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Abstract

When evaluating risky options in experimental settings, do individuals
integrate background finances with experimental earnings? Andersen et al.
(2018, REStat) combine experimental data on lottery choices and administra-
tive data on personal wealth in Denmark to show that individuals evaluate ex-
perimental payoffs in isolation. We replicate this finding using data from three
experiments and survey-based measures of background finances for a repre-
sentative Dutch sample. We show that the finding based on personal wealth
extends to household wealth, personal income, and household income. The
finding is also robust to different elicitation instruments, incentive structures,
stake sizes, and interpersonal behavioral heterogeneity.
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1 Introduction and Background
Data from lottery choice experiments are widely used to quantify economic mea-

sures of risk preferences, such as the Arrow-Pratt coefficient under expected utility

theory (EUT). Typically, these experiments involve choosing between two lotter-

ies that represent alternative probability distributions over prizes. The empirical

analysis almost always specifies the prizes offered as the sole argument of the util-

ity function, implicitly assuming a form of narrow framing whereby the decision

maker evaluates those prizes separately from their background finances. Yet many

non-experimental applications of EUT define the utility function over the decision

maker’s final monetary outcome, which includes background wealth or income.

This would imply that the sum of net wealth (or non-experimental income) and

lottery prizes is the correct argument. Axioms of EUT are silent on this question,

admitting both perspectives. Empirical evaluation of whether the decision maker

integrates their wealth and income has been limited because detailed measures of

background finances are typically not collected as part of experiments.

Andersen et al. (2018) conduct a unique study which directly evaluates whether

individuals integrate background finances with lottery prizes.1 They combine data

from a lottery choice experiment involving a general adult population in Denmark,

with personal wealth measures derived from administrative data on assets and li-

abilities. They specify and estimate a multi-parameter utility function, which in-

cludes the extent of wealth integration as a parameter to be estimated. The results

show that the participants integrate an economically and statistically insignificant

fraction of their wealth, consistent with narrow framing. The remarkable combi-

nation of the data used means that a narrow replication of their work is difficult

because access to the administrative records is restricted to researchers affiliated
1Their study is motivated by a broader theoretical issue compared to our direct focus on narrow

framing. If the argument of the utility function is final wealth levels, some patterns of risk aversion
commonly observed in small-stakes experiments imply implausible risk attitudes at large stakes
(Hansson, 1988; Rabin, 2000). If the argument is changes in final wealth (i.e., stakes themselves), or
some non-additive aggregation of wealth and stakes, EUT is no longer subject to this type of payoff
calibration critique (Cox and Sadiraj, 2006; Rubinstein, 2006).
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with appropriate institutions in Denmark.2

Using publicly available data from the LISS panel in the Netherlands, we at-

tempt a wide replication of their finding that individuals do not perfectly inte-

grate background wealth with experimental prizes. Core survey modules in the

panel collect a rich set of personal and household characteristics for a representa-

tive sample of Dutch individuals, including financial data pertaining to net wealth

and income. Importantly, these modules can be readily merged with lottery choice

experiments on risk preferences of the panel members, previously conducted by

Noussair et al. (2014), Drerup et al. (2017), and Charness et al. (2020).

Besides involving a different population, our study distinguishes itself from

Andersen et al. (2018) along several dimensions. First, our wealth measure is based

on self-reports by individuals about their assets and liabilities around the exper-

iment date. Although less accurate for tax purposes than administrative records,

these self-reports are no less relevant for our empirical investigation: Due to the

cognitive difficulties involved in computing one’s exact financial position at any

given point in time, choice behavior is just as likely to depend on what a person

believes their net wealth to be as it is to depend on the objective wealth level.

Second, we complement the analysis based on wealth by testing for integration

of background income. Economic studies and textbook examples often define the

expected utility function on wealth (e.g., Varian, 1992, §11; Rabin, 2000). However,

there is also a long-standing and parallel tradition of considering income as the

argument (e.g., Friedman and Savage, 1952). For example, background income

has been used as the argument in empirical studies estimating risk aversion using

insurance data (e.g., Cicchetti and Dubin, 1994; Cohen and Einav, 2007) or state-

dependent variations of utility with respect to health (e.g., Viscusi and Evans, 1990;

2The replication package for Andersen et al. (2018) includes a hybrid data file, which merges the
actual experimental data with simulated wealth data. This enables us to check the computational
validity of their programs written in the high-level user interface of Stata, despite the confidentiality
of the original wealth data. As summarized at the beginning of Section 4 and detailed in the Online
Appendix (Section A2), we successfully conduct a narrow replication of their results for this hybrid
data, using our own programs written in a compiled language (Mata).
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Evans and Viscusi, 1991; Gerking et al., 2017).3

Third, we study three experiments conducted in different years and with mostly

non-overlapping participants. Lottery designs, incentive structures, and monetary

stakes also varied within or across these experiments. These variations allow us to

evaluate the robustness of findings to sample composition and survey instruments.

Finally, all three experiments can be linked to questionnaire data in the LISS

panel, with two involving considerably more participants than the Danish study.

We leverage these features to investigate whether the extent of integration varies

with a measure of financial autonomy or across wealth (income) deciles, and whether

it exhibits substantial latent heterogeneity across individuals.

Overall, we find that the results of Andersen et al. (2018) are widely replicable.

Participants integrate only a tiny fraction of their wealth, which also tends to be

statistically insignificant. Similarly, they integrate a very small fraction of their in-

come, although this tends to be statistically significant. This finding holds across

personal- and household-level measures of wealth and income. It is robust to the

incentive structure, and there is no systematic evidence that it depends on the elic-

itation instrument, stake size, or behavioral heterogeneity across individuals.

2 Data
Andersen et al. (2018) use choice behavior in experimental tasks and administra-

tive data on assets and liabilities maintained by Statistics Denmark to evaluate

asset integration for 442 members of the Danish adult population in February and

March 2015. For our wide replication, we make use of data from the LISS panel

(Longitudinal Internet Studies for the Social Sciences) maintained by the non-profit

research institute Centerdata (Tilburg University, the Netherlands). The panel pro-

vides a representative sample of Dutch individuals who participate in monthly on-

line surveys. Households that could not otherwise participate are provided with a

computer and Internet connection.

3Similarly, in finance, both investment returns per period and final wealth are accepted as valid
arguments of the utility function (e.g., Markowitz, 1991, 2014).
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We collate data from three lottery choice experiments that elicited the risk pref-

erences of a subset of panel members. Study 1 originates from Noussair et al.

(2014), whose experiment in December 2009 invited a random sample of panel

members aged 16 or above (data file bl09a). Each task in their experiment presented

a choice between two equiprobable lotteries or between an equiprobable lottery

and a varying sure payment. We focus on six tasks, documented as “Riskav 1-5”

and “Ra EU1” (p. 350), which are designed to elicit the usual notion of risk aver-

sion that is equivalent to a concave utility function under EUT. Participants were

randomly assigned to complete these tasks under one of three conditions, which

we call Real-Norm, Hypo-Norm, and Hypo-High. Under the first two conditions,

the prizes varied from €5 to €65; each participant in Real-Norm had a 1/10 chance

of receiving a prize,4 while Hypo-Norm presented hypothetical prizes. Hypo-High

presented hypothetical prizes, scaled up by a factor of 150 (€750 to €9,750).

Study 2 originates from Charness et al. (2020), whose experiment in February

2012 also invited a random sample of panel members (data file ga12a). Partici-

pants were randomly assigned to one of five conditions, which differed by the risk

preference elicitation format used; only two formats lend themselves to structural

estimation of risk aversion and so are considered here. One format (p. 106) fol-

lowed the design of Holt and Laury (2002), and presented 10 choices between two

lotteries which varied on the probability scale, with fixed prizes ranging from €0.40

to €15.40. The other format (p. 107) was based on the design of Tanaka et al. (2010),

and presented 28 choices between two lotteries which varied on the outcome scale,

with prizes ranging from €1 to €340. In each condition, one of the participant’s 10

or 28 choices was randomly selected to determine the prize received as payment.

Study 3 originates from Drerup et al. (2017), whose experiment in September

2013 invited a sample of panel members (one person per household) most involved

in the financial administration of the household (data file jy13a). They admin-

4The actual prize was determined by randomly playing out one of 17 decision-making tasks,
including the six second-order risk aversion tasks, six prudence tasks, and five temperance tasks.
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istered a series of 5 interdependent hypothetical tasks to elicit a single certainty

equivalent (p. 15 in their online appendix) as part of a larger experiment using

real monetary rewards to elicit subjective beliefs. Each task presented a choice be-

tween an equiprobable lottery of €300 versus €0 and a varying sure payment; the

sure payment iterated up or down from a starting value of €160 in the first task,

depending on whether the participant accepted or rejected the lottery.

The experimental data is merged with personal and household characteristics

available in core modules of the LISS panel. Noussair et al. (2014, p. 345) derive a

personal net wealth measure by combining information on assets (savings, insur-

ance policies, risky investments, and real estate investments) and liabilities (mort-

gages and other loans, credits, and debts) from the Assets and Housing modules.5

We follow their approach and construct an analogous wealth variable using indi-

vidual data from the closest available date to each experiment.6 To approximate

household-level wealth, we also aggregate the personal wealth measure within

households.7 This aggregated measure is noisy as not every household member

responded to both component modules; nevertheless, it is interesting to consider

whether individuals integrate pooled household finances. Personal and household

income variables are available directly from the Background Variables module.

Table 1 summarizes the key participant characteristics in each study. These

statistics are calculated over participants for whom we observe at least one of the

four wealth and income measures. As the sampling frame of each study is small

relative to the full panel, only 79 individuals are observed in all three studies.8

5Noussair et al. (2014) do not consider wealth integration.
6Wealth data is reported as of 31 December 2009 for Study 1; 31 December 2011 for Study 2; and

31 December 2013 for Study 3. Andersen et al. (2018) also use wealth data as of the year end closest
to their experiment (31 December 2014).

7The Assets module asked only the person primarily responsible for managing household fi-
nances to report assets jointly owned by partners. This approach helps us avoid double counting
of wealth within households, although it also necessitates a caveat that personal wealth in our anal-
ysis is better understood as assets over which the person has primary control, rather than assets
which one personally owns. As reported below, we find no heterogeneity in wealth integration
across individuals with and without financial control within any of the studies. We also find qual-
itatively similar results between Study 3, where nearly all respondents had financial control, and
the other two studies, where around 60% had control.

8At the time of Study 1 (December 2009), the panel included 13,412 individuals. The correspond-
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Table 1: Descriptive Statistics

Variable Definition Study Mean SD Nind

Wealth: Personal Personal net wealth in
€1,000s

1 44.15 1,180.79 2,835
2 38.04 182.92 388
3 44.37 260.28 1,916

Wealth: Household Household net wealth in
€1,000s

1 84.56 1,608.11 2,855
2 71.67 248.28 392
3 55.79 272.78 1,918

Income: Personal Personal net monthly
income in €1,000s

1 1.43 2.21 3,300
2 1.38 0.99 415
3 1.83 4.12 2,030

Income: Household Household net monthly
income in €1,000s

1 2.82 2.40 3,209
2 2.78 1.30 402
3 2.81 4.23 1,981

Female =1 for women; =0 otherwise
1 0.53 0.50 3,428
2 0.51 0.50 433
3 0.48 0.50 2,119

Financial Control =1 take care of finance in house-
hold matters; =0 otherwise

1 0.58 0.49 2,840
2 0.61 0.49 388
3 0.98 0.13 1,920

Household Head =1 for head of household;
=0 otherwise

1 0.57 0.50 3,428
2 0.55 0.50 433
3 0.74 0.44 2,119

Notes: Column Mean (SD) reports the sample mean of each variable across Nind individuals. Study
1 refers to the lottery choice experiment designed to elicit risk aversion as reported in Noussair et
al. (2014). Study 2 refers to the risk aversion measures “list of paired lotteries” and “multiple lists
of paired lotteries” as reported in Charness et al. (2020). Study 3 refers to the hypothetical binary
lottery choice experiment as reported in Drerup et al. (2017).

Net wealth is negative for 7.29% (9.22%) of observations on personal (house-

hold) wealth in Study 1; 6.93% (8.55%) in Study 2; and 6.70% (6.98%) in Study 3.

Following Andersen et al. (2018), we recode all negative wealth values to 0 to avoid

a negative argument of the utility function. Net income measures are already non-

negative and do not require corresponding adjustments. The three study samples

are balanced on gender. In Studies 1 and 2, about 60% of individuals take care of

household finances and about 56% are household heads. These shares are higher

in Study 3, which deliberately recruited members in charge of household finances.9

ing figure is 11,616 for Study 2 (February 2012) and 9,639 for Study 3 (September 2013). Pairwise
comparisons also reveal a limited overlap of participants. We can match 191 individuals between
Study 1 and Study 2; 970 between Study 1 and Study 3; and 156 between Study 2 and Study 3.

9The mean of the financial control variable is less than 100% in Study 3 because we use an
updated measure associated with assets information as of December 2013.
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3 Model Specification
Consider structural estimation of the expected utility model, using the following

utility function of monetary outcome M

u[M ] =
M (1−θ)

(1− θ)
, (1)

where θ ∈ (−∞,+∞) is the coefficient of relative risk aversion. Typically, M is

directly equated with a prize offered in the choice task (e.g., €5 or €65 when eval-

uating the expected utility of an even chance of either prize). This assumption

would be inappropriate if the decision maker is concerned with their final wealth

or income, such that the argument of u[·] should be modelled as (W +M), where

W represents their background wealth or income external to the experiment.

The key insight of Andersen et al. (2018) is that one can empirically evaluate the

extent to which the decision maker integrates their real-life W with experimental

M by adopting a more general utility function

U [W,M ] = u[ωW +M ], (2)

where u[·] is as defined earlier, and ω ∈ [0,∞) is an unknown parameter to be

estimated alongside θ. We code both W and M in €1,000s, comparable to 10,000s

of Danish kroner in the original study. If ω = 0, the decision maker would focus on

the experimental task in isolation, as narrow framing predicts. Partial (0 < ω < 1)

and full (ω = 1) integration of background finances are nested as special cases.

Andersen et al. (2018) further generalize equation (2) by allowing for the notion

that W and M act as imperfect substitutes. This is achieved by applying a constant

elasticity of substitution (CES) aggregator as follows

U [W,M ] = u
[
κ[W,M ]],

where κ[W,M ] = (ωW ρ +Mρ)(1/ρ),
(3)

7



where ρ ∈ (−∞, 1) is an unknown parameter to be estimated along with θ and ω,

and the ES between W and M is given by 1/(1−ρ). Identification of the ρ parameter,

however, is expected to become empirically fragile as the estimate of ω falls into

a neighborhood of 0: Theoretically, if ω = 0, any value of ρ would be consistent

with observed choice behavior and result in (Mρ)1/ρ = M . We adopt the more

restrictive but also more easily identified equation (2) as our baseline specification,

and consider (3) for robustness checks.

We estimate the model parameters using the method of maximum likelihood.

The likelihood function is specified as a non-linear index logit model, where the

index function for each choice task is proportional to the expected utility differ-

ence between the two options presented in the task. This difference is scaled by a

latent error parameter, denoted µ, which accounts for the decision maker’s evalu-

ative noise and is also an unknown parameter to be estimated. We provide a full

discussion of our likelihood specification in the Online Appendix (Section A1).

4 Results

4.1 Narrow Replication

We implemented our likelihood evaluators in Mata, a compiled programming lan-

guage integrated with Stata. A narrow replication of empirical results reported by

Andersen et al. (2018) is difficult because it requires administrative data on per-

sonal assets and liabilities in Denmark, which are not readily accessible to research

teams based outside of the country. Nevertheless, their replication package on the

Harvard Dataverse includes a hybrid dataset, consisting of actual experimental data

and simulated wealth data that one can use to evaluate the functionality of their

programs, written in the regular, high-level Stata user interface. As detailed in the

Online Appendix (Section A2), our programs produce materially the same results

as Andersen et al. (2018), except for discrepancies concerning the ρ parameter in

equation (3), symptomatic of its fragile identification in a neighborhood of ω = 0.
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4.2 Wide Replication: Baseline Findings

In the upper panel of Table 2, we use our Mata programs for equation (2) to es-

timate parameters measuring utility curvature (θ) and behavioral noise (µ), along

with the weight on background wealth (ω). In Study 1, ω is estimated to be signif-

icantly greater than 0 at the 5% level, regardless of whether we consider personal

or household wealth.10 Qualitatively, this suggests that individuals integrate their

wealth with experimental earnings. Quantitatively, however, each point estimate

is smaller than 0.001, indicating that individuals integrate less than €1 for every

€1,000 of wealth. In fact, these estimates have five leading zeros, indicating inte-

gration of less than €0.10 for every €1,000. In Study 2 and Study 3, the estimates

of ω are not significantly greater than 0, and include 6 to 12 leading zeroes. On

balance, our results are thus consistent with narrow framing (ω = 0), whereby in-

dividuals evaluate risk aversion tasks in isolation from their background wealth.

The lower panel of Table 2 presents parallel results based on income. Statisti-

cally, we find support for partial integration across all columns, with ω estimated to

be greater than 0 at the 7% level (Study 3, household income) or 5% level (all other

cases). Quantitatively, however, the extent of income integration is limited and

closely approximated by the hypothesis of narrow framing. The point estimate of

0.007 (0.003) in Study 1 indicates that individuals integrate €7 (€3) for every €1,000

in their personal (household) monthly income. The corresponding amount is less

than €0.01 in Study 2 and less than €0.44 in Study 3.

The Online Appendix reports all items numbered with the A prefix hereafter. In

Table A3, we estimate equation (3) which allows for imperfect substitutability be-

tween background finances and experimental earnings, captured by the estimated

parameter ρ. In all but one case, two-sided tests fail to reject either H0 : ρ = 1,

under which the model simplifies to equation (2), or H0 : ω = 0, under which

the identification of ρ is questionable. The exceptional case (Study 2, household

10For one-sided inferences, we halve the two-sided p-values reported in our tables.
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Table 2: Baseline Specifications

Panel A. Wealth

Study 1 Study 2 Study 3
(1) Personal (2) Household (3) Personal (4) Household (5) Personal (6) Household

ω <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
(0.052) (0.080) (0.151) (0.417) (0.324) (0.440)

θ 0.888 0.880 0.504 0.503 0.761 0.758
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

µ 0.180 0.180 0.297 0.298 1.619 1.622
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

Ncho 16,991 17,111 7,390 7,448 9,580 9,590
Nind 2,835 2,855 388 392 1,916 1,918
logL −10,335 −10,421 −4,771 −4,808 −6,389 −6,397

Panel B. Income

Study 1 Study 2 Study 3
(1) Personal (2) Household (3) Personal (4) Household (5) Personal (6) Household

ω 0.007 0.003 <0.001 <0.001 <0.001 <0.001
(<0.001) (<0.001) (0.011) (<0.001) (0.042) (0.125)

θ 1.073 1.085 0.505 0.494 0.831 0.832
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

µ 0.179 0.182 0.285 0.287 1.811 1.756
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

Ncho 19,761 19,216 7,822 7,548 10,148 9,903
Nind 3,300 3,209 415 402 2,030 1,981
logL −11,894 −11,637 −5,019 −4,846 −6,766 −6,608

Notes: <0.001 indicates a positive number smaller than 0.001. The results in parentheses are two-
sided p-values, adjusted for clustering at the individual level; the null hypothesis assumes that
the corresponding parameter is equal to zero. Ncho (Nind) is the number of choice observations
(individuals). logL is the maximized log-likelihood.

income) converged to an implausible local maximum which implies convex utility

and background income weighted almost twice as much as experimental earnings.

Our Study 1 sample pools choice tasks across three conditions that vary by the

incentive structure. In Table A4, we estimate the baseline model in equation (2)

separately for each condition. The use of real or hypothetical incentives per se does

not influence our findings: For the Real-Norm and Hypo-Norm conditions (prizes

from €5 to €65), we continue to find that individuals integrate a trivial fraction of

their background finances with their experimental earnings. We find some evi-

dence that presenting large stakes might prompt more integration: For the Hypo-

High condition (prizes from €750 to €9,750), ω on personal income is estimated at
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0.295, suggesting that individuals integrate €295 out of every €1,000. Even under

this condition, however, the coefficients on household income and either measure

of wealth remain small, suggesting integration of €2 or less per €1,000.

Our Study 2 sample pools choice tasks based on the designs of Holt and Laury

(2002) and Tanaka et al. (2010). Table A5 reports results for each design-specific

subsample. In both subsamples, ω is estimated to include at least 8 leading zeroes,

regardless of the background finance measure used.

4.3 Wide Replication: Population Heterogeneity

We conclude by investigating behavioral heterogeneity across individuals. First,

we consider observed heterogeneity. We hypothesize that the extent of wealth or

income integration may depend on the individual’s familiarity with or control over

household finances. In Table A6, the ω parameter is allowed to vary by whether

the individual takes care of financial matters in the household or is the head of

household.11 We do not find any meaningful variation.

We further examine whether the extent of integration varies across individuals

with different observed levels of background finances. Those with no wealth or

income do not contribute to the identification of ω, except indirectly by improving

the statistical precision of other parameter estimates; by extension, the identifica-

tion of ω largely relies on those with substantive finances to integrate. Our results

could be biased if the risk aversion parameter θ covaries with ω across levels of

wealth or income.12 We therefore estimate a separate model for individuals with

positive wealth or income, dividing each subsample into deciles of the correspond-

ing financial measure. As Figure 1 illustrates for Study 1, the estimates of ω remain

small across all deciles, showing no robust pattern of correlation with θ.13

11We encountered convergence issues with richer models that incorporate a wider range of char-
acteristics considered by Noussair et al. (2014) or allow for demographic heterogeneity in θ and µ
along with ω. The results for Study 2 in Table A6 illustrate qualitatively similar issues: For per-
sonal wealth, non-trivial p-values are repeated across multiple demographic coefficients, and for
personal income, some p-values cannot be computed due to the nearly singular Hessian.

12We thank an anonymous reviewer for encouraging us to consider this aspect.
13We find qualitatively similar results for Study 2 and Study 3 (see Figure A1). The only exception
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Figure 1: Preference Parameters by Wealth or Income Decile

Notes: Based on separate estimation of equation (2) for each decile group. Deciles are ordered from
lowest to highest wealth or income, with group 1 (10) representing the least (most) well-off.

Finally, we complement these analyses of observed heterogeneity by estimat-

ing a random parameter model that accounts for unobserved heterogeneity. As

detailed in Section A4, an overwhelming majority of participants in each study ex-

hibit choice behavior consistent with small values of ω, despite wide variation in θ

capturing both risk-seeking and risk-averse individuals.

In summary, our wide replication supports the finding of Andersen et al. (2018)

that individuals integrate a very small, if any, fraction of their background finances

with experimental earnings. Our results hold across various estimation samples

and model configurations. This provides an important empirical validation of the

common assumption of narrow framing in risk aversion experiments.

concerns three deciles of personal income in Study 3, where ω is estimated at around 0.2 (third
and eighth) or 1 (sixth). This is likely due to numerical blow-up indicative of weak empirical
identification: Estimates of θ for these deciles—-about 7 (third and eighth) or 30 (sixth)—-are also
unusually large, considering that the implied utility function is effectively flat over the entire range
of monetary stimuli in the study (€0 to €300) and that the baseline estimate is 0.831 (Table 2). No
similar anomalies appear for the deciles of other financial measures.
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A.1 Likelihood Specification

Each study sample that we analyze consists of observations on pairwise choices

made by individuals in experimental decision tasks. Let n ∈ {1, 2, · · · , N} be the

index of individuals and t ∈ {1, 2, · · · , T} be that of decision tasks. Suppose that

in task t, individual n evaluates an option j ∈ {A,B} which consists of a lottery

that pays prize M j
1nt with probability pj1nt, and an alternative prize M j

2nt with the

complementary probability (1 − pj1nt). This formulation nests sure payment as a

special case of pj1nt = 1.

Define the expected utility of option j as

EU j
nt[ω, θ] = pj1ntU [Wn,M

j
1nt] + (1− pj1nt)U [Wn,M

j
2nt] (A1)

where Wn is a measure of the individual’s background wealth or income, and U [·]

refers to the utility function in equation (2), which implicitly depends on the un-

known preference parameters ω and θ. Equation (A1) explicitly states the resulting

dependence of EU [·] on these parameters to facilitate further discussion.

Let ynt denote a binary choice indicator which is equal to 1 if individual n

chooses option A in task t, and 0 if their choice is B instead. A rigid theoretical

prediction would be that the individual chooses A over B if the expected utility

criterion favors the former: ynt = 1
[
∆EUnt[ω, θ] > 0

]
in short, where 1[·] is the

indicator function and ∆EUnt[·] := EUA
nt[·]− EUB

nt[·].

To allow for errors in decision making, however, we cast the individual’s choice

problem in the latent variable framework that underpins the econometric analysis

of binary choice data. Specifically, consider a latent variable y∗nt that combines the

EU criterion with evaluative noise ϵnt

y∗nt = ∆EUnt[ω, θ] + ϵnt (A2)

where the noise term follows a zero-mean logistic distribution with an unknown
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scale parameter.A1 Following Andersen et al. (2018), we assume that this scale

is specified as the Contextual Utility model of Wilcox (2011), which exhibits het-

eroskedasticity over decision tasks depending on the range of the monetary prizes

offered. Specifically, the scale of ϵnt is specified as µ(U [Wn,M
max
nt ]− U [Wn,M

min
nt ]),

where µ is a baseline noise parameter to be estimated, and Mmax
nt and Mmin

nt denote

the largest and smallest prizes offered by the decision task, respectively.

Suppose that the observed ynt relates to the latent y∗nt by the usual observation

rule: ynt = 1[y∗nt > 0]. Then, our assumptions thus far collectively imply that,

conditional on parameters ω, θ, and µ, the likelihood of observing ynt takes the

form of a non-linear index logit model. To be specific, the conditional likelihood of

ynt is given by

Pnt[ω, θ, µ] = Λ
[ (2ynt − 1)∆EUnt[ω, θ]

µ(U [Wn,Mmax
nt ]− U [Wn,Mmin

nt ])

]
(A3)

where Λ[z] = exp[z]/(1 + exp[z]) denotes the standard logistic distribution func-

tion. To complete the likelihood specification, we assume that the error terms are

independently distributed between individuals and across tasks, and specify the

sample likelihood function as

L[ω, θ, µ] =
N∏

n=1

( T∏
t=1

Pnt[ω, θ, µ]
)
. (A4)

In the case where the the utility function follows a more general functional form

that permits W and M to be imperfect substitutes as in equation (3), the sample

likelihood function can be constructed in substantively the same manner, by in-

cluding ρ as an extra parameter to be estimated along with ω, θ, and µ.

Most of our estimates are computed by numerically solving for the values of the

parameters ω, θ, and µ that maximize equation (A4), or its variant that additionally

includes the parameter ρ. The exception concerns the results for the Holt-and-

A1The standard deviation of ϵnt is equal to π/
√
3 times this scale.
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Laury subsample of Study 2 and for Study 3. In these cases, the Contextual Utility

model fails to achieve convergence, presumably due to limited variations in the

range of available monetary stimuli; we therefore adopt the Fechner error model

popularized by Hey and Orme (1994), which assumes that the logistic error term

has a constant scale of µ. The sample likelihood function under the Fechner error

model has the same algebraic form as equation (A4), except that the denominator

of the index function is simply equal to µ.

Additional References

Hey, J. D. and C. Orme (1994). Investigating generalizations of expected utility

theory using experimental data. Econometrica 62(6), 1291–1326.

Wilcox, N. T. (2011). ‘Stochastically more risk averse:’ A contextual theory of

stochastic discrete choice under risk. Journal of Econometrics 162(1), 89–104.
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A.2 Narrow Replication Results for Hybrid Data

Andersen et al. (2018) study data from an experiment with adult residents of

Greater Copenhagen, Denmark, conducted in February and March 2015. To test

for narrow framing, they combine the experimental data with personal wealth

data derived from administrative records on assets and liabilities, obtained from

the Danish Civil Registration Office and the Danish Tax Authorities (pp. 820-821).

These records are current as of the year end closest to the experiment (31 December

2014), similarly as the survey-based measures in our study. Access to the adminis-

trative data is granted upon application by researchers affiliated with appropriate

Danish institutions, as outlined in the online appendix (Appendix E) to their study.

The data access requirements make it difficult for research teams based outside

of Denmark, such as ours, to attempt a narrow replication of empirical findings

reported by Andersen et al. (2018). Nevertheless, their replication code package

in the Harvard Dataverse includes a hybrid data file (Data.dta) which can be used

to test the functionality of their estimation programs.A2 The data file merges ac-

tual experimental data with simulated data for personal wealth which preserve

the key moments of the administrative data. This package can be accessed at

doi.org/10.7910/DVN/SWRYPL.

In this section, we summarize our narrow replication results for their hybrid

dataset. Compared to their likelihood evaluators programmed in the regular high-

level user interface of Stata, our likelihood evaluators are directly written in Mata,

a compiled programming language integrated with Stata. We compare maximum

likelihood estimates obtained by applying the two sets of likelihood evaluators.

The first two columns of Table A1 report the results for a model which imposes

full integration of background finances, corresponding to the likelihood evaluator

ML crra FAI in the replication package. In the context of equations presented in

A2The hybrid data file includes 454 individuals, compared to 442 individuals reported in their
empirical study, presumably because the administrative wealth data are not available for a small
subset of participants in the experiment.
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Table A1: Narrow Replication Results for Hybrid Data

Full Integration Partial Integration
(1) Ours (2) Original (3) Ours (4) Original A (5) Original B

ω 1.000 1.000 <0.001 <0.001 <0.001
(const.) (const.) (0.797) (0.120) (0.799)

ρ 1.000 1.000 0.735 <0.001 0.731
(const.) (const.) (0.252) (<0.001) (0.255)

θ 0.390 0.390 0.654 0.619 0.654
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

µ 0.193 0.193 0.082 0.080 0.082
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

Ncho 27,240 27,240 27,240 27,240 27,240
Nind 454 454 454 454 454
logL −17,878 −17,878 −17,476 −17,482 −17,476

Notes: Original A (column 4) uses the original code with original starting values for numerical max-
imization. Original B (column 5) uses the original code with starting values equal to our solution in
column 3 instead. <0.001 indicates a positive number smaller than 0.001. (const.) indicates that the
parameter is constrained to the value above. Other results in parentheses are two-sided p-values,
adjusted for clustering at the individual level; the corresponding parameter is assumed to be zero
under the null hypothesis, except for ρ which is assumed to be equal to unity. Ncho (Nind) is the
number of choice observations (individuals). logL is the maximized log-likelihood.

our main text, this is a special case of (2) with ω = 1, or alternatively that of (3)

with ω = 1 and ρ = 1. In this case, we obtain numerically identical estimates of the

risk aversion parameter θ and the noise parameter µ regardless of whether we use

our own code (column 1) or the original code (column 2).

The remaining columns of Table A1 report the results based on equation (3),

corresponding to the likelihood evaluator ML crra PAI in the replication package.

This specification includes both ω and ρ as free parameters to be estimated, thereby

allowing for partial integration of background finances (0 < ω < 1), as well as

imperfect substitution between background finances and experimental earnings

(ρ ̸= 1). As we note in the main text, a potential challenge to estimating this gen-

eral functional form is that the theoretical identification of the substitutability pa-

rameter ρ fails if the integration parameter ω is equal to 0. One may, therefore,

expect the empirical identification of ρ to be fragile if the estimate of ω falls into a

neighborhood of 0. Our replication results illustrate this point.

We first consider the estimates of ω in column 3 (our code) and column 4 (orig-

inal code). Substantively, both estimates suggest that virtually no integration is
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taking place, with the estimate carrying 5 (column 3) or 4 (column 4) leading ze-

roes. Nevertheless, these estimates display discrepancies in terms of numerical

values and statistical significance. With our code, ω is estimated to be 8.91× 10−5,

and statistically indistinguishable from 0 at any conventional significance level:

That is, we cannot reject the hypothesis of narrow framing, H0 : ω = 0. With the

original code, it is estimated to be 1.36×10−4 and significantly greater than 0 at the

1% level: Therefore, we find evidence of partial integration in a narrow statistical

sense, albeit the practical extent of it is close to no integration.

In comparison, the estimates of ρ in these columns lead to both substantively

and statistically different conclusions. With our code, ρ is estimated to be 0.735,

and we cannot reject the hypothesis of perfect substitution (H0 : ρ = 1) at any

conventional significance level. With the original code, ρ is estimated to be much

smaller at 2.36 × 10−6, implying a unit elasticity of substitution, and we reject the

hypothesis of perfect substitution at the 1% level. Additionally, we also observe

some numerical differences in the estimates for θ (0.654 with our code versus 0.619

with the original code) and µ (0.082 versus 0.080).

The differences between the two sets of estimates, however, can be readily rec-

onciled by noticing that they have converged to different local maxima. The log-

likelihood at the results found using our code is −17, 476 (column 3), which is

slightly better than −17, 482 found using the original code (column 4). In the fifth

and final column of Table A1, we apply the original code, setting our solution in

column 3 as starting values for numerical maximization. In this case, the origi-

nal code fails to improve on the starting log-likelihood of −17, 476, and declares

convergence at the same maximum: This new solution retains practically the same

numerical estimates of ω, θ, and µ as column 3, but displays a discrepancy in ρ

which is noticeable at the third decimal point (0.735 in column 3 versus 0.731 in

column 5), further illustrating the fragile identification of the ρ parameter.

In the mirrored case where we start our code using the original code’s solu-

tion in column 4 as starting values, the estimation run fails to achieve convergence
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Table A2: Narrow Replication Results for Hybrid Data at ρ = 1

(1) Ours (2) Original

ω <0.001 <0.001
(0.452) (0.450)

θ 0.648 0.648
(<0.001) (<0.001)

µ 0.083 0.083
(<0.001) (<0.001)

Ncho 27,240 27,240
Nind 454 454
logL -17,476 -17,476

Notes: <0.001 indicates a positive number smaller than 0.001. The results in parentheses are two-
sided p-values, adjusted for clustering at the individual level; the null hypothesis assumes that
the corresponding parameter is equal to zero. Ncho (Nind) is the number of choice observations
(individuals). logL is the maximized log-likelihood.

as it encounters a flat region of the log-likelihood function. This flat region oc-

curs at −17, 481, which is slightly better compared to the starting log-likelihood

of −17, 482. Together with the results in column 5, this suggests that the original

code has prematurely declared convergence in column 4, identifying a relatively

flat region of the log-likelihood as a maximum.A3

Equation (2), which forms the basis for our analysis in the main text, allows for

partial asset integration under the assumption that the two sources of money are

perfect substitutes. It therefore represents an intermediate case between the full

and partial integration models in Table A1. Andersen et al. (2018) do not directly

implement this specification, but their original code ML crra PAI can be readily

revised to estimate it by imposing the constraint ρ = 1. In Table A2, we report

results using our own code and the constrained version of the original code. As

the model is no longer subject to the potential identification failure due to the ρ

parameter, both codes find solutions converging to the same maximum, yielding

materially the same parameter estimates.

A3In both columns 3 and 4, we have used the starting values available in the original replication
package. Therefore, their discrepancy cannot be attributed to the use of different starting values.
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A.3 Additional Wide Replication Results for LISS Panel

Figure A1: Preference Parameters by Wealth or Income Decile

Notes: Based on separate estimation of equation (2) for each decile group. Deciles are ordered from
lowest to highest wealth or income, with group 1 (10) representing the least (most) well-off.
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Table A3: Models Allowing for Imperfect Substitution Between W and M

Panel A. Wealth

Study 1 Study 2 Study 3
(1) Personal (2) Household (3) Personal (4) Household (5) Personal (6) Household

ω 0.023 0.019 0.110 0.143 <0.001 <0.001
(0.088) (0.135) (0.366) (0.190) (0.308) (0.436)

ρ 0.533 0.484 0.270 0.275 0.987 0.993
(<0.001) (<0.001) (<0.001) (<0.001) (0.002) (0.028)

θ 0.923 0.917 0.407 0.328 0.760 0.758
(<0.001) (<0.001) (<0.001) (0.001) (<0.001) (<0.001)

µ 0.178 0.179 0.296 0.293 1.609 1.621
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

Ncho 16,991 17,111 7,390 7,448 9,580 9,590
Nind 2,835 2,855 388 392 1,916 1918
logL −10,315 −10,404 −4,763 −4,791 −6,389 −6,397

Panel B. Income

Study 1 Study 2 Study 3
(1) Personal (2) Household (3) Personal (4) Household (5) Personal (6) Household

ω 0.007 0.051 0.127 1.750 0.001 0.001
(<0.001) (0.186) (0.294) (0.042) (0.017) (0.061)

ρ 1.000 0.636 0.342 0.290 0.953 0.920
(0.758) (0.567) (<0.001) (<0.001) (0.378) (0.024)

θ 1.073 1.134 0.395 -1.882 0.831 0.831
(<0.001) (<0.001) (0.001) (<0.001) (<0.001) (<0.001)

µ 0.179 0.180 0.285 0.283 1.808 1.749
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

Nobs 19,761 19,216 7,822 7,548 10,148 9,903
Nind 3,300 3,209 415 402 2,030 1,981
logL −11,894 −11,629 −5,016 −4,826 −6,766 −6,608

Notes: <0.001 indicates a positive number smaller than 0.001. The results in parentheses are two-
sided p-values, adjusted for clustering at the individual level; the corresponding parameter is as-
sumed to be zero under the null hypothesis, except for ρ which is assumed to be equal to unity. Ncho

(Nind) is the number of choice observations (individuals). logL is the maximized log-likelihood.
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Table A4: Study 1 — Subsamples Facing Different Incentives

Panel A. Wealth

Real-Norm Hypo-Norm Hypo-High
(1) Personal (2) Household (3) Personal (4) Household (5) Personal (6) Household

ω <0.001 <0.001 <0.001 <0.001 0.002 0.001
(0.080) (0.421) (0.301) (0.316) (0.231) (0.160)

θ 0.771 0.757 0.693 0.697 1.246 1.248
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

µ 0.172 0.173 0.165 0.165 0.200 0.200
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

Ncho 6,826 6,874 5,263 5,305 4,902 4,932
Nind 1,139 1,147 878 885 1,003 823
logL −4,227 −4,268 −3,273 −3,299 −2,730 −2,745

Panel B. Income

Real-Norm Hypo-Norm Hypo-High
(1) Personal (2) Household (3) Personal (4) Household (5) Personal (6) Household

ω 0.005 0.001 0.004 <0.001 0.295 0.002
(<0.001) (0.139) (0.006) (0.850) (0.042) (0.931)

θ 0.976 0.866 0.872 0.678 1.415 1.216
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

µ 0.174 0.176 0.164 0.161 0.207 0.205
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

Ncho 7,946 7,701 6,142 6,004 5,673 5511
Nind 1,326 1,285 1,026 1,003 948 921
logL −4,890 −4,776 −3,800 −3,730 −3,177 −3,106

Notes: <0.001 indicates a positive number smaller than 0.001. The results in parentheses are two-
sided p-values, adjusted for clustering at the individual level; the null hypothesis assumes that the
corresponding parameter is equal to zero. Ncho (Nind) is the number of choice observations (indi-
viduals). logL is the maximized log-likelihood. Standard errors reported in parentheses, adjusted
for clustering at the individual level.
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Table A5: Study 2 — Subsamples Facing Different Types of Choice Tasks

Panel A. Wealth

Holt and Laury Tanaka et al.
(1) Personal (2) Household (3) Personal (4) Household

ω <0.001 <0.001 <0.001 <0.001
(0.241) (0.418) (0.716) (0.025)

θ 0.759 0.740 0.431 0.425
(<0.001) (<0.001) (<0.001) (<0.001)

µ 0.238 0.209 0.184 0.184
(0.056) (0.037) (<0.001) (<0.001)

Ncho 1,930 1,960 5,460 5,488
Nind 193 196 195 196
logL −1,095 −1,109 −3,524 −3,543

Panel B. Income

Holt and Laury Tanaka et al.
(1) Personal (2) Household (3) Personal (4) Household

ω <0.001 <0.001 <0.001 <0.001
(0.122) (0.046) (0.248) (0.102)

θ 0.708 0.722 0.433 0.413
(<0.001) (<0.001) (<0.001) (<0.001)

µ 0.161 0.176 0.187 0.187
(0.022) (0.028) (<0.001) (<0.001)

Ncho 2,110 2,060 5,712 5,488
Nind 211 206 204 196
logL −1,169 −1,143 −3,696 −3,547

Notes: <0.001 indicates a positive number smaller than 0.001. The results in parentheses are two-
sided p-values, adjusted for clustering at the individual level; the null hypothesis assumes that the
corresponding parameter is equal to zero. Ncho (Nind) is the number of choice observations (indi-
viduals). logL is the maximized log-likelihood. Standard errors reported in parentheses, adjusted
for clustering at the individual level.

A-11



Table A6: Demographic Specifications

Panel A. Wealth

Study 1 Study 2 Study 3
(1) Personal (2) Household (3) Personal (4) Household (5) Personal (6) Household

ω: constant <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
(0.449) (0.712) (0.984) (0.581) (0.759) (0.838)

female <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
(0.449) (0.712) (0.984) (0.581) (0.581) (0.838)

financial <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
control (0.864) (0.563) (<0.001) (0.315) (0.760) (0.840)

household <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
head (0.668) (0.809) (0.984) (0.100) (0.786) (0.950)

θ 0.890 0.886 0.504 0.503 0.756 0.756
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

µ 0.180 0.180 0.297 0.297 1.587 1.588
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

Ncho 16,991 16,997 7,390 7,390 9,580 9,590
Nind 2,835 2,836 388 388 1,916 1,918
logL −10,319 −10,331 −4,771 −4,767 −6,383 −6,390

Panel B. Income

Study 1 Study 2 Study 3
(1) Personal (2) Household (3) Personal (4) Household (5) Personal (6) Household

ω: constant 0.013 0.004 <0.001 <0.001 0.001 <0.001
(0.016) (0.011) (N/A) (0.983) (0.603) (0.558)

female −0.009 −0.004 <0.001 <0.001 −0.001 <0.001
(0.070) (0.011) (N/A) (>0.999) (0.614) (0.575)

financial 0.002 0.005 <0.001 <0.001 <0.001 <0.001
control (0.573) (0.219) (N/A) (0.999) (0.876) (0.904)

household −0.004 −0.001 <0.001 <0.001 <0.001 <0.001
head (0.450) (0.575) (N/A) (>0.999) (0.909) (0.547)

θ 1.077 0.982 0.525 0.512 0.827 0.844
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

µ 0.178 0.178 0.296 0.297 1.714 1.684
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

Ncho 16,277 15,863 6,976 6,712 9,155 8,930
Nind 2,716 2,647 370 358 1,831 1,786
logL −9,731 −9,532 −4,491 −4,323 −6,079 −5,928

Notes: <0.001 indicates a positive number smaller than 0.001; >0.999 indicates a positive number
which is greater than 0.999 but smaller than 1; and finally <0.001 indicates a negative number
whose absolute value is smaller than 0.001. The results in parentheses are two-sided p-values,
adjusted for clustering at the individual level; the null hypothesis assumes that the corresponding
parameter is equal to zero; (N/A) indicates non-calculable. Ncho (Nind) is the number of choice
observations (individuals). logL is the maximized log-likelihood.
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A.4 “Wider” Replication Results for LISS Panel

Our wide replication supports the finding of Andersen et al. (2018) that individ-

uals integrate a very small, if any, fraction of their personal wealth with experimen-

tal earnings. In particular, we have demonstrated that this finding is robust to (1)

a different population; (2) three different samples of mostly non-overlapping indi-

viduals; (3) alternative measures of wealth, as well as income, at the personal and

household levels; (4) different choice set designs, incentive structures, and stake

sizes; (5) controlling for gender, financial control, and household headship; and

(6) behavioral heterogeneity across deciles of the income and wealth distributions.

Despite its broad scope, our replication is based on the same type of structural

model used in the original study, which limits us to capturing unobserved hetero-

geneity across individuals only indirectly, through subsample analyses such as we

have conducted to address (4) and (6).

In this appendix, we widen the scope of our replication further to incorporate

an alternative model which directly accounts for unobserved heterogeneity across

individuals. Each structural parameter is indexed by the individual subscript n

henceforth, to denote the individual-specific values of the wealth or income inte-

gration parameter (ωn), the risk aversion parameter (θn), and the behavioral noise

parameter (µn). Two of our three samples include considerably more participants

than the original study, providing a suitable opportunity for exploring the empir-

ical identification of population heterogeneity.A4 Specifically, the study by Ander-

sen et al. (2018) is based on 442 individuals. Depending on the background finance

measure, the number of individuals in our estimation sample ranges from 2,835 to

3,300 in Study 1, 388 to 415 in Study 2, and 1,916 to 2,030 in Study 3.

We now specify the random parameter model of interpersonal heterogeneity

(McFadden and Train, 2000) that we estimate by applying the method of simulated

likelihood. We assume that the population consists of three types—or classes, in

A4We thank an anonymous referee for pointing this out.
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the terminology of latent class modeling (e.g. Doiron and Yoo, 2020)—of individ-

uals: Class 1 includes narrow framers (ωn = 0), class 2 includes individuals who

integrate €300 for every €1,000 in wealth or income (ωn = 0.3), and finally class

3 includes individuals whose integration parameter ω̄ is to be estimated from the

data (ωn = ω̄). The value of ωn for class 2 is the highest that we have plausibly

estimated in our replication results so far.A5 Let πc ∈ (0, 1) denote the population

share of each class c ∈ {1, 2, 3}, where
∑3

c=1 πc = 1; we estimate π1 and π2 from

the data, and derive π3 from this add-up restriction.A6 We further assume that the

population distribution of risk aversion parameters θn and log behavioral noise

parameters ln[µn] is multivariate normal. Let f
[
θn, ln[µn]

∣∣m,V
]

be the density

function representing this distribution, where m and V are its population mean

and variance-covariance matrix that we estimate from the data. Although it is pos-

sible to further generalize this model specification, our experience suggests that

empirical identification of the resulting model is likely to be fragile.A7 In fact, as

we discuss below, even estimating the current specification proved challenging in

the cases of Study 2 and Study 3, requiring us to impose an additional constraint

to enable the numerical optimizer to achieve convergence.

Besides the new assumptions concerning population heterogeneity, we main-

tain the same modeling assumptions as earlier. Thus, conditional on ωn, θn, and

µn, the sample likelihood function takes the same form as L[·] in equation (A4). By

integrating out the random parameters from each individual’s contribution to this

A5We have found this for the “Hypo-High” subsample of Study 1 in Table A4. The only higher
estimate in our analysis is for the sixth of personal income deciles in Study 3 (Figure A1), where
the ω parameter is almost equal to 1. As we discuss in the final footnote to the main text, however,
we consider this as a numerical blow-up symptomatic of weak empirical identification: We do not
find a similarly large estimate of ω using other measures of background finances, and furthermore
this estimate is paired with an unusually large estimate of the risk aversion parameter—namely θ
is almost equal to 30—which implies that the utility function is effectively flat.

A6Similar to the choice of the base group for a categorical variable in linear regression models,
the choice of which two shares to estimate is inconsequential to substantive estimation results.

A7For example, the numerical optimizer failed to achieve convergence when we specified the ωn

parameters of class 1 and class 2 as free parameters, instead of pre-specifying them as narrows
framers and partial integrators. Similarly, we encountered convergence failures when we modeled
heterogeneity in ωn using a log-normal or logit-normal distribution to allow for a continuum of
individual types, rather than the discrete three-point distribution on {0, 0.3, ω̄}.
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conditional likelihood, we obtain the unconditional likelihood function G[·] used

in the model estimation

G[γ] =
N∏

n=1

(
3∑

c=1

πc

(∫ ( T∏
t=1

Pnt[ωc, θn, µn]
)
f
[
θn, ln[µn]

∣∣m,V
]
dθndµn

))
(A5)

where γ = {ω̄; π1, π2;m,V } collects the population-level parameters, and {ω1, ω2, ω3}

is set to {0, 0.3, ω̄}. As with mixed logit models (McFadden and Train, 2000; Keane

and Wasi, 2013), the individual-level integrals above do not have analytic expres-

sions. We therefore simulate G[.] by using shuffled Halton sequences to generate

500 draws from f [·] per individual.

In Table A7, we estimate this model of population heterogeneity for Study 1,

using each of the four wealth and income measures in turn. Consider first the risk

aversion parameter θn. Our results are qualitatively similar across all four spec-

ifications, and to existing findings on preference heterogeneity in a general pop-

ulation (von Gaudecker et al., 2011; Harrison et al., 2020). Although the average

decision maker is risk-averse, there is considerable variation in the degree of risk

aversion across individuals: we find a positive population mean, along with a stan-

dard deviation which is comparable in magnitude. Combined with the assumed

marginal distribution of θn, these mean and standard deviation values suggest that

some 17% of the population are risk seekers.A8

As may be expected given our earlier estimates for various subsamples, we find

limited heterogeneity in the integration parameter ωn, reinforcing our conclusion

that narrow framing is a useful modeling assumption. The estimated population

shares indicate that narrow framers (ωn = 0) make up over 75% (wealth specifica-

tions) or over 65% (income specifications) of the population. Almost all of the rest

belong to the class with the unconstrained integration parameter, ωn = ω̄: this pa-

rameter is estimated to be small fractions, especially in personal wealth (ω̄ = 0.001)

A8Since risk seekers have θn < 0, their population share is equal to Φ[(0 − EV)/SD], where Φ[·]
denotes the standard normal distribution function; and EV and SD are the mean and standard
deviation of θn reported in Table A7.
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Table A7: Three-class Models for Study 1

Wealth Income
(1) Personal (2) Household (3) Personal (4) Household

SH: ω = 0 0.764 0.773 0.671 0.654
(<0.001) (<0.001) (<0.001) (<0.001)

SH: ω = 0.3 <0.001 <0.001 <0.001 <0.001
(0.656) (N/A) (0.270) (0.529)

SH: ω = ω̄ 0.236 0.227 0.329 0.346
(<0.001) (<0.001) (<0.001) (<0.001)

ω̄ 0.002 0.001 0.028 0.012
(0.002) (0.122) (<0.001) (<0.001)

EV: θ 0.872 0.874 1.012 1.021
(<0.001) (<0.001) (<0.001) (<0.001)

EV: ln[µ] -2.573 -2.573 -2.537 -2.527
(<0.001) (<0.001) (<0.001) (<0.001)

SD: θ 0.930 0.931 1.051 1.076
(<0.001) (<0.001) (<0.001) (<0.001)

SD: ln[µ] 0.711 0.709 0.682 0.667
(<0.001) (<0.001) (<0.001) (<0.001)

CORθ,ln[µ] -0.191 -0.200 -0.141 -0.128
(<0.001) (<0.001) (0.022) (0.074)

Ncho 16,991 17,111 19,761 19,216
Nind 2,835 2,855 3,300 3,209
logL -8,528 -8,614 -9,923 -9,686

Notes: SH is the population share of decision makers whose ω is equal to the corresponding value.
EV and SD are the population mean and standard deviation of the corresponding parameter.
CORθ,ln[µ] measures the population correlation between the two random parameters. <0.001 in-
dicates a positive number smaller than 0.001. The results in parentheses are two-sided p-values,
adjusted for clustering at the individual level; the null hypothesis assumes that the corresponding
parameter is equal to zero. In column (2), the standard error—hence the p-value—for the popula-
tion share of ω = 0.3 could not be computed (N/A) because the point estimate is practically equal
to zero (2.02× 10−58), which is at the boundary of the parametric space. Ncho (Nind) is the number
of choice observations (individuals). logL is the maximized log-likelihood.

and household wealth (ω̄ = 0.002) specifications. Finally, those with the relatively

large integration parameter (ωn = 0.3) make up less than 0.1% of the population.A9

We encountered convergence failures when estimating this model for Study 2

and Study 3, where the number of participants is smaller by approximately 87%

and 40% compared to Study 1.A10 For all three studies, however, we are able to

estimate a special case of equation (A5) that constrains π3 to 0. That is, a restricted

A9These share estimates are also statistically insignificant in all but one specification. The ex-
ception concerns household wealth, where the estimated share (2.02 × 10−58) virtually lies at the
boundary of zero, making it difficult to obtain the associated standard error and p-value.

A10These percentages refer to the personal income specification, where our estimation sample in-
cludes 3,300 individuals in Study 1,415 in Study 2, and 2,030 in Study 3. The sample sizes in the
other specifications show similar percentage differences.
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specification which assumes that the population consists of either narrow framers

with ωn = 0 or partial integrators with ωn = 0.3, and excludes the third class whose

ωn is an estimated parameter. Nevertheless, even with this simplification, some

convergence issues persist in Study 2 and Study 3, as we will describe shortly.

Table A8 reports this two-class model of population heterogeneity for all stud-

ies. In Study 1, the results largely align with our findings from the three-class

model, suggesting that virtually the entire population consists of narrow framers

or can be reasonably approximated as such: The estimated population share of

narrow framers ranges from 89% to 98%, leaving partial integrators as a small mi-

nority. This minority share of partial integrators with ωn = 0.3 is significantly

greater than 0 at the 5% level in the personal income specification only.

In Study 2, for the numerical optimizer to achieve convergence, we had to con-

strain the two-class model further by assuming that the behavioral noise parame-

ter µn does not vary across individuals.A11 Compared to Study 1, we find a smaller

share of narrow framers, but they still comprise a vast majority of the population:

Their estimated shares range from 82.2% to 91.3%. As in Study 1, the share of par-

tial integrators with ωn = 0.3 is not significantly greater than 0 at the 5% level for

either wealth measure, although it is for both personal and household income.A12

In Study 3, even after applying the homogeneity constraint on µn, we encoun-

tered convergence failures; we were able to obtain the results in Table A8 only

after replacing the logit kernel used in specifying Pnt[·] with the probit kernel.A13

Although empirical identification of the model is thus fragile, we again find a pre-

dominance of narrow framers, whose population share is estimated to range from

91% to practically 100%.A14

A11This is equivalent to assuming that ln[µn] follows a degenerate population distribution with
a standard deviation of zero. In the full model that allowed for three types of ωn, imposing this
constraint on ln[µn] did not resolve the convergence failure.

A12We also find relatively a large degree of heterogeneity in risk aversion in this study. Compared
to Study 1 and Study 3 where the standard deviation of θn is comparable to the mean, Study 2
yields a standard deviation that is nearly three times larger.

A13In relation to the latent variable in equation (A2), the probit kernel reflects the alternative as-
sumption that the noise term ϵnt follows a normal distribution, rather than a logistic distribution.

A14The estimated population share of narrow framers in either income specification is numerically
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Table A8: Two-class Models for All Studies

Panel A. Wealth

Study 1 Study 2 Study 3
(1) Personal (2) Household (3) Personal (4) Household (5) Personal (6) Household

SH: ω = 0 0.969 0.983 0.892 0.913 0.908 0.911
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

SH: ω = 0.3 0.031 0.017 0.108 0.087 0.092 0.089
(0.225) (0.471) (0.115) (0.187) (0.005) (0.007)

EV: θ 0.826 0.819 0.521 0.517 0.414 0.415
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

EV: ln[µ] -2.583 -2.589 -1.764 -1.763 -1.856 -1.858
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

SD: θ 0.894 0.883 1.399 1.403 0.375 0.373
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

SD: ln[µ] 0.718 0.723 0.000 0.000 0.000 0.000
(<0.001) (<0.001) (const.) (const.) (const.) (const.)

CORθ,ln[µ] -0.187 -0.215 0.000 0.000 0.000 0.000
(<0.001) (<0.001) (const.) (const.) (const.) (const.)

Ncho 16,991 17,111 7,390 7,448 9,580 9,590
Nind 2,835 2,855 388 392 1,916 1,918
logL -8,545 -8,614 -4,007 -4,033 -6,120 -6,126

Panel B. Income

Study 1 Study 2 Study 3
(1) Personal (2) Household (3) Personal (4) Household (5) Personal (6) Household

SH: ω = 0 0.890 0.959 0.859 0.822 >0.999 >0.999
(<0.001) (<0.001) (<0.001) (<0.001) (N/A) (N/A)

SH: ω = 0.3 0.110 0.041 0.141 0.178 <0.001 <0.001
(0.001) (0.126) (0.036) (0.015) (<0.001) (<0.001)

EV: θ 0.910 0.845 0.557 0.602 0.366 0.368
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

EV: ln[µ] -2.540 -2.553 -1.781 -1.770 -1.843 -1.848
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

SD: θ 0.934 0.905 1.429 1.611 0.401 0.397
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

SD: ln[µ] 0.676 0.691 0.000 0.000 0.000 0.000
(<0.001) (<0.001) (const.) (const.) (const.) (const.)

CORθ,ln[µ] -0.149 -0.143 0.000 0.000 0.000 0.000
(0.394) (0.115) (const.) (const.) (const.) (const.)

Ncho 19,761 19,216 7,882 7,548 10,148 9,903
Nind 3,300 3,209 415 402 2,030 1,918
logL -9,960 -9,721 -4,233 -4,071 -6,497 -6,339

Notes: >0.999 indicates a positive number which is greater than 0.999 but less than 1. (const.)
indicates that the the parameter is constrained to the value above. In columns (5) and (6), the
standard error—hence the p-value—for the population share of ω = 0 could not be computed
because, given machine precision, the point estimate is numerically equal to unity, which is at the
boundary of the parametric space. Unlike other estimation results in this paper, columns (5) and (6)
are based on the probit kernel instead of the logit kernel. All other information remains the same
as explained in the notes to Table A7.

equal to 1 in machine precision. Accordingly, we cannot compute standard errors and p-values for
these estimates. A-18
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