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Abstract 

Background Deep learning has emerged as a powerful tool in the analysis of biological data, including the analy-
sis of large metagenome data. However, its application remains limited due to high computational costs, model 
complexity, and difficulty extracting biological insights from these artificial neural networks (ANNs). In this study, 
we applied a transfer learning approach using the ESM-2 protein structure prediction model and our own smaller 
ANN to classify proteins containing the domain of unknown function 3494 (DUF3494) by their source environments. 
DUF3494 is found in a diverse group of putative ice-binding and substrate-binding proteins across a range of environ-
ments in prokaryotic and eukaryotic microorganisms. They present a compelling test case for exploring the balance 
between prediction accuracy and interpretability in sequence classification.

Results Our ANN analysed 50,669 DUF3494 sequences from publicly available metagenomes, and successfully 
classified a large proportion of sequences by source environment (polar marine, glacier ice, frozen sediment, rock, 
subsurface). We identified environment-specific features that appear to drive classification. Our best-performing ANN 
was able to classify between 75.9 and 97.8% of sequences correctly. To enhance biological interpretability of these 
predictions, we compared this model with a genetic algorithm (GA), which, although it had lower predictive ability, 
provided transparent classification rules and predictors. Further in silico mutagenesis of key residues uncovered a ver-
tically aligned column of amino acids on the b-face of the protein which was important for environmental differentia-
tion, suggesting that both methods captured distinct evolutionary and ecological aspects of the sequences. Feature 
importance analysis identified that steric and electronic properties of the protein were associated with predictive 
ability.

Conclusions Our findings highlight the utility of deep learning for classification of diverse biological sequences 
and provide a framework for combining methods to improve model interpretability and ecological insights.

Keywords Deep learning, Transfer learning, Artificial neural networks, Metagenomics, Domain of unknown function 
3494, Ice-binding proteins
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Background
Deep learning is becoming a powerful technology for 
complex modelling tasks in biology, which is being 
applied in studies on phylogenetics [1], biogeography 
[2] and protein structure predictions [3]. Input data for 
these models ranges from numeric to visual to language 
(text mining) and DNA/amino acid sequences. How-
ever, currently, much of the research using deep learning 
approaches with biological sequence data is restricted 
to high-level foundational tasks [4–6]. The potential to 
apply the high-level predictive capacity of deep learning 
to more specific downstream questions via transfer learn-
ing often remains restricted to simpler numeric categori-
cal [7] and image-based datasets [8], especially outside 
of human biological contexts. Additionally, despite its 
often high predictive power, model outputs are difficult 
to interpret biologically, especially when little functional 
data is available. 

Recent sequence-based deep learning models oper-
ate on a scale of millions of diverse training sequences 
[9] or entire genomes [10]. Building and training models 
for these fundamental biological approaches is complex 
and has significant computational costs [11–13], limit-
ing accessibility for smaller-scale applications. An alter-
native approach is to utilise transfer learning to adapt 
complex pretrained models to more specific tasks [14]. 
Transfer learning is the process by which a model devel-
oped for a general task is reused as the starting point 
for a model on a second, more specific task. For exam-
ple, transfer learning of complex models pretrained on 
vast protein sequence datasets can repurpose the broad 
structural information learned by these large models to 
smaller scale tasks such as predicting specific protein 
thermostability [15]. These models also have the benefit 
of providing an alignment-free encoding method allow-
ing comparisons of proteins with limited homology while 
avoiding the introduction of alignment-associated biases 
[16]. However, while transfer learning enables deep 
learning models to be repurposed for specific biological 
tasks, the inherent complexity and opacity of these mod-
els remain a significant challenge.

A major challenge in deep learning is the interpret-
ability of the models and therefore their ability to pro-
vide biological insights [17]. Explaining the predictions 
made by deep learning models is known as explanatory 
AI (xAI). Complex deep learning models can be made 
more transparent by creating simpler, interpretable mod-
els, such as linear regressions to explain the data. Neural 
additive models aim to create an inherently interpretable 
combination of smaller neural networks via linear addi-
tion [18]. Glass box approaches such as ExplaiNN [19] 
build on this method for convolutional neural networks 
(CNNs). These CNNs encode DNA sequences (i.e. the 

nucleotide bases, A, C, T and G) by representing each 
nucleotide numerically as a vector such as [1,0,0,0] for 
A, [0,1,0,0] for C, (i.e. one-hot encoding). They use these 
vectors as input and return explainable models that pre-
dict genomic features. In contrast to the opaque inner 
workings of black-box models, such glass box mod-
els make the decision-making process more transpar-
ent. Alternatively, more traditional approaches measure 
how small, sequential changes in the input data alter the 
output. For sequence data, this can be done as in silico 
mutagenesis, and although effective [20], depending on 
sequence length and model complexity, it can also be 
time-consuming to mutate every residue in a sequence 
and predict outcomes [21].

Genetic algorithms (GAs) provide a transparent analy-
sis on complex sequence data by finding predictive rules 
composed of logical expressions that can categorise the 
data. The stochastic optimisation algorithms of GAs con-
tain all possible solutions in their search spaces, which 
means that they can effectively identify complex patterns 
to distinguish groups in data [22]. As such, GAs are com-
plementary to ANNs and could help researchers inter-
pret the decision-making process and features used in 
the data by ANNs. The GA used by Urban et  al. (2024) 
and Smallbone et al. (2016) uses a form of discriminant 
function analysis to identify genetic variants responsi-
ble for phenotypic variation such as owl parrot plumage 
colour [23] or Monogenea infection resistance [24]. It is 
widely applicable as it can be used on any kind of cat-
egorical aligned sequence data. The advantage of a GA 
is that predictive rules are fully interpretable and can be 
understood in terms of logical expressions. As such, it is 
a powerful complementary tool to deep learning models 
by providing transparency.

Proteins containing the domain of unknown func-
tion 3494 (DUF3494) are a taxonomically diverse, 
environmentally widespread group that provide a test 
case for exploring the balance between prediction 
accuracy and interpretability [25]. DUF3494 is found 
in ice-binding proteins and substrate-binding proteins 
in microbial taxa across all domains of life, including 
organisms such as polar and temperate eukaryotic 
algae [26–28], bdelloid rotifers [29] and epiphytic bac-
teria [30]. The domain consists of a discontinuous left-
handed β-solenoid braced by an alpha helix, and it has 
frequently been passed between taxa via horizontal 
gene transfer [31]. Proteins containing the DUF3494 
have antifreeze activity in the form of thermal hys-
teresis (freezing point depression) and ice-recrystal-
lisation inhibition [25]. These properties may confer 
freezing tolerance by preventing cellular damage and 
allowing the creation of habitable liquid environments 
for survival in subzero temperatures. It has therefore 
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been the subject of extensive in  vitro characterisa-
tion [26, 32], providing a solid biochemical foundation 
for interpreting model outputs. The structural basis 
of variable antifreeze activity in different DUF3494-
containing proteins is an active area of research [33]. 
However, there are certain accepted paradigms, such 
as that features of importance include: an ice-binding 
site on the b-face of the β-solenoid containing hydro-
phobic amino acids with small side chains, a secondary 
column on the b-face containing hydrophilic resi-
dues possibly for hydrophobic interactions, stabilis-
ing interactions between the a-face and the alpha helix 
[34]. There may also be a direct role of the c-face in 
ice-binding [35]. The domain is found in protein fami-
lies PF11999 and PF20597 which have highly similar 
structures but poor sequence homology [28]. PF11999 
is found in most ice-containing and many ice-free 
environments (e.g. caves, lake sediment, hydrother-
mal vents) [36, 37]. Proteins in this family show some 
signals of environmental adaptation such as taxon-
specific domain architectures, and large amounts of 
structural and sequence diversity even within a single 
ice-containing environment [38]. Large amounts of 
variation within and between environments create a 
complex multiclassification task which is well suited to 
a deep learning approach. Examining sequences con-
taining this domain across a range of environments 
may reveal evolutionary adaptations that drive the 
high level of variability observed in this domain.

Here, we used a transfer learning approach to cre-
ate an artificial neural network (ANN) that can clas-
sify DUF3494 sequences by their source environment. 
We collected 50,669 DUF3494 sequences from publicly 
available metagenomes as input for our feedforward 
ANN consisting of sequential dense layers. After test-
ing different model architectures and hyperparameter 
optimisation, we assessed model performance. To shed 
light on the black box of the model, we examined char-
acteristics of DUF3494 sequences, identifying puta-
tive ice-binding sites, conserved regions and overall 
patterns in sequence diversity. We utilised a genetic 
algorithm (GA) [23, 24] as an interpretable supple-
ment to the ANN. We then performed targeted in 
silico mutagenesis based on results from the GA and 
classical sequence analysis to identify residues/struc-
tural features of importance for classifying DUF3494. 
Finally, we examined feature importance and corre-
lated important features with physicochemical proper-
ties of the protein sequences. Our results provide an 
accessible test-case for using deep learning methods 
for the classification of complex biological sequences 
and shed light on environment-specific features of 
DUF3494.

Methods
The aim of this study was to create an artificial neural 
network (ANN) that can classify DUF3494 sequences 
by their source environment, and to identify environ-
ment-specific sequence features that may inform on 
protein function and adaptation. We curated DUF3494 
sequences from metagenomes and used a transfer 
learning approach to build a smaller feedforward artifi-
cial neural network (ANN). To interpret the model, we 
employed a genetic algorithm (GA) to extract interpreta-
ble rules, performed targeted in silico mutagenesis to test 
the impact of specific residues on model predictions, and 
investigated feature importance of the ANN. This study 
was conducted in silico using publicly available metagen-
omic datasets spanning a range of environments.

DUF3494 sequence curation
DUF3494 sequences are involved in surface adhesion and 
ice-binding. To collect DUF3494 sequences from diverse 
substrates, a literature search was performed to collect 
environmental and biological surface-associated metage-
nomes. To obtain these surface-associated metagenomes, 
a Google Scholar search was performed. Search terms 
used can be found in Additional file  1: Table  1. Papers 
were filtered for publication post-2014, and the result-
ing 183 publications were manually scanned for correct 
data type (metagenomic), public availability of metagen-
omic sequences. Only Illumina sequences were selected 
to streamline computational processing. In total, data 
from 224 NCBI BioProjects were selected (Additional 
file  1: Table  2), comprising 6972 sequence read archive 
accessions.

In addition, 71 sea ice, seawater and sediment trap 
samples from the MOSAiC expedition in the central Arc-
tic Ocean were analysed [39]. Sequence preprocessing up 
to producing gene models for the MOSAiC samples was 
performed by JGI, with any differences outlined below.

Sequence preprocessing (Fig. 1)
Metagenomic sequences were downloaded from 
NCBI’s sequence read archive (SRA) using prefetch 
in combination with fasterq-dump (https:// github. 
com/ ncbi/ sra- tools). Sequences were trimmed for 
adapters and filtered for quality using BBDuk from 
BBMap/38.86 (https:// sourc eforge. net/ proje cts/ 
bbmap/). Sequences were then assembled into con-
tigs using metaSPAdes/3.15.5 [40]. In order to apply 
the appropriate gene modelling software, contigs 
were taxonomically classified as either “prokaryotic” 
“eukaryotic” or “unclassified” using kraken2 [41], and 
sorted accordingly. Gene prediction was performed 
using Prodigal/2.6.3 (prokaryotic and unclassified) 
(https:// github. com/ hyatt pd/ Prodi gal) and MetaEuk 

https://github.com/ncbi/sra-tools
https://github.com/ncbi/sra-tools
https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
https://github.com/hyattpd/Prodigal
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v6 (eukaryotic) [42]. Modelled genes were then 
scanned against the PFam-A sequence profiles using 
hmmsearch from hmmer/3.3 (http:// hmmer. org). The 
output was then filtered for the DUF3494-containing 
PF11999 (ice-binding like) and PF20597 (ice-bind-
ing like adhesive), and only genes containing these 
sequences were isolated. Genes were then filtered 
down to the hmmsearch hit region for the respective 
PFs (envelope start and end position) which should 
contain the DUF3494 region.

Sequences were filtered by length and e-value; all 
DUF3494 hit regions < 150 bp and any sequences with 
a hmmer domain e-value of > 1 ×  10−10 were removed. 
Any genes which contained more than one DUF3494 
domain were renamed to add unique identifiers so that 
each individual domain had a unique label.

Due to the lack of sequence homology between 
PF11999 and PF20597 [28] and more extensive func-
tional information availability, only PF11999 was ana-
lysed here.

Taxonomic assignment of genes annotated as 
PF11999 was performed using MMSeqs2 [43] against 
the RefSeq90 [44] and MarFerret [45] databases. 

Data exploration of PF11999 DUF3494s
An alignment of all DUF3494 sequences was generated as 
input for the genetic algorithm, benchmarking the ANN, 
and for use in interpreting outputs of the NN. Due to the 
large number of sequences (~ 50,000) and their diversity, 
traditional methods (ClustalO, MAFFT) produce inflated 
alignments that are many times the size of the actual gene 
[46]. These methods are also computationally too inten-
sive for large metagenome datasets like ours. We there-
fore used a method outlined in [47] for producing large 
alignments, using MAGUS and ensembles of hidden 
Markov models (MAGUS + eHMMs). Briefly, a random 
subset of 1000 sequences was selected to form a back-
bone alignment using MAGUS [48]. A tree was generated 
from this backbone alignment using FastTree [49]. UPP 
(Ultra-large alignments using Phylogeny-aware Profiles) 
[46] was then used to break the backbone into HMMs 
to align the remaining sequences against. The result-
ing alignment was then filtered to remove gaps. Initially, 
positions in the alignment which were > 50% gaps were 
removed from the alignment. Following this, sequences 
which were composed of > 30% gaps were removed from 
the dataset.

Fig. 1 Bioinformatics workflow for curation and acquisition of DUF3494 sequences. Code for each step of this workflow is available at https:// 
doi. org/ 10. 5281/ zenodo. 16266 612. Sequencing datasets were identified using an exhaustive literature search comprising 156 journal articles, 
and they were manually filtered for correct data types. Sequences were gathered using prefetch and fasterq-dump from the SRA toolkit. 
Sequences were cleaned and trimmed using BBDuk. Short read sequences were assembled into longer contigs using metaSPAdes. Each contig 
was taxonomically classified as either eukaryotic, prokaryotic (bacteria and archaea) or unclassified. Eukaryotic genes were identified in eukaryotic 
contigs using MetaEuk, while prokaryotic and unclassified genes were identified in their respective contigs using Prodigal. Gene models were 
then translated to amino acids and annotated with their protein families using hmmsearch. Genes containing DUF3494 were selected and filtered 
for hit length > 150AAs and e-value < 1 ×  10−10. Finally, these hit regions (envelopes) were selected from the larger protein sequence for input 
into downstream applications. Only PF11999 was used for downstream analyses

http://hmmer.org
https://doi.org/10.5281/zenodo.16266612
https://doi.org/10.5281/zenodo.16266612
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Positions of this filtered alignment were then mapped 
back onto the 3D structure of the DUF3494 domain by 
selecting 50 sequences with the least gappy alignments, 
running structural predictions with ESMFold and manu-
ally assigning alignment positions a structural label (e.g. 
a-face, b-face, c-face, between faces, alpha helix).

The most conserved regions across the alignment 
were identified by plotting the rolling average of Shan-
non diversity (Additional file  2) across three positions. 
A given position was considered conserved if it (a) had 
a rolling average Shannon diversity of < 1.50 and (b) the 
following position did not have a Shannon diversity of 
more than 0.1 lower than it. This way, we ensured that a 
position with average Shannon diversity below the cutoff 
threshold was not just the result of a single position in 
the rolling average window.

ESM‑2 encoding
Encoding is a fundamental step in data preparation for 
machine learning models, as it defines how the model 
processes categorical information (such as language), 
thereby also guiding the model’s capacity for learning 
new features of the data. For example, integer encoding 
of amino acids (AAs; letters, unprocessable by a model) 
as numbers (1–21) could bias the model to weight AA 
21 more than AA 1 due to the higher number. In order 
to ensure the model was provided with sufficient infor-
mation about the AA sequence, to allow it to learn other 
features about the sequence (such as information about 
secondary structure, tertiary structure, physicochemical 
properties), a transfer learning approach was used.

In transfer learning, a model that has been developed 
for a general task is reused as the starting point for a 
model on a second, more specific task. The output or 
intermediate layers of the initial model are repurposed 
for a more specific task with a potentially smaller train-
ing set. In this case, transfer learning was used to take 
the penultimate (33rd) layer of  Meta Fundamental AI 
Research’s Evolutionary Scale Modelling 2 (ESM-2) [9, 
50, 51], and the output of the 33rd layer was then used as 
input for our more specific classification task. Here, we 
refer to this as L33 encoding.

In the ESM-2 model, sequence inputs are passed 
through a deep Transformer encoder model which uses 
one-hot encodings of AAs, and learns additional posi-
tional embeddings through rotary position embedding 
[52], initially outputting a vector of log-probabilities for 
each position in the sequence [53]. These log-probabili-
ties are then fed into a language model which is trained 
in an unsupervised manner. During this task, 15% of each 
training sequence is masked and the language model is 
tasked with predicting the missing residues [9, 53]. The 
model thereby learns internal representations of the 

input sequence, leading to a language representation of 
the sequence [53, 54].

The folding module of the model was trained on 
325,000 experimentally determined protein structures 
and 12 million protein structures predicted by Alpha-
Fold2 in Protein Data Bank (PDB) format [9]. In this 
folding module, residue-residue contacts are learned, 
with the output being a 3D structural prediction for the 
protein.

Transfer learning based on ESM‑2
We extracted the average of per-residue representations 
from the 33rd layer of ESM-2 (L33), which encodes infor-
mation about the 3D structure of the protein, as well as 
information about the chemical properties, secondary 
structures and other features of the protein sequence. 
This layer contains a set of 1280 features for each amino 
acid in the sequence that capture learned features of the 
protein. We have averaged these into 1280 features for 
the whole protein sequence, as in [55] as our encoding. 
Embeddings from the penultimate 33rd layer are inde-
pendent of protein length. In contrast, the final layer out-
puts a PDB file that is sequence-length dependent and 
less machine-readable [56]. Hence, using the average per-
residue representations for the penultimate layer is a gen-
erally recommended approach for transfer learning [55]. 
L33 encoding was obtained using the fair-esm package in 
Python (https:// github. com/ faceb ookre search/ esm).

Artificial neural network architecture (Fig. 2)
L33 encoding was used as the starting point for our spe-
cialised artificial neural network (ANN) (Fig.  2). While 
the L33 model had the task of predicting the 3D structure 
of a protein given an AA sequence, our smaller ANN had 
the task of classifying sequences into their source envi-
ronments. We investigated a few model architectures 
with different levels of output specificity (the number of 
target environment types for classification) and training 
methods.

The ANN we have developed is a sequential model with 
two hidden dense layers containing 800 and 400 nodes 
respectively. ANNs contain input layers, hidden layers 
and output layers. The input layer is the L33 encoded 
AAs; that is, the 1280 feature vectors obtained from the 
penultimate 33rd layer in the ESM model, while the out-
put layer is the predicted environment type. The hidden 
layers are the layers between the input and output layers. 
For each node in these dense hidden layers, every input 
feature for this layer is multiplied by a different weight, 
resulting in a weighted sum of all input features. This 
weighted sum has a bias term added and is further passed 
through an activation function known as ReLU [57]. This 
function maps a negative number to 0 and a positive 

https://github.com/facebookresearch/esm
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number to itself; therefore, it introduces nonlinearity that 
allows the model to learn complex patterns in the data.

In the output layer, there is a node designed for each of 
the output classes. The outputs of the last hidden layer 
are passed through the output activation function, which 
normalises these raw scores into probabilities, generat-
ing a probability distribution across all output classes for 
each input sequence. The node with the highest probabil-
ity then becomes the predicted class. For binary classifi-
cation, the output activation function would be logistic, 
as this has the appropriate probability distribution. For 
multiclassification (i.e. > 2 classes), the output activation 
function is softmax (multinomial distribution) for the 
same reason.

ANNs learn by adjusting the weights in the hidden 
layer to optimise performance. Internally, performance 
is measured using a loss function, which represents the 
difference between the model output and the target out-
put (i.e. the labels in a training dataset). A categorical 
crossentropy loss function was used for multiclass clas-
sification (for further explanation of this function see 
Additional file  2). To minimise loss, we used the Adam 
(adaptive moment estimation) optimiser [58]. Adam uses 
the second derivative of the loss function to identify when 
its rate of change slows, and slows the search progression 
(learning rate, see below) accordingly to find a minimum. 
We tested three models with various hyperparameter 

combinations (Additional file  1: Table  3) to select envi-
ronment specificity and tune hyperparameters.

Testing environment specificity levels
We tested four levels of environment specificity with the 
goal of finding the model which was the most accurate to 
the highest level of environment specificity (Table 1).

Hyperparameter testing for artificial neural network (ANN)
We tested hyperparameter combinations for: number 
of training epochs, batch size and learning rate (for fur-
ther explanation, see Additional file 2). Additionally, we 
tested two different model architectures: two layers with 
800/400 hidden nodes and one layer with 800 hidden 
nodes. For all hyperparameter testing, the model was 
trained using TensorFlow [59].

Model performance was assessed using average accu-
racy and average training loss. Models with the lowest 
average loss and highest accuracy combinations were 
then assessed with a confusion matrix. The confusion 
matrix identified the true positive and true negative 
rates, differentiating specifically which outputs were 
misclassified into which classes. The high performing 
model, which was the most consistently accurate across 
classes, was then considered the overall “best perform-
ing” model. The goal was to identify which model(s) 
were not only overall the best performing but which 

Fig. 2 Building and training an artificial neural network (ANN) to classify PF11999 DUF3494 sequences by environment. We ran FAIR’s Evolutionary 
Scale Model 2 and extracted the average per-residue model weights from the penultimate layer (L33) as the input for our own smaller ANN. 
Sequence embeddings were separated into test (20%) and training (80%) datasets, and the test data was withheld to assess model predictive 
capacity after training (see the “Methods” section). ANN performance was assessed on the training set and the process was repeated for different 
hyperparameter values and model architectures, with training/validation accuracy and loss recorded each time. Code is available at https:// doi. org/ 
10. 5281/ zenodo. 16266 612 

https://doi.org/10.5281/zenodo.16266612
https://doi.org/10.5281/zenodo.16266612
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successfully characterised sequences from every envi-
ronment correctly more often than misclassifying them. 
Models which misclassified any environment more often 
than they classified it correctly would be discarded on the 
basis of the confusion matrix.

Running the artificial neural network (ANN)
The model was trained using TensorFlow [59]. Test and 
training datasets were separated into mutually exclusive 
groups using StratifiedShuffleSplit from scikit-learn, with 
a single 80%/20% split. The training data was then used 
to build the model, while the test data was held aside. As 
our aim was to gain biological insights into an existing 
dataset, rather than test predictive power, we followed 
the standard approach of selecting an unseen subset of 

our dataset as the test dataset, rather than curating and 
processing a completely separate dataset.

Stratified sampling was used to minimise the effect of 
class imbalances. Additionally, to account for class imbal-
ance, we applied class weighting during model training. 
A penalty proportional to the number of sequences in 
each environment was assigned, ensuring that lower-
abundance classes received greater emphasis. This 
weighting mechanism helps mitigate biases introduced 
by imbalanced training data and improves classification 
performance across all environmental categories. Class 
weights were computed using compute_class_weight 
from scikit-learn. fivefold cross validation was performed 
using KFold from scikit-learn. The model was a sequen-
tial model containing only fully connected (dense) layers: 

Table 1 Sample distributions for different environment types and their labels under different environmental splits. Samples were 
grouped into five environment labels based on scientific relevance, environment abundance and model misclassification patterns. 
Samples which did not fit into these groups and which had < 1/100 abundance of the largest grouping were removed from Model 3. 
The large class imbalance(especially between polar marine and subsurface) was accounted for in the model using class weights to 
penalise prediction of more abundant environments

Environment # of samples Model 1 (11 labels) Model 2 (8 labels) Model 3 (5 labels)

Sea ice 23,277 Sea ice Polar marine Polar marine

Melted sea ice 4171

Arctic seawater 2623 Arctic seawater

Arctic ocean sediment 2578 Marine sediment

Permafrost soil 1212 Frozen sediment Frozen sediment Frozen sediment

Cryoconite 5989

Glacier sediment 362

Glacier ice 2427 Glacier Glacier Glacier

Glacier snow 2399

Glacier surface 161

Polar endolith 7787 Rock Rock Rock

Rock 32

Rock varnish 30

Deep subsurface 392 Subsurface Subsurface Subsurface

Cave sediment 61

Cave groundwater 110 Cave groundwater NA

Aquatic sediment rhizosphere 106 Aquatic plant Non-frozen sediment

Aquatic phyllosphere 25 NA

Aquatic leaf 24

Aquatic root 53

Soil rhizosphere 102 Terrestrial plant Non-frozen sediment NA

Phyllosphere 1 NA

Marine biofilm 36 Biofilm Biofilm

Microbial mat 29

Glacier fed lake water 57 Glacial lake NA

Subglacial lake 4

Hydrothermal vent 1 NA Non-frozen sediment

Human oral 1 NA NA
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the input layer, two hidden layers and the output layer. 
The input layer was the average per-residue L33 encod-
ing for the DUF3494 AA sequence. The first hidden layer 
was a dense layer with 800 neurons (hidden nodes) and 
used the ReLU activation function. The second hidden 
layer was a dense layer containing 400 hidden nodes, also 
using the ReLU activation function. A dropout rate of 
50% was applied to each hidden layer during training—
that is, at each training step, half of the neurons in each 
hidden layer are randomly selected and their outputs set 
to zero. The output layer contained five units (the num-
ber of output classes) and used the softmax activation 
function. The model used categorical crossentropy as its 
loss function, and the Adam optimiser (tensorflow-keras) 
with 1 ×  10−4 learning rate was used. The model was 
trained for 200 epochs with a batch size of 512.

Benchmarking the ANN
Our ANN was benchmarked against hidden Markov 
model (HMM) approaches and logistic regression 
approaches. For the HMM approach, we randomly sam-
pled 80% of sequences from each environment. These 
sequences were aligned using MAGUS + eHMMs as 
described above to produce HMMs. This set of HMMs 
was concatenated, and the remaining 20% of sequences 
were then searched against it using hmmsearch from 
hmmer/3.3 (http:// hmmer. org). The best hit was deter-
mined by the highest bit score for the full sequence. We 
then compared the predicted environment (best hit) to 
the actual environment to compare performance to our 
ANN.

We compared ANN performance against 2 logistic 
regression models: one using positional identity as input, 
and one using L33 encodings as input. For the positional 
model, the MAGUS + eHMM alignment generated in 
Sect. 3 was used as input. Each position in the alignment 
was one-hot encoded according to a dictionary of all pos-
sible amino acids + a gap character (21 possible values). 
This resulted in 3885 (21 × 185) input features. Inputs 
were split into test and training datasets in the same 
manner as for the ANN, described above. A multiclass 
(5) logistic regression model was built in Python using 
LogisticRegression from scikit-learn. The model used 
the saga solver with L2 regularisation and 6000 iterations 
and included the same class weighting as the ANN. The 
same modelling approach was used for logistic regression 
of L33 encodings, but with 2000 iterations. The models 
were assessed for accuracy, F1, precision and recall on 
the test dataset.

For proof-of-concept regarding building a version of 
our ANN to classify unalignable sequences, we also gen-
erated a model which included both known DUF3494-
containing Pfams: PF11999 and PF20597. The proteins 

were L33 encoded; the model was trained for 500 epochs 
with a batch size of 512. This version of the model 
included frozen sediment, natural biofilm, rock and sub-
surface environments. We also generated sample pro-
tein structure predictions using ESMFold and sample 
multiple sequence alignments using ClustalOmega to 
demonstrate the limited sequence homology between, 
compared to within, these protein families.

We assessed phylogenetic signal in the data using a 
multinomial logistic regression model of environment 
type ~ phylum. Only sequences which had a phylum-level 
taxonomic classification were included in this model. The 
association between environment type and phylum were 
assessed versus a null model using McFadden’s pseudo-
R2. The nnet package in R [60] was used for multino-
mial regression, and the performance [61] package was 
used to calculate R2. We produced a phylogenetic tree of 
DUF3494 sequences using FastTree [49], and visualised it 
using ggtree [62].

Feature importance
Feature importance was used to identify features 
which might be important in differentiating DUF3494 
sequences from different environments. Shapley additive 
explanations (SHAP) were used to identify which fea-
tures were overall the most important for model predic-
tive capacity. This method builds off of Shapley values: a 
method from coalitional game theory for assigning pay-
outs to individual players based on their contribution to 
the overall payout [63]. In the context of an ANN, they 
represent a weighted average marginal contribution of a 
feature to the overall prediction. SHAP is an extension of 
these Shapley values which allows for better global inter-
pretability [64] by translating Shapley values into an addi-
tive feature attribution model. SHAP was performed with 
the SHAP package in Python (https:// github. com/ shap). 
The features with the highest magnitude of importance 
were selected for feature interpretation.

The effects of phylogenetic structure on model classifi-
cation ability were characterised using a binomial logis-
tic regression model of ANN classification correctness 
(correct/incorrect) ~ phylum. Only sequences which had 
a phylum-level taxonomic classification were included in 
this model. The association between classification cor-
rectness and phylum was assessed versus a null model 
using McFadden’s R2.

Running the genetic algorithm (GA)
The custom genetic algorithm is a generalised form of 
Discriminant Function Analysis (DFA). It takes a matrix 
where the rows are sequence identifiers and columns 
are predictor variables. These predictor variables can be 
amino acids in aligned sequences. An additional column 

http://hmmer.org
https://github.com/shap
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represents the target variable, in this case, an environ-
ment label. The algorithm starts by generating a set of 
random expressions based on the predictor variables, 
such as (position 50 = A). This is then evaluated against 
each sequence as true or false. The algorithm can also 
generate compound expressions that are linked with logi-
cal operators; for example, ((position 50 = A) AND (posi-
tion 73 < > T) OR (position 102 = I)). Each of the random 
expressions is then scored against the target expression 
(e.g. R = True) using a penalised phi-coefficient. The low-
est scoring rules are discarded—the remainder being pre-
served as the “breeding” population. The algorithm then 
loops through a user-defined number of “generations”, 
using the breeding population from which to mutate or 
recombine new predictive expressions, plus a number 
of entirely new random expressions. These are evalu-
ated as described above, and the populate of expressions 
“evolves” to give the best set of predictive expressions. 
The algorithm is written in Transect-SQL and imple-
mented in Microsoft SQL Server version 16.0.1121.4. The 
GA was run for 2500 generations. Two iterations of the 
GA were run. For the first batch of analyses, the phi pen-
alty was relaxed to allow expressions to contain up to 20 
parameters, and for the second, it was restricted to just 
two parameters.

Model interpretation
To interpret model outputs and shed light on the bio-
logical drivers of its predictive capacity, we correlated 
important features with physicochemical parameters 
and used an in silico mutational approach. Firstly, we 
correlated the three most important features identified 
by the feature importance analysis above with the 50 
physicochemical parameters which comprise vectors of 
steric and electronic properties (VHSE8) [65] to assess 
the biological significance of these features. This correla-
tion analysis was performed on a stratified 100-sequence 
subsample (equal proportions for each environment) of 
the DUF3494 dataset. The value of each physicochemi-
cal parameter for a given amino acid was taken from the 
Amino Acid Index Dataset (genome.jp) and averaged for 
each sequence. The percentage explained variation (R2) 
was calculated using a Linear Regression analysis for 
each feature versus average physicochemical property of 
the entire amino acid, as well as for each of the faces of 
the protein.

We also constructed in silico mutant sequences, ran-
domly replacing amino acids based on residues of impor-
tance identified with the GA (Additional File 2). The 
full-length in silico mutants were then run through the 
L33 encoding process as described above. The ANN 
was then used to predict the environment of each of 
these new sets of sequences, as well as their original 

counterparts. The accuracy and misclassification pattern 
of these predictions were then used to identify whether 
a given region of the protein had a larger impact on the 
predictive ability of the model.

Results
Artificial neural network (ANN) output
We trained our ANN on 50,669 PF11999  DUF3494 
sequences spanning five distinct environmental contexts: 
frozen sediment, rock, polar marine, subsurface and gla-
cier ice. The best performing ANN had two hidden layers 
with 800 and 400 hidden nodes respectively. It contained 
five target environments: frozen sediment, rock, polar 
marine, subsurface and glacier ice. Batch size was 512 
and learning rate 1 ×  10−4. The model was trained for 300 
epochs to minimise overfitting. Mean accuracy of this 
model for test sequences was 92.0% with mean validation 
loss of 0.248, identical to the mean training loss of 0.201 
(Fig. 3a) indicating stable learning across sequence types. 
The average per-environment accuracy was 85.0% ± 9.6%. 
Classification accuracy varied between environments, 
with frozen sediment being least accurately classified 
(75.9%) and polar marine being the most accurately clas-
sified (97.85%) (Table  2; Fig.  3b). Notably, classification 
accuracy for subsurface sequences ranked middle among 
the five classes (83.19%) despite this class having the few-
est data points.

Misclassification patterns from ANN predictions 
imply that there may be shared feature(s) between 
sequences from frozen sediment, glacier ice and sub-
surface sequences that can make them difficult to dis-
tinguish from each other, but not rock and polar marine 
sequences (Fig. 3b). The most common misclassifications 
were glacier ice sequences that were being predicted as 
frozen sediment (17.22% of glacier ice sequences), fro-
zen sediment sequences being predicted as glacier ice 
(15.21% of frozen sediment sequences), and subsurface 
sequences being predicted as frozen sediment (11.97% of 
subsurface sequences).

Class weighting and stratified sampling during train-
ing with k-fold cross validation were applied to account 
for imbalance in the number of samples in different envi-
ronments. The inclusion of class weights improved clas-
sification accuracy for subsurface samples from 74.23% 
without class weights to 83.19% with class weights, but 
did not affect overall model accuracy.

We benchmarked our ANN against a number of 
other multiclassification approaches: a HMM-based 
approach, logistic regression (LR) based on positional 
identity (LR-PI), and LR based on L33 encoding (LR-
L33) (Additional file 3). For our HMM-based approach, 
80% of sequences per environment were used to gener-
ate HMMs, and accuracy was assessed based on which 
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environment had the highest bit score for the remain-
ing 20% of sequences. This approach had an average 
49.7% ± 28.7% per environment accuracy. A multiclass 
LR-PI model with L2 regularisation performs slightly 
worse compared to our ANN in terms of average accu-
racy on an unseen test set (88% for LR-PI versus 92% 
for the ANN). The average per environment accuracy 

is also lower compared to our ANN (80.6% ± 11.6% 
for LR-PI versus 85.0% ± 9.6% for the ANN). Impor-
tantly, our ANN uses alignment-free encoding—spe-
cifically, embeddings from the ESM model—which do 
not require the sequences to be of equal length or to 
share sequence similarity. This enables the model to 
be applied broadly to variable and potentially diver-
gent sequences. In contrast, any method that uses 
positional identity directly as input, such as the LR-PI 
model or our genetic algorithm approach, inherently 
requires sequences to be the same length. This can be 
achieved through trimming, padding, or alignment 
(sequence or structure), which has several downsides 
including computational feasibility (see Additional 
file 3 for further details and comparisons). To concep-
tually demonstrate this, we include a version of the 
ANN which includes PF20597, which shares limited 
sequence homology with PF11999 (Additional file 3).

Features of DUF3494 sequences
To investigate whether PF11999  DUF3494 sequences 
bear environment-specific signatures that reflect adapta-
tion, we examined biologically relevant residues across 

Fig. 3 An artificial neural network (ANN) is able to classify PF11999 DUF3494 sequences by environment with 92.0% accuracy and minimal 
overfitting. a Training (blue) and validation (orange) loss curves for the fivefold cross validation training of the best performing ANN with 2 hidden 
layers (800 and 400 hidden nodes respectively), batch size of 512 and learning rate of 1 ×  10−4, trained for 300 epochs a dropout rate of 50% applied 
to each hidden layer during training. The X-axis is the number of training epochs (max 200) and the Y-axis is the loss value. Lines cross around 100 
epochs with training loss continuing to decrease at a faster rate than validation loss. Model training is stopped when validation loss is no longer 
decreasing. b Confusion matrix for the best performing model shows that frozen sediment, glacier ice and subsurface sequences may share 
features that make them difficult to distinguish. Predicted class is on the X-axis and true class is on the Y-axis. Squares are coloured according 
to the percentage of that class’s true sequences which were predicted as the corresponding X-axis class. Darker blue corresponds to a higher 
proportion of sequences. Frozen sediment sequences were correctly classified 75.9% of the time, and were most often misclassified as glacier ice. 
Glacier ice sequences were correctly classified 76.54% of the time and were most often misclassified as frozen sediment. Polar marine sequences 
were correctly classified 97.81% of the time and were rarely misclassified. Rock sequences were correctly classified 91.5% of the time and were most 
often misclassified as frozen sediment. Subsurface sequences were correctly classified 83.2% of the time and were most often misclassified as frozen 
sediment

Table 2 Precision, recall and F1 for best performing artificial 
neural network. Precision refers to the number of true positives 
divided by the number of sequences predicted as that class. 
Recall refers to the number of true positives divided by the 
number of elements actually in that class. F1 score refers to the 
harmonic mean of the precision and recall

Neural network

Class Precision Recall F1 score

0: Frozen sediment 0.80 0.75 0.77

1: Rock 0.92 0.92 0.92

2: Subsurface 0.78 0.82 0.80

3: Polar marine 0.99 0.98 0.99

4: Glacier ice 0.67 0.78 0.72
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the protein’s structural faces (Table 3), assessed levels of 
sequence conservation and used ordination analyses to 
explore natural clustering of sequences by environment.

Overall diversity
Amino acid diversity of the domain varied significantly 
between environments, with the most conservation being 
observed in rock-associated environments. After adjust-
ment for position, sequences from rock-associated envi-
ronments had the lowest diversity, and polar marine and 
glacier ice having the highest (Fig.  4a) (ANCOVA; F4, 

919 = 27.92; p < 0.001). When L33 encodings of sequences 
(vectors of 1280 features per sequence) were reduced via 
PCA with 3 components, sequences could not be clearly 
differentiated by environment (Fig. 4b, Additional file 4: 
Fig. 1).

Phylogenetic signal
Environmental patterns in DUF3494 sequences may 
reflect lineage-specific ecological adaptations. We exam-
ined the relationship between phylum-level taxonomy 
and environment type to determine whether taxonomy 
predicts the environmental distribution of DUF3494 pro-
teins. Of the genes annotated with PF11999, 44.03% could 
be assigned to a phylum, an average of 40.4% ± 16.3% of 
sequences in each environment (Additional file 4: Fig. 2). 
42.45% of classifiable sequences were found in the polar 
marine environment despite just 32.1% of polar marine 
sequences being classified to the phylum level, as a result 
of the large number of DUF3494 sequences found in 
this environment. The subsurface environment had the 
highest proportion of classifiable sequences (75.3%) 
while rock had the highest proportion of a single phy-
lum (Actinomycetota; 42.2% of sequences). Using a 

Table 3 Conserved regions of DUF3494s fell on all three faces 
of the β-solenoid but not the α-helix. Positions in the DUF3494 
alignment which correspond to regions of the β-solenoid. 
The β-solenoid contains rows of β-sheets which are aligned 
horizontally and wrap around to form the solenoid. β-sheet 
position refers to which row number down the face of the 
solenoid the position is found on, while protein face refers to 
which face (a, b, c or between) of the protein the residue is found 
on

Position in DUF3494 
alignment

β‑sheet position Protein face

5–10 2nd from top b

17–20 2nd from top a

26–30 Top b

71–73 Bottom b

76–78 Bottom c

80–83 Bottom a

94–98 2nd from bottom c

105–109 2nd from bottom a

124–127 2nd/3rd from bottom c/a

132–135 3rd from bottom a

142–145 4th from bottom b

151–154 4th/5th from bottom c/a

169–173 5th/6th from bottom c/a

176–180 6th from bottom b

Fig. 4 PF11999 DUF3494 sequences show different levels of sequence conservation across the length of the protein and overall 
between environments, but do not cluster distinctly by environment with a PCA. a Rolling average of Shannon diversity (Formula 1) of AAs 
by environment across a filtered alignment of DUF3494 sequences. Rock has the lowest diversity overall while glacier ice and polar marine have 
the highest. b Principal components analysis of L33 encodings of DUF3494 sequences shows complex overlapping clustering of sequences 
from different environments. Note that each environment has been subsampled down to ≤ 500 sequences per environment for visibility
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multinomial logistic regression model with phylum as the 
sole predictor, and adjusting for class imbalance via class-
weighted likelihood estimation, we found that the model 
explained 48% of the variation in environment type 
(McFadden’s R2 = 0.480) after unclassified sequences were 
removed. This strong association suggests that some clas-
sifying patterns in DUF3494 sequences may be a result of 
evolutionary constraints, leading to a phylogenetic signal.

Important residues
To identify potential signatures of environmental adapta-
tion at the molecular level, we examined variation in spe-
cific amino acid positions across environments, focusing 
on 16 putative ice-binding sites that align vertically in 
“columns” along the b and c faces of the DUF3494 pro-
tein (Table 4; Additional file 3). We compared all columns 
on the b and c faces of the protein (Fig.  5) to identify 
putative ice-binding columns. As we were interested in 
positions where a small number of AAs (either T/S or 
A/G) were dominant, we calculated the Shannon diver-
sity index (H) of each position. We then selected the 

three columns with the highest proportion of their most 
abundant AA (Fig.  5e) and performed per-environment 
calculations on these columns.

Analysis of three selected columns revealed environ-
ment-specific patterns, with column 2 especially high-
lighting functionally relevant distinctions between all 
five environments which may reflect ice-binding abil-
ity. Examining the three columns of interest identi-
fied that these columns were often the least diverse in 
the rock environment (Fig.  5). Column 2 (b-face) was 
most frequently occupied by S and A, sometimes T 
(Fig.  5a). While rock sequences were less diverse, the 
AAs were inconsistent down the column. In contrast, 
in polar marine and glacier ice environments, the col-
umn was consistently dominated by hydrophobic AAs. 
Column 4 (b-face) was most frequently occupied by S 
and T (Fig.  5b). Rock, subsurface and frozen sediment 
sequences consistently contained hydrophobic residues 
T/S down the column, while polar marine and glacier ice 
environments also contained large proportions of other 
AAs. Column 0 (a-face) was generally less diverse and 

Fig. 5 Some columns of interest show environment-specific trends while others are consistent between environments. a.i. Column 2 on the b-face 
shows higher frequency and consistency of alanine (A) in polar marine and glacier ice environments while frozen sediment, rock and subsurface 
environments contain higher proportions of other amino acids (AAs), especially serine and threonine. The bottom residue in the column (residue 
87) is the most diverse across all environments except polar marine. a.ii. Location of column 2 residues on the b-face of the protein. b.i. Column 4 
on the b-face is dominated by threonine in all environments, but this is less consistent in polar marine and glacier ice environments. The bottom 
residue in the column (residue 89) is the most diverse across all environments except polar marine. b.ii. Location of column 4 residues on the b-face 
of the protein. c.i. Column 0 on the a-face is consistent across environments, containing glycine residues for four rows, followed by isoleucine/
valine and phenylalanine/tryptophan, and a final glycine. c.ii. Location of column 0 residues on the c-face of the protein. d Randomly selected 
residues do not show the same environmental differences or consistency as the columns, supporting that the previous panels illustrate biologically 
meaningful properties with AA sequences that are adapted to specific environments
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more consistent, with minimal environmental differences 
(Fig. 5c). Figure 5d shows randomly selected residues to 
illustrate that they do not show the same environmental 
differences as the AAs in Columns 2 and 4, specifically.

Genetic algorithm
To further identify environment-specific residues that 
may contribute to functional adaptation, we used a 
genetic algorithm (GA) to evolve predictive rules distin-
guishing sequences from different environments. The GA 
with a 20-parameter allowance was able to generate rules 
whose per-class accuracy was 72.3% ± 6.3%, which is less 
than the ANN (85.0% ± 9.6%). This predictive capacity 
was lowest for glacier ice (64.2% ± 2.4%) sequences and 
highest for polar marine sequences (78.7% ± 2.3%) (Addi-
tional file 1:Table 5). The most common positions of rules 
were positions 71 (29 rules) and 72 (22 rules) (Additional 
file 5). These positions correspond to the bottom loop of 
the predicted b-face of the β-solenoid (Fig.  6). The full 
rules are in Additional file 1:Table 5. 

When the GA was constrained to generate rules 
involving only up to two amino acids, predictive 

capacity was retained, revealing a consistent role for 
hydrophobicity and side-chain properties in environ-
ment-specific features (Additional file 1: Table 6). Rules 
generated by this run of the GA had per-class accu-
racy of 69.0% ± 6.4%. The predictive capacity was low-
est for glacier ice (61.6% ± 1.9%) and highest for rock 
sequences (76.4% ± 3.1%). Rules included 23 of the 64 
conserved positions (Fig. 6a). The most common posi-
tions were 106 and 72 (Fig. 6b). Certain AAs came up 
repeatedly in the ruleset, including phenylalanine, ala-
nine, leucine and asparagine. Rules for frozen sediment 
environments often contained the absence of hydro-
phobic AAs (F and A) at positions 106 (a-face), 72 and 
145 (b-face).

Feature importance and model interpretation
In silico mutations of PF11999  DUF3494 sequences 
revealed an essential role of column 2 of b-face resi-
dues in the model’s ability to differentiate between any 
environments (Fig.  7a). Conversely, changes based on 
GA rules had an environment-specific effect on model 
prediction (Fig.  7b). The original prediction accuracy 
of 84% decreased to 21% when Column 2 was mutated, 
and the maximum accuracy was 26.1% for any given 
environment. In silico mutations of residues of other 
columns were much less impactful (Table 5). When all 
positions identified by the GA were mutated simultane-
ously, the model’s ability to classify most environments 
was reduced, but not to the extent seen with Column 2 
alone. Interestingly, polar marine sequences remained 
94.7% classifiable even after the GA mutations, suggest-
ing either greater redundancy in predictive features or 
stronger overall sequence signal in this environment. 
Phylogenetic structure had a weak effect on model 
classification correctness where phylum-level classifi-
cation was possible (McFadden’s R2 = 0.15), likely due 
to the associations between environment and phylum 
described above. 

When features identified by SHAP (Shapley addi-
tive explanations) were correlated with hydrophobic, 
steric and electronic (HSE) properties of a subset of 100 
sequences, weak correlations with steric and electronic 
properties of the sequence were found (Additional 
file  1: Table  7). The three most important features 
for the whole model were features 1160, 234 and 854 
(Fig. 7d). Three HSE properties were weakly correlated 
with feature 854: average side-chain length (R2 = 0.22), 
amphiphilicity index  (R2 = 0.23) and positive charge 
(R2 = 0.27). L33 encoding and our ANN are likely cap-
turing complex, higher-order patterns that do not map 
directly onto single physicochemical properties.

Table 4 Identifying columns of interest across the 3 faces 
of PF11999 DUF3494 proteins. Columns is a structural term 
used to refer to vertical lines of amino acids down the 3 faces 
of the protein. We partitioned the faces into their columns 
and calculated Shannon diversity and the proportion of the 
single most abundant AA in that column in order to identify 
columns that were putative ice-binding sites. Columns with the 
lowest Shannon diversity and highest proportion of their most 
abundant AA were selected for further analysis (highlighted in 
blue)

Shannon 
diversity

Proportion of most 
abundant AA

Protein face Column #

2.41 0.27 b-face col_0

1.83 0.37 b-face col_1

1.88 0.47 b-face col_2

1.99 0.27 b-face col_3

1.94 0.42 b-face col_4

2.35 0.23 b-face col_5

2.38 0.26 b-face col_6

2.33 0.19 c-face col_0

2.49 0.25 c-face col_1

2.12 0.27 c-face col_2

2.54 0.20 c-face col_3

1.36 0.63 a-face col_0

2.51 0.18 a-face col_1

2.39 0.16 a-face col_2

2.72 0.16 a-face col_3

2.41 0.23 a-face col_4
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Discussion
Artificial neural networks (ANNs) are increasingly 
used to analyse big data in genomics, but have limited 

interpretability and accessibility. Here, we explored a 
metagenomics dataset of a taxonomically widespread 
domain involved in microbial antifreeze activity, using 

Fig. 6 Positions and characteristics of AA rules for PF11999 DUF3494 sequences in different environments based on analyses with the Genetic 
Algorithm (GA). a Positions of amino acid rules highlighted on structural alignments of DUF3494 protein structures. b The presence and absence 
of certain AAs at different positions along DUF3494. Green and red refer to rule components which dictate that a specific amino acid is present (=) 
or absent (< >) at that position
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an ANN and a genetic algorithm (GA), which provided 
additional insights into the biology driving this classifica-
tion. We obtained a total of 50,669 amino acid sequences 
of this domain of unknown function (DUF3494) from 
publicly available metagenome datasets. These sequences 
were used as input for our feedforward ANN to assess 
model performance. Depending on the model architec-
ture and hyperparameter optimisation, this ANN was 
able to classify to identify the environment with good 

accuracy (75.9% to 97.8%). We also explored a genetic 
algorithm (GA), which provided additional insights into 
the biology driving this classification, and it enabled us to 
understand which features were learned by our ANN.

Transfer learning
We used transfer learning with the ESM-2 model 
to build a smaller model that was able to clas-
sify PF11999  DUF3494 sequences by their source 

Fig. 7 In silico mutagenesis and feature extraction for the best performing artificial neural network (ANN) reveals a column of important 
residues and a weak correlation with side chain length. a Prediction accuracy for the ANN on a subset of 100 test sequences without mutations, 
for comparison. b When all positions identified by the 2-rule genetic algorithm are replaced with random residues, prediction accuracy is reduced, 
most notably for glacier ice, rock and subsurface. c When all positions in Column 2 on the b-face of the protein are replaced with random residues, 
predictive ability is lost for all environments. d Feature importance ranking for best performing ANN using mean SHAP values identifies that L33 
features 1160, 234 and 854 are the most important. e The strongest association between features and physicochemical properties was Feature 854, 
which is weakly positively associated with steric properties (i.) FAUJ880104 (STERIMOL length of the side chain); (ii.) FAUJ880111 (positive charge); 
(iii.) MITS020101 (amphiphilicity index)
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environment. This model was able to correctly classify 
a large proportion of sequences, and importantly, our 
model can do so without making sequence alignments. 
We then explored diversity and biologically relevant 
regions of these proteins to examine which residues 
are driving these environment-associated differences. 
We were specifically interested in the regions of these 
proteins which have been suggested to be involved 
with antifreeze functions. We identified a number 
of “columns” of amino acids corresponding to pro-
tein faces that were of particular importance for ANN 
learning. Some of these columns were consistent with 
putative ice-binding sites [34] and/or differences in 
protein diversity between environments. To comple-
ment these analyses, we analysed conserved regions of 
the sequence with a GA. While the GA could classify 
sequences less accurately than the ANN, it provided 
clear rules for classification. To compare both meth-
ods, and interpret predictions made by the ANN, we 
performed in silico mutations on certain residues and 
examined feature importance. The mutations revealed 
one column (Column 2 on the b-face) that was of par-
ticular importance for the ANN’s predictive capacity. 
In silico mutations of AAs in this column markedly 
compromised the predictive ability of the ANN, whilst 
mutating AAs in other columns had much less impact. 
Finally, feature importance and subsequent correlation 
tests revealed additional weak associations between 
important features and the physicochemical properties 
of the protein. These results provide a framework for 
using deep learning methods to gain biological insight 
into complex protein families.

Our results demonstrate that transfer learning com-
bined with a shallow feedforward ANN is effective in 
classifying complex biological sequence data. Our aim 
was to use this method to gain insights into an existing 
dataset, rather than to test predictive power. Our results 
support previous studies where two-layer feedforward 
ANNs (like ours) have been shown to be more effective 
at classifying “omics data” than alternative architectures 
[66]. ANN-based sequence classification tasks are often 
employed to improve on traditional methods such as for 
taxonomic classification [67] or disease prediction [66]. 
In the case of our model, however, we not only explored 
how these sequences can be classified by an ANN, but 
also how a combination of approaches can improve 
model transparency and biological interpretability.

Environmental datasets like ours often contain large 
class imbalances that can be effectively accounted for 
using class weighting as we have done here [68]. Our 
model was able to predict sequences from the least abun-
dant environments with comparable accuracy, show-
ing that this approach is well suited to environmental 
sequence data. Our single-layer model was only margin-
ally less accurate overall than our two-layer model, but it 
performed less well at classifying lower abundance envi-
ronments. Possibly, the second layer enabled the model 
to learn more about these less-represented environ-
ments. Transfer learning is an alternative to computing 
known features of the sequences [69] and it is a particu-
larly promising approach to study non-model systems. 
Our results support previous research that ESM-2 is an 
effective, accessible method for learning diverse features 
of protein sequences [15, 55], especially when extensive 
prior information is not available.

Genetic algorithm (GA)
The GA is an effective tool to complement an ANN. 
Firstly, the GA can be used as a “hypothesis generator” 
for in silico mutagenesis approaches. The GA can help 
identify residues that are likely to be more important for 
ANN learning, reducing the targets explored by in silico 
mutagenesis, which can be time-consuming [70]. We 
found that mutating the residues that had been identified 
as important by the GA had a meaningful impact on the 
ANN’s predictive capacity. Using prior biological knowl-
edge about the sequences to identify and mutate columns 
of interest also successfully identified important residues. 
However, this approach is limited to well-studied model 
proteins. The GA also successfully identified residues 
which had an effect on environmental classification, but 
it did so a priori without information. ESM-2 encod-
ing contains information about residue-residue contacts 
and physicochemical features [9] information which the 
GA did not have as input. In addition, the GA was able 

Table 5 Effect of in silico mutations of residues of importance 
on overall ANN prediction accuracy. Residues of importance 
identified by the GA with a two-parameter allowance 
were replaced with random amino acids. All GA residues 
of importance were mutated, as well as by protein face. 
Additionally, columns of importance identified through model 
tuning and sequence comparisons were mutated

Mutated region Number of residues Overall 
accuracy

None 0 84%

All GA residues 22 40%

a-face (GA) 5 81%

b-face (GA) 8 84%

c-face (GA) 4 88%

Between faces 5 86%

Column 2 (b-face) 7 21%

Column 4 (b-face) 7 84%

Column 0 (a-face) 7 79%
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to provide more interpretable results. Compared to the 
ANN, which showed very strong effects of mutating 
structurally local residues (i.e. columns), GA rules were 
spread across the protein.

Environmental adaptation of DUF3494 ice‑binding 
proteins
A combination of vertical inheritance constraints (i.e. a 
phylogenetic signal) and functional adaptation may be 
driving the observed differences in PF11999  DUF3494 
sequences between environments. We detected a mod-
erately strong association between environment and 
phylum (R2 = 0.48), which may be a sign that evolution-
ary history constrains DUF3494 diversity, as is found 
elsewhere [38]. For example, 42% of Rock sequences 
were classified as being Actinomycetota, supporting a 
possible association with taxonomy. We found evidence 
of convergence between polar marine and glacier ice in 
functionally important columns of the domain (Fig.  5). 
This is noteworthy because there is little taxonomic over-
lap between both communities, and there is not always 
a strong association between environment and phylum. 
While glacier ice and sea ice are very different as sub-
strates for microbial life [71] they may converge at the 
ice-microstructure scale, as both can contain high abun-
dances of pure ice with larger crystal sizes [72, 73]. Con-
versely, frozen sedimentary and subsurface environments 
have lower ice content [74] with high levels of humic 
substances and sediment. Large amounts of these impu-
rities shape ice microstructure and result in smaller ice 
grains with higher nucleation rates [75]. It is possible 
that an abundance of smaller ice grains rather than large 
crystals may select for different functions of DUF3494 
ice binding (discussed below) [76]; however, whether this 
would result in higher diversity in functionally impor-
tant columns is unclear (see Additional File 6 for further 
discussion of the environmental adaptation of DUF3494 
sequences)[77–79].

Molecular biology of DUF3494
Feature importance and in silico mutagenesis identified 
environment-specific variation in DUF3494 sequences 
which may inform us about the evolution of protein fam-
ily 11999 (ice-binding like). Examining these sequences 
at the level of environment specificity determined by the 
ANN allowed us to distinguish that polar marine and gla-
cier ice often show the same patterns down 2 columns of 
importance. In silico mutagenesis then revealed that the 
first column (b-face column 2) was essential for distin-
guishing between all environments. This column has been 
implicated in antifreeze efficiency in in  vitro studies of 
DUF3494 proteins [34]. The consistency of small hydro-
phobic alanines down this column in these environments 

is thought to form a “trough” which contributes to ice-
binding [80]. Mutations of alanine residues to bulkier 
side-chain AAs in this column of the protein have specifi-
cally been shown to diminish ice-binding activity [34, 80]. 
In less pure ice environments (frozen sediment, subsur-
face, rock) hydrophilic AAs serine, glycine and threonine 
are more dominant down the column, possibly implying 
lower ice-binding efficiency in these environments. Ice-
binding protein activity is usually quantified in terms of 
ice-recrystallisation inhibition (IRI) and thermal hystere-
sis (TH). In the former, the formation of large ice crystals 
is inhibited in favour of smaller, less damaging crystals, 
while in the latter, the freezing point of ice is depressed 
[25]. DUF3494 proteins display a diverse range of these 
functions; however, a structure–function relationship 
has not been systematically investigated [77, 81–83]. A 
well characterised ice-adhesin IBP from the Antarctic 
marine bacterium Shewanella frigidimarina (SfIBP) con-
tains only alanines down column 2 consistent with our 
observation in polar marine environments and has been 
shown to have high IRI and hyperactive TH activity [84]. 
Conversely, the DUF3494 from symbiotic bacteria associ-
ated with the polar sedimentary ciliate Euplotes focardii 
(EfcIBP) contains serine, threonine and alanine in this 
column [35]. This protein is 40 × less effective at IRI and 
slightly less effective at TH compared to the SfIBP and 
displayed atypical behaviour when exposed to ice com-
pared to other IBPs [84]. Through our ANN classification 
and in silico mutagenesis we have observed that this may 
be a more general ecological trend. 

Conclusions
This study demonstrates the successful application of 
an ANN and GA to classify PF11999  DUF3494 protein 
sequences by environment. The ANN’s environment-
specific predictions were complemented by the GA, 
which identified critical residues and sequence patterns. 
Together, these methods revealed sequence features that 
may drive environmental specificity, offering a novel 
approach to understanding DUF3494 protein diversity. 
The GA also served as an effective hypothesis genera-
tor for in silico mutagenesis, improving interpretability 
by identifying residues of importance. This combined 
approach highlights the potential of integrating GAs as 
pre-training tasks in ANNs, broadening their application 
in protein classification and evolutionary studies. 
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