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Abstract
Ranked tree-child networks are a recently introduced class of rooted phylogenetic 
networks in which the evolutionary events represented by the network are ordered 
so as to respect the flow of time. This class includes the well-studied ranked phy-
logenetic trees (also known as ranked genealogies). An important problem in phy-
logenetic analysis is to define distances between phylogenetic trees and networks 
in order to systematically compare them. Various distances have been defined on 
ranked binary phylogenetic trees, but very little is known about comparing ranked 
tree-child networks. In this paper, we introduce an approach to compare binary 
ranked tree-child networks on the same leaf set that is based on a new encoding of 
such networks that is given in terms of a certain partially ordered set. This allows us 
to define two new spaces of ranked binary tree-child networks. The first space can 
be considered as a generalization of the recently introduced space of ranked binary 
phylogenetic trees whose distance is defined in terms of ranked nearest neighbor 
interchange moves. The second space is a continuous space that captures all equi-
distant tree-child networks and generalizes the space of ultrametric trees. In particu-
lar, we show that this continuous space is a so-called CAT(0)-orthant space which, 
for example, implies that the distance between two equidistant tree-child networks 
can be efficiently computed.

Keywords  Ranked phylogenetic network · Equidistant network · Nearest neighbor 
interchange · CAT(0)-orthant space
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1  Introduction

Rooted phylogenetic networks are essentially directed acyclic graphs, whose leaf sets 
correspond to a set of species. They are commonly used to represent evolutionary 
histories in which reticulate events have occurred due to processes such as hybrid-
ization and lateral gene transfer. Various classes of rooted phylogenetic networks 
have been defined, including the extensively studied class of so-called tree-child net-
works introduced by Cardona et al. (2008) (see e.g. Kong et al. (2022) for a review). 
Recently, the class of (binary) ranked tree-child networks (RTCNs) was introduced 
by Bienvenu et al. (2022), which have been further studied by Caraceni et al. (2022) 
and Fuchs et al. (2024). As their name suggests, these are a special type of tree-child 
network that are endowed with additional information which allows the evolution-
ary events represented by the network to be arranged consistently along a time line. 
RTCNs generalize ranked phylogenetic trees (also called ranked genealogies), struc-
tures that can be used to study evolutionary dynamics (see e.g. Kim et al. (2020) and 
the references therein).

Informally (see Sect. 2 and Sect. 6 for full definitions), a binary RTCN is a binary 
rooted phylogenetic network with leaf set X having the following additional restric-
tions: (i) every vertex that is not a leaf must be the tail of some arc whose head has no 
other in-coming arcs, (ii) vertices are assigned ranks from the set {1, . . . , |X|} such 
that the tail of an arc never has a smaller rank than the head, and (iii) the head and the 
tail of an arc have the same rank if and only if the head has two in-coming arcs. Con-
dition (i) restricts the topology of the network to that of a tree-child network, Condi-
tion (ii) arranges the vertices along a time line, and Condition (iii) captures the idea 
that the network represents a sequence of two types of evolutionary events, namely 
branchings and reticulations (cf. (Bienvenu et al. (2022), Sec. 1.2)). In Fig. 1(a) we 
give an example of a binary RTCN. In addition, by assigning non-negative weights 
to the arcs of an RTCN that are consistent with the ranks of the vertices (in par-
ticular, vertices having the same rank also have the same distance from the root) we 
obtain an equidistant tree-child network (ETCN). An example of an ETCN is given 
in Fig. 1(b). Note that, if every vertex in an ETCN has at most one in-coming arc, 
then it is also referred to in the literature as an ultrametric tree (cf. e.g. (Steel (2016), 
p.114)).

Fig. 1  (a) A binary RTCN on the set X = {a, b, c, d, e}. Each dotted horizontal line corresponds to 
vertices that have the same rank. (b) An ETCN on X  obtained by assigning suitable weights to the arcs 
of the RTCN in (a)

 

1 3

   32   Page 2 of 26



Spaces of ranked tree-child networks

Comparing phylogenetic trees and networks is an important problem in phyloge-
netics which has been studied for some time, and various distances have been defined 
on trees and networks (see e.g. Cardona et al. (2008); Huber et al. (2016); Janssen 
et al. (2018); Kuhner and Yamato (2015); Nakhleh (2009); Pons et al. (2019); Smith 
(2022)), including ranked phylogenetic trees (Kim et al. 2020). Thus it is a natural 
question to ask for ways to compare different RTCNs on the same leaf set with each 
other, and, similarly, different ETCNs on the same leaf set. In this paper, we shall 
present some new distances for such networks and consider some properties of the 
resulting spaces. We define our distances by introducing a way to encode binary 
RTCNs on a fixed leaf set X  in terms of a certain partially ordered set (or poset). As 
we shall see in Sect. 3, as well as encoding binary RTCNs, this poset has some attrac-
tive mathematical properties, including the fact that it generalizes the well-known 
poset of partitions of the set X , a poset that captures the set of all binary ranked trees 
with leaf set X  (see e.g. (Huber et al. (2024), Sec. 4.2)).

Using our new encoding, in Sect. 4 we provide a generalization of the Robinson-
Foulds distance on rooted phylogenetic trees, and also define a generalization of the 
ranked nearest neighbor interchange (rNNI) distance on binary ranked trees intro-
duced by Gavryushkin et al. (2018) to all binary RTCNs, thus providing a way to 
compare binary RTCNs. In addition, in Sect. 6 we define a continuous metric space 
of ETCNs whose definition relies on some special properties of the poset mentioned 
above. More specifically, we show that this space is a so-called CAT(0)-orthant space, 
which implies that the distance between any two ETCNs can be computed efficiently. 
Note that Billera et al. (2001) presented a similar approach to compare unrooted 
edge-weighted phylogenetic trees, and that our space of ETCNs generalizes the more 
recently introduced spaces of ultrametric trees (Gavryushkin and Drummond 2016) 
and equidistant cactuses (Huber et al. 2024).

We now describe the contents of the rest of this paper. After formally defining 
binary RTCNs in Sect.  2, we show how binary RTCNs with a fixed leaf set cor-
respond to maximal chains of certain cluster systems (Sect. 3). Then we introduce 
the poset capturing all binary RTCNs, present our generalization of rNNIs and show 
that the discrete space of all binary RTCNs is connected under these more general 
rNNIs (Sect. 4). Next we describe how our poset also systematically captures certain 
non-binary rooted phylogenetic networks that are tree-child and have ranked vertices 
(Sect. 5) and use this to describe our CAT(0)-orthant space of ETCNs (Sect. 6). We 
conclude mentioning some possible directions for future work (Sect. 7).

2  Binary ranked tree-child networks

In this section, we formally define the basic type of phylogenetic network that we 
consider in this paper. For the rest of this paper, X  will be a finite non-empty set with 
n = |X| ≥ 2, which can be thought of as a set of species or taxa.

A directed graph G = (V, E) consists of a finite, non-empty set V  of vertices and 
a set E ⊆ V × V  of directed edges or arcs. We write (u, v) for an arc that is directed 
from vertex u, the tail of the arc, to vertex v, the head of the arc. For a vertex u, the 
out-degree of u is the number of arcs that have u as its tail and the in-degree of u 
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is the number of arcs that have u as its head. A leaf is a vertex of out-degree 0. A 
directed path in G from vertex s to vertex t is a sequence s = v1, v2, . . . , vk = t of 
k ≥ 1 pairwise distinct vertices with (vi, vi+1) ∈ E for all 1 ≤ i ≤ k − 1. Note that 
we allow k = 1, which then implies that s = t. A directed graph G is acyclic if it does 
not contain a directed path from some vertex s to some vertex t such that (t, s) is an 
arc in G (which would then form a directed cycle in G).

A rooted phylogenetic network N = (V, E, ρ) on X  is a directed acyclic graph 
G = (V, E) with leaf set X  and a unique vertex ρ of in-degree 0, called the root 
of N . A vertex of N  that is not a leaf is called an interior vertex. A vertex of N  with 
in-degree at least 2 is a hybrid vertex. Any vertex of N  that is not a hybrid vertex 
is a tree vertex. A rooted phylogenetic network is binary if the root has out-degree 2 
and every other interior vertex either has in-degree 1 and out-degree 2 or in-degree 2 
and out-degree 1.

The following definition of binary ranked tree-child networks (RTCN) is equiva-
lent to the informal description of these networks given in the introduction (see (Bien-
venu et al. (2022), Sec. 2.1)). More specifically, any binary RTCN on a fixed set X  
can be obtained using a process involving n steps:

	● Step 1: For each x ∈ X  an arc with head x is created. The tails of these arcs are 
pairwise distinct and form a set of n vertices with in-degree 0 (see Fig. 2a).

	● Step i (2 ≤ i ≤ n − 1) : Precisely one of the following modifications to the 
network obtained in Step i − 1 is performed: 

(1)	Two vertices with in-degree 0 are selected. These two vertices are identified 
as a single vertex u with out-degree 2. Then a new arc with head u and a new 
vertex as its tail is added (see Fig. 2b).

(2)	Three vertices u, v and w with in-degree 0 are selected. Then arcs (u, v) and 
(w, v) are added, making v a hybrid vertex. Then two new arcs with head u 
and w, respectively, and each with a new vertex as its tail are added (see 
Fig. 2c).

 After performing Step  i we have a network that has n − i + 1 vertices with 
in-degree 0.

Fig. 2  An example of the process that generates a binary RTCN on X = {a, b, c, d}. (a) The result of 
Step 1. (b) The result of performing (1) in Step 2. (c) The result of performing (2) in Step 3. (d) The 
resulting binary RTCN after Step n = 4. Vertices of rank   are drawn on the dotted horizontal line 
numbered  (1 ≤ i ≤ 4)
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	● Step n : The result of Step n − 1 is a network with precisely two vertices with 
in-degree 0. These two vertices are identified as a single vertex which then forms 
the root ρ of the resulting binary RTCN. This finishes the process of generating a 
binary RTCN (see Fig. 2d).

All different binary RTCNs on a fixed set X  arise through the choice of perform-
ing either  (1) or  (2) in Steps  2, . . . , n − 1 and, subsequently, the choice of either 
the two vertices used in  (1) or the three vertices used on  (2). Note that in  (2) the 
role of vertex v is different from the roles of vertices u and w. So, more precisely, 
performing (2) also involves a choice which of the three selected vertices plays the 
role of the vertex that becomes a hybrid vertex. If (2) is never performed in any of 
the Steps 2, . . . , n − 2 the network only contains tree vertices and is called a binary 
ranked tree.

Each vertex q in a binary RTCN N = (V, E, ρ) on X  has a rank from the set 
{1, . . . , n} associated with it that is denoted by rank(q). More precisely (see Fig. 2d), 
we have

	● rank(x) = 1 for all x ∈ X ,
	● rank(u) = i when (1) is performed in Step i (2 ≤ i ≤ n − 1),
	● rank(u) = rank(v) = rank(w) = i when  (2) is performed in Step  i 

(2 ≤ i ≤ n − 1), and
	● rank(ρ) = n.

These ranks correspond to an ordering of the biological events (speciation or hybrid-
ization) that led from the common ancestor at the root of the network to the elements 
in X  at the leaves. The term tree-child refers to the fact that in the networks generated 
by the process described above every interior vertex is the tail of an arc whose head is 
a tree-vertex. Note that tree-child networks without ranked vertices were introduced 
by Cardona et al. (2008) and remain an active area of research (see e.g. Cardona et al. 
(2019); Cardona and Zhang (2020); Fuchs et al. (2021)).

3  Encoding binary ranked tree-child networks

In this section, we present a way to encode binary RTCNs, that is, a way to describe 
binary RTCNs in such a way that two RTCNs are the same if and only if they have the 
same description. The encoding itself is a straight-forward translation of the process 
described in Sect. 2 for generating a binary RTCN into the language of collections of 
subsets of X . As we will see later on, this encoding is very helpful for proving our 
results about RTCNs.

To formally describe the encoding, we first give some more definitions. A cluster 
on X  is a non-empty subset of X . A cluster system on X  is a non-empty collection 
of clusters on X . Given a rooted phylogenetic network N = (V, E, ρ) on X , to each 
vertex v ∈ V , we associate the cluster Cv on X  that consists of all those x ∈ X  for 
which there exists a directed path in N  from v to x. The clusters given in this way 
are sometimes called the hard-wired clusters of the network.
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Each step i (1 ≤ i ≤ n) in the process described in Sect. 2 can now be captured by 
a cluster system Ci on X  as follows:

	● Step 1: C1 = {{x} : x ∈ X}. Each cluster in C1 consists of a single element and 
represents a leaf in the resulting network.

	● Step i (2 ≤ i ≤ n − 1) : We already have the cluster system Ci−1 which con-
sists of the clusters Cv obtained from those vertices v that are the head of an arc 
whose tail has in-degree 0 at the end of Step i − 1.

	– If (1) is performed in Step i there must exist clusters A and B in Ci−1 such 
that Cu = A ∪ B. Then we put Ci = (Ci−1 − {A, B}) ∪ {Cu}.

	– If  (2) is performed in Step  i there must exist clusters 
A, B and C in Ci−1 such that Cu = A ∪ B and Cw = B ∪ C. Then we put 
Ci = (Ci−1 − {A, B, C}) ∪ {Cu, Cw}.

 The cluster system Ci consists of n − i + 1 clusters.

	● Step n : The cluster system Cn−1 consists of two clusters A and B such that 
Cρ = A ∪ B = X . We put Cn = (Cn−1 − {A, B}) ∪ {Cρ} = {X}.

To illustrate this definition, consider again the example of generating a binary RTCN 
on X = {a, b, c, d} in Fig. 2. Then we obtain the following cluster systems:

	

C1 = {{a}, {b}, {c}, {d}},

C2 = (C1 − {{a}, {b}}) ∪ {{a, b}} = {{a, b}, {c}, {d}},

C3 = (C2 − {{a, b}, {c}, {d}}) ∪ {{a, b, c}, {c, d}} = {{a, b, c}, {c, d}}, and
C4 = (C3 − {{a, b, c}, {c, d}}) ∪ {{a, b, c, d}} = {{a, b, c, d}}.

As also illustrated by this example, the cluster systems can easily be read from the 
resulting binary RTCN N = (V, E, ρ) on X: For 1 ≤ i < n, we have

	Ci = Ci(N ) = {Cv : there exists an arc (u, v) ∈ E with rank(u) > i ≥ rank(v)},

and Cn = {Cρ} = {X}.
To make more precise our way of encoding a binary RTCN N  by the cluster 

systems

	 C1(N ), . . . , Cn(N ),

we need a little bit more notation. Let C  and C ′ be cluster systems on X . We write:

	● C ⊢(1) C ′ if there exist two distinct clusters A, B ∈ C  with 
C ′ = (C − {A, B}) ∪ {A ∪ B} (see Fig. 3a).

	● C ⊢(2) C ′ if there exist three pairwise distinct clusters A, B, C ∈ C  with 
C ′ = (C − {A, B, C}) ∪ {A ∪ B, B ∪ C} (see Fig. 3b).

1 3
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We will often use the simplified notation C ⊢ C ′ if either C ⊢(1) C ′ or C ⊢(2) C ′ 
holds in case it is not relevant which of the two conditions holds. A maximal chain 
on X  is a sequence C1, . . . , Cn of n cluster systems on X  such that

	 {{x} : x ∈ X} = C1 ⊢ C2 ⊢ · · · ⊢ Cn = {X}.

The chains as defined above are maximal in the sense that the sequence contains 
all intermediate cluster systems that lead in a particular way from {{x} : x ∈ X}. 
In Section 5 we will consider more general chains where some intermediate cluster 
systems may be skipped. Before we state the main result of this section, we establish 
a useful property of cluster systems in a maximal chain on X .

Lemma 3.1  Let C1 , . . . , Cn  be a maximal chain on X  and 1 ≤ i ≤ n. Then every 
cluster in Ci  contains an element in X that is not contained in any other cluster in Ci .

Proof  We use induction on  i. In the base case of the induction, i = 1, we have 
C1 = {{x} : x ∈ X}. Then, clearly, for all x ∈ X , the element x is only contained 
in the cluster {x}.

Next consider the case i > 1. By the definition of a maximal chain, we have 
Ci−1 ⊢ Ci. By induction, all clusters in Ci−1 contain at least one element that is not 
contained in any other cluster in Ci−1. But then, in view of the definition of ⊢(1) and 
⊢(2), it follows that also all clusters in Ci contain at least one element that is not con-
tained in any other cluster in Ci, as required.�  □

We now present our encoding for binary RTCNs.

Theorem 3.2  Binary RTCNs on  X  are in bijective correspondence with maximal 
chains on X .

Proof  We have already seen that from every binary RTCN N  on X  we obtain the 
maximal chain C1(N ), . . . , Cn(N ) on X .

So, assume that C1, . . . , Cn is a maximal chain on X . To obtain a binary RTCN N  
on X  with Ci = Ci(N ) we use the maximal chain to guide the process of generat-
ing N  during Steps i = 2, . . . , n − 1:

	● If Ci−1 ⊢(1) Ci we perform (1).

Fig. 3  The two operations (a) ⊢(1) and (b) ⊢(2) that can be applied to a cluster system and how they 
are related to the process of generating binary RTCNs
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	● If Ci−1 ⊢(2) Ci we perform (2).

It remains to show that the two vertices with in-degree 0 used when performing (1) 
and the three vertices with in-degree 0 used when performing (2), respectively, are 
uniquely determined by the maximal chain on X . But this follows immediately from 
the property of the cluster systems in a maximal chain on X  stated in Lemma 3.1, as 
this allows to uniquely determine the clusters involved in Ci−1 ⊢ Ci. � □

The encoding established in Theorem 3.2 is useful because it allows us to system-
atically break any binary RTCN on X  down into building blocks (i.e. cluster sys-
tems), which gives a simple way to understand the relationship between two binary 
RTCNs. We remark that there are two interesting special instances of our encoding:

	● Maximal chains C1, . . . , Cn on X  such that C1 ⊢(1) C2 ⊢(1) · · · ⊢(1) Cn are in 
bijective correspondence with binary ranked trees on X .

	● Let ⊢∗ be the restricted variant of ⊢ defined by the additional requirements that:
	– For C ⊢∗

(1) C ′ to hold we must have

A ∩ B ̸= ∅, or
A ∩ C = ∅ for all C ∈ C − {A}, or
B ∩ C = ∅ for all C ∈ C − {B}.

	– For C ⊢∗
(2) C ′ to hold we must have

A ∩ D = ∅ for all D ∈ C − {A}, and
B ∩ D = ∅ for all D ∈ C − {B}, and
C ∩ D = ∅ for all D ∈ C − {C}.

 Then maximal chains C1, . . . , Cn on  X  such that C1 ⊢∗ C2 ⊢∗ · · · ⊢∗ Cn are in 
bijective correspondence with binary ranked cactuses on X , a proper subclass of 
binary RTCNs considered by Huber et al. (2024).

4  Nearest neighbor interchange moves for binary RTCNs

In this section we explain how to use our encoding of binary RTCNs by maximal 
chains of cluster systems to compare unweighted binary RTCNs. One simple way to 
do this is to define the distance between two such networks N  and N ′ to be

	 |{C1(N ), . . . , Cn(N )}△{C1(N ′), . . . , Cn(N ′)}|

where △ denotes the symmetric difference of sets. The metric on binary RTCNs 
arising in this way can be thought of as a ranked analogue of the Robinson-Foulds 
distance on rooted trees (Robinson and Foulds 1981).

A more sophisticated approach is to define an analogue of the well-known nearest 
neighbor interchange distance for rooted phylogenetic trees (Robinson 1971). This 
distance has already been generalized to binary ranked trees by Gavryushkin et al. 
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(2018) as follows. First, define two types of modifications of a binary ranked tree 
on X  (called ranked nearest neighbor interchanges (rNNIs)):

	● For two vertices u and v with rank(u) = rank(v) + 1 and (u, v) not an arc, the 
ranks of u and v are swapped without changing the topology of the tree (see 
Fig. 4a).

	● For two vertices u and v with rank(u) = rank(v) + 1 and (u, v) an arc, the to-
pology of the tree is changed (see Fig. 4b).

Then, Gavryushkin et al. (2018) established the following result:

Fact 4.1  For any two binary ranked trees T  and T ′ on X  there exists a sequence of 
rNNIs that transform T  into T ′.

Interestingly, as pointed out in the supplementary material by Collienne et al. 
(2021), there is a concise and uniform way to describe an rNNI between two binary 
ranked trees T  and T ′ on X  using the corresponding maximal chains C1, . . . , Cn 
and C ′

1, . . . , C ′
n on X: There exists 2 ≤ i ≤ n − 1 such that Ci ̸= C ′

i  and Cj = C ′
j  

for all j ̸= i. Less formally, there is an rNNI between T  and T ′ if the corresponding 
maximal chains differ in precisely one cluster system. For example, consider the two 
binary ranked trees T  and T ′ on X = {a, b, c, d, e} in Fig. 4a. Looking at the cor-
responding maximal chains on X  we have:

	

C1 = {{a}, {b}, {c}, {d}, {e}} = C ′
1

C2 = {{a, b}, {c}, {d}, {e}} ̸= {{a}, {b}, {c}, {d, e}} = C ′
2

C3 = {{a, b}, {c}, {d, e}} = C ′
3

C4 = {{a, b, c}, {d, e}} = C ′
4

C5 = {{a, b, c, d, e}} = C ′
5

While the description of rNNIs in terms of the binary ranked trees is very intuitive, 
it is not obvious how to directly generalize this to binary RTCNs. However, as with 
ranked trees, the description in terms of maximal chains on X  immediately suggests 
a way to do this: We say that there is a ranked nearest neighbor interchange between 
two binary RTCNs N  and N ′ (both on X) if the corresponding maximal chains 
on X  differ in precisely one cluster system. We shall continue to use rNNI when 

Fig. 4  The two types of modifications on binary ranked trees allowed in an rNNI: (a) Swapping the 
ranks of vertices u and v. (b) An actual nearest neighbor interchange
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referring to ranked nearest neighbor interchanges restricted to binary ranked trees as 
described above and will use rNNI∗ when referring to this generalization. Fig. 5 gives 
an example of what happens to the corresponding binary RTCNs when we apply such 
rNNI∗s; a complete list of all possible network changes that can occur is presented 
in Appendix 1.

We conclude this section by establishing that for any two binary RTCNs on X  
there exists a sequence of rNNI∗s that transforms one into the other. This implies that 
we can define a distance between any pair of binary RTCNs by taking the length of a 
shortest sequence of rNNI∗s that transforms one of the networks to the other.

Theorem 4.2  For any two binary RTCNs N1  and N2  on X  there exists a sequence 
of rNNI∗s that transform N1  into N2 .

Proof  Since every rNNI between two binary ranked trees on X  is also an rNNI∗ 
between them when we view the binary ranked trees as binary RTCNs, it suffices, by 
Fact 4.1, to show that for any binary RTCN N  on X  there exists a sequence of rNNI∗

s that transforms N  into some binary ranked tree T  on X  (Fig. 5 gives an example 
of such a sequence of rNNI∗s).

Let C1, . . . , Cn be the maximal chain on X  that corresponds to N  by Theorem 3.2. 
The proof is by induction on the number ℓ of those 1 < j ≤ n with Cj−1 ⊢(2) Cj . In 
the base case of the induction, ℓ = 0, N  is itself a binary ranked tree.

So, assume that ℓ > 0. Let i be the maximum of those 1 < j ≤ n with Cj−1 ⊢(2) Cj . 
By the definition of ⊢(2) there exist three pairwise distinct A, B, C ∈ Ci−1 such that

	 Ci = (Ci−1 − {A, B, C}) ∪ {A ∪ B, B ∪ C}.

By Lemma 3.1, we can select from each cluster in Ci an element that is unique to this 
cluster. Let X ′ ⊆ X  be the resulting subset of selected elements. To give an example, 
for the binary RTCN N  in Fig. 5 we have i = 3 and can select X ′ = {a, c, d, f}.

By the maximality of i, we have Cj−1 ⊢(1) Cj  for all j > i. Thus, after restricting 
all clusters to X ′, the sequence Ci, . . . , Cn becomes a maximal chain on X ′ that only 
contains partitions of X ′. This maximal chain on X ′ corresponds, by Theorem 3.2, 

Fig. 5  Two consecutive rNNI∗s that transform the binary RTCN N  on X = {a, b, c, d, e, f} through 
the intermediate binary RTCN N ′ to the binary ranked tree T
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to a binary ranked tree T ′
1  on X ′. In Fig. 6 the binary ranked tree T ′

1  resulting from 
the binary RTCN N  in Fig. 5 is shown.

Let y be the element in X ′ selected from A ∪ B and let z be the element in X ′ 
selected from B ∪ C. Let T ′

2  be a binary ranked tree on X ′ that contains a vertex u 
with rank(u) = 2 and the arcs (u, y) and (u, z). Clearly, such a binary ranked tree 
exists and, by Fact 4.1, there exists a sequence of rNNIs that transforms T ′

1  into T ′
2 . 

In Fig. 6, a suitable binary ranked tree T ′
2  is shown that arises by applying a single 

rNNI to T ′
1 .

The sequence of rNNIs transforming T ′
1  into T ′

2  corresponds to a sequence of 
rNNI∗s that transform N  into a binary RTCN N ′ such that all vertices of N  with 
rank at most i remain unchanged and only the vertices corresponding to the binary 
ranked tree T ′

1  are involved. In Fig. 5 the binary RTCN N ′ resulting from the rNNI 
between the binary ranked trees T ′

1  and T ′
2  in Fig. 6 is shown.

In preparation for the last step in the proof, we summarize the properties of the 
maximal chain on X  that corresponds to N ′:

	● Cj(N ′) = Cj(N ) for all 1 ≤ j ≤ i
	● Cj−1(N ′) ⊢(1) Cj(N ′) for all i < j ≤ n
	● Ci+1(N ′) = (Ci(N ′) − {A ∪ B, B ∪ C}) ∪ {A ∪ B ∪ C}

Now we perform the following rNNI∗ on  N ′: We replace the cluster system 
Ci = Ci(N ′) by the cluster system

	 C ′′
i = (Ci−1(N ′) − {A, B}) ∪ {A ∪ B}.

This is possible since A, B, C ∈ Ci−1(N ′). Then we have

	 Ci+1(N ′) = (C ′′
i − {A ∪ B, C}) ∪ {A ∪ B ∪ C}.

The resulting maximal chain on X  is

	 C1(N ′) ⊢ · · · ⊢ Ci−1(N ′) ⊢(1) C ′′
i ⊢(1) Ci+1(N ′) ⊢(1) · · · ⊢(1) Cn(N ′).

By Theorem 3.2, this maximal chain on X  corresponds to a binary RTCN N ′′ on X . 
Moreover, by construction, the number of occurrences of ⊢(2) in this maximal chain 
on X  is ℓ − 1. Hence, by induction, there exists a sequence of rNNI∗s that trans-
form N ′′ into a binary ranked tree T  on X . But then, there is also a sequence of 

Fig. 6  The ranked trees T ′
1  and T ′

2  referred to 
in the proof of Theorem 4.2
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rNNI∗s that transform N  into T . This finishes the inductive proof. In the example 
in Fig. 5 we have N ′′ = T .�  □

Corollary 4.3  For any two binary ranked trees T  and T ′ on X , the length of a short-
est sequence of rNNI∗s that transform T  into T ′ is less than or equal to the length 
of a shortest sequence of rNNIs that transform T  into T ′.

Proof  Every rNNI between two binary ranked trees is an rNNI∗ between the two 
binary ranked trees (viewing the trees as binary RTCN).�  □

5  Non-binary ranked tree-child networks

So far we have shown how to compare binary RTCNs whose arcs are unweighted. 
In the introduction, in addition to binary RTCNs, we also informally introduced cer-
tain tree-child networks with non-negative arc weights, called ETCNs. In order to 
compare such ETCNs in the next section, we will need to consider non-binary rooted 
phylogenetic networks that are tree-child and have ranked vertices, as these can arise 
when shrinking down arcs to length zero. Similarly to other classes of non-binary 
networks (see e.g. Jetten and van Iersel (2016)), the formal definition of non-binary 
RTCNs involves taking a slightly more abstract view on the encoding for binary 
RTCNs. More specifically, in this section we define a certain partially ordered set 
or poset which not only allows us to say precisely what we mean by a non-binary 
RTCN, but to also define a distance on ETCNs in the next section.

Let T(X) denote the set of all cluster systems on X  that occur in some maximal 
chain on X . For C , C ′ ∈ T(X) we write C ⪯ C ′ if there exists a maximal chain

	 C1 ⊢ C2 ⊢ · · · ⊢ Cn

on X  with C = Ci and C ′ = Cj  for some 1 ≤ i ≤ j ≤ n. Then, by construction, 
⪯ is a partial ordering on T(X). We denote the resulting poset by (T(X), ⪯). Note 
that an important question in this context is how to efficiently recognize and compare 
(with respect to ⪯) cluster systems in T(X). But as this is not required in the remain-
ing sections, we address this somewhat technical aspect of the poset in Appendix 2 
for the interested reader.

A chain in (T(X), ⪯) is a sequence C1, . . . , Ct of 2 ≤ t ≤ n pairwise distinct 
cluster systems in T(X) such that

	 {{x} : x ∈ X} = C1 ⪯ C2 ⪯ · · · ⪯ Ct = {X}.

The integer t is called the length of the chain. Thus, chains of length n in (T(X), ⪯) 
are precisely the maximal chains on X .

Example 5.1  Consider X = {a, b, . . . , h}. Then
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C1 = {{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}}
C2 = {{a, b, c, d}, {c, d, e}, {f}, {g, h}}
C3 = {{a, b, c, d, e}, {f, g, h}}
C4 = {{a, b, c, d, e, f, g, h}}

is a chain of length 4 in (T(X), ⪯).
In the proof of Theorem 3.2, we saw how a maximal chain on X  guides the pro-

cess of generating the binary RTCN on X  that corresponds to the maximal chain. 
Here we generalize this idea to all chains in (T(X), ⪯). Since we may no longer 
have Ci ⊢ Ci+1 for two consecutive cluster systems in a chain, however, the process 
of generating the RTCN corresponding to a chain becomes a bit more complex to 
describe.

Let C1, . . . , Ct be a chain in (T(X), ⪯). The process of generating the correspond-
ing RTCN consists of t steps:

	● Step 1: For each x ∈ X  an arc with head x is created. The tails of these arcs are 
pairwise distinct and form a set of n vertices with in-degree 0 (see Fig. 7(a)).

	● Step i(2 ≤ i ≤ t − 1) : Let Ni−1 denote the network obtained at the end of 
Step i − 1. For vertices v of Ni−1 we also use Cv to denote the cluster on X  
consisting of those x ∈ X  for which there exists a directed path in Ni−1 from v 
to x. There is a bijective correspondence between the vertices v with in-degree 0 
of Ni−1 and the clusters in Ci−1 obtained by mapping v to Cv. For all A ∈ Ci−1 
put 

	 H(A) = {B ∈ Ci : A ⊆ B}.

 It follows from the definition of ⪯ that H(A) ̸= ∅ for all A ∈ Ci−1. Moreover, by 
Lemma 3.1, for all B ∈ Ci there exists some A ∈ Ci−1 with H(A) = {B}. To illus-
trate the notation used to describe Step i, consider i = 2 for Example 5.1 where we 
have: 

	

H({a}) = {{a, b, c, d}} = H({b}), H({c}) = {{a, b, c, d}, {c, d, e}} = H({d}),
H({e}) = {{c, d, e}}, H({f}) = {{f}}, H({g}) = {{g, h}} = H({h})

 Step i consists of three phases:

	– Phase 1: Any two vertices v and v′ of Ni−1 with in-degree 0 are identified if 
H(Cv) = H(Cv′). Let N ′

i−1 denote the resulting network (see Fig. 7(b)). For 
all vertices u of N ′

i−1 with in-degree 0, let Hu denote the set H(Cv), where v 
is any of the vertices of Ni−1 with in-degree 0 that have been identified to 
form u.

	– Phase 2: For

all vertices u of N ′
i−1 with in-degree 0 and |Hu| ≥ 2, and

1 3

Page 13 of 26     32 



V. Moulton, A. Spillner

all vertices u′ of N ′
i−1 with in-degree 0, |Hu′ | = 1 and Hu′ ⊆ Hu

 add the arc with head u and tail u′. Since |Hu| ≥ 2, the vertices u in this phase will 
become hybrid vertices. Let N ′′

i−1 denote the resulting network (see Fig. 7c).

	– Phase 3: For all vertices u of N ′′
i−1 with in-degree 0 and out-degree at least 2, 

add a new arc with head u and a new tail. This finishes Step i.

 At the end of Step i we have a network Ni whose vertices with in-degree 0 are in 
bijective correspondence with the clusters in Ci (see Fig. 7d and e).

	● Step n : All vertices with in-degree 0 in the network obtained after Step t − 1 are 
identified as a single vertex which then forms the root ρ of the resulting network 
(see Fig. 7f).

Finally, each vertex in the rooted phylogenetic network N = (V, E, ρ) on X  gener-
ated by the process described above is assigned a rank from the set {1, . . . , t} (see 
Fig. 7f) by putting:

	● rank(x) = 1 for all x ∈ X ,
	● rank(u) = i for all vertices u of the network Ni obtained at the end of Step i such 

that u is the head of an arc added in Step i (2 ≤ i ≤ t − 1),
	● rank(ρ) = t.

We now summarize the key properties of the rooted phylogenetic networks obtained 
by the process described above. The proof that these properties hold follows imme-
diately from the construction of the network N  from the given chain in (T(X), ⪯).

Theorem 5.2  For every chain C1 , . . . , Ct  in (T(X), ⪯) we obtain a rooted phylo-
genetic network N = (V , E , ρ) on X  together with a map rank : V → {1 , . . . , t} 
such that, for all 1 ≤ i < t,

Fig. 7  The process that generates a non-binary RTCN on X = {a, b, . . . , h} from the chain of length 4 
in Example 5.1. (a) The result of performing Step 1. (b) The result of Phase 1 in Step 2. (c) The result 
of Phase 2 in Step 2. (d) The result of performing Step 2. (e) The result of performing Step 3. (f) The 
resulting non-binary RTCN after performing Step 4, the final step

 

1 3

   32   Page 14 of 26



Spaces of ranked tree-child networks

	 Ci = {Cv : there exists an arc (u, v) ∈ E with rank(u) > i ≥ rank(v)},

and Ct = {Cρ} = {X}. If t = n (i.e. the chain is a maximal chain on X ), N  is the 
binary RTCN that corresponds to the chain by Theorem 3.2.

Note that, in the language of posets, (T(X), ⪯) is bounded because we have

	 {{x} : x ∈ X} ⪯ C ⪯ {X}

for all C ∈ T(X). This, together with the fact that all maximal chains in (T(X), ⪯) 
have the same length, implies that (T(X), ⪯) is what is known as a graded poset 
(with the grading of cluster systems C ∈ T(X) given by n − |C |). Moreover, The-
orem 4.2 is equivalent to saying that (T(X), ⪯) is gallery-connected. Note that a 
similar relationship for nearest neighbor interchanges on unrooted phylogenetic trees 
on X  appears in (Stadnyk 2022).

To conclude this section, we emphasize again that Theorem 5.2 only establishes 
that for each chain in the poset (T(X), ⪯) the process described above produces a 
well-defined tree-child network with ranked vertices to represent this chain. In the 
following, we will refer to any network produced by this process as a (possibly non-
binary) RTCN and, as a consequence, we have a one-to-one correspondence between 
chains in (T(X), ⪯) and RTCNs. As can be seen in Fig. 8, however, for non-maximal 
chains the non-binary RTCN corresponding to that chain is usually only one among 
several different rooted phylogenetic networks that are tree-child, have ranked verti-
ces and represent the structure of the chain. This highlights the fact that non-binary 
rooted phylogenetic networks that are tree-child and have ranked vertices are harder 
to capture than binary ones. In particular, a more complex encoding would need to 
be devised if one wanted to define a metric on all rooted phylogenetic networks that 
are tree-child and have ranked vertices. It could be interesting to explore this further 
in future work.

6  Construction of a CAT(0)-orthant space of ETCNs

In this section, we define a distance on the collection of binary ETCNs having the 
same leaf set. The main idea is to use the poset (T(X), ⪯) introduced in Section 5 to 
define a continuous space of such networks and, by using properties of (T(X), ⪯), 
show that this space is a so called CAT(0)-orthant space.

Fig. 8  (a) The non-binary RTCN on X = {a, b, c, d} that we obtain by Theorem 5.2 from the non-
maximal chain C1 = {{a}, {b}, {c}, {d}}, C2 = {{a, b, c}, {b, c, d}}, C3 = {X} in (T(X), ⪯). 
(b) Two other non-binary tree-child networks with ranked vertices that also represent the structure of 
this chain
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First, we need to present some more definitions. We call a non-negative weighting 
of the arcs in a binary RTCN N  on X  equidistant if the total weight of the arcs in a 
directed path in N  from ρ to some x ∈ X  does not depend on the choice of x and the 
directed path (see e.g. Fig. 9). Note that, given non-negative real-valued differences 
between consecutive ranks, an equidistant weighting is obtained by assigning to each 
arc the total difference between the rank of its head and tail. Conversely, every equi-
distant weighting of the arcs that is consistent with the ranks of its vertices (i.e. ver-
tices of the same rank have the same distance from the root and the higher the rank 
of a vertex the smaller the distance of it from the root), clearly yields corresponding 
non-negative, real-valued differences between consecutive ranks. Thus, to describe 
all equidistant weightings of a binary RTCN that are consistent with the ranks of its 
vertices, it suffices to look at all possible ways to assign non-negative real-valued 
differences between consecutive ranks.

To make this more precise, we use again the fact that, by Theorem 3.2, binary 
RTCNs on X  are in bijective correspondence with maximal chains

	 {{x} : x ∈ X} = C1, . . . , Cn = {X}

on X . Assigning positive, real-valued differences between consecutive ranks then 
corresponds to a map ω that assigns, for all 1 ≤ i < n, to the cluster system Ci a 
positive real number ω(Ci). To illustrate this, consider again the example in Fig. 9a, 
where we obtain the following map ω:

	

ω(C1) = ω({{a}, {b}, {c}, {d}, {e}}) = 1.3,

ω(C2) = ω({{a, b}, {b, c}, {d}, {e}}) = 2.0,

ω(C3) = ω({{a, b, c}, {b, c, d}, {e}}) = 1.9,

ω(C4) = ω({{a, b, c}, {b, c, d, e}}) = 0.8.

The maps ω for a fixed binary RTCN form an (n − 1)-dimensional orthant in R(n−1) 
that is spanned by the n − 1 axes that each correspond to one of the cluster systems 
C1, . . . , Cn−1. For example, the orthant for the binary RTCN in Fig. 9a is illustrated 
in Fig. 10 along with the orthants for two other binary RTCNs. Orthants for differ-
ent binary RTCNs may share some of their axes. This is the case precisely when the 

Fig. 9  (a) A binary RTCN on X = {a, b, c, d, e} where positive real-valued differences between con-
secutive ranks are given. (b) The corresponding equidistant weighting of the arcs of the network
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corresponding maximal chains on X  share some of its cluster systems. Intuitively, as 
can be seen in Fig. 10, orthants are “glued” together along these shared axes and, in 
this way, we obtain a continuous space whose points are meant to represent binary 
RTCNs on X  with an equidistant weighting of its arcs that is consistent with the ranks 
of the vertices.

One technical aspect, however, also illustrated in Fig. 10, is that points that lie 
on the boundary of an orthant correspond to maps ω that assign 0 to certain cluster 
systems. Intuitively, this means that the cluster system is skipped, leading to a (non-
maximal) chain in the poset (T(X), ⪯) which then corresponds to a (not necessar-
ily binary) RTCN on X  obtained by Theorem 5.2. In view of this, we call a (not 
necessarily binary) RTCN N  obtained by Theorem 5.2 together with an equidistant 

Fig. 10  The gray squares represent three orthants of maximum dimension in the orthant space S(X) 
for X = {a, b, c, d, e}. These orthants are actually 4-dimensional. They are projected into the 
plane by showing only two of the four coordinate axes that determine each of them (each coordi-
nate axis is labeled by a cluster system in T(X); the two axes corresponding to the cluster systems 
{{a}, {b}, {c}, {d}, {e}} and {{a, b, c}, {b, c, d, e}} are not shown in the projection). Each point in 
an orthant corresponds to an ETCN on X  with the coordinates of the point describing the difference 
between consecutive ranks
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weighting of the arcs of N  that is consistent with the ranks of the vertices of N  an 
equidistant tree-child network (ETCN) on X .

A concise, formal description of the continuous space we have just described can 
be obtained by considering maps ω : T(X) − {{X}} → R≥0. For such a map, put 
supp(ω) = {C ∈ T(X) : ω(C ) > 0}. Then the orthant-space S(X) of all ETCNs 
on X  consists of all maps ω : T(X) − {{X}} → R≥0 such that the cluster systems in 
supp(ω) (together with the cluster systems {{x} : x ∈ X} and {X}), when ordered 
by ⪯, form a chain in the poset (T(X), ⪯). More details about the general construc-
tion of an orthant-space based on the chains in a poset can be found in  (Huber et 
al. (2024), Sec.  4.1). We remark that this construction can also be used to obtain 
the space of ultrametric trees presented by Gavryushkin and Drummond (2016) (cf. 
Huber et al. (2024)).

We now show that the space S(X) comes equipped with a distance that has some 
attractive properties. More specifically, in the theorem below we show that S(X) 
together with the distance δ that assigns the length δ(ω, ω′) of a shortest path1 or 
geodesic between any two points ω, ω′ in S(X) is a CAT(0)-orthant space. Note that 
this immediately implies that there is a unique geodesic between any two points in 
S(X). As it is quite technical and not important for the proof, we shall not present the 
definition of CAT(0)-orthant spaces here, but instead refer the reader to e.g. (Miller et 
al. (2015), Section 6) for more details.

Theorem 6.1  The metric space (S(X), δ) is a CAT(0)-orthant space whose points 
are in bijective correspondence with ETCNs on X .

Proof  It is known2 (see e.g. (Huber et al. (2024), Sec. 4.1) for more details), that con-
structing a metric space based on a poset in the way that (S(X), δ) was constructed 
based on the poset (T(X), ⪯) always yields a CAT(0)-orthant space.

We now show that the points in (S(X), δ) are in bijective correspondence with 
ETCNs on X . First note that each point ω ∈ S(X) corresponds to a chain C1, . . . , Ct 
in (T(X), ⪯) that is obtained by ordering the cluster systems in supp(ω) together 
with the cluster systems {{x} : x ∈ X} and {X} by ⪯. By Theorem 5.2, the chain 
yields a well-defined (but not necessarily binary) RTCN on X . From the values ω(Ci), 
1 ≤ i < t, we obtain an equidistant weighting of the arcs of this RTCN that is consis-
tent with the ranks of the vertices as described in this section.

Conversely, assume we are given an ETCN on X , that is, a (not necessarily binary) 
RTCN N  on X  together with an equidistant weighting of the arcs that is consistent 
with the ranks of the vertices of N . Let C1, . . . , Ct be the chain in (T(X), ⪯) that 
corresponds to N  by Theorem 5.2. As described in the text, the given equidistant 
weighting of the arcs of N  yields non-negative values ω(Ci) for all 1 ≤ i < t. We 

1 A path is essentially a connected, finite sequence of straight line segments, and the length of a path is the 
sum of the Euclidean lengths of each of the line segments.
2 We summarize the argument for those readers familiar with the theory of posets: Consider the order com-
plex of the poset (T(X), ⪯). The fact that every order complex is a flag complex implies, by a classical 
result of Gromov (1987), that the orthant space is CAT(0).
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formally extend these to a map ω : T(X) − {{X}} → R≥0 by putting ω(C ) = 0 for 
all C ∈ T(X) − {C1, . . . , Ct−1, {X}}, which then yields the point in S(X) corre-
sponding to the given ETCN.�  □

It follows immediately from Theorem  6.1, that the distance between any two 
ETCNs on X , that is, the value δ(ω, ω′) for the corresponding maps ω, ω′ ∈ S(X), 
can be computed in polynomial time (Miller et al. (2015), Corollary 6.19). In addi-
tion, we have the following corollary about distances in the space S(X).

Corollary 6.2  Let ω1 , ω2 ∈ S(X) be points that correspond to ultrametric trees T1  
and T2 , respectively. Then δ(ω1 , ω2 ) equals the distance between T1  and T2  in the 
space of ultrametric trees by Gavryushkin and Drummond (2016).

Proof  Let ω be a point on the unique geodesic in S(X) between ω1 and ω2. Since 
S(X) is a CAT(0)-orthant space, it follows from (Miller et al. (2015), Corollary 6.19) 
that supp(w) ⊆ supp(ω1) ∪ supp(ω2). Hence, ω corresponds to an ultrametric tree. 
Thus, each point on the unique geodesic in S(X) between ω1 and ω2 corresponds to 
an ultrametric tree, implying that this geodesic corresponds to the unique geodesic 
in the space of ultrametric trees by Gavryushkin and Drummond (2016) between T1 
and T2. In particular, the corresponding geodesics in the two spaces have the same 
length, as required.�  □

7  Conclusion

In this paper, we have presented various ways to compare binary RTCNs. Interest-
ingly, it is shown by Collienne and Gavryushkin (2021) that, given two binary ranked 
trees T1 and T2 on X , the rNNI-distance between T1 and T2 can be computed in 
polynomial time. It would be nice to know if the analogous rNNI∗-distance between 
two binary RTCNs defined in Sect. 4 can also be computed in polynomial time. In 
addition to this, it remains open if Corollary  4.3 can be strengthened to equality 
always holding for the lengths of the two sequences.

In another direction, it would be of interest to investigate if alternative distances on 
RTCNs can be defined by generalizing other types of ranked tree modifications (for 
example, subtree prune and regraft operations (SPRs) considered by Collienne et al. 
(2024)), and to also see if the ranked tree distances considered by Kim et al. (2020) 
might be generalized to RTCNs. Instead of looking at other distances on RTCNs, it 
could also be worth investigating if alternative continuous network spaces can be 
defined for different classes of networks (e.g. networks where the vertices have a 
different type of ranking such as HGT-consistent labelings (van Iersel et al. 2022)).

Another avenue of research is to further consider combinatorial and topological 
properties of the poset (T(X), ⪯). For example, we have shown that this poset is 
gallery-connected, a property that, for any finite poset, is immediately implied in 
case the poset is shellable (see e.g. Björner and Wachs (1983) for a formal definition 
of shellability). Is (T(X), ⪯) shellable? If this were true, then it would immediately 
imply that the space (S(X), δ) considered in Sect.  6 has some special topologi-
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cal properties. Note that a similar combinatorial technique was used by Ardila and 
Klivans (2006) to understand the topology of spaces of (unranked) equidistant trees.

Finally, Theorem  6.1 implies that methods for performing a variety of statisti-
cal computations (e.g. Fréchet mean and variance (Bacák 2014; Miller et al. 2015), 
an analogue of partial principal component analysis  (Nye et al. 2017) and confi-
dence sets (Willis 2019)) can be applied (or extended) to the metric space (S(X), δ). 
These methods allow, for example, the computation of a consensus for a collection of 
ETCNs. It would be interesting to further explore this possibility, and also to investi-
gate geometric properties of the space (S(X), δ).

Appendix 1

In this appendix we present a complete list of the possible types of network modifi-
cations that can occur when performing a ranked nearest neighbor interchange on a 
binary RTCN (see Fig. 11). This overview was obtained by systematically consider-
ing all possible configurations that can occur in cluster systems C , C ′, C ′′ ∈ T(X) 
with C ⊢ C ′ ⊢ C ′′. Note that there are at most six clusters in C − C ′′. We focus on 

Fig. 11  Changes in a binary RTCN that are the result of a single ranked nearest neighbor interchange 
as defined in the main text. Each box depicts all configurations that can be obtained in a single move 
starting from any one of the configurations in that box. (a) Moves that only affect the ranks of vertices 
but not the topology of the network. (b) Moves that also affect the topology of the network
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these clusters and on which unions of them may be formed when performing C ⊢ C ′ 
and then C ′ ⊢ C ′′. This is then displayed in Fig. 11 as a corresponding network struc-
ture in a binary RTCN. In this figure, A, B, C, . . .  denote the clusters in C − C ′′.

Appendix 2

In this appendix we present three technical lemmas concerning the poset T(X) and 
briefly explain how they can be used to decide efficiently (i.e. in polynomial time 
with respect to |X|) 

(P1)	 if a given cluster system C ′ on X  is contained in T(X), and
(P2)	 if two given cluster systems C , C ′ ∈ T(X) satisfy C ⪯ C ′.The first lemma 

describes the relevant configurations in cluster systems. We write C ≺ C ′ for 
two cluster systems C , C ′ ∈ T(X) if C ⪯ C ′ and C ̸= C ′.

Lemma 7.1  Let C , C ′ ∈ T(X) with C ≺ C ′. Then one of the following must hold: 

(i)	 There exist two distinct a, b ∈ X  such that there exist distinct unique clusters 
A, B ∈ C  with a ∈ A, b ∈ B and, for all C ′ ∈ C ′, {a, b} ∩ C ′ ∈ {∅, {a, b}}.

(ii)	 There exist three pairwise distinct a, b, c ∈ X  such that there exist pairwise dis-
tinct unique clusters A, B, C ∈ C  with a ∈ A, b ∈ B, c ∈ C and, for all C ′ ∈ C ′, 
{a, b, c} ∩ C ′ ∈ {∅, {a, b}, {b, c}, {a, b, c}}.

Proof  By Lemma 3.1, every cluster in C  contains an element unique to this clus-
ter. Since C ≺ C ′, there must exist C ′′ ∈ T(X) with C ⊢ C ′′ ⪯ C ′. Thus, we have 
either C ⊢(1) C ′′, implying (i), or C ⊢(2) C ′′, implying (ii).�  □

The next lemma establishes that the configuration described in Lemma 7.1(i), if 
present, can always be used to start a chain.

Lemma 7.2  Let C , C ′ ∈ T(X) with C ≺ C ′ and let a, b ∈ X  be two distinct ele-
ments such that there exist distinct unique clusters A, B ∈ C  with a ∈ A, b ∈ B and, 
for all C ′ ∈ C ′, {a, b} ∩ C ′ ∈ {∅, {a, b}}. Then (C − {A, B}) ∪ {A ∪ B} ⪯ C ′.

Proof  Since C ≺ C ′, there exists a chain

	 C = C0 ⊢ C1 ⊢ · · · ⊢ Ck = C ′

with k ≥ 1. We use induction on k. In the base case of the induction, k = 1, we have 
C ′ = (C − {A, B}) ∪ {A ∪ B}, as required.

Now assume that k ≥ 2. We perform a case analysis on C1.

	● C1 = (C0 − {A, B}) ∪ {A ∪ B}: Then we are done.
	● C1 = (C0 − {E, F}) ∪ {E ∪ F} for two distinct 

E, F ∈ C0 − {A, B}: Put C ′
2 = (C1 − {A, B}) ∪ {A ∪ B}. By induction, 
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C ′
2 ⪯ C ′. Thus, putting C ′

1 = (C0 − {A, B}) ∪ {A ∪ B}, we have 

	 C0 ⊢ C ′
1 ⊢ (C ′

1 − {E, F}) ∪ {E ∪ F} = C ′
2 ⪯ C ′,

 as required.

	● C1 = (C0 − {B, E}) ∪ {B ∪ E} for some E ∈ C0 − {A, B}: Put 
C ′

2 = (C1 − {A, B ∪ E}) ∪ {A ∪ B ∪ E}. By induction, C ′
2 ⪯ C ′. Thus, put-

ting C ′
1 = (C0 − {A, B}) ∪ {A ∪ B}, we have 

	 C0 ⊢ C ′
1 ⊢ (C ′

1 − {A ∪ B, E}) ∪ {A ∪ B ∪ E} = C ′
2 ⪯ C ′,

 as required.

	● C1 = (C0 − {E, F, G}) ∪ {E ∪ F, F ∪ G} for three pairwise distinct 
E, F, G ∈ C0 − {A, B}: Put C ′

2 = (C1 − {A, B}) ∪ {A ∪ B}. By induction, 
C ′

2 ⪯ C ′. Thus, putting C ′
1 = (C0 − {A, B}) ∪ {A ∪ B}, we have 

	 C0 ⊢ C ′
1 ⊢ (C ′

1 − {E, F, G}) ∪ {E ∪ F, F ∪ G} = C ′
2 ⪯ C ′,

 as required.

	● C1 = (C0 − {B, E, F}) ∪ {B ∪ E, E ∪ F} for two distinct 
E, F ∈ C0 − {A, B}: Put C ′

2 = (C1 − {A, B ∪ E}) ∪ {A ∪ B ∪ E}. By induc-
tion, C ′

2 ⪯ C ′. Thus, putting C ′
1 = (C0 − {A, B}) ∪ {A ∪ B}, we have 

	 C0 ⊢ C ′
1 ⊢ (C ′

1 − {A ∪ B, E, F}) ∪ {A ∪ B ∪ E, E ∪ F} = C ′
2 ⪯ C ′,

 as required.

	● C1 = (C0 − {B, E, F}) ∪ {E ∪ B, B ∪ F} for two distinct E, F ∈ C0 − {A, B} 
or C1 = (C0 − {A, B, E}) ∪ {A ∪ B, B ∪ E} for some E ∈ C0 − {A, B}: For 
2 ≤ i ≤ k, put 

	 C ′
i = {∪C∈C−{B},C⊆D C : D ∈ Ci} ∪ {B}.

 Then, intuitively, C0 ⊢ C ′
2 ⊢ · · · ⊢ C ′

k is the chain obtained by skipping the step 
C0 ⊢ C1. Moreover, since {a, b} ∩ C ′ ∈ {∅, {a, b}} for all C ′ ∈ C ′, we have 

	 C ′ = {D : D ∈ C ′
k − {B}, a ̸∈ D} ∪ {D ∪ B : D ∈ C ′

k, a ∈ D}

 Hence, putting C ′′
1 = (C − {A, B}) ∪ {A ∪ B} and, for 2 ≤ i ≤ k, 

	 C ′′
i = {D : D ∈ C ′

i − {B}, a ̸∈ D} ∪ {D ∪ B : D ∈ C ′
i , a ∈ D},

 we obtain the chain C0 ⊢ C ′′
1 ⊢ C ′′

2 ⊢ · · · ⊢ C ′′
k = C ′, as required.
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	● C1 = (C0 − {A, B, E}) ∪ {A ∪ E, E ∪ B} for some E ∈ C0 − {A, B}: Put 
C ′

2 = (C1 − {A ∪ E, B ∪ E}) ∪ {A ∪ B ∪ E}. By induction, C ′
2 ⪯ C ′. Thus, 

putting C ′
1 = (C0 − {A, B}) ∪ {A ∪ B}, we have 

	 C0 ⊢ C ′
1 ⊢ (C ′

1 − {A ∪ B, E}) ∪ {A ∪ B ∪ E} = C ′
2 ⪯ C ′,

 as required.□
The next lemma establishes that if the configuration described in Lemma 7.1(i) is 

not present, we can always select a suitable instance of the configuration described in 
Lemma 7.1(ii) to start a chain.

Lemma 7.3  Let C , C ′ ∈ T(X) with C ≺ C ′ and there are no two distinct ele-
ments a′, b′ ∈ X  such that there exist distinct unique clusters A′, B′ ∈ C  with 
a′ ∈ A′, b′ ∈ B′ and, for all C ′ ∈ C ′, {a′, b′} ∩ C ′ ∈ {∅, {a′, b′}}. Moreover, 
let a, b, c ∈ X  be three pairwise distinct elements such that there exist pair-
wise distinct unique clusters A, B, C ∈ C  with a ∈ A, b ∈ B, c ∈ C  and, for 
all C ′ ∈ C ′, {a, b, c} ∩ C ′ ∈ {∅, {a, b}, {b, c}, {a, b, c}}. Let a, b, c be cho-
sen such that {C ′ ∈ C ′ : b ∈ C ′} is maximal with respect to set inclusion. Then 
(C − {A, B, C}) ∪ {A ∪ B, B ∪ C} ⪯ C ′.

Proof  Since C ≺ C ′, there exists a chain

	 C = C0 ⊢ C1 ⊢ · · · ⊢ Ck = C ′

with k ≥ 1.
Let ℓ be maximum such that B ∈ Cℓ. By the assumptions in the statement 

of the lemma, we have 0 ≤ ℓ < k. Moreover, since there are no two distinct ele-
ments a′, b′ ∈ X  such that there exist distinct unique clusters A′, B′ ∈ C0 with 
a′ ∈ A′, b′ ∈ B′ and, for all C ′ ∈ C ′, {a′, b′} ∩ C ′ ∈ {∅, {a′, b′}}, we must have 
Cℓ ⊢(2) Cℓ+1. We consider two cases.

Cℓ+1 = (Cℓ − {B, E, F}) ∪ {B ∪ E, E ∪ F} for two distinct E, F ∈ Cℓ − {B}: 
Let e ∈ E and f ∈ F  be elements unique to these clusters in Cℓ, which must exist by 
Lemma 3.1. This implies that there exist distinct unique E′, F ′ ∈ C0 with e ∈ E′ and 
f ∈ F ′ and, for all C ′ ∈ Ck, {b, e, f} ∩ C ′ ∈ {∅, {b, e}, {e, f}, {b, e, f}}. Hence, 
{C ′ ∈ Ck : b ∈ C ′} ⊆ {C ′ ∈ Ck : e ∈ C ′}. Thus, by the maximality of the choice 
of a, b, c, the two distinct elements c, e ∈ X  are such that, for all C ′ ∈ Ck, we have 
{b, e} ∩ C ′ ∈ {∅, {b, e}}, a contradiction. Hence, this case cannot occur.

Cℓ+1 = (Cℓ − {B, E, F}) ∪ {E ∪ B, B ∪ F} for two distinct E, F ∈ Cℓ − {B}: 
We consider the chain C ′

1 ⊢ C ′
2 ⊢ · · · ⊢ C ′

k obtained by, intuitively, skipping the step 
Cℓ ⊢ Cℓ+1 in the chain C0 ⊢ C1 ⊢ · · · ⊢ Ck, which causes B to remain a separate 
cluster. More precisely, we put

	
C ′

i =
{

Ci−1 if 1 ≤ i ≤ ℓ + 1
{∪G∈C−{B},G⊆D G : D ∈ Ci} ∪ {B} if ℓ + 2 ≤ i ≤ k.

Thus, by the choice of a, b, c, we have
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	Ck = {D : D ∈ C ′
k − {B}, {a, c} ∩ D = ∅} ∪ {D ∪ B : D ∈ C ′

k, {a, c} ∩ D ̸= ∅}.

But then we also have the chain

	 C ′′
0 ⊢ C ′′

1 ⊢ · · · ⊢ C ′′
k

obtained by putting

	
C ′′

i =

{
C if i = 0
(C − {A, B, C}) ∪ {A ∪ B, B ∪ C} if i = 1
{D : D ∈ C ′

i − {B}, {a, c} ∩ D = ∅} ∪ {D ∪ B : D ∈ C ′
i , {a, c} ∩ D ̸= ∅} if 2 ≤ i ≤ k,

as required. � □
We now sketch how these three lemmas can be used to decide (P1) and (P2) in 

polynomial time. Noting that {{x} : x ∈ X} ⪯ C ′ must hold for all cluster systems 
C ′ ∈ T(X), Problem (P1) can be solved by putting C = {{x} : x ∈ X}, tentatively 
assuming that C ′ ∈ T(X) and applying Lemmas 7.2 and 7.3 recursively until either 
we arrive at the cluster system C ′, implying that C ′ ∈ T(X), or we arrive at a clus-
ter system C ′′ where we get stuck (cannot apply Lemmas 7.2 and 7.3 any more or 
|C ′′| ≤ |C ′|). Problem (P2) can be solved in the same way.
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