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ABSTRACT
To accurately determine multi- centennial trends in climate data records of the Earth's surface temperature, measurements are 
commonly analysed in the form of anomalies relative to a climatological reference period such as the World Meteorological 
Organization (WMO) 1961–1990 baseline. One of many climate- monitoring challenges is that weather records of land surface 
temperature can be short, typically of the order of several years or decades, and often do not sufficiently overlap the reference 
period to allow calculation of the climatological normals needed to convert the observations to anomalies. Moreover, the volume 
of records of this type is increasing due to the rescue of early (pre- baseline) instrumental paper- based records and the growing 
prevalence of newer (post- baseline) weather stations. To address this, we apply a method to estimate the climatological normal 
for each calendar month of temperature time series that do not have sufficient data during the baseline period, using an approx-
imation to local expectation kriging with station holdout (LEK). This exploits the information in neighbouring time series to 
estimate the expected mean level of short series of observations. We apply the method to a global database of monthly land air 
temperature at 11865 stations based on CRUTEM5 but with the acquisition of an additional 1233 station series including some 
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that extend back to 1781, and with mid- latitude stations adjusted for exposure bias arising from the transition to Stevenson 
screens. We evaluate the LEK- based normals using climatological normals calculated directly from the station observations. 
Using this method, we obtain estimated normals for 2699 stations that did not previously have normals and we improve the 
estimated normals for a further 2611 which had previously been estimated from incomplete data. Finally, we demonstrate how 
incorporating these thousands of previously unused station observation fragments affects hemispheric temperature averages. 
Pre- 1850 data—primarily from Europe—show a modest warming trend but pronounced multidecadal variability that is greater 
than after 1850. The additional stations improve spatial coverage by a few percent in recent decades and raise pre- 1860 Northern 
Hemisphere temperature estimates by approximately 0.1°C.

1   |   Introduction

Weather stations measuring air temperature on land are at dif-
ferent elevations above sea level, and different countries calcu-
late average monthly temperatures using different methods and 
formulae. To avoid biases that could result from these differ-
ences, monthly average temperatures are converted to anoma-
lies from a climatological reference period where the coverage 
is best (see Appendix A for a discussion of the history that led 
to the WMO using 1961–1990 as the preferred reference period). 
This entails computation of the climatological reference period 
average for each station where the average temperature for each 
calendar month is called a climatological normal (more com-
monly referred to as a ‘normal’). Because many stations do not 
have complete records for the 1961–1990 period, several meth-
ods have been developed to estimate 1961–1990 averages from 
neighbouring records or using other sources of data (see Osborn 
and Jones 2014 and references therein).

A new methodology is needed to compute climatological nor-
mals for short, or long but gappy, instrumental measurement 
time series of land surface air temperature that do not overlap 
the climatological reference period sufficiently or at all. Short 
time series are a common occurrence. Early observers often 
carefully recorded temperature measurements several times a 
day continuously over the course of several years at a single 
location (see for example the records taken by the amateur ob-
server Dr. E. A. Holyoke from 1789 to 1826 in Massachusetts, 
USA, described in van der Schrier and Jones 2008). These data 
records provide snapshots of the weather centuries ago during 
the pre- industrial period and could be important anchors for 
long- term trend calculations. In recent decades, automatic 
weather stations (AWS), often located in inhospitable environ-
ments such as high mountains (Matthews et  al.  2020) or in 
Antarctica (Wang et al. 2023), provide series that fill in spa-
tial gaps but with little or no data during the reference period. 
In other cases, an instrument may operate for only a limited 
time or have had to be moved or replaced. In Antarctica, for 
example, temperature measurements at the Halley Research 
Station have moved with the station itself (King et al. 2021). 
The same is true of instruments at drifting ice stations in the 
Arctic (Przybylak and Wyszyński 2020).

As a result, the time series at a given geolocation, while import-
ant in terms of spatial sampling of the global temperature, can be 
very short. Even long time series may be punctuated by gaps in 
their record arising from an array of causes such as instrument 
failure or local impediments associated with staffing or regional 

conflict. Whatever the cause, whenever available observations 
do not sufficiently span the 1961–1990 climatological reference 
period, absolute temperature measurements are unable to be ac-
curately converted to anomalies and used in many of the gridded 
temperature analyses such as HadCRUT5 (Morice et al. 2021), im-
pacting the local accuracy of the estimated temperature anoma-
lies. Some global temperature analyses already address this issue 
by using methods that do not rely on converting each station re-
cord to anomalies from a fixed reference period. For example, the 
Berkeley Earth land temperature dataset (Rohde et al. 2013) ad-
justs the mean level of each station to an expected temperature 
anomaly based on other stations in the region.

There are a number of ways that climatological normals might be 
estimated when data gaps prevent their direct calculation from 
the station's data. These typically combine the incomplete station 
data with information on local temperature changes from another 
source, such as reanalysis data (Way and Bonnaventure  2015; 
Gillespie et  al.  2021), calibrated palaeoclimate data (e.g., Briffa 
et  al.  2013), climate model simulations (Mahony et  al.  2022) or 
gridded observational datasets (Jones and Moberg 2003; Way and 
Bonnaventure  2015). However, each method is sensitive to the 
choice of the alternative data source and is limited by the reliabil-
ity of the alternative data source for representing local temperature 
change. What is needed is a robust way to calculate climatological 
normals directly from available observations, such as regression 
against well- correlated neighbouring stations, as used by Perry 
and Hollis (2005) to estimate normals for UK stations. Such an ap-
proach is developed and evaluated here. The rationale for doing 
this is two- fold: first, to increase the spatio- temporal coverage of 
station anomalies contributing to gridded global surface tempera-
ture anomaly datasets, and second, to improve estimates of exist-
ing normals where they are currently estimated from incomplete 
data during the climatological reference period.

The rest of this data paper is organised as follows. In Section 2, 
we explain how we produced the dataset. We present the input 
and auxiliary datasets used and the quality control methods we 
have applied. We then describe the workflow for computation of 
the climatological normals for the global station database using 
local expectation kriging (LEK), together with the parameter-
isation and methodology we have adopted for its implementa-
tion. In Section 3, we present an evaluation of the outcomes of 
the dataset production approach, including the climatological 
normals produced with (LEK) and the coverage improvements 
arising from our approach. In Section 4, we describe the location 
and format of the dataset. In Section 5, we outline how the data-
set might be used for climate applications.

 20496060, 2025, 4, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/gdj3.70024 by U
niversity O

f E
ast A

nglia, W
iley O

nline L
ibrary on [11/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3 of 21

2   |   Dataset Production

Figure 1 presents a flowchart of the steps and procedures used to 
produce GloSAT LATsdb.

Newly acquired GloSAT station temperature observation time 
series were merged with the latest CRUTEM5 station database 
(Osborn et  al.  2021) to extend the record back to 1781. This 
station database was exposure bias adjusted (EBA) for known 
screen type changes using an exposure bias model for stations 
in the mid- latitudes (Wallis et al. 2024). Quality control was 
then performed and a first reliable year (FRY) flag was applied 
for each station. Normals and standard deviations (SD) were 
then computed following the CRUTEM5 approach (Osborn 
et  al.  2021) and outliers were detected and flagged (Osborn 
et al. 2021) to produce the primary input dataset GloSAT_eba. 
This was then processed with local expectation kriging (LEK: 
see Section 2.5). Kriging was applied to individual clusters of 
the global station archive, partitioned by a hierarchical clus-
ter analysis (Section 2.6). The resultant LEK processed clus-
ters were then merged. Finally, normals and SD estimated 
from the LEK values were combined with those available in 
GloSAT_eba to infill gaps in the climatological normals and 

SDs for the station database. Together, these form the GloSAT 
LATsdb dataset.

2.1   |   Input Weather Station Data

The CRUTEM5 1850–2021 station database (version 
CRUTEM.5.0.1.0, updated from Osborn et  al.  2021) was ex-
tended back to 1781 using early station records already in the 
Climatic Research Unit (CRU) archives. The CRU archives held 
one or more pre- 1850 observations for 335 CRUTEM5 stations, 
and these had already been subject to simple quality checks at 
the time they were acquired; where there was some doubt over 
the homogeneity of early data, a ‘first reliable year’ had been 
specified to indicate that earlier data should not be used. This 
is preferable to removing the earlier data, since it allows future 
studies to analyse the earlier data and potentially improve their 
homogeneity.

The total of 10,632 weather station records (excluding 7 with in-
complete location information) in the CRUTEM5 sdb was subse-
quently increased by 1233 through new acquisitions, and many 
more were improved by acquiring data to fill in short data gaps 

FIGURE 1    |    Processing flowchart for production of the GloSAT land air temperature (LAT) station database (sdb). Standard software flowchart 
symbols are used (drum: Database; rectangle: Process; stacked shape: Process applied multiple times to data subsets; parallelogram: Output). New 
GloSAT acquisitions are merged with the CRUTEM5 station database to back- extend the record to 1781. This is exposure bias adjusted (EBA; see 
Wallis et al. 2024) and quality controlled by applying a first reliable year (FRY) flag and removing outliers (Osborn et al. 2021) to produce the prima-
ry input dataset GloSAT_eba. Hierarchical cluster analysis (HCA) is used to partition this global archive prior to processing with local expectation 
kriging (LEK) from which climatological normals and standard deviations are computed to generate the output dataset GloSAT LATsdb.
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or to replace them with series that have improved homogeneity. 
These acquisitions and updates are summarised in Table 1. The 
spatio- temporal coverage of stations in the extended database is 
shown in Figure 2.

2.2   |   Exposure Bias Adjustments

The transition from earlier, non- standard, thermometer screen 
types to the Stevenson screen standard has been found to in-
troduce an exposure bias in many early temperature obser-
vations (Parker  1994; Wallis et  al.  2024). These biases were 
primarily introduced due to differences in the amount of solar 
radiation affecting the thermometer between screen types, with 
the largest biases generally associated with the transition from 
free- standing ‘open’ exposures during summer months. Wallis 
et  al.  (2024) characterised the exposure bias using 54 parallel 
measurement series and developed regression models to predict 
the seasonal bias for differing classes of exposure as a func-
tion of annual temperature, top of atmosphere and/or surface 
shortwave downward solar radiation. The Wallis et  al.  (2024) 
exposure bias adjustments were applied to n = 1960 mid- latitude 
stations at the monthly timescale in the GloSAT station data-
base, to produce GloSAT_eba. The adjustments were applied to 
stations whether or not they had been homogenised at source, 
unless the station was known to have already been corrected 
specifically for exposure bias. The bias adjustments vary in 
magnitude and sign across months and with pre- Stevenson 
screen exposure types, but the average effect is that small pos-
itive adjustments are applied to Northern Hemisphere stations 
pre- 1880, and larger negative mean adjustments are applied  
to Northern and Southern Hemisphere stations between  
1882–1934 and 1856–1900, respectively. The exposure bias ad-
justed dataset GloSAT_eba is the primary input to the LEK pro-
cessing chain shown in Figure 1.

2.3   |   Quality Indicators

The CRUTEM approach to homogenisation of station data 
is adopted for GloSAT, namely that we do not apply global, 
statistical algorithms to identify and correct for inhomoge-
neities; instead we preferentially use data series that have 
been homogenised at source (by national or regional initia-
tives) and we represent remaining inhomogeneities in the 
CRUTEM error model (e.g., the urbanisation, exposure and 
homogenisation error terms; see Morice et  al.  2021). This 
approach complements other datasets (e.g., NOAA: Huang 
et  al.  2020; or Berkeley Earth: Rohde and Hausfather  2020) 
which apply homogenisation algorithms globally, allowing 
multiple global temperature datasets to sample some of the 
structural uncertainty arising from the choice of how to deal 
with inhomogeneities.

For GloSAT LATsdb we have, however, made a simple as-
sessment of the expected level of homogenisation for stations 
within the database. This is based on the source codes pro-
vided for each station (a caveat being that some stations may 
have been derived from multiple sources over the 40 years that 
the CRUTEM station database has been maintained and up-
dated, so the source code provides only a broad indication of 

the original or main source in some instances, and the source 
of the most recent values in other cases). For each data source, 
we conducted a broad- brush assessment of whether we judge 
that the data provider carried out a homogeneity assessment 
(and possibly applied adjustments to reduce inhomogeneities). 
Based on this, we assigned one of five homogenisation indica-
tors to each data source (and for some sources we also provide 
the time period over which homogeneity has been assessed, 
so observations outside that period are more likely to contain 
uncorrected inhomogeneities).

HOM00 indicates that the source either did not assess homo-
geneity or it is unknown if they did. HOM01 is assigned where 
it is unknown if the source assessed the homogeneity but the 
data are from an authoritative source, including a national 
meteorological service (NMS) or from World Weather Records 
(WWR). The other three codes apply to stations that have had 
some inhomogeneities identified and corrected: at the source but 
the method used is unknown to us (HOM02), via documented 
methods (HOM03) or by CRU, after receiving the data, using 
documented methods (HOM04). For the GloSAT LATsdb, this 
broad- brush homogeneity assessment is not used further (other 
than to partially inform the assignment of a first reliable year 
(FRY) for some station time series), but it is provided because it 
may be useful for users of the database or for future homogene-
ity assessments.

After assembly of the station database, the same checks for phys-
ically implausible values (accounting for station latitude, eleva-
tion and month of the year) and statistical outliers (based on the 
interquartile range but with a relaxed criteria if regional anom-
alies of the same sign occur) as described by Osborn et al. (2021) 
for CRUTEM5 were applied. We provide two versions of the sta-
tion database: one with the full data and one with values that 
failed these checks removed.

2.4   |   CRUTEM5 Normals

As part of CRUTEM5 processing (Osborn and Jones  2014; 
Osborn et  al.  2021), climatological normals are computed—
independently for each month of the year—directly from the 
station data when there are sufficient (≥ 15 out of 30) monthly 
observations during 1961–1990 for that month. For stations 
with insufficient observations to meet the minimum data 
criteria, some normals were obtained from external sources 
(mostly the WMO), from an earlier version of the dataset, or 
estimated by infilling from neighbours or from earlier refer-
ence periods with adjustments made for the expected differ-
ence (Osborn and Jones 2014), and flagged with an identifying 
normal category code (codes 2 to 5 in Table 2). Nevertheless, 
normals were not obtained or estimated for 2649 stations in 
CRUTEM5 and therefore none of those stations could contrib-
ute to the production of the CRUTEM5 gridded global data-
set (Osborn et  al.  2021). If we adopted the same CRUTEM5 
approach with the additional stations assembled for GloSAT 
LATsdb, the number of series without normals (and therefore 
unused for producing the gridded GloSATref dataset; Morice 
et al. 2025) would have grown to 3430 (column GloSAT_eba in 
Table 5). The timing and location of the stations without nor-
mals is shown by white in the left- hand column of Figure 2. 
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TABLE 1    |    Summary of new acquisitions and updates applied to CRUTEM.5.0.1.0 to create the GloSAT land surface air temperature station 
database (GloSAT LATsdb). ‘New’ indicates series that were not previously in CRUTEM sdb.

Region Count Source Type

New acquisitions

Global 439 NCEI World Weather Records (WWR) New series

Global 149 NCEI Monthly Climatological 
Data for the World

New series

Canada 346 Environment Canada New homogenised series

Germany 14 DWD New series

Improved series (e.g., earlier extensions, gaps filled, improved homogeneity)

Global 2618 NCEI World Weather Records (WWR) Gaps filled, especially for 2011–2016

China 322 CMA Replacements with improved 
homogeneity

France 49 MeteoFrance Mostly post- 1950 additions 
to existing series

Germany 68 DWD Replacements with improved 
completeness

Switzerland 14 MeteoSwiss Replacements with improved 
homogeneity

Global 15 Multiple sources (papers, archives) Jersey (1894–2019), Dublin 
(Ireland 1831–2021)

Reading (UK 1908–2019), 
Armagh (UK 1796–2021)

Paris (France 1658–2019), 
Bordeaux (France 1851–2021)

Perpignan (France 1836–2021), 
Gorkij (Russia 1881–1989)

Tianjin (China 1890–2021), 
St Helena (1892–2021)

Ascension (1923–2021), Nassau 
(Bahamas 1811–2021)

Tenkodogo (Burkina Faso 1951–1991)

Cucuta (Colombia 1961–2021)

Antananarivo (Madagascar 1889–2021)

Routine updates

Global 7810 CLIMAT Updated series for 2020–2021

Australia 112 BoM Updated ACORN2 series for 2019–2021

Canada 434 Environment Canada Updated series and improved 
homogeneity

Chile 314 Chilean Centre for Climate 
& Resilience Research

Updated series for 2016–2021

Denmark, Faroes, 
Greenland

17 Danish Meteorological Institute Updated series for 2017–2020

Iceland 127 Icelandic Meteorological 
Office & Trausti Jónsson

Updated series and improved 
homogeneity

(Continues)
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Although the absolute number is highest in recent decades, 
as a proportion of the total available data it also has a peak (at 
about 20%) in the early 1800s.

We also note that where there are only partially complete (< 30) 
observed values during 1961–1990 (but still ≥ 15 to allow a 
normal to be calculated) the estimated normal has increased 
uncertainty (Brohan et al. 2006) but less well known is that it 
can also result in a small underestimate of global- mean warm-
ing: Calvert  (2024) quantifies this underestimate as 0.003°C. 
Furthermore, the externally- sourced (e.g., WMO) normals and 
those previously estimated by some type of infilling are not eas-
ily reproducible with new data and are considered to be less reli-
able (Brohan et al. 2006).

Taking these issues together, therefore, it is desirable to de-
velop an approach that infills data gaps for the purpose of 
estimating normals which will improve the utilisation of sta-
tions without 1961–1990 data, improve reproducibility, and 
reduce both random and systematic (e.g., underestimated 
warming) errors. Data gaps throughout the full length of 
each station's timeseries could potentially be infilled to ad-
dress issues caused by changing observational coverage over 
time. However, this coverage effect and associated errors are 
already accommodated in the HadCRUT5 analysis approach 
(Morice et al. 2021) so in the current study we limit our use 
of infilling to the purpose of making better estimates of sta-
tion normals. The following section presents an approach for 
achieving this.

2.5   |   Local Expectation Kriging (LEK)

In the current application, we want to determine a baseline for 
short station fragments that do not overlap with or are incomplete 
over the 1961–1990 baseline period. This will ensure that their in-
clusion will not bias the resulting record due to the appearance 
and disappearance of those stations. The baseline must align each 
fragment with the temperature field inferred from longer records, 
while still allowing the fragment to inform the temperature field 
about local and short- term variability.

Kriging is a spatial interpolation method that computes the best 
linear unbiased (minimum error variance) estimates at unsam-
pled locations by weighting nearby observations based on spa-
tial covariance and distances (Cressie 1990). For monthly mean 
near surface temperatures, the covariance function is modelled 
as an exponential kernel that depends on the great circle dis-
tance between pairs of stations. We chose Kriging because it is a 
well- established Gaussian process model that provides a simple 

and mathematically well understood solution to estimating the 
value of a field at locations where no observations are available, 
and that accounts for both the information content of nearby ob-
servations and redundancy amongst closely spaced stations. A 
holdout approach is needed because we want to evaluate how 
well the observations at a given station can be estimated from 
surrounding stations. The Kriging estimator enables the approx-
imate holdout calculation.

Thus, Kriging is employed to reconstruct an estimate of the 
temperature field at the location of each station using data 
from all other stations. In the case of GloSAT LATsdb, the tem-
perature field at each monthly time step results from 11,865 
stations located unevenly across the global land surface and 
with incomplete monthly observations spanning the years 
1781–2021. Kriging allows the data gaps in the global station 
temperature record to be infilled. The data- driven gap- filling 
capability provided by Kriging thereby allows for both the es-
timation of previously absent climatological normals as well as 
the improvement of normals computed from formerly partially 
complete data.

2.5.1   |   Kriging With Hold out

Conceptually, a target station can be held- out from a cluster of 
local stations, and a temperature series at that location can be 
reconstructed by kriging. This is referred to as ‘kriging with 
hold out’ (Pang et  al.  2023). However, the kriging calculation 
requires a matrix inversion (with dimensions equal to the num-
ber of stations) in order to determine the amount of independent 
information a neighbouring station provides for estimating the 
temperature series at the desired location. This matrix inversion 
must be recomputed whenever the selection of included stations 
changes and requires a matrix inversion for every station and 
every month in the reconstruction. While this is practical for 
small station networks, when working with hundreds or thou-
sands of stations it becomes impractical.

A more computationally tractable approach for large networks 
of stations like CRUTEM5 or GloSAT LATsdb is to hold out 
batches of (say) 10% of the stations at a time and compute tem-
perature series for those stations from the remaining stations 
in the network. This approach reduces the computational 
overhead to 10 matrix inversions per time step, but at the cost 
of losing some station information for reconstructing the time 
series at a given location. Selection of the batches is, however, 
problematic as neighbouring stations should belong to differ-
ent batches, which must change over time as the available sta-
tions change.

Region Count Source Type

New Zealand 7 NIWA Updated series for 2018–2021

Russia 604 GHCN- Daily Updated series for 2018–2021

Switzerland 13 MeteoSwiss Updated existing series

USA 1218 USHCN Updated series and improved 
homogeneity

TABLE 1    |    (Continued)
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2.5.2   |   Approximate Kriging With Hold out

Here, we present a new approach to this problem that provides 
an approximation to the hold out approach using a single matrix 
inversion for each time step. In kriging, the linear estimator ŷ0 
(‘local expectation’) at a given station location x0 is equal to the 

linear weighted average of the measured values yi at the other 
station locations xi:

(1)ŷ0 =

n
∑

i= 1

wiyi

FIGURE 2    |    Spatio- temporal distribution of CRUTEM5 (left column) and GloSAT LAT (right column) stations with and without climatological 
normals, to illustrate the improvements enabled by the local expectation kriging. Top row: Spatial distribution of stations coloured by normal catego-
ry code; middle row: Time- evolving decadal counts of station normals by category code; bottom row: Time- evolving decadal percent of station nor-
mals by category code. The category codes for the normals are given in Table 2: Stations without normals (code 1 = white); with normals calculated 
directly from observed values or indirect sources (codes 2 to 4 = orange); with normals calculated by combining some observations with some LEK 
values (code 7 = dark blue); with normals calculated solely from LEK values (code 6 = pale blue).
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where n is the number of stations included. The weights wi are 
obtained by minimising the expected value of the estimation 
variance (i.e., the square of the error from the unknown true 
value y0). In the approximate hold out approach, the kriging 
calculation is performed as usual including all of the stations 
present in a given timestep, and then the weight for the station 
itself is set to zero and the remaining weights scaled up so 
that they sum to 1, to retain the unbiasedness of the estima-
tor. The resulting weights are not identical to those obtained 
by holdout, but retain the key features of weighting stations 
according to their distance from the location of interest while 
down- weighting clusters of stations which do not contribute 
independent information. The weights which minimise the 
error term E

{

(

y0− ŷ0
)2
}

 are determined by inverting the co-
variance matrix of the stations and multiplying by the vector 
of covariances between the station locations and the station 
of interest:

An additional equation, 
∑

iwi = 1, is included using the method 
of Lagrange multipliers to ensure that the resulting estimator in 
Equation (1) is unbiased (Wackernagel 2003). Since the vector of 
covariances Cov

(

yj, y0
)

 is a row of the matrix Cov
(

yi, yj
)

, the re-
sulting vector of weights always has w0 = 1 and wj>0 = 0, which 
provides no information as to how to weight the remaining sta-
tions having removed station zero. In the absence of errors this 
tells us that the station itself is the best estimator of the tempera-
ture series at the location of the station, however this provides 
no information as to how to weight the remaining stations if that 
station is removed.

This can be addressed by introducing an error term to reflect 
the fact that, due to localised effects such as exposure and mea-
surement error, station data are never perfect observations of 
the true temperature field even at the station's own location. We 
achieve this by inflating the diagonal terms of the covariance 
matrix in Equation (2) by adding a value �2 representing the ef-
fect of additive measurement and local representativity errors 
that are uncorrelated between stations, giving rise to:

This leads to a vector of weights which includes contributions 
from all local stations, so that re- weighting to remove the station 
itself becomes possible. It has the additional benefit of tending to 
stabilise the matrix inversion.

The value of � would normally be the uncertainty in the observa-
tions; however, this depends on the covariance matrix also being 
on an absolute scale. With no noise term, the expected values de-
termined by the kriging calculation are invariant to the scale of the 
covariance matrix. The scale of station variability is not otherwise 
needed for this calculation so the kernel was chosen to have a max-
imum value of 1 at the station location. In this case � becomes the 
station noise as a fraction of station variability. A value � = 0 corre-
sponds to the error free case, which does not allow the estimation 
of station weights, while a value 𝜏 ≫ 1 leads to a covariance ma-
trix that is approximately diagonal and so weights the remaining 
stations according to their covariance with the station of interest, 
ignoring any dependence between the remaining stations (e.g., 
due to nearby stations being mostly clustered in one direction). 
The value of � was therefore chosen empirically to be just large 
enough to lead to a stable matrix inversion and reweighting even 
for sparse station networks: this criteria led to the choice of � = 0.1. 
This procedure for the fast approximation of kriging with hold out 
will be referred to throughout the remainder of the work as Local 
Expectation Kriging (LEK).

Near surface (2 m) temperature observations at weather stations 
show correlations which decrease with distance with a charac-
teristic length scale L which depends on region and direction, as 
well as whether observations are sampled at the monthly, yearly, 
or decadal timescale (Jones et  al.  1997). We model the spatial 
distribution of covariance in Equation  (3) with an exponential 
function (because it is controlled by a single characteristic dis-
tance parameter and better reflects observed patterns of station 
covariance than other commonly used kernels):

where C0 can be the variance of the data (i.e., of the spatial 
field at station locations), but is arbitrarily set to one because 
the weight calculation is invariant to scaling of the covariance 
function. Another reason for this choice of kernel is that any 
Gaussian process model whose covariance function depends 
only on xi − xj, like the exponential function in Equation (4), 
is guaranteed stationarity (Bishop  2006). We prescribe 
L = 900 km a priori, guided by the empirical findings of Jones 
et al. (1997) and Cowtan et al. (2018).

(2)wi =
∑

j

[

Cov
(

yi, yj
)]−1

Cov
(

yj, y0
)

(3)wi =
∑

j

[

Cov
(

yi, yj
)

+�
2
�i,j

]−1
Cov

(

yj, y0
)

(4)Cij = Cov
(

xi, xj
)

= C(d) = C0e
−d(xi ,xj)∕L

TABLE 2    |    Normal category code definitions for climatological 
normals and standard deviations (SD) together with the estimate of the 
uncertainty on the normal. Category codes 6 and 7 are new compared 
with CRUTEM5.

Code Normal & SD
Normal 

uncertainty = f.SD

1 Missing

2 Estimated using previous 
infilling methods

As HadCRUT5, 
f = 1∕

√

15

3 WMO As HadCRUT5, 
f = 0.3

4 Calculated directly 
from station data

As HadCRUT5, 
f = 1∕

√

n; n ≥ 15 
values in 1961–1990

5 Taken from previous 
dataset version

As HadCRUT5, 
f = 1∕

√

n; n values 
in 1961–1990

6 Estimated solely 
from LEK

f = 1∕
√

15

7 Calculated from a 
combination of station 

data and LEK

f = 1∕
√

15
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The matrix Cij is of size n × n and takes 
(

n3
)

 operations for its 
inversion, so when dealing with large global station networks 
(here we have > 10,000 stations) the matrix inversion is still 
impractical (Barber  2012). However, given that L = 900 km, 
stations far away from the location whose temperature is being 
estimated have negligible influence. Therefore, we apply LEK 
to smaller clusters of stations separately, with the clusters cho-
sen from their geographical distribution using Hierarchical 
Cluster Analysis (HCA) as described in the next section. LEK 
provides temperature estimates at each station within a clus-
ter, and repeating the analysis across all clusters provides in-
formation for the global network of stations.

2.6   |   Hierarchical Cluster Analysis (HCA)

We use agglomerative hierarchical clustering with complete- 
linkage to build the clusters needed to partition the global sta-
tion network (Everitt et al. 2011). Each station initially starts in 
its own cluster (a single ‘leaf’ of the dendrogram). The two clus-
ters separated by the shortest distance are then merged into one 
cluster. This step is repeated many times until all stations are 
grouped into the target number of clusters.

Different clustering methods determine the distance between 
clusters in different ways. For complete- linkage clustering, the 
distance between two clusters is given by the distance between 
the farthest separated pair of stations (one from each cluster). The 
method is, therefore, also known as ‘farthest neighbour cluster-
ing’. At each step, the pair of clusters with the shortest link (i.e., 
the shortest of all the farthest neighbours between all cluster pairs) 
are merged. The method is robust because it considers all pairs of 
stations within all pairs of clusters at each step. This does make 
it computationally expensive, though we minimise this by pre- 
calculating the distance matrix for all station pairs and merging its 
rows and columns as clustering progresses.

To assess the runtime needed to perform LEK on the global station 
archive on the JASMIN high performace computing (HPC) facility 
at the Centre for Environmental Data Analytics (CEDA), we took a 
station dense part of the network comprising several thousand sta-
tions in the contiguous United States and created clusters increas-
ing in size from 2 to 2048 stations and timed the LEK computation. 

We found that there was an approximately linear relation between 
doubling the cluster size and a five- fold increase in runtime. As 
mentioned in Section 2.5.2, this is due to the computational load 
associated with inversion of the linear system of equations in 
Equation (3). To limit parallel LEK runs (one run per cluster) at 
HPC facilities to (day) it was necessary to limit the maximum 
number of stations in a given cluster to nmax = 700 stations. Since 
the station archive GloSAT LATsdb comprises 11,865 stations, an 
equipartition with n = 700 stations per cluster would correspond 
approximately to 17 clusters. The spatial degrees of freedom asso-
ciated with the instrumental record is reported to be ~40 (Jones 
et al. 1997), suggesting a smaller value of nmax may be reasonable.

Another consideration is that the ‘rich get richer’ behaviour in-
herent to agglomerative clustering tends to lead to uneven clus-
ter sizes (though complete- linkage clustering is less susceptible 
to this than the single- linkage approach). To account for this, 
those clusters exceeding a maximum cluster size nmax were it-
erated again with agglomerative clustering until no cluster con-
tained more than nmax stations. For nmax = 700, the resulting 
partition of the global archive was found to contain 50 clusters 
while for nmax = 400, 73 clusters were obtained.

To assess the stability of this clustering approach and the 
variability in the number of stations per cluster, a number of 
experiments were conducted. Table  3 summarises the HCA 
agglomerative clustering statistics for initial target numbers of 
clusters ranging from 10 to 50 and presents the total number of 
clusters after the 2nd iteration together with the median num-
ber of stations per cluster and the interquartile range (IQR). 
Table 3 shows that nmax = 400 leads to a more stable number 
of clusters (~70) independent of the initial target number of 
clusters. The IQR is also stable, consistently equal to approx-
imately double the median number of stations per cluster. 
Limiting the cluster size to 700 stations (close to the maximal 
computational load) leads to less cluster fragmentation and 
less inter- cluster variability in the number of stations per clus-
ter but a less stable result as a function of the initial target 
number of clusters. Visual inspection of the spatial distribu-
tion of the clustering for an inital target of 30 or 40 clusters 
led us to favour 40 as this clustering matches more closely the 
spatial extent of Köppen climate zones (Beck et al. 2018) and 
known national meteorological service networks. Figure  3 

TABLE 3    |    Hierarchical Cluster Analysis statistics for initial target numbers of clusters ranging from 10 to 50.

1st iteration 2nd iteration: Max (cluster size) = 400 2nd iteration: Max (cluster size) = 700

Ncluster Ncluster

Median 
(stations/
cluster)

IQR (stations/
cluster) Ncluster

Median 
(stations/
cluster)

IQR (stations/
cluster)

10 140 37 101 68 90 251

20 77 117 244 32 332 258

30 75 113 238 44 251 360

40 73 126 223 50 209 299

50 76 114 224 58 152 244

Note: In the first set of experiments (columns 2–4) the maximum cluster size allowed is 400 stations, and in the second set (columns 5–7) the maximum allowed is 700 
stations. In both cases, a 2nd iteration of HCA is applied to any clusters exceeding this maximum in the 1st iteration. The total number of clusters after the 2nd iteration 
is reported together with the median number of stations per cluster and its interquartile range (IQR).
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shows the spatial distribution of the clusters and their centroid 
locations for the two partitions where the maximum cluster 
size is limited to 400 stations and 700 stations.

To perform the clustering, we therefore initialised the agglom-
erative HCA algorithm with a target of 40 clusters and set 
nmax = 400 in the second iteration. We used the python scikit- 
learn AgglomerativeClustering method applied to the distance 
matrix D to build the model as follows:

model = AgglomerativeClustering(n_clus-
ters=40,  
affinity=’precomputed’, linkage=’complete’,  
distance_threshold=None, compute_distanc-
es=True,  
compute_full_tree=True).fit(D)

In the next sub- section we address the issue of kriging across 
cluster boundaries.

2.6.1   |   Cluster Halo Analysis

Since kriging is driven most strongly by neighbouring sta-
tion timeseries, it is necessary to assess the impact of cluster 
boundaries—i.e. the effect of a long neighbouring reference 
series ending up in an adjacent cluster. To assess this, for 
each cluster, we use the distance matrix to create a halo of 
stations surrounding the cluster extending beyond the cluster 

boundary with stations ranked in increasing order by distance. 
A second run of LEK for each of these clusters augmented with 
halos was then made. Then, the root mean squared (RMS) dif-
ference between station normals computed by LEK for clus-
ters with the halo and the same clusters without the halo is 
computed. This allows us to quantify the size of the cluster 
boundary effect.

Since the clusters projected onto the globe are non- circular, it 
is not possible to construct halos by radially extending the clus-
ters by a constant distance (for example, the spatial correlation 
length scale L). Furthermore, the variability in the number of 
stations per cluster arising from the varying spatial density of 
stations worldwide, means that a data- adaptive approach is 
needed to set the halo size. A robust solution is to refer to the 
distance matrix with stations ranked by distance while also set-
ting an upper bound to the allowed number of stations added to 
the halo because of computational limits.

Stations in the halo are then selected according to the following 
criteria:

1. Their distance from the edge of the cluster is less than the 
LEK correlation length scale L = 900 km.

2. The closest 100 stations ranked in increasing order by dis-
tance from the cluster.

3. The maximum total cluster + halo membership is limited 
to 700 stations.

FIGURE 3    |    Spatial distribution of the station clusters (top) and their centroid locations (bottom) for two partitions where the maximum cluster 
size is limited to (left) 400 stations (73 clusters) and (right) 700 stations (50 clusters).
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In Section 3.2 of the Dataset Evaluation, we present the results 
of a sensitivity analysis for the cluster- halo method.

2.7   |   Infilling of Climatological Normals 
and Standard Deviations

With a small number of exceptions (6% of stations—see 
Section 3.4), LEK provides monthly temperature estimates for 
each station. For the purpose of evaluating the use of these LEK 
values to calculate station normals, their average over 1961–
1990 for each calendar month was used (a ‘LEK- only’ normal). 
However, for the purpose of creating the normals for the final 
GloSAT LATsdb dataset, we retain the ethos of using directly 
observed data to the full extent possible. Therefore, for stations 
with complete 1961–1990 data, we calculate the station normal 
as the average of those complete values. For stations with partial 
1961–1990 data, we infill the individual gaps with LEK monthly 
estimates and then compute the normal as the average of the 
now complete values. For stations without any observations 
during 1961–1990, the ‘LEK- only’ normal is used. For stations 
without LEK estimates, the normal is either left as missing, 
calculated from incomplete actual values or previous estimates 
(from WMO etc.) are retained.

Table 4 summarises these criteria. Although the LEK method 
also provides an associated uncertainty for the ‘LEK- only’ 
normal, we have taken a conservative approach that follows 
closely the previous CRUTEM5 error model, which assumes 
that normals not calculated directly from observed values are 
more uncertain (being similar to the uncertainty if they were 
calculated from 15 or fewer values). Table 2 provides the normal 
category code definitions and the estimation of the uncertainty 
on the normals. Category codes 6 and 7 are new compared with 
CRUTEM5.

The HadCRUT5 Analysis also requires estimates of the monthly 
temperature standard deviation (SD) for each station, as part of 
the error model (Morice et al. 2021). Following the long- standing 
CRUTEM approach (Osborn and Jones 2014), SD is calculated 
using all observations during 1941–1990, provided a minimum 

of 15 values is available. If fewer are available, the period is ex-
panded to encompass the full length of the dataset, but if fewer 
than 10 observed values are available, then the SD of the LEK 
estimates is used instead.

3   |   Dataset Evaluation

In this section we present and assess the outcomes of the data-
set production approach, considering first the agreement be-
tween ‘LEK- only’ normals and those calculated directly from 
co- located data and any dependence on latitude or temperature. 
Then we present a sensitivity analysis of the hierarchical cluster 
analysis with halos and an exploration of the biases avoided by 
infilling incomplete 1961–1990 data. Finally, we show the im-
pact of incorporating the new station data and the LEK- based 
normals on the spatio- temporal coverage of the data and on 
large scale hemispheric averages of the mean temperature. 
Unless otherwise stated, LEK was applied to the 73 clusters ob-
tained with a maximum cluster size of 400 and two iterations of 
HCA (i.e., those shown in the left column of Figure 3).

3.1   |   Evaluation of LEK- Based Normals

Figure 4 shows by scatter plots and regression lines the overall 
level of agreement between co- located ‘LEK- only’ normals and 
those calculated directly from the GloSAT_eba 1961–1990 ob-
servations (which in many cases are incomplete, though here we 
require at least 15 values). Although there are a small number 
of cases with larger differences, the overall agreement is very 
strong and there is no systematic bias. The normals averaged 
across each calendar month (Figure 4) show close to zero bias 
between ‘LEK- only’ and ‘data- only’ normals.

For the calculation of standard deviations, Figure  4 (bottom 
row) shows there is a slight bias towards lower ‘LEK- only’ SDs 
than ‘data- only’ SDs across the whole set and in most individual 
months, but it is very small. The large scatter between ‘LEK- 
only’ and ‘data- only’ SDs is the reason why SDs calculated di-
rectly from the data are preferred (Section 2.7).

TABLE 4    |    Criteria for calculating climatological normals, applied from left to right.

LEK normal?
Number of 1961–1990 

observed values
Existing 
normal? Final normal Category code

No n ≥ 15 N/A Calculate from the available 
1961–1990 observed values

4

No n < 15 Yes Use existing normal and 
its category code

2, 3, 4 or 5

No n < 15 No Missing 1

Yes n = 30 N/A Calculate from the complete 
1961–1990 observed values

4

Yes n = 0 N/A Use LEK normal 6

Yes 0 < n < 30 N/A Calculate from 1961 to 1990 
timeseries that infills observed 

gaps with LEK estimates

7
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The differences between the ‘LEK- only’ and ‘data- only’ normals 
are further explored in Figure  5, which shows the LEK minus 
GloSAT_eba difference for co- located climatological normals 
binned by: (a) latitude and (b) temperature. These tests were 
made to explore the possibility of greater bias or greater uncer-
tainty in normals at latitudinal extremes, or at sparsely observed 
latitudes such as the ocean- dominated southern mid- latitudes. 
Each bin contains LEK–data comparisons for many stations and 
these are summarised by the means, interquartile range, and 95% 
range of the differences, along with the root mean squared (RMS) 
difference. There are no clear dependencies of the mean bias on 
either station latitude or station normal temperature, and 95% of 
individual differences are less than 0.5°C at almost all latitudes 
and temperatures (see the 2.5%–97.5% ranges in Figure 5). There 
are some localised maxima in the RMS differences (e.g., just south 
of the equator and also where mean temperature is just below 
freezing) but the interquartile ranges are not notably larger, so the 
elevated RMS values are likely due to a very small number of sta-
tions with larger LEK–data differences in those bins.

3.2   |   Evaluation of the Cluster Halo Method

For computational reasons, the full station database has to be 
split into geographically defined clusters, and separate LEK cal-
culations are performed on each cluster. This raises the concern 
that the normals for stations near the edge of a cluster will be esti-
mated primarily using information from neighbouring stations in 

one direction rather than from all sides of the station. This can be 
addressed by including an additional ‘halo’ of stations around the 
cluster that are used to improve the LEK estimates near the edge 
of the cluster, but with increased computational cost. A similar 
concern arises naturally where a cluster is bounded by an ocean 
region, though in this case, the issue cannot be resolved by in-
cluding extra stations as there are none over the ocean. The halo 
analysis can nevertheless help to quantify the typical size of the 
boundary effect, which is useful for the coastal boundaries too.

Figure 6 shows two example clusters for parts of the Maritime 
Continent (top) and South Asia (bottom) with halo stations in 
blue. The cluster stations are coloured according to the mag-
nitude of the RMS (Root Mean Square) difference between the 
‘LEK- only’ normals calculated with and without the halo. As 
expected, the impact of including a halo is limited to stations 
near the cluster boundaries. However, even close to the cluster 
boundaries, the RMS difference (calculated over the 12 monthly 
normals) from including a halo is rarely larger than 0.1°C. This 
demonstrates that LEK can be used to estimate normals even 
close to the boundaries of a cluster of stations.

We next compare the impact of including a halo on the RMS 
difference between the ‘LEK- only’ and ‘data- only’ normal for 
two different maximum cluster sizes (Figure 7). Although we 
have seen in the previous figure some examples where the halo 
slightly modifies the LEK- based estimate of the normal, when 
considered across the whole station database the inclusion of 
a halo barely improves their agreement with the 'data- only' 
normals. The halo makes a small improvement at the lower 
quartile (i.e., for stations where the LEK approach was already 
closely matching the normals calculated directly from obser-
vations), and for the mean RMS for the smaller clusters (which 
makes sense because splitting the dataset into smaller clusters 
will increase the number of stations near a cluster boundary). 
These results also show slightly closer agreement with larger 
clusters, with up to a 7% reduction in RMS difference. Given 
that the 'data- only' normals are not the truth (since they suf-
fer from their own limitations such as many being based on 
partially complete data), this modest increase in agreement is 
not sufficient to justify using the larger cluster sizes given the 
increase in computational cost.

3.3   |   Previous Biases From Incomplete 
1961–1990 Data

The CRUTEM5 approach allows ‘data- only’ normals to be cal-
culated from as little as 15 values during 1961–1990, with no 
restriction on how those values are spread through the 30- year 
period (see Osborn and Jones  2014 for restrictions applied in 
some earlier versions of CRUTEM). Suppose we only have val-
ues for 1961–1975 at station A and only values for 1976–1990 at 
station B. If, like the global- mean, both stations are warming, 
then the normal calculated for station A will be cooler than 
its full 1961–1990 mean, while the normal for station B will be 
warmer. Subtracting each normal from its station's values will 
make station A's anomalies slightly too warm and station B's 
slightly too cool. Because station A is more likely to have pre- 
1961 data and station B is more likely to have post- 1990 data, 
the overall effect is to artificially warm earlier anomalies and 

TABLE 5    |    Station counts per normal category code.

Code
Category of 

normal

Number of stations

GloSAT_
eba

GloSAT 
LATsdb

1 Missing 3430 731

2 Estimated using 
previous infilling 

methods

91 11

3 WMO 26 1

4 Calculated directly 
from station data

8306 5806

5 Taken from 
previous dataset 

version

12 6

6 Estimated solely 
from LEK

0 1742

7 Calculated from 
a combination 
of station data 

and LEK

0 3568

Total [2–5] All stations with 
non- LEK normals

8435 5824

Total [2–7] All stations 
with normals

8435 11,134

Total All stations 11,865 11,865

 20496060, 2025, 4, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/gdj3.70024 by U
niversity O

f E
ast A

nglia, W
iley O

nline L
ibrary on [11/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



13 of 21

cool later anomalies, and artificially reduce the overall warm-
ing. These examples are extreme cases, and Calvert (2024) esti-
mates the overall effect on global mean temperature to be very 
small (0.003°C reduction in long- term warming). Nevertheless, 
our use of LEK to infill data gaps will remove this artefact by 
supplementing the observed values with LEK- based estimates 
so that the normals are calculated from the full 30 years (both 
these example stations would follow the normal category code 7 
method shown in Table 4).

The fingerprint of this effect is illustrated in Figure 8, showing 
the mean difference between LEK- based normals and ‘data- 
only’ normals as a function of the mean year of the available 
observations within the 1961–1990 period. A mean year of 1968 
can only be obtained for cases similar to station A (i.e., with 
only 1961–1975 observations), while a mean year of 1983 can 
only be obtained for cases like station B. A mean year of 1975 
could arise for many reasons, for example, complete data or only 

15 values spread evenly across the reference period. Though the 
variation of individual station differences is large (shading in 
Figure 8 shows the mean difference ±1 SD), there is a consistent 
pattern across all 12 months of the LEK- based normal exceeding 
the ‘data- only’ normal for stations with earlier data and being 
lower for stations with data only later in the reference period. 
The overall effect between the extremes (station A to station B) 
is around 0.1°C when aggregated over all months and stations, 
similar to the rate of global warming during this period. LEK in-
filling serves to remove this issue arising from data gaps during 
the 1961–1990 reference period.

3.4   |   Improved Spatio- Temporal Representation

As noted earlier, 3430 stations in the extended database would 
not have had normals using the CRUTEM5 approach (Table 5) 
and would not have been used further to create a gridded 

FIGURE 4    |    Comparison of climatological normals (top) and SDs (bottom) calculated from LEK values with those calculated from co- located sta-
tion data. Left column: Scatter plots (LEK- based estimates on y- axes, station data estimates on x- axes; slope and intercept of linear fit are annotated). 
Right column: Medians over all stations by month, with differences in medians below.
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temperature anomaly dataset (such as GloSATref: Morice et al. 
2025). Now, however, using LEK to estimate missing normals 
has reduced this to 731, and the number of stations that can be 
converted to temperature anomalies and used for gridding has 
increased from 7983 in CRUTEM5 (Osborn et al. 2021) to 8435 
with the new acquisitions, and now to 11,134 with the LEK pro-
cess (see Table  5 and reduction in white station locations and 
counts from left column to right column of Figure  2). The re-
maining 731 stations for which normals are still not estimated 
either have no near neighbours, are very short (325 span less 
than a decade) or have limited temporal overlap with nearby 
stations that have data during 1961–1990. These reasons prevent 

a successful application of kriging for estimating values during 
1961–1990.

Furthermore, many of the existing normals have been improved. 
Those with normals based on less reliable external or previous 
estimates (codes 2, 3 and 5; see Section 2.4) have been reduced 
from 129 to just 18 stations, also improving reproducibility. 
Those normals calculated only from station observations have 
been reduced by 2500 from 8306 to 5806. These 2500 would 
have previously been estimated from partial data during the ref-
erence period and now they are based on complete data via LEK 
infilling, reducing the potential for bias (Section 3.3). They are 

FIGURE 5    |    Comparison of climatological normals calculated from LEK values with those calculated from co- located station data as a function of 
(a) latitude and (b) temperature. Stations are grouped into 5° latitude bins or 5°C temperature bins. The difference between LEK and station normals 
for all stations within each bin is then summarised by the 2.5 and 97.5 percentiles, the lower and upper quartiles, the median, and their root mean 
squared difference. Regression lines (solid) show the lack of dependence on latitude or temperature.
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represented by stations that have changed from orange to dark 
blue (code 7) in Figure 2.

There are now 1742 stations with normals estimated solely from 
LEK. These are mostly post- 1990 stations (code 6, pale blue in 
Figure 2) and help to address the fall off in the number of sta-
tions used in gridded datasets (as noted for CRUTEM5 by Osborn 
et al. 2021). However, they also include some pre- 1960 stations 
and their inclusion will improve coverage in the nineteenth and 
early twentieth centuries. Thus using LEK to estimate normals 
contributes to the gains made by data rescue.

The additional station anomaly time series now made available 
by the use of LEK to aid the estimation of station climatological 
normals improves station counts across all continents (Table 6). 
The greatest proportional increases are in Antarctica, where 
many shorter automatic weather stations can now be used, 
and South America, where counts of usable stations are nearly 
doubled.

While this increase in normals (and hence in the series that can 
be converted to anomalies and used to create gridded datasets) 
is a positive development, its impact should not be overstated: 

FIGURE 6    |    The impact of including a halo of stations around a cluster on LEK normals for two example clusters: Maritime Continent (top) and 
South Asia (bottom). The halo stations are blue and the cluster stations are coloured according to the magnitude of the RMS (Root Mean Square) dif-
ference between the normals estimated by applying LEK with and without the halo. Stations external to both the cluster and halo are black.
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many of these stations with new LEK- estimated normals are ei-
ther quite short or are located in station- dense regions of north-
ern Europe and North America, so overall spatial coverage is not 
expected to increase greatly.

To illustrate the potential for improvement, we present a prelim-
inary view of the impact of the changes reported here (updated, 
improved and extended station data; adjustment for exposure bias 
of mid- latitude stations following Wallis et al. 2024; improved and 
infilled normals using LEK) on hemispheric temperature anom-
aly timeseries. A more comprehensive presentation is given by 
Morice et al.  (2025), where GloSAT LATsdb is used as the land 
surface air temperature input to a new gridded dataset of Global 
Surface Air Temperature (the GloSAT reference analysis) which 
includes marine air temperature observations and a comprehen-
sive representation of correlated and uncorrelated errors.

Hemispheric land air temperature series have been constructed 
using the ‘alternative’ gridding method of Osborn et al.  (2021) 

that takes account of the convergence of lines of longitude to-
wards the poles by allowing stations to contribute to nearby 
grid cells at high latitudes. For the Northern Hemisphere (NH; 
Figure 9a), GloSAT LATsdb provides relatively complete 1781–
1849 coverage only for Europe, with a smattering of grid cells 
with a smaller amount of pre- 1850 data across Asia and the 
coasts of North America. Post- 1850 data has almost complete 
data for Europe, USA, southern Canada, India, Japan, and parts 
of Russia, with least complete data for Africa and some Pacific 
Islands. The new acquisitions and, especially, the inclusion of 
LEK- based normals has increased the spatial coverage of data by 
a small amount throughout the time period, but to a greater de-
gree in recent decades (compare the blue and grey shaded areas 
in Figure 9b).

The updated database, exposure bias adjustments and inclu-
sion of LEK- based normals make only a small difference to the 
NH temperature anomaly timeseries (Figure  9c) beyond the 
obvious extension back to 1781. The very limited spatial cov-
erage in the early period (Figure  9a) contributes to the more 
pronounced variability before 1850 (Figure 9c). The individual 
influences on the NH temperature series can be seen in the dif-
ferences shown in panel (d) of Figure 9. The new acquisitions 
cooled the pre- 1870 anomalies by around 0.1°C (black curve) 
compared with CRUTEM5. Exposure bias adjustments cool 
the 1880–1935 annual temperatures by about 0.06°C (orange 
curve), though the impact is larger on summer temperature (not 
shown here, but see figure 12 of Wallis et al. 2024). Inclusion 
of stations with LEK- estimated normals slightly warms the 
pre- 1860 NH temperature series (difference between blue and 
orange curves) because it allows the inclusion of series with, on 
average, slightly less negative anomalies than those of the long 
stations that have continuous data from the early period to the 
1961–1990 baseline.

GloSAT LATsdb has no pre- 1850 coverage in the Southern 
Hemisphere (SH; Figure  10a), but the LEK- estimated normals 
have provided better post- 1990 coverage (Figure 10b; compare 
the blue and grey shaded areas) by allowing the inclusion of many 
Antarctic stations with insufficient reference period data to cal-
culate normals directly from the data. The extra coverage has 
only a small effect on the SH series (though temporarily warm-
ing it by almost 0.1°C around 2010; blue curve in Figure 10d), 
while exposure bias adjustments have slightly cooled pre- 1895 
anomalies (orange curve). Again, see Wallis et al. (2024) for rea-
sons. The net effect of new data, exposure bias adjustments, and 
LEK- estimated normals is negligible on the SH mean tempera-
ture anomaly (Figure 10c).

4   |   Dataset Access

4.1   |   Licence

The dataset has been produced for the GloSAT project (www. 
glosat. org) and is released into the public domain with an Open 
Government Licence (https:// www. natio nalar chives. gov. uk/ 
doc/ open-  gover nment -  licen ce/ versi on/3/ ). Users are free to use 
this dataset and only need to acknowledge the source of the 
information.

FIGURE 7    |    Box plots of the RMS differences between normals cal-
culated from LEK values and normals calculated from co- located sta-
tion data with (orange) and without (blue) cluster halos. Results are 
shown for two different clustering options: Maximum cluster size of 400 
stations (left) and 700 stations (right). Whiskers are located at 1.5 IQR 
above and below the quartiles, with outliers marked by open circles.
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4.2   |   Location and Format

The GloSAT LATsdb dataset is provided in an open access 
Zenodo repository for long- term preservation. It is also available 
via the CRU and Met Office websites to enhance its findability 
and where additional formats and information may be provided.

Zenodo: https:// doi. org/ 10. 5281/ zenodo. 14888902

CRU: https:// cruda ta. uea. ac. uk/ 

Met Office: https:// www. metof fice. gov. uk/ hadobs/ glosa tref/ 

The dataset comprises five components:

1. The station database prior to application of exposure bias 
adjustments and prior to removal of values that failed qual-
ity checks

2. The station database after application of exposure bias ad-
justments but prior to removal of values that failed quality 
checks

3. The station database after application of exposure bias ad-
justments and after removal of values that failed quality 
checks

4. The station climatological normals

5. The station climatological standard deviations

The data files are in plain text format, following the long- 
standing format and structure used for CRUTEM station data. 
Additionally, the station data files provided at the Met Office 
website are in NetCDF4 format.

Readers written in Python to read in the station database, 
climatological normals and SD files are available at: https:// 
github. com/ patte rnizer/ glosa t-  py. The open source code for 

FIGURE 8    |    Bias in station normals when calculated from incomplete 1961–1990 data, illustrated by the difference between LEK- based normals 
(complete data) and normals calculated from co- located (but incomplete) station data. The difference between LEK and station normals is binned by 
the mean year of the available station data. Differences within each bin are summarised by their mean ± 1 SD and across bins by the regression lines 
(solid purple; with slope and intercept annotated). Results are shown separately for each calendar month.

TABLE 6    |    Stations with normals per continental region.

Region GloSAT_eba GloSAT LATsdb

Africa 582 860

Antarctica 31 64

Asia 1777 2213

Europe 2494 3386

Oceania 476 621

North America 2466 2841

South America 609 1149

Total 8435 11,134
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the local expectation kriging of the station archive is avail-
able at: https:// github. com/ KCowt an/ glosa t-  homog enisa 
tion. Additionally, the table of data source codes (which in-
cludes the broad indicators of homogenisation described in 
Section  2.3) is available at: https:// github. com/ TimOs bornC 
lim/ GloSA T-  LATsdb.

4.3   |   Data Updates

The GloSAT LATsdb dataset described here spans the year 
range 1781–2021. It is built on the CRUTEM5 station database 
and therefore it will benefit from the new data acquisition, 
updating, and assessment workflow for CRUTEM5 under-
taken regularly by CRU and the Met Office. These updates 
to CRUTEM5 will, in due course, provide updates to GloSAT 
LATsdb, and the process developed here to estimate station 
normals means that these routine updates will no longer need 
to prioritise stations that existed during the 1961–1990 refer-
ence period.

5   |   Dataset Use

This GloSAT LATsdb dataset is being used, in conjunction with 
observations of marine air temperature (GloSAT MAT) built 
from the work of Cornes et al. (2020) and Cropper et al. (2023), to 
develop a gridded monthly temperature anomaly dataset for the 
period 1781 to present (Morice et al. 2025). This new land and 
marine air temperature dataset (named GloSATref) will com-
plement existing global temperature datasets that mostly use 
sea surface temperature anomalies for their marine component. 
This data descriptor forms the land component of the reference 
analysis input data.

Other potential uses for GloSAT LATsdb are for evaluation of 
climate change at individual stations, to complement analyses 
that use gridded datasets and which might not capture fine 
details that require station- level data. For example, exploring 
elevation- dependent climate change, further work on changes 
in thermometer screens/exposure or on the inhomogeneities 
present in the underlying observations.

FIGURE 9    |    A comparison of Northern Hemisphere temperature coverage and anomalies to show the impact of LEK normals and exposure bias 
adjustment. The station temperature data were processed using the CRUTEM5 method with the alternative gridding option (Osborn et al. 2021). 
(a) Temporal completeness of the final GloSAT LATsdb during the 1781–1849 and 1850–2021 periods. (b) Time evolving spatial completeness of the 
gridded dataset based on either the CRUTEM5.0 station database (grey shading) or the final GloSAT LATsdb including LEK- based normals (blue 
shading). (c) Hemispheric average temperature anomalies based on the CRUTEM5.0 station database (black) or the final GloSAT LATsdb including 
LEK- based normals (blue). (d) Difference between hemispheric average temperature anomalies using different pairs of station databases: The extend-
ed GloSAT LATsdb prior to exposure bias adjustment and inclusion of LEK- based normals compared with CRUTEM5 (black); the effect of applying 
exposure bias adjusments (orange); and the effect of also including LEK- based normals (blue).
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6   |   Summary

This data descriptor paper explains the processes and data sources 
used to construct a new database of monthly mean temperatures 
recorded at weather stations around the world. While it is firmly 
based on the existing CRUTEM5 station database, a number of 
new aspects are achieved: (1) A 69- year extension back to begin 
in 1781. (2) Acquisition of 1233 station records not previously 
included in the CRUTEM5 compilation, and improvements to 
the homogeneity of many more stations based on homogenisa-
tion exercises undertaken by the source National Meteorological 
Services. (3) Application of adjustments for changes in thermom-
eter screens at mid- latitude stations in both hemispheres from 
the recent work of Wallis et al. (2024). (4) Development and eval-
uation of a method, using local expectation kriging, to estimate 
the 1961–1990 reference period averages (‘normals’) for stations 
which either did not have estimated normals or to improve those 
normals that were previously estimated from incomplete data.

As discussed in Section 5, this station database is being used to 
create gridded temperature datasets; it will be updated as new 
data become available, and it is available for researchers to use 
for station- based analyses from local to global scales.
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Appendix A

Climatological Normals

It is useful to briefly review how the concept and definition of normals 
have evolved. The concept first appeared in 1840, followed in 1872 by 
an international agreement to compile mean values over a uniform pe-
riod (Guttman 1989). The first widely used climatological normals were 
developed during the early 20th century (see Arguez and Vose  2011; 
Hulme  2021) for the designated periods of 1881–1915 and 1916–1950. 
Examples of their use can be seen in a number of publications from the 
early 20th century (e.g., the annual volumes of the publication British 
Rainfall, https:// www. metof fice. gov. uk/ resea rch/ libra ry-  and-  archi ve/ 
archi ve-  hidde n-  treas ures/ briti sh-  rainfall).

The original purpose of normals was to provide an expectation of what 
each weather/climate station should get for monthly mean temperature 
and monthly total precipitation. This could then be used for planning 
purposes, particularly in the water and agricultural sectors. The num-
ber of variables for which normals were calculated was extended during 
the 20th century to include maximum and minimum temperature, sun-
shine amounts, mean sea level pressure, and a humidity measure such 
as vapour pressure or relative humidity (New et al. 1999).

It is believed that the original 35- year periods resulted from work by 
Eduard Brückner [see Stehr and Von Storch (2000) for a modern trans-
lation], who believed such cycles existed in varves in eastern European 
lakes. Later, the International Meteorological Organization (IMO) in 
1937 (see Hulme  2021) designated 30- year periods, the first of which 
was 1901–30. Subsequent periods were introduced later by the World 
Meteorological Organization (WMO): 1931–1960, 1961–1990, and 
1991–2020, all non- overlapping with each other. Publications with 
the normals for the 1931–1960 and 1961–1990 periods were produced 
(WMO 1971, 1996, respectively).

During the 1980s and 1990s, it began to be realised that the original pur-
pose of normals was less useful due to climatic warming. Arguez and 
Vose (2011) noted they would be out of date 10–15 years after their final 
year. They made a number of suggestions following discussions within 
the Commission for Climatology within WMO  (1989, 2007). Some of 

the suggestions related to the overlapping periods which countries were 
asked by WMO to produce (1941–1970, 1951–1980, 1971–2000 and 1981–
2010). These in- between periods were not designated official periods, 
which are still the non- overlapping 30- year periods, and compilations of 
their results were not formally published. Calculation of normals is car-
ried out by the National Meteorological Services (NMS) and guidance 
for NMS has been provided over the years by the WMO. The most recent 
such guidance is WMO (2017).

For the purpose of assessing long- term climate change, the period 
1961–1990 is recommended and will continue to be used (WMO 2017). 
However, another period (‘pre- industrial’) has been enshrined in the 
Paris Agreement on Climate Change in 2015. This agreement did 
not specify a period (see the discussion of possibilities in Hawkins 
et  al.  2017), but the second half of the 19th century (1850–1900) has 
since been used by IPCC and in many other studies.
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