enterococci. Only two genes (esp and ecbA) were 
unique to public strains, with the strains being 
isolated from 31 different hosts. This indicates 
that virulence factors in Enterococcus are not highly 
specific to particular hosts.

When examining host diversity, Homo sapiens 
had the highest number of isolates (294 strains), 
with E. faecium, and E. faecalis being the most 
prevalent (173 and 108 strains, respectively) 
(Figure 6c). While this reflects a sampling bias 
toward human infections, E. faecalis demonstrated 
the ability to thrive in a wide range of hosts, includ
ing mammals, fish, birds, and even marine algae. 
E. faecium was also versatile, found in 14 different 
host organisms, including insects and fish (see 
Figure 6c).

Discussion

We investigated Enterococcus spp. diversity from 
two European infant cohorts, MAMI from Spain 
and LucKi from the Netherlands, to understand 
what distinguishes these commensal enterococci 
across regions in terms of metabolic features, viru
lence, and antimicrobial resistance. While our 
study focused on healthy full term infants, very 
few received antibiotics for non-gut-related condi
tions (e.g., conjunctivitis, or within an intensive 
care unit). Despite this, we found these healthy 
infants carried a surprisingly large resistome and 
a wide variety of Enterococcus spp., which was 
similar across both cohorts. In order to understand 
the global picture, we performed a comparative 
analysis using public datasets. Our analysis 
revealed Enterococcus spp. are panmictic, meaning 
that they move freely across regions and niches, 
exchanging genetic material. Notably, LucKi 
cohort strains exhibited greater species diversity 
than MAMI strains, likely due to the larger sample 
size and more time points from LucKi. Definitely, 
age is involved while geographic region could also 
have contributed to these differences.

Even among antibiotics naïve infants, we 
detected substantial antibiotic resistant 
Enterococcus strains, particularly gentamicin- 

resistant strains, which were more common in 
MAMI than LucKi. Aminoglycosides, including 
gentamicin, are frequently prescribed for neonates, 
both in the Netherlands and Spain.78 This could 
suggest that resistant strains may have been 
acquired from the community or hospital environ
ments. Similarly, genetic determinants for resis
tance to the FMR group of antibiotics (i.e., 
fluoroquinolone, macrolide, and rifamycin), fol
lowed by diaminopyrimidine and LMS (lincosa
mide, macrolide, oxazolidinone, phenicol, 
pleuromutilin, streptogramin, and tetracycline), 
were highly prevalent, potentially spreading via 
plasmids or phages. Conversely, we identified 
only one amoxicillin resistant E. faecium in 
LucKi, likely due to point mutations in penicillin- 
binding proteins (PBPs) rather than ARG uptake.88 

Thus, even though amoxicillin is commonly pre
scribed in the Netherlands,89 the selective pressure 
exerted by this antibiotic appears to differ to ARG- 
mediated resistance. Since only very few infants 
were given antibiotics at all, we could not analyze 
for significant differences in antibiotic resistance 
and virulence potential for our strains.

The interplay between ecological niches, 
genetic elements, and environmental factors has 
implications for gut microbiota. As the gut 
microbiome acquires ARGs from the wider 
microbial community, it may contribute to 
increased AMR, which can lead to treatment fail
ures. This, in turn, facilitates the emergence of 
MDR strains, increasing the risk of nosocomial 
infections and posing a growing challenge for 
public health systems.90 This risk is particularly 
high in neonates with immature microbiomes, 
often exposed to antibiotics, and even more so 
in those born by C-section. Indeed, studies have 
found high prevalence of Enterococcus in infants 
born by C-section compared to vaginally born 
infants.91,92 Our study found five different 
Enterococcus species in nine C-section infants, 
including E. gilvus, which was uncommon in 
other samples. Moreover, strains from C-section 
infants encoded unique genetic determinants; 
however, given that we had such few samples, 
we cannot draw wider conclusions.

A key question in Enterococcus research is whether 
commensal strains can become pathogenic under 
certain conditions. Many of our strains encoded 
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a large array of virulence genes, some up to 36 genes. 
It is reported that the presence of the virulence genes 
sprE (serine protease) and gelE (gelatinase) increases 
the pathogenicity by increasing rate of killing of 
nematodes.75 Commensal Enterococcus ssp. were 
found to use these factors toward colonization and 
proliferation in the gut system.87 Thus, C. elegans has 
emerged as powerful model for virulence screenings 
of pathogenic bacteria.86 Previously, it has been used 
with E. faecalis, Streptococcus pneumoniae, 
Staphylococcus aureus,93 extra-intestinal pathogenic 
Escherichia coli (ExPEC), Pseudomonas aeruginosa,94 

Streptococcus pyogenes,95 Salmonella typhimurium,96 

and others. Using C. elegans as a model, we tested the 
virulence of selected E. faecalis strains, of which some 
indeed encoded sprE and gelE. While one E. faecalis 
strain from the MAMI cohort exhibited significant 
pathogenicity, killing 50% of nematodes in just about 
2.4 days, no clear correlation between the number or 
any specific virulence genes and pathogenicity was 
observed. This may link to our metabolic capacity 
analysis, which was highly similar across all genomes. 
It therefore remains unclear under which circum
stances, environmental conditions and genetic condi
tions a strain behaves as a commensal, a protective 
organism, or as a pathogen.35

Overall, our findings suggest Enterococcus spe
cies and strains are highly mobile across Europe, 
sharing genetic and functional traits across wide 
geographic regions, given cohort sites were more 
than 1000 km beeline distant. This led us to expand 
our analysis by assembling high-quality genomes of 
Enterococcus species from publicly available data
bases. These datasets included strains collected 
over the past century, with a noticeable increase 
in samples from the last two decades. Unlike our 
isolates, which came from healthy infants, these 
public datasets included strains from clinical dis
ease cases, offering a broader perspective on 
Enterococcus diversity. The public strain collection 
encompassed a range of species, each isolated at 
different time points, highlighting the increasing 
diversity of Enterococcus species over time. We 
found a significant number of isolates originating 
from North America and Europe, possibly reflect
ing a research bias toward these regions. Of all 
species examined, both E. faecalis and E. faecium, 
exhibited the widest host ranges, consistent with 
their well-documented ecological adaptability and 

versatility.97 Interestingly, whilst E. faecium is clas
sified as an ESKAPE pathogen, the majority of 
(nosocomial) infections still involve E. faecalis. 
This discrepancy may be somewhat arbitrary and 
highlights the need for more nuanced classifica
tions of these species. Our findings indicate that 
Enterococcus spp. disseminate easily across differ
ent geographical regions, with their metabolic pro
files, resistome, and host range often showing 
similarities across large distances and, in some 
cases, even across species-boundaries. This ease of 
transmission, especially for ARGs, has been shown 
in studies on tourists, who acquire and carry resis
tant strains back to their home countries.98 It is 
therefore unsurprising that Europe has seen several 
large VRE outbreaks in recent years.99–101 

Comparing public Enterococcus genomes, we 
observed that ARGs, virulence factors and plasmids 
often co-occurred, while strains lacking ARGs 
tended to also lack virulence factors and plasmids. 
Despite this, some isolates with virulence factors 
still carried prophages, indicating that such other 
genetic elements may play a role in acquiring these 
traits. For our own isolates, a very weak correlation 
(R2 = 0.12) was observed for plasmid carriage and 
presence of virulence factors. However, a moderate 
correlation (R2 = 0.36) was found for the presence 
DOp1 plasmid, which is the most abundant in our 
study, and possession of virulence determinants. 
Interestingly, despite the absence of known viru
lence factors in some of the analyzed genomes, the 
presence of the recently described epx genes was 
a notable finding. Its toxin-mediated virulence was 
demonstrated using a toxin-carrying E. faecium 
strain. This strain induces death of peripheral 
blood mononuclear cells and damages intestinal 
organoids during co-culture. The authors who 
had discovered the novel family of Epx toxins 
emphasized their widespread distribution. The 
host diversity, i.e. binding of MHC-I in different 
hosts, suggests that the acquisition of such toxins is 
not a rare event and probably confers competitive 
advantages.33

Previously, a rich repertoire of ARGs and viru
lence factors was found in Enterococcus ssp. iso
lated from wastewater and associated waters in 
South Africa.15 The authors found aminoglyco
sides genes in E. faecalis, E. hirae and E. durans. 
Similarly, we detected various aminoglycoside- 
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resistance genes in some E. faecalis strains, a few 
genes in E. faecium, E. casseliflavus, E. durans, 
E. gilvus, and E. lactis. In the mentioned study 
from South Africa, E. faecium strains were 
enriched with tetracycline, erythromycin, and tet
racycline genes, while we found tetracycline genes 
in E. faecium, but erythromycin resistance in 
E. lactis strains. While such findings cause quite 
negative attention, Enterococcus ssp. seem to be 
two-faced. Not only pathogens exist, but many 
harmless commensals and, as already mentioned, 
probiotics. Probiotic strains for E. faecalis such as 
Symbioflor® 1 and SI-FC-01 showed positive 
properties when tested in C. elegans by down
regulating virulence genes in enterohemorrhagic 
E. coli O157:H7 (EHEC)4 or promoting the 
healthspan and neuroprotection, respectively.102 

Thus, Tadesse et al.103 emphasized that, besides 
the potential pathogenic strains, they found 19 
Enterococcus strains among 44 environmental iso
lates, which appear to be safe and could be uti
lized in food fermentations. These strains seem to 
lack genes encoding antibiotic resistance and 
important virulence factors. Therefore, the posi
tive potential of Enterococcus strains should not 
be dismissed, but rather exploited.

On closing, the fact that Enterococcus has even 
been found as a prominent microbial inhabitant on 
the International Space Station104 highlights its ability 
to thrive in diverse and extreme environments. The 
‘One Health’ approach, which includes zoonotic 
transmission,105 is increasingly relevant, as MDR 
enterococci are highly prevalent in non-hospital and 
non-human environments.97 Human activities, 
including travel, agriculture, and global trade, have 
turned the planet into a ‘mixing vessel’ for 
Enterococcus strains, posing a potential threat to glo
bal public health.106 Future work should expand on 
our findings by longitudinally studying larger, more 
diverse cohorts, combining strain isolation with 
metagenomics to better understand early life 
Enterococcus acquisition and persistence, particularly 
in relation to ARGs and AMR. In addition, the 
expression of Epxs should be confirmed phenotypi
cally. Here, it would be interesting to understand their 
recognition toward MHC-1 of different hosts, espe
cially for those yet not tested in, e.g., cell lines. Finally, 
investigating whether probiotic Enterococcus strains 
could mitigate acquisition of potential pathogenic 

Enterococcus strains could offer new strategies for 
improving infant health.

Conclusion

Our comprehensive, comparative analysis of 
Enterococcus, particularly within infants, has revealed 
a complex landscape of diversity, resistance, and 
mobility across geographic regions. Enterococcus 
strains, while often harmless commensals under 
steady-state conditions, may become opportunistic 
pathogens, particularly when the wider gut micro
biota is perturbed (e.g., by antibiotics). 
Understanding the diversity and ARG profiles of 
Enterococcus globally is essential for developing effec
tive strategies to combat infections. Given the high 
mobility of these bacteria, a global effort is needed to 
track colonization, monitor resistance, and imple
ment preventive measures, including in healthy indi
viduals. The development of potent probiotics that 
safely exclude virulent strains may offer a promising 
approach to mitigate the growing threat of 
Enterococcus-related MDR infections, especially in 
vulnerable populations like infants. Further research 
and global data-sharing are critical for addressing the 
increasing challenges posed by these resilient 
bacteria.35
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